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Interleukin-26 (IL-26) is released by several immune and structural cells following stimulation of toll-like receptors (TLRs), whereupon it can directly inhibit viral replication and enhance neutrophil chemotaxis. Given these unique properties, IL-26 has emerged as an intriguing mediator of host defense in the lungs. However, the role of IL-26 in COVID-19 has not been thoroughly investigated. Here, we characterized the involvement of IL-26 in the hyperinflammation and tissue damage that occurs in patients with acute COVID-19. We found that IL-26 is markedly increased in blood samples from these patients, and that the concentration of IL-26 correlates with those of the neutrophil-mobilizing cytokines IL-8 and TNFα, respectively. Moreover, the increase in blood IL-26 correlates with enhanced surface expression of the “don’t eat me” signal CD47 on blood neutrophils isolated from patients with acute COVID-19. Finally, we found that the blood concentration of IL-26 correlates with that of increased lactate dehydrogenase, an established marker of tissue damage, and decreased mean corpuscular hemoglobin (MCH), a previously verified hematological aberration in COVID-19, both of which are associated with severe disease. Thus, our findings indicate that increased systemic IL-26 associates with markers of hyperinflammation and tissue damage in patients with acute COVID-19, thereby forwarding the kinocidin IL-26 as a potential target for diagnosis, monitoring, and therapy in this deadly disease.
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Introduction

Messenger RNA vaccines encoding for the SARS-CoV-2 spike protein have proven effective at reducing the number of severe cases of COVID-19 (1). However, the emergence of new variants of concern (2), limited vaccine distribution (3), and waning immunity (4) remain major problems that highlight the need for more effective therapies against the acute manifestations of COVID-19. Such therapies, in turn, require a deeper understanding of the cellular and molecular mechanisms underlying this disease. Moreover, it is now known that patients with acute COVID-19 present increased blood levels of pro-inflammatory cytokines (e.g., IL-6, IL-8, TNFα) that drive neutrophil mobilization and are associated with poor prognosis in severe cases (5, 6). Although neutrophils may contribute to viral clearance via cytokine release, phagocytosis, and production of extracellular traps (NETs), a growing body of evidence indicates that excessive neutrophil mobilization becomes pathogenic in COVID-19 (7). Along these lines, we and others recently demonstrated that blood neutrophils from patients with COVID-19 are hyperactivated and display enhanced survival and migration (6, 8). In addition, this excessive neutrophil mobilization has been confirmed by the increased markers of NET production found in blood from patients with acute COVID-19 (8, 9).

Until now, IL-26 has emerged as an intriguing mediator of host defense in lung disorders due to its antibacterial and neutrophil-mobilizing properties (10–16). However, it may also possess anti-viral potential; IL-26 was recently shown to bind viral RNA intermediates and inhibit the replication of the Hepatitis C virus, a virus that, just like SARS-CoV-2, contains a positive-sense single-stranded RNA genome (17). In addition, we have previously shown that IL-26 acts via its receptor complex (IL-10R2/IL-20R1) to enhance the IL-8- and fMLP-mediated chemotaxis of neutrophils in vitro (10), as well as the LPS-dependent accumulation of neutrophils in the lungs of mice in vivo (13). Furthermore, we and others have forwarded evidence that IL-26 alone or bound to NETs triggers the production of the neutrophil-related cytokines IL-6, IL-8, and TNFα in unsorted bronchoalveolar lavage (BAL) cells (10) and peripheral blood mononuclear cells (PBMCs) (18). Finally, we have shown that activation of TLR2, TLR3, TLR4, TLR7, and TLR8, all of which mediate SARS-CoV-2 recognition (19–23), elicits the release of IL-26 in human primary bronchial epithelial cells (TLR3, TLR7, and TLR8) (11), primary lung fibroblasts (TLR4) (24), alveolar macrophages (TLR4) (10), blood neutrophils (TLR4) (12), and the alveolar epithelial cell line A549 (TLR2 and TLR4) (12).

Despite its inherent antiviral and neutrophil-mobilizing properties, the involvement of IL-26 in COVID-19 has not been investigated in a conclusive manner. Therefore, in the current pilot study, we quantified the concentration of IL-26 in plasma samples from patients with acute COVID-19 (COVID-19 group), compared with healthy control subjects (Control group), and analyzed its association with the neutrophil-mobilizing cytokines IL-6, IL-8, and TNFα. We then characterized how the concentration of IL-26 associates with different markers of neutrophil activation, migration, survival, and NET production. Finally, we also determined the correlation between the plasma concentration of IL-26 and different markers of tissue damage and inflammation, as well as hematological parameters relevant to COVID-19. In doing so, we obtained strong evidence that the kinocidin IL-26 is increased at the systemic level and associates with several markers of hyperinflammation and tissue damage in acute COVID-19.



Methods


Patient material

All PCR-positive patients admitted between June 2020 and January 2021 to the COVID-19 subunit of the ENT department at the Karolinska University Hospital (Huddinge) were eligible for inclusion. At the time, the wildtype and alpha SARS-CoV-2 variants dominated in Sweden (25, 26). A healthy control group was recruited for comparison during the same period. Blood was collected at a single time-point and all participants provided written informed consent before sample collection. All procedures and handling of patient information were conducted in accordance with the ethical permit approved by the Swedish Ethical Review Authority in Gothenburg (Diary No. 2020-02579). A subgroup of this patient material was described in a recent publication (8).



Quantification of cytokines and markers of NET formation

The presence of NETs in plasma was determined by measuring the concentration of double-stranded DNA (dsDNA) in a Quibit™ 3.0 Fluorometer (Thermo Fisher), and the levels of histone-complexed DNA (i.e., cell-free nucleosomes) using the Cell Death Detection ELISAPLUS (Roche). The protein concentrations of IL-6, IL-8, IL-26, and TNFα in human plasma were quantified using ELISA (IL-6, IL-8, and TNFα: R&D Systems; IL-26: Cusabio) according to the manufacturer’s instructions. Cytokine concentrations were measured in samples from all patients and controls, but the plasma concentration of dsDNA and cell-free nucleosomes could only be measured in 32 out of 49 patients from the COVID-19 group, and 26 out of 27 participants from the Control group. Results on the specific levels of dsDNA, cell-free nucleosomes, IL-6, IL-8, and TNFα were already available from a previous publication on this patient material (8). However, all data on IL-26, as well as all comparisons presented in the current study have not been published elsewhere.



Neutrophil isolation and flow cytometry

To isolate neutrophils from heparin-containing whole blood samples, red blood cells were eliminated via incubation with lysis buffer (0.8 mM NH4Cl, 10 mM KHCO3 0.1 mM EDTA). The remaining cells were washed with PBS, stained with antibodies against CD11b, CD15, CD45, CD47, CD49d, and CD66b, and fixed (1% paraformaldehyde in PBS). Flow cytometry was performed on an LSRFortessa™ X-20 (BD-Biosciences) and neutrophils were defined as SSCInt FSCInt CD15+ cells. This analysis was performed in samples from 26 out of 49 patients in the COVID-19 group, and 12 out of 27 participants in the Control group. Results on the specific expression of all these markers for this patient material were already available from a previous publication (8). However, all comparisons presented in this study have not been published elsewhere.



Quantification of hematological parameters and markers of inflammation and tissue damage

Blood concentrations of lactate dehydrogenase (LDH), C-reactive protein (CRP), and procalcitonin (PCT), as well as the mean corpuscular hemoglobin (MCH) and cell blood counts were determined using routine methods at the clinical laboratory of the Karolinska University Hospital. Information on MCH could only be retrieved from 31 out of 49 patients in the COVID-19 group.



Statistical analysis

Non-parametric statistical analyses were performed in Prism 9.3 (GraphPad). Pairwise comparisons were assessed by unpaired, two-tailed Mann-Whitney test. Associations between two continuous variables were determined via Spearman rank’s correlation test. A p-value ≤ 0.05 was considered significant.




Results


Patient characteristics

Forty-nine hospitalized patients with PCR-confirmed SARS-CoV-2 infection and 27 healthy control subjects were enrolled in the study. The main characteristics of enrolled patients and controls are summarized in Supplementary Table 1 (see also “Methods” for more information). The median age, as well as the number of male subjects, tended to be higher in the COVID-19 group. Most patients (44 out of 49) included in the COVID-19 group had severe disease (hospitalized with supplemental oxygen).



Increased plasma concentration of IL-26 in acute COVID-19

The concentration of IL-26 in plasma was significantly increased in the COVID-19 group compared to the Control group (Figure 1A). Previously, we had shown that the plasma concentrations of IL-6, IL-8, and TNFα were similarly increased in this patient material (8). To better understand the relationship between IL-26 and these other cytokines, we now performed correlation analyses and found that the concentration of IL-26 displayed a strong positive correlation (r = 0.73) with that of IL-8 (Figure 1B), and a modest positive correlation (r = 0.39) with that of TNFα (Figure 1C), in the COVID-19 group. Moreover, the IL-26 concentration displayed a modest positive correlation (r = 0.36) with that of IL-6 when all the subjects in the COVID-19 and Control groups were pooled together (Figure 1D). Importantly, we did not detect any statistically significant differences regarding gender for any of these cytokines within the COVID-19 or Control groups (Supplementary Figures 1A–D). Furthermore, we did not detect a statistically significant correlation between the plasma concentration of IL-26 and age within the COVID-19 or Control groups (Supplementary Figures 2A, B). Notably, the concentration of IL-26 was still increased in a statistically significant manner in the COVID-19 group compared to the Control group when age matched subjects (30-61 years of age) were investigated (Supplementary Figures 2C, D).
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Figure 1 | The plasma concentration of IL-26 is associated with those of IL-8, TNFα, and IL-6. (A) Comparison between the plasma concentration of IL-26 in the COVID-19 and Control groups tested by unpaired Mann-Whitney test. Spearman correlation analyses of the plasma concentration of IL-26 with those of (B) IL-8, (C) TNFα, and (D) IL-6 in the COVID-19 (orange) and Control (blue) groups.



Higher plasma concentrations of IL-26 and IL-8 are associated with increased neutrophil survival in acute COVID-19

We have recently shown that blood neutrophils isolated from patients in the COVID-19 group have a higher surface expression of the “don’t eat me” signal CD47, which prevents phagocytosis and prolongs survival (8). Interestingly, among the cytokines investigated, only IL-26 (r = 0.40) and IL-8 (r = 0.49) displayed a positive correlation with CD47 expression in blood neutrophils from the COVID-19 group (Figures 2A, B). The plasma concentration of TNFα correlated with the surface expression of CD47 when the COVID-19 and Control groups were pooled for analysis, whereas the concentration of IL-6 in plasma did not correlate with CD47 expression in any group (Supplementary Figures 3A, B).

[image: Scatter plot displaying relationships between CD47 and interleukin levels. Plot A shows IL-26 versus CD47 with orange (C-19: p = 0.04, r = 0.40) and blue dots (Ctrl: p = 0.73, r = -0.11). All data: p = 0.005, r = 0.45. Plot B shows IL-8 versus CD47 with orange (C-19: p = 0.01, r = 0.49) and blue dots (Ctrl: p = 0.15, r = -0.44). All data: p < 0.0001, r = 0.60.]
Figure 2 | The plasma concentrations of IL-26 and IL-8 are associated with the surface expression of CD47 on blood neutrophils in acute COVID-19. Spearman correlation analyses of the plasma concentrations of (A) IL-26 and (B) IL-8 with the surface expression of CD47 on blood neutrophils from the COVID-19 (orange) and Control (blue) groups.

Moreover, we have recently shown that blood neutrophils isolated from the COVID-19 group have increased markers of activation (i.e., CD11b and CD66b) and a reduced surface expression of the maturity/migration marker CD49d (8). In the present study, we found that although the concentration of IL-26 did not correlate with the surface expression of CD11b in any group, it correlated with the surface expression of CD66b and the percentage of CD49d+ neutrophils when the COVID-19 and Control groups were pooled for analysis (Supplementary Figures 4A–C). Similarly, the concentrations of IL-6, IL-8 and TNFα correlated with the surface expression of CD11b and CD66b in the pooled analysis (Supplementary Figures 5A–F), whereas only IL-8 and TNFα (but not IL-6) correlated with the percentage of CD49d+ neutrophils when the COVID-19 and Control groups were combined for analysis (Supplementary Figures 6A–C).



Plasma concentrations of IL-8 and TNFα are associated with NET markers in acute COVID-19

Because IL-26 can bind and enhance the inflammatory potential of extracellular DNA (27), we characterized the relationship between the plasma concentration of IL-26 and markers of NET formation in the COVID-19 and Control groups. Notably, we and others have previously shown that NETs are increased in blood from COVID-19 patients (8, 9). Indeed, in the current study, we found that the plasma concentration of IL-26 correlates with those of double-stranded DNA (dsDNA) and cell-free nucleosomes when the COVID-19 and Control groups were pooled together for analysis (Figures 3A, B). In agreement with their known roles as inducers and/or enhancers of NET formation (28, 29), the plasma concentrations of IL-8 and TNFα correlated with those of both markers of NET production in the COVID-19 group (Figures 3C–F). On the other hand, the plasma concentration of IL-6 only correlated with that of cell-free nucleosomes, but not with dsDNA in the COVID-19 group (Supplementary Figures 7A, B).
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Figure 3 | The plasma concentrations of IL-8 and TNFα are associated with those of NET markers in COVID-19 patients. Spearman correlation analyses of the plasma concentrations of IL-26, IL-8 and TNFα with the plasma concentration of (A, C, E) double-stranded DNA (dsDNA) and the plasma levels of (B, D, F) cell-free nucleosomes from the COVID-19 (orange) and Control (blue) groups.



Plasma concentration of IL-26 correlates with that of lactate dehydrogenase in COVID-19 patients

Finally, we determined whether the plasma concentrations of IL-6, IL-8, IL-26, and TNFα correlate with markers of tissue damage and inflammation, as well as different hematological parameters and hospitalization time. Notably, we found that the concentration of IL-26 correlated in a positive manner with that of lactate dehydrogenase (LDH), a marker of tissue damage, in plasma from the COVID-19 group (Figure 4A). Moreover, the concentrations of IL-8 and TNFα (but not IL-6) tended to display a similar trend that failed to reach statistical significance (Supplementary Figure 8A–C). In addition, the plasma concentrations of both IL-26 and IL-8 displayed a negative correlation with the mean corpuscular hemoglobin (MCH) in whole blood from the COVID-19 group (Figures 4B, C), while IL-6 and TNFα failed to correlate with MCH in this way (Supplementary Figures 9A, B). On the other hand, only the plasma concentration of IL-6 correlated with the blood neutrophil-to-lymphocyte ratio and the plasma concentrations of C-reactive protein (CRP) and procalcitonin (PCT) (Figures 4D–F; and Supplementary Figures 10A–C and 11A–F). Finally, only the plasma concentration of IL-8 displayed a statistically significant, albeit moderate (p = 0.32), positive correlation with hospitalization time in the COVID-19 group (Supplementary Figures 12A–D).

[image: Scatter plots show correlations between various biological markers and cytokines. Panel A: LDH vs. IL-26, positive correlation (r=0.31). Panel B: MCH vs. IL-26, negative correlation (r=-0.40). Panel C: MCH vs. IL-8, negative correlation (r=-0.40). Panel D: Neutrophil-to-lymphocyte ratio vs. IL-6, positive correlation (r=0.31). Panel E: CRP vs. IL-6, strong positive correlation (r=0.55). Panel F: PCT vs. IL-6, positive correlation (r=0.42). Statistical significance noted in each panel.]
Figure 4 | The plasma concentration of IL-26 is associated with those of lactate dehydrogenase (LDH) and mean corpuscular hemoglobin (MCH) in acute COVID-19. Spearman correlation analyses of the plasma concentrations of IL-6, IL-8, and IL-26 with those of (A) LDH, (B, C) MCH, (D) blood neutrophil-to-lymphocyte ratio, (E) C-reactive protein (CRP), and (F) procalcitonin (PCT) in the COVID-19 group.




Discussion

Although several previous studies have associated excessive neutrophil mobilization with poor prognosis in patients with acute COVID-19 (6, 8, 30), ours is the first to show that an increase in the plasma concentration of IL-26 correlates with signs of neutrophil mobilization in this disease. From an immunological point-of-view, it is feasible that IL-26 is involved in acute COVID-19, given its dual role as an antiviral and neutrophil-mobilizing mediator of host defense. It is known that the expression of IL-26 occurs constitutively in several immune and structural cells, and that it is enhanced upon TLR stimulation (31). Moreover, the genetic material of SARS-CoV-2 is recognized by TLR3 (21), TLR7 (21, 22), and TLR8 (22), critical receptors that are known to mediate the production of IL-26 in primary human bronchial epithelial cells (11). Furthermore, the SARS-CoV-2 spike protein can bind and activate TLR4 in a way that is comparable to LPS (19, 23). This may prove to be crucial, given that we have previously shown that exposure to LPS elicits a pronounced increase in IL-26 production in the lungs of healthy volunteers in vivo (10), as well as in blood neutrophils, primary human lung fibroblasts, and alveolar macrophages in vitro (10, 12, 24). Finally, the SARS-CoV-2 envelope protein is known to bind and activate TLR2 (20), which has been shown to cause the release of IL-26 in A549 cells, a cell line derived from human alveolar epithelial cells (12).

The relationship between IL-26 and the neutrophil-mobilizing cytokines IL-6, IL-8, and TNFα that we found in the current study is likely to be multifaceted. On the one hand, it is known that similar stimuli (e.g., TLR4 stimulation) can trigger the concomitant production of IL-6, IL-8, IL-26, and TNFα (31, 32). On the other hand, IL-26 alone or bound to NETs can induce the production of IL-8 and TNFα in unsorted BAL cells (10) and IL-6 in PBMCs (18), while inhibiting the production of the same cytokines in primary bronchial epithelial cells (11). Furthermore, it has previously been shown that TNFα together with IL-1β elicit the expression of IL-26 in human primary arterial smooth muscle cells (27), and that IL-26 enhances the IL-8-mediated chemotaxis of neutrophils isolated from human blood (10). Now, in the current study, we found that the enhanced plasma concentration of IL-26 displays a strong correlation with that of IL-8, and a somewhat weaker one with that of TNFα, in the COVID-19 group. Moreover, we found that IL-8 and IL-26 display comparable correlations with CD47, a marker of neutrophil prolonged survival, in the COVID-19 group. Thus, it seems possible that IL-26 is more functionally related to IL-8 than to IL-6 or TNFα.

Interestingly, although it has previously been shown that IL-26 enhances the pro-inflammatory potential of NETs and other forms of extracellular DNA (18, 27), we now failed to prove a correlation between the plasma concentration of IL-26 and the investigated markers of NET formation within the COVID-19 group. This was the case even though IL-8 and TNFα displayed such correlations. Nevertheless, we observed that the plasma concentration of IL-26 displays a trend towards a positive correlation with the concentrations of dsDNA (p = 0.08) and cell-free nucleosomes (p = 0.12) in the COVID-19 group, and it seems feasible that statistical significance could have been reached if the study material had included a larger number of patients in the COVID-19 group. However, we did prove a positive correlation between the plasma concentration of IL-26 and those of both markers of NET formation when the COVID-19 and Control groups were pooled, a finding that suggests a mechanistic link between IL-26 and NET production, possibly representing normal immunology rather than a unique pathological feature. If such an immunological mechanism does exist, it further implicates IL-26 in antimicrobial host defense in a wider sense, given the risk for bacterial infection that normally follows the damage of mucosal surfaces caused by viral infections.

Among the different markers of inflammation and tissue damage analyzed in the COVID-19 group, we proved a positive correlation between the plasma concentration of IL-26 and that of LDH, an established marker of tissue damage (33). Notably, increased serum LDH is known to be associated with severe COVID-19 (34, 35), and a recent study demonstrated that the serum concentration of LDH correlates in a positive manner with the degree of lung injury in patients with acute COVID-19 (34). In addition, we found that the plasma concentration of IL-26 is associated with decreased MCH, a hematological aberration detectable in mild, and further decreased in severe, cases of COVID-19 (36, 37). Taken together, these findings are suggestive of a mechanistic link between IL-26 and severe COVID-19 that deserves further investigation in larger study materials.

It is true that a previous study by Caterino M. et al. (38) failed to detect differences in the serum concentrations of IL-26 among COVID-19 patients with mild, moderate, or severe disease. However, their study did not include healthy control subjects. We think that their uncontrolled approach contributed to the failure to obtain evidence for the involvement of IL-26 in COVID-19. Furthermore, the fact that Caterino M. et al. studied only 27 patients in total, and as few as 6 with severe disease, argues that low statistical power made it impossible to detect differences among sub-groups with varying disease severity. Similarly, the limited size of our current study material, and the fact that it only included 5 patients with mild COVID-19 (hospitalized without supplemental oxygen), can explain why we failed to detect a statistically significant difference in the plasma concentrations of IL-26 between COVID-19 patients with mild or severe disease (p-value > 0.99, not shown), or a direct correlation between the plasma concentration of IL-26 and an assessment of disease severity (i.e., number of hospitalization days per patient). Moreover, we think that methodological aspects played a role in the study by Caterino M. et al., because they measured IL-26 in serum, whose generation requires blood coagulation—a likely confounder for cytokine release—and found that the concentration of IL-26 was below their technical limit of detection in 20 out of 27 patients. These results are in sharp contrast with our assessment of IL-26 in plasma, in which only 2 out of 49 patients in the COVID-19 group had a concentration of IL-26 below the technical detection limit.

In summary, our current pilot study forwards evidence that systemic IL-26 is markedly increased in patients with acute COVID-19, and that it correlates with neutrophil-mobilizing cytokines, a marker of prolonged neutrophil survival, and with markers of tissue damage and hematological alteration, the latter of which are known to signify severe COVID-19. Thus, IL-26 is involved in acute COVID-19, and it seems feasible that this intriguing kinocidin plays an important role in the hyperinflammation associated with acute COVID-19, a possibility that motivates further investigation into the clinical potential of IL-26 as a target for diagnosis, monitoring, and therapy in this deadly disease.
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Background

The values of viral load in COVID-19 disease have gained relevance, seeking to understand its prognostic value and its behavior in the course of the disease, although there have been no conclusive results. In this study we sought to analyze serum viral load as a predictor of clinical outcome of the disease, as well as its association with inflammatory markers.



Methods

An observational and retrospective study in a private hospital in North Mexico, patients with SARS-COV-2 infection confirmed by reverse transcriptase polymerase chain reaction (RT-PCR) were followed through clinical outcome, viral load measurement, quantification of inflammatory markers and lymphocyte subpopulations. For the analysis, multiple regression models were performed. Results: We studied 105 patients [47 (SD 1.46) years old, 68.6% men]. After analysis with multiple regression models, there was an association between viral load at admission and vaccination schedule (β-value=-0.279, p= 0.007), age (β-value= 0.010, p = 0.050), mechanical ventilation (β-value= 0.872, p = 0.007), lactate dehydrogenase (β-value= 1.712, p= 0.004), D-dimer values at admission (β-value= 0.847, p= 0.013) and subpopulation of B lymphocytes at admission (β-value= -0.527, p= 0.042). There was no association with days of hospitalization, use of nasal prongs or high flux mask. Peak viral load (10 days after symptoms onset) was associated with peak IL-6 (β-value= 0.470, p= 0.011). Peak viral load matched with peak procalcitonin and minimal lymphocyte values. C-reactive protein peak was before the peak of viral load. The minimum value viral load was documented on day 12 after symptom onset; it matched with the minimum values of IL-6 and ferritin, and the peak of D-dimer.



Conclusions

SARS-COV-2 admission viral load is associated with vaccination status, mechanical ventilation, and different inflammatory markers.
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1 Introduction

The infection caused by SARS-COV-2, the etiological agent of the COVID-19 disease, began to spread from Wuhan, China in December 2019 (1–11), affecting more than 523 million people around the world by May 2022 (12).

The rapid spread of the disease and its high incidence led to high hospital occupancy worldwide (13, 14). In hospitalized patients, the quantification of the serum viral load of SARS-COV-2 through reverse transcriptase polymerase chain reaction (PCR) and its association with other clinical and laboratory parameters became relevant to analyze the progression of viremia and the course of the disease with the aim of identifying ways to predict the clinical outcome of patients (1, 2, 4, 9–11, 13–18) as had been done even in the previous SARS outbreak in the year 2003 (19), however, the results remain controversial.

Multiple studies have sought to identify prognostic tools for clinical outcome such as symptoms, chest radiographs (2) and laboratory findings in blood biometry, C-reactive protein, erythrocyte sedimentation rate, procalcitonin, ferritin, D-dimer and coagulation times (4, 9); yet, they did not include viral load values. Another study showed no significant association between viral load and clinical outcomes, including length of stay, oxygen requirement or survival, however, only non-hospitalized patients were included and only one measurement of viral load levels was taken (11). On the other hand, several cohorts have demonstrated the association between viral load at admission and the risk of developing pneumonia, the severity of the disease, as well as hospital mortality due to COVID-19, especially in older patients and those with medical comorbidities (20, 21). In other cohorts, an association has been demonstrated between high viral load and various cytokines, lactate dehydrogenase and lymphopenia, especially in critically ill patients, and this relationship has also been reported in inflammatory markers such as C-reactive protein (21).

Therefore, we seek to evaluate the role of viral load as a prognostic factor for the clinical outcome in hospitalized patients and its relation to mechanical ventilation requirement,prolongation of hospital stay and mortality. In addition, we sought to identify the relationship of viral load with various inflammatory markers, such as C-reactive protein, lactate dehydrogenase, leukocyte count, lymphocyte count, procalcitonin, ferritin, D-dimer, interleukin 6 (IL-6) and lymphocyte subpopulations, and their behavior during the course of the disease in relation to the time of evolution since the onset of symptoms.



2 Materials and methods


2.1 Study population and study design

From April 2021 to January 2022, patients with a diagnosis of COVID-19 were evaluated at Hospital Clinica NOVA, a private hospital from Northern Mexico. An observational and retrospective study was performed. The study followed strobe guidelines (22). This study was reviewed and approved by the ethics committee of Universidad de Monterrey with registration number 02-2021-02. Consent form was waived since this is a retrospective study.

The inclusion criteria were hospitalized patients of both genders, adults (18+), confirmed by PCR by nasopharyngeal swab. Patients with previous treatment with antivirals, steroids, convalescent plasma or immunosuppressants were excluded. Also, patients who didn’t had COVID-19 variant, lymphocyte subpopulation and viral load were excluded.

Data such as age, sex, BMI, previous diagnoses of diabetes mellitus, systemic arterial hypertension, chronic kidney disease, COPD, heart disease, among others, were analyzed from the medical chart. The number of days with symptoms, the need for oxygen supplementation on admission, their hospital stays, and vital signs were also recorded to analyze their clinical outcome.

On admission the COVID-19 variant and lymphocyte subpopulation were measured. During the hospital stay, viral load, complete blood count, D-dimer, lactate dehydrogenase, interleukin-6, ferritin and C-reactive protein were taken at least every 24-48 hours. Procalcitonin was measured at admission and in case the patient was suspected to have a secondary bacterial infection. The blood sample was taken through a peripheral venous puncture by the nursing staff.



2.2 Sample processing method


2.2.1 Viral load

A peripheral venous blood sample was taken from each patient in a tube with circulating nucleic acid stabilizer (PAXGENE®). The samples were transferred at room temperature to an outsource laboratory, PGM Laboratory (Clinical Pathology and Genetics Laboratory) on the same day. They were processed using the circulating nucleic acid extraction kit (QIAGEN®) for liquid biopsy and the TaqPath® COVID-19 kit (ThermoFisher Scientific®) (23), using a QuantStudio 5 thermal cyclers (Applied Biosystems®). The results were sent to our hospital facility and uploaded to the laboratory computer system. The minimum detectable concentration is 10 copies/mL and the maximum is 100,000 copies/mL. Based on these findings and the reports described in the literature, the following reference intervals were defined for results detected in plasma (13): low (< to 100 copies/mL), moderate (>100 to 1000 copies/mL) and high (>1000 copies/mL).



2.2.2 SARS-COV-2 variants

Samples for the study of SARS-COV-2 variants are processed by nucleic acid extraction, then retrotranscription and PCR reaction with a ThermoFisher Veriti endpoint thermal cycler.



2.2.3 Lymphocyte subpopulation

The lymphocyte subpopulation was added, which is extracted by flow cytometry (BD FACS CANTO II IVD, Becton Dikinson, USA) in which the leukocyte count, total lymphocytes, T lymphocytes (CD4 and CD8), B lymphocytes (CD19), NK cells (CD16 and CD56) and CD4/CD8 ratio were analyzed. The antibody used were from Becton Dickinson brand and were as follow: PerCP-Cy 5.5 Anti human CD45, FITC anti human CD3, PE-Cy 7 anti human CD4, APC Cy 7 Anti human CD8, APC Anti human CD 19, PE Anti human CD 16 and PE anti Human CD 56.




2.3 Statistical analysis

The distribution of the variables was evaluated with the Shapiro-Wilk test or Kolmogorov and the necessary transformation for normalization was performed. The descriptive analysis of the variables and covariables was performed using parametric statistics with means and standard deviations if they conformed to normality or medians and interquartile ranges otherwise. Multiple regressions were performed to determine the association of viral load with clinical outcomes, and inflammatory response. A density plot was performed between minimum and maximum peak of viral load and inflammatory markers. Missing completely at random values were performed complete case analysis. A value of p < 0.05 was considered significant. Statistical data were analyzed with SPSS R v.4.0.3 vs. 25.




3 Results

A total of 571 patients were admitted to the hospital with diagnosis of COVID-19, 105 of those patients had multiple measurements of viral load levels, COVID-19 variant, and lymphocyte subpopulations. From the 105 patients studied, 72 (68.6%) of whom were men with a mean age of 47 years (SD 1.46). Among medical history the most prevalent diseases were obesity in 64 (61%) of the patients with a mean (SD) BMI of 31.67 (1.19). Also, Systemic Arterial Hypertension in 33 (31.4%) and Type 2 Diabetes in 31 (29.5%) of the patients was prevalent. Regarding blood group, 50 (47.6%) of the patients are O+, followed by 23 (21.9%) A+. The demographic data of the patients under study is described in 
Table 1
.


Table 1 | 
Medical History.


[image: Table showing the medical history of 105 patients hospitalized with SARS-CoV-2. Variables include males (72, 68.6%), smoking (10, 9.5%), obesity (64, 61.0%), overweight (28, 26.7%), systemic arterial hypertension (33, 31.4%), diabetes mellitus type 2 (31, 29.5%), asthma (7, 6.7%), ischemic heart disease (7, 6.7%), heart failure (3, 2.9%), renal failure (3, 2.9%), and drug allergy (3, 2.9%).]
Regarding COVID - 19 vaccines, 35 (33.3%) of the patients had a complete schedule of 2 or more doses and 23 (21.9%) of the patients had an incomplete schedule; 45 (42.9%) of the patients were not vaccinated. Also, 28 (26.7%) of the population was vaccinated with Coronavac and 21 (20%) with ChAdOx1-S. The most frequent SARS-COV-2 variants presented by the patients were Delta in 58 (55.2%), Omicron in 19 (18%), Alpha in 8 (7.6%) and Gamma in 5 (4.8%) patients.

Regarding in-hospital management, nasal prong was used in 71 (67.6%) of patients, 31 (29.5%) required high flow and 11 (10.5%) mechanical ventilation. Three (2%) patients died during follow-up. During the hospital stay, 12 (11.4%) of the patients were admitted to the intensive care unit. Of the 105 patients, 104 (99%) were given apixaban, 99 (94.3%) received baricitinib and 97 (92.4%) remdesivir. Also, 55 (52.4%) of the patients were managed with doxycycline, 57 (54.3%) with ivermectin and 56 (53.3%) with zinc. Patients who had more difficult control with oxygen saturation were given epclusa 23 (21.9%) and/or nitric oxide 11 (10.5%), those with increased IL-6 and in early disease were given tocilizumab 19 (18.1%). In some cases, the use of dexamethasone 18 (17.1%) was necessary (
Table 2
). Patients could receive multiple combination of the drugs.


Table 2 | 
In-hospital medication management.


[image: Table displaying medications given during hospital stays, with frequencies and percentages: Apixaban (104, 99%), Baricitinib (99, 94.3%), Remdesivir (97, 92.4%), Ivermectin (57, 54.3%), Zinc (56, 53.3%), Doxycycline (55, 52.4%), Epclusa (23, 21.9%), Tocilizumab (19, 18.1%), Dexamethasone (18, 17.1%), Nitric oxide (11, 10.5%), Methylprednisolone, Convalescent plasma, Heparin infusion, Vasopressors (4, 3.8% each), Enoxaparin (3, 2.9%). Patients could be treated with multiple medications after hospital stay.]
We calculated a linear regression to predict the effect of viral load at admission on clinical outcome (
Table 3
). The model showed a positive correlation with age (β-value= 0.010, p = 0.050), and mechanical ventilation (β-value= 0.872, p = 0.007), a negative association between the vaccination schedule and viral load (β-value= -0.279, p = 0.007), showing no other relation, such as days of hospitalization, nasal progs, or high flux mask. Mortality was considered initially in our model but was eliminated in the final model since we only had 3 patients that died, and it was difficult to make any correlation with this number of patients.


Table 3 | 
Regression model relationship of viral load at admission with prediction of clinical outcome.


[image: Table displaying regression analysis results. Variables include constant, age, gender, vaccination schedule, days of hospitalization, nasal prongs, high flow, and mechanical ventilation. Each variable has corresponding beta coefficients, standard errors, standardized betas, p-values, and ninety-five percent confidence intervals. Adjusted R-squared is 0.27 with dependent variable as log viral load at admission. CI stands for confidence interval, and std is standard.]
A linear regression was calculated to establish the relationship between viral load at admission and the values of inflammatory markers (lymphocytes, neutrophils, lactate dehydrogenase, C-reactive protein, D-dimer, ferritin and procalcitonin) measured at admission (
Table 4

). A positive correlation was found between viral load at admission and lactate dehydrogenase (β-value= 1.712, p= 0.004) and D-dimer values at admission (β-value= 0.847, p= 0.013).


Table 4 | 
Regression model of the relationship between viral load at admission and inflammatory markers.


[image: Table showing the regression analysis of various biomarkers on admission against the log viral load at admission. Includes coefficients, standard errors, p-values, and ninety-five percent confidence intervals for variables like lymphocytes, neutrophils, lactate dehydrogenase, C-reactive protein, D-dimer, ferritin, and procalcitonin. The adjusted R-squared is zero point two two six.]
A linear regression was performed with viral load at hospital admission as the dependent variable, looking for the relationship between it and the vaccination schedule, lactic dehydrogenase, D-dimer, and the subpopulation of B lymphocytes and NK lymphocytes at admission (
Table 5
). A statistically significant positive correlation was found with the values ​​of viral load at admission and D-dimer (β-value= 0.778, p= 0.019). A negative correlation was found between viral load at admission and subpopulation of B lymphocytes at admission (β-value= -0.527, p= 0.042).


Table 5 | 
Regression model relationship of viral load at admission with inflammatory markers and lymphocyte subpopulation count at admission.


[image: Statistical table showing regression analysis results. It includes variables like vaccination schedule, lactate dehydrogenase, and lymphocyte subpopulations. Columns display beta coefficients (β), standard errors, standardized beta (β Std), p-values, and 95% confidence intervals (CI). Adjusted R-squared is 0.199 with the dependent variable being log viral load at admission. Definitions for CI and Std are provided.]
We calculated a linear regression between the viral load maximum peak during hospital stay and the maximum peak of each of the inflammatory markers (
Table 6
). A positive correlation was found with peak viral load and peak IL-6 (β-value= 0.470, p= 0.011).


Table 6 | 
Regression model of the relationship between peak viral load with peak inflammatory markers.


[image: Table displaying coefficients for various biomarkers affecting log peak viral load. Variables include leukocytes, lymphocytes, neutrophils, lactate dehydrogenase, IL-6, C-reactive protein, D-dimer, ferritin, and procalcitonin. The table shows β, standard error, β standard, p-value, and 95% confidence intervals. Adjusted R-squared equals 0.218.]
A density plot correlating the minimum and maximum peak of both viral load and inflammatory markers with the days of evolution of the patients was made to identify the behavior of viral load and inflammatory marker values during the disease (
Figure 1
). Viral load was found to peak at day 10 after symptom onset, matched with the peak procalcitonin and minimal lymphocyte values. The minimum peak of COVID-19 viral load was documented at day 12 from symptom onset; it matched with the minimum values of IL-6 and ferritin, and the peak of D-dimer. Finally, the peak of C-Reactive Protein was much earlier than viral load peak (around day 3).

[image: Ridgeline plot showing variations in different biomarkers over 25 days. Each colored line represents a biomarker, including SARS-CoV-2 viral load, D-Dimer, LDH, Ferritin, IL-6, Leucocytes, Lymphocytes, Neutrophils, Procalcitonin, and C-Reactive Protein. Peaks indicate changes in levels over time.]
Figure 1 | 
Correlation of viral load with inflammatory markers. Graph correlating the minimum and maximum peak of both viral load and inflammatory markers with the days of evolution of the patients.




4 Discussion

In this study, we analyzed the association between COVID-19 viral load in hospitalized patients and its association with clinical outcome and inflammatory markers. Viral load at admission was associated with vaccination status, age, and mechanical ventilation. No association was found between viral load on admission and days of hospitalization, use of oxygen prongs, and high flux mask. Also, a relationship was found between viral load values ​​at admission and D-dimer and lactic dehydrogenase values.

In a retrospective study of 127 patients in Italy, Cocconcelli et al. demonstrated that there is no association between viral load at admission and clinical outcome, including both hospitalized and non-hospitalized patients (2). On the other hand, Dadras et al. in their review article mentioned that there are no conclusive results showing a clear relationship or not between viral load and clinical outcome; it has only been shown that the older the patient, the higher the viral load (1), as we obtained in our data. In contrast to these studies, Boyapati et al. concluded from a study with 1912 patients that viral load was an important determinant for clinical outcome in hospitalized patients requiring supplemental oxygen and ventilation (24). Shenoy in a systematic review (21) of 60 manuscripts concluded that viral load is a predictor of disease and mortality. Kim et al. in a retrospective study comparing the CT scans of 128 patients (21), concluded that viral load may help predict the initial presence of pneumoniae. Our results showed no significant relationship between higher serum viral load and days of hospital stay, and oxygen supplementation. But did find an association with mechanical ventilation. In addition, in our results, patients who were vaccinated had lower viral load levels. An important thing to consider is that our data is from different COVID-19 waves, some causing a more serious condition that might influence when comparing viral load with clinical outcome.

We found association between viral load and inflammatory markers, D-dimer and lactate dehydrogenase at admission were positively correlated with viral load values, this could have a predictive factor for viral load and disease progression, as described in a review article by Porubagheri et al. who list D-dimer as an important marker of disease progression and lactate dehydrogenase as an important marker of lung damage that is elevated in patients with COVID-19 (9). In a study by Qin et al. they concluded that SARS-CoV-2 could act mainly on T lymphocytes, so the study of lymphocyte subpopulations could be useful in the diagnosis and treatment of COVID-19 and described that patients with severe infection had lower values of B, T and NK lymphocytes (26), however, their relationship with viral load had not been studied; when analyzed, we found a negative correlation between B lymphocytes at admission and viral load quantification; however, our results did not show a correlation with NK lymphocyte subpopulations.

It has been established that the peak in viral load values occurs in the first week after the onset of the disease (2), however, its behavior over time in relation to multiple inflammatory markers had not been established. When we analyzed the behavior of inflammatory markers and viral load during the course of the disease, it was found that viral load reaches a peak on day 10 after the onset of symptoms, which coincides with the peak in procalcitonin and the minimum values of lymphocytes, this differs from that described by Cocconcelli et al. who point out that the viral load peak generally occurs in the first week of infection (2), on the other hand, defends the fact that the increase in viral load causes lymphopenia due to lymphocyte depletion, as described by Keam et al. (5) who mentioned it’s associated with greater severity in the disease. Procalcitonin values ​​were not measured daily in the patients, so the result of association between peak viral load and procalcitonin during the course of infection could be biased. On the other hand, the minimum value of viral load coincided with the minimum values of IL-6 and ferritin. Finally, C reactive protein peaked before viral load, this could be an easy and accessible inflammatory marker that predicts the increase of viral load.

The limitations of this study are that the sample only considers hospitalized patients, so we do not know the viral loads of asymptomatic patients or those who received outpatient treatment. Another important limitation to consider when interpreting the results is that our sample is relatively small, which implies that these findings should be validated in larger populations. Likewise, the serum viral load was taken from a peripheral venous blood sample of the patient, where it has been described that nasopharyngeal samples from the lower respiratory tract could be better predictors of clinical outcome and prognosis of patients.

In conclusion, the viral load of SARS-COV-2 is associated with the vaccination status, the age and inflammatory markers such as lactate dehydrogenase, D-dimer, and IL-6. In conclusion, the viral load of SARS-COV-2 is associated with the vaccination status, the age, mechanical ventilation, and inflammatory markers such as lactate dehydrogenase, D-dimer, and IL-6.



Data availability statement

The database used and analyzed in this study is available from the corresponding author upon reasonable request.



Ethics statement

The studies involving human participants were reviewed and approved by Ethics committee of Universidad de Monterrey. Written informed consent for participation was not required for this study in accordance with the national legislation and the institutional requirements.



Author contributions

Conceptualization: MK-A, MR-I, JS-M, JL-G, and DJ-V. Formal analysis: MK-A, AR-C, MP-C, MR-I, and JS-M. Investigation: MK-A, AR-C, MP-C, MR-I, JS-M, JL-G, and DJ-V. Writing – original draft: MK-A, MR-I, and JS-M. Writing – review and editing: MK-A, AR-C, MP-C, MR-I, and JS-M. Project administration: MK-A, MR-I, and JS-M. Supervision: MK-A, MR-I, and JS-M. All authors contributed to the article and approved the submitted version.




Funding

This research was conducted using funding from Hospital Clinica Nova. The funders had no role in study design, data collection, analysis, and decision to publish.



Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.



Abbreviations

IL-6, Interleukin 6; PCR, Polymerase Chain Reaction; BMI, Body Mass Index; COPD, Chronic Obstructive Pulmonary Disease; SD, Standard Deviation.



References
	1. Dadras, O, Afsahi, AM, Pashaei, Z, Mojdeganlou, H, Karimi, A, Habibi, P, et al. The relationship between COVID-19 viral load and disease severity: A systematic review. Immun Inflamm Dis (2022) 10:e580. doi: 10.1002/iid3.580

	2. Cocconcelli, E, Castelli, G, Onelia, F, Lavezzo, E, Giraudo, C, Bernardinello, N, et al. Disease severity and prognosis of SARS-CoV-2 infection in hospitalized patients is not associated with viral load in nasopharyngeal swab. Front Med (2021) 8:714221. doi: 10.3389/fmed.2021.714221

	3. Khadke, S, Ahmed, N, Ahmed, N, Ratts, R, Raju, S, Gallogly, M, et al. Harnessing the immune system to overcome cytokine storm and reduce viral load in COVID-19: a review of the phases of illness and therapeutic agents. Virol J (2020) 17:154. doi: 10.1186/s12985-020-01415-w

	4. Samprathi, M, and Jayashree, M. Biomarkers in COVID-19: An up-To-Date review. Front Pediatr (2021) 8:607647. doi: 10.3389/fped.2020.607647

	5. Keam, S, Megawati, D, Patel, SK, Tiwari, R, Dhama, K, and Harapan, H. Immunopathology and immunotherapeutic strategies in severe acute respiratory syndrome coronavirus 2 infection. Rev Med Virol (2020) 30:e2123. doi: 10.1002/rmv.2123

	6. Wan, S, Yi, Q, Fan, S, Lv, J, Zhang, X, Guo, L, et al. Characteristics of lymphocyte subsets and cytokines in peripheral blood of 123 hospitalized patients with 2019 novel coronavirus pneumonia (NCP). Hematology (2020). doi: 10.1101/2020.02.10.20021832

	7. Fara, A, Mitrev, Z, Rosalia, RA, and Assas, BM. Cytokine storm and COVID-19: a chronicle of pro-inflammatory cytokines. Open Biol (2020) 10:200160. doi: 10.1098/rsob.200160

	8. Pasrija, R, and Naime, M. The deregulated immune reaction and cytokines release storm (CRS) in COVID-19 disease. Int Immunopharmacol (2021) 90:107225. doi: 10.1016/j.intimp.2020.107225

	9. Pourbagheri-Sigaroodi, A, Bashash, D, Fateh, F, and Abolghasemi, H. Laboratory findings in COVID-19 diagnosis and prognosis. Clin Chim Acta (2020) 510:475–82. doi: 10.1016/j.cca.2020.08.019

	10. Tsukagoshi, H, Shinoda, D, Saito, M, Okayama, K, Sada, M, Kimura, H, et al. Relationships between viral load and the clinical course of COVID-19. Viruses (2021) 13:304. doi: 10.3390/v13020304

	11. Argyropoulos, KV, Serrano, A, Hu, J, Black, M, Feng, X, Shen, G, et al. Association of initial viral load in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) patients with outcome and symptoms. Am J Pathol (2020) 190:1881–7. doi: 10.1016/j.ajpath.2020.07.001

	12.
COVID-19 map. johns Hopkins coronavirus resour cent (2022). Available at: https://coronavirus.jhu.edu/map.html (Accessed September 20, 2022).

	13. Rodríguez-Serrano, DA, Roy-Vallejo, E, Zurita Cruz, ND, Martín Ramírez, A, Rodríguez-García, SC, Arevalillo-Fernández, N, et al. Detection of SARS-CoV-2 RNA in serum is associated with increased mortality risk in hospitalized COVID-19 patients. Sci Rep (2021) 11:13134. doi: 10.1038/s41598-021-92497-1

	14. Bermejo-Martin, JF, González-Rivera, M, Almansa, R, Micheloud, D, Tedim, AP, Domínguez-Gil, M, et al. Viral RNA load in plasma is associated with critical illness and a dysregulated host response in COVID-19. Crit Care (2020) 24:691. doi: 10.1186/s13054-020-03398-0

	15. Miranda, RL, Guterres, A, de Azeredo Lima, CH, Filho, PN, and Gadelha, MR. Misinterpretation of viral load in COVID-19 clinical outcomes. Virus Res (2021) 296:198340. doi: 10.1016/j.virusres.2021.198340

	16. Yuan, S, Jiang, S-C, Zhang, Z-W, Fu, Y-F, Hu, J, and Li, Z-L. Quantification of cytokine storms during virus infections. Front Immunol (2021) 12:659419. doi: 10.3389/fimmu.2021.659419

	17. Zou, L, Ruan, F, Huang, M, Liang, L, Huang, H, Hong, Z, et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N Engl J Med (2020) 382:1177–9. doi: 10.1056/NEJMc2001737

	18. Liu, Y, Yan, L-M, Wan, L, Xiang, T-X, Le, A, Liu, J-M, et al. Viral dynamics in mild and severe cases of COVID-19. Lancet Infect Dis (2020) 20:656–7. doi: 10.1016/S1473-3099(20)30232-2

	19. Peiris, J, Chu, C, Cheng, V, Chan, K, Hung, I, Poon, L, et al. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet (2003) 361:1767–72. doi: 10.1016/S0140-6736(03)13412-5

	20. Kim, C, Kim, J-Y, Lee, EJ, Kang, YM, Song, K-H, Kim, ES, et al. Clinical findings, viral load, and outcomes of COVID-19: Comparison of patients with negative and positive initial chest computed tomography. PloS One (2022) 17:e0264711. doi: 10.1371/journal.pone.0264711

	21. Shenoy, S. SARS-CoV-2 (COVID-19), viral load and clinical outcomes; lessons learned one year into the pandemic: A systematic review. World J Crit Care Med (2021) 10:132–50. doi: 10.5492/wjccm.v10.i4.132

	22. von Elm, E, Altman, DG, Egger, M, Pocock, SJ, Gøtzsche, PC, Vandenbroucke, JP, et al. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: Guidelines for reporting observational studies. Ann Intern Med (2007) 147:573. doi: 10.7326/0003-4819-147-8-200710160-00010

	23. Hagman, K, Hedenstierna, M, Gille-Johnson, P, Hammas, B, Grabbe, M, Dillner, J, et al. Severe acute respiratory syndrome coronavirus 2 RNA in serum as predictor of severe outcome in coronavirus disease 2019: A retrospective cohort study. Clin Infect Dis (2021) 73:e2995–3001. doi: 10.1093/cid/ciaa1285

	24. Boyapati, A, Wipperman, MF, Ehmann, PJ, Hamon, S, Lederer, DJ, Waldron, A, et al. Baseline severe acute respiratory syndrome viral load is associated with coronavirus disease 2019 severity and clinical outcomes: Post hoc analyses of a phase 2/3 trial. J Infect Dis (2021) 224:1830–8. doi: 10.1093/infdis/jiab445




Publisher’s note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2023 Kuri-Ayache, Rivera-Cavazos, Pérez-Castillo, Santos-Macías, González-Cantú, Luviano-García, Jaime-Villalón, Gutierrez-González and Romero-Ibarguengoitia. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.





ORIGINAL RESEARCH

published: 14 March 2023

doi: 10.3389/fimmu.2023.1107900

[image: image2]


Epigenetic immune monitoring for COVID-19 disease course prognosis


Björn Samans 1,2, Marta Rosselló Chornet 3, Araceli Rosselló Chornet 1, Janine Jung 1, Konstantin Schildknecht 1, Laura Lozza 1, Lourdes Alos Zaragoza 3, Javier Hernández Laforet 3, Nina Babel 4 and Sven Olek 1*


1 Ivana Türbachova Laboratory for Epigenetics, Epiontis, Precision for Medicine GmbH, Berlin, Germany, 2 Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany, 3 Department of Anesthesiology and Resuscitation, Consortium General University Hospital of Valencia, Valencia, Spain, 4 Center for Translational Medicine, Medical Clinic 1, Marien Hospital Herne, University Hospitals of the Ruhr-University of Bochum, Herne, Germany




Edited by: 

Rupesh K. Srivastava, All India Institute of Medical Sciences, India

Reviewed by: 

Stelvio Tonello, University of Eastern Piedmont, Italy

Emilia Jaskula, Hirszfeld Institute of Immunology and Experimental Therapy (PAN), Poland

*Correspondence: 

Sven Olek
 sven.olek@precisionformedicine.com

Specialty section: 
 This article was submitted to Viral Immunology, a section of the journal Frontiers in Immunology


Received: 25 November 2022

Accepted: 02 March 2023

Published: 14 March 2023

Citation:
Samans B, Rosselló Chornet M, Rosselló Chornet A, Jung J, Schildknecht K, Lozza L, Alos Zaragoza L, Hernández Laforet J, Babel N and Olek S (2023) Epigenetic immune monitoring for COVID-19 disease course prognosis. Front. Immunol. 14:1107900. doi: 10.3389/fimmu.2023.1107900






Background

The course of COVID-19 is associated with severe dysbalance of the immune system, causing both leukocytosis and lymphopenia. Immune cell monitoring may be a powerful tool to prognosticate disease outcome. However, SARS-CoV-2 positive subjects are isolated upon initial diagnosis, thus barring standard immune monitoring using fresh blood. This dilemma may be solved by epigenetic immune cell counting.





Methods

In this study, we used epigenetic immune cell counting by qPCR as an alternative way of quantitative immune monitoring for venous blood, capillary blood dried on filter paper (dried blood spots, DBS) and nasopharyngeal swabs, potentially allowing a home-based monitoring approach.





Results

Epigenetic immune cell counting in venous blood showed equivalence with dried blood spots and with flow cytometrically determined cell counts of venous blood in healthy subjects. In venous blood, we detected relative lymphopenia, neutrophilia, and a decreased lymphocyte-to-neutrophil ratio for COVID-19 patients (n =103) when compared with healthy donors (n = 113). Along with reported sex-related differences in survival we observed dramatically lower regulatory T cell counts in male patients. In nasopharyngeal swabs, T and B cell counts were significantly lower in patients compared to healthy subjects, mirroring the lymphopenia in blood. Naïve B cell frequency was lower in severely ill patients than in patients with milder stages.





Conclusions

Overall, the analysis of immune cell counts is a strong predictor of clinical disease course and the use of epigenetic immune cell counting by qPCR may provide a tool that can be used even for home-isolated patients.
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Introduction

SARS-CoV-2 has infected more than 627 million people and claimed more than six million deaths worldwide (1). To mitigate the risk of transmission, many countries forced patient isolation at home. This, in turn prevents (blood draw for) patient monitoring and thus creates its own challenges, including wrongly timed hospital admissions, without appropriate clinical or laboratory analyses contributing to hospital overload. The pandemic has forcefully demonstrated the limits even of advanced health systems and their response to diseases with high transmissibility and clinical severity (2). Approaches to address these challenges may include laboratory-based disease monitoring without physical presence of medical professionals at sample requisition, mitigating risk of dissemination and providing early warnings of severe disease courses.

Lymphopenia and lymphocyte-to-neutrophil ratio (LNR) correlate with severe COVID-19 course (3, 4) as well as with the course of other viral infections, including influenza or measles (5–7). T cell lymphopenia often signifies a more severe course of disease (8–10). Given this, quantification of immune cell frequencies is an important component of predicting disease course. Cell-specific quantification is generally performed by flow cytometry and requires viable cells, and thus patients’ direct contact with medical professionals. Fresh samples must be processed immediately to ensure valid measurements. Quantitative real-time PCR (qPCR)-based epigenetic immune cell counting (EICC) is not subjected to such limitations, because it uses DNA as substrate. It is based on amplification of immune cell-type specifically unmethylated gene loci as biomarkers using qPCR after bisulfite conversion (11). With all cells having identical gene copies, quantifying cell type-specific DNA methylation markers allows the deduction of target cell numbers (12). The specificity of epigenetic markers for various lymphocyte populations have been shown previously (11–14).

For prognostic EICC, this method allows to provide samples to laboratory analyses without direct patient contact, particularly since capillary blood obtained from fingerpricks may be a feasible source (12). DNA can also be retrieved minimal-invasively from nasopharyngeal swabs to provide information about local disease status. At sites of infection, the immune status may be of diagnostic interest and provide early indications of the systemic disease development.

Here, we compared immune cell counts of capillary blood dried on filter paper (dried blood spots, DBS) with venous blood from healthy donors and investigated a diagnostic value of epigenetic biomarkers along the course of COVID-19. Blood from patients reported at two different clinical sites were measured using epigenetic markers for CD3+, CD4+, CD8+ and regulatory T cells (Treg), total, memory and naïve B lymphocytes, natural killer (NK) cells and neutrophils. We assessed if the epigenetic markers could be used alongside COVID-19 specific qPCR analyses from nasopharyngeal swabs for reporting local immune response.

The aim of our study was to investigate whether EICC is a potential tool to bridge gaps between prognostic laboratory analyses and mandated (home) isolation providing COVID-19 prognosis. Given the feasibility to perform EICC from nasopharyngeal swabs and DBS, we assume that this approach lends itself to unsupervised home testing and possibly facilitate medical surveillance.





Materials and methods




Cohorts

Peripheral blood of 103 unvaccinated COVID-19 patients were collected either at Ruhr-University Bochum and University Hospital Essen in Germany (“Bochum cohort”) or at University General Hospital of Valencia, Spain (“Valencia cohort”) (Supplementary Tables 1, 2). The Bochum cohort included 173 blood samples from 81 hospitalised patients and up to four time points. The median time between admission and the first visit was one day (IQR 0-4). For 75 patients the blood sample from the first visit was available. This cohort comprised of patients that were classified as cases with moderate (n = 48), severe (n = 19), critical (n = 9), or unknown symptoms (n = 5). Clinical pictures of the moderate cases were heterogeneous including asymptomatic patients as well as those with various but non-severe respiratory symptoms. The Valencian cohort included 90 blood samples from 22 patients collected at up to 10 time points upon admission to intensive care unit (ICU). The 22 Valencian patients were admitted to hospital with severe (n = 21) or critical (n = 1) symptoms (for survival, comorbidities, and treatments see Supplementary Tables 1–3). For each time point, the disease stage was assigned according to the German Robert-Koch-Institute (RKI) classification (15).

113 blood samples of self-reported healthy, of European descent, 18-71 years old pre-pandemic donors (n = 113 individuals) were obtained from a commercial supplier (in.vent Diagnostica GmbH, Germany).

For EICC in nasopharyngeal swabs, 69 samples from 23 healthy donors (median age 32, ranging from 24 to 55 years) were collected. 45 samples from COVID-19 patients (median age 74, n = 28, ranging from 35 to 91 years; Supplementary Table 4) were collected at University Hospitals Ruhr-University Bochum and Essen (Germany).





Sample preparation

75 µl capillary blood was collected in a Microvette® 200 tube (Sarstedt) containing EDTA and was dispensed on DBS, i.e., Whatman 903™ protein saver card. A single DBS punch (6 mm diameter) was used for comparison with matched venous blood (20 µl) collected from the same donor. DBS and their respective blood samples were lysed using 80 µl lysis solution (23.75 µl nuclease-free H2O [CAS-No.: 7732-18-5], 20 µl λ-DNA [37.5 ng/µl, CAS-No.: 91080-14-7], 5.25 µl proteinase K [PK, 30 mg/ml, CAS-No.: 39450-01-6], 31 µl Lysis-Binding-Buffer [LBB, Invitrogen™ Dynabeads™ SILANE Genomic DNA Kit]) for 20 min at 56°C and 1400 rpm. Peripheral whole blood (EDTA) samples (200 µl) were lysed by adding 144.7 µl LBB and 24 µl PK and incubated for 60 min at 56°C and 1400 rpm.

Nasopharyngeal swabs (FLOQSwabs, COPAN Diagnostics) were placed into a collection tube containing 0.5-2.0 ml NaCl-Solution (0.9%, CAS-No.: 7647-14-5). Genomic DNA was extracted from the resulting suspension using QIAamp Blood Midi Kit (Qiagen) according to manufacturer’s protocol. The eluate was dried at 60°C via concentrator (Eppendorf) and reconstituted in 75 µl nuclease-free H2O.





Bisulfite conversion

75 µl of DNA solution or lysate was incubated with 135 µl ammonium bisulfite solution (65-75% [w/w], CAS-No.: 10192-30-0) and 45 µl tetrahydrofuryl alcohol (THFA, purity ≥ 98%, CAS-No.: 97-99-4) at 80°C and 900 rpm for 45 min. DNA was then (re-)purified using magnetic beads (Mag-Bind® Blood & Tissue DNA HDQ 96 Kit, Omega Bio-tek).





Cell counting by epigenetic qPCR

Cell type-specific differentially methylated regions have been identified and validated for CD3+, CD4+, CD8+ T cells, Treg, neutrophils, total B and NK cells (12–14). Moreover, DNA methylation markers specific for memory and naïve B cells, which were identified in a genome-wide discovery on Illumina’s Infinium MethylationEPIC BeadChip assay, were used (Supplementary Figures 1, 2). These markers are based on CpGs cg18647989 and cg21855816 (Illumina ID) and are associated with genes CBX6 (ENSG00000183741) and C7orf50 (ENSG00000146540), respectively. Based on these markers, qPCR was performed aimed at cell counting using specifically developed qPCR systems. In brief, reactions were set up in 10 µl using the LightCycler® 480 Probes Master chemistry (Roche) containing 3 µl of template DNA, 5 ng λ-DNA and target-specific primers and probes at concentrations as indicated in Supplementary Table 5. Amplification was performed in 384-multiwell plates using Lightcycler 480II instruments (Roche) starting with 35 min at 95°C followed by 50 cycles each at 95°C for 15 sec and 61°C for 1 min.

Relative quantification is based on measurement of cell type-specific demethylation relative to the total cell number as determined by the house-keeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which has been shown to be fully demethylated in all blood cells (12). The target cell count (%) in a sample is given by the quotient of the cell type-specific (e.g., CD3) and GAPDH-specific demethylation expressed by measured demethyl-specific copy number per reaction multiplied by 100 (or 200 in case of X-linked loci, e.g., FOXP3). Copy numbers are calculated based on measured Cp values of an internal standard curve resulting from the parallel measurement of a serially diluted in silico-converted plasmid (GenScript Biotech Corp.) that contains assay target sequences for target cell types and GAPDH.

Due to present differences in assay efficiencies, the relative cell count needs to be normalized by division with an assay-specific calibration-factor. Therefore, a calibrator (plasmid containing the genomic assay target sequences) is converted, purified, and analysed in parallel with samples and the resulting target assay-specific and GAPDH-specific copy number from the calibrator is used to calculate the calibration-factor (calibration-factor = target assay-specific [copies]/GAPDH-specific [copies]). This results in an assay-specific calibration-factor used for normalisation of measured copies to GAPDH copies. The procedure was previously described with more details by Baron et al. (12).





Flow cytometry

CD45+, CD19+, CD56+, CD3+, CD4+ and CD8+ T cells were counted using the BD Multitest 6-color TBNK kit (BD Biosciences Cat.-No. 337166, RRID: AB_2868707). 20 µl of the BD Multitest 6-color TBNK antibody were added into 5ml Trucount tubes and 50 µl whole blood (EDTA) was added. After an incubation step at 21°C for 15 min in the dark, 450 µL of pre-warmed (37°C) 1 x Red blood cell lysis buffer was added to the tubes and again incubated. Cell counts were acquired using a LSRFortessa X-20 and BD FACS DIVA software (v8.0) and data analysis was performed using FlowJo Software (v10.6).





Statistical analysis

Both, cell counts and percentages are used to report observations of categorical variables. Median statistics are reported for continuous variables. Significant median differences between cohorts or groups were assessed by non-parametric Wilcoxon rank sum test or Fisher’s exact test. Results were considered statistically significant at a two-sided p value of less than 0.05. As this study consists of exploratory analyses only, the tests are not corrected for multiplicity. Kolmogorov-Smirnov test was used to assess whether cohort populations, for each disease stage respectively, can be assumed to be drawn from one parent population. Prognostic performance for markers for a good prognosis was tested by receiver operating characteristic (ROC) analysis, encoding good prognosis as 0 and poor prognosis as 1. For all markers, the threshold is used to classify values above as 1. Area under the curve (AUC) (95% CI) was calculated and sensitivity, specificity, accuracy, and optimal threshold were determined by Youden’s J statistic (16). Multivariate analysis was performed using a logistic regression (threshold = 0.5), predicting the outcome (poor prognosis > 0.5, good prognosis < 0.5) based on a choice of markers after univariate analysis. All analyses were performed in R (version 4.1.3.).






Results




Comparison of epigenetic immune cell quantification with flow cytometry

For method comparison between flow cytometry (the pertinent gold standard of lymphocyte quantification) and EICC, freshly drawn EDTA-whole blood samples from 113 pre-pandemic healthy donors were analysed (Figure 1A). Cell counting was performed with standard flow cytometry as well as epigenetic markers for CD3+, CD4+, CD8+ T cells, Treg, CD19+ B, and CD56+ NK cells. Comparisons indicated strong association between both methods (Spearman rho between 0.64 and 0.83) with method dependent biases ranging from 12.6% for CD8+ T cells to 39.6% for B cells. Limits of agreement (LoA) were comparably high when combinations of different flow cytometric markers were used, such as CD3- CD16low CD56+ for NK cells (35.2%) or CD4+CD25+CD127-FOXP3+ for regulatory T cells (31.4%) than for more basic markers, such as CD3+ or CD3+CD4+ (LoACD3 = 17.7%, LoACD4 = 19.6%) (Table 1). Additionally, EICC showed substantial equivalence when comparing data from peripheral blood with capillary blood on filter paper (DBS) for all tested markers (LoA: 14.4 to 35.2%, Bias: -1.2 to -28.0%) (Figure 1B and Table 1).
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Figure 1 | Method comparison studies for epigenetic cell quantification. (A) A full method comparison study of epigenetic qPCR- and flow cytometry-based cell quantification in venous whole blood samples of healthy donors (n = 113) was undertaken for different cell types. (B) Immune cell counts (epigenetic qPCR) in capillary blood (stored as dried blood spot (DBS)) of healthy donors (n = 25) were compared to matched venous blood samples (liquid). Each method comparison is displayed by a scatterplot (left side) and a tukey mean difference plot (right side). Scatter plot showing immune cell frequencies determined by epigenetic qPCR plotted against flow cytometrically determined relative or absolute cell numbers (dashed line: bisectrix, solid line: linear regression line (y~x) with 95% confidence interval). Spearman (rho) coefficients with corresponding p values are shown in correlation plots. Tukey mean difference plot shows difference normalized by the mean of both methods for each sample expressed as percentage (dashed lines indicate -/+ 1.96-times standard deviation of relative difference, solid line indicates systematic error (bias)). Treg, regulatory T cells; NK cells, CD56dim natural killer cells.


Table 1 | Method comparisons.

[image: Table comparing cell types using qPCR versus flow cytometry and capillary versus venous blood. Displays Spearman's rho, bias with confidence intervals, and limit of agreement for each method across various cell types including T cells, B cells, NK cells, and others. Data include significant correlations and differences, highlighting measurement consistency and variability between methods.]




Lymphocyte counts in COVID-19 patients at initial hospital admission

Using markers for neutrophils as well as naïve and memory B cells and the markers described above for CD3+, CD4+, CD8+ T cells, Treg, CD19+ B, and CD56+ NK cells, whole blood samples from COVID-19 patients (time point 1; Bochum with n = 75 and Valencia with n = 22) were epigenetically quantified and compared to samples from the healthy subjects (Figure 2, Supplementary Table 6).

[image: Box plots compare cell counts and LNR across healthy, Bochum, and Valencia groups. Panel A displays B, CD3+, CD4+, CD8+ T, regulatory T (Treg), memory B, naive B cells, neutrophils, and NK cells. Panel B shows LNR. Panel C depicts Treg cell count by sex, with significant p-values noted.]
Figure 2 | Lymphocyte populations of COVID-19 patients at initial hospital admission. Jittered scatters indicate actual cell count for a single sample at the first visit is defined as timepoint at initial admission. Boxes display the interquartile range and different coloured boxes indicate healthy (white box, n = 113) or COVID-19 patient cohorts from two clinical sites (grey boxes, Bochum, n = 75; Valencia, n = 22). Whiskers extend maximally 1.5 times the interquartile range from the upper/lower end of the box. Observations farther than that are considered outliers. All p values relate to the Wilcoxon rank sum test for median differences and are displayed above the respective boxplots. (A) Boxplots for lymphocyte subpopulations (CD19+ B, CD3+, CD4+, CD8+, regulatory T (Treg), memory, naïve B cells, neutrophils and CD56dim natural killer [NK] cells). (B) Boxplot of lymphocyte-to-neutrophil ratio (LNR). (C) Boxplots for Treg counts separated by sex (colors: female = red, male = blue).

Both patient cohorts show significantly lower median frequencies (%) of CD3+, CD4+, CD8+, and Treg at the first blood draw after hospitalization (Wilcoxon rank sum test: p < 0.0001) (Figure 2A). Moreover, significant deficiencies were demonstrated for total and naïve B cells for both cohorts (p < 0.05) as well as for memory B cells for the Bochum cohort (p = 0.01). No significant NK cell differences between patients and healthy subjects were found. An increase of the median neutrophil count was observed in whole blood of both patient cohorts (p < 0.0005). All comparisons of patient cohorts were against the healthy donor cohort. The median ratio of lymphocytes-to-neutrophils (LNR) was lower in patients compared to healthy subjects (p < 0.0001) (Figure 2B). Significantly lower median CD3+, CD4+, CD8+ T lymphocytes counts and LNR as well as a higher neutrophil count were observed in the Valencian cohort, when compared with the Bochum cohort (p < 0.0005). This finding is supported by Kolmogorov-Smirnov statistics which indicated significant differences (p < 0.05) for various cell counts prohibiting joint data analysis for both cohorts (Supplementary Table 7).

An interesting observation was made for Treg. In healthy subjects, a small non-significant (p = 0.05) difference in the number of Treg was observed between females (1.4% [IQR 1.1-1.6], n = 59) and males (1.2% [IQR 1.0-1.5], n = 53) (Figure 2C; Supplementary Table 6). For both patient cohorts independently, this difference was dramatically increased (p ≤ 0.002). Whereas the median Treg count in females were at 0.9% (IQR 0.8-1.5, n = 37, Bochum cohort) and 1.0% (IQR 0.9-1.0, n = 6, Valencian cohort) male subjects lost the majority of Treg, with median cell levels of 0.5% and less.





Prognosis of disease course

The counts of the various immune cell populations were assessed for a potential predictive value. Patients were grouped into two outcome classes based on the clinical status at one time point relative to their clinical performance at the next reported visit. Patients were assigned as having a “poor prognosis” when the disease status turned from moderate to either severe or critical and when the status turned from severe to critical. Patients were assigned as having a “good prognosis” when the clinical status was initially severe or critical and improved to moderate (from severe) or severe or moderate (from critical). Patients were also assigned to “good prognosis” when the clinical status remained moderate.

Relative median cell counts at the first time point for patients with poor (n = 9) and for those with good prognosis (n = 27) were compared (Figure 3A; Supplementary Table 8). CD3+, CD4+ T and naïve B cells were significantly lower for patients with poor, compared to those with a good prognosis (Wilcoxon rank sum test: p < 0.05). Median Treg, NK, overall CD19+, and memory B cell counts did not differ significantly between both groups. The median neutrophil count for patients with a poor prognosis measured significantly higher (p = 0.0027) than in those with good prognosis. The LNR was significantly lower in patients with poor compared to those with a good prognosis (p = 0.0054) (Figure 3B).
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Figure 3 | Immune cell counts depending on disease status switch in COVID-19 patients in whole blood samples. The disease status was assessed in accordance with RKI classification of hospitalized COVID-19 patients. The “good prognosis” group consists of patients (n = 27) which showed an improvement until second available time point compared to first time point. Improvement was assumed when a change from severe to moderate and persistent moderate grade was found. Patients with a change from moderate or severe to critical, moderate to severe grade were classified as “poor prognosis” group (n = 9). Patients were represented in both groups, when showing status change from second to third time point. Epigenetic data for the first and second time point (when status changed from second to third time point) are illustrated in the plots (white box: good prognosis; grey box: poor prognosis). Jittered scatter indicates actual cell count for a single sample. (A) Boxplots for T and B lymphocyte subpopulations (CD19+ B, CD3+, CD4+, CD8+, regulatory T (Treg), memory, naïve B cells), neutrophils and CD56dim natural killer [NK] cells. (B) Boxplot for lymphocyte-to-neutrophil ratio (LNR). (C) Prognostic performance for the markers CD3+ T cells, LNR, naïve B cells and neutrophils for a good prognosis was assessed by “receiver operating characteristic” (ROC) analysis, encoding good prognosis as 0 and poor prognosis as 1. Calculated area under the curve (AUC) for the four markers are shown in the plot. (D) CD3+ T cell course of Valencia cohort from first and last time point. Dynamic changes of CD3+ T lymphocytes in COVID-19 patients admitted into hospital. Relative numbers of CD3+ T lymphocytes are analysed at first and last available time point after hospital admission. Only patients with more than two time points were included in this analysis. Solid horizontal line shows the CD3+ T cell threshold of ≥ 10.2% that marks the count that was defined as recovery limit. Each patient trajectory is illustrated by a line between two time points (deceased: n = 5, survived: n = 9). Dotted horizontal lines mark the normal “healthy” CD3+ T cell range (95% CI: 12.99–40.97%). One patient (labelled with “COV-UCI-1”) was not following the pattern. Boxes display the interquartile range. Whiskers extend maximally 1.5 times the interquartile range from the upper/lower end of the box. Observations farther than that are considered outliers. All p values relate to the Wilcoxon rank sum test for median differences and are displayed above the respective boxplots.

Next, we assessed CD3+ T, naïve B cells, neutrophils and LNR with respect to their power to predict the clinical disease course applying ROC analyses (Figure 3C). For CD3+ T cells, an area under the curve (AUC) of 0.77 (95% CI: 0.59–0.96) was calculated (Supplementary Table 9). The best separation point corresponded to a threshold level of 10.2% CD3+ T cells at which 78% of the cases with poor prognosis were detected correctly, with a false negative rate of 19%. The AUC for the LNR was at 0.81 (95% CI: 0.63–0.98) and correctly detected 67% of patients with poor prognosis. A 12% false negative rate was found, with a calculated threshold level of 0.21. CD3+ T, naïve B cells, and neutrophils were used in a multivariate logistic regression, creating a predictor for the outcome. The multivariate model resulted in a sensitivity of 88% and specificity of 67% (Supplementary Table 9).





T cell recovery is associated with patient survival

Patients admitted to ICU had low T, B lymphocyte and high neutrophil counts suggestive for a severe disease course. To predict survival, these patients were then separated in those that deceased and those that survived and respective CD3+ T cell counts of both groups at first and last time point were compared. At the first time point (ranging from -1 to 2 days around the day of admission) no difference in the CD3+ T cell count was found between patients that deceased and those that were discharged (6.3% [IQR 4.4–8.2], n = 5 and 5.2% [IQR 4.8–8.1], n = 9) (Figure 3D). The best factor for patient survival was clearly recovery of CD3+ T cell count, whereas for those with critical and eventually deadly outcome, no such recovery was observed. Survivors were characterized by a significant increase of CD3+ T cell counts compared to the first time point (13.3% [IQR 6.2–23.8], p = 0.0078). Their cell counts corresponded to those of healthy donors (95% CI: 12.99–40.97%). The CD3+ T cell count was indicative for recovery. Among survivors 67% of cases showed a cell count above the calculated threshold of 10.2% for a good prognosis after a median of 12 days (IQR 11-23, ranging from 9 to 36). 80% of patients that succumbed to the disease showed no reconstitution of CD3+ T cells (Figure 3D).





Detection of immune cells in nasopharyngeal swabs

To assess the cell type specificity of the epigenetic markers for CD3+, CD4+, and CD8+ T cells as well as total B, naïve, and memory B cells in nasal swabs we performed a joint data analysis of qPCR data of healthy donors and COVID-19 patients in comparison to blood. In both tissues, CD4+ and CD8+ T subpopulations showed a clear linear association with the number of overall CD3+ T cells (blood: R = 0.98, rho = 0.98 [p < 0.0001], n = 213; nasal swab: R = 0.96, rho = 0.97 [p < 0.0001], n = 40) (Figure 4A). In blood, memory and naïve B cell frequencies correlated with total B cell frequency (R = 0.88, rho = 0.83 [p < 0.0001], n = 166) (Figure 4B). For nasal swabs, a moderate correlation between numbers of analysed B cell subpopulations and total B cells was observed (R = 0.62, rho = 0.55 [p < 0.001], n = 34).

[image: Scatter plots labeled A and B compare immune cell percentages in blood and nasal swab samples. Plot A shows the sum of CD4+ and CD8+ T cells versus CD3+ T cells, while plot B shows the sum of naive and memory B cells versus B cells. Both plots display strong positive correlations with blood and nasal swab samples represented by different markers, circles for blood and triangles for nasal swab. Statistical values, including correlation coefficients and p-values, are indicated on each plot.]
Figure 4 | Correlation of T or B cell populations in blood and nasopharyngeal swabs. Relative counts (%) of CD3+, CD4+ and CD8+ cells respective overall, memory and naïve B cells are determined by epigenetic qPCR for whole blood (Blood) and nasopharyngeal swabs (Nasal swab) from COVID-19 patients or healthy volunteers. Scatter plots show the correlation of CD3+ T cell count and sum of CD4+ and CD8+ T cell count (A) (n = 213 [Blood] or n = 40 [Nasal swab]) or total B cell count and sum of naïve and memory B cell count (B) (n = 166 [Blood] or n = 34 [Nasal swab]). Datapoints for blood samples are indicated by circles (solid line) and for nasopharyngeal samples by triangles (dashed line). Corresponding regression lines (y~x) are shown as solid lines inclusive 95% confidence interval (grey area). Pearson (R) and spearman (rho) coefficients with corresponding p values are shown in plot.

Next, we analysed 69 samples from 23 healthy donors and performed epigenetic analyses targeting CD3+ T, total, memory, and naïve B as well as NK cells, to assess feasibility of EICC in nasopharyngeal swabs. Compared to blood from healthy donors, the median counts of all investigated cell types measured significantly lower in swabs from healthy volunteers (Wilcoxon rank sum test: p ≤ 0.002) (Figure 5A). The median CD3+ T, overall, memory and naïve B, and NK cell count in swabs from healthy volunteers were at 3.6% (IQR 2.3–6.9), 1.3% (0.5–2.4), 0.6% (0.6–0.9), 1.3% (0.8–1.9), and 0.9% (0.7–1.5), respectively (Supplementary Table 10).
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Figure 5 | Lymphocytes in swabs from healthy donors and COVID-19 patients. (A) Relative quantification of lymphocyte populations in nasopharyngeal swab samples from healthy donors (labelled as “Swab_HD”) and COVID-19 patients at first available time point (labelled as “Swab_COVID”) compared to blood cell count of healthy individuals (labelled as “Blood_HD”) were determined by epigenetic qPCR. Investigated cell types are CD19+ B cells, CD3+ T cells, memory and naïve B cells and CD56dim natural killer (NK) cells. (B) Relative quantification of lymphocyte populations in nasopharyngeal swab samples from COVID-19 patients (all time points) with mild or moderate symptoms (white box) compared patients with severe or critical illness (grey box). Outcome respective status at discharge of the patients is indicated by different point shapes (deceased patient: circle, survived patient: triangle). Data are presented as boxplot and compared by Wilcoxon rank sum test. Boxes display the interquartile range. Whiskers extend maximally 1.5 times the interquartile range from the upper/lower end of the box. Observations farther than that are considered outliers. All p values relate to the Wilcoxon rank sum test for median differences and are displayed above the respective boxplots.

Moreover, swabs from COVID-19 patients, irrespective of the clinical progression of the patient, showed a significantly lower CD3+ T and B cell count (p ≤ 0.002) (Figure 5A). When associating immune cell counts in swabs to different clinical stages and survival, patients experiencing moderate symptoms (n = 27) had a significantly higher median percentage of naïve B (p = 0.033) than patients with severe or critical disease (n = 17), respectively (Figure 5B; Supplementary Table 10). Other cell types did not differ significantly between milder and more severe cases.






Discussion

EICC is feasible with DNA samples derived from tissues and body fluids including fresh, frozen, and dried blood. Substantial equivalence with pertinent flow cytometric analyses was shown using peripheral blood (Table 1), and independently confirms and expands previous findings (12). For EICC, equivalence was also found for venous blood and capillary blood collected as DBS.

Compared to blood, significantly lower immune cell frequencies were observed in nasopharyngeal swabs, which is consistent with a low infiltration of lymphatic cells in that tissue (17). In blood and nasopharynx, epigenetically detected CD4+ and CD8+ T cells correlated well with the number of total CD3+ T cells and memory and naïve B cells correspond moderately well with overall B cells. This suggests an equivalent cell type specificity of the epigenetic markers in both tissue types. When comparing cell counts in swabs and matched peripheral blood samples, we found no reliable correlation (data not shown).

To investigate the predictive value of the epigenetic approach with respect to the disease outcome after SARS-CoV-2 infections, immune cell levels were monitored. Patients have significantly reduced counts of T and B cell populations compared to healthy donors. This is in agreement with previous findings (18–20). Moreover, the multivariate analysis indicated that counts of T cell subpopulations as well as naïve B cells, neutrophils and the LNR at first time point were predictive for the clinical stage at the consecutive clinical patient assessments (Supplementary Table 9), supporting previous reports (18, 21, 22). This finding suggests that these markers precede clinical manifestation of COVID-19 at early stages serving as early indicators for disease course. The same was not observed for overall or memory B cells or NK cells, confirming previous findings (3, 23). This points towards cell type specific effects rather than a general granulocytosis, which would lead to an equal reduction of all lymphocyte populations (24). We also observed that T cell lymphopenia and neutrophilia correlated with increasing disease severity (Supplementary Table 11).

Any effect of treatment (Remdesivir-treated, Tocilizumab-treated) or present comorbidities like arterial hypertonia (38% of all patients) or diabetes mellitus type 2 (25%) on the immune cell counts of each patient cohort, for instance, was not observed (data not shown). Jointly, these observations suggest that EICC in blood represent reliable stage-associated laboratory parameters.

The advanced lymphopenia within the Valencian cohort at admission might be explained by the fact that almost all patients were severely ill and in intensive care, compared to the German cohort that included many non-severe cases in stationary care. However, within the highly lymphopenic Valencian cohort, we observed T cell recovery until end of treatment in patients who survived. T lymphocyte counts in terminal patients did not recover during observation (Figure 3D), confirming reported data (10, 25).

Furthermore, our data indicate that DBS can be used to predict disease course. As logistics for DBS are simple, patients in home isolation may be able to send specimens to laboratories. The following analyses are feasible in approx. 6 hours and would allow for timely monitoring. While such strategy may lack complete medical surveillance, it allows for objective immune monitoring of patients in home isolation. Nasopharyngeal swabs are used as common source for detection of SARS-COV-2 and are usually available upon COVID-19 diagnosis. Significant reduction of T and B cells for patients was observed when compared to healthy donors. Notably, naïve B cell levels were predictive in blood and swabs. A role of the naïve immune system is in line with the observed age dependency of COVID-19 (26, 27).

In addition to corroborating the finding that high T lymphocyte and low neutrophil counts determine better outcome, our data show one possible reason for well-established sex-dependency of COVID-19 outcome (28–30). Treg appear to be disappearing almost entirely from the periphery of male patients. Contrary to that, females retain a Treg count of approx. 1.0%.

Cohort size was a limitation of this study. Unexpected differences in the source populations from Valencia and Bochum barred the aggregation of samples to one larger cohort. Also, the current experiment does not provide an immediate diagnostic use case, but immune monitoring appears feasible from tissue samples. By design of ethical consent, direct testing of home isolated patients was not allowed in the study. Therefore, the feasibility of this study is limited to the technical aspects. An actual proof of benefit of this method for patients in home-isolation must follow this study. Validation studies using larger cohorts including multicentric studies from different regions and countries and DBS, including mildly ill out-patients, are essential to confirm the full prognostic potential for COVID-19 patients.

Overall, we demonstrated the applicability of EICC in venous and capillary blood and nasopharyngeal swabs for predicting COVID-19 disease progression and emphasised to be aware of the sex-related differences in regulatory T cell counts when assessing individual disease course. Furthermore, given the feasibility to perform EICC from nasopharyngeal swabs and DBS, this approach lends itself to unsupervised home testing and possibly facilitate medical surveillance. The concept shown here may be transferred to other clinical applications, such as newborn screening for primary immunodeficiencies using DBS (31) or determination of immune cell infiltration in solid tumor tissues (32), where flow cytometry in particular is not suitable or reaches its limits, as well as to situations where patients suffer from chronic inflammatory pathologies like rheumatoid arthritis or systemic lupus erythematosus (33, 34).
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Although coronavirus disease 2019 (COVID-19) is primarily associated with mild respiratory symptoms, a subset of patients may develop more complicated disease with systemic complications and multiple organ injury. The gastrointestinal tract may be directly infected by SARS-CoV-2 or secondarily affected by viremia and the release of inflammatory mediators that cause viral entry from the respiratory epithelium. Impaired intestinal barrier function in SARS-CoV-2 infection is a key factor leading to excessive microbial and endotoxin translocation, which triggers a strong systemic immune response and leads to the development of viral sepsis syndrome with severe sequelae. Multiple components of the gut immune system are affected, resulting in a diminished or dysfunctional gut immunological barrier. Antiviral peptides, inflammatory mediators, immune cell chemotaxis, and secretory immunoglobulins are important parameters that are negatively affected in SARS-CoV-2 infection. Mucosal CD4+ and CD8+ T cells, Th17 cells, neutrophils, dendritic cells, and macrophages are activated, and the number of regulatory T cells decreases, promoting an overactivated immune response with increased expression of type I and III interferons and other proinflammatory cytokines. The changes in the immunologic barrier could be promoted in part by a dysbiotic gut microbiota, through commensal-derived signals and metabolites. On the other hand, the proinflammatory intestinal environment could further compromise the integrity of the intestinal epithelium by promoting enterocyte apoptosis and disruption of tight junctions. This review summarizes the changes in the gut immunological barrier during SARS-CoV-2 infection and their prognostic potential.
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Introduction

Although the primary target of severe acute respiratory syndrome coronavirus-2 (SARS−CoV−2) is type II alveolar epithelial cells, the virus can also infect gastrointestinal mucosal cells by binding to angiotensin-converting enzyme 2 (ACE2) and its cofactor, transmembrane serine protease 2 (TMPRSS2), both of which are widely expressed on the surface of enterocytes. Notably, ACE2 expression is higher in intestinal cells of the ileum and colon than in lung cells (1). In experimental models, intranasal inoculation of SARS-CoV-2 resulted in disruption of gut barrier integrity as a consequence of systemic release of proinflammatory mediators (2). Therefore, the virus can cause either direct damage to ACE-2-expressing intestinal epithelial cells or indirect damage through a systemic hyperinflammatory response (2, 3). Recombination is a common mechanism in coronaviruses that allows them to resist selective pressure and adapt to new habitats. Recombination events with other gut-targeting coronaviruses could potentially enhance SARS-CoV-2 virulence and tropism for the gastrointestinal tract (4). Indeed, up to 24% of COVID-19 patients develop gastrointestinal symptoms, including diarrhea, abdominal discomfort, nausea, vomiting, and loss of appetite (3, 5). Notably, COVID-19 patients may even develop severe duodenitis and present with gastrointestinal bleeding requiring red blood cell transfusion (6). Immunohistochemical staining of these biopsies was positive for SARS-CoV-2 spike protein, suggesting that duodenitis developed as a result of direct enterocyte invasion by SARS-CoV-2; in situ hybridization also provided evidence of active viral replication (6). SARS-CoV-2 infection is associated with multifactorial impairment of the gut barrier, as it has deleterious effects on all of its critical aspects of defense, which consist of a balance between the gut microbiota (biological barrier), intestinal epithelial cells and their junctions (mechanical barrier), and gut-associated immune cells, immunoglobulins, and cytokine production (immune barrier). Previous studies have shown that the integrity of the intestinal barrier is significantly impaired in COVID-19 patients, as evidenced by various surrogate markers. Giron et al. (7) demonstrated that severe COVID-19 is associated with higher plasma levels of zonulin, indicating profound disruption of tight junction homeostasis, as well as increased levels of lipopolysaccharide (LPS)-binding protein (LBP) and β-glucan, which are reliable markers of bacterial and fungal translocation, respectively. Importantly, serum markers of tight junction permeability and microbial translocation were significantly associated with circulating proinflammatory mediators such as IL-6, suggesting that systemic inflammation is triggered to some extent by gut barrier disruption. In addition, intestinal fatty acid binding protein (I-FABP), a protein synthesized by mature enterocytes responsible for fatty acid turnover and used as a biomarker of intestinal injury, was measured in the urine of 283 patients hospitalized for COVID-19 (8, 9). Urinary I-FABP levels were significantly elevated compared with controls and remained high in patients’ samples two weeks after hospitalization; levels were even higher in patients with critical illness than in milder cases (8). Another study found that serum levels of zonula occludins-1 (ZO-1), a marker of structural and functional integrity of the paracellular barrier, were significantly elevated in patients with COVID-19 pneumonia but were not predictive of progression to severe respiratory failure (10). In addition, numerous studies have shown significant changes in the composition of the gut microbiota in patients with COVID-19. A recent meta-analysis detailed the changes in gut microbiota composition during SARS-CoV-2 infection (11). In several studies, changes in the gut microbiome were also closely associated with the clinical severity of COVID-19, suggesting a prognostic role in such patients (12–24). The present review focuses specifically on COVID-19 associated changes in the gut immunological barrier and their prognostic potential.





SARS-CoV-2-mediated changes in the intestinal immunological barrier




Intestinal inflammation and fecal calprotectin

Fecal calprotectin has also been studied in detail in COVID-19 patients because it is produced predominantly by neutrophils that migrate to and are activated in the intestine, making it a reliable marker of bowel inflammation in other conditions such as inflammatory bowel disease (25). Ojetti et al. (26) showed that high fecal calprotectin levels in SARS-CoV-2 infected individuals are an independent risk factor for the development of COVID-19 pneumonia, while data from other studies indicate that fecal calprotectin levels are positively correlated with serum IL-6, degree of hypoxemia, and days of hospitalization (27–29). Although there is no correlation between gastrointestinal symptoms and fecal calprotectin, an increase in this parameter has a better predictive value for progression of severe disease compared with C-reactive protein (30). This finding possibly suggests that the increase in fecal calprotectin associated with SARS-CoV-2 infection is due in part to chemotaxis of immune cells into to the gastrointestinal tract and hypoxic intestinal damage rather than intestinal inflammation and destruction of enterocytes (29, 30). In addition, the role of serum calprotectin was also investigated and was found to be an effective marker for predicting the future status of SARS-CoV-2-infected individuals (31). The strong correlation of serum calprotectin with poor clinical outcomes highlights the potential value of this marker in identifying COVID-19 patients at high risk for disease progression (31).





Changes in immune cells

Data are also available on changes in immune cells in the gastrointestinal mucosa of patients infected with SARS-CoV-2. Mass cytometric analysis of intestinal tissue from deceased individuals with COVID-19 revealed leukocytic infiltration consisting of monocytes, CD11b+ macrophages, CD11c+ dendritic cells (DCs), natural killer (NK) cells, and B cells (32). Similar results were obtained from lung tissue, suggesting that these organs are the epicenter of the immune response during SARS-CoV-2 infection (32). Moreover, analysis of duodenal biopsies after the onset of COVID-19 symptoms in patients with macroscopically normal mucosa who underwent endoscopy for other reasons (e.g., upper abdominal pain) revealed increased numbers of CD68+, CD14+ macrophages, CD11c+ DCs, mucosal CD4+ T cells, and intraepithelial CD8+ T cells (33). The aforementioned intraepithelial lymphocytes were antigen-experienced and exhibited a CD8+ effector cell phenotype (CD45RA+, CD27-) (33). An increase in intraepithelial lymphocytes in intestinal biopsies was still observed one month after SARS-CoV-2 infection (34). Exhaustion/depletion of CD4+ T cells, a hallmark of HIV infection, is also observed in SARS-CoV-2 infection. The resulting dysregulation of CD4+ T cells in the gut may contribute to intestinal epithelial barrier dysfunction and leaky gut, which promotes systemic inflammation (35). Accordingly, IL-17 producing Th17 cells are overactivated in SARS-CoV-2 infection (36).




Imbalance of cytokines and inflammatory mediators




Dysregulation of interferon responses

Invasion of SARS-CoV-2 into intestinal cells leads to increased expression of type I and III IFN and other proinflammatory cytokines, such as IL-8 and IL-12 (37, 38). All types of IFN can activate the JAK/STAT pathway. Type I IFN can be secreted by many cell types, especially plasmacytoid DCs. SARS-CoV-2 has developed several strategies to evade immune surveillance by attenuating type I and III IFN responses (39). This effect is mediated by a SARS-CoV-2 membrane protein that inhibits the formation of a multiprotein complex responsible for the phosphorylation and subsequent activation of IFN regulatory factor (IRF) 3 (39). IRF3 activation is a prerequisite for IFN transcription and synthesis. The SARS-CoV-2 accessory protein ORF9b is another molecule that blocks the IRF3 activation pathway (40). ORF9b also inhibits IFN gene expression by interacting with the stimulator of IFN genes (STING); STING can recruit TANK binding kinase 1 (TBK1), one of the IRF3 phosphorylators (40). In addition, ORF9b targets the translocase of outer mitochondrial membrane 70 (TOMM70), which is located on the mitochondrial membrane and functions as a receptor for mitochondrial antiviral signaling protein (MAVS). MAVS is also involved in the IRF3 phosphorylation pathway. Therefore, ORF9b downregulates type I IFN production by interfering with the interaction between TOMM70 and MAVS (41, 42). However, overexpression of TOMM70 can overcome ORF9b-mediated inhibition and restore IFN-β expression (41).

After pretreatment of human intestinal cell lines with IFN-β and human colon organoids with IFN-β1 and type III IFN, respectively, a protective effect against SARS-CoV-2 infection was observed, resulting in a significantly milder infection (43, 44). However, the antiviral activity of type III IFN against SARS-CoV-2 in the gut is stronger and more durable (45). Of note, infection of colon organoids with SARS-CoV-2 resulted in upregulation of type III IFN but not type I IFN, despite the ability of these organoids to produce both types in response to viral infection (44, 46). Conversely, depletion of the type III IFN receptor resulted in increased SARS-CoV-2 infectivity, viral genome replication, and virion production (44, 45).

Although neutralizing autoantibodies to type I IFN have been previously demonstrated in humans and are a universal finding, particularly in autoimmune polyendocrine syndrome type 1 (APS-1), they have not been associated with increased prevalence or severity in viral infections (47–50). SARS-CoV-2 infection appears to be an exception; in an international cohort study, 19 of 22 APS-1 patients with COVID-19 were hospitalized, and 11 of 22 required mechanical ventilation (51). Pre-existing neutralizing IFN type I antibodies in the serum of previously healthy individuals represented a major risk factor for severe COVID-19 (51). Moreover, their prevalence increases with age; during SARS-CoV-2 infection, 10.2% of patients with life-threatening disease, almost exclusively men, had pre-existing neutralizing IFN-I autoantibodies and low or undetectable serum IFN-α levels, whereas no such antibodies were detected in patients with mild infection (52, 53). In addition, COVID-19 patients with type I IFN antibodies had significantly higher viral loads than patients without these antibodies (54). Similar results were obtained in other studies investigating the presence of neutralizing IFN-I antibodies in patients with COVID-19 in the intensive care unit (55, 56). Such autoantibodies were detected in 9.5% to 18% of these patients; 87% to 92.3% of them were men (55, 57). In contrast, non-neutralizing IFN-I antibodies are common in critically ill non-COVID-19 patients and do not affect clinical outcome (58). The aforementioned data provide an additional explanation for the increased likelihood of severe disease in elderly men; notably, this group of individuals accounts for approximately 20% of COVID-19 deaths (53).

Furthermore, impairment of IFN-I-dependent immunity caused by any mechanism can lead to severe COVID-19 symptoms. Loss-of-function variants of genes such as IRF3, IRF7, IFN-α receptor, and Toll-like receptor 3 (TLR3) were detected in 3.5% of individuals with life-threatening COVID-19 and no history of other severe infections, whereas no patient with mild or asymptomatic disease carried these variants; all of these variants resulted in disproportionately low IFN I production in response to SARS-CoV-2 (59).






Changes in other inflammatory mediators

Following intranasal infection with SARS-CoV-2, cytokines such as IL-4, IL-1β, TNF-α, IL-17A, and other inflammatory mediators are initially produced in gastrointestinal tissues (2). In parallel, upregulation of the anti-inflammatory IL-10 and inhibition of the pro-inflammatory IL-1β and IFN-γ can be induced by inoculation in the digestive tract (2). A gut-on-a-chip model of SARS-CoV-2 infection provided further evidence for the release of cytokines in the digestive tract (60). In particular, the IL-6 and TNF genes and C-X-C motif chemokine ligand 10 (CXCL10), a chemoattractant for NK cells and T cells and a monocyte inducer, were significantly upregulated (60). Gene set enrichment analysis in pluripotent stem cells derived from small intestinal epithelial cells or intestinal organoids from SARS-CoV-2 infection models also revealed increased expression of IL-1β, IL-6, CXCL10, C-C motif chemokine ligand 5 (CCL5, chemoattractant for monocytes), and significant upregulation of IL-6 and the nuclear factor-κB (NF-κB) pathway (61, 62). Quantification of cytokines in the stool of patients hospitalized for COVID-19 revealed higher IL-8, IL-18, and lower IL-10 levels (63, 64).

In contrast, treatment of human colon tissue samples with short-chain fatty acids (SCFAs), metabolites capable of reducing pro-inflammatory mediators such as IL-6, IL-12, and IFN-γ, showed no effect on cell permeability; however, treatment with SCFAs showed a modest, albeit significant, effect in reducing the expression of the type III IFN receptor, interferon lambda receptor 1 (IFNLR1), and the serine protease TMPRSS2 (56, 65). TMPRSS2 is a membrane-bound protein that has been shown to promote SARS-CoV-2 infection in enteroids by supporting virus-enterocyte fusion (66). Of note, depletion of the gut microbiota after antibiotic administration did not affect mortality in a mouse model of SARS-CoV-2 infection although colonic concentrations of IL-17 and CXCL2 were significantly increased (67). In contrast, administration of remdesivir to SARS-CoV-2-infected intestinal epithelial cells resulted in reduced induction of the IL-1β, IL-6, CXCL10, and CCL5 genes (62).

Another protein inversely correlated with serum IL-6 levels during SARS-CoV-2 infection is soluble mucosal addressin cell adhesion molecule (sMAdCAM), which is expressed by gut endothelial venules to induce migration of immune cells into the intestine (68, 69). At the same time, sMAdCAM levels were lower in COVID-19 patients compared to healthy controls or convalescent subjects, suggesting that normalization of sMAdCAM levels may signify the restoration of mucosal homeostasis and highlighting its role as an important systemic and gut homing parameter that needs to be monitored for better therapeutic guidance and prophylactic intervention in COVID-19 (68, 69).





Disruption of antimicrobial peptide production

Regarding the antiviral response of the gastrointestinal tract, Paneth cells and neutrophils are also capable of producing the immunomodulatory proteins, defensins. Defensins are important members of the antimicrobial peptide (AMP) family with diverse immunoregulatory functions and a broad spectrum of antimicrobial and antiviral effects. These proteins act as chemoattractants and activators for immature DCs, monocytes, and naive T cells (70, 71). During SARS-CoV-2 infection, α-defensin 5, a lectin-like protein that can recognize lipids and glycoproteins, shields the ACE2 receptor and prevents SARS-CoV-2 binding (72). Although SARS-CoV-2 has a higher affinity for the ACE2 receptor than α-defensin 5 (72), intestinal α-defensin 5 has a protective effect because it is highly abundant in the digestive tract. Consequently, α-defensin 5 levels are elevated before infection (72). Indeed, administration of α-defensin 5 to a cell line model after infection resulted in no antiviral response, whereas pretreatment with α-defensin 5 showed a beneficial effect (73). Of note, β-defensin 1 production is increased in later stages of SARS-CoV-2 infection due to intestinal hypoxia mediated by hypoxia-inducible factor 1α (74).





Dysregulation of secretory IgA production

The immunologic barrier of the gut is also strengthened by secretory immunoglobulin A (sIgA) produced by mucosal lymphoid tissues, including gut-associated lymphoid tissue (GALT). Dimeric sIgAs are the predominant mucosal antibodies and form an essential component of the immunologic barrier (75). Commensal microorganisms play a central role in controlling IgA class switching and effective antibody production. Indeed, the number of functional IgA-secreting B cells is drastically reduced in germ-free animal models (76, 77). The predominance of sIgA in the intestine is likely another explanation for the attenuated gut inflammation compared with lung tissue; IgA dimers are able to inactivate toxins or pathogens without inducing inflammation because they cannot bind and activate complement (78). An in vitro study examining the neutralizing ability of IgG and IgA from B cells of COVID-19 convalescent subjects found that dimeric IgA was much more effective than IgA monomers or IgG in neutralizing SARS-CoV-2 (79).







SARS-CoV-2-mediated gut microbiome and immunological changes

The constant interaction of immune cells with the gut microbiome maintains the balance between tolerance to beneficial bacteria and eradication of pathogenic species (80). A complex, dynamic, and bilateral interaction between the gut microbiome and COVID-19 has been described (81). The gut microbiome of patients with SARS-CoV-2 infection exhibits significant alterations, possibly due to a severe systemic inflammatory response. The mechanisms underlying COVID-19-related dysbiosis are still unclear. However, interactions between the ACE2 receptor and SARS-CoV-2 have been associated with alterations in the composition of the gut microbiota by impairing the secretion AMPs. The function of the amino acid transporter B0AT1, which mediates intestinal uptake of tryptophan, is dependent on the ACE2 pathway (82). Tryptophan modulates the production of AMPs via the mammalian target of rapamycin (mTOR) pathway (83). Therefore, the deficiency of tryptophan caused by ACE-2 blockade may decrease the production of AMPs and disrupt the intraluminal microbial species. Commensal bacteria also play a critical role in mucosal homeostasis by modulating the expression of ACE2 in the gut (84). Secretion of proinflammatory cytokines, particularly TNF-α, during respiratory tract infections has a dynamic anorexigenic effect via hypothalamic activity. The decrease in fiber and caloric intake disrupts the composition of the gut microbiota and the synthesis of its metabolites, which in turn strongly influence the transcriptional “training” of innate immune cells (85).

A recent meta-analysis detailed the changes in the gut microbiota during SARS-CoV-2 infection (11). At the phylum level, dysbiosis is characterized by a reduction in the ratio of Firmicutes to Bacteroidetes. In particular, COVID-19 is associated with fewer butyrate-producing bacterial species, including Faecalibacterium and Roseburia (11, 15, 86). The genus Roseburia is closely associated with colon motility and mucosal tissue integrity and has a crucial anti-inflammatory effect by regulating IL-10 synthesis (87). Several other beneficial genera, including Eubacterium, Alistipes, and Bifidobacterium, are also reduced in COVID-19 patients (11). Bifidobacterium strains mediate robust antimicrobial and antiviral activity, which is balanced by promotion of Treg-mediated responses and induction of tolerogenic DC phenotypes (88).

Alterations in the gut microbiome have also been closely associated with clinical severity of COVID-19 in several studies, suggesting a prognostic role in such patients (12–24). Bacterial genera with significant prognostic value included Eubacterium, Ruminococcus, Faecalibacterium, Bacteroides, Lactobacillus, Clostridium, Roseburia, and Bifidobacterium (12–24). An increase in the dominant genus Enterococcus and a decrease in the families Ruminococcaceae and Lachnospiraceae have been reported in severe COVID-19 cases admitted to the intensive care unit (21).

The changes in the gut microbiota in patients with COVID-19 should be considered as a dynamic process (81). Emerging evidence suggests that the regulatory functions of the gut microbiota effectively support recovery from SARS-CoV-2 infection. The main features of intestinal immune barrier disruption during SARS-CoV-2 infection are shown in Figure 1.
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Figure 1 | Key features of intestinal immune barrier disruption during SARS-CoV-2 infection. SARS-CoV-2 infection is associated with profound alterations in the intestinal microflora, manifested by decreased species diversity, depletion of symbiotic microorganisms, and prevalence of pathogenic species. Signals and metabolites derived from the intestinal flora, such as short-chain fatty acids (SCFAs), play an important role in controlling mucosal immunity by promoting T regulatory cell (Treg) responses and the activity of tolerogenic dendritic cells (DCs). This immunoregulatory environment, rich in anti-inflammatory mediators (IL-10, TGF-β), is significantly impaired by SARS-CoV-2. As a result, B cell metabolism and maturation are severely impaired, leading to exhaustion of effective plasma cells that produce secretory dimeric immunoglobulin A (sIgA), which is essential for viral containment. The proliferation of SARS-CoV-2 is also facilitated by its ability to evade recognition by the immune system by interfering with type I and type III IFN signaling. SARS-CoV-2 exerts either direct cytopathic effects on intestinal epithelial cells (IECs) expressing ACE2 and TMPRSS2 receptors or indirect immune-mediated injury. During COVID-19, the expression of several antimicrobial peptides, including defensins, is dysregulated, which increases the infectivity of SARS-CoV-2. In addition, recruitment of intraepithelial lymphocytes (IELs) accelerates IEC apoptosis. The release of damage-associated molecular patterns (DAMPs) due to cell injury and the influx of pathogen-associated molecular patterns (PAMPs) as a result of increased gut permeability lead to immune activation. Macrophages/monocytes, neutrophils, and other cells of the innate immune system secrete large amounts of proinflammatory mediators (IL-1β, IL-6, TNF-α, ROS) and chemokines (CCL5, CXCL10) that cause recruitment of additional immune cells and prime effector T cells. In parallel, disruption of the intestinal barrier facilitates bacterial translocation, endotoxemia, and dissemination of other gut-derived stimuli that contribute to systemic hyperinflammatory responses and cytokine release syndrome, leading to severe COVID-19.





The prognostic potential of gut immunologic barrier alterations in SARS-CoV-2 infection

SARS-CoV-2 affects multiple systems, including the gastrointestinal tract and gut barrier integrity. COVID-19 is associated with multifaceted disruption of the various components of the mucosal immune barrier, and the extent of these changes reflects the severity of the underlying disease. In particular, SARS-CoV-2 is able to evade the innate immune response by disrupting interferon signaling. The expression pattern of several cytokines in the mucosal compartment is severely affected, essentially leading to the recruitment and activation of additional immune cells that support this proinflammatory milieu. In addition, the production and release of antimicrobial peptides and secretory IgA, which are important regulators of intestinal immune integrity, are impaired. As a result, profound alterations of the gut microbiome and metabolome occur, characterized by depletion of symbiotic species and dominance of pathogenic microorganisms. The main features of SARS-CoV-2-induced dysregulation of the intestinal immune barrier are shown in Figure 1.

The prognostic value of various parameters related to the gut immunological barrier was evaluated. A strong association was described between certain prognostic factors and disease severity, poor prognosis, hospitalization, or mortality due to SARS-CoV-2. Table 1 summarizes important parameters related to the gut immunologic barrier that have been studied as prognostic markers for severity and progression of SARS-CoV-2 infection. It is unlikely that a single index of gut immunologic barrier function can independently predict progression of COVID-19. Alternatively, the development and validation of a prognostic scoring system that incorporates the most robust immunologic parameters and combines them with additional epidemiologic, clinical, and laboratory data may provide the best results. Further prospective studies with larger numbers of participants are warranted to identify markers of gut barrier dysfunction that could help identify high-risk COVID-19 patients who require early or enhanced support.


Table 1 | Key gut immunologic barrier parameters that serve as prognostic markers for severity of SARS-CoV-2 infection and poor prognosis.


[image: Table detailing various studies related to COVID-19. Columns include “Parameter studied,” “Endpoints of the study,” “Results of the study,” and “Refs.” Parameters examined include serum calprotectin, fecal calprotectin, sMADCAM, autoantibodies to type 1 IFNs, type 1 IFN variants, cytokines in stool samples, secretory IgA antibodies, and gut microbiota, with corresponding findings and references listed.]




Concluding remarks

SARS-CoV-2 infection is associated with significant disruption of intestinal immunological homeostasis and impairs mucosal immune cell function and production of signaling molecules. SARS-CoV-2-induced gut dysbiosis could drive many of these immunological changes through commensal-derived signals and metabolites that maintain a continuous dialog between the mucosal immune system and the gut microflora. Conversely, dysregulation of intestinal immune cells and overproduction of proinflammatory cytokines could compromise the integrity of intestinal epithelial cells (apoptosis induction) and their connections (disruption of tight junctions), further promoting gut barrier dysfunction. These alterations contribute to the breakdown of intestinal barrier integrity, which may subsequently lead to translocation of microbes and endotoxins from the intestinal lumen into the systemic circulation, promoting a hyperinflammatory response associated with distant organ dysfunction and the development of a “viral sepsis syndrome” (89). The importance of gut immunologic barrier alterations in COVID-19 is underscored by several studies demonstrating their prognostic potential. Features of intestinal immune barrier failure occur early in the course of infection and correlate well with the severity of COVID-19, suggesting that immune barrier dysfunction is not only a bystander but an active participant in fueling exuberant immune responses and systemic inflammation. Further clinical studies are needed to explore the role of appropriate biomarker-based immunologic therapies in improving gut barrier function, which could lead to an expansion of therapeutic options against COVID-19.
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Background

Little is known about the immune determinants for severe coronavirus disease 2019 (COVID-19) in individuals vaccinated against severe acute respiratory syndrome coronavirus 2. We therefore attempted to identify differences in humoral and cellular immune responses between patients with non-severe and severe breakthrough COVID-19.





Methods

We prospectively enrolled hospitalized patients with breakthrough COVID-19 (severe and non-severe groups) and uninfected individuals who were vaccinated at a similar time (control group). Severe cases were defined as those who required oxygen therapy while hospitalized. Enzyme-linked immunosorbent assays and flow cytometry were used to evaluate humoral and cellular immune responses, respectively.





Results

Anti-S1 IgG titers were significantly lower in the severe group than in the non-severe group within 1 week of symptom onset and higher in the non-severe group than in the control group. Compared with the control group, the cellular immune response tended to be diminished in breakthrough cases, particularly in the severe group. In multivariate analysis, advanced age and low anti-S1 IgG titer were associated with severe breakthrough COVID-19.





Conclusions

Severe breakthrough COVID-19 might be attributed by low humoral and cellular immune responses early after infection. In the vaccinated population, delayed humoral and cellular immune responses may contribute to severe breakthrough COVID-19.
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Introduction

Since the coronavirus disease 2019 (COVID-19) pandemic was declared, various types of vaccines against severe acute respiratory syndrome–coronavirus 2 (SARS-CoV-2) have been rapidly developed. Vaccination has been the primary strategy for containing the COVID-19 pandemic, and therefore, several COVID-19 vaccines have been rapidly rolled out.

Based on real-world data together with clinical trials, vaccination was associated with reduced risks of COVID-19–related hospital admission and mortality (1–3) as well as reduced risks of symptomatic and severe COVID-19 (4, 5). However, despite the high vaccine efficacy and effectiveness against COVID-19 (6–9), breakthrough COVID-19 cases have continued to emerge (10). While the majority of breakthrough COVID-19 have been mild or moderate (11), severe or fatal cases have not been rare (12–14). In addition, breakthrough COVID-19 cases have also been reported even after booster doses (15).

However, little is known about the immune response to breakthrough infection. Bergwerk and colleagues reported a correlation between peri-infection antibody titers and breakthrough COVID-19 (10), but a subsequent study found no difference in post-vaccination neutralizing antibody titers between controls and patients with breakthrough infection (16). Another previous study reported that the antibody titers declined after a second vaccination but were sharply elevated in breakthrough COVID-19 cases (17). These previous studies were limited, however, by their focus on healthy healthcare personnel and their analysis of only mild breakthrough COVID-19 cases.

It has become crucial to characterize the immune response in cases of breakthrough COVID-19, especially severe cases, because the vaccinated population has become the mainstay, and the incidence and medical burden of breakthrough COVID-19 continue to persist. This study therefore attempted to identify differences in humoral and cellular immune responses according to severity among hospitalized patients with breakthrough COVID-19.





Materials and methods




Study population and design

From May 2021 to January 2022, we prospectively enrolled study participants aged ≥18 years with reverse transcription–polymerase chain reaction (RT-PCR)–confirmed SARS-CoV-2 infection who were admitted to the biocontainment units of Seoul National University Hospital or Boramae Medical Center. Uninfected vaccinated individuals were also enrolled. The uninfected vaccinated individuals were enrolled from the non-hospitalized general population. Breakthrough COVID-19 was defined by the presence of COVID-19 symptoms and RT-PCR–confirmed diagnosis of COVID-19 more than 14 days after at least one vaccine dose. Patients with breakthrough COVID-19 were divided into a severe group who required oxygen therapy and a non-severe group who did not require supplemental oxygen therapy during hospitalization (18). The uninfected vaccinated individuals served as a control group.

Within 1 week of onset of symptoms, blood samples were collected from patients hospitalized with COVID-19. Additional serial samples were obtained from a portion of the patients. Blood samples were also collected from unvaccinated patients with severe COVID-19 and uninfected vaccine recipients. Data were collected regarding demographic characteristics, vaccination type and status, days from vaccination to symptom onset, Charlson’s comorbidity index, underlying diseases, and clinical outcomes. Fully vaccinated patients were defined as those with COVID-19 diagnosis more than 14 days after completion of the recommended vaccination regimen.





Measurement of anti-S1 immunoglobulin G by enzyme-linked immunosorbent assay

Anti-S1 (spike subunit) IgG titer was semi-quantitatively measured using an enzyme immunoassay kit (Euroimmun, Lübeck, Germany) according to the manufacturer’s protocol. Optical density (O.D.) ratios were interpreted as follows according to the instructions: <0.8, negative; ≥0.8 to <1.1, borderline; and ≥1.1, positive.





Measurement of anti–receptor-binding domain IgG by ELISA

The binding activity of serum antibodies to SARS-CoV-2 receptor-binding domain (RBD) proteins was determined using an ELISA (19, 20). ELISA plates were coated with 100 ng/well of RBD protein, blocked with phosphate-buffered saline (PBS) supplemented with 3% bovine serum albumin, and incubated with diluted serum (1:200) for 2 h. Bound antibodies were detected using horseradish peroxidase–conjugated goat anti-human IgG (Fc) (#ARG23874, 1:12,000, Arigo Biolaboratories, Hsinchu, Taiwan). After washing with PBST three times, 50 μL of 3,3’,5,5’-tetramethyl benzidine was added, followed by the addition of 50 μL of 2 M H2SO4 to stop the reaction. Absorbance was measured at 450 nm using an Infinite M200 PRO (TECAN, Zurich, Switzerland).





Collection of peripheral blood mononuclear cells, antigen stimulation, and flow cytometry

After whole blood was drawn into heparin vacutainers (Becton Dickinson, NJ, USA), PBMCs were purified using Ficoll-Hypaque (GE Healthcare Life Sciences, Piscataway, NJ, USA). PBMCs were stored in serum-free cryopreservation medium (Cellbanker 2; Zenoaq, Japan) in liquid nitrogen containers until further use.

After thawing, cells were cultured in the presence of 1% penicillin/streptomycin (Thermo Fisher Scientific, Waltham, MA, USA) in complete RPMI-1640 medium containing 10% fetal bovine serum. Thereafter, 1 × 106 PBMCs/mL were stimulated with 0.06 nmol/mL PepTivator® SARS-CoV-2 Prot_S Complete (i.e., whole-spike Ag), PepTivator® SARS-CoV-2 Prot_S B.1.617.2 wild-type (WT) reference (i.e., WT Ag), or PepTivator® SARS-CoV-2 Prot_S B.1.617.2 Mutation Pool (i.e., Delta Ag) (Miltenyi Biotec, Bergisch Gladbach, Germany) for 24 h. Medium alone was used as a negative control. In addition to the antigens, Brilliant Blue 515–anti-human CD4 (clone RPA-T4) antibodies (BD Biosciences, San Jose, CA, USA) for staining CD4 and anti-human CD28/CD49d (clone L293/L25, BD Biosciences) antibodies for co-stimulation were simultaneously added. For the final 4 h of antigen stimulation, cells were treated with BD GolgiPlug® (brefeldin A) and BD GolgiStop® (monensin) (all from BD Biosciences).

Dead cells were stained with LIVE/DEAD (Thermo Fisher Scientific) after stimulation. Cells were permeabilized before incubation with peridinin chlorophyll protein complex–anti-human CD8 (clone SK1), Brilliant Violet (BV) 510–anti-human CD3 (clone CHT1), BV605–anti-human CD69 (clone FN50), BUV395–anti-human CD137 (clone 4B4-1), phycoerythrin–indotricarbocyanine (Cy7)–anti-human IFN-γ (clone B27), allophycocyanin–anti-human interleukin(IL)-2 (clone 5344.111), phycoerythrin–anti-human tumor necrosis factor-α (clone Mab11), and BV421–anti-human IL-4 (clone MP4-25D2) antibodies (all from BD Biosciences). Each sample was treated with BD Horizon Brilliant Stain Buffer (BD Biosciences). In each experiment, compensation beads (UltraComp eBeads, Thermo Fisher Scientific) and unstimulated cells were used for compensation. Flow cytometric data were acquired on a FACSymphony system (BD Biosciences) and analyzed using FlowJo software (version 10.7.1; TreeStar, Ashland, OR, USA).

The frequencies of SARS-CoV-2–specific activation-induced marker+ (AIM+, CD69+CD137+) CD4+ T cells or CD8+ T cells and cytokine-producing CD137+CD4+ or CD137+CD8+ T cells were assessed (21). To analyze only the SARS-CoV-2–specific response, the percentages of target populations in specimens without antigen stimulation were subtracted from those in stimulated specimens (22). The flow cytometry gating strategy for SARS-CoV-2–reactive T cells and cytokine-producing T cells is shown in Supplementary Figure 1.





Statistical analyses

The chi-squared test or Fisher’s exact test was used to compare categorical variables, and the Mann-Whitney U test was used to compare continuous variables. To identify risk factors for severe breakthrough COVID-19, variables with a P value of <0.10 in the univariate analysis were included in the multivariable logistic regression analysis. Statistical analyses were performed using SPSS Statistics, version 26.0 (IBM Corp., Armonk, NY, USA). P values <0.05 were considered statistically significant. Data are presented as median with interquartile range (IQR) and as dot plots. All graphs were generated using GraphPad Prism 9 (GraphPad Software, La Jolla, CA, USA).






Results




Study participants

A total of 108 breakthrough COVID-19 cases admitted within 1 week of the onset of symptoms were enrolled. The non-severe group included 79 (73.1%) patients, and the severe group included 29 (26.9%) patients. In addition, the control group included 22 uninfected individuals who completed the standard doses of SARS-CoV-2 vaccine (Table 1).


Table 1 | Baseline characteristics and clinical outcomes of patients with breakthrough COVID-19.
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The severe group was older (median [IQR], 71 [63–78] years vs. 61 [47–68] years, P<0.001) and had higher Charlson’s comorbidity index (median [IQR], 4.0 [3.0–5.0] vs. 2.0 [0.0–4.0], P<0.001) and longer duration of admission (median [IQR], 9 [8–12] vs. 9 [7–10], P = 0.035) than the non-severe group. Vaccination type and status did not significantly differ between the two groups. The control group was younger than the severe group (median [IQR], 62 [47–73] years vs. 71 [63–78] years, P = 0.006), and the interval between vaccination and sample collection was shorter in the control group than in the non-severe and severe groups.





Humoral immune responses against SARS-CoV-2

Anti-S1 IgG titer within 1 week after symptom onset in breakthrough COVID-19 patients was significantly lower in the severe group than in the non-severe group (median O.D. ratio [IQR], 4.99 [1.38–9.02] vs. 8.28 [5.17–10.25], P = 0.007) (Figure 1A). Compared with the uninfected vaccinated control group, the anti-S1 IgG titer was significantly higher in the non-severe group (median [IQR], 4.22 [2.46–6.13] vs. 8.28 [5.17–10.25], P<0.001) but similar in the severe group (median [IQR], 4.22 [2.46–6.13] vs. 4.99 [1.38–9.02], P = 0.591). Anti-S1 IgG titer according to the number of days after symptom onset was significantly higher in the non-severe group than in the severe group on days 5–7 after symptom onset (median [IQR], 8.50 [7.15–9.39] vs. 5.80 [0.55–8.98], P = 0.014) but did not differ significantly between the two groups on days 1–4 after symptom onset (median [IQR], 7.31 [2.77–10.33] vs. 4.81 [2.64–10.73], P = 0.285) (Figure 1B).
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Figure 1 | Humoral immune responses to SARS-CoV-2 within 1 week after symptom onset in patients with breakthrough COVID-19. (A). Anti-S1 IgG antibody titers in the control (vaccinated subjects without infection), severe, and non-severe groups. (B). Anti-S1 IgG antibody titers according to the number of days from symptom onset. (C). IgG-binding activities to RBDWT. (D). IgG-binding activities to RBDDelta. The dotted line shows the positive cutoff value of the anti-S1 IgG O.D. ratio. Vertical and horizontal lines indicate the median with the interquartile range.

Serum antibody responses to SARS-CoV-2 RBDWT and RBDDelta were compared between groups (Figures 1C, D), but two cases from the non-severe group were excluded due to shortage of samples. Titers of both anti-RBDWT IgG and anti-RBDDelta IgG were significantly lower in the severe group than in the non-severe group (median [IQR], 0.26 [0.13–0.60] vs. 0.48 [0.24–0.99], P = 0.017; 0.22 [0.13–0.64] vs. 0.40 [0.22–1.12], P = 0.007). Compared with the control group, the non-severe group showed significantly higher antibody responses to both RBDWT and RBDDelta (median [IQR], 0.24 [0.18–0.52] vs. 0.48 [0.24–0.99], P = 0.004; 0.19 [0.14–0.42] vs. 0.40 [0.22–1.12], P<0.001), but the severe group showed similar antibody responses to both RBDWT and RBDDelta.

The kinetics of antibody responses over time beginning at symptom onset were evaluated in 17 severe breakthrough cases, 10 non-severe breakthrough cases, and 7 unvaccinated severe cases (Figure 2). In non-severe breakthrough cases, the anti-S1 IgG titer was high at the time of symptom onset or elevated during the early phase of infection. However, the anti-S1 IgG titer increased later in some of severe breakthrough cases. In two severe breakthrough cases, the antibody titer began to increase 2 weeks after symptom onset, similar to unvaccinated severe cases. One of these two severe cases had received an immunosuppressant.
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Figure 2 | Anti-S1 IgG antibody kinetics over time after SARS-CoV-2 infection in vaccinated and unvaccinated patients. Serial antibody titers in vaccinated patients with non-severe (n = 10) and severe (n = 17) breakthrough COVID-19 and unvaccinated patients with SARS-CoV-2 infection (n = 7) are plotted. The dotted line shows the positive cutoff value of the anti-S1 IgG O.D. ratio.





Cell-mediated immune responses against SARS-CoV-2

T cell–mediated immune responses against the SARS-CoV-2 WT and Delta variant were assessed using flow cytometry in 10 non-severe breakthrough cases, 5 severe breakthrough cases, and 10 uninfected vaccinated individuals. Clinical data for the study participants whose cellular immune responses were analyzed are provided in Supplementary Table 1. Among severe cases, all PBMCs used in the analysis of cellular immune responses were isolated from blood samples collected before oxygen therapy.

Compared with uninfected vaccinated controls, the proportion of AIM+ CD4+ T cells specific for whole-spike Ag was significantly lower in both the non-severe breakthrough cases (median [IQR], 0.27% [0.12–0.36%] vs. 0.06% [0.03–0.19%], P = 0.036) and severe breakthrough cases (median [IQR], 0.27% [0.12–0.36%] vs. 0.02% [0.02–0.18%], P = 0.019) (Figure 3A). The proportion of AIM+ CD4+ T cells specific for the WT and Delta Ags tended to be lower in the severe group than in the non-severe group, although the difference was not statistically significant. In addition, the proportions of cytokine-producing CD4+ T cells tended to be lower in the severe group than in the non-severe group (Supplementary Figure 2). Although the differences were not statistically significant, the proportions of AIM+ CD8+ T cells specific for the WT and Delta Ags tended to be lower in the severe group than in the non-severe group (Figure 3B).

[image: Scatter plots displaying CD69+CD137+ T cells as a percentage. Panel A shows CD4+ T cells and Panel B shows CD8+ T cells in control, non-severe, and severe groups for whole spike, wild type (WT), and Delta variants. Statistical significance is indicated with p-values above group comparisons. Points represent individual data; bars denote means and standard deviations.]
Figure 3 | T cell responses within 1 week after diagnosis of breakthrough COVID-19. (A) AIM+ CD4+ T cells stimulated with the whole spike Ag, and the matched WT and Delta Ags. (B) AIM+ CD8+ T cells stimulated with the whole spike Ag, and the matched WT and Delta Ags. The control group denotes vaccinated subjects without breakthrough COVID-19. Vertical and horizontal lines indicate the median with the interquartile range.





Risk factors for severe breakthrough COVID-19

The univariate analysis identified older age, higher Charlson’s comorbidity index, and lower anti-S1 IgG titer in the early phase (≤1 week after symptom onset) as risk factors for severe breakthrough COVID-19 (Table 2). The multivariate analysis identified older age (adjusted odds ratio [aOR] 1.07, 95% confidence interval [CI] 1.01–1.12, P = 0.014) and low anti-S1 IgG titer in the early phase (aOR 0.88, 95% CI 0.77–0.99, P = 0.037) as independent risk factors for severe breakthrough COVID-19.


Table 2 | Risk factors for severe breakthrough COVID-19.

[image: Table showing univariate and multivariate analysis results. Variables include age, sex, BMI, vaccination type and status, days from vaccination to symptom onset, Charlson's comorbidity index, and underlying diseases. Odds ratios (OR), confidence intervals (CI), and p-values are provided for each variable. Significant results are shown for age and anti-S1 IgG in early phase in both analyses.]
The results of the multivariate linear regression model are shown in Supplementary Table 2. Among breakthrough COVID-19 patients, anti-S1 IgG titer was negatively correlated with severe COVID-19 (standardized β, −0.227, P = 0.025) and male sex (standardized β, −0.211, P = 0.029).






Discussion

Compared with non-severe breakthrough COVID-19 patients, those with severe breakthrough COVID-19 exhibited significantly lower humoral immune responses and a trend toward lower cellular immune responses in the early phase of infection. In addition, we identified low anti-S1 IgG titer in the early phase as an independent risk factor for severe breakthrough COVID-19. Although previous studies identified immunologic factors associated with the occurrence of breakthrough COVID-19 (10, 23), our study analyzed immunologic factors that influence the severity of breakthrough infection.

We also investigated the relationship between various demographic characteristics and the severity of breakthrough infection and identified older age as an independent risk factor for severe breakthrough COVID-19. In a retrospective study, Suleyman and colleagues identified older age, together with underlying conditions such as cardiovascular disease and immunocompromised status, as a risk factor for hospitalization in breakthrough COVID-19 cases (24), which is consistent with our findings. Older age and multiple comorbidities are decisive risk factors for poor outcomes in unvaccinated patients infected with SARS-CoV-2 (25, 26). This suggests that certain critical factors associated with a poor outcome prior to vaccination may continue to be crucial predictors for severe breakthrough COVID-19.

The anti-S1 IgG titer differed between breakthrough COVID-19 patients and uninfected vaccinated controls. Although the interval between the last vaccination and sampling was shorter in the uninfected vaccinated control group than in the breakthrough infection groups (meaning that the control group exhibited less waning of antibodies over time), the anti-S1 IgG titer was higher in the breakthrough infection groups than in the uninfected vaccinated control group within 1 week after symptom onset. This finding suggests that memory B-cell responses to SARS-CoV-2 infection occurred within several days after symptom onset in patients with breakthrough infection. A previous study found that anti-S1 RBD IgG titer post-infection was significantly higher in mildly symptomatic patients than in those with no breakthrough infection or asymptomatic patients (27). This finding is also indicative of early immune boosting by symptomatic breakthrough infection.

The lower anti-S1 IgG antibody titer in the severe group compared with the non-severe group in the early phase after infection suggests that a poor memory B-cell response to SARS-CoV-2 infection might be related to progression of severe disease. Brosh-Nissimov and colleagues also reported that the anti-spike IgG titer was lower in fully vaccinated hospitalized COVID-19 patients with a poor outcome, but the difference was not statistically significant (28). In our study, the difference in anti-S1 IgG antibody titer between the non-severe and severe groups was prominent at 5–7 days after symptom onset. This suggests that a delay in antibody response of up to 1 week after symptom onset might be associated with severe COVID-19 after vaccination. A previous study found that peak viral load followed by a delayed increase in antibody response coincided with viral clearance after breakthrough infection, indicating a protective role of vaccination against severe COVID-19 (29). In addition, antibody kinetics assessed using serial samples revealed that memory B-cell responses were poor in the severe group; in two severe breakthrough cases, we did not observe any memory B-cell response until the antibody titer began to increase 2 weeks after symptom onset, similar to unvaccinated cases (30). These findings suggest that an adequate memory B-cell response in the early phase of breakthrough COVID-19 infection is critical to prevent progression to severe disease.

The cellular immune response is considered an important host factor affecting the severity of COVID-19. Hypofunction and a low number of T cells in the early phase have been associated with severe COVID-19 (31). In the present study, the severe group tended to exhibit a lower cellular immune response than the non-severe group, suggesting that a lower cellular immune response is associated with progression of severe breakthrough COVID-19.

Paniskaki and colleagues found that alpha variant–reactive CD4+ and CD8+ T-cell responses were very poor at disease onset in patients with moderate-to-critical breakthrough infection compared with uninfected vaccinated controls (32). Similarly, in the present study, cellular immune responses were lower in the breakthrough infection groups than in the uninfected vaccinated control group. This conflicts with the results of a previous study reporting that breakthrough cases exhibited a lower memory B-cell response but similar T-cell response compared with uninfected participants (33). These discrepancies might be due to differences in other host factors, as our study included hospitalized breakthrough COVID-19 cases with underlying medical conditions.

This study has several limitations. First, we could not obtain baseline samples before breakthrough COVID-19 to measure the immunologic response achieved purely by vaccination. Therefore, the immune responses after breakthrough COVID-19 in this study should be interpreted in consideration of contributions by both the vaccine-induced immune responses and immune boosting by natural infection. Second, the sample size for the investigation of cellular immune responses was relatively small, which precluded demonstration of statistical significance. Third, the sampling time was not consistent for each patient, even though patients in the early stage of infection were enrolled. Finally, the infecting virus was not analyzed; however, it is likely that most patients were infected with the Delta variant, considering that this variant was dominant during the study period.

In conclusion, we found that humoral and cellular immune responses in the early phase of infection were low in patients with severe breakthrough COVID-19 compared with non-severe patients. In the vaccinated population, delayed humoral and cellular immune responses, possibly due to poor memory B- or T-cell responses, may contribute to severe COVID-19.
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Proteomic profiling of single extracellular vesicles reveals colocalization of SARS-CoV-2 with a CD81/integrin-rich EV subpopulation in sputum from COVID-19 severe patients
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Background

The global outbreak of COVID-19, and the limited availability of clinical treatments, forced researchers around the world to search for the pathogenesis and potential treatments. Understanding the pathogenesis of SARS-CoV-2 is crucial to respond better to the current coronavirus disease 2019 (COVID-19) pandemic.





Methods

We collected sputum samples from 20 COVID-19 patients and healthy controls. Transmission electron microscopy was used to observe the morphology of SARS-CoV-2. Extracellular vesicles (EVs) were isolated from sputum and the supernatant of VeroE6 cells, and were characterized by transmission electron microscopy, nanoparticle tracking analysis and Western-Blotting. Furthermore, a proximity barcoding assay was used to investigate immune-related proteins in single EV, and the relationship between EVs and SARS-CoV-2.





Result

Transmission electron microscopy images of SARS-COV-2 virus reveal EV-like vesicles around the virion, and western blot analysis of EVs extracted from the supernatant of SARS-COV-2-infected VeroE6 cells showed that they expressed SARS-COV-2 protein. These EVs have the infectivity of SARS-COV-2, and the addition can cause the infection and damage of normal VeroE6 cells. In addition, EVs derived from the sputum of patients infected with SARS-COV-2 expressed high levels of IL6 and TGF-β, which correlated strongly with expression of the SARS-CoV-2 N protein. Among 40 EV subpopulations identified, 18 differed significantly between patients and controls. The EV subpopulation regulated by CD81 was the most likely to correlate with changes in the pulmonary microenvironment after SARS-CoV-2 infection. Single extracellular vesicles in the sputum of COVID-19 patients harbor infection-mediated alterations in host and virus-derived proteins.





Conclusions

These results demonstrate that EVs derived from the sputum of patients participate in virus infection and immune responses. This study provides evidence of an association between EVs and SARS-CoV-2, providing insight into the possible pathogenesis of SARS-CoV-2 infection and the possibility of developing nanoparticle-based antiviral drugs.
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Highlights

	Extracellular vesicles are considered mediators of cell-cell communication as well as intercellular ferries of a diverse cargo of proteins, lipids, and nucleic acids. However, little is known about the role of EVs during SARS-CoV-2 infection and in subsequent immune responses.

	Our study suggests that sputum EVs from COVID-19 patients carried SARS-CoV-2 N protein;

	EVs are involved in the immune response of SARS-CoV-2;

	Viral protein colocalized with a specific EV subpopulation expressing multiple proteins;

	Single-EV harbor infection-mediated alterations in proteins.







Introduction

As of April 28, 2022, there were more than 179.27 million confirmed cases of coronavirus disease 2019 (COVID-19) worldwide, with more than 6,235,642 deaths reported to Worldometers. The worldwide spread of COVID-19 and the scarcity of clinical remedies compelled researchers from various countries to explore potential treatments (1). Patients with COVID-19 who experience excessive inflammation and immune responses may have severe clinical progression. A considerable proportion of individuals suffer from severe pneumonia, and some even develop acute respiratory distress syndrome (ARDS) (2), which is believed to be triggered by cytokine storms (IL-6, IL-1, and TNF-α). Accordingly, treatments such as corticosteroids, which control inflammatory cytokine signaling, are used to reduce the mortality of patients with COVID-19 (3–5). Extracellular vesicles (EVs), especially exosomes, have emerged as key mediators of various physiopathological processes related to virus infection and are actively involved in mediating responses, both beneficial and detrimental, to virus-induced injury (6) and inflammation (7).

Exosomes, which are functional vehicles secreted by various types of cells, have a diameter of 30–130 nm and carry a complex cargo of proteins, lipids, and nucleic acids. It has been proven that the hepatitis A virus can hijack exosome membranes and transport virus pathogenesis-related proteins (8), genomes, and even virus particles to all parts of the body using the characteristics of the free shuttle, which is the ability of exosomes to shuttle between host and target cells (9). Blocking vesicle release from hepatitis C virus (HCV)-positive cells increases intracellular dsRNA levels and activates toll-like receptor 3, thereby inhibiting HCV replication (10). Therefore, we speculated that EVs might also be involved in trafficking severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Indeed, EV-like vesicles may mediate the spread of SARS-CoV-2 throughout the lungs. However, little is known about the role of EVs during SARS-CoV-2 infection and in subsequent immune responses. Furthermore, the EV subsets in sputum samples, and subsequent changes in their proteomic features during SARS-CoV-2 infection, remain poorly understood. Therefore, it is of great interest to examine the relationship between EVs and SARS-CoV-2. In particular, identification of proteins transmitted by EVs would help identify potential drug targets, and/or enable reuse of existing drugs depending on specific protein expression profiles.

The aim of this study was to use a library of DNA-tagged antibodies to identify proteins co-expressed by EVs and SARS-CoV-2. EVs obtained from healthy donors and COVID-19 patients were examined. Meanwhile, the proportion of each subpopulation was quantified, and their proteomic fingerprint was profiled. Then, co-expression of the SARS-CoV-2 N protein with other EV proteins was selected from the protein combination data set and analyzed to predict virus-EV association. The data may increase our knowledge of the EV subsets involved in the pathogenesis of the COVID-19, which would facilitate the design of therapeutic strategies to fight SARS-CoV-2 infection.





Materials and methods




Selection of patients and healthy subjects

The present study was approved by the Ethics Committee of the First Affiliated Hospital of Guangzhou Medical Univers. The HC group included 20 healthy donors without symptoms such as cough, allergy, and respiratory tract discomfort (3). The nCOV group included 20 patients with RT-PCR-confirmed infection by SARS-CoV-2 (Daan Gene Co., Ltd.; Guangzhou, China) (11). The control population was selected based on the average age of the randomized patients, and the two groups ended up being equally old on average. The clinic-pathological conditions of the patients are shown in Figure 1A.
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Figure 1 | Demographic information and characterization of EVs from the sputum of COVID-19 patients and controls. Sputum was collected from patients in the ICU. Twelve of the 20 patients required ventilation as they were diagnosed with acute respiratory distress syndrome. (A) Donor information and the clinical complications of COVID-19 infected patients. (B, C) Morphology of SARS-CoV-2 particles (red arrows) and EVs (blue arrows), as assessed by Transmission Electron Microscopy. (D) Nanoparticle tracking analysis of particles in sputum samples from COVID-19 patients (50 μl of EVs was extracted from 100 μl of sputum and analyzed after being diluted 200-fold). The inset shows the size distribution (black lines) of EVs (no magnet was used). The error bars (in red) indicate the standard error of the mean. (E) Exosomes from supernatants of normal and SARS-CoV-2 infected VeroE6 cells (labeled as Exo-Control and Exo-SARS, respectively) were examined by western blotting. (F) The exosomes mentioned in E were added to normal VeroE6 cells. After 48 hours, the cells that were exposed to Exo-Control (left image) proliferated normally, while cells exposed to Exo-SARS (right image) died.





Detection of SARS-CoV-2

SARS-CoV-2 was detected by real-time RT-PCR (11). Nucleic acid was extracted from sputum samples using a Viral RNA extraction kit (Daan Gene Co., Ltd.; Guangzhou, China). RNA extraction from sputum and blood was performed using a total RNA extraction kit (Sangon Biotech; Shanghai, China). The real-time PCR assay targeting the SARS-CoV-2 RdRp and N gene regions was provided by Daan Gene Co., Ltd.





Sputum sample collection and pretreatment

Sputum was collected from patients during a pulmonary exacerbation (all were in a stable condition) by inhalation of hypertonic (NaCl 5%) or isotonic (NaCl 0.9%) saline. Similarly, sputum was collected from normal healthy people (HC group). Sputum samples were observed under a microscope to ensure that they met the inclusion criterion. All operations were performed in a Biosafety laboratory (P3) (2).





Virus isolation and transmission electron microscopy

Vero E6 cells were used for virus isolation. A quantitative reverse transcription PCR (qRT-PCR)-positive sputum swab specimen was saved in viral transport medium (DMEM containing 1% bovine serum albumin, 15 µg/mL amphotericin, 100 units/mL penicillin G, and 100 μg/mL streptomycin). Before virus isolation, the sample was passed through a 0.45 μm strainer and diluted 1:10 with DMEM containing 2% FBS and antimicrobial drugs. Cells were infected at 37°C for 1h. The inoculum was removed and replaced with a fresh culture medium. Cytopathic effects (CPE) were observed in Vero E6 cells infected with SARS-CoV-2 isolates after 72h. No CPE were observed in mock-infected cells. The morphology of SARS-CoV-2 was visualized by transmission electron microscopy (H-7650, Hitachi, Japan) (11).





Characterization of EVs in the sputum sample and cell culture supernatant

EVs were isolated using a standard ultracentrifugation protocol after initial extraction using the EV extraction kit (ExoQuick-TC, SBI, USA). The concentration and size distribution of EVs were investigated using a NTA system (Nanosight NS300, Malvern Panalytical Ltd., UK) (12). EV morphology was examined under transmission electron microscope. Expression of exosome surface marker proteins was examined by western blotting.





EV capture, fixation, and permeabilization

The streptavidin-coated PCR plates (PCR0STF-SA5/100, Biomat, Italy) were incubated with biotinylated cholera toxin subunit B (2.5 μg/ml; C34779, Thermo-Fisher Scientific, USA) in PBS (C10010500BT, Gibco, USA) at room temperature for 2 h. Then, the plate wells were rinsed three times with PBST washing buffer (0.05% Tween-20 (003005, Thermo-Fisher Scientific, USA) in PBS). Afterward, 20 μl of sputum/PBS was added to the wells of the plate. Wells were rinsed with PBST after incubation at room temperature for 2 h. The fixation step was performed by adding 20 μl of 4% paraformaldehyde/PBS (BL539A, Biosharp, China) to each well. Thereafter, 0.2% Triton-X (T8787, Sigma-Aldrich, USA) in PBS was added to allow detection of proteins within EVs. Finally, the wells of the plate were rinsed three times with PBST.





Single EV proteomics analysis using the Proximity Barcoding Assay template

The experimental method for the PBA was performed as described previously (13). Here, a CTB-coated surface was reacted with ganglioside GM1 (which is enriched in membrane lipid rafts) to capture EVs. For EV proteomic analysis, 100 antibodies were conjugated with DNA oligonucleotides comprising an 8-nucleotide (nt) protein tag, an 8-nucleotide (nt) molecule tag, and universal sequences as adapters. The proteins under investigation included typical EV biomarkers, biomarkers related to lung diseases, and a panel of cell adhesion molecules. The PBA tests were designed according to the protocols published by Vesicode AB (Solna, Sweden) and were performed by Secretech (Shenzhen, China).





Data processing

After the DNA sequencing, raw data were obtained in bcl file format. After running the bcl2fastq program (Illumina, USA), fastq files for each sample were generated. Using fastx_toolkit, low-quality reads (Phred quality score Q <20) were removed before further analysis. The clean data files for each sample constituted DNA reads of 75 bp, and the EV tag, protein tag, and molecule tag were extracted. The molecule tags were used to deduplicate the amplified sequences for library construction, and the unique reads were used for the subsequent assays. The protein tags were translated to the protein name by matching to the antibody-DNA tag conjugation list (Supplementary Information Table 1). The EV-protein matrix contained columns showing protein expression and rows for single EVs in each sample, as indicated by the detected EV tags (Supplementary Information Table 2).

The EV-associated protein expression levels were obtained by summating the quantity of a certain protein detected on all EVs. The data was normalized using the count per million (CPM) reads method, accounting for the library size, and the trimmed mean (TMM) method, accounting for composition bias. The protein combinations are the information of the protein co-expression on the same EV. An unsupervised machine learning algorithm, FlowSOM, was applied to cluster EVs, according to the proteomic features of EVs. The number of clusters was determined according to the consensus matrix, in which the lowest number of clusters for optimal separability was selected. The proteomic similarity of EVs was observed in the T-distributed Stochastic Neighbor Embedding (t-SNE) plot. The proportion of each subpopulation was quantified. The proteomic fingerprints for each subpopulation were profiled.

The protein combinations were summarized in the format of the EV tag-(p1, p2, p3…). The quantity of each possible pair of co-expressed protein was obtained as the protein combination dataset, and used as input variables for the abundance and differential analysis. The differential analysis between the nCOV and HC groups was performed and visualized. The co-expression of SARS-CoV-2 protein SARS-CoV-2 N with EV proteins was selected from the protein combination dataset and analyzed to predict virus-EV association.





Quantification and statistical analysis

For PBA data analysis, edger package was applied to identify differentially expressed proteins and protein combinations (13). Differences in mean values between groups were analyzed by ANOVA. All analyses were performed in GraphPad Prism 7, and results are expressed as the mean ± standard error of the mean (SEM). P values <0.05 were considered statistically significant. *P ≤ 0.05, **P ≤ 0.005, ***P ≤ 0.001, and ****P ≤ 0.0001.






Results




Demographic information of COVID-19 patients and characterization of EVs harboring SARS-CoV-2

Twenty patients with severe COVID-19 (nCOV group) and 20 healthy controls (HC group) were enrolled; most were aged over 50 years, with an average age of 56.6 and 56.7 years, respectively. Sputum was collected from COVID-19 patients when they were still in the ICU. Twelve of the 20 patients required ventilation as they were diagnosed with ARDS. The patient information is provided in Figure 1A.

The SARS-CoV-2 virus was isolated successfully from the sputum supernatant of COVID-19 patients (Figure 1B, red arrow). Surprisingly, EV-like vesicles were found close to the virions (Figure 1B, blue arrow). Next, EVs were isolated from sputum by differential ultracentrifugation. Electron microscopy revealed that the EVs were cup-shaped and had a lipid bilayer membrane vesicle structure (Figure 1C). To further characterize the nature of the released vesicles, particle tracking was performed using a NanoSight instrument. Nanoparticle tracking analysis (NTA) enabled us to obtain particle size distribution profiles and to perform concentration measurements. As shown in Figure 1D, the primary peak was observed at approximately 86 nm, consistent with the size of most EVs (30–200 nm). The size distribution was quite monodispersed. The concentration of particles in sputum samples from COVID-19 patients was 2.35×108 ± 2×106/ml.

In addition, western blot analysis of EVs isolated from the supernatant of normal and SARS-CoV-2-infected VeroE6 cells (labeled as Exo-Control and Exo-SARS, respectively) expressed exosome surface markers HSP70 and Tsg101 (Figure 1E). More importantly, exosomes extracted from the latter expressed SARS-CoV-2 N and S protein (Figure 1E). Furthermore, when we added Exo-SARS to normal VeroE6 cells, they died after 48 h in a manner similar to that of virus-infected cells (Figure 1F). This strongly suggests that exosomes are involved in virus transmission.





Patients with COVID-19 secrete more proteins in individual EVs, and EVs participate in the immune response

Coexpressed EV and virus proteins were identified using PBA. EVs were captured on a CTB-coated surface that interacts with ganglioside GM1 in membrane lipid rafts. The scheme of the workflow is illustrated in Figure 2A. The antibody-conjugated oligonucleotides were brought into the proximity of the same EV via protein-antibody interactions, thereby barcoding the EV (13).

[image: A scientific illustration with multiple panels showing data and methodology about SARS-CoV-2. Panel A depicts a workflow diagram for capturing and analyzing extracellular vesicles (EVs). Panel B shows a scatter plot comparing SARS-CoV-2 protein count in healthy controls (HC), COVID-19 patients (nCOV), and a control (PBS). Panel C displays scatter plots of total EVs, total protein, and protein per EV for HC and nCOV. Panel D contains scatter plots and correlation graphs of IL-6 and TGF-β protein counts related to SARS-CoV-2 expression. Panel E shows protein counts of IgA and IgM. Panel F is a heatmap visualizing sample clustering based on expression data.]
Figure 2 | Patients with COVID-19 secrete more protein in individual EVs, and EVs play a role in the immune response to SARS-CoV-2. (nCOV, n = 20; HC, n = 20; and PBS, n = 4) (A) Proximity Barcoding Assay (PBA) template for analysis of the protein profile at the single EV level. A lipid membrane binding layer (streptavidin-biotin-CTB coated onto the wall of a 0.2 ml well) was used to capture EVs from each sample. After library construction and sequencing, original data were obtained in fastQ file format. After quality control and tag extraction, the file containing individual EVs and the proteins detected in each sample were summarized. (B) Quantification of EVs and proteins detected in the PBA, and the percentage of each protein expressed by each EV from COVID-19 patients (nCOV group) and healthy controls (HC group). When the mean signal value for the control group was set as the baseline (the blue dotted line), 19 of 20 individuals harbored the SARS-CoV-2 N protein in EVs. However, when the maximum signal value for the control group was set as the baseline (the red dotted line), 12 of 20 individuals harbored the SARS-CoV-2 N protein in EVs. (C) SARS-CoV-2 N protein signals were detected in EVs obtained from nCOV, HC, and PBS controls. (D) Quantification of IL6 and TGF-β, and correlation with SARS-CoV-2 N protein in the nCOV and HC groups. (E) Quantification of IgA and IgM proteins. ****P < 0.0001 (Student’s t-test). (F) Total protein expression in sputum EV samples from the nCOV and HC groups. The heatmap shows the proteomic profile of the samples. ns, not significant.

In each 5 μl sputum sample, the mean number of EVs detected by PBA tended to increase after SARS-CoV-2 infection (Figure 2C, left panel), and the number of proteins detected in EVs from the nCOV group was twice that in those from the HC group (Figure 2C, middle panel). With respect to the proteins under investigation, sputum EVs from the nCOV group had higher amounts (3.6 proteins/EV) than the HC group (1.9 proteins/EV) (Figure 2C, right panel). As mentioned in the Methods, 20 nCOV, 20 HC, and four PBS controls were examined. As shown in Figure 2B, SARS-CoV-2 N protein signals were detected in EVs obtained from COVID-19 patients (Figure 2B). The protein signal in some individuals from the control group was slightly higher than that of PBS, which is an acceptable systematic error due to nonspecific binding of antibodies.

Consistent with previous reports on expression of cytokines in serum (14), we found that expression of IL6 and TGF-β was higher in EVs from COVID-19 patients. Furthermore, this increase showed a strong correlation with SARS-CoV-2 N protein expression (Figure 2D). We also found that expression of other proteins increased significantly after SARS-CoV-2 infection; these included the T cell activation marker CD26, human leukocyte antigen HLA-A, and adhesion molecule MAdCAM-1(Figure S1), which is overexpressed in inflamed mucosal tissue. These results suggest that EVs play a role in the immune response to COVID-19. However, although IgA levels in sputum EVs from COVID patients tended to be higher than those of IgM (consistent with the findings in serum (15)), there was no significant difference in the total expression of IgA and IgM in sputum EVs of healthy controls and patients (Figure 2E). After trimmed mean method (TMM) normalization, a protein expression heatmap (Figure 2F) revealed that nCOV patients showed a general shift in the EV proteomic profile compared with HC samples, although there were exceptions. Differentially expressed proteins were analyzed in a volcano plot after normalizing the TMM protein expression data, followed by generation of a dot plot (Figure S2).





The EV subpopulation atlas, and changes in patients with COVID-19

The algorithm FlowSOM was used to analyze the behavior of all markers expressed by all individual EVs; then, clusters of EVs were generated using a self-organizing map. The clusters, which represent EV subpopulations, were determined according to the proteomic fingerprint of each EV. We detected 9,377,119 EVs, with an average of 234,428 EVs per sample (Figure 2C). Dimensionality reduction indicated substantial phenotypic similarities and differences between COVID-19 patients and controls. The t-distributed stochastic neighbor embedding (tSNE) plot for each sample (Figure 3A) identified 40 clusters. Figure 3B shows the 40 clusters as different colors.

[image: t-SNE plots show auto-clustered samples by FlowSOM. Panel A presents a colorful scatter plot with clusters labeled by color. Panel B displays individual plots arranged by groups, labeled "HC" for healthy control and "nCOV" for COVID-19 cases, depicting variation across samples.]
Figure 3 | The EV subpopulations in 40 different samples, as determined by an unsupervised machine learning process (FlowSOM). (A) Forty subpopulations were displayed on a t-distributed stochastic neighbor embedding (tSNE) plot. The tSNE representation of EVs from all analyzed samples (n = 40) was colored by manually annotating the EV type. (B) tSNE plots for each sample obtained from healthy individuals (HC, n = 20) and COVID-19 infected patients (nCoV, n = 20). tSNE was conducted for each cluster.

Next, we used a modeling approach to detect characteristics that distinguish healthy individuals from infected individuals. Figure 4A shows similarities and differences in EV proteomics between sputum samples from the nCOV and HC groups. Color-coding the subpopulations of EVs in this way enables them to be distinguished more easily (Figure 4A). The tSNE plot revealed proteomic similarities between the EVs. Next, we calculated the proportion of each subpopulation. Among the 40 subpopulations, 18 clusters showed significant differences. These were cluster 2, 3, 4, 6, 7, 9, 10, 12, 13, 14, 32 and 34, which had a significantly elevated ratio of EV subpopulations in the nCOV group, while the ratio for the subpopulation decreased in other clusters (Figures 4B, S3).

[image: t-SNE plot and boxplot showing data on exosome subpopulations. The t-SNE plot displays samples in green and red, representing two groups, nCOV and HC, respectively. The accompanying bar chart highlights the count of extracellular vesicles (EVs) in each group. The boxplot illustrates the percentage of exosome subpopulation across clusters, with clusters one to fourteen and thirty-two marked in red to highlight significant differences in group information. Clusters sixteen to twenty-seven are in blue, aligned with group distinctions. Statistical significance is indicated by asterisks above the bars.]
Figure 4 | EV subpopulation atlas and changes specific to patients with COVID-19. (A) Similarities and differences in EV proteomics between sputum samples from COVID-19 patients and HC groups; all EVs in the nCoV group are green, and all EVs in the HC group are red. (B) Quantification of the EV subpopulations in the nCOV and HC groups. Compared with the HC group, the nCOV group had a significantly high ratio of EV subpopulations in clusters 2, 3, 4, 6, 7, 9, 10, 12, 13, 14, 32, and 34, but a decreased ratio of subpopulations in clusters 16, 21, 22, 26, 27, and 33, than HCs (*P < 0.05; ***P < 0.001; and ****P < 0.0001; Student’s t-test).

Among these, clusters 2, 3, 4, 12, 13, 34, and 33 accounted for most of the differences. We then analyzed these seven clusters in more detail by profiling their proteomic fingerprints. For each differentially expressed EV subpopulation, its location within the total EV population, and the top seven proteins expressed by these EVs, are shown in Figure 5. First, we focused on cluster 2, which comprised 4.92% of all EVs in the nCOV group but only 0.55% in the HC group (Figures 5A, S3). The EVs in cluster 2 contained a large amount of SARS-CoV-2 N protein. This suggests that these EVs make direct contact with the SARS-CoV-2 virus or are secreted by the cells in which the virus replicates. These EVs expressed high levels of the exosome biomarker CD81, as well as cell adhesion molecules. Figure 5B shows the proteomic characteristics of cluster 2 (100 proteins). As shown in Figure 4B, Clusters 3, 4, 12, 13, and 34 represent EVs that increased in the nCOV group, and showed expression of CLEC2A, CD81, ITGB3, CD151, and ITGB2, respectively (Figures 5C, S3). By contrast, the amount of cluster 33 in the nCOV group was lower than that in the HC group (3.37% vs. 14.12%, respectively). Cluster 33 showed high expression of EGFR and IgA (Figures 5D, E).

[image: Panel A shows a spatial distribution map highlighting cluster 2 with red markers, accompanied by a frequency bar chart of various biomarkers. Panel B is a circular bar chart displaying marker intensity for cluster 2, with a color gradient indicating marker presence. Panel C includes three spatial maps for clusters 3, 4, 12, and 13, each with corresponding frequency bar charts. Panel D shows the distribution map for cluster 33 with a frequency chart. Panel E presents a circular bar chart for marker intensity in cluster 33, using a color gradient to denote marker presence status.]
Figure 5 | The differential distribution of EVs obtained from the nCOV and HC groups. The location of each differentially expressed EV subpopulation within the total EV population is shown, along with the top seven expressed proteins. (A, B) Cluster 2 comprises 4.92% of all EVs in the nCOV group, but only 0.55% in the HC group. The EVs in cluster 2 show high expression of SARS-CoV-2 N protein, along with the EV biomarker CD81 and cell adhesion molecules EpCAM, CDH1, ITGB4, ITGA5, and SNAI2. (C–E) The proteomic profile of clusters 3, 4, 13, and 33. Cluster 33 in the HC group shows high expression of EGFR and IgA (14.12% of EVs in the HC group vs. 3.37% of EVs in the nCOV group).





EVs regulated by CD81 are more likely to carry SARS-CoV-2 proteins

“Protein combinations” were defined as colocalization of two proteins within the same individual EV; as such, they can be considered as fingerprints of individual EVs. The quantity of each possible pair of co-expressed proteins was obtained as a protein combination data set, which was then used as an input variable for abundance and differential analysis (Figure 6A). The protein combinations exhibited a universally increasing trend in the nCOV group; the exceptions were the combinations EGFR and IgA. In addition, co-expression of integrin subgroups increased significantly.

[image: A set of visualizations analyzing SARS-CoV-2 data:  A. Heatmap showing combination counts with significance levels indicated by various shades.  B. Venn diagram of combinations including SARS-CoV-2 N and other proteins, highlighting overlaps and unique values.  C. Horizontal bar chart displaying marker intensity of different SARS-CoV-2 protein combinations.  D. t-SNE plot of samples colored by groups, illustrating clustering patterns.  E. Circular plot displaying marker intensity across various proteins with color-coded present status.  Each visualization provides insights into the interaction and intensity of viral markers.]
Figure 6 | EVs regulated by CD81 are more likely to carry SARS-CoV-2. (A) Protein combinations in the matrix. The -fold change in expression is color-coded, and the significance is indicated by the size of the dots. (B, C) Colocalization of the SARS-CoV-2 N protein with EV biomarkers. (B) Venn diagram analysis of multiple data sets. (C) Levels of enriched colocalization. The number of associated query proteins within a term is shown on the right side of each term bar. (D) Distribution of CD81 (red) and SARS-CoV-2 N (blue) proteins in all EVs; co-expression is shown in green. (E) Proteomic profile of cluster 4.

To investigate colocalization of viral protein and EVs, we further analyzed the combination of SARS-CoV-2 N protein with other proteins in individual EVs. Among markers that regulate EVs, we examined co-expression of CD9, CD63, CD81, and Alix with the SARS-CoV-2 N protein (Figure 6B) and found that the EVs regulated by CD81 were more likely to bind to the SARS-CoV-2 N protein (Figure 6C). In addition, we found that cluster 2 (Figure 5B), cluster 4 (Figure 5C), cluster 6, cluster 7, cluster 12 and cluster 34 were the EVs that were highly expressed after SARS-CoV-2 infection, while CD81 was highly expressed in them. In particular, the protein matrix of cluster 4 revealed that expression of CD81 was abnormally high (Figure 6E). These results suggest that EVs regulated by CD81 are the most likely subpopulations that cause changes to the pulmonary microenvironment after SARS-CoV-2 infection. The distribution of CD81 and SARS-CoV-2 N protein expression in all EVs is shown in Figure 6D.






Discussion

In this study, we isolated and identified EVs from the sputum of COVID-19 patients to investigate EV-mediated inflammatory and immune responses. We found that EV-like vesicles coexisted alongside virions (Figure 1B), and that the mean number of EVs increased after SARS-CoV-2 infection (Figure 2C). The nucleocapsid protein of SARS-CoV-2 (SARS-CoV-2 N) is an important structural protein that binds to viral RNA, thereby playing an important role in virus packaging and other processes (16). As expected, the SARS-CoV-2 N protein was detected in EVs obtained from patients (Figure 2B). The results suggest a possible role of EVs in SARS-CoV-2 transmission. For example, membrane hijacking by SARS-CoV-2 may promote virus spread through exosome-like vesicles; this possibility should be examined in further studies.

The amount of protein encapsulated in EVs obtained from sputum was significantly higher in patients (Figure 2C), suggesting that viral infection stimulates EV secretion. Cell and animal models of SARS-CoV-2 infection (17), in addition to serum profiling of COVID-19 patients, consistently show a unique and inappropriate inflammatory response (18). Here, we detected increased expression of IL-6 and TGF-β by EVs obtained from COVID-19 patients (Figure 2D), which is in agreement with previous results obtained from peripheral blood (19). Furthermore, expression of IL-6 and TGF-β by EVs correlated with that of SARS-CoV-2 N protein. In addition, we found that most integrins and other adhesion molecules were also upregulated (Figure S1), which may also affect the interaction between immune cells and the local microenvironment (20, 21). All of these data indicate that EVs play a role in the immune response to COVID-19 infection. Secretory IgA plays an important role in protection and homeostatic regulation of the respiratory mucosal epithelium, a process referred to as “immune exclusion” (15). However, we found no significant difference in the levels of total IgA in sputum in the presence or absence of SARS-CoV-2 (Figure 2E). Even if there are differences in IgA expression by different EV subpopulations, this may not be reflected in the analysis of total proteins.

Clustering of individual EVs obtained from all samples was displayed in an tSNE plot in which 40 clusters were color-labeled (Figure 3B). After quantifying the percentage of each subpopulation, we found significant differences in 18 clusters (Figure S3).

EVs in cluster 2, which comprised 4.92% of all EVs in the nCOV group and only 0.55% of all EVs in the HC group (Figures 5A, S3), contained a large amount of protein SARS-CoV-2 N, suggesting that these EVs transport SARS-CoV-2 directly. Cluster 2 expressed high levels of EpCAM, CDH1, ITGB4, ITGA5, SNAI2, CD81, ITGB2, ZEB1, CD151, and MAdCAM-1. A previous study showed that CDH1 is required for HCV infection; indeed, silencing CDH1 significantly inhibited HCV infection of primary human hepatocytes at the postbinding entry step (22). Furthermore, ITGB2, ITGB3, and CD151 are involved in vesicle internalization and recycling to the cell membrane (23–25). ITGB3 plays a central role in intracellular communication through EVs (26). Meanwhile, CD151 plays a critical role in influenza A virus signaling (27), and ITGB4 participates in cell recognition through CD81 (21). The present results show that these molecules are highly expressed by cluster 2. Therefore, we boldly speculate that high expression of adhesion proteins such as EpCAM and CDH1 (Figures 2F, S2) by EVs may make individuals more susceptible to SARS-CoV-2 infection. These adhesion factors improve the recognition function of EVs; thus, these EVs are more likely to carry virus particles and be absorbed by recipient cells. Once these EVs are taken up by epithelial cells, cellular expression of CDH1 would be reduced due to virus-induced epithelial to mesenchymal transition (EMT) (28). Indeed, we also noted high expression of ZEB1 and Snai2. In addition, abnormal expression of integrins plays an important role in fibrosis formation (29, 30). Histological examination of biopsy samples obtained from COVID-19 patients revealed bilateral diffuse alveolar damage, with cellular fibromyxoid exudates (31), for which the processes mentioned above may be partly responsible.

In addition to cluster 2, clusters 3, 4, 6, 7, 9, 10, 12, 13, 14, 32, and 34 increased in the nCOV group, showing high expression of adhesion molecules (Figures 5C, S3). Adhesion molecules are involved in various important physiological functions and pathological processes, including leukocyte adhesion to vascular endothelial cells and lymphocyte homing during inflammation (20). These processes are controlled by integrin binding to endothelial and mucosal ligands (e.g., integrin α4β7 and MAdCAM-1) (32). After SARS-CoV-2 infection, EVs may trigger new multistep adhesion cascades, leading to inflammation. Which needs to be verified in follow-up experiments.

With respect to the EVs themselves, they are regulated by surface markers (CD9, CD63, CD81, and ALIX) (33), although different factors regulate different EV functions (34, 35). We found that EVs regulated by CD81 were more likely to bind to SARS-CoV-2 N protein (Figure 6C). In addition, clusters 2 (Figure 5B), 4 (Figure 5C), 6, 7, 12, and 34 (Figure S3) all showed upregulated protein expression after SARS-CoV-2 infection, and all expressed high levels of CD81. These results suggest that EVs regulated by CD81 are the most likely subpopulations to cause changes in the pulmonary microenvironment after SARS-CoV-2 infection.

Furthermore, HCV, which has been studied extensively, enters the host cell by interacting with a cascade of cellular factors, including CDH1, claudin-1 (CLDN1), and occludin (OCLN) (22). The virus is then taken up by recipient cells. These transmission processes may be similar to those used by SARS-CoV-2; indeed, EVs regulated by CD81 also express high amounts of CDH1. The difference is that EGFR is not required for the transmission of SARS-CoV-2, whereas it is required for transmission of HCV (Figure 6A). HCV uses a dynamic and multistep process to engage and enter host cells, in which EGFR is necessary for internalization (36).

Due to the special nature of SARS-CoV-2, we could not conduct general operations and experiments in ordinary environment. We used PBA technology to analyze the proteomics of individual exosomes, but the limitation of this technology is that we can only analyze 100 proteins designed in the panel (included typical EV biomarkers, biomarkers related to lung diseases, and a panel of cell adhesion molecules), which limits the analysis of all proteins to a certain extent. In addition, the experiment only took one time point and did not observe other time points or the prognosis of patients. According to the inspiration of this study, more other studies can be carried out. For example, drug interventions can target EVs that express CD81. This study has demonstrated that EVs are involved in the immune response of SARS-CoV-2, and that CD81-regulated EV subpopulation are the most likely to correlate with changes in the pulmonary microenvironment after SARS-CoV-2 infection. We can consider the development of nanomaterial vesicle-like antibody drugs that express CD81. Theoretically, these vesicles will be more fused with SARS-CoV-2 in vivo to achieve the effect of intervention.

In conclusion, we found that EVs (mostly regulated by CD81) can carry the SARS-CoV-2 N protein, and that expression of SARS-CoV N in EVs is associated strongly with that of inflammatory factors. These results demonstrate that EVs derived from the sputum of patients may participate in virus infection and immune responses. Taken together, the data presented herein may facilitate further study of COVID-19 and increase our understanding of disease pathogenesis.
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Despite the general agreement on the significance of T cells during SARS-CoV-2 infection, the clinical impact of specific and cross-reactive T-cell responses remains uncertain. Understanding this aspect could provide insights for adjusting vaccines and maintaining robust long-term protection against continuously emerging variants. To characterize CD8+ T-cell response to SARS-CoV-2 epitopes unique to the virus (SC2-unique) or shared with other coronaviruses (CoV-common), we trained a large number of T-cell receptor (TCR) – epitope recognition models for MHC-I-presented SARS-CoV-2 epitopes from publicly available data. These models were then applied to longitudinal CD8+ TCR repertoires from critical and non-critical COVID-19 patients. In spite of comparable initial CoV-common TCR repertoire depth and CD8+ T-cell depletion, the temporal dynamics of SC2-unique TCRs differed depending on the disease severity. Specifically, while non-critical patients demonstrated a large and diverse SC2-unique TCR repertoire by the second week of the disease, critical patients did not. Furthermore, only non-critical patients exhibited redundancy in the CD8+ T-cell response to both groups of epitopes, SC2-unique and CoV-common. These findings indicate a valuable contribution of the SC2-unique CD8+ TCR repertoires. Therefore, a combination of specific and cross-reactive CD8+ T-cell responses may offer a stronger clinical advantage. Besides tracking the specific and cross-reactive SARS-CoV-2 CD8+ T cells in any TCR repertoire, our analytical framework can be expanded to more epitopes and assist in the assessment and monitoring of CD8+ T-cell response to other infections.
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1 Introduction

The emergence of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019 has led to the most prominent pandemic in recent history. The SARS-CoV-2 infection manifests as coronavirus disease (COVID-19) with varying symptoms and severity and has caused substantial deaths all over the world.

The adaptive immune system is responsible for generating specific immunity against a viral infection. There is growing evidence that in case of SARS-CoV-2, T cells in particular might play a key role in infection control (1–3) even without seroconversion (4, 5), in moderation of COVID-19 severity (6, 7), and in the durability of natural (8, 9) and vaccination-induced (10, 11) immunity, including protection against viral variants. Previously, coronavirus-specific T-cell responses were already described as an important factor in the long-term immunity during SARS and MERS outbreaks (12–14), with some of the T cells exhibiting robust cross-reactivity against SARS-CoV-2 17 years later after the original infection (15). Pre-infection presence of CD4+ (16, 17) and CD8+ (18, 19) T cells that broadly recognize epitopes of SARS-CoV-2 due to relatedness with previously encountered viruses have been widely reported. Furthermore, both cross-reactive CD4+ (20, 21) and CD8+ (22, 23) T cells were suggested to have a protective effect in some individuals. Nevertheless, there are also conflicting findings questioning the clinical benefits of cross-reactive CD4+ (24–26) and CD8+ (27) T cells for other patients. Consequently, it is important to investigate the clinical impact of pre-existing SARS-CoV-2-specific T cells and to be able to distinguish them from de novo responding T cells. In particular, understanding the contribution of CD8+ T-cell clones with a particular specificity could guide the design of new generation vaccines or booster regimens to supplement weakening antibody-mediated neutralization (due to viral escape mutations) with an enhanced T-cell response and help stratify individuals into risk groups.

High-throughput T-cell receptor (TCR) sequencing paired with TCR-epitope mapping enables insights into an individual’s TCR repertoire composition. However, only a handful of TCR sequences, so-called “public” TCRs, are found across different individuals, while the majority of a TCR repertoire consists of “private”, unique to an individual, TCRs. Experimental assessment of epitope specificity of every single “private” TCR is not feasible due to the high inter- and intrapersonal diversity of TCRs. Accordingly, despite the ongoing efforts of sequencing studies to decipher “public” (28–30) and “private” (29–32) SARS-CoV-2 TCR sequences, specificity of most disease-associated T cells is yet to be resolved.

Recently, computational recognition models have been developed to connect T cells with their target epitopes (33–36). These models are based on the concept that TCRs recognizing the same epitope tend to have similar amino acid sequences (37). The advantage of the models is their ability to extract TCR-epitope interaction patterns from limited available experimentally validated data and to extrapolate them to previously unencountered TCRs. Thus, TCR repertoires can be easily screened to find potential epitope specificity of the unknown “private” and “public” TCRs. Here, we leverage such recognition models to track SARS-CoV-2 epitope-specificity in publicly available bulk TCR repertoires of COVID-19 patients (28) and in sorted CD4+ and CD8+ TCR repertoires of newly recruited COVID-19 patients. We report on the differential evolution of CD8+ T-cell response to unique SARS-CoV-2 epitopes (SC2-unique) and SARS-CoV-2 epitopes that are shared with other coronaviruses (CoV-common) in patients with critical and non-critical COVID-19 presentation.




2 Materials and methods



2.1 SARS-CoV-2 epitope-TCR TCRex recognition models



2.1.1 Collection of the public TCR data with known SARS-CoV-2 epitope-specificity

A collection of experimentally validated TCR-epitope pairs was established by combining two primary sources: (1) The VDJdb database which contained tetramer-derived data from Shomuradova et al. (31); access date: May 26th, 2020]; (2) The ImmuneCODE collection from Adaptive Technologies and Microsoft which contained pairs derived through Multiplex Identification of Antigen-Specific T-Cell Receptors Assay (MIRA) (29); access date: June 25th, 2020].

For all extracted pairs, several data curation steps were performed. All pairs matching more than one possible SARS-CoV-2 epitope were removed from the training data. Only valid TCR sequences that could be matched to IMGT standard were kept. To meet an internal TCRex limit, 5000 unique TCRs were selected randomly for epitope HTTDPSFLGRY.




2.1.2 TCRex recognition model training and application

The paired TCR-epitope dataset was used to train a set of TCRex models using the standard procedures as described in (36). In brief, for each epitope, a separate random forest model based on common physicochemical properties was trained using a positive training dataset, which consisted of TCRs experimentally validated to recognize this epitope (ref. to subsection 2.1.1). All constructed models satisfied the TCRex criteria for positive training data, which mandated the inclusion of a minimum of 30 distinct epitope-specific TCRs. The size of the positive training dataset varied from 36 to 5000 TCRs for different models (median=185, Figure S1A). For each model, a negative training dataset included 10 times more unique TCRs than a positive training dataset (with no overlapping TCRs) to resemble inherent underrepresentation of epitope-specific TCRs in full TCR repertoires and to maintain the same positive to negative data ratio, regardless of the number of available epitope-specific TCRs. Models were then evaluated using a 10-fold cross-validation, and only models with area under the receiver operating characteristic curve (AUC ROC) and average precision of at least 0.7 and 0.35, respectively, were retained, as suggested by TCRex quality criteria. Performance of all retained models was comparable regardless of the size of the training data (Figure S1B). This observation likely reflects a limited diversity of TCR sequences recognizing those epitopes since a recent study has demonstrated that a high degree of similarity in training TCR sequences rather than their number is strongly connected to the performance of models (38). All models used in this paper are available in the online TCRex tool (https://tcrex.biodatamining.be/), where any TCR repertoire data can be uploaded and one or more of 47 SARS-CoV-2 epitopes can be selected to get the predictions for those particular epitopes. With the web tool, it is also possible to train new prediction models for other epitopes of interest provided that the user has the appropriate training and test data.

TCRex models were then applied to the sequenced TCR repertoires of COVID-19 patients. Hits with a TCRex score greater than 0.9 and a baseline prediction rate (BPR) lower than 1e-4 were considered putative epitope-specific TCR sequences as per default TCRex filtering criteria. The BPR threshold represents the fraction of TCRs specific to a pathogen-derived epitope in a healthy TCR repertoire and thus controls for the number of false positive predictions, making the models applicable to TCR repertoires of both healthy individuals and patients. Since the paired TCR-epitope dataset used to train TCRex models consists entirely of major histocompatibility complex class I (MHC-I) restricted epitopes, valid predictions are only expected for CD8+ TCRs.





2.2 Patient data



2.2.1 “Split” dataset: patient cohort and separate TCR repertoire sequencing of pre-sorted CD4+ and CD8+ T cells

The “split” dataset comprises separate CD4+ and CD8+ TCR repertoire sequences from patients with different COVID-19 severities collected during the initial stages of disease progression (the first 4 weeks after symptom onset). To this end, blood samples were collected from participants recruited in the IMSEQ study (NCT04368143), a prospective cohort study of COVID-19 patients admitted at the Antwerp University Hospital, Belgium (UZA) (the study was approved by the Institutional Review Board (IRB) of the Institute of Tropical Medicine (ITM) and UZA EC: number 20/12/135; ClinicalTrials.gov ID: NCT04368143). The inclusion criteria were: (1) having a laboratory-confirmed SARS-CoV-2 infection; (2) being older than 18; (3) providing written informed consent. COVID-19 severity was assigned based on the worst symptoms observed during the entire course of the disease.

For TCR sequencing of the COVID-19 patients, individuals exceeding the age of 65 and individuals diagnosed with or treated for oncologic conditions were excluded. We further selected patients that had donated at least two consecutive blood samples taken at least two days apart, the first of which within 16 days of symptom onset. As a result, 11 individuals with confirmed SARS-CoV-2 infections were retained including 7 patients classified as moderate, 1 as severe, and 3 as critical according to WHO grading (39) summarized in Table S1. Characteristics and sampling time points of retained study volunteers are summarized in Table S2.

At each time point, whole blood samples were obtained using three 9 mL S-Monovette® lithium heparin tubes (Sarstedt). The PBMC fraction was isolated using LymphoprepTM (StemCell technologies), before cryopreserving aliquots in liquid nitrogen until further use.

After thawing, CD4+ and CD8+ T cells were positively selected using magnetic MicroBeads (Miltenyi Biotec), as described by the manufacturer. Counting was done manually on Trypan blue-stained cells using C-Chip counting chambers (NanoEnTek). All samples contained at least 200.000 viable cells and were stored in DNA/RNA shield (Zymo) at -80°C. Total RNA was extracted using Quick RNA microprep kit (Zymo) following the manufacturer’s protocol, eluted in 18µl DNAse/RNAse free H2O. The RNA concentrations were determined with Qubit RNA HS assay kit (Thermo Fisher Scientific). Each sample was split into triplicates (i.e., 3 vials of 5µl) that were used as library prep input. TCR library prep was done with QIAseq® Immune Repertoire RNA Library and QIAseq®index kit (Qiagen, Venlo, Netherlands) that amplifies TCR alpha, beta, gamma, and delta chains. After quality control using TapeStation (Agilent, Santa Clara, CA, USA), concentration was measured with the Qubit dsDNA HS Assay kit (Thermo Fisher Scientific). For sequencing, each library was equivolume pooled. The pool was diluted to 4 nM and denatured. 1.1 pM of denatured library pool was run on the NextSeq 500 (NextSeq 500/550 Mid Output Kit v2.5, Illumina Netherlands) using 300 cycles with a pair-end 261-8-8-41 base read.




2.2.2 “Mixed” dataset: collection of the publicly available bulk TCR repertoire sequences (CD4+ and CD8+ together)

A complementary “mixed” dataset (28), which contains TCR repertoires sequenced in bulk, without prior T-cell sorting into CD4+/CD8+, was downloaded from the iReceptor gateway (40) [access date: July 13th, 2020]. It features longitudinal (from week 1 to 8 after symptom onset) samples taken from patients with active disease and single time point samples from those that have recovered (week 4+ after symptom onset), summarized in Table S2. Patients classified as “severe” in the original study were reclassified as “critical” to match WHO grading (39) (Table S1). The data of asymptomatic individuals were excluded as their TCR response lies outside of the scope of our study. In total, TCR repertoires of 36 individuals were included (Table S2): 24 non-critical patients (16 recovered individuals who had mild COVID-19, 7 active patients with moderate COVID-19 and 1 patient with mild COVID-19 who had data points from both active and recovery phase of the disease) and 11 active patients with critical COVID-19 presentation. Noteworthy, critical disease resulted in the death of 5 out of 11 critical patients.




2.2.3 Merged dataset: CD8+ and CD4+ TCR repertoires of the “split” dataset together with CD8+ TCR repertoires of the “mixed” dataset

Patient data analyzed in this study were assembled by combining TCR repertoires from internally produced “split” and publicly available “mixed” datasets into one merged dataset of 46 TCR repertoires of symptomatic COVID-19 patients. To make the number of data points per week more comparable between disease severity groups (Figures S2A, B), all individuals were divided into two groups (Table 1): critically ill (14 patients with critical COVID-19 severity) and non-critically ill (32 patients with mild, moderate, or severe COVID-19 severity). The median age of active critical and non-critical patients was 65 and 56.5, respectively. All available data points from the “split” dataset (11 symptomatic patients) were also used separately to verify whether the predictions of constructed recognition models are specific for the CD8+ T-cell subset.


Table 1 | Summary of the datasets used for the analysis in this study.


[image: Table showing patient data distribution. Critical patients: active state with mixed 11, split 3, merged 14. Non-critical, active: mixed 8*, split 8, merged 16*. Recovered: mixed 17*, split 0, merged 17*. Note: One patient has data from both active and recovery stages.]
To compensate for shifts in the response onset due to diverse times of admission and differences in the number of available data points for each patient, in further analysis of TCR repertoire metrics, only the maximum values of each week were considered when multiple time points were available for the same person during every time interval, (i.e., maximum TCR fraction between days 1-7 for week 1, maximum number of recognized epitopes between days 8-14 for week 2, etc.). Consequently, out of 32 individuals in the non-critical patient group, 15 patients had data points from the active stage of COVID-19, 16 – from the recovery stage, and 1 – from both stages (Table 1). All 14 critically ill patients remained sick throughout the entire duration of the study (up to 8 weeks) (Table 1).





2.3 TCR repertoire data processing and analysis

Demultiplexing of the sequencing data, unique molecular identifier (UMI) correction and generation of the UMI consensus for the “split” dataset were performed using MiNNN v.10.1 (https://minnn.readthedocs.io/). As three technical replicate experiments were conducted for each sample, only those TCR sequences that occurred in at least two out of three replicates were kept. Out of the selected replicates, the one with the highest total TCR count was retained for the downstream analysis.

Further steps were identical for both “split” and “mixed” datasets. TRB (T cell receptor beta gene) clonotype annotation was performed using MiXCR v.3.0.13 with the default input parameters (41). Only those TCRs that occurred at a frequency of at least 1 in 100 000 were retained, to compensate for the different sequencing depths between studies. Metadata was made uniform so that the time points are annotated by weeks after the onset of symptoms. All the data processing, comparisons and statistical analysis were performed using standard python3 libraries. Code necessary to enable the reproduction of the processing and analysis steps can be found in GitHub repository (https://github.com/apostovskaya/CovidTCRs/tree/main/src).




2.4 SARS-CoV-2 epitopes

To establish the “uniqueness” of each epitope in our database, we compared the presence of every SARS-CoV-2 epitope against protein sequences of 5 clinically relevant human coronaviruses (SARS-CoV, HCoV-229E, HCoV-HKU1, HCoV-NL63, HCoV-OC43) and 114 other Nidovirales species. Bat coronavirus RaTG13 (Ra4991), which is considered to be one of the closest relatives of SARS-CoV-2 due to 96.2% nucleotide sequence identity (42), was not present among compared species. These data were retrieved from the Corona OMA Orthology Database (43), where the used protein amino acid sequences for SARS-CoV-2 correspond to Genbank accession GCA_009858895.3, and the protein amino acid sequences for SARS-CoV to GCA_000864885.1. SARS-CoV-2 epitopes were matched to all proteins of all 119 species with an exact match, as the degree of variation allowed in the epitope space while retaining TCR recognition is still an unsolved question. Sequence identity between proteins was established using a pairwise protein BLAST. Matches across all species for each epitope were tallied, and the annotation for SARS-CoV-2 was retained: SARS-CoV-2 epitopes that occur only in 1 species (SARS-CoV-2) were labeled as “SARS-CoV-2-unique” (SC2-unique) and all others as “common for coronaviruses” (CoV-common). As SARS-CoV-2 genome evolves, some epitopes of the original variant might stop being SC2-unique in the later emerging variants. Since all the samples analyzed in the present study had been collected before August 2020, prior to the appearance of the first recognized variant (alpha/B.1.1.7) in autumn 2020, thus mitigating the problem of SARS-CoV-2 genetic diversity, only the original SARS-CoV-2 sequence was used to assign epitope uniqueness.




2.5 T-cell receptor (TCR) metrics

Different approaches can be used to analyze TCR repertoires. In our case, we were specifically interested in CD8+ T cells recognizing SARS-CoV-2 epitopes. Thus, four parameters were selected as the most informative: CD8+ TCR repertoire depth, CD8+ TCR repertoire breadth, CD8+ T-cell response diversity and CD8+ T-cell response redundancy. Repertoire depth was described as the relative frequency with which TCR sequences with a certain predicted specificity occur in the entire TCR repertoire. Repertoire breadth was calculated as the number of unique TCR sequences with a certain predicted specificity divided by the size of the unique TCR repertoire. Response diversity was represented as the number of putatively recognized SARS-CoV-2 epitopes. Average response redundancy was estimated as TCR/Epitope ratio: the number of unique SARS-CoV-2-specific TCRs to the number of recognized SARS-CoV-2 epitopes. Response metrics were calculated separately for SARS-CoV-2-unique (SC2-unique) and common for coronaviruses (CoV-common) epitopes. Repertoire metrics were rescaled so that proportions are consistent across datasets. Additionally, log2 fold change of a repertoire depth was monitored to evaluate the magnitude of temporal intrapersonal changes. Accordingly, for every patient for whom longitudinal data was available, TCR repertoire frequencies were shifted by 1 to enable subsequent calculation of fold changes between consecutive weeks and log2- transformation.





3 Results



3.1 SARS-CoV-2 epitope-TCR recognition models are robust and performant

To construct SARS-CoV-2 epitope-TCR recognition models, a collection of experimentally validated TCR-epitope pairs was established. To this end, data derived from T cells, the specificity of which was identified with peptide-MHC tetramers (31) was combined with ImmuneCODE TCR-epitope pairs derived from sorting of antigen-stimulated and activated CD8+ T cells using MIRA (multiplex identification of TCR antigen specificity) assay (29). After curation of the data and quality filtering of the models, 47 distinct epitope TCRex models were retained for SARS-CoV-2. An overview of all models and their performance can be found in Table S3.

The number of newly constructed TCRex models for SARS-CoV-2 epitopes almost equals 49 previously available TCRex models for all non-SARS-CoV-2 epitopes combined (36), indicating the vast amount of data that has been generated since the start of the pandemic compared to what has been collected for all prior pathogens and diseases. Twenty-four of these 47 epitopes match the SARS-CoV-2 replicase protein coded by ORF1ab, 16 match the SARS-CoV-2 spike protein encoded by ORF2 and the final 7 are distributed across the remaining proteins (Figure 1). In addition, 19 of the 47 epitopes are 100% unique to SARS-CoV-2 in our dataset of 119 Nidovirales species. As can be seen in Figure 1, the unique SARS-CoV-2 epitopes are not evenly distributed across the proteins. While only 6 out of 24 epitopes originating from the ORF1ab replicase protein are unique to SARS-CoV-2, there are 9 out of 16 epitopes derived from the spike protein that are specific to the virus. Although mutations are 5 times more frequent in the spike protein compared to the genomic average (44) and thus might weaken B-cell response, T-cell recognition appears to be retained against different variants including Omicron (11, 45, 46). Additionally, as previously evaluated for 3 SARS-CoV-2 variants, only 1 mutation overlapped with 52 MHC-I epitopes recognized by convalescent individuals (47). Together, this bodes well for the constructed TCRex models to stay relevant for the continuously emerging variants.
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Figure 1 | Distribution of the 47 epitopes for which TCR recognition models could be created across SARS-CoV-2 proteins (x-axis) and amount of exact amino acid epitope matches within the 119 species of the Nidovirales order (y-axis). TCR models for epitopes unique to SARS-CoV-2 (n=19) correspond to y=1.

As we were integrating models from different resources and experimental methods, we wished to confirm whether models could extrapolate from the patterns in one data set to the other. Interestingly, one epitope had both tetramer (315 TCRs) and MIRA data (366 TCRs), namely YLQPRTFLL (YLQ). However, since TCRs in the experimental MIRA data were assigned to a group of 3 epitopes (YLQPRTFL, YLQPRTFLL, and YYVGYLQPRTF) and not just to YLQ, these 366 TCRs were excluded from the training data. Therefore, it was possible to evaluate the performance of the YLQ model (trained on the tetramer YLQ dataset) on an independent MIRA YLQ dataset containing experimentally validated TCR sequences that were not present in the training tetramer YLQ data. Out of 366 TCRs in the YLQ MIRA dataset, TCRex predicted 81 TCRs to be specific only to YLQ epitope and not to any other epitope present in TCRex (including both the 46 non-YLQ SARS-CoV-2 models and the 49 non-SARS-CoV-2 models). Out of these 81 TCRs, 46 TCRs (CDR3 and V/J genes) and 35 V/J combinations were not present in the training tetramer YLQ dataset. Moreover, some of the 366 TCRs may be associated with 2 other epitopes rather than with YLQ. Thus, (1) TCRex was able to correctly identify new, relative to the training data, TCRs; (2) a good fraction of YLQ-specific TCRs was detected; (3) the models are applicable to the TCR data of diverse origin.




3.2 Recognition models can be used to track epitope-specificity in CD8+ TCR repertoires

As the constructed models predict specificity to epitopes presented on MHC-I molecules, we expected that TCRs predicted to recognize those epitopes will be enriched in CD8+ T cells. To validate this assumption, we generated CD4+ and CD8+ TCR repertoires for 11 COVID-19 patients (“split” dataset) at multiple time points and applied our 47 SARS-CoV-2 TCRex models to this data. As can be seen in Figure 2, the number of predicted SARS-CoV-2 reactive TCRs was indeed significantly higher in the CD8+ compared to the CD4+ T-cell population (Mann–Whitney U test p=0.001). There is, however, a small number of hits within the CD4+ population which is not unforeseen given some inefficiency inherent to magnetic cell sorting and common CDR3 sequences occurring in both the CD4+ and CD8+ populations (37, 48). The predominant signal in the CD8+ T cells confirms that the models are specific towards this subpopulation and thus suitable to track particularly the CD8+ T-cell response in any individual TCR repertoire, sequenced in bulk or after prior sorting.
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Figure 2 | Constructed TCRex recognition models are suitable for the prediction of CD8+ T-cell specificity. As the models were built for epitopes presented in MHC-I, the number of TCRs predicted to recognize SARS-CoV-2 epitopes was significantly higher in CD8+ than in CD4+ T-cell repertoires when SARS-CoV-2 TCRex models were applied to an in-house COVID-19 patient “split” TCR dataset (Mann–Whitney U test p=0.001, nCD8 = 23, nCD4 = 22). White numbers specify the median number of the TCRs in a repertoire that were predicted by TCRex to be specific to SARS-CoV-2 epitopes; mean values are represented by a star.




3.3 Initial CD8+ T-cell response is similar in all patients, regardless of COVID-19 severity

In this study, we employed TCRex models to analyze COVID-19 TCR repertoires of 14 critically and 32 non-critically ill symptomatic patients. Prediction of putative SARS-CoV-2-specific CD8+ T cells identified 755 TCRs in the dataset cohort. Of these, 149 and 606 TCRs were found in samples from patients with critical and non-critical COVID-19 presentation, respectively.

Since the level of pre-existing T cells cross-reactive to SARS-CoV-2 and the swift mounting of T-cell responses had been postulated to influence COVID-19 progression (7, 49), we first assessed the initial size of SARS-CoV-2 specific CD8+ TCR repertoires. Therefore, the differences in the abundance of T-cell clones putatively recognizing MHC-I presented SARS-CoV-2 epitopes that are either unique to the virus (SC2-unique) or also occur in other Nidovirales species (CoV-common) were compared in patients with critical and non-critical symptomatic COVID-19. The prevalence of CD8+ TCRs with a certain specificity was described as relative frequencies with which those TCRs occur in the collected TCR repertoires, i.e., the depth of the responding TCR repertoire.

All active patients, regardless of the disease severity, had more TCRs specific to CoV-common than SC2-unique epitopes only during week 1 after the symptom onset (Figure 3) and not at any other subsequent week of the disease (Table S4). This disparity was more pronounced in critical patients (n=5) for whom the difference was statistically significant (Bonferroni corrected Mann–Whitney U test p=0.048, AUC=1, Figure 3). In the non-critical group (n=3), the frequency of putative SC2-unique TCRs was already higher than in the critical group, although not significantly (Table S5). In addition, no significant difference in the frequency of CoV-common TCRs, the total number of TCRs and the percent of unique TCRs was detected between critical and non-critical groups at this time (Table S5). We have also observed a matching predominance of CoV-common over SC2-unique TCRs within critical and non-critical patient groups at week 1 in a publicly available single-cell TCR dataset (50) (Figure S9). This larger independent dataset (Supplementary material 1), which comprised 20 critical and 30 non-critical patients, allowed us to increase the confidence in the discovered disparity in the abundance of SC2-unique and CoV-common TCRs. Together, these findings suggest that prior to the encounter with SARS-CoV-2, many individuals already have a substantial TCR repertoire dedicated to CoV-common epitopes, which is the first to respond to SARS-CoV-2.

[image: Box plot comparing TCR fractions at week 1 in non-critical and critical COVID-19 patients. CoV-common TCRs are in purple, SC2-unique TCRs in green. No significant difference in non-critical; significant difference (p < 0.05) in critical cases.]
Figure 3 | During the first week of COVID-19, relative frequencies of TCRs (depth of the repertoire) predicted to recognize CoV-common epitopes were higher than of TCRs putatively specific to SC2-unique epitopes in all patients with non-critical (Bonferroni corrected Mann–Whitney U test p=0.16, n=3) and critical (Bonferroni corrected Mann–Whitney U test p=0.048, n=5) COVID-19. Mean values are represented by a white star.




3.4 Putative SARS-CoV-2 specific CD8+ T cells are mounted within the first two weeks of COVID-19 only in non-critical patients

To investigate whether the differences between frequencies of SC2-unique and CoV-common TCRs ceased after week 1 due to an increase of SC2-unique or decrease of CoV-common TCR repertoire, we studied changes in the depth (frequency of specific TCRs) and breadth (percent of specific TCRs out of unique TCRs) of respective TCR repertoires within each patient group. We observed that critical and non-critical patients had the opposite dynamics during the first two weeks (summarized in Table 2): the median breadth and depth of SC2-unique TCR repertoires increased from week 1 to week 2 only in non-critical patients (Figures S3A, C), and the median breadth and depth of the CoV-common TCR repertoire decreased from week 1 to week 2 only in critical patients (Figures S3B, D). Furthermore, we compared intragroup changes in the diversity of the response – the number of different SC2-unique and CoV-common epitopes being recognized by an individual TCR repertoire. We reasoned that an increase in those parameters could be an indirect indication of the de novo activation of T cells as opposed to the expansion of already activated T-cell clones. We discovered that non-critical patients, unlike critical ones, generally recognize 2 times more CoV-common and 3 times more SC2-unique epitopes at week 2 compared to week 1 (Table 2; Figures S3E, F). Additionally, only the redundancy of SC2-unique response increased 10 times between weeks 1 and 2 in non-critical patients alone (Table 2; Figures S3G, H).


Table 2 | Changes in the SARS-CoV-2 TCR repertoire between week 1 and week 2.


[image: Table comparing TCR repertoire and response parameters for CoV-common and SC2-unique specificity in critical and non-critical patients. Parameters include depth, breadth, diversity, and redundancy. Critical patients show a decrease (↓) in depth, breadth, and diversity for CoV-common TCR repertoire, with equal (=) redundancy. In SC2-unique, depth shows no change, while breadth and diversity decrease, and redundancy remains unchanged. Non-critical patients show maintained (=) or increased (↑) values across parameters, with significant increase in diversity and redundancy for SC2-unique responses.]
All these results consistently point out that even though the CD8+ T-cell response in all symptomatic patients, regardless of the disease severity, starts with the mounting of (pre-existing) T cells specific to CoV-common epitopes during the first week after the symptom onset, only individuals with non-critical COVID-19 appear to be effectively activating and expanding T cells recognizing SC2-unique epitopes during the first two weeks of the disease. Intriguingly, we did not observe the dominance of T cells specific to CoV-common epitopes. CoV-common TCR repertoire depth and breadth and CoV-common response diversity in non-critical patients did not increase, despite the growth in the number of recognized epitopes. This could be attributed to two continuous opposing processes: depletion of already activated (pre-existing) CoV-common T cells and de novo activation of T cells recognizing previously unseen CoV-common epitopes.




3.5 COVID-19 severity is moderated by SC2-unique TCR repertoire depth, redundancy of SC2-unique and diversity of CoV-common TCR responses

Since the development of CD8+ T-cell response to SARS-CoV-2 differed during the first two weeks depending on the disease severity, we further compared the response levels between 7 critically and 7 non-critically ill patients at week 2, when TCRs to both previously seen and newly encountered epitopes are expected to have been activated and expanded. Pairwise comparisons between all the individuals from non-critical and critical groups revealed that in 81.6% of pairs, non-critical patients had significantly higher frequencies of TCRs specific to SC2-unique (Bonferroni corrected Mann–Whitney U test p=0.039, Figure 4) but not CoV-common (Bonferroni corrected Mann–Whitney U test p=0.456, Figure 4) epitopes than critically ill patients during week 2 of COVID-19. Moreover, we observed a significant difference in the total number of TCRs between two patient at week 2 (Bonferroni corrected Mann–Whitney U test p=0.033, AUC=0.878, Figure S4A), while no such difference was observed at week 1 (Table S5). Importantly, the proportion of unique TCRs in the repertoires remained consistent across the groups (Figure S4B). When we examined non-critical and critical patients (n=4) from the independent single-cell dataset (50), who had higher prevalence of SC2-unique TCRs (Supplementary material 1), we confirmed that only non-critical TCR repertoires underwent clonal expansion to a large clone size, while singleton TCRs constituted the bulk of critical patients’ TCR repertoires (Figure S10A). SC2-unique T cells of both critical and non-critical patients (n=2) generally expressed GNLY, PFR1 and GZMB indicative of an effector phenotype (Figure S10B). T cells with CoV-common TCRs had a mix of effector, memory and naive phenotypes with predominance of naive and effector T cells in critical and non-critical patients, respectively (Figure S10B).

[image: Box plot showing TCR fraction at week two for non-critical and critical patients, comparing SC2-unique and CoV-common TCR specificities. Non-critical patients are shown in blue, and critical patients in orange. Significant difference (p < 0.05) is observed in SC2-unique fractions, while CoV-common fractions show no significance (ns).]
Figure 4 | During the second week of COVID-19, relative frequencies of TCRs (depth of the repertoire) predicted to recognize SC2-unique [Bonferroni corrected Mann–Whitney U test p=0.039, n=14 (7 critical and 7 non-critical)] but not CoV-common (Bonferroni corrected Mann–Whitney U test p=0.456, n=14 [7 critical and 7 non-critical)] epitopes were significantly higher in symptomatic non-critical patients compared to critically ill patients. Mean values are represented by a white star.

To gain further insights into the drivers behind the expansion of SARS-CoV-2 specific TCRs, we compared the diversity of the overall SARS-CoV-2 T-cell response in the symptomatic patients. Particularly, we sought to determine whether TCRs were specific to a limited pool of SARS-CoV-2 epitopes, or the number of targeted epitopes was increasing. At week 2, the number of recognized CoV-common but not SC2-unique epitopes was significantly higher in non-critical patients compared to critical patients (Bonferroni corrected Mann–Whitney U test p=0.026, AUC=0.796, Table S5). When this parameter was normalized for the repertoire size, there was no difference (Table S5) suggesting that the CD8+ T-cell response of critical patients was limited by the low number of available unique TCRs (diminished TCR diversity). Furthermore, non-critical patients, unlike critical patients (Figures 5A, B, median=1 for both epitope groups), exhibited redundancy in the T-cell response to both SC2-unique (Figure 5A, median=10 TCRs “per average epitope”, range=[1-26]) and, although much less pronounced, CoV-common (Figure 5B, median=2 TCRs “per average epitope”, range=[1-3]) epitopes. Later (week 3+), the redundancy of the response to both groups of epitopes was decreasing in active non-critical patients (Figure S5). This decrease could potentially indicate the ongoing resolution of the infection, as the redundancy completely disappeared once the patients had recovered (Figures 5A, B). During these later weeks, active critical patients also began to develop redundancy in the SC2-unique response (Figure S5), hinting that the lack of a timely SC2-unique T-cell response was not due to the absence of SC2-unique TCRs in their TCR repertoires.

[image: Graphs A and B display relationships between T cell receptors (TCRs) and epitopes. Graph A shows SC2-unique TCRs versus epitopes, and Graph B shows CoV-common TCRs versus epitopes, with distinct patient groups marked by different symbols. Both plots include trend lines and confidence intervals, highlighting correlations among critical and non-critical cases. Graph C is a Venn diagram illustrating overlap in SARS-CoV-2 epitopes between critical and non-critical active week two patients, listing specific epitopes.]
Figure 5 | Diversity and redundancy of the response differed between patients with critical and non-critical symptomatic COVID-19 during the second week of the disease. (A, B) Redundancy (the number of unique TCRs recognizing the same epitopes) was significantly higher in non-critical (dark blue) compared to critical (orange) patients and disappeared once patients recovered (light blue). This was true for both (A) SC2-unique and (B) CoV-common epitopes. (C) 9 epitopes, out of which 5 are unique to SARS-CoV-2 (SC2-unique) and 4 are shared with other species of the Nidovirales order (CoV-common), were recognized exclusively by non-critical patients during the second week of COVID-19. No epitopes were recognized only by critical patients.

Given that both patient groups had TCRs putatively targeting both SC2-unique and CoV-common epitopes, we set out to explore whether a specific set of recognized epitopes could be connected to milder COVID-19 cases. Unsurprisingly, no epitopes were found to be recognized by all patients within either disease severity group. As epitope recognition depends not only on TCR sequences but also on human leukocyte antigen (HLA) types present in an individual, it is highly probable that sets of recognized epitopes are unique to each patient. Nevertheless, 9 epitopes (5 SC2-unique and 4 CoV-common) were recognized exclusively by non-critical patients, albeit each epitope by only 1 or 2 individuals (Figure 5C). Those epitopes were recognized throughout the entire duration of the disease, by active or recovered non-critical patients.

Collectively, our results do not seem to indicate that pre-existing SARS-CoV-2 cross-reactive CD8+ T cells alone are associated with milder COVID-19 cases. Critically ill patients struggle to generate SC2-unique CD8+ TCRs and sustain CoV-common CD8+ TCRs. Conversely, CD8+ T-cells putatively recognizing SC2-unique epitopes are activated and expanded in non-critical patients by the second week of COVID-19. Finally, a diverse and redundant CD8+ T-cell response appears to be associated with less severe COVID-19 cases.




3.6 TCR diversity potential is reduced during COVID-19

To gain a better understanding of the SARS-CoV-2 associated changes in the overall TCR repertoire, we next analyzed longitudinal data spanning 8 weeks. As reported above, critical and non-critical symptomatic patients had comparable total numbers of sampled TCRs and proportions of unique TCRs at the beginning of their COVID-19. However, examination of all available data revealed that the proportion of all unique TCRs (irrespective of their epitope specificity) significantly increased in individuals with the non-critical disease over the entire period of the study (Figure 6, Spearman rho=0.62, p=3e-05) and became significantly higher after week 4, once patients entered recovery stage (Mann–Whitney U test p=2e-04, AUC=0.83). In contrast, TCR repertoires of critical patients, despite some trend for increase between weeks 3 and 6, on average remained less diverse even at week 8 of the disease (Figure 6, rho=0.08, p=0.69) indirectly supporting a previously reported correlation between disease severity and lymphopenia derived from a different type of analysis (51). These findings suggest that the number of CD8+ T cells is similarly reduced in both patient groups during the early phase of SARS-CoV-2 infection. This reduction persists in active critical patients but is restored in recovered non-critical patients.

[image: Line graph showing the percentage of unique TCRs over eight weeks. Orange line represents critical patients, remaining stable around 2.5%. Blue line, for non-critical patients, peaks at week six and dips thereafter. Shaded areas show data variability. A dashed line indicates recovery for non-critical patients.]
Figure 6 | Proportion of unique TCRs was increasing significantly only in symptomatic non-critically ill patients (dark blue, Spearman rho=0.62, p=3e-05) and became significantly higher once patients started recovering (Mann–Whitney U test p=2e-04). Multiple inter- and intra-individual values combined within each disease severity group (critical: n=14, non-critical: n=32) are represented as tendency lines with a 95% confidence interval (shadow areas) when multiple data points were available at overlapping time points. The vertical dashed line (black) separates the active and recovery stages of the disease in non-critical patients.




3.7 Development of SARS-CoV-2 reactive CD8+ T-cell immunity in critical patients is dominated by TCRs predicted to target epitopes unique to SARS-CoV-2

To further investigate the most prominent dynamics of SARS-CoV-2 TCR repertoires, we disentangled longitudinal changes in SC2-unique and CoV-common TCRs in our patient cohorts with different COVID-19 severity. First, we considered only patients of whom samples were available from at least two different weeks (6 non-critical, 9 critical) to understand individual SARS-CoV-2 specific TCR repertoire evolution. For this subset, log2 fold change of TCR frequencies between consecutive data points was calculated (Figures S6A, B). This analysis revealed that the majority of non-critical (5/6) and critical (7/9) patients experienced decline in the frequency of CoV-common TCRs at least once during their active COVID-19. 33% (2/6) of non-critical and 56% (5/9) of critical patients didn’t have any changes in the depth of SC2-unique TCR repertoires. In all individuals, SC2-unique and CoV-common TCR repertoires were changing in the opposite directions 9 times, 5 times in the same direction and 8 times only one of the repertoires was changing between consecutive weeks while the other remained the same highlighting that TCR repertoires are constantly evolving. Noteworthy, the range of the magnitude of the change was comparable between SC2-unique and CoV-common TCR frequencies and between critical and non-critical groups.

Facing the limitation of our dataset wherein only 1 or 2 data points had been collected for most patients (Figure S2C), we attempted to extrapolate general group trends from the obtained longitudinal and single-point observations. Despite intra- and interpersonal variability of SARS-CoV-2 TCR repertoire expansion and contraction (Figure S7), there seemed to be some overall trends. In particular, multiple patients from both disease severity groups had a rise of SC2-unique and CoV-common TCR frequencies around weeks 2-3 (Figures S8A, B). The depth of CoV-common TCR repertoires also seemed to increase around week 6 in some individuals with critical and non-critical COVID-19 severity (Figures S8A, B). In the critical group, SC2-unique TCRs showed a tendency to increase in their frequency throughout the entire duration of the study despite sustained T-cell depletion (Figure 7B, Spearman rho=0.41, p=0.02). This was not the case for the non-critical patient group (Figure 7A, Spearman rho=-0.06, p=0.71) where the maximum frequency of SC2-unique TCRs was reached by weeks 2-3 (Figure S8A).

[image: Graphs showing TCR fraction over weeks for non-critical and critical COVID-19 patients. Panel A depicts non-critical patients with stable TCR fractions. Panel B shows critical patients with CoV-common TCRs slightly decreasing and SC2-unique TCRs increasing over time. Points indicate individual data, with shaded areas representing variability.]
Figure 7 | (A) Symptomatic non-critical patients demonstrated significant increases of neither SC2-unique (green, Spearman rho=-0.06, p=0.71) nor CoV-common (purple, Spearman rho=0.06, p=0.72) TCR repertoires when disease and recovery stages were evaluated together. (B) In contrast, relative frequencies (depth of the repertoire) of SC2-unique TCRs (green, Spearman rho=0.41, p=0.02) but not CoV-common TCRs (purple, Spearman rho=-0.10, p=0.58) were increasing significantly during disease progression in critical patients. Lines represent an estimate of the central tendency of multiple inter- and intra-individual values combined within each disease severity group (critical: n=14, non-critical: n=32) with a 95% confidence interval (shadow areas) in case multiple data points were available at overlapping time points.

The most prominent breadth changes occurred exclusively in SC2-unique TCR repertoires, while the breadth of TCR repertoires reactive to CoV-common epitopes remained relatively stable in both patient groups during the entire study period (Figures S8C, D). Notably, the tendency for the increased breadth of SC2-unique TCRs was dominated by non-critical patients and mostly occurred within the first two weeks after symptom onset (Figure S8C). This trend was delayed in the critical group and was supported by only few individuals (Figure S8D).

Those findings reinforce that it is the build-up of the SARS-CoV-2 TCR repertoires, which is happening during the first two weeks of the disease, that might be crucial for differentiating COVID-19 severity. The SARS-CoV-2 specific CD8+ TCRs in critical patients seem to expand slower than in non-critical patients.





4 Discussion

Notwithstanding the general agreement on the importance of T cells during SARS-CoV-2 infection, the contribution of SARS-CoV-2-unique and cross-reactive T-cell responses towards modulation of COVID-19 severity remains not fully resolved. In this study, we combined our newly generated TCR sequences from COVID-19 patients hospitalized in a single center in Belgium with public datasets to gain insights into the specificity and evolution of CD8+ TCR repertoires in critical and non-critical symptomatic COVID-19 patients.

We observed that CD8+ T cells predicted to target CoV-common epitopes are mounted, despite T-cell depletion, in both critical and non-critical patients during the first week after symptom onset. Since the frequency of SC2-unique TCRs was significantly lower in our study samples at that time, we deduced that the depth of CoV-common TCR repertoires was higher in the first week due to more rapid clonal expansion of pre-existing cross-reactive memory CD8+ T cells. Therefore, individuals with previous exposure to coronaviruses may have formed memory CD8+ T cells that can rapidly respond to CoV-common epitopes from SARS-CoV-2, while de novo induced SC2-unique CD8+ T-cell immunity has not been developed yet. This explanation falls in line with previous reports where T cells recognizing SARS-CoV and seasonal coronaviruses were found to be cross-reactive to SARS-CoV-2 (16–19). Alternatively, individuals may have had previously developed cross-reactive CoV-common CD4+ T cells that might have facilitated more rapid CD8+ T cell development at the beginning of the SARS-CoV-2 infection, as has been recently demonstrated to be the case for antibody response to vaccination (52).

By the second week after symptom onset, activation and expansion of SC2-unique TCRs seem to have occurred in non-critical patients despite T-cell depletion. This conclusion can be made since at week 2 but not week 1 we observed (1) a significantly higher frequency of these TCRs in critical compared to non-critical patients; (2) equivalent depth of SC2-unique and CoV-common repertoires and (3) increased median number of recognized SARS-CoV-2 epitopes in non-critical patients. In contrast, critically ill patients experienced reduction in the breadth of CoV-common and SC2-unique TCR repertoires and respective response diversities. This disparity can partially be explained by lymphopenia which is known to be more pronounced in critical patients (51) and seems to affect CD8+ T-cell population more (6, 53). Previous research has provided evidence that T cells are dying during severe COVID-19 due to apoptosis (54), but the specificity of those T cells has not been extensively addressed. We further speculate that during lymphopenia in critical patients, SARS-CoV-2 recognizing rather than any CD8+ TCRs might be specifically depleted. If random TCRs were dying, the breadth of SARS-CoV-2 TCR repertoires would not have decreased, as specific TCRs constitute the minority of all unique TCRs in the repertoire. Markedly, recent study by Lee at al. (55) described a metabolically dominant cluster of CD8+ T cells which expressed markers suggestive of antigen-induced T cell apoptosis. According to grouping of lymphocyte interactions by paratope hotspots (GLIPH) analysis, TCRs in this cluster were specific to SARS-CoV-2. When we compared the epitope recognized by these TCRs with our composed list of unique and common SARS-CoV-2 epitopes (ref. to Methods section 2.4), we further classified it as SC2-unique.

Overall, our findings align with previously proposed mechanisms of effective T-cell response development, where timely (within two weeks) activation and expansion of T cells contribute to improved control of the virus (45, 49). Conversely, if the activation and/or expansion of the SARS-CoV-2 specific T-cells is delayed or dysfunctional, the virus multiplies unchecked, and the overactivated immune system causes more severe symptoms (7). Furthermore, we have observed the dominance of CD8+ T cells putatively recognizing SC2-unique rather CoV-common epitopes, which supports the previous report that in contrast to CD4+ T cells, most expanded CD8+ T cells did not cross-react with seasonal coronaviruses (27). Additionally, given the slight underrepresentation of SC2-unique epitopes compared to CoV-common in the trained TCRex models (19 SC2-unique vs 28 CoV-common), the prominence of SC2-unique TCRs in the progression of the T-cell response suggests that newly expanding T-cell clones may have a relatively high contribution to the SARS-CoV-2 immune response compared to potentially pre-existing cross-reactive T-cell clones.

Despite the congruence of our results, they should be interpreted with caution. Only a portion of critical and non-critical patients had the data available for both the first- and second-week post symptom onset, and not all individuals exhibited described trends within their respective groups. As such, half of the critical patients with continuous data (2 out of 4) demonstrated elevated CoV-common TCR frequency at week 2, which hints that even patients with the same disease severity do not have a uniform T-cell immune response to SARS-CoV-2. For instance, while pre-existing cross-reactive CD8+ T-cells may provide clinical protection to some individuals (22, 23), this protection has also been questioned (6, 26, 56). In agreement with the latter outlook (detrimental role of cross-reactive T cells), we have observed that disease outcome was fatal in three critical patients who had reached the highest frequencies of CoV-common TCRs during the first two weeks of COVID-19. In a recent study on metabolic changes in COVID-19 patients (55), metabolic pathways of several metabolically defined T-cell clusters positively correlated with disease severity. One cluster, comprising metabolically hyperactive, proliferative-exhausted SARS-CoV-2-specific T cells, enlarged with more severity COVID-19. Such dysfunctional state of expanded CoV-common T cells could explain their deleterious contribution noted here and in other studies.

The observed interpersonal variation in the CD8+ T-cell response within the same group in our dataset could also be attributed to the fact that current TCRex models do not cover the entire epitope space available to CD8+ T cells. Firstly, it has been experimentally evaluated that on average, one individual recognizes 17 MHC-I SARS-CoV-2 epitopes (57), which is more than was predicted with our recognition models for every patient. Secondly, TCRex models could be missing epitope-specific TCRs that are very different to the ones present in the training set. Lastly, although TCRex models are MHC-agnostic and thus could correctly predict epitope-TCR interaction for multiple TCR-epitope-MHC combinations (36), it has been demonstrated that some HLA-alleles strongly shape the set of recognized epitopes (18, 30, 58). Hence, the magnitude of CD8+ T-cell response is likely to be underestimated in our analysis at least for some of the patients. Therefore, the response could become more uniform across patients and TCR-specificity groups once there is enough experimental data, which are diverse in terms of CD8+ TCRs, epitopes and MHC-I, and recognition models are built for them.

Finally, there is evidence that multi-epitope T-cell response mitigates the effect of viral escape mutations (47). The broad and redundant response was valuable for SARS-CoV-2 control in our observations as well. Thus, monitoring the metrics of (specific) TCR repertoires and T-cell response in infected and vaccinated individuals could be helpful to better assess the necessity of an intervention to ensure and preserve adequate protection against any emerging SARS-CoV-2 variant. Moreover, since multiple studies have reported that reactivation of opportunistic herpesvirus (EBV, VZV, HHV-6, etc.) (59–61) and bystander activation of CMV-specific T cells (62) are associated with long COVID symptoms, resolving longitudinal dynamics of specific and cross-reactive T cells recognizing SARS-CoV-2 and aforementioned viruses could provide new insights into the development of post-acute COVID-19 sequelae. In silico approach can be leveraged to extract information such as specificity faster and with more flexibility than in vitro testing. Accordingly, our study offers a generalizable computational framework that complements the current standard of antibody-based assessment of COVID-19 immunity with TCR repertoire analysis.




5 Limitations of the study

The study acknowledges multiple limitations. Firstly, the analysis was constrained by a small sample size, which may affect the generalizability of the findings. Thus, they should be considered as preliminary indications, which warrant further research for verification. Next, our analysis may underestimate the magnitude of the CD8+ T-cell response in some patients due to limited coverage of the epitope space by current TCRex models. Furthermore, lack of information on the HLA profiles of the patients prevents a comprehensive examination of T-cell response, as true differences between the TCR repertoires of different patient groups may be concealed by HLA bias. Another limitation inherent to the analysis of TCR repertoires from blood samples is that the migration of T cells from the circulation to tissues remains hidden. Consequently, the observed intrapersonal dissimilarities in the prevalence of specific and cross-reactive TCRs could be reflective of the differences in the distribution rather than in the speed of generation of the respective T cells. Lastly, the epitopes classified here as unique to SARS-CoV-2 or common within coronaviruses, are expected to change over time. As variants evolve and more coronavirus species are discovered, epitopes may no longer be restricted to SARS-CoV-2. However, by considering the unique and shared epitopes that emerge with each variant’s set of mutations, a similar approach utilizing epitope-specific TCRs could help differentiate specific immune responses from broader immunity.
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Introduction

The COVID-19 pandemic has highlighted the need to identify mechanisms of antiviral host defense against SARS-CoV-2. One such mediator is interferon-g (IFN-γ), which, when administered to infected patients, is reported to result in viral clearance and resolution of pulmonary symptoms. IFN-γ treatment of a human lung epithelial cell line triggered an antiviral activity against SARS-CoV-2, yet the mechanism for this antiviral response was not identified.





Methods

Given that IFN-γ has been shown to trigger antiviral activity via the generation of nitric oxide (NO), we investigated whether IFN-γ induction of antiviral activity against SARS-CoV-2 infection is dependent upon the generation of NO in human pulmonary epithelial cells. We treated the simian epithelial cell line Vero E6 and human pulmonary epithelial cell lines, including A549-ACE2, and Calu-3, with IFN-γ and observed the resulting induction of NO and its effects on SARS-CoV-2 replication. Pharmacological inhibition of inducible nitric oxide synthase (iNOS) was employed to assess the dependency on NO production. Additionally, the study examined the effect of interleukin-1b (IL-1β) on the IFN-g-induced NO production and its antiviral efficacy.





Results

Treatment of Vero E6 cells with IFN-γ resulted in a dose-responsive induction of NO and an inhibitory effect on SARS-CoV-2 replication. This antiviral activity was blocked by pharmacologic inhibition of iNOS. IFN-γ also triggered a NO-mediated antiviral activity in SARS-CoV-2 infected human lung epithelial cell lines A549-ACE2 and Calu-3. IL-1β enhanced IFN-γ induction of NO, but it had little effect on antiviral activity.





Discussion

Given that IFN-g has been shown to be produced by CD8+ T cells in the early response to SARS-CoV-2, our findings in human lung epithelial cell lines, of an IFN-γ-triggered, NO-dependent, links the adaptive immune response to an innate antiviral pathway in host defense against SARS-CoV-2. These results underscore the importance of IFN-γ and NO in the antiviral response and provide insights into potential therapeutic strategies for COVID-19.
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Introduction

The rapid emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in late 2019 and early 2020 led to a global pandemic of coronavirus disease 2019 (COVID-19) (1). More than two years later, several vaccines are authorized or approved for large-scale immunizations in the United States to prevent COVID-19, and effective therapeutics against SARS-CoV-2 have become available (2–4). At the same time, the emerging SARS-CoV-2 variants of concern display enhanced infectivity, transmissibility, and resistance to vaccine-induced neutralization antibodies, such that widespread infections persist albeit with decreased mortality (5, 6). To overcome the challenges related to viral escape from humoral responses, there is an urgent need to understand additional host defense mechanisms against SARS-CoV-2 (7).

For over 50 years, interferons (IFNs) have been known to have antiviral activity (8). The importance of the IFNs is indicated by findings that SARS-CoV-2 suppresses the production of type I IFNs (IFN-α and IFN-β), which is associated with severe clinical outcomes (9–12). Increased levels of IFN-γ and enhanced IFN-γ gene expression were observed in convalescent COVID-19 patients, indicating the potential role for IFN-γ in the control of SARS-CoV-2 infection (13, 14). In immunocompromised individuals, treatment with IFN-γ led to the clearance of SARS-CoV-2 infection and clinical recovery of respiratory status (15–17). However, a prolonged IFN-γ response is associated with severe tissue inflammation and a poor outcome in COVID-19 patients (10, 12, 17).

Although IFN-γ exerted an antiviral activity against SARS-CoV-2 infection in the lung epithelial cell line Calu-3 (18), yet no mechanism has been identified for how this cytokine triggers an antiviral response. In general, IFN-γ is known to combat viruses via the production of nitric oxide (NO) by NO synthase 2 (NOS2; also known as inducible NO synthase, iNOS) (19, 20). Of the IFNs, IFN-γ is the most effective inducer of NOS2 gene expression (21, 22). To gain insight into immune pathways that might contribute to host defense against COVID-19 infection, we investigated whether IFN-γ induction of an antiviral activity against SARS-CoV-2 in cell line culture is linked to the production of NO.





Materials and methods




Cell lines and virus strains

Vero E6 (CRL-1586) and Calu-3 cells (HTB-55) were purchased from ATCC. A549 cell line (BEI Resources #NR-53821) stably expressing ACE2 (A549-ACE2) (23) was a kind gift of Dr. Bryan Bryson (Ragon Institute of MGH, MIT, and Harvard). Cells were cultured at 37°C with 5% CO2 humidified conditions in DMEM containing 10% (or 20% for Calu-3 cells) fetal bovine serum (FBS, Seradigm), 2 mM L-glutamine, 100 U/mL penicillin and 100 mg/mL streptomycin, and 1 mM sodium pyruvate (complete medium). The SARS-CoV-2 clinical isolate USA-WA1/2020 (24) was obtained through BEI Resources (NR-52281) and amplified in Vero E6 cells. The USA-WA1/2020 clone expressing the reporter protein mNeonGreen (SARS-CoV-2-mNG) was obtained from the University of Texas Medical Branch at Galveston through a material transfer agreement (25, 26). The fluorescent SARS-CoV-2-mNG clone can be provided by the World Reference Center for Emerging Viruses and Arboviruses (WRCEVA) pending scientific review and a completed material transfer agreement. Requests for the SARS-CoV-2-mNG strain should be submitted to: P.-Y. Shi and S. Mattamana/WRCEVA. Viral titers were determined in Vero E6 cells by established TCID50 assay (24, 27). The key reagents and resources used in this study are listed in the Supplementary Table 1. All experiments involving SARS-CoV-2 isolate USA-WA1/2020 were carried out in the UCLA BSL3 High-Containment Facility, between April 2020 and April 2021, before the emergence of SARS-CoV-2 variants Delta and Omicron. Although the Delta variant was first reported in the United States in March 2021, it only became the dominant strain by July 2021. The Delta variant (lineage B.1.617.2) was first isolated in the United States by the end of April 2021 (isolates MD-HP05285/2021 and MD-HP05647/20210) and only became available as a resource in August 2021 (BEI Resources). As for the Omicron variant (lineage B.1.1.529), the first reported case in the United States date of December 1, 2023, with the variant becoming available for research later that month (MD-HP20874/2021 and HI-CDC-4359259-001/2021, BEI Resources).





Cytokine treatment and viral infection

Cells were plated overnight in complete medium containing 10% FBS. After that, cells were washed twice with complete medium containing phenol red-free DMEM (Gibco) instead of the regular DMEM and incubated in the same medium in the presence of IFN-α 2a (PBL Assay Science) at 10, 50, 100, 200, 400, or 1000 U/mL; IFN-β 1b (PBL Assay Science) at 10, 50, 100, 200, 400, or 1000 U/mL; IFN-λ1 (Peprotech) at 0.1, 0.5, 1, 2, 4, or 10 ng/mL; IFN-γ (BD Pharmigen) at 10, 50, 100, 200, 400, or 1000 U/mL; IL-1β (Gibco) at 1.25, 2.5, 5, or 10 ng/mL; or cytokine combinations of IFN-γ and IL-1β at 50/1.25, 100/2.5, 200/5, or 400/10, respectively. We used previously published concentrations as a starting point reference for cytokine titrations (18, 20, 28). Forty-eight hours posttreatment, cells washed twice with reduced-serum medium Opti-MEM (Gibco) and infected with the SARS-CoV-2 strains described above (MOI of 0.1 and 1 for Vero E6; or MOI of 1 for A549-ACE2 and Calu-3 cells) for 1 h at 37°C using 0.2 mL of serum-free media as final volume. To account for variations in cell numbers after a 48-hour period, we adjusted our experimental conditions based on each cell line’s specific doubling time: 24 h for Vero E6 cells, 22 h for A549-ACE2 cells, and 48 h for Calu-3 cells. We determined the final seeding density by counting the cells after 48 h of treatment to prevent excessive cell density. For mock infection, 0.2 mL of Opti-MEM was added per well. The viral inoculum was spread by gently tilting the plate sideways every 15 minutes. Lastly, the inoculum was removed, and cells were washed twice and cultured in phenol red-free complete medium for an additional 24 h.





NOS inhibitors

Cytokine treatment was carried out in the presence or absence of the pharmacologic inhibitors of iNOS N6-(1-iminoethyl)-L-lysine (L-NIL; 1 mM), L-NG-Nitroarginine-methyl ester (L-NAME; 2 mM), or the inactive enantiomer D-NG-Nitroarginine-methyl ester (D-NAME; 2 mM). We chose the concentration of iNOS inhibitors based on published papers using activated cells (29–32). All chemicals were purchased from Cayman Chemical.





Viral titer by median tissue culture infectious dose (TCID50) assay

Vero E6 cells were seeded overnight in 96-well plates at a density of 7x103 cells per well. Next, culture media samples harvested at 24 h post-infection were subjected to 10-fold serial dilutions (101 to 107) in Opti-MEM and inoculated onto Vero E6 cells. One-hour post-infection, medium was replaced by DMEM supplemented with 2% FBS and cells were incubated for 3 days at 37°C with 5% CO2. Subsequently, each inoculated well was evaluated for the presence or absence of viral CPE (33) and the percent of infected dilutions immediately above and below 50% were determined. TCID50 (24, 27) was calculated based on the Spearman-Karber method (34).





Virus detection by live-cell imaging

Vero E6 or A549-ACE2 cells were seeded overnight in 24-well plates (Corning) at a density of 2x104 cells per well. After cytokine treatment and infection with SARS-CoV-2-mNG (MOI of 0.1 for Vero E6; or MOI of 1 for A549-ACE2), cells were washed twice and imaged in FluoroBrite DMEM media (Gibco) by live-cell fluorescence microscopy using the FITC filter set on a Leica DM IRB inverted modulation contrast microscope. Image acquisition was carried out with a FLUOTAR 10x objective controlled by Leica Microsystems Application Suite X software. For A549-ACE2 experiments, NucBlue nuclear staining for live cells (Invitrogen) was added (2 drops per mL of media) in the last 15 minutes of incubation and detected through a DAPI filter set. In some experiments, Vero E6 cells were infected with SARS-CoV-2 at a MOI of 1 to visualize the amount of virus required to produce CPE in 50% of inoculated tissue culture cells (TCID50 assay). Representative images of cytokine treated cells displaying viral CPE (in 24-well plates) were taken at 96 h post-infection (to match the time point where the 96-well plates containing cell supernatants were scored) with a HI PLAN PH1 10x objective on a Leica DMi1 inverted phase contrast digital microscope. Leica Microsystems Application Suite software was used for image acquisition.





Virus detection by flow cytometry

Vero E6 were seeded overnight in 24-well plates at a density of 2x104 cells per well. Following cytokine treatment and viral infection with SARS-CoV-2-mNG (MOI = 0.1), cells were washed, dissociated with 0.25% Trypsin-EDTA (Gibco), and then fixed for 30 min with 4% PFA (Thermo Scientific) at room temperature. Live Vero E6 cells were acquired according to FSC-SSC parameters and doublet exclusion on a SORP LSRII Analytic Flow Cytometer using the FACSDiva software version 8.0.2 (BD Biosciences). FlowJo software version 10.7.1 (BD Biosciences) was used to analyze flow cytometry data, which were used to generate the dose-response curves.





NO detection by DAF-FM staining and live-cell imaging

The NO indicator DAF-FM diacetate (Invitrogen) was used to quantify NO production (35, 36). Vero E6 cells were plated overnight in Millicell EZ 8-well glass slides (Millipore) at a density of 1x104 cells per well. After cytokine treatment and infection with SARS-CoV-2 (MOI = 0.1), cells were washed twice and incubated in warm phenol red-free DMEM (without serum) supplemented with 5 µM DAF-FM diacetate for 30 min at 37°C. Next, Vero E6 cells were washed 3 times with warm phenol red-free DMEM and incubated for an additional 15 min to allow complete de-esterification of the intracellular diacetates. Finally, cells were washed twice and immediately imaged in FluoroBrite DMEM media as described above for SARS-CoV-2-mNG. Image acquisition was carried out with a FLUOTAR 20x objective controlled by Leica Microsystems Application Suite X software.





NO detection by DAF-FM staining and flow cytometry

Vero E6 were seeded overnight in 24-well plates at a density of 2x104 cells per well. Following cytokine treatment and viral infection with SARS-CoV-2 (MOI = 0.1), cells were washed and stained with 1 µM DAF-FM diacetate as described above. Next, cells were dissociated with 0.25% Trypsin-EDTA and fixed for 30 min with 4% PFA at room temperature. Vero E6 cells were then washed once with 1X PBS and twice with warm phenol red-free DMEM, and immediately acquired on a SORP LSRII Analytic Flow Cytometer by gating on live, single cells, according to FSC-SSC parameters. FACSDiva software version 8.0.2 was used for acquisition. FlowJo software version 10.7.1 was used to analyze flow cytometry data, which were used to generate the dose-response curves. For uninfected Vero E6 or A549-ACE2 cells, acquisition of live, single cells, was performed immediately after DAF-FM diacetate staining without fixation on either a SORP LSRII Analytic Flow Cytometer or a SORP LSRFortessa X-20 (BD Biosciences). In some experiments, Vero E6 cells were additionally treated with IFN-γ at 800 or 1600 U/mL; IL-1β at 20 or 40 ng/mL; or cytokine combinations of IFN-γ and IL-1β at 800/20 or 1600/40, respectively, and double stained with DAF-FM diacetate and SYTOX Red dead-cell indicator (Invitrogen).





Antibodies

Monoclonal antibodies and their corresponding isotype controls used were the following: Alexa Fluor 594 anti-NOS2/iNOS (1 µg/test; BioLegend #696804), Alexa Fluor 594 rat IgG2bκ isotype (1 µg/test; BioLegend #400661), rat anti-mouse/human iNOS CXNFT (10 µg/mL; eBioscience #14-5920-82) (37), purified rat IgG2aκ isotype (10 µg/mL; BD Biosciences #553927), anti-SARS-CoV-2 Nucleocapsid (5.6 µg/mL; Sino Biological #40143-MM05), and IgG1κ isotype from murine myeloma (5.6 µg/mL; Sigma-Aldrich #M9269). Conjugated secondary antibodies used (1:1000) were the following: goat anti-mouse IgG1 Alexa Fluor 488 (Invitrogen #A-21121), goat anti-mouse IgG1 Alexa Fluor 568 (Invitrogen #A-21124), goat anti-rat IgG Alexa Fluor 568 (Invitrogen #A-11077), and goat anti-rat IgG Alexa Fluor 647 (Invitrogen #A-21247).





Confocal microscopy

Vero E6 (2x104 cells/well), A549-ACE2 (2x104 cells/well), or Calu-3 cells (4x104 cells/well) were seeded overnight in Millicell EZ 4-well glass slides (Millipore). Following cytokine treatment and viral infection, cells were washed twice with 1X PBS and fixed for 30 min with 4% PFA at room temperature. In some experiments, cells were stained with DAF-FM diacetate (as described above) before fixation. Next, cells were washed again, blocked with 5% normal goat serum (Vector Laboratories) in 1X PBS containing 0.05% saponin (Sigma-Aldrich) for 20 minutes, and then immunolabeled with indicated primary antibodies for 1 h at room temperature. Following washing, cells were stained with secondary antibodies for 1 h in the dark, washed, and mounted with ProLong Gold Antifade with, or without DAPI (Invitrogen), where NucBlue dye was used instead. Cells were examined using a Leica TCS SP8 Digital LightSheet Laser Scanning Confocal Microscope at the Advanced Light Microscopy and Spectroscopy Laboratory, California NanoSystems Institute at UCLA. Image acquisition was carried out with the CS2 63x or 100x/1.4 oil objectives controlled by Leica Microsystems Application Suite X software.





Intracellular flow cytometry staining

Vero E6 cells were seeded overnight in 24-well plates at a density of 2x104 cells per well. Following cytokine treatment and viral infection with SARS-CoV-2-mNG (MOI = 0.1), cells were washed and incubated with normal human serum (GeminiBio) for 10 min. Next, cells were washed again, dissociated with 0.25% Trypsin-EDTA and fixed for 30 min with 4% PFA at room temperature. Cells were then suspended in permeabilization buffer (1X PBS containing 0.5% saponin and 10% FBS) for 15 min and stained with fluorescently labeled iNOS-AF594 antibody or matching isotype for 1 h at room temperature in the dark. Following two washes with FACS buffer (1X PBS with 2% FBS), Vero E6 cells were resuspended in FACS buffer containing 2% PFA and acquired on a SORP LSRII Analytic Flow Cytometer by gating on live, single cells, according to FSC-SSC parameters. FACSDiva software version 8.0.2 was used for acquisition. FlowJo software version 10.7.1 was used to analyze flow cytometry data, which were used to generate the correlation graph.





Image quantification and scientific illustrations

The image calculator tool by ImageJ (Fiji) software (38) was used to measure fluorescence intensity (mean gray value) as previously described (39, 40). Colocalization and Analyze Particles built-in functions of ImageJ were used for colocalization analysis as described before (39, 40). Colocalization of SARS-CoV-2 with cell markers was carried out with infected cells only. For both quantifications, a minimum of 100 cells per sample were scored for each experiment, unless stated otherwise. Schematic illustrations were created with BioRender.com.





Statistical analysis

Statistical analysis and graphing were undertaken with GraphPad Prism software version 9.1.0 (Dotmatics). Statistics reported are of entire series of experiments and described as mean ± the standard error (SEM). For comparison between three or more groups with matched or repeated data, we used repeated measures one-way or two-way ANOVA with the Geisser–Greenhouse correction, in addition to Tukey’s multiple comparisons test with individual variances computed for each comparison. For data without matching or pairing, we used a mixed-effects model (REML) with the Geisser–Greenhouse correction and Tukey’s multiple comparisons test. A nonlinear regression model (inhibitor vs. normalized response – variable slope) was used to calculate the IC50 values and Hillslopes. For comparisons involving two groups, an unpaired Mann-Whitney test was performed. Pearson correlation coefficient was used to measure the linear correlation between two sets of data. A P value < 0.05 was considered statistically significant.






Results




IFN-γ-mediated antiviral activity against SARS-CoV-2 in Vero E6 cells

Due to the well-established antiviral effect on the replication cycle of SARS-CoV-1 (20), achieved through the 48 h pretreatment of Vero E6 cells with IFN-γ (400 U/mL) together with IL-1β (10 ng/mL), we aimed to investigate whether these cytokines could elicit a similar antiviral response in SARS-CoV-2-infected cells. Vero E6 cells, an epithelial cell line isolated from the kidney of a normal African green monkey, are widely used as a model to study epithelial cell infection by SARS-CoV-2 and the associated host defense response due to their high expression of ACE2 receptor and inability to produce type I IFN (1, 23, 24, 41), a known inducer of antiviral responses, although they can respond to exogenous treatment with human IFNs (11, 20, 25, 28, 42). To do so, we subjected Vero E6 cells to a 48-hour co-treatment with IFN-γ and IL-1β before exposing them to SARS-CoV-2 infection. For our experiments, we employed an infectious clone derived from the USA-WA1/2020 isolate (25, 26) expressing a mNeonGreen fluorescent protein (SARS-CoV-2-mNG) at a MOI of 0.1, and subsequently we performed live-cell imaging at 24 h post-infection (Supplementary Figure 1A). We observed a dose-dependent reduction of mNG fluorescence signal when infected Vero E6 cells were pretreated with IFN-γ and IL-1β (Figures 1A, B; Supplementary Figure 1B). Given that IFN-γ and IL-1β can mount antiviral responses by themselves (21, 43), we sought to determine whether these cytokines could individually control SARS-CoV-2 infection in Vero E6 cells. Fluorescence microscopy showed a dose-response antiviral effect by both IFN-γ and IL-1β alone (Figures 1A, B; Supplementary Figure 1B), although the virus level was more prominently reduced in cells treated with IFN-γ, to similar levels observed in Vero E6 cells stimulated with IFN-γ and IL-1β simultaneously (Figures 1A, B; Supplementary Figure 1B).
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Figure 1 | IFN-γ treatment reduces SARS-CoV-2 infection in Vero E6 cells. (A, B) Representative live-cell imaging analysis of Vero E6 cells pretreated with increasing concentrations of IFN-γ (50, 100, 200, 400 U/mL), IL-1β (1.25, 2.5, 5, or 10 ng/mL), or IFN-γ in combination with IL-1β (50/1.25, 100/2.5, 200/5, or 400/10, respectively) for 48 h, and infected with SARS-CoV-2-mNG (MOI = 0.1). Displayed images represent cytokines at the highest concentrations (A). Scale bars, 100 µm. (B) The MFI of SARS-CoV-2-mNG (green) in Vero E6 cells was quantified with ImageJ software. M, media. Data are means ± SEM (n = 5). Data were analyzed by one-way ANOVA followed by Tukey’s post hoc test (***P < 0.001 and ****P < 0.0001). All cytokine concentrations were significantly different from the media control. (C–E) Flow cytometry data shown are concatenated FCS files (C) representing infected Vero E6 cells treated as described in (A). (D) FlowJo software was used to determine the % of Vero E6 cells infected with SARS-CoV-2-mNG. M, media. Data are means ± SEM (n = 5). Data were analyzed by one-way ANOVA followed by Tukey’s post hoc test (**P < 0.01 and ***P < 0.001). All cytokine concentrations were significantly different from the media control. (E) Dose-response curves of mNG signal inhibited by cytokines treatment. (F, G) Vero E6 cells were treated with IFN-γ (400 U/ml), IL-1β (10 ng/mL), or IFN-γ in combination with IL-1β (400/10, respectively) for 48 h, and infected with SARS-CoV-2 (MOI = 1). Images depict the CPE development between untreated (media) and treated cells (F). Scale bars, 100 µm. Progeny virus titers were determined by TCID50 assay (G). Data are means ± SEM of at least four independent experiments. Data were analyzed by mixed-effects model with the Geisser–Greenhouse correction and Tukey’s post hoc test (*P < 0.05, **P < 0.01, and ****P < 0.0001; ns, not statistically significant).

We next performed flow cytometry to monitor SARS-CoV-2 infection. Similar to the live-cell imaging experiments, IFN-γ treatment in combination with IL-1β was able to reduce not only the number of infected cells (Figures 1C, D; Supplementary Figure 1C) but also the amount of intracellular viral replication (Supplementary Figure 1D) in a dose-dependent manner. The virus level was also reduced in Vero E6 cells singly treated with IFN-γ and IL-1β, with IFN-γ treatment showing similar results to the combination of IFN-γ and IL-1β (Figures 1C, D; Supplementary Figure 1C, D). We used a nonlinear regression model to determine the half maximal inhibitory concentration (IC50) of SARS-CoV-2 replication. Analysis of flow cytometry experiments revealed an IC50 of 41.3 U/ml and 5.8 ng/ml for IFN-γ and IL-1β, respectively. Steeper dose-response inhibitory curves were observed for IFN-γ (Hillslope = -2.96) and IFN-γ together with IL-1β (Hillslope = -2.94), which overlapped with one another at all segments. However, IL-1β treatment alone (Hillslope = -0.58) exhibited a shallow curve (Figure 1E; Supplementary Table 2).

To further confirm the antiviral activity of IFN-γ and IL-1β on wild-type virus, we evaluated the inhibition of the virus infectious cycle using the median tissue culture infective dose (TCID50) assay. We pretreated Vero E6 cells with IFN-γ, IL-1β, or IFN-γ in combination with IL-1β, and then infected with a ten-fold larger inoculum of SARS-CoV-2 USA-WA1/2020 strain (MOI = 1) than our previous experiments (MOI = 0.1). This strain was isolated from the first COVID-19 patient diagnosed in the US (24). We evaluated cultures for a viral-induced cytopathic effect as evident by swelling and clumping of cells (24, 27, 33). A striking cytopathic effect was observed in Vero E6 cells incubated with media, indicating that the viral replication and associated cell damage persisted until 96 h post-infection, while the cells cultured with IFN-γ or IFN-γ plus IL-1β cleared the virus and showed little cytopathology at 96 h post-infection (Figure 1F). However, a severe cytopathic effect was observed in Vero E6 cells treated with IL-1β only (Figure 1F). Quantification of viral release to supernatants harvested at 24 h post-infection revealed ~350-fold lower virus titers in cells pretreated with IFN-γ and ~700-fold lower virus titers in cells pretreated with IFN-γ plus IL-1β in comparison to media alone (Figure 1G). Treatment with IL-1β alone had no effect on the viral load (Figure 1G). Collectively, the results indicate strong antiviral activities for IFN-γ or IFN-γ in combination with IL-1β against SARS-CoV-2 in Vero E6 cells.





IFN-γ-mediated activation of nitric oxide pathway in SARS-CoV-2-infected cells

We next investigated whether the antiviral activity induced by IFN-γ was associated with NO production. We used a cell-permeant, NO-reactive green fluorescent dye, DAF-FM diacetate, to measure NO production in Vero E6 cells by flow cytometry and microscopy (35, 36). Pretreatment with IFN-γ alone resulted in the elevation of NO levels in Vero E6 cells, but stimulation with IL-1β had no effect (Supplementary Figure 2A, B). Treatment of uninfected Vero E6 cells with IFN-γ and IL-1β showed a dose-dependent production of NO at 48 h (Supplementary Figure 2A, E). These findings indicate a synergistic effect when IL-1β was added in conjunction with IFN-γ as compared to the sum of NO production when the two cytokines were added individually (Supplementary Figure 2C). In addition, we used SYTOX Red dead cell staining by flow cytometry to determine whether the effect of the cytokines or the NO production induced by them were associated with cytotoxicity (44, 45). Neither IFN-γ, IL-1β, or IFN-γ in combination with IL-1β, induced cell death in Vero E6 cells, whereas IFN-γ or IFN-γ in combination with IL-1β, but not IL-1β, induced NO production in the same cultures (Supplementary Figure 2F, G). Treating with increased concentrations of the cytokines did not induce cytotoxicity, whereas treatment with IFN-γ, or IFN-γ in combination with IL-1β, but not IL-1β, induced a dose-dependent increase of NO production (Supplementary Figure 2F, G).

Infection of Vero E6 cells with SARS-CoV-2 showed a morphologic cytopathic effect by microscopy as has been reported (24, 27, 33) (Figure 2A; Supplementary Figure 3A, B). As measured by live microscopy, treatment of infected cells with IFN-γ or IL-1β alone induced a dose-dependent increase in NO production, with greater production observed when IFN-γ was added in combination with IL-1β (Figures 2A, B; Supplementary Figure 3A, B). In contrast to the data indicating that IL-1β did not induce detectable NO in uninfected Vero E6 cells as measured by flow cytometry (Supplementary Figure 2A, C), the increased NO production in SARS-CoV-2 infected, IFN-γ, IL-1β, or IFN-γ plus IL-1β treated cells was further confirmed by flow cytometry (Figures 2C–E; Supplementary Figure 3C). Furthermore, we found that the dose-response curve for IFN-γ and IL-1β administered together was very close to the sum of the two individual dose-response curves, indicating that the cytokines activate NO production in an additive but not synergistic manner (Figure 2E).
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Figure 2 | IFN-γ induces nitric oxide in SARS-CoV-2-infected Vero E6 cells. (A, B) Representative live-cell imaging analysis of Vero E6 cells pretreated with increasing concentrations of IFN-γ (50, 100, 200, 400 U/mL), IL-1β (1.25, 2.5, 5, or 10 ng/mL), or IFN-γ in combination with IL-1β (50/1.25, 100/2.5, 200/5, or 400/10, respectively) for 48 h, infected with SARS-CoV-2 (MOI = 0.1), and labeled with nitric oxide indicator DAF-FM (green). Displayed images represent cytokines at the highest concentrations (A). Scale bars, 50 µm. (B) The MFI of DAF-FM in Vero E6 cells was quantified with ImageJ software. M, media. Data are means ± SEM (n = 6). Data were analyzed by one-way ANOVA followed by Tukey’s post hoc test (*P < 0.05 and **P < 0.01). All cytokine concentrations were significantly different from the media control. (C–E) Flow cytometry analysis of DAF-FM. Infected Vero E6 cells were treated and stained as described in (A). (D) FlowJo software was used to determine the % of infected Vero E6 cells positive for DAF-FM. M, media. Data are means ± SEM (n = 6). Data were analyzed by one-way ANOVA followed by Tukey’s post hoc test (**P < 0.01 and ***P < 0.001). All cytokine concentrations were significantly different from the media control. (E) Dose-response curves of DAF-FM signal induced by cytokines treatment. Data are means ± SEM (n = 6). Data were analyzed by two-way ANOVA followed by Tukey’s post hoc test (***P < 0.001 and #### P < 0.0001; ns, not statistically significant). (F, G) Vero E6 cells were treated with IFN-γ (400 U/ml), IL-1β (10 ng/mL), or IFN-γ in combination with IL-1β (400/10, respectively) for 48 h, mock infected or infected with SARS-CoV-2-mNG (green; MOI = 0.1), and then stained with anti-iNOS (red) Ab or isotype control and observed by fluorescent confocal microscopy (F). Yellow denotes colocalization between green and red channels. Scale bars, 10 µm. The MFI of SARS-CoV-2-mNG (left), iNOS (middle), and the two-color colocalization (right) in infected Vero E6 cells was quantified with ImageJ software (G). Data are means ± SEM (n = 6). Data were analyzed by one-way ANOVA followed by Tukey’s post hoc test (***P < 0.001 and ****P < 0.0001).

The production of NO in Vero E6 cells is regulated by the inducible isoform of the nitric oxide synthase (iNOS) (20), such that we next determined whether the cytokine-mediated induction of NO resulted in increased iNOS expression in infected cells. Vero E6 cells were pretreated with IFN-γ and/or IL-1β, then infected with SARS-CoV-2-mNG and stained with iNOS antibodies at 24 h post-infection for detection by laser scanning confocal microscopy. The mNG fluorescence signal was significantly reduced in cytokine treated cells as compared to media, but less so in cells treated with IL-1β alone as compared with IFN-γ alone or in combination with IL-1β (Figures 2F, G). Similarly, Vero E6 cells treated IL-1β alone had significantly lower iNOS expression as compared with IFN-γ alone or in combination with IL-1β (Figures 2F, G). Furthermore, colocalization between SARS-CoV-2-mNG and iNOS was only observed in the presence of IFN-γ (Figures 2F, G). Taken together, our results demonstrate that stimulation with IFN-γ or IFN-γ plus IL-1β enhances NO production and reduces replication of SARS-CoV-2 in Vero E6 cells.





IFN-γ-induced killing of SARS-CoV-2 in Vero E6 cells is mediated by nitric oxide

To further evaluate the relationship between NO production and viral replication, we added the pharmacologic inhibitor L-NIL, which is frequently used for these types of studies as it inhibits iNOS activity more efficiently than either of the constitutive endothelial (eNOS or NOS3) or neuronal (nNOS or NOS1) NO synthases (29, 30, 32). We also studied L-NAME which has a broad spectrum of activity against NO production (29, 31, 46). The addition of L-NIL or L-NAME, but not the inactive enantiomer D-NAME, to IFN-γ plus IL-1β treated Vero E6 cells resulted in decreased DAF-FM positivity, indicating that these inhibitors efficiently blocked NO production in SARS-CoV-2 infected cells (Supplementary Figure 3D).

We next determined the role of NO production on cytokine-triggered antiviral activity in infected Vero E6 cells by live-cell imaging using the SARS-CoV-2-mNG fluorescent clone. As previously, IFN-γ treatment with or without IL-1β decreased the mNG fluorescence signal in infected cells, but the mNG fluorescence signal was almost completely restored in the presence of L-NIL or L-NAME, but not D-NAME (Figures 3A, B). The dependence of NO on IFN-γ-induced antiviral activity with (Figures 3C, D) or without IL-1β (Figures 3E, F) was further confirmed by flow cytometry. We also found that L-NIL or L-NAME, but not D-NAME inhibited cytokine-induced iNOS protein expression in infected cells as measured by intracellular flow cytometry (Figures 3G, H; Supplementary Figure 3E), consistent with the known action of these inhibitors (47, 48). Although it was not possible to use live microscopy to measure NO production and antiviral activity in the same cells as the fluorophores had overlapping emission spectra, we were able to simultaneously measure iNOS expression, and antiviral activity as these assays utilize fluorophores with distinct emission spectra (Figures 3G, H; Supplementary Figure 3E). We observed a significant negative correlation (Pearson’s r = -0.9460) between SARS-CoV-2-mNG intracellular levels and iNOS expression in IFN-γ treated cells. Visualization of scatter diagram revealed that infected Vero E6 cells treated with IFN-γ with or without IL-1β and D-NAME clustered together at the Y-axis with high levels of iNOS and low virus positivity, while untreated media control and cells treated with the cytokines in the presence of iNOS inhibitors L-NIL or L-NAME clustered at the X-axis with high viral levels and inverse iNOS expression (Figure 3I). Overall, these data demonstrate the requirement for the induction of NO in IFN-γ-mediated antiviral responses against SARS-CoV-2 in Vero E6 cells.
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Figure 3 | IFN-γ-triggered killing of SARS-CoV-2 in Vero E6 cells is nitric oxide dependent. (A, B) Representative live-cell imaging analysis of Vero E6 cells pretreated with IFN-γ (100 U/mL) with or without IL-1β (2.5 ng/mL) and iNOS inhibitors (1 mM L-NIL, 2 mM L-NAME, and 2 mM D-NAME) for 48 h, and infected with SARS-CoV-2-mNG (MOI = 0.1). Scale bars, 100 µm. The MFI of SARS-CoV-2-mNG (green) in Vero E6 cells was quantified with ImageJ software. Data are means ± SEM (n = 3). Data were analyzed by one-way ANOVA followed by Tukey’s post hoc test (*P < 0.05 and **P < 0.01; ns, not statistically significant). (C–F) Flow cytometry analysis of SARS-CoV-2-mNG infected Vero E6 cells treated as described above. FlowJo software was used to determine the ▵MFI of SARS-CoV-2-mNG in Vero E6 cells (▵MFI = MFIinfected – MFImock infected). Data are means ± SEM (n = 3). Data were analyzed by one-way ANOVA followed by Tukey’s post hoc test (*P < 0.05, **P < 0.01, and ***P < 0.001; ns, not statistically significant). (G–I) Flow cytometry analysis of SARS-CoV-2-mNG infected Vero E6 cells treated as described above and stained with anti-iNOS Ab conjugated to AF594. (H) FlowJo software was used to determine the % of SARS-CoV-2-mNG+ (green bars), iNOS+ (red bars), and double-positive Vero E6 cells (orange bars). Data are means ± SEM (n = 3). Data were analyzed by one-way ANOVA followed by Tukey’s post hoc test (*P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001; ns, not statistically significant). (I) Scatter plot showing the inverse relationship between SARS-CoV-2-mNG infection and iNOS expression in cytokine-treated Vero E6 cells. Pearson correlation coefficient (r) and P value are indicated in the graph.





Sensitivity of human lung epithelial cells to IFN-γ-induced nitric oxide

In addition to type II IFN (IFN-γ), type I IFNs (IFN-α and IFN-β) and type III IFN (IFN-Λ) also inhibited SARS-CoV-2 replication in lung epithelial cells (18, 28). We therefore sought to compare the ability of all types of IFN to induce NO in pulmonary epithelial cells. We used the human lung epithelial cell line A549-ACE2 which was engineered to stably express the ACE2 receptor (23), thereby facilitating in vitro infection by SARS-CoV-2. Again, we measured NO by DAF-FM staining by flow cytometry.

While type II/IFN-γ treatment induced NO production in A549-ACE2 cells in a dose-dependent manner, type I/IFN-α and type III/IFN-λ treatments both failed to induce NO (Figures 4A, B; Supplementary Figure 4). Type I/IFN-β induced NO production only at the highest concentration tested, however, the response for type II/IFN-γ at the same concentration was approximately 4-fold greater (Figures 4A, B; Supplementary Figure 4). Our data of the IFNs, IFN-γ was the only potent inducer of NO production by human lung epithelial cells.
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Figure 4 | IFN-γ is a strong nitric oxide inducer in human lung epithelial A549-ACE2 cells. (A, B) Representative flow cytometry analysis of uninfected A549-ACE2 cells treated with increasing concentrations of IFN-α (10, 50, 100, 200, 400, and 1000 U/mL), IFN-β (10, 50, 100, 200, 400, and 1000 U/mL), IFN-λ (0.1, 0.5, 1, 2, 4, and 10 ng/mL), or IFN-γ (10, 50, 100, 200, 400, and 1000 U/mL) for 48 h, and labeled with nitric oxide indicator DAF-FM. (A) Flow cytometry data shown are concatenated FCS files of uninfected A549-ACE2 cells representing the treatment with increasing concentrations of each IFN type. AU, arbitrary units. (B) FlowJo software was used to determine the % of uninfected A549-ACE2 cells positive for DAF-FM. 0 indicates media control. Data are means ± SEM (n = 3). Data were analyzed by two-way ANOVA followed by Tukey’s post hoc test (*P < 0.05). All IFN-γ concentrations were significantly different from the media control. No significant differences were found between the other cytokines and media control except IFN-β at the highest concentration.





Nitric oxide mediates IFN-γ-induced control of SARS-CoV-2 infection in human lung epithelial cells

Based on our findings that NO drives the antiviral effect downstream of IFN-γ in the simian cell line Vero E6, and the selectivity of A549-ACE2 cells to produce NO toward IFN-γ treatment, we sought to determine whether this cytokine could induce NO-mediated antiviral activity in human lung epithelial cells. To do so, we used two epithelial cell lines derived from human pulmonary adenocarcinomas, Calu-3 and A549-ACE2, which are permissive to SARS-CoV-2 and mimic key features of the human primary pulmonary epithelial cells making them useful for in vitro models of infection (28, 49–52). Calu-3 and A549-ACE2 cells were pretreated with cytokines, then infected (MOI = 1) with SARS-CoV-2 wild-type or SARS-CoV-2 expressing mNG fluorescent protein and then labeled with antibodies against iNOS and SARS-CoV-2 nucleocapsid protein. As measured by confocal microscopy, treatment of infected cells with IFN-γ alone or in combination with IL-1β showed greater iNOS expression than media control in both Calu-3 (Figures 5A, B; Supplementary Figure 5A, B) and A549-ACE2 (Supplementary Figure 5C–F) cells. No significant changes were observed in iNOS expression between IFN-γ treatment with or without IL-1β (Figures 5A, B; Supplementary Figure 5A–F). Conversely, Calu-3 or A549-ACE2 cells incubated with media had higher mNG (Figures 5A, B; Supplementary Figure 5C, D) or nucleocapsid (Supplementary Figure 5A, B, E, F) fluorescence levels than IFN-γ or IFN-γ plus IL-1β treated cells, with the cytokine combination showing the lower positivity for the virus (Figures 5A, B; Supplementary Figure 5A–F). Furthermore, IFN-γ in combination with IL-1β, or when added alone to the cultures, but not the media control, induced colocalization between SARS-CoV-2-mNG or SARS-CoV-2 nucleocapsid protein and iNOS in both Calu-3 (Figures 5A, B; Supplementary Figure 5A, B) and A549-ACE2 (Supplementary Figure 5C–F) cells.

[image: Fluorescent microscopy images and bar graphs illustrate the effects of different treatments on cells. Panels A and C show cells with labels for SARS-CoV-2, iNOS, and other markers under various conditions: media, IFN-γ with IL-1β, IFN-γ alone, and mock infection. Panels B, D, E, and F contain bar graphs comparing mean fluorescence intensity and colocalization percentages for different conditions, highlighting significant differences with asterisks. The images demonstrate distinct cellular responses to treatments, and the graphs quantify these differences statistically.]
Figure 5 | IFN-γ activates nitric oxide pathway in human lung epithelial cells infected with SARS-CoV-2. (A, B) Calu-3 cells were pretreated with IFN-γ (400 U/mL) with or without IL-1β (10 ng/mL) for 48 h, mock infected or infected with SARS-CoV-2-mNG (green; MOI = 1), and then stained with anti-iNOS (red) Ab or isotype control and observed by fluorescent confocal microscopy (A). Yellow denotes colocalization between green and red channels. Scale bars, 10 µm. The MFI of SARS-CoV-2-mNG (top), iNOS (middle), and the two-color colocalization (bottom) in infected Calu-3 cells was quantified with ImageJ software (B). Data are means ± SEM (n = 3). Data were analyzed by one-way ANOVA followed by Tukey’s post hoc test (**P < 0.01, ***P < 0.001, and ****P < 0.0001; ns, not statistically significant). (C–F) Representative confocal images of SARS-CoV-2 infected (MOI = 1) A549-ACE2 cells treated as described above and stained with anti-SARS-CoV-2 nucleocapsid Ab (N; red), DAF-FM (green), and anti-iNOS Ab (cyan), or matching isotype controls (C). Nuclei (blue) were counter-stained with NucBlue. Two or all channels (merge) colocalization profiles are shown. Scale bars, 10 µm. The MFI of SARS-CoV-2 nucleocapsid protein, DAF-FM, iNOS, and the two-color colocalization in infected A549-ACE2 cells was quantified with ImageJ software (D–F). Data are means ± SEM (n = 3). 20 cells were scored for the nucleoprotein positive versus negative comparison (E). Data were analyzed by one-way ANOVA followed by Tukey’s post hoc test (*P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001; ns, not statistically significant).

Next, to detect NO and SARS-CoV-2 in the same cells, we overcame the spectral overlap issue of mNG and DAF-FM by infecting A549-ACE2 cells with non-fluorescent SARS-CoV-2 (MOI = 1) followed by DAF-FM staining and virus detection by anti-SARS-CoV-2 nucleocapsid antibody and immediately imaged the cells by confocal microscopy. IFN-γ treatment with or without IL-1β reduced the number of SARS-CoV-2 infected A549-ACE2 cells in comparison to media control, whereas greater DAF-FM staining was observed in cells treated with IFN-γ plus IL-1β than untreated or cells singly treated with IFN-γ (Figures 5C, D; Supplementary Figure 6). By comparing the MFI of DAF-FM and iNOS in cells positive or negative for SARS-CoV-2 nucleocapsid protein, we found that stimulation with IFN-γ or IFN-γ plus IL-1β but not media control induced more NO production in infected versus uninfected cells (Figures 5C, E; Supplementary Figure 6). Additionally, a stronger colocalization between SARS-CoV-2 nucleocapsid and DAF-FM was observed in cytokine treated as compared to media treated cells (Figures 5C, F; Supplementary Figure 6), indicating that IFN-γ targets the virus to the NO pathway for destruction. We also demonstrated that SARS-CoV-2 nucleoprotein colocalizes with both DAF-FM and iNOS in cytokine-stimulated but not media control A549-ACE2 cells (Figures 5C, F; Supplementary Figure 6). In IFN-γ treated cells, with or without IL-1β, no significant differences were observed on the colocalization between SARS-CoV-2 nucleoprotein and DAF-FM or iNOS (Figures 5C, F; Supplementary Figure 6). Finally, we determined the role of NO production on cytokine-triggered antiviral activity in human cells by adding pharmacologic inhibitors of iNOS to the SARS-CoV-2-mNG infected cultures. As measured by live-cell imaging, IFN-γ treatment with or without IL-1β decreased the mNG fluorescence signal in infected A549-ACE2 cells, with no significant differences observed when IFN-γ was added in combination with IL-1β or not (Figures 6A, B) as previously shown. The addition of the iNOS inhibitors L-NIL or L-NAME, but not the inactive enantiomer D-NAME, to IFN-γ or IFN-γ plus IL-1β treated A549-ACE2 cells resulted in an increase of mNG fluorescence signal (Figures 6A, B). Furthermore, the addition of the iNOS inhibitors L-NIL or L-NAME, but not D-NAME, to IFN-γ-treated A549-ACE2 cells resulted in increased fluorescence levels of SARS-CoV-2 nucleocapsid, whereas decreased iNOS positivity and colocalization between SARS-CoV-2 nucleoprotein and iNOS were observed by confocal microscopy (Figures 6C, D), indicating that these inhibitors efficiently blocked the NO-mediated antiviral effect triggered by IFN-γ. Altogether, these data suggest that NO production is required for the antiviral activity induced by IFN-γ against SARS-CoV-2 in human lung epithelial cells (Figure 7).

[image: A series of panels from a scientific study show cellular responses to different treatments. Panel A displays confocal microscopy images with nuclei in blue, ACE2 cells in green, and SARS-CoV-2 S1 in magenta. Panels show effects of media, IFN-γ, and combinations with L-NIL, L-NAME, or D-NAME on cells. Panel B presents bar graphs quantifying the percentage of infection under these conditions. Panel C shows additional confocal images with merged channels highlighting nuclei, iNOS, and others. Panel D provides bar graphs displaying mean fluorescence intensity of iNOS, nucleocapsid protein, and their colocalization percentages. Statistical significance is indicated with asterisk annotations.]
Figure 6 | IFN-γ-induced control of SARS-CoV-2 infection in human lung epithelial cells is mediated by nitric oxide. (A, B) Representative live-cell imaging analysis of A549-ACE2 cells pretreated with IFN-γ (100 U/mL) with or without IL-1β (2.5 ng/mL) and iNOS inhibitors (1 mM L-NIL, 2 mM L-NAME, and 2 mM D-NAME) for 48 h, and infected with SARS-CoV-2-mNG (green; MOI = 1). Nuclei (blue) were counter-stained with NucBlue. Scale bars, 100 µm. The MFI of SARS-CoV-2-mNG in A549-ACE2 cells was quantified with ImageJ software. Data are means ± SEM (n = 3). Data were analyzed by one-way ANOVA followed by Tukey’s post hoc test (**P < 0.01, ***P < 0.001, and ****P < 0.0001; ns, not statistically significant). (C, D) Representative confocal images of SARS-CoV-2 infected (MOI = 1) A549-ACE2 cells treated with IFN-γ as described above and stained with anti-SARS-CoV-2 nucleocapsid Ab (N; magenta) and anti-iNOS Ab (yellow), or matching isotype controls (C). Nuclei (cyan) were counter-stained with NucBlue. Scale bars, 10 µm. The MFI of SARS-CoV-2 nucleocapsid protein, iNOS, and the two-color colocalization in infected A549-ACE2 cells was quantified with ImageJ software (D). Data are means ± SEM (n = 3). Data were analyzed by one-way ANOVA followed by Tukey’s post hoc test (**P < 0.01, ***P < 0.001, and ****P < 0.0001; ns, not statistically significant).

[image: Diagram showing the interaction between a T cell and a pulmonary epithelial cell. The T cell releases interferon-gamma (IFN-γ), which binds to receptors IFNGR1 and IFNGR2 on the epithelial cell. This triggers nitric oxide (NO) production via NOS2, leading to antiviral activity against SARS-CoV-2.]
Figure 7 | Schematic overview of the immunological induction of nitric oxide by IFN-γ to control SARS-CoV-2 infection in human pulmonary epithelial cells. Graphical summary of nitric oxide-mediated, cytokine-triggered anti-SARS-CoV-2 viral activity in lung epithelial cells. Our data showed that IFN-γ, which is mainly produced by CD8+ T cells in response to SARS-CoV-2 infection, interfered with viral activity through the induction of iNOS/NOS2 and subsequent production of nitric oxide. The inhibition of SARS-CoV-2 replication cycle induced by IFN-γ was prevented by the treatment with iNOS/NOS2 inhibitors, demonstrating the requirement for nitric oxide in IFN-γ-mediated antiviral responses in human cells.






Discussion

Identification of the host pathways that combat SARS-CoV-2 infection in humans is key toward developing both preventative and therapeutic strategies to limit the ongoing pandemic. Here, we studied the role of IFN-γ, given that its production coincides with the onset of protective immunity to SARS-CoV-2 post vaccination and its administration to immunocompromised patients results in viral clearance and resolution of symptoms (2, 3, 15). Given the role of IFN-γ in inducing NO, a key biological mediator in the immune system with broad antimicrobial activity against intracellular pathogens (53, 54), we evaluated whether IFN-γ triggers an antimicrobial response using a SARS-CoV-2 reporter virus. We demonstrate that IFN-γ inhibits the SARS-CoV-2 replication cycle in both simian and human epithelial cell lines, finding that the IFN-γ-induced anti-SARS-CoV-2 viral activity is mediated through the endogenous production of NO. IL-1β, which, when combined with IFN-γ is known to have an antiviral effect on the replication cycle of SARS-CoV-1 (20), enhanced IFN-γ induction of NO, but it had little effect on subsequent antiviral activity. These data indicate that IFN-γ, known to be produced early during infection or post-vaccination by CD8+ T cells (2, 3), is sufficient to trigger the NO-dependent killing of SARS-CoV-2 in lung epithelial cells.

Our flow cytometry and live microscopy analysis of SARS-CoV-2 infected Vero E6 cells, showed that IFN-γ or a combination of IFN-γ and IL-1β induced the iNOS-dependent production of NO, which resulted the inhibition of SARS-CoV-2 replication. The antiviral activity induced by IFN-γ alone or together with IL-1β was not restricted to the reduction of the percentage of SARS-CoV-2 infected cells but extended to a reduced intracellular virus yield and release of extracellular virions. We have not tested whether IFN-γ could block SARS-CoV-2 replication after the viral infection has been already established, future studies might address whether IFN-γ blocks SARS-CoV-2 infection after viral entry. The replication of SARS-CoV-2 in Vero E6 cells was inhibited by the NO donor drug SNAP, which directly releases NO (33). The SNAP-mediated antiviral effect was associated with NO targeting of the SARS-CoV-2 3CL cysteine protease, although the viral replication cycle was not completely blocked (33). Due to limited availability and side effects of NO donors, alternative strategies such as direct administration of NO through gas inhalation have been utilized for potential COVID-19 treatments and clinical trials (54–58). It has been proposed that NO could inhibit the replication of SARS-CoV-2 by decreasing the intracellular calcium levels, which impairs the action of the calcium-dependent protease furin, a host cell protein utilized by SARS-CoV-2 to replicate in the respiratory tract (26, 55). One specific limitation of our study is the lack of a direct or indirect mechanism by which NO restrains SARS-CoV-2 replication cycle. However, we believe it is likely that the NO-mediated antiviral effects are intracellular rather than occurring on the extracellular virions, as has been demonstrated for the antiviral activity induced by IFN-γ and IL-1β in hantavirus-infected cells (42).

It is known that excessive NO levels can induce cell death in many cell types (45, 59, 60). We note that IFN-γ alone or in combination with IL-1β did not induce NO-mediated cell death in uninfected Vero E6 cells. In fact, IFN-γ stimulation protected cells against death, perhaps by inducing pro-survival pathways such as autophagy (39, 40, 61), while the control cells might have undergone growth arrest and activated death signaling pathways due to the lack of stimuli (60). In contrast, IFN-γ in combination with TNF or LPS induced NO and licensed programmed cell death (59, 62), although treatment with any of these agonists individually did not. It is difficult to determine the effect of NO induction in infected cells, as infection itself causes cell death. It might be possible to treat with IFN-γ alone at an optimal dose to augment NO-induced antiviral activity while favoring autophagy vs. apoptosis.

IL-1β is well known to induce antimicrobial responses against virus, bacteria, and protozoa (43, 63, 64) and to enhance the antiviral effect of both IFN-α and IFN-γ (20, 65). However, in our study, the addition of IL-1β to the SARS-CoV-2 infected cultures did not significantly amplify the IFN-γ-induced antiviral activity, although NO production was increased. When exposed to a cytokine mixture of IFN-γ and IL-1β, murine bone marrow-derived macrophages, and simian and human renal epithelial cells, showed an increased nitrite production but exposure to IL-1β alone failed to induce nitrite formation, indicating that the IL-1β-induced NO production in those cells was dependent on the presence of IFN-γ (42, 64, 66). IL-1β induced NO formation in the absence of IFN-γ in human chondrocytes, and rat myocytes and hepatocytes but not Kupffer cells, these differences are likely to reflect cell types and species variations in the regulation of NOS2 gene promoter (67–70). We found that IFN-γ was the primary trigger for NO production in pulmonary epithelial cells, such that experiments using a suboptimal dose of IFN-γ are likely required to further define the role of IL-1β in the antiviral response to SARS-CoV-2.

Given that type I and type III IFNs have been shown to induce an antiviral activity against SARS-CoV-2 (18, 28), we compared the activity of the IFNs in inducing NO. As opposed to the potent activity of IFN-γ in inducing NO production in the lung epithelial cell line A549-ACE2, the type I IFNs and type III IFN were either unable to induce NO or minimally induced NO production. This is consistent with the finding that type I IFN did not induce NOS2 mRNA in NHBE cells (71). Previous studies have shown that IFN-α generally increases and IFN-β decreases NO production in human cells, although this was not tested in lung epithelial cells (72, 73). COVID-19 disease initially results in impaired production of type I IFNs (9–12). In addition, type III IFN production is initially impaired in COVID-19 (12), although later IFN-λ secretion upon viral recognition causes damage to the lung epithelial barrier, predisposing the host to lethal bacterial superinfections (74). Although type I and type III IFNs have been shown to have antiviral activity in lung epithelial cells, our data suggests that the mechanism is NO independent. Since type III IFNs signal through a distinct receptor complex that is restricted to epithelial cells, which is also expressed in the lung epithelial cell line A549 (75), it is likely that the different IFNs induce distinct patterns of ISGs (18, 28, 76). We hypothesize that these variations in IFN-induced ISGs contribute to differential levels of NO induction. One such limitation of our study is that we did not verify the expression of IFN receptors on the lung epithelial cells, although these cells are known to respond to the different IFNs (18, 77) and express the distinct IFN receptors  (75, 78, 79).

It is likely that in vivo T cells are the source of IFN-γ required to activate the NO-dependent SARS-CoV-2 antiviral activity. The frequencies of IFN-γ-producing NK and T cells are significantly decreased in COVID-19 patients, with a near complete reduction of IFN-γ-producing NK cells (80–83). This is consistent with studies indicating the critical importance of T cells in the clearance of SARS-CoV-2 infection and subsequent disease resolution (83–85). In addition to their ability to secrete IFN-γ in response to SARS-CoV-2 peptide antigens (86–88), CD4+ T cells recruit and activate multiple cell types, whereas, CD8+ T cells (CTLs) are thought to directly contribute to an antiviral response through their cytolytic activity, depleting the reservoir of infected cells. The number of differentiated granulysin (GNLY)+CD8+ CTLs increases during infection and convalescence (89), yet the exhaustion of CD8+ CTLs in COVID-19 disease was associated with the increased expression of the inhibitory receptor NKG2A (80). We previously described a GNLY-expressing CD8+ CTL subset expressing NKG2C but exhibited an antimicrobial activity against Mycobacterium leprae, but those expressing NKG2A showed a decrease antimicrobial activity (90). GNLY expressing CTLs are the most mature.

Disease severity in COVID-19 is associated with a dysregulated immune response, which includes alterations in both IFN and proinflammatory responses, indicating that the timing and duration of the cytokine response need to be properly regulated (17, 91–93). While most studies focus on the use of type I IFNs for the treatment of COVID-19, very few studies have explored the use of type II IFNs. To date, only one study, which used the lung epithelial cell line Calu-3, has shown that IFN-γ can inhibit SARS-CoV-2 replication in human cells, and only a single clinical trial using IFN-γ has been conducted (18, 94). Treatment of primary lung epithelial cells with IFN-γ inhibited intracellular SARS-CoV-2 replication, albeit to a lesser extent than that observed with type I IFN (18). It is important to acknowledge that the interpretation of these results was limited by the dataset’s scope, encompassing only two donors, and was further complicated by disparities in the experimental conditions relative to those employed for the cell lines (18). Despite these limitations, the present study’s emphasis was placed on highlighting the antiviral activity induced by IFN-γ in pulmonary epithelial cell lines, given the robust effect, facilitating investigating the role of NO in this response. It is essential to recognize that further investigations are warranted to validate this mechanistic pathway in primary cells.

The successful use of IFN-γ on the treatment of five immunocompromised patients with prolonged COVID-19 has been described (15, 17). Although a small cohort, all five patients had SARS-CoV-2 clearance and improvement of respiratory status, and four patients showed clinical recovery with no evidence of hyperinflammation (15, 17). It has been shown that pretreatment with IFN-γ blocks SARS-CoV-2 infection in Calu-3 cells, but the antiviral mechanism was not clear, although it involved a weak ISGs mRNA response and the cell surface upregulation of ACE2 receptor (18). By integrating live-cell and confocal microscopy, it was possible to delineate the anti-SARS-CoV-2 viral activity of IFN-γ in two human lung epithelial cell lines, A549 and Calu-3, using a lower concentration of IFN-γ than had been previously reported to contribute to antiviral defense in Calu-3 cells (18). Although treatment with type III IFN (peginterferon lambda) has been shown to reduce hospitalization and emergency room visits in patients with COVID-19, it did not reduce viral shedding (95, 96). In contrast, administration of high dose IFN-β/type I IFN showed no clinical improvement (97).

Our findings suggest that the NO-dependent, cytokine-triggered antiviral effect identified here may benefit patients with COVID-19 and offer potential therapeutic strategies for immune control of SARS-CoV-2 infection. Collectively, we provide evidence, previously unappreciated, of a mechanism of immunological induction of NO production to control SARS-CoV-2 infection.
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Aim

The aim of the present study was to assess differences in the serum levels of chemokines and growth factors (GFs) between COVID-19 patients and healthy controls. The diagnostic utility of the analyzed proteins for monitoring the severity of the SARS-CoV- 2 infection based on the patients’ MEWS scores was also assessed.





Materials and methods

The serum levels of chemokines and growth factors were analyzed in hospitalized COVID-19 patients (50 women, 50 men) with the use of the Bio-Plex Pro™ Human Cytokine Screening Panel (Biorad) and the Bio-Plex Multiplex system.





Results

The study demonstrated that serum levels of MIP-1α, RANTES, Eotaxin, CTACK, GRO-α, IP-10, MIG, basic-FGF, HGF, SCGF-β, G-CSF, M-CSF, SCF, MIF, LIF, and TRAIL were significant higher in COVID-19 patients than in the control group. The concentrations of CTACK, GRO-α, IP-10, MIG, basic-FGF, HGF, PDGF- BB, GM-CSF, SCF, LIF, and TRAIL were higher in asymptomatic/mildly symptomatic COVID-19 patients (stage 1) and COVID-19 patients with pneumonia without respiratory failure (stage 2). The receiver operating characteristic (ROC) analysis revealed that IP-10, MIF, MIG, and basic-FGF differentiated patients with COVID-19 from healthy controls with the highest sensitivity and specificity, whereas GM-CSF, basic-FGF, and MIG differentiated asymptomatic/mildly symptomatic COVID-19 patients (stage 1) from COVID-19 patients with pneumonia without respiratory failure (stage 2) with the highest sensitivity and specificity.





Conclusions

MIG, basic-FGF, and GM-CSF can be useful biomarkers for monitoring disease severity in patients with COVID-19.





Keywords: chemokines, growth factors, COVID-19, MEWS score, SARS-CoV-2





Introduction

The cytokine release syndrome (CRS), namely excessive cytokine generation caused by the migration of immune cells to the site of inflammation, is one of the key mechanisms responsible for the development of COVID-19 symptoms (1). In patients infected with the SARS-CoV-2 virus, the main mediators of inflammation include the tumor necrosis factor- alpha (TNF-α), interleukin 1β (IL-1β), and interleukin 6 (IL-6) (2–4). However, chemokines and growth factors (GFs) also significantly contribute to CRS in the progression of COVID-19 (5).

The following chemokines play the most important role in COVID-19 progression: monocyte chemoattractant protein-1 (MCP-1/CCL2), macrophage inflammatory protein-1 alpha (MIP-1 α/CCL3), macrophage inflammatory protein 1-beta (MIP-1 β/CCL4), regulated upon activation, normal T-cell expressed and secreted (RANTES/CCL5), monokine induced by γ-interferon (MIG/CXCL9), and interferon-inducible protein (IP-10/CXCL10) (6–8). Chemokines are chemotactic cytokines that are secreted by monocytes, macrophages, circulating blood dendritic cells, fibroblasts, granulocytes, and epithelial cells in response to pathogens, including SARS-CoV-2 virions (9). Chemokines are expressed in inflamed tissues; they affect the maturation and differentiation of immune cells, mainly T cells, neutrophils, eosinophils, and macrophages, and they stimulate the migration of immune cells to the inflammation site (10). Chemokines and GFs not only fight inflammation, but also participate in the process of healing damaged tissues in COVID-19 patients (9). The hepatocyte growth factor (HGF) regulates the proliferation of hepatocytes and skeletal muscle cells (11). Similarly to chemokines, colony-stimulating factors (CSFs) produced by lymphocytes, endothelial cells, fibroblasts, and epithelial cells influence the populations of granulocytes and macrophages, and mobilize these cells to fight the infection and prevent the acute respiratory distress syndrome (12).

Similarly to other cytokines (IL-6, TNFα), changes in the concentrations of chemotactic cytokines and GFs can be potentially useful diagnostic or prognostic markers and promising therapeutic targets for monitoring COVID-19 progression. Some chemokines, including MCP- 1, RANTES, and the liver and activation-regulated chemokine (LARC) are regarded as novel biomarkers in inflammatory skin conditions, advanced atherosclerosis, and diabetes (13, 14). The stromal cell-derived factor 1 (SDF-1/CXCL12) chemokine has been also examined as a potential target for therapeutic intervention in patients with colorectal, breast, and lung cancer (15–17).

From the clinical point of view, changes in the serum levels of chemokines and GFs could provide valuable information about disease progression in patients infected with the SARS-CoV-2 virus. To date, most researchers have analyzed chemokine and GF concentrations in the blood serum of patients in the acute phase of COVID-19 (18, 19), and this is the first study to evaluate changes in chemokine and GF levels in asymptomatic/mildly symptomatic patients, as well as in patients with pneumonia without respiratory failure. The presented results not only expand the existing knowledge on immune processes in these groups of patients, but they can also be used as prognostic biomarkers for monitoring disease severity in patients with COVID-19, and as potential therapeutic targets.





Materials and methods




Description of the study

The study was approved by the Bioethics Committee of the Medical University in Białystok (decision No. APK.002.353.2021). All research participants gave their written consent to participate in the study.





Study group

The study group consisted of 100 patients with a positive result of a COVID-19 PCR test (nasopharyngeal swab) who were admitted to the Emergency Department of the University Clinical Hospital in Białystok between 20 January and 20 November 2021. Blood samples were collected from patients who tested positive for COVID-19 in the PCR test which was administered upon admission to the Emergency Department.

The severity of COVID-19 was assessed based on the Modified Early Warning Score (MEWS) (20) which is recommended by the Polish Society of Epidemiology and Infectious Diseases and relies on the following parameters: systolic blood pressure, heart rate, respiratory rate, body temperature, and neurological symptoms. Four stages of COVID-19 progression were described based on the above parameters: 1) asymptomatic and mildly symptomatic infection, 2) symptomatic infection with pneumonia without symptoms of respiratory failure, 3) symptomatic infection with pneumonia and symptoms of respiratory failure, 4) symptomatic infection with multiple organ failure (Table 1).


Table 1 | Modified Early Warning Score (MEWS).
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The study group was divided into two subgroups. Subgroup 1 consisted of asymptomatic and mildly symptomatic patients (MEWS 1), whereas subgroup 2 consisted of symptomatic patients with pneumonia without symptoms of respiratory failure (MEWS 2). None of the patients had symptoms characteristic of stage 3 and 4 COVID-19 progression based on their MEWS scores (9).

Demographic parameters (sex, age), length of hospital stay (days), comorbidities (present, absent), hematological disorders (present, absent), diabetes (present, absent), hypertension (present, absent), obesity (present, absent), heart disease (present, absent), history of cancer (present, absent), and clinical symptoms, including fever (present, absent), cough (present, absent), dyspnea (present, absent) and the acute respiratory distress syndrome (ARDS) (present, absent), were analyzed. The patients were subjected to imaging examinations (radiography and computed tomography of the chest) and laboratory tests, including complete blood count (CBC), coagulation parameters (PT, APTT, D-dimers), kidney function tests (creatinine levels with estimated glomerular filtration rate (eGFR), urea), electrolyte levels (Na+, K+), and lactate dehydrogenase (LDH) activity.





Control group

The control group consisted of 50 healthy subjects who performed routine employee tests in a laboratory in Bialystok (Poland) and tested negative for COVID-19.





Materials

In both groups, blood for analyses was collected from the basilic vein into clot activator tubes. The serum was separated by centrifugation (1000 × g, 20 minutes), and the samples were stored at a temperature of -80°C until analysis.





Chemokine and GF detection

The serum levels of chemokines and GFs in control group and study group patients were determined with the use of the Bio-Plex Pro™ Human Cytokine Screening Panel (Biorad) and the Bio-Plex Multiplex system based on the Luminex xMAP technology. The concentrations of the following chemokines were analyzed: MCP-1, MIP-1α, MIP-1β, RANTES, eotaxin, cutaneous T cell-attracting chemokine (CTACK), growth-regulated oncogene-alpha (GRO-α), interferon gamma-induced protein (IP-10), and MIG. The analyzed GFs were: basic fibroblast growth factor (basic-FGF), hepatocyte growth factor (HGF), platelet-derived growth factor (PDGF-BB), stem cell growth factor-beta (SCGF-β), granulocyte colony-stimulating factor (G- CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), macrophage colony- stimulating factor (M-CSF), stem cell factor (SCF), macrophage migration inhibitory factor (MIF), leukemia inhibitory factor (LIF), stromal cell-derived factor (SDF-1α), tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), and interferon gamma (INF-γ). All assays were performed in duplicate serum samples.





Statistical analysis

Statistical analyses were conducted with the use of GraphPad Prism 9.0 software (GraphPad Software, La Jolla, USA). The Shapiro–Wilk test was used to determine the normality of distribution. The Student’s t-test was applied to test data with a normal distribution, and the Mann-Whitney test was used to analyze data that did not follow a normal distribution. The results were presented as the median (minimum-maximum) at a significance level of p<0.05.






Results




Characteristics of the study group

The study group consisted of 100 patients infected with the SARS-CoV-2 virus, aged 36 to 87 years (65 females and 35 males). The patients were divided into two subgroups based on their MEWS scores (Table 1): stage 1 (asymptomatic/mildly symptomatic) – 53 subjects, and stage 2 (pneumonia without respiratory failure) – 47 subjects. Fifty-seven of the evaluated patients reported comorbidities, including hypertension (36 patients), coronary artery disease (26 patients), and diabetes (17 patients). The most prevalent symptoms were fever and dyspnea which were noted in 37 and 35 patients, respectively. The hospital length of stay was less than 10 days in 67 patients, 10-20 days in 12 patients, and more than 20 days in 21 patients. The studied population is characterized in Table S1, and the results of laboratory tests are shown in Table S2.





Serum levels of chemokines and GFs in patients infected with the SARS-CoV-2 virus relative to the control group

The serum levels of most chemokines and GFs, excluding MIP-1β, RANTES, GRO-α, GM, and INF- γ, were higher in COVID-19 patients than in healthy controls. Significant differences were noted in the values of the following parameters: MIP-1α (p=0.0001), RANTES (p=0.0019), Eotaxin (p=0.0042), CTACK (p=0.0035), GRO-α (p=0.0187), IP-10 (p<0.0001), MIG (p<0.0001), basic-FGF (p<0.0001), HGF (p<0.0001), SCGF-β (p=0.0004), G-CSF (p<0.0001), M-CSF (p<0.0001), SCF (p=0.0038), MIF (p<0.0001), LIF (p=0.0065), and TRAIL (p=0.0038) (Figure 1, Table 2).

[image: Twenty-four scatter plots comparing the levels of various cytokines in control and study groups. Each plot is titled with a cytokine name, measured in picograms per milliliter (pg/ml). Significant differences between groups are noted in red, with p-values included.]
Figure 1 | A comparison of chemokine (A-I) and growth factor (J-U) and INF-γ (V) concentrations in the control group and the study group.


Table 2 | Serum levels of chemokines and growth factors in COVID-19 patients and the control group.

[image: Table comparing median cytokine levels (pg/mL) between control group and COVID-19 patients. Each row lists a parameter with values for both groups and corresponding p-values. Significant differences (p < 0.05) are highlighted for parameters like MIP-1α, RANTES, Eotaxin, CTACK, and several others, indicating higher levels in COVID-19 patients. The table includes cytokine names and statistical terms, emphasizing immune response variations in COVID-19.]




ROC analysis of chemokines and GFs in COVID-19 patients and healthy controls

The receiver operating characteristic (ROC) analysis demonstrated that the following chemokines: MIP-1α, IP-10, and MIG, and the following GFs: basic-FGF, HGF, SCGF-β, G- CSF, M-CSF, and MIF can be useful parameters for diagnosing COVID-19 patients (Table 3). The optimal cut-off values were calculated in the ROC analysis, and ROC curves are presented in Figure 2. The area under the curve (AUC) for MIP-1 α, IP-10, MIG, basic-FGF, HGF, SCGF- β, G-and MIF was determined at 0.9633, 0.8602, 0.9864, 0.9642, 0.9304, 0.9468 and 0.8942, respectively. The optimal cut-off values for MIP-1α, IP-10, MIG, basic-FGF, HGF, SCGF-β, G-CSF, M-CSF, and MIF were determined at 2.535pg/mL, 243.8 pg/mL, 160.8 pg/mL, 3.91 pg/mL, 372.1 pg/mL, 158340 pg/mL, 202.9 pg/mL, 14.91 pg/mL, and 707.3 pg/mL, respectively (Figure 3, Table 3).

[image: Twenty-four scatter plots display protein levels (pg/ml) for groups labeled "1" and "2". Each plot corresponds to different proteins (MCP-1, MIP-1α, etc.) with accompanying p-values to indicate statistical significance. Proteins with significant differences (highlighted in red) include CTACK, GROα, IP-10, MIG, Basic FGF, HGF, PDGF-BB, GM-CSF, SCF, LIF, TRIAL, and INFγ.]
Figure 2 | A comparison of chemokine (A-I), growth factor (J-U), and INF-γ (V) concentrations in asymptomatic/mildly symptomatic COVID-19 patients (stage 1) and COVID-19 patients with pneumonia without respiratory failure (stage 2).

[image: Receiver Operating Characteristic (ROC) curves for nine biomarkers: MIP-1alpha (A), IP-10 (B), MIG (C), Basic FGF (D), HGF (E), SCGF-beta (F), G-CSF (G), M-CSF (H), and MIF (I). Each curve displays sensitivity against one hundred percent minus specificity, with respective AUC (Area Under the Curve) values and p-values. AUC ranges from 0.7660 to 0.9479, indicating varying diagnostic accuracy. All biomarkers show significant p-values.]
Figure 3 | Receiver operating characteristic (ROC) analysis of chemokines (A-C) and growth factors (D-I) in COVID-19 patients and healthy controls.


Table 3 | Area under the curve (AUC) values of chemokines and growth factors that were used to differentiate between COVID-19 patients and the control group.

[image: Table displaying various biomarkers with their corresponding performance metrics: AUC, p-value, cut-off, sensitivity, specificity, and 95% confidence interval. Parameters listed include MIP-1 α, IP-10, MIG, Basic-FGF, HGF, SCGF-β, G-CSF, M-CSF, and MIF. Each has associated statistical values indicating diagnostic effectiveness. Descriptive abbreviations are provided below the table for each parameter.]




Serum levels of chemokines and GFs in asymptomatic/mildly symptomatic COVID-19 patients (stage 1) and COVID-19 patients with pneumonia without respiratory failure (stage 2)

An analysis of chemokine and GF concentrations revealed that the serum levels of all evaluated proteins, excluding M-CSF, were higher in COVID-19 patients with pneumonia without respiratory failure than in asymptomatic/mildly symptomatic COVID-19 patients. Significant differences (p<0.05) were noted in the values of the following parameters: CTACK (p=0.0420), GRO-α (p=0.0055), IP-10 (p=0.0193), MIG (p=0.0012, basic-FGF (p=0.0005), HGF (p=0.0447), PDGF-BB (p=0.0332), GM-CSF (p<0.0001), SCF (p=0.0493), LIF (p=0.0144), TRAIL (p=0.0433), and INF-γ (p=0.0036) (Figure 2, Table 4).


Table 4 | Serum levels of chemokines and growth factors in asymptomatic/mildly symptomatic COVID-19 patients (stage 1) and COVID-19 patients with pneumonia without respiratory failure (stage 2).

[image: Table comparing cytokine levels between MEWS 1 and MEWS 2 groups with median values and ranges for each parameter, along with their respective p-values. Parameters include MCP-1, MIP-1α, MIP-1β, and others, highlighting significant differences in parameters such as CTACK, GRO-α, MIG, Basic-FGF, HGF, PDGF-BB, GM-CSF, SDF-1α, TRAIL, and INF-γ, with p-values indicating statistical significance.]




ROC analysis of chemokines and GFs in asymptomatic/mildly symptomatic COVID-19 patients (stage 1) and COVID-19 patients with pneumonia without respiratory failure (stage 2).

The ROC analysis revealed that chemokines: IP-10 and MIG, and GFs: basic-FGF, PDGF-BB, GM-CSF, GRO-α, LIF, and INF-γ can be useful parameters for differentiating between asymptomatic/mildly symptomatic COVID-19 patients and patients with pneumonia without respiratory failure (Table 5). The optimal cut-off values were calculated in the ROC analysis, and ROC curves are presented in Figure 4. The AUC values of IP-10, MIG, basic-FGF, PDGF- BB, GM-CSF, GRO-α, LIF, and INF-γ were determined at 0.6551, 0.7116, 0.7324, 0.6487, 0.7763, 0.6792, 0.6741, and 0.6964, respectively. The optimal cut-off values for IP-10, MIG, basic-FGF, PDGF-BB, GM-CSF, GRO-α, LIF, and INF-γ were determined at 1290, 410.1, 54.47, 3945, 4.035, 1054, 33.91, and 5.315, respectively (Figure 4, Table 5).

[image: ROC curve charts for different cytokines with area under the curve (AUC) and p-values. A) IP-10: AUC 0.6551, p=0.0194. B) MIG: AUC 0.7116, p=0.0013. C) Basic FGF: AUC 0.7324, p=0.0006. D) PDGF-BB: AUC 0.6487, p=0.0336. E) GM-CSF: AUC 0.7763, p=0.0001. F) GRO alpha: AUC 0.6792, p=0.0059. G) LIF: AUC 0.6741, p=0.0155. H) INF-V: AUC 0.6964, p=0.0040. Each graph shows sensitivity versus 100% minus specificity.]
Figure 4 | Receiver operating characteristic (ROC) curves of chemokines (A, B) and growth factors (C-G) and INF-γ (H) that were used to differentiate between asymptomatic/mildly symptomatic COVID-19 (stage 1) and COVID-19 patients with pneumonia without respiratory failure (stage 2).


Table 5 | Area under the curve (AUC) values of chemokines and growth factors that were used to differentiate between asymptomatic/mildly symptomatic COVID-19 (stage 1) and COVID- 19 patients with pneumonia without respiratory failure (stage 2).

[image: Table displaying parameters with columns for AUC, p-value, cut-off, sensitivity, specificity, and 95% confidence interval. Notable values: GM-CSF has the highest AUC at 0.7763. Sensitivity and specificity range from 59.09% to 66.67% and 62.50% to 66.67%, respectively.]





Discussion

The search for new biomarkers supporting assessments of the severity of COVID-19 is very important. It should be noted that the condition of patients infected with the SARS-CoV-2 virus can deteriorate rapidly (21–23). Therefore, a fast and accurate diagnosis based on clinical symptoms and the results of laboratory tests, followed by patient monitoring, play a key role in detecting deterioration in vital signs. The immune response to infection with the SARS-CoV-2 virus is a complex process that involves many cell populations and humoral factors (24, 25), but cytokines (26), including chemokines and GFs (27), are the key inflammation-regulating factors. Chemokines are peptides comprising 70-130 amino acids (28), and they have been divided into four subfamilies based on their chemical structure: CXC (alpha) chemokines, CC (beta) chemokines, C (gamma) chemokines, and CX3C (delta) chemokines, where C denotes cysteine residues and X denotes amino acid residues (29). Until recently, scientists assumed that chemokines are responsible only for stimulating the migration of leukocytes from the blood to tissues and inflammation foci (30). However, recent research has shown that chemokines also affect other processes by stimulating leukocyte chemotaxis, regulating intracellular processes and immune responses, and participating in the pathogenesis of inflammatory (31–33), autoimmune and proliferative diseases (34). Chemokines also influence the activation of adhesive molecules, the activation and differentiation of leukocytes, and they regulate cell proliferation (35).

In the present study, the serum levels of most of the analyzed chemokines and growth factors (excluding MCP-1, MIP-1β, RANTES, and GRO-α) were significantly higher (p<0.05) in COVID-19 patients than in the control group. In the current study, these parameters were compared in patients in the early stages of COVID-19 (MEWS 1 vs. MEWS 2). Symptomscharacteristic of stage 1 (asymptomatic/mildly symptomatic) and stage 2 (pneumonia without respiratory failure) COVID-19 progression were identified based on the patients’ MEWS scores. The serum levels of nearly all analyzed chemokines and growth factors (excluding MIP-1β) were higher in stage 2 than stage 1 patients (Figure 5), which suggests that the analyzed chemokines, in particular GM-CSF, basic-FGF and MIG, have high diagnostic value (AUC of 0.7116, 0.7324 and 0.7763, respectively) and can be used as effective markers for monitoring disease severity in COVID-19 patients.

[image: Diagram showing changes in chemokines and growth factors in COVID-19 patients. A COVID-19 patient provides serum that indicates elevated levels of chemokines and growth factors. Two stages are depicted: 1) COVID-19 patients show increased levels of IP-10, MIG, MIP-1a, RANTES, EOTAXIN, CTACK, and growth factors like basic-FGF, HGF, G-CSF, M-CSF, SCGF-B, SCF, LIF, TRAIL, MIF. 2) In MEWS 2 stage, changes include IP-10, MIG, CTACK, GRO-α, basic-FGF, GM-CSF, HGF, PDGF-BB, SCF, LIF, TRAIL.]
Figure 5 | Graphical comparison of the serum levels of chemokines and growth factors in patients with COVID-19 vs healthy controls, and in patients with stage 2 vs stage 1 COVID-19.

MIG and IP-10 were the most effective diagnostic markers for differentiating between asymptomatic/mildly symptomatic COVID-19 patients and COVID-19 patients with pneumonia without respiratory failure. Both chemokines belong to the CX subfamily and the non-ELR subgroup (36, 37). Non-ELR chemokines lack the ELR (Glu-Leu-Arg) motif, and they act as chemoattractants and activators of monocytes, dendritic cells, lymphocytes (T, B, and NK cells), basophils and eosinophils, without angiogenic potential (38, 39). IP-10 and MIG bind to chemokine receptor 3 (CXCR3), and they play a particularly important role in the Th14 immune response by recruiting leukocytes to the site of inflammation (40). In the present study, the increase in IP-10 and MIG levels in stage 2 COVID-19 patients could point to immune system activation and a stronger inflammatory response, which increases the risk of serious complications (organ failure) in stage 2 than in stage 1 patients. To date, most studies have evaluated the serum levels of IP-10 and MIG in advanced stages of COVID-19 characterized by respiratory failure and/or multiple organ failure (41, 42). The concentration of IP-10 was significantly higher in COVID-19 patients with acute pneumonia than moderate pneumonia (43). In addition, the serum levels of IP-10 were considerably higher in patients with the acute respiratory distress syndrome (ARDS) and patients who died from the complications associated with the SARS-CoV-2 infection (44, 45). In COVID-19 patients, the concentration of IP-10 was also positively correlated with disease severity, lung damage, and risk of death (46). Similar results were reported by de Morais Batista F. who found that IP-10 levels were significantly higher in patients with mild/severe symptoms of COVID-19 than in the control group (47). Elevated levels of IP-10 and MIG were also reported in other viral diseases, including hepatitis C (HCV) and infections caused by the human immunodeficiency virus (HIV) (48). The concentrations of IP-10 and MIG were positively correlated with viral loads and negatively correlated with the counts of CD4+ T cells (49, 50). In the present study, IP-10 and MIG levels were higher in stage 2 patients (pneumonia without respiratory failure) than in stage 1 (asymptomatic/mildly symptomatic) patients, and other authors also reported high concentrations of these chemokines in patients with moderate and severe COVID-19, which suggests that these chemokines can be useful biomarkers for monitoring the progression of the SARS-CoV-2 infection.

In the group of GFs evaluated in this study, basic-FGF and GM-CSF were the most useful markers for diagnosing COVID-19 and for differentiating between asymptomatic/mildly symptomatic patients (stage 1) and patients with pneumonia without respiratory failure (stage 2), which indicates that these parameters can be useful biomarkers for assessing disease severity. Basic-FGF is an 18-kDa polypeptide that belongs to the FGF family (51). It is found mainly in the basement membrane and subendothelial extracellular matrix of blood vessels (52). Basic- FGF induces the expression of genes involved in inflammatory processes, including proinflammatory cytokines (mainly IL-6) and their receptors, endothelial cell adhesion molecules, and prostaglandin pathway components (53). In the current study, basic-FGF levels were higher in patients with stage 2 COVID-19 than in asymptomatic/mildly symptomatic patients. In mild and moderate COVID-19, the increase in basic-FGF levels can be probably attributed to platelet, epithelial and endothelial cell dysfunctions caused by the SARS-CoV-2 virus because other researchers found that the levels of this GF were correlated with the levels of P-selectin (in the endothelium) and sCD40L in platelets (54–56). In moderate COVID-19, tissue repair processes can also trigger an increase in basic-FGF levels. Arsentieva et al. reported a decrease in basic-FGF levels in patients with acute COVID-19 (57), which could be attributed to the depletion of platelets, and epithelial and endothelial cells that are the main sources of basic-FGF (58, 59). In this group of patients, lower concentrations of basic-FGF can compromise wound healing because tissue regeneration is impaired by the cytokine storm (60). GM-CSF is produced at the inflammation site mainly by macrophages, T cells, fibroblasts, endothelial cells, epithelial cells, and cancer cells (61). This cytokine binds to the GM-CSF receptor (GM-CSF-R) which is composed of a ligand-specific alpha-chain (GM CSF-Rα) and beta-chain (GM CSF-Rβ) carrying the signal (62, 63). GM-CSF plays an immunomodulatory role by stimulating alveolar macrophages that scavenge microbes in the respiratory system (56). In healthy subjects, GM-CSF concentrations are low or undetectable, but this GF is overproduced during infection, including the SARS-CoV-2 infection (60), as demonstrated in the present study. In advanced stages of COVID-19, an overactive immune response results in excessive release of cytokines, including GM-CSF and IL-6 (62). Acute pneumonia is also observed in advanced stages of disease, which increases the risk of ARDS (64–66).The search for effective diagnostic biomarkers that support the differentiation of patients with different severity of COVID-19 has significant implications for clinical practice. Chemokines and GFs play an important role in the immune system which is activated in response to the SARS-CoV-2 infection. Research into chemokines and GFs can promote a better understanding of the mechanisms of disease, and it can contribute to the development of more effective treatment. This is the first study to compare chemokine and GF levels in asymptomatic/mildly symptomatic COVID-19 patients and patients with pneumonia without respiratory failure. The study demonstrated that pro-inflammatory cytokines are activated already in the early stages of COVID-19, which can increase the risk of severe infection and, in critical cases, can lead to death. In summary, the present findings indicate that MIG, basic-FGF, and GM-CSF can be considered as reliable parameters for differentiating between patients with different severity of the SARS-CoV-2 infection, and as predictive clinical indicators for monitoring the deterioration in the patients’ vital signs. The results of this study provide a useful diagnostic tool for monitoring patients with COVID-19, and they can also be helpful in selecting the appropriate treatment and reducing the risk of complications.

The study had several limitations. It was conducted on a small group of patients who were divided into two smaller groups based on their MEWS scores. Moreover, the participants were diagnosed with only stage 1 and stage 2 COVID-19, and further research should be carried out on a larger group of patients with all four stages of COVID-19. The presented results provide valuable preliminary insights for further clinical trials focusing on chemokines and growth factors and their diagnostic utility in a larger population of COVID-19 patients.
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Background

The emergence of SARS-CoV-2 variants has raised concerns about the sustainability of vaccine-induced immunity. Little is known about the long-term humoral responses and spike-specific T cell memory to Omicron variants, with specific attention to BA.4/5, BQ.1.1, and XBB.1.





Methods

We assessed immune responses in 50 uninfected individuals who received varying three-dose vaccination combinations (2X AstraZeneca + 1X Moderna, 1X AstraZeneca + 2X Moderna, and 3X Moderna) against wild-type (WT) and Omicron variants at eight months post-vaccination. The serum antibody titers were analyzed by enzyme-linked immunosorbent assays (ELISA), and neutralizing activities were examined by pseudovirus and infectious SARS-CoV-2 neutralization assays. T cell reactivities and their memory phenotypes were determined by flow cytometry.





Results

We found that RBD-specific antibody titers, neutralizing activities, and CD4+ T cell reactivities were reduced against Omicron variants compared to WT. In contrast, CD8+ T cell responses, central memory, effector memory, and CD45RA+ effector memory T cells remained unaffected upon stimulation with the Omicron peptide pool. Notably, CD4+ effector memory T cells even exhibited a higher proportion of reactivity against Omicron variants. Furthermore, participants who received three doses of the Moderna showed a more robust response regarding neutralization and CD8+ T cell reactions than other three-dose vaccination groups.





Conclusion

Reduction of humoral and CD4+ T cell responses against Omicron variants in vaccinees suggested that vaccine effectiveness after eight months may not have sufficient protection against the new emerging variants, which provides valuable information for future vaccination strategies such as receiving BA.4/5 or XBB.1-based bivalent vaccines.





Keywords: SARS-CoV-2, Omicron variant, vaccination, neutralizing antibody, cellular immune response




1 Introduction

In order to control the spread of the COVID-19 pandemic, vaccination has emerged as an essential strategy to mitigate the transmission and severity of SARS-CoV-2 infections. Vaccines have demonstrated remarkable efficacy in preventing infection, reducing the disease’s mortality, and minimizing disease complications (1, 2). Several COVID-19 vaccines have been approved for administration in Taiwan, including the mRNA vaccine Spikevax (mRNA-1273; Moderna [here referred to as Mod]) and the viral vector-based vaccine Vaxzevria (ChAdOx1-nCoV-19; AstraZeneca [here referred to as AZ]), both of which were authorized for homologous or heterologous prime-boost regimens elsewhere.

However, the emergence of variants of concern (VOCs), especially the Omicron variants, has substantially threatened the vaccine efficacy. Mutations in the viral genome have led to the emergence of variant strains with altered spike protein structures, potentially reducing the efficacy of neutralizing antibodies generated by previous vaccines (3–5). Numerous studies have demonstrated that the Omicron variant exhibits an unprecedented escape from neutralizing antibodies, affecting both convalescent and vaccinated populations (6–10). In order to compete with the decrease in antibody levels over time and the ongoing evolution of SARS-CoV-2 variants, individuals in Taiwan were encouraged to receive a third dose of the mRNA vaccine. After administering the third dose, serum anti-spike antibody levels and neutralization titers against SARS-CoV-2 increased, although to a lesser degree against the Omicron variant (11–14). This necessitates a more comprehensive evaluation of the long-term immune responses induced by triple vaccinations, encompassing both humoral and cellular immunities, especially for the circulating Omicron sublineages BA.4/5, BQ.1.1, and XBB.1.

While humoral immunity is effective in preventing infection, it may not be sufficient alone to counter SARS-CoV-2 variants, which have the potential to evade neutralizing antibodies (15). Cellular immunity, mediated by T cells, is an essential arm of the immune system that can provide broad and long-lasting protection against viral infections (16). Previous studies have shown that robust CD4+ and CD8+ T cell responses and their memory subsets were induced following SARS-CoV-2 vaccination (14, 17–20). However, it is still not fully understood whether the long-term levels of spike-specific T-cell responses and the induction of memory phenotypes were affected against emerging Omicron variants in populations receiving three vaccine doses.

In this study, we evaluated the levels of RBD-specific antibody titers, neutralizing activities, spike-specific T cell reactivities, and their memory subsets for up to 8 months against SARS-CoV-2 WT and Omicron variants in three-dose vaccination groups, including AAM (2X AZ + 1X Mod), AMM (1X AZ + 2X Mod), and MMM (3X Mod). Both adenovirus vector–based (AZ) and mRNA-based (Mod) vaccines use the SARS-CoV-2 S protein from the ancestral strain, eliciting strong immune responses and providing protection against severe COVID-19 (21). Including AZ and Mod vaccines in different combinations allows for exploring hybrid immunity strategies, capitalizing on the strengths of different vaccine platforms. As SARS-CoV-2 variants continue to emerge, knowing the complexities of long-term vaccine-induced immunity in vaccinees becomes crucial for revising vaccination strategies and compositions and as we strive to curb the ongoing pandemic.




2 Materials and methods



2.1 Cell lines and viruses

Baby hamster kidney (BHK)-21, a BHK cell line (ATCC CCL-10), cells were cultured in Roswell Park Memorial Institute 1640 medium containing 5% fetal bovine serum (FBS) (Gibco). The BHK-21 cells were stably transduced with the lentiviral vector harboring angiotensin-converting enzyme (ACE2) and selected with puromycin (Sigma) at 10 μg/mL to obtain BHK-ACE2 cells, as described previously (22). Human embryonic kidney 293 (HEK293), an HEK cell line (ATCC CRL-1573), cells were grown in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% FBS. SARS-CoV-2 The SARS-CoV-2 WT strain (hCoV-19/Taiwan/4/2020) and B.1.1.529.1 (hCoV-19/Taiwan/16804/2021, BA.1 variant), and B.1.1.529.5 (hCoV-19/Taiwan/689423/2022, BA.5 variant) were provided by the Taiwan Centers for Disease Control, Ministry of Health and Welfare, and propagated using Vero E6 cells supplemented with 2% FBS. Passage-3 virus was used for all the studies described here. Viral stocks were contamination-free, and viral titers were determined by plaque assay, followed by storage of aliquots at −80°C until further use in experiments.




2.2 Participants

Fifty adult participants (aged 27–63 years) with good physical health (mild-to-moderate well-controlled comorbidities were permitted) were enrolled between March 2022 and December 2022 in the Tri-Service General Hospital in Taiwan. According to the primed COVID-19 vaccines they had received, the participants were subdivided into three groups: AAM (n = 18), AMM (n = 16), and MMM (n=16). Participants in AAM had received two standard prime doses of AZ (0.5 mL/dose containing 5 × 1010 viral particles via intramuscular injection) followed by a single dose of Mod (100 μg administered at 0.5 mL via intramuscular injection). The median durations between the two doses of AZ and the single booster of Mod were 35 and 89 days, respectively. Participants in AMM had received one standard prime dose of AZ (0.5 mL/dose containing 5 × 1010 viral particles via intramuscular injection) followed by two doses of Mod (100 μg administered at 0.5 mL via intramuscular injection). The median durations between the one dose of AZ and two doses of Mod were 80 and 92 days, respectively. Participants in MMM had received one standard prime dose of Mod (100 μg administered at 0.5 mL via intramuscular injection) followed by two doses of Mod (100 μg administered at 0.5 mL via intramuscular injection). The median durations between the one dose of Mod and two doses of Mod were 80 and 92 days, respectively. Blood samples were collected 180-190 days after receiving the three vaccine doses.




2.3 Enzyme-linked immunosorbent assay

Serum SARS-CoV-2 anti-receptor-binding domain (RBD) and anti-nucleocapsid immunoglobulin G (IgG) antibodies were assessed by enzyme-linked immunosorbent assay (ELISA) as previously described (23). In brief, ninety-six-well plates were coated with SARS-CoV-2 RBD and Nucleocapsid protein (5 μg/mL), incubated at 4°C overnight: (1) wild-type (WT): SARS-CoV-2 (COVID-19) Spike RBD protein, His tag (active) (GTX136090-pro, GeneTex), (2) BA.1: SARS-CoV-2 (COVID-19) Spike RBD Protein, Omicron/BA.1 variant, His tag (GTX136716-pro, GeneTex), (3) BA.2: SARS-CoV-2 (COVID-19) Spike RBD Protein, Omicron/BA.2 variant, His tag (GTX136905-pro, GeneTex), (4) BA.4/5: SARS-CoV-2 (COVID-19) Spike RBD Protein, Omicron/BA.4/5 variant, His tag (GTX137098-pro, GeneTex), (5) BQ.1: SARS-CoV-2 (COVID-19) Spike RBD Protein, Omicron/BQ.1 variant, His tag (GTX137879-pro, GeneTex), (6) XBB.1: SARS-CoV-2 (COVID-19) Spike RBD Protein, Omicron/XBB.1 variant, His tag (GTX138115-pro, GeneTex), and (7) Nucleocapsid: SARS-CoV-2 (COVID-19) Nucleocapsid Protein, His tag (GTX135592-pro, GeneTex). After incubation, the plates were washed once with wash buffer and blocked with 10% bovine serum albumin (BSA) (Cyrusbioscience) per well for 2 h at room temperature. Heat-inactivated serum was serially diluted fourfold with 1% BSA at 1:50 and added to the wells, and the plates were incubated for 2 h at room temperature. After washing, anti-human IgG-horseradish peroxidase (1:100,000) (GTX26759, GeneTex) was added to the plates and incubated for 1 h at room temperature. After washing, 3,3’,5,5’-tetramethylbenzidine (TMB) substrate (Invitrogen) was added to each well and incubated for 5 min, and the reaction was stopped with 1 M sulphuric acid. Optical density (OD) was measured at 450 nm using an ELISA reader (BioTek). Endpoint titers were established using a nonlinear sigmoidal four-parameter logistic (4PL) model curve fit to calculate the reciprocal serum dilution that reached the OD450 values of the pre-pandemic sera + 3 SD.




2.4 Spike plasmid cloning and SARS-CoV-2 pseudovirus production

A pseudovirus carrying the variant of concern (VOC) spike protein of SARS-CoV-2 was constructed, as previously described. In brief, 60-μL Lipofectamine 3000® transfection reagents (ThermoFisher) were mixed with 500 μL serum-free DMEM, sat at room temperature for 5 min, and subsequently mixed with the following three DNA plasmids that were diluted in 500 μL serum-free DMEM for another 20 min: pLAS3w-FLuc-Ppuro (9.5 μg), pCMV-Δ8.91 (Gag-Pol provider, 6.5 μg), and the indicated spike plasmids (4.5 μg): pcDNA3.1_spike_del19 (Addgene #155297), SARS-CoV-2 Omicron Strain S gene Human codon_pcDNA3.1(+) (B.1.1.529/BA.1) (GenScript # MC_0101274), pcDNA3.3 SARS2 Omicron BA.2 (Addgene #183700), pCAGGS SARS-CoV-2 BA.4/5 Spike (Addgene #186031), pCAGGS SARS-CoV-2 BQ.1.1 Spike (Addgene #193710), and pCAGGS SARS-CoV-2 XBB Spike (Addgene #195287). This DNA–lipofectamine mixture was co-transfected to HEK-293T cells (4 × 106 cells per 10-cm dish) and incubated at 37°C in a 5% carbon dioxide incubator. After overnight incubation for 16 h, the transfected cells were replenished with fresh medium for subculture. At 48 h post-transfection, the pseudovirus containing culture medium was collected by centrifugation at 1,000 × g for 10 min to removes unwanted cells or large debris, followed by passing the clarified medium through a 0.45-μm filter (Millipore Corporation. Billerica, MA, USA). Virus can be stored at 4°C for immediate use or frozen at –80°C. Pseudovirus titers were determined using a p24 ELISA kit (Takara Bio).




2.5 Neutralization assay with pseudotyped SARS-CoV-2 (pVNT50)

BHK-21/ACE2 cells were seeded at a density of 4 × 104 cells/well in 24-well plates 16 h before the experiment. For neutralization assay, 40 μL of heat-inactivated sera was started with a 1:16 dilution in complete medium containing 2% FBS, followed by two-fold serial dilutions in duplicate samples, and then incubation with 40 μL of pseudovirus (1 ng p24) for 1 h at 37°C. On the day of infection, the cells were washed twice with PBS, and 100 μL of serum–virus mixture was added to the cells and incubated for 48 h. The cells were quenched by adding 100 μL of Bright-Glo luciferase substrate (Promega) directly to each well, and the luciferase activity was measured using a Synergy H4 luminometer (BioTek). Background values, monitored from uninfected cells, were consistently below 400 relative luminescence units, and pre-pandemic sera were used as the negative control for the neutralization assay. Sera diluted at 1:16 provided results in the range of the background relative to light unit levels. A pVNT50 > 1:16 serum dilution was regarded as positive.




2.6 Neutralization assay with infectious SARS-CoV-2 (PRNT50)

Serum samples were heated at 56°C for 30 minutes to inactivate complement; two-fold serial dilutions, starting at a concentration of 1:5, were mixed with an equal volume of viral solution containing 100 PFU of SARS-CoV-2. The serum-virus mixture was incubated for 1 hour at 37°C in a humidified atmosphere with 5% CO2. After incubation, the mixture at each dilution was added to Vero E6 cells and incubated at 37°C for 1 hour. Cells were subsequently cultured with DMEM containing 2% FBS and 1.4% methylcellulose for 72 hours. After culturing, plaques were stained and counted. Neutralizing antibody titers were defined as the reciprocal of the maximum dilution of serum that reduced the virus titer by 50% compared to the negative control sera, and PRNT50 below 1:5 serum dilution was considered negative.




2.7 Isolation of peripheral blood mononuclear cells

Peripheral blood mononuclear cells (PBMCs) derived from the participants were isolated from anticoagulant-treated whole blood using Ficoll-Paque™ PLUS density gradient medium (Cytiva #17144003) as previously described (23). For isolate PBMCs, blood diluted with PBS was gently layered over an equal volume of Ficoll in a Falcon tube and centrifuged for 30 min at 400 × g without braking. The PBMCs were gently removed using a Pasteur pipette and added to a warm medium or PBS to remove any remaining platelets. The pelleted cells were counted, and the percentage viability was estimated using trypan blue staining. The isolated PBMCs were stored in liquid nitrogen until use in assays.




2.8 Activation-induced marker assay

Cryopreserved Peripheral blood mononuclear cells (PBMCs) were thawed and washed with RPMI 1640 medium containing human AB serum (Sigma-Aldrich), L-glutamine (Gibco), and HEPES buffer (Gibco). The cells were then plated in U-bottom 96-well plates at 1 × 106 cells per well and incubated overnight. PBMCs were stimulated with peptide pools of SARS-CoV-2 spike WT (PepTivator® SARS-CoV-2 Prot_S, Miltenyi Biotec), BA.1 variant (PepTivator® SARS-CoV-2 Prot_S B.1.1.529/BA.1 Mutation Pool, Miltenyi Biotec), or BA.5 variant (PepTivator® SARS-CoV-2 Prot_S B.1.1.529/BA.5 Mutation Pool, Miltenyi Biotec), along with co-stimulation antibodies. Positive control cells were stimulated with phytohemagglutinin (ThermoFisher), and negative control cells were treated with DMSO in PBS.




2.9 Flow cytometry analysis

After 24 hours of stimulation, PBMCs were washed and stained with Zombie Red Fixable Viability Dye (BioLegend), followed by staining with antibodies against specific markers. The markers included anti-hCD3 BV510, anti-hCD4 BV605, anti-hCD8 FITC, anti-hCD134 (OX40) BV421, anti-hCD137 APC, anti-hCD69 PE-Cy7, anti-hCD197 (CCR7) PerCP-Cy5.5, and anti-hCD45RA APC-Cy7 (BioLegend). Flow cytometry analysis was conducted using the Attune™ NxT Flow Cytometer, and the gating strategy can be found in Supplementary Figure 3.




2.10 Enzyme-linked immunosorbent spot assay

The amount of antigen-specific interferon (IFN)-γ- or interleukin (IL)-2-secreting T cells was evaluated by enzyme-linked immunosorbent spot (ELISpot) assays as previously described (22). The mean SFC value of duplicate peptide pool-stimulated PBMCs was calculated and normalized by subtracting the mean of the negative control replicates (control medium), and the cut-off value for background T-cell responses was defined as the mean SFC value of seronegative PBMCs derived from healthy unvaccinated donors + 3 SD (8.5 SFC/106 PBMCs). The results are expressed as SFC per million PBMCs.




2.11 Ethics

This study was approved by the Institutional Review Board of Tri-Service General Hospital (TSGHIRB No. B202105097). Informed consent was obtained from all the enrolled participants. Work with infectious SARS-CoV-2 has been approved by the Institutional Biosafety Committee (IBC) and was performed in the high biocontainment Biosafety Level 3 (BSL-3) facilities of the Institute of Preventive Medicine (IPM), National Defense Medical Center (NDMC), which are approved for such use by the Taiwan Centers for Disease Control, under license D1-109-0030#1123 and D1-111-0017#2028 to institutional guidelines.




2.12 Statistical analyses

Statistical analyses were performed using GraphPad Prism version 5. Anti-RBD IgG titers and pVNT50 values are presented as medians and IQRs. A nonlinear sigmoidal 4PL model was used to determine the endpoint titers of anti-RBD IgG and pVNT50 in each serum sample. The statistical significance of the endpoint titers and pVNT50 was measured among experiments using a one-way analysis of variance (ANOVA) with Tukey’s multiple comparison test. One-way ANOVA performed the statistical significance of the T cell AIM assay with a Tukey’s post-hoc test for multiple pairwise comparisons.





3 Results



3.1 Participants characteristics

Blood samples were collected from 50 vaccinated individuals between March 2022 and December 2022. In group AAM, 10 (55.6%) were male and 8 (44.4%) were female, with a median age of 43.5 years. In group AMM, 8 (50%) were male and 8 (50%) were female, with a median age of 44.5 years. In group MMM, 9 (56.3%) were male and 7 (43.7%) were female, with a median age of 43.5. Only 38 participants above were involved in the T cell AIM assay. All 50 participants were monitored to be uninfected by using anti-nucleocapsid ELISA. Detailed information can be found in Table 1.


Table 1 | Demographic and clinical characteristics of participant enrolled in this study.

[image: A table listing individuals categorized by gender, age, underlying disease, and vaccination schedule. It includes intervals between doses and days collected after the third dose, with nucleocapsid ELISA results. All ELISA results are negative. Vaccination schedules are designated as AAM and MMM, indicating different combinations of AstraZeneca and Moderna vaccines.]



3.2 Decline in RBD-specific antibody titers across SARS-CoV-2 variants in vaccinated individuals

Inducing antibodies targeting the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein is crucial for blocking virus infection. Thus, we determined the RBD-specific IgG titers of individuals with different vaccination schedules against different SARS-CoV-2 variants using ELISA (Figure 1). In the AAM group, the mean endpoint titers against WT, BA.1, BA.2, BA.4/5, BQ.1, and XBB.1 were 16,353, 3,630, 2,004, 2,011, 1,051, and 729.8 respectively (Figure 1A). Similarly, in the AMM group, the mean endpoint titers against WT, BA.1, BA.2, BA.4/5, BQ.1, and XBB.1 were 15,773, 3,304, 1,123, 804.8, 427.7, and 304.5 respectively (Figure 1B). The MMM group exhibited the highest antibody titers against the WT spike, with mean endpoint titers of 78,352, 6,983, 6,359, 1,490, 781.2, and 545.1 against WT, BA.1, BA.2, BA.4/5, BQ.1, and XBB.1, respectively (Figure 1C). Overall, across all groups, we observed a decline in RBD-specific IgG titers against the BA.1, BA.2, BA.4/5, BQ.1, and XBB.1 variants compared to the WT (Tukey’s multiple comparisons test p.adj <0.0001). When comparing the vaccine regimens, the MMM group had the highest antibody titer against the WT, BA.1, and BA.2 variants compared to the AAM or AMM group. However, when confronted with the BQ.1 and XBB.1 variants, the MMM group did not display a comparable antibody titer to the AAM or AMM group, suggesting that the antibodies induced by the WT vaccine may lose their ability to effectively recognize the Omicron BQ.1 and XBB.1 spike proteins, which harbors a significant number of mutations in the RBD.

[image: Bar charts A, B, and C display endpoint titers for different groups (WT, BA.1, BA.2, BA.4/5, BQ.1, XBB.1) at eight months. Each chart represents a different condition: AAM, AMM, and MMM, with statistical significance indicated by asterisks. The titers vary across groups, showing differences in response levels.]
Figure 1 | Decreases in RBD-recognizing antibodies against Omicron variants across all vaccination groups. (A–C) Measurement of anti-RBD antibody titers against ancestral spike WT (grey), Omicron variants BA.1 (orange), BA.2 (green), and BA.4/5 (blue), BQ.1 (purple), and XBB.1 (red) by indirect ELISA using serum from various vaccine combination groups: AAM (2X AstraZeneca + 1X Moderna) (A), AMM (1X AstraZeneca + 2X Moderna) (B), and MMM (3X Moderna) (C). Blood samples were collected eight months post-vaccination after the final vaccine dose (8m). AAM (n = 18), AMM (n = 16), and MMM (n = 16). Duplicates were performed for each tested sample. Statistical significance was calculated among experiments by one-way ANOVA with a Tukey’s post-hoc test for multiple pairwise comparisons. The dotted line represents the cut-off value for each assay. Asterisks indicate statistical significance, *p.adj ≤ 0.05, **p.adj ≤ 0.01, ***p.adj ≤ 0.001, **** p.adj < 0.0001.




3.3 Reduction in neutralizing activity of vaccinated individuals’ sera against SARS-CoV-2 variants

Next, we measured neutralizing titers against the emerging variants by using the pseudovirus and infectious virus neutralization assay (Figure 2). The AAM group showed the median of 50% pseudovirus neutralization titer (pVNT50) values of 2,104 (WT), 424.6 (BA.1), 141.7 (BA.2), 109.2 (BA.4/5), 66.18 (BQ.1.1), 66.12 (XBB.1). Similarly, the AMM group exhibited mean pVNT50 values of 1,867 (WT), 448.9 (BA.1), 154.5 (BA.2), 111.8 (BA.4/5), 62.53 (BQ.1.1), and 52.18 (XBB.1), and the MMM group had mean pVNT50 values of 8,330 (WT), 1,064 (BA.1), 897.4 (BA.2), 531.0 (BA.4/5), 114.1 (BQ.1.1), and 80.60 (XBB.1) (Figure 2A). Significant differences in neutralizing activity were observed when comparing the WT-induced polyvalent sera against the tested variants (WT, BA.1, BA.2, BA.4/5, BQ.1.1 and XBB.1) across different vaccination combinations (AAM, AMM, and MMM group), with the most substantial reduction in neutralizing antibody titers against the XBB.1 variant in the AAM, AMM, and MMM group, with a mean fold decrease of 31.8, 35.8 and 103, respectively (Figure 2A). Besides, the MMM group had the best neutralizing effect against the WT, BA.1, BA.2 and BA.4/5 compared to the AAM or AMM group (Supplementary Figures 1A-D). However, when faced with the BQ.1.1 and XBB.1 variants, which has accumulated a vast number of mutations in the RBD region, the neutralization titers are significantly reduced, regardless of the vaccination schedules (Supplementary Figures 1E, F).

[image: Three scatter plots display neutralization titers (PVNT50 and PRNT50) for different variants at 8 months (8m) post-vaccination. Chart A shows AAM, AMM, and MMM groups for various variants, indicating titers with shapes and colors. Chart B shows PRNT50 for AAM, AMM, and MMM with differences highlighted. Statistical significance is marked with asterisks.]
Figure 2 | Robust resistance of Omicron variants to neutralization induced by diverse vaccination combinations. (A, B) Examination of pseudovirus neutralization (pVNT50) (A) and infectious SARS-CoV-2 neutralization (PRNT50) (B) against ancestral spike WT (grey), Omicron variants BA.1 (orange), BA.2 (green), BA.4/5 (blue), BQ.1.1 (purple), and XBB.1 (red) (A), and WT, Omicron BA.1, and BA.5 (B). The neutralization tests were conducted using sera from the AAM (n = 18), AMM (n = 16), and MMM (n = 16) vaccination groups, as previously described in Figure 1. Duplicates were performed for each tested serum. Statistical significance was calculated among experiments by one-way ANOVA with Tukey’s multiple comparison test. The dotted line represents the cut-off value for each assay. Asterisks indicate statistical significance, ****p.adj < 0.0001.

In addition, we further evaluated the neutralizing activity by using the infectious virus neutralization assay (Figure 2B). The mean 50% plaque reduction neutralization test (PRNT50) values for the AAM group were 3,057 for the WT strain, 247.2 for the BA.1, and 93.6 for the BA.5 variants. Similarly, for the AMM group, the mean PRNT50 values were 3,041 for WT, 259.5 for BA.1 and 100.7 for BA.5. The MMM group exhibited mean PRNT50 values of 9,086 for WT, 847.5 for BA.1 and 310.5 for BA.5, showing the best neutralizing effect against the WT, BA.1 and BA.5 compared to the AAM or AMM group (Figure 2B). A significant reduction in the mean PRNT50 values for the BA.1 and BA.5 variant compared to WT was observed across different vaccine combinations. The AAM, AMM, and MMM groups showed approximately 12-fold, 11-fold, and 10.5-fold reductions for BA.1, and 32-fold, 30-fold, and 29.3-fold reductions for BA.5, respectively, in neutralizing activity compared to WT (Figure 2B). The detailed pVNT50 and PRNT50 values were summarized in the Supplementary Table 1. Overall, our findings suggest that the Omicron variants may possess specific mutations or epitope changes that affect the recognition and binding of neutralizing antibodies induced by the evaluated vaccination regimens.




3.4 Cellular immune responses to WT and Omicron variants

Cellular immune responses, including CD4+ and CD8+ T cell responses, play a crucial role in protecting against different SARS-CoV-2 variants infection. Thus, we next assessed spike-specific cellular immune responses using the AIM (activation-induced markers) assay (Figure 3; Supplementary Figures 3, 4) and analyzed the memory phenotype within SARS-CoV-2-reactive AIM+ CD4 and CD8 T cells (Figure 4; Supplementary Figure 5). The PBMCs from 38 vaccinated individuals (16 from AAM, 12 from AMM, and 10 from MMM) within the participants from previous results were involved in the following experiments, allowing for simultaneous tracing of both humoral and cellular responses in the vaccinated individuals.

[image: Flow cytometry plots and bar graphs analyzing T cell activation. Top row shows CD4+ T cell activation across conditions: DMSO, WT, BA.1, BA.5, and PHA using OX40-BV421. Bottom row shows CD8+ T cell activation with CD137-APC and CD69-PE-Cy7. Graphs B and C display AIM+ CD4+ and CD8+ T cell percentages, respectively, comparing WT, BA.1, and BA.5, with statistical significance indicated by asterisks and labels of **, ***, and ns (not significant).]
Figure 3 | T cell responses of vaccinees against ancestral spike WT and variants BA.1 and BA.5. (A) Representative FLOW dot plots for spike-specific CD4+ and CD8+ T cells by the expression of OX40+CD137+ (blue) and CD69+CD137+ (red), respectively. PBMCs from vaccinees were stimulated with the peptide pools ancestral spike WT, the variants BA.1 and BA.5. DMSO and PHA were used as negative and positive controls, respectively. The gating strategy for the AIM assay is illustrated by representative graphs (Supplementary Figure 3A). (B, C) Percentages of AIM+ CD4+ (OX40+CD137+) (B) and AIM+ CD8+ (CD69+CD137+) T cells (C). Samples PBMCs from all 38 vaccinees including AAM (n = 16), AMM (n = 12), and MMM (n = 10) were analyzed together here. Statistical significance was calculated among experiments by one-way ANOVA with a Tukey’s post-hoc test for multiple pairwise comparisons. Asterisks indicate statistical significance, **p.adj ≤ 0.01, ***p.adj ≤ 0.001. ns, not significant.

[image: Flow cytometry dot plots and bar graphs analyzing CD4+ and CD8+ T cell subsets under different conditions: DMSO, WT, BA.1, BA.5, and PHA. Dot plots show subpopulations by CD45RA and CCR7 markers. Bar graphs compare the percentages of different T cell memory subsets across conditions, highlighting statistical significance with asterisks.]
Figure 4 | Memory phenotypes of the spike-specific T cells from vaccine recipients against ancestral spike WT and Omicron variants. (A) Representative FLOW gating plots for memory subsets naïve (CD45RA+CCR7+), central memory (CD45RA-CCR7+), effector memory (CD45RA-CCR7-), and terminally differentiated effector memory (CD45RA+CCR7-) on the bulk CD4+ and CD8+ T cells and the AIM+ subsets (blue for CD4+ and red for CD8+, respectively), responding to the ancestral spike WT, Omicron variants BA.1 and BA.5 peptide pools stimulation. (B, C) Frequencies of memory subsets TNaïve, TCM, TEM, and TEMRA in bulk (purple) and AIM+ subsets induced by SARS-CoV-2 ancestral spike WT (grey), variants BA.1 (orange), or BA.5 (blue) on CD4+ (B) or CD8+ (C) T cells from vaccine recipients (n=38). Statistical significance was calculated among experiments by 2way ANOVA with a Tukey’s post-hoc test for multiple pairwise comparisons. Asterisks indicate statistical significance, *p.adj ≤ 0.05, **p.adj ≤ 0.01, ***p.adj ≤ 0.001, **** p.adj < 0.0001.

Flow cytometry was used to detect AIM expression on CD4+ (OX40+CD137+) and CD8+ (CD69+CD137+) T cells (Figure 3A; Supplementary Figure 3A). The mean percentages of AIM+ CD4+ T cells stimulated with spike WT, BA.1, and BA.5 peptide pools were 0.42%, 0.18%, and 0.21%, respectively, while the mean percentages of AIM+ CD8+ T cells under peptide stimulation were 0.21%, 0.18%, and 0.15% (Figures 3B, C). These results indicated that compared to WT, CD4 T cell reactivity against BA.1 and BA.5 showed significant reductions, with a 2.3-fold and 1.9-fold decrease, respectively. Besides, we observed a similar reduction in the AAM group when comparing the Omicron variants to the WT, not only in AIM expression on CD4+ T cells but also in the secretion of IFN-γ and IL-2 detected by ELISPOT assays (Supplementary Figures 2, 3). Unlike the results from the AIM+ CD4+ assay, there was no significant difference detected in the mean percentages of AIM+ CD8+ T cells among the WT, BA.1, and BA.5 spike treatment groups (Figure 3C), suggesting that CD8+ T cells showed considerable cross-reactivity to Omicron even 8 months after vaccination. Moreover, we found that the population of AIM+ CD8+ T cells remained consistently higher in the MMM group than in the AAM group, whereas similar results could not be found in AIM+ CD4+ T cells (Supplementary Figure 4). The detailed T cell reactivities were summarized in the Supplementary Table 2.

We further explored memory phenotypes within AIM+ CD4+ and CD8+ T cell subsets among vaccinated individuals with diverse regimens, including naïve T cells (TNaïve), central memory T cells (TCM), effector memory T cells (TEM), and CD45RA+ effector memory T cells (TEMRA) in response to WT, BA.1 or BA.5 variants (Figure 4 and Supplementary Figure 5). 8 months after receiving three vaccine doses, the CD4+ spike-specific memory T cells were primarily TCM and TEM, while CD8+ subsets were mainly TEM and TEMRA, excluding naive cells. In CD4+ T cells, we noted a decline in the naïve population and a preferential enrichment in the TCM and TEM populations compared to the bulk counterpart (Figures 4A, B). Conversely, for CD8+ T cells, the difference was less pronounced. However, WT spike-specific AIM+ CD8+ T cells exhibited significantly higher proportions of TEMRA and lower TEM percentages than the bulk population (Figures 4A, C). When focusing on distinctions between the variants, we noted a rise in the population of TEM cells in response to Omicron variants compared to WT, coupled with a decrease in TNaïve cells. The detailed memory phenotypes of T cell subsets were summarized in the Supplementary Table 3.

Across varying vaccine combinations, memory subsets showed consistent trends: diminished naïve T cells and increased effector memory in CD4+ T cells (Supplementary Figure 5, left panels), with fewer differences observed in CD8+ T cells between original WT and variants (Supplementary Figure 5, right panels). In summary, these findings offer additional insights into T cell memory phenotypes in vaccinated individuals primed by the ancestral WT spike protein, revealing unique subsets that may contribute to long-term cross-reactive immunity against Omicron variants.





4 Discussion

Despite the availability of vaccines, the pandemic has not been fully controlled, and infections are as high as ever through Omicron. Thus, in this study, we examined a detailed analysis of the humoral and cellular immunities for up to 8 months against SARS-CoV-2 WT and Omicron variants after different triple vaccinations in the Taiwanese population.

Based on our ELISA (Figure 1) and pseudovirus neutralization assays (Figure 2A), a significant wane in RBD-specific IgG titers and pVNT50 values against Omicron variants, such as BA.1, BA.4/5, BQ.1.1 and XBB.1, were observed in all participants compared to WT. Moreover, the PRNT50 values of Omicron variants BA.1 and BA.5 were also significantly lower than WT upon infectious virus neutralization assays (Figure 2B). The evasion of humoral immune responses may be attributed to the significant changes in the Spike protein of Omicron variants compared with WT (24, 25). These results may raise some concerns about the long-term protection of future emerging variants of SARS-CoV-2.

In addition to the neutralizing activity, we also found that the AIM+ CD4+ responses decline rapidly from WT to omicron variants (Figure 3B). However, the AIM+ CD8+ population (Figure 3C) and memory subsets of CD4+ and CD8+ T cells (Figure 4) responding to WT and the variants BA.1, and BA.5 lineages remained largely unaffected. Furthermore, we discovered an increase in SARS-CoV-2-specific TCM and TEM in CD4 T cells (Figure 4B), as well as TEMRA subsets in CD8 T cells (Figure 4C), both TEM and TEMRA cells play critical roles in antiviral immunity (26, 27). Previous studies showed that transcriptional signature in long-lived memory CD8+ T cells after acute SARS-CoV-2 infection supports the notion that inducing TEMRA in response to variant spike stimulation may sustain long-term protection despite ongoing variant emergence (28, 29). Some studies revealed that TEM and TCM subsets of SARS-CoV-2–specific CD4+ T cells were induced after the infection, and the population can remain over half a year (30, 31). Notably, we observed an increase in the proportion of Omicron-specific TEM cells in CD4 T cells compared to the proportion against the WT (Figure 4B; Supplementary Figure 5, left panels). The results showed that, despite the significant drop in AIM+ CD4+ T cells against Omicron variants (Figure 3B), the larger proportion of effector memory cells may still offer sustainable protection for up to 8 months. (Figure 4B). These results offer some evidence that overall T cell responses are not significantly disrupted by the Omicron variants BA.1 and BA.5. However, it remains intriguing to monitor cellular immunity against evolving Omicron variants, such as BA.2, BQ.1.1 or XBB.1, in individuals who have received triple vaccines without infection. Unfortunately, this experiment is currently inaccessible, as a large number of PBMCs from study participants were utilized in the Figures 3 and 4, we don’t have enough PBMCs to perform with the remaining variants such as BA.2, BQ.1.1 or XBB.1, etc. Moreover, since Taiwan has been open for a while with few infection-free cases, difficulties have arisen in recruiting additional participants in this study.

Previous studies have reported that mRNA-based vaccines induce higher neutralization abilities (32, 33) and CD8+ T cell responses (34, 35) than vector-based vaccines after one or two vaccination doses. However, it remains to be evaluated how well-vaccine-induced immunity is preserved over time after receiving three doses of vaccines, especially for the circulating Omicron subvariants BQ.1.1 and XBB.1. In our study, we found higher neutralizing activity in the MMM group compared to the AAM group across all variants based on pseudovirus and infectious virus neutralization assays (Figure 2 and Supplementary Figure 1). Furthermore, we observed a similar trend in cellular responses, with the population of AIM+ CD8+ T cells consistently higher in the MMM group (Supplementary Figures 4D-F). Therefore, participants receiving three doses of mRNA-based vaccines might have better protection against SARS-CoV-2 variants even after 8 months. These findings have implications for vaccine-induced immunity and provide insight into potential vaccine strategies.

However, our study has limitations, including small sample sizes obtained through convenience sampling. Additionally, the age range of our study cohort (27 to 63 years) limits the generalization of the immunogenicity results to children, older populations, and individuals of non-Asian descent. We also used overlapping peptide pools to stimulate PBMCs. While minor amino acid changes within peptide sequences can affect T cell receptor (TCR) recognition and major histocompatibility complex (MHC) binding, we could not pinpoint the specific changes primarily influencing variant-related T cell responses. Moreover, our cohorts were predominantly Taiwanese individuals, reflecting our recruitment pool. Notably, MHC allele prevalence varies across regions, and the preference of specific MHC-I or MHC-II molecules for presenting foreign peptides impacts immune responses to foreign antigens. Given these cohort constraints, we may not generalize memory T cell subsets’ cross-reactivity to Omicron variants to regions where individuals may express different dominant MHC alleles.




5 Conclusion

Our findings provide an encompassing view of SARS-CoV-2 immunity against WT and evolving Omicron variants. Although the sustained CD8+ T cell responses and the induction of unique memory T cell subsets by Omicron spike protein stimulation demonstrate potential for enduring protection, a significant reduction in the humoral and CD4+ T cell responses against Omicron variants implies that long-term protection may not be sufficient to protect against the reinfection of emerging variants. Thus, receiving another booster dose or getting inoculated with BA.4/5- or XBB.1-containing vaccines may still be the most effective approach to dealing with the virus and the ongoing pandemic.
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Introduction

The coronavirus disease 2019 (COVID-19) pandemic has affected billions of people worldwide, and the lessons learned need to be concluded to get better prepared for the next pandemic. Early identification of high-risk patients is important for appropriate treatment and distribution of medical resources. A generalizable and easy-to-use COVID-19 severity stratification model is vital and may provide references for clinicians.





Methods

Three COVID-19 cohorts (one discovery cohort and two validation cohorts) were included. Longitudinal peripheral blood mononuclear cells were collected from the discovery cohort (n = 39, mild = 15, critical = 24). The immune characteristics of COVID-19 and critical COVID-19 were analyzed by comparison with those of healthy volunteers (n = 16) and patients with mild COVID-19 using mass cytometry by time of flight (CyTOF). Subsequently, machine learning models were developed based on immune signatures and the most valuable laboratory parameters that performed well in distinguishing mild from critical cases. Finally, single-cell RNA sequencing data from a published study (n = 43) and electronic health records from a prospective cohort study (n = 840) were used to verify the role of crucial clinical laboratory and immune signature parameters in the stratification of COVID-19 severity.





Results

Patients with COVID-19 were determined with disturbed glucose and tryptophan metabolism in two major innate immune clusters. Critical patients were further characterized by significant depletion of classical dendritic cells (cDCs), regulatory T cells (Tregs), and CD4+ central memory T cells (Tcm), along with increased systemic interleukin-6 (IL-6), interleukin-12 (IL-12), and lactate dehydrogenase (LDH). The machine learning models based on the level of cDCs and LDH showed great potential for predicting critical cases. The model performances in severity stratification were validated in two cohorts (AUC = 0.77 and 0.88, respectively) infected with different strains in different periods. The reference limits of cDCs and LDH as biomarkers for predicting critical COVID-19 were 1.2% and 270.5 U/L, respectively.





Conclusion

Overall, we developed and validated a generalizable and easy-to-use COVID-19 severity stratification model using machine learning algorithms. The level of cDCs and LDH will assist clinicians in making quick decisions during future pandemics.





Keywords: COVID-19, mass cytometry by time of flight (CyTOF), classical dendritic cells, lactate dehydrogenase, severity stratification, machine learning, decision-making



Graphical Abstract | [image: A flowchart illustrates a COVID-19 stratification model comprising two main steps. Step 1 involves comparing COVID-19 patients with healthy volunteers using immuno-phenotyping by CyTOF to determine infection, focusing on disturbed glycolysis and tryptophan metabolism in innate immunity. Step 2 differentiates between mild and critical COVID-19 cases by evaluating clinical manifestations and screening parameters for machine learning, emphasizing decreased circulating dendritic cells (cDCs) and increased lactate dehydrogenase (LDH). Validation cohorts are used for machine learning and validation. The model aims to assist clinicians in decision-making during the next pandemic.]






1 Introduction

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected a global population exceeding 770 million individuals, leading to approximately 7.0 million fatalities (1). Although COVID-19 no longer constitutes a public health emergency of international concern, the whole world should review the lessons learned to prepare for the next pandemic (2). Better allocation of limited health resources, prediction of disease trajectories, and improvement of patient outcomes are essential during this pandemic. Therefore, the identification of critical patients is helpful for clinical management. Patients with critical COVID-19 have poor short- and long-term outcomes, including high in-hospital mortality and more post-acute COVID-19 syndromes (3). To improve preparedness and resilience to emerging threats, it is necessary to develop a generalizable COVID-19 severity stratification model, providing references for guiding the clinical management of the next pandemic.

Current COVID-19 stratification models are primarily based on a series of clinical manifestations, including vital signs, medical history, arterial blood gas results, laboratory tests, and chest imaging abnormalities (4, 5). In 2020, an easy-to-use COVID-19 severity score model was developed using eight commonly available parameters, which showed excellent performance in the identification of high-risk patients (6). However, the pathophysiology of these markers, which can foretell the prognosis of COVID-19 remains unclear. COVID-19 is characterized by a dysfunctional immune response against SARS-CoV-2 (7, 8). Immune-related biomarkers contribute to the understanding of disease progression and optimal treatments. Evidence suggests that severely ill patients show lymphocyte exhaustion (9–11), expansion of monocytes (12, 13), and cytokine storm (high levels of interleukin-6 [IL-6], C-reactive protein [CRP], and interferons) (14). By combining clinical manifestations and immunological biomarkers, a pathophysiology-based model will provide novel perspectives for clinical severity stratification.

Overall, we aimed to establish a generalizable COVID-19 severity stratification model using machine-learning methods. We aimed to elucidate the key immune signatures of patients with critical COVID-19 using mass cytometry by time of flight (CyTOF). By combining immune signatures and clinical parameters, the machine learning model is expected to improve our understanding of critical COVID-19 and provide references for quick decision-making during future pandemics.




2 Materials and methods


2.1 Study design

To prepare for the next COVID-19 pandemic, we established a clinical severity stratification model using machine learning with immune signatures. Three COVID-19 cohorts (one discovery cohort and two validation cohorts) and 16 age- and sex-matched healthy volunteers (negative for SARS-CoV-2 and virus-specific Immunoglobulin M [IgM] and Immunoglobulin G [IgG], as indicated by the reverse transcription-polymerase chain reaction [RT-PCR] test) were included in this study. According to the clinical severity classification criteria (Supplementary Table S1), which was modified from World Health Organization guidelines (2), patients in the discovery cohort were classified into mild and critical cases. We screened potential variables by longitudinally comparing the levels of anti-SARS-CoV-2 antibodies, inflammatory cytokines, plasma complement components, and cellular immune signatures between critical and mild cases. A self-designed 42-parameter panel, including nine energy metabolism enzymes, was applied to phenotypic immune signatures using CyTOF technology. The most clinically relevant immune signatures and plasma parameters were introduced into machine learning.




2.2 Patient cohorts


2.2.1 Discovery cohort and sample collection

Patients who met the following inclusion criteria and were admitted to our surgical intensive care unit (ICU) between December 2021 and December 2022 were enrolled in the discovery cohort (n = 39, with 59 samples). Inclusion criteria were adults aged >18 years, first diagnosed with SARS-CoV-2 genome positivity using RT-PCR test in the previous 96 h, and sufficient remaining blood after regular laboratory tests on the first day post-admission. The exclusion criteria were as follows: age < 18 years; pregnancy; breastfeeding; existence of any pre-existing and transmissible diseases, such as human immunodeficiency virus, tuberculosis, and syphilis; mental illnesses; or taking psychotropic drugs. Basic information included comorbidities, in-hospital mortality, Murry lung injury score, and length of mechanical ventilation (Table 1).


Table 1 | Clinical characteristics of COVID-19 discovery cohort.
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Longitudinal (on days 1, 3, and 7 post-admission) blood samples were collected for analysis. Briefly, 2 mL peripheral blood samples were collected and delivered immediately to the lab at 4°C to gain the plasma and peripheral blood mononuclear cells (PBMCs). To avoid omitting potentially important information, both the absolute cell counts and relative cell proportion to PBMCs at all sampling points were analyzed in the present study.




2.2.2 Validation cohort 1

To verify the key role of the most important immune subset (here, cDCs (C07)) in clinical severity stratification, we adopted public open data from Stephenson et al. (15). Briefly, single-cell data from mild (n = 26) and critical (n = 17) cases recruited from Addenbrooke’s Hospital, Royal Papworth Hospital, and University College London (UCL) Hospital were downloaded from https://covid19cellatlas.org/. The proportion of classical dendritic cells (cDCs) to PBMCs was filtered using the R package Seruat (4.0). According to the authors’ description, all patients were SARS-CoV-2 antigen-positive without active hematological malignancy or cancer, known immunodeficiency, sepsis from any cause, or blood transfusion within 4 weeks.




2.2.3 Validation cohort 2

To verify the role of the most important systemic parameter (here, lactate dehydrogenase (LDH)) in clinical severity stratification, all the patients with complete clinical data admitted to other ICUs in our institution (Peking University Third Hospital) between December 2021 and December 2022 were retrospected (n = 840). Inclusion and exclusion criteria were the same with the discovery cohort.





2.3 Clinical laboratory data collection

Indices of interest, including the levels of inflammatory cytokines, complement components in plasma, and anti-SARS-CoV-2 antibodies, were extracted from electronic medical records (Table 2). Specifically, they were the systemic LDH, lactate, complement component 3 (C3), complement component 4 (C4), 50% hemolytic unit of complement (CH50), IgG, immunoglobulin A (IgA), IgM, immunoglobulin E (IgE), interleukin-1 (IL-1), interleukin-2 (IL-2), interleukin-4 (IL-4), interleukin-5 (IL-5), IL-6, interleukin-8 (IL-8), interleukin-9 (IL-9), interleukin-10 (IL-10), interleukin-12 (IL-12), interleukin-13 (IL-13), interleukin-17 (IL-17), interferon-α (IFN-α), interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), granulocyte colony-stimulating factor, granulocyte macrophage colony-stimulating factor, vascular endothelial growth factor, macrophage inflammatory protein-1-α (MIP1-α), and monocyte chemotactic protein-1. All data were collected and verified by two experienced doctors.


Table 2 | Laboratory characteristics of COVID-19 discovery cohort.
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2.4 Mass cytometry

PBMCs were isolated from peripheral blood using Ficoll density gradient centrifugation. To sort cell precipitates, they were combined with 5 mL of fluorescence-activated cell sorting (FACS) buffer (1×phosphate buffered saline supplemented with 0.5% bovine serum albumin) and centrifuged at 400×g for 5 min at 4°C. The supernatant was discarded and the cell precipitates were resuspended in FACS buffer. To examine the samples, the viability rate must be greater than 85%, and the number of cells must not be less than 3×106.

To ensure homogeneous staining, approximately 2×106–3×106 PBMCs were used for each patient. PBMCs were stained with cisplatin (Fluidigm) (0.1 uL, 2 min, room temperature) for live/dead, washed with cell staining buffer (CSB) (Fluidigm), and spun down (300×g, 5 min, room temperature). PBMCs were then incubated with human TruStain FcX (BioLegend) for 10 min at room temperature. After incubation, PBMCs were stained with 50 uL surface receptor staining mix (30 min, room temperature) and washed twice with CSB (300×g, 5 min, room temperature). Next, the PBMCs were incubated with FixL buffer (Fluidigm) for 15 min at room temperature and washed twice with Perm-S buffer (Fluidigm) (800×g, 5 min, room temperature). PBMCs were stained with 50 uL intracellular mix (30 min, room temperature) and washed twice with CSB (800×g, 5 min, room temperature). PBMCs were fixed in 1 mL 1.6% paraformaldehyde. Samples were fixed and permeabilized by incubating 1 mL Fix and Perm buffer (Fluidigm) with 1 uL nucleic acid Ir-Intercalator (Fluidigm) overnight at 4°C. Metal-conjugated antibodies and other reagents are listed in Supplementary Table S2.




2.5 CyTOF data acquisition

Before acquisition, PBMCs were washed twice with CSB and resuspended at a concentration of 1.1×106 cells/mL in the Cell Acquisition Solution (Fluidigm) containing 10% EQ Four Element Calibration Beads (Fluidigm). PBMCs were acquired using a Helios CyTOF Mass Cytometer (Fluidigm) equipped with a SuperSampler fluidics system (Victorian Airships), and data were collected as previously described. fcs files.




2.6 CyTOF data analysis

After acquisition, data were concatenated using the fcs concatenation tool from Cytobank and manually gated to retain live, singlet, and valid immune cells. CytoNorm was used in two steps according to the instructions provided in the R library CytoNorm to normalize the data (16). For the downstream analysis, the fcs files were loaded into R. The signal intensities for each channel were arcsinh-transformed with a cofactor of 5 (x_transf = asinh(x/5)). To visualize high-dimensional data, t-distributed stochastic neighbor embedding analysis (t-SNE) (17) and flow self-organizing map (FlowSOM) (18) algorithms were performed on all samples. Approximately 10,000 cell events in each sample were pooled and included in the t-SNE analysis, with a perplexity of 30 and theta of 0.5. The R t-SNE package for the Barnes Hut implementation of the t-SNE was used in this study. To study the developmental trajectory of natural killer (NK) cells and classical monocytes, dynamic immunometabolic states and cell transitions were analyzed using the Monocle algorithm (19). Data are displayed using the ggplot2 R package.




2.7 Machine learning strategies

Since the target variable (clinical severity) for model training was labelled data, provided by clinical experts. The supervised learning methods are more appropriate than unsupervised-, semi-supervised-, and reinforcement learning methods. By comparing the advantages of different supervised methods (20–30)(Supplementary Table S3), we finally employed AdaBoost, Back Propagation, Gradient Boosting Decision Tree, Random Forest, and Support Vector Machine algorithms to construct classifiers for discriminating patients with critical COVID-19 from mild ones. The important immune and systemic features (cDCs and LDH) were introduced to the model as inputs. Five-fold cross-validation (with four folds for training and one-fold for validation) and external validation were performed. For five-fold cross-validation, all the training data were randomly split into five parts. Each part was considered as the training part and the others were used for validation. Here, we performed the five-fold cross-validation five times and the averaged values of AUC were adopted. For the external validation, Back Propagation algorithm was performed.




2.8 Statistical analysis

Statistical analyses were performed using the R software (v.4.0.4). The normality of patient data was tested using the Shapiro–Wilk normality test. Statistically significant differences between phenotypes were calculated using two-sided multiple Student’s t-tests for variables with a normal distribution and Wilcoxon rank-sum tests for other variables. Spearman’s correlation analysis was performed on significantly different clusters, cytokines, and clinical indicators to assess their correlations using the R package stats (4.1.0). Receiver operating characteristic (ROC) analysis was performed with the R package pROC (1.16.2), and a heatmap was generated with the R package ggplot2 (4.0.5).





3 Results


3.1 Basic information and systemic inflammatory responses of the discovery cohort

A total of 39 individuals diagnosed with COVID-19 (15 mild and 24 critical cases) admitted to our ICU were included in cohort 1 as the discovery cohort to determine potential predictive parameters. As shown in Table 1, the basic information of the critical and mild cases was comparable. The Murry lung injury score, length of mechanical ventilation, and length of ICU stay were significantly high in critical cases (Table 1). Longitudinal comparisons of inflammatory cytokines, antibodies, and complement components revealed that systemic IL-6, IL-12, and LDH levels were important in distinguishing mild cases from critical cases. The variation trends in these parameters were consistent across all sampling points (Table 2).




3.2 Cellular immunometabolic characteristic of patients with COVID-19 differed from healthy volunteers

To acquire a full landscape of the immune signatures of PBMCs and identify the potentially important clusters for the stratification of COVID-19, we performed CyTOF analysis with a 42-parameter panel (consisting of 33 surface markers and 9 intracellular metabolic markers) (Supplementary information, Figure S1). The obtained data were subjected to a FlowSOM clustering algorithm and t-distributed stochastic neighbour embedding (t-SNE) analysis, which enabled the identification of distinct clusters representing different immune cell types. According to the dimensional reduction results of the marker expression level, 34 clusters were obtained (Figure 1A). Then, to provide reference for other similar studies, which may apply different panels, we further classified these 34 clusters into “eleven major immune cell populations” (CD4+ T, CD8+ T, γδT, DPT, DNT, pDC, cDC, NK, NKT, B, and Monocytes), which were often studied (Supplementary information, Table S4; Figure S2).
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Figure 1 | CyTOF analysis of peripheral immune cell subsets in patients with COVID-19 and healthy volunteers. (A) Heatmap showing normalized expression of 42 markers for 34 identified clusters. Relative frequency of each cluster is displayed as the right bar. (B) T-SNE maps displaying the relative distribution of 34 identified clusters across the groups. Immune cells were pooled from 30,000 cellular events in each sample. (C) Boxplots showing the frequencies of differed cell clusters between patients with COVID-19 and healthy volunteers. The center, box and whiskers of the boxplot represent the median, IQR and 1.5 × IQR, respectively. The t-test was used for normally distributed data and the Mann–Whitney U-test was used for non-normally distributed data.

We found that the composition of PBMCs in patients with COVID-19 varied significantly from that in healthy volunteers. The total counts of PBMCs (in per millilitre of peripheral blood) and the counts of the main immune cell types, such as T, B, and NK cells, of patients with COVID-19 decreased significantly. However, the number of monocytes increased (Supplementary information, Figure S2). Comparison of the percentages of all defined 34 clusters further confirmed that, fifteen immune cell subsets were significantly differed between COVID-19 patients and healthy volunteers (Figures 1B, C). Most of these subsets were acquired immune cell subsets and were significantly decreased in COVID-19. In addition, variations in two major innate immune cell subsets (NK cells (C03) and classical monocytes (C12), with the average percentages more than 5% in healthy volunteers) were also found (Figures 1B, C). As the host innate immunity is the first line of defense, we further investigated these two subsets’ metabolic status. As shown in Figure 2, the metabolic markers participating in the process of glucose (such as CS, GLS, PFKFB3, and PDk1_pS241) and tryptophan metabolism (IDO1 and KAT1) were significantly altered in both NK cells (C03) and classical monocytes (C12). The developmental trajectories further demonstrated that under COVID-19, NK cells gradually transformed from C01 to C03, namely, from a relative metabolic steady state to a disturbed state with decreased oxidative phosphorylation but boosted glycolysis and tryptophan catabolism (Figures 2A–C). For classical monocytes, C12 gradually transformed to C09, namely, to tryptophan exhaustion (Figures 2D–F).

[image: Panel A shows a UMAP plot with natural killer cells, highlighting clusters C01 and C03. Panel B provides box plots comparing marker densities in C01 and C03 between healthy and COVID-19 subjects for markers CS, GLS, IDO1, KAT1, and PFKFB3, with p-values indicating statistical significance. Panel C displays UMAP plots for expression of CS, GLS, IDO1, KAT1, and PFKFB3 with color intensity representing expression levels. Panel D features a UMAP plot of classical monocytes, highlighting clusters C09 and C12. Panel E shows box plots for PDK1_pS241, IDO1, and KAT1 markers in clusters C12 and C09. Panel F presents UMAP plots for PDK1_pS241, IDO1, and KAT1 expression levels in classical monocytes.]
Figure 2 | Cellular immunometabolic characteristics of COVID-19-specific immune subsets. (A) Monocle 2 trajectory analysis of NK cells. The monocle plot displays NK cells color-coded by different NK cell clusters. The arrow indicates the pseudotime trajectory of NK cells from a healthy state to COVID-19 infection. C01 was localized at the beginning of the pseudotime trajectory, whereas C03 was at the end of the trajectory. (B) Boxplots showing the density of the cellular metabolic markers (CS, GLS, IDO, KAT1, and PFKFB3) of C01 and C03. (C) Monocle 2 trajectory analysis of cellular metabolic markers of NK cells. Each dot represents one cell and colors represent the expression levels of indicated markers. (D) Monocle 2 trajectory analysis of classical monocytes. The monocle plot displays classical monocytes color-coded by different classical monocytes clusters. The arrow indicates the pseudotime trajectory of classical monocytes from healthy state to COVID-19 infection. (E) Boxplots showing the density of the cellular metabolic markers (CS, GLS, IDO, KAT1, and PFKFB3) of the C12 and C09. (F) Monocle 2 trajectory analysis of cellular metabolic markers of classical monocytes. Each dot represents one cell, and colors represent the expression levels of indicated markers. The center, box and whiskers of the boxplot represent the median, IQR and 1.5 × IQR, respectively. The t-test was used for normally distributed data and the Mann–Whitney U-test was used for non-normally distributed data.




3.3 Distinct cellular immune signatures of critical COVID-19 were identified compared with mild cases

As described in the Methods section, to identify the important clusters distinguishing critical cases from mild cases, we compared the cell counts and percentages of each cluster within PBMCs at all sampling points. In total, five candidate clusters were found, and the differences in cDCs (C07), Tregs (C20), CD4+ Tcm (C24), pDCs (C05), and DPT (C29) were shared by the results from all sampling points and the first day samples (Figure 3A). As the percentages of pDCs and DPT were below 0.5%, they were not considered in subsequent analyses. Next, we investigated whether these clusters were associated with clinical parameters and prognosis. The results demonstrated that the counts of cDCs, Tregs, and CD4+ Tcm were significantly decreased in the critical cases and patients who ultimately died (Figures 3B, C). Their levels were positively or negatively correlated with systemic parameters, lung injuries, and the length of mechanical ventilation (Figures 3D–F, and Supplementary information, Table S5). Within each severity group, the longitudinal analysis showed that the counts of these three clusters were not significantly different among different sampling points (Supplementary information, Figure S3). These findings indicated that altered cDCs, Tregs, and CD4+ Tcm were stable/sensitive predictive biomarkers because their level wouldn’t be significantly influenced by sampling timing and/or transient condition relief. Specifically, cDCs was the most important cluster, negatively correlated with LDH and positively correlated with IL-2, IL-12, TNF-α, and MIP1-α (Figure 3E). Receiver operating characteristic analysis further revealed that the single variable cDCs was effective in predicting critical COVID-19 (Figure 3G). And the level of LDH was the most important systemic parameter because of its strong negative correlation with cDCs, Tregs, and CD4+ Tcm (Figure 3E).
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Figure 3 | Immune and clinical characteristics of patients with critical COVID-19. (A) The candidate clusters distinguishing patients with critical COVID-19 from mild ones. (B, C) Boxplots depicting the cell counts of significantly differed clusters between patients with mild and critical COVID-19 (B), and between survived and dead patients (C). (D) Heatmap showing Spearman’s correlations between the counts of critical COVID-19 key immune clusters and clinical laboratory parameters in all samples. Colors represent Spearman’s correlation coefficient. (E, F) Scatterplots showing correlations between the counts of critical COVID-19 key immune clusters and critical clinical laboratory parameters (E), Murray scores, and length of mechanical ventilation days (F). (G) ROC analysis predicting COVID-19 severity using the counts of critical COVID-19-specific clusters and the level of LDH. The center, box and whiskers of the boxplot represent the median, IQR and 1.5 × IQR, respectively. The t-test was used for normally distributed data and the Mann–Whitney U-test was used for non-normally distributed data.




3.4 Development and validation of clinical severity stratification models based on the immune signatures and plasma parameters of patients with critical COVID-19

Considering the potential of machine learning for disease severity stratification, we developed clinical severity stratification models based on important key clusters (cDCs, Tregs, and CD4+ Tcm) and systemic parameters (LDH, IL-6, IL-12). As we expected, machine learning models with six parameters as inputs showed good effects in predicting clinical severity (Figure 4A). Among these parameters, cDCs and LDH were the most important immune signature and systemic signature, respectively (Figure 4B). The model using cDCs and LDH as individual input also performed well, with an average AUC of approximately 0.8 in the discovery cohort (Figures 4C, D). The validation of machine learning models with single input (with Back Propagation algorithm) further demonstrated that the clinical severity stratification model based on single cDCs had an AUC of 0.77 (Figure 4E). And the model based on systemic LDH had an AUC of 0.88 (Figure 4F). Notably, patients in validation cohort 1 were recruited in 2020 and infected with a different strain compared with the patients in the discovery cohort. These results indicate that our models, based on single biomarker (cDCs or LDH), performed well in COVID-19 severity stratification, with good robustness and generalization.
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Figure 4 | The predictive effects of cDCs and LDH on COVID-19 severity stratification. (A) Performances of COVID-19 severity stratification models based on the six candidate indicators (C07, C20, C24, LDH, IL-6, and IL-12) using five different machine learning algorithms in the discovery cohort. (B) The bar charts showing the contributions of six indicators in Ada, RF, and GBDT, as well as the averaged contributions of the six indicators across the three models. (C, D) Performances of COVID-19 severity stratification models based on the counts of cDCs (C07) (C) and the level of LDH (D) using five different machine learning algorithms in the discovery cohort. Each dot represents an AUC value of 5-fold cross-validation, and the bar shows the averaged AUC values from 5 runs. (E, F) Performances of COVID-19 severity stratification models based on the cDCs (C07) in validation cohort 1 (E), and LDH in validation cohort 2 (F) by Back Propagation algorithm. (G, H) ROC analysis of cDCs (G) and LDH (H) for the COVID-19 stratification in the validation cohorts.




3.5 Reference limits of cDCs and LDH as biomarkers for predicting critical COVID-19

To provide detail reference for clinicians in quick decision-making for the next pandemic, we analyzed the effect of cDCs and LDH in severity prediction in validation cohorts and tried to find out the optimal reference limits. In validation cohort 1 (adopted from Stephenson et al.’s published work (15)), the proportion of cDCs decreased in critically ill participants across the three UK centers (Supplementary information, Figures S4A–C). The percentage of cDCs showed good effects in predicting clinical severity (AUC = 0.74, Figure 4G). The optimal cutoff point was 1.2%, and the sensitivity was 0.93 (95% CI 0.70-0.99). In the validation cohort 2 (adopted from Peking University Third Hospital), similar with the findings in the discovery cohort, significant increase of LDH (Supplementary information, Figure S4D) and its predictive effect was found (AUC = 0.89, Figure 4H). The cutoff point was 270.5 U/L and the sensitivity was 0.92 (95% CI 0.86-0.95). Accordingly, the reference limits of cDCs and LDH for critical COVID-19 were less than 1.2% and more than 270.5 U/L.





4 Discussion

Since the beginning of the SARS-CoV-2 pandemic, numerous researchers have provided important perspectives on the underlying mechanisms of COVID-19 and have developed severity stratification models (31). To provide novel insights and better preparations for the next pandemic, we developed a severity stratification model with good generalizability based on the pathophysiology of COVID-19. Through integrative analysis of immune signatures and clinical manifestations in critical participants, we found that cDCs and systemic LDH levels were the most important factors that determined severity stratification (Figure3G). The key roles of the two indicators were validated using two cohorts. Notably, the machine learning models based on the level of cDCs and LDH showed great potential for predicting critical cases in cohorts infected with different strains (Figures 4E, F). The reference limits of cDCs and LDH as biomarkers for predicting critical COVID-19 were 1.2% and 270.5 U/L, respectively (Figures 4G, H).

According to the current World Health Organization criteria, critical and severe COVID-19 are identified by a bundle of clinical features, including chest imaging characteristics, arterial blood gas parameters, and other clinical symptoms and signs (2). A progressive decrease in peripheral blood lymphocytes, an increase in IL-6, CRP, procalcitonin, and D-dimer are considered biomarkers for COVID-19 severity based on guidelines (32). In the present study, we detected that LDH showed great potential in the early identification of patients with critical COVID-19 (33–36). Although LDH is considered a nonspecific biomarker of inflammation, its elevation is associated with poor outcomes, possibly reflecting the severity of lung damage (37, 38). Furthermore, a large meta-analysis suggested that increased LDH levels following infection correlated with the post-acute respiratory sequelae of COVID-19, showing great potential in predicting long-term COVID-19 (39).

Certain profound immunity alterations took place during COVID-19 infection, and the depletion and dysfunction of lymphocytes were described as the most classical signatures of critical COVID-19 in most articles. Although we also observed decreased Tregs and CD4+ central memory T cells in critical cases, the counts of cDCs contributed the most to predict clinical severity. Several studies have demonstrated the reduction and dysfunction of cDCs in critical COVID-19 (40, 41), our study was supported by these results and further emphasized its key role in severity stratification models. As highly efficient antigen-presenting cells, DC are the key link between innate and adaptive immunity. Several ongoing clinical trials have been assessing the safety and efficiency of DC-based vaccines against SARS-CoV-2 (42, 43). DCs can activate T cell responses and save adjacent cells by secreting type I interferons (44). However, some limitations of DC-based vaccines, such as toxicity, allergenicity, and the possibility of DCs phenotype alterations, have not been resolved (42). Therefore, further studies on DCs as treatable traits are required.

Researches have demonstrated that comorbidities have an impact on the severity of COVID-19 in patients (45). SARS-CoV-2 is more likely to affect older men with comorbidities (46), and the presence of comorbidity is more common in patients with severe COVID-19 (45) than mild patients. Patients with diabetes, cardiovascular diseases, and respiratory diseases, are more likely to present more severe symptoms and complications (33, 47). However, our patients with COVID-19 were all from specialty ICU, who tended to be with a poor underlying functional status and with more comorbidities (Table 1). Accordingly, our conclusions may not be as applicable to those without comorbidities or with a healthy status. This is a limitation of our study, and future studies are encouraged to address this issue.

In summary, we established a severity stratification model for COVID-19 based on integrative analysis of immune signatures and clinical laboratory parameters. This machine-learning model was validated in two cohorts infected with different strains, demonstrating its generalizability and robustness. We hope that our analysis will be beneficial for the early identification of high-risk patients with COVID-19 and provide some references for the next pandemic.
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Background

Carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5), as a typical tumor marker, has been found to exert immunomodulatory effects in many diseases. We previously reported the clinical and molecular evidences supporting that SARS-Cov-2 infected the gastrointestinal (GI) tract and found a reduction of CEACAM5 in COVID-19 patients’ feces which associated with gut dysbiosis. Yet the role of CEACAM5 in GI infection is ill-defined.





Methods

Mice models were established through intraperitoneally injecting with recombinant viral spike-Fc to mimic the intestinal inflammation. We collected duodenum, jejunum, ileum and colon samples after 6h, 2 days, 4 days and 7 days of spike-Fc or control-Fc injection to perform proteomic analysis. Blood was collected from healthy donors and peripheral blood mononuclear cells (PBMC) were separated by density gradient centrifugation, then CD4+ T cells were isolated with magnetic beads and co-cultured with Caco-2 cells.





Results

In addition to intestinal CEACAM5, the expression of tight junction and the percent of CD4+ T lymphocytes were significantly decreased in spike-Fc group compared to control (p < 0.05), accompanied with increased level of inflammatory factors. The KEGG analysis revealed differentially expressed proteins were mainly enriched in the coronavirus disease (COVID-19), tight junction, focal adhesion, adherens junction and PI3K-Akt signaling pathway. Protein–protein interaction (PPI) network analysis identified the interaction between CEACAM5 and Galectin-9 that was also verified by molecular docking and co-IP assay. We further confirmed a reduction of CEACAM5 in SARS-CoV-2 spike stimulated enterocytes could promote the expression of Galectin-9 protein in CD4+T cells. Then it gave rise to the increasing release of inflammatory factors and increased apoptosis of CD4+T cells by inhibition of PI3K/AKT/mTOR pathway. Ultimately intestinal barrier dysfunction happened.





Conclusion

Our results indicated that CEACAM5 overexpression and Galectin-9 knockdown played a protective role in intestinal barrier injury upon spike-Fc stimulation. Collectively, our findings identified firstly that SARS-CoV-2 spike induced intestinal barrier dysfunction through the interaction between CEACAM5 and Galectin-9. The result provides potential therapeutic targets in intestinal barrier dysfunction for treating severe COVID patients.
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1 Introduction

The coronavirus disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), has become one of the greatest global public health concerns since December 2019 (1). Most patients with COVID-19 are asymptomatic or present with mild symptoms (including fever, cough and fatigue), and a small proportion manifest with severe pneumonia even to death (2, 3). Besides pulmonary manifestations, gastrointestinal (GI) symptoms such as diarrhea, abdominal pain, vomiting, and anorexia have been found in COVID-19 patients and firstly reported by our team (4). Our previous study reported that over ten percents of patients simply presented with GI symptoms without any imaging features of COVID-19 pneumonia (4). We also provided molecular evidences with the detection of viral RNA in GI tissue (including esophagus, duodenum and rectum) and stool samples (5). Other studies have also highlighted the importance of GI symptoms in COVID-19 and correlated GI symptoms with disease severity and systemic inflammation (6, 7). During the infection of SARS-CoV-2, the spike proteins are cleaved and activated by transmembrane serine protease 2 (TMPRSS2) and furin (8), which interact with its cellular receptor, angiotensin-converting enzyme 2 (ACE2), to enter and infect host cells (9). Abundant ACE2 expression in GI tract may explain the GI symptoms in COVID-19 patients (10). Kuba et al. (11) found SARS-CoV spike RBD-Fc could bind to ACE2 and downmodulate ACE2 expression, and stimulation with SARS-CoV spike RBD-Fc worsened acid-induced acute lung injury in wild-type mice. As SARS-CoV-2 and SARS-CoV have too many similarities in genome, structure and et al., we have established an animal model mimicking intestinal inflammation upon stimulation with SARS-CoV-2 spike RBD-Fc protein and observed significant intestinal inflammation and co-localization of murine ACE2 with spike RBD-Fc in mice after the stimulation with spike RBD-Fc (12). However, the specific pathogenesis and mechanism of GI symptoms during SARS-CoV-2 infection remains poorly understood.

The intestinal mucosal barrier is mainly composed of mechanical, immune, microbial, and mucous barrier. It is the first defense to prevent intestinal microorganisms and bacterial toxins from entering the systemic circulation. It is found that expression of biomarkers of intestinal injury increased in urine (13) and plasm (14) of COVID-19 patients. Thus it is critical to maintain the integrity of intestinal mucosal barrier for the treatment of COVID-19 patients, especially with GI symptoms. Nevertheless, previous studies about the mechanism of intestinal barrier damage mainly focused on microbial dysbiosis. We and others have observed the altered gut microbiome in COVID-19 patients are characterized by beneficial gut bacteria reduction and opportunistic pathogen enrichment (15–17). Abnormal microbiota-host interplay can result in the disruption of gut epithelium barrier (18, 19). Thus, it’s necessary to further explore the regulatory network of intestinal barrier damage in SARS-CoV-2 infection, which might provide novel strategies to improve the therapeutic efficacy in COVID-19 patients.

Carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5, also known as CEA or CD66e) was firstly reported as a tumor marker for colorectal cancer in 1965 (20). Besides, CEACAM5 has been demonstrated to modulate the systemic immune response through multiple pathways. CEACAM5 expressed on intestinal epithelial cells (IECs) can bind with CD8α on CD8+ suppressor T cells, leading to the inhibition of CD8+ suppressor T cell activation and the increasing proliferation of CD4+ T cells in inflammatory bowel disease (IBD) patients (21, 22). CEACAM5-derived peptide can activate CD8+ regulatory T cells to restore mucosal homeostasis (23). CEACAM5 mutation can inhibit TGF-β signaling and increase cell proliferation and colony formation in colorectal adenocarcinomas (24). Besides, high levels of CEACAM5 might increase the susceptibility of peripheral blood mononuclear cells (PBMCs) to Middle East respiratory syndrome-coronavirus (MERS-CoV) infection and promote disease progression (25). Through fecal multi-omics analysis, we found a decrease in CEACAM5 levels in COVID-19 patients (17). Moreover, expression of CEACAM5 was positively correlated with the abundance of Tyzzerella nexilis (beneficial gut bacteria), but negatively correlated with Bacteroides coprophilus (pathogenic gut bacteria) (17). However, the regulatory role and molecular mechanism of CEACAM5 in intestinal barrier dysfunction upon SARS-CoV-2 infection remains unclear.

Here we discussed the underlying working mechanisms of CEACAM5 in intestinal barrier dysfunction induced by SARS-Cov-2 spike, which may provide promising therapeutic targets for alleviating GI symptoms in COVID-19 patients and further enhance the treatment of SARS-Cov-2 infection.




2 Materials and methods



2.1 Animal experiments

All animal experiments were in accordance with the recommendations approved by the Experimental Animal Ethics Committee of the Fifth Affiliated Hospital of Sun Yat-sen University. C57BL/6J mice aged 7-8 weeks were purchased from Guangdong Medical Laboratory Animal Center (Guangdong, China). Mice models were established after one week of quarantine and acclimatization. After 24 hours of fasting, mice were anesthetized with isoflurane and administrated of 0.5ml acetic acid (1% vol/vol in saline) via enema 5cm proximal to the anus through a polyethylene catheter, held in an upside-down position for 2 minutes and then flushed with 0.5ml PBS enema. Experimental group was injected intraperitoneally with 5μg recombinant spike-Fc containing the receptor binding domain (RBD) (Sino Biological, 40592-V05H, diluted in 200ul PBS) after 16 hours, while control group with 5μg control -Fc (Sino Biological, 10690-MNAH-100, diluted in 200ul PBS). Mice were sacrificed after 6 hours, 2 days, 4 days and 7 days, and blood, intestine and colon samples were collected. A part of the intestine and colon tissues were fixed with 4% paraformaldehyde for histopathological staining, and the remnants were stored at –80°C for subsequent use.




2.2 Hematoxylin–eosin, immunohistochemistry, and immunofluorescence staining

Intestine and colon tissues were fixed with 4% paraformaldehyde, embedded in paraffin, and stained with hematoxylin-eosin (HE) following standard protocol for histopathological analysis. Immunohistochemistry was performed to determine the protein expression of CEACAM5. Briefly, tissue sections were blocked with blocking buffer (Beyotime, P0260) for 30 minutes at room temperature. Then slides were incubated overnight at 4°C with the primary antibodies of CEACAM5 (Abclonal, A12421). After rinsing with PBS, slides were incubated for 30 min at 37°C with HRP Polymer Conjugate (ZSGB-BIO) and observed by microscopy.

Immunofluorescence was used to determine the degree of proliferation in CD4+ T cells. After blocked as previously described, slides were incubated overnight at 4°C with the primary antibodies of CD4 (Servicebio, GB13064-2) and Ki67 (Servicebio, GB111141). The slides were incubated with secondary antibodies (Alexa Fluor®647-conjugated goat anti-rabbit IgG, bs-0296G-AF647; Dylight-550 Goat Anti-rabbit IgG secondary antibody, BA1135) for 1 h at room temperature followed by washing three times with PBST. After counterstaining nuclei with 4’,6-diamidino-2-phenylindole (DAPI), slides were imaged using a fluorescence microscopy (Nikon Eclipse C1). Staining results were evaluated by two independent observers.




2.3 Histological evaluation of the intestine tissues from mice

Histological evaluation was performed by the pathologists and the severity of inflammation was determined as previous described (26). Negative, lack of lesions; mild inflammation, scattered leukocyte infiltration in lamina propria, increased height of proliferating crypts; moderate inflammation, multifocal aggregates of infiltrating leukocytes in lamina propria extending into the submucosa, increased height, and proliferation of mucosa with loss of goblet cells, crypt abscesses detectable; severe inflammation, coalescing aggregates of infiltrating leukocytes expanding lamina propria and submucosa with evidence of crypt dropout.




2.4 Western blotting and co-IP

Total protein extraction and western blotting were performed as described previously (12). The primary antibodies included CEACAM5 (Abclonal, A12421, 1:1000), Galectin-9 (Origene, TA805651S, 1:1000), ZO-1 (Proteintech, 21773-1-AP, 1:1000), PI3K (Beyotime, AF7749, 1:1000), mTOR (Beyotime, AM832, 1:1000), p-mTOR (Beyotime, AF5869, 1:1000), AKT (Beyotime, AA326, 1:1000), and p-AKT (Beyotime, AA329, 1:1000). Also, the secondary antibodies, including anti-rabbit IgG (H+L) and anti-mouse IgG (H+L), were purchased from Proteintech (1:5000). ImageJ software was used to analyze the protein bands. For co-IP, lysates of mice intestinal tissues were immunoprecipitated with IP buffer containing IP antibody-coupled agarose beads, and protein complexes were later subjected to western blotting, while IgG was used as a negative control.




2.5 Cell culture and treatments

Human colonic adenocarcinoma cell line Caco-2 was cultured in Dulbecco’s modified Eagle’s medium (DMEM, Gibco, USA) supplemented with 10% fetal calf serum (FCS, Gibco, USA), 1% penicillin/streptomycin mixture, and incubated at 37°C containing 5% CO2. CEACAM5-shRNA expressing lentiviruses (sh-CEACAM5), CEACAM5 overexpression plasmid and Galectin-9 siRNA plasmids were bought from GeneCopoeia (Guangzhou, China).




2.6 Elisa assay

Serum was collected from 18 severe COVID-19 patients and 18 non-severe COVID-19 patients, 17 spike-Fc RBD mice and 17 control-Fc mice, and serum soluble LPS levels were measured using a human/mouse LPS ELISA Kit (Cloud-Clone Corp, SEB526Ge).




2.7 CD4+ T cell isolation, co-cultured with Caco-2 and flow cytometry analysis

Blood was collected from healthy donors, and peripheral blood mononuclear cells (PBMC) were separated by density gradient centrifugation. Then, CD4+ T cells were isolated with magnetic beads (Biolegend, 480009). The Caco-2 cells were plated in a 6-well plate using RPMI 1640 medium (Gibco, USA) one day ahead. After removing non-adherent cells by washing and changing with fresh medium, CD4+ T cells were added. After 48h, the cell medium was collected and centrifuged to collect CD4+ T cells, while Caco-2 cells were collected after trypsin digestion. Immune cell number and apoptosis were assessed by a CytoFLEX LX flow cytometer (Beckman Coulter) according to the manufacturer’s instructions.




2.8 RNA isolation and qRT-PCR

Total RNA was extracted from samples using an RNA extraction kit (Vazyme, Nanjing, China). Reverse transcription kits (Vazyme, Nanjing, China) were used for reverse transcription of RNA into cDNA. Quantitative real-time PCR (qRT-PCR) was conducted with ChamQ Universal SYBR qPCR Master Mix (Vazyme, Nanjing, China) on Real-Time PCR Detection System (Bio-Rad). The primers designed by Guangzhou IGE Biotechnology (Guangzhou, China) were as indicated in Supplementary Table 1.




2.9 Statistical analysis

Statistical analyses were performed using GraphPad PRISM software v8.4.2. All experiment was repeated three or more times, and experimental data were shown as mean ± standard deviation (SD). The experimental data were tested for homogeneity of variances and normality. Comparisons between two groups were analyzed using Students t-test, and one-way ANOVA was applied in comparisons between multiple groups with homogeneous variance while non-parametric test (The Mann-Whitney test) was used for inhomogeneity. P < 0.05 were considered statistically significant (*p < 0.05, **p < 0.01, ***p < 0.001).





3 Results



3.1 Decreased CEACAM5, tight junction protein and CD4+ T cells and increased inflammatory factors in intestinal tissue after the stimulation with SARS-CoV-2 spike RBD-Fc

To further validate the reduced CEACAM5 expression in feces of COVID-19 patients (17) and explore its biological functions, mice models were established through intraperitoneally injecting recombinant viral spike-Fc containing RBD to mimic the intestinal inflammation (Figure 1A) as we previously reported (12). As expected, the expression of CEACAM5 in intestine of spike RBD-Fc group decreased. (Figure 1B, C). We further examined the intestinal barrier, and found zona occludens 1 (ZO-1) expression in intestine was decreased in spike RBD-Fc stimulated mice compared with control (Figure 1D), which was consistent with the increased level of LPS, a plasma biomarker of intestinal barrier injury, in severe COVID-19 patients compared with non-severe ones (Figure 1E, p < 0.01). To study the local immune responses, we isolated and counted the mononuclear cells from mice intestinal tissues. CD4+T cells of spike RBD-Fc stimulated mice intestine decreased significantly (Figure 1F, p<0.05). Furthermore, we detected the expression level of CD4+ T cells activation-related inflammatory factors and discovered the level of IL-4, INF-γ, IL-10 and IL-17 were increased with varying degrees in mice intestine after spike RBD-Fc stimulation (Figure 1G). There was a marked increase of inflammatory factors in duodenum (Figure 1G), which is consistent with the typical pathological manifestations of duodenum. Together, these data indicated the potential role of CEACAM5 in intestinal barrier and immune responses upon SARS-CoV-2 spike RBD-Fc stimulation.
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Figure 1 | Decreased CEACAM5, intestine barrier loss and abnormal intestinal immune function after the stimulation with SARS-CoV-2 spike RBD-Fc. (A) Representative HE images and the quantitative analysis of inflammation of the duodenum from mice, and marked the areas of edema and inflammatory exudation with yellow arrows under the high-power field of view. (B) Immunohistochemical staining and (C) western blotting showed the reduced CEACAM5 expression in intestines of mice after spike RBD-Fc stimulation. (D) Western blotting showed low expression of ZO-1 in intestines of mice after spike RBD-Fc stimulation. (E) ELISA found high levels of LPS in severe COVID-19 patients compared to control. (F) Flow cytometric analysis showed the reduced CD4+ T cells in intestines of mice after spike RBD-Fc stimulation (n=5), and the difference of the ratio of CD4+ T cells to total lymphocytes between spike RBD-FC group and control-FC group using bar graphs. (G) Overexpression of cytokines in intestines of mice after spike RBD-Fc stimulation. Data were shown as the mean ± SD. *p < 0.05; **p < 0.01; ***p < 0.001. ns, no significance.




3.2 Proteomic analysis of intestinal tissues from mice stimulated with SARS-CoV-2 spike RBD-Fc

To decipher the functional mechanisms of CEACAM5 after spike RBD-Fc stimulation, we performed proteomic analysis on intestine tissues (including duodenum, jejunum, ileum, and colon) in spike RBD-Fc stimulated mice models and control group (Figure 2A). During the experimental period, significant loss of body weight was observed in all mice without marked difference between spike and control groups (Figure 2B). We further evaluated the plasma levels of LPS in mice (n=34) by ELISA. Mice in spike group had a higher level of LPS at 6 hours and day 2, which indicated intestinal barrier dysfunction in mice at 6 hours and 2 days after spike RBD-Fc stimulation (Figure 2C). Among 1985 proteins identified, a total of 549 differentially expressed proteins (fold change > 1.2 and p < 0.05) were detected in intestine at four different time points (Figure 2D). KEGG analysis revealed that differentially expressed proteins were mainly enriched in COVID-19, tight junction, focal adhesion, adherens junction and PI3K-Akt signaling pathway (Figure 2E). Besides, we used heatmaps to further display differentially expressed proteins on intestine tissues between spike RBD-Fc stimulated mice models and control group (Figure 2F).
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Figure 2 | Proteomic analysis of intestinal tissues from mice stimulated with SARS-CoV-2 spike RBD-Fc. (A) Illustration of the establishment of animal models and proteomic analysis. (B) Weight change of mice during the experimental period. (C) ELISA showed higher level of LPS in plasm of mice at 6 hours and 2 days after spike RBD-Fc stimulation. (D) Volcano plot showed all differentially expressed proteins. (E) KEGG enrichment analysis of differential expressed proteins. (F) Heatmap of differentially expressed proteins. Data were shown as the mean ± SD. *p < 0.05; **p < 0.01; ***p < 0.001.




3.3 Increased Galectin-9 expression after the stimulation with SARS-CoV-2 spike RBD-Fc and the interaction between CEACAM5 and Galectin-9

We screened out eight differentially expressed proteins having potential interactions with CEACAM5 through the protein-protein interaction network analysis based on STRING database (Figure 3A). Among them, Galectin-9 (Gal-9, LGALS9, GALECTIN-9) is a ligand to immune checkpoint protein TIM-3, which expresses in variety of immune cells and regulates a multitude of cellular processes. Molecular docking further confirmed the interaction between CEACAM5 and Galectin-9 (Figure 3B). Our proteomic results revealed that the expression of Galectin-9 was significantly increased in duodenum at 6 hours and ileum at 4 days after the stimulation with SARS-CoV-2 spike RBD-Fc (Figure 3C). The result indicates the interaction between CEACAM5 and Galectin-9 might play an important role in enteric stimulation of spike RBD-Fc and impaired intestinal barrier function.

[image: (A) Network diagram showing protein interactions with CEACAM5. (B) Molecular structure of Galectin-9 binding to CEACAM5, with a detailed view of interactions. (C) Graphs depicting Galectin-9 expression levels in the duodenum, jejunum, ileum, and colon after Spike RBD-Fc or Control-Fc injection over various days. Statistical significance is indicated with p-values at specific time points.]
Figure 3 | Increased Galectin-9 expression after the stimulation with SARS-CoV-2 spike RBD-Fc and the interaction between CEACAM5 and Galectin-9. (A) Protein–protein interaction network of CEACAM5 showed that top 8 potential proteins in differentially expressed proteins might interact with CEACAM5. (B) Molecular docking confirmed the interaction between CEACAM5 (green) and Galectin-9 (blue). (C) The increased expression of Galectin-9 in duodenum at 6 hours and ileum at 4 days after spike RBD-Fc stimulation. Data were shown as the mean ± SD.




3.4 Inhibiting PI3K/Akt/mTOR pathway and CD4+ T cells proliferation in mice tissues stimulated by SARS-Cov-2 spike RBD-Fc

To further explore the mechanism of intestinal barrier damage during SARS-CoV-2 spike RBD-Fc stimulation, co-IP and western blotting were conducted to verify the interaction between CEACAM5 and Galectin-9 in mice intestine tissues and found CEACAM5 may bind with Galectin-9 (Figure 4A). We found the significantly increased protein levels of Galectin-9, and decreased expression of PI3K, p-AKT and p-mTOR in spike RBD-Fc group intestine tissues compared to control (Figure 4B, C, p < 0.05). The result indicates the inhibition of PI3K/AKT/mTOR signaling pathway in intestine after the stimulation with SARS-CoV-2 spike RBD-Fc. Besides, we observed the expression of Ki67 was decreased in CD4+ T cells from spike RBD-Fc stimulated mice intestine using CD4 and Ki67 double immunofluorescence staining (Figure 4D), which indicates the inhibited proliferation of CD4+ T cells after spike RBD-Fc stimulation.
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Figure 4 | Inhibiting PI3K/Akt/mTOR pathway and CD4+ T cells proliferation in mice tissues stimulated by SARS-Cov-2 spike RBD-Fc. (A) Co-IP assay verified the bindings between CEACAM5 protein and Galectin-9 protein in intestine tissues from mice. (B) Representative protein bands and (C) quantification analyses of the expression of Galectin-9, PI3K, p-AKT and p-mTOR in intestine tissues from mice. (D) Immunofluorescence result of CD4 and Ki67 in intestine tissues from mice. *p < 0.05; **p < 0.01; ***p < 0.001.




3.5 SARS-Cov-2 spike RBD-Fc induced intestinal barrier damage through the interaction between CEACAM5 and Galectin-9

Spike RBD-Fc stimulation model of intestinal epithelial cells was constructed using spike RBD-Fc and Caco-2 cells. Western blotting analysis revealed a significant decrease in the levels of CEACAM5 protein in Caco-2 cells after spike RBD-Fc stimulation (Figure 5A, p < 0.05), but there was no difference of ZO-1 among the groups (Figure 5A, p > 0.05). Then, CD4+ T cells isolated from peripheral blood of healthy humans were cocultured with Caco-2. We found spike RBD-Fc stimulation induces significant downregulation of ZO-1 in addition to a decrease of CEACAM5 in Caco-2 cells (Figure 5A, P<0.05). These results suggested that SARS-CoV-2 spike RBD-Fc caused intestinal barrier damage through the interaction between Caco-2 and CD4+ T cells.
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Figure 5 | SARS-Cov-2 spike RBD-Fc induced intestinal barrier damage through the interaction between CEACAM5 and Galectin-9. (A) Representative protein bands and quantification analyses of the expression of CEACAM5 and ZO-1 in Caco-2 cells. (B) Representative protein bands and quantification analyses of the expression of Galectin-9, PI3K, p-AKT and p-mTOR in CD4+ T cells. (C) The mRNA levels of cytokine in CD4+ T cells by qPCR. (D) The detection of apoptotic CD4+ T cells by flow cytometry. Data were shown as the mean ± SD.*p < 0.05; **p < 0.01; ***p < 0.001.ns, no significance.

As the protein levels of Galectin-9, PI3K, p-AKT and p-mTOR in CD4+ T cells showed no difference between spike RBD-Fc and control-Fc group (Figure 5B, p > 0.05), we observed a significant elevation of Galectin-9, and decreased expression of PI3K, p-AKT and p-mTOR in spike RBD-Fc group after the coculture with Caco-2 cells (Figure 5B, p < 0.05). Furthermore, we examined the cytokine levels of CD4+ T cells by quantitative real-time PCR, and found that the mRNA expression of IL-4 and IL-17 was significantly increased only in spike RBD-Fc + Caco-2 + CD4+ T group (Figure 5C, p < 0.05). As expected, flow cytometric analysis showed a significantly higher proportion of apoptotic cells in CD4+ T cells when cocultured with Caco-2 cells and spike RBD-Fc (Figure 5D). Taken together, these findings indicated that the spike RBD-Fc stimulation of enterocytes downregulated the expression of CEACAM5 protein, and upregulated Galectin-9 expression in CD4+ T cells through the interaction between CEACAM5 and Galectin-9. Then the polarization of CD4+ T cells towards pro-inflammatory was induced, inhibiting the PI3K/AKT/mTOR pathway and causing increased apoptosis of CD4+ T cells. Eventually the intestinal barrier damage developed.




3.6 CEACAM5 knockdown in intestinal epithelial cell upregulated Galectin-9, inhibited the PI3K/AKT/mTOR pathway in CD4+ T cells, and damaged intestinal barrier

In order to confirm the role of CEACAM5 in intestinal barrier injury, we respectively transfected Caco-2 cells with CEACAM5 overexpression plasmid and CEACAM5-shRNA expressing lentiviruses (sh-CEACAM5). Empty plasmid and control lentivirus served as control groups respectively. The expression of Galectin-9 in CD4+ T cells was significantly increased (p < 0.05), while the expression of CEACAM5 and ZO-1 in Caco-2 cells (all p < 0.05), PI3K, p-AKT and p-mTOR in CD4+ T cells (all p < 0.05) were remarkably decreased in the group of Caco-2 cells transfected with sh-CEACAM5 (Figure 6A). Similarly, CEACAM5-knockdown could increase the inflammatory factors IL-4 and IL-17 secreted by CD4+ T cells (Figure 6B). Furthermore, both CEACAM5-knockdown and spike RBD-Fc stimulation increased the apoptosis of CD4+ T cells (Figure 6C). These data suggested that the downregulation of CEACAM5 could damage intestinal barrier, which was independent of spike RBD-Fc stimulation. And the decrease of CEACAM5 after spike RBD-Fc stimulation subsequently induced intestinal barrier dysfunction by increasing the expression of Galectin-9 and inducing the polarization of CD4+ T cells towards pro-inflammatory phenotype and increased apoptosis.
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Figure 6 | CEACAM5-knockdown in intestinal epithelial cell upregulated Galectin-9, inhibited the PI3K/AKT/mTOR pathway in CD4+ T cells, and damaged intestinal barrier. (A) Representative protein bands and quantification analyses of CEACAM5, Galectin-9, ZO-1, PI3K, p-AKT, p-mTOR in Caco-2 cells transfected with CEACAM5-shRNA lentiviruses. (B) The mRNA levels of cytokine in CD4+ T cells by qPCR. (C) The detection of apoptotic CD4+ T cells by flow cytometry. Data were shown as the mean ± SD.*p < 0.05; **p < 0.01; ***p < 0.001.




3.7 Overexpression of CEACAM5 in intestinal epithelial cells protected against barrier damage after spike RBD-Fc stimulation

The expression of Galectin-9 in CD4+ T cells was significantly decreased (p < 0.05), while the expression of CEACAM5 and ZO-1 in Caco-2 cells (all p < 0.05), PI3K, p-AKT, p-mTOR in CD4+ T cells (p < 0.05) were remarkably increased in the group of Caco-2 cells transfected with CEACAM5 overexpression plasmid (Figure 7A). Moreover, the overexpression of CEACAM5 completely reversed the elevation of cytokines IL-4 and IL-17 secreted by CD4+ T cells after spike RBD-Fc stimulation (Figure 7B). For increased apoptosis upon spike RBD-Fc stimulation, CEACAM5 overexpression groups with or without spike RBD-Fc, and control group without spike RBD-Fc all presented a lower proportion of apoptotic CD4+ T cells than control group with spike RBD-Fc (Figure 7C). The above results indicated that the overexpression of CEACAM5 could reverse spike RBD-Fc induced increase of Galectin-9, the polarization of CD4+ T cells towards pro-inflammatory phenotype, the inhibition of PI3K/AKT/mTOR pathway and increased apoptosis of CD4+ T cells. Thus, CEACAM5 might serve as a protective factor in intestinal epithelial injury upon spike RBD-Fc stimulation.
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Figure 7 | Overexpression of CEACAM5 in intestinal epithelial cells protected against barrier damage after spike RBD-Fc stimulation. (A) Representative protein bands and quantification analyses of CEACAM5, Galectin-9, ZO-1, PI3K, p-AKT, p-mTOR in Caco-2 cells transfected with CEACAM5 overexpression plasmid. (B) The mRNA levels of cytokine in CD4+ T cells by qPCR. (C) The detection of apoptotic CD4+ T cells by flow cytometry. Data were shown as the mean ± SD.*p < 0.05; **p < 0.01; ***p < 0.001. ns, no significance.




3.8 Galectin-9-knockdown inhibited the intestinal barrier damage induced by CEACAM5 downregulation after spike RBD-Fc stimulation

To further dissect the regulatory role of Galectin-9 in spike RBD-Fc induced barrier damage, Galectin-9 knockdown was conducted in CD4+ T cells through transfecting Galectin-9 siRNA plasmids. Caco-2 cells transfected with control lentivirus or sh-CEACAM5 lentiviruses were treated with spike RBD-Fc. CD4+ T cells transfected with control siRNA or Galectin-9 siRNA plasmids were added to co-culture systems. CD4+ T cells with Galectin-9-knockdown showed a significantly increased levels of ZO-1 in Caco-2 cells (p < 0.05), PI3K, p-AKT and p-mTOR in CD4+ T cells (all p < 0.05) compared to control siRNA group (Figure 8A). Similarly, Galectin-9-knockdown groups showed significantly lower expression of cytokines IL-4 and IL-17 after spike RBD-Fc stimulation (Figure 8B). In addition, Galectin-9-knockdown alleviated the apoptosis of CD4+ T cells compared to control siRNA group (Figure 8C). Taken together, the increase of Galectin-9 is essential in intestinal barrier damage after spike RBD-Fc stimulation, which might provide novel stratifies for GI symptoms in COVID-19 patients.
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Figure 8 | Galectin-9-knockdown inhibited the intestinal barrier damage induced by CEACAM5 downregulation after spike RBD-Fc stimulation. (A) Representative protein bands and quantification analyses of CEACAM5, Galectin-9, ZO-1, PI3K, p-AKT, p-mTOR in CD4+ T cells transfected with Galectin-9 siRNA plasmids. (B) The mRNA levels of cytokine in CD4+ T cells by qPCR. (C) The detection of apoptotic CD4+ T cells by flow cytometry. Data were shown as the mean ± SD.*p < 0.05; **p < 0.01; ***p < 0.001. ns, no significance.





4 Discussion

In this study, we uncovered the low expression and protective role of CEACAM5 in intestinal barrier dysfunction induced by SARS-Cov-2 spike. CEACAM5 acted as a protective protein in maintaining intestinal barrier homeostasis in normal physiological states through binding to Galectin-9 and inhibiting Galectin-9 expression and promoting PI3K/Akt/mTOR pathways activation in CD4+ T cells. Therefore, when the expression of CEACAM5 is reduced after the stimulation with SARS-Cov-2 spike, its protective effect on intestinal barrier homeostasis is also reduced. Thus reduced CEACAM5 protein expression in enterocytes could increase Galectin-9 protein expression and inhibit PI3K/Akt/mTOR pathways in CD4+ T cells. Then inflammatory factors released and increased apoptosis of CD4+ T cells happened and eventually intestinal barrier dysfunction developed (Figure 9). CEACAM5 overexpression and Galectin-9 knockdown could relieve the intestinal barrier dysfunction stimulated by SARS-Cov-2 spike. This study illuminated the molecular mechanism of CEACAM5 in intestinal barrier dysfunction induced by SARS-Cov-2 spike, providing potential therapeutic strategies to alleviate intestinal barrier damage in severe COVID-19 patients.

[image: Diagram depicting the effects of SARS-CoV-2 on epithelial tight junctions and immune response. The left shows TJ destruction leading to leakiness and hypercytokinaemia. The right illustrates intact tight junctions with lower CEACAM5 and higher Galectin-9 levels affecting CD4+ T cell signaling through PI3K/Akt/mTOR pathway.]
Figure 9 | Mechanism diagram summarized that SARS-Cov-2 spike induced intestinal barrier dysfunction through the interaction between CEACAM5 and Galectin-9. SARS-CoV-2 spike reduced CEACAM5 protein expression in infected enterocytes, promoted Galectin-9 protein expression in CD4+ T cells through the interaction between CEACAM5 and Galectin-9, promoted the polarization of CD4+ T cells towards pro-inflammatory phenotype and increased apoptosis, eventually leading to intestinal barrier dysfunction.

GI symptoms are common extrapulmonary manifestations of SARS-CoV-2 infection. Researchers have revealed that SARS-CoV-2 can infect GI in human-derived intestinal organoids (27, 28), experimental animal models such as nonhuman primate model (29, 30) and Syrian hamster (31, 32). Moreover, severe COVID-19 has been associated with high levels of biomarkers in intestinal barrier disruption (33). But little is known about the pathogenesis of impaired intestinal barrier in SARS-CoV-2 infection. As enterocytes are main target cells of SARS-CoV-2, viral infection of enterocytes is the first and crucial step in SARS-CoV-2 induced gut immunological changes. Many studies have reported the changes in immune cells in the gastrointestinal tissues of patients infected with SARS-CoV-2, including the dysregulation of CD4+ T cells (34) and overactivated production of IL-17 from Th17 cells (35). Besides, Li et al. found increased production of IL-4, IL-17A and other inflammatory phenotype in gastrointestinal tissues of rhesus monkeys after intranasal infection with SARS-CoV-2 (36). Our findings firstly revealed that reduced CEACAM5 in enterocytes upon spike stimulation could induce immune abnormalities thus leading to intestinal barrier injury. And further studies are needed to explore the protective role of CEACAM5 in intestinal barrier injury especially in severe COVID-19 patients.

As a conventional tumor marker of colorectal cancer, CEACAM5 plays an important role in multiple tumors. Recently, its immunomodulatory effects have drawn increasing attention. The researchers elucidated that CEACAM5 activated CD8+ suppressor T cells through its B3 domain interacting with CD1d and N domain binding to CD8α (22). The deficiency of CEACAM5 in IBD patients inhibited CD8+ suppressor T cells activation, which led to the failure of suppressing CD4+ Th cell activation, thus resulting in pro-inflammatory factor release and inflammation progression. However, its pathogenic role in intestinal barrier injury especially caused by SARS-CoV-2 has not been explored. We previously observed the decreased expression of host CEACAM5 protein in COVID-19 patients feces (17). We confirmed the reduced CEACAM5 upon spike stimulation in mice and cell models, and found that the downregulation of CEACAM5 induced immune abnormalities of CD4+ T cells (including the polarization of CD4+ T cells towards pro-inflammatory phenotype and increased apoptosis) through the interaction between CEACAM5 and Galectin-9. Besides, the mechanism underlying the decreased expression of CEACAM5 remains to be explored. Previous studies have found that transcription factor sex determining region Y-box 9 (SOX9) was closely related to the expression of CEACAM5, and SOX9 downregulated CEACAM5 gene expression in human colon carcinoma cell line HT29Cl.16E (37). Besides, JAK1-STAT3 pathway up-regulated the expression of SOX9 and induced CEACAM5 overexpression, thus promoting breast cancer cell invasion (38). Meanwhile, there are research reporting CEACAM5 was major target genes for Smad3-mediated TGF-β signaling (39). Furthermore, the ACE2+SOX9+ double positive cells are readily infected by SARS-CoV-2 pseudovirus and significantly decreased in older children (40). These findings indicate that abnormal SOX9 could reduce CEACAM5 expression after SARS-CoV-2 spike stimulation, which may associate with JAK1-STAT3 pathway or Smad3-mediated TGF-β signaling. However, it requires further validation.

Apart from the elevation of inflammatory factors, cytokine storm was also manifested by severe CD4+ and CD8+ T cell lymphopenia and coagulopathy (41), which have been proposed as biomarkers for COVID severity (42–45). In addition to the lymphopenia induced by apoptosis in SARS-CoV-2 (46–49), researchers also observed the increased expression of T cell exhaustion markers, such as programmed cell death protein-1 (PD-1) and TIM-3 in peripheral blood of severe COVID-19 patients (44, 50). Except for the reduction in T cell numbers, researchers also found an increased frequency of activated T cell phenotypes (51). Furthermore, previous study has confirmed increased proportion of activated biomarkers HLA-DR and CD38 accompanied with reduced CD4+ and CD8+ T count (52). Although it has been confirmed that T lymphocytes in blood could be infected by SARS-CoV-2 in an ACE22/TMPRSS2-independent manner and the infection of T cells is likely to induce cell apoptosis in mitochondria ROS-HIF-1a-dependent pathways (47), little is known about the imbalance in T cell homeostasis and its mechanisms in intestinal barriers loss during SARS-CoV-2 infection. Our study found that immune abnormalities in GI after spike stimulation was characterized by the polarization of CD4+ T cells towards pro-inflammatory and increased apoptosis through inhibition of PI3K/AKT/mTOR pathway. Researchers also reported rapamycin and its analogs (rapalogs, including everolimus, temsirolimus, and ridaforolimus), as FDA-approved mTOR inhibitors, increased the susceptibility to SARS-CoV-2 infection in tissue culture and immunologically naive rodents (53). Taken together, maintenance of T cell homeostasis is crucial in the treatment of COVID-19 patients especially with GI symptoms.

Galectin-9, as a ligand to TIM-3, is expressed on several immune cells including T cells. It has been detected in the plasma of patients with viral infections such as HIV, influenza virus, hepatitis C virus (HCV), herpes simplex virus (HSV), human cytomegalovirus (HCMV), chronic hepatitis B virus (HBV) and dengue virus (DENV), indicating its important role in viral infection and pathogenesis (54). Besides, the expression of Galectin-9 was found to be significantly elevated in severe COVID-19 patients compared to convalescent patients and healthy individuals (50). It is found that plasma Galectin-9 has positive correlation with elevated proinflammatory cytokines and chemokines in COVID-19 patients. Researchers have further confirmed the overexpression of proinflammatory molecules in immune cells from COVID-19 patients once treated with Galectin-9 in vitro experiments (55). In our study, we observed CD4+ T lymphopenia and increased cytokines in intestine tissues of mice stimulated by SARS-CoV-2 spike. We also further revealed that the increased expression of Galectin-9 in CD4+ T cells could promote inflammatory factor release and increased apoptosis of CD4+ T. However, the specific mechanism of this interaction would worth further investigations, which might provide new insights and potential therapeutic targets for the treatment of cytokine storm in severe COVID patients.

In summary, our results demonstrated for the first time that the low expression of CEACAM5 upon SARS-CoV-2 spike stimulation induced intestinal barrier dysfunction through the interaction between CEACAM5 and Galectin-9. Increased expression of Galectin-9 promoted the polarization of CD4+ T cells towards pro-inflammatory phenotype. Then it elevated production of proinflammatory cytokines, inhibited PI3K/AKT/mTOR pathway and increased apoptosis of CD4+ T cells, eventually resulting in intestinal barrier dysfunction. Overexpression of CEACAM5 and knockdown of Galectin-9 displayed important role in maintaining intestinal barrier integrity. Based on these findings, targeting CEACAM5 and Galectin-9 could provide novel therapeutic strategies in intestinal barrier dysfunction of severe COVID patients and potential underlying mechanism remains to be further explored.
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Introduction

Growth differentiation factor 15 (GDF-15) was originally described as a stress-induced cytokine, and a biomarker of aging and cardiovascular diseases. We hypothesized that circulating GDF-15 would be associated with COVID-19 disease severity. Herein, we explored this hypothesis in a large cohort of COVID-19 patients.





Methods

Blood samples were collected from 926 COVID-19 adult patients and from 285 hospitalized controls from the Biobanque Québécoise de la COVID-19 (BQC19). COVID-19 severity was graded according to the WHO criteria. SOMAscan proteomics assay was performed on 50µL of plasma. ELISA were performed on 46 selected participants with left-over plasma to validate differences in plasma GDF-15 levels. Statistical analyses were conducted using GraphPad Prism 9.0 and SPSS. P values < 0.01 were considered significant.





Results

Proteomics showed that plasma GDF-15 levels were higher in COVID-19 patients compared to hospitalized controls. GDF-15 levels increased with COVID-19 severity. COVID-19 patients presenting with comorbidities including diabetes, cancer, chronic obstructive pulmonary disease (COPD) and cardiovascular disease had higher GDF-15 levels. ELISA revealed significant elevation of GDF-15 until 30 days after hospitalization. Plasma GDF-15 elevation was correlated with older age. Moreover, GDF-15 levels correlated with pro-inflammatory cytokine interleukin-6 (IL-6) and inflammation marker C-reactive protein (CRP) as well as soluble levels of its putative receptor CD48. No association was established between anti-SARS-CoV-2 IgG levels and plasma GDF-15 levels.





Conclusions

This study confirms GDF-15 as a biomarker for COVID-19 severity. Clinical evaluation of GDF-15 levels could assist identification of persons at high-risk of progressing to severe disease, thus improving patient care.





Keywords: GDF-15, COVID-19, SARS-CoV-2, proteomics, BQC19, severity





Introduction

Coronavirus disease-2019 (COVID-19) is a highly contagious infectious condition caused by severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) (1). The clinical manifestations of COVID-19 are heterogeneous across populations. Numerous studies underscore the connection between mortality from COVID-19 and underlying comorbidities including obesity, diabetes, chronic obstructive pulmonary disease (COPD), and cardiovascular diseases (CVD) (2–5). Moreover, adverse outcomes have also been observed in COVID-19 infected individuals undergoing chemotherapy and chemotherapy or immunotherapy for cancer treatment (6). The progression to a severe and fatal stage of the disease can occur rapidly and unexpectedly. Thus, the identification of prognostic or diagnostic biomarkers for the severity of COVID-19 is imperative to improve patient management.

Growth differentiation factor 15 (GDF-15) belongs to the transforming growth factor-β (TGF-β) superfamily and is recognized as a novel marker for aging, weight and appetite modulation (7–9). Several investigations have linked elevated GDF-15 levels in the bloodstream to various age-related conditions, including cardiovascular diseases and diabetes, including in people living with HIV (PLWH) (10–12). GDF-15 levels are also elevated in patients with certain types of advanced cancers, although conflicting findings have been described on the role of GDF-15 during early or late tumorigenesis (13–15). Teng et al. reported an association between GDF-15 and severity of COVID-19, correlated with a poorer clinical outcome and SARS-CoV-2 viremia in 78 COVID-19+ participants (16). Similarly, Alserawan et al. found that GDF-15 levels were correlated with well-established pro-inflammatory markers including IL-6, CRP, ferritin and D-dimer, and served as a biomarker for lung impairment in 84 patients with COVID-19 (17). However, these studies did not establish the independent prognostic value of GDF15 in COVID-19 as several comorbidities are also associated with elevated GDF15 levels.

We aimed to confirm and expand previous research findings and validate the prognostic value of GDF-15 as a marker for COVID-19 severity in a large, more diverse population with a range of comorbidities, in hospitalized patients before the vaccination era. Using the Biobanque Québécoise de la COVID-19 (BQC19) (18) and plasma proteomics analysis, we quantified GDF-15 and other markers of interest for a total of 1211 participants, representing both COVID-19 positive cases and non-COVID-19 hospitalized controls.





Methods




Participant and sample collection

BQC19 is a provincial-wide biobank established in March 2020 to enable collection, storage, and sharing of samples and data of people affected by COVID-19 disease in Quebec, Canada (see bqc19.ca) (18).

Briefly, participants were recruited at the hospital and invited to participate between March 2020 and August 2021. Patients with SARS-CoV-2 diagnosis validated by RT-PCR or disease presentation were included. Medical history and clinical data were obtained from questionnaires and medical charts, and blood was collected at several timepoints.

After selecting for data from adult participants, we considered samples, clinical and proteomics data from 926 adults diagnosed with COVID-19 and 285 hospitalized controls. COVID-19 was diagnosed using RT-qPCR testing. All controls had negative COVID-19 tests. Controls were hospitalized for various reasons such as infectious respiratory symptoms (not linked to COVID-19), acute cardiovascular events, emboly, digestive symptoms not requiring surgery, uncontrolled diabetes. For participants with multiple blood samples collected during hospitalization, the samples collected at the earliest time point related to symptom onset were used to reflect the proteome of acute COVID-19, and to avoid use of measures during the recovery phase. No participant had received COVID-19 vaccination at the time samples were collected.

COVID-19 participants were categorized into mild, moderate or severe infections based on criteria from the WHO Working Group on the Clinical Characterisation and Management of COVID-19 (19). Briefly, mild or ambulatory disease included patients with asymptomatic presentation while having detectable SARS-CoV-2, or symptomatic independent, or requiring low assistance. Moderate diseases encompass hospitalized patients not requiring oxygen therapy or requiring oxygen by mask or nasal prongs. Severe disease refers to hospitalized patients requiring oxygen, intubation or mechanical ventilation, dialysis or ECMO. Participants who died during their hospitalization were included in the “fatal” infection group.

A total of 15 recovered COVID-19 participants were recruited at the McGill University Health Centre. Inclusion criteria included being adult, having received a diagnostic of COVID-19 at more than 14 days ago, and not having COVID-19 symptoms. People presenting with long-COVID-19 symptoms were excluded. Sample from controls were collected before December 2019 in Quebec, Canada, or from January 2020 to January 2021, with no history of COVID-19 tests or symptoms.





Blood samples preparation

Whole blood was obtained through venipuncture using acid-citrate-dextrose vacutainer tubes or EDTA tubes for recovered participants, and plasma was separated by centrifugation at 750g, 10 min at room temperature. Isolated plasma was aliquoted and stored at −80°C until analysis.





Proteomic measurement using the SOMAscan platform

Blood samples from a total of 1211 BQC19 participants were included for the plasma proteomics analysis. Proteomic profiles were assessed at SomaLogic using the SomaScan v4.0 proteomic platform that provides measurements on 4701 unique human circulating proteins using 4987 Slow Off-Rate Modified Aptamers (SOMAmer reagents) and quantifies protein levels in the form of relative fluorescence units (RFUs) (20). Experimental process and data normalization including hybridization control normalization, intraplate median signal normalization, and plate scaling and calibration were performed as previously described (20, 21).





Measurement of plasma GDF-15 levels using ELISA

When samples were available, plasma levels of human GDF-15 were measured in duplicates using the enzyme-linked immunosorbent assay (ELISA) assay (R&D systems, MN, USA) as per the manufacturer’s instructions.





Measurement of spike specific IgG levels using cell-based ELISA

Spike-specific IgG levels were quantified using a cell-based ELISA (CBE) method as previously described (22). Briefly, SARS-CoV-2 Spike-expressing HOS cells were washed and incubated with diluted plasma (1:250). After wash, anti-human IgG antibody coupled to horseradish peroxidase (HRP) were incubated. After wash and substrate addition, light emission was detected using a luminometer.





Statistical analysis

Statistical analyses were conducted using GraphPad Prism 9.0 (GraphPad, CA, USA). Spearman’s rank correlation test identified associations between 2 continuous variables. Mann-Whitney U test and student t-test were used to compare levels of continuous variables between two independent groups, as appropriate. Kruskal-Wallis one way ANOVA test was used to compare levels of continuous variables in more than 2 independent study groups. Paired analysis was performed by Wilcoxon signed-rank test. P-values < 0.001 were considered significant for samples with n>250, and p<0.05 for samples less<250. Logistic regression univariable models were used to generate Receiver operating characteristic (ROC) curve. Multivariable analysis was performed using SPSS.





Ethics

BQC19 received ethical approval from the institutional review board (IRB) of the Jewish General Hospital and the Centre Hospitalier de l’Université de Montréal (CHUM) in Montréal, QC, Canada. All participants gave informed consent. Secondary analysis of BQC19 data and additional analyses for this project were approved by the research ethics board of the McGill University Health Centre (MUHC).






Results




Participants characteristics and clinical outcomes

The demographic and clinical characteristics of all study participants are presented in Table 1. In total, there were 926 RT-qPCR positive COVID-19 cases (median age: 60; range 18-99), encompassing 46% female and 54% male. In addition, 285 RT-qPCR COVID-19 negative hospitalized participants were included as controls (median age 56, range 20-99): 47% were female and 53% were male. In the RT-qPCR confirmed COVID-19 positive cohort (n=926), 256 were classified as mild, 384 as moderate, 235 as severe and 24 as fatal using WHO criteria. Clinical outcomes and comorbidities were extracted from clinical charts and assessed for all participants including those who had died.


Table 1 | Characteristics of all proteomics study participants.
[image: Table comparing COVID-19 positive (926 participants) and negative (285 participants) groups by age, sex, disease severity, and comorbidities. COVID-19 positive group median age is 60; negative group is 56. More men than women in both groups. Severity is categorized as mild, moderate, severe, or dead. Comorbidities include obesity, diabetes, HIV, cancer, chronic obstructive pulmonary disease, and cardiovascular disease. Proportions of yes, no, and missing are given for each condition.]




Proteomics identifies higher plasma GDF-15 levels in severe COVID-19

Proteomics assay measured plasma protein levels in all COVID-19 infected and control adult participants. Plasma GDF-15 levels were significantly higher by 1.7-fold in COVID-19 infected participants compared to controls (p<0.0001) (Figure 1A). In COVID-19 positive patients, as COVID-19 severity worsened from mild to fatal, the plasma GDF-15 levels increased with the highest median GDF-15 levels detected in the fatal group (p<0.0001) (Figure 1B). Severe COVID-19 groups also had significantly greater plasma GDF-15 elevation compared to moderate and mild COVID-19 groups (p=0.0049, p<0.0001 respectively). Multivariable analysis showed that age, but not sex nor presence of comorbidities, was a confounding factor of the association between GDF-15 and disease severity (Table 2), because GDF-15 was associated with age (Manova p < 0.0001) but not Severity (Manova p = 0.89) (Table 2) Age-adjusted regression analysis increased association between plasma GDF-15 and COVID-19 severity (unadjusted β: 6.106, adjusted β: 0.222). ROC analysis was conducted to evaluate the predictive ability of plasma GDF-15 to discriminate mild and severe COVID-19 states (including fatal cases) (Figure 1C). The area under the curve (AUC) was estimated for observed GDF-15 levels and their predicted values by fitting regression models. Observed GDF-15 levels were able to predict COVID-19 disease severity (AUC=0.82 ± 0.02, p<0.0001). These results support the potential of plasma GDF-15 levels in predicting COVID-19 severity.

[image: Four panels of statistical graphs related to GDF15 levels and COVID-19. Panel A shows GDF15 levels in hospital controls versus COVID-19 positive cases, with a significant difference noted. Panel B compares GDF15 levels in mild, moderate, severe, and fatal COVID-19 cases, showing significant differences, particularly between mild and fatal cases. Panel C presents a receiver operating characteristic curve showing discrimination between mild and severe COVID-19, with high sensitivity and specificity. Panel D compares GDF15 levels between the first and second waves of COVID-19, indicating a significant difference.]
Figure 1 | Plasma GDF-15 in COVID-19 groups and controls. (A, B) Violin plots showing plasma GDF-15 levels in COVID-19 infected and hospitalized controls and among different COVID-19 severity groups. (C) Plasma levels of GDF-15 in mild and severe COVID-19 groups were evaluated by ROC curve. (D) Plasma levels of GDF-15 in 2020 and 2021.


Table 2 | Characteristics of ELISA GDF-15 study participants.
[image: Table depicting COVID-19 severity with columns for controls, acute, early recovered, and late recovered groups. Variables include average age, recovery duration, and sex distribution. Age averages range from 40 to 60, recovery duration varies from two to 223 days, and sex distribution by women and men differs across groups.]
Plasma levels of other 5200 markers were compared in patients with mild and severe/fatal disease presentation. GDF-15 was found as one of the 461 proteins associated with severity, with the most significant q and p value (-log10 118.2; p<0.00001, Supplementary Figure 1). Q value was less significant for IL-6 and CRP (-log10 35.81 and 108.3, respectively, p<0.00001 for both), two common biomarkers of severity.





Plasma GDF-15 levels differed between the first and second wave of COVID-19 in Quebec, Canada

We compared plasma GDF-15 levels between the initial wave of COVID-19, spanning from March to July 2020, to those of the second wave from august 2020 to August 2021 in the Province of Quebec. Patients in both waves were mostly affected by the ancestral SARS-CoV-2 strains in Quebec. No participants received priori vaccination even though vaccination campaign started in 2021 in Quebec. Plasma levels of GDF-15 were notably higher during the first wave compared to those observed during the second COVID-19 wave (p<0.001) (see Figure 1D). The variation was independent of comorbidities, and sex in the two collection periods. However, the age of the patients during the second wave was lower than the age of patients in the first wave (57.4 vs 66.9, p<0.001).





Higher GDF-15 levels in severe COVID-19 patients independently of comorbidities

A total of 926 COVID-19 infected patients were included in this study. The most common comorbidities were cardiovascular disease (CVD) (n=488, 52.70%), diabetes (247, 26.67%), cancer (105, 11.34%), obesity (91, 9.83%), COPD (84, 9.07%) and HIV (7; 0.76%) (Table 3). Compared to hospitalized controls, COVID-19 infected patients exhibited higher average plasma GDF-15 levels regardless of presence or absence of comorbidities. In all COVID-19 infected patients, GDF-15 levels were consistently higher in those with comorbidities groups. Diabetes, CVD, COPD, and cancer were the conditions significantly associated with higher GDF-15 levels (p<0.0001 for the three comparisons) (Figure 2A). Although higher levels of GDF-15 were noticed in obese (body mass index greater than 30) patients with COVID-19, this difference was not significant (p = 0.24). Studies have found a higher risk of hospitalization in Canadian PLWH (23, 24). We found no difference in GDF-15 levels between PLWH and HIV-negative patients, although the number of PLWH was small (n=7). Such observations indicate that elevated plasma GDF-15 levels in COVID-19 appears independent of patient’s comorbidities. We next examined the impact of these comorbidities on GDF-15 expression in severe and fatal COVID-19 patients. GDF-15 levels in these groups remained higher than that of hospitalized controls. Significantly higher levels of GDF-15 expression were observed in patients with CVD, COPD and cancer (p<0.0001, 0.0030 and <0.001 respectively) compared to severe cases without those conditions. Differences in obese or diabetic participants were not significantly different (Figure 2B). Multivariable analysis showed that increased levels of GDF-15 in patient with severe vs mild and moderate disease was independently associated with severity while adjusting for the presence of any comorbidity, sex and but was influenced by age (Table 4).


Table 3 | Characteristics of COVID-19 positive proteomics participants.
[image: Table displaying COVID-19 severity categorized into mild, moderate, severe, and dead cases, with respective sample sizes. It includes demographics (age, sex) and prevalence of conditions: obesity, diabetes, HIV, cancer, chronic obstructive pulmonary disease, and cardiovascular disease. Percentages for each category are provided.]
[image: Violin plots comparing GDF15 levels in various groups of COVID-19 patients. Panel A shows all COVID-19 positive patients, and Panel B shows severe cases. Categories include obesity, diabetes, cardiovascular disease (CVD), chronic obstructive pulmonary disease (COPD), cancer, and HIV status. Significant differences are marked with p-values. GDF15 levels are measured in relative fluorescence units per fifty microliters.]
Figure 2 | Expression patterns of plasma GDF-15 levels in different comorbidities in COVID-19 infected patients. (A) In all COVID-19 infected patients, higher plasma GDF-15 levels are observed in all comorbid groups relative to their non-comorbid conditions. Differences of GDF-15 expression was significant in diabetic (p <0.001), cancer (p <0.001), COPD (p <0.001) and CVD (p <0.001) comorbidity groups relative to their non-comorbid conditions. (B) In severe and fatal COVID-19 patients, plasma GDF-15 levels are significantly higher in cancer (p <0.001), COPD (p <0.001) and CVD (p <0.001) comorbid groups.


Table 4 | Multivariable correlations.
[image: Table showing the results of a MANOVA test on plasma GDF-15 levels and COVID-19 severity. Variables include age, sex, and type of comorbidity. Wilks' delta, F value, and P value are provided for each. Significant results are in bold, with age showing significant values: Wilks' delta 0.031 and P value 0.001. The test used data from 900 participants; significance was set at P < 0.001.]




ELISA confirms higher GDF-15 levels during COVID-19 and after recovery

To validate findings made using SOMAscan proteomics, we assessed plasma GDF-15 by ELISA. We compared GDF-15 levels during the acute phase, early after recovery (less than 30 days after hospitalization) or up to 6 months after recovery in different groups. We examined GDF-15 levels in left-over plasma samples from 21 disease-free control participants; 28 acute patients with 0 to 2 days of hospitalization; 10 early recovered patients with an average of 30 days after hospitalization and 19 late recovered patients with an average of 223 days of recovery duration (Table 2). We performed cross-sectional analysis for control, acute and late recovered cohorts as well as early and late recovered cohorts. Acute patients had significant higher levels of GDF-15 compared to controls (p = 0.04) and late recovered patients (p = 0.03) (Figure 3A). Early recovered patients also had significantly higher plasma levels of GDF-15 compared to that of late recovered patients (p = 0.02) (Figure 3A).
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Figure 3 | Elevated plasma GDF-15 levels in acute and early recovered COVID-19 infected patients. (A) ELISA results showed variations of GDF-15 levels among different COVID-19 cohorts. Kruskal-Wallis’s analysis showed that GDF-15 levels in acute cohorts are significantly higher than controls and late recovered cohorts. (B) M Wilcoxon paired analysis showed variations of plasma GDF-15 levels in 7 pairs of acute COVID-19 patients after 30 days follow up.

Longitudinal assessment of 7 pairs of acute COVID-19 patients showed no trend in variations in plasma GDF-15 levels after 30 days follow up (Figure 3B). Hence, ELISA showed elevation of plasma GDF-15 levels during the acute phase of the infection, which lasted for at least 30 days, and decreased to levels observed in health controls after months of recovery.





GDF-15 levels were associated with inflammation but not with anti-SARS-CoV-2 immune function

Comparison of plasma GDF-15 levels with other inflammation markers (IL-6, CRP) and disease severity marker (neutrophil/lymphocyte ratio) was performed using clinical and proteomics data. GDF-15 levels were positively correlated with age, IL-6 and neutrophil/lymphocyte ratio (Figure 4A). However, we found no association between SARS-CoV-2 Spike specific IgG levels assessed by ELISA or CBE and plasma GDF-15 levels (Supplementary Table 1; Figure 4B). In recovered participants, GDF-15 were also not associated with anti-spike IgG levels (Figure 4B). Interestingly, we found a positive correlation between GDF-15 and Eotaxin, another marker associated with aging (25). We found a negative association between plasma GDF-15 and soluble angiotensin converting enzyme 2 (ACE2) levels, the main receptor of SARS-CoV-2.

[image: Panels A and B show heatmaps indicating correlations with red and green bars representing positive and negative correlations, respectively. Panel C features a scatter plot of CBE (anti-spike) IgG against GDF15, and panel D shows a scatter plot of CD48 against GDF15 with a correlation coefficient of 0.61 and a p-value less than 0.0001.]
Figure 4 | Correlation heat map and scatterplot reporting spearman correlation coefficients of comparisons between GDF-15 and other parameters. (A) Correlation heat map reporting Spearman correlation r coefficients in the color legend bar on the right. The scale is set from -0.8 (red) to 0.8 (blue). Spearman rank correlation test was used. (B) Linear regression analysis shows no relationship between plasma GDF-15 levels and CBE IgG levels. (C) Heat map of correlation coefficient between plasma GDF-15 levels and those of its potential receptors and regulatory cytokines in COVID-19 participants. (D) Correlation between plasma GDF-15 and soluble CD48 levels in COVID-19 participants. **** indicate p < 0.0001.

Assessing levels of the known soluble receptors of GDF-15, we found a significant and strong correlation with soluble CD48 levels, but not erbb2, nor TGF-β receptors 1 and 2 (Figures 4C, D). As CD48 is shown to be the receptor and to promote the function of regulatory T-cells (Tregs), we looked for regulatory cytokines. We found a positive correlation between GDF-15 and TGF-β1 levels, with an inverse correlation between GDF-15 and IL-10 in COVID-19 patients (Figure 4C).






Discussion

In this large cohort of patients assessed before COVID-19 vaccination, using proteomics, we found higher plasma levels of GDF-15 in persons with COVID-19 compared to hospitalized controls. We showed consistent elevation of plasma GDF-15 in severe COVID-19 patients compared to those with mild and moderate. Using ELISA, we confirmed the elevation levels of GDF-15 which persisted up to 30 days after hospitalization and returned to low normal levels in recovered individuals. In addition, our correlation analysis also demonstrated an association between GDF-15 and inflammatory markers like IL-6 and CRP, independently of anti-SARS-CoV-2 antibody levels. Thus, we confirmed previous findings performed on small number of participants, We expanded such finding by studying a large cohort with diverse populations according to age, sex and comorbidity, and emphasize the significance of GDF-15 measure at admission as a prognostic biomarker of COVID-19 severity, independently of sex and comorbidities (16, 17, 26, 27).

GDF-15 was initially described as a stress-induced cytokine with elevated expression observed in various chronic and acute pathological conditions, including inflammation, cardiovascular disease, diabetes, cancer, and chronic kidney disease (28–32). Higher circulating GDF-15 levels are also observed in aging population (33). Recent studies have extensively explored the potential of GDF-15 as an emerging disease prognosis biomarker in various human conditions such as type 2 diabetes, CVD and cancer clinical outcome and tumor progression (7, 34, 35). As prevalent health issues often exacerbate each other, presence of comorbidities was associated with COVID-19 severity. Consistently, we found increased plasma GDF-15 levels in COVID-19 patients with different pathologies, which contributed to the association between GDF-15 levels and increased severity and mortality rate (36). As age remains an important risk factor for severe COVID-19 and GDF-15 increases with age, our multivariable analysis indicated significantly elevated GDF-15 levels irrespective of the specific type of comorbidity in COVID-19 patients. Adjustment for age increased the association between plasma GDF-15 and COVD-19 severity. Interestingly, although obesity was associated with COVID-19 severity, we did not find increased levels of GDF-15 in obese compared to lean COVID-19 patients, including in persons with severe diseases.

The association between GDF-15 and severity was stronger than the association of IL-6 or CRP with this parameter. Higher levels of IL-6 and CRP were found in numerous studies as markers of COVID-19 severity (37, 38). Our results indicate that plasma GDF-15 levels would be a better predictor of COVID-19 severity in hospitalized patients than other commonly used markers.

We also categorized all COVID-19 positive participants into two distinct groups corresponding to two separate waves of COVID-19 infection with the ancestral SARS-CoV-2 variant, as indicated by Quebec public health data. Notably, GDF-15 levels exhibited a significant elevation during the initial period (March to July 2020) compared to the subsequent period (August 2020 to August 2021). This difference in plasma GDF-15 levels was corroborated with age but was independent of comorbidities and sex, suggesting that older age plays a substantial role in influencing the likelihood of developing severe COVID-19 and is associated with higher GDF-15 levels regardless of the patient’s sex and comorbidities. Despite the extended study period, spanning from March 2020 to August 2021, the prevailing SARS-CoV-2 variants of concern primarily consisted of α variants. As variants are characterized by their distinctive transmissibility, disease severity and ability to evade humoral immunity, it would be interesting to examine the results outlined here in subsequent variants of concern such as Delta and Omicron (39).

Although we found a link between GDF-15 levels and inflammatory biomarkers such as IL-6 and CRP, we did not find a link between GDF-15 and SARS-CoV-2 specific IgG levels measured by two assays. Blood samples of all study participants were collected on either day 0 or day 2 of hospitalization, which is an early stage of infection where robust humoral responses might not have fully developed. In a smaller group of recovered individuals, we did not find correlations between GDF-15 and SARS-CoV-2 IgG levels 30 days or 6 months after recovery. Thus, elevation of GDF-15 in severe cases might reflect tissue damages rather than activation of the immune system. Indeed, GDF-15 is elevated during cellular stress, especially during mitochondrial stress, and is highly expressed in the lung (40). Also, contrary to previous studies, we found an inverse correlation between GDF-15 and soluble ACE2 levels (41, 42). Hence, the association between GDF-15 and ACE2 levels should be further explored.

The main GDF-15 receptor is GDNF family receptor alpha like (GFRAL), which is solely expressed in the brainstem. Binding of GDF-15 on GFRAL has been shown to modulate appetite and energy intake and plays a role in obesity and cachexia (9, 43, 44). During pregnancy fetus encoded GDF15 and maternal GDF15 sensitivity are major determinants of nausea and vomiting (9). Interestingly, in vitro and in vivo, GDF-15 has been shown to have influence of other cell types, independently of GFRAL. Other receptors have been hypothesized and explored such as erbb2, and TGF-β receptors I and II, as well as CD48 (45). In COVID-19+ patients, we found a strong correlation between GDF-15 and soluble CD48 levels. Elevation of circulating soluble CD48 levels is observed in inflammatory conditions such as arthritis, leukemia or EBV infection (46). We did not find significant correlations between GDF-15 and levels of the others putative receptors.

In this study, we solely relied on blood samples, which may not fully depict the immune status or pathology present in the lungs or other infected regions. To gain a more comprehensive understanding of the impact of COVID-19 on human body, integrating blood sample data with imaging studies and lung tissue biopsies or bronchoalveolar lavage could offer a more holistic perspective, and assess the link between GDF-15 levels and tissue damage. We collected samples at the time of hospitalization. Future studies should compare the ability of GDF-15 at predicting severity when first symptoms are observed. Moreover, our study comprised participants who were not vaccinated against COVID-19, considering that vaccines were developed after initiating our recruitment period. Future studies should focus on evaluating the potential impact of COVID-19 vaccination on the prognostic value of GDF-15 in disease severity in vaccinated COVID-19 population and in recovered person who get reinfected.

Future studies should assess whether elevated GDF-15 could directly worsen SARS-CoV-2 severity. Interestingly, GDF-15 blockade or deletion in mouse models of inflammation such as obese or diabetic mice worsen symptoms and tissue damage. In cancer cachectic patients, GDF-15 blocking antibody Ponsegromab increased weight and improved quality of life (47). However, in a cancer model, GDF-15 blockade increased T-cell infiltration, promoting tumor control (48). Hence, although associated with severe outcomes, the role of GDF-15 and its receptor CD48 during acute SARS-CoV-2 infection, remains to be explored. Further studies in animal models could also validate whether modulation of GDF-15 levels and/or its signaling pathway could serve as a therapeutic strategy to alleviate disease severity during acute and chronic infections.





Conclusions

Altogether, our results demonstrated higher circulating GDF-15 levels are independently associated with severe COVID-19, including in patients with comorbidities including diabetes, cancer, COPD and CVD. These findings suggest that circulating GDF-15 proteins are associated with COVID-19 severity and may serve as a prognostic biomarker for identifying and stratifying severe COVID-19 patients. GDF-15 levels are easily quantified by ELISA in plasma or serum, as such, plasma GDF-15 levels measurements could be easily implemented by clinical laboratories. More studies are required to define thresholds linked with severity. Further studies are warranted to assess the function of GDF-15 on SARS-CoV-2 pathogenicity and in the context of widespread use of vaccination.
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Introduction

Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which appeared in 2019, has been classified as critical and non-critical according to clinical signs and symptoms. Critical patients require mechanical ventilation and intensive care unit (ICU) admission, whereas non-critical patients require neither mechanical ventilation nor ICU admission. Several factors have been recently identified as effective factors, including blood cell count, enzymes, blood markers, and underlying diseases. By comparing blood markers, comorbidities, co-infections, and their relationship with mortality, we sought to determine differences between critical and non-critical groups.





Method

We used Scopus, PubMed, and Web of Science databases for our systematic search. Inclusion criteria include any report describing the clinical course of COVID-19 patients and showing the association of the COVID-19 clinical courses with blood cells, blood markers, and bacterial co-infection changes. Twenty-one publications were eligible for full-text examination between 2019 to 2021.





Result

The standard difference in WBC, lymphocyte, and platelet between the two clinical groups was 0.538, -0.670, and -0.421, respectively. Also, the standard difference between the two clinical groups of CRP, ALT, and AST was 0.482, 0.402, and 0.463, respectively. The odds ratios for hypertension and diabetes were significantly different between the two groups. The prevalence of co-infection also in the critical group is higher.





Conclusion

In conclusion, our data suggest that critical patients suffer from a suppressed immune system, and the inflammation level, the risk of organ damage, and co-infections are significantly high in the critical group and suggests the use of bacteriostatic instead of bactericides to treat co-infections.





Keywords: COVID-19, critical, co-infection, mortality, sever
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Introduction

The SARS Coronavirus 2 (SARS-CoV-2) originated in China and spread to most countries worldwide in 2019. Generally, more than 200 million confirmed cases and more than 4 million deaths have been reported. SARS-CoV-2 is more infectious than SARS-CoV (1–3). The new Coronavirus is classified into critical and non-critical cases based on symptoms. Description of critical patients require mechanical ventilation and intensive care unit (ICU) admission, and Non-critical patients don’t require mechanical ventilation and ICU admission (3, 4). Accordingly, comparing critical and non-critical groups can describe the difference between the presence and absence of co-infection. After three years of the first appearance of COVID-19, researchers examined essential factors for evaluating COVID-19 disease.

As a first step, the blood cell count was evaluated. Some papers suggest that the number of white blood cells (WBCs), lymphocytes, and platelets may vary as a result of COVID-19, including critical, mild, moderate, and severe cases (5, 6). The difference between these cells may show the infection and inflammation in critical and non-critical groups (7, 8). Another factor associated with COVID-19 may be enzymes and proteins. Alanine aminotransferase (ALT), Aspartate aminotransferase (AST), and C reactive protein (CRP) levels were inconsistent between critical and non-critical groups. The level of these markers can determine the prognosis of the two groups (9, 10).

Underlying diseases such as high blood pressure, diabetes, cardiovascular disease, and dyslipidemia can play a crucial role in the clinical course of COVID-19 patients. Critical and non-critical patients exhibit varying levels of comorbidities; these have a different impact on morbidity (11). Moreover, there is evidence to suggest that the mortality rate can be affected by comorbidities (12, 13).

Co-infection is an essential factor in morbidity and mortality. Globally, the prevalence of bacterial co-infection in COVID-19 patients is unknown and different micro-organisms lead to co-infection (14). Most of the organisms differ in their distribution in different organs, such as the respiratory, blood, and urinary tracts (15). As a result, the reaction of critical and non-critical groups to co-infections will be considerably variable. Bacterial co-infection plays a vital role in the clinical course of the COVID-19 disease, which can be treated with various antibiotics.

The mortality rate of COVID-19 disease can be affected by factors such as blood cell count, blood markers, comorbidities, and co-infections (4). Therefore, the mortality rate can differ between critical and non-critical groups. In this study, blood markers, comorbidities, co-infections, and their relationship to mortality rates were compared between critical and non-critical patients.





Method



Search strategy

We reported this systematic review meta-analysis using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The studies were identified using the following PICOS principle: Patients = Patients with COVID-19, Intervention = dividing patients into critical and non-critical based on ICU admission and mechanical ventilation, Control, Outcome = Comparison of immunological and clinical factors between critical and non-critical groups, Study design = case-control, prospective or retrospective studies (16). We used Scopus, PubMed, and Web of Science databases for our systematic search. The search terms used in the database were included (“COVID-19” OR “SARS COV-2” OR “Coronavirus infection”) AND (“critical” OR “Non-sever”) AND (“non-critical”) AND (“Co-infection” OR “Secondary infection” OR “bacterial infection”). We searched English publications and stored and checked articles using Endnote software as a citation manager. All selected articles were published in the 2019 to Jan 2022 date range. We reviewed the search results’ titles, abstracts, and full text for screening and study selection based on the inclusion criteria. Inclusion criteria include any original study that evaluated differences in 1) blood cells and blood markers, 2) bacterial co-infection, 3) Comorbidities, and 4) mortality Rate between critical and non-critical COVID-19 patients. Viral co-infection, case reports, reviews, and duplicate studies are generally excluded from this systematic review.





Quality assessment and data extraction

Rayyan platform was used for screening and data extraction of included studies. Using the nine-point Joanna Briggs Institute critical appraisal checklist for studies, two researchers conducted the quality assessment (A. B and M. H) and disagreements were resolved by consensus (H. S). The included studies met more than half of the quality assessment parameters. Based on Table 1, we (A. B. and M. H.) extracted the publication year, country, the number of patients, the clinical course (ICU admission or mechanical ventilation), and physiological data from the studies. The prevalence of bacteria and co-infections were determined using nasal and pharyngeal swabs, blood serum, and urine analysis samples for the respiratory, bloodstream, and urinary systems, respectively in selected studies. As a part of our investigation, the following information was obtained: publication year, study design and research question, number of articles, number of each type of study, language, and country of study, device used, patient characteristics, and statistical methodology.


Table 1 | The Main Characteristics of Studies Included in the Meta-analysis.

[image: A table listing various studies with columns for study name, year, country, study design, percentages of critical and non-critical cases, JBI score with risk of bias, and references. Studies are from diverse countries including China, Scotland, Pakistan, Japan, France, Germany, Scandinavia, and Indonesia. The table includes different study designs like prospective, cohort, case-control, and retrospective. JBI scores range from 3 (high risk of bias) to 9 (low risk of bias). References are provided as numbers in parentheses.]




Data analysis

The statistical analysis and construction of graphs were performed with a comprehensive meta-analysis (CMA) version 3 (Biostat Inc., Englewood, NJ) with a random effect model plotted on forest plots since this model is more reasonable in the presence of heterogeneity than the fixed model. The pooled standard difference in mean with 95% CI gave the summary estimate. To test heterogeneity, we used the I-squared (I2). Visual bias was assessed using a funnel plot, and Egger’s regression test confirmed it (p < 0.05 was considered a statistically significant publication bias).






Result



Search outcome and study characteristics

Considering the objectives of this study, we identified 746 publications in Scopus, PubMed, and Web of Science databases. After removing duplicate studies and screening based on inclusion and exclusion, 21 publications were eligible for full-text examination (Figure 1). Studies have been conducted in the following countries: China (13), France (2), and one study from each of the following: Germany, Scotland, Pakistan, Japan, Scandinavian, and Indonesia. Among the studies, there were 14 retrospective studies, three prospective studies, two case-control studies, and two cohort studies.

[image: Flowchart titled "Identification of studies via databases and registers" showing the study selection process. Initially, 746 records were identified from Scopus, PubMed, and Web of Science. After removing 395 duplicates, 351 records were screened. Of these, 317 were excluded. Thirty-four reports were sought, all assessed for eligibility, with 13 excluded for various reasons. Twenty-one studies were included in the review.]
Figure 1 | PRISMA flow chart of study selection.





Comparison of blood cell count between critical and non-critical groups

One of the basic factors in the clinical course of COVID-19 is blood cells. We analyzed WBC, lymphocyte, and platelet differences between the two groups. As shown in Figure 2, the standard difference in means indicated that lymphocytes and platelets were significantly higher in non-critical patients than in critical patients, while WBCs were higher in critical patients (std: -0.670, -0.421, and 0.538, respectively, 95% CI, P <0.001).

[image: Forest plot depicting the standard difference in means and ninety-five percent confidence intervals for various studies analyzing lymphocytes, platelets, and WBCs in non-critical and critical groups. The plot includes studies with their respective names, analysis type, mean differences, confidence intervals, p-values, and relative weights. The chart is divided into non-critical and critical sections, with results shown as squares and diamonds along a horizontal line indicating standard difference ranges from -3.00 to 3.00.]
Figure 2 | Comparison of blood cells between critical and non-critical courses.





Comparison biomarkers level between critical and non-critical groups

Biomarkers and enzymes, such as CRP, ALT, and AST are other factors in the clinical course of COVID-19. As shown in Figure 3, there was a significant difference in blood markers between the two groups. the standard difference of the mean for ALT was 0.403 (95% CI: 0.212, 0.593. P <0.001), while for AST it was 0.461 (95% CI: 0.099, 0.823. P = 0.013). In addition, the standard difference of the mean for CRP was 0.482 (95% CI: 0.178, 0.786. P = 0.002). The critical group had significantly higher levels of each of these factors than the non-critical group.

[image: Forest plot showing the standardized differences in means and ninety-five percent confidence intervals for studies on biomarkers ALT, AST, and CRP. Each study is represented by a square, with horizontal lines indicating confidence intervals. Diamonds represent pooled estimates. Relative weights and p-values are listed alongside. The plot compares non-critical and critical outcomes on a scale from -2.0 to 2.0.]
Figure 3 | Comparison of blood markers between critical and non-critical courses.





Comparison of mortality and comorbidities between critical and non-critical groups

Comorbidities such as hypertension and diabetes are important factors related to mortality and complications of COVID-19 patients. Pooled results in Figure 4 showed that there was a significantly higher prevalence of hypertension, diabetes, and subsequent mortality rate in the critical group ((OR: 0.446, 95% CI: 0.243, 0.818. P = 0.009), (OR: 0.565, 95% CI: 0.336, 0.949. P = 0.031), and (OR: 0.043, 95% CI: 0.011, 0.161. P < 0.001) respectively).

[image: Forest plot illustrating odds ratios with 95% confidence intervals for various studies on death, diabetes, and hypertension as comorbidities. The plot highlights the differences in odds ratios between non-critical and critical conditions, displaying results and relative weights for each study, with data points shown as squares or diamonds indicating confidence intervals and statistical significance.]
Figure 4 | Comparison of comorbidities between critical and non-critical courses.





Comparison of bacterial co-infection between critical and non-critical groups

The probability of bacterial co-infection differs significantly between groups, as illustrated in Figure 5. As a result, the difference in co-infection prevalence between critical (Event rate:57.7%, 95% CI: 0.296, 0.816) and non-critical (Event rate:25.7%, 95% CI: 0.074, 0.60) groups was 32%.

[image: Forest plot showing event rates and 95% confidence intervals for various studies categorized by critical and non-critical disease courses. Each study is represented by a square or diamond, indicating the event rate and weight. Critical studies show higher event rates compared to non-critical, with detailed p-values and confidence limits listed for each.]
Figure 5 | Comparison of co-infection prevalence between critical and non-critical courses.





Publication bias

A funnel plot was used for visual evaluation (Figure 6, 5S) and Egger’s test was used to determine bias (Table 2). Egger’s test indicated publication bias for three of the ten variables. According to Egger’s test, we found significant bias in WBC and lymphocyte mean and mortality rate differences between the two groups. Using Table 2, it appears that variables with a P value < 0.05 are heterogeneous in terms of heterogeneity analysis. Although heterogeneous data does not necessarily indicate bias, the Egger test must be significant (P< 0.05). We have also attached the results of one removed study plots as Supplementary Figures 1–3.

[image: Funnel plot showing circles representing data points plotted against standard error on the vertical axis and standardized difference in means on the horizontal axis. The plot includes a central line and two sloping lines forming a funnel shape.]
Figure 6 | Funnel plot for comparison of blood markers between critical and non-critical courses.


Table 2 | The Complete Results of Heterogeneity and Publication Bias Examination.

[image: A table comparing critical and non-critical cases across various health variables. Columns include variable description, number of reports, standard error, 95% confidence interval (CI) lower and upper limits, heterogeneity (Chi-square, p-value, I-squared), and Egger's regression (p-value, t-value). Variables analyzed are mean differences in WBC, lymphocytes, platelets, ALT, AST, CRP, hypertension, diabetes, death events, and prevalence of co-infection. Numeric data is provided for statistical assessment of each variable.]





Discussion

The COVID-19 pandemic has reached a global scale, and medical systems in many countries are experiencing severe problems as a result (32, 33). The COVID-19 pandemic in 2019 has caused significant hospitalizations and deaths. According to the clinical course on COVID-19, we can classify patients with COVID-19 into critical and non-critical groups (4). The results showed that there are several differences between critical and non-critical groups. In this study, we examined the blood cell count, blood markers, and the comorbidities difference between critical and non-critical groups.

Due to the correlation between the immune system function and the clinical course of COVID-19, we compared the blood cell count between groups (34). The production of cytokines is crucial for the growth and specialization of immune cells. In COVID-19 pneumonia patients, certain inflammatory cytokines like IL-6 and IL-10 were found to be elevated in critical cases (35). However, IL-2 levels were increased in non-critical patients but decreased in critical ones. When present in low concentrations, IL-2 can prevent CD4+ T and CD8+ T-cell activation by maintaining T regulatory cell activity and survival (36). As a result, this could lead to a significant drop in CD8+ T-cells and lymphocytes in COVID-19 critical patients (37). Furthermore, critical patients had significantly lower T-cell, B-cell, and NK cell counts compared to controls (38). A gradual decrease in peripheral blood lymphocytes is a common early indicator of adult patients with non-critical and critical illnesses (39). IL-6 can stimulate T cell differentiation, and its increased levels are associated with producing acute-phase proteins like CRP and inflammatory cytokines. It is also possible that increased WBC in critical patients with low lymphocytes may be caused by an increase in PMNs, which can be indicated by an increase in CRP levels.

This study analysis indicated the higher platelet count in non-critical patients. Platelets and other related indicators play a crucial role in inflammation and prothrombotic responses during numerous viral infections (19). Apart from their traditional function in hemostasis and thrombosis, platelets also contribute significantly to the immune and inflammatory processes. Research suggests that platelets express surface receptors that enable them to bind and allow entry to various viruses. Furthermore, the rise in platelets and neutrophils could be due to anti-apoptotic cytokines and stimulation by specific pro-inflammatory cytokines (40). In addition to the immune system, enzymes and inflammation markers play an essential role in the course of COVID-19 disease (9). As a result of this study, ALT, AST, and CRP levels are significantly higher in the critical group than in the non-critical group. During acute inflammatory responses to COVID-19, there is usually a rapid and significant increase in serum CRP levels. Elevated CRP fluctuation during hospitalization has been identified as the primary cause of ICU admission with a poor prognosis (41). Analysis revealed that critical patients have higher CRP levels, indicating a more significant inflammatory response than non-critical patients (13). Although CRP is a sensitive indicator of disease activity and an independent risk factor for various diseases, studies have shown that CRP fluctuation is a better indicator of inflammation severity for guiding treatment in sepsis, systemic inflammatory response syndrome (SIRS), and community-acquired pneumonia (9, 42).

An elevated CRP level in critical patients may hint to SIRS and multi organ damage. An elevated level of ALT and AST in critically ill patients may indicate liver damage and a change in bacterial co-infection in COVID-19 disease, both of which are associated with mortality (10). Lipopolysaccharides (LPS) are always considered a major contributor to liver damage (43). In critical patients with elevated liver enzymes that are indicative of acute liver damage, LPS may be one of the contributing factors. Our analysis of critical patients reveals a high prevalence of bacterial co-infection and LPS is predominantly present in bacterial cell walls. LPS is generally released from bacterial walls during bacterial proliferation or destruction (44). Therefore, it is possible that the overused broad-spectrum antibiotics in COVID-19 patients may suddenly destroy gram-negative bacteria and induce liver damage with a large amount of LPS toxin (45). Bactericide antibiotics may cause bacteria to release LPS, so bacteriostatic are recommended instead. The bacteriostatic inhibits the proliferation of bacteria, but does not kill them, therefore the level of LPS remains low until the body can recover from COVID-19. Once COVID-19 has been eliminated, bactericide antibiotics can be used. ALT, AST, and CRP levels are associated with ICU admission risk based on the results of this study and according to the definition of critical patients.

In univariable analysis, hypertension, diabetes, cardiovascular disease, and cancer were associated with critical illnesses (24). In this study, a statistical meta-analysis revealed that comorbidities, such as hypertension and diabetes, are more prevalent in critical groups than in non-critical groups. However, some previous studies state that comorbidities are common in non-critical groups, contrary to recent studies and our meta-analysis (46). A common element of COVID-19 patients with hypertension and diabetes is the use of angiotensin-converting enzyme inhibitors (ACEI). A membrane receptor known as ACE2 is responsible for binding SARS-CoV-2 to cells and promoting its entry into the respiratory tract. The downregulation of ACE2 by SARS-Cov-2 spike protein binding reduces the protective effects of ACE2 during acute inflammation (47). ACE inhibitors may induce the ACE2 expression, the cellular receptor for SARS-Cov-2, and can aggravate the disease course (48). It has been identified that SARS-CoV-2 is able to invade cells via this previously established cell receptor which is facilitating the invasion of SARS-CoV-2 cells (49). The higher incidence of diabetes in critically ill patients can be attributed to three well-defined mechanisms (50): 1) The direct entry of viruses through various receptors in β-cells can directly cause β-cell dysfunction and apoptosis or trigger β-cell autoimmunity. Alternatively, viruses can enter pancreatic cells that express viral receptors, leading to structural and functional changes, local inflammation, and the creation of a pro-diabetic environment. This can disrupt the integrity of nearby non-infected β-cells in a paracrine manner, potentially leading to loss or dysfunction of these cells (51). 2) Targeting putative viral receptor-expressing cells in metabolic organs like the liver and adipose tissue can induce insulin resistance and result in the loss of disease tolerance mechanisms (52). 3) Induction of systemic inflammation and accumulation of prediabetic metabolites can lead to metabolic derangement and maladaptive functions (53).

Critical patients with COVID-19 pneumonia exhibit a state of immune deficiency and hypo immunity. These factors can further worsen the situation by causing severe infection and leading to fatal outcomes (54). The prevalence of bacterial co-infection in COVID-19 patients can also be another difference between critical and non-critical patients. Our meta-analysis showed bacterial co-infection is more common in critical than non-critical patients. Bronchoalveolar lavage (BAL) and sputum are usually collected in the first week of ICU admission. The majority of COVID-19 patients with bacterial co-infection previously received antibiotics. Overall, our results revealed that the frequency of bacterial co-infection is higher in critical patients following ICU admission than in non-critical patients.

Therefore, the risk of inflammation, organ damage, and previous disease is significantly higher in the critical group. According to the comparison of co-infection rates, critical patients are more likely to have co-infections than non-critical patients. Also, the critical group had a higher death rate than the non-critical group (Graphical abstract).

In conclusion, our findings suggested that critical patients have a suppressed immune system and that inflammation, organ damage, and co-infections are significantly higher. Due to these factors, critical groups have a worsened course of the disease and a high mortality rate, so these patients require rapid diagnosis and careful management. Additionally, bactericide antibiotics may cause liver failure in critical patients due to the risk of liver damage. Therefore, we suggest that this relationship be fully evaluated in future studies.




Limitations

Incomplete and vague definitions of some articles about critical and non-critical phases.

More than three-quarters of the studies we included were from China describing patients at the start of the pandemic.

Most patients with COVID-19 patients do not require hospitalization but patients in the studies included in this review were predominantly hospitalized.
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Background

Acute immune responses to coronavirus disease 2019 (COVID-19) are influenced by variants, vaccination, and clinical severity. Thus, the outcome of these responses may differ between vaccinated and unvaccinated patients and those with and without COVID-19-related pneumonia. In this study, these differences during infection with the Omicron variant were investigated.





Methods

A total of 67 patients (including 47 vaccinated and 20 unvaccinated patients) who were hospitalized within 5 days after COVID-19 symptom onset were enrolled in this prospective observational study. Serum neutralizing activity was evaluated using a pseudotyped virus assay and serum cytokines and chemokines were measured. Circulating follicular helper T cell (cTfh) frequencies were evaluated using flow cytometry.





Results

Twenty-five patients developed COVID-19 pneumonia on hospitalization. Although the neutralizing activities against wild-type and Delta variants were higher in the vaccinated group, those against the Omicron variant as well as the frequency of developing pneumonia were comparable between the vaccinated and unvaccinated groups. IL-6 and CXCL10 levels were higher in patients with pneumonia than in those without it, regardless of their vaccination status. Neutralizing activity against the Omicron variant were higher in vaccinated patients with pneumonia than in those without it. Moreover, a distinctive correlation between neutralizing activity against Omicron, IL-6 levels, and cTfh proportions was observed only in vaccinated patients.





Conclusions

The present study demonstrates the existence of a characteristic relationship between neutralizing activity against Omicron, IL-6 levels, and cTfh proportions in Omicron breakthrough infection.
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Introduction

The Omicron (B.1.1.529) variant of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported on November 2021 (1, 2). This variant demonstrates higher transmission rates than previous variants, resulting in its rapid dominance worldwide (3, 4). Nonetheless, this variant causes milder symptoms and is associated with lower hospitalization rates and mortality (4). The decreased clinical severity of the Omicron variant may be due to the low fusogenicity of its spike (S) protein, leading to less tissue damage and restricted tropism of the virus in the upper respiratory tract of patients (due to altered transmembrane protease serine 2 [TMPRSS2] activity) (4–6).

The coronavirus disease 2019 (COVID-19) typically presents on chest computed tomography (CT) scans as peripheral bilateral ground-glass opacities (GGOs) or as multifocal rounded GGOs with or without consolidation and the reverse halo sign (7). However, compared with the Delta or precedent SARS-CoV-2 variants, the Omicron variant is characterized by the presence of fewer and less severe changes in chest CT data (8). Notably, vaccination attenuates the severity of COVID-19 pneumonia, as evident by the decreased incidence of typical CT findings (7). Nevertheless, the vaccine-induced protective effect against COVID-19 pneumonia lessens with time (9); thus, even vaccinated individuals develop pneumonia, and some also develop other severe and/or fatal manifestations (10). To date, few studies have examined the incidence of pneumonia during the Omicron wave, as well as the differences in immune responses between patients with vs. without pneumonia and between vaccinated vs. unvaccinated patients infected with Omicron variants (8, 10).

The neutralizing antibodies induced by vaccination or infection are important for protection from severe COVID-19 progression (11). Follicular helper T (Tfh) cells play an important role in inducing, producing, and maintaining high-affinity neutralizing antibodies against SARS-CoV-2 (12). The Tfh-mediated humoral immune responses differ between moderate and critically ill patients. A previous study reported that unvaccinated critically ill patients have lymph nodes and/or spleens with deficiently structured germinal centers and decreased numbers of Tfh cells (13), leading to delayed production of high-affinity neutralizing antibodies. Additionally, evaluation of unvaccinated patients infected with the ancestral Wuhan strain during the first wave of the COVID-19 pandemic revealed that the immune neutralization activity at hospitalization was significantly higher in patients with moderate disease than in those with severe-to-critical disease (14). These findings suggest that immune neutralization activities during the acute phase of infection are inversely correlated with disease severity and that delayed production of neutralizing antibodies is associated with severe COVID-19 progression. These results are consistent with other studies conducted during the same period (15).

Acute immune responses to COVID-19 are influenced by variants, vaccination, and clinical severity. The first aim of the present study was to assess the incidence of COVID-19 pneumonia and the differences in the neutralization activity or other immune characteristics during the acute phase of Omicron infection in vaccinated vs. unvaccinated patients. The second aim was to evaluate the differences in these acute immune responses in patients with vs. patients without pneumonia in both vaccinated and unvaccinated patients. As it can be difficult to assess the neutralization activity just before infection in vaccinated patients, we assessed the neutralization activity and serum levels of the markers of the protective status or immune response during the acute phase, namely, type I and III interferons (IFNs), interleukin (IL)-6, C-X-C motif ligand (CXCL)-10, and vascular endothelial growth factor (VEGF), within 5 days after symptom onset in both vaccinated and unvaccinated patients admitted to the hospital.





Materials and methods




Study design

This prospective, observational cohort study enrolled consecutive patients who were admitted to Toyama University Hospital with confirmed COVID-19 between January 2022 and March 2022. In the present study, the inclusion criteria were: age ≥18 years, newly diagnosed with COVID-19 based on positive reverse transcription polymerase chain reaction (RT-PCR) results, and admitted to the hospital within 5 days after symptom onset. The genomic survey of the local institute of public health during the study period reported that Omicron BA.1 variant was dominant, with a small population of Delta variant still being detected (16). After initial blood test and CT examination at admission, all patients received standard therapy depending on their clinical course and were followed until discharge or disease remission. Patients with clinical or laboratory evidence of prior COVID-19 infection and those who received the booster dose of vaccination prior to inclusion were excluded from the study.





Study participants and protocol

Data on patient demographics, comorbidities, COVID-19 vaccine history, clinical presentation, laboratory findings, treatment regimens, and prognostic outcomes were collected from the medical charts. The participants were divided into two groups: those who had previously received two doses of BNT162b2 or mRNA-1273 vaccine (vaccinated group) and completely unvaccinated individuals (unvaccinated group). Breakthrough SARS-CoV-2 infection in the vaccinated group was defined as infection that occurred ≥14 days after the second dose of the monovalent BNT162b2 or mRNA-1273 vaccines (17).

Participants diagnosed with COVID-19 were asked to provide blood samples [serum, plasma, and peripheral blood mononuclear cells (PBMCs)] and nasopharyngeal swabs for viral load measurement at hospital admission. Serum, plasma, and PBMCs simultaneously collected were isolated and stored at −80°C until further analysis. Chest CT was also performed in all patients at admission. When a newly developed inflammatory lesion was detected, COVID-19 pneumonia was subsequently confirmed by trained pulmonary radiologists (KN and YY). The CT pattern of COVID-19 pneumonia was classified according to the dominant GGO pattern and pulmonary consolidations, as well as their extent and distribution, as follows: “extended/segmental GGO,” “extended/segmental organizing pneumonia-like,” and “others.” The diagnostic and COVID-19 pneumonia classification approaches were consistent with those described in previous reports (18). Hypoxemia requiring oxygen therapy was defined as a blood oxygen saturation (SpO2) level of ≤ 93% at rest/motion in room air, as defined previously (19). Patients without inflammatory lesions were confirmed to be negative for COVID-19 pneumonia.





RT-qPCR analysis

Nasopharyngeal swabs and serum samples were collected, and RNA was extracted. The nasopharyngeal swab specimens were pretreated with 500 µL of sputazyme (Kyokuto Pharmaceutical, Tokyo, Japan). After centrifugation at 20,000×g for 30 min at 4°C, the supernatant was used for RNA extraction. A total of 60 µL RNA solution was obtained from 140 µL of the supernatant or 140 µL of serum using the QIAamp ViralRNA Mini Kit (Qiagen, Hilden, Germany) or Nippongene Isospin RNA Virus (Nippon Gene, Toyama, Japan), according to the manufacturers’ instructions. SARS-CoV-2 viral loads were quantified using N2-specific primer/probe sets and RT-qPCR analysis, according to the protocol of the National Institute of Infectious Diseases of Japan. Quantification quality was controlled using AcroMetrix COVID-19 RNA Control (Thermo Fisher Scientific, Waltham, MA, USA). The detection limit was of approximately 0.4 copies/µL (two copies/5 µL). RNAemia was defined as the presence of viral RNA in the serum, above the detection limit of the RT-qPCR assays (20).

Multiplex real-time one-step RT-PCR assays were also performed to detect mutations in the spike protein (L452R and G339D) using nucleic acids extracted from nasopharyngeal swabs. Testing was performed using a Light Cycler 96 Real-Time PCR System (Roche, Basel, Switzerland) along with Primer/Probe L452R Ver.2 and Primer/Probe G339D (Takara Bio, Shiga, Japan). All procedures were performed according to the manufacturers’ instructions. When the G339D mutation was detected and L452R was not, the Omicron BA.1 variant was identified in agreement with the local epidemic situation analyzed at the Toyama Institute of Health (16, 21).





Blood samples

The stored blood serum, plasma, and PBMC samples of the enrolled patients were used for neutralization and serological assays, cytokine and RNAemia measurements, and phenotypic characterization of lymphocytes, as described in the following section. In our previous study (22), we performed preliminary experiments to assess the levels of inflammatory biomarkers at different time points in unvaccinated patients who developed pneumonia. We found that the levels of IFN-α, IL-6, and CXCL10 were decreased 5 days after the initial assessment. In another study we assessed neutralizing activity dynamics at different time points in unvaccinated patients (14), and found that the neutralization activities increased after 5 days and plateaued at 9–16 days after onset. Based on these earlier results, we here focused on immunoinflammatory biomarker levels and neutralizing activities within 5 days of symptom onset, which corresponds to the acute phase of SARS-CoV-2 infection (22, 23). Therefore, only blood samples collected within five days after symptom onset were used for this analysis.





PBMC isolation and phenotype analysis

Whole blood samples (7 mL) were diluted with an equal volume of 0.9% NaCl solution and the PBMCs were isolated using Lymphoprep (Cosmo Bio, Tokyo, Japan). Briefly, after centrifugation at 800×g for 30 min at room temperature without the brake applied, the PBMC interface was carefully collected and washed with 0.9% NaCl via centrifugation at 250×g for 10 min. PBMC pellets were resuspended in 0.9% NaCl and washed again via centrifugation at 250×g for 10 min at room temperature. The cells were then divided into four tubes and cryopreserved at −80°C in Cell Banker 1 (Takara Bio) until analysis. After thawing, the cells were independently counted using a counting chamber (C-Chip DHC-B02; NanoEn Tek Inc., Seoul, Korea) with Türk stain. After washing twice with phosphate-buffered saline (PBS), the cells were fixed with Cell Cover (Anacyte Laboratories, Hamburg, Germany) and incubated with human TruStain FcX block (Biolegend, San Diego, CA, USA) for 10 min at room temperature in the dark. Next, the cells were stained for phenotypic analysis using 5-fold dilution of specific fluorochrome conjugated antibodies (Supplementary Table 1). Data acquisition was performed using FACS Celesta system (BD Biosciences, San Jose, CA, USA). PBMCs were isolated from healthy individuals who had received three doses of COVID-19 vaccination 2 weeks prior and then used as an internal positive control. A fluorescence minus one (FMO) control was used for gating analyses to distinguish positively from negatively stained cell populations.





Cytokine measurement

Serum cytokines and chemokines—IFN-α, IFN-λ1 (IL-29), IFN-λ3 (IL-28B), IL-6, CXCL10, and VEGF—were measured using commercially available enzyme-linked immunosorbent assay kits, according to the manufacturers’ instructions (Supplementary Table 2). Each sample was measured on the first thaw. If an analyte signal was below the background signal, it was set to 0; if the signal was detectable but below the manufacturer’s lower limit of quantification, it was set to the lower limit of detection.





Pseudotyped virus neutralization assay

Vesicular stomatitis virus (VSV) pseudotype bearing SARS-CoV-2 S protein was generated as previously described (24). The expression plasmid for the truncated S protein of SARS-CoV-2 variants, pCAGG-pm3-SARS2-Shu-d19-B1.617.2 (Delta-derived variant), pCAGG-pm3-SARS2-Shu-d19-B1.1.529.1 (Omicron BA.1-derived variant), and VSVs bearing envelope (VSV-G) were provided by Drs. C. Ono and Y. Matsuura of the Research Institute for Microbial Diseases, Osaka University, Japan. The pseudotyped VSVs were stored at −80°C until subsequent use. The neutralizing effects of each sample against pseudotyped VSVs were examined using a high-throughput chemiluminescent reduction neutralizing test (htCRNT), as previously described (25, 26). Briefly, serum samples were diluted 100-fold with Dulbecco’s modified Eagle’s medium (Nacalai Tesque, Kyoto, Japan) containing 10% heat-inactivated fetal bovine serum and were incubated with pseudotyped SARS-CoV-2 for 1 h. Afterward, VeroE6/TMPRSS2 cells (JCRB1819) were treated with medium-containing serum and pseudotyped virus mixture. The infectivity of the pseudotyped viruses was determined by measuring the luciferase activity after 24 h of incubation at 37°C. Samples without pseudotyped virus and those with pseudotyped virus but not serum were defined as positive (0%) and negative (100%) infection neutralizing controls, respectively.





Serologic assays

Two different electrochemiluminescent immunoassays—Elecsys anti-SARS-CoV-2 immunoassay using recombinant nucleocapsid (N) antigen and Elecsys anti-SARS-CoV-2 S immunoassay using S protein receptor binding domain (RBD) (Roche)—were performed using plasma samples collected at admission to determine anti-N and anti-RBD antibodies in all patients. According to the manufacturer, a result was considered positive if the cutoff index was ≥1.0 and ≥0.8 U/mL for anti-N and anti-RBD, respectively. The lower and upper limits of quantification were 0.4 and 25,000.0 U/mL, respectively. The presence of anti-N antibodies indicated post-infection immunity, but it could also reflect acute humoral immune response, as a previous study reported that seroconversion for anti-N occurs significantly faster than that for anti-S in COVID-19 patients (27). Therefore, patients who were both anti-N and anti-RBD antibody positive were regarded as prior infected patients and excluded from the analysis.





Statistical analysis

The participant’s medical and demographic characteristics were summarized as medians (interquartile ranges) or numbers (percentages). Differences between the two groups were tested using the Mann–Whitney U or Fisher’s exact tests. Correlations between the test findings were expressed using Pearson’s correlation coefficient. Analysis of the association between neutralizing activities and immune parameters are summarized in a correlation matrix. Statistical significance was defined as P<0.05. Statistical analysis and figure construction were performed using JMP Pro version 17.0.0 software (SAS Institute Inc., Cary, NC, USA) and GraphPad Prism version 9.5.1 (GraphPad Software, San Diego, CA, USA).






Results




Characterization of the study cohort

A total of 67 patients were included in the study, among whom 47 patients were vaccinated. All patients in the vaccinated group were infected 3–9 months after receiving the second dose of the BNT162b2 or mRNA-1273 vaccines. The demographic and clinical characteristics of the study cohort are summarized in Table 1. Patient age was higher in the vaccinated group than in the unvaccinated group, but the difference did not reach statistical significance. Sex, underlying diseases, body mass index, and febrile period were not significantly different between the vaccinated and unvaccinated groups. Sera and plasma were collected from all patients, but nasopharyngeal swabs were not collected in 4 vaccinated and 5 unvaccinated patients, and PBMCs were not collected in 11 vaccinated and 3 unvaccinated patients.


Table 1 | Clinical characteristics of the patients with COVID-19.
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The initial nasopharyngeal viral load at admission and the proportion of RNAemia were not significantly different between the vaccinated and unvaccinated groups (Table 1). Notably, RT-PCR assays revealed that all patients were infected with Omicron BA.1 variant, except for two patients in whom G339D was undetectable due to low viral loads (5.08 copies/μL and undetectable). Anti-N antibodies were undetectable in vaccinated patients, whereas unvaccinated patients were negative for anti-RBD antibodies at admission. Only two unvaccinated patients with pneumonia had low anti-N antibodies (3.66 and 4.16 cutoff index), but without anti-RBD antibodies, suggesting that these were likely early reactions to their current COVID-19 infection (27).

The incidence and characteristics of COVID-19 pneumonia in the vaccinated and unvaccinated groups are summarized in Table 2. Overall, 16 (34.0%) of the 47 vaccinated and 9 (45.0%) of the 22 unvaccinated patients presented with pneumonia at admission. The dominant CT pattern was segmental GGOs followed by extended GGOs, both in the vaccinated and unvaccinated groups. Five vaccinated patients and 1 unvaccinated patient developed hypoxemic respiratory failure at admission, whereas 2 vaccinated and 1 unvaccinated patient developed this complication within 5 days after admission. Only two vaccinated patients required invasive positive pressure ventilation, but all patients included in this study survived COVID-19, at least until 30 days after symptoms onset. All treatments, including antiviral medication with remdesivir, corticosteroids, and anti-SARS-CoV-2 monoclonal antibodies, were administered after the collection of the blood and nasopharyngeal swabs samples. Importantly, patient age, sex, underlying diseases, and body mass index were not significantly different between patients with and without pneumonia or hypoxemic respiratory failure, regardless of their vaccination status.


Table 2 | Radiological characteristics of the patients with COVID-19.
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Neutralization activity, anti-RBD antibody, and immunoinflammatory biomarker levels

The median htCRNT values of the wild-type- and Delta-derived variants, and the median anti-RBD antibody levels in the vaccinated group were 82.2% (interquartile range: 54.7–95.2%), 33.0% (23.0–65.9%), and 360.0 U/mL (139.0–662.0 U/mL), respectively, whereas in the unvaccinated group the values were all negative (<50% inhibition and <0.4 U/mL, respectively) (Figure 1; Supplementary Figure 1A). Although these htCRNT values were all significantly higher in vaccinated patients than in unvaccinated patients, the htCRNT values for Omicron BA.1 were similar (18.9% [0.0–46.6%] vs. 19.0% [2.4–39.2%]) (Figure 1). Only 2 unvaccinated patients with pneumonia had positive neutralizing antibodies against the Omicron variant (htCRNT values ≥50%), but without anti-RBD antibodies, suggesting that these were likely early reactions to their current COVID-19 infection. Moreover, the htCRNT values of the wild-type-, Delta-, and Omicron-derived variants were shown to be correlated with the anti-RBD antibody levels in the vaccinated group (Supplementary Figure 1B).
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Figure 1 | Neutralization activity against the WT- and Omicron-derived variants, and anti-RBD antibody levels at hospital admission (within 5 days after symptom onset) in vaccinated (n = 47) and unvaccinated patients (n = 20). The Mann-Whitney test was used to compare values between vaccinated and unvaccinated patients. Each dot represents an individual value. Bars indicate medians with interquartile ranges. WT, wild-type; RBD, receptor-binding domain; ****P<0.0001; ns, not significant.

All measured proinflammatory cytokines and chemokines (IFN-α, IFN-λ1, IFN-λ3, IL-6, and CXCL10) levels and laboratory findings [neutrophil-to-lymphocyte ratio (NLR), lactate dehydrogenase (LD), and C-reactive protein (CRP)] in the acute phase were not significantly different between the vaccinated and unvaccinated groups (Supplementary Figure 2). Only the VEGF levels were significantly higher in the vaccinated patients than the unvaccinated patients (Supplementary Figure 2).

The association between neutralization activity or anti-RBD antibody levels and the initial nasopharyngeal viral loads at admission were also investigated. The htCRNT values of the wild-type- and Delta-derived variants were significantly correlated with the nasopharyngeal viral loads in the vaccinated patients, but not in unvaccinated patients (Supplementary Figure 3). The htCRNT values of the Omicron-derived variant and the anti-RBD antibody levels were not significantly correlated with the nasopharyngeal viral loads in either the vaccinated or unvaccinated patients. The correlation between the initial nasopharyngeal viral load and anti-RBD antibody levels in the unvaccinated patients is not shown in Supplementary Figure 3 because the anti-RBD antibody levels in the unvaccinated patients were all negative (<0.4 U/mL).





Association between acute immune response and the incidence of pneumonia

We analyzed the association between each of neutralization activity, antibody levels, and immunoinflammatory biomarkers and the presence of pneumonia in the vaccinated and unvaccinated groups. The htCRNT values for the wild-type- and Delta-derived variants and the anti-RBD antibody levels were not significantly different between patients with and without pneumonia in either the vaccinated or unvaccinated groups (Figure 2; Supplementary Figure 4). In contrast, the htCRNT values for the Omicron BA.1-derived variant were significantly higher in vaccinated patients with pneumonia than in those without pneumonia [46.5% (17.6–59.9%) vs. 9.8% (0.0–28.0%)] (Figure 2). This difference was also observed when comparing vaccinated patients with and without hypoxemic respiratory failure [59.4% (15.5–92.5%) vs. 16.9% (0.0–42.6%)]. On the other hand, the htCRNT values for the Omicron BA.1-derived variant were not significantly different between patients with and without pneumonia or between those with and without respiratory failure in the unvaccinated group (Figure 2).
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Figure 2 | Neutralization activity against the WT- and Omicron-derived variants, and anti-RBD antibody levels at the acute phase of COVID-19, and associations with pneumonia or hypoxemic respiratory failure in vaccinated (n = 47) and unvaccinated patients (n = 20). The Mann-Whitney test was used to compare values between vaccinated patients with (n = 16) and without pneumonia (n = 31), vaccinated patients with (n = 7) and without hypoxemic respiratory failure (n = 40), unvaccinated patients with (n = 9) and without pneumonia (n = 11), and unvaccinated patients with (n = 2) and without hypoxemic respiratory failure (n = 18). Each level was measured at admission (within 5 days after symptom onset) and each dot represents an individual value. Bars indicate medians with interquartile ranges. WT, wild-type; RBD, receptor-binding domain; *P<0.05; **P<0.01; ns, not significant.

The levels of IL-6, CXCL10, LD, and CRP were significantly higher in patients with pneumonia than in those without pneumonia, both in the vaccinated and the unvaccinated group (Figure 3). The levels of IFN-α, IFN-λ1, IFN-λ3, VEGF, and NLR were not significantly different between these patients (Supplementary Figure 4). In the comparison between vaccinated and unvaccinated patients with pneumonia, the levels of IL-6, CXCL10, LD, IFN-α, IFN-λ1, IFN-λ3, VEGF, and NLR were not different (Figure 3; Supplementary Figure 4). In contrast, it was expected that the levels of CRP and the htCRNT values for the Delta-derived variant would be higher in the vaccinated patients with pneumonia than in the unvaccinated patients with pneumonia; however, these differences were also not statistically significant (P>0.05).
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Figure 3 | Relationship between serum levels of IL-6, CXCL10, LD and CRP, and pneumonia presence at the acute phase of COVID-19 in vaccinated (n = 47) and unvaccinated patients (n = 20). The Mann-Whitney test was used to compare values between vaccinated patients with (n = 16) and without pneumonia (n = 31), and unvaccinated patients with (n = 9) and without pneumonia (n = 11). Each level was measured at admission (within 5 days after symptom onset) and each dot represents an individual value. Bars indicate medians with interquartile ranges. IL, interleukin; CXCL10, C-X-C motif chemokine ligand 10; LD, lactate dehydrogenase; CRP, C-reactive protein; *P<0.05; **P<0.01; ***P<0.001; ****P<0.0001.





Correlations among neutralization activity and immunoinflammatory biomarkers levels

Among the vaccinated group, not only the htCRNT values of the wild-type- and Delta-derived variants, and anti-RBD antibody, but also those of IL-6 (r=0.36; P=0.01) and CXCL10 (r=0.30; P=0.042) levels were significantly correlated with the htCRNT values of the Omicron-derived variant (Figure 4). Among unvaccinated patients, the IL-6 levels were not correlated with the htCRNT values of the Omicron-derived variant. There were significant correlations between IL-6 levels and those of CXCL10 and VEGF in vaccinated patients, and between the IL-6, CXCL10, VEGF, LD, and CRP levels in the unvaccinated group (Figure 4).
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Figure 4 | Correlation matrix of neutralizing activity against the wild-type-, Delta-, and Omicron-derived variants, anti-RBD antibody levels, and biomarker levels in vaccinated (n = 47) and unvaccinated patients (n = 20) at the acute phase of COVID-19 (within 5 days after symptom onset). Spearman correlation coefficients are plotted. Cells were colored according to the strength and trend of the correlations (shades of red = positive correlations, shades of blue = negative correlations). Anti-RBD antibody levels in the unvaccinated group were all negative (<0.4 U/mL). NT, neutralizing activity; WT, wild-type; RBD, receptor-binding domain; IFN, interferon; IL, interleukin; CXCL10, C-X-C motif chemokine ligand 10; VEGF, vascular endothelial growth factor; NLR, neutrophil-to-lymphocyte ratio; LD, lactate dehydrogenase; CRP, C-reactive protein; *P<0.05; **P<0.01; ****P<0.0001.





Subpopulation analysis of Tfh cells

To further investigate the potential factor contributing to the observed positive correlation between IL-6 and the htCRNT value of the Omicron-derived variant in the vaccinated group, the levels of CD3+CD4+CD8−CXCR5+ circulating Tfh (cTfh) cells were analyzed (Figure 5A). An internal positive control and FMO control were used for gating analyses to distinguish positively from negatively stained cell populations (Supplementary Figure 5). The frequency of CD3+CD4+CD8−CXCR5+ cTfh cells within the CD4+ cell population was linearly correlated with the htCRNT values of the Omicron-derived variant and IL-6 levels in vaccinated patients (Figure 5B). Noteworthily, the frequency of these CD3+CD4+CD8−CXCR5+ cTfh cells was only correlated with the Omicron-derived variant htCRNT values, but not with IL-6 levels, in the unvaccinated group (Figure 5C).
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Figure 5 | Relationship between neutralization activity against the Omicron-derived variant and IL-6, and the frequency of circulating follicular helper T cells in the CD4+ T cell population in vaccinated (n = 36) and unvaccinated patients (n = 17). (A) Representative flow cytometry plots of the gating strategy used to identify CXCR5+CD4+ cTfh cells. (B, C) Correlations between the cTfh cell population frequency and the neutralization activity against the Omicron-derived variant (red) or IL-6 levels (blue) in vaccinated (n = 37) (B) and unvaccinated patients (n = 17) (C). The Pearson correlation was calculated, and the P value and r value are shown. The general linear regression lines are shown. Each level was measured at admission (within 5 days after symptom onset) and each dot represents an individual value. cTfh, circulating follicular helper T; NT, neutralizing activity; IL, interleukin.






Discussion

In the present study, which included patients vaccinated against SARS-CoV-2 3–9 months before infection, we found that the frequency and characteristics of COVID-19 pneumonia (18) were not significantly different between vaccinated and unvaccinated patients. Previous clinical studies have shown that vaccination significantly reduces the frequency and attenuates pneumonia severity, even during Omicron variant predominance (7, 28); however, older age and longer interval between the second vaccine shot and COVID-19 onset (≥6 months) were shown to increase pneumonia risk in breakthrough infections (28, 29). In the present study, the ages of the vaccinated patients were older (but not significantly) than those of the unvaccinated patients (Table 1), and all patients in the vaccinated group became infected 3–9 months after receiving the second dose of the BNT162b2 or mRNA-1273 vaccine. Thus, higher age in the vaccinated group and longer interval after the second vaccination were suggested to have potentially contributed to the similar frequencies of COVID-19 pneumonia between vaccinated and unvaccinated patients. Indeed, the neutralizing activity against Omicron variant, which was previously reported to correlate with the protection against pneumonia (30, 31), were not significantly different between vaccinated and unvaccinated patients. Similarly, the levels of all measured proinflammatory cytokines and chemokines (IFN-α, IFN-λ1, IFN-λ3, IL-6, and CXCL10) and the laboratory findings (NLR, LD, and CRP) in the acute phase were not significantly different between the vaccinated and unvaccinated groups, with the exception that the VEGF levels were significantly higher in vaccinated patients (Supplementary Figure 2). It is still unclear how we should interpret this difference; further investigation will be needed.

Acute immune responses to COVID-19 are influenced not only by vaccination, but also by variants and clinical severity. Contrary to the findings of previous studies that lower neutralization activity is associated with the severity and development of pneumonia in unvaccinated patients infected with the ancestral strain (14, 15), we found that the htCRNT values of the Omicron-derived variant during the acute infection phase were significantly higher in vaccinated patients with pneumonia or respiratory failure than in vaccinated patients without these conditions (Figure 2). Although the above difference was not observed among unvaccinated patients, positive neutralizing antibodies (htCRNT values ≥50%) without anti-RBD antibodies were observed in 2 unvaccinated patients with pneumonia, even within 5 days after symptom onset, suggesting that these were likely early reactions to their current Omicron infection (27) and that acute immune responses induced by pneumonia may be faster in individuals infected with the Omicron variant than in those infected with the ancestral strain (14, 15).

Our previous studies showed that serum IFN-α levels were higher in patients who developed pneumonia and hypoxemic respiratory failure, and were strongly predictive of hypoxemic respiratory failure in the early phase of COVID-19 due to Delta or precedent variants before Omicron emerged (22, 23). However, the present study demonstrated that serum levels of IFN-α were not significantly different between patients with and without pneumonia in either the vaccinated or unvaccinated patients (Supplementary Figure 4). On the other hand, serum levels of IL-6 were significantly higher in the vaccinated and unvaccinated patients with pneumonia than in those without pneumonia, respectively (Figure 3). Furthermore, a specific correlation between IL-6 levels and the htCRNT values for the Omicron-derived variant was observed in the vaccinated group, but not in the unvaccinated group (Figure 4).

IL-6 is a major contributor to the dysregulation of the immune response and plays an important role in cytokine release syndrome (commonly known as cytokine storm) related with severe COVID-19 (32). Indeed, elevated IL-6 levels were reported to be associated with systemic inflammation, pneumonia, hypoxemia, and poor prognosis (33), which agrees with our present findings that the levels of IL-6 were significantly higher in vaccinated or unvaccinated patients with pneumonia than in those without (Figure 3). Therefore, IL-6 inhibitors have been widely used as an effective treatment option in severe COVID-19 cases (34). Regarding the relationship between IL-6 and neutralizing antibodies, recent data revealed a significant reduction in anti-SARS-CoV-2 neutralizing antibody activity in recovered critically-ill patients treated with IL-6 and IL-1 inhibitors (35, 36).

IL-6 also regulates the early differentiation of antiviral Tfh cells, as well as the development of potent neutralizing antibodies (37). Tfh cells have an important role in T-cell-dependent B-cell response, as they support immunoglobulin class switching, germinal center-based affinity maturation, development of memory B cells, and long-lived humoral immunity (38). cTfh cells are representative of germinal center Tfh cells, as they share the surface expression of CXCR5, and account for approximately less than 10% of the CD4+ T cell compartment in the peripheral blood (12, 39). A previous study reported a correlation between SARS-CoV-2-specific cTfh cells and neutralizing antibody titers in COVID-19 patients (40). Although SARS-CoV-2-specific cTfh cells were not evaluated, the findings of the present study similarly demonstrated that the proportion of non-specific cTfh cells was correlated with the neutralizing activity against Omicron variant, both in the vaccinated and unvaccinated patients.

It remains unclear how a subset of activated CD4+ T cells can express the Tfh cell-defining CXCR5 marker, enter the B-cell follicles, mature further into germinal center Tfh cells, and promote the generation of high-affinity antibodies during the acute phase of the immune response. Previous studies reported that SARS-CoV-2 antibody titers are high in patients with pneumonia or oxygen requirement (39, 40), which agrees, to some degree, with our present findings that the neutralizing activities against the Omicron-derived variant were significantly higher in vaccinated patients with pneumonia than in those without pneumonia (Figure 2). Nonetheless, these studies only evaluated unvaccinated patients and antibody titers were consistently low before 7 days after onset (41). Indeed, in the present study evaluating the acute phase of the immune response, the neutralizing activities against the Omicron-derived variant were not significantly different between unvaccinated patients with and without pneumonia (Figure 2). More than 14 days after symptom onset, higher titers of SARS-CoV-2 antibodies were reported as a result of severe clinical manifestations of COVID-19 (42).

Recent studies showed that patients with Omicron variant breakthrough infections have robust recall humoral responses and pre-existing cellular immunity induced by vaccines, with activated cTfh cells rapidly increasing (12, 43). Based on these findings and on the specific correlations herein described between cTfh cell frequency, IL-6 levels, and neutralizing activity observed in vaccinated patients (Figures 4, 5), it is reasonable to speculate that high IL-6 levels induced by COVID-19 pneumonia can rapidly promote the differentiation and recruitment of cTfh cells and, consequently, the production of high-affinity neutralizing antibodies against the Omicron variant in the early infection stages. Indeed, although the htCRNT values against the wild-type- and Delta-derived variants, and the anti-RBD antibody levels were not significantly different between vaccinated patients with and those without pneumonia, the neutralizing activity against the Omicron variant was significantly higher in vaccinated patients with pneumonia than in those without pneumonia, even within 5 days after symptom onset (Figure 2; Supplementary Figure 4).

This study had several limitations. First, as the study was performed at a single hospital and comprised a relatively small sample size, selection bias may have occurred. In addition, the number of unvaccinated patients was limited since the national vaccination campaign was widely applied, with most of the population being already vaccinated during the study period (when the Omicron variant was dominant). Second, we did not stain B cells/plasma cells makers, inducible costimulatory (ICOS), and programmed cell death protein 1 (PD-1), simultaneously. However, CXCR5 is reported to be the defining marker for cTfh cells (44), and ICOS and PD-1 staining seem not essential for distinguishing cTfh cells. Third, other cytokines such as IL-21 were not measured and their contribution to the promotion of cTfh differentiation and recruitment was not evaluated. Forth, the germinal center and SARS-CoV-2-specific Tfh cells, which were reported to be associated with the neutralizing activity (45), were not evaluated. Nonetheless, the cTfh cells were found to be correlated with the neutralizing activity in the present study; thus, cTfh cells may potentially be used as an alternative indicator of GC Tfh cells, but further studies are warranted. Considering our consistent results and the detected relationship between neutralizing activity against Omicron, IL-6 levels, and cTfh proportions, we believe that these limitations were not likely to have meaningfully affected our findings, which elucidated the differences in acute immune dynamics to Omicron infection between vaccinated and unvaccinated, with and without pneumonia, and between Omicron and the precedent variants before Omicron emerged.





Conclusion

In conclusion, to the best of our knowledge, the present study is the first to demonstrate the characteristic relationship between neutralizing activity, IL-6 levels, and cTfh cell frequency in vaccinated (but not in unvaccinated) patients. The neutralizing activity was found to be significantly higher in patients with vs. without pneumonia within 5 days after symptoms onset, a feature that was specific to breakthrough infections. Furthermore, IL-6, but not IFN-α, was associated with the development of pneumonia and respiratory failure, which differed from the features of infections with precedent variants before Omicron emerged. As a better understanding of immune responses is important for enhanced clinical care, further studies are needed to confirm and extend the findings of this study.
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Background

Vaccine breakthrough SARS-CoV-2 infections are common and of clinical and public health concern. However, little is known about the immunological characteristics of patients hospitalized due to these infections. We aimed to investigate and compare immune cell subpopulations and induced immune responses in vaccinated and non-vaccinated patients hospitalized with severe COVID-19.





Methods

A nested case-control study on adults (≥ 18 years) who received at least two doses of a mRNA-COVID-19 vaccine and were hospitalized with SARS-CoV-2 breakthrough infections and severe COVID-19 between January 7, 2021, and February 1, 2022, were eligible for inclusion. Age- and sex-matched non-vaccinated controls were identified. Immunophenotyping was performed using a custom-designed 10-color flow cytometry prefabricated freeze-dried antibody panel (DuraClone, Beckman Coulter (BC), Brea, Calif). TruCulture (Myriad RBM, Austin, USA) was used to assess induced immune response in whole blood, revealing different critical signaling pathways as a proxy for immune function. All samples were obtained within 48 hours of admission.





Results

In total, 20 hospitalized patients with severe COVID-19 and a breakthrough SARS-CoV-2 infection were included, ten vaccinated and ten non-vaccinated patients. Vaccinated patients had lower concentrations of CD19 B cells (p = 0.035), naïve CD4 T cells (p = 0.015), a higher proportion of γδ1 T cells (p = 0.019), and higher unstimulated immune cell release of IL-10 (p = 0.015).





Conclusion

We observed immunological differences between vaccinated and non-vaccinated patients hospitalized due to severe COVID-19 that indicate that vaccinated patients had lower B cell concentrations, lower concentrations of CD4 naïve T cells, a skewed gamma-delta V1/V2 ratio, and an exaggerated IL-10 response at admission. These results could indicate a suboptimal immune response involved in SARS-CoV-2 breakthrough infections that cause severe COVID-19 in vaccinated adults. However, the sample size was small, and further research is needed to confirm these results.
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Introduction

Coronavirus disease 2019 (COVID-19) is a respiratory infection caused by the β-coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the cause of the current pandemic (1). By December 2023, nearly 700 million cases have been registered, including more than 6.9 million deaths (2). Since the introduction of mass vaccination in December 2020, overall mortality and morbidity have been dramatically reduced (3). However, due to the emergence of new SARS-CoV-2 variants that bypass vaccine-induced immunological protection, the risk of severe COVID-19 disease requiring hospital admission in vaccinated patients remains a clinical and public health concern (4–6).

The decline in protective immunity, attributed to waning levels of antibodies and T-cell immunity post-vaccination, and the emergence of novel SARS-CoV-2 variants, constitute the two main factors contributing to the substantial increase in vaccine breakthrough SARS-CoV-2 infections worldwide (5–8). Even if vaccination has proven to be associated with a significantly reduced risk of severe outcomes and death in individuals of all ages (9–13), SARS-CoV-2 breakthrough infections remain a significant cause of hospitalization (14). Exploring the immunological characteristics of breakthrough SARS-CoV-2 infections is crucial for understanding the dynamics of vaccine efficacy over time, the potential immune responses that may impact disease severity, and, eventually, optimizing vaccination strategies to ensure the protection of individuals at the highest risk of severe outcomes.

We aimed to investigate and compare immune cell subpopulations and the induced immune responses comparing vaccinated and non-vaccinated patients hospitalized due to severe COVID-19. We hypothesized that vaccinated patients admitted with severe COVID-19 have a non-favorable immune profile, which could indicate immune impairment compared to non-vaccinated patients. We also aimed to identify overall differences in the immunologic signatures of SARS-CoV-2 breakthrough infections, aiming to provide a foundation for subsequent investigations.





Materials and methods




Study design

We conducted an observational nested case-control study with the main objective of describing the immunologic differences at hospital admission between vaccinated (cases) and non-vaccinated (controls) adult (≥ 18 years) patients hospitalized with severe COVID-19. In addition, we retrospectively assessed clinical outcomes for the whole hospitalization period and evaluated mortality 90 days after admission. The characteristics of the complete COVIMUN cohort have been described elsewhere (15).

Patients admitted to Copenhagen University Hospital - North Zealand, Hillerød, Denmark, were screened for inclusion in the study between January 7, 2021, and February 1, 2022. During the study period, all patients admitted to the hospital due to respiratory symptoms were screened for SARS-CoV-2 infection by oropharyngeal swabs or tracheal aspirates, using reverse transcriptase-polymerase chain reaction (RT-PCR) at the time of admission, to comply with hospital infection control policies. Patients’ eligibility for inclusion in the study was based on two inclusion criteria (1): a positive diagnostic SARS-CoV-2 RT-PCR at admission and (2) a history of vaccination with a minimum of 2 doses 14 days before admission. SARS-CoV-2 variants (Delta or Omicron) were recorded when available. Data regarding vaccination status was retrieved from the Danish Vaccination Database (DDV) (16). Patients with a history of only one vaccine dose or <14 days between the second (or third) vaccination and hospitalization were excluded. All patients in the vaccinated group received the mRNA Pfizer/Biontech (Comirnaty, BNT162b2) vaccine. In addition, patients from the COVIMUN cohort hospitalized with RT-PCR-confirmed SARS-CoV-2 infection and no confirmed vaccination history before admission were used to identify age- and sex-matched controls. The research received approval from the Danish Ethics Committee (H-20026502) and the Danish Data Protection Agency (P-2020–426), adhering to the principles of the Declaration of Helsinki. Written informed consent was obtained from all participants in the study.





Variables and outcomes

Clinical, demographic, and outcome variables were retrospectively extracted from the patient’s electronic medical journals. We retrieved information on age, sex, comorbidities, body mass index (BMI), immunosuppressive treatment, immunodeficiency disorders, oxygen treatment during admission, vital signs, intensive care unit (ICU) admission, in-hospital and 90-day mortality. Vital signs at admission were used to calculate the Early Warning Score (EWS) to assess patient clinical deterioration (17). Immunosuppressive treatment was defined based on our previous research (18) as the use of (1) corticosteroid treatment exceeding a prednisolone-equivalent dose of 20 mg daily ≥ 14 days at the time of admission, (2) monoclonal antibodies interfering with the immune system, (3) small-molecule immunosuppressive drugs, or (4) antineoplastic agents. Disease severity was defined based on the peak oxygen supplementation treatment needed during admission, as in our previous study (18). Severe disease was defined as treatment with a high-flow nasal cannula (HFNC), invasive mechanical ventilation, or non-invasive mechanical ventilation (NIV) during admission. All other oxygen treatments were defined as mild disease (nasal cannula or oxygen mask). All TruCulture and DuraClone samples were obtained within 48 hours of admission.





Immunophenotyping by flow cytometry

Immunophenotyping was performed using a custom-designed 10-color flow cytometry prefabricated freeze-dried antibody panel (DuraClone, Beckman Coulter (BC), Brea, Calif) specially designed for evaluation of leukocyte subsets in primary and secondary immunodeficient patients (19). The first tube contained beads used to calculate absolute concentrations of lineage populations and further calculate the concentrations of all other subpopulations in the other tubes. Peripheral blood was obtained in EDTA tubes and processed within 24 hours according to the manufacturer’s instructions. In summary, whole blood was stained for 15 min at room temperature, then subjected to red blood cell lysis (EasyLyse, BC), washed, and analyzed on a Beckman Coulter Navios Ex flow cytometer. For staining of intracellular markers (Foxp3 and Helios), cells were permeabilized and fixated using Perfix Buffers 1–3 (BC). Data was analyzed using Beckman Coulter’s Kaluza Analysis 2.1 software. The leukocyte subpopulations were defined a priori, using serial gating strategies. The defined subpopulations, including T cells, B cells, differentiation stages, activation state, and exhaustion, were specified as absolute concentrations (x109/L) or percentages of the parent gate (%), depending on the variable (19). Normal ranges from routine analyses of absolute counts of specific cells were used as normal reference material. This included concentrations of leukocytes, neutrophils, lymphocytes, monocytes, T-cells (CD4 and CD8), B-cells, and NK cells.





TruCulture: induced immune response analysis

TruCulture (Myriad RBM, Austin, USA) was used to assess the induced immune response in whole-blood, i.e., revealing different critical signaling pathways, as a proxy for immune function (20, 21). In brief, heparinized whole-blood samples were added to pre-coated (stimulated or unstimulated) TruCulture tubes within 60 minutes according to the manufacture’s recommendation. The TruCulture tubes were incubated in a digital dry block heater at 37°C for 22 hours. After that, supernatants were collected and frozen at -80°C until analysis. We assessed four different stimuli and an unstimulated blank: Lipopolysaccharide (LPS, Toll-Like-Receptor (TLR)4 ligand), Resiquimod (R848, TLR7/8 ligand), Polyinosinic: polycytidylic acid (Poly I:C, TLR3 ligand), anti-CD3 anti-CD-28 (CD3/CD28, T-cell stimulation) and a blank (NULL, cell culture medium without stimulants).

We investigated nine different cytokines in each supernatant using a Luminex 200 instrument (LX200, R&D Systems, BIO-Techne LTD, Abingdon, UK): interleukin (IL) -1β, IL-6, IL-8, IL-10, IL-12, IL-17A, interferon (IFN)-α, IFN-γ and tumor necrosis factor (TNF)-α. The selection of cytokine panel has been described in our previously published paper (15). Reference values for cytokine release from healthy individuals were available for comparison.





Outcomes

Primary outcomes were differences in immune cell populations and the induced immune response at admission between vaccinated and non-vaccinated patients hospitalized with severe COVID-19.





Statistical analysis

Cases were matched by sex and age using the “nearest neighbor” matching method on propensity score (R statistical software). A ratio of 1:1 between cases and controls was used. Boxplots displaying medians and interquartile ranges and outliers (defined as outside 1.5 times the interquartile (IQ) upper and lower range) were used to visualize immune cell concentrations/proportions and induced cytokine release in cases and controls. Mann-Whitney U tests were used to compare the non-normally distributed continuous variables. Chi-sq and Fischer’s exact test assessed differences in categorical variables as appropriate. Adjustment for multiple testing was not conducted. This was decided because the study was exploratory, and the basis for hypothesis generation intended to identify potentially relevant variables for assessment in more detailed future studies. P-values <0.05 were considered significant. All statistical analyses were conducted using R statistical software (version 3.6.1) (22).






Results




Study population

A total of 20 patients were included in the study. The median age was 72 years (IQR 67–75) for non-vaccinated patients and 74 years (IQR 70 – 77) for vaccinated patients (p= 0.47). Seventy percent were men. No differences in comorbidities, BMI or immunocompromise were observed between vaccinated and non-vaccinated patients (Table 1). In addition, no differences in clinical outcomes, including mortality, ICU admission, or disease severity, were observed between vaccinated and non-vaccinated patients (Table 2). Two patients were infected with the Omicron variant, 13 with the Delta variant, and five patients had no available data regarding the variant. Regarding vaccinated patients, one received three doses at least 14 days before admission, and the remaining nine received two.


Table 1 | Baseline Characteristics.

[image: A table displaying baseline and clinical characteristics of 20 patients, divided into vaccinated (10) and non-vaccinated (10) groups. Variables include age, sex, BMI, and time since last COVID-19 vaccination. It also lists comorbidities and their prevalence, such as cardiovascular and psychiatric conditions. P-values compare differences between groups.]

Table 2 | Clinical Characteristics.

[image: Table comparing clinical characteristics and outcomes of vaccinated and non-vaccinated patients, each group having ten subjects. Variables include oxygen therapy levels, Early Warning Score, disease severity, admission to ICU, and mortality rates. Most p-values exceed 0.99, indicating no significant differences between groups.]




Immune cell profiles

Absolute concentrations of neutrophils and monocytes were similar for vaccinated and non-vaccinated patients. Vaccinated patients displayed overall lymphopenia (median 0,58x109/L, IQR 0,326) compared to non-vaccinated patients who presented with a lymphocyte concentration in the lower end of the normal reference interval (median 0,898x109/L, IQR 0,505, Figure 1A). Within the lymphocyte subpopulation, the absolute concentration of CD19 B-cells was significantly reduced in vaccinated patients compared to non-vaccinated patients (p= 0.035, Figure 1B). Additionally, the concentration of T-cells, in particular CD4 T-cells, was reduced in both groups compared to the normal reference interval. Though not significant, the median level and range of the CD4 T-cell count indicated a lower concentration in most vaccinated patients (p= 0.12, Figure 1B) compared to non-vaccinated patients. The CD8 T-cell counts were comparable in the two patient groups (p=0.63, Figure 1B) but with medians below the normal range. NK-cell concentration was within the normal range in both patient groups, but it was moderately elevated in vaccinated patients compared to non-vaccinated patients (p= 0.075, Figure 1B).

[image: Boxplots compare cell counts per liter between non-vaccinated (blue) and vaccinated (red) groups across various cell types: leukocytes, lymphocytes, CD14 monocytes, neutrophils, T cells, CD4 T cells, CD8 T cells, CD19 B cells, and NK cells. Reference intervals are shaded gray.]
Figure 1 | Boxplots visualizing the difference in the concentration of main leukocyte subsets between vaccinated (red) and non-vaccinated (blue) patients. (A) The difference in leukocytes, lymphocytes, CD14 monocytes and neutrophils. (B) The difference in T-cells, CD4 T-cells, CD8 T-cells, CD19 B-cells and NK-cells. Reference interval with data from healthy individuals are marked in grey in the background in both (A, B) P-values were calculated using Mann-Whitney U tests and displayed at the top of the boxplots.* P < 0.05. NK cell, natural killer cell. Mann-Whitney U test was used to assess differences between the groups.

The lower B-cell concentration in vaccinated patients was mainly caused by lower concentrations of naïve B-cells and isotype switch memory B-cells (Figures 2A, B). However, there were no significant differences in the distribution of B-cell subpopulations between the patient groups (Supplementary Figure S1).

[image: Boxplots comparing cell counts per liter for different cell types in non-vaccinated (blue) and vaccinated (red) individuals. The plots show varying distributions and median values across transitional, naive, memory, plasmablast, MZ-like B cells; CD4 and CD8 T-cell subsets; and memory B-cell types. Statistical significance, denoted with values above each plot, indicates differences between groups.]
Figure 2 | Boxplots visualizing the differences in the concentrations of B-cell lineages, CD4 lineages and CD8 lineages between vaccinated (red) and non-vaccinated (blue) patients. (A) The difference in B cell subsets. (B) The difference in B cell subsets. (C) The difference in CD4 subsets. (D) The difference in CD8 subsets. P-values were calculated using Mann-Whitney U tests and displayed at the top of each of the boxplots. * P < 0.05. Non-IS mem B cell, non-isotype switched memory B cell; IS mem B cell, isotype switched memory B cell; MZ-like B cell, marginal zone-like B cell; RTE, Recent thymic emigrants; CM, Central memory; EM, Effector memory; TEMRA, T effector memory CD45RA; TH17, T helper 17 cells; Treg, T regulatory cells.

Within the CD4 T-cell compartment, vaccinated patients displayed a significantly lower concentration of naïve T-cells compared to non-vaccinated patients (p = 0.015, Figure 2C). However, the concentrations of CD4 recent thymic emigrant T-cells (RTE) were not significantly different between the two patient groups (p = 0.28). Regulatory T- (Treg) cell concentrations were moderately reduced in vaccinated patients compared to non-vaccinated patients (Figure 2C). Neither of the two patient groups showed pronounced signs of immune activation (upregulation of HLA-DR) nor signs of exhaustion (CD57 and PD1 upregulation) within CD4 T-cells, and no significant differences were observed between the two groups (Supplementary Figure S2A).

Within CD8 T-cell populations, there were no differences in concentrations of subpopulations (Figure 2D). However, vaccinated patients had a significantly lower fraction of naïve CD8 T-cells compared to non-vaccinated patients (Supplementary Figure S3). Both patient groups showed similarly increased levels of immune activation (upregulation of HLA-DR) regarding CD8 T-cells, as well as similar signs of exhaustion (CD57 and PD1 upregulation). The check-point inhibitor (Tim3, CD366) expression on CD8 T-cells was not elevated in the two groups, although significantly higher in non-vaccinated patients than in vaccinated patients (p = 0.043, Supplementary Figure S2B).

Finally, the overall concentrations of TCRγδ T-cells were comparable between the two patient groups (Figure 3A). However, vaccinated patients displayed a significantly higher proportion of TCRγδ1 T-cells (p = 0.019) and a lower proportion of TCRγδ2 T-cells (p = 0.035) compared to non-vaccinated patients (Figure 3B). Median cell population concentrations and interquartile ranges of all patients according to their vaccination status are presented in Supplementary Tables S1, S2.

[image: Box plots compare T cell levels in vaccinated and non-vaccinated groups. Panel A shows TCRαβ and TCRγδ T cells per liter with non-vaccinated having higher levels. Panel B shows percentages for TCR Vδ1 γδ and TCR Vδ2 γδ T cells with vaccinated having higher percentages. Statistical significance is indicated with asterisks.]
Figure 3 | Boxplots visualizing the differences in the concentrations and percentages of TCR T cell types between vaccinated (red) and non-vaccinated (blue) patients. (A) The difference in TCRαβ and TCRγδ T cell concentrations. (B) The difference in TCRγδ1 and TCRγδ2 percentages. P-values were calculated using Mann-Whitney U tests and displayed at the top of each of the boxplots. * P < 0.05. TCR, T-cell receptor. Mann-Whitney U test was used to assess differences between the groups.





TruCulture induced immune response

Vaccinated patients displayed a significant increase in the unstimulated release of IL-10 (p = 0.015) compared to non-vaccinated patients (Figure 4A) and a higher LPS-induced release of IL-17A (p = 0.023), IL-12 (p = 0.011) and IFN-γ (p = 0.029) compared to non-vaccinated (controls) patients (Figure 4B). No other differences in the induced cytokine release between vaccinated and non-vaccinated patients were observed (R848, PolyIC and CD3/CD28, Figures 4C-E). To address the impact of observed outliers on the significant results in the presented boxplots with cytokine data, Mann Whitney U-tests were performed after the exclusion of outliers. Regarding the observed differences following LPS stimulation, following the exclusion of outliers, IFN-γ (p= 0.044), IL-12 (p= 0.006) and IL-17A (p= 0.001) remained significantly different. Regarding the unstimulated (NULL) results, IL-10 (p= 0.002) remained significantly different after excluding outliers.

[image: Box plot graphs labeled A to E compare cytokine concentrations in vaccinated and non-vaccinated groups against a reference interval, indicated in gray. Panels A and B display IL-10 and IL-12 concentrations, while C through E cover IFN-γ, IL-17, IL-18, IL-6, IL-8, INF-α, and TNF-α. Blue represents non-vaccinated, red for vaccinated. Notable differences like IL-10 in B are indicated with an asterisk.]
Figure 4 | Boxplots visualizing the difference in cytokine concentrations at admission between vaccinated (red) and non-vaccinated (blue) patients. (A) Unstimulated. (B) LPS stimulation. (C) R848 stimulation. (D) PolyIC stimulation. (E) anti CD3/CD28 stimulation.P-values were calculated using Mann-Whitney U tests and displayed at the top of each of the boxplots. * p < 0.05. LPS, lipopolysaccharide; R848, Resiquimod; PolyIC, Polyinosinic:polycytidylic acid; CD3+CD28, Cluster of Differentiation 3 and 28.






Discussion

This study compared immunologic signatures between vaccinated and non-vaccinated patients hospitalized with COVID-19. The main findings were that vaccinated patients (cases) admitted with with vaccine breakthrough COVID-19 infections had lower concentrations of CD19 B-cells and naïve CD4 T-cells and a higher proportion of TCRγδ1 T-cells. Furthermore, a higher unstimulated immune cell release of IL-10 at admission was observed.

We observed a lower B-cell concentration in vaccinated patients than in non-vaccinated patients admitted with COVID-19. It is well known that B-cell subsets, such as memory and plasma cells, are needed to protect from reinfection during repeated SARS-CoV-2 exposure (23). A reduced humoral response following vaccination could contribute to impaired COVID-19 immunity and hence admission to hospital despite COVID-19 vaccination. B-cell concentration has been strongly correlated with SARS-CoV-2 antibody production in immunocompromised patients (24). However, this association has not been observed in immunocompetent patients (25, 26). Our results, showing decreased B-cell concentrations in vaccinated patients, may indicate a suboptimal B-cell function in these patients, which would potentially contribute to hospital admission despite vaccination.

T-cells are crucial in antiviral immunity and are essential in immunological protection from SARS-CoV-2 infection (27). We observed T-cell cytopenia, particularly CD4 T-cells, and a lower concentration of naïve CD4 T-cells in vaccinated patients than in non-vaccinated patients. Several studies have reported that a successful response to vaccination is associated with a solid antigen-specific CD4 T-cell response (28–30). On the contrary, a low concentration of T-cells, including naïve CD4 T-cells, has been associated with poor vaccination responses. Some studies have also reported that a low concentration of naïve CD4 T-cells is associated with more severe COVID-19 (31–33). Our findings of a lower concentration of naïve CD4 T-cells in vaccinated patients may indicate a decreased T-cell repertoire and a smaller pool of T-cells to generate SARS-CoV-2 specific T-cells. This would ultimately increase the risk of impaired SARS-CoV-2 immunity. T- cells have been observed to be an important part of the immune response against SARS-CoV-2, where T-cell responses have a robust cross-recognition of SARS-CoV-2 variants despite varying antibody responses (34). This could suggest that vaccinated patients with severe COVID-19 due to breakthrough infection may have a suboptimal T-cell-mediated immune response, which should be further explored. CD4 T-cells are essential to achieve optimal B-cell function, and our finding of significantly reduced naïve CD4 T-cell counts may contribute to or may be related to reduced B-cell function. A study has observed a positive correlation between SARS-CoV-2 naïve CD4 T cells and viral clearance, where viral clearance increased with increasing SARS-CoV-2 specific naïve CD4 T cells (35). The authors of this study suggest, in concordance with the conclusion of our T-cell findings, that low counts of SARS-CoV-2 specific naïve CD4 T cells could implicate an insufficient B-cell activation leading to a decreased viral clearance (35). We suggest that an insufficient B-cell activation due to a suboptimal T-cell response could potentially affect the overall humoral response, leading to SARS-CoV-2 breakthrough infections. However, the measurement of SARS-CoV-2 specific T-cells combined with an assessment of the indirect effect on B-cell activation is required to confirm this.

Most studies have focused on classical TCRαβ T-cells when describing the role of T-cells in COVID-19. In contrast, few studies have explored the role of TCRγδ T-cells in COVID-19 (36, 37). TCRγδ1 and TCRγδ2 are the two main TCRγδ subsets and the most studied. TCRγδ T-cells, a component with innate-like immune system properties, respond to inflammation and stressed or infected cells (38). In vitro, TCRγδ T-cells have also shown the ability to eliminate SARS-CoV-2 (39). TCRγδ T-cells are therefore considered an essential part of the innate defense against viruses, including SARS-CoV-2. TCRγδ2 T-cells can interact with other immune cells, including B-cells and dendritic cells, and carry out cytolysis through the effects of cytotoxic perforin and granzymes (40, 41).

Furthermore, a recent study observed an association between TCRγδ T-cells and disease severity, where a low frequency of TCRγδ2 T-cells, which usually are the dominant TCRγδ T-cells in adults, were associated with severe COVID-19 disease (42–44). In our study, we observed a markedly higher proportion of TCRγδ1 T-cells and a lower proportion of TCRγδ2 T-cells in vaccinated patients compared to non-vaccinated patients. Overall, these observations could indicate a suboptimal TCRγδ T-cell response in vaccinated patients, where previous studies have shown that TCRγδ T-cells are highly involved and play an essential role in the host immune response against SARS-CoV-2 (38). Our findings could indicate that the difference in TCRγδ T-cell proportions in vaccinated patients could contribute to a non-favorable immune cell profile, potentially leading to subsequent hospital admission. These findings may further underline the importance of T-cells during SARS-CoV-2 infection.

We assessed the ex vivo-induced immune response by TruCulture as a proxy for immune function. We observed a significant increase in the unstimulated release of IL-10 in vaccinated patients. This observation may reflect both high unstimulated ex vivo release of IL-10 during incubation and high circulating plasma levels of IL-10. IL-10 is a classical anti-inflammatory cytokine with immunosuppressive activities, downregulating various cytokines and co-stimulatory molecules (45). Several studies have reported that early production of IL-10 is associated with poor clinical outcomes in COVID-19 (46–48). A recent meta-analysis further concluded that circulating IL-10 can be used as a predictor for patients’ clinical status and survival, where IL-10 is suggested to be the main cause of the immunodepression associated with SARS-CoV-2 infection (49). However, further studies with larger study populations are needed to confirm our finding of higher ex vivo release of IL-10/higher circulating levels of IL-10 in patients with SARS-CoV-2 vaccine breakthrough infection and to determine the potential influence of this phenomenon on the COVID-19 disease course.

Research on IL-10 in the context of COVID-19 has thoroughly evaluated its role, revealing that higher levels of IL-10 correlate with more severe disease and have been shown to predict the progression to severe or critical disease (47, 48). These studies were larger and focused on the clinical impact of IL-10, rather than the immunological phenotype of severe COVID-19 stratified by vaccination status. In this study, we did not observe a difference in disease severity between vaccinated and non-vaccinated patients. The study’s aim was exploratory regarding immunological phenotype, and our findings should, therefore, be interpreted as indicative rather than conclusive. Further studies with a larger sample size assessing SARS-CoV-2 specific immune cells, antibodies, the effect of clinical variables on observed immune response differences and samples taken before COVID-19 (or a follow-up sample) are highly warranted to fully evaluate the underlying pathophysiology and potential causes regarding our observed immune response differences.

Our study has strengths and limitations. First, we present detailed, in-depth immunological profiles of patients hospitalized with severe COVID-19 at admission, providing valuable insights into the immune responses of vaccinated and non-vaccinated individuals otherwise underreported in the literature (50, 51). In contrast to other reports (48, 49), we did not only focus on specific immune cells but had a rather broad approach with data on cytokine profiles, B cells, T cells, and T cell receptor profiles, activation, and exhaustion. This very deep and broad immunophenotyping, paired with data on inflammation through cytokine assessment, is unique and scarce in the literature. We could not find similar studies regarding deep and broad immunophenotyping combined with cytokine responses stratified by vaccination status in patients hospitalized with severe COVID-19. We applied strict inclusion criteria, ensuring a well-defined study population and minimizing the potential risk of confounding. The observational nested case-control design facilitates comparing immunological characteristics between different patient groups, contributing to a better understanding of vaccine breakthrough infections.

We acknowledge that the results of our study are limited by a relatively small sample size, emphasizing the need for more extensive studies to validate findings. We consider this study a descriptive, hypothesis-generating study, with its strength in deep immunophenotyping and broad immunological analysis, coupled with strict sex and age case matching. Also, only patients with community-acquired SARS-CoV-2 infections were included. Thus, we aimed to optimize the comparison between vaccinated vs. non-vaccinated groups, which constituted the premise of our study. Despite our efforts, recruiting sex- and age-matched non-vaccinated patients hospitalized with COVID-19 was challenging, likely because of Denmark’s widespread acceptance of COVID-19 vaccination (52). This contributed, at least in part, to the limitations in the sample size. We also included two immunocompromised individuals in the cohort. Even though the number of individuals is minimal and no conclusions can be drawn, the detailed description is of value since this group of patients is likely to constitute a large majority of patients with breakthrough and persistent SARS-CoV-2 infections.

Finally, adding a third comparison group with vaccinated, non-hospitalized patients and antibody titers would have been ideal. Still, previous studies, including by our group, assessed neutralizing antibody titers for up to 6 months following primary COVID-19 infection. Although many patients may still have high neutralizing antibody titers (18), differences in antibody persistency and response to vaccination may contribute to the occurrence of breakthrough infections. The absence of SARS-CoV-2-specific immune cell stimulations and antibody measurements also limits our study. Furthermore, samples were taken during severe disease, challenging the interpretation of the results. In the future, studies should aim to overcome these challenges by, for instance, allowing the recruitment across multiple sites, including different groups of immunocompromised patients, thereby aiming for generalizability and robustness of findings.





Conclusions

Overall, the differences observed in this study between vaccinated and non-vaccinated patients admitted to hospitals with COVID-19 suggest that vaccinated patients display a non-favorable immune response, which previous studies have identified as potentially associated with immune impairment. We observed low total B-cell counts, low CD4 naïve T-cells, a skewed TCRγδ V1/V2 ratio, and an exaggerated IL-10 response in vaccinated compared to non-vaccinated patients. These observations align with previous studies, where similar findings in B-cells, T-cells, and release of/circulating IL-10 have been associated with a weak response to vaccination and more severe clinical disease (23, 31–33, 42, 48, 49, 53). We suggest a potentially suboptimal response to vaccination, perhaps due to an underlying degree of immune impairment, could contribute to the observed differences. However, further studies, including simultaneous serological analyses, are required to assess this. Continued research and further follow-up studies evaluating these immunological differences are warranted.
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Introduction

After mild COVID-19 that does not require hospitalization, some individuals develop persistent symptoms that may worsen over time, producing a multisystemic condition termed Post-COVID condition (PCC). Among other disorders, PCC is characterized by persistent changes in the immune system that may not be solved several months after COVID-19 diagnosis.





Methods

People with PCC were recruited to determine the distribution and functionality of CD4+ T helper (Th) subsets in comparison with individuals with mild, severe, and critical presentations of acute COVID-19 to evaluate their contribution as risk or protective factors for PCC.





Results

People with PCC showed low levels of Th1 cells, similar to individuals with severe and critical COVID-19, although these cells presented a higher capacity to express IFNγ in response to stimulation. Th2/Th1 correlation was negative in individuals with acute forms of COVID-19, but there was no significant Th2/Th1 correlation in people with PCC. Th2 cells from people with PCC presented high capacity to express IL-4 and IL-13, which are related to low ventilation and death associated with COVID-19. Levels of proinflammatory Th9 and Th17 subsets were significantly higher in people with PCC in comparison with acute COVID-19, being Th1/Th9 correlation negative in these individuals, which probably contributed to a more pro-inflammatory than antiviral scenario. Th17 cells from approximately 50% of individuals with PCC had no capacity to express IL-17A and IL-22, similar to individuals with critical COVID-19, which would prevent clearing extracellular pathogens. Th2/Th17 correlation was positive in people with PCC, which in the absence of negative Th1/Th2 correlation could also contribute to the proinflammatory state. Finally, Th22 cells from most individuals with PCC had no capacity to express IL-13 or IL-22, which could increase tendency to reinfections due to impaired epithelial regeneration.





Discussion

People with PCC showed skewed polarization of CD4+ Th subsets with altered functionality that was more similar to individuals with severe and critical presentations of acute COVID-19 than to people who fully recovered from mild disease. New strategies aimed at reprogramming the immune response and redirecting CD4+ Th cell polarization may be necessary to reduce the proinflammatory environment characteristic of PCC.
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Introduction

Infection by SARS-CoV-2 can lead to different presentations of Coronavirus disease 2019 (COVID-19), ranging from asymptomatic infections to critical forms that require hospitalization in the intensive care unit (ICU) (1). Advanced age and male gender are determining factors in the development of disease severity, as well as the existence of comorbidities such as diabetes mellitus, hypertension, obesity, and cancer (2, 3). Even though global vaccination against COVID-19 was rapidly implemented, this disease may still be severe or critical due to new emerging viral variants and waning vaccine protection, as well as in unvaccinated or immunocompromised people (4).

Symptoms related to COVID-19 normally disappear in the first 4 weeks after infection, although in some cases they may persist up to 12 weeks (5, 6). However, there is a meaningful percentage of the population that may develop long-term symptoms and complications related to the viral infection. This post-viral syndrome is referred to as Long COVID, Long-haul COVID, or Post COVID-19 condition (PCC). According to the World Health Organization (WHO), the clinical case definition of PCC is the persistence of COVID-19 symptoms for at least two months in individuals with a history of probable or confirmed SARS-CoV-2 infection, usually three months from the onset of COVID-19, and that cannot be explained by an alternative diagnosis (6). The incidence of PCC within the population has been roughly estimated as 10% after SARS-CoV-2 infection (7), not only in people who needed hospitalization during the acute infection but also in individuals who had mild forms of COVID-19 (8, 9). The most important risk factors identified in PCC are female gender, non-white ethnicity, socioeconomic deprivation, smoking history (former or current), obesity, pre-existing medical conditions, and being unvaccinated against COVID-19 before first SARS-CoV-2 infection (10, 11). However, some cases of PCC have also been described as a consequence of receiving vaccination against SARS-CoV-2 infection (12, 13). Interestingly, the fact that women appear to be more predisposed to develop PCC, opposite to the trend observed in acute COVID-19, seems to bear a resemblance to autoimmune-like processes (14). Therefore, several hypotheses are behind the emergence of PCC, including chronic inflammation induced by viral persistence, sustained immune deregulation, or hypersensitivity (15).

While conventional SARS-CoV-2 infection mainly results in respiratory disorders, such as cough, dyspnea, bronchial hyperreactivity, or pneumonia, PCC presents both multifactorial origins and symptomatology (5, 14, 16). Organ damage can be found in multiple systems, with emphasis on neurological symptoms such as memory loss, brain fog, migraine, or dysautonomia (16). Chronic fatigue and post-exertional malaise are also prevalent symptoms that can lead to lifelong impairment (4, 11). These symptoms are thought to be a consequence of the uncontrolled inflammatory response induced by SARS-CoV-2, which can sometimes persist to become chronic inflammation (17). This exacerbated inflammatory response is directly related to worse clinical outcomes during acute COVID-19. In these cases, the immune system is deregulated and an overproduction of proinflammatory cytokines occurs, known as the “cytokine storm”, leading to organ damage and death (18). In addition to this hyperinflammatory response, high levels of cytotoxic cells such as Natural Killer (NK) have been observed in critical patients, although these cells usually express exhaustion markers such as programmed cell death protein 1 (PD-1) on their surface (19), and exhibit low cytotoxic and cytokine production capabilities (20). Similarly, the levels of CD8+ T lymphocytes are maintained in critical patients but their cytotoxic activity is greatly reduced, resulting in a deficient virus clearance that may severely affect the outcome of the disease (20).

CD4+ lymphopenia often occurs during severe and critical COVID-19, likely due to the immune exhaustion and the high concentration of chemokines that inhibit hematopoietic progenitors such as IP-10 or MCP-1 (21). Moreover, a deficient antigen presentation for T cells contributes to the impaired and inefficient antiviral immune response during COVID-19 (22). Antigen presentation is essential for the development of the most appropriate type of immune response for each situation as it induces CD4+ T helper (Th) cell polarization in combination with other multiple factors like the cytokine microenvironment (23). CD4+ Th1 cells mainly mediate the elimination of intracellular pathogens such as viruses through the production of IFNγ and IL-2, while CD4+ Th2 cells primarily participate in extracellular pathogen clearance and immunoglobin class-switching through the production of multiple cytokines like IL-4, IL-5, IL-10, and IL-13 (23, 24). On the other hand, CD4+ Th9 cells are involved in hypersensitivity and allergic reactions, as well as helminth infections, mostly secreting IL-9 (25), while CD4+ Th17 cells are generally found in digestive and respiratory mucous membranes where they release cytokines such as IL-17A, IL-17F, IL-22, and IL-6 that help establish a pro-inflammatory microenvironment which deregulation has been linked to autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, or asthma (26). Finally, CD4+ Th22 cells stimulate keratinocyte proliferation through the release of IL-13 and IL-22, and participate in endothelial repair but also in inflammatory skin conditions like psoriasis and Crohn´s disease (27). Therefore, imbalanced CD4+ Th polarization may be responsible for the development of different diseases as a consequence of the deregulated immune response. In fact, an imbalance in the ratio Th1/Th2 has been associated with a poor outcome of acute COVID-19 (28). As occurs in other viral diseases, a strong Th1 response is indicative of good disease progression, while a predominant Th2 response evolves to worse clinical outcomes (29, 30). However, while most of the immune parameters that are deregulated during acute COVID-19 become normal after the resolution of the infection, people with PCC show persistently exhausted T cells with reduced memory subsets and increased IFNγ production (7, 16).

The changes that are produced in the immune response during different presentations of COVID-19 have been widely studied (3, 19, 20, 29–31), as well as during PCC (11, 17, 32, 33). However, the cause for the impaired immune response induced by SARS-CoV-2 infection that persists in PCC has not been fully determined. Due to the central role of CD4+ Th cell polarization in the development of an adequate response against infectious agents, in this study we analyzed the levels and functionality of CD4+ Th cell populations in a cohort of people with PCC, in comparison with three cohorts of individuals with mild, severe, and critical presentations of acute COVID-19. The results could contribute to advance towards a better understanding of the mechanisms underlying PCC and the design of new effective therapeutic strategies.





Materials and methods




Study subjects

A total of 79 individuals with different clinical presentations of COVID-19 were recruited for this study in Madrid (Spain) between April 2020 and March 2021. Sixty participants were classified into three cohorts according to disease severity during COVID-19, following the guidelines of the World Health Organization (WHO) (1): Mild COVID-19 (n=20), SARS-CoV-2 infection without hypoxia or pneumonia symptoms in which no hospitalization was required for recovery and symptoms subside in 4-12 weeks; Severe COVID-19 (n=20), SARS-CoV-2 infection with pneumonia symptoms (cough, fever, dyspnea) and one of the following conditions: respiratory rate with more than 30 breaths per minute, severe respiratory distress, or oxygen saturation <90%, and they tend to require inpatient care; and Critical COVID-19 (n=20), SARS-CoV-2 infection that required admission to the ICU due to acute respiratory distress syndrome (ARDS), bilateral pneumonia, pulmonary infiltrates, oxygenation impairment, sepsis, septic shock, or acute thrombosis. A fourth cohort was formed by 19 participants diagnosed with PCC by their Primary Care physician. According to WHO, PCC is defined by the experience of a range of symptoms (i.e. fatigue, muscle or joint pain, breathlessness, impaired sleep, depression and anxiety, loss of smell and taste, headache, and “brain fog”, defined as difficulty in thinking or concentrating (34–36)) usually 3 months after the onset of COVID-19, that last for at least 2 months and cannot be explained by an alternative diagnosis (6). Sample size was calculated using the sample size calculator Granmo (37) based on a level of confidence of 95% (α=0.05) and power of the analysis of 100% (β=0.2).

Participants with mild COVID-19, as well as those with PCC, were recruited at the Primary Healthcare Center Doctor Pedro Laín Entralgo (Madrid, Spain) and through the Spanish Long COVID Patient´s Association (AMACOP) and Long COVID ACTS (Autonomous Communities Together Spain) Association. Participants with severe and critical COVID-19 were recruited at Hospital Universitario Ramón y Cajal (Madrid, Spain) during hospitalization. Inclusion criteria were being over 18 years old, having at least one positive RT-qPCR assay for SARS-CoV-2 in nasopharyngeal smear, and fulfilling WHO criteria to be included in one of the four cohorts.





Ethical statement

All individuals gave informed written consent to participate in the study before donating one blood sample. Protocols for this study (CEI PI 32_2020-v2; CEI PI 72_2022) were prepared in accordance with the Helsinki Declaration and previously reviewed and approved by the Ethics Committee of Instituto de Salud Carlos III (IRB IORG0006384) and the Commission of the Care Management of Primary Care of the Comunidad de Madrid (Spain). Current Spanish and European Data Protection Acts secured the confidentiality and anonymity of all participants.





Blood samples processing

Blood samples were collected in EDTA Vacutainer tubes (Becton Dickinson, Madrid, Spain). Peripheral blood mononuclear cells (PBMCs) and plasma were immediately isolated from whole blood by centrifugation in a Ficoll-Hypaque density gradient (Corning, NY, USA). PBMCs were cryopreserved and stored in liquid nitrogen until the moment of analysis.





Phenotyping of CD4+ Th cell populations

PBMCs were stained with conjugated antibodies CD3-PE (Immunostep, Salamanca, Spain) and CD8-APC-H7 (BD Biosciences, San Jose, CA). CD3+CD8- were assumed to be CD4+ T cells to include those cells with deregulated CD4 expression caused by SARS-CoV-2 infection (38). Cells were also stained with CXCR3-BV421, CCR4-PECy7, CCR6-BV650 and CCR10-BUV395 (BD Biosciences) to phenotypically characterize and quantify CD4+ Th cell subpopulations as follows: Th1 (CXCR3+CCR6-), Th2 (CCR4+CCR6-), Th17 (CCR4+CCR6+), Th9 (CCR6+CCR4-), and Th22 (CCR4+CCR6+CCR10+). Data acquisition was performed in LSRFortessa X-20 flow cytometer with FACS Diva Software (BD Biosciences) and data was analyzed with Flow-Jo_V10.8.1 (Treestar). The gating strategy for the phenotyping of CD4+ Th cell populations is shown in Supplementary Figure 1.





Cytokine expression by CD4+ Th cell populations

The capacity to express representative cytokines by each CD4+ Th cell subpopulation was measured by flow cytometry after stimulation with phorbol 12-myristate 13-acetate (PMA) (25ng/ml) and ionomycin (1.5µg/ml) for 4h at 37°C in the presence of brefeldin A (BD GolgiPlug, BD Biosciences) that blocks the anterograde exocytotic transport through the Golgi complex (39). After cell surface staining of each Th cell subset, cells were fixed and permeabilized with IntraPrep Permeabilization reagent (Immunostep) and intracellularly stained with the following antibodies: IFNγ-FITC (Beckman Coulter, Brea, CA), IL-4-APC, IL-9-PercP, IL-13-BV711, IL-17A-BV510, and IL-22-AF647 (BD Biosciences). Data acquisition was performed with LSRFortessa X-20 flow cytometer (BD Biosciences), and data was analyzed using FACS Diva Software (BD Biosciences) and Flow-Jo_V10.8.1 (Treestar). The gating strategy for the intracellular staining of cytokines expressed by each CD4+ Th cell subset is shown in Supplementary Figure 2.





Statistical analysis

Statistical analysis was performed with GraphPad Prism v10.2.1 (GraphPad Software Inc.) and STATA 14.2 software (StataCorp LLC, College Station, TX). Quantitative variables were described as the median and interquartile range (IQR) and qualitative variables as absolute or relative frequencies. Samples’ normal distribution was determined using Shapiro-Wilk test. Significance between data of different cohorts was determined with ordinary one-way Analysis of Variance (ANOVA) and Tukey post-test or with Kruskal-Wallis test and Dunn’s multiple comparisons test, depending on data normality. Qualitative data were compared by Fisher´s exact test or chi-square test, as appropriate. Simple and logistic regressions were applied to estimate the odds ratio (OR) and 95% confidence interval (CI) for associations between the levels of Th subsets and the expression of related cytokines with the development of critical, severe, or persistent forms of COVID-19 in comparison with participants with mild COVID-19. To analyze data correlation and compute the Pearson coefficient between all Th subsets per cohort, we employed a combination of Python libraries, including Scikit-Learn (40) and Pandas (41, 42) libraries. For the generation of regression plots, the Seaborn library (43) was used. P-values (p) < 0.05 were considered statistically significant in all comparisons.






Results




Clinical and sociodemographic characteristics of participants

For this study, 79 individuals who had SARS-CoV-2 infection confirmed by positive RT-qPCR in nasopharyngeal smear or positive serology for IgM were recruited and divided into different cohorts depending on the severity of the infection and according to WHO classification (1): Mild (n=20), Severe (n=20), and Critical (n=20) COVID-19, and PCC (n=19). Main demographic and clinical characteristics of these cohorts are summarized in Table 1 and detailed in Supplementary Table 1. Participants with Mild, Severe, and Critical COVID-19 were evenly divided into males (50%) and females (50%), while the PCC cohort was comprised mostly of females (95%), as female gender is one factor associated with higher risk of developing this syndrome (44). Median age at infection was 43 years old (interquartile range (IQR) 28-59) for the Mild group, 50 years old (IQR 44-55) for the Severe group, 53 years old (IQR 47-59) for the Critical group, and 42 years old (IQR 37-46) for the PCC cohort. None of the participants were vaccinated against COVID-19 before being infected with SARS-CoV-2, as vaccination began in Spain in December 2020 and there was no vaccine available for non-risk groups at the time of sample collection. Median length of hospital stay (LOS) for individuals with Severe and Critical COVID-19 was 7 (IQR 6-11) and 45 days (IQR 28-80), respectively, while participants from Mild and PCC cohorts were not hospitalized during acute COVID-19. Only participants from Critical cohort were admitted to the ICU for a median stay of 18 days (IQR 8-40).


Table 1 | Sociodemographic and clinical data of all participants in the study.

[image: Table comparing characteristics and treatments of participants with mild, severe, and critical acute COVID-19, and post-COVID condition (PCC). Includes demographic data, hospitalization details, symptoms, comorbidities, and treatments. Significant p-values are highlighted, indicating differences particularly related to age, hospitalization, and symptoms like asthenia and memory loss. Some differences in treatment, such as anticoagulants and antivirals, are noted.]
General symptoms of acute COVID-19 such as cough and expectoration, dyspnea, and fever were reported in all cohorts with varying degrees of frequency. Of them, dyspnea was reported during acute infection in 15%, 55%, and 70% of Mild, Severe, Critical participants, respectively, and in 53% of PCC participants as a persistent symptom. Fever was reported by participants from all groups, but no significant differences were observed between cohorts. Pneumonia was reported in 5%, 85%, 95%, and 32% of Mild, Severe, Critical, and PCC participants, respectively, during acute infection. Other symptoms more closely associated with PCC than with acute COVID-19 were also compiled: 89% and 95% of PCC participants reported persistent lethargy and asthenia, respectively, in comparison with 5%, 10%, and 30% of Mild, Severe and Critical participants who reported lethargy, and 60%, 15%, and 30%, respectively, who reported asthenia during the acute infection. Other symptoms such as persistent memory loss (84%), arrhythmia (63%), and palpitations (32%) were only reported in PCC cohort. Comorbidities such as diabetes, dyslipidemia, and arterial hypertension were observed in all groups, but there were no significant differences between cohorts.

Immunomodulators represented the most common treatment used during acute SARS-CoV-2 infection for Severe (75%) and Critical (80%) participants, while the most common treatment for PCC participants was antibiotics (63%). Oxygen therapy was required in individuals from Severe (25%), Critical (60%), and PCC (11%) cohorts (p<0.001) during acute infection, while invasive mechanical ventilation was only required in individuals with Critical COVID-19 admitted to the ICU (75%). 20% of participants from the Critical cohort were exitus due to complications related to acute COVID-19 (ID numbers 43, 45, 47, and 51).





Blood samples

Blood samples were collected at different time points depending on the cohort to evaluate the immune parameters during acute infection in participants with Severe and Critical COVID in comparison with participants with Mild COVID-19 who were already recovered, and participants diagnosed with PCC. Therefore, for participants with Severe and Critical COVID-19, blood samples were taken during the acute infection, when they were hospitalized and showed signs and symptoms characteristic of these conditions. Hence, the days from clinical onset to sample were 13 (IQR 9-17) and 25 days (IQR 12-35), respectively. Participants with Mild COVID-19 were recruited 85 days (IQR 80-95) after diagnosis of COVID-19, once there were completely recovered and showed no signs or symptoms of the disease. Therefore, they were controls for the return to normality of the immune response after acute infection, as it is expected that complete recovery occurs within 4-12 weeks after infection (16, 45–48). Due to individuals with Severe COVID-19 or underlying medical issues may retain some changes in the immune response beyond 6 months after infection (49), we recruited the participants with PCC 330 days (IQR 342-352) after COVID-19 diagnosis to avoid confusion with long-term sequelae of severe COVID-19 or Post-acute sequelae of COVID-19 (PASC) that may persist at least 6 months after the acute infection (50, 51) (Table 1). All PCC participants had mild COVID-19 presentation at the moment of diagnosis but since then they showed persistent signs and symptoms characteristic of PCC that did not substantially change over time.





Lower levels of CD4+ Th1 cells with higher capacity to express IFN γ in participants with PCC

Participants from Severe, Critical, and PCC cohorts showed lower levels of CD4+ Th1 cells than participants from Mild cohort (-1.3-fold, p=0.0067; -1.3-fold, p=0.0036; and -1.4-fold, p<0.0001, respectively) (Figure 1A). Participants from Critical cohort with exitus (ID numbers 43, 45, 47, and 51) showed Th1 levels below the average in their group (31.00 ± 8.20%).
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Figure 1 | Levels of CD4+ Th1 cells and expression of IFNγ in individuals with acute COVID-19 and PCC. (A) Blood levels of CD4+ Th1 cells in individuals from each cohort of acute COVID-19 and PCC. (B) Intracellular expression of IFNγ in CD4+ Th1 cells upon stimulation in individuals from each cohort (left graph) and percentage of individuals whose CD4+ Th1 cells expressed (Response, open bar) or not (No response, light gray bar) IFNγ upon stimulation (right graph). Each dot in scatter plots corresponds to one sample and lines represent the mean ± standard error of the mean (SEM). Each symbol represents a different cohort: Mild COVID-19 (open circles), Severe COVID-19 (light gray circles), Critical COVID-19 (dark gray circles), and PCC (closed circles). Individuals from Critical cohort with exitus are identified with  † symbol and their ID number: 43, 45, 47, and 51. Ordinary one-way ANOVA and Tukey post-test were applied to calculate the statistical significance between cohorts in scatter plots. Fisher´s exact test was used to calculate significance between cohorts in horizontal bar graphs. Significant p-values below 0.05 are represented.

CD4+ Th1 cells from participants with PCC showed 1.9-fold (p=0.0486) higher capacity to express IFNγ in response to activating stimuli than participants from Critical cohort, while no significant differences were found between the other cohorts (Figure 1B, left graph). 26% of participants from Critical cohort and 5% of participants from Mild and Severe cohorts were not able to express IFNγ in Th1 cells, while Th1 cells from 100% of participants with PCC were able to express IFNγ (p=0.0463) (Figure 1B, right graph).

The calculation of Pearson’s correlation between the levels of CD4+ Th1 and the expression of IFNγ in these cells from participants of different cohorts showed that there was a significant positive correlation in individuals from Mild (r=0.4737; p=0.0405) and PCC (r=0.5421; p=0.0165) cohorts (Supplementary Figure 3). In participants from Critical cohort, there was a significant negative correlation between the levels of CD4+ Th1 and the intracellular expression of IFNγ (r=-0.5245; p=0.0211).





Lower levels of CD4+ Th2 cells with higher capacity to express IL-4 and IL-13 in participants with PCC

Participants from Mild, Severe, and Critical cohorts showed similar levels of CD4+ Th2 cells, while participants with PCC showed significantly lower levels of these cells than individuals from Severe and Critical cohorts (-1.4-fold, p=0.0288; and -1.4-fold, p=0.0236, respectively) (Figure 2A). Three participants from Critical cohort with exitus (IDs 43, 45, and 47) showed Th2 levels above the average in their group (38.30 ± 13.88%).
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Figure 2 | Levels of CD4+ Th2 cells and expression of IL-4 and IL-13 in individuals with acute COVID-19 and PCC. (A) Blood levels of CD4+ Th2 cells in individuals from each cohort of acute COVID-19 and PCC. Intracellular expression of IL-4 (B) and IL-13 (C) in CD4+ Th2 cells upon stimulation in individuals from each cohort (left graphs) and percentage of individuals whose CD4+ Th2 cells expressed (Response, open bar) or not (No response, light gray bar) these cytokines upon stimulation (right graph). Each dot in scatter plots corresponds to one sample and lines represent the mean ± SEM. Each symbol represents a different cohort: Mild COVID-19 (open circles), Severe COVID-19 (light gray circles), Critical COVID-19 (dark gray circles), and PCC (closed circles). Individuals from Critical cohort with exitus are identified with  † symbol and their ID number: 43, 45, 47, and 51. Ordinary one-way ANOVA and Tukey post-test were applied to calculate the statistical significance between cohorts in scatter plots. Fisher´s exact test was used to calculate significance between cohorts in horizontal bar graphs. Significant p-values below 0.05 are represented.

The average expression of IL-4 and IL-13 in CD4+ Th2 cells after stimulation was higher in participants with PCC than in the other cohorts. The expression of IL-4 was 2.2- (p<0.0001), 1.7- (p=0.0017), and 1.6-fold (p=0.0040) higher in PCC participants in comparison with Mild, Severe, and Critical participants, respectively (Figure 2B, left graph), while the expression of IL-13 was 1.8- (p=0.0008), 2.0- (p=0.0002), and 1.8-fold (p=0.0011) higher in PCC participants (Figure 2C, left graph). CD4+ Th2 cells from all participants were able to express IL-4 in response to stimulation (Figure 2B, right graph), while only two individuals from the Severe and Critical cohorts were non-responders to express IL-13 (Figure 2C, right graph).

The calculation of Pearson’s correlation between the levels of CD4+ Th2 and the expression of IL-4 in these cells from the participants of the different cohorts showed that there was a significant, negative correlation in individuals with Mild (r=-0.4876; p=0.0401) and PCC (r=-0.5375; p=0.0261) (Supplementary Figure 4). There was no linear relationship between both variables in participants from Severe and Critical cohorts. We found no correlation between Th2 cells and the expression of IL-13 in none of the cohorts (Supplementary Figure 5).





Absence of correlation between CD4+ Th1 and Th2 cell levels in participants with PCC

The calculation of Pearson’s correlation between the levels of CD4+ Th1 and Th2 cells from participants of the different cohorts showed that there was a significant, negative correlation in individuals from Mild (r=-0.5972; p=0.0054), Severe (r=-0.6273; p=0.0031), and Critical cohorts (r=-0.5413; p=0.0203) (Figure 3), as expected (52). In participants with PCC, there was no linear association between the levels of CD4+ Th1 and Th2.
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Figure 3 | Correlation between the levels of CD4+ Th1 and Th2 cells in individuals with acute COVID-19 and PCC. Pearson’s coefficient r and p-values between the percentage of expression of CD4+ Th1 and Th2 cells were calculated for each cohort. Each dot corresponds to one sample and lines represent the linear regression.





Higher levels of CD4+ Th17 cells with reduced capacity to express IL-17A and IL-22 in participants with PCC

Participants from Mild, Severe, and Critical cohorts showed similar levels of CD4+ Th17 cells, while participants with PCC showed higher levels than Mild cohort (1.6-fold, p=0.0492) (Figure 4A).
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Figure 4 | Levels of CD4+ Th17 cells and expression of IL-17A and IL-22 in individuals with acute COVID-19 and PCC. (A) Blood levels of CD4+ Th17 cells in individuals from each cohort of acute COVID-19 and PCC. Intracellular expression of IL-17A (B) and IL-22 (C) in CD4+ Th17 cells upon stimulation in individuals from each cohort (left graphs) and percentage of individuals whose CD4+ Th17 cells expressed (Response, open bar) or not (No response, light gray bar) these cytokines upon stimulation (right graph). Each dot in scatter plots corresponds to one sample and lines represent the mean ± SEM. Each symbol represents a different cohort: Mild COVID-19 (open circles), Severe COVID-19 (light gray circles), Critical COVID-19 (dark gray circles), and PCC (closed circles). Individuals from Critical cohort with exitus are identified with  † symbol and their ID number: 43, 45, 47, and 51. Kruskal-Wallis test and Dunn’s multiple comparisons test were applied to calculate the statistical significance between cohorts in scatter plots. Fisher´s exact test was used to calculate significance between cohorts in horizontal bar graphs. Significant p-values below 0.05 are represented.

No significant changes were observed between cohorts in the average capacity to express IL-17A or IL-22 in CD4+ Th17 cells (Figures 4B, C, left graphs). However, 47% of participants with PCC and 41% of participants from the Critical cohort showed CD4+ Th17 cells without capacity to express IL-17A in response to stimulation, in comparison with 10% and 5% of participants from the Severe and Mild cohorts, respectively (Figure 4B, right graph). The comparison between groups achieved significance in the comparison between PCC and Severe cohorts (p=0.0138), PCC and Mild cohorts (p=0.0033), and Mild and Critical cohorts (p=0.0140).

Regarding the expression of IL-22, 58% of participants from PCC cohort and 56% of participants from Critical cohort showed CD4+ Th17 cells without capacity to express IL-22 in response to stimulation, versus 15% and 20% of participants from Severe and Mild cohorts, respectively (Figure 4B, right graph). The comparison between cohorts achieved significance between PCC and Severe cohorts (p=0.0079), PCC and Mild cohorts (p=0.0225), Severe and Critical cohorts (p=0.0156), and Mild and Critical cohorts (p=0.0424). Three participants from Critical cohort with exitus (IDs 43, 47, and 51) did not express IL-17A or IL-22 in CD4+ Th9 cells in response to stimulation, while participant 45 with exitus from Critical cohort showed the highest expression of both cytokines.





Higher levels of CD4+ Th9 cells with regular capacity to express IL-9 in participants with PCC

Participants from PCC cohort showed higher levels of CD4+ Th9 cells in comparison with participants from Mild, Severe, and Critical cohorts (2.7-, 2.4-, and 2.7-fold, respectively; p<0.0001) (Figure 5A). There were no significant changes in the average expression of IL-9 in CD4+ Th9 cells upon stimulation (Figure 5B, left graph), but 50% of participants from Critical cohort did not express IL-9 in response to stimuli and this difference was significant in the comparison with participants from PCC (p=0.0089), Severe (p=0.0448), and Mild (p=0.0086) cohorts (Figure 5B, right graph).
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Figure 5 | Levels of CD4+ Th9 cells and expression of IL-9 in individuals with acute COVID-19 and PCC. (A) Blood levels of CD4+ Th9 cells in individuals from each cohort of acute COVID-19 and PCC. (B) Intracellular expression of IL-9 in CD4+ Th9 cells upon stimulation in individuals from each cohort (left graphs) and percentage of individuals whose CD4+ Th9 cells expressed (Response, open bar) or not (No response, light gray bar) these cytokines upon stimulation (right graph). Each dot in scatter plots corresponds to one sample and lines represent the mean ± SEM. Each symbol represents a different cohort: Mild COVID-19 (open circles), Severe COVID-19 (light gray circles), Critical COVID-19 (dark gray circles), and PCC (closed circles). Individuals from Critical cohort with exitus are identified with  † symbol and their ID number: 43, 45, 47, and 51. Ordinary one-way ANOVA and Tukey post-test were applied to calculate the statistical significance between cohorts in scatter plots. Fisher´s exact test was used to calculate significance between cohorts in horizontal bar graphs. Significant p-values below 0.05 are represented.





Reduced capacity to express IL-13 and IL-22 from CD4+ Th22 cells of PCC

No significant changes were observed in the levels of CD4+ Th22 cells between cohorts (Figure 6A). The average expression of IL-13 in CD4+ Th22 cells upon stimulation was 1.8- (p=0.0380), 2.1- (p=0.0172), and 4.3-fold (p<0.0001) lower in participants from Severe, Critical, and PCC cohorts, respectively, in comparison with Mild cohort (Figure 6B, left graph). 68% of participants from PCC cohort, 40% of participants from Critical cohort, and 23% of participants from Severe cohort did not express IL-13 in Th22 in response to stimulation. This difference was significant in the comparison between participants from PCC and Mild cohorts (p<0.0001), PCC and Severe cohorts (p=0.0290), and Mild and Critical cohorts (p=0.0198) (Figure 6B, right graph).
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Figure 6 | Levels of CD4+ Th22 cells and expression of IL-13 and IL-22 in individuals with acute COVID-19 and PCC. (A) Blood levels of CD4+ Th22 cells in individuals from each cohort of acute COVID-19 and PCC. Intracellular expression of 13 (B) and IL-22 (C) in CD4+ Th22 cells upon stimulation in individuals from each cohort (left graphs) and percentage of individuals whose CD4+ Th22 cells expressed (Response, open bar) or not (No response, light gray bar) these cytokines upon stimulation (right graph). Each dot in scatter plots corresponds to one sample and lines represent the mean ± SEM. Each symbol represents a different cohort: Mild COVID-19 (open circles), Severe COVID-19 (light gray circles), Critical COVID-19 (dark gray circles), and PCC (closed circles). Individuals from Critical cohort with exitus are identified with  † symbol and their ID number: 43, 45, 47, and 51. Ordinary one-way ANOVA and Tukey post-test and Kruskal-Wallis test and Dunn’s multiple comparisons test were applied according to data normality to calculate the statistical significance between cohorts in scatter plots. Fisher´s exact test was used to calculate significance between cohorts in horizontal bar graphs. Significant p-values below 0.05 are represented.

The average expression of IL-22 in CD4+ Th22 cells upon stimulation was 1.6-fold (p=0.0250) lower in participants from PCC cohort than Mild cohort (Figure 6C, left graph). CD4+ Th22 cells from 68% of participants from PCC cohort, 58% of participants from Critical cohort, 59% from Severe cohort, and 18% from Mild cohorts did not express IL-13 in response to stimuli (Figure 6C, right graph). There was significance in the comparisons between Mild cohort and Severe (p=0.0324), Critical (p=0.0189), and PCC cohorts (p=0.0006).





Higher CD4+ Th cells polarization to proinflammatory responses in PCC cohort

The balance between the levels of all CD4+ Th cell populations was analyzed within each cohort by calculating the Pearson correlation coefficient r. There was a significant negative Th1/Th2 correlation in participants from Mild (r=-0.6000; p=0.0054) and Severe (r=-0.627; p=0.0030) cohorts (Supplementary Figure 6). Severe and PCC cohorts showed significant negative Th1/Th9 correlation (r=-0.4590; p=0.0420 and r=-0.7400; p=0.0002, respectively), while negative Th2/Th9 correlation was significant in Mild (r=-0.4200; p=0.0640) and Critical (r=-0.5000; p=0.0250) cohorts. Negative Th1/Th17 correlation was significant in Critical cohort (r=-0.4590; p=0.0420), while Th2/Th17 correlation was negative in Severe cohort (r=-0.5140; p=0.0200) and positive in PCC cohort (r=0.5600; p=0.0130). Finally, negative Th1/Th22 correlation was significant in Mild cohort (r=-0.4500; p=0.0460), while negative Th2/Th22 correlation was significant in Severe (r=-0.5000; p=0.0250) and Critical (r=-0.5230; p=0.0180) cohorts. Negative Th9/Th22 correlation was only significant in PCC cohort (r=-0.4600; p=0.0460).





Role of CD4+ Th subsets and expression of related cytokines in different presentations of COVID-19

The role of blood levels of CD4+ Th cell subsets and their capacity to express related cytokines in the development of PCC and severe and critical forms of COVID-19 was analyzed by simple linear regression analysis and subsequent binary logistic regression analyses (OR). Simple linear regression analyses showed that CD4+ Th1, Th2, Th9, and Th17 levels, as well as the expression levels of IL-4 from CD4+ Th2 cells and IL-13 from CD4+ Th2 and Th22 cells presented a trend towards an association with the development and/or persistence of PCC, in comparison with Mild cohort (Table 2A). These results were confirmed by binary logistic regression analysis, suggesting that the levels of Th1 (OR 0.7855; 95% CI 0.6762 to 0.9122; p=0.0020), Th2 (OR 0.9319; 95% CI 0.8691 to 0.9992; p=0.0480), Th9 (OR 1.2996; 95% CI 1.0914 to 1.5476; p=0.0030), and Th17 (OR 1.4487; 95% CI 1.0941 to 1.9183; p=0.0100), as well as the expression levels of IL-4 from CD4+ Th2 cells (OR 1.2992; 95% CI 1.0943 to 1.5423; p=0.0030) and IL-13 from CD4+ Th2 (OR 1.2119; 95% CI 1.0346 to 1.4195; p=0.0170) and Th22 cells (OR 0.8905; 95% CI 0.8250 to 0.9612; p=0.0030) were positively correlated with the occurrence of PCC.


Table 2 | Association between the levels of CD4+ Th cells and their capacity to express Th-related cytokines with the development of PCC (A), severe (B), or critical COVID-19 (C) was assessed in comparison with Mild COVID-19 using simple linear regression analysis and subsequent binary logistic regression analysis (OR).
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Same analyses were performed with data from Severe and Critical cohorts in comparison with Mild cohort (Tables 2B, C). Simple linear regression analyses showed that Th1 levels, and the expression levels of IL-4 from CD4+ Th2 cells and IL-13 from CD4+ Th22 cells presented a trend towards an association with the development of severe and critical forms of acute COVID-19, in comparison with individuals who fully recovered from mild COVID-19. These results were confirmed by binary logistic regression analysis, suggesting that the levels of Th1 (OR 0.8690; 95% CI 0.7823 to 0.9652; p=0.0090), as well as the expression levels of IL-4 from CD4+ Th2 cells (OR 1.2099; 95% CI 1.0059 to 1.4554; p=0.0430) and IL-13 from CD4+ Th22 cells (OR 0.9389; 95% CI 0.8860 to 0.9950; p=0.0330) were positively correlated with the occurrence of severe COVID-19 (Table 2B). Similarly, the levels of Th1 (OR 0.8211; 95% CI 0.7184 to 0.9385; p=0.0040), as well as the expression levels of IL-4 from CD4+ Th2 cells (OR 1.2572; 95% CI 1.0341 to 1.5285; p=0.0220) and IL-13 from CD4+ Th22 cells (OR 0.9276; 95% CI 0.8674 to 0.9920; p=0.0280) were positively correlated with the occurrence of critical COVID-19 (Table 2C).






Discussion

PCC is a multisystemic condition characterized by the persistence of a wide variety of syndromes, often severe, that follow COVID-19, such as cardiovascular and hematologic alterations, type 2 diabetes, myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), and dysautonomia, especially postural orthostatic tachycardia syndrome (POTS) (11). The immune deregulation is also an important hallmark of COVID-19 that can be very varied including T-cell function impairment and exhaustion, low levels of effector cells, and reduced numbers of antigen presenting cells (32, 53, 54), but also increased levels of activated B cells, non-classical monocytes, cytotoxic cells, and pro-inflammatory cytokines (17, 32, 55). This exacerbated immune response may be responsible not only for general symptoms like fatigue, myalgia, arthralgia, and peripheral neuropathy, but also for hypersensitivity reactions like erythematous and urticarial rash, and pulmonary symptoms like cough, chest pain, pneumonia, post-COVID interstitial lung disease, and dyspnea (56). In our cohort, 53% of participants with PCC had persistent dyspnea one year after SARS-CoV-2 infection. This proportion was more similar to individuals with severe and critical presentations of acute COVID-19 than to people who had mild symptoms and completely recovered during the first 4 weeks post-infection, supporting the notion that long-term persistence of symptoms after acute infection may occur in some individuals. Although comorbidities such as diabetes, dyslipidemia, and arterial hypertension have been related to the development of more severe forms of acute COVID-19 (57), we found no significant differences related to these comorbidities in the tendency to develop PCC in our cohort. Therefore, other risk factors should be involved and some of them could be related to an impaired immune response.

CD4+ Th cell polarization has repeatedly demonstrated its importance during the development of viral diseases, serving as coordinator of either cellular or humoral immune responses (58–61). Each CD4+ Th cell subset induces the best immune response that should be developed to eliminate the pathogens. Accordingly, CD4+ Th1 cells are essential for an adequate antiviral response during SARS-CoV-2 acute infection (62–64), while COVID-19 severity has been associated with a predominant extracellular response mostly mediated by high levels of CD4+ Th2 cells (65) and cytokines such as IL-2 and IL-6 (66) that are initiators of the “cytokine storm” and create a pro-inflammatory environment with low efficacy for viral clearance (67). Within CD4+ T cell subtypes, individuals with critical COVID-19 also present high levels of CD4+ regulatory T cells (Tregs) that are implicated in the contraction of the inflammatory immune response developed during acute infection (20, 66). Tregs are also altered in people with PCC, pointing at the existence of an immune deregulation that cannot be controlled and might be involved in the post-acute persistence of symptoms (68, 69). Due to the central role of CD4+ T cells in the polarization of the immune response and the control of chronic viral infections (58), more analyses are needed to evaluate the importance of CD4+ Th cell subsets in the development of different forms of acute or persistent COVID-19.

In our study, participants who recovered from mild COVID-19 showed higher levels of Th1 cells than other groups. This is to be expected, as individuals who reported mild symptomatology during infection should be able to trigger a better antiviral response polarized towards Th1 cells than those who suffered worse clinical outcomes (70–72). Moreover, although infection has been already resolved in these participants, the presence of SARS-CoV-2 produces a profound deregulation of the immune system that may persist up to 8 months post-infection even in individuals with mild presentation of COVID-19 (20). Although some studies did not find differences in the percentage of Th1 cells according to COVID-19 severity (29, 66), in our cohort of people with PCC the levels of CD4+ Th1 cells were lower than in people who recovered from mild COVID-19 and more similar to those from people who presented severe and critical forms of acute COVID-19, in which Th1 subset is usually underrepresented (73, 74). The antiviral activity of Th1 cells, measured by the expression of IFNγ, did not show significant differences between groups with acute disease, but these cells showed the highest capacity to express IFNγ in response to stimulation in people with PCC, proving their functionality. This is in accordance with previous studies that correlate disease severity to immune exhaustion profiles in Th1 cells but not to the total number of cells within the subpopulation (75). Therefore, despite the low levels of Th1 cells in individuals with PCC, these cells showed high capacity to express IFNγ, likely contributing to a proinflammatory state.

The polarization of CD4+ Th0 cells to Th1 subset usually occurs in response to intracellular pathogens, thereby interfering with polarization to Th2 population that is more associated with a humoral extracellular response mediated by the stimulation of B cells (76). Consequently, there was a significant negative Th2/Th1 correlation in individuals with acute forms of COVID-19. However, likely due to levels of Th2 were lower in people with PCC in comparison with individuals with severe and critical forms of COVID-19, we found no significant Th2/Th1 correlation in this cohort. Nevertheless, Th2 cells from people with PCC presented the highest capacity to express IL-4 and IL-13 within our cohorts. The release of IL-4 and IL-13 from Th2 cells is considered an important factor for low ventilation and death associated with COVID-19 and these cytokines are targets for immunotherapy agents such as dupilumab (77). Moreover, IL-4 and IL-13 activate the same signal transduction pathways to induce the production of IgE by B cells, which would contribute to the proinflammatory environment (78, 79). Accordingly, although the levels of CD4+ Th1 cells appeared to be a protective factor against the development of both acute and persistent forms of COVID-19, the expression of anti-inflammatory cytokines such as IL-4 in Th2 cells was revealed as a risk factor associated to the development of severe and critical COVID-19. Moreover, IL-4 could be related to low levels of Th1 cells as it would polarize the immune response towards an extracellular immune response (80–82). Several reports describe controversial data about plasma levels of IL-4 and IL-13 in individuals with PCC (77, 83, 84), but this is the first report about the higher capacity of Th2 cells from people with PCC to express these anti-inflammatory cytokines.

The development of proinflammatory CD4+ Th9 and Th17 subsets has been described during hypersensitivity and inflammatory reactions (85–87). However, once the antigen that has triggered this polarization wanes, these cell populations return to normal levels (88). In PCC, the levels of Th9 and Th17 subsets were significantly higher in comparison with acute forms of COVID-19, in agreement with previous reports about the role of higher levels of Th9 and Th17 cells in the pathophysiology of PCC (89, 90). Moreover, Th1/Th9 correlation was negative in individuals with severe COVID-19 and PCC, pointing to the existence of a more proinflammatory than antiviral scenario. In addition, Th17 cells from more than 50% of individuals with PCC showed no capacity to express cytokines such as IL-17A and IL-22, similar to participants with critical COVID-19. Due to the production of IL-17A from Th17 cells is essential for clearing extracellular pathogens, the inappropriate functionality of this subset has been linked to development of acute respiratory distress syndrome (ARDS) during acute COVID-19 (91) and it may also be related to an impaired viral clearance during PCC. Th2/Th17 correlation was positive in people with PCC, which in the absence of a negative Th1/Th2 correlation could also contribute to the proinflammatory state. In fact, the levels of Th9 and Th17, as well as the expression of IL-4 and IL-13 from Th2 cells, which would counteract Th1 polarization, were appointed as risk factors in the development of PCC.

Finally, although there was no significant difference in the levels of CD4+ Th22 cell subset in people with PCC in comparison with participants with acute forms of COVID-19, the highest proportion of individuals in which Th22 cells showed no capacity to express IL-13 or IL-22 in response to stimuli were those in the PCC cohort. Th22 cell subset exhibits protective anti-inflammatory properties that can promote immunity against infection by HIV (92) and respiratory viruses such as influenza, respiratory syncytial virus (RSV), and SARS-CoV-2 (93, 94). The expression of IL-13 and IL-22 from Th22 subset appeared to be a protective factor in both acute and persistent COVID-19 (95). In fact, IL-13 may reduce the risk of SARS-CoV-2 infection in airway epithelium by decreasing the expression of its main receptor ACE-2 in ciliated cells and increasing the secretion of mucin and glycocalyx in the periciliary layer, which acts as a physical barrier against the virus attachment (65). The role of Th22 cells and IL-22 in the pathophysiology of PCC is not fully understood but IL-22-induced signaling pathway may switch from protective to pathogenic as COVID-19 progresses (95) due to although it acts on epithelial cells to promote tissue protection and regeneration, IL-22 may also elicit pro-inflammatory effects, contributing to disease pathology (96). The low capacity of Th22 cells from people with PCC to express IL-13 and IL-22 may increase tendency to reinfections, producing impaired epithelial regeneration that has been related to a higher susceptibility to develop PCC (97, 98). Significant correlations between Th22 cell subsets and other Th populations were very varied within our cohorts and although people who recovered from mild COVID-19 presented a significant negative Th1/Th22 correlation, people with severe and critical COVID-19 showed a significant negative Th2/Th22 correlation, while individuals with PCC showed a significant negative Th9/Th22 correlation.

One potential limitation of this study is that diagnostic tests were not performed at the moment of sampling to discard a possible asymptomatic infection with SARS-CoV-2.

In conclusion, people with PCC showed a skewed polarization of CD4+ Th subsets with altered functionality that was more similar to individuals with severe and critical presentations of acute COVID-19 than to people who fully recovered from mild disease. This profile presented lower polarization towards Th1-mediated antiviral immune response in the absence of significant Th2/Th1 negative correlation. In addition, higher levels of proinflammatory Th9 and Th17 cell subsets were observed in comparison with acute forms of COVID-19, with a reduced capacity to express anti-inflammatory cytokines related to endothelial regeneration such as IL-22. These results pointed to the possibility that individuals with PCC may present an impaired capacity to develop an adequate immune response against SARS-CoV-2 infection that may persist over time, causing a long-term pro-inflammatory environment.
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Objectives

This study was performed to identify predictive markers of worse outcomes in patients with severe COVID-19 in an intensive care unit.





Methods

Sixty patients with severe COVID-19, hospitalized in the Intensive Care Unit (ICU) between March and July 2021, were stratified into two groups according to the outcome survivors and non-survivors. After admission to the ICU, blood samples were collected directly for biomarker analysis. Routine hematological and biochemical biomarkers, as well as serum levels of cytokines, chemokines, and immunoglobulins, were investigated.





Results

Lymphopenia, neutrophilia, and thrombocytopenia were more pronounced in non-surviving patients, while the levels of CRP, AST, creatinine, ferritin, AST, troponin I, urea, magnesium, and potassium were higher in the non-surviving group than the survival group. In addition, serum levels of IL-10, CCL2, CXCL9, and CXCL10 were significantly increased in patients who did not survive. These changes in the biomarkers evaluated were associated with increased mortality in patients with severe COVID-19.





Conclusion

The present study confirmed and expanded the validity of laboratory biomarkers as indicators of mortality in severe COVID-19.





Keywords: SARS-CoV-2, COVID-19, intensive care unit, critically ill patient, cytokines, chemokines




1 Introduction

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in a severe global public health emergency, causing millions of confirmed cases and associated deaths (1). The clinical features of COVID-19 are heterogeneous, encompassing a broad spectrum of clinical manifestations ranging from mild to moderate and severe forms leading to respiratory, digestive, cardiovascular, renal, or neurological dysfunctions. Patients with a compromised clinical condition due to acute respiratory distress syndrome (ARDS) can develop septic shock, coagulopathies, and even multiple organ failure due to the cytokine storm that leads to respiratory failure and consequently increased mortality (2, 3).

Patients who progress to the most severe form of the disease and require support in the Intensive Care Unit (ICU) have elevated serum levels of pro-inflammatory cytokines, chemokines, and inflammatory mediators, causing multisystem inflammation (4, 5). Several studies have reported an increase in serum levels of cytokines such as interleukin-1 (IL-1), IL-6, IL-2, IL-7, IL-10, IL-12, tumor necrosis factor (TNF-α) and interferon-gamma (IFN-γ) (6–9), which are related to the severity of infection and mortality. Some chemokines were also elevated in patients with severe COVID-19, as chemokine ligand (CCL)-2 (CCL2), CCL3, and chemokine CXC ligands (CXCL), CXCL8, CXCL9, CXCL10, and CXCL11 the most associated with this clinical condition (10, 11).

Similarly, biochemical and hematological markers also show changes during COVID-19 and differ with the severity of the disease. These biomarkers have been used during the evaluation of respiratory impairment and play a vital role in predicting the severity of respiratory distress and guiding the choice of optimal therapy (12, 13). Recent studies have described several biomarkers such as lymphopenia, thrombocytopenia, C-reactive protein (CRP), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), alanine aminotransferase (ALT), d-dimer, ferritin, and troponin associated with worse clinical outcomes and mortality in COVID-19 (14–20).

Despite the diversity of inflammatory mediators related to disease severity, it is still challenging to determine which cytokines and chemokines are strong predictors of progression and mortality due to the heterogeneity with which these mediators present in severe COVID-19 patients (21, 22). In this sense, laboratory findings are a valuable tool for the diagnosis and control of the disease and further studies are needed to better understand which biomarkers can predict the cytokine storm-like syndrome associated with COVID-19 in these patients (3, 13, 23). Thus, this study aimed to identify predictive markers of worse outcomes in severe COVID-19 patients in the intensive care unit, defining the inflammatory profile in these patients.




2 Material and methods



2.1 Study design and data collection

This is a single-center study, in which we evaluated the profile of patients diagnosed with COVID-19, and admitted to the ICU of a hospital, during the year 2021. The sample was of convenience type. The inclusion criteria were as follows: (1) adult patients (≥18 years) of both sexes; (2) SARS-CoV-2 infection confirmed through reverse transcriptase polymerase chain reaction (RT-qPCR) testing through nasopharyngeal and oropharyngeal swab samples; (3) severe acute respiratory syndrome (SARS); (4) need for ICU admission; (5) Consent was given to participate in the study by close relatives. Exclusion criteria were as follows: (1) age <18 years; (2) pregnancy; (3) inclusion in other clinical studies.

Clinical data, clinical evaluations, and laboratory test results were collected using an electronic system, containing structured patient data. Patients who were discharged from the hospital were designated as survivors, while those who died during hospitalization were designated as non-survivors. This study was approved by the Research Ethics Committee of the Universidade Federal da Paraíba (UFPB) (number 4,026,905).




2.2 Viral RNA extraction and RT-qPCR

Nasopharyngeal and oropharyngeal swab samples were collected and stored at -70°C. Viral RNA was extracted using the Maxwell ® Rapid Sample Concentrator 48 (RSC 48) automated extraction system (Promega, USA) and using the Maxwell RSC Viral RNA Extraction Kit, according to the manufacturer’s instructions. SARS-CoV-2 viral RNA was detected by RT-qPCR, using the Allplex™ 2019-nCoV Assay kit (Seegene®, Korea), according to the manufacturer’s instructions. A real-time CFX-96 thermal cycler (Bio-Rad Laboratories, Inc., Hercules, CA, USA) was used and the amplification curves were evaluated using the viewer (CFX Manager™ Software-IVD v1.6).




2.3 Hematological and biochemical analysis

Blood samples were collected 24-48 h after ICU admission, in Vacutainer® tubes (EDTA, clot activator, and citrate). The following tests were performed: 1) hematological parameters – complete blood count, including an absolute count of neutrophils, lymphocytes, monocytes and platelets, using the Mindray BC-6000 auto hematology analyzer; 2) biochemicals – LDH, ferritin, PCR, AST, ALT, creatinine, urea, troponin I, CK, CK-MB, magnesium, sodium, potassium, calcium, phosphorus, total bilirubin, directly and indirectly. 3) Coagulation markers – D-dimer, fibrinogen, prothrombin time, prothrombin activity time, INR. Hematological and biochemical parameters were compared at different periods of hospitalization, which corresponded to hospital admission, ICU admission, and the clinical outcome (hospital discharge or death).




2.4 Determination of anti-Sars-CoV-2 IgG

Blood samples were collected in Vacutainer® tubes with a clot activator after admission to the ICU and processed within 6 hours. Serum was isolated by centrifugation (2500 rpm for 10 minutes) and 500 μl aliquots were stored at -70°C until further analysis of the cytokine profile and antibodies. The SARS-CoV-2 IgG II Quant microparticle chemiluminescent immunoassay (CMIA) was used for the quantitative determination of IgG antibodies to SARS-CoV-2 in Architect and Alinity I systems (Abbott Core Laboratory), following the manufacturer’s instructions. Anti- nucleocapsid protein of SARS-CoV-2 IgG was detected using Qualitative Abbott Architect SARS-CoV-2 IgG assay. The chemiluminescent reaction was measured as a relative light unit (RLU) and expressed as a calculated index (S/C). Semi-quantitative values were calculated from calibrator standards and an index value of 1.4 as the positivity threshold. IgG against S glycoprotein receptor binding domain (anti-S/RBD) was determined using SARS-CoV-2 IgG II Quant kit, a quantitative assay with a cutoff value of 50 AU/mL. Values were converted to Binding Antibodies Units (BAU)/mL to evaluate this antibody titer by the latest notification received from the World Health Organization (WHO) (Notice WHO Standard (20/136) Unit Conversion-RN21040201) (24–27).




2.5 Analysis of cytokines and chemokines

Cytokine levels were quantified using the BD™ Cytometric Bead Array (CBA) (BD Biosciences, USA) to detect IL-2, IL-4, IL-6, IL-8, IL-10, IL-17, IFN-γ, TNF-α, CCL2/MCP-1, CCL5/RANTES, CXCL8/IL-8, CXCL9/MIG, and CXCL10/IP-10. However, IL-17 was not detectable, therefore it was excluded from the analysis. Aliquots of the serum samples were thawed, and diluted with assay diluent (1:2 v/v) and CBA analysis was performed according to the manufacturer’s protocol (BD Pharmingen™). The reading was performed using a BD Accuri™ C6 flow cytometer. The analysis was performed using FCAP Array software (BD Biosciences, USA).




2.6 Statistical analysis

Statistical analyses were performed using GraphPad Prism software version 9.0.0 (Inc. San Diego, CA, USA) and R software version 4.2.0 (R Core Team). The conformity assessment of the quantitative data was performed using the Shapiro-Wilk test to determine the Gaussian distribution. Data from independent groups were analyzed using the Student’s t-test and Mann-Whitney U test, while data from paired groups were analyzed using the non-parametric Wilcoxon test. Categorical variables were compared using Fisher’s exact test. The median values, as well as the interquartile range (IQR), were used to describe the quantitative data, with the number (n) and percentage (%) representing the categorical variables in the tables. The receiver operating characteristic (ROC) curves were generated in GraphPad Prism, to compare the sensitivity vs. specificity, and the area under those curves (AUC) was used as a measure of test performance. The Kaplan-Meier survival curves were also generated using GraphPad Prism to compare survival time between groups. The variables deemed to have clinical importance and reached p-value ≤0.10 during univariate analyses were included in the logistic regression analysis, and to correct possible confounding factors. The significance level was set at p<0.05 with a 95% confidence interval.





3 Results



3.1 Clinical characteristics of patients with severe COVID-19

Blood samples were collected from 60 patients with severe COVID-19 24-48 hours after ICU admission. Patients were categorized into survivors and non-survivors based on their clinical outcomes. Patient clinical characteristics and outcomes are shown in Table 1. The median age was significantly different between groups, with 59 years (IQR 44-73) for survivors and 69 years (IQR 62-79) for non-survivors (p= 0.0209), 51.7% (n=31) of patients were male and 48.3% (n=29) were female. There was no significant difference according to sex between surviving and non-surviving patients (p=0.7938). Of these, 80% (n=48) had underlying diseases, including systemic arterial hypertension (SAH) (61.7%, n=37), obesity (45%, n=27), diabetes mellitus (30%, n=18) and cardiovascular diseases (23.3%, n=14). Among the comorbidities, obesity was significantly more prevalent in surviving patients compared to non-surviving patients (p= 0.0181), as well as the weight of the surviving patients was significantly higher compared to those who did not survive (p= 0.0056).


Table 1 | Clinical characteristics of severe COVID-19 patients hospitalized in ICU.

[image: A table presenting clinical outcomes comparing survivors and non-survivors among 60 patients. The table includes characteristics like age, weight, sex, comorbidities, symptoms, and duration of stay. Key differences are highlighted with p-values indicating statistical significance. Notably, obesity shows a significant difference with p-value 0.0181. The table also includes data on symptoms such as dyspnea, cough, and more, with corresponding percentages. Duration of hospital stay and ICU stay are provided with median and interquartile ranges.]
During treatment, 58.4% (n=35) of the patients did not survive with a median ICU stay of 17 days (IQR 7-25), while 41.6% (n=25) survived and were discharged with a median ICU stay of 13 days (IQR 11-22). A comparison of the patients according to sex was done by plotting the Kaplan Meier curve to assess survival during the hospitalization period; the results presented in Supplementary Figure 1 did not show a significant difference between the recovery times of female patients compared to male patients.




3.2 Vaccination status and antibody response

We evaluated the vaccination status of the patients and the influence on the clinical outcome, and we analyzed the presence of IgG anti-N and IgG anti-S/RBD antibodies in serum samples from severe COVID-19 patients, to determine the antibody response. Overall, the vaccination rate was significantly lower (p= 0.0006) in non-surviving patients 34% (12/35), while 80% (20/25) of surviving patients were vaccinated (Figure 1A). Many surviving patients presented two doses of the vaccine. In contrast, most of the non-surviving patients were not vaccinated or had received only one dose of vaccine. Patients who had a complete vaccination schedule survived (Figure 1B). We also compared the difference in detectability of anti-N and anti-S IgG antibodies between surviving and non-surviving patients. Sample analysis showed that 88% (22/25) of surviving patients were positive for anti-N IgG and anti-S/RBD IgG antibodies, while 83% (29/35) and 85% (30/35) of non-surviving patients were positive for IgG anti-N and IgG anti-S/RBD antibodies, respectively. As shown in (Figure 1C), anti-N IgG antibody index values were significantly higher in survivors (p= 0.0264), while anti-S/RBD IgG antibody levels (Figure 1D) showed no significant difference between groups.

[image: Graph A shows vaccination rates among survivors and non-survivors, with a higher rate in survivors (p = 0.0006). Graph B presents vaccination rates by dose, indicating greater vaccination among survivors (p < 0.0001). Graph C displays Anti-N IgG index values, higher in survivors (p = 0.0264). Graph D illustrates Anti-S IgG levels, showing no significant difference between groups.]
Figure 1 | Vaccination rate and IgG levels of patients with severe COVID-19. Severe COVID-19 patients were stratified by survival (A) and according to vaccine doses (B) (N=60). (C, D) anti-N and anti-S protein IgG of SARS-CoV-2 detection in the serum of severe COVID-19 patients (N=58). Mann-Whitney U test. *p=0.0264, (***) p=0.0006, (****) p<0.0001; ns, Non significant.




3.3 COVID-19 prognostic biomarker levels

The impact of SARS-CoV-2 infection on hematological parameters showed significant differences between groups. Hemoglobin, red blood cells, and hematocrit levels were significantly lower in non-surviving patients when compared to surviving patients (Figures 2A–C). Lymphopenia and neutrophilia were more pronounced in non-surviving patients (Figures 2D, E) while reduced numbers of platelets were observed in non-surviving patients (Figure 2F). Levels of CRP, ferritin, creatinine, AST, and urea, troponin I, magnesium, potassium, and LDH were significantly higher in non-surviving patients compared with those who survived (Figures 2G–O).
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Figure 2 | Serum profile of distinct biomarkers in patients with severe COVID-19. The biomarkers analyzed were hemoglobin (A), red blood cells (B), hematocrit (C), lymphocytes (D), neutrophils (E), platelets (F), CRP, C-reactive protein (G), ferritin (H), creatinine (I), AST, aspartate aminotransferase (J), urea (K), troponin I (L), magnesium (M), potassium (N), LDH, lactate dehydrogenase (O). Wilcoxon-Mann-Whitney Test was performed. p< 0.05 was considered statistically significant.

Several inflammatory mediators are involved in the immunopathology of COVID-19. We investigated some cytokines and chemokines in the serum of patients with severe COVID-19 admitted to ICU. Blood samples were collected 24-28 hours after hospitalization, and the levels of cytokines and chemokines were correlated with clinical outcome, discharge (survivors), or death (non-survivors). As shown in Table 2, non-surviving patients had higher levels of IL-10 than survivor patients (p<0.0001). The levels of cytokines IL-2, IL-4, IL-6, IL-8, IFN-γ, and TNF-α were not significantly different between groups. The levels of CCL2, CXCL9, and CXCL10 were significantly higher in non-surviving than surviving patients with (p=0.0002), (p=0.0023), and (p=0.0043) respectively, while CCL5 was significantly lower in non-surviving than surviving patients (p=0.0070).


Table 2 | Cytokines and chemokines levels in the serum of severe COVID-19 patients.

[image: Table comparing cytokine levels in survivors (N=25) and non-survivors (N=35) with p-values. Cytokines include IFN-γ, TNF-α, IL-2, IL-4, IL-6, IL-8, IL-10, CCL2, CCL5, CXCL9, and CXCL10. Median values with interquartile ranges are provided. Significant differences (p < 0.05) are noted for IL-10, CCL2, CCL5, CXCL9, and CXCL10.]
Figure 3 shows the Receiver Operating Characteristic (ROC) curve comparing the serum levels of cytokines and chemokines with the predicted probability of mortality of the patients evaluated. The areas under the curve (AUC) revealed the high performance of IL-10 (AUC: 0.874; 95% CI 0.780-0.969), while the chemokines CCL2, CCL5, CXCL9 and CXCL10 revealed the adequate performance in predicting the mortality of patients evaluated (AUC: 0.785; 95% CI 0.667-0.903), (AUC: 0.711; 95% CI 0.572-0.851), (AUC: 0.737; 95% CI 0.609-0.865) and (AUC: 0.723; 95% CI 0.586-0.860), respectively. Other biomarkers were also evaluated for their accuracy in predicting mortality in patients with severe COVID-19. The results are described in Figure 4. All information on the AUCs of the biomarkers evaluated is presented in Supplementary Table 1.
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Figure 3 | Receiver operating characteristic (ROC) curve of cytokines and chemokines to predict mortality in severe COVID-19 patients. Patients with COVID-19 were stratified into survivors and non-survivors. The ROC curve analysis was performed for IL-2 (A), IL-4 (B), IL-6 (C), IL-8 (D), IL-10 (E), TNF-α (F), IFN-γ (G), CCL2 (H), CCL5 (I), CXCL9 (J), CXCL10 (K).

[image: Eleven ROC curves are shown for different biomarkers, labeled A) Lymphocytes, B) Platelets, C) CRP, D) Ferritin, E) LDH, F) Creatinine, G) Troponin I, H) Urea, I) AST, J) Magnesium, and K) Potassium. Each graph plots sensitivity versus 100% - specificity, with AUC values ranging from 0.73 to 0.97. Significance values are indicated, mostly P<0.0001. Each curve is compared against a diagonal line representing random performance.]
Figure 4 | Receiver operating characteristic (ROC) curve of distinct biomarkers for relevance in predicting mortality in patients with severe COVID-19. The biomarkers were analyzed in blood samples from 60 patients. (A) Lymphocytes, (B) Platelets, (C) CRP, C-reactive protein, (D) Ferritin, (E) LDH, (F) Creatinine, (G) Troponin I, (H) Urea, (I) AST, aspartate aminotransferase, (J) Magnesium and (K) Potassium.




3.4 Multivariate logistic regression analysis

A logistic regression model was performed with clinical (age and weight) and immunological (IL-10, CCL2, CCL5, CXCL9, and CXCL10) variables previously associated with clinical outcome to correct confounding factors such as those related to age and weight. The results maintained a significant association of elevated IL-10 (p=0.0082) and CCL2 (p=0.0267) levels as risk factors (Table 3), being significantly higher in non-survivors. The model’s internal validation showed that the analysis was accurate and had high adherence (AUROC=0.8377; Z=1.1649; p=0.2441) with the concordance of 95.2%, thus being appropriate for predicting outcomes in severe COVID-19 patients.


Table 3 | Variables included in a fitted logistic regression model to explain clinical outcome of severe COVID-19 patients.

[image: Table showing variables with their respective estimates, odds ratios (OR), 95% confidence intervals (CI), and p-values. Variables include Weight, Age, IL10, CCL2, CCL5, CXCL9, and CXC10, with varying statistical results. The model's internal validation is noted as AUROC = 0.8377.]




4 Discussion

Mortality in COVID-19 patients has been associated with a hyperinflammatory immune response, characterized by cytokine storm and multiple organ failure (28). In addition to cytokines, hematological and biochemical biomarkers also present alterations that are fundamental in the classification of the severity and prognosis of COVID-19 (29). In this study, lymphopenia, neutrophilia, anemia, and thrombocytopenia were the key features of non-survivors with COVID-19. The levels of CRP, AST, creatinine, ferritin, AST, troponin I, urea, magnesium, and potassium were also enhanced in non-survivors. In addition, elevated levels of IL-10, CCL2, CXCL9, and CXCL10; and reduced levels of CCL5 were observed in non-survivors. These changes in the evaluated biomarkers were associated with increased mortality in patients with severe COVID-19.

The analysis of the clinical profile between the groups shows that patients who did not survive were older than those who survived. Some immunological mechanisms responsible for the increased risk of death from COVID-19 in the elderly are raised. Immunosenescence, which causes age-related changes in innate and adaptive immunity, has been associated with increased mortality in older adults infected with SARS-CoV-2 (30). The elderly have a deficient immune response to SARS-CoV-2 infection, due to progressive biological changes in the immune system that lead to a decline in its functions. These alterations, associated with comorbidities, cause greater vulnerability in older individuals to developing infections, increasing COVID-19 morbidity and mortality (31, 32). In addition, sex does not seem to influence the survival of the patients in the study since no significant differences were found between surviving patients and those who did not survive. There were also no significant differences between the recovery times of female patients compared to male patients.

In this study, obesity was more prevalent among patients who survived the infection. Studies affirm a possible obesity paradox, as this comorbidity is a significantly higher risk factor for severity and ICU admission, but it is not associated with an increased risk of death (33–35). Some explanations have been proposed to describe this inverse association between obesity and mortality risk. Among them, the secretion of immunomodulatory substances by fat cells such as leptin, IL-10, and soluble TNF-α receptor, can attenuate an inflammatory response and increase metabolic reserve due to excess fat reserves, can counteract the increase in catabolic stress and improve the survival of patients during critical illnesses (36). Another factor that can also influence the prevalence of obesity is the geographic region and the population studied (37).

In the humoral immune response against SARS-CoV-2, B cells stimulate the immune response against the N protein in the early phase of acute disease, while antibodies against the S protein can be identified between 4 to 8 days after the onset of symptoms (38, 39) The significant difference between the anti-N IgG antibody index values demonstrates that this phase of response against SARS-CoV-2 infection was stronger in surviving patients compared to non-survivors. As previously reported, we did not observe significant differences in anti-S/RBD IgG titers between surviving and non-surviving patients, showing that the combination of immunity provided by the infection and vaccines did not increase the production of specific antibodies in the patients evaluated. However, the high positivity rate of severe COVID-19 patients for anti-N and anti-S/RBD antibodies, surpassing the vaccination rate, shows that the response of these antibodies is related to the severity of COVID-19 (40).

The pathophysiology of severe infection is marked by elevated neutrophils and reduced lymphocyte counts in the blood (12, 41, 42). The immune response marked by severe lymphopenia increases the chance of late complications and early expression of proinflammatory cytokines during lung injury caused by SARS-CoV-2, while neutrophilia occurs mainly in patients with severe COVID-19 because of the inflammatory state caused by cytokine storm. However, extensive neutrophil infiltration into the lungs is a key point in the acute inflammatory response to eradicate pathogens (43).

Anemia and thrombocytopenia have been described in patients with severe COVID-19 (44), and corroborating our findings, Jha et al. (17) showed a significant correlation between anemia and death in patients with severe COVID-19, which suggests anemia is an important parameter in predicting disease mortality. Non-surviving patients also showed changes in CRP, ferritin, creatinine, AST, LDH, urea, troponin I, magnesium, and potassium levels. Most of the patients in our study were over 60 years old. CRP was associated with severe COVID-19 and is also considered a predictor of in-hospital mortality in the elderly (16).

The level of circulating ferritin increases during viral infections, being a biomarker of immune dysregulation, especially under extreme hyperferritinemia, through direct immunosuppressive and pro-inflammatory effects (45). We also observed elevated levels of ferritin, creatinine, and ALT in non-survivors. During the cytokine storm in COVID-19, pro-inflammatory cytokines may stimulate hepatocytes, Kupffer cells, and macrophages to secrete ferritin (46–48). The acute decline in renal function is a frequent complication of COVID-19 and creatinine levels are a hallmark of requiring ICU treatment (49). Hepatic biochemical abnormalities, liver damage, and ALT level enhancement have been expected during severe COVID-19 infection due to the direct and indirect impact of SARS-CoV-2 in the liver (14, 50).

Elevated levels of inflammatory mediators have been associated with worse prognosis during COVID-19 (3, 22, 51). IL-6 is a pro-inflammatory cytokine primarily produced during acute and chronic inflammation by macrophages and activated T cells during viral infection (52). Additionally, IL-6 is produced by lung epithelial cells in response to stimuli such as allergens and respiratory viruses (28). In COVID-19, IL-6 plays a significant role in cytokine storms. In this scenario, IL-6 acts on the endothelial cells of the pulmonary capillaries, leading in the most severe cases of COVID-19, to an excessive and uncontrolled immune response (53, 54). Although studies have related IL-6 as a biomarker of progression and severity in COVID-19, in our study no difference was observed in serum IL-6 levels between the groups evaluated.

In turn, IL-10 is an anti-inflammatory cytokine that exerts immunosuppressive effects on innate and adaptive inflammation (28). Patients with severe COVID-19 who did not survive the disease have higher levels of IL-10 compared to surviving patients (55). Studies suggest that increased IL-10 may exacerbate the pathogenesis involved in COVID-19 severity, thus elevated IL-10 expression is considered an indicator of poor prognosis in COVID-19 (28, 53, 56). These findings corroborate our findings in which serum levels of IL-10 were significantly higher in non-survivors than survivors.

Lu et al. (57) suggest that chemokines such as CCL2/MCP-1, CCL5/RANTES, and CXCL10/IP-10 initiate the deadly immunopathological pathway of COVID-19. CCL2, also known as monocyte chemoattractant protein-1 (MCP-1), acts as a regulator of the migration and infiltration of monocytes and macrophages during inflammatory response in various infectious processes (58). In association with other inflammatory cytokines, the increase in CCL2/MCP-1 in COVID-19 leads to harmful disease progression and induces acute kidney injury in critically ill patients (59). In addition, CCL2/MCP-1 levels are shown to be upregulated during the early phase of infection and increase significantly during the late stages of the disease in non-surviving patients (60). In our study, CCL2/MCP-1 showed a significant increase in non-surviving patients compared to surviving patients.

CCL5/RANTES is a leukocyte chemoattractant that binds to CCR1, CCR3, and CCR5-like receptors. We observed a reduction in CCL5 levels in non-surviving patients compared to those who survived. Teixeira et al. (61), describe higher levels of CCL5/RANTES in patients who survived COVID-19 compared to those who did not survive. Overall, studies have shown that CCL5/RANTES levels increased significantly in patients with mild disease compared to critically ill patients in the ICU. In addition, it has been reported that in the early phase of SARS-CoV-2 infection, serum CCL5 levels are increased in patients with mild symptoms of COVID-19 compared to severe patients (62–64). These reports suggest that CCL5/RANTES may protect against viral infection before lung inflammation and disease progression occur. Thus, CCL5/RANTES is an important biomarker in antiviral responses and recovery in patients with mild COVID-19 (62, 65).

CXCL9/MIG and CXCL10/IP-10 are members of the CXC chemokine family and are often referred to as IFN-inducible CXCR3 chemokines. These chemokines share IFNγ as the primary inducer and CXCR3 as the G protein-coupled receptor (66). We observed that CXCL9/MIG levels were significantly increased in non-survivor patients compared to survivors. Patients with severe COVID-19 showed higher serum levels of CXCL9/MIG than those with mild to moderate disease (67). CXCL10, also known as interferon-induced protein 10 (IP-10), is a chemoattractant for monocytes/macrophages, dendritic cells, natural killer cells, and T cells. Here, CXCL10/IP-10 showed a significant increase in non-surviving patients compared to those who survived the disease, corroborating to (10) study, which shows that increased CXCL10/IP-10 expression is correlated with severe acute respiratory syndrome due COVID-19 (10) and corroborating the study by Laudanski et al. (68) who identified higher serum CXCL10 levels in non-survivor patients compared to the survival group.

The main limitation of this study was that we assessed the levels of inflammatory cytokines and chemokines only at ICU admission, but we were unable to obtain repeated collections or evaluations during follow-up. Thus, future studies should be conducted with continuous measurements of these inflammatory mediators in COVID-19 infection to assess serum levels throughout the ICU hospitalization period. Furthermore, we evaluated hospitalized patients only during the year 2021. Additional studies that can focus on the profile of patients in different periods are needed.




5 Conclusions

This study shows changes in hematological, biochemical, and inflammatory parameters in COVID-19 non-surviving patients. Lymphopenia, neutrophilia, and thrombocytopenia, as well as increased levels of CRP, AST, creatinine, ferritin, AST, troponin I, urea, magnesium, and potassium served as prognostic markers and were associated with patient mortality. Changes in IL-10, CCL2, CXCL9, and CXCL10 serum levels were also associated with increased mortality in patients. Thus, this study confirms the relationship between the various biomarkers evaluated in hospitalized patients with severe COVID-19 and their relationship with fatal COVID-19. The results corroborate previous studies conducted in other countries and reinforce the importance of identifying potential targets that can reduce the expression of these biomarkers as a strategy in treating and controlling viral respiratory infections.
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Background

IL-26 is a key mediator of pulmonary host defense given its abundant expression in human airways and its established antibacterial properties. Moreover, recent studies indicate that IL-26 can also inhibit viral replication. Along these lines, we have previously reported an increase in the plasma concentration of IL-26 among patients with acute COVID-19 that is linked to harmful hyperinflammation. Nevertheless, it is still unclear whether this systemic increase in IL-26 relates to disease severity, sex, comorbidities, viral load, or the innate immune response in acute COVID-19.





Methods

IL-26 was quantified using ELISA in plasma samples from a large cohort of well-characterized patients with acute COVID-19 (n=178) and healthy controls (n=30). The plasma concentrations of SARS-CoV-2 nucleocapsid and spike protein, as well as those of IFN-α2a, IFN-β, and IFN-γ, were determined using electrochemiluminescence immunoassay. The concentration of double-stranded DNA was determined using fluorometry.





Results

The plasma concentration of IL-26 was increased in patients with severe/critical COVID-19, particularly among males and patients with comorbid obstructive lung disease. Moreover, the concentration of IL-26 displayed positive correlations with length of hospital stay, as well as with systemic markers of viral load, antiviral immunity, and extracellular DNA.





Conclusions

Systemic IL-26 is involved in severe COVID-19, especially in males and patients with comorbid obstructive lung disease. These findings argue that systemic IL-26 has pathogenic and antiviral relevance, as well as biomarker potential.
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1 Introduction

Interleukin (IL)-26 is abundantly expressed in human airways (1), where it is thought to play a major role in host defense due to its potent anti-bacterial (2, 3) and neutrophil-mobilizing properties (4–6). Moreover, an expanding literature suggests that IL-26 participates in anti-viral immune responses. In fact, IL-26 was first identified in virally-infected T-lymphocytes (7), and IL-26 is often co-expressed with interferon (IFN)-γ in different lymphocyte subsets (8–10). Furthermore, IL-26 inhibits the replication of the Hepatitis C virus (HCV) in hepatocytes via direct binding to RNA replication intermediates (11). Given that both HCV and the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contain positive-sense single-stranded RNA genomes, it is plausible that IL-26 may play a comparable role in modulating the immune response against SARS-CoV-2. In line with this, we have previously demonstrated that stimulation of Toll-like receptors (TLRs) involved in the innate recognition of SARS-CoV-2 (i.e., TLR2, -3, -4, -7 and -8) triggers the release of IL-26 in different structural and immune cells isolated from human airways (3, 4, 12–17). In addition, we recently published evidence that systemic IL-26 is markedly increased in patients with acute coronavirus disease 2019 (COVID-19), and that this increase associates with hyperinflammation and tissue damage (18). Taken together, these findings highlight the potential of systemic IL-26 as a target for therapy in COVID-19. However, to evaluate this potential, we need to improve the understanding of how systemic IL-26 relates to disease severity and respiratory comorbidity.

In the present study, we utilized a large cohort of patients with acute COVID-19 and healthy controls to characterize how systemic IL-26 relates to disease severity, sex and comorbidities. We also addressed the corresponding associations with markers of viral load, the antiviral innate immune response, and a marker of NET formation and/or tissue damage. In doing so, we obtained evidence that systemic IL-26 associates with all the referred aspects of COVID-19, including respiratory comorbidity, thereby reinforcing the potential of systemic IL-26 as a target with clinical utility.




2 Methods



2.1 Patient material

All COVID-19 patients admitted between February 2020 and January 2021 at the Department of Infectious Diseases, Sahlgrenska University Hospital (Gothenburg, Sweden) were eligible for inclusion. In parallel, a healthy control group was recruited for comparison Table 1. SARS-CoV-2 infection was confirmed via reverse transcriptase polymerase chain reaction (RT-PCR) from nasopharyngeal and throat aspirates, and all healthy controls had a negative test. Blood was collected at a single time-point and written informed consent was provided by all participants before sample collection. All procedures and handling of patient information were conducted in accordance with the World Medical Associations recommendations (the Declaration of Helsinki) and the ethical permit approved by the Swedish Ethical Review Authority (Diary No. 2020-01771). A subset of patients included in this study have been described previously (19–22).


Table 1 | Characteristics of study participants.
[image: A table comparing COVID-19 disease severity with healthy individuals across various variables. Categories include mild, moderate, severe/critical COVID-19, all COVID-19, and healthy controls. Variables are age, gender ratio, time from symptom onset to sample collection, hospital stay length, corticosteroid use, and comorbidities like hypertension, type 2 diabetes, and obstructive lung disease. Data is presented as median values with ranges or percentages. Healthy individuals showed no applicable data for most variables except age and gender ratio.]



2.2 Quantification of cytokines, SARS-CoV-2 antigens, and dsDNA in human plasma

The systemic protein concentration of IL-26 was assessed in plasma samples (1:2 dilution) via ELISA (15.6–4000 pg/ml detection range; Cusabio). The plasma concentrations of SARS-CoV-2 nucleocapsid and spike proteins (1:2 dilution), as well as the protein concentrations of IFN-α2a, IFN-β, and IFN-γ (all in undiluted samples), were determined using commercially available S-PLEX® kits (Meso Scale Discovery®) via electrochemiluminescence immunoassay (23). The detection ranges of these kits were as follows: 0.16 – 1100 pg/ml for SARS-CoV-2 nucleocapsid protein, 0.28 – 376 pg/ml for SARS-CoV-2 spike protein, 0.0053 – 33 pg/ml for IFN-α2a, 0.0065 – 33 pg/ml for IFN-β, and 0.0048 – 29 pg/ml for IFN-γ. The concentration of double-stranded DNA (dsDNA) in undiluted plasma samples was determined in a Qubit 3.0 Fluorometer using the Qubit 1X dsDNA BR Assay kit (20 – 20000 ng/ml detection range; both from ThermoFisher). Of note, the concentrations of viral antigens, interferons, and dsDNA could only be measured in 177, 149, and 176 samples, respectively, due to sample depletion.




2.3 Statistical analyses

Multiple comparisons were conducted via non-parametric Kruskal-Wallis test followed by Dunn’s post hoc test to compare each group against the others. Pairwise comparisons were performed by unpaired non-parametric Mann-Whitney test. Associations between two continuous variables were assessed by Spearman’s rank correlation test. Non-parametric methods were chosen given that all comparisons included at least one group that failed the D’Agostino & Pearson normality test. Pairwise comparisons of categorical data were conducted via chi-square (χ2) test. For the multivariable logistic regression analysis, all variables were transformed into categorical data as described in Table 2. For the transformation into categorical data of our results on viral antigens, IFNs, and dsDNA, we established whether each individual value was above or below the median of its corresponding COVID-19 severity group. The receiver operating characteristic (ROC) curve and its associated area under the curve were calculated to assess the prediction capacity of the generated logistic regression model.


Table 2 | Multivariable logistic regression analysis.
[image: Table displaying variables related to severe or critical COVID-19 outcomes. Columns include Reference, Odds Ratio (O.R.), Confidence Interval (C.I.), p-value, and Variance Inflation Factor (V.I.F.). Variables assessed include Severe COVID-19, Sex, symptom onset timing, Obstructive Lung Disease, and various above-median indicators. Notable findings show severe COVID-19 with O.R. 3.420 and p-value 0.0022, and Obstructive Lung Disease with O.R. 4.270 and p-value 0.0097. Confidence intervals and V.I.F. values are provided for each variable. Explanatory footnote on medians included.]




3 Results



3.1 Patient characteristics

One hundred and seventy-eight patients with COVID-19 and 30 age- and sex-matched healthy controls were enrolled in the study. The main characteristics of all study participants are summarized in Table 1 (see also Methods for more information). Disease severity was classified according to the COVID-19 Treatment Guidelines Panel of the National Institutes of Health (24). Mild disease included patients not requiring oxygen nor in-patient hospital care; moderate disease included hospitalized patients receiving oxygen therapy by mask or nasal cannula; and severe/critical disease included hospitalized patients in need of high flow nasal oxygen (HFNO) or mechanical ventilator. More than half of all patients with COVID-19 had at least one comorbidity regardless of disease severity, with hypertension, type 2 diabetes, and obstructive lung disease being the most frequent. In general, patients with severe/critical COVID-19 had prolonged length of hospital stay and a higher incidence of comorbidities.




3.2 Increased plasma concentrations of IL-26 associate with severe COVID-19, male sex and comorbid obstructive lung disease

The concentrations of IL-26 in plasma were higher in patients with severe/critical COVID-19 compared to those with mild and moderate disease, as well as to healthy controls (Figure 1A). Moreover, the number of plasma samples with a concentration of IL-26 above the lower limit of detection (LLOD) increased from 10% in samples from healthy controls and patients with mild COVID-19, to 30 and 55% in samples from patients with moderate and severe/critical COVID-19, respectively (Figure 1B). In addition, the concentration of IL-26 in plasma displayed positive correlations with disease severity (Figure 1C) and length of hospital stay (Figure 1D) in patients with COVID-19.

[image: Graphical analysis of IL-26 levels in COVID-19 patients: (A) Box plot showing increased IL-26 levels in severe cases, with significant differences noted. (B) Bar chart depicting the percentage of IL-26 measurements below and above the lower limit of detection (LLOD) across different severity levels, with severe cases showing more above LLOD. (C) Scatter plot indicates a positive correlation (r = 0.30) between IL-26 levels and COVID-19 severity scale. (D) Scatter plot shows a positive correlation (r = 0.33) between IL-26 levels and length of hospital stay. Both correlations are statistically significant with p < 0.0001.]
Figure 1 | Relationship between the plasma concentration of IL-26 and severity of COVID-19. (A) Comparison of the plasma concentrations of IL-26 among healthy controls (n=30) and patients with mild (n=13), moderate (Mod.; n=96), or severe/critical (n=69) COVID-19 by Kruskal-Wallis test followed by Dunn’s post hoc test. Red horizontal lines represent the median. (B) Percentage of samples in which the plasma concentration of IL-26 fell below (black) or above (red) the lower limit of detection (LLOD) in each study group. Spearman correlation analyses of the plasma concentration of IL-26 with (C) the COVID-19 severity scale (1=mild, 2=moderate, and 3=severe/critical) and (D) the length of hospital stay of each study participant (n=178). *p < 0.05, **p < 0.005, ***p < 0.0005, ns, not significant.

Notably, the concentrations of IL-26 in plasma were higher in males than in females with COVID-19 (Figure 2A) and the number of plasma samples with a concentration of IL-26 above the LLOD were higher (χ2 test: p = 0.0187) in males than in females with COVID-19 (Figure 2B).

[image: Scatter plot and bar graph comparing IL-26 levels in COVID-19 patients by gender. Panel A shows male IL-26 levels higher than females, with a statistically significant difference. Panel B displays the percentage of measurements above and below the lower limit of detection, with males having more measurements above this limit.]
Figure 2 | Relationship between the plasma concentration of IL-26 and sex in patients with COVID-19. (A) Comparison of the plasma concentrations of IL-26 between female (n=53) and male (n=125) patients with COVID-19 by unpaired Mann-Whitney test. Red horizontal lines represent the median. (B) Percentage of samples in which the plasma concentration of IL-26 fell below (black) or above (red) the lower limit of detection (LLOD) in each study group. *p < 0.05.

The median time between onset of symptoms and sample collection was similar across groups (9 days; Table 1) and did not display a statistically significant correlation with the concentration of IL-26 when all samples were included (Figure 3A). Moreover, comparison of the IL-26 concentrations in samples collected before or after the median time from onset of symptoms revealed no statistically significant differences when all samples were included (Figures 3B, C). Furthermore, the number of samples with a concentration of IL-26 above the LLOD was similar (χ2 test: p = 0.5714; Supplementary Figure 1) in samples collected before or after the median time from onset of symptoms. However, the concentration of IL-26 displayed a negative correlation with the time between onset of symptoms and sample collection when all IL-26 measurements below the lower limit of detection were excluded (Figure 3D). In addition, exclusion of samples with an IL-26 concentration below the LLOD revealed that samples collected within 9 days from onset of symptoms had a higher IL-26 concentration than those collected afterwards in patients with severe/critical COVID-19 exclusively (Figures 3E, F). Of note, samples from patients with mild COVID-19 were excluded from this analysis given that only 1 of them had an IL-26 concentration above the lower limit of detection (Figure 1A).

[image: Scatter plots and dot plots illustrate the relationship between IL-26 levels and time from symptom onset to sample collection in COVID-19 patients. Panel A shows no correlation in all samples. Panel B and C compare IL-26 levels in moderate and severe cases respectively, with no significant differences. Panel D shows a negative correlation in samples above the lower limit of detection (LLOD). Panel E and F compare IL-26 levels in moderate and severe cases above LLOD, with significant differences in severe cases.]
Figure 3 | Relationship between the plasma concentration of IL-26 and the time between onset of symptoms and sample collection in patients with COVID-19. (A, D) Spearman correlation analyses of the plasma concentrations of IL-26 with the time between onset of symptoms and sample collection in (A) all samples (n=178) and (D) only samples with an IL-26 concentration above the lower limit of detection (LLOD; n=67). Comparisons of the plasma concentrations of IL-26 between samples collected before or after the median time since onset of symptoms in patients with (B, E) moderate or (C, F) severe/critical COVID-19 including (B, C) all samples, or (E, F) only samples with an IL-26 concentration above the LLOD, by unpaired Mann-Whitney test. Red horizontal lines represent the median. **p < 0.005, ns, not significant.

We also investigated whether common comorbidities had an impact on the plasma concentration of IL-26 among all patients with COVID-19 and found that patients with a prior diagnosis of obstructive lung disease (asthma: n=22; COPD: n=4; asthma and COPD: n=1) displayed a higher plasma concentration of IL-26 (Figure 4A) and a clearly higher (χ2 test: p = 0.0370) number of samples with a concentration of IL-26 above the lower limit of detection (Figure 4B). In contrast, no matching differences were observed in patients with comorbid hypertension or diabetes type 2 (Supplementary Figure 2). A similar increase in IL-26 concentrations and number of samples above the LLOD (χ2 test: p = 0.0634) was observed for obstructive lung disease in patients with severe/critical COVID-19 (Figures 4C, D). Importantly, patients with COVID-19 who took corticosteroids as part of their treatment had similar plasma concentrations of IL-26 and a similar number of measurements above the LLOD (χ2 test: p = 0.3608) than those who did not receive corticosteroids (Supplementary Figure 3).

[image: Graph comparing IL-26 levels in COVID-19 patients with and without obstructive lung disease. Panels A and C show dot plots indicating higher IL-26 levels in those with obstructive lung disease. Panels B and D show bar graphs illustrating a higher percentage of IL-26 measurements above the limit of detection in patients with obstructive lung disease. Panels A and B represent all COVID-19 patients, while C and D focus on severe/critical cases. Asterisks denote significant differences.]
Figure 4 | Relationship between the plasma concentration of IL-26 and the respiratory comorbidity obstructive lung disease in patients with COVID-19. (A, C) Comparisons of the plasma concentrations of IL-26 between patients with and without comorbid obstructive lung disease including (A) all patients with COVID-19 (n=178) or (C) only those with severe/critical COVID-19 (n=69) by (A) two-tailed or (C) one-tailed unpaired Mann-Whitney test. Red horizontal lines represent the median. (B, D) Percentage of samples in which the plasma concentration of IL-26 fell below (black) or above (red) the lower limit of detection (LLOD) in each study group including (B) all patients with COVID-19 (n=178) or (C) only those with severe/critical COVID-19. *p < 0.05, ns, not significant.




3.3 The plasma concentrations of IL-26 correlate with markers of viral load in patients with COVID-19

To determine whether a higher viral load was linked to an increase in IL-26, we first quantified the plasma concentrations of two SARS-CoV-2 antigens in patients with COVID-19. As expected, higher concentrations of SARS-CoV-2 nucleocapsid and spike protein corresponded with more severe disease (Figures 5A, B). Moreover, the plasma concentration of IL-26 displayed positive correlations with both markers of viral load in patients with COVID-19 (Figures 5C, D).

[image: Four charts displaying data on COVID-19 severity and protein levels. Chart A: Scatter plot of SARS-CoV-2 nucleocapsid levels across mild, moderate, severe/critical cases with significant differences. Chart B: Scatter plot of SARS-CoV-2 spike protein levels, showing similar trends. Chart C: Correlation between nucleocapsid levels and IL-26 with positive correlation (r = 0.28). Chart D: Correlation between spike protein levels and IL-26 with a positive correlation (r = 0.32).]
Figure 5 | Relationship between plasma concentration of IL-26 and markers of viral load in patients with COVID-19. Comparison of the plasma concentrations of SARS-CoV-2 (A) nucleocapsid and (B) spike protein among patients with mild (n=13), moderate (n=95), or severe/critical (n=69) COVID-19 by Kruskal-Wallis test followed by Dunn’s post hoc test. Spearman correlation analyses of the plasma concentration of IL-26 with those of (C) SARS-CoV-2 nucleocapsid and (D) SARS-CoV-2 spike protein (n=177). Red horizontal lines represent the median. ***p < 0.0005, ****p < 0.0001.




3.4 The plasma concentrations of IL-26 associate with the magnitude of the antiviral innate immune response in patients with COVID-19

We also assessed whether the increase in plasma IL-26 associates with an increase in interferons—key markers of the antiviral innate immune response. Notably, the plasma concentrations of IFN-α2a, IFN-β, and IFN-γ were increased in patients with moderate or severe/critical COVID-19 compared to those with mild disease (Figures 6A–C). Moreover, the concentrations of these IFNs displayed positive correlations with that of IL-26 (Figures 6D–F).

[image: Six-panel chart comparing COVID-19 severity with cytokine levels. Panels A, B, and C show differences in IFN-α2a, IFN-β, and IFN-γ across mild, moderate, and severe/critical cases, with significance markers. Panels D, E, and F display positive correlations between IL-26 and IFN-α2a, IFN-β, and IFN-γ, with correlation coefficients and p-values. Red lines indicate trends.]
Figure 6 | Relationship between plasma concentration of IL-26 and production of interferons in patients with COVID-19. Comparison of the plasma concentrations of (A) IFN-α2a, (B) IFN-β, and (C) IFN-γ among patients with mild (n=12), moderate (n=76), or severe/critical (n=61) COVID-19 by Kruskal-Wallis test followed by Dunn’s post hoc test. Spearman correlation analyses of the plasma concentration of IL-26 with those of (D) IFN-α2a, (E) IFN-β, and (F) IFN-γ (n=149). Red horizontal lines represent the median. *p < 0.05, **p < 0.005, ***p< 0.0005, ns, not significant.




3.5 The plasma concentrations of IL-26 correlate with that of extracellular dsDNA

A higher concentration of dsDNA in plasma, which suggests increased NET production and/or tissue damage, was associated with more severe COVID-19 (Figure 7A) and a higher concentration of IL-26 (Figure 7B).

[image: Chart A is a scatter plot showing dsDNA levels across four groups: Healthy, Mild, Moderate, and Severe/Critical COVID-19 cases. Higher dsDNA levels are observed in more severe cases. Chart B presents a positive correlation between dsDNA and IL-26 levels, with an r-value of 0.48 and significance p < 0.0001.]
Figure 7 | Relationship between the plasma concentration of IL-26 and double-stranded DNA (dsDNA) production in patients with COVID-19. (A) Comparison of the plasma concentrations of dsDNA among healthy controls (n=30) and patients with mild (n=13), moderate (n=94), or severe/critical (n=69) COVID-19 by Kruskal-Wallis test followed by Dunn’s post hoc test. (B) Spearman correlation analysis of the plasma concentration of IL-26 with that of dsDNA (n=176). Red horizontal lines represent the median. **p < 0.005, ****p < 0.0001, ns, not significant.




3.6 Multivariable logistic regression analysis

Finally, we performed a multivariable logistic regression analysis (Table 2) to determine whether each of the variables mentioned above associated with having a plasma concentration of IL-26 above the LLOD or not (Yes/No binary). We found that patients with severe/critical COVID-19 and males were 3.420 and 2.552 times more likely to have an IL-26 measurement (ELISA) above the LLOD than patients with mild/moderate COVID-19 and females, respectively. Notably, we found that patients with comorbid obstructive lung disease were 4.270 times more likely to have an IL-26 measurement above the LLOD than patients without this comorbidity. In addition, we found that patients with high plasma concentrations of IFN-γ and dsDNA (above their corresponding medians) were 2.107 and 2.532 times more likely to have an IL-26 measurement above the LLOD, respectively. On the other hand, time between onset of symptoms and sample collection, and the plasma concentrations of viral antigens, IFN-α2a or IFN-β were not associated with having IL-26 measurements above the LLOD. Importantly, all variables had a variance inflation factor (VIF) close to 1, which indicates low multicollinearity. Moreover, we calculated a ROC curve for this analysis (Supplementary Figure 4), and its associated area under the curve was 0.7881, which indicates that these variables had a good capacity to predict whether an IL-26 measurement would fall above the LLOD or not.





4 Discussion

In essence, the results of the current study substantially expand the evidence that IL-26 participates in the immune response against SARS-CoV-2, as well as in the hyperinflammation that characterizes severe cases of COVID-19, in several different ways.

First, and most important, we show that the increase in the plasma concentrations of IL-26 is most pronounced in patients with severe/critical disease and that it displays a positive correlation with length of hospital stay. This is in contrast with a previous study by a different group which reported no differences in the serum concentration of IL-26 among patients with mild, moderate, and severe COVID-19 (25). Nevertheless, we think that the limited size (n = 27) of the study by Caterino M. et al., and the fact that it only included 6 study participants with severe disease, made it difficult to identify statistical differences among sub-groups of varying disease severity. For the very same reasons, we previously failed to detect a difference in the plasma concentration of IL-26 between patients with moderate and severe COVID-19—or a significant correlation with length of hospital stay—in a small cohort (n = 49) that we used in a recent pilot study (18).

Second, we found that the plasma concentration of IL-26 is higher in male patients with COVID-19 than in female patients. Notably, both the severity and mortality of COVID-19 are known to be higher in men than in women (26, 27), and this difference has been attributed to a number of genetic, hormonal, and physiological variations (28). Given that we also see an increase in systemic IL-26 in patients with severe/critical COVID-19, our results motivate further research into potential associations between increased IL-26 and patient mortality.

Third, we show that the plasma concentration of IL-26 is higher in COVID-19 patients with comorbid obstructive lung disease (i.e., asthma and/or COPD), which agrees with previous studies on asthma (29–31). Although we are not aware of corresponding studies on systemic IL-26 in COPD, our current findings are compatible with the fact that the concentration of IL-26 is enhanced in the airways of patients with COPD (32). Nevertheless, in our study we have focused on systemic alterations in IL-26 during acute COVID-19 and it is possible that the inflammatory profile in the airways of these patients might look different. In addition, even though we did not detect any differences in the plasma levels of IL-26 between patients with COVID-19 who received corticosteroids (a common treatment for COVID-19 and asthma) and those who did not, we cannot exclude the possibility that other drugs taken during sample collection might have had an impact on the systemic levels of IL-26 in certain patients.

Fourth, we have previously shown that stimulation of TLRs involved in the innate recognition of SARS-CoV-2 triggers the release of IL-26 in several immune and structural cell types in vitro (3, 4, 16, 17), and we now report positive correlations between the plasma concentrations of IL-26 and two SARS-CoV-2 antigens in vivo. Nevertheless, our multivariable analysis does not support a direct association between having high systemic concentrations of SARS-CoV-2 antigens (above median) and having a plasma concentration of IL-26 above the LLOD. These seemingly contradictory findings suggest that although SARS-CoV-2 particles might be able to induce the production of IL-26 directly in the airways, the association between SARS-CoV-2 antigens and IL-26 production might be indirect at the systemic level. Importantly, SARS-CoV-2 particles can pass from the airways and into the bloodstream (viremia) where they trigger a potent and harmful hyperinflammatory response (33–37). In agreement with this, we found that patients with severe/critical COVID-19 had higher plasma levels of SARS-CoV-2 antigens. Thus, it seems likely that enhanced IL-26 production at the systemic level occurs because of the hyperinflammation associated with SARS-CoV-2 viremia and not because of direct SARS-CoV-2 recognition by pattern-recognition receptors (PRRs).

Fifth, it is known that virus-infected cells produce vast amounts of interferons, and we now report positive correlations between the plasma concentration of IL-26 and those of IFN-α2a, IFN-β, and IFN-γ. Notably, IFNs-α/β can modulate the expression of IFN-γ, while the genes of IFN-γ and IL-26 are located on the same chromosome, share an enhancer element that drives their expression, and are often co-expressed in different lymphocyte subsets (8–10, 38). In agreement with this, our multivariable analysis further supports the association between IL-26 and IFN-γ at the systemic level. Therefore, IL-26 seems likely to play complementary antiviral functions in COVID-19.

Sixth, we have now identified a positive correlation between the systemic concentration of IL-26 and that of extracellular dsDNA. Although extracellular dsDNA in plasma is a non-specific marker of NET formation that can also derive from tissue damage-related cell necrosis, there is a tight relationship between increased NET formation and tissue-damaging hyperinflammation. For instance, we and others have previously shown that patients with acute COVID-19 display increased neutrophil activation and NET formation, all of which correlates with harmful hyperinflammation in these patients (18, 39). Moreover, IL-26 is a neutrophil-mobilizing cytokine that can also bind and enhance the pro-inflammatory potential of extracellular DNA (4, 40, 41), and we have previously reported in a small pilot study that the plasma concentration of IL-26 correlates with several markers of hyperinflammation and tissue damage such as IL-8, TNFα, and lactate dehydrogenase (LDH) in patients with acute COVID-19 (18). Taken together, our findings support the notion that increased systemic IL-26 might enhance the harmful pro-inflammatory potential of extracellular dsDNA regardless of its origin during acute COVID-19.

In summary, our novel results link enhanced systemic IL-26 to severity of disease, male sex, and respiratory comorbidity in acute COVID-19. These results also associate enhanced systemic IL-26 with viral load and the magnitude of the classic antiviral immune response, plus extracellular dsDNA—an important sign of excessive neutrophil activation and tissue-damaging hyperinflammation in COVID-19. In view of the published evidence on the antimicrobial and neutrophil-mobilizing properties of IL-26, together with our recent finding that systemic IL-26 associates with hyperinflammation and tissue damage in COVID-19 (18), our novel results strongly forward IL-26 as an active player in acute COVID-19. Thus, IL-26 bears both antiviral and pathogenic relevance in COVID-19 and, given its accessibility in blood, it may constitute a potential target for clinical diagnosis, monitoring and treatment of this dangerous disease.
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The understanding of how the host immune response differs in T-cell phenotype and memory formation during SARS-CoV-2 infection in liver transplant recipients (LTRs) remains limited. LTRs who recovered from COVID-19 infection without prior vaccination represent a unique population for studying immune responses to SARS-CoV-2. Six LTRs with positive neutralizing antibodies (nAb+) and six LTRs with negative nAb (nAb-) were included at 6 months following COVID-19 infection. It was found that nAb+ LTRs had higher anti-RBD IgG titers and greater neutralizing percent inhibition compared to nAb- LTRs. Fifteen T-cell subsets were identified in COVID-19 convalescent LTRs, and it was shown that only terminal effector CD8+ - 3 decreased in the nAb+ group, while elevated IL-10 expression levels were found in the nAb- group. After stimulation with the SARS-CoV-2 XBB spike peptide pool in vitro, it was observed that the nAb+ group exhibited an increase in effector memory CD4+ cells with lower PD-1 expression, a reduction in effector memory CD4+ - 2 cells, and terminal effector CD8+ - 3 cells, while the nAb- group showed high expression of CTLA-4 and IL-10 in terminal effector CD8+ - 3 cells. Four SARS-CoV-2-specific T-cell subsets were identified, with high expression of TNF-α and IFN-γ in terminal effector CD8+ - 1 and terminal effector CD8+ - 2 cells in both groups. Perforin was mainly detected in terminal effector CD8+ - 2 cells in nAb+ LTRs. In addition to these proportional differences, stem cell memory CD4+ cells with higher IL-17A expression and stem cell memory CD8+ cells with higher CTLA-4 expression were also found in nAb- LTRs. These findings suggest that LTRs who developed nAb+ following SARS-CoV-2 infection exhibit stronger T-cell responses, with more robust immune activation and memory recall, compared to nAb- LTRs. This study underscores the importance of understanding T-cell responses during SARS-CoV-2 recovery for guiding vaccination strategies and managing immunity in LTRs.
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Introduction

Immunosuppression and comorbidities make liver transplant recipients (LTRs) a vulnerable population with a markedly elevated risk of symptomatic SARS-CoV-2 infection compared to the general population (1). To date, most studies in LTRs have evaluated cellular and humoral immunity against SARS-CoV-2 following two doses of mRNA vaccines (2, 3). LTRs exhibit a lower immune response to SARS-CoV-2 vaccination, as evidenced by a lower rate of seroconversion and lower antibody titers compared to immunocompetent patients or healthy donors (4–6). Changes in the humoral immune response after SARS-CoV-2 infection in LTRs have also been assessed, showing that anti-nucleocapsid IgG antibodies have lower durability and faster decay within the first 6 months after infection in LTRs, compared with immunocompetent patients (7). In addition to neutralizing antibodies (nAb), optimal immunity to SARS-CoV-2 requires strong T-cell responses to protect against both current SARS-CoV-2 strains and emerging variants (8).

Several studies have investigated immune responses in LTRs vaccinated with SARS-CoV-2 inactivated vaccines, but the immune mechanisms involved in their response to natural infection remain poorly understood (6, 9, 10). In particular, T-cell mediated immunity, especially T memory cell formation, is poorly understood in LTRs who have recovered from natural COVID-19 infection without prior vaccination. This gap in knowledge is significant, as T cells play a crucial role in long-term immunity and protection against reinfection, particularly for immunocompromised individuals such as LTRs (11). Despite advances in vaccination strategies, understanding the differences in T-cell responses between nAb+ and nAb- LTRs remains an important, unanswered question. It is essential to understand how these T-cell subsets respond to SARS-CoV-2 infection and how this impacts vaccine efficacy, reinfection risk, and overall immune health in LTRs.

Our study aims to address these knowledge gaps by comparing T-cell responses in LTRs who experienced their first COVID-19 infection without prior vaccination. Specifically, we investigate differences in T-cell phenotypes and memory formation based on post-infection nAb status, providing valuable insights into how immune memory is shaped in this unique patient population. To achieve this, we used PBMCs derived from recovered COVID-19 LTRs to assess memory responses by evaluating antibody production, T-cell phenotyping, and intracellular cytokine levels. Understanding these immune mechanisms is critical for guiding clinical strategies, particularly for LTRs who may be unwilling to receive the COVID-19 vaccine or may experience diminished vaccine responses due to their immunosuppressive therapy. By addressing these unknowns, our study aims to improve the clinical management of LTRs in the context of COVID-19, offering new perspectives on immune monitoring and potential therapeutic approaches for this vulnerable group.





Materials and methods




Study participants

Six LTRs with nAb+ and six LTRs with nAb-, matched according to clinical variables associated with LTRs, were included 6 months following coronavirus disease 2019 (COVID-19) infection without prior SARS-CoV-2 vaccination. A comparison of the clinical data for the LTRs is presented in Table 1. No significant differences were observed between the two groups of LTRs in terms of age, gender, time from transplantation to the first SARS-CoV-2 infection, types of immunosuppressants, or comorbidities (Table 1, all P > 0.05). Plasma was obtained by centrifuging blood samples at 3500 rpm for 5 minutes and frozen at –80°C for further analysis. PBMCs were isolated by density gradient centrifugation using lymphocyte separation medium (Corning). After isolation, the cells were cryopreserved in fetal bovine serum (Corning) with 10% dimethyl sulfoxide (DMSO; Sigma-Aldrich) until use. The viability of cryopreserved PBMCs was assessed using the Trypan blue exclusion method, and viability was consistently above 85% prior to analysis. All clinical datas of LTRs within 4 weeks before sample collection were retrospectively reviewed. The studies involving human participants were approved by the Ethics Committee of Beijing YouAn Hospital ([2021]083). The studies were conducted in accordance with local legislation and institutional requirements. All participants provided written informed consent to participate in this study. No potentially identifiable images or data are presented in this study.


Table 1 | Comparison of clinical characteristics in the liver transplantation recipients.
[image: Table comparing clinical characteristics between nAb+ and nAb- groups, each with six individuals. Variables include age, gender, duration from liver transplant to first SARS-CoV-2 infection, tacrolimus dose, presence of MMF/MPA, drug concentrations of sirolimus and tacrolimus, and diabetes status. P-values indicate statistical significance, with annotations for tests used.]




Anti-SARS-CoV-2 neutralizing antibody detection

Anti-SARS-CoV-2 neutralizing antibody levels were determined using the Anti-SARS-CoV-2 Neutralizing Antibody Titer Serologic Assay Kit (ACROBiosystems, USA) as previously described (6). The cutoff value was set at 20% signal inhibition. A neutralizing percent inhibition (NPI) ≥20% indicated the presence of Anti-SARS-CoV-2 neutralizing antibodies (nAb+), while an NPI <20% indicated the absence of neutralizing antibodies (nAb-).





Detection of anti-SARS-CoV-2 antibody IgG titer

The IgG titers of antibodies against the structural protein RBD were determined using the indirect ELISA kit (ACROBiosystems, USA) according to the manufacturer’s instructions. Each value obtained was the average of three independent biological replicates.





T cells stimulation

1 × 106 cryopreserved PBMCs were cultured in a 6-well plate (Corning) with TexMACS™ GMP Medium, containing 100 U/mL penicillin and 100 μg/mL streptomycin. The cells were then stimulated with 1 μg/mL SARS-CoV-2 Spike Omicron XBB peptide pool (QYAOBIO, catalog number 4890000013, China) at 37°C and 5% CO2 for 24 hours, following the manufacturer’s guidelines for optimal T-cell stimulation. A cell activation cocktail kit, consisting of PMA (phorbol 12-myristate 13-acetate) and ionomycin (BioLegend, catalog number 423301, USA), was used as the positive control, following the manufacturer’s instructions, in a separate group. DMSO (dimethyl sulfoxide) at a final concentration of 0.02% was used as the negative control in another group. Brefeldin A (BioLegend) was added for an additional 4 hours to facilitate intracellular cytokine detection by mass cytometry.





Mass cytometry and data analysis

PBMCs from LTRs were incubated with 1 mM cisplatin (198-Pt, Fluidigm, USA) for 2 minutes to evaluate cell viability using mass cytometry. Maxpar Metal-Conjugated Antibodies (Standard BioTools™) were used to identify all major T-cell subsets, perform comprehensive immunophenotyping of cytokine-expressing cells, and assess the activation status of these subtypes, as shown in Supplementary Table 1, which also includes the catalog numbers for each antibody. Data were obtained from the Helios mass cytometer (Fluidigm), and standard data were normalized. The results from each run were collected and analyzed using R and PhenoGraph, as previously described (6).





Statistical analysis

The SPSS software package (version 23.0; SPSS Inc., USA) was used for all statistical analyses. Continuous variables are presented as the median (minimum – maximum), and categorical variables as the number of observations (n) and percentage (%). The Mann-Whitney U test, chi-square test, or Fisher’s exact test was applied to compare differences among groups. The significance level was set at P < 0.05 for two-sided tests. Spearman’s rank correlation was used for correlation analyses.






Results




Difference in neutralizing inhibition rate and anti-RBD levels in LTRs

Twelve LTRs who recovered from COVID-19 with mild symptoms were recruited. Figure 1A shows that LTRs were classified into two groups based on the neutralizing percent inhibition (NPI) results (P = 0.004): the group with Anti-SARS-CoV-2 nAb detected (nAb+, 6 patients, NIR ≥ 20%) and the group with nAb undetected (nAb-, 6 patients, NIR < 20%). Subsequent analysis was performed based on these two groups. Higher anti-RBD titers were detected in the nAb+ group compared to the nAb- group (P = 0.003, Figure 1B). NPI showed a strong correlation with anti-RBD levels (Spearman’s r = 0.973, P = 0.000, Figure 1C).

[image: Three-part chart assessing neutralizing antibodies and IgG RBD titers. A: Box plot showing higher neutralizing percent inhibition in nAb-positive than nAb-negative with P-value of 0.004. B: Bar chart displaying higher IgG RBD titers in nAb-positive with P-value of 0.003. C: Scatter plot depicting a strong positive correlation (r equals 0.973, P equals 0.000) between neutralizing percent inhibition and IgG RBD titers.]
Figure 1 | Comparison of antibody responses between the two groups of LTRs. (A) Neutralizing antibody detection in plasma from COVID-19 convalescent LTRs. The cutoff value is set at 20% signal inhibition. (B) Comparison of anti-RBD antibody responses between the nAb+ and nAb- groups. (C) Correlation between anti-RBD levels and NPI. p-values (two-sided) and r values are based on Spearman’s rank test. LTRs, liver transplant recipients; NPI, neutralizing percent inhibition.





T cell subsets in COVID-19 convalescent LTRs

To investigate the cellular immune response to SARS-CoV-2, we first assessed T cell subsets according to nAb levels in peripheral blood derived from LTRs 6 months post-COVID-19 infection. Fifteen T cell populations were clustered (Figures 2A, B), including: C1_central memory CD4+ - 1 (CD4+ CD7+CD45RO+CCR7+), C2_transitional memory CD4+ (CD45RO+CD28+CCR7-), C3_effector memory CD4+ - 1 (CD45RO+CD28-CCR7-), C4_ Naïve CD4+ (CD4+CD45RA+CCR7+), C5_effector memory CD8+ (CD161+CD8+CD45RO+CCR7-), C6_stem cell memory CD4+ (CD69+CTLA-4+CD4+CD45RA+CCR7+CD28+), C7_central memory CD4+ - 2 (CD4+CD45RO+CCR7+), C8_Naive CD8+ (CD8+CD45RA+CCR7+), C9_DPT (CD4+mediumCD8+high), C10_effector memory CD4+ - 2 (CD57+CD45RO+CD28-CCR7-), C11_terminal effector CD8+ - 1 (CD69+CD8+CD45RA+CCR7-), C12_dNT (CD4-CD8-), C13_stem cell memory CD8+ (CD45RA+CCR7+CD28+), C14_terminal effector CD8+ - 2 (CD69+ CD137+CD8+CD45RA+CCR7-) and C15_terminal effector CD8+ - 3 (CD57+CD8+CD45RA+CCR7-). Nearly all T cell frequencies showed no significant differences between the two groups, except for C15_ terminal effector 3, which was decreased in the nAb+ group (P = 0.016) (Figure 2C). Interestingly, the nAb- convalescent LTRs showed a tendency for higher expression of CTLA-4 (P = 0.055), while the nAb+ group showed higher CD28 expression (P = 0.037). Additionally, elevated IL-10 expression was found in the nAb- group (P = 0.041) (Figure 2E).

[image: Panel A shows multiple UMAP plots comparing cell clusters labeled 1 to 15, in various conditions, using different colors. Panel B presents a heatmap with a color gradient representing gene expression levels across clusters. Panels C, D, and E feature bar plots and scatter plots, depicting percentage and expression level comparisons under different conditions, including statistical significance values (p-values).]
Figure 2 | T cell subsets in LTRs recovered from COVID-19. (A) CyTOF-identified cell clusters from PBMCs visualized by t-distributed stochastic neighbor embedding (t-SNE). (B) Heatmap showing the expression patterns of various markers, stratified by FlowSOM clusters. The heat scale is calculated as the column z-score of mean fluorescence intensity (MFI). (C) Percentage of each cluster in the two groups. Each dot represents an individual group, with a line at the median of the groups. (D) The arcsinh expression level of PD-1 in the C3 subset after stimulation with the SARS-CoV-2 Spike Omicron XBB peptide pool, comparing nAb+ and nAb- LTRs. A line is drawn at the median of the groups. (E) The arcsinh expression levels of CD28, CTLA-4, and IL-10 in the C15 subset in convalescent and SARS-CoV-2-specific T cells. A line is drawn at the median of the groups. Significance was determined using the Kruskal–Wallis test. Statistical significance was set at a two-sided p-value <0.05. C3: Effector memory CD4+ - 1 (CD45RO+ CD28- CCR7-), C10: Effector memory CD4+ - 2 (CD57+ CD45RO+ CD28- CCR7-), C15: Terminal effector CD8+ - 3 (CD57+ CD8+ CD45RA+ CCR7-).





T cell response in LTRs recovered from COVID-19

To investigate how T cells mediate the memory response, we stimulated PBMCs from recovered LTRs with an XBB spike peptide pool from SARS-CoV-2 in vitro. SARS-CoV-2-specific T cell responses in peripheral blood from convalescent LTRs were compared according to nAb levels. We observed an elevation in C3_effector memory CD4 + 1 cells in the nAb+ group, which had lower PD-1 expression (P = 0.006) compared to the nAb- group (Figures 2A–D). We also detected a reduction in C10_effector memory CD4+ - 2 cells and C15_terminal effector CD8+ - 3 cells in the nAb+ group (Figure 2C). During the SARS-CoV-2-related T cell memory response, the C15_terminal effector CD8+ - 3 subset showed high expression of CTLA-4 (P = 0.004) and IL-10 (P = 0.006) but not CD28 (P = 0.109), similar to the corresponding subset in the nAb- group (Figure 2E).





SARS-CoV-2- reactive T cell response in LTRs recovered from COVID-19

SARS-CoV-2-reactive T cells in LTRs were considered as CD3+ CD4+ or CD3+ CD8+ T lymphocytes expressing CD137 and CD69 simultaneously (11). We identified four SARS-CoV-2-reactive T cell subsets in liver transplant recipients recovered from COVID-19, classified as C6, C11, C13, and C14 (Figure 2B). Next, the detection of all intracellular cytokines, including IL-2, IL-4, IL-10, IL-17A, TNF-α, IFN-γ, perforin, granzyme B, and negative regulators such as PD-1 and CTLA-4, was focused on these four SARS-CoV-2-reactive T cell subsets (Figure 3A). TNF-α and IFN-γ were highly expressed in C11_terminal effector CD8+ - 1, and IFN-γ was also enriched in C14_terminal effector CD8+ - 2 in both groups (Figure 3B, P < 0.05). Perforin was mainly detected in C11_terminal effector CD8+ - 1 and C14_terminal effector CD8+ - 2 in the nAb+ group (Figure 3B, P < 0.05). Granzyme B was expressed in all four types of SARS-CoV-2-specific T cells (Figure 3A). In the nAb- group, higher expression levels of IL-17A in C6_stem cell memory CD4+ (P = 0.016) and CTLA-4 in C13_stem cell memory CD8+ (P = 0.002) were observed, along with trends of increased PD-1 expression in C11_terminal effector CD8+ - 1 (P = 0.065) and IL-10 expression in C14_terminal effector CD8+ - 2 (P = 0.050) (Figure 3C). In the nAb+ group, elevated expression of perforin in C14_terminal effector CD8+ - 2 (P = 0.016) and a trend toward increased TNF-α expression in C6_stem cell memory CD4+ (P = 0.055) were also observed (Figure 3C).

[image: Composite image showing immunological data. Panel A displays a heatmap with hierarchical clustering of cytokine expression levels, indicated by a color gradient from light to dark red. Panels B and C present bar graphs illustrating the arcsinh expression levels of TNF-α, IFN-γ, Perforin, and Granzyme B for nAb+ and nAb- groups with statistical significance indicated by p-values. Different clusters, C6, C11, C13, and C14, are color-coded for both groups.]
Figure 3 | SARS-CoV-2-specific T cell response in convalescent LTRs. (A) Heatmap of arcsinh expression of IL-2, IL-4, IL-10, IL-17A, TNF-α, IFN-γ, perforin, granzyme B, PD-1, and CTLA-4 in four types of SARS-CoV-2-specific T cells. (B) The arcsinh expression levels of TNF-α, IFN-γ, perforin, and granzyme B in the four SARS-CoV-2-specific T cell clusters. A line is drawn at the median of the groups. (C) The arcsinh expression levels of TNF-α and IL-17A in C6, PD-1 in C11, CTLA-4 in C13, and IL-10 and perforin in C14. Significance was determined using the Kruskal–Wallis test, followed by multiple pairwise comparisons. Statistical significance was set at a two-sided p-value <0.05 and adjusted p < 0.05. C6: Stem cell memory CD4+ (CD69+ CTLA-4+ CD4+ CD45RA+ CCR7+ CD28+), C11: Terminal effector CD8+ - 1 (CD69+ CD8+ CD45RA+ CCR7-), C13: Stem cell memory CD8+ (CD45RA+ CCR7+ CD28+), C14: Terminal effector CD8+ - 2 (CD69+ CD137+ CD8+ CD45RA+ CCR7-).






Discussion

The generation and persistence of memory T cells specific to SARS-CoV-2 are crucial for long-term immunity and play a central role in understanding reinfection cases and the longevity of vaccine-mediated protection. Therefore, it is essential to assess the ability of adaptive immune memory in liver transplant recipients (LTRs) who have recovered from COVID-19. In this study, convalescent LTRs were classified into two groups based on the detection of neutralizing antibodies (nAb) to evaluate the memory T cell response to SARS-CoV-2 in LTRs who were 6 months post-infection.

As demonstrated, SARS-CoV-2-specific T cell immunity is elicited in most LTRs but declines over time, and it is comparable to that observed in immunocompetent patients (12). Our results showed that the nAb+ group exhibited higher anti-RBD antibody titers than the nAb- group, with a strong association between NPI and anti-RBD levels in convalescent LTRs. Previous reports have also shown a strong correlation between the levels of antibodies that bind to the RBD of SARS-CoV-2 and the neutralizing antibodies in patients with SARS-CoV-2 infection (13, 14).

The difference in cellular immunity between robust and poor immune responses after SARS-CoV-2 infection is a major concern in organ transplant patients. Therefore, it is necessary to reveal the memory response mediated by T cells in LTRs. We performed high-parameter CyTOF analysis to examine the peripheral T cell immune spectrum before and after spike stimulation of PBMCs from recovering LTRs and to assess the phenotypes and intracellular cytokine levels. During convalescence from COVID-19 in LTRs, the frequencies of T cell subsets were similar between the nAb+ and nAb- groups, except for C15_terminal effector CD8+ - 3, which was lower in the nAb+ group. CD8+CD57+ T cells, a subset with strong cytotoxic potency and impaired proliferative capability (15), may be activated and depleted in the early stages of SARS-CoV-2 infection, leading to their decline in the nAb+ group. As the virus is cleared and nAb is produced, the demand for and activation of CD57+CD8+ terminal effectors diminished.

A similar T cell response was exhibited by LTRs and non-transplanted individuals one year after COVID-19 diagnosis (11). The majority of individuals who had recovered from SARS-CoV-2 infection 6 months ago showed SARS-CoV-2-specific T cell responses (16). We first obtained the complete T cell immune response landscape for LTRs after stimulation with the Spike peptide pool. Some differences were observed between the nAb+ and nAb- groups. We found an elevation in C3_effector memory CD4+ - 1 cells in the nAb+ group, with lower PD-1 expression. This suggests that the nAb+ group had more CD4+ effector memory cells, stimulated by the spike peptide pool, entering a memory state and exhibiting stronger antigen-specific immune responses. PD-1, an immune checkpoint molecule, interacts with PD-L1 on T cells, attenuating T cell activation and proliferation, and influencing T cell differentiation and function, leading to the formation of memory T cells or regulatory T cells (17). It has been reported that antigen stimulation can induce CD4+ T cell exhaustion, which is characterized by a reduced number of cells, impaired cytokine secretion, and increased expression of inhibitory receptors such as PD-1, Lag3, and CTLA-4 (18). Additionally, we observed a reduction in C10_effector memory CD4+ - 2 cells and C15_terminal effector CD8+ - 3 cells in the nAb+ group. CD57 expression has been reported to mark replicative senescence and antigen-triggered apoptotic death of CD8+ T cells (19).

In the nAb- group, we also found high expression of CTLA-4 and IL-10 in the C15_terminal effector CD8+ - 3 subset, similar to the corresponding subset before spike stimulation. These findings suggest that antigen stimulation and immune memory affect the differentiation and function of T cells in recovered LTRs. The contrasting CTLA-4 and CD28 expression profiles between the nAb- and nAb+ groups may reflect differences in immune activation and regulation following SARS-CoV-2 exposure in liver transplant recipients. The nAb- individuals, with higher CTLA-4 expression, may have a more regulated or exhausted immune response, limiting the effectiveness of their T cell and antibody-mediated immunity against SARS-CoV-2. In contrast, nAb+ individuals, with elevated CD28 expression, may represent a subset with more robust immune activation, capable of both neutralizing antibody production and T cell-mediated immunity.

The T cell response in nAb- patients to SARS-CoV-2 antigen stimulation was different from that in the nAb+ group. The T cells in the nAb- group had not established effective immune memory and could not respond quickly to SARS-CoV-2 antigen stimulation. They required more co-stimulatory signals to activate and expand, a process regulated by IL-10, a cytokine that can both inhibit and promote T cell effector function and exhaustion (20).

CD8+ T cells play a crucial role in controlling and resolving viral infections, with their phenotypes and effector functions varying depending on the inflammatory context and the duration and extent of antigen exposure (21). In line with previous studies, SARS-CoV-2-reactive T cells in LTRs were considered as CD3+CD4+ or CD3+CD8+ T lymphocytes expressing both CD137 and CD69 simultaneously (11). We found that the SARS-CoV-2-reactive T cells were divided into four clusters. TNF-α and IFN-γ were highly expressed in C11_terminal effector CD8+ - 1 and C14_terminal effector CD8+ - 2 in both groups, indicating that these two clusters played an important role in the early stages of infection but may gradually decrease or disappear afterward. Perforin was mainly detected in C14_terminal effector CD8+ - 2 in the nAb+ group, suggesting that this subset exhibited stronger cytotoxicity and could effectively eliminate virus-infected cells, providing immune protection (22). Different intracellular cytokines and negative regulators’ expression patterns in the four SARS-CoV-2-reactive T cells between the nAb+ and nAb- groups suggest that T cells in the nAb+ group have stronger killing and memory capabilities and can effectively clear the virus, while T cells in the nAb- group exhibit stronger inflammation and suppression, possibly due to excessive activation and inflammatory responses of T cells.

This study has several limitations that should be considered. First, the relatively small number of LTRs may have limited the robustness of the conclusions. Second, we did not recruit healthy volunteers with similar infectious conditions for this study. In a separate study, LTRs and healthy donors with positive nAb showed a similar immune response after receiving two doses of vaccination (6). Future studies will examine different infectious patterns, such as infection only, vaccination after infection, and infection after different vaccination strategies, to better understand immune memory in LTRs. Despite these limitations, our study demonstrates that convalescent LTRs with different immune memory patterns induced by SARS-CoV-2 exhibit distinct T cell responses, particularly those with negative nAb, who showed milder cellular responses and stronger exhaustion status. This highlights the need to pay more attention to the immune status of nAb- convalescent LTRs facing new variants of SARS-CoV-2 and to implement effective protective strategies in a timely manner.
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PBMCs Peripheral blood mononuclear cells

SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2
DCs classical dendritic cels
Auc area under curve
CyTOF Mass cytometry by time of flight
RT-PCR Reverse transcription-polymerase chain reaction
et rsity College London
PUTH Peking University Third Hospital
FACS Fluorescence-activated cell sorting
PBS Phosphate buflred saline
csp Cell Staining Buifer
PCA Principal component analysis
ROC Receiver operating characteristic
icu Intensive Care Uit
HowSOM How self-organizing map
SNE distributed stochastic neighbor embedding analysis
NK cells Natural kiler cells
DCs
Tregs regulatory T cells
cs Citrate Synthase:
aLs Glutaminase
o1 Indoleamine 2.3-dioxygenase |
AT Kynurenine aminotransferase |
PEKFB3 6phosphofiucto-2-Kinase/fructose-2, 6-biphosphatase 3
Ada AdaBoost
BP Back Propagation
GBDT Gradient Boosting Decision Tree
RE Random Forest
VM Support Vector Machine
WHO ‘World Health Organization
CcrP Coreactive protein
LDH lactate dehydrogenase
a Complement component 3
o Complement component 4
CHsO 50% hemolytic unit of complement
16G Immunoglobulin G
IgA Immunoglobulin A
IgM Immunoglobulin M
IgE Immunoglobulin E.
1w Interleukin-1
L2 Interleukin-2
14 Interleukin-4
1Ls Interleukin-5
16 Interleukin-6
ILs Interleukin-§
L9 Interleukin-9
110 Interleukin-10
IS Interleukin-12
[N} Interleukin-13
1L Interleukin-17
Interferon-ox
Interferon-y
TNF Tumor Necrosis Factor-.

Granulocyte colony stimulating factor

Granulocyte macrophage colony stimulating factor

VEGE Vascular Endothelial Growth Factor
MIPLa Macrophage Inflammatory Protein-1-c.
MCPL Monocyte Chemotactic Protein-1

Tem central memory T cel

EMR dlectronic medical records

pCT Procalcitonin.
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COVID- Controls

19 (n=21)

Severity

Age 40 60 58 43
(21-63) (35-92) (30-88) (20-70)

Recovery N/A 2 30 223

Duration (0-2) (30-61) (99-406)

Sex: 6 7 6 11

‘Women 15 7 2 8

Men
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COVID-19 Severity Mild Moderate

(n=256) (n=384)
Age 55 63 65 71
(19-99) (19-99) (23-98) (48-99)

Sex: Women 147 187 69 10
Men 109 197 166 14

‘ Obesity
No 246 (96.10%) 351 (91.41%) 186 (79.15%) 20 (83.33%)
Yes 9 (3.52%) 31 (10.92%) 46 (19.57%) 3 (12.50%)
Missing 1 (0.39%) 2 (0.52%) 3 (1.28%) 1 (4.17%)
Diabetes
No 231 (90.23%) 266 (69.27%) 138 (58.72%) 16 (66.67%)
Yes 24 (9.38%) 117 (30.47%) 95 (40.43%) 8(33.33%)
Missing 1(0.39%) 1 (0.26%) 2 (0.85%) n/a

‘ HIV
No 251 (98.05%) 379 (98.70%) 231 (98.30%) 23 (95.83%)
Yes 2 (0.78%) 2 (0.52%) 2 (0.85%) 1 (4.17%)
Missing 3 (1.17%) 3 (0.78%) 2 (0.85%) n/a

‘ Cancer
No 239 (93.00%) 323 (84.11%) 214 (91.06%) 19 (79.17%)
Yes 17 (6.61%) 60 (15.63%) 21 (8.94%) 5(20.83%)
Missing 1 (0.39%) 1 (0.26%) n/a n/a

‘ Chronic obstructive pulmonary disease ‘

No 243 (94.92%) 337 (87.76%) 210 (89.36%) 20 (83.33%)
Yes 12 (4.69%) 46 (11.98%) 22 (9.36%) 4 (16.67%)
Missing 1(0.39%) 1(0.26%) 3 (1.28%) n/a

‘ Cardiovascular disease ‘
No 170 (66.40%) 152 (39.58%) 87 (37.02%) 7 (29.17%)
Yes 86 (33.60%) 232 (60.42%) 148 (62.98%) 17 (70.83%)

Missing n/a n/a n/a n/a
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Manova

Wilks" F

delta value
Plasma GDF- Age ‘ 0.031 1.342 0.001
15 levels and
COVID- Sex ‘ 0.954 3514 0.032
19 severity Type of comorbidity ‘ 0.982 1364 0259

MANOVA test performed using SPSS with data from 900 participants with severity data. P
value < 0.001 was considered significant.
Statistically significant differences were indicated in bold.
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COVID-19 Severity

COVID-19

positive

COVID-19
negative

Age
Range

(n=926)

60
(18-99)

(n=285)

56
(20-99)

Sex: Women
Men

COVID-19 Severity

428 (46.22%)
498 (53.78%)

135 (47.37%)
150 (52.63%)

Mild 256

Moderate 384

Severe 235 N/A

Dead 24

n/a 27

Obesity

No 822 (88.77%) 261 (91.58%)
Yes 91 (9.83%) 23 (8.07%)
Missing 13 (1.40%) 1 (0.35%)
Diabetes

No 670 (72.36%) 223 (78.25%)
Yes 247 (26.67%) 61 (21.40%)
Missing 9 (0.97%) 1 (0.35%)
HIV

No 906 (97.84%) 282 (98.95%)
Yes 7 (0.76%) 2 (0.70%)
Missing 13 (1.40%) 1 (0.35%)
Cancer

No 814 (87.90%) 238 (83.51%)
Yes 105 (11.34%) 46 (16.14%)
Missing 7 (0.76%) 1 (0.35%)

Chronic obstructive pulmonary disease

No
Yes

Missing

832 (89.85%)
84 (9.07%)

10 (1.08%)

262 (91.93%)
22 (7.72%)

1(035%)

Cardiovascular disease

No
Yes

Missing

438 (47.30%)
488 (52.70%)

n/a

212 (74.39%)
72 (25.26%)

1 (0.35%)
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Parameter MEWS 1 MEWS 2

Median (min-max) Median (min-max)
(pg/ml) (pg/ml)
MCP-1 92.76 (11.57-301.2) 150.7 (31.44-369.8) 0.0889
MIP-1ot 3.410 (0.8400-5.490) 3.575 (1.860-10.61) 0.5931
MIP-1B 338.2 (244.8-746.6) 359.9 (292.0-435.1) 03123
RANTES 11596 (534.2-21335) 12542 (6079-31886) 0.1511
Eotaxin 86.83 (2.740-190.0) 92.91 (36.36-212.1) 0.5688
CTACK 850.2 (27.92-1368) 1007 (684.7-2260) 0.0420
GRO-a. 1013 (693.2-1878) 1132 (878.0-1507) 0.0055
1P-10 545.1 (133.3-3818) 1979 (123.1-10489) 0.0193
MIG 328.6 (39.22-863.6) 665.6 (111.6-3865) 0.0012
Basic-FGF 51.17 (31.72-64.78) 6131 (45.45-92.99) 0.0005
HGF 760.1 (152.7-3822) 1031 (341.6-6569) 0.0447
PDGE-BB 3152 (507.2-8640) 4582 (992.5-17685) 0.0332
SCGE-B 185801 (20574-339542) 194055 (66258-419873) 0.1217
G-CSF 275.8 (31.60-571.9) 249.4 (158.5-922.1) 07921
GM-CSF 2.715 (1.310-4.810) 5.440 (2.460-9.430) <0.0001
M-CSF 38.60 (11.99-79.52) 38.50 (15.30-187.2) 0.3481
SCF 92.14 (11.54-285.2) 122.0 (60.38-745.8) 0.0493
MIF 1532 (14.79-3748) 1985 (316.7-4648) 02517
LIF 27.84 (19.69-59.91) 37.94 (19.69-71.80) 00144
SDF-1at 1304 (853.2-2456) 1670 (931.4-2412) 00627
TRAIL 49.12 (1.000-95.21) 61.22 (36.82-125.3) 00433
INE-y 4,070 (1.490-8.310) 5910 (2.770-12.10) 0.0036

(MCP-1), monocyte chemoattractant protein 1; (MIP-1 ¢, MIP-1 B), macrophage inflammatory protein-1 o and B; (RANTES), regulated on activation, normal T-cell expressed and secreted
eotaxin; (CTACK), cutaneous T cell-attracting chemokine; (GRO-a1), growth- regulated oncogene-0: (IP-10), interferon gamma-induced protein; (MIG), monokine induced by interferon-y;
(basic-FGF), basic fibroblast growth factor; (HGF), hepatocyte growth factor; (PDGE-BB), platelet-derived growth factor; (SCGE-B), stem cell growth factor-beta; (G-CSE), granulocyte colony-
stimulating factor; (GM-CSF), granulocyte-macrophage colony-stimulating factor; (M-CSF), macrophage colony-stimulating factor; (SCF), stem cell factor; (MIF), macrophage migration
inhibitory factor; (LIF), leukemia inhibitory factor; (SDF-1a), stromal cell- derived factor; (TRAIL), tumor necrosis factor-related apoptosis-inducing ligand and (INF-y), interferon gamma.
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Parameter 95% confidence int

1P-10 0.6551 0.0194 1290 59.09 64.71 05331 to 0.7771
MIG 0.7116 0.0013 410.1 66.67 66.67 0.5969 to 0.8264
Basic-FGF 0.7324 0.0006 54.47 65.00 64.71 0.6180 to 0.8468
PDGF-BB 0.6487 0.0336 3945 62.86 64.71 0.5185 to 0.7790
GM-CSF 0.7763 0.0001 4.035 66.16 64.29 0.6657 to 0.8869
GRO-alpha 0.6792 0.0059 1054 66.67 63.16 0.5586 to 0.7998
LIF 0.6741 0.0155 3391 61.11 66.67 0.5434 to 0.8048
INF-y 0.6964 0.0040 5315 66.67 62.50 0.5772 to 0.8157

(IP-10), interferon gamma-induced protein; (MIG), monokine induced by interferon-y (basic-FGF), basic fibroblast growth factor; (PDGE-BB), platelet-derived growth factor; (GM-CSE),
granulocyte-macrophage colony-stimulating factor; (GRO-0t), growth-regulated oncogene-0; (SCE), stem cell factor; (LIF), leukemia inhibitory factor; (INF-y) interferon gamma.
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Score 1 2 5 4

Respiratory rate, breaths/min 9-14 15-20 21-29 or >29
<8

Heart rate, bpm 51-100 101-110 111-129 >129

or 41-50 or <40

Systolic blood pressure, mm Hg 101-199 81-100 <200 <70
or 71-80

Hourly urine, mL/kg of body weight/h >0.5 <0.5 Nil

I
Body temperature, 36.1-38 38.1-38.5 <38.6
°C or 35.1-36 or <35

Neurological symptoms Alert Responsive to voice Responsive to pain Unresponsive
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Parameter Control group CQOVID-19 patients

Median (min-max) (pg/mL) Median (min-max) (pg/mL)
MCP-1 81.28 (16.22-176.2) 1195 (1.000-369.8) 0.1089
MIP-10 1.735 (0.3500-9.380) 333 (1.000-12.36) 0.0001
MIP-1B 360 (261.3-489.2) ‘ 3412 (244.8-435.1) 0.4068
RANTES 16538 (2220-31531) 11868 (221.0-31886) 0.0019
Eotaxin 47.71 (10.46-133.5) 88.57 (2.740-212.1) 0.0042
CTACK 613.5 (258.5-1068) 873.3 (2.610-2260) 0.0035
GRO-o. 1176 (1001-1390) 1084(693.2-1878) 0.0187
1P-10 93.09 (13.53-342.7) 1301 (18.17-12086) <0.0001
MIG 78.58 (33.39-285.9) 337 (1.000-1810) <0.0001
Basic-FGF 33.64 (7.910-56.42) 56.42 (22.61-98.01) <0.0001
HGF 289.2 (155.4-433.4) 951 (72.59-17473) <0.0001
PDGE-BB 2854 (1101-6347) 3557 (110.9-14546) 0.0647
SCGF-B 122865 (11003-231021) 193277 (20574-419873) 0.0004
G-CSF 150.4 (34.62-551.6) 252.1 (31.60-922.1) <0.0001
GM-CSF 3.92 (0.6200-9.430) 437 (0.9800-17.72) 0.4457
M-CSF 1141 (6.770-32.96) 34.54 (0.8700-109.4) <0.0001
SCF 64.83 (15.36-124.7) 93.04 (11.54-221.1) 0.0038
MIF 325.1 (126.4-940.5) 1596 (14.79-4648) <0.0001
I LIF 19.69 (7.270-63.88) 31.89 (7.270-142.2) 0.0065
SDE-1au 1319 (427.6-1947) 1434 (853.2-2456) 0.1498
TRAIL 44.69 (11.94-78.39) 56.21 (23.65-125.3) 0.0038
INFy 5.25 (0.7300-9.380) 538 (1.000-15.12) 0.3993

(MCP-1), monocyte chemoattractant protein 1; (MIP-1 ¢, MIP-1 B), macrophage inflammatory protein-1 o and B; (RANTES), regulated on activation, normal T-cell expressed and secreted;
eotaxin, (CTACK), cutaneous T cell-attracting chemokine; (GRO-0:), growth- regulated oncogene-0; (IP-10), interferon gamma-induced protein; (MIG), monokine induced by interferon-y;
(basic-FGF), basic fibroblast growth factor; (HGF), hepatocyte growth factor; (PDGF-BB), platelet-derived growth factor; (SCGF-), stem cell growth factor-beta; (G-CSF), granulocyte colony-
stimulating factor; (GM-CSE), granulocyte-macrophage colony-stimulating factor; (M-CSF), macrophage colony-stimulating factor; (SCE), stem cell factor; (MIF), macrophage migration
inhibitory factor; (LIF), leukemia inhibitory factor; (SDF-1a), stromal cell- derived factor; (TRAIL), tumor necrosis factor-related apoptosis-inducing ligand and (INF-y), interferon gamma.
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p-value 95% confidence interval

MIP-1 o 0.7928 0.0002 | 2.535 75.56 80 0.6495 to 0.9361
1P-10 0.9025 <0.0001 | 243.8 8235 85 0.8311 to 0.9738
MIG 0.8444 <0.0001  160.8 83.67 85 0.7491 to 0.9397
Basic-FGF 0.9122 <0.0001 | 391 89.36 85 0.8357 to 0.9888
HGF 0.9479 <0.0001 | 372.1 9375 90 0.8897 to 1.000

SCGF-B 0.766 0.0006 158340 7234 65 0.6455 to 0.8864
G-CSF 0.7935 0.0002 | 2029 7391 80 0.6600 to 0.9270
M-CSF 0.8402 <0.0001 | 14.91 8431 80 0.7458 to 0.9346
MIF 0.9377 <0.0001 | 707.3 88.89 88.89  0.8789 to 0.9964

(MIP-1 &), macrophage inflammatory protein-1 0; (IP-10), interferon gamma-induced protein; (MIG), monokine induced by interferon-y, (basic- EGE), basic fibroblast growth factor; (HGF),
hepatocyte growth factor; (SCGE-P), stem cell growth factor-beta; (G-CSF), granulocyte colony-stimulating factor; (M-CSF), macrophage colony-stimulating factor; (SCF), stem cell factor; (MIF)
macrophage migration inhibitory factor.
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Mild_Total
(n = 24)

Critical_Total

(n = 35)

P#

Mild_D1
(n = 15)

Critical_D1
(n = 15)

[

Mild_D7
(n=9)

Critical
_D7
11)

LDH (U/L) 239.40 + 5443 397.30 + 219.20 0.0004 259.10 487.40 + 315.50 0.0032 190.00 304.10 + 104.70 0.0424
+46.84 +41.34
Lactate 2.18 £0.39 2.79 £ 1.39 0.6961 2.18 £ 0.39 2.60 + 1.56 0.8818 NA 2.63 £ 1.46 NA
(mmol/L)
C3 (g/L) 091 +0.19 0.88 +0.20 05294 094 +022 095 +0.15 0.8007  0.88 +0.16 0.78 +0.19 02319
C4 (g/L) 023 £0.11 0.22 +0.08 07375 024013 025 +0.08 02273 0.21+0.06 0.17 +0.07 02627
CHS50 (U/ml) 51.43 + 12.89 45.37 + 14.51 0.2027 50.57 + 15.18 50.07 + 11.55 0.3615 53.14 £ 6.99 39.30 £17.33 0.0999
1gG (g/L) 10.96 + 2.65 £ ¥y g i 0.0820 11.31 £2.97 13.62 + 3.97 0.1003 10.41 £ 2.10 10.71 £ 1.96 0.7556
IgA (g/L) 2.38 £ 1.03 272 £1.35 0.3269 265+ 113 289 141 0.6227 1.91 £ 0.66 237 £20.35 0.6322
IgM (g/L) 1.00 £ 0.53 0.99 £0.38 0.9375 1.00 + 0.51 0.94 £ 0.38 0.7212 0.99 £ 0.59 1.01 £ 0.36 0.9549
IgE (g/L) 10270 + 145.50 168.60 + 265.70 0.1419 116.40 24920 £ 36640 | 0.2700 78.69 85.16 £ 107.70 | 0.6334
+160.90 +120.00
1L-1 (pg/ml) 8.29 +9.31 830 £ 1114 04043 7.66 +9.09 630 +7.58 04053 | 934+1012  1352£1036 04470
IL-2 (pg/ml) 3.62 + 1.75 3.18 +2.05 0.1525 3.53 + 1.82 314£175 0.5551 3.76 £ 1.71 3.84 +2.56 0.9409
1L-4 (pg/ml) 2.51 £ 1.05 2.65 + 1.64 0.4385 2.66 £ 1.28 2.55 £ 1.66 0.3892 225 +0.45 3.11 £ 1.81 0.1848
IL-5 (pg/ml) 2.69 + 1.52 271+£190 0.4104 2.06 £0.71 2N 2192 0.8407 3.60 £1.93 3.03 £ 1.64 0.4938
1L-6 (pg/ml) 17.22 £ 13.49 11650 + 200.10 00257 | 1800+ 1382 9820410990 02017 1594 +13.63 7036 %8413 | 07103
IL-8 (pg/ml) 45.54 + 67.81 115.10 + 261.60 0.5127 45.66 + 74.20 50.19 + 119.40 0.6743 45.32 + 59.86 248.10 + 419.10 0.3702
1L-9 (pg/ml) 1.07 £ 037 1211 £ 0.52 04920 119 +027 110 + 0.40 06794 092 +0.46 234 +3.08 04762
1L-10 (pg/ml) 3.80 + 1.80 3.58 +221 04242 | 386171 408 +2.85 07688 = 372 +2.04 269 +0.98 01703
IL-12 (pg/ml) 3.04 £1.93 2.20 £ 0.55 0.0189 3.11+ 185 2.05 £ 0.63 0.0052 294 £2.16 225+ 045 0.7197
1L-13 (pg/ml) 0.61 £ 0.48 0.68 +0.33 0.1265 0.72 + 0.62 0.67 £ 0.19 0.1696 0.46 £ 0.09 0.59 £ 0.26 0.3879
IL-17 (pg/ml) 7.16 £ 5.06 11.25 £ 20.90 0.6749 7.33+5.24 522 +3.19 0.1941 6.86 +5.05 8.79 £7.53 0.5336
IFN-0t (pg/ml) 3.98 +2.45 334 +195 03066 388 +227 299 + 1.48 02389 420 +2.84 433 £2.45 09193
IEN-y (pg/ml) 5.70 + 5.74 6.17 £5.77 09153 470 +3.02 642 +6.20 07340 | 7.33+8.57 6.50 +5.24 07618
TNF-o. (pg/ml) 3.97 276 290 +2.11 01284 | 379 +267 318 +2.27 05299 428 +3.06 313224 03704
GCSF (pg/ml) 1.20 033 512 16.51 00963 132038 139 +0.39 07181 103 +0.12 168 + 0.95 02825
GM-CSF 794 £ 18.52 22.34 £41.72 0.1319 1.96 + 0.10 3.03 £ 1.81 0.5478 224 £ 1.10 11.33 £ 26.64 0.4336
(pg/ml)
VEGF (pg/ml) 160.10 + 62.70 285.60 + 213.50 0.0813 181.10 254.20 + 151.30 0.2811 128.70 284.70 + 232.40 0.1483
+ 58.60 + 6222
MIP1-o 28.17 + 2149 16.46 + 13.31 0.1621 31.65 + 26.92 13.18 + 10.80 0.0705 2293 +10.81 17.06 + 15.16 0.2601
(pg/ml)
MCP1 (pg/ml)  123.60 + 140.60 309.30  806.10 08844 165.60 19820 21150 | 09813 | 60.55+27.26 = 77.52+7116 | 0.9399
+172.80

All statistical analyses were performed using Prism v.9.0 (GraphPad Software). For comparison between two groups, normally distributed data were evaluated by the unpaired two-tailed
Student’s t-test and data without a normal distribution were evaluated by the Mann-Whitey U-test. Data were presented as mean + SEM. P*, comparison between Mild_Total and Critical_Total;
P*, comparison between Mild_D1 and Critical D1; P*, comparison between Mild_D7 and Critical_D7.

LDH, lactate dehydrogenase; C3, Complement component 3; C4, Complement component 4; CH50, 50% hemolytic unit of complement; IgG, Immunoglobulin G; IgA, Immunoglobulin A; IgM,
Immunoglobulin M; IgE, Immunoglobulin E; IL-1, Interleukin-1; IL-2, Interleukin-2; Interleukin-4 (IL-4), IL-5, Interleukin-5; IL-6, Interleukin-6; IL-8, Interleukin-8; IL-9, Interleukin-9; IL-10,
Interleukin-10; IL-12, Interleukin-12; IL-13, Interleukin-13; IL-17, Interleukin-17; INF-o,, Interferon-o; IFN-y, Interferon-y; TNF-0, Tumor Necrosis Factor-o; GCSF, Granulocyte colony
stimulating factor; GM-CSF, Granulocyte macrophage colony stimulating factor; VEGE, Vascular Endothelial Growth Factor; MIP1-0, Macrophage Inflammatory Protein-1-05 MCP1, Monocyte
Chemotactic Protein-1.
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The level of cDCs (< 1.2%) and LDH (> 270.5 U/L) will assist
clinicians with quick decision-making.
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Features Critical

(n=24)
Age (yr.) 72.000 72.500 0.2020
(63.00-76.00) (69.00-77.75)
Sex, male 12 (80.00%) 19 (79.17%) >0.9999
Mortality 0% (0/15) 37.5% (9/24) 0.0069

Murry lung injury score 1.500 (0.00-4.00) = 2.875 (2.37-3.29) 0.0110

Length of 0.000 (0.00-0.00)  1.000 (0.00-9.00) 0.0129

mechanical ventilation
Length of ICU stay 6.000 (5.00-6.00) 10.000 0.0058
(7.000-23.50)
Comorbidities

Circulatory diseases 11 (73.33%) 20 (83.33%) | 0.6857
Endocrine diseases 7 (46.67%) 12 (50.00%) >0.9999
Digestive diseases 5 (33.33%) 8 (33.33%) >0.9999
Urological diseases 2 (13.33%) 5 (20.83%) 0.6857
Respiratory diseases 4 (26.67%) 5 (20.83%) 0.7110
Others 3 (20.00%) 5 (20.83%) >0.9999

The statistical analyses were performed using Prism v.9.0 (GraphPad Software). For
comparison between two groups, the gender, mortality, and comorbidities were evaluated
using chi-square test and other clinical characteristics were evaluated by the Unpaired two-

tailed Student’s t-test and data without a normal distribution were evaluated by the Mann-
Whitey U-test. Data are presented as median with interquartile range.
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Year Country  Study desig Critical (%)  Non-Ciritical (% JBI score (RoB)  References

2020 China Prospective 2 (20%) 8 (80%) 5 (Moderate) (17)

Tang 2019 China Cohort 18 (48%) 19 (52%) 4 (Moderate) (10)
Shi 2020 China Case-control 6 (30%) 14 (70%) 8 (Low) (@]

M. McKeigue 2021 Scotland Case-control 702 (16.5%) 3533 (83.4%) 6 (Moderate) (18)
Liagat 2021 Pakistan Retrospective 57 (28.3%) 144 (71.6%) 4 (Moderate) (4)
Liu 2021 China Retrospective 16 (18.5%) 69 (81.1%) 9 (Low) 9)
Tian 2020 China Retrospective 45 (50%) 45 (50%) 8 (Low) (12)
Jieyu He 2020 China Prospective 49 (43.7%) 63 (56.2%) 7 (Low) (19)
Yuan Cen 2020 China Retrospective 22 (10%) 200 (90%) 6 (Moderate) (20)
Jianfeng Wu 2020 China Retrospective 697 (30%) 1690 (70) 9 (Low) @1
Fukushima 2021 Japan Retrospective 41 (18%) 193 (82%) 8 (Low) 2)
Wang 2020 China Retrospective 50 (41%) 73 (59%) 8 (Low) (13)
Liu 2020 China Retrospective 30 (32%) 65 (68%) 7 (Low) (23)
Cheng 2020 China Retrospective 52 (21%) 200 (79%) 6 (Moderate) (24)
Zhihua Lv 2020 China Retrospective 84 (42%) 115 (58%) 8 (Low) (25)
Caméléna 2021 France Prospective 43 (100%) - 5 (Moderate) (26)
Contou 2020 France Retrospective 92 (100%) - 6 (Moderate) 27)
Rothe 2020 Germany Retrospective - 56 (100%) 5 (Moderate) (28)
THOMSEN 2021 Scandinavian Cohort 34 (100%) - 3 (High) 29)
Amaravati 2021 Indonesia Retrospective 52 (56%) 40 (44%) 3 (high) (30)
Yang 2021 China Retrospective 58 (60%) 38 (40%) 8 (Low) @1

RoB, Risk of Bias.
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Study name Disease Course Statstics for each study Event rate and 95% CI

Event Lower Upper Relative

rate limit limit p-Value weight
Asmarawati 2021 critical 0.115 0.053 0.234 0.000 = 16.50
THOMSEN 2021 critical 0.353 0.213 0.524 0.091 16.97
Yang 2021 critical 0.500 0.374 0.626 1.000 17.46
Zhihua Lv 2020  critical 0.643 0.376 0.843 0.292 15.62
Contou 2020 critical 0.870 0.784 0.924 0.000 - 17:23
Caméléna 2021 critical 0.834 0.749 0.951 0.000 - 16.22

0.577 0.296 0.815 0.606
Asmarawati 202 Inon-critical 0.075 0.024 0.208 0.000 — 23:57
Rothe 2020 non-critical 0.089 0.038 0.197 0.000 = 25.05
Yang 2021 non-critical 0.553 0.395 0.701 0.517 26.39
Zhihua Lv 2020 non-critical 0.556 0.330 0.760 0.638 24.99

0.257 0.074 0.600 0.156
-1.00 -0.50 0.00 0.50 1.00

Non-critical Critical
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Study name Comorbidity Statistics for each study (Odds ratio and 95% CI

Odds Lower Upper Relative
ratio  limit limit p-Value weight
Fukushima 2021 Death 0.003 0.000 0.051 0.000 8.92
Asmarawatt 2021 Death 0.091 0.020 0.422 0.002 1257
Zhihua Lv2020 Death 0.396 0.112 1401 0.151 13.27
Jianfeng 2020 Death 0475 0.377 0.598  0.000 g p 15.01
Jieyu He 2020 Death 0.005 0.000 0.079  0.000 8.92
Liagat 2021 Death 0.010 0.001 0.178 0.002 — 8.93
Cheng 2020 Death 0.018 0.001 0.322  0.006 I 8.79
Tian 2020 Death 0.023 0.005 0.109  0.000 e — 12.52
Wang2020 Death 0.030 0.004 0.232 0.001 11.06
0.043 0.011 0.161 0.000
Fukushima 2021 Diabet 0.235 0.105 0.52%  0.000 11.10
Cheng 2020 Diabet 0.289 0.108 0776 0.014 = 983
Jianfeng 2020 Diabet 0.629 0.49%4 0.801 0.000 g p 14.74
M. McKejgue 2021  Diabet 0.990 0.813 1.206  0.921 14.90
Wang2020 Diabet 0.995 0417 2.373  0.991 10.67
Tian 2020 Diabet 1.156 0402 3.328 0.788 9.33
Zhihua Lv2020 Diabet 1.546 0.658 3636 0.318 10.77
Yang 2021 Diabet 2.000 0.106 37.830 0.644 2.59
Liagat 2021 Diabet 0.010 0.002 0.046  0.000 6.74
Yuan Cen 2020 Diabet 3.699 0.836 16.357 0.085 6.77

Tang 2019 Diabet 0.04%3 0.003 0954 0.046 2:99
0.565 0.336 0.94%  0.031

Fukushima 2021  Hypertension  0.144  0.069 0.299  0.000 10.83

Cheng 2020 Hypertension 0.260 0.131 0.518  0.000 e e 11.03

Wang2020 Hypertension  0.319  0.151 0.675 0.003 | 10.75

Tang 2019 Hypertension  0.364  0.095 1.386  0.138 7.90

Tao Zuo 2020  Hypertension 0.600 0.027 13582 0.748 2:92
Jianfeng 2020  Hypertension 0.610  0.504 0.738  0.000 L 12.69
Yuan Cen 2020  Hypertension 0.724  0.299 1.753 0475 10.09
Tian 2020 Hypertension 1.000 0.433 2.308  1.000 10.32
Zhihua Lv2020  Hypertension 1476 0.763 2.853  0.248 1115
Yang 2021 Hypertension 125.000 4.491 3478.940  0.004 2.64
Liagat 2021 Hypertension 0.042 0.016 0.111  0.000 9.68
0446 0243 0818  0.009 =
0.01 0.1 1 10 100

Non-critical Cnitical
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Statistics for each study

-0.604
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0.404
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0.523
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0.403

-0.668
0.059
0:571
0.573
0.749
0.947
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0.461
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0.328

0.479
0.518

0.523
0.573

0.749
1.181

1225
0.482

Std diff Lower Upper
in means

Std diff in means and 95% CI

limit lLimit p-Value

-1.578 0.371
-1.139 0.169

0.097 0.711
0.015 0.851

0.042 0.927
0.160 0.840

0.212 0.834
0.134 0.973

0.177 1.286
0:212 0:593

-1.330 -0.005
-0.353 0471

0.064 0.677
0.232 0.914
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0223 2:290
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0.225
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0.001
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0.121
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Relative
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15.62
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Study name

Tang 2019
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Zhihua Lv2020
Asmarawat 2021
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Zhihua Lv2020
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CBC Analysis

Lymphocyte
Lymphocyte
Lymphocyte
Lymphocyte
Lymphocyte
Lymphocyte
Lymphocyte
Lymphocyte
Lymphocyte
Lymphocyte
Lymphocyte

Pltatelet
Pltatelet
Pltatelet
Pltatelet
Pltatelet
Pltatelet
Pltatelet
Pltatelet
Pltatelet

WBC
WBC
WBC
WBC
WBC
WBC
WBC
WBC
WBC
WBC
WBC

Statistics for each study
Std diff Lower Upper

inmeans limit limit p-Value
-1.444 -2.167 -0.720  0.000
-2.423  -3.63%9 -1.207  0.000
-0.523 -0.834 -0.212 0.001
-0.718 -1.144 -0.291 0.001
-0.749 -1.195 -0.303  0.001
-0.573 -0.914 -0.232 0.001
-0.619 -0.987 -0.251 0.001
-0.750 -1.196 -0.305 0.001
-0.571 -0.880 -0.262  0.000
-0.451 -0.720 -0.183  0.001
-0.715 -1.140 -0.2%0  0.001
-0.670 -0.826 -0.514  0.000
-0.593 -1.252 0.066 0.078
-0.523 -0.834 -0.212 0.001
-0.613 -1.164 -0.061 0.029
-0.419 -0.837 -0.001 0.049
-0.749 -1.195 -0.303  0.001
-0.500 -0.840 -0.160  0.004
-0.619 -0.987 -0.251 0.001
0.291 -0.015 0.597 0.063
-0.264 -0.678 0.150 0.212
-0.421 -0.65%9 -0.182 0.001
1.099 0407 1790 0.002
2423 1.207 3.63%9 0.000
-0.523 -0.834 -0.212 0.001
0732 0.177 1286 0.010
0.555 0.13¢ 0976 0.010
0749 0303 1.195 0.001
0.367 0.028 0705 0.034
0.619 0.251 0.987 0.001
0.518 0.210 0.827 0.001
0.296 0.029 0.563 0.030
0.527 0.108 0.946 0.014
0.538 0.247 0.828 0.000

-3.00

Std diff in means and 95% CI

3.00
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Records identified from*:
Scopus (n=334)
PubMed (n=308)

Web of science (n=104)
Total: 746

Records removed before
screening:.

Duplicate records removed (n
=395)

Records marked as ineligible
by automation tools (n = 0)
Records removed for other

reasons (n =0)

Records screened Records excluded**
(n=351) (n=317)

Reports sought for retrieval Reports not retrieved
(n=34) (n=0)

Reports assessed for eligibility Reports excluded: n=13
(n=34) Unclear result (n = 4)
No relevant outcome (n = 2)
Over lapping data (n= 1)
Review (n=2)
Insufficiency data (n=4)

Studies included in review
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NETCET 95% ClI Heterogeneity Egger’s
error regression
report/s

Lower Upper X2 P- -
limit limit value | value

Mean of WBC difference between Critical and 11 0.148 0.247 0.828 55.46 <0.001 81.96 0.023 2.72
non-Critical

Mean of lymphocyte difference between Critical 11 0.08 -0.826 -0.514 16.48 0.087 39335 0.001 20.69
and non-Critical

Mean of platelet difference between Critical and 9 0.122 -0.659 -0.182 254 0.001 68.54 0.24 1.28
non-Critical

Mean of ALT difference between Critical and 9 0.097 0212 0.593 139 0.084 4245 0.062 221
non-Critical

Mean of AST difference between Critical and i 0.185 0.099 0.823 24.70 0.001> 75.71 0.72 0.36
non-Critical

Mean of CRP difference between Critical and 9 0.155 0178 0.786 41.74 <0.001 80.83 042 0.84

non-Critical

Hypertension event difference between Critical and 11 = 0.243 0.818 69.179 <0.001 85.54 0.658 0.457
non-Critical

Diabetes event difference between Critical and 11 - 0.336 0.949 64.59 <0.001 84.52 0.328 103
non-Critical

Death event difference between Critical and 9 - 0.011 0.161 56.265 <0.001 85.78 0.0002 6.75
non-Critical

Prevalence of Co-infection between Critical and 10 - 0242 0.664 124.46 <0.001 92.76 0.317 1.06

non-Critical cases






OPS/images/cover.jpg
& frontiers | Research Topics.

Changesin T cell
populations and cytokine
production in SARS-CoV-2
infected individuals; their
role in prognosis






OPS/images/fimmu.2024.1431411/fimmu-15-1431411-g004.jpg
8
°
o
~
-
=
e
+
<
o
(6]
ES

5530
8%03

% IL17A in Th17 cells

% IL22 in Th17 cells

0.0492

[e]

MILD
n=20

o
)
o
°
] °
v 51t ge
°
43t @ ©®
o ©%¢0
o o0
O§O 98t ¢
SEVERE CRITICAL PCC
n=20 n=20 n=19

SEVERE CRITICAL
n=18 n=17

SEVERE CRITICAL

n=19 n=18

PCC
n=19

PCC
n=19

MILD

SEVERE

CRITICAL

PCC

MILD

SEVERE

CRITICAL

PCC

Capacity to express IL-17A in Th17 cells

= Response
= No response

0.0140
0.0033]

20 40 60 80 100
% Participants

Capacity to express IL-22 in Th17 cells

= Response
== No response

] 0.0156| 0.0225

20 40 60 80 100
% Participants

0.0138

0.0424

0.0079





OPS/images/fimmu.2024.1431411/fimmu-15-1431411-g003.jpg
Th2

Th2

60

Mild COVID-19 (Recovered)
=-0.5972; p=0.0054

Th1

Critical COVID-19
r=-0.5413; p=0.0203

Th1

Th2

Th2

80

50

40

30

20

10

Severe COVID-19
=-0.6273 ; p=0.0031

10 20 30 40
Th1
PCC
o
[
[ ]
[ ] @ o
_—’.’__._.__.——_—‘—.
. [ ]
° ® o o

Th1

50





OPS/images/fimmu.2024.1431411/fimmu-15-1431411-g002.jpg
% CD4+ Th2 cells

% IL4 in Th2 cells

% IL13 in Th2 cells

80 0.0236
® |
o
o o0 Yyur ©
o o®® 8 § !
(e1e) o
wl B S umy 8
o S FY o=t
@
20 & o®® 0® o
o) ®

MILD SEVERE CRITICAL PCC
n=20 n=20 n=20 n=19

<0.0001
0.0017
Capacity to express IL-4 in Th2 cells

50 00840 = Response

® =3 No response
40

® MILD
30

oo SEVERE
- . oq0

(% ® St '} CRITICAL

10 % % 4.'%3: L -

MILD SEVERE CRITICAL PCC 0 20 40 60 80 100
n=20 n=19 n=19 n=19 % Participants
0.0008
0.0002 3 ”
Capacity to express IL-13 in Th2 cells
40 0.0011 1 Response
== No response
o 0
ol ° MILD
®
20 i v 451 SEVERE
o 008000 oveo eolee CRITICAL
0 B Gl g e
o0
&P B .::Erﬁ ® Pee
0

MILD SEVERE CRITICAL PCC 0 20 40 60 80 100
n=20 n=20 n=20 n=19 % Participants





OPS/images/fimmu.2024.1431411/fimmu-15-1431411-g001.jpg
80 0.0036

?:|

% CD4+ Th1 cells
N k=Y
o o
3@
o dio
o
6 o

e

W
®
fi8e

Ay
-+ On!

g
oo|0 ©
oop o o

® @
° °

MILD SEVERE CRITICAL PCC

n=20 n=20 n=20 n=19
0.0486 Capacity to express IFNy in Th1 cells
80 = Response
o .o == No response
") o °
= 60
8 ° MILD
= 451 @ ®
c 40 5 000 e ° SEVERE
> % oS j'ﬁ'l
£ o8, ° oot CRITICAL
g2 éy@ o8s b 0.0463
°\ 7
- . pPcC :I
(@)
MILD SEVERE CRITICAL PCC Y 20 40 60 80 100

n=20 n=19 n=19 n=19 % Participants





OPS/images/fimmu.2024.1431411/crossmark.jpg
©

2

i

|





OPS/images/fimmu.2024.1360843/table2.jpg
Variable Overall, N = 20 Non-vaccinated, N = 10 Vaccinated, N = 10* Ll

value’
< 5L oxygen, n (%) 10 (50) 5 (50) 5 (50) >0.99
I > 5L oxygen, n (%) | 1(5.0) ‘ 1 (10) 0 (0) >0.99
High flow oxygen therapy, n (%) 8 (40) 4 (40) 4 (40) >0.99
NIV, n (%) 1(5.0) 0(0) 1(10) >0.99
Respirator, n (%) 0(0) 0 (0) 0 (0)
Early Warning Score (EWS) at admission, 5.00 5.00 5.00 085
median (IQR) (2.00 - 6.25) (250 - 7.25) (2.50 - 6.00)
Disease Severity, n (%) >0.99
Low 11 (55) 6 (60) 5 (50)
High 9 (45) 4 (40) 5 (50)
Death during admission, n (%) 1(5.0) 1(10) 0 (0) >0.99
Length of admission, Median (IQR) 4(4-12) 6(3-11) 4(4-12) 0.97
Admission to ICU, n (%) 1(5.0) 0 (0) 1(10) >0.99
Death within 90 days of admission, n (%) 2(10) 1 (10) 1 (10) >0.99

Table describing the clinical characteristics of all included patients during their admission. First available Early Warning Score (EWS) for each patient was used in the table.

NIV, non-invasive ventilation; ICU, intensive care unit.

! Variables are described as medians (IQR) or n (%) depending on the datatype of the specific variable. 2 P-values were calculated using Mann-Whitney U test, Fisher's exact test or Pearson's Chi-
squared test depending on the datatype and frequency of the specific variable.
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Vaccinated Non-vaccinated

Variable (cases), (controls),
N = 10 N = 10

Age 73 (69, 75) 74 (70, 77) 72 (67, 75) 0.47
Sex, Male 14 (70%) 7 (70%) 7 (70%) >0.99
BMI 28 (26, 34) 29 (27, 34) 26 (26, 31) 0.53
Time since last SARS-CoV-2
vaccination (months) 649 649
Comorbidities
Any comorbidity 20 (100%) 10 (100%) ‘ 10 (100%)
Cardiovascular 10 (50%) 5 (50%) 5 (50%) >0.99
Isolated hypertension 12 (60%) 6 (60%) 6 (60%) >0.99
Previous thromboembolic event 3 (15%) 1(10%) 2 (20%) >0.99
Hematologic 1(5.0%) 1(10%) 0 (0%) >0.99
Neurologic 6 (30%) 3 (30%) 3 (30%) >0.99
Psychiatric 4 (20%) 3 (30%) 1(10%) 0.58
Pulmonary 6 (30%) 3 (30%) 3 (30%) >0.99
Gastrointestinal 5 (25%) 2 (20%) 3 (30%) >0.99
Hepatic 0 (0%) 0 (0%) 0 (0%)
Diabetes 5 (25%) 3 (30%) 2 (20%) >0.99
Renal 2 (10%) 2 (20%) 0 (0%) 0.47
Organ transplantation 0 (0%) 0 (0%) 0 (0%)
Rheumatologic 3 (15%) 2 (20%) 1 (10%) >0.99
Active cancer 1 (5.0%) 1 (10%) 0 (0%) >0.99
Other comorbidity 18 (90%) 9 (90%) 9 (90%) >0.99
Immunodeficiency 2 (10%) 2 (20%) 0 (0%) 0.47
Cause of immunodeficiency >0.99

Etanercept treatment 1 (50%) 1 (50%) 0 (0%)

Myelomatosis 1 (50%) 1 (50%) 0 (0%)

Table describing baseline and clinical characteristics of all included patients. Regarding comorbidities, the table describes the number of patients (n) with any of the specified comorbidities in the
table. “Other comorbidities” describes number of patients (n) with other comorbidities than the specified comorbidities in the table.

! Data is described as medians (IQR) or n (%) depending on the datatype of the specific variable.

% P-values were calculated using Mann-Whitney U test, Fisher's exact test or Pearson's Chi-squared test depending on the datatype of the specific variable.
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Vaccinated group Unvaccinated group

Characteristics (n=47) (n=20)

Pneumonia
Present of pulmonary lesion 25 (37.3%) 16 (34.0%) 9 (45.0%) 042

Dominant CT pattern

Extended GGO 6 (24.0%) 3 (18.8%) 3 (33.3%) 0.63
Segmental GGO 14 (56.0%) 9 (56.3%) 5 (55.6%) >0.99
Extended OP-like 2 (8.0%) 2 (12.5%) 0 (0.0%) 0.52
Segmental OP-like 1(1.8%) 0 (0.0%) 1(11.1%) 036
Others 2 (8.0%) 2 (12.5%) 0 (0.0%) 0.52
Respiratory failure 9 (13.4%) 7 (14.9%) 2 (10.0%) 0.71
Onset

At admission 6 (9.0%) 5 (10.6%) 1 (5.0%) 0.66
‘Within 5 days after admission 3 (4.5%) 2 (4.3%) 1 (5.0%) >0.99

Oxygen therapy

Required oxygen therapy 9 (13.4%) 7 (14.9%) 2 (10.0%) 071
PPV 2(3.0%) 2 (4.3%) 0 (0.0%) >0.99
ECMO 1(1.5%) 1(2.1%) 0 (0.0%) >0.99
Outcome

30 days-mortality 0 (0.0%) 0(0.0%) 0 (0.0%) >0.99

Data are presented as n (%).
CT, computed tomography; GGO, ground-glass opacity; OP, organizing pneumonia; IPPV, intermittent positive pressure ventilation; ECMO, extracorporeal membrane oxygenation.
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Vaccinated group Unvaccinated group

Characteristics (n=47) (n=20)

Demographics
Age (years) 62 (49-73) 63 (51-74) 56 (44-69) 0.056
Sex (males) 46 (68.7%) 33 (70.2%) 13 (65.0%)) 0.78

Underlying disease

None 31 (46.3%) 24 (51.1%) 7 (35.0%) 0.29
Hypertension 29 (43.3%) 21 (44.7%) 8 (40.0%) 0.79
Diabetes mellitus 11 (16.4%) 8 (17.0%) 3 (15.0%) >0.99
Respiratory disease 10 (14.9%) 5(10.6%) 5 (25.0%) 0.15
Body mass index (kg/m?) 25.0 (22.0-27.6) 25.6 (22.3-27.8) 245 (21.3-27.0) 0.21
Febrile period (days) 4[3-7] 4 [3-6] 5.5 [3-7] 0.11
Initial nasopharyngeal-viral load (logo copies/uL) 4.4 (3.9-5.0) 4.4 (4.1-5.0) 4.3 (3.7-5.3) 0.60
RNAemia 10 (14.9%) 6 (12.8%) 4 (20.0%) 0.47
Treatment

Untreated 35 (52.2%) 27 (57.4%) 8 (40.0%) 0.29
Remdesivir+Dexamethasone 6 (9.0%) 5 (10.6%) 1 (5.0%) 0.66
Anti-SARS-CoV-2 monoclonal antibodies 25 (37.3%) 14 (29.8%) 11 (55.0%) 0.060
Outcome

30 days-mortality 0 (0%) 0 (0%) 0 (0%) >0.99

Data are presented as n (%) or median (interquartile range).
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B Std error B Std 95%Cl
Constant -0.460 2377 0.847 -5.194 - 4.273
Max. peak leukocytes -0.364 1641 -0.083 0.825 -3.631 - 2.902
Max. peak lymphocytes 0.739 0.612 0.145 0.231 -0.480 - 1.957
Max. peak neutrophils -0.162 » 1.351 -0.045 0.905 -2.852 - 2.528
Max. peak Lactate dehydrogenase 0.383 0.389 0.125 0.328 -0.391 - 1.157
Max. peak IL-6 0.470 0.180 0.419 0.011 0.112 - 0.827
Max. peak C-reactive protein -0.266 0.157 -0.180 0.094 -0.579 - 0.047
Max. peak D-dimer 0.310 0.296 0.150 0.300 -0.281 - 0.900
Max. peak ferritin 0.005 0.202 0.003 0.979 -0.397 - 0.408
Max. peak procalcitonin -0.033 | 0.123 -0.028 | 0.788 [ -0.277 - 0.211

Adjusted R-squared = 0.218. Dependent variable: Log Peak viral load
CI, confidence interval.
Std, standard.





OPS/images/fimmu.2023.1107900/crossmark.jpg
©

2

i

|





OPS/images/fimmu.2023.1107900/fimmu-14-1107900-g001.jpg
Epigenetic gPCR
[%] [%] [%] [%] [%]

[%]

[cells/pl]

125
100

@

Correlation

Bland-Altmann Plot

p=083 p<22e-16

[%]

EE)
[%]

p=0.83,p<22e-16

)
-50 « °
3 .
10 20 30 40 10 20 30 40
[%] [%]
s .
p=0.77,p<22e-16 , 100

Difference

g

[%]

7
[%]

25 5.0

[%]

75

p=0.68,p<22e-16

[%]

[%]

p=072p<22e-16 >

[cells/pl]

9000
[cells/ul]
Flow Cytometry

12000 15000

6000 9000
[cells/ul]
Mean of Measurements

12000

CD3+
T cells

CD4+
T cells

CD8+
T cells

cells

NK
cells

Treg

Leukocytes

Capillary blood
(dried blood spot)

Correlation

Bland-Altmann Plot

[%]

[%]

p=0.74, p=4.1e-05

[%]

[%]

p=0.84, p=1.3e-07

[%]

CD3+
T cells

CD4+
T cells

CD8+
T cells

50 75 100 125
[%]
o
p=092,p=5.1e-11
12
- 8=
s =
% s
o
4 E
a
5 10 15
[%]
100 S
p =085, p=8.8e-08 =
75
9 9
& 50
= = o ® . cells
25
25 5.0 75
[%]
g Treg

1.5 20

X 25
[%]

Venous blood

3.0

Mean of Measurements






OPS/images/fimmu.2023.1107900/fimmu-14-1107900-g002.jpg
B cells
4e-06
4e-12 0.7
L]
L]
L]
o
L
L]
) L]
L]
[} L)
L)
.
13 74 22

Healthy Bochum Valencia

CD8+ T cells
2e-12
8e-10 4e-04
[ 4
S
=
15
3
°
2 oo
> °
o olpe
113

Healthy Bochum Valencia

naive B cells
0.01
2e-09 0.5
L]
L L]
‘ L]
e |e .
o
o]
]
.
112 75 22

Healthy Bochum Valencia

CD3+ T cells

2e-13
60
6e-16 4e-06

Ratio

Healthy Bochum Valencia

Cell count [%]

Healthy Bochum Valencia

Healthy Bochum Valencia

1e-12

7e-12 4e-04

Healthy Bochum Valencia

Sex E female E male





OPS/images/fimmu.2022.1060840/table3.jpg
Std error B Std p-value 95%Cl

Constant 1.507 0.27 0 0.97-2.04
Age 0.013 0.005 0.327 0.007 0.004-0.023
Gender 0.189 0.146 0.12 0.201 ‘ -0.103-0.48
Vaccination schedule -0.293 0.102 -0.344 0.005 V -0.495
Days of hospitalization 0.006 0.017 0.05 0.723 -0.028- -0.091
Nasal prongs 0.155 0.152 0.099 0.31 ‘ -0.147-0.457
High flow 0.058 0.159 ‘ 0.037 0.715 -0.258-0.374
Mechanical ventilation 0.878 0.317 0.382 0.007 0.248-1.508

Adjusted R-squared= 0.27. Dependent variable: LogViral load at admission.
CI, confidence interval.
Std, standard.
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Ferritin on admission -0.186
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Adjusted R-squared = 0.226. Dependent variable: Log Viral load at admission
CI, confidence interval.

Std, standard.
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Constant ‘ 0.078 ‘ 1.903 ‘ 0.968 -3.713 - 3.868
Vaccination schedule ‘ -0.222 ‘ 0.100 -0.259 ‘ 0.020 -0.42 2- -0.022
Lactate dehydrogenase on admission ‘ 0.669 ‘ 0.506 0.150 ‘ 0.190 -0.338 - 1.676
D-dimer on admission ‘ 0.778 ‘ 0.326 0.248 ‘ 0.019 0.130 - 1.427
Subpopulation of B lymphocytes at admission ‘ -0.527 ‘ 0.255 -0.239 ‘ 0.042 -1.034 - -0.020
Subpopulation of natural killer lymphocytes at admission ‘ -0.092 ‘ 0.282 -0.035 ‘ 0.746 -0.653 - 0.470

Adjusted R-squared = 0.199. Dependent variable: Log viral load at admission.
CI, confidence interval.
Std, standard.
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Variables Estimate (3)*  OR 95% Cl P

Weight (kg) -0.016370 09838 | 0.9217 - 1.0501 = 0.623
Age (years) -0.006394 09936  0.9250 - 1.0673 = 0.861
IL10 (pg/mL) 0.071650 10743 | 1.0187 - 1.1329 | 0.008
CClL2 (pg/mL) 0.007354 1.0074 | 1.0067 - 1.0080 | 0.027
CCL5 (pg/mL) -0.000014 1.0000 | 1.0000 - 1.0000 | 0.434
CXCL9 (pg/mL) 0.000186 1.0002 | 1.0000 - 1.0004 | 0.116
CXC10 (pg/mL) -0.000236 09998  0.9995 - 1.0000 = 0.072
(intercept) -3.811000 0.4732

CI, confidence interval; OR, odds ratio.

*Model’s internal validation: AUROC=0.8377; Z=1.1649; P=0.2441.
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CLINICAL OUTCOME,

median (IQR)
Cytokines
(pg/mL) Survivors Non-
(N=25) survivors
(N=35)
IEN-y 62.5 (60.2-65.0) 62.7 (61.4-65.2) 0.5772
TNF-o 49.2 (46.5-51.9) 49.2 (46.8-51.7) 0.8827
L2 75.4 (73.9-76.5) 76.0 (749-76.7) 0.1608
L4 59.9 (59.0-61.5) 60.5 (58.6-61.6) 0.7929
1L-6 715 (66.4-79.2) 79.9 (67.1-114.0) 0.3094
IL-8 1049.4 12315 0.1999
(734.3-1381.2) (728.9-3027.0)
IL-10 77.5 (71.5-88.9) 114.2 (99.3-173.6) <0.0001
ccL2 453.1 (302.4-1205.7) 32383 0.0002
(993.3-6024.7)
CCL5 111001 94120 0.0070
(99535-125250) (76783-110068)
CXCL9 2175.9 52718 0.0023
(1022.2-4805.2) (2551.4-14971.9)
CXCL10 644.0 (487.1-1687.1) 2591.2 0.0043
(862.5-5062.5)

*Wilcoxon-Mann-Whitney Test (Shapiro-Wilk: <0,05).
IQR, interquartile range.
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Variable ( q y (%)
Males 72 (68.6)
Smoking 10 (9.5)
Obesity ‘ 64 (61.0)
Overweight 28 (26.7)
Systemic arterial hypertension 33 (31.4)
Diabetes mellitus type 2 31(29.5)
Asthma 7(6.7)
Ischemic heart disease 7 (6.7)
Heart failure 3(2.9)
Renal failure 3(29)
Drug allergy 3(29)

Table 1. Shows the medical history of patients hospitalized of SARS-COV-2.
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Management Frequency (%)
Apixaban 104 (99)
Baricitinib 99 (94.3)
Remdesivir 97 (92.4)
Ivermectin 57 (54.3)
Zinc 56 (53.3)
Doxycycline 55 (52.4)
Epclusa 23 (21.9)
Tocilizumab 19 (18.1)
Dexamethasone 18 (17.1)
Nitric oxide 11 (10.5)
Methylprednisolone 4(3.8)
Convalescent plasma 4(3.8)
Heparin infusion 4 (3.8)
Vasopressors 4 (3.8)
Enoxaparin 3(29)
Table 2. Shows the medication given during their hospital stay.

Patients could be treated with multiple medications after “hospital stay”.
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CLINICAL OUTCOME

racteristics All patients (N=60) Survivors (N=25) Non-
Survivors (N=35)
AGE (years), median (IQR)* 67 (51-78) 59 (44-73) 69 (62-79) 0.0209
WEIGHT (kg), mean * 82183 899 % 15 763 + 11 0.0056

standard deviation**

SEX, n (%)

Male 31(517) 12 (48.0) 19 (54.3) 0.7938
Female 29 (48.3) 13 (52.0) 16 (45.7)

COMORBIDITIES, n (%)

Systemic arterial hypertension 37 (61.7) 13 (52.0) 24 (68.5) 0.2817
Obesity 27 (45.0) 16 (64.0) 11 (314) 0.0181
Diabetes mellitus 18 (30.0) 6 (24.0) 12 (34.3) 0.5685
Cardiovascular disease 14 (23.3) 3(12.0) 11 (31.4) 0.1220
Cancer 6 (10.0) 2 (8.0) 4 (11.4) 1.000
Kidney disease 4(6.7) 0 4 (11.4) 0.1333
COPD 3(5.0) 1 (4.0) 2(5.7) 1.000

SYMPTOMS, n (%)

\
Dyspnea 56 (93.3) 25 (100.0) 31 (885) 0.1333 ‘
Cough 54 (90.0) 22 (88.0) 32 (914) 0.6862 ‘
Saturation <95% 47 (78.3) 21 (84.0) 26 (74.2) 0.5275 ‘
Myalgia 40 (66.7) 19 (76.0) 21 (60.0) 0.2689 ‘
Fever 38 (63.3) 14 (56.0) 24 (68.5) 0.4169
Headache 28 (46.7) 13 (52.0) 15 (42.8) 0.6014
Sore throat 22 (36.7) 5 (20.0) 17 (48.5) 0.0310
Chills 21 (35.0) 7 (28.0) 14 (40.0) 0.4157
Anosmia 14(233) 9 (36.0) 5 (142) 0.0667
Ageusia 14(233) 9 (36.0) 5 (142) 0.0667
Diarrhea 4(6.7) 3 (12.0) 1(28) 0.2984

DURATION, median (IQR), days
Length of hospital stay 22 (14-29) 23 (16-42) 21 (13-18) 0.0924

Length of stay in the ICU 14 (10-23) 13 (11-22) 17 (7-25) 0.9340

*Wilcoxon-Mann-Whitney Test (Shapiro-Wilk: <0,05). **t-Student Test (Shapiro-Wilk: >0,05). IQR, interquartile range; COPD, chronic obstructive pulmonary disease; ICU, intensive care unit.
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A) PCC versus Mild COVID

Variable ggn;op(l; linear glsrlzréllogmtlc p-value

Thi -12.3822 -17.0287 to -7.358 <0.001 0.7855 0.6762 to 0.9122 0.002
IFNy in Thl 10.4020 -2.5682 to 23.3722 0.113 1.0277 0.9928 to 1.0638 0.120
Th2 70620 -13.6989 to -0.4250 0.038 09319 0.8691 to 0.9992 0.048
1L-4 in Th2 10.0011 5.1938 to 14.8083 <0.001 1.2992 1.0943 to 15423 0.003
IL-13 in Th2 7.3831 2.8381 to 11.9281 0.002 1.2119 1.0346 to 1.4195 0.017
Th9 18.1041 12.4896 to 23.7186 <0.001 1.2996 1.0914 to 1.5476 0.003
IL-9 in Th9 -2.1078 -6.1620 to 1.9463 0.299 0.9445 0.8493 to 1.0500 0.293
Th17 29177 1.0550 to 4.7805 0.003 1.4487 1.0941 to 1.9183 0.010
IL-17A in Th17 11871 -7.0271 to 9.4013 0771 ‘ 1.0086 09535 to 1.0669 0.763
1L-22 in Th17 29200 -7.8282 to 1.9882 0235 | 0.9459 0.8633 to 1.0365 0234
Th22 04148 -0.5045 to 1.3343 0366 1.2417 07832 to 1.9687 0357
IL-13 in Th22 -29.0250 -40.0969 to -17.9532 <0.001 ‘ 0.8905 0.8250 to 0.9612 0.003
IL-22 in Th22 -3.4579 -9.9714 to 3.0556 0.288 0.9609 0.8931 to 1.0339 0.287

B) Severe versus Mild COVID-19

Varanle B €S;inowple linear Birlary logistic
5% ClI 95% Cl

Th1 -8.7655 -14.1038 to -3.4271 0.002 0.8690 0.7823 to 0.9652 0.009
IFNyin Thl -3.2501 -13.3699 to 6.8697 0519 0.9858 0.9447 to 1.0286 0511
Th2 7.1100 -0.2656 to 14.4856 0.058 1.0570 0.9962 to 1.1216 0.067
IL-4 in Th2 26742 0.2117 to 5.1368 0.035 1.2099 1.0059 to 14554 0.043
IL-13 in Th2 07330 -3.2717 to 1.8057 0562 09518 0.8086 to 11204 0553
Th9 0.1820 -2.2258 to 2.5898 0.879 1.0136 08557 to 1.2006 0875
1L-9 in Th9 06194 -5.1565 to 3.9176 v 0784 ; 0.9867 0.8996 to 1.0822 0777
Th17 0.9255 -0.9442 to 2.7952 0.323 1.1209 0.8966 to 1.4013 0316
IL-17A in Th17 2.5648 -2.2426 to 7.3724 0.286 1.0576 0.9551 to 1.1711 0.281
IL-22 in Th17 15668 -3.4844 t0 6.6181 0533 ‘ 1.0284 09435 to 11210 0523
Th22 00315 -1.0137 to 1.0767 0952 1.0125 06858 to 14946 0950
IL-13 in Th22 167608 302453 to -3.2762 0.017 0.9389 0.8860 to 0.9950 0.033
1L-22 in Th22 -2.8870 -9.8550 to 4.0808 0405 0.9678 0.8957 to 1.0456 0407
Thi 92975 | -13.8376 to -4.7573 <0.001 0.8211 07184 to 0.9385 0.004
IFNyin Thl -4.5990 -15.8699 to 6.6718 » 0414 0.9838 09469 to 10223 0.406
Th2 7.3960 -0.2251 to 15.0171 0.057 1.0562 0.9963 to 1.1197 0.066
IL-4 in Th2 3.1827 0.7171 to 5.6482 0.013 1.2572 1.0341 to 1.5285 0.022
IL-13 in Th2 0.2080 -2.6935 to 3.1095 0.885 1.0107 0.8783 to 1.1630 0.882
Tho -0.3285 -3.1060 to 2.4490 0812 09817 0.8476 to 11371 0.806
IL-9 in Th9 -0.4383 -6.1921 to 5.3153 0.878 0.9941 0.9243 to 1.0691 0.874
Th17 24970 0.0734 to 5.0674 0.057 1.2023 09790 to 14764 0079
IL-17A in Th17 -2.0447 -7.5199 to 3.4305 0452 0.9652 08822 to 1.0561 0441
IL-22 in Th17 -1.6396 -7.5138 to 4.2345 0.575 0.9778 0.9060 to 1.0552 0.564
Th22 0.3060 -1.0153 to 1.6273 0.642 1.0788 0.7898 to 1.4737 0.633
IL-13 in Th22 200092 | -34.7782 to -5.2403 0.010 0.9276 0.8674 to 0.9920 0.028
IL-22 in Th22 -3.7089 -8.8679 to 1.4500 0.153 0.9331 0.8469 to 1.0281 0.162

CI, Confidence Interval; OR, Odds Ratio.
Significant p-values are indicated in bold letters.
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Acute infection p value

CO’\VAIIIIS—19 Severe Critical Mild Severe Critical
(e COVID-19 COVID- COVID-19 COVID-19 COVID-19
n=20 n=20 n=20 versus PCC  versus PCC  versus PCC

Age at infection, years;

modian (IGR) 43 (28-59) 50 (44-55) 53 (47-59) 42 (37-46) 06165 0.1662 0.0004

Gender male/female;

n %) 10/10 (50/50) 10/10 (50/50) 10/10 (50/50) 1/18 (5/95) 0.0033 0.0033 0.0033

Days from clinical

onset to sample, 85 (80-95) 13 (9-17) 25 (12-35) 330 (342-352) <0.0001 <0.0001 <0.0001

median (IQR)
Hospitalization due to COVID-19 ‘

LOS, days;

median (IQR) 0(0) 7 (6-11) 45 (28-80) 0(0) 1 <0.0001 <0.0001

ICU stay, days;

median (IQR) 0(0) 0(0) 18 (8-40) 0(0) 1 1 <0.0001

Symptoms during acute COVID-19 for mild, severe, and critical participants; persistent symptoms in participants with PCC ‘

z{‘;“fci‘o:‘:";'n o 16 9 (45) 13 (65) 14(75) 03203 0.1053 07311
Dyspnea: n (%) 3(15) 11 (55) 14 (70) 10 (53) 0.0187 1 03332
Fevers n (%) 12 (60) 16 (80) 15 (75) 12 (63) 1 0.3008 0.5006
Pneumonias n (%) | 1(5) 17 (85) 19 (95) 6(32) 0.0436 0.0011 <0.0001
Lethargy; n (%) 15 2(10) 6 (30) 17 (89) <0.0001 <0.0001 0.0002
Asthenia; n (%) 12 (60) 3(15) 6(30) 18 (95) 0.0197 <0.0001 <0.0001
Memory loss; n (%) 0 (0) 0(0) 0(0) 16 (84) <0.0001 <0.0001 <0.0001
Arrhythmia; n (%) 0 (0) 0(0) 0(0) 12 (63) <0.0001 <0.0001 <0.0001
Palpitations; n (%) | 0 (0) 0(0) 0(0) 6(32) 0.0202 0.0202 0.0202

Comorbidities

. (]?%i)“be'“ melttos | sy 3(15) 4(20) 165) 1 06050 03416
Dyslipidemia; n (%) | 3 (15) 5(25) 4(20) 4(21) 0.6948 1 1
Arterial 4(20) 6(30) 7(23) 2(11) 0.6614 02351 0.1274

hypertension; n (%)

Treatment during acute COVID-19 for mild, severe, and critical participants; current treatment in participants with PCC

Antibiotics 0 (0) 6(30) 14 (70) 12 (63) <0.0001 0.0562 0.7411
Anticoagulants 0(0) 6 (30) 6 (30) 6(32) 0.0083 1 1
Immunomodulators 1(5) 15 (75) 16 (80) 5(26) 0.0915 0.0038 0.0012
Antivirals 0(0) 1(5) 7 (35) 8 (42) 0.0012 0.0084 0.7475
Oxygen therapy 0 (0) 5(25) 12 (60) 1(11) 04872 0.1818 0.0004
Invasive

‘mechanical 0 (0) 0(0) 15 (75) 0(0) 1 1 <0.0001
ventilation

Exitus 0(0) 0(0) 4(20) 0(0) 1 1 0.1060

ICU, Intensive care unit; IQR, Interquartile range; LOS, Length of Hospital Stay; NSAIDs, Non-Steroidal Anti-Inflammatory Drugs; PCC, Post-COVID condition.
Significant p-values are indicated in bold letters.
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Patients/Datasets “mixed”

Critical active 11 3 14
active 8* 8 16*

Non-critical
recovered 17* 0 17*

*1 patient has data points from both stages, active and recovery.
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nAb+ (n=6) nAb- (n=6) P-Value
Age (years) 64.9 (55.3-69.0) 51.0 (46.2-63.2) 0.057%
Gender (Male) 6 6 1.00°

Duration from LT to
first SARS-CoV-2 8.5 (1.6-15.4) 4.3 (4.1-11.4) 1.000*
infection (years)

Tacrolimus daily dose

1.0 (1.0-3.0 1.0 (0-2.0 0.315°

(mg/day) ( ) (0-2.0)
MMEF/MPA or not 2:4 15 1.000°
D trati

Tug concentration 5.1 (3.9-5.1) 4.3 (0.9-4.9) 0.827°
of sirolimus
D trati

rug concentration 3.3 (1.8-4.8) 1.9 (1.0-7.0) 0.784%
of tacrolimus
Diabetes or not 3:3 0:6 0.182°

LT, liver transplant; MMF, mycophenolate mofetil; MPA, mycophenolic acid. a. Kruskal-
Wallis test, b. Fisher’s exact test.





OPS/images/fimmu.2025.1420150/fimmu-16-1420150-g003.jpg
- B
E
- CTLA-4 Acsinh Expression Level
o L2 .
Perforin 3 C14
IL-10 4 5 s C13
PD-1 3 C11
IL-4 3 | = C5
IL-17A c
Granzyme B 2 .%
TNF-a " a
IFN-y o
o
0- X
L
< B
Group % =i
[ |
B Ab- < =
I nAb+ = —
_‘ . Perforin Granzyme B
59C14 336 Cluster
1 1 cé nAb-
A 9
= - c11
590\ 59cs c13 [
>
,53(;‘\'\ 43cs C14 3
c
" ‘ 9Ce o
AN 3 3
2 “Cs o
1
L
o \ 7900 'E
Ve
o_,o X 2 GO;&P g
F o o ° <
$ o % %
v og) K = - fo C} (]
8 = o o | Q. ©
¥ 8 g g § °§ 9
0 2 = (=)
5 Cé 05 c13
2 p=00s5 EH nAb+ D g T = Ao 3 :
3 3 3 3 2.0 ;//’J, nAb. —CI _Cl
c c
5 5 o o .% .%
] ) 0 0w 15
o ) 3 3 4 3
e = = = !5. !5-
g g o a 3 X
X X X x 1.0
L L 1] L E g
< < X < c c
< < 05 - 3
: : o ' : g
< < < <

TNF-a

IL-17A

PD-1 CTLA4

Perforin





OPS/images/fimmu.2025.1420150/fimmu-16-1420150-g002.jpg
PC-nAb+
A Convalescent-nAb+ Spike-nAb+ NC-nAb+ n

o1
. 2
-3
. 4
-5
. 6
. 7
. 8
c 9
< 10
o 11
. 12
¢ 13
. 14
. 15

Convalescerit Spike C3-Spike C15-Convalescent C15-Spike

30 . 30 ® nAb+ _ 03 — 0.6 Bl nAb+ — 06
p=0016 o mgj’ P=0.006 " nAb [ % P=0055 A nAb- %

—_ n — [ ] 3 4 05 4 03
& ] X c < <

o 20 S 20 p=oos ] _% 0.2 -% 0.4 % 0.4

g g‘ ° P=0.037 @ § 0.3 @ 0.3
[ S e & &

e I - £ o g oz d oz
o 2 ° - = c =

. L e % % 0.1 ‘5 0.1
° o 3 <

T o < 00 < 00

: CD28 CTLA4 IL-10 CD28 CTLA-4 IL-10

PD-1





OPS/images/fimmu.2025.1420150/fimmu-16-1420150-g001.jpg
Neutralizing percent

=23
o

Y

inhibition (%)
o

N
o

P=0.004

IgG RBD titres (log2)

32768

32

P=0.003

nAb+ nAb-

lgG RBD titres (log2)

15000

10000

5000

20 40 60 80

Neutralizing percent
inhibition (%)

100





OPS/images/fimmu.2025.1420150/crossmark.jpg
©

2

i

|





OPS/images/fimmu.2024.1434186/table2.jpg
Reference O

Severe/Critical COVID-19 (Yes/No) No 3.420 1.587-7.745 0.0022 1.032
Sex (Male/Female) Female 2.552 1.038-6.658 0.0466 L1120
>9 days between onset of symptoms and sample collection Yes 04683 0.196-1.068 0.0776 1178
(Yes/No)
Obstructive Lung Disease (Yes/No) No 4270 1.472-13.54 0.0097 1.098
SARS-CoV-2 Nucleocapsid No 1332 0.474-3.795 0.5866 2,055
above median (Yes/No)*
S‘:;i%g:;ip:};s:’;s“ No 1208 0.469-3.073 0.6910 1642
IFN-022a above median (Yes/No)* No 1245 0.475-3.261 0.6537 1.691
IFN-B above median (Yes/No)* No 2.061 0.875-4.943 0.0994 1.367
IFN-y above median (Yes/No)* No ‘ 2.565 1.079-6.298 0.0351 1.387
dsDNA above median (Yes/No)* No 2.873 1.289-6.667 0.0113 1.181
Intercept N/A 0.043 0.011-0.147 <0.0001 N/A

O.R,, odds ratio; C.L, confidence interval; V.LF., Variance Inflation Factor; N/A, Not applicable. *See methods for an explanation on medians used.
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COVID-19

Moderate Severe/Critical

(n=96) (n=69)
Age (years) 49 (32-73) 53 (24-87) 54 (23-82) 53 (23-87)
Females/Males (n) 6/7 31/65 16/53 53/125

Time between onset of symptoms and sample

collection (days) 8 (1-31) 10 (2-22) 9 (3-19) 9 (1-31)
Length of hospital stay (days) 0 (0-6) 5(2-18) 15 (4-102) 7 (0-102)
Corticosteroid use (n, %) 0 (0%) 39 (41%) 33 (48%) 72 (40%)
Comorbidities (n, %) 9 (69%) 59 (61%) 47 (68%) 115 (65%)
Hypertension 2 (15%) 29 (30%) 23 (33%) 54 (30%)

Type 2 Diabetes 1(8%) 14 (15%) 13 (19%) 28 (16%)
Obstructive Lung Disease 2 (15%) 13 (14%) 12 (17%) 27 (15%)

All data are presented as median (range) unless indicated otherwise. Obstructive Lung Disease encompasses Asthma and COPD. N/A, Not applicable.

Healthy

(n=30)

58.5 (26-82)

10/20
N/A

N/A
N/A
N/A
N/A
N/A

N/A
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Control (n = 22)

Breakthrough COVID-19

Non-severe (n = 79)

Severe (n = 29)

Age, median (IQR), years 62 (47-73) 61 (47-68) 71 (63-78) 0.616 0006 | <0.001
Male, n (%) 19 (86.4) 41 (51.9) 19 (65.5) 0.004 0.091 0.207
BMI, median (IQR)* 24.1 (22.3-26.3) 240 (21.5-26.2) 0.886
Vaccination type, n (%)
Adenoviral vector vaccines 10 (45.5) 39 (49.4) 14 (48.3) 0.745 0.842 0.920
mRNA vaccines 12 (54.5) 40 (50.6) 15 (51.7)**
Vaccination status, n (%)
Fully vaccinated 22 (100.0) 72 (91.1) 24 (82.8) 0.342 0.062 0.298
Partially vaccinated 0(0.0) 7 (8.9) 5(17.2)
Days from vaccination to symptom 55 (48-73)*** 89 (54-120) 103 (58-157) 0.041 0.054 0.443
onset, median (IQR)
Days from symptom onset to first 4 (3-5) 5 (3-6) 0.072
sampling, median (IQR)
Charlson’s comorbidity index, 2.0 (0.0-4.0) 4.0 (3.0-5.0) <0.001
median (IQR)
Underlying disease, n (%)
Solid tumor 7(8.9) 4(13.8) 0.481
Hematologic malignancy 2(2.5) 0(0.0) >0.999
Immunosuppressant use 9 (11.4) 6(20.7) 0223
Anti-S1 1gG in early phase, median (IQR), O.D. ratio 422 (246-6.13) 8.28 (5.17-10.25) 4.99 (1.38-9.02) <0.001 = 0591 | 0.007
Clinical outcomes
In-hospital mortality, n (%) 0(0.0) 2(6.9) 0.070
Admission duration, median (IQR), days 9 (7-10) 9 (8-12) 0.035

IQR, interquartile range; BMI, body mass index.
“P values between control and non-severe groups.
®P values between control and severe groups.

<P values between non-severe and severe groups.
* The BMI of the control group was not collected.

** One case was cross-vaccinated; the first vaccine was an adenoviral vector vaccine and the second vaccine was an mRNA vaccine.

Days from last vaccination to sampling.
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Variable Univariate Multivariate

OR (95% CI) aOR (95% Cl)
Age 1.07 (1.03-1.12) 0.001 107 (1.01-1.12) 0.014
Sex
Female 1.00
Male 176 (0.73-4.26) 0210
BMI 1.03 (0.92-1.15) 0.603

Vaccination type
Adenoviral vector vaccine 1.00
mRNA vaccine 1.05 (0.45-2.45) 0.920

Vaccination status

Partially vaccinated 1.00
Fully vaccinated 0.47 (0.14-1.61) 0.227
Days from vaccination to 1.00 (0.99-1.01) 0.485

symptom onset
Charlson’s comorbidity index 1.34 (1.11-1.63) 0.003 1.01 (0.77-1.34) 0.923

Underlying discase

Solid tumor 1.65 (0.44-6.10) 0.456
Hematologic malignancy - 0.999
Immunosuppressant use 2.03 (0.65-6.32) 0.222
Anti-S1 IgG in early phase 0.85 (0.76-0.95) 0.006 0.88 (0.77-0.99) 0.037

OR, odds ratio; Cl, confidence interval; aOR, adjusted odds ratio; BMI, body mass index.
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qPCR versus flow cytometry Capillary versus venous blood

Cell type Spearman’s rho

Blalie) Bias Limit of Agreement ~ Spearman’s rho Bias Limit of Agreement

P (95% Cl) [%] (95% Cl) [%] (p-value) (95% Cl) [%] (95% Cl) [%]

T cells [%)] 0.83 (<0.0001) 16.08 (1442, 17.66 (15.31, 20.00) 0.78 (< 0.0001) <265 (553 14.40 (10.33, 18.47)
17.74) 0.23)

T helper cells 18.39 (16.56, -1.86 (-5.01,

(o] 0.83 (<0.0001) 2023) 19.56 (16.96, 22.16) 0.74 (< 0.0001) 129 15.74 (11.29, 20,19)

Cytotoxic T 12.57 (10.10, -4.05 (-7.90,

cells [%) 0.77 (<0.0001) Toon 26.27 (22.77, 29.76) 0.84 (< 0.0001) 021) 1920 (13.77, 24.63)

B cells [%] 0.81 (<0.0001) 39.551(37:43, 22.61 (19.61, 25.62) 0.92 (< 0.0001) =L18{(436, 15.92 (11.42, 20.43)
41.68) 2.01)

NK cells [%] 0.64 (<0.0001) 2804 (32,97, 35.16 (29.04, 41.28) 0.64 (< 0.0001) 28043237, 35.16 (29.04, 41.28)
-23.71) -23.71)

Regulatory T 31.44 (2847, -7.09 (-13.99,

cells [%) 0.68 (<0.0001) 44D 31.41 (27.21, 35.61) 0.62 (0.0009) 019) 34.50 (24.74, 44.26)

Leukocytes -18.75 (-20.83,

feellsil] 0.72 (<0.0001) ey 22.06 (19.12, 24.99) NA NA NA

All indicated cell types were measured with pertinent epigenetic and flow cytometry markers using venous blood (left column) or only with epigenetic markers using venous and capillary blood
samples (right column). Spearman correlation coefficient indicates rank associations between measurements of the same sample. Bias is determined as the mean relative measurement differences
between methods. Limit of agreement describes the standard deviation of the relative measurement differences.





OPS/images/fimmu.2023.1129190/crossmark.jpg
©

2

i

|





OPS/images/fimmu.2023.1129190/fimmu-14-1129190-g001.jpg
Intestinal Lumen
SARS-CoV-2-induced dysbiosis

« | Beneficial bacteria 4 @
« T Opportunistic pathogens e ’ ~
D J,Diversi;jyI I ’:
SARS-CoV-2
-8

J

1SCFAs | Commensal-derived
A A signals
A A

Lo AN 0 0 0
ARV LA RRAAS
) o ® 0 ® |

1 Gut Permeability

Intestinal Epithelium .

S Direct injury Induction of

S to IECs |IEC apoptosis J
Lamina Propria ~~~~-_~ \
SN Immune system *
activation
AAO O

olerogenic
ITypel &l DCs
IFN responses l l l

AN

« Endotoxemia
¢ Influx of xenobiotics and
dietary antigens

l o Bacterial Translocation

@ X J
)L 0® ° 0. @ e
Immune system 7\ ® 8
evasion ! slgA { Anti-inflammatory mediators 1 Pro-inflammatory mediators (IL-1, IL6, TNF-a, ROS)
(IL-10, TGF-B) 1 Chemoattractant molecules (CXCL10,CCL5)

00 g ®0®
o® "o
VIRAL DISSEMINATION HYPERINFLAMM Y RESPONSE SYSTEMIC CYTOKINOE RELEASE





OPS/images/fimmu.2023.1129190/table1.jpg
Parameter

Endpoints of the study

Results of the study

studied
Ser Identification of the association between serum calprotectin, neutrophil  Correlation between serum calprotectin levels and disease severity.
rum
SR secretory proteins, and other inflammatory mediators with COVID-19 Significant increase in serum calprotectin along with worsening of (31)
P severity and outcome. clinical symptoms of the disease.
Significant association between COVID-19 pneumonia and high
levels of fecal cal, tin.
Fecal Identification of an association between fecal calprotectin and the e‘_’e S p.rolec i, . .
- . T Higher calprotectin levels in women compared with men, (26)
calprotectin severity of pulmonary manifestations caused by COVID-19. . g :
suggesting that men with high calprotectin have a worse
prognosis.
SMAACAM is considered a possible integrated marker of
inflammation and homeostatic immune migration.
Cross-sectional and longitudinal study of sMAdCAM at different
SMAdCAM ross-sec ‘,om an ong]vu inal study of s ) 4a Hierent Association of sSMAdCAM with COVID-19 disease progression (68)
stages of disease progression after SARS-CoV-2 infection. . ) . .
and generation of potentially neutralizing antibody responses
against SARS-CoV-2.
Evaluation of immunological and clinical characteristics of APS-1 ?'e'e’“s;‘“{; l’('e“f‘;_afm::g a:"c'_a""z‘:)d“;ls;’l;ype 5 IFNS_W:E an -
increased risk of life-threatenin; -19 pneumonia at any
patients during the course of SARS-CoV-2 infection. & E 4
age.
Autoantibodies  High-throughput autoantibody screening for autoantibodies against Pathologic role of exoproteome-targeted autoantibodies in SARS-
to type I IFNs 2,770 extracellular and secreted proteins in SARS-CoV-2- infected CoV-2 infection and differential impact on immune function and (54)
individuals. clinical course.
Evaluation of the prevalence of IFN I autoantibodies and their In the presence of IFN-I autoantibodies, there is an increased risk 7
association with clinical disease progression. of developing severe COVID-19.
Inb f IRF7- and TLR3-d dent TIFN i i
Type I IFN Assessment of the role of monogenic inborn errors in the development 5 orn‘ oo i e Epen en' tlype 5 lm‘mumty
; ¢ 5 cause life-threatening COVID-19 pneumonia in patients without (59)
variants of life-threatening COVID-19. . ) .
prior severe infection.
Increased fecal levels of IL-8 and lower fecal levels of IL-10 in
Cytokines i Evaluation of cytokines, inflammatory markers, viral RNA, COVID-19 hospitalized patients.
okines in
stZ:)I sa:: s microbiome composition, and antibody responses in stool samples Fecal IL-23 is higher in more severe COVID-19. (63)
P from hospitalized COVID-19 patients. Intestinal virus-specific IgA responses are associated with more
severe disease.
Secretory IgA Characterization of IgA response to SARS-CoV-2 after COVID-19 Responses against dimeric IgA may be a valuable tool for 79
antibodies diagnosis. protection against SARS-CoV-2 and for vaccine efficacy.
Poor prognosis is associated with:
1Bacteroides, 1 Parabacteroides, 1Clostridium, 1Bifidobacterium,
. . Association of intestinal microflora alterations with COVID-19 and its 1Ruminococcus, 1 Campylobacter, 1Rothia, 1Enterococcus, and
Gut microbiota 11

L-FABP, intestinal fatty-acid binding protein; sMAJCAM, soluble mucosal addressin cell adhesion molecule; IEN, interferon; APS-1, autoimmune polyendocrine syndrome type 1; IRF7, IEN

severity.

1Aspergillus spp.
|Roseburia, | Eubacterium, |Lachnospira, | Faecalibacterium, and
|Firmicutes/Bacteroidetes ratio.

regulatory factor 7, toll-like receptor 3, TLR3; IgA, immunoglobulin A. Upward arrows are used to indicate an increase, and downward arrows indicate a decrease.
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