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Editorial on the Research Topic

Roles of gut microbiota in cancers of the gastrointestinal tract

The gut microbiota is a dynamic ecosystem residing within the human gastrointestinal

tract, and is progressively recognized as a crucial factor influencing cancer initiation,

progression, and treatment response. Mounting evidence underscores the microbiota’s role

as a key regulator of host immunity, metabolism, and inflammation, which are pathways

linked to carcinogenesis. Of particular interest is the microbiota’s involvement in digestive

cancers, including colorectal cancer (CRC), gastric cancer, and esophageal cancer, where

microbial dysbiosis has been consistently reported (Garrett, 2019; Wong and Yu, 2019).

Despite extensive research into CRC microbiota, the gastric and esophageal microbiotas

were relatively less studied until recently; however, these areas are now garnering increased

research attention as potential sources of novel biomarkers and therapeutic targets.

Research trend and microbial pathogenesis in
digestive cancers

A recent bibliometric analysis by Ke et al. identifies a clear and accelerating trend

toward investigating the gastric microbiota in gastric cancer research. This comprehensive

study reveals a notable shift from the previously dominant focus on Helicobacter pylori

alone toward broader exploration of the gastric microbiota, including emerging non-

Helicobacter bacteria (e.g., Fusobacterium nucleatum, Streptococcus anginosus). In this

connection, F. nucleatum could promote immune evasion in gastric cancer via recruiting

tumor-associated neutrophils while S. anginosus could promote gastric tumorigenesis

through the Annexin A2-mitogen-activated protein kinase axis (Zhang et al., 2025; Fu

et al., 2024). The study by Ke et al. highlights the increasing emphasis on elucidating

the microbial mechanisms underlying gastric carcinogenesis. Similarly, a systematic

review of case-control studies by Zhang R. et al. provides evidence that gastric cancer

patients harbor distinct microbial signatures, such as increased Lactobacillus spp. and

Streptococcus spp. and decreased Porphyromonas spp. and Rothia spp.. Such findings
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underscore the necessity for consensus microbial signatures across

diverse populations and methodologies, reflecting the complexity

and specificity of microbiota alterations in cancer.

Tomove beyond observational associations toward establishing

causality, increased efforts are focusing on methodologies such

as Mendelian randomization. Recent analyses by Ma et al. for

CRC and Zhang Z. et al. for esophageal cancer have pinpointed

potentially causal microbial taxa in carcinogenesis. Ma et al.

demonstrated the positive associations of Porphyromonadaceae

spp., Lachnospiraceae UCG010, Lachnospira, and Sellimonas with

CRC. Notably, although Lachnospiraceae UCG010 exhibited a

negative correlation with interleukin-10, the analysis suggested

that the CRC-promoting effect of Lachnospiraceae UCG010

was independent of this cytokine. Likewise, Zhang Z. et al.

identified the negative associations of Romboutsia, Lachnospira,

and Eubacterium with esophageal cancer. These protective

microbes might protect against esophageal cancer formation

through enhancing cellular resistance to endoplasmic reticulum

stress, inhibiting inflammatory responses, and scavenging free

radicals. The authors also identified the potential pathogenic

role for Veillonella in esophageal cancer. To this end,

this bacterium has been shown to promote inflammatory

responses via activating the Toll-like receptor 4 pathway

in macrophages. These studies reinforce the importance

of distinguishing correlation from causation, guiding the

identification of microbial culprits, and refining targets for

microbiota-based interventions.

While colorectal microbiota research remains robust, the

previously less-explored gastric and esophageal microbiotas are

now emerging as some areas of research focus. Future efforts must

aim for cross-population validation, interdisciplinary collaboration

and biological insight to fully harness the microbiota’s potential

for translation.

Microbiota-based biomarkers for
digestive cancers

Over the last decade, the scientific community has witnessed

a rapid expansion in the number of studies utilizing gut

microbes as biomarkers for the detection of neoplastic lesions,

especially those of the digestive organs. In this Research Topic,

Cui et al. introduces a deep learning model named multi-view

convolutional variational information bottleneck (MV-CVIB) for

predicting metastatic colorectal cancer (mCRC) using 16S rDNA

sequencing-based gut microbiota data. The model integrates

microbial abundance data with nearest neighbor information,

achieving an area under the receiver operating characteristic curve

(AUROC) of >0.9 on the mCRC dataset and demonstrating

good performance for distinguishing CRC patients from healthy

subjects on two additional CRC datasets (AUROC = 0.82 and

0.83, respectively). The study also identified significant microbial

differences between mCRC and non-mCRC patients, particularly

the enrichment of Propionibacterium acnes in the former. MV-

CVIB thus represents a new deep learning tool for microbiota-

based disease classification. Similarly, Zhou et al. compared the

microbial communities in mCRC and non-mCRC, but they

focused on tissue-associated instead of luminal bacteria. The

researchers found that mCRC was characterized by an increase

in Bacteroides, particularly B. fragilis and B. uniformis, and a

decrease in Streptococcus. Interestingly, microbial differences in

tumor-adjacent tissues from mCRC and non-mCRC persisted,

indicating that a microbial “field defect” might contribute to CRC

metastasis. In terms of the classification performance, these bacteria

only exhibited a modest accuracy (AUROC = 0.64 for Bacteroides

or Streptococcus) but their combination with carcinoembryonic

antigen (CEA) improved the prediction (AUROC = 0.71 for

CEA + Streptococcus). This study again suggests a potential

role of the gut microbiota in CRC metastasis. Unlike the role

in CRC, authors of another article in this Research Topic

identified the enrichment of Streptococcus in the gut microbiota

among patients with pancreatic cancer (PC), especially those

with liver metastasis (PCLM) (Yang et al.). In this respect,

Streptococcus could discriminate PC patients and PCLM patients

from healthy subjects and non-metastatic PC patients, respectively,

with high accuracy (AUROC = 0.93 for PC; AUROC = 0.80

for PCLM).

Different from the bacteriome, the use of plasmids (small

circular, non-chromosomal DNA molecules found in bacteria)

as biomarkers has been understudied. In this connection, Cai

et al. examined the potential of using gut plasmids as novel

diagnostic biomarkers for CRC. By analyzing metagenomic data

from over 1,200 samples across eight cohorts, the researchers

identified 198 plasmid sequences differentially abundant in CRC

patients. A diagnostic model using 21 plasmid markers achieved

a moderate accuracy with an AUROC of 0.70. Combining the

plasmid markers with the bacterial markers further improved

the accuracy (mean AUROC = 0.80). These findings underscore

the utility of plasmids in enhancing diagnostic models despite

the current challenges in their detection from short-read

sequencing data.

Microbiota-based therapeutics for
digestive cancers

Inflammatory bowel disease, including ulcerative colitis, is

associated with an increased risk of CRC whereas the traditional

Chinese medicine maggot has demonstrated anti-inflammatory

properties in other disease contexts. In the work by Tang

et al., maggot extract was shown to reverse the alterations

of the gut microbiota and the associated metabolome in a

murine model of colitis-associated CRC. Importantly, the reversal

of dysbiosis was accompanied by the improvement of gut

barrier function and the alleviation of inflammatory signals,

hinting at the therapeutic potential of the restoration of a

healthy gut microbiota in preventing colitis-associated CRC.

Feng et al. also elegantly summarize how the gut microbiota

might interact with the tumor microenvironment that has a

direct impact on the therapeutic response, especially in the

context of cancer immunotherapy. For instance, Bifidobacterium

pseudolongum could drive T helper 1 cell differentiation and

its high abundance is associated with response to immune

checkpoint inhibitors. Short-chain fatty acids produced by

commensals can also promote the memory potential of activated

Frontiers inMicrobiology 02 frontiersin.org6

https://doi.org/10.3389/fmicb.2025.1585090
https://doi.org/10.3389/fmicb.2024.1309111
https://doi.org/10.3389/fmicb.2023.1309596
https://doi.org/10.3389/fmicb.2024.1309111
https://doi.org/10.3389/fmicb.2023.1309596
https://doi.org/10.3389/fmicb.2023.1238199
https://doi.org/10.3389/fmicb.2023.1133607
https://doi.org/10.3389/fmicb.2023.1184869
https://doi.org/10.3389/fmicb.2023.1130446
https://doi.org/10.3389/fmicb.2023.1143463
https://doi.org/10.3389/fmicb.2024.1287077
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Wong and Wu 10.3389/fmicb.2025.1585090

CD8+ T cells, contributing to the responsiveness to immune

checkpoint inhibitors.

Concluding remarks

This Research Topic represents a notable collection of

articles highlighting the current research trends in the field

of gut microbiota in cancers of the gastrointestinal tract.

Pathogenic roles of specific gut microbes have been scrutinized

by systematic reviews and Mendelian randomization. With

clinical relevance, several articles highlight the potential of

using gut microbial biomarkers for non-invasive screening of

gastrointestinal cancers and predicting their metastasis. However,

the small sample size of some of these studies may raise

concerns about overfitting. Their retrospective design also

limits the generalizability. Larger-cohort validation, particularly

across geographic regions and with subjects recruited in a

prospective manner, is thus needed to confirm the clinical utility.

Therapeutically, manipulating the gut microbiota might hold

promise for preventing gastrointestinal cancers and improving

response to systemic therapies.
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Inflammatory responses and intestinal microbiome play a crucial role in the

progression of colitis-associated carcinoma (CAC). The traditional Chinese

medicine maggot has been widely known owing to its clinical application and

anti-inflammatory function. In this study, we investigated the preventive e�ects of

maggot extract (ME) by intragastric administration prior to azoxymethane (AOM)

and dextran sulfate sodium (DSS)-induced CAC in mice. The results showed

that ME had superior advantages in ameliorating disease activity index score and

inflammatory phenotype, in comparison with the AOM/DSS group. The number

and size of polypoid colonic tumors were decreased after pre-administration of

ME. In addition, ME was found to reverse the downregulation of tight junction

proteins (zonula occluden-1 and occluding) while suppressing the levels of

inflammatory factors (IL-1β and IL-6) in models. Moreover, Toll-like receptor

4 (TLR4) mediated intracellular nuclear factor-κB (NF-κB)-containing signaling

cascades, including inducible nitric oxide synthase and cyclooxygenase-2, and

exhibited decreasing expression in the mice model after ME pre-administration.

16s rRNA analysis and untargeted-metabolomics profiling of fecal samples

inferred that ME revealed ideal prevention of intestinal dysbiosis in CAC mice,

accompanied by and correlatedwith alterations in the composition ofmetabolites.

Overall, ME pre-administration might be a chemo-preventive candidate in the

initiation and development of CAC.

KEYWORDS

maggot extract (ME), inflammation, colitis-associated colon cancer (CAC), intestinal

microbiota, metabolome
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1. Introduction

Colorectal cancer (CRC) is the third most commonmalignancy

and the second mortality of cancer death globally (Siegel et al.,

2020). Inflammatory factors, such as bowel disease (IBD), play

an etiologic part in CRC, predisposing patients to a high

risk of morbidity and cancerization (Blackman et al., 2021).

The epidemiological investigation has indicated that IBD cancer

accounts for only 1–2% of CRC, but it is the main cause of

death for IBD patients that is often recurrent (Li et al., 2019).

Indeed, such a causal link between chronic inflammation and

colitis-associated carcinoma (CAC) has served to be confirmed.

A tumor microenvironment containing the immune cells that

secrete proinflammatory and anti-inflammatory factors and release

reactive oxygen and nitrogen species have been suspected to

promote tumor initiation and progression (Chen et al., 2021;

Overacre-Delgoffe et al., 2021). Another direct example of the

transformation of inflammatory cancer was supplied by mucosa-

associated lymphoid tissue (MALT) lymphoma, which was caused

by chronic infection from persistent activation of B cells to genetic

arrangement leading to carcinogenesis eventually (Thieblemont

et al., 2014). Anti-inflammatory treatment is very important and

effective, so chemo-prevention strategies are necessary. Nowadays,

food-origin and herb-origin products with diverse functions are

emerged as novel chemo-prevention agents and are used in clinical

medicine owing to their anti-inflammatory effects and safe benefits

(Chung et al., 2018; Fong et al., 2020; Chen et al., 2021; Iqbal et al.,

2021; Sameni et al., 2021). In addition, newer precision medicine,

such as aspirin (acetylsalicylic acid), is placed with great hopes to

get better control of the potential risks of cancerization (Gilligan

et al., 2019; Hua et al., 2019).

The gut microbiome (GMB) is very large, and its interaction

with the human body is highly complex. Studies had shown that

the balance of GMB played a crucial role in intestinal immunity

and host health, and changes in GMB might lead to a variety of

metabolomics through their metabolites (Stutz et al., 2022). On the

other hand, dysbiosis of the microbial population may promote

mucosal injury by means of driving gut inflammation (Bajic et al.,

2020; Dooyema et al., 2022). Accumulating evidence suggests that

intestinal microorganism disorder in CAC patients induces an

abnormal immune response, destroys intestinal homeostasis, and

eventually leads to the loss of intestinal mucosal barrier integrity

(Tilg et al., 2020). Pathogenic or probiotic bacterial infection is

a key part of the triggering of IBD cancerization. For instance,

Akkermansia muciniphila, a type of probiotic, can repair the gut

barrier and blunt CAC bymodulation of immune cells (Wang et al.,

2022a). A link between dysbacteriosis and CAC was validated. It

is, thus, urgent to find approaches to reverse intestinal flora and

barrier function as a notable strategy in the prevention of CAC

(Wang et al., 2020a; Chang et al., 2022).

The Chinese medicine maggot is the larva of Chrysomya

megacephala (Fabricius, named “larvae of Lucilia sericata” in Latin)

and its relatives, belonging to the Calliphoridae family. Maggot

was widely used in traditional prescriptions and such classic works

as “Compendium of Materia Medica” originated from the 16th

century in the Ming dynasty and listed thousands of natural herb

medicines described in detail. Maggot therapy can accelerate the

removal of necrotic tissue and recovery of wounds, which shortens

the treatment process of patients with diabetic foot (Bazalinski

et al., 2022). Recent research studies have shown that the chemical

composition of a maggot is made up of protein, fatty acid, chitin,

etc (Taowen et al., 2022). The clinical application of the maggot

is still widely concerned, although maggot standards continue to

be improved. Pharmacological effects were also confirmed such

as antimicrobial acerating, wound healing, blood glucose and

lipid lowering, anti-inflammatory, immune regulation, and tissue

reconstruction (Wang et al., 2020b, 2021; Lema et al., 2022; Shi

et al., 2022). At present, the function of maggot extract (ME) on

CAC still remains unknown, and whether ME pre-administration

plays a chemo-preventive role in the initiation and development of

CAC has not been reported.

Here, we focused on the preventive effects of ME by intragastric

treatment prior to azoxymethane and dextran sulfate sodium

(AOM/DSS)-induced CAC. In addition, the possible mechanism

was investigated from the aspects of intestinal barrier repairing,

inflammatory factor decreasing, and fecal microbial composition

changing in the CAC model. These alterations were coupled

and related to fecal non-targeted metabolic substance variation.

Integrative analysis was used to clarify the relationship between gut

microbiota and fecal metabolites in the divided groups.

2. Materials and methods

2.1. Animals and ethical considerations

The experiment was performed on male C57BL/6 mice

approximately 6 weeks old (Model Animal Research Center

of Nanjing University), housing in a specific pathogen-free

(SPF) environment (temperature 22±2◦C; controlled humidity

50%;12/12 h day/night cycles). Ethical approval was listed by the

animal ethics committee with a license. Animals were randomly

assigned into four experimental groups (n = 6 in each group), as

shown in Figure 1A: (a) normal control: sterile water daily, (b) the

CACmodel: azoxymethane (AOM) and dextran sulfate sodium salt

(DSS), (c) ME pre-administration in model mice AOM/DSS plus

ME administration consecutively for 21 days, and (d) only ME

administration consecutively for 21 days.

Animals were cohoused for 1 week before the experiment.

The control group drank sterile water every day. For the ME

administrated group, the individuals were given (i.g.) 1 g/kg every

day for 21 days from the first day of the experiment (day 1).

The model mice were also injected intraperitoneally (i.p.) with

12.5 mg/kg of AOM (Sigma–Aldrich) per mouse on the first day

(day 1). After a week, 2.5% DSS (MW36-50 kDa, MP biomedicals,

United States) was given in drinking water for 5 days in the first

cycle, followed by regular sterile water for the next 2 weeks. If mice

lost 35% of their body weight, DSS can be replaced by drinking

water, and then, DSS was allowed to continue for extra 2–5 days

after mice were recovered from the loss. The cycle was repeated two

times (5 days of 2%DSS), and all mice were then sacrificed 2 weeks

later since the last cycle.

The colon was separated longitudinally, washed with

phosphate buffer saline (PBS), and fixed as a Swiss roll in 4%

paraformaldehyde after counting the number and size of polys in

a blind trial. The specimens were embedded in paraffin, and serial
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FIGURE 1

E�ects of ME administration on the development of AOM/DSS-induced tumorigenesis in C57BL/6 mice (n = 6). (A) protocol, (B) body weight

changes and the ratio of weight changes to the starting weight, (C) macroscopic morphologies of colon and spleen, (D) colon length, (E) spleen

length, (F) the radio of colon weight to body weight, (G) DAI.
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sections were stained by HE (Hematoxylin–Eosin staining), IHC

(immunohistochemistry), or IF (immunofluorescence). Blood,

colon, liver, spleen, lung, and kidney tissues were collected for

further experiments. During the experiment, the weight of mice

was measured weekly, and stool was collected two times a week.

The damage of disease was scored by the disease activity index

(DAI), including weight loss, stool consistency, and bleeding. The

scores were recorded after dividing the sum of subfractions by 3

and ranged from 0 to 4 individually.

2.2. ME preparation

The preparation and dose of ME were performed based on

previous articles (Wang et al., 2019, 2021). In brief, blowflies were

fed from larvae to maggots on wheat seeds, powdered milk, and

yeast extracts. Large amounts of fresh maggot were flushed three

times with water. After freeze-drying, maggots were ground into

powder. Then, water solutions were obtained from PBS addition

(twice the volume of the power), and the supernatant was collected

by centrifugation at 15,000 r/min for 10min after water-bath

processing. Finally, the solutions were filtered through a 0.22µm

membrane. The ME stock solution (500 mg/ml) was obtained.

2.3. Histological analysis (HE, IHC, and IF)

Tissues were prepared for sections (5µm), stepwise (200µm)

through the paraffin block. The slides were dehydrated by gradient

alcohol and stained with HE. The colon tissue of epithelial injury,

inflammatory infiltration, and dysplastic hyperplasia was evaluated

by pathologists separately.

As described above for IHC, the slides were blocked with

5% BSA for 1 h and incubated with primary antibody against

ZO-1 (GB111402, Servicebio, China) and occluding (27260-1-ap,

Proteintech, China) overnight at 4◦C followed by incubation with

secondary antibody for 1 h at room temperature. The sections were

stained with DAB and then counterstained with hematoxylin.

To stain immunofluorescence, the experiment was carried out

as mentioned above until the antigen is retrieved by citric acid

buffer (PH6.0) through the microwave. Then, the slides were

incubated with primary antibody overnight at 4◦C after blocking.

The secondary antibody conjugated with Alexa Flour 488 or 594

was used to incubate with the slides for immunofluorescence and

DAPI for nuclei. The stained specimens were scanned by the laser

scanning confocal microscopy (Leica DMIRE2, Germany).

2.4. Enzyme-linked immunosorbent assay
(ELISA)

IL-1β and IL-6 in serum obtained on the last day weremeasured

by mouse ELISA kit (Solarbio, China). The assays were executed

according to themanufacturers’ instructions. The absorbance of the

specimen was detected at 450 nm by a microplate reader.

2.5. Western blot analysis

Colon tissue was cut and stored at −80◦C in RIPA buffer

(Beyotime, China) mixed with phosphatase inhibitor (Thermos

Scientific, CA, United States) and protease inhibitor cocktail

(Thermos Scientific, CA, United States). The lysates were

centrifuged at 4◦C (12,000 rpm, 20min), and the supernatant was

obtained. Protein quantification was performed by Enhanced BCA

Protein Assay Kit (Beyotime, China). Proteins (30µg) per sample

were used for Western blot analysis.

2.6. Quantitative Real-Time PCR assay

Tissue Total RNA Isolation Kit (Vayzme, China) was used to

extract total RNA according to the protocol. Reverse transcription

was performed to synthesize cDNA using PrimeScriptTM RT

Master Mix (Takara, China), and then, cDNA was used. The

primer sequences were shown in our previous studies (Wang et al.,

2019). The relative expression of target mRNA was normalized by

GAPDH and calculated a 2-1Ct after obtaining a mean 1C value.

All results in triplicate were repeated three times.

2.7. 16s DNA sequencing

DNA was extracted from 200mg stool of each sample.

Specific primers with barcodes were used to amplify the

conserved regions (V3-V4 region) (Guo et al., 2017) of

ribosome RNA (rRNA). The primers were listed as follows:

forward 5′-CCTACGGGNGGCWGCAG-3′ and reverse 5′-

GGACTACHVGGGTATCTAAT-3′. The true PCR amplification

products, with an average length of 466 base pairs, were recovered

from the gel and quantified by the QuantiFluorTM fluorometer.

The purified products were mixed in equal volumes and connected

with sequencing adaptors to construct a sequencing library on the

Illumina PE250 platform by Gene Denovo Biotechnology Co., Ltd

(Guangzhou, China).

2.8. Bioinformatics processing

Sequencing reads were filtered to remove low-quality reads by

FASTP (Chen et al., 2018). The rest of the reads was spliced paired-

end with FLASH (version 1.2.11) and concatenated to create raw

tags (Magoc and Salzberg, 2011). Then, raw tags were assembled,

and clean tags were extracted (Bokulich et al., 2013). After strict

quality checks, clean tags were clustered, and the chimeric tag

(Edgar et al., 2011) was possibly removed by the UCHIM algorithm

in USEARCH version 9.2.64 software (Supplementary Table S1).

The Greengene database (version gg_13_5) was used as standard

reference data (DeSantis et al., 2006). Finally, effective tags

were obtained, and the abundance of operational taxonomic

units (OTUs) was analyzed based on the effective tags by using

USEARCH software (Edgar, 2013). Qiime (version 1.9.1) was used

to estimate alpha and beta diversity indices (Caporaso et al., 2010)

on a thin table of OTUs. The Shannon and Simpson metrics
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and ACE and Chao1 estimators were analyzed. The information

of structural differences among samples was summarized from

weighted-unifrac distances by an unweighted pair-group method

with arithmetic means (UPGMA) tree. The linear discriminant

analysis effect size (LEfSe) was employed to analyze differences

between the groups shown by linear discriminant scores. Maps

visualizing the principal coordinates analysis (PCoA) plots from

the weighted and unweighted unifrac distances were drawn in

R with the ggplot2, labdsv, and vegan packages (Lozupone and

Knight, 2005; Hoegh and Roberts, 2020; Gao et al., 2021a; Liu

et al., 2021). The characteristics of the microbiome were displayed

at the taxonomic levels of phylum and family. A combination

of PICRUSt2 (phylogenetic investigation of communities by

reconstruction of unobserved states) and the Integrated Microbial

Genomes database was used to construct phylogenetic trees,

predicting bacterial genomics. Functions were, then, predicted

based on the gene families and abundances using the Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways. For the

multivariate patterns represented numerically, outlier data were

eliminated to prevent interference with the analysis. Items of

information from 20 samples (n = 5 per group) were incorporated

into the research.

2.9. Metabolomics profiling: ultra
high-performance liquid
chromatography-mass spectrometry
(UHPLC-MS)

The stool samples were frozen at −80◦C before a UHPLC-MS

analysis. Each sample (50mg) was added to a precooled solution

of methanol/acetonitrile/water (2:2:1, v/v/v), which was mixed

by ultrasound at a low temperature for 30min. After standing

for 10min at −20◦C, the mixture was centrifuged at 14,000 g, at

4◦C for 20min, and the supernatant was dried under vacuum.

During mass spectrometry, 100 µl of aqueous acetonitrile solution

(acetonitrile: water =1:1, v/v) per sample was added to redissolve

thoroughly and centrifuged at 14,000 g,at 4◦C for 15min. Samples

of quality control were performed by blending 10µl of every sample

and then profiling with the whole samples meanwhile. QC got

involved termly and studied at intervals of five samples to check

the repeatability of the whole analysis.

The derivative was injected into a UHPLC (1290 Infinity LC,

Agilent Technologies) coupled to a quadrupole time-of-flight (AB

Sciex TripleTOF 6600) for analyzing untargeted metabolomics

profiling of 20 fecal samples. A 2.1mm × 100mm ACQUIY

UPLC BEH 1.7µm column (waters, Ireland) was employed for

RPLC separation.

2.10. Metabolomics data mining

MS raw (.raw) documents were transformed into the mzML

format by proteowizard and were analyzed in R with the

XCMS package, consisting of retention time alignment, peak

identification, and peaks matching. After the preprocessing

of the data matrix, it was formed including mass-to-charge

ratio, retention time, and peak area. Precursor molecules

in positive and negative ion modes were accessed, and the

molecules were normalized to obtain quantitative results. Identified

metabolites were projected to KEGG pathways. The detailed

descriptions of data mining and statistical analysis are presented

in Supplementary material.

2.11. Statistical analysis

The Kruskal–Wallis test was accomplished by LEFse to value

the differences among the microbiota compositions of the four

compartments. Moreover, the selected differences were compared

between any two groups by the Wilcoxon rank sum test. The final

differences were ranked using the results of a linear discriminant

analysis (LDA). The VIP value of multivariate statistical analysis of

OPLS-DA was combined with the P-value of univariate statistical

analysis in a T-test, screening the differential metabolites between

different groups. The threshold of differences was as follows: VIP≥

1 in the OPLS-DA as well as p<0.05 in the t-test. The correlation

between gut microbiota communities and fecal metabolites was

analyzed by Pearson’s correlation coefficients. The p-value was

calculated based on Fisher’s Z-transformation. Differences were

statistically significant at p < 0.05.

3. Results

3.1. E�ects of ME administration on the
development of AOM/DSS-induced
tumorigenesis in C57BL/6 mice

During a 15-week period in an AOM/DSS-induced

tumorigenesis, weight loss was observed compared with the

NC group, particularly DSS water drinking in the 2nd, 5th, and 8th

weeks. Upon changing from DSS to sterile water, the body weight

was recovered. There were significant differences in the ME-treated

group throughout the period of 21 days, but no differences were

observed on the day of sacrifice (Figure 1B). ME treated for 21

days in mice proved no toxicity in the aspects of gross abnormality

and serological indicators (Supplementary Figure S1). Except for

the NC and ME groups, the mice in the rest of the two groups

caused bloody stool and ulcers (not shown). Morphology was

visibly altered in the terms of the colon and spleen (Figures 1C–E).

As shown in Figures 1D, F, AOM/DSS caused length shortening

and weight reduction in the colon tissue. However, the length and

weight of the large bowel in ME-treated CAC mice were improved

compared with those in the AOM/DSS group (p < 0.05). Obvious

splenomegaly led by AOM/DSS was also visible while an effective

reversal on the enlargement of the spleen was shown compared

with the supplement of ME in the models. Compared with the

control group, the DAI was scored on the last day, increasing in

AOM/DSS-exposed mice, and pre-administration of ME showed

improvement clearly (Figure 1G).
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3.2. Decreasing severity of inflammation
and carcinogenesis in AOM/DSS-treated
mice after ME administration

To investigate the function of ME in CAC, the model we

used was administrated by a dose of AOM and three cycles of

DSS (Figure 1A). The repeated DSS-induced IBD, as a result

of chronic inflammation, slightly increases the incidence of

AOM-caused tumors. We noticed a dramatic reduction of

approximately 67% in polypoid colonic tumor incidence in the

ME pre-administration group (Figure 2B). These tumors were

macroscopically located in the middle and distal colon (Figure 2A),

where inflammation induced by DSS occurs severely, indicating

that the severity of colitis was identified with the incidence of a

tumor. We divided the tumors into three types: 0–2, 2–4, and

>4mm; a larger diameter means the cancer is more serious.

Significant differences in size between tumors in model mice and

ME-treated models could be detected, indicating that ME pre-

administration alleviates inflammation-associated carcinogenesis

in the model colon (Figure 2C). The tumors were largely adenomas

with low-grade or high-grade differentiation in intraepithelial

neoplasia and different degrees of inflammatory cell invasion

(Figures 2D–I, Supplementary Figures S2A, B). A decreasing

expression of β-catenin and ki67, very representative markers in

colorectal carcinogenesis, was observed in a colonic crypt in the

ME-treated group (Figures 2J–L).

3.3. E�ects of ME administration on the
regulation of tight junction proteins and
inflammatory responses in
AOM/DSS-treated mice

Pre-administration of ME was found to reverse the

downregulation of zonula occluden-1 (ZO-1) and occluding,

which were significantly reduced in the AOM/DSS group

(Figures 3A, B). As a result, we suggested that the effects of ME

on the CAC model mice were in connection with the regulation

of ZO-1 and occluding, functioning in the aspects of the intestinal

mucosal barrier homeostasis. The reports showed that CAC had a

sign with the production of a variety of inflammatory factors such

as IL-1β and IL-6. Our ELISA results demonstrated that the serum

levels of IL-1β and IL-6 expanding in mice treated with AOM/DSS

were decreased by ME (Figures 3C, D). Meanwhile, it was also

shown that after ME administration, the impression of AOM/DSS

on CAC was partially offset in the mRNA expression of IL-1β and

IL-6 in colonic tissues (Figure 3E).

Colitis-associated carcinoma has proven to be a complicated

process. In AOM/DSS-induced mice, Toll-like receptor 4 (TLR4)

mediated intracellular nuclear factor-κB (NF-κB)-containing

signaling cascades, encouraging the progression of cancer. After

NF-κB was activated, it leads to the release of pro-inflammatory

mediators including interleukin-1β (IL-1β), interleukin-6 (IL-6),

inducible nitric oxide synthase (iNOS), and cyclooxygenase-2

(COX-2). Our results of immunofluorescence staining exhibited

that the positive cells of TLR4, NF-κB, iNOS, and COX2 showed

the highest expression in the colon tissue of the AOM/DSS group.

However, we observed that the levels of TLR4, NF-κB, iNOS,

and COX2 in the ME pre-administrated group showed lower

expression than that in the AOM/DSS group. Data revealed

that the increasing expression of TLR4, NF-κB, iNOS, and

COX2 in the AOM/DSS group was inhibited by ME treatment

(Figure 4).

3.4. Mice treated by ME and fecal
microbiome

To investigate the association between ME’s impact and

intestinal microbiome, we focus on the composition of the

fecal bacterium by 16s rRNA sequencing. After extracting clean

reads and producing effective tags, high-quality sequencing and

quality control were used for subsequent taxonomy analysis

(Supplementary Table S1). The multi-sample rarefaction curves

of Shannon and Simpson indices tended to be smooth when

the sample tags added up to approximately 2,000, indicating an

extensive sequencing depth and the most captured diversity for

fecal microbiome analysis (Figure 5A). Moreover, Simpson’s results

were similar to Shannon’s. Microbial community alpha diversity

metrics (Shannon, Simpson, Chao, Goods’ coverage, Pielou, and

pd shown in Supplementary Table S2) and beta diversity indices

(NMDS and PCA, shown in Figures 5B, C) were significantly

different between the groups with and without ME (NC vs. ME,

A_D vs. A_D_ME). The NMDS and PCA plots of weighted

unifrac_distances were clearly separated observing by ME status.

The obvious shift of the ME group was narrowed compared to the

control (A_D vs. A_D_ME compared to NC vs. A_D). Moreover,

ANOSIM analysis showed that the effects among the three groups

were also significantly different (Figure 5D). The unweighted pair-

group method with arithmetic means (UPGMA) clustering was

likewise employed to access the beta diversity of gut microbiome

among groups (Figure 5E). The UPGMA method divided the

individuals into the A_D group and the other groups, suggesting

that the microbial profile was definitely diverse between the model

mice and ME-treated model mice. There was a certain degree of

similarity in the NC group and A_D_ME group, which reveals that

ME administration reversed the microbial profile of the AOM/DSS

modelmice. Together,ME had obvious effects on the alpha and beta

diversities of the gut microbiome.

According to operational taxonomic units (OTUs) identified

from sequenced samples, the most relative abundances in the

level of phylum were Firmicutes, Bacteroidetes, and Proteobacteria

(Supplementary Figure S3). At the family level, the microbial

profile of the NC group, A_D group, A_D_ME group, and

ME group belonged to the most 10 common families as

follows: Muribaculaceae, Erysipelotrichaceae, Lactobacillaceae,

Moraxellaceae, Enterobacteriaceae, Ruminococcaceae,

Bifidobacteriaceae, and other three families (Figure 6A).

LEfSe analysis showed that CAC mice treated by ME had

a correlation with rich abundances of Lactobacillaceae and

Bacilli and poor abundances of Erysipelotrichaceae and

Coriobacteriales_Incertae_Sedis (Figure 6B). Welch’s t-test

was used to analyze the top biomarkers in the taxa that could

identify the NC group, A_D group, and A_D_ME group

(Figures 6C, D). A total of three probiotics (Lactobacillaceae,
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FIGURE 2

Decreasing severity of inflammation and carcinogenesis in AOM/DSS-treated mice after ME administration. (A) tumors formed in the large intestinal

tracts. The white arrow represents tumors. (B, C) numbers and distributions of tumors in the AOM/DSS mice (n = 6 per group). (D–I) representative

micrographs of H&E staining, (D, E) representative adenomas, infiltrating inflammatory cells in the surface of the rectum, scale bar=200µm,

10×magnification, (F, G) pathology damaged in the colonic mucosa, scale bar = 100µm, 20×magnification, the black arrow represents intestinal

metaplasia, (H, I) degree and type of cell di�erentiation, evaluation of mitotic figure can be hard(encircled). scale bar=50µm, 40×magnification. (J–L)

immunofluorescent staining of ki67 (red) and β-catenin(green) in the adenocarcinoma of AOM/DSS model treated with ME or not, scale bar=20µm,

fluorescence intensity is analyzed by image J. Wilcoxon rank sum test was used, *p < 0.05.

Bifidobacteriaceae, and Eggerthellaceae) decreased in A_D but

increased in the NC and A_D_ME groups, while another

pathogen (Erysipelotrichaceae) increased in A_D but decreased

in the NC and A_D_ME groups (Figures 6E–H). Therefore,

ME-associated families including Lactobacillaceae, Eggerthellaceae,

Erysipelotrichaceae, and Bifidobacteriaceae were incorporated into

the following analysis. The Lactobacillaceae and Erysipelotrichaceae

families were classified into the same and most phylum Firmicutes,

while Eggerthellaceae and Bifidobacteriaceae were classified into

the phylum Actinobacteria.

3.5. Mice treated by ME and fecal
metabolomic profile

Metabolite differentiation was presented among the treated

groups by the Partial least squares-discriminant analysis (PLS-

DA), and all four groups were almost separated (Figure 7A).

An orthogonal projection to latent structures-discriminant

analysis (OPLS-DA) also revealed an obvious distinction

between NC and A_D mice and between the A_D group and

A_D_ME group (Figures 7B, C). As shown in Figure 7D, a

total of 48 fecal metabolites in the relevant three groups were

listed. The results demonstrated that the relative abundances

of presented fecal metabolites in CAC mice were quite

different from those in the control group, implying that

AOM/DSS treatment has a profound and lasting influence

on fecal metabolic profiles. ME administration in CAC mice

also showed significant differences in the abundance of fecal

metabolites. The changes in the listed 25 metabolites caused by

AOM/DSS treatment were attenuated by ME administration,

including G-quanidinobutyrate, Triameinalana dissatsta,

Stachvdrine, Isoevernic acid, Prostaglandin i2, and I-alaninamide.

In addition to that, the abundances of 12-ketodeoxycholic

acid, Tetradecanediodic acid, 3-aminobutanoic acid, 5alpha-

Androstane-3,17-dione, 3-aminopyrazine-2-carboxylic acid,
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FIGURE 3

E�ects of ME on the regulation of tight junction proteins and inflammatory responses in AOM/DSS-treated mice. (A) representative IHC staining of

occluding and ZO-1 in treated mice as expressed. Scale bar = 100m. (B) the expression of occluding and ZO-1 in colon tissues was detected by

Western blotting. Graphs were quantified using GAPDH as the internal reference. (C, D) the serum levels of IL-1β as well as IL-6 in four groups. (E) the

relative mRNA levels of IL-1β as well as IL-6 in the colon tissues. Data represent the mean ± SD, ##p < 0.01 compared to normal control, **p < 0.01

compared with the model group. N = 6/group.

Arg-Gln, and Palythine were decreased in the model mice, whereas

the alterations were diminished after ME administration.

To evaluate the importance of 48 chemical compounds,

metabolite pathways were analyzed, involved in the regulation of

lipolysis in adipocytes, prion disease, the CGMP-PKG signaling

pathway, renin secretion, vascular smooth muscle contraction,

morphine addiction, alcoholism, and aldosterone synthesis and

secretion (Figure 7E).
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FIGURE 4

Aberrant regulation of TLR4 and NF-κB signaling pathway in the large intestinal tissues. COX2, iNOS, NF-κB, and TLR4 were assessed by

immunofluorescence staining of the mice colonic slides in four groups (400× magnification). Histogram showing the percent of positive staining in

the tissue. Data represent the mean ± SD, ##p < 0.01 compared with normal control, **p < 0.01 compared with the model group. N = 6/group.
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FIGURE 5

E�ects of ME intragastric administration on microbial diversity in intestinal fetal, decided by 16s rRNA sequencing. (A) rarefaction curves of Shannon

and Simpson index, (B, C) plots of nonmetric multidimensional scaling (NMDS) analysis, and Principal Component Analysis (PCA) based on weighted

unifrac distance. The more similar the sample had, the closer the distance reflected in the plot. (D) boxplot of analysis of similarity (ANOSIM) based on

weighted_unifrac among the three groups, NC vs. A_D R = 0.996 p < 0.05*, A_D vs. A_D_ME R=0.776, **p < 0.01, (E) UPGMA clustering method of

all samples was classified on the basis of the unifrac-distance matrix, R=0.948, **p < 0.01. The more similar samples had shorter common branches.

3.6. Correlations between host fecal
microbiota and metabolites

As shown in Figure 8, correlations between 4 ME-

associated bacterial families and the top 20 of all the altered

metabolites in the fecal were analyzed. For example, fecal

Tetrandrine, Adrenosterone, and 2-heptyl-4-hydroxyquinoline

n-oxide had positive relations with three ME-increased

bacterial families, notably Lactobacillaceae, Bifidobacteriaceae,

and Eggerthellaceae, but negative relations with ME-

decreased bacterial family, Erysipelotrichaceae. In addition,

Erysipelotrichaceae was not related to Gln-Gln-Arg, 4-Hexen-

1-ol, 3beta-hydroxydeoxodihydrodeoxygedunin, Salvinonin a,

Gly-pro-arg-pro-amide, Glycerol 3-phosphate, Salidroside, or
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FIGURE 6

E�ects of ME intragastric administration on the proportion of intestinal microbiota at the family level. (A) Each column in the histogram shows the

relative abundance for one group and detailing the top 10 species among the mean abundance of each sample. The remaining unknown species and

unclassified sequencing data were separately marked as “Other” and “Unclassified”. (B) di�erences in biomarkers by means of taxonomic line

discriminant analysis (LDA) e�ect size (LEfSe) method among the NC, A_D, A_D_ME groups. LDA scores indicated by the bar graph represent the

e�ect of the di�erent species at the family level. (C, D) di�erences of abundance at the family level in the NC group compared with the A_D group

(C) and the A_D group compared with the A_D_ME group (D), Welch’s t-test is used to identify the di�erence between the two groups. Di�erentially

abundant family according to ME administration. (E–H) Box plots are shown by mean data (SD) of the abundance ratio of four families

(Erysipelotrichaceae, Lactobacillaceae, Eggerthellaceae, and Bifidobacteriaceae among five individuals in every three groups. Tukey’s HSD test is used

to analyze the di�erences. N = 5/group, * p < 0.05, vs. NC, **p < 0.01, vs. NC; # p < 0.05, vs. A_D, ## p < 0.01, vs. A_D, ns means no significance.
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FIGURE 7

Alteration of ME administration on metabolomics in the fecal. score scatter plots for (PLS-DA) the model showed that almost all of the data is in 95%

hotelling’s T-squared ellipse. The X and Y axes are the scores of the first and second principal components (A). Combining orthogonal signal

correction (OSC) and PLS-DA, the X matrix information can be decomposed into two types of information related to Y and irrelevant. By removing

the irrelevant di�erences, the relevant information is concentrated in the first predictive component (the predicted score of the X-axis). The Y axis

represents the score of the main orthogonal component. An orthogonal projection to latent structures-discriminant analysis (OPLS-DA) model was

employed to analyze and screen di�erential metabolites. NC vs. A_D (B), A_D vs. A_D_ME (C). (D) heatmap of 48 di�erential metabolites enriched in

the three groups, (E) bubble map of KEGG enrichment pathway. The top 20 pathways with the lowest Q value are used to draw the map. The X axis is

the pathway and the Y axis is the ratio of the metabolites (the number of di�erential metabolites in the pathway divided by all the numbers in the

pathway). The size stands for the number and the color stands for the Q value. N = 5 mice per group.
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FIGURE 8

Correlation coe�cients between the relative abundance of four ME-associated bacterial families and the top 20 fecal metabolites in the treated

groups. The color depth of the grids depicted the strength of the correlation (red square= positive correlation, blue square = negative correlation. *p

< 0.05, **p < 0.01). Increased and decreased relative abundance in AOM/DSS mice treated by ME were denoted by red and green tags, respectively.

Guanine, except for a positive relation with Gln-Gln, D-arabinose,

Adenosine, and His-Lys. The data showed that host gut microbiota

composition was identified to work on fecal metabolites.

4. Discussion

CRC fatality keeps rising worldwide, sometimes CRC is caused

by genetic or familial basis (Siegel et al., 2020), but seldom

the results from exclusively intestinal inflammation which was a

double-edged sword in tumorigenesis (Schmitt and Greten, 2021).

Though approximately 20% of IBD will be with CAC, more than

50% of them die of CAC, and it is one of the most worrisome

complications of IBD (Nadeem et al., 2020). Data obviously showed

that anti-inflammatory treatment with drugs was practical in

preventing or alleviating colon cancer stages (Malik et al., 2018).

As a result, it is urgent to develop precision medicine that delay

or even stop the conversion from inflammation to cancer, as

well as improve living quality with low toxicities. According to

this strategy, ME was chosen as a new bioactive insect, owing to

its multiple biological activities, especially its anti-inflammatory

effects (Wang et al., 2021; Lema et al., 2022). Bioassay-guided

fractionation was used to isolate antibacterial substances from

the secretions of the living maggot body (Gao et al., 2015). The

peptide compounds of maggot had been confirmed to influence

the treatment of diabetic foot (Taowen et al., 2022). Medical

maggots were also undertaken by therapeutic nurses at the ocular

surface, with the attribution to the validation of peptide compounds

(Bazalinski et al., 2022; Lema et al., 2022). Polysaccharide

substances were extracted from the maggot body and induced

the composition of GMB in high-fat diet mice (Wang et al.,

2020b; Shi et al., 2022). Additionally, ME ameliorated intestinal

fibrosis in DSS-induced chronic colitis (Wang et al., 2021). Our

previous study reported the anti-cancer effects of ME in human

ovarian cancer cells (Wang et al., 2022a). Moreover, its powder

was investigated for therapeutic function by interrupting bacterial

biofilm (Becerikli et al., 2022). The toxicity of altered intestinal and

other major organs after ME administration was unlikely to appear

because ME had no significant influences on clinic indicators and

morphological features (Supplementary Figure S1).

In the present research, one of the key findings was that ME

had superior positions in ameliorating AOM-induced and DSS-

induced splenomegaly, colon length reduction, intestinal barrier

damage, as well as inflammation of colon cells in mice. The

results also inferred for the first time that ME revealed ideal

prevention of intestinal dysbiosis in CAC mice, accompanied by

and correlated with alterations in the composition of metabolites.

Although specific ingredients of ME were not evaluated in this

research, it still deserves further study.

The observed mucosal barrier changes were similar to previous

reports on AOM/DSS-induced enteropathy (Li et al., 2019; Oh

et al., 2020; Luan et al., 2022), mainly featured by losing the

expression of ZO-1 and occluding and blooming release of

inflammatory factors, IL-1β and -IL6 (Figure 3). In previous

studies, DSS activated the TLR4-mediated signal pathways,

afterward NF-κB phosphorylation cascade, to regulate the feedback

of inflammatory factors, which was correlated with the tight

junction protein (Sinha et al., 2020; Jin et al., 2021). This explained

the increased levels of ZO-1 and occluding in a way, resulting

from the participation of factors in promoting intestinal epithelial

permeability. Since the activation of NF-κB leads to increasing

transcription of abundant genes, that functioning in the aspects

of immune responses, proinflammatory effects and cell apoptosis.

(Jayandharan et al., 2011; Bessa-Goncalves et al., 2020). Indeed,

one can predict that in some types of cells, the activated NF-κB

may enhance tumor development but inhibit tumor incidences in
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other types (Gao et al., 2021b; Mirzaei et al., 2021). Interestingly,

our results confirmed that the enterocyte proliferation (ki67

and β-catenin) was reduced after the administration of ME,

associated with less tumor burden (Figure 2). ME reversed the

expressions of intestinal mucosal barrier markers occluding

and ZO-1 in the CAC model by repairing the TLR4 cascade

and decreasing inflammatory genes, therefore slowing tumor

progression (Figure 4).

It was worth noting that the enterocytes had diametrically

opposed influences on LPS from gram-negative bacteria for a

long time. Since LPS can stimulate TLR4, which leads to initial

immune responses in enterocytes, the role of TLR4 mediating

the development of colitis-associated tumorigenesis has been

established in the aspects of enhancing direct recruitment of NF-κB

and the large increase in cytokines (Park et al., 2009; Olona

et al., 2021). One way to activate the interaction between TLR4

and NF-κB and thereby drive LPS-dependent proinflammatory

progression may be important for the severity of intestinal

inflammatory response. The reports have provided a few examples

that TLRs, interacting with endogenous ligands from the host,

especially TLR4, are engaged in the process of infectious and non-

infectious diseases (Tan et al., 2015). The present study revealed

that ME had a repressive response to TLR4 using a chemical

carcinogenesis model, and its inhibition suggested that TLR4-

mediated NF-κB exerted an effect on tumor burden reduction.

Consequently, downregulated expression of NF-κB contributed to

the inhibition of COX-2 and iNOS (Figure 4). Wang et al. reported

that ME repressed the Nrf2/NF-κB signaling pathway, including

the production of downstream kinases in DSS-induced colitis

(Wang et al., 2019, 2021). Furthermore, iNOS is an important

enzyme and produces some compounds, involved in oxidative

stress and inflammatory response (Cinelli et al., 2020). As far as

we know,COX-2 catalyzes arachidonic acid into prostaglandin,

acting as a mediator that cause pain or inflammation. The

inhibitor of COX-2, such as 5-ASA and aspirin both successfully

supported in chemoprevention, has been proven to be a key

point to alleviate colonic inflammation even with CRC occurrence

(Burn et al., 2011; Kaur et al., 2020). In this study, despite

increasing productions of iNOS and COX-2 induced by AOM/DSS,

ME pre-administration suppressed their proteins in the colon

tissue of model mice, suggesting that ME could reduce chronic

inflammation-associated tumor initiation by the inhibition of

TLR4, NF-κB, iNOS, and COX-2. The relationships of TLR4-

mediated NF-κB signal pathway in intestinal cells have been

supported in many research studies; thus, various mechanisms

have been established (Jin et al., 2021). One question still remains

unclear that which types of cells act for ME-reversed inflammatory

hallmarks in CAC.

Gastrointestinal cancer has proven to have connections

with intestinal flora (Janney et al., 2020; DeDecker et al.,

2021). Moreover, chronic inflammatory response and intestinal

barrier damage might be related to dysbiosis in the gut flora

as described above. Consistently, the enteropathy will tend

to be recovered to normal condition via administration with

probiotic bacteria directly (Suez et al., 2019; Samara et al.,

2022). This study focused on the changing microbiome caused

by ME pre-administration for 21 consecutive days in the

initial phase of the model. At the end of the period, 16S rRNA

analysis showed the improving relative abundance of the

intestinal bacterium in the model treated with ME, and then, we

identified four microbial families, namely Erysipelotrichaceae,

Lactobacillaceae, Bifidobacteriaceae, and Eggerthellaceae, the

last three probiotics of which were dramatically enriched

(Figures 5, 6). The results also showed the inhibition of pro-

inflammatory Erysipelotrichaceae and the acceleration of

anti-inflammatory probiotics after ME administration. The

family Lactobacillaceae has been reported to regulate the

immune system, including the management of initial immune

response, improvement of cellular and humoral immunity,

and inhibition of pathogenic microorganisms (Lin et al., 2020).

It has been reported that probiotics weaken the capability of

proliferation in colon cells and prevented tumor migration or

angiogenesis. Previous studies reported that pro-inflammatory

cytokines, such as IL-1β, IL-6, IL-17, and IL-22, in the blood

reduced significantly and were observed in a CRC patient trial

with consumption of 6-month probiotics (IL-1 is required

for tumor invasiveness and angiogenesis) (Samara et al.,

2022).

The score plots of both PLS-DA and OPLS-DA revealed

the changing metabolic profiles in fecal samples. Our study

confirmed the disordered host microbiota and compositional-

metabolomic fluctuations (48 chemical compounds included)

after ME treatment, as a result of the prevention of CAC

occurrence (Figures 7, 8). Metabolite pathways were also analyzed

by topology programs, greatly differing between the A_D and

A_D_ME groups. We hypothesized that pre-administration of

ME could change the levels of metabolomics, contributing

to the homeostasis of the gut microbiota. ME administration

significantly increased products of fat metabolism, including 12-

ketodeoxycholic acid, tetradecanedioic acid, 3-aminobutanoic acid,

and 3-aminopyrazine-2-carboxylic acid in the fecal of AOM/DSS

mice. Fecal secondary bile acids, 12-ketodeoxycholic acid included,

were significantly higher during the ME supplementation periods.

Data showed that secondary bile acids functioned in the

regulation of cholesterol and lipid and the production of

active oxygen and nitrogen (Reinicke et al., 2018; di Gregorio

et al., 2021), as well as reducing the levels of cytokines

engaged in inflammation (Sinha et al., 2020; Feng et al.,

2022). Thus, we speculate that ME exacerbates bile acid

metabolism and has an impact on gut homeostasis. Despite

the role of Prostaglandin in CAC being controversial (Hirano

et al., 2020), our analysis demonstrated that Prostaglandin I2

was significantly amplified in the model mice. In accordance

with studies reported (Iwanaga et al., 2014; Wang et al.,

2022b), Prostaglandin I2, as the product of Prostaglandin I

synthase, was a chemo-preventive or antimitogenic agent in

tumor angiogenesis or growth (Cathcart et al., 2010; Minami

et al., 2015). Meanwhile, major urinary metabolic products

of prostaglandin had been verified for its clinical benefits

monitoring as a non-invasive biomarker in ulcerative colitis

(Gao et al., 2021c). Notably, some metabolites (e.g., phenol in

fecal samples) are most possibly toxic to bodies (Van Hecke

et al., 2021). A significant loss of fecal phenol shown in

the ME-treated and NC groups compared with model mice

may be related to some bacterium shift in intestinal microbial

composition. Adenosine, acting in many pathophysiological
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processes, potentially mediates the proliferation through mutual

effects with receptors. Interestingly, we found the reversed levels

in ME-treated mice. The proliferative functions of adenosine may

be active in our model.

In brief, ME protected against AOM/DSS-induced carcinoma

by reducing intestinal inflammation, repairing intestinal barrier

damage, restoring gut homeostasis, and linking the microbiota

and metabolites. The data above suggested that ME administration

might be a possible therapeutic strategy for CAC.
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Metagenomic analysis reveals gut 
plasmids as diagnosis markers for 
colorectal cancer
Zhiyuan Cai 1, Ping Li 1, Wen Zhu 1, Jingyue Wei 1, Jieyu Lu 1, 
Xiaoyi Song 1, Kunwei Li 2, Sikai Li 1 and Man Li 1*
1 Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering 
Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 
China, 2 Radiology Department, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China

Background: Colorectal cancer (CRC) is linked to distinct gut microbiome 
patterns. The efficacy of gut bacteria as diagnostic biomarkers for CRC has 
been confirmed. Despite the potential to influence microbiome physiology and 
evolution, the set of plasmids in the gut microbiome remains understudied.

Methods: We investigated the essential features of gut plasmid using metagenomic 
data of 1,242 samples from eight distinct geographic cohorts. We identified 198 
plasmid-related sequences that differed in abundance between CRC patients and 
controls and screened 21 markers for the CRC diagnosis model. We utilize these 
plasmid markers combined with bacteria to construct a random forest classifier 
model to diagnose CRC.

Results: The plasmid markers were able to distinguish between the CRC patients and 
controls [mean area under the receiver operating characteristic curve (AUC = 0.70)] 
and maintained accuracy in two independent cohorts. In comparison to the bacteria-
only model, the performance of the composite panel created by combining plasmid 
and bacteria features was significantly improved in all training cohorts (mean 
AUCcomposite = 0.804 and mean AUCbacteria = 0.787) and maintained high accuracy in 
all independent cohorts (mean AUCcomposite = 0.839 and mean AUCbacteria = 0.821). In 
comparison to controls, we found that the bacteria-plasmid correlation strength was 
weaker in CRC patients. Additionally, the KEGG orthology (KO) genes in plasmids that 
are independent of bacteria or plasmids significantly correlated with CRC.

Conclusion: We  identified plasmid features associated with CRC and showed 
how plasmid and bacterial markers could be combined to further enhance CRC 
diagnosis accuracy.

KEYWORDS

metagenome, colorectal cancer, plasmid, biomarkers, diagnosis, gut microbiome

1. Introduction

Colorectal cancer (CRC) is the most common clinical malignant tumor of the digestive 
system and poses a huge threat to human health and society (Bray et al., 2018). Most CRC 
patients are diagnosed at an advanced stage and lose the opportunity for radical surgery (Di 
Nicolantonio et al., 2021). Prompt diagnosis of CRC is essential for effective treatment and 
favorable prognosis (Tomizawa et al., 2017). Colonoscopy and biopsy are currently considered 
the gold standard for the screening of CRC (Rex et al., 2006). Fecal occult blood test (FOBT) is 
non-invasive and the most commonly used method for colorectal cancer screening currently 
(Faivre et al., 2004; Lee et al., 2020). The specificity of FOBT for CRC detection was 92.4%, but 
the sensitivity was only 30.8% (Allison et al., 1996). Due to its dependence on tumor tissue 
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bleeding, FOBT has limited sensitivity and accuracy for CRC 
(Hardcastle et al., 1996). Therefore, there is an urgent need for reliable 
and efficient biomarkers for the diagnosis of colorectal cancer.

With the development of metagenomic technology, an increasing 
number of recent studies have highlighted the vital role of the gut 
microbiome in regulating human health and disease (Ghaisas et al., 
2016; Schmidt et al., 2018; Gurung et al., 2020). The gut microbiome 
may have an impact on the onset and development of CRC (Zamani 
et al., 2019), while some intestinal bacteria may slow the disease’s 
progression (Chan et  al., 2019). The efficacy of gut bacteria as 
diagnostic biomarkers for CRC has been confirmed (Dai et al., 2018; 
Liu et al., 2022).

Plasmids play important roles in the evolutionary events of 
microbial communities, and many plasmid genes are involved in 
bacterial survival and adaptation to environmental changes (Fondi 
et al., 2010; Dib et al., 2015). Many bacteria can exchange genetic 
material through horizontal gene transfer, which is facilitated by 
plasmids and transposable elements carried by plasmids (Smalla and 
Sobecky, 2002). It indicates that plasmids should not be disregarded 
in research. Plasmidomics refers to the whole plasmid DNA of the 
samples (Brown Kav et  al., 2012; Bleicher et  al., 2013). With the 
advancement of next-generation sequencing technology and the 
development of bioinformatics tools, numerous methods were 
developed for identifying plasmid sequences in metagenomic data, 
such as Plasflow (Krawczyk et al., 2018), Plasmidseeker (Roosaare 
et al., 2018), PlasmidFinder (Carattoli et al., 2014), SCAPP (Pellow 
et  al., 2021), and cBar (Zhou and Xu, 2010). For short-reads 
metagenomic sequencing, PlasFlow software based on deep neural 
networks is the way of maximizing plasmid coverage and minimizing 
false positives currently (Hilpert et al., 2021). With the help of these 
techniques, we can examine how intestinal plasmids and plasmid 
genes change during diseases.

Many human diseases are closely associated with plasmids, 
particularly those involving antibiotic resistance genes and virulence 
genes (Cheung et  al., 2004; Dolejska and Papagiannitsis, 2018). 
Enterotoxigenic Escherichia coli (ETEC) causes numerous cases of 
diarrheal disease worldwide, which is linked to the virulence plasmid 
pEntYN10 within ETEC (Ban et al., 2015). Emerging research points to 
the significance of other microbial kingdoms in gastrointestinal disease 
in addition to gut bacteria (Liu et al., 2022), but no studies on intestinal 
plasmids in CRC patients have been explored. The primary goal of this 
study is to examine the key characteristics of the plasmids in the gut 
microbiomes of CRC patients from eight cohorts worldwide. We seek 
to expand existing CRC diagnosis biomarkers and develop a more 
precise diagnosis model using newly discovered plasmid biomarkers.

2. Methods

2.1. Public data collection

We used the terms “Colorectal cancer” and “Human gut 
metagenomics” to search the NCBI database,1 and we found a total 
of nine CRC gut metagenomic cohorts. We  excluded the Italian 

1 https://www.ncbi.nlm.nih.gov/

cohort (PRJNA447983) since we were unable to determine the case–
control status that matched the sequencing data in that dataset. 
We selected an Asian cohort from China and a European cohort from 
Germany as independent validation datasets, and the other six 
cohorts as training datasets, to ensure the reliability and 
generalizability of the prediction model. We  downloaded fecal 
metagenomic sequencing data of the eight cohorts in NCBI on CRC 
patients and healthy controls (Supplementary Table 1). For discovery 
cohorts (n = 1,123), Accession of China Cohort1 (CHN1) is 
PRJNA763023 (Yang et al., 2021), CRC, n = 100; and Control, n = 100. 
Accession of China Cohort2 (CHN2) is PRJNA731589 (Liu et al., 
2022), CRC, n = 80; and Control, n = 86. Accession of Japan (JPN) is 
PRJDB4176 (Yachida et al., 2019), CRC, n = 218; and Control, n = 212. 
Accession of Austria (AUS) is PRJEB7774 (Feng et al., 2015), CRC, 
n = 46; and Control, n = 63. Accession of France (FRA) is PRJEB6070 
(Zeller et al., 2014), CRC, n = 53; and Control, n = 61. Accession of the 
United States of America (USA) is PRJEB12449 (Vogtmann et al., 
2016), CRC, n = 52; and Control, n = 52. For validation cohorts 
(n = 119), Accession of China Cohort3 (CHN3) is PRJNA514108 
(Gao et al., 2022), CRC, n = 32; and Control, n = 44. Accession of 
Germany (GER) is PRJEB6070 (Zeller et al., 2014), CRC, n = 38; and 
Control, n = 5. The cohorts’ characteristics are listed in 
Supplementary Table 1.

2.2. Sequencing data processing

KneadData2 v0.7.4 was used to obtain high-quality microbial 
reads. The metagenomic shotgun sequencing data were trimmed 
using Trimmomatic (Bolger et al., 2014; v0.39) with the following 
parameters: SLIDINGWINDOW:4:20 MINLEN:50. Then, human 
reads were mapped to hg37 human reference genome and discarded 
by bowtie2 (v.2.4.3; −-very-sensitive --dovetail; Langmead and 
Salzberg, 2012). High-quality reads were used to conduct species-level 
community profiling with relative abundance by MetaPhlAn2 (v2.8.1) 
using the setting “-a” to determine all taxonomic level (Truong et al., 
2015). Quality-controlled reads were assembled into contigs with 
Megahit (v.1.2.9) using the default parameters: “--min-contig-len 200, 
−-disconnect-ratio 0.1” (Li et al., 2015). PlasFlow was run with a 
minimum posterior probability of 0.7 to filter plasmid contigs longer 
than 1,000 bp (Hilpert et al., 2021). We compared the plasmid contigs 
to the NCBI plasmid reference sequence database (accessed on 2021-
06-28) by using BLAST (Altschul et al., 1990; v 2.11) with an E-value 
of 10−5 and coverage of 50% as the cut-off. The plasmid genes were 
predicted by Prodigal (Hyatt et al., 2010) via the metagenome mode. 
CD-HIT (Fu et al., 2012; v4.8.1) was used to create a non-redundant 
plasmid gene catalog, with an identity cut-off of 0.95 and a coverage 
cut-off of 90%. The plasmid gene catalog was annotated with EggNOG 
mapper (Cantalapiedra et al., 2021; v.2.1.5) based on EggNOG DB 
(Huerta-Cepas et al., 2019; v5.02). The carbohydrate-active enzymes 
(CAZy) genes were identified using run_dbcan (v2.0.11; Zhang et al., 
2018). Moreover, the relative abundance of plasmid and plasmid genes 
was determined using salmon (Patro et al., 2017; v.1.5.2) with settings 
“--meta.”

2 http://huttenhower.sph.harvard.edu/kneaddata
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2.3. Annotation of plasmid

Host taxa information for plasmids was obtained from the 
NCBI plasmid reference. Antibiotic resistance genes were 
annotated through the ResFinder database (Bortolaia et al., 2020; 
https://cge.cbs.dtu.dk/services/ResFinder/) by BLAST (E value, 
<10−5; identity, >80%). The oriT regions and relaxase genes were 
identified based on the oriTDB database (Li et al., 2018; https://
bioinfo-mml.sjtu.edu.cn/oriTDB/) by BLAST (E value, <10−5; 
identity, >80%). It was determined that plasmids containing both 
the oriT region and relaxase gene are conjugative plasmids (Smillie 
et al., 2010).

2.4. Microbial ecological analysis

For each sample, Shannon metrics of plasmids were used to 
calculate alpha diversity. The Bray-Curtis distance was used to 
calculate the beta diversity. Using the “Vegan” R package (v 2.6–2) in 
R software (Jari Oksanen et al., 2022), Shannon’s index for each sample 
and the Bray-Curtis distance between samples was both evaluated. 
Using principal coordinates analysis (PCoA), the Bray–Curtis 
dissimilarity index was used to visualize the microbial community 
structures. Permutational multivariate ANOVA (PERMANOVA) was 
performed to reveal the plasmid community differences between 
groups or cohorts with 999 permutations (Anderson, 2001).

2.5. Feature selection

Plasmid community batch effects among cohorts were corrected 
using the “adjust_batch” function of the MMUPHin R package (v 
2.6-2; Ma et al., 2022). We identified differential plasmids as candidate 
features for the CRC diagnosis models with the “lm_meta” function 
of MMUPHin. Subsequently, feature selection was performed using 
the package Boruta (Miron and Kursa, 2010; v7.0.0) with default 
settings (pValue = 0.01, mcAdj = T, maxRuns = 100). Differential 
EggNOG gene KOs, CAZY, and bacteria species were selected with 
the same pipeline.

2.6. Prediction model construction and 
validation

Random forest prediction model was constructed using “random 
forest” R package with 500 trees (Breiman, 2001). Based on differential 
plasmids and bacteria signatures, the random forest prediction model 
for CRC was trained with 10-fold cross-validation on the discovery 
cohorts. Model evaluation was performed with cohort-to-cohort 
transfer validation, leave-one-cohort-out (LOCO) evaluation, and 
independent validation. In cohort-to-cohort validation, the models 
were trained on a single cohort and their performances were evaluated 
in the other cohorts. In LOCO evaluation, the models were trained on 
five of the six cohorts in the discovery dataset and their performances 
were evaluated on the sixth cohort. Furthermore, an independent 
validation analysis was conducted in order to assess the reliability of 
microbial features as CRC diagnostic markers, and two additional 
datasets from CHN3 and GER were used in the process.

2.7. Associations between species and 
function

Associations between bacteria, plasmids, and their KO genes were 
performed by Spearman correlation using the “corAndPvalue” 
function of the “WGCNA” R package (Langfelder and Horvath, 2008).

2.8. Statistical analysis

All statistical analyses were conducted by R software (v 4.1.2, the 
R Project for Statistical Computing). In order to compare the two 
groups, Wilcoxon rank-sum test was used. Correlations were 
calculated using Spearman’s rank correlation. The Benjamini-
Hochberg method was used to adjust p values for multiple testing to 
account for the false discovery rate (FDR). p value <0.05 is considered 
statistically significant.

3. Results

3.1. Characterization of CRC cohorts

We gathered metagenomic data from 1,242 samples across eight 
publicly available CRC cohorts worldwide (Supplementary Table 2). 
We included six of these cohorts as discovery cohorts to identify gut 
plasmids as biomarkers for CRC diagnosis, consisting of 549 CRC 
patients and 574 tumor-free controls from five countries (China, 
CHN1 and CHN2; Japan, JPN; Austria, AUS; France, FRA; and the 
United States, USA). As a result, the independent validation dataset, 
which comprised 70 CRC patients and 49 tumor-free controls from 
two countries, was created (China, CHN3 and Germany, GER). The 
bioinformatics analysis of all raw shotgun sequencing data was 
conducted consistently to reduce technical bias.

3.2. Alteration of the intestinal plasmids in 
CRC patients

In the discovery cohorts, we identified a total of 12,515 plasmids 
using metagenomic approaches. Only 628 plasmids were present in all 
six cohorts, with more cohort-specific plasmids being found in CHN1, 
CHN2, and JPN cohorts (Figure 1A). We found that Proteobacteria 
and Firmicutes phylas made up the majority of the host taxa for each 
cohort of plasmids, and that there were no differences in these 
proportions between CRC patients and healthy controls. However, 
compared to other cohorts, a greater percentage of plasmids in the US 
cohort had Bacteroidetes phyla as their host (Figure 1B). We found no 
discernible differences in the proportion of plasmids between CRC 
patients and controls, although a smaller portion of the identified 
plasmids were conjugative or carried antibiotic-resistance genes 
(Supplementary Figure 1).

We then assessed differences in intestinal plasmid alpha diversity 
between CRC patients and controls. According to the Shannon index 
in the discovery cohorts, we  observed increased plasmid alpha 
diversity in CRC patients (p = 0.015; Figure  1C). Meanwhile, 
geographic differences are visible in intestinal plasmid alpha diversity 
(Supplementary Figure 2). The difference in intestinal plasmid alpha 

27

https://doi.org/10.3389/fmicb.2023.1130446
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://cge.cbs.dtu.dk/services/ResFinder/
https://bioinfo-mml.sjtu.edu.cn/oriTDB/
https://bioinfo-mml.sjtu.edu.cn/oriTDB/


Cai et al. 10.3389/fmicb.2023.1130446

Frontiers in Microbiology 04 frontiersin.org

diversity between CRC patients and healthy controls was only found 
in the CHN1 cohort (p = 0.03). In other cohorts, the intestinal plasmid 
alpha diversity between CRC patients and healthy controls was not 
significantly different (Supplementary Figure 2). Based on the analysis 
of beta diversity, the beta diversity of intestinal plasmids was not 
associated with CRC (p = 0.129, Figure 1D), nor was there a significant 
difference between cohorts (p = 0.697; Figure 1D).

3.3. Plasmid biomarkers for CRC diagnosis

We conducted a meta-analysis of six datasets from the discovery 
cohort in order to find plasmids that could be used as diagnostic 
markers for CRC. After that, we discovered 198 plasmids that had 
different abundances in patients with CRC and controls 
(Supplementary Table 3), 108 of which were highly abundant in the 
guts of CRC patients (p < 0.05), and 90 of which were decreased in the 
guts of CRC patients (p < 0.05). To screen out plasmid signatures for 
diagnosing CRC, we performed further signature selection on these 
198 plasmids using Boruta. We screened 21 plasmids, of which 13 
(including NZ_CP036554.1) were more prevalent in CRC patients and 

eight (including NZ_AP023416.1) were less prevalent in CRC patients 
(Figure 2A). We first trained the random forest classifier with the 21 
plasmid features in each dataset used 20 times repeated 10-fold cross-
validation to assess the diagnostic accuracy of the plasmid features for 
diagnosing CRC. Depending on the region, the plasmid random forest 
classifier performed differently. The plasmid random forest classifier 
demonstrated strong predictive power in the CHN1, CHN2, and FRA 
cohorts, with mean AUC ranging from 0.75 to 0.80 across cohorts that 
were 20 times repeated using 10-fold cross-validation. In contrast, the 
plasmid random forest classifier performs worse in JPN (AUC, 0.58), 
AUS (AUC, 0.67), and USA (AUC, 0.62) datasets (Figure 2B).

We conducted cohort-to-cohort validation and leave-one-
cohort-out (LOCO) validation on the training cohorts to evaluate the 
geographical robustness of plasmid signatures as a universal 
biomarker. In cohort-to-cohort validation, the mean AUC of the 
plasmid random forest model ranged from 0.51 to 0.75 (Figure 2C). 
The LOCO performance of the plasmid model ranged from 0.59 to 
0.71 (Figure 2D). To further test predictive performance, the plasmid 
classifiers trained within study cross-validation were applied to two 
independent validation sets. In the CHN3 and GER cohorts, the 
model’s average AUC was 0.79 and 0.66, respectively (Figure 2E).

FIGURE 1

The gut plasmid comparison of patients with colorectal cancer (CRC) and controls. (A) Upset plot for host taxa of plasmids per cohort. There are a total 
of 12,515 plasmids observed across six discovery cohorts. (B) Stacked column chart showing the proportion of host taxa of plasmids per cohort. 
(C) Alpha diversity measured by the Shannon index of the gut plasmid of patients with CRC (red, n = 549) and control individuals (blue, n = 574; Wilcoxon 
rank-sum test, p = 0.015). Boxplots indicate medians (horizontal line in the box), interquartile (boxes), and ranges (whiskers). (D) Principal coordinate 
analysis (PCoA) of samples from all six cohorts based on Bray–Curtis distance, which shows that microbial composition was not different between 
groups (p = 0.697) and cohorts (p = 0.129). p values of beta diversity based on Bray–Curtis distance corresponds to Adonis PERMANOVA tests by 999 
permutations (two-sided test). The cohort is shape-coded while the group is color-coded.
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3.4. Improved predictability based on a 
combination of plasmid and bacterial 
features

Using the same pipeline as plasmids, 91 differential bacteria species 
were identified (p < 0.05), and 39 of them were extracted as biomarkers 
for the diagnosis of CRC (Supplementary Figure  3A; 
Supplementary Table 4). Previous studies have demonstrated a strong 
link between gut bacteria and the occurrence and progression of CRC 
(Sang et al., 2020; Yinhang et al., 2022). Bacterial classifiers are effective 

at detecting CRC (Wirbel et al., 2019). The bacterial random forest 
classifier performed admirably in diagnosing CRC in our study. The 
bacteria random forest classifier showed strong predictive power within 
cohorts, with a mean AUC ranging from 0.81 to 0.93 except for the JPN 
(0.68) and USA (0.63) cohorts due to the distinct food culture of 
Japanese and the prolonged cryopreservation of fecal specimens in USA 
cohort, respectively (Supplementary Figure 3B). The cohort-to-cohort 
validation (Supplementary Figure  3C) and LOCO validation had 
similar outcomes (Supplementary Figure  3D). In independent 
validation, the average AUC of the model obtained in the CHN3 and 

FIGURE 2

Plasmid metagenomic classification models generalize across different cohorts. (A) Bar plot of the 21 plasmid features’ effect sizes for the prediction of 
CRC diagnosis, as determined by MMUPHin and Boruta. The significance of the difference between patients with CRC and controls was determined via 
Wilcoxon rank-sum test: *p < 0.05. (B) CRC classification performances (AUC) calculated through the cohort-to-cohort model transfer for the random 
forest classifier trained on relative abundance profiles of plasmids. The values refer to an average value of 20 times repeated 10-fold cross-validation. 
(C) CRC classification performances (AUC) calculated through 20 times repeated 10-fold cross-validation within each study for the random forest 
classifier trained on relative abundance profiles of plasmids. (D) CRC classification performances (AUC) calculated through leave-one-cohort-out 
validation (LOCO, Model was trained using five of six cohorts and validated by the other one) for random forest classifier trained on relative abundance 
profiles of plasmids. (E) Validation of the plasmid random forest classifier in two independent cohorts (CHN3 and GER). The CRC classification 
performances (AUC) of the plasmid random forest classifier trained with all the training cohorts were obtained in the CHN3 and GER cohorts.
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FIGURE 3

Bacterial metagenomic classification models generalize across different cohorts. (A) Bar plot of the 50 plasmid and bacterial features’ importance for 
the prediction of CRC diagnosis, as determined by MMUPHin and Boruta. The significance of the difference between patients with CRC and controls 
was determined via Wilcoxon rank-sum test: *p < 0.05. (B) CRC classification performances (AUC) calculated through the cohort-to-cohort model 
transfer for the random forest classifier trained on relative abundance profiles of plasmid and bacterial species. The values refer to an average value of 
20 times repeated 10-fold cross-validation. (C) CRC classification performances (AUC) calculated through 20 times repeated 10-fold cross-validation 
within each study for the random forest classifier trained on relative abundance profiles of plasmid and bacterial species. (D) CRC classification 
performances (AUC) calculated through leave-one-cohort-out validation (LOCO, Model was trained using two of three cohorts and validated by the 
other one) for random forest classifier trained on relative abundance profiles of plasmid and bacterial species. (E) Validation of the plasmid and 
bacterial random forest classifier in two independent cohorts (CHN3 and GER). The CRC classification performances (AUC) of the plasmid and 
bacterial random forest classifier trained with all the training cohorts were obtained in the CHN3 and GER cohorts.

GER cohorts were 0.84 and 0.86, respectively (Supplementary Figure 3E). 
We investigated whether creating a diagnostic panel with plasmids and 
bacterial species would result in better performance. 13 plasmids and 
37 bacteria made up the panel after feature screening (Figure 3A). 10 of 
the 37 bacteria have also been linked to CRC in previous studies, 
including Parvimonas micra, Peptostreptococcus stomatis, Prevotella 
intermedia, Porphyromonas asaccharolytica, Porphyromonas somerae, 
Porphyromonas uenonis, Gemella morbillorum, Fusobacterium 
nucleatum, Roseburia hominis, and Roseburia intestinalis (Wirbel et al., 

2019; Liu et al., 2022). The 10-fold cross-validation AUC scores for the 
various cohorts were 0.84 for CHN1, 0.94 for CHN2, 0.68 for JPN, 0.86 
for AUS, 0.86 for FRA, and 0.63 for USA (Figure  3B). The model 
showed valuable prediction performance in cohort-to-cohort validation 
(Figure 3C) and LOCO validation (Figure 3D). The average AUC of the 
model obtained in the CHN3 and GER cohorts during independent 
validation was 0.87 and 0.81, respectively (Figure 3E). In all training 
cohorts (Composite model, AUC = 0.804; Bacterial model, AUC = 0.787) 
and all independent cohorts (Composite model, AUC = 0.839; Bacterial 
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model, AUC = 0.821), the prediction performance of the composite 
panel by combining the plasmid and bacterial features was significantly 

better than the bacteria-only model was significantly improved 
(Figure  4). In comparison to the bacteria-only model, the average 
AUROC of the cross-validation models with the combined panel for all 
independent cohorts was 0.88 (Supplementary Figure 4).

3.5. Correlations between gut bacterial 
features and plasmids

We further investigated the correlations between the bacteria and 
plasmids based on the Spearman correlation analysis in the controls 
and patients with CRC, respectively, to gain insights into the bacteria-
plasmid interactions from an ecological perspective. In comparison to 
CRC cases, we found that the bacteria-plasmid correlation strength 
was stronger in controls. NZ_CP041417.1 (Escherichia coli strain 
STEC711 plasmid pSTEC711_1) in the gut of CRC patients served as 
the hub of the correlation network. And the relevant network in the 
control group’s NZ_CP059935.1 (Escherichia coli strain 28.1 plasmid 
p4) was at its hub. Escherichia coli and plasmids were strongly 
associated in both CRC patients and controls. In addition, we found 
other bacteria that were closely related to the plasmids only in 
controls, particularly Enterobacter cloacae and Atopobium parvulum 
(Figure 5).

3.6. Plasmid functional alterations in CRC

We looked at the plasmid functional alterations at the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) orthology (KO) genes 
and carbohydrate-active enzymes (CAZy) genes in order to 
investigate the plasmid metagenomic functions of pathogenesis in 
CRC. From 9,514 plasmids KO genes, we  first identified 613 
differential KO genes (p < 0.05), including 333 KO genes with 
increased abundance and 280 KO genes with decreased abundance 
in CRC patients compared to controls (Supplementary Table  5). 

FIGURE 5

Coabundance correlations between plasmids and bacterial species in patients with CRC and controls. Coabundance networks involving plasmids and 
bacterial species in the CRC and control samples, with absolute correlations above 0.7 and with a significance cut-off of FDR < 0.05. The colors of 
nodes indicate plasmids (green) and bacterial species (deep pink).

FIGURE 4

Average ROC curve obtained through 20 times repeated 10-fold 
cross-validation. (A) Average ROC curve obtained through 20 times 
repeated 10-fold cross-validation on all the training cohorts. 
(B) Average ROC curve obtained through independent validation on 
all the independent cohorts using the random forest classifier trained 
with 20 times repeated 10-fold cross-validation of all the training 
cohorts. AUC data are shown as (average of AUC) ± SD.
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FIGURE 6

Plasmid functional classification models generalize across different cohorts. (A) Bar plot of the 34 plasmid gene KO features’ importance for the 
prediction of CRC diagnosis, as determined by MMUPHin and Boruta. The significance of the difference between patients with CRC and controls was 
determined via Wilcoxon rank-sum test: *p < 0.05. (B) CRC classification performances (AUC) calculated through the cohort-to-cohort model transfer 
for the random forest classifier trained on relative abundance profiles of plasmid KO genes. The values refer to an average value of 20 times repeated 
10-fold cross-validation. (C) CRC classification performances (AUC) calculated through 20 times repeated 10-fold cross-validation within each study 
for the random forest classifier trained on relative abundance profiles of plasmid KO genes. (D) CRC classification performances (AUC) calculated 
through leave-one-cohort-out validation (LOCO, Model was trained using two of three cohorts and validated by the other one) for random forest 
classifier trained on relative abundance profiles of plasmid KO genes. (E) Validation of the plasmid KO gene random forest classifier in two independent 
cohorts (CHN3 and GER). The CRC classification performances (AUC) of the plasmid KO gene random forest classifier were obtained by using 20× 
repeated 10-fold cross-validation in the CHN3 and GER cohort.

Following feature screening, 35 KO genes (including K03561, 
K05595, and K06250), mainly related to metabolism, were found to 
be potential biomarkers for CRC prediction (Figure 6A). The plasmid 
KO random forest classifier showed strong predictive power within 
cohorts 20 times repeated 10-fold cross-validation, with mean AUC 
ranging from 0.63 to 0.84 (Figure 6B). The mean AUC of the plasmid 
KO random forest model ranged from 0.63 to 0.81  in cohort-to-
cohort validation (Figure 6C). The LOCO performance of the plasmid 
KO model ranged from 0.68 and 0.84 (Figure 6D). In independent 

validation sets, the average AUC was 0.72 and 0.69, respectively, in 
the CHN3 and GER cohorts (Figure  6E). We  carried out the 
Spearman correlation analysis of differential plasmid KO genes with 
differential plasmids or bacteria to comprehend the relationship 
between differential KO and differential bacteria or plasmids, 
Differential plasmid KO genes had no significant correlation with 
differential plasmids or bacteria (Supplementary Figure 5). Plasmid 
KO genes might serve as biomarkers for diagnosing CRC, which is 
independent of bacteria and plasmids. From 414 plasmids CAZy 
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genes, we  first identified 43 differential CAZy genes (p < 0.05), 
including 16 CAZy genes with increased abundance and 27 CAZy 
genes with decreased abundance in CRC patients compared to 
controls (Supplementary Figure 6A; Supplementary Table 6). The 
plasmid CAZy random forest classifier showed strong predictive 
power with mean AUC ranging from 0.61 to 0.71 in cross-validation 
(Supplementary Figure 6B). The mean AUC of the plasmid CAZy 
random forest model ranged from 0.63 to 0.61 in cohort-to-cohort 
validation (Supplementary Figure 6C). The plasmid CAZy model’s 
LOCO performance ranged from 0.62 and 0.72 
(Supplementary Figure 6D). In independent validation sets, while the 
average AUC of the model obtained in the GER cohort was 0.51, it 
was 0.76 on average for the CHN3 (Supplementary Figure  6E). 
Plasmid CAZy genes were less effective as diagnostic indicators for 
CRC than plasmid KO genes.

4. Discussion

Plasmid-mediated horizontal gene transfer is regarded as a major 
driver of bacterial adaptation and diversification, as demonstrated by 
several studies (Smalla et  al., 2015; Wein et  al., 2020; Rodríguez-
Beltrán et al., 2021). Plasmids can provide ecological benefits to their 
host bacteria (Di Venanzio et al., 2019). These plasmids may change 
the biological characteristics of their bacterial hosts, which may have 
an impact on human health (Rozwandowicz et al., 2018). However, 
little is known about the function of gut plasmids, which are carried 
by bacteria that cause disease. We  thoroughly analyzed the 
plasmidome in this study across eight different CRC cohorts. This 
study provides the most comprehensive metagenomic sequencing-
based gut plasmidomic study to date in the largest sample of CRC 
patients. The bioinformatics pipeline allowed us to locate 12,515 
intestinal plasmids in total. We observed that compared to healthy 
controls, intestinal plasmid diversity was higher in CRC patients. It 
might imply that CRC patients’ intestinal environments were more 
stressful than those of controls, where bacteria required more plasmids 
to adjust to changes. To the best of our knowledge, our study is the first 
to pinpoint differential intestinal plasmids in patients with colorectal 
cancer. Some of the 198 differential plasmids, including NC_012780.1 
(Eubacterium eligens ATCC 27750 plasmid unnamed, complete), 
corresponding bacteria that were equally abundant in CRC patients 
and controls. Such bacteria may increase the abundance of their 
associated plasmids to increase their tolerance rather than changing 
their own abundance in order to adapt to changes in the gut 
environment of colorectal cancer patients. The bacteria corresponding 
to other differential plasmids, like NZ_CP036554.1 (Bacteroides 
fragilis strain DCMOUH0067B plasmid pBFO67_1, complete), are 
also differential in abundance between CRC patients and controls. 
Although these bacteria also affected the plasmids they were 
associated with, changes in the colorectal cancer patients’ intestinal 
environment could also affect the abundance of these bacteria. In 
contrast to controls, the abundance of intestinal plasmids in CRC 
patients was more independent of their gut microbiota’s abundance. 
According to this, the relationships between bacteria and plasmids 
may be  relevant in the microbiome-mediated tumorigenesis of 
CRC. An additional layer of information about the contribution of 
plasmid genes to host health independent of changes in bacterial 
abundance was revealed by the intriguing fact that the differential 

plasmid genes in our study were not associated with differential gut 
bacteria or differential gut plasmids.

The prognosis of CRC is closely related to the stage of the patient 
at the time of diagnosis (Bruni et  al., 2020). Host gene variation 
(Schmit et al., 2019), RNAs (Wu et al., 2021), proteins (Li et al., 2020), 
metabolites (Chen et al., 2022), and gut microbes (Liu et al., 2022) are 
some of the currently validated colorectal cancer markers; however, 
more work needs to be done to increase their predictive power. A 
non-invasive, effective, and efficient diagnostic method is urgently 
needed for colorectal cancer patients who are asymptomatic in order 
to lower CRC morbidity and mortality, and thereby lower the 
economic costs of CRC. We screened 21 plasmids, including NZ_
CP036554.1 and NZ_AP023416.1, and created a colorectal cancer 
prediction model based on these intestinal plasmids for the first time, 
applying various validation techniques to demonstrate the robustness 
and accuracy of the model. Additionally, we  observed that the 
combination of plasmids and bacteria markers could further improve 
the predictive power of CRC. In the external validation, the mean 
specificity and sensitivity of the plasmid and bacterial marker combo 
for CRC detection were 65.2 and 88.5%, respectively. Our plasmid and 
bacterial marker combo predict CRC with high accuracy and is as 
non-invasive as FOBT. Our model has a relatively low predictive effect 
for the Japan cohort. We  suspect that this may be  related to the 
regional heterogeneity of the gut microbiome. It has been shown that 
glycoceramides contained in the Japanese diet increase the abundance 
of Blautia coccoides in the intestine, which affects the composition of 
the intestinal flora (Hamajima et al., 2016). Meanwhile, glycoceramides 
inhibited the development of colorectal cancer in multiple intestinal 
neoplasia (min) mice (Symolon et  al., 2004). The regional 
heterogeneity of intestinal bacteria in the Japanese cohort is likely due 
to Japanese diet. Further experimental verification of the specific 
mechanism is needed.

Several limitations of this study are noted. Identification of 
plasmids from short-read metagenomic sequencing data remains 
challenging. It can be difficult to detect and extract a complete plasmid 
since plasmids can vary greatly in size, have high homology with other 
plasmids or with the host genome, often contain repetitive regions, or 
may be  incomplete or missing key regions. We have used filtering 
techniques to exclude less accurate plasmid contigs in light of these 
difficulties, but we cannot completely rule out the possibility of false 
positives. As a result, long-read sequencing technology (Pacific 
Biosciences and Oxford Nanopore Technology) and future tool 
development may enable us to fully understand the structure of human 
gut plasmids (Suzuki et al., 2019). The staging of tumors, gender, age, 
and other factors affecting the incidence of CRC were not taken into 
consideration. The controls in the majority of cohorts were determined 
by colonoscopy without detecting CRC, yet the controls in the CHN2 
cohort were selected from Taizhou Imaging Study who did not undergo 
colonoscopy, which could potentially introduce detection bias. A 
fourth limitation is the cohort effect due to variations in the distribution 
of gut flora across regions and the use of different sequencing platforms, 
even though we  eliminated the batch effect through MMUPHin. 
We were unable to determine the actual host of the plasmids because 
of the phenomenon of the horizontal transfer of plasmids. A high-
throughput technique called Microbe-seq was created by Zheng et al. 
to examine individual bacterial cells in the microbiota. This approach 
enables further exploration of plasmid horizontal transfer and the host 
profile of plasmids (Zheng et al., 2022). Future prospective studies with 
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large patient cohorts are needed to validate the results. We cannot 
establish a causal relationship between CRC and plasmids in the 
current data collection. We anticipate that long-read metagenomic 
sequencing and upcoming experimental research will clarify the causal 
relationship between CRC and plasmids.

In conclusion, we used plasmid-related sequences to identify the 
corresponding plasmids and found that they were able to distinguish 
between CRC patients and controls. We  constructed a combined 
plasmid and bacteria panel, which performed superior at predicting 
CRC than bacteria alone. Our study expands the knowledge of the 
function of plasmids in CRC patients may lead to further research into 
potential CRC diagnosis applications. Plasmids should be taken into 
account when studying the gut microbiota.
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Background and aims: Accumulated evidence indicates that the intestinal

microbiota plays crucial roles in the initiation and progression of colorectal

cancer (CRC). However, the effects of the tissue-associated microbiota on CRC

metastasis are poorly defined. The aim of this study was to explore the differences

in bacteria between metastatic and non-metastatic CRC tissues and identify

potential bacterial species that associate with CRC metastasis.

Methods: 16S rDNA amplicon high-throughput sequencing was used to test the

intestinal tissue-associated microbiota in patients with metastatic CRC (n = 48)

and non-metastatic CRC (n = 44). The microbial diversity and differential species

were analysed by standard microbiological methods, and then the differential

bacteria were confirmed by qPCR. Receiver operating characteristic (ROC) curves

were plotted to evaluate the ability of the differential bacteria in predicting the

metastasis of CRC. In addition, the microbial compositions of tumor-adjacent

tissues from the metastatic and non-metastatic CRC groups were analysed.

Results: The α- or β-diversity of microbial community between the metastatic

and non-metastatic CRC groups did not exhibit significant differences. However,

some bacterial abundances between two groups showed significant differences.

At the phylum level, Bacteroidota and Desulfobacterota were significantly higher

in the metastatic group than in the non-metastatic group, while Proteobacteria

was significantly decreased in the metastatic group. At the genus level,

Bacteroides (mainly composed of Bacteroides fragilis and Bacteroides uniformis)

was significantly higher in the metastatic group than in the non-metastatic group,

while Streptococcus and Escherichia-Shigella were significantly decreased. The

ROC curves of the selected bacteria showed area under the curve (AUC)

values ranging from 0.598 to 0.69; when CEA and the selected bacteria were

combined, the AUC values increased from 0.678 to 0.705. In addition, the

bacterial composition of tumor-adjacent tissues from the metastatic and non-

metastatic CRC groups were also different, and the differential bacteria were

consistent with those between metastatic and non-metastatic CRC tumor tissues.

Conclusion: The bacterial composition of tumor and tumor adjacent tissue from

the metastatic CRC group was different from that of the non-metastatic CRC
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group; in particular, Bacteroides was increased, and Streptococcus was

decreased. These findings are helpful to further reveal the mechanism of CRC

metastasis and provide new ideas for the clinical diagnosis and treatment

of CRC metastasis.

KEYWORDS

colorectal cancer (CRC), metastasis, tissue-associated bacteria, Bacteroides,
Streptococcus

Introduction

Colorectal cancer (CRC) is one of the most common
gastroenterological tumors. According to 2020 epidemiological
data, CRC is the third most common diagnosed and second
most deadly cancer worldwide (Sung et al., 2021). The process of
intestinal cancer development usually takes 10–15 years, including
the initiation, promotion, progression, and metastasis stages
(Dekker et al., 2019). Metastasis is known as the main cause of
death in CRC patients, with a 5 years survival rate of less than
20% (Pretzsch et al., 2019; Biller and Schrag, 2021). Therefore, it is
of great importance and necessity to understand the potential risk
factors that promote CRC metastasis, which can serve as targets to
block CRC metastasis (Fong et al., 2020).

The pathogenesis of CRC is highly complex and involves both
genetic and environmental factors (Biller and Schrag, 2021). In
recent years, numerous studies have supported the notion that
the intestinal microbiota plays a crucial role in the initiation and
progression of CRC (Wong and Yu, 2019; Cheng et al., 2020;
Rebersek, 2021). Usually, the microbiota significantly changed in
CRC patients, with tumor-promoting bacteria enriched and tumor-
inhibiting bacteria depleted. Some bacteria, such as colibactin-
producing Escherichia coli, enterotoxigenic Bacteroides fragilis,
and Fusobacterium nucleatum, are enriched in the intestinal
microbiota (Cheng et al., 2020; Tabowei et al., 2022). They can
promote CRC initiation and progression by inducing host DNA
damage, stimulating oncogenic pathways related to cell growth and
proliferation, or creating a proinflammatory environment (Clay
et al., 2022). However, studies focusing on specific bacteria that can
promote CRC metastasis are limited.

It has been reported that the bacterial burden in CRC mucosal
tissue is higher than that in healthy controls. Interestingly, the
composition of the intestinal microbiota and tissue-associated
bacteria are significantly different (Keku et al., 2015; Flemer et al.,
2017), suggesting that they may play different roles in CRC
progression. To date, many studies have revealed the functions of
the intestinal microbiota (fecal sample) in CRC, but only a few have

Abbreviations: CRC, colorectal cancer; 16S rDNA, 16S ribosomal DNA;
qPCR, quantitative polymerase chain reaction; ROC, receiver operating
characteristic; AUC, area under curve; UICC, International Union Against
Cancer; AJCC, American Joint Committee on Cancer; TNM, tumor node
metastasis; OTU, operational taxonomic unit; CI, confidence interval; CEA,
carcinoembryonic antigen; CA19-9, carbohydrate antigen 19-9; AFP, alpha
fetoprotein; NMSD, non-metric multidimensional scaling analysis; LDA,
linear discriminant analysis; JMJD2B, jumonji domain containing 2B; TLR4,
toll-like receptor 4; NFAT5, nuclear factor of activated T cells 5; ETBF,
enterotoxigenic Bacteroides fragilis; BFT, Bacteroides fragilis toxin.

focused on tissue-associated bacteria (CRC tissue samples) (Costa
et al., 2022). Thus, the features and functions of tissue-associated
bacteria in CRC progression and metastasis remain elusive.

In this study, we compared the differences in the tissue-
associated microbiota between tumor tissues from metastatic and
non-metastatic CRC patients and analysed the clinical value of
differential bacteria in the prognosis of CRC metastasis. Our
findings will shed light on fully revealing the characteristics of
tissue-associated bacteria and provide an effective foundation for
the in-depth study of their role in CRC metastasis.

Materials and methods

Subjects

We selected patients who were surgically treated for colorectal
cancer between January 2020 and December 2021. According to the
UICC/AJCC TNM Staging System for CRC (8th edition, 2017), 92
patients with CRC were divided into a metastatic group (n = 48)
and a non-metastatic group (n = 44) by specialist physicians.
Exclusion criteria were anal canal tumors, appendiceal tumors,
neuroendocrine tumors, familial adenomatous polyposis and cases
of additional surgery for perforation or bleeding complicated
by endoscopic treatment, colorectal cancer with antibiotics,
glucocorticoids or immunosuppressive drugs used within 1 month
at the time of sampling, and other colorectal cancer patients who
could not be entered into this cohort.

Clinical samples were collected including tumor and tumor-
adjacent tissues from CRC patients (the area surrounding the
tumor <3 cm was considered adjacent tissue).

The collection of relevant clinical parameters of CRC
patients included general clinical information, routine blood
tests, biochemistry, coagulation function, tumor markers,
histopathology, and other indicators.

Bacterial DNA extraction

Tissue-associated bacterial DNA was extracted from samples
by using the QIAamp DNA Microbiome Kit (Qiagen, Hilden,
Germany) according to the manufacturer’s protocol. In brief,
approximately 100 mg of intestinal tissue was homogenized,
host cells were lysed, and host DNA was digested by benzonase
(human DNase) while leaving the bacterial cells intact. Then,
bacterial cells were concentrated by centrifugation, and bacterial
DNA was extracted.
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16S rDNA amplicon sequencing and
analysis

The sequencing procedure was performed as previously
described (Emery et al., 2020). Briefly, the V3–V4 hypervariable
region of bacterial 16S rDNA was amplified using universal
sequencing primers 341F 5′-CCTAYGGGRBGCASCAG-3′ and
806R 5′-GGACTACNNGGGTATCTAAT-3′ (Yuan et al., 2018).
The amplicon was sequenced by the Illumina MiSeq PE300
platform at Majorbio Bio-Pharm Technology Co., Ltd. (Shanghai,
China). Raw FASTQ files were de-multiplexed and quality-filtered
by QIIME1 (V1.9.1).1 The optimized sequences were clustered into
operational taxonomic units (OTUs) using UPARSE 7.12 with 97%
sequence similarity level. The most abundant sequence for each
OTU was selected as a representative sequence. To minimize the
effects of sequencing depth on alpha- and beta-diversity measure,
the number of 16S rRNA gene sequences from each sample were
rarefied to 20,000. Bioinformatic analysis of the microbiota was
based on the OTUs information. Alpha diversity indices including
Chao1 richness and Shannon index were calculated with Mothur
v1.30.1 (Emery et al., 2020). The similarity among the microbial
communities in different samples was determined by non-metric
multidimensional scaling analysis (NMDS) based on Bray-curtis
dissimilarity using Vegan v2.5-3 package. The linear discriminant
analysis (LDA) effect size (LEfSe) (Segata et al., 2011)3 was
performed to identify the significantly abundant taxa (phylum to
genera) of bacteria among the different groups (LDA score > 3,
P < 0.05).

Real-time quantitative PCR (qPCR)
analysis

The main differential bacteria and Bacteroides fragilis toxin
gene were confirmed by qPCR analysis. Briefly, experiments were
performed with a QuantStudio 3 Real-time PCR System (Thermo
Fisher Scientific, USA). The qPCR reaction system was: 2 × SYBR
Green premix [Takara Bio technology (Beijing) Co., Ltd. Beijing,
China] 5 µL, 1 µM forward and reverse primer sets (Table 1)
2 µL, 20 ng/µL DNA template 1 µL, ddH2O 2 µL. The conditions
of qPCR reaction were as follows: initial denaturation was done
at 95◦C for 60 s; amplification by using 45 cycles including
denaturation at 95◦C for 5 s, annealing and extension at 60◦C for
30 s; melting curve was done at 95◦C for 15 s, 60◦C for 60 s; 95◦C
for 30 s.

Statistical analysis

SPSS 20.0 statistical software was used for statistical analyses.
Patient characteristics were compared using unpaired Student’s
t-test, Wilcoxon rank-sum test, or χ2 test as appropriate.

1 http://qiime.org/install/index.html

2 http://drive5.com/uparse/

3 http://huttenhower.sph.harvard.edu/LEfSe

Student’s t-test was used to analyse the differential bacteria
between metastatic and non-metastatic CRC tissue. ROC
curve analysis was used to determine the diagnostic value
of serum biomarkers or selected bacteria in patients with
CRC. Other diagnostic parameters were also evaluated,
including sensitivity, specificity, cut-off value, and area
under the ROC curve (AUC) with 95% confidence interval
(CI), to assess the discrimination power of individual or
combined biomarkers. A p-value less than 0.05 was considered
statistically significant.

Results

Patient characteristics

A total of 92 patients with CRC were included in the
study, including 48 patients with metastatic CRC and 44
patients with non-metastatic CRC (Table 2). Statistical analysis
of the basic clinical data indicated that age, gender, tumor
size and location of tumor occurrence were not significantly
associated with tumor metastasis. The differentiation degree was
significantly related to CRC metastasis (p = 0.008), which is
consistent with the understanding that if the tumor is less
differentiated, it is more malignant and prone to metastasis
(Derwinger et al., 2010). In addition, 38 of the 59 ulcerated
CRC patients developed metastases, but only six of the 25
protuberant CRC patients were diagnosed with metastases
(p = 0.001). This is because ulcerated CRC progresses deeper
into the intestinal mucosa and is more likely to invade
lymphatic and blood vessels, leading to CRC metastases (Bateman,
2022). Among the tumor markers alpha fetoprotein (AFP),
carcinoembryonic antigen (CEA), and carbohydrate antigen 19-9
(CA19-9), the level of CEA was significantly associated with CRC
metastasis.

The α- or β-diversity of microbial
community has no significant difference
between metastatic and non-metastatic
CRC tissue

To analyse the microbiota characteristics of tumor
tissues in the metastatic and non-metastatic groups, we
performed 16S rDNA amplicon high-throughput sequencing
and subsequent bioinformatics analysis. The α-diversity of
microbial communities is described by the Shannon and Chao
indices (Ibrahim et al., 2019). The results showed that both
indices of the two groups were not significantly different,
indicating that the bacterial species diversity and richness were
similar between metastatic and non-metastatic CRC tissues
(Supplementary Figures 1A, B). Then, we applied non-metric
multidimensional scaling analysis (NMDS) to analyse the β-
diversity of the microbial communities. The results showed
that the samples of non-metastatic group were not clustered
together, and the β-diversity of two groups were not statistic
significant (Supplementary Figure 1C).
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TABLE 1 Quantitative polymerase chain reaction (qPCR) primers for target bacteria and Bacteroides fragilis toxin gene.

Bacteria Primer sequences (5’–3’) Product size (bp) References

Bacteroidota CATGTGGTTTAATTCGATGAT 126 Queipo-Ortuño et al., 2012

AGCTGACGACAACCATGCAG

Proteobacteria CATGACGTTACCCGCAGAAGAAG 195 Queipo-Ortuño et al., 2012

CTCTACGAGACTCAAGCTTGC

Bacteroides GGTTCTGAGAGGAGGTCCC 106 Queipo-Ortuño et al., 2012

GCTGCCTCCCGTAGGAGT

Streptococcus ACGGTCTTGCTGTCACTTATA 257 Johnson et al., 2016

TACACATATGTTCTTCCCTAATAA

Escherichia-Shigella GAGTAAAGTTAATACCTTTGCTCATTG 206 Kurakawa et al., 2013

GAGACTCAAGCTKRCCAGTATCAG

Bacteroides fragilis TCRGGAAGAAAGCTTGCT 162 Tong et al., 2011

CATCCTTTACCGGAATCCT

Bacteroides uniformis TCTTCCGCATGGTAGAACTATTA 112 Tong et al., 2011

ACCGTGTCTCAGTTCCAATGTG

Bacteroides fragilis toxin TGAAGTTAGTGCCCAGATGC 150 Zamani et al., 2017

CAGTAAAGCCTTCCAGTCC

The bacterial composition is different
between metastatic and non-metastatic
CRC tissues

We further analysed the composition of the microbial
community from metastatic and non-metastatic CRC tissues. At
the phylum level, the results showed that the intestinal bacteria
in all tumor tissues were mainly from Firmicutes, Bacteroidota,

TABLE 2 Clinical characteristics of 92 patients with colorectal cancer.

Parameter Metastatic
(n = 48)

Non-metastatic
(n = 44)

P-value

Gender female (F/M) 15/33 15/29 0.772

Age (years) 64.60± 14.50 65.80± 10.40 0.655

Tumor size 11.58± 12.53 14.00± 15.57 0.413

Differentiation – – 0.008

Well 27 36 –

Moderate-poor 21 8 –

Proximal location – – 0.922

Right 12 10 –

Left 14 12 –

Rectum 22 22 –

Alpha fetoprotein 2.89± 1.66 2.97± 1.35 0.472

Carcinoembryonic
antigen

104.47± 337.41 10.20± 27.91 0.012

Carbohydrate
antigen 19-9

122.10± 340.65 62.67± 302.28 0.124

Macroscopic
classification

– – 0.001

Protuberant lesions 6 19 –

Ulcerated lesions 42 25 –

Data are presented as the mean± SD.

Proteobacteria, Actinobacteriota, and Fusobacteriota (accounting
for approximately 95%) (Figure 1A). The relative abundance of
Bacteroidetes was significantly higher in the metastatic group than
in the non-metastatic group (30.05 ± 21.20 vs. 18.35 ± 17.25%;
P = 0.013), while the relative abundance of Proteobacteria was
significantly lower in the metastatic group than in the non-
metastatic group (9.87 ± 18.07 vs. 19.69 ± 29.13%; P = 0.009). In
addition, Desulfobacterota, although the abundance was very low,
was significantly increased in the metastatic group (0.82 ± 1.55 vs.
0.11± 0.35%; P < 0.001) (Figure 1B).

At the genus level, the bacterial composition in the tumor
tissues was mainly composed of five genera: Bacteroides,
Streptococcus, Escherichia-Shigella, Parvimonas, and Fusobacterium
(Figure 1C). Among them, the relative abundance of Bacteroides
was significantly higher in the metastatic group than in the
non-metastatic group (21.67 ± 19.39 vs. 12.58 ± 12.93%;
P = 0.049), while the relative abundances of Streptococcus and
Escherichia-Shigella were significantly decreased in the metastatic
group compared to the non-metastatic group (5.10 ± 11.9 vs.
23.12 ± 19.42%; P = 0.008 and 5.16 ± 14.65 vs. 11.66 ± 25.35%;
P = 0.027, respectively) (Figure 1D).

The linear discriminant analysis (LDA) effect size (LEfSe;
LDA score > 3.0) also found many differential bacterial
species between the metastatic and non-metastatic CRC
groups (Supplementary Figure 2). Interestingly, the metastatic
CRC group had more relatively high abundance bacterial
species than the non-metastatic CRC group, especially
o_Bacteroidales, c_Bacteroidia, p_Bacteroidota, g_Bacteroides,
f_Bacteroidaceae, g_Alistipes, f_Rikenellaceae, f_Oscillospiraceae,
p_Desulfobacterota, and c_Desulfovibrionia, which had the
highest scores, while c_Gammaproteobacteria, p_Proteobacteria,
o_Enterobacterales, g_Escherichia-Shigella, f_Enterobacteriaceae,
c_Bacilli, o_Lactobacillales, g_Streptococcus, f_Streptococcaceae,
g_Curvibacter, o_Spirochaetales, and p_Spirochaetota were greatly
enriched in the non-metastatic CRC group.
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FIGURE 1

The microbial composition of tumor tissues from metastatic and non-metastatic colorectal cancer (CRC) groups. (A) Histograms of the
predominant bacterial phyla of tumor tissues from metastatic and non-metastatic CRC groups. (B) The phylum-level bacterial proportion difference
analysis between metastatic and non-metastatic CRC groups. (C) Histograms of the predominant bacterial genera of tumor tissues from metastatic
and non-metastatic CRC groups. (D) The genus-level bacterial proportion difference analysis between metastatic and non-metastatic CRC groups.
Metastatic CRC group, n = 48; non-metastatic CRC group, n = 44. The Wilcoxon rank-sum test was used in patterns (B,D). *P < 0.05; **P < 0.01;
***P < 0.001.

Bacteroides fragilis and Bacteroides
uniformis are increased in the metastatic
CRC group

Bacterial composition analysis indicated that the abundance
of g_Bacteroides was the highest among all the bacterial species
and was increased in the metastatic CRC group. Then, we
tried to identify the specific bacteria at the species level. In
total, 37 OTUs were found to belong to g_Bacteroides, among
which Bacteroides fragilis (OTU 2272), unclassified g_Bacteroides
(OTU5969) and Bacteroides uniformis (OTU2249) were the three
highest average abundance OTUs (Supplementary Table 1).
Importantly, Bacteroides fragilis and Bacteroides uniformis showed
a strong increasing trend in the metastatic CRC group compared
to the non-metastatic group (p = 0.067 and 0.076, respectively)
(Supplementary Table 1). As is reported that Bacteroides fragilis
toxin (BFT) is the potential substance promoting tumorigenesis
and metastasis (Zamani et al., 2019; Liu et al., 2020), we tested
the bft gene frequency in non-metastatic and metastatic CRC
tissue samples. The results showed that 28 out of 44 (63.6%) non-
metastatic and 41 out of 48 (85.4%) metastatic CRC samples are bft
gene positive (Supplementary Figure 3).

The main differential bacteria are
confirmed by qPCR

To confirm the high-throughput sequencing results, we
performed a qPCR experiment to quantify the main differential
species in tumor tissues. The results showed that at the phylum
level, the abundance of Bacteroidota was increased in metastatic
CRC tissue, while that of Proteobacteria was decreased (Figures 2A,
B), but the results of Desulfobacterota were lacking because its
abundance was lower than the limit of detection by qPCR in this
study; at the genus level, the Bacteroides abundance increased, but
the Streptococcus and Escherichia-Shigella abundances significantly
decreased in the metastatic CRC group (Figures 2C–E). In
addition, we tested the abundance of Bacteroides fragilis and
Bacteroides uniformis, and the results showed that they were greatly
increased in metastatic CRC tissues (Figures 2F, G).

ROC analyses of differential bacteria in
diagnostic models for CRC metastasis

First, we examined the diagnostic efficiency of the serum
markers AFP, CEA, and CA19-9 in CRC metastasis. As shown
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FIGURE 2

The differential bacteria between the metastatic and non-metastatic colorectal cancer (CRC) groups were confirmed by polymerase chain reaction
(PCR). (A,B) Relative abundance of the Bacteroidetes and Proteobacteria phyla. Metastatic CRC group, n = 48; non-metastatic CRC group, n = 44.
(C–E) Relative abundance of the Bacteroides, Streptococcus, and Escherichia-Shigella genera. Data below the limit of detection were removed;
metastatic CRC group, n = 30; non-metastatic CRC group, n = 27. (F,G) Relative abundance of Bacaeroides fragilis and Bacteroides uniformis.
Metastatic CRC group, n = 48; non-metastatic CRC group, n = 44. Data are presented as the mean ± SEM; ∗p < 0.05; ∗∗p < 0.01 by unpaired
Student’s t-test.

in Figures 3A–C, the area under the curve (AUC) of CEA
(0.652, 95% CI: 0.5387–0.7652, p = 0.012) was the largest, with a
sensitivity of 0.479 and specificity of 0.8409 at the optimal cut-
off value of 8.875. Next, we examined the diagnostic efficiency of

differential bacteria in CRC metastasis. The AUCs of the ROC
curves of p_Bacteroidota, p_Proteobacteria, p_Desulfobacterota,
g_Bacteroides g_Streptococcus, and g_Escherichia-Shigella were
0.6709 (95% CI: 0.5609–0.7810, P = 0.0048), 0.5978 (95% CI:
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FIGURE 3

The receiver operating characteristic (ROC) curve analysis of serum tumor markers and selected bacteria in predicting the metastasis of colorectal
cancer (CRC). (A–C) ROC curve analysis of serum tumor markers alpha fetoprotein (AFP), carcinoembryonic antigen (CEA), and carbohydrate
antigen 19-9 (CA19-9) in patients with CRC. (D–F) ROC curve analyses of Bacteroidota, Proteobacteria, and Desulfobacterota phyla in patients with
CRC. (G–I) ROC curve analysis of the Bacteroides, Streptococcus, and Escherichia-Shigella genera in patients with CRC.

0.4801–0.7155 P = 0.1065), 0.6906 (95% CI: 0.5822–0.7990,
P = 0.0017), 0.6402 (95% CI: 0.5269–0.7534, P = 0.0207), 0.6449
(95% CI: 0.5313–0.7584, P = 0.0168), and 0.5630 (95% CI: 0.4430–
0.6829, P = 0.2985), respectively (Figures 3D–I). These results
indicated that the differential bacterial levels of CRC tissue groups
possessed a moderate diagnostic efficiency for CRC metastasis.

Then, we attempted to improve the diagnostic efficacy
by combining CEA with selected bacteria. The combination

ROC curve of CEA with p_Bacteroidota, p_Proteobacteria,
p_Desulfobacterota, g_Bacteroides and, or g_Streptococcus was
drawn (Figures 4A–E), and the AUC was 0.6974 (95% CI: 0.5903–
0.8046, P = 0.0011), 0.6723 (95% CI: 0.5628–0.7819, P = 0.0044),
0.7027 (95% CI: 0.5942–0.8111, P < 0.001), 0.6785 (95% CI:
0.5690–0.7880, P = 0.0032), 0.7055 (95% CI: 0.5996–0.8114,
P < 0.001), respectively. Therefore, combination analyses obtained
a higher diagnostic efficiency for CRC metastasis.
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FIGURE 4

Receiver operating characteristic (ROC) curve analysis of carcinoembryonic antigen (CEA) combined with selected bacteria in predicting the
metastasis of colorectal cancer (CRC). (A–C) ROC curve analysis of CEA combined with patients with Bacteroidota, Proteobacteria, and
Desulfobacterota phyla. (D,E) ROC curve analysis of CEA combined with patients with the Bacteroides and Streptococcus genera.

Tumor adjacent tissues of metastatic and
non-metastatic CRC show microbial
composition differences

To explore whether the differential bacteria only existed in
tumor tissue or existed in other normal intestinal tissues, we
analysed the microbial composition of tumor-adjacent tissues from
these patients. The results showed that at the phylum level, the
relative abundances of Bacteroidota and Desulfobacterota were
significantly higher in the adjacent tissue of the metastatic CRC
group than in the adjacent tissue of the non-metastatic CRC
group (30.78 ± 20.13 vs. 21.46 ± 20.42% and 0.56 ± 1.19 vs.
0.17 ± 0.4%, respectively) (Figures 5A, B), while the relative
abundance of Proteobacteria showed a decreased trend in the
adjacent tissue of the metastatic group compared to the non-
metastatic group (6.02 ± 6.88 vs. 16.03 ± 25.72%) (Figures 5A,
B), although there was no statistical significance. At the genus
level, the relative abundance of Bacteroides in the metastatic
group was significantly higher than that in the non-metastatic
group (23.89 ± 19.31 vs. 18.16 ± 19.66%) (Figures 5C, D),

while Streptococcus was significantly lower than that in the non-
metastatic group (3.44 ± 5.6 vs. 5.9 ± 7.43%) (Figures 5C, D).
These results indicated that the differential bacteria in the adjacent
and tumor tissues of metastatic and non-metastatic CRC were
consistent, meaning that the CRC metastasis associated bacteria are
not specifically enriched in tumor tissues alone but are present in a
larger area of the intestinal tract of CRC patients.

Discussion

The harmonious intestinal microbiota, inhabiting the gut
lumen, plays a crucial role in gut health (Thursby and Juge, 2017).
However, in pathological situations, certain symbiotic bacteria
adhere to or invade the intestinal mucosa, which can affect
the progression of intestinal diseases, such as colorectal cancer
(Tomkovich et al., 2019). In this study, we revealed the potential
bacteria that associate with CRC metastasis, the leading cause of
CRC death, by systematically analysing the characteristics of the
tissue-associated microbiota collected from the non-metastatic and
metastatic CRC groups.
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FIGURE 5

The microbial composition of tumor-adjacent tissues from metastatic and non-metastatic colorectal cancer (CRC) groups. (A) Histograms of the
predominant bacterial phyla of tumor-adjacent tissues from metastatic and non-metastatic CRC groups. (B) The phylum-level bacterial proportion
difference analysis of tumor-adjacent tissues from metastatic and non-metastatic CRC groups. (C) Histograms of the predominant bacterial genera
of tumor-adjacent tissues from metastatic and non-metastatic CRC groups. (D) The genus-level bacterial proportion difference analysis of
tumor-adjacent tissues from metastatic and non-metastatic CRC groups. Tumor-adjacent tissue of the metastatic CRC group, n = 48;
tumor-adjacent tissue of the non-metastatic CRC group, n = 44. The Wilcoxon rank-sum test was used in patterns (B,D). *P < 0.05; ***P < 0.001.

We collected mucosal tissues from CRC patients who
underwent surgical operation and extracted the DNA of tissue-
associated bacteria. The function of tissue-associated bacteria in
CRC progression may differ from that of luminal bacteria (Durbán
et al., 2011; Chen, 2018). The gut microbiota in the lumen usually
indirectly affects epithelial cells, such as by metabolites (Dalal
et al., 2021), but tissue-associated bacteria are believed to stimulate
intestinal cells directly and intensely (Chen et al., 2012). Therefore,
mucosal bacteria should play more important roles than the gut
microbiota in CRC progression. In addition, we found that all the
tissues from CRC patients contained more mucosal bacteria than
those from healthy individuals (data not shown). The probable
reason is that the colon of CRC patients is associated with a reduced
intestinal barrier (Sun et al., 2022).

Our study found that the composition of the flora of the
two groups showed a great difference. We noted that Bacteroides
was the most abundant bacterium for tissue adhesion and was
significantly enriched in the metastatic group. Bacteroides fragilis
and Bacteroides uniformis were two species that were significantly
elevated in the metastatic group. In fact, it was reported that
Bacteroides fragilis was higher in the stool of CRC patients than in
healthy individuals. In addition, Bacteroides fragilis has the ability

to penetrate the colonic mucus and resides deep within crypt
channels (Lee et al., 2013). Thus, its abundance was very high in
CRC intestinal tissue (Li S. et al., 2021). Mechanistically, Bacteroides
fragilis can secrete B. fragilis toxin and induce stemness in CRC
by upregulating Jumonji domain-containing protein 2B (JMJD2B)
levels in a TLR4-NFAT5-dependent pathway (Liu et al., 2020).
Recently, Parida et al. (2021) found that enterotoxigenic Bacteroides
fragilis (ETBF) is present in breast tumor tissue, triggers epithelial
hyperplasia and augments breast cancer growth and metastasis via
the β-catenin and Notch1 pathways. Our results indicated that
the abundance of Bacteroides fragilis increased significantly, and
bft gene was more prevalent in metastatic CRC samples, which is
consistent with its role in bowel cancer progression and metastasis.
Bacteroides uniformis is usually known as a harmless bacterium,
but some other studies and our study identified that its abundance
increased in the CRC group. Further studies are needed to clarify
the potential tumor-promoting function of Bacteroides uniformis.

The abundance of Streptococcus was decreased in the metastatic
CRC group. Many studies have reported that different species of
Streptococcus play different roles in CRC. Some species, such as
Streptococcus gallolyticus, strongly associated with the occurrence
of colorectal cancer are known as tumor-promoting bacteria
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(Aymeric et al., 2018). Nevertheless, Li Q. et al. (2021) reported
that Streptococcus thermophiles, which is depleted in stool samples
of patients with CRC, plays a tumor-suppressive role by secreting
β-galactosidase to maintain high galactose content throughout the
gastrointestinal tract and then inhibit the Hippo pathway in tumour
tissues. In our study, Streptococcus may act as a tumor-inhibiting
bacterium by an unknown mechanism. Our ongoing work will try
to identify specific species and research their antitumor functions.

In addition, our results showed that the main differential
bacteria of tumor-adjacent tissue are similar to those of tumor
tissues, indicating that in CRC patients, tissue-associated bacteria
may be present in a wider range of intestinal tissues rather than
only in the tumor. Similarly, Boleij et al. (2015) reported that the
bft gene, which plays an important role in the pathogenesis of
human CRC, is not limited to tumors but spans a larger portion
of the colonic mucosa. Therefore, further study is needed to
comprehensively evaluate the impact of CRC metastasis associated
bacteria on intestinal health.
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Background: Gut microbiome plays an indispensable role in the occurrence and 
progression in various diseases. The incidence of pancreatic cancer (PC) and liver 
metastasis (PCLM) are high, most of them are found in advanced stage. Therefore, 
it is particularly necessary to search for predictive biomarkers, which are helpful 
for early detection and treatment, and thus improve the survival rate and quality 
of life of PC patients.

Methods: We retrospectively analyzed 44 pancreatic cancer patients (P group, 
n = 44) and 50 healthy people (N group, n = 50) from March 21, 2021 and August 
2, 2022. Among all PC patients, we divided them into liver metastasis group (LM 
group, n = 27) and non-liver metastasis group (non-LM group, n = 17). DNA was 
extracted and 16S ribosomal RNA (16S rRNA) gene sequencing was performed. 
SPSS was used for statistical analyses and all bioinformatics analyses were based 
on QIIME2, p < 0.05 were considered statistically significant.

Results: The microbial richness and diversity of group P and LM were higher 
than that of group N and non-LM. LEfSe analysis found that Streptococcus was 
a significantly different microorganism, which was further identified by random 
forest (RF) model, and its ability to predict PC and PCLM was verified by ROC 
curve.

Conclusion: We demonstrated significant differences in intestinal microbiome 
composition between PC patients and healthy people, and found that 
Streptococcus is a potential biomarker for early prediction of PC and PCLM, 
which is critical for early diagnosis of diseases.
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Introduction

According to the GLOBOCAN’s statistics in 2020 (Sung et  al., 2021), there were 
approximately half million new cases of pancreatic cancer (PC) worldwide (2.6%/19.3 
million), however, its mortality rate accounts for 4.7% of all cancer specific deaths. 
Although in recent years, with the rise of new treatment methods including immunotherapy 
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and targeted therapy, as well as the deepening understanding of 
complex mechanisms, the overall 5-year survival rate of PC has 
not changed much. It is estimated that PC may become one of the 
main causes of cancer-related deaths in the future (Neoptolemos 
et al., 2018). The pancreas is a retroperitoneal organ, due to its 
concealed location, is surrounded by the duodenum, which affects 
its observation (Zhang et al., 2018), and lacks special symptoms 
and develops rapidly. Thus, PC is often found in the late stage. 
Liver metastasis (LM) is one of the most common modes of PC 
metastasis, and the main cause of treatment failure and death in 
advanced PC patients (Zheng et al., 2020). At present, there is no 
effective prediction method for PC. In clinical practice, traditional 
methods such as serum tumor markers, imaging examination or 
biopsy are commonly used to screen and diagnose PC. However, 
when the indicators change, the disease has progressed (Zhou 
et al., 2017). Therefore, it is very necessary to find convenient, 
non-invasive and inexpensive PC prediction biomarkers, which 
will help in the early detection and treatment of PC.

Pancreatic carcinogenesis is related to a variety of risk factors, 
including genetic factors, inflammatory factors, and stimulating 
factors, such as smoking, drinking, etc. Currently, researchers 
have focused on intestinal microorganisms (Klein, 2021). The 
human intestinal microbes and its metabolites constitute a 
complex microecology. There are approximately 1014 types of 
bacteria in the human digestive tract, mainly distributed in the 
colon and rectum (Sender et al., 2016). It plays a crucial role in 
many life processes, such as promoting metabolism, regulating 
energy storage, activating immune system, and maintaining 
intestinal homeostasis (Deschasaux et al., 2018; Hartmann et al., 
2019). Under normal circumstances, bacteria in the digestive tract 
maintain a relative balance of species and quantity through 
symbiosis, competition and antagonism, and maintain dynamic 
balance with the host. Once the balance is abnormal or disrupted, 
it can cause bacteria disorders and lead to a series of diseases (Fu 
et al., 2022). More importantly, the toxic products of intestinal 
microorganisms have been identified as possible carcinogens, 
such as improving the tumorigenic effect by triggering double 
stranded DNA damage. At the same time, intestinal 
microorganisms are associated with a variety of risk factors related 
to pancreatic cancer, such as diabetes, chronic pancreatitis and 
obesity, which may potentially affect PC and PCLM. Based on this 
background, this study took pancreatic cancer as the starting 
point to explore the functional mechanism of intestinal 
microorganisms in liver metastasis, hoping to find biomarkers 
that predict PC and PCLM, and provide theoretical basis for 
prolonging the survival of PC patients.

Methods

Patients

We retrospectively analyzed 44 untreated PC patients (pancreatic 
cancer group, P group) and 50 matched healthy volunteers (Normal 
group, N group) between March 21, 2021 to August 2, 2022. All 
patients were selected through preset inclusion and exclusion criteria, 
the inclusion criteria were as follows: (1) all cases were confirmed as 
pancreatic cancer at the cancer center of Union Hospital, Tongji 
Medical College, Huazhong University of Science and Technology; (2) 
the patients had not received anti-tumor treatment, except for surgery, 
and stool samples were collected 3 weeks after the surgery; (3) no 
antibiotics or other drugs that may affect the intestinal flora were 
taken before the samples collection; (4) no intestinal invasive 
operations, such as gastrointestinal endoscopy and enema were 
performed; (5) without bile duct obstruction; and (6) the patients 
knew the contents of the study and had signed the informed consent. 
Patients who do not meet the inclusion criteria will be  excluded. 
Among the PC patients, we divided them into liver metastasis group 
(LM group, n = 27) and non-liver metastasis (non-LM group, n = 17) 
to find the key intestinal microorganisms and related metabolic 
pathways that distinguish PC and PCLM.

For all PC patients, baseline clinical-pathological characteristics, 
including age, gender, body mass index (BMI), tumor sites, 
pathological types, whether metastasis, metastasis sites, whether 
surgery, lines of treatment, Eastern Cooperative Oncology Group 
(ECOG) performance and baseline bilirubin value were available for 
review. This retrospective study was approved by the Ethical 
Committees of Union Hospital, Tongji Medical College, Huazhong 
University of Science and Technology (No. 2014-041).

Sample collection and 16S rRNA 
sequencing

Fecal samples of the PC patients were collected by the trained 
medical staff before anti-tumor treatment, put each sample in a 50 mL 
sterile specimen collection box, then immediately transfer to a −80°C 
refrigerator for storage. After all samples were collected, they were sent 
for examination. The samples’ total microbiome DNA was isolated 
with Omega Mag-Bind Soil DNA kit (Omega Bio-Tek, Norcross, GA, 
United States), and the concentration and purity of the DNA were 
determined (Yu et  al., 2021). The V3-V4 variable regions of the 
qualified samples were sequenced using Illumina platform (Illumina, 
San Diego, CA, United States) and the original data were filtered by 
the dada2 method of Quantitative Insights into Microbial Ecology2 
(QIIME2) software (v2019.4) (Rai et al., 2019), and the effective data 
were stored in FASTQ format. On this basis, the similarity sequences 
were clustered as amplicon sequence variants (ASVs), then the Naive 
Bayes classifier in QIIME2 software was used to cross compare with 
the Greengenes database (release 13.8)1 (DeSantis et al., 2006) for 
species annotation.

1 http://greengenes.secondgenome.com/

Abbreviations: PC, pancreatic cancer; LM, liver metastasis; rRNA, Ribosome 

ribonucleic acid; QIIME, Quantitative Insights into Microbial Ecology; ASVs, 

Amplicon sequence variants; PERMANOVA, permutational multivariate analysis 

of variance; PCoA, Principal coordinate analysis; LDA, linear discriminant analysis; 

LEfSe, linear discriminant analysis effect size; KEGG, Kyoto Encyclopedia of Genes 

and Genomes.
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Statistical and bioinformatic analyses

SPSS software (version 22.0, SPSS Inc., Chicago, IL, United States) 
were used for statistical analysis. Graphpad prism 8.0 (GraphPad 
Software Inc., San Diego, CA, United States) was used to draw charts. 
The patient characteristics were compared by Chi-squared test and 
Student’s t-test. All tests were performed by two-sided, and p < 0.05 
were considered statistically significant. The 16S rRNA sequencing 
data were analyzed based on QIIME2 software. Principal coordinates 
analysis (PCoA) (Shi et al., 2020), Linear discriminant analysis (LDA) 
and effect size (LEfSe) (Segata et  al., 2011), Kruskal-Wallis test, 
permutational multivariate analysis of variance (PERMANOVA), 
random forest (RF) model (Liu et al., 2020) and other bioinformatic 

methods were used to perform hypothesis test of intergroup diversity 
and predict the microbial metabolism function.

Results

Demographic characteristics

A total of 44 GC patients between March 21, 2021 and August 2, 
2022 were included in our retrospective study. There was no statistical 
difference in baseline information between the two groups, the 
baseline characteristics of 44 PC patients were summarized in Table 1. 
In the PC population, 61.36% were under 65 years old, and there were 
23 (52.27%) females and 21 (47.73%) males. The body mass index 
(BMI) was 22.43 ± 2.75 kg/cm2. The tumors mainly located in the 
whole (40.91%) and head (40.91%) of the pancreas. The majority 
pathological classification was adenocarcinoma, accounting for 
81.82%. Thirty-two (72.73%) PC patients suffered from metastasis, 
including twenty-seven (27/32, 84.38%) liver metastasis (LM), 
eighteen (18/32, 56.25%) distant lymph node metastasis, nine (9/32, 
28.13%) peritoneal metastasis and four (4/32, 12.50%) lung metastasis, 
only one quarter patients underwent surgery before treatment.

16S rRNA sequencing results

Sequencing data processing
The rarefaction curve and species accumulation curve indicated 

that the sample sequencing depth was sufficient and the annotated 
species were rich, with more than 6*104 species, which can better 
represent the microbial flora information of each group, as shown in 
Figures  1A,B. Venn diagram showed that 36886 and 21251 ASV/
OTUs were clustered in P group and N group, respectively, 
(Figure 1C).

Microbial diversity analysis
For alpha diversity, Chao1 and Shannon indexes were used to 

represent the gene richness and number, both of them were higher in 
the P group than in the N group (p < 0.001, p = 0.37) (Figure 2A). 
According to Bray-Curtis distance algorithm, the graphs of principal 
coordinate analysis (PCoA) and 3D-PCoA2 were drawn to display 
beta diversity, β-diversity between P and N group was large (R2 = 4.477, 
p = 0.001), indicating that there were composition differences between 
two groups (Figures 2B,C). Axis 1, 2, and 3 of 3D-PCoA explain 8.810, 
6.599, and 4.659% of variance, respectively.

Compositional analysis between PM and non-PM 
groups

According to the relative abundance (Figures  1E,G), 
intragroup cumulative abundance (Figures 1F,H) and phylogenetic 
tree plot (Figure  1D) of the top  10 species in each sample. At 
phylum level, Firmicutes, Bacteroidetes, Proteobacteria and 
Actinobacteria in both groups rank in the top four (Figure 1D). 
Among them, the relative abundance of Verrucomicrobia in P 

2 https://view.qiime2.cn/

TABLE 1 Demographic characteristics of PC patients (n = 44).

Variable n (%)

Age (y)

<65 27 (61.36%)

≥65 17 (38.64%)

Gender

Male 21 (47.73%)

Female 23 (52.27%)

BMI 22.43 ± 2.75

Tumor sites

Head 18 (40.91%)

Body 3 (6.82%)

Tail 5 (11.36%)

Whole 18 (40.91%)

Pathological types

Adenocarcinoma 36 (81.82%)

Squamous cell carcinoma 3 (6.82%)

Other 5 (11.36%)

Whether metastasis

Yes 32 (72.73%)

No 12 (27.27%)

Metastasis sites (n = 32)

Liver 27 (84.38%)

Lung 4 (12.50%)

Distant lymph node 18 (56.25%)

Peritoneum 9 (28.13%)

ECOG performance

0 43 (97.73%)

1 1 (2.27%)

Whether surgery

Yes 11 (25.00%)

No 33 (75.00%)

Total bilirubin (TBIL) (μmol/L) 15.90 ± 12.57

Direct bilirubin (DBIL) (μmol/L) 5.63 ± 4.83

Indirect bilirubin (IBIL) (μmol/L) 11.86 ± 12.39
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group is 9.89% higher than that in N group (Figures 1E,F), and at 
the genus level, the relative abundance of Streptococcus, 
Lactobacillus, and Bifidobacterium in the P group was significantly 
increased, especially Streptococcus, which increased by 9.04 times 
in the N group (Figures 1G,H).

Linear discriminant analysis (LDA) was conducted to estimate 
the effect size (LEfSe) of each differential flora. The LDA threshold 
effect value was set to 4, and the p value after FDR correction was set 
to 0.05, so as to find the flora markers with statistical differences 
between the two groups. It was found that there were 16 significantly 
different microorganisms in the P group, ranking from high to low 
according to LDA value were c_Bacilli, o_Lactobacillales, p_
Actinobacteria, f_Streptococcaceae, g_Streptococcus, c_Actinobacteria, 
o_Bifidobacteriales, f_Bifidobacteriaceae, g_Bifidobacterium, f_
Lactobacillaceae, g_Lactobacillus, f_Enterobacteriaceae, o_
Enterobacteriales, c_Gammaproteobacteria, f_Enterococcaceae, and 
g_Enterococcus, while there were 11 significantly microbes in N 
group: p_Bacteroidetes, c_Bacteroidia, o_Bacteroidales, f_
Bacteroidaceae, g_Bacteroides, c_Clostridia, o_Clostridiales, f_
Lachnospiraceae, g_Roseburia, g_Faecalibacterium, and f_
Veillonellaceae. Note: here p, c, o, f, g and s represent phylum, class, 
order, family, genus and species, respectively (Figures 2D,E).

Next, the 16S rRNA sequencing data were predicted by the 
phylogenetic investigation of communities by reconstruction of 
unobserved states (PICRUSt2) software. We used Kyoto Encyclopedia 

of Genes and Genomes (KEGG) pathway database3 and MetaCyc 
database4 annotated the functional path. Figure  3 and 
Supplementary Tables S1, S2 showed that the gut microbes of PC 
patients were clustered into six classifications, including metabolism, 
genetic information processing, environmental information 
processing, cellular processes, organismal systems, and human 
diseases in KEGG functional pathway analysis, while seven 
classifications in MetaCyc functional pathway analysis, among them, 
the carbohydrate metabolism pathway and amino acid biosynthesis 
pathway were significantly enriched, indicated that metabolic disorder 
may be  related to GC metastasis. At the same time, 28 metabolic 
pathways were significantly different between P and N groups, the top 
five pathways ranked by difference from high to low were: mycothiol 
biosynthesis, mono-trans, poly-cis decaprenyl phosphate biosynthesis, 
methyl ketone biosynthesis, reductive acetyl coenzyme A pathway and 
superpathway of L-arginine, putrescine, and 4-aminobutanoate 
degradation (Table 2).

3 http://www.genome.jp/kegg/pathway.html

4 https://metacyc.org/

FIGURE 1

16S rRNA sequencing data processing and species composition of P and N groups. (A) Refraction curve; (B) species accumulation curve; (C) Venn 
gram of ASV/OTUs; (D) phylogenetic tree plot; (E–H) compositional analysis of each sample (E,G) and group (F,H) at the phylum level (E,F), and at the 
genus level (G,H).
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Streptococcus is a gut microbial marker for 
predicting PC and PCLM

The top 20 important species were screened out by random forest 
(RF) analysis. The heat map showed the abundance distribution of 
these species in each sample (Figure 2F). Table 3 lists the top five ASV 
IDs and corresponding species, including Streptococcus1, 
Streptococcus2, Streptococcus3, Streptococcus4, and Streptococcus5. All 
of them were enriched in P group by LEfSe analysis, further analysis 
of PC prediction ability of the above species by ROC curve showed 
that the area under the curves (AUC) of Streptococcus1 was 0.927 
(p < 0.001), indicated that the increase of its number can predict the 
occurrence of PC (Figure  2G). In other words, Streptococcus is a 
predictive microbiota marker of PC, the more Streptococcus is, the 
higher the incidence of pancreatic cancer.

To further explore the effect of fecal bacteria on PC patients with 
liver metastasis (LM), we divided them into liver metastasis group 
(LM group, n = 27) and non-liver metastasis group (non-LM group, 
n = 17), respectively. There was no significant difference in 
clinicopathological features between the two groups (Table 4). The 

sequencing depth of these two groups is good. The species composition 
of LM group is different from that of non-LM group, and the gene 
number and richness in LM group were higher. RF analysis found that 
Streptococcus also played a key role in identifying LM, and ROC curve 
was verified (AUC = 0.796, p = 0.001) (Supplementary Figures S1, S2 
and Table  3), indicating that Streptococcus has great potential in 
predicting PC as well as PCLM.

Discussion

With the proposal of the Human Microbiome Project (HMP) and 
the extensive development of high-throughput sequencing, 
metagenomics, biochip technology and biological information 
analysis, the relationship between gut microbes and health has 
received unprecedented attention. Intestinal flora is an indispensable 
part of the body and plays an important role in human physiological 
health. It also plays a key role in the occurrence and development of 
pancreatic cancer (PC) (Riquelme et al., 2019). PC is one of the most 

FIGURE 2

Species diversity results of P group and N group. (A) Alpha diversity; (B) PCoA of beta diversity (R2 = 4.477, p = 0.001); (C) 3D-PCoA; (D) taxonomic 
branch diagram of LEfSe (LDA threshold = 4); (E) LDA histogram; (F) RF model; (G) ROC curves. ***p<0.001.
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lethal malignant tumors and one of the biggest burdens in the world. 
Because its early symptoms are not obvious and most of them are 
found in late stage, it is necessary to find convenient and non-invasive 
biomarkers. Therefore, in order to find microorganisms that may 
predict PC, we retrospectively collected fecal samples from 44 PC 
patients and 50 normal people, 16S rRNA sequencing technology and 
bioinformatic analysis were performed to find the 
predictive biomarkers.

Our study found that the intestinal microbial richness of PC 
patients was higher, and the Streptococcus content was significantly 
increased. Through LEfSe, RF analysis and verified by ROC curve, it 
was found that it had important discrimination ability in the PC group 
and could specifically predict PC and PCLM. Streptococcus belongs to 
p__Firmicutes, c__Bacilli, o__Lactobacillales, and f__Streptococcaceae, 
is a common pyogenic Gram-positive coccus, which widely exists in 
human gastrointestinal tract and nasopharynx, mainly causing 

FIGURE 3

Statistics of metabolic pathways in PC patients. Different colors are used to distinguish different pathways, as blue represents biosynthensis, red 
represents degradation/utilization/assimilation, green represents detoxification, deep-purple represents generation of precursor metabolite and 
energy, blue-green represents glycan pathways, brown represents macromolecule modification, purple represents metabolic clusters.
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TABLE 2 Differential metabolic pathway between P and N groups (P < 0.05).

Pathway Description LogFC SE P value adj P value

PWY1G-0 Mycothiol biosynthesis 2.615 0.321 4.44E-16 9.42E-14

PWY-6383
Mono-trans, poly-cis decaprenyl 

phosphate biosynthesis
2.316 0.284 4.44E-16 9.42E-14

PWY-7007 Methyl ketone biosynthesis 2.315 0.350 3.79E-11 5.35E-09

CODH-PWY
Reductive acetyl coenzyme A 

pathway
−2.359 0.371 2.05E-10 2.17E-08

ARGDEG-PWY

Superpathway of L-arginine, 

putrescine, and 4-aminobutanoate 

degradation

1.772 0.388 4.887E-06 <0.001

ORNARGDEG-PWY
Superpathway of L-arginine and 

L-ornithine degradation
1.772 0.388 4.887E-06 <0.001

PWY-6071
Superpathway of 

phenylethylamine degradation
1.763 0.380 3.561E-06 <0.001

PWY-5265
Peptidoglycan biosynthesis II 

(staphylococci)
1.821 0.408 7.96E-06 <0.001

3-HYDROXYPHENYLACETATE-

DEGRADATION-PWY

4-hydroxyphenylacetate 

degradation
1.522 0.360 <0.001 0.001

PWY-6565
Superpathway of polyamine 

biosynthesis III
0.145 0.035 <0.001 0.002

PWY0-321
Phenylacetate degradation 

I (aerobic)
1.458 0.364 <0.001 0.002

PWY-5181
Toluene degradation III (aerobic) 

(via p-cresol)
1.466 0.369 <0.001 0.003

PWY0-1277

3-phenylpropanoate and 

3-(3-hydroxyphenyl)propanoate 

degradation

1.566 0.405 <0.001 0.004

HCAMHPDEG-PWY

3-phenylpropanoate and 

3-(3-hydroxyphenyl)propanoate 

degradation to 2-oxopent-4-enoate

1.725 0.451 <0.001 0.004

PWY-6690

Cinnamate and 

3-hydroxycinnamate degradation 

to 2-oxopent-4-enoate

1.725 0.451 <0.001 0.004

GALLATE-DEGRADATION-II-PWY Gallate degradation I 1.570 0.444 <0.001 0.011

PWY-6562 Norspermidine biosynthesis 1.416 0.409 0.001 0.014

GALLATE-DEGRADATION-I-PWY Gallate degradation II 1.376 0.404 0.001 0.015

METHYLGALLATE-DEGRADATION-PWY Methylgallate degradation 1.374 0.404 0.001 0.015

PWY-6185
4-methylcatechol degradation 

(ortho cleavage)
1.457 0.430 0.001 0.015

PWY-7373

Superpathway of 

demethylmenaquinol-6 

biosynthesis II

2.106 0.667 0.002 0.032

ORNDEG-PWY
Superpathway of ornithine 

degradation
0.758 0.241 0.002 0.032

PWY-6397

Mycolyl-arabinogalactan-

peptidoglycan complex 

biosynthesis

1.927 0.626 0.002 0.038

PWY-6182
Superpathway of salicylate 

degradation
1.260 0.411 0.002 0.038

(Continued)
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pyogenic inflammation, hypersensitivity diseases and so on. Nowadays, 
its role in cancer occurrence and progression is gradually known 
(Boleij et al., 2011; Zhou et al., 2022). In the previous research of our 
team, we  found that Streptococcus played a crucial role in GC and 
GCLM (Yu et al., 2021), and observed its role in extrahepatic metastasis 
of liver cancer in unpublished study. Thus, Streptococcus can be used as 
a biomarker for early diagnosis to guide the precise treatment of 
diseases. What’s more, in our preliminary functional and metabolic 
pathway analysis, we found that mycothiol biosynthesis pathway was 
significantly different between PC patients and normal people, and its 
changes may be  a potential mechanism for the occurrence and 
development of PC. Mycothiol (MSH), a major low molecular weight 
thiol in mycobacteria, is an important cellular antioxidant. At present, 
a large number of literatures have reported that MSH is a promising 
antimicrobial target. As MSH only exists in actinomycetes, it is a good 
microbial target. However, as this study only explores PC and PCLM 
preliminarily, there is no in-depth mechanism exploration, and further 
in vitro and in vivo experiments are needed to prove it.

In addition, there are some limitations in our study: (1) this study 
is limited to a single center with a small sample size, which needs to 
be external verified by large sample and multi-center trials; (2) we could 
not avoid the impact of diet on intestinal microorganisms, we hope that 
randomized controlled trials can be  conducted in the future to 
eliminate uncontrollable factors; (3) as the patients are still in the 
treatment stage and have not reached the follow-up time, we have not 
analyzed the treatment-related information in this study. Our research 
group has established a complete specimen bank of intestinal microbes 
of PC patients before and after treatment. We will conduct in-depth 
research in the future, hoping to reveal the potential synergy between 
tumor treatment and microbial microbes; (4) our study can only 
annotate microbial species at species levels, further in vivo animal 
experiments and clinical studies are needed to confirm the specific 
pathogens or bacteria that cause the differences; and (5) this study does 
not include the exploration of mechanism, we are looking forward to 

further exploration of mechanism by scholars based on our research 
findings in the future. Despite the above defects, this study can still 
explain the role of Streptococcus in PC and PCLM to a great extent.

Conclusion

To sum up, the intestinal microbial structure characteristics of 
PC and PCLM patients have changed, and the number of 
Streptococcus in these two groups has increased significantly, which 
can specifically predict PC and PCLM and serve as a predictive 
microbiota marker.
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TABLE 3 Random forest model predicts the biomarkers for PC diagnosis.

Order ASV Bacteria AUC SE P Enriched group 
by LEfSe

1 ASV-130672 Streptococcus1 0.927 0.028 <0.001 P

2 ASV-46476 Streptococcus2 0.918 0.034 <0.001 P

3 ASV-80973 Streptococcus3 0.886 0.039 <0.001 P

4 ASV-48117 Streptococcus4 0.912 0.034 <0.001 P

5 ASV-75617 Streptococcus5 0.802 0.049 <0.001 P

Pathway Description LogFC SE P value adj P value

PWY-5417
Catechol degradation III (ortho-

cleavage pathway)
1.262 0.417 0.002 0.040

PWY-5431
Aromatic compounds degradation 

via &beta;-ketoadipate
1.262 0.417 0.002 0.040

CATECHOL-ORTHO-CLEAVAGE-PWY
Catechol degradation to &beta;-

ketoadipate
1.285 0.426 0.003 0.040

VALDEG-PWY L-valine degradation I −1.354 0.453 0.003 0.042

TABLE 2 (Continued)
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TABLE 4 Demographic characteristics of LM (n = 27) and non-LM (n = 17) patients.

Variable LM (n = 27) non-LM (n = 17) χ2/t P

Age (y)

<65 16 (59.26%) 11 (64.71%) 0.131 0.718

≥65 11 (40.74%) 6 (35.29%)

Gender

Male 14 (51.85%) 7 (41.18%) 0.477 0.490

Female 13 (48.15%) 10 (58.82%)

BMI (kg/m2) 22.55 ± 3.10 22.23 ± 2.14 0.408 0.685

Tumor sites

Head 9 (33.33%) 9 (52.94%) 1.931 0.587

Body 2 (7.41%) 1 (5.88%)

Tail 3 (11.11%) 2 (11.76%)

Whole 13 (48.15%) 5 (29.41%)

Pathological types

Adenocarcinoma 21 (77.78%) 15 (88.24%) 0.979 0.613

Squamous cell carcinoma 2 (7.41%) 1 (5.88%)

Other 4 (14.81%) 1 (5.88%)

Whether metastasis

Yes 27 (100.00%) 5 (29.41%) / /

No 0 (0.00%) 12 (70.59%)

Metastasis sites

Liver 27 (100.00%) 0 (0.00%) / /

Lung 2 (7.41%) 2 (11.76%)

Distant lymph node 15 (55.56%) 3 (17.65%)

Peritoneum 7 (25.93%) 2 (11.76%)

ECOG performance

0 26 (96.30%) 0 (0.00%) / /

1 1 (3.70%) 17 (100.00%)

Whether surgery / /

Yes 2 (7.41%) 9 (52.94%)

No 25 (92.59%) 8 (47.06%)

Total bilirubin (TBIL) (μmol/L) 16.04 ± 8.15 15.67 ± 17.69 0.088 0.931

Direct bilirubin (DBIL) (μmol/L) 6.12 ± 5.16 4.87 ± 4.33 0.771 0.446

Indirect bilirubin (IBIL) (μmol/L) 12.12 ± 9.79 11.47 ± 15.96 0.157 0.876
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SUPPLEMENTARY FIGURE S1

16s rRNA sequencing data processing and species composition of LM 
and non-LM groups. (A) refraction curve; (B) species accumulation curve; 
(C) Venn gram of ASV/OTUs; (D) phylogenetic tree plot; (E−H) compositional 
analysis of each sample (E,G) and group (F,H) at the phylum level (E,F), and at 
the genus level (G,H).

SUPPLEMENTARY FIGURE S2

Species diversity results of LM and non-LM groups. (A) alpha diversity; 
(B) PCoA of beta diversity (R2=1.123, P=0.229); (C) 3D-PCoA; (D) taxonomic 
branch diagram of LEfSe (LDA threshold=2); (E) LDA histogram; (F) RF model; 
(G) ROC curves
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Introduction: Imbalances in gut microbes have been implied in many human

diseases, including colorectal cancer (CRC), inflammatory bowel disease, type 2

diabetes, obesity, autism, and Alzheimer’s disease. Compared with other human

diseases, CRC is a gastrointestinal malignancy with high mortality and a high

probability of metastasis. However, current studies mainly focus on the prediction

of colorectal cancer while neglecting the more serious malignancy of metastatic

colorectal cancer (mCRC). In addition, high dimensionality and small samples lead

to the complexity of gut microbial data, which increases the di�culty of traditional

machine learning models.

Methods: To address these challenges, we collected and processed 16S

rRNA data and calculated abundance data from patients with non-metastatic

colorectal cancer (non-mCRC) and mCRC. Di�erent from the traditional health-

disease classification strategy, we adopted a novel disease-disease classification

strategy and proposed a microbiome-based multi-view convolutional variational

information bottleneck (MV-CVIB).

Results: The experimental results show that MV-CVIB can e�ectively predict

mCRC. This model can achieve AUC values above 0.9 compared to other state-

of-the-art models. Not only that, MV-CVIB also achieved satisfactory predictive

performance on multiple published CRC gut microbiome datasets.

Discussion: Finally, multiple gut microbiota analyses were used to elucidate

communities and di�erences betweenmCRC and non-mCRC, and the metastatic

properties of CRC were assessed by patient age and microbiota expression.

KEYWORDS

microbiome, multi-view, information bottleneck, metastatic colorectal cancer, risk

assessment

1. Introduction

The human intestine is one of the most important organs in the digestive system, which

maintains the normal life activities of the human body throughmetabolism (Cho and Blaser,

2012). Microbes in the gut derive energy from the food we eat and release metabolites and

hormones to regulate physical health. As our microbial research continues to deepen, more

and more investigations show that the chemical signals released by human gut microbes

play a key role in human health and disease (Gilbert et al., 2018). From the perspective

of human health, the intestinal flora in the body contributes to the construction of the
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immune system and participates in and regulates the physiological

processes of various cells (De Sordi et al., 2019). More importantly,

a variety of complex diseases have been confirmed to be related

to certain intestinal flora, including inflammatory bowel disease,

type 2 diabetes, Alzheimer’s disease, HIV, autism, obesity, and

cardiovascular and cerebrovascular diseases (Schmidt et al., 2018;

Shkoporov et al., 2019). Some malignancies, such as colorectal

cancer (CRC), have also been shown to be associated with gut

microbes (Chen et al., 2022; Wani et al., 2022). CRC is the third

leading cause of cancer deaths, and ∼20% of patients develop

metastases, known as metastatic colorectal cancer (mCRC). It

mainly includes colon cancer liver metastasis, multiple lymph node

metastasis, hematogenous metastasis, and implantation metastasis

(Enquist et al., 2014). All of this emerging evidence confirms that

the gut microbiome can be a potential predictor of a variety of

diseases and cancers (Zou et al., 2017).

With the advent of the genome era, the development of high-

throughput sequencing technology has provided a new technical

platform for the study of microbial community structure (Zhou

et al., 2015). In particular, 16S rRNA gene sequencing has become

an important means to study the composition and distribution of

gut microbial communities (Langille et al., 2013). It fully shows

the diversity of human gut flora and reveals potential factors

for disease aggravation. Although much evidence suggests that

the gut microbiome can be used to predict colorectal cancer,

few investigations have used microbial data to identify mCRC.

Therefore, effectively extracting key features of the microbiota from

gut microbial data faces a series of challenges (Cammarota et al.,

2020; Wang and Zou, 2023). Since disease samples are small and

more difficult to obtain than healthy samples, a large number

of studies use healthy-disease groups rather than disease-disease

groups. A small number of samples and many features can lead to

the curse of dimensionality, that is, features are highly sparse, such

as strain-level informative data containing hundreds of thousands

of genetic markers (Somorjai et al., 2003; Akay and Hess, 2019).

However, it is almost difficult for traditional machine learning

models to mine valuable information from such small sample data.

Second, although gene signatures provide more information than

microbial abundance data, more feature information also requires

huge computational resources, which may lead to overfitting and

greatly increase the time cost (Yang et al., 2021).

Considering the metastatic characteristics of CRC, non-

metastatic colorectal cancer (non-mCRC) patients are more

worried about mCRC with higher mortality (Reyes et al., 2019;

Rumpold et al., 2020). Existing microbiome-based CRC prediction

methods mainly use species relative abundance or strain-level

marker profiles or a combination of the two. With the development

of deep learning, it has become feasible to use deep learning

to predict CRC from gut microbiome data (Marcos-Zambrano

et al., 2021; Salim et al., 2023). The MicroPheno method is based

on 16S rRNA sequence data, subsamples it, and computes the

k-mer representation of the sequence, and the final k-mer is

used to complete disease prediction (Asgari et al., 2018). Oh and

Zhang (2020) proposed dimensionality reduction of microbiome

abundance data or gene signature profiles with multiple different

autoencoders, and then classical machine learning methods were

used to complete disease classification. Reiman et al. (2020)

took a microbial phylogenetic tree matrix as input and used a

convolutional neural network (CNN) for disease prediction.Wirbel

et al. (2021) developed SIAMCAT, a multifunctional R toolbox for

machine learning-based comparative metagenomics. The toolbox

contains a variety of feature matrices such as genes, pathways,

and microbial taxa to statistically infer host disease phenotype

associations. Grazioli et al. proposed multimodal variational

information bottleneck (MVIB), a multimodal representation that

can input species relative abundance, strain-level marker profiles,

and metabolomic data and learn meaningful joint codes through

information bottleneck theory (Grazioli et al., 2022). This study

used multiple published microbiome disease phenotype datasets

including CRC and achieved excellent predictive performance.

However, the relative independence among relative abundances,

strain-level marker profiles, and metabolomic data contains rich

cross-modal information in addition to the modal information of

the microbiome, which may lead to model uncertainty (Holzinger

et al., 2022).

Compared with the traditional health-disease classification

strategy, we adopt a new disease-disease classification strategy,

which identifies more severe diseases among sick patients. Disease-

disease sample features are often more difficult to distinguish

than healthy-disease sample features, which is also a challenge for

predictive models. Figure 1 shows the specific strategy process.

In this study, we propose amulti-view convolutional variational

information bottleneck (MV-CVIB) model to specifically address

the prediction problem of mCRC. The variational information

bottleneck (VIB) can extract all the judgmental information that

is helpful for disease prediction while filtering out redundant

information (Alemi et al., 2016). For deep neural networks,

forgetting details enables the model to form general concepts and

improves generalization performance. The Qiime2 tool was used

to process and obtain the final relative abundance data (Hall and

Beiko, 2018). We calculated the Euclidean distance between each

sample based on the relative abundance of the microbiome and

took the samples with the closest Euclidean distance as neighbors.

Therefore, the nearest neighbor information between each sample

can be regarded as a new view. MV-CVIB expands the microbiome

input data structure to the maximum capacity while also being

insensitive to outliers in the data. Not only that, to test the

generalization ability of MV-CVIB, we also performed various

experiments on multiple published control-CRC datasets.

The contributions of this study are as follows:

(1) Current studies mainly focus on the prediction of CRC while

neglecting the more severe mCRC. We are the first to apply

deep learning to the microbiome-based mCRC prediction

problem and achieve excellent prediction results.

(2) Compared with the traditional health-disease classification

strategy, we adopt a new disease-disease classification

strategy, which identifies more severe diseases among sick

patients. Identifying more complex diseases from diseases

is more conducive to mining the underlying nature of

disease exacerbations.

(3) We compute the nearest neighbor information for the

relative abundance data and feed it together as a view

into the VIB with convolution and pooling modules.
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FIGURE 1

(A) Traditional classification strategy for microbiome-based disease prediction is health to disease. (B) Our strategy for microbiome-based disease

prediction is disease to disease, focusing on predicting malignancy from disease, such as the prediction from non-metastatic colorectal cancer

(non-mCRC) to metastatic colorectal cancer (mCRC).

The VIB can extract all the judgmental information

that is helpful for disease prediction while filtering out

redundant information. Since we introduce convolution

and pooling operations into the model, the data in

the input stream become smoother, which increases the

robustness and generalization ability of the model and

avoids overfitting.

2. Materials and methods

2.1. Datasets

To evaluate and analyze predictive models, we collected 16S

rRNA data from the gut microbiota of patients with metastatic

colorectal cancer (mCRC, n = 9) and non-metastatic colorectal

cancer (non-mCRC, n = 7) from the National Center for

Biotechnology Information (NCBI) (Coordinators, 2015). The

original data come from the People’s Hospital ofWuhanUniversity,

and the data type is raw sequence read. Raw sequence data

can be accessed through the NCBI Sequence Read Archive

(SRA) database (https://www.ncbi.nlm.nih.gov/bioproject/?term=

PRJNA531761). Table 1 shows the specific information of all

samples. Figure 2 shows that each sample is isolated in the gut.

The pre-processing of this dataset will be described in detail in the

next section.

In addition, we also collected three control-CRC datasets

from published studies to evaluate the generalization ability of

the model, specifically including colorectal (Pasolli et al., 2016),

colorectal-EMBL, and early-colorectal-EMBL (Zeller et al., 2014).

Only the CRC group and the healthy group were included in these

TABLE 1 Specific information for non-mCRC patients and mCRC patients.

Sample ID Disease status Age Gender

SRR8873486 Non-mCRC 68 Male

SRR8873495 Non-mCRC 74 Male

SRR8873494 Non-mCRC 68 Male

SRR8873483 Non-mCRC 65 Female

SRR8873496 Non-mCRC 66 Female

SRR8873491 Non-mCRC 38 Male

SRR8873490 Non-mCRC 54 Female

SRR8873493 mCRC 44 Female

SRR8873492 mCRC 70 Male

SRR8873487 mCRC 82 Female

SRR8873484 mCRC 85 Male

SRR8873489 mCRC 56 Female

SRR8873488 mCRC 73 Male

SRR8873498 mCRC 32 Male

SRR8873485 mCRC 61 Female

SRR8873497 mCRC 68 Male

datasets and had unique true labels, diseased or healthy. Therefore,

this study does not perform predictions on the future health of

the samples. Table 2 shows the specific information of the three

public datasets.
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FIGURE 2

Each sample is isolated di�erently from the gut.

2.2. Pre-processing

First, we converted sra files on NCBI to fastq.gz files using

fastq-dump version 2.8.0 in SRA Toolkit and then converted it to

multiple fastq files with forward and reverse. The next step is to

import these data into Qiime2 and review the data quality. Next, we

denoise the data using Deblur with default parameters. The specific

role is to filter out noisy sequences, remove chimeric sequences,

accidental sequences (sequences that occur only once), and de-

redundant these sequences. The purpose is to obtain the signature

table and reference sequence.

Finally, we used Qiime2 to analyze the composition of

microbial communities from the denoised data. Among them, the

feature table represents the relative abundance of species and serves

as the input feature vector of the proposed model.

2.3. Multiple types of dimensionality
reduction analysis

In this study, to explore the internal structural characteristics

of the pre-processed data and the degree of cognitive difference

between mCRC and non-mCRC, we used various types of

dimensionality reduction analysis methods (He et al., 2023),

including principal components analysis (PCA) (Jiang et al.,

2022), principal co-ordinates analysis (PCoA) (Wang et al.,

2016), t-distributed stochastic neighbor embedding (t-SNE) (Kostic

et al., 2015), and non-metric multidimensional scaling (NMDS)

(Mekadim et al., 2022). The difference analysis section in Figure 3

shows an outline of the four dimensionality reduction approaches

between mCRC and non-mCRC.

TABLE 2 Three CRC datasets from published studies.

Datasets Total
samples

Control
sample

Disease
samples

Colorectal (CRC1) 121 73 48

Colorectal-EMBL (CRC2) 199 103 96

Early-colorectal-EMBL (CRC3) 96 52 44

For PCA, the original microbial characteristic information

of samples is projected into the dimension with the maximum

projection information as far as possible. The advantage of PCA

is that the loss of feature information after dimension reduction is

minimal. The disadvantage is that in the case of complete ignorance

of the data, PCA cannot better retain data information. For PCoA,

it is a non-constrained dimension reduction method, and PCoA

can find the most important coordinates in the distance matrix

without changing the mutual position relationship between mCRC

and non-mCRC. The disadvantage is that PCoA can only roughly

understand the similarity or difference between samples but cannot

accurately calculate the degree of difference. For t-SNE, it is a non-

linear dimension reduction method, which can preserve the local

features of the dataset. The disadvantage of t-SNE is that the setting

of hyperparameters is relatively strict, and an improper setting

will lead to poor results. Similar to PCoA, NMDS also uses the

sample similarity distance matrix for dimension reduction analysis.

It is worth noting that NMDS focuses on the ordering relation of

values in the distancematrix.When there aremore samples, NMDS

can more accurately reflect the differences among samples. The

disadvantage of NMDS is that it is easy to fall into the local optimal

point, and it needs to run several times with different random
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FIGURE 3

Work flowchart. Pre-processing: We collected the sequence information of the samples from NCBI and obtained the species abundance data

through a series of quality control and filtering methods, and at the same time, we calculated the nearest neighbor information of the samples.

Variance Analysis: We map abundance data into a two-dimensional space through dimensionality reduction. (A) PCA is used for dimensionality

reduction and visualization. (B) PCoA is used for dimensionality reduction and visualization. (C) T-SNE is used for dimensionality reduction and

visualization. (D) NMDS is used for dimensionality reduction and visualization. Community Analysis: (A) We used the species accumulation curve

(SAC) to describe the real situation of the disease samples. (B) We used volcano plots to visualize upregulated and downregulated points. MV-CVIB:

Flowchart of the proposed method. The method specifically includes three fully connected layers, a two-dimensional convolutional layer, a

maximum pooling layer, a PoE module, a decoding module, and an output layer.
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starts to be more likely to obtain the global optimal solution. In

addition, we also performed four types of dimensionality reduction

visualization analysis on three CRC datasets. Overall, similar to

the case of mCRC, there is a large overlap between healthy and

diseased sample points. Specific experimental results are included

in Supplementary material.

Considering the small number of samples and more feature

information inmCRC and non-mCRC, we used four different types

of dimensionality reduction methods to mine the distribution rules

of samples in the dimensional space. According to the results, the

spatial distribution of mCRC and non-mCRC is different, but some

samples overlap in space. However, compared with non-mCRC,

mCRC is formed by further deterioration on the basis of non-

mCRC, so there are differences in microbial abundance features. In

addition, to further show the significance index of the difference

between the groups, we performed an analysis of similarities

(ANOSIM) (Buttigieg and Ramette, 2014) on the mCRC dataset

and three CRC datasets, respectively. As a non-parametric test

method, ANOSIM has been widely used to evaluate the overall

similarity and similar significance of two sets of experimental

data. The results are detailed in Supplementary material. From the

experimental results, there are statistically significant differences

between the groups of the mCRC, CRC1, and CRC2 datasets (R-

value of >0 and P-value of <0.05). There is a difference between

the groups in the CRC3 dataset but not significant (R-value of >0

and P-value of >0.05), which may be related to the fact that the

samples included in the dataset are early CRC patients and late

CRC patients.

2.4. Microbial Community Analysis

To measure the species richness status in the community and

judge whether the number of samples is sufficient, we used the

species accumulation curve (SAC) (Gotelli and Colwell, 2001) to

describe the real situation of the disease samples. With the help of

the SAC, we can not only estimate the diversity difference between

different communities reflected by the number of samples but

also estimate the upper limit of community diversity under the

condition that the number of samples is sufficient. In addition,

based on the principle of statistical testing, we use the volcano plot

to show the distribution of abundance level differences between the

samples. The detailed results are shown in the Community Analysis

section of Figure 3.

From the SAC, we can observe that the curve eventually flattens

out, which confirms that the number of samples is reasonable. In

other words, the number of mCRC and non-mCRC in the dataset

can effectively reflect the species diversity and species richness of

the samples. From the volcano plot, there are some significant

points, including 24 upregulated points and 63 downregulated

points, most of which have no significant difference.

2.5. The multi-view convolutional
variational information bottleneck

We setY to be a random variable.X1,X2, . . . ,XV represent a set

of multi-view input random variables, and Y is their ground-truth

labels. To make the notation more compact, a collection of data

views is represented as a data point X = {Xi | ith view present}. We

set U to be a stochastic encoding of X, defined by the parameter

encoder p (u|x; θ), which comes from the deep neural network

of the intermediate layers in the upstream part of the model.

Furthermore, in the rest of this study, X, Y , and U are represented

as random variables, and x, y, and u are their multidimensional

instances, respectively. θ is a parameter vector, and θ is a function

parameterized by θ . S is a set.

Referring to the information bottleneck theory (Tishby et al.,

2000), the purpose is to learn to encode U, so as to maximize the

information provided to Y and maximize the compression to X.

Therefore, maximizing the mutual information I (U,Y; θ) between

U and Y can be written as follows:

I (U,Y; θ) =

∫

p
(

u, y|θ
)

log
p
(

u, y|θ
)

p (u|θ) p
(

y|θ
)dydu. (1)

Let I (U,Y; θ) =
∫

p
(

u, y|θ
)

log
p(u,y|θ)

p(u|θ)p(y|θ)
dydu. be a valid

solution to maximize (1). However, given the constraint that

maximizing compression imposes on U, we need to forget as much

information about X as possible. Therefore, the objective function

can be written as follows:

max
θ

RIB (θ) = I (U,Y; θ) − βI (U,X; θ) , (2)

where max
θ

RIB (θ) = I (U,Y; θ) − βI (U,X; θ) , is the Lagrange

multiplier greater than or equal to 0 and controls the trade-off.

I (U,Y; θ) canmakeU to predict Y , and βI (U,X; θ) is a constraint

that U is the minimal sufficient statistic for X.

We refer to the solution process by Alemi et al. (2016) for the

bottleneck of deep variational information. Equation (2) can be

rewritten as follows:

JDeepVIB =
1

N

N
∑

n=1

E
ε∼p(ε)

[

− log q
(

yn|f (xn, ε)
)]

+βKL
[

p (U|xn) , r (U)
]

, (3)

where ε ∼ N (0, I) is denoted as the auxiliary Gaussian noise

variable, and KL is the Kullback–Leibler divergence. It is worth

noting that f is originally an encoding function, but in this study, it

is a neural network. The introduction of f has a re-parameterization

trick (Kingma and Welling, 2013), that is, p (u|x; θ) dx = p (ε) dε,

where u = f (x, ε) can be regarded as a deterministic variable,

in particular, considering that this formula can make the noise

variable independent. Thus, backpropagation is used to optimize

the gradient of the objective function of equation (3). Overall, the

calculation will be easier. Furthermore, a multivariate Gaussian

distribution with a diagonal covariance structure u = f (x, ε) is the

target of the variational approximation posterior, and u = µ + σε

is re-parameterized.

Since our model has multi-view input, we take into account

the nearest neighbor information between each sample. Therefore,

we can further improve the objective function of Deep VIB

in equation (3), andX as a multi-view random variable can be
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expressed as X. The p (U|x) of equation (3) can be expressed

as p
(

U|x1, x2, . . . , xV
)

, with the joint of V available data views

as the condition. We refer to the method in multimodal

variational autoencoder (MVAE) (Wu and Goodman, 2018), where

conditional independence between different modes of U and

approximate p
(

U|xi
)

with q
(

U|xi
)

=
∼
q

(

U|xi
)

p (U) is assumed.
∼
q

(

U|xi
)

is a random encoder for the i-th data view, and p (U) is a

prior. Therefore, the product of multiple single-view posteriors can

be considered equivalent to the joint posterior, which can be written

as follows:

p
(

U|x1, x2, . . . , xV
)

∝

∏V
i=1 p

(

U|xi
)

∏V−1
i=1 p (U)

≈

∏V
i=1

[

q
(

U|xi
)

=
∼
q

(

U|xi
)

p (U)

]

∏V−1
i=1 p (U)

= p (U)

V
∏

i=1

∼
q

(

U|xi
)

.(4)

Equation (4) can be considered the product of experts (PoE).

Considering that the product of Gaussian experts is itself a Gaussian

distribution (Cao and Fleet, 2014), once the probability distribution

is Gaussian, then PoE has a simple solution. Therefore, the objective

formulation of the multi-view-based convolutional variational

information bottleneck can be written as follows:

JMV−CVIB =
1

N

N
∑

n=1

E
ε∼p(ε)

[

− log q
(

yn|f
(

x1n, x
2
n, . . . , x

V
n , ε

))]

+βKL

[

p (U)

V
∏

i=1

∼
q

(

U|xin
)

, r (U)

]

. (5)

2.6. Model implementation details

In MV-CVIB, we mainly input two data views, one is the

microbial relative abundance matrix and the other is the nearest

neighbor information, for each sample generated based on the

microbial relative abundance matrix. The sample nearest neighbor

information matrix can be written as follows:

NNSample

(

a, b
)

=

√

∑

RA
(

ai − bi
)2
, (6)

where NNSample represents the sample nearest neighbor

information matrix, NNSample represents the relative abundance

matrix, and ai and bi represent the i-th element of the row vector

and column vector, respectively.

To avoid overfitting, dropout and early stopping are applied in

this study. Dropout greatly reduces the size of the neural network,

allowing the neural network to learn local features in the data. Early

stopping can stop training early when overfitting occurs. We used

the dedicated stochastic encoder bi to embed different views of gut

microbiome data. fmlp represents a multilayer perceptron (MLP).

For the data of both the above views, we used the SiLU (Hendrycks

and Gimpel, 2016) activation function for fully connected layers

and used dropout (p = 0.2) during training.

We used a logistic regression model q
(

y|u
)

= σ
(

fd (u)
)

with

a logistic sigmoid function in the decoder and fd (u) = wTu +

b. The purpose is to perform binary classification operations. y

models two diagnostic CRC labels, such as mCRC and non-mCRC.

Furthermore, for other published CRC datasets in this study, y

models two diagnosed disease labels, such as CRC or healthy. In

addition, in equation (5) mentioned above, r (U) and r (U) are

spherical Gaussian distributions with K dimensions, where r (U) =

p (U) = N (0, I). We set K = 256 and β = 10−5.

All experiments were performed under Windows 10 with

NVIDIA GTX 1650 GPU and CUDA 10.2 installed, where the

machine’s processor is AMD Ryzen7 4800H. The source code and

data are available at: https://github.com/cuizhensdws.

2.7. Performance evaluation

To evaluate the classification performance of the model more

accurately and comprehensively, inspired by DeepMicro, we design

a similar evaluation scheme. The ratio of the training set and test

set in the mCRC dataset is adjusted to 8:2. It is worth noting

that the random partition seed is also set the same as DeepMicro,

which guarantees a fair random training-test split. Furthermore,

for the published CRC dataset, we also adopted the same dataset

partitioning scheme. The above settings can further reduce the

information leakage and improve the efficiency of the response

model more accurately.

We used a stratified 5-fold cross-validation applied to the

training set and calculated the AUC score through the validation

set, and the epoch with the best parameters among all epochs was

selected. The AUC can be written as follows:

AUC =

∑

i∈positive class ranki −
M∗(1+M)

2

M ∗ N
(7)

whereM is the number of positive samples, and Nis the number of

negative samples.

3. Results

3.1. Predictive performance of MV-CVIB on
mcrc datasets

To evaluate the performance of MV-CVIB, we compared

the existing advanced methods, including MVIB (Grazioli et al.,

2022), PopPhy-CNN (Reiman et al., 2020), DeepMicro (Oh and

Zhang, 2020), random forest (RF), multilayer perceptron (MLP),

and SVM. To be fair, these methods are executed multiple

times. Considering that different devices and parameter settings

may affect the prediction results, we can only ensure that each

method is relatively optimal rather than absolutely optimal. It

is important to note that DeepMicro is a framework consisting

mainly of dimension reductionmodules and classificationmodules.

The DeepMicro model does not specify which combination has

the best predictive performance. Therefore, we compared all the

method combinations.

Our method consists of two parts, one is MV-CVIB which

contains the nearest neighbor information, and the other is MV-

CVIB (single view) which uses only microbiome abundance data.
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FIGURE 4

Comparison of AUC values of our method with state-of-the-art

methods on the mCRC dataset. The methods with asterisks are all

from the DeepMicro model, and these methods are a combination

of methods in DeepMicro. The best performing AUC is indicated in

black bold.

For PopPhy-CNN, we modified the source code so that it is roughly

consistent with our model framework. The original PopPhy-

CNN provided different experimental procedures. To ensure

the consistency of the verification test, we made corresponding

framework adjustments. For SVM and RF, we used the same grid

search to set the hyperparameters, referring to MetAML (Pasolli

et al., 2016). Figure 4 shows the AUC values for each method.

Specifically, the AUC value of MV-CVIB reached 0.917, better

than 0.893 of MV-CVIB (single view). In other words, the nearest

neighbor information helped improve the prediction performance

of MV-CVIB by 2.4%. Moreover, the AUC value of MV-CVIB and

MV-CVIB (single view) both exceeded that of MVIB, and the AUC

value of MV-CVIB is 4.1% higher than that of MVIB. Slightly lower

than MVIB is PopPhy-CNN, which has an AUC value of 0.864.

Multiple combinations in the DeepMicro framework achieve an

AUC value >0.75.

3.2. Predictive performance of MV-CVIB on
CRC datasets in published studies

In this study, to more comprehensively evaluate our predictive

model, we also performed predictive experiments on three CRC

datasets. Figure 5 shows the AUC values for each method.

First, on the Colorectal dataset, the AUC value of the proposed

model was 0.818, while the AUC value of MV-CVIB (single view)

was 0.814, both of which were superior to other advanced models.

Interestingly, RF and PopPhy-CNN both have the same AUC of

0.803. The AUC of MVIB is only 0.78, and the performance of the

model is mediocre. In DeepMicro, the AUC value of AE + MLP

was 0.799. The predictive effect of CAE+MLP was slightly lower

than that of AE+MLP, and the AUC was 0.791.

Second, on the Colorectal-EMBL dataset, as shown in Figure 5,

the AUC value for RF is 0.89, which is higher than any other

method. This was followed by MV-CVIB and MV-CVIB (single

view) with AUC values of 0.825 and 0.821, respectively. Compared

with MVIB, the prediction performance of MV-CVIB is improved

by 1.1%. Compared with RF, the prediction performance of MV-

CVIB is reduced by 6.5% and that of MVIB is reduced by 7.6%. It

is worth noting that we cannot get the predicted results of PopPhy-

CNN because there is an infinite loop in the experiment process.

Finally, on the Early-Colorectal-EMBL dataset, as shown in

Figure 5, none of the methods has an AUC value above 0.6.

According to the previous ANOSIM analysis, there are differences

between the groups on the Early-Colorectal-EMBL dataset but not

significant. Therefore, we speculate that this may be a reason for

the AUC of each method to be less than 0.6. Compared with

other advanced methods, MV-CVIB achieved an AUC value of

0.589, while MV-CVIB (single view) was slightly lower, with an

AUC value of 0.586. Compared with MVIB, MV-CVIB improved

performance by 4.6%. Once again, RF (AUC = 0.582) showed

excellent performance on this dataset, outperforming all methods

except ours. Moreover, in DeepMicro, any autoencoder combined

with RF achieved a high AUC value. As on the Colorectal-EMBL

dataset, PopPhy-CNN still produces an infinite loop on the Early-

Colorectal-EMBL dataset.

3.3. Ablation experiments

Considering that we have introduced multi-view, convolution,

and pooling modules in MV-CVIB, to verify the impact of this

module on the overall performance of the method, we set up

multiple ablation experiments on the mCRC dataset and three CRC

datasets. Figure 6 shows the AUC values of different combinations

of the proposed method on different datasets. From the results of

the ablation experiments, it can be observed that on the mCRC

dataset, the impact of multi-view on the performance of themethod

is slightly higher than that of the convolution module. However,

on the three CRC datasets, the impact of the convolution module

on the performance of the method is slightly higher than that of

the multi-view.

Overall, according to the results of the ablation experiments, we

speculate that when the number of samples is small, multi-viewmay

be easier to take advantage of the prediction performance; when the

number of samples is large, the convolution module may be more

likely to take advantage of the prediction performance.

3.4. The gut microbial diversity is di�erent
in mcrc and non-mcrc patients

The stacked bar graphs of the microbiota (phylum level)

of the non-mCRC group and the mCRC group are shown in

Figure 7A. In their gut, the microbial community was dominated

by Firmicutes and Proteobacteria. Among them, a small number
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FIGURE 5

Comparison of AUC values of our method with state-of-the-art methods on three CRC datasets. The methods with asterisks are all from the

DeepMicro model, and these methods are a combination of methods in DeepMicro. On the Colorectal dataset, we follow the partial AUC results

from DeepMicro. Specifically including AE + SVM*, VAE + SVM*, and CAE + RF*, the results of other combinations are derived from this study. Since

DeepMicro did not use Colorectal-EMBL and Early-Colorectal-EMBL datasets, the results on these two datasets are also derived from this study. The

best performing AUC is indicated in red font. (A) The AUC value of each method on the Colorectal dataset. (B) The AUC value of each method on the

Colorectal-EMBL dataset. (C) The AUC value of each method on the Early-Colorectal-EMBL dataset.

of Verrucomicrobia were present in a 61-year-old mCRC patient.

It can be observed from the figure that as the age of mCRC

patients increases, the relative abundance of Firmicutes tends to

decrease overall.

As shown in Figure 7B, to better describe the microbial

richness and uniformity of the intestinal tract, we used the

alpha diversity index to measure the intestinal ecosystem from

different perspectives (Wang et al., 2018). It specifically includes

eight indicators: richness, Shannon, Simpson, Pielou, invsimpson,

Chao1, ACE, and goods coverage. Taken together, compared

with non-mCRC patients, the number and diversity of intestinal

communities in mCRC patients tended to increase, and the

evenness index of intestinal communities in mCRC patients was

significantly increased. In addition, from the perspective of goods

coverage, the indices of non-mCRC and mCRC samples are close

to 1, which indicates that the sequencing depth is reasonable, that

is, the depth has basically covered all species in the sample. We also

performed alpha diversity analysis on the three CRC datasets, and

the specific analysis results are included in Supplementary material.

3.5. Potential biomarker identification with
statistical di�erences

To further mine the differences between non-mCRC and

mCRC samples, we used STAMP to output significantly different

OTUs within the 95% confidence interval (Parks et al., 2014).

As shown in Figure 7C, the mean proportion value at OTU83

was significantly higher in mCRC patients than in non-mCRC

patients. Second, at OTU99, OTU215, and OTU232, mCRC

patients were also higher than non-mCRC patients. Interestingly,

the taxonomy of OTU215 was accurate to the species, specifically

Propionibacterium acnes. Not only that, we also used the LDA effect

size (LEfSe) (Segata et al., 2011) analysis to discover and explain

the biomarkers with statistical differences between non-mCRC and

mCRC patients. As shown in the clade diagram of Figure 7D, yellow

indicates species without significant differences, and both red and

green indicate significant differences. Among them, green nodes

FIGURE 6

AUC comparison of di�erent combinations of the proposed method

on di�erent datasets.

represent microbial groups that play an important role in non-

mCRC samples, and red nodes represent microbial groups that play

an important role inmCRC samples. In the histogram of LDA value

distribution in Figure 7E, we can clearly find that there are far more

biomarkers with statistical differences in mCRC samples than in

non-mCRC samples. Therefore, this may be more conducive to the

prediction of metastatic disease in CRC patients, so as to make early

diagnosis and treatment.

3.6. Patients’ age and metastatic risk
assessment

As mentioned earlier in this study, with the development

of a standardized multidisciplinary team consultation
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FIGURE 7

(A) Microbiota (phylum level) stacked bar graphs of the non-mCRC group and mCRC group. (B) To better describe the microbial richness and

uniformity of the intestinal tract, we used the alpha diversity index to measure the intestinal ecosystem from di�erent perspectives. (C) To further

mine the di�erences between non-mCRC and mCRC samples, we used STAMP to output significantly di�erent OTUs within the 95% confidence

interval. (D) LDA e�ect size (LEfSe) analysis was used to discover and interpret biomarkers that were statistically di�erent between non-mCRC and

mCRC patients. (E) Histogram of the distribution of LDA values.

model, the survival rate of non-mCRC patients has been

significantly improved. However, the metastatic nature of

non-mCRC cannot be ignored, and the therapeutic effect of

most chemotherapy drugs on mCRC is limited. Therefore,

compared with non-mCRC, the survival rate of mCRC is

extremely low. To assess the relationship between patient age

and metastatic risk of non-mCRC, we constructed a risk model

to obtain a risk score. Patients will be divided into high-risk

and low-risk groups based on risk scores. Ultimately, we

explored the relationship between microbiota expression and

patient survival.

As shown in Figure 8, patients with risk scores were divided

into high-risk and low-risk groups according to the cutoff value.

Combining Figures 8A, B, it can be observed that as the risk

score increases, the age of patients presents a downward trend,

and the age span of the high-risk group is larger than that of the

low-risk group. There is a possibility of cancer metastasis in all

segments. It can be observed from Figure 8C that the expression

of Desulfovibrionales showed a trend from high to low from left to

right, while Thermoanaerobacterales and Actinomycetales showed

a trend of gradually increasing expression. From Figures 8A, C, it

can be observed that Thermoanaerobacterales and Actinomycetales

are positively correlated with risk scores, and Desulfovibrionales

are negatively correlated with risk scores. Other flora showed

irregular expression trends. Desulfovibrionales produce hydrogen

sulfide, a genotoxic compound in the gut. This substance can

destabilize the genome or chromosomes (Dahmus et al., 2018;

Zhao et al., 2022). Several recent studies have shown that

genomic instability is found in more than 80% of sporadic

CRCs. Actinomycetales are an important gut flora. Actinomycetales

involved in CRC development have different characteristics

compared with healthy microbiota (Rebersek, 2021; Li et al., 2023).
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FIGURE 8

(A) According to the risk value, the high risk group and the low risk group are divided. (B) Scatter plot of the relationship between patient age and risk

status. (C) The heat map of the abundance expression of the bacterial group (order level).

Overall, the higher the risk score, the worse the prognosis,

and the higher the expression of Desulfovibrionales, the

better the prognosis, which may be the beneficial flora

before cancer metastasis; while the higher the expression of

Thermoanaerobacterales and Actinomycetales, the worse the

prognosis, which may be the bad flora after cancer metastasis.

4. Discussion

Many complex reasons and limitations make microbiome-

based disease prediction a challenging task. It is mainly reflected as

follows: (1) The composition of the human microbial community

is very complex, and the boundaries between the bacterial

communities are fuzzy. (2) There are various ways to generate

microbial community characteristic data, which leads to data

heterogeneity. (3) Human health status is dynamic rather than

fixed, and healthy samples are not absolute, which may increase

data noise and outliers. (4) Conventional microbiome-based

disease prediction mostly adopts the health-disease classification

method, ignoring the deterioration process of the disease. We

adopted a new classification schema: disease-disease instead of

health-disease. We focussed on identifying more severe diseases,

especially cancer and cancer metastases, from disease samples.

This facilitates exploration and reveals the underlying properties of

disease exacerbation. It is meaningful for non-mCRC patients. We

can obtain potential biomarkers through the analysis of differences

in the bacterial flora of patients and explore the biological process

and development rules of CRC metastasis on the basis of the

microbiome. This is conducive to further expanding the treatment

options for non-mCRC patients and improving the prognosis of

non-mCRC patients.

We employed a variety of microbiome analysis methods

to explore the diversity of non-mCRC and mCRC. From the

experimental results, the communities of non-mCRC and mCRC

were quite different, the distribution of the flora was complex

and diverse, and the flora composition of different samples

was different. Compared with the state-of-the-art methods for

microbiome-based disease prediction, the proposed method MV-

CVIB achieved higher AUC values on the mCRC dataset. In

addition, in order to more comprehensively evaluate MV-CVIB

and verify its generalization ability, we collected datasets from

three published studies and conducted experiments. The number

of samples in the three public CRC datasets does not exceed

200, which belongs to high-dimensional small sample data. This

limitation may affect the experimental results. Therefore, in

future, we can use transfer learning or data augmentation. The

experimental results show that MV-CVIB achieves higher AUC

values on two of the three datasets. Based on the predicted

results, we performed a statistical analysis of potential biomarkers

in non-mCRC and mCRC. Finally, we modeled the risk score,

explored the age trend of the risk score, and screened out

those bacterial orders that had positive and negative effects

on patients.
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5. Conclusion

In this study, we propose a deep learning approach based

on a multi-view convolutional variational information bottleneck

for the prediction of mCRC. The multi-view contains species

abundance data and sample field information, where the sample

neighborhood information is obtained based on the species

abundance data, which ensures that our method will not introduce

additional noise when inputting multi-view data, and has a

better time and space complexity. Our results demonstrate that

the method has good predictive performance. However, on the

Colorectal-EMBL dataset, all deep learning methods are not as

effective as RF, which may be related to the internal structural

characteristics of the dataset. We explored the degree of difference

between non-mCRC and mCRC from various perspectives,

analyzed those statistically significant differences in flora, and

constructed an age risk assessment model to explore the rules of age

and cancer metastasis. Of course, there are also some deficiencies in

this study, mainly two points. First, due to concerns about patient

privacy and medical ethics, the number of samples obtained is

small, which may cause the model to fall into overfitting to small

samples. Second, the prediction model is only for CRC data and

does not consider other disease data, which may lead to a lack of

generalizability of the model. We will also develop more effective

methods for more complex microbiome-based disease phenotype

prediction and improve the scalability of the prediction method as

much as possible.
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Application of Mendelian 
randomization to assess host 
gene–gut microbiota 
correlations in patients with 
esophageal cancer
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3 Department of Foreign Languages, Shandong University of Finance and Economics, Jinan, 
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Background: Increasing evidence suggests that esophageal cancer (ESCA) 
may be correlated with gut flora. However, their causal connection remains 
unclear. This study aimed to evaluate potential causal linkages and gene–
gut microbiome associations between the gut microbiota and ESCA using 
Mendelian randomization (MR).

Methods: We analyzed the data using genome-wide association studies. The 
exposure factor and outcome variable were the gut microbiota and ESCA, 
respectively. The MR-Egger method, weighted median, inverse-variance 
weighted method, heterogeneity test, sensitivity analysis, and multiplicity 
analysis were used for the MR analysis. And it was validated using an external 
dataset. Further meta-analysis was performed to validate the robustness of 
this relationship. Finally, we  annotated single nucleotide polymorphisms 
in the gut microbiota that were causally associated with ESCA to explore 
possible host gene-gut microbiota correlations in patients with ESCA.

Results: We identified four species with potential associations with ESCA. 
Three of these species had a negative causal relationship with ESCA (odds 
ratio (OR): 0.961; 95% confidence interval (CI): 0.923–0.971; p  =  0.047 for 
Romboutsia; OR: 0.972; 95% CI: 0.921–0.961; p  =  0.018 for Lachnospira; 
OR: 0.948; 95% CI: 0.912–0.970; p  =  0.032 for Eubacterium). A positive 
causal relationship was observed between one bacterial group and ESCA 
(OR: 1.105; 95% CI: 1.010–1.072; p  =  0.018 for Veillonella). External datasets 
show the same trend. This is further supported by meta-analysis. None 
of the data showed pleiotropy, and leave-one-out analysis indicated the 
reliability of these findings. The gut microbiomes of patients with ESCA may 
correlate with the 19 identified genes.

Conclusion: Our data indicate a potential causal link between these four gut 
bacteria and ESCA and identify a correlation between host genes and gut 
microbiota in ESCA, offering novel therapeutic options.
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Background

Esophageal cancer (ESCA) is one of the most common cancers 
globally, with the sixth highest mortality rate according to global 
cancer data (Sung et al., 2021). Surgery is an effective treatment for 
ESCA, but in advanced ESCA, the 5-year survival rate of patients 
remains less than 25% even after surgery (Oppedijk et  al., 2014). 
Chemotherapy is commonly used as a treatment for ESCA but has 
unavoidable side effects such as toxicity and drug resistance (He et al., 
2021). Additionally, epidemiological data indicates that the incidence 
of ESCA is increasing annually, gravely endangering human health 
(Uhlenhopp et al., 2020). Therefore, identifying factors potentially 
associated with ESCA can provide an essential basis for the early 
prevention of ESCA.

Increasing evidence has shown that the gut microbiota and ESCA 
are closely related (Cheung et al., 2022; Muszynski et al., 2022; Ohkusa 
et al., 2022; Baba et al., 2023; Sugimoto et al., 2023). Further, significant 
variations have been reported in the composition and abundance of 
fecal microorganisms between patients with ESCA and healthy 
controls. Notably, these differences are closely correlated with the 
severity of the disease, suggesting that the gut microbiota may play a 
significant role in the development of ESCA (Li et al., 2022; Lin et al., 
2022). Moreover, gut microbiota can alter genome-wide methylation 
levels in ESCA, which may be one of the mechanisms influencing the 
malignant behavior of ESCA cells (Baba et al., 2023). Exposure to 
antibiotics leads to changes in the gut microbiota, which in turn 
increase the risk of developing ESCA; the risk of developing the 
disease increases with the duration of antibiotic exposure (Thanawala 
et al., 2023). Therefore, investigating the potential link between the gut 
microbiota and disease to prevent and treat ESCA is crucial.

Although current research reveals that the gut microbiota and 
ESCA are related, the results are susceptible to confounding factors. 
Mendelian randomization (MR) is a genetic technique frequently used 
to investigate causal links between exposures and outcomes and 
prevents confounding variables in common observational studies 
because genetic variants are randomly assigned at conception (Smith 
and Ebrahim, 2003).

We investigated the potential causative relationship between gut 
microbiota and ESCA using MR to provide a proper theoretical 
foundation for understanding the interaction between ESCA and gut 
microbiota. We further identified genes related to the single nucleotide 
polymorphisms (SNPs) in the gut microbiota obtained by MR 
analysis. Our results may help identify novel therapeutic options for 
ESCA treatment.

Methods

Research methods

In this study, heterogeneity, sensitivity, and multiplicity analyses 
were conducted in addition to MR analyses using genome-wide 

association studies (GWAS) information to evaluate the causal 
relationship between gut microbiota and ESCA. MR studies must 
satisfy three core assumptions of association, independence, and 
exclusivity: (i) the selected SNPs should be significantly associated 
with the exposure (intestinal microbiota); (ii) the SNPs must 
be independent of potential confounders between the exposure and 
the outcome; and (iii) there is no direct relationship between the 
SNPs and the outcome (ESCA), and the causal linkage can only 
be made through the intestinal flora. The workflow is illustrated in 
Figure 1.

Data sources

Gut microbiota data from the most recent GWAS meta-analysis, 
comprising 24 cohorts and 18,340 participants, were used in this 
investigation (Kurilshikov et  al., 2021). ESCA data for the 
experimental and validation groups were obtained from the UK 
Biospecimen Repository,1 the experimental group included 372,756 
samples and the validation group included 476,306 samples 
(Table 1).

Instrument selection

A total of 196 bacterial traits, including 9 phyla, 16 classes, 20 
orders, 32 families, and 119 genera, were retained after initially 
removing 15 bacterial qualities without specific names. SNPs 
significantly related to the gut microbiota were chosen at the 
genome-wide level (p < 1.0 × 10−5, R2 < 0.001, and clumping 
distance = 10,000 kb) to fulfill the first MR hypothesis that SNPs 
must be strongly associated with the gut microbiota. Second, to 
ensure that the genetic variants were not associated with potential 
confounders (smoking, heavy alcohol consumption, hot beverages, 
pickles), a query was performed in the Phenoscanner database.2 
This step was performed to ensure that the SNPs were not associated 
with known confounders and, ultimately, to obtain SNPs 
significantly associated with the gut microbiota, serving as 
instrumental variables. Next, we  calculated the proportion of 
variance (R2). We  calculated the F-statistic using the following 
formula: R = 2 × MAF × (1-MAF) × β2, F = R2 (n-k-1)/K (1-R2), 
where “MAF” is the minor allele frequency, “N” denotes the 
exposed GWAS sample size, and “K” is the number of SNPs. F > 10 
confirmed the absence of a mild instrumental variable bias. The 
process was completed by annotating the SNPs using an internet 
database.3

Statistical analysis

The weighted median approach, MR-Egger method, and 
random effects inverse variance weighting (IVW) method were 
used in the MR analysis. Statistical significance was set at p < 0.05. 

1 https://gwas.mrcieu.ac.uk/

2 http://www.phenoscanner.medschl.cam.ac.uk/

3 https://biit.cs.ut.ee/gprofiler/snpense

Abbreviations: BE, Barrett’s esophagus; CI, Confidence interval; ESCA, Esophageal 

cancer; GWAS, Genome-wide association studies; HPV, Human papillomavirus; 

IVW, Inverse-variance weighted; MAF, Minor allele frequency; ME, Mendelian 

randomization; OR, Odds ratio; SNPs, Single nucleotide polymorphisms.

72

https://doi.org/10.3389/fmicb.2023.1309596
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://gwas.mrcieu.ac.uk/
http://www.phenoscanner.medschl.cam.ac.uk/
https://biit.cs.ut.ee/gprofiler/snpense


Zhang et al. 10.3389/fmicb.2023.1309596

Frontiers in Microbiology 03 frontiersin.org

The IVW approach was primarily employed to analyze these studies 
(Burgess and Thompson, 2017), and methods such as MR-Egger 
and weighted median were used to complement the IVW method 
(Verbanck et  al., 2018). Additionally, we  applied Cochran’s Q 
method to evaluate heterogeneity among SNPs. We  performed 
several heterogeneity tests, including the MR-Egger intercept test 
and a sensitivity analysis, to ensure the robustness of our results. 
The leave-one-out test was used for the sensitivity analysis to 
determine outliers among the final SNPs. All data were analyzed 
using the R packages “Two-Sample-MR” and “MR-PRESSO” in R 
software (version 4.3.0).

Results

Main results of the 196 bacterial traits with 
the risk of ESCA

The F-statistics for the 196 bacterial characteristics, ranging 
from 21.63 to 144.84 and with mean values exceeding 10, 
suggested a robust connection with exposure. We screened for 
SNPs strongly associated with the gut microbiota (p < 1.0 × 10−5), 
and the linkage disequilibrium parameter was set (R2 < 0.001, 
kb = 10,000). Thereafter, the data of the final ESCA were extracted 

Exposure:Gut microbiota

196 bacterial traits
(N=18,340 participants within 24 cohorts)

Outcome:Esophageal cancer
Sample size:37,2756

(ID=ieu-b-4960)

16 Class

20 Order

32 Family

119 Genus

Mendelian Randomization Analysis
Inverse-variance-weighted method

Sensitivity analyses
Weighted median

MR-Egger regression
Excluded potential pleiotropic SNPs

MR pleiotropy residual sum and out lier test

9 Phylum

LINC02822、KNG1、
ENSG00000288692、

ENSG00000249742、
C4orf19

ALX4、PRR16、
KIAA0930、LINC00221、
ENSG00000232855

SNP annotation

SNP annotation

SNP annotation

SNP annotation

SLC29A4、CNTN5、DNM3
、ENSG00000243797、
MAGI2、CUBN、MYCNUT、
HBS1L、FRY

Further meta-analysis was performed to validate the robustness of this relationship

Validation of external datasets

Sample size:47,6306
(ID=ebi-a-GCST90018841)

FIGURE 1

The workflow of the present study.

TABLE 1 Details of the genome-wide association studies and datasets used in our analyses.

Exposure or outcome Sample size Ancestry Links for data download PMID

Human gut microbiome 18,340 participants Mixed https://mibiogen.gcc.rug.nl 33462485

Esophageal cancer (Training Group) 3,72,756 participants European https://gwas.mrcieu.ac.uk/datasets/ieu-b-4960/ 31516927

Esophageal cancer (Validation Group) 4,76,206 participants European https://www.ebi.ac.uk/gwas/studies/GCST90018841 34594039
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from GWAS, and 196 intestinal flora were merged with the final 
ESCA sequentially. SNPs with palindromic sequences were 
excluded from the analysis. Finally, we  obtained four gut 
microbiota samples with potential associations with ESCA using 
the IVW method (Figure 2).

Using the IVW method, we  found that Romboutsia was 
negatively associated with ESCA (odds ratio (OR): 0.961; 
p = 0.047). After screening for F-statistics and excluding chain 
imbalances, 13 SNPs related to ESCA were included 
(Supplementary Table S1). In the weighted median approach, the 
results for the association between Romboutsia and ESCA 
remained stable (p = 0.02). To evaluate the stability of these 
findings, we  performed the MR-Egger test on the loci of the 
included SNPs. No possible horizontal pleiotropy was found 
(p = 0.96), indicating that instrumental variables did not 
significantly alter the outcomes through mechanisms other than 
exposure. Cochran’s Q test results showed no significant 
heterogeneity among the SNPs (p = 0.45).

Similarly, Lachnospira was negatively associated with ESCA 
(OR = 0.972; p = 0.018). After screening, six SNPs associated with 
ESCA were included (Supplementary Table S2). In the weighted 
median approach, the genus Lachnospira was weakly associated 
with ESCA (p = 0.08). The SNPs were then subjected to an 
MR-Egger test, which revealed no apparent level of multiple 
effects (p = 0.96). According to Cochran’s Q analysis (p = 0.45), no 
discernible heterogeneity was observed among the selected SNPs. 
Additionally, using the IVW method, we discovered that the genus 
Eubacterium was adversely linked with ESCA (OR: 0.948; 
p = 0.032). Overall, five SNPs associated with ESCA were included 
(Supplementary Table S3). Again, no pleiotropy (p = 0.60) or 
heterogeneity (p = 0.79) was observed. In contrast, using the IVW 
method, we found that Veillonella was positively associated with 
ESCA (OR: 1.105; p = 0.018). The seven SNPs associated with 
ESCA identified after screening (Supplementary Table S4) were 
free of pleiotropy (p = 0.87) and heterogeneity (p = 0.41).

We conducted a “leave-one-out” sensitivity analysis to confirm 
the impact of each SNP on the overall causation. The findings 
revealed that none of the SNPs exhibited significant differences 
when one SNP was excluded (Supplementary Figure S1). Finally, 
the results were plotted using a pattern map (Figure 3). Using an 
online database, we identified 19 genes that may be associated 
with the gut microbiota of patients with ESCA (Table 2).

We brought the above four intestinal flora into the external 
dataset for further analysis, and by plotting scatter plots for the 
training group (Figure 4A) and the validation group (Figure 4B), 
we found that the four intestinal flora in the validation group had 
the same tendency to have the same effect on ESCA when 
compared with the experimental group, which further validated 
our results. Meanwhile, we further counted the heterozygosity and 
pleiotropy of the training and validation group analyses (Figure 5), 
which showed that none of them had pleiotropy, indicating the 
credibility of our results.

Meta analysis

We further meta-analyzed and plotted and mapped the 
correlation data of the training and validation groups with the 
four intestinal flora in a forest plot (Figures 6A–D), which showed 
that the above relationship was robust. For ease of analysis, 
we  summarized the results into a three-line table (Figure  6E), 
which showed less statistical heterogeneity and statistically 
significant results, which further justified our conclusions above.

Discussion

The esophagus in the gastrointestinal tract is colonized by 
various microorganisms and is not sterile (Laserna-Mendieta 
et  al., 2021). Healthy individuals have a relatively stable pH 
(approximately 7) that provides a stable environment for microbial 
survival (Hasan et al., 2021). The gut microbiota can directly or 
indirectly affect human health and disease and is considered a 
new “organ” (Baquero and Nombela, 2012). Gut microbes 
significantly impact cell formation, differentiation, metabolism, 
and growth. Dysbiotic gut microbiota may contribute to the 
body’s carcinogenic process (Zhou et al., 2021; Gou et al., 2023; 
Guevara-Ramirez et al., 2023). Notably, the gut microbiota may 
be involved in the development of ESCA (Lv et al., 2019; Zhou 
et  al., 2021). For example, human papillomavirus (HPV) and 
alterations in intestinal bacteria may cause ESCA (Meng et al., 
2018). Moreover, in regions with a high incidence of ESCA, a high 
prevalence of HPV has often been reported (Yano et al., 2021). 
Deng et  al. studied 23 patients with ESCA and 23 healthy 

Gut microbiota SNPs OR 95%CL P value

0.961

0.972

0.948

1.105 1.010-1.072

0.912-0.970

0.921-0.966

0.923-0.971

Veillonella

Eubacterium

Lachnospira

Romboutsia 0.047

0.018

0.032

0.018

13

6

5

7

FIGURE 2

Forest plot of the associations between genetically determined 4 bacterial traits with the ESCA.
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individuals and observed that patients with ESCA have higher 
levels of Firmicutes and Actinobacteria and lower levels of 
Bacteroidetes (Deng et  al., 2021). This suggests that the gut 
microbiota and development of ESCA are closely related. In 
addition, changes in the gut microbiota can increase the levels of 
pro-inflammatory cytokines and immune cells, thereby inducing 
tumorigenesis (Proano-Vasco et al., 2021). Notably, gut microbiota 
can induce the overexpression of nitric oxide synthase, potentially 
leading to ESCA (Gillespie et al., 2021). The gut microbiota can 
also interact with the host by secreting bioactive substances, such 
as vitamins (Malesza et al., 2021), that can be beneficial or harmful 
for the organism (Riwes and Reddy, 2018). These explanations 
help to clarify how the gut microbiota and ESCA are related.

In this study, MR analysis was used to assess the causal 
relationship between gut microbiota and ESCA for providing a 
theoretical foundation for the interactions between ESCA and gut 
microbiota, given the lack of conclusive evidence to support the 
potential relationship between gut microbiota and ESCA. The 
results of this study showed that four intestinal microbiota were 
potentially associated with ESCA. Specifically, the genera 
Romboutsia, Lachnospira, and Eubacterium were negatively 
associated with ESCA, whereas Veillonella had a positive causal 
relationship with ESCA.

The genus Romboutsia is a group of gram-positive bacteria 
first proposed in 2014 by Ricaboni et al. (2016) from the right half 
of the human colon using colonoscopy. Most studies concluded 
that Romboutsia belongs to the natural gut microbial community 
and plays an essential role in host health. For example, 
Lactobacillus acidophilus ameliorates colitis by increasing the 
abundance of Romboutsia (Han et al., 2023). Several studies have 

found that Romboutsia is significantly less abundant in patients 
with inflammatory bowel disease (e.g., Crohn’s disease, ulcerative 
colitis) (Qiu et al., 2020; Wang et al., 2023), and is associated with 
hepatocellular liver cancer and postherpetic neuralgia (Feng et al., 
2023; Jiao et al., 2023). Consequently, Romboutsia may influence 
immune regulation and intestinal health (Liu et al., 2023). At the 
same time Romboutsia is able to increase the antioxidant capacity 
of the body (Zhang et al., 2023), attenuates intestinal inflammatory 
damage and inhibits endoplasmic reticulum stress, which may 
be  the mechanism by which it affects human health (Li et  al., 
2023). Moreover, Romboutsia is closely associated with esophageal 
epithelial atrophy (Pan et  al., 2021), an essential stage in the 
development of ESCA. The potential relationship between 
Romboutsia and ESCA identified in this study is consistent with 
the above findings, which suggests that our analysis is logical.

Lachnospira is integral to the gut microbiota and colonizes the 
intestinal lumen from birth (Vacca et al., 2020). It is a group of 
potentially beneficial bacteria involved in the metabolism of 
various carbohydrates. Fermentation produces acetic and butyric 
acids, which provide energy to the host (Devillard et al., 2007; 
Wong et al., 2014). Lachnospira has been implicated in various 
diseases, including obesity (Natividad et al., 2018), liver disease 
(De Minicis et  al., 2014), and chronic kidney disease (Yasuno 
et al., 2023), and can also lead to depression via the gut–brain axis 
(Bonaz et al., 2018). The Lachnospira spp. have anti-inflammatory 
and antioxidant effects and can protect the intestinal mucosal 
barrier by inhibiting inflammatory responses and scavenging free 
radicals, which may be a mechanism for preventing esophageal 
diseases (Mukherjee et  al., 2020). A cohort study showed that 
Lachnospira, which has anti-inflammatory properties, was 

Esophageal Cancer

Romboutsia

 Lachnospira 

 Eubacterium

Veillonella

FIGURE 3

Patterns of the relationship between four gut microbiota and ESCA.
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significantly reduced in ESCA patients compared to the normal 
group (Cheung et al., 2022). This is consistent with our findings 
in the current study.

Eubacterium has been found to be associated with age-related 
macular degeneration (AMD) (Mao et  al., 2023), female 
infertility (Xi et al., 2023), multiple sclerosis (MS) (Vacaras et al., 
2023) and other diseases. Although a previous Mendelian 
analysis done by Yang et al. showed that Eubacterium reduced 
the risk of Barrett’s esophagus (Yang et al., 2022), the literature 
exploring the relationship between Eubacterium spp. and ESCA 
remains scarce to date. This is the innovative finding of our 
present study, and it also suggests an interesting research 
direction for us. Now, our experiments on Eubacterium for the 
prevention of ESCA are in progress, and the results will 
be published in a follow-up study.

The genus Veillonella includes gram-negative, anaerobic, 
non-motile, and non-spore-forming coccus bacteria (Djais et  al., 
2019). Veillonella is strongly associated with the development of 
several diseases, and has been found to promote the proliferation of 
lung adenocarcinoma (Zeng et al., 2023), whilst Veillonella activates 
macrophages to promote inflammatory responses via the LPS-TLR4 
pathway (Zhan et al., 2022), for example, Veillonella correlated with 
the severity of radiation esophagitis (Lin et  al., 2022), and 
inflammation is one of the factors leading to esophageal cancer, 
suggesting that Veillonella may indirectly contribute to esophageal 
carcinogenesis through inflammation. In our study, only the genus 
Veillonella positively correlated with ESCA. An extensive body of 
literature describes the pathogenic role of Veillonella in the esophagus. 
For example, a study using whole genome sequencing (wGS) and 
RNA sequencing (rNAseq) of tumors from 61 patients with ESCA 

TABLE 2 SNP annotation of intestinal flora IVs.

id chr Start End Strand Gene_ids Gene_names

Genus Romboutsia rs10279978 7 5279756 5279756 + ENSG00000164638 SLC29A4

rs11221428 11 99794319 99794319 + ENSG00000149972 CNTN5

rs16843578 1 171934745 171934745 + ENSG00000197959 DNM3

rs28603357 7 106766378 106766378 + ENSG00000243797 ENSG00000243797

rs34302036 7 78507408 78507408 + ENSG00000187391 MAGI2

rs61841503 10 16977560 16977560 + ENSG00000107611 CUBN

rs62504452 −1 −1

rs7109293 −1 −1

rs75200530 −1 −1

rs75987356 2 15926583 15926583 + ENSG00000223850 MYCNUT

rs77702691 −1 −1

rs9389266 6 135090599 135090599 + ENSG00000112339 HBS1L

rs9567264 13 32146619 32146619 + ENSG00000073910 FRY

Lachnospira rs13157098 −1 −1

rs159484 4 111074471 111074471 + ENSG00000288692 ENSG00000288692

rs2520509 12 90612737 90612737 + ENSG00000286021 LINC02822

rs4686798 3 186727647 186727647 + ENSG00000113889 KNG1

rs4923324 −1 −1

rs56791201 −1 −1

Eubacterium rs12129908 −1 −1

rs12423772 −1 −1

rs1425962 4 186984245 186984245 + ENSG00000249742 ENSG00000249742

rs2973294 4 37525057 37525057 + ENSG00000154274 C4orf19

rs34561138 −1 −1

Veillonella rs1882878 21 28638351 28638351 + ENSG00000232855 ENSG00000232855

rs2013594 11 44280604 44280604 + ENSG00000052850 ALX4

rs55807413 −1 -1

rs62376424 5 120578590 120578590 + ENSG00000184838 PRR16

rs6656807 -1 -1

rs7359080 14 106483909 106483909 + ENSG00000270816 LINC00221

rs742016 22 45208919 45208919 + ENSG00000100364 KIAA0930
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found a high abundance of Veillonella in ESCA (Nomburg et al., 
2022). It has also been shown that Veillonella levels gradually increase 
during the development of esophageal reflux (GR)-Barrett’s 
esophagus (BE)-esophageal adenocarcinoma (EA) (Di Pilato et al., 
2016; Hao et al., 2022). Gram-negative bacteria are mainly associated 
with esophageal abnormalities, e.g., Veillonella is mostly associated 
with BE (Lv et al., 2019; Park and Lee, 2020), which aligns with our 

findings. These findings have important implications for research in 
ESCA in the future and may inspire new prevention and treatment 
strategies for this disease.

Many previous studies have demonstrated a potential 
relationship between the gut microbiota and ESCA (Baba et al., 
2023; Co et al., 2023; Sugimoto et al., 2023). However, most of 
these studies were observational and susceptible to confounding 

Training Group(ieu-b-4960)

Validation Group(ebi-a-GCST90018841)

Eubacterium Lachnospira Romboutsia Veillonella

Eubacterium Lachnospira Romboutsia Veillonella

A

B

FIGURE 4

Scatterplot of correlation between training and validation groups. (A) Scatterplot of the causal relationship between the four intestinal flora and ESCA in 
the training group. (B) Scatterplot of the causal relationship between the four intestinal flora and ESCA in the validation group.

Heterogeneity

MR-EggerIVW
Pleiotropy

Training Group
Eubacterium
Lachnospira
Romboutsia
Veillonella

0.79 0.71
0.33 0.41 0.23
0.45 0.37 0.65
0.29 0.40 0.87

Eubacterium
Validation Group

Lachnospira
Romboutsia
Veillonella

0.590.48 0.65
0.53 0.68 0.22
0.22 0.26 0.26
0.10 0.12 0.54

FIGURE 5

Heterogeneity and pleiotropy results of training and validation group analyses.
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factors. In contrast, the present study used a genetic 
epidemiological approach to minimize the influence of 
confounding factors and provide a compelling insight into the 
relationship between gut microbiota and ESCA. And the use of 
external datasets to validate trends and Meta-analysis of the 
results ensures maximum stability of the results.

Gut flora plays a dual role in cancer development, and the use of 
gut flora in conjunction with traditional antitumor treatment strategies, 
as well as the use of probiotics, FMT, and dietary control, can improve 
the efficacy of anticancer treatments, while reducing the incidence of 
side effects and improving prognosis (Sun et al., 2023). However, this 

study had certain limitations. First, most of the participants were 
European. Additional research is required to determine whether these 
conclusions apply to other ethnic groups. Second, the flora in this study 
was limited to the genus level and was not further subdivided.

Conclusion

We analyzed the potential relationship between 196 common 
intestinal microbiota and ESCA. We found that the genera Romboutsia, 
Lachnospira, Eubacterium, and Veillonella may be causally associated 

Eubacterium

Lachnospira

Romboutsia

Veillonella

Outcome OR 95%CL P value Heterogeneity
Eubacterium
Lachnospira
Romboutsia
Veillonella

0.946 0.918-0.976 <0.001 0.406
0.971 0.948-0.995 0.017 0.418
0.958 0.935-0.984 0.001 0.220
1.105 1.073-1.139 0.628<0.001

A

B

C

D

E

FIGURE 6

Meta-analysis of the causal association between host gene–gut microbiota and ESCA. (A–D) Meta-analysis of the causal relationship between four 
intestinal flora and ESCA. (E) Meta-analysis results.
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with ESCA, which may provide new ideas for ESCA research 
and treatment.
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The development of cancer is not just the growth and proliferation of a single 
transformed cell, but its tumor microenvironment (TME) also coevolves with 
it, which is primarily involved in tumor initiation, development, metastasis, and 
therapeutic responses. Recent years, TME has been emerged as a potential 
target for cancer diagnosis and treatment. However, the clinical efficacy of 
treatments targeting the TME, especially its specific components, remains 
insufficient. In parallel, the gut microbiome is an essential TME component 
that is crucial in cancer immunotherapy. Thus, assessing and constructing 
frameworks between the gut microbiota and the TME can significantly enhance 
the exploration of effective treatment strategies for various tumors. In this review 
the role of the gut microbiota in human cancers, including its function and 
relationship with various tumors was summarized. In addition, the interaction 
between the gut microbiota and the TME as well as its potential applications 
in cancer therapeutics was described. Furthermore, it was summarized that 
fecal microbiota transplantation, dietary adjustments, and synthetic biology to 
introduce gut microbiota-based medical technologies for cancer treatment. 
This review provides a comprehensive summary for uncovering the mechanism 
underlying the effects of the gut microbiota on the TME and lays a foundation 
for the development of personalized medicine in further studies.

KEYWORDS

cancer therapy, gut microbiota, microbiota tumor microenvironment, synthetic 
biology, therapeutic target

1 Introduction

Cancer is one of the significant causes of death, affecting millions of people globally (Siegel 
et al., 2019). Only 5–10% of cancer cases are associated with genetics, while most are related 
to environmental factors (Anand et al., 2008). The tumor microenvironment (TME) has been 
confirmed to play an essential role in tumor initiation and development, with its interactions 
with cancer cells well-studied (Kise et al., 2016). Most scientists believe that the TME can offer 
efficient and cost-effective therapeutics for various cancers, including gastric and colon cancers 
(Merlo et al., 2006). The TME comprises noncellular components and noncancerous host cells, 
including endothelial cells, fibroblasts, immune cells, and even microbes (Whisner and Athena 
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Aktipis, 2019). The chemopathological qualities of the TME were 
classified into six categories, contributing to an in-depth 
understanding of its complexity and heterogeneity and guiding 
anticancer therapy (Jin and Jin, 2020). Considering the strengthened 
comprehension of the essential effects of TME on tumor growth and 
therapeutic resistance, therapeutic benefits in cancer patients have 
been achieved by targeting components of the TME (Xiao and Yu, 
2021). Therefore, a comprehensive understanding of the TME 
provides a framework for preventing and treating cancers.

Microbiota is one of the cellular components in TME that play an 
essential and irreplaceable role in human systems as well as other 
factors like genetic due to the microbiota community can modulate 
various biological processes including cellular metabolism, physiology, 
and immune responses (Marsland et al., 2015; Andreeva et al., 2020). 
Disturbances in the human microbiota have been linked to several 
diseases, such as inflammatory bowel diseases (IBDs), cardiovascular 
diseases, and cancer (De Martel et al., 2012). Microbiota can form the 
TME for tumor initiation and development by regulating mucosal 
immunity and hormonal elements in humans (De Martel et al., 2012). 
Modulating host-microbiota interactions, especially in the gut, which 
hosts the most rich and diverse microbiota, has emerged as a state-of-
the-art therapeutic approach for cancer treatment (Schwabe and 
Jobin, 2013). Previous studies have shown that the gut microbiota can 
regulate the sensitivity and responses of cancer patients to 
chemotherapy (Liu et al., 2022; Rahman et al., 2022). Furthermore, 
alterations in gut microbial structure have been reported to serve as 
potential indicators for early cancer diagnosis and other diseases 
(Sepich-Poore et al., 2021). Therefore, a comprehensive understanding 
of the interaction between the gut microbiota and the TME is 
beneficial for developing effective, safe, and patient-
friendly treatments.

In this review, we (1) investigated the effects of microbiota and the 
TME on host immunity; (2) introduced their mutual effects on cancer 
prevention and therapy; and (3) discussed various methods for 
adjusting the TME to maximize the therapeutic effect of cancer, 
including fecal microbiota transplantation (FMT), dietary 
adjustments, and synthetic biology design. This study will provide a 
foundation for cancer-targeted therapies based on the gut microbiota 
and the TME in future applications and studies.

2 Role of the gut microbiota in cancer

2.1 Human microbiota

The human body hosts various microbes, with over 100 trillion 
symbiotic microorganisms (Sender et  al., 2016). The human 
microbiota comprises complicated communities of bacteria, archaea, 
and viruses (Matson et al., 2021). The primary colonizers in these 
communities belong to six phyla: Firmicutes, Bacteroidetes, 
Proteobacteria, Actinobacteria, Fusobacteria, and Cyanobacteria 
(Ghosh and Pramanik, 2021). However, the relative abundance and 
load of these phyla, especially the bacterial composition at the genera 
level, differ significantly among the different communities (Cho and 
Blaser, 2012). Each anatomical niche, including the skin, gut, vagina, 
nose, mouth, and conjunctiva, possesses a distinct mixture of 
microbial populations. Among these, the human microbiota, 
especially the gut microbiota, has gained more attention due to its 

significant effect on human health and diseases (O'Hara and 
Shanahan, 2006). However, the relationship between microbiota and 
tumorigenesis is complicated as it is influenced by the microbial 
community and abiotic factors. Studies have reported that changes in 
the gut microbial community and its homeostasis can influence the 
development and progression of multiple cancers in humans. Chronic 
inflammation caused by the gut microbiota is a widely accepted 
mechanism that promotes tumor development. Furthermore, 
substances released by gut bacteria have been found to damage DNA, 
resulting in pathogenic mutations (Kumar et  al., 2023). Notably, 
certain species of gut bacteria exhibited antitumor effects in some 
animal studies, particularly those involved in short-chain fatty acid 
(SCFA) synthesis (Yao et  al., 2022). Moreover, gut bacteria can 
enhance the immune response to tumors by activating the immune 
system (Ge et  al., 2021). By studying the tumor-associated gut 
microbiota, cancer prognosis can be predicted, and thus, stopping the 
generation of these associated microbes can halt cancer progression. 
Research on this microbiota would provide a novel and more patient-
friendly strategy for cancer treatment.

2.2 Cancer microbiota

The International Association for Cancer Research has 
identified 11 microbes as human carcinogens or “oncomicrobes,” 
including Human Papillomaviruses, Hepatitis B virus, Hepatitis C 
virus, Epstein–Barr virus, Human T-cell lymphotropic virus type 
I, Human immunodeficiency virus type 1, Human herpesvirus 8, 
Merkel cell polyomavirus, Helicobacter pylori (H. pylori), 
Opisthorchis viverrini, and Schistosoma haematobium (Plummer 
et  al., 2016). Among these, H. pylori, regarding gut microbiota 
modulation, has received significant attention and has been well 
studied. H. pylori is known to cause chronic inflammation of the 
gastric mucosa, potentially leading to gastric and duodenal ulcers, 
and is confirmed to be  related to mucosa-associated lymphoid 
tissue lymphoma (extranodal marginal zone B-cell lymphoma) in 
the stomach (Wang et al., 2014). Consequently, since gastric cancer 
caused by H. pylori infection depends significantly on the long-
term inflammatory response of the host immune system, 
understanding the relationship between H. pylori and other gastric 
bacterial infections and host immune responses at the molecular 
level during gastric carcinogenesis is of great importance (Kim and 
Wang, 2021).

The molecular mechanisms underlying the epidemiology of 
oncomicrobes and their clinical scenarios have been well studied 
(Sepich-Poore et al., 2021). Although carcinogenic microbiota can 
colonize various parts of the human body, their detection in microbial-
triggered cancer is challenging, mainly due to individual differences 
in genetic makeup (Ribet and Cossart, 2015). In addition, certain 
microbiota can cause cancer through genotoxin-mediated 
mutagenesis, such as colibactin (Wilson et al., 2019) and cytolethal 
distending toxins, indicating that not all microbiota are carcinogenic 
or can be  conditionally carcinogenic, e.g., prolonged H. pylori 
infection can trigger gastric cancer (Parsonnet, 1993; Matysiak-
Budnik and Mégraud, 2006).

Increasing evidence shows that a significant “complicit” 
microbiota can trigger carcinogenesis through interactions with 
other abiotic factors. This category encompasses multiple 
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immunomodulatory roles of microbiota and their bioactive 
metabolites involved in tumor growth, which might be related to the 
effect of the immune system on solid tumorigenesis (Bagheri et al., 
2022). Tumors located on boundary surfaces-including the 
oropharynx, skin, and the respiratory, digestive, and genitourinary 
tracts-contain microbiota, which complicates cancer-microbe 
causality (Garrett, 2015). The gut microbiota establishes the core 
factors of the gut microenvironment under healthy and cancerous 
conditions. Simultaneously, different TMEs show diverse community 
structures of the central gut microbiota. The different gut microbiota 
compositions associated with various cancers are summarized in 
Table  1. Moreover, a decrease in the abundance of specific 
microorganisms may also increase the cancer risk of the host in areas 
far from the transfer of such microorganisms (Sears and Garrett, 
2014). Therefore, understanding microbes throughout the body is 
essential for understanding the relationship between the gut 
microbiota and cancer.

Given the high individual heterogeneity of the gut microbiota due 
to variations in genetics, diet, and other factors, its performance varies 
across subtypes of certain cancers. The gut microbiota is highly related 
to chronic inflammation in multiple organs, which can promote the 
development and progression of tumorigenesis. However, it is 
unrelated to cancers resulting from genetic inheritance or mutations 
(Karki and Kanneganti, 2019). Previous research has found that 
Enterobacteriaceae exhibits high abundance across all subtypes of 
gastric tumors, whereas Lachnoclostridium, Bifidobacterium, 
Parabacteroides, and Barnesiella are found in patients with 
adenocarcinoma (Zhou et al., 2021). The gut microbial community 
and biodiversity significantly depend on the types/subtypes of tumors 
and different tumor stages (Chen et al., 2022). Although the role of the 
gut microbiota in subtypes of different cancers requires further study 
and clarification, its potential for tumor diagnosis and treatment has 
gained widespread recognition.

3 Relationship between the gut 
microbiota and the TME

3.1 The microbiome as an ingredient of the 
tumor microenvironment

The TME comprises malignant and nonmalignant cells and 
the contents of the tumor (Figure  1). The permanent mutual 
relationship between tumor cells and the TME significantly affects 
tumor initiation, progression, metastasis, and therapeutic 
responses (Xiao and Yu, 2021). Recently, the conventional drugs 
including aspirin, celecoxib, β-adrenergic antagonist, metformin, 
and statin with antitumor capability that show potential use in 
combination therapy by targeting TME components (Jin and Jin, 
2020). Due to the different layers of microbial niches, the TME is 
a complex environment in which the microbiota has been 
recognized as a novel yet essential element (Turroni et al., 2008; 
Rowland et al., 2018). The microbiota functionally reduces tumor 
cell metabolism, such as inflammation, genotoxin generation, and 
production of bacterial metabolites with various characteristics 
(Kovács et al., 2020). Accumulating evidence has shown that the 
interactions between the microbiota and their metabolites in the 
TME can influence host immunity and the intestinal epithelium, 
ultimately driving or inhibiting tumor growth (Barry et al., 2018).

The model of the gut microbiota and the TME is complex, 
including biotic and abiotic drivers from cells, blood vessels, and 
the extracellular matrix that constitutes the tissues surrounding 
a tumor (Zhu et al., 2021). Studies have reported that gut bacteria 
can regulate the activation of human immune cells to migrate to 
the TME for tumor cell elimination (Buzas, 2023). In addition, 
the complex interaction between the gut microbiota and the TME 
can enable tumor cells to evade the immune system and 
proliferate more efficiently (Kalaora et al., 2022). Understanding 

TABLE 1 Gut microbiota compositions are associated with cancers.

Type Experimental 
Model

Bacterial 
species

Virulence 
factor

Mechanisms Reference

Colorectal 

cancer

Mice

Peptostreptococcus 

anaerobius 

(Firmicutes)

N/A

Promotion of cell proliferation, induction of oxidative 

damage, TLR2/TLR4 interaction, SREBP2/AMPK 

activation

Tsoi et al. (2017)

Mice

Fusobacterium 

nucleatum 

(Fusobacteria)

FadA
Cell proliferatio induction, modulation of Ecadherin/β-

catenin signals, enhanced expression of NF-κB, cyclin D1

Rubinstein et al. 

(2013)

Mice
Genotoxic Escherichia 

coli
Colibactin Phosphorylated H2AX foci formation

Cuevas-Ramos et al. 

(2010)

Stool sample

Enterotoxigenic 

Bacteroides fragilis 

(Bacteroides)

B. fragilis toxin, 

fragilysin

Elevated IL-1 levels, activation of STAT3/β-catenin, 

Ecadherin cleavage, induction of Th-17 response

Ulger Toprak et al. 

(2006)

Pancreatic 

cancer

Mouse and 

macrophages

Porphyromonas 

gingivalis 

(Bacteroidetes)

N/A
Apoptosis induction, interaction with TLR2/TLR4, 

activation of STAT3/NF-κB signaling pathways
Huck et al. (2017)

Liver cancer Mouse
Helicobacter hepaticus 

(Proteobacteria)

Cytolethaldistending 

toxin

Promotion of endoreplication, enhanced p-21/Ki-67 

expression

Péré-Védrenne et al. 

(2016)

Gastric 

cancer

Mouse and 

epithelial cells

Helicobacter pylori 

(Proteobacteria)
VacA

Autophagy induction, elevated MAPK/ERK1/2 

expression, activation of Wnt/β-catenin signals
Meng et al. (2018)

83

https://doi.org/10.3389/fmicb.2024.1287077
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Feng et al. 10.3389/fmicb.2024.1287077

Frontiers in Microbiology 04 frontiersin.org

this system holds promise for cancer prevention, diagnosis, 
and treatment.

3.2 Effects of the gut microbiota on the 
TME

The gut microbiota is crucial in the development, maintenance, 
and growth of the host immune system (Shi et  al., 2017). The 
intestinal ecosystem can affect local and distant neoplasia by 
influencing the influx of myeloid, immune context, lymphoid cells, 
and inflammatory and metabolic patterns (Ma et al., 2019). Thus, 
the gut microbiota is emerging as a critical modulator of the TME 
in various cancers, such as colorectal, gastric, and liver cancers 
(Lakritz et al., 2014). For instance, a previous study reported that 
bacteria such as Fusobacterium nucleatum can enhance tumor 
growth by inhibiting human immune responses (Chattopadhyay 
et al., 2021). Moreover, breast and ovarian cancers are associated 
with specific biosignatures of the gut microbiota, such as the 
abundance of Lactobacillus crispatus, which negatively correlates 
with cancer occurrence (Banerjee et al., 2018).

Furthermore, the secretory components of the gut microbiota are 
reported to be associated with TME. For example, outer membrane 
vesicles (OMVs) can reprogram the TME toward a pro-TH1 pattern 
(CXCL10, IFN-g; Kim et al., 2017). Metabolites produced by the gut 
microbiota, including butyrate and niacin, can mediate Gpr109a-
dependent interleukin (IL)-18 induction in the colonic epithelium, 
suppressing colitis and colon cancer. Additionally, the TME can 
regulate tumor development, metastatic progression, and the efficacy 
of therapeutic interventions (Figure 2; Singh et al., 2014). Studies have 
found that tumor cells can establish a bidirectional functional 

relationship with the surrounding stromal cells during malignant 
progression (Poutahidis et al., 2013). The synthesis and secretion of 
sonic hedgehog, which selectively reacts with stellate cells, are 
promoted by the activation of the CXCL12/CXCR4 pathway in 
pancreatic tumor cells, thereby driving desmoplasia (Singh et  al., 
2012). The desmoplastic TME affects pancreatic cancer pathobiology 
and chemoresistance (Özdemir et al., 2014). One study on lung cancer 
showed that cancer-associated fibroblast (CAF)-derived IL-6 induces 
epithelial-mesenchymal transition and confers resistance to cisplatin 
in non-small cell lung carcinoma (Yang et al., 2016). Moreover, CAFs 
secrete various proinflammatory molecules (IL-6, CCL2, and TGF-β), 
which enhance immunosuppressive cell recruitment (Dirkx 
et al., 2006).

High accumulation of tumor-associated macrophages (TAMs) 
and other immunosuppressive cells in the TME induces cancer 
progression and therapy resistance (Xiang et al., 2021; Yan and Wan, 
2021). The depletion of CD163+ TAMs, which cause immune 
suppression, leads to robust infiltration of cytotoxic T cells into the 
TME, resulting in the control of melanoma development (Etzerodt 
et al., 2019). High CD163+ TAMs in the TME have been linked to 
worse clinical outcomes in patients with various myelomas (Omatsu 
et al., 2014). Pancreatic tumors exhibit a growing infiltration of TAMs 
and a scarcity of cytotoxic T cells in their TME (Lankadasari et al., 
2019). Additionally, the effects of TAMs on angiogenesis have been 
previously reported (Larionova et  al., 2021). For example, TAM 
depletion can induce a significant decrease in vessel density (Yang 
et al., 2016). Thus, various factors, such as MMPs, ILs, VEGF, PDGF, 
and TGF-β secreted by TAMs in the TME, can promote vascularization 
in tumor tissues (Dirkx et  al., 2006). MDSCs are used to heavily 
infiltrate the TME of glioblastoma, activating B-cell–induced immune 
suppression by inhibiting CD8+ T-cell activation (Lee-Chang et al., 

FIGURE 1

Components of TME. The TME is a complex network of stromal cells, microbiome and other cellular entities surrounding tumor cells. Tumor and 
stromal cells actively interact to support tumor growth by promoting desmoplasia, angiogenesis, and immune suppression. MDSC, Myeloid-derived 
suppressor cells; TH, T helper cells; M, Macrophages (Zubair et al., 2022).

84

https://doi.org/10.3389/fmicb.2024.1287077
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Feng et al. 10.3389/fmicb.2024.1287077

Frontiers in Microbiology 05 frontiersin.org

2019). Furthermore, the high intratumoral burden of F. nucleatum 
correlates with a poor response to neoadjuvant chemotherapy in 
patients with esophageal squamous cell carcinoma (Yamamura et al., 
2019). Therefore, the TME microbiota significantly influences cancer 
pathogenesis and therapeutic outcomes.

Noncellular components of the TME are also crucial for cancer 
progression, aggressiveness, and chemoresistance (Schulz et  al., 
2019). The stiffness of the extracellular matrix promotes tumor cell 
survival and proliferation while upregulating integrin signaling 
(Pickup et al., 2014). Hyaluronic acid, a CD44 receptor, is abundant 
in the TME of various cancers (Mattheolabakis et al., 2015). Their 
mutual effects activate cancer-promoting signaling pathways and 
induce the upregulation of noncoding RNA species, such as 
miR-10b/miR-302/miR-21 and lncRNAs. In pancreatic cancer, the 
stroma is highly reactive with different hyaluronic acids, resulting 
in elevated interstitial fluid pressures that lead to vascular collapse 
and poor chemotherapy outcomes (Provenzano et  al., 2012). 
Targeting enzymes in pancreatic tumors with recombinant 
hyaluronidase has been shown to degrade hyaluronic acid and 
enhance therapy by reducing metastasis and improving survival 
(Kim et al., 2021). In addition, the secretory components of the gut 
microbiota are related to the TME. For instance, OMVs can 
reprogram the TME toward a pro-TH1 pattern (CXCL10, IFN-g; 
Kim et al., 2017), while metabolites, such as butyrate and niacin, 
can mediate the Gpr109a-dependent induction of IL-18  in the 
colonic epithelium, suppressing colitis and colon cancer.

Metabolites from the gut microbiota enter host cells and interact 
with the human immune response, promoting various tumor-
inhibitory and immunomodulatory molecules. They also inhibit 
inflammation by maintaining the integrity of the epithelial barrier and 

the intestinal tract (Rooks and Garrett, 2016). A previous study found 
that the products of the metabolic activities of the gut microbiota 
significantly affect host metabolic pathways related to adiposity, lipids, 
and energy homeostasis (Poutahidis et al., 2013). Thus, uncovering 
how metabolites and submetabolites from the gut microbiota affect 
immune cells and reshape the TME can strongly contribute to the 
development of tumor therapeutics.

Gut microbiota metabolites, such as SCFAs and inosine, directly 
or indirectly interact with the TME to reshape it, thereby affecting the 
cancer process (Min et al., 2005). SCFAs contribute to maintaining 
intestinal homeostasis and regulating intestinal barrier function 
(Wang et  al., 2017). Moreover, several fatty and cholic acids are 
associated with inflammation (Min et al., 2005). Butyrate and SCFAs, 
which can be  generated by Faecalibacterium prausnitzii, control 
angiogenesis and reduce the expression of proangiogenic factors. 
Thus, increasing butyrate concentration is believed to slow down and 
halt cancer growth (Davie, 2003). Conversely, deoxycholic and 
petrocholic acids can cause DNA damage by increasing the generation 
of reactive oxygen species (Payne et al., 2007). Recent studies have 
shown that the intestinal bacteria B. pseudolongum can produce 
inosine, which drives Th1 cell differentiation in the presence of 
exogenous IFN-g (Kroemer and Zitvogel, 2020). Moreover, the status 
of B. pseudolongum has been reported to be  associated with the 
response to ICB therapy, such as anti-CTLA-4 and anti-PD-L1, 
through its interaction with the adenosine A2A receptor on T cells 
(Mager and Burkhard, 2020). CTLA-4 and PD-L1 are the primary 
targets of immune checkpoint therapy, which involves membrane-
bound molecules that impede unbounded T-cell responses after initial 
stimulation (Mager et al., 2020). Thus, cancer cells can avoid immune 
surveillance by employing this mechanism. However, while 

FIGURE 2

The role of TME in cancer and its immunotherapy. The primary cells of the TME in cancer immunity are NK cells, DC cells, CD8  +  T cells, Treg cells, 
fibroblasts, TAMs, and MDSCs. Different cells induce the death of tumor cells in various ways, such as releasing perforin and granzyme and mediating 
cytotoxicity by TRAIL and Fasl receptors. MDSC, Myeloid-derived suppressor cells; ROS, Reactive oxygen species; NK cells, Natural killer cells.
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reactivating inefficient T cells, immune checkpoint inhibitors (ICIs) 
can restore the response to tumor antigens (Sharma and Allison, 
2015). Clinical research and preclinical trials have revealed that the 
gut microbiota affects the efficacy of ICIs, thereby explaining 
significant variations in patients’ responses to ICIs (Vétizou et al., 
2015). Hence, gaining an in-depth understanding of how the gut 
microbiota, their metabolites, and the host immune system interact to 
reshape and regulate the TME holds promise for advancing 
cancer immunotherapy.

Overall, the effects of the gut microbiota on the TME are complex 
and not yet fully understood. However, studies on this system have 
demonstrated its potential application in manipulating gut microbes 
to influence the effectiveness of cancer treatment and improve 
patient outcomes.

4 Gut microbiota modulation and 
their TME target

4.1 Cancer diagnostics based on 
microbiota

Cancer is typically diagnosed following the identification of a 
lump through palpation or imaging techniques, followed by a biopsy 
to confirm cellular malignancy (Fass, 2008). Tomographic detection 
techniques, including PET, MRI, and CT, efficiently identify 
macroscopic lesions in the body (Pokharel et al., 2013). Compared to 
stable genetic characteristics, the homeostasis of the human gut 
microbiota is more susceptible to tumorigenesis. Furthermore, studies 
have confirmed that the gut microbiota dynamics can potentially aid 
in diagnosing and locating malignancies, such as Streptococcus 
gallolyticus bacteremia, based on their gastrointestinal origin (Klein 
et  al., 1977). Most microbial-based cancer diagnostics focus on 
sequencing tumors within the aerodigestive tract, including colorectal 
(Flemer et al., 2017), pancreatic (Farrell et al., 2012), and lung cancer 
(Yan et al., 2015). It has been suggested that different cancer types may 
host microbiota with unique compositions outside the aerodigestive 
tract, such as in the oral cavity. Nejman et al. investigated intratumoral 
microbiota from over 30 cancers, applying their blood-based 
diagnostics and providing visual evidence of microbial intratumoral 
spatial distributions and intracellular localization in seven different 
cancers (Nejman and Livyatan, 2020).

Currently, several bacteria-based strategies have been developed 
for tumor detection (Panteli et  al., 2015), including the use of 
engineered bacteria that combine the specificity of tumor-targeting 
bacteria with the sensitivity of biomarker assays (Panteli et al., 2020). 
Attenuated bacteria were engineered to release an exogenous reporter 
protein, ZsGreen, using a remotely inducible genetic switch (Kaimala 
et al., 2018). Both in vivo and in vitro experiments showed that these 
bacteria could identify tumors through systemic measurements of the 
released ZsGreen (Panteli et  al., 2020). Although bacteria-based 
cancer diagnosis is a promising strategy, it faces several challenges, 
such as low biomass relative to the host and confounding from 
reagents or environmental pollutants. Thus, combining gut 
microbiota-based methods with conventional diagnostic techniques, 
including genome sequencing, qPCR, immunohistochemistry, and 
electron microscopy, can offer more accurate and efficient 
cancer diagnoses.

Microbial-based cancer diagnostics have emerged as a new area 
that is focused on designing or developing novel strategies based on 
specific biosignatures of the gut microbiota in various cancers or at 
different tumor stages (Kim and Lee, 2021). Furthermore, deep 
learning and machine learning algorithms enable the identification of 
microbial profiles indicative of cancers, which is the basis of precision 
medicine. Microbial-based cancer diagnostics also hold the potential 
to improve cancer screening and early detection efforts, promising the 
development of more accurate and effective diagnostic tools for 
various cancers and ultimately improving patient outcomes.

4.2 Microbial-based cancer therapy

The human gut microbiota is recognized as a fundamental 
component of the immune system (Hooper and Macpherson, 2010; 
Maynard et al., 2012). Further studies have demonstrated that the gut 
microbiota can regulate immune responses, thus affecting the efficacy 
of cancer immunotherapy (Roy and Trinchieri, 2017). Several clinical 
trials have recently been conducted to alter the gut microbiota for 
cancer therapy (Table 2). Methods such as FMT, probiotics, dietary 
interventions (discussed in the subsequent section), and microbial 
engineering based on synthetic biology offer potential anticancer 
effects by targeting both tumor cells and the TME (Figure 3).

FMT is an artificial strategy for manipulating the gut microbiota 
and the TME (Zhang et al., 2020). Several clinical conditions, such as 
clostridium difficile infection, ulcerative colitis, and other 
gastrointestinal conditions, have been successfully treated by 
transferring fecal material from a donor to a recipient through 
colonoscopy, enema, or oral administration (Tan and Johnson, 2019). 
According to ongoing clinical trials, FMT from donors responsive to 
immunotherapy can enhance antitumor immune responses and 
potential clinical outcomes (Kang and Cai, 2021). Modifying the gut 
microbiota through FMT has been found to modulate the composition 
of the tumor microbiota, antitumor immune responses, and tumor 
growth kinetics (Matson et  al., 2021). However, the long-term 
effectiveness and stability of FMT remain unclear (McQuade et al., 
2019). Although some clinical trials have successfully incorporated the 
modulation of the gut microbiota using FMT into cancer therapy, the 
applications of FMT in cancer patients are limited due to antibiotic 
preconditioning, administration route, and modulation frequency, 
complicating its clinical use in targeting the gut microbiota (Cheng 
et al., 2020). Therefore, more specific clinical trials are needed for fecal 
transplants in cancer patients.

Probiotics are widely used to shift the microbial community 
(Zaramela et al., 2021). These interventions are being investigated for 
tumor therapy based on both retrospective studies and prospective 
clinical trials (Panebianco et  al., 2020). Live bacteria are orally 
administered in probiotics, supplying substrates that stimulate the 
development or activity of beneficial bacteria in the gut and that 
further modulate the components of the overall gut microbiota 
(Markowiak and Śliżewska, 2017). Recent findings have confirmed 
that the gut microbiota can regulate immune responses, which could 
potentially affect the efficacy of cancer immunotherapy, indicating 
that probiotics can reduce the side effects of anticancer therapy (Lu 
et  al., 2021). Several commercially available probiotics have been 
studied in preclinical models and clinical trials (Helmink et al., 2019). 
It has been reported that patient outcomes can be  influenced by 
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compositional variations in the gut microbiota or the TME (Helmink 
et al., 2019).

Anaerobic bacteria play a crucial role in the gastrointestinal tract 
(Zaramela et al., 2021). A functional gut microbiota Bifidobacterium 
is commonly used to treat IBDs, including ulcerative colitis (Zhang 
et  al., 2021). The TME creates a suitable growth environment for 
anaerobic bacteria under low-oxygen conditions (Leppäranta et al., 
2008). The antitumor effects of anti-CD47 immunotherapy can 
be significantly improved by accumulating Bifidobacterium in the 
TME (Sivan et al., 2015). Current clinical trials primarily focus on the 
effectiveness of probiotic treatment for colorectal, kidney, breast, 
gynecologic, and lung cancers.

Microbial metabolites also contribute to regulating antitumor 
immunity (Sipe et al., 2020). SCFAs are crucial for maintaining gut 
integrity and serve as the primary energy source for intestinal 
epithelial cells (Parada Venegas et al., 2019). SCFAs, such as acetate, 
propionate, and butyrate, are absorbed through the intestinal 
epithelium and transmitted to T cells through G-coupled protein 
receptors to influence tumor differentiation (Moniri and Farah, 2021). 
In the colon, SCFAs protect gut integrity from invading foreign 
microorganisms by inducing Treg cells or IL-10 (Park et al., 2015). A 
direct interaction exists between SCFAs and CD8+ T cells in the 
circulation system, enhancing their antitumor effects (Bachem et al., 
2019). Overall, SCFA-producing microbiota contribute to the response 
to ICIs (Huang et al., 2020). In addition, prebiotics and synbiotics (a 
combination of probiotics and prebiotics) are ideal for cancer 

prevention (Raman et al., 2013). Prebiotics are defined as fermentable, 
nondigestible food ingredients that can improve the health of the host 
(Legesse Bedada et al., 2020).

Dietary fibers resist digestion and absorption in the small 
intestine but undergo complete or partial fermentation in the large 
intestine (Buttriss and Stokes, 2008; Mudgil and Barak, 2013). Most 
fractions of edible plants or their extracts are carbohydrates and are 
regarded as prebiotics (Hijová et  al., 2019). Fermentation of 
nondigestible compounds is key to proliferation and apoptosis 
modulation in tumor cells (Cruz-Bravo et  al., 2014). Prebiotics 
protect cells against cancer through fecal bulking, colonic pH change, 
carcinogen binding to bacteria, xenobiotic-metabolizing enzymes, 
gene expression modulation in feces and cecum, and immune 
response modulation (Harris and Ferguson, 1993). Therefore, diet, 
lifestyle, and gut microbiota composition are related (Shamekhi et al., 
2020). Regarding dysbiosis or bacterial imbalance in the intestine due 
to variations in diet or the environment, tumors can be induced by 
virulence factors, microbial metabolites, and inflammatory routes 
(Dos Reis et al., 2017).

4.3 Synthetic biology application on cancer 
diagnosis and therapy

Synthetic biology has enabled the modification of living cells 
through sophisticated decision-making processes to achieve 

TABLE 2 Selected clinical trials are modulating the gut microbiota in cancer therapy.

Type Patient 
number

Objective Intervention Clinical outcomes NCT 
number

Melanoma 20

To study concurrent use of FMT and 

pembrolizumab in patients with PD-1-

resistant melanoma

FMT (donor responder 

to PD-1 therapy) with 

pembrolizumab

Overall response rate, change in T cell 

composition and function; change in 

innate and adaptive immune subsets

NCT03341143

Breast cancer 20

To assess the efficacy of Presurgical 

antibiotics to influence antitumor immune 

function

Primal Defense ULTRA 

Probiotic Formula
Mean number of cytotoxic CD8+ T cells NCT03358511

Colorectal 

cancer
35

To investigate the effect of probiotics on gut 

microbiota and the immune and 

inflammatory response

Probiotics The colonic microbiota GI function NCT00936572

Colon cancer 20
To reactivate the tumor-suppressor genes 

using probiotics

ProBion Clinica 

(Bifidobacterium lactis, 

L. acidophilus)

Changes in microbiota composition 

and DNA methylation
NCT03072641

Acute myeloid 

leukemia
20

To use FMT to prevent complications 

associated with dysbiosis in patients 

undergoing intensive treatment

Auto-FMT

Dysbiosis correction, eradication of 

multidrug resistant bacteria, definition 

of dysbiosis biosignature

NCT02928523

Hepatocellular 

carcinoma
64

To assess the role of probiotics in preventing 

septic and liver functional complications 

related to bacterial translocation following 

surgical resection of HCC

Probiotics-Lactibiane 

Tolerance 

(Bifidobacterium lactis, 

L. acidophilus, L. 

plantarum, L.salivarius)

Area under the plasma concentration 

versus time curve of endotoxin 

circulating levels

NCT02021253

Lung cancer 41
To assess the effects of chemotherapy on 

microbiome and probiotics on chemotoxicity
Clostridium butyricum

Composition of microbiome with 

probiotics, adverse effects of chemo, 

change in immunity and nutrition index

NCT02771470

Renal cell 

cancer
20

To prevent diarrhea in patients treated with 

sunitinib by probiotics

Micronutrient- fortified 

probiotic yogurt

Change in levels of Bifidobacterium spp. 

in stool samples
NCT02944617
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user-defined outcomes, such as creating sense-and-respond 
adaptive therapies (Kitada et  al., 2018). Some bacterial species 
selectively proliferate and accumulate at tumor sites, making them 
suitable candidates for tumor monitoring and targeted therapy 
(Figure 4; Kramer et al., 2018). The ability of bacteria to target 
tumors can be improved through synthetic biology, and therapeutic 
payloads can be delivered with increased precision. For instance, 
to decrease off-target effects in healthy tissues, bacteria have been 
engineered with quorum sensing switches that activate effector 
gene expression only when the bacterial population reaches a 
certain threshold density (Anderson et al., 2006). Alternatively, 
bacteria expressing therapeutic payloads can infiltrate tumor cells 
or utilize the type III secretory system (T3SS). This syringe-like, 
protein-based structure injects proteins into target cells (Huh et al., 
2013). T3SS has been used to engineer Salmonella to deliver 
antiangiogenic proteins to tumor cells for controlling tumor 
growth in vivo or tumor-related antigens to antigen-presenting 
cells for triggering antitumor immunity (Shi et  al., 2016). In 
addition, bacteria were programmed to degrade adenosine and 
kynurenine (West et al., 2018), which inhibit antitumor immunity 
(Siska and Rathmell, 2015) and produce cyclic-di-AMP (Leventhal 
et  al., 2018), thus activating the stimulator of interferon genes 
pathway to enhance antitumor immunity (Chen et al., 2016).

Several studies have shown a significant decrease in tumor growth 
using anticancer-related bacteria in preclinical mouse models (Din 
et al., 2016). However, bacterial susceptibility was not eliminated by 
the host’s immune system (Grushkin, 2012). Thus, the use of 
anticancer-related bacteria may involve sophisticated engineering to 
ensure their efficient action before they are released by the host’s 
immune system.

5 Prospective and conclusion

The human gut microbiota plays a critical role in tumor growth, 
progression, and treatment. The interaction among the gut microbiota, 
host’s immune system, and tumors can offer valuable insights into 
adjusting the gut microbiota to optimize the TME and enhance 
cancer immunotherapy.

The human microbiota significantly impacts the overall health 
of the human host and contributes to the development of various 
diseases. However, our current understanding of how human 
microbiota can confer susceptibility to certain cancers remains 
incomplete. A significant knowledge gap still exists regarding the 
underlying mechanisms governing bacterial activity as well as the 
compositions of microbiota due to limitations in culturing many 

FIGURE 3

The modulation of the gut microbiota and their metabolites by FMT, probiotics, and diet to reshape TME for tumor therapy. Gut microbiota and their 
metabolites can promote the immunotherapy in humans through different mechanisms. FMT, Fecal Microbial Transplantation; SCFA, Short Chain Fatty 
Acids; TNF, Tumor necrosis factor.
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bacterial species, small clinical sample sizes, and a lack of risk 
assessment data.

Individual diversity in the gut microbiota is the primary challenge for 
large-scale validation and further intestinal microecology analysis. 
Therefore, integrating biological information, extensive data, and artificial 
intelligence into precision medicine would be  aid in the future 10 
development of novel drugs. However, these methods are not yet widely 
employed, and further in-depth investigations are necessary to ensure 
their adoption. In future, personalized medicine will likely incorporate 
microbiome-based diagnosis and treatment strategies. Despite the current 
challenges, a powerful new toolkit has been developed by enhancing our 
understanding of the roles of microbiota in cancer to improve patient care.

Author contributions

PF: Conceptualization, Writing – original draft. XX: Writing – 
review & editing. IB: Writing – review & editing. CQ: Data curation, 
Software, Writing – review & editing. YL: Data curation, Supervision, 
Writing – review & editing. PZ: Conceptualization, Writing – review 
& editing. YM: Writing – review & editing.

Funding

The author(s) declare financial support was received for the 
research, authorship, and/or publication of this article. This work 

was supported by Zhengzhou Major Collaborative Innovation 
Project (No. 18XTZX12003); Key projects of discipline 
construction in Zhengzhou University (No. XKZDJC202001); 
National Key Research and development program in China (No. 
2020YFC2006100); Medical service capacity improvement 
project of Henan Province in China (Grant number Yu Wei 
Medicine [2017] No. 66); Natural Science Foundation of Henan 
Province (No. 212300410399). Key Research and Development 
and Promotion Special Projects of Henan Province (No. 
232102311068).

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

FIGURE 4

Applications of synthetic biology for cancer diagnosis and targeted therapeutics. Some probiotics like E. coli Nissle 1917 can be programmed 
to produce and deliver anti-cancer agents in solid tumors. Multiple drug payloads can be encoded by one or more engineered strains against 
tumors.
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Background: Colorectal cancer (CRC) is one of the most common malignant 
tumors primarily affecting individuals over the age of 50  years. Recent studies 
have suggested that the dysbiosis of the gut microbiota, a community of 
microorganisms in the human gut, is closely associated with the occurrence 
and development of CRC. Additionally, inflammatory factors (IFs) have also been 
reported to play a significant role in the development of CRC. However, the 
causal relationships between the gut microbiota, IFs, and CRC remain unclear.

Methods: In this study, we performed Mendelian randomization (MR) analysis 
using publicly available genome-wide association study (GWAS) data to explore 
the causal relationship between the gut microbiota, IFs, and CRC. The gut 
microbiota GWAS data were obtained from the MiBioGen study, while the IFs 
GWAS data were derived from the comprehensive analysis of three independent 
cohorts. Causal relationship analysis was conducted using appropriate 
instrumental variables (IVs) and statistical models.

Results: MR analysis of the gut microbiota and CRC revealed a negative 
correlation between the Lachnospiraceae species in the gut and CRC risk, while 
a positive correlation was observed between Porphyromonadaceae species, 
Lachnospiraceae UCG010 genus, Lachnospira genus, and Sellimonas genus in 
the gut, and CRC risk. Additionally, we observed a causal relationship between IL-
10 and CRC risk. These findings suggest that the dysbiosis of the gut microbiota 
might be associated with an increased risk of CRC and that specific bacterial 
groups may play a crucial role in the occurrence and development of CRC.

Conclusion: Using MR analysis, this study revealed the causal relationships 
between the gut microbiota, IFs, and CRC. The negative correlation between 
the Lachnospiraceae species in the gut and CRC risk, as well as the causal 
relationship between IL-10 and CRC, provide important clues for the potential 
roles of gut microbiota regulation and inflammatory factor control in the 
prevention and treatment of CRC.
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1 Introduction

Colorectal cancer (CRC), a malignant tumor originating in the 
cells of the colon, is a common cancer typically occurring in 
individuals aged 50 years and above (Benson et al., 2018; Fabregas 
et al., 2022). Although the symptoms of CRC vary from person to 
person, some of the most common symptoms include abdominal pain 
and discomfort, changes in bowel habits (such as constipation, 
diarrhea, or increased frequency of bowel movements), presence of 
blood (either bright or dark red) in the stool, and intestinal obstruction 
(caused in the advanced stages of CRC when the tumor blocks the 
intestine, leading to severe abdominal pain, vomiting, and 
constipation) (Otani et al., 2019; Vogel et al., 2022). The risk factors 
for CRC include age (more common in individuals aged ≥50 years), 
genetic factors (individuals with a family history of CRC), 
gastrointestinal diseases (such as inflammatory bowel disease and 
familial adenomatous polyposis), high-fat, low-fiber diets, obesity, and 
diabetes (Giovannucci, 2002; Roslan et al., 2019).

The gut microbiota, which includes bacteria, archaea, viruses, fungi, 
protozoa, and parasites, plays a crucial role in the development of 
CRC. Recent research has shown a strong association between gut 
dysbiosis (imbalanced gut microbiota) and CRC (Garrett, 2019; Bai et al., 
2022). Dysbiosis can lead to a reduction in the number of beneficial 
bacteria and an increase in the count of harmful bacteria, thereby 
disrupting the balance in the gut microbiota. This imbalance in the gut 
microbiota can lead to the production of harmful metabolites, such as 
carcinogens and inflammatory mediators, further promoting the 
development of CRC (Yang et al., 2022). Dysbiosis can also damage the 
intestinal mucosal barrier, allowing harmful substances and bacterial 
toxins to enter the intestinal tissue, thereby triggering an inflammatory 
response that promotes tumor formation and provides a favorable 
environment for tumor growth and metastasis (Wong and Yu, 2023).

Dysbiosis is also associated with changes in the tumor 
microenvironment of CRC (Zheng et al., 2020). Previous studies have 
suggested an association between specific groups of bacteria in the gut 
microbiome and CRC occurrence. For example, enrichment of the 
human gut with bacteria from the Alistipes genus has been associated 
with the development of CRC. These bacteria produce harmful 
metabolites (Louis et al., 2014), such as nitrosamines (Zhao et al., 
2022), which promote the development of CRC (Parker et al., 2020). 
Therefore, the regulation of the gut microbiota serves as one of the 
potential strategies for the prevention and treatment of colon cancer 
(O'Keefe, 2016). Regulation of the composition and function of the 
gut microbiota can enhance the microbial balance in the gut by 
reducing the number of harmful bacteria and increasing the number 
of beneficial bacteria, thereby reducing the risk of CRC (Eslami et al., 
2019). Some studies have shown that dietary changes, the use of 
probiotics and prebiotics, etc., regulate the gut microbiota and aid in 
the prevention and treatment of CRC (Tomasello et  al., 2016; 
Pushpanathan et al., 2019).

Research has shown that the dysbiosis of the gut microbiota and 
the resulting inflammatory response play an important role in the 
occurrence and development of CRC (Fiorentini et  al., 2020). 
Dysbiosis regulates the expression of the host genes associated with 
inflammation in the gut (Fidelle et al., 2020). Previous studies have 
shown that the dysbiosis of the gut microbiota can lead to the 
overexpression of inflammation-related genes, further exacerbating 
inflammatory responses and promoting the occurrence and 

development of colon cancer (Fidelle et al., 2020; Hou et al., 2022). 
Therefore, strategies aimed at regulating the gut microbiota may have 
the potential to modulate inflammatory responses. Mendelian 
randomization (MR), a relatively new technique that uses single 
nucleotide polymorphisms (SNPs) with an associated risk factor as 
instrumental variables (IVs), is used to determine if a causal 
relationship exists between a risk factor and a specific disease (Bowden 
and Holmes, 2019). Since the genetic variations detected in the zygote 
remain unchanged throughout life, these can be used in MR studies 
to avoid potential confounding variables or other sources of bias 
(Birney, 2022). In this study, we  aimed to explore the causal 
relationship between the gut microbiota, inflammatory factors (IFs), 
and CRC, through the MR analysis of the summary-level data from 
publicly available genome-wide association studies (GWAS).

2 Materials and methods

2.1 Genome-wide association study data

Gut microbiota GWAS data were obtained from the MiBioGen 
study1, which is the most extensive multi-racial study on the gut 
microbiota thus far. In this study, the fecal microbiota data (n = 340) 
and the 16S genotyping data from 16 cohorts (n = 24,000) were 
analyzed to identify the relationship between the gut microbiota and 
human health. The results showed significant variations in the human 
gut microbiota across regions, ethnicities, and age groups. The genetic 
predictors of 41 systemic inflammatory regulators were obtained from 
a comprehensive cytokine-related GWAS meta-analysis conducted on 
three independent cohorts. These cohorts included 8,293 Finnish 
participants from the Cardiovascular Risk in Young Finns Study (YFS) 
and the “FINRISK” studies (FINRISK1997 and FINRISK2002) (Wang 
et al., 2022). To normalize the distributions of the 41 cytokines, a 
two-step inverse transformation was applied.

In order to test the univariable associations between 10.7 million 
genetic polymorphisms and the concentrations of the 41 cytokines, an 
additive genetic model was employed. This model took into account 
adjustments for age, sex, body mass index (BMI), and the first 10 
genetic principal components. Lastly, the outcome data were obtained 
from the Finngen database.

2.2 Selection of instrumental variables

Bacterial classification and analyses were performed at five major 
taxonomic levels (phylum, class, order, family, and genus). To ensure 
the accuracy and validity of the causal relationships between the gut 
microbiota and CRC risk, we added restrictions to the IV inclusion 
criterion as follows. First, only the SNPs with p < 1e-05 were included 
as IVs for exposure and outcome analysis in the MR studies. Second, 
the TwoSampleMR R package was used to assign r2 = 0.001 and 
kb = 10,000 to ensure the independence of the selected IVs and to 
minimize the linkage disequilibrium effect that violates random 
allele assignment.

1 https://mibiogen.rug.nl/
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2.3 Statistical analysis

Mendelian randomization (MR) is a method used to investigate 
causal relationships between a modifiable exposure and an outcome 
using genetic instruments. There are two key assumptions in MR: 
assumption 1 states that the genetic instruments are associated with 
the exposure of interest, and assumption 2 states that any association 
between the instruments and the outcome is mediated by the exposure 
(Smith and Ebrahim, 2003). To address these assumptions, five MR 
methods were used in the analysis. The ratio method involved 
obtaining individual SNP estimates by dividing the SNP’s effect on 
schizophrenia by its corresponding effect on the biomarker. Standard 
errors were estimated assuming no measurement error. These 
estimates were then used for weighted analyses using other methods. 
Inverse variance weighting (IVW) is a commonly used method in MR 
(Burgess et al., 2013, 2017). It calculates the inverse variance weighted 
mean of ratio estimates from multiple instruments. This method 
assumes that all SNPs are valid instruments or that any bias is balanced 
across the instruments. Both fixed and random effects IVW methods 
were used. Weighted generalized linear regression is similar to the 
IVW method but allows for accounting for the correlation between 
genetic instruments. It was used when utilizing a conservative set of 
genetic instruments. The weighted median method calculates the 
median of the weighted empirical distribution function of individual 
SNP ratio estimates. This method provides a consistent effect estimate 
if more than 50% of the information comes from valid SNPs. 
Mendelian randomization Egger regression is a method that performs 
a weighted linear regression of SNP schizophrenia against SNP 
biomarker effect estimates (Bowden et  al., 2015). It assumes that 
horizontal pleiotropic effects and SNP exposure associations are 
uncorrelated. The intercept of the MR Egger regression can 
be interpreted as a test for overall unbalanced horizontal pleiotropy. 
Both fixed and random effects versions of this method were 
performed. By employing these five MR methods, the researchers 
aimed to minimize bias and obtain reliable estimates of the causal 
relationship between the modifiable exposure and the outcome of 
interest. Different causality analysis models were used in this study. 
Among them, the inverse-variance weighted (IVW) model and 
MR-Egger method were used for the analysis of samples with multiple 
SNPs, while the Wald ratio test was used for the analysis of samples 
with only one SNP.

For sensitivity analyses, heterogeneity was measured using the 
Cochran Q method. In case of obvious heterogeneity (p < 0.05), 
MR-Egger regression analysis was used to assess the potential 
pleiotropic inheritance of the SNPs used as IVs. In MR-Egger 
regression, the intercept term indicates directed horizontal pleiotropy 
at p < 0.05. All statistical analyses in this study were performed using 
the R package in the R language application (v4.2.1).

3 Results

3.1 Mendelian randomization analysis of 
the gut microbiota and colorectal cancer

Our preliminary study revealed that 8 out of the 211 gut bacteria 
may have a causal relationship with CRC (Figure 1). The IVW analysis 
results for these 8 bacteria were as follows: family Clostridiales vadin 

BB60 group id.11286 (p = 2.96E-02; odds ratio (Fabregas et al., 2022) 
95% confidence interval (Benson et  al., 2018) = 0.75 (0.58, 0.97)), 
family Porphyromonadaceae id.943 (p = 3.62E-03; OR 95% CI = 2.03 
(1.26, 3.28)), genus Lachnospiraceae UCG008 id.11328 (p = 1.37E-02; 
OR 95% CI = 0.74 (0.58, 0.94)), genus Lachnospiraceae UCG010 
id.11330 (p = 1.81E-02; OR 95% CI = 1.61 (1.08, 2.38)), genus 
Lachnospira id.2004 (p = 3.03E-02; OR 95% CI = 4.43 (1.15, 17.02)), 
genus Prevotella 9 id.11183 (p = 4.37E-02; OR 95% CI = 0.78 (0.61, 
0.99)), genus Ruminococcaceae UCG010 id.11367 (p = 1.49E-02; OR 
95% CI = 0.59 (0.38, 0.90)), and genus Sellimonas id.14369 (p = 1.68E-
02; OR 95% CI = 1.25 (1.04, 1.50)). Among them, family 
Porphyromonadaceae id.943, genus Lachnospiraceae UCG010 
id.11330, genus Lachnospira id.2004, and genus Sellimonas id.14369 
showed a positive correlation with CRC risk, while the other bacterial 
classes showed a negative correlation, indicating their protective 
effects. Detailed information on the MR analysis of the gut microbiota 
and CRC can be found in the Supplementary material S1.

3.2 Mendelian randomization analysis of 
inflammatory factors and colorectal cancer

This study revealed a causal relationship between one of the 41 
inflammatory factors and CRC (Figure 2). The results obtained from 
the IVW analysis of interleukin-10 and CRC were as follows: 
(p = 4.31E-04; OR 95% CI = 1.49 (1.20, 1.87)). Detailed information on 
the MR analysis of the gut microbiota and CRC and the inflammatory 
factors and CRC can be found in the Supplementary material S1.

3.3 Mendelian randomization analysis of 
the gut microbiota and inflammatory 
factors

We conducted an MR analysis of the gut microbiota and 
inflammatory factors to further elucidate the role of inflammatory 
factors in the association between gut microbiota and CRC. IVW 
analysis results showed a causal relationship between genus 
Lachnospiraceae UCG010 id.11330 and IL-10 (p = 2.63E-02; OR 95% 
CI = 0.81 (0.67, 0.97)); no significant association was observed between 
any of the other bacterial taxa and inflammatory factors (Figure 3).

In sensitivity analysis, we conducted heterogeneity and pleiotropy 
analyses for the immune cells included in our study and their 
respective diseases. Our results all yielded p-values greater than 0.05, 
indicating the absence of heterogeneity and pleiotropy SNPs. 
Additionally, we  performed leave-one-out analysis, which also 
demonstrated the stability of our results. The leave-one-out plot is 
Figure 4, while the heterogeneity results are presented in Table 1 and 
the pleiotropy analysis results in Table 2.

4 Discussion

In this study, we  conducted a dual sample MR analysis to 
investigate the causal relationship between gut microbiota, 
inflammatory factors, and CRC. We  found a potential causal 
relationship between the Lachnospiraceae UCG010 id.11330 bacterial 
genus and IL-10, CRC. The results showed that Lachnospiraceae 
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FIGURE 3

Forest map of MR results of gut microbiota and inflammatory factors.

UCG010 id.11330 increased the incidence of CRC, and IL-10 also 
increased the incidence of CRC. However, further investigation 
indicated a negative correlation between Lachnospiraceae UCG010 
id.11330 and IL-10. Based on these findings, it is hypothesized that the 
increase in CRC caused by Lachnospiraceae UCG010 id.11330 is not 
mediated by IL-10. These two processes may be unrelated.

The association between the gut microbiota and CRC has been 
studied extensively and is supported by a substantial body of evidence. 
In this context, certain pathogenic bacteria can indirectly induce DNA 

damage in the host cells or interfere with important cell signaling 
pathways related to cell proliferation, apoptosis, and inflammation by 
producing enzymatically active protein toxins, thereby exerting a 
pro-tumorigenic effect (Chen and Li, 2020; Mirzaei et  al., 2021). 
Bacteria are an important component of the gut microbiota, and 
several bacterial taxa harbor strains that produce protein toxins with 
potential pro-carcinogenic properties. Data on the consequences of 
long-term exposure to these gut bacteria and their toxins is gradually 
emerging, although research in this field is still relatively limited 

FIGURE 1

Forest map of MR results of gut microbiota and colon cancer.

FIGURE 2

Forest map of MR results of inflammatory factors and colon cancer.
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(Illescas et  al., 2021). Previous studies have demonstrated that 
Lachnospiraceae UCG010 id.11330 is a potential biomarker closely 
related to oxidative stress and metabolic genes (Qin et  al., 2022). 
Oxidative stress plays an important role in the initiation and 
promotion stage of colon cancer, which may be the reason for the 
increased risk of CRC caused by Lachnospiraceae UCG010 id.11330 
(Miyamoto et al., 2019).

Inflammation is a significant factor in the development of 
CRC. Chronic inflammation can lead to abnormal cell proliferation 
and mutations, increasing the risk of developing cancer. Inflammation 
can also alter the intestinal microenvironment, promoting tumor 

growth and metastases (Shawki et  al., 2018; Dong et  al., 2019). 
Conditions such as ulcerative colitis (UC) and Crohn’s disease (CD) 
can cause chronic inflammation in the intestine, thereby increasing 
the risk of CRC. Patients with UC and CD have a higher incidence of 
CRC and require regular monitoring and screening. There is a 
complex interaction between inflammation and genetic factors (Goc 
et  al., 2021). Inflammation can alter gene expression, leading to 
abnormal cell proliferation and mutations, and certain genetic 
mutations can increase the risk of developing CRC. The interaction 
between genetic factors and inflammation plays a crucial role in the 
development of CRC (Goc et al., 2021). There is a close relationship 

FIGURE 4

leave-one-out plot. (A) Leave-one-out plot of genus Lachnospiraceae UCG010 id.11330 and CRC, (B) Leave-one-out plot of genus Prevotella9 
id.11183 and CRC; (C) Leave-one-out plot ofgenus Lachnospiraceae UCG008 id.11328 and CRC; (D) Leave-one-out plot of genusfamily Clostridiales 
vadin BB60 group id.11286 and CRC; (E) Leave-one-out plot of family Porphyromonadaceae id.943 and CRC; (F) Leave-one-out plot of genus 
Ruminococcaceae UCG010 id.11367 and CRC; (G) Leave-one-out plot of genus Sellimonas id.14369 and CRC; (H) Leave-one-out plot of genus 
Lachnospiraceae UCG010 id.11330 and IL-10.
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TABLE 1 The heterogeneity test of gut microbiota, inflammatory factors, and colorectal cancer in this study.

id.exposure Outcome Method Q Q_df Q_pval

family Clostridiales vadin BB60 group id.11286 CRC MR Egger 8.31 13 0.82

family Clostridiales vadin BB60 group id.11286 CRC IVW 10.41 14 0.73

family Porphyromonadaceae id.943 CRC MR Egger 6.85 7 0.44

family Porphyromonadaceae id.943 CRC IVW 7.17 8 0.52

genus Lachnospiraceae UCG008 id.11328 CRC MR Egger 7.36 9 0.60

genus Lachnospiraceae UCG008 id.11328 CRC IVW 9.20 10 0.51

genus Lachnospiraceae UCG010 id.11330 CRC MR Egger 7.86 8 0.45

genus Lachnospiraceae UCG010 id.11330 CRC IVW 9.85 9 0.36

genus Prevotella9 id.11183 CRC MR Egger 9.08 13 0.77

genus Prevotella9 id.11183 CRC IVW 9.49 14 0.80

genus Ruminococcaceae UCG010 id.11367 CRC MR Egger 2.65 4 0.62

genus Ruminococcaceae UCG010 id.11367 CRC IVW 2.65 5 0.75

genus Sellimonas id.14369 CRC MR Egger 5.86 7 0.56

genus Sellimonas id.14369 CRC IVW 7.26 8 0.51

genus Lachnospiraceae UCG010 id.11330 Interleukin-10 MR Egger 5.00 7 0.66

genus Lachnospiraceae UCG010 id.11330 Interleukin-10 IVW 5.18 8 0.74

Interleukin-10 CRC IVW 0.00 1 0.97

between inflammation and the immune system. Inflammation can 
activate the immune system, enhancing its ability to eliminate tumor 
cells. The expression and function of IL-10, an immune regulatory 
factor (Zegarra Ruiz et al., 2022) that has a significant impact on CRC 
development and treatment, have been studied extensively in CRC 
(Lian et al., 2019). Studies have shown that elevated levels of IL-10 in 
CRC tissues are closely associated with tumor staging, lymph node 
metastasis, and poor prognosis. Additionally, increased IL-10 
expression is also associated with increased invasiveness and 
metastatic potential of the tumors (Lian et al., 2019). In CRC, IL-10 
primarily affects tumor development by regulating immune and 
inflammatory responses. It inhibits the activation and functioning of 
the immune cells, thereby reducing tumor cell clearance by cytotoxic 
T cells and natural killer cells (Sethi et al., 2018). Furthermore, it 
suppresses inflammatory responses and cell apoptosis, thereby 
promoting tumor cell proliferation and survival. The application of 
IL-10 in CRC treatment is gaining great interest. Some studies have 

found that the inhibition of IL-10 expression or function enhances the 
killing effect exerted by the immune cells on the tumors, thereby 
improving treatment outcomes. Additionally, inhibiting IL-10 
expression or function can also reduce tumor invasiveness and 
metastasis, thereby improving patient prognosis (Cai and Zhang, 
2016; Rossowska et al., 2018; Huang et al., 2020).

The relationship between the gut microbiota and digestive tract 
cancer has been a topic of considerable interest. Increasing evidence 
suggests that the microbiota may play a significant role in the 
pathogenesis of digestive tract cancer, including influencing host 
immune responses, metabolite production, chronic inflammation, and 
intestinal mucosal barrier function (Zou et al., 2018; Fan et al., 2021; 
Lee et al., 2023). Factors such as inflammation and bacterial infection 
may cause a shift from the symbiotic state of the gut microbiota to a 
pro-carcinogenic configuration (Weinberg and Marshall, 2019). 
However, our study found a negative correlation between 
Lachnospiraceae UCG010 id.11330 and IL-10, suggesting that 

TABLE 2 The pleiotropy test of gut microbiota, inflammatory factors, and colorectal cancer in this study could not be conducted for some immune 
cells due to insufficient SNPs being included.

id.exposure id.outcome egger_intercept se pval

family Clostridiales vadin BB60 group id.11286 CRC 0.05 0.03 0.17

family Porphyromonadaceae id.943 CRC −0.04 0.06 0.59

genus Lachnospiraceae UCG008 id.11328 CRC 0.09 0.07 0.21

genus Lachnospiraceae UCG010 id.11330 CRC 0.06 0.04 0.20

genus Prevotella9 id.11183 CRC −0.02 0.04 0.53

genus Ruminococcaceae UCG010 id.11367 CRC 0.00 0.04 0.97

genus Sellimonas id.14369 CRC 0.09 0.08 0.28

genus Lachnospiraceae UCG010 id.11330 Interleukin-10 0.01 0.02 0.69

Interleukin-10 CRC NA NA NA
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Lachnospiraceae UCG010 id.11330 does not mediate colon cancer 
through IL-10. Recent literature has reported that the abundance of 
LachnospiraceaeUCG-009 is negatively associated with inflammatory 
factors such as interleukin-12P40, interferon, and DR5 with specific 
bacterial genera (Xu et al., 2022). In addition, recent literature has 
reported that Lachnospiraceae UCG-006 may modulate the immune 
system and gut microbiota through its anti-allergic and anti-
inflammatory effects, which also supports the possible anti-
inflammatory effects of Lachnospiraceae (Li et al., 2022).

In recent decades, researchers have actively explored the potential 
connection between the gut microbiota and digestive tract cancer, 
seeking to understand the role of the microbiota in the occurrence, 
development, and treatment of cancer. MR is a method used to assess 
the effects of therapeutic interventions and is commonly employed in 
clinical trials. The relationship between the gut microbiota and digestive 
may be utilized to evaluate the impact of specific microbial communities 
or microbial combinations on the development and treatment of cancer. 
Numerous similar studies have demonstrated the significant role of MR 
in research on the gut microbiota and digestive tract cancer (Ni et al., 
2022; Li et al., 2023; Long et al., 2023; Xie et al., 2023).

Conclusively, this study has several advantages over other 
similar studies: The use of Mendelian randomization analysis in this 
study effectively controlled for confounding factors, while leveraging 
a large-scale GWAS dataset enhanced the statistical power and 
generalizability of the findings. The exploration of the relationship 
between gut microbiota, inflammatory factors, and colorectal cancer 
not only sheds light on potential prevention and treatment strategies 
but also contributes to a deeper understanding of the underlying 
mechanisms. Furthermore, the identification of specific bacterial 
groups associated with colorectal cancer risk provides promising 
targets for future interventions and therapeutic approaches aimed at 
modulating the gut microbiota to mitigate CRC risk. However, it 
also has some limitations. Firstly, the results of this study can 
be applied only to specific populations and samples because the 
participants were predominantly of European descent. Additionally, 
potential variations in population characteristics and data collection 
methods exist. Despite efforts to gather data, the lack of 
comprehensive data hinders further statistical analysis to adjust for 
potential confounding factors, which is also a common challenge in 
Mendelian randomization studies. Secondly, gut microbes are 
diverse and complex, and their potential confounding factors may 
have some influence on causality. In the future, we  will further 
design prospective controlled experiments to investigate the 
mechanism of action between gut microbiota and CRC.

5 Conclusion

There is a causal relationship between the gut microbiota, IL-10 
and CRC. Regulation of the gut microbiota and anti-inflammatory 
ability may serve as a potential strategy for the prevention and 
treatment of CRC.
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Background: Numerous studies have cast light on the relationship between 
the gastric microbiota and gastric carcinogenesis. In this study, we conducted 
a bibliometric analysis of the relevant literature in the field of gastric cancer 
and the gastric microbiota and clarified its research status, hotspots, and 
development trends.

Materials and methods: Publications were retrieved from the Web of Science 
Core Collection on 18 July 2023. CiteSpace 6.2.R4, VOSviewer 1.6.19.0, and 
Biblioshiny were used for the co-occurrence and cooperation analyses of 
countries, institutions, authors, references, and keywords. A keyword cluster 
analysis and an emergence analysis were performed, and relevant knowledge 
maps were drawn.

Results: The number of published papers in this field totaled 215 and showed 
an increasing trend. The analysis of funding suggested that the input in this field 
is increasing steadily. China had the highest number of publications, while the 
United States had the highest betweenness centrality. Baylor College of Medicine 
published the most articles cumulatively. Both Ferreira RM and Cooker OO 
had the highest citation frequency. The journal Helicobacter showed the most 
interest in this field, while Gut provided a substantial research foundation. A total 
of 280 keywords were obtained using CiteSpace, which were primarily focused 
on the eradication and pathogenic mechanisms of Helicobacter pylori, as well 
as the application of the gastric microbiota in the evaluation and treatment of 
gastric cancer. The burst analysis suggested that in the future, research may 
focus on the application of gastric microorganisms, particularly Fusobacterium 
nucleatum, in the diagnosis and treatment of gastric cancer, along with their 
pathogenic mechanisms.

Conclusion: Current studies have been tracking the eradication of Helicobacter 
pylori and its pathogenic mechanisms, as well as changes in the gastric 
microbiota during gastric carcinogenesis. Future research may focus on the 
clinical application and pathogenesis of stomach microorganisms through 
bacteria such as Fusobacterium nucleatum.
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1 Introduction

Gastric cancer (GC) is the fifth most common cancer in the world 
and the fourth leading cause of cancer death (Sung et al., 2021). In the 
future, although the incidence rate of GC may show a downward 
trend, for some countries, incidence and mortality increases have been 
predicted in people below the age of 50 (Arnold et al., 2020; Qi et al., 
2023; Teng et al., 2023). Helicobacter pylori (H. pylori) is considered a 
major risk factor for GC and has been classified as a Class I carcinogen. 
The birth-cohort pattern revealed an epidemic of H. pylori in 
gastrointestinal disease (Sonnenberg, 2022). The sequential 
development model of GC suggests that H. pylori colonizes the gastric 
mucosa, inducing continuous chronic gastric inflammation, then 
causes cascade pathogenesis: atrophic gastritis (AG), in which 
H. pylori plays a role, and then intestinal metaplasia (IM), dysplasia, 
and finally GC (Correa, 1988, 1992). However, the decreasing 
prevalence of H. pylori has been histologically observed with the 
increasing severity of AG (Correa, 1992; Kuipers, 1998; Liu et al., 
2022), and some clinical studies have shown that H. pylori eradication 
in patients with advanced lesions does not eliminate the risk of 
carcinogenesis (Wong et al., 2004; Rugge et al., 2019), indicating that 
further progression of precancerous conditions may be independent 
of H. pylori colonization. With the prevalence of H. pylori infection 
decreasing (Li et  al., 2023), these facts draw attention to gastric 
microorganisms other than H. pylori.

The gastrointestinal microbiota is the largest and most complex 
microbial ecosystem in the human body, among which bacteria form 
major communities. However, given its highly acidic environment, 
which makes it difficult for general bacteria to colonize, the stomach 
was considered sterile until H. pylori was isolated from the gastric 
mucosa. With the development of molecular techniques, 128 
phylotypes of microorganisms have been identified through 
phylogenetic analysis from gastric endoscopy biopsy samples, most of 
which belong to Proteobacteria, Firmicutes, Bacteroidetes, 
Actinobacteria, and Fusobacteria, and 10 main genera have been 
classified (Bik et al., 2006; Liu et al., 2022). Multiple case–control 
studies based on gastric mucosal tissue biopsies have confirmed 
changes in bacterial diversity during the progression of intestinal-type 
GC. From non-atrophic gastritis (NAG) to IM and then to GC, the 
bacterial diversity steadily decreased (p = 0.004), and the gastric flora 
abundance changed continuously during this process (Aviles-Jimenez 
et al., 2014; Liu et al., 2022). Some studies have put forward different 
views: compared with functional dyspepsia, the richness and diversity 
of bacterial flora in GC tissue increased, but their uniformity did not 
increase. In addition, the serological status of H. pylori has a significant 
impact on the composition and diversity of the gastric microbiome 
(Castano-Rodriguez et al., 2017). Evidence from germ-free insulin–
gastrin (INS-GAS) and human gastric microbiota transplant mouse 
models further supports the potential causality of the microbiota in 
gastric carcinogenesis (Lofgren et al., 2011; He C. et al., 2022; Kwon 
et al., 2022). Accordingly, some researchers have used combinations 
of genera of gastric flora as microbial markers for the non-invasive 
diagnosis of GC (Chen et al., 2023).

Bibliometrics combines mathematics, statistics, and literature to 
explore the structural characteristics and hot trends of disciplines 
through the quantitative analysis of vast amounts of publications and 
evaluates and predicts the results. It has been widely applied in various 
fields of medicine (Dracos and Cognetti, 1995; Chen et  al., 2012; 

Kokol et al., 2021). Compared to traditional systematic reviews, the 
application of bibliometrics in a research field can help new researchers 
or researchers in other fields to grasp the development process and 
status of the field based on cluster labels or topics, rather than reading 
hundreds of unfamiliar studies to obtain limited information. It might 
also be limited to reading reviews because they often focus on only 
one research theme (Donthu et al., 2021). For small data samples, 
synthetic knowledge synthesis can also be  applied to extract, 
synthesize, and multidimensionally structure the corpus of scholarship 
(Kokol et al., 2022). At present, scholars are increasingly reporting on 
GC and the gastric microbiota. However, to the best of our knowledge, 
there is currently no intuitive visual analysis that explores the hotspots 
and trends in this field. Therefore, we adopted bibliometric methods 
to conduct a systematic review of this field. By performing quantitative 
and qualitative analyses of the relevant literature and utilizing 
visualization tools, the research status, hotspots, and future trends in 
this field were analyzed.

2 Materials and methods

2.1 Data source

Data were acquired from the Web of Science Core Collection 
(WoSCC) on 18 July 2023. The query was ((TS = (“gastric cancer*”) 
OR TS = (“gastric neoplasm*”) OR TS = (“gastric malignancy”) OR 
TS = (“gastric adenocarcinoma”) OR TS = (“gastric carcinoma”) OR 
TS = (“stomach cancer*”) OR TS = (“stomach neoplasm*”) OR 
TS = (“stomach malignancy”) OR TS = (“stomach adenocarcinoma”) 
OR TS = (“stomach carcinoma”)) AND (TS = (“gastric microbiota*”) 
OR TS = (“gastric microbiome*”) OR TS = (“gastric microflora”) OR 
TS = (“gastric flora”) OR TS = (“gastric bacteria”) OR TS = (“gastric 
microbial community”) OR TS = (“gastric bacterial community”) OR 
TS = (“stomach microbiota*”) OR TS = (“stomach microbiome*”) OR 
TS = (“stomach microflora”) OR TS = (“stomach flora”) OR 
TS = (“stomach bacteria”) OR TS = (“stomach microbial community”) 
OR TS = (“stomach bacterial community”))). The language was limited 
to English. Two evaluators screened the literature independently by 
reading the titles and keywords, and differences were settled through 
discussion. A third researcher would participate in further discussion, 
and a consensus would be reached if the dispute was still inconclusive.

2.2 Data creation and statistical analysis

2.2.1 Data collection and transformation
To export the retrieved documents, “full record and cited 

references” was selected. Data were converted to “txt” or “csv” format, 
named “download_*.txt,” and then imported into CiteSpace 6.2.R4 
and VOSviewer 1.6.19.0 for analysis (Chen, 2006; van Eck and 
Waltman, 2010). These bibliometric software programs are the most 
popular and have powerful features. Biblioshiny is a bibliometric 
program powered by Bibliometrix in the R language. After importing 
bibliographic records, it can quickly generate visual graphics based on 
the data, making it a convenient and comprehensive analysis tool 
(Aria and Cuccurullo, 2017). By using different software, we  can 
achieve complementary functions and verify the analysis results 
against each other (Cobo et al., 2011; Moral-Munoz et al., 2020).
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2.2.2 Data processing
Using Microsoft Excel, the publication volumes of the literature 

and the funding information were analyzed. CiteSpace 6.2.R4 was 
applied to deduplicate the obtained documents, retaining only articles 
and reviews, and then conduct visual analysis. The time span was 
selected from 2013 to 2023, and the time slice was selected as 1 year. 
As we  described later, we  adjusted the k-value appropriately to 
perform co-occurrence analyses on countries, institutions, and 
authors and co-citation analyses on journals. Moreover, keywords 
were used for co-occurrence, clustering, and emergence analyses. 
Different nodes represent different elements. The color of the ring 
corresponds to the time when the element appears, the width of the 
ring represents the frequency of the element at that time, and the size 
of the whole node reflects the total frequency of the element. The 
connecting lines between nodes represent co-occurrence, cooperation, 
or co-citation. The color of the links represents the time when the 
association first appeared, and its thickness represents the strength of 
the association. Other parameters were default.

In addition, VOSviewer 1.6.19.0 and Pajek were employed to 
analyze keyword clusters. Biblioshiny was used to carry out 
supplementary analyses of the cooperation network, important citing 
documents, cited source journals, as well as the frequency of keywords 
and research topic evolution. It is worth noting that in Biblioshiny, 
we  used Keywords Plus for topic analysis due to missing Author 
Keywords in some literature. Similarly, we detected Author Keywords 
and Keywords Plus in CiteSpace and VOSviewer. Keywords Plus is as 
effective as Author Keywords in terms of bibliometric analysis 
investigating the knowledge structure but is less comprehensive in 
representing an article’s content (Zhang et  al., 2016). Therefore, 
we combined the analysis results of different software programs and 
read the relevant literature to better describe the topics in the field.

2.2.3 Relative statistical indicators and 
parameters

2.2.3.1 Parameters in CiteSpace
The g-index is a parameter that can better measure the influence of 

an author. In CiteSpace, it belongs to the selection criteria and is calculated 
as g2 ≤ k

i g
ic

≤
∑ , k∈Z. Therefore, by adjusting the k-value, the number of 

nodes can be changed. In order to include as many nodes as possible and 
exclude less important nodes to ensure the reliability of the analysis, 
we adopted different k-value settings. The k-value was set to 25 in the 
co-occurrence analysis of countries, institutions, and keywords; 15 in the 
authors’ co-occurrence analysis and the journal’s co-citation analyses.

Betweenness centrality is one of the main metrics in network 
analysis. It refers to a node’s ability to carry information between 
unconnected groups of nodes, wherein each node represents a 
research constituent (Donthu et al., 2021). If a node has a centrality 
greater than 0.1, it is a critical node, as shown by the purple outer ring. 
The higher the centrality, the more important the bridge function of 
the node in the whole network.

The emergence detection analysis can reflect the development of 
an element. For the keywords burst detection, we set γ to 0.45 and the 
minimum duration to 1.

2.2.3.2 Parameters in Biblioshiny
Callon centrality and density are two parameters that determine 

the position of bubbles. Centrality is the degree of correlation among 

different topics. The higher the number of relations a node has with 
others in the thematic network, the higher the centrality and 
importance are. Density measures the cohesiveness among a node, 
which represents the theme’s development and delineates its capability 
to develop and sustain itself (Esfahani et al., 2019; Singh et al., 2023). 
In the thematic map, density is represented on the vertical axis, while 
centrality takes the horizontal axis, dividing the map into four 
quadrants. The upper right quadrant (Q1) contains motor themes, 
which are important to the research field and have the potential to 
develop. The upper left quadrant (Q2) contains highly developed and 
isolated themes, which have abundant internal bonds but less 
contribution to the development of the field. It means that these 
themes are potential themes to establish contacts with themes in Q1. 
The lower left quadrant (Q3) contains emerging or declining themes, 
which have weak development and are marginal. The lower right 
quadrant (Q4) contains basic and transversal themes, which have a 
great value to be discussed in the future.

3 Results

3.1 Research situation analysis

3.1.1 Analysis of publication volume
Analysis of the number of publications is helpful for initially 

determining whether a research field has received continued attention 
from researchers and whether it is on the rise. Based on the search 
results, there were a total of 215 documents, of which 204 were articles 
and reviews. The statistical diagram of the number of annual 
publications and annual total publications showed that research in the 
field of gastric microbiota and gastric cancer first began in 1993. Since 
2013, the annual number of publications in this field has shown a 
significant upward trend. The rapid growth rate from 2018 to 2022 
indicated that research in this field has gradually gained more 
attention in recent years. In 2023, the annual number of publications 
decreased, which may be due to the fact that the search only ended on 
18 July of that year (Figure 1A). The equation fitted according to the 
annual cumulative number of publications is y  = 1.348e0 2847. x , 
R2 = 0.9818, which has good fitting properties and conforms to Price’s 
curve. Overall, the total number of publications and the annual 
publications in this field have grown exponentially.

3.1.2 Analysis of funding
Analysis of the funding information for these publications shows 

that the cumulative number of funded publications has continued to 
increase since Web of Science began collecting funding information 
in 2008. It can be seen that the cumulative funding ratio has also 
increased steadily. From the analysis of annual funding, we can see 
that the annual funding rate for publications in this field has been 
rising steadily since 2013. This shows the attention and investment of 
researchers, indicating that this field has good development prospects 
(Figure  1A). According to our analysis, the top eight productive 
countries were selected for funding analysis. The stacked area chart of 
annually funded publications shows that in the early years, countries 
such as the United States and Korea had more funds invested in this 
field, while since 2021, China has had the largest proportion of funds 
invested in the field and the greatest output, indicating that China 
attaches more importance to research in the fields of gastric microbiota 
and gastric cancer (Figure 1B).
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3.2 Researchers’ analysis

3.2.1 Country analysis
The analysis of countries with relevant research from 2013 to 2023 

showed that a total of 39 countries followed up on this field. Among 
them, China and the United States were the most productive countries 
(Table  1). In the co-occurrence graph, it can be  seen that the 
United States started its research in this field earlier, and China has 
had an increasing number of prominent publications in recent years 
(Figure 2A). The betweenness centrality of the United States was the 
highest, reaching 0.43, which means the United States has a high 
influence in this field (Table 1). By analyzing the national cooperation 
network, it can be seen that China and the United States occupy a 
dominant position in the cooperation network. However, in general, 

the links between countries are thin and their colors are relatively 
dark, showing that the intensity of cooperation between countries in 
this field is low, and there has been poor cooperation in recent years 
(Figures 2A,B).

3.2.2 Institution analysis
An analysis of institutions showed that there was no prominent 

institution with a high publication volume. Among all the institutions, 
Baylor College of Medicine has published the most papers and has the 
highest betweenness centrality at 0.1. Except for Baylor College of 
Medicine, there is no institution with a centrality over 0.1, which 
means the bridge effect of each institution and the cooperation 
network are weak (Table  2). This might be  due to the number of 
institutions being too high, while the difference in co-occurrence 

FIGURE 1

The analysis of publication volume and funding information in the field of gastric microbiota and gastric cancer from 1993 to 2023. (A) Total 
cumulative publication volume and cumulative funding situation productions. (B) Annual publication volume and annual funding situation.
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frequency is small. The institution cooperation network analysis 
showed that Vanderbilt University, the US Department of Medicine, 
Baylor College of Medicine, Universidade do Porto, etc. have 
cooperated to a certain extent (Figures 2C,D).

3.2.3 Author analysis
Through statistics on the co-occurrence of the first author, it was 

found that the outputs of each single researcher in the field of gastric 
cancer and the gastric microbiota were even and relatively small, and 
the individual researchers exhibited a lack of centrality (Figure 2E). A 
major research group included Fox James G, Wilson Keith T, Feng 
Yan, Peek Richard M, etc. Researchers such as Figueiredo C and 
Ferreira RM, Kim J and Choi IJ, Dong QJ, and Wang LL also occupied 
a dominant position (Figures  2E,F). There was relatively less 
cooperation between authors. This result suggests that this field is in 
its infancy and has broad prospects. Co-citation network analysis of 
authors can reveal those who are under the spotlight and have made 
original contributions to a certain field. The CiteSpace analysis results 
show that Ferreira RM, Bik EM, and Coker OO had higher citation 

TABLE 1 The count of publications and the betweenness centrality of the 
top eight countries.

Rank Count Country Rank Centrality Country

1 72 People’s 

Republic of 

China

1 0.43 United 

States

2 41 United 

States

2 0.29 Australia

3 15 Germany 3 0.23 Germany

4 14 Italy 4 0.15 Italy

5 13 Japan 5 0.15 United 

Kingdom

6 13 South Korea 6 0.14 Japan

7 11 Australia 7 0.11 Sweden

8 8 United 

Kingdom

8 0.1 Ireland

9 8 Portugal 9 0.06 Greece

FIGURE 2

The co-occurrence and cooperation network of researchers. (A,B) Countries. (C,D) Institutions. (E,F) Authors. In panels (A,C,E), each node was 
displayed as a growth ring. Nodes with betweenness centrality over 0.1 are shown by the purple outer ring.
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frequency, while Maldonado-Contreras A and Lofgren JL had high 
betweenness centrality (Table 3).

3.3 Analysis of journals and documents

3.3.1 Document analysis
By analyzing citing documents, the latest research content and the 

research frontiers can be quickly found. LCS (local citation score) and 
GCS (global citation score) are two indicators of citing documents. 
After analyzing the publications retrieved from the WoSCC, it was 
found that the nodes representing studies by Ferreira RM, Eun CS, 
Aviles-Jimenez F, Lofgren JL, and Dicksved J were larger and had more 
pointed arrows, and these articles had the top five LCSs and GCSs, 
indicating that they were recognized by peers and researchers from 
other fields, which reflected the focus of this field to a certain extent 
(Figure 3A; Table 4).

Document co-citation analysis refers to analyzing the references 
of retrieved documents to find documents cited by different 
documents at the same time, which helps to identify classic documents 
and reveal the knowledge basis of the research field. A co-citation 
analysis of references showed that documents published by Cocker 

OO and Ferreira RM in Gut in 2018 had the highest citation frequency, 
while an article by Lertpiriyapong K in Gut in 2014 had the highest 
betweenness centrality (Table 5).

3.3.2 Journal analysis
Relevant journal analysis reflects which journals are more 

interested in this field. Through our retrieval, the documents obtained 
were published in 109 journals and mainly distributed in the categories 
of Gastroenterology, Hepatology, Microbiology, and Oncology. The 
journal Helicobacter included the most articles in this field, reaching 
16 (Figure 3B). The journal co-citation network shows that articles 
published in Gut, Gastroenterology, and Helicobacter had higher 
citation frequencies in this research field, and Scientific Reports had an 
important role with a centrality over 0.1 (Figure 3C). The analysis of 
the most locally cited sources showed the citation frequency of the 
source journals from which the references in our retrieval documents 
came. Gut, Gastroenterology, and Helicobacter had the highest citation 
frequency, which means they provided most of the research 
foundation (Figure 3D).

3.4 Keyword and research hotspot analysis

3.4.1 Keyword frequency and co-occurrence 
analysis

Biblioshiny was used to conduct word frequency analysis of the 
top 50 keywords from 2013 to 2023. It can be seen that “helicobacter-
pylori” appeared the most frequently. Other keywords with the highest 
word frequency included “infection”, “cancer”, “risk”, “gut microbiota”, 
“intestinal metaplasia”, “colonization”, “eradication”, “inflammation”, 
and so on (Figures 4A,B).

We also chose CiteSpace to analyze keywords from 2013 to 2023, 
with a total of 280 nodes and 1,557 links. Among the 280 keywords, 
the keywords with the highest frequency included “Helicobacter 
pylori”, “gastric cancer”, “infection”, etc., and the words with the highest 
betweenness centrality included “Helicobacter pylori infection”, “gut 
microbiota”, “atrophic gastritis”, etc. (Table 6). Our results show that in 
addition to search terms such as “gastric cancer” and “gastric 
microbiota”, there were keywords reflecting the precancerous 
conditions of GC, such as “atrophic gastritis”, “chronic gastritis”, 
“intestinal metaplasia”; keywords reflecting the eradication treatment 

TABLE 2 The count of publications and the betweenness centrality of the 
top 12 institutions.

Count Centrality Institution

1 9 0.1 Baylor College of Medicine

2 8 0.03 Vanderbilt University

3 7 0 Nanchang University

4 6 0 US Department of Veterans Affairs

5 6 0 Zhejiang University

6 6 0.01 Universidade do Porto

7 5 0 Chinese Academy of Sciences

8 5 0 Hanyang University

9 5 0 University of New South Wales Sydney

10 5 0 Veterans’ Health Administration (VHA)

11 5 0.02 Otto von Guericke University

12 5 0.03 Massachusetts Institute of Technology (MIT)

TABLE 3 The cited frequency and betweenness centrality of co-cited authors.

Count Year Name Centrality Year Name

1 97 2018 Ferreira RM 1 0.16 2013 Maldonado-Contreras A

2 92 2013 Bik EM 2 0.15 2013 Lofgren JL

3 91 2018 Coker OO 3 0.12 2014 Lertpiriyapong K

4 83 2013 Correa P 4 0.12 2016 Jo HJ

5 81 2015 Aviles-Jimenez F 5 0.11 2013 Correa P

6 80 2015 Eun CS 6 0.09 2017 Li TH

7 70 2013 Dicksved J 7 0.09 2014 Malfertheiner P

8 67 2013 Lofgren JL 8 0.08 2013 Bik EM

9 66 2014 Lertpiriyapong K 9 0.08 2013 Dicksved J

10 58 2016 Yang I 10 0.08 2014 El-Omar EM
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of H. pylori, such as “Helicobacter pylori”, “eradication”, “proton pump 
inhibitors”, “antibiotics”, “clarithromycin”; keywords related to gastric 
microbiota research, such as “gut microbiota”, “colonization”, 
“Fusobacterium nucleatum”, “Bifidobacterium”, “mucosa associated 
microbiota”, “gastric non-Helicobacter pylori helicobacter”; keywords 
reflecting research technology, such as “16 s rRNA sequencing”, “next-
generation sequencing”; and keywords reflecting pathogenic 
mechanisms, such as “inflammation”, “regulatory t cells”, “immune 
response”, “n nitroso compounds”, “DNA methylation”, “dendritic 
cells”, “kappa b activation”, “cdk12”, “CagA”, “e cadherin”, “ecl cell”, etc. 
(Supplementary Table 1).

3.4.2 Keywords cluster analysis
Cluster analysis can be used to correlate keywords that appear at 

the same time in documents and cluster highly relevant words into 

categories so as to mine hidden information. Modularity Q (Q, value 
interval [0, 1]) and Weighted Mean Silhouette S (S, value interval [−1, 
1]) are two important parameters of the clustering map. The Q-value 
can evaluate the quality of the clustering network. Q > 0.3 indicates 
that the network structure is persuasive. The S-value can measure the 
uniformity of cluster members. S > 0.5 indicates that the clustering 
results are reasonable.

We selected the log-likelihood ratio (LLR) algorithm to cluster 
280 keywords from 2013 to 2023. The Q-value was 0.3971, and the 
S-value was 0.7278, indicating that the clustering results were 
informative and had reference significance. A total of 11 meaningful 
clusters were formed (Table 7). The smaller the cluster number, the 
more keywords were included. The keywords of each cluster partially 
overlap, which indicates that there is a correlation between the 
clusters. Through the artificial division of clusters, it can be seen that 

FIGURE 3

The documents and journal analysis. (A) Historiograph of citing documents. (B) Most relevant sources reflect the journal distribution of retrieval 
documents. (C) Co-citation network of reference journals. (D) Most locally cited sources show the source journal of references in the retrieval 
documents.

TABLE 4 The citing documents with the top five LCS and GCS.

Paper Year LCS Paper Year GCS

1 Ferreira RM, 2018, Gut 2018 96 1 Ferreira RM, 2018, Gut 2018 338

DOI: 10.1136/gutjnl-2017-314205 DOI: 10.1136/gutjnl-2017-314205

2 Eun CS, 2014, Helicobacter 2014 82 2 Lofgren JL, 2011, Gastroenterology 2011 238

DOI: 10.1111/hel.12145 DOI: 10.1053/j.gastro.2010.09.048

3 Aviles-Jimenez F, 2014, Sci Rep-UK 2014 81 3 Dicksved J, 2009, J Med Microbiol 2009 214

DOI: 10.1038/srep04202 DOI: 10.1099/jmm.0.007302-0

4 Dicksved J, 2009, J Med Microbiol 2009 70 4 Aviles-Jimenez F, 2014, Sci Rep-UK 2014 205

DOI: 10.1099/jmm.0.007302-0 DOI: 10.1038/srep04202

5 Lofgren JL, 2011, Gastroenterology 2011 68 5 Eun CS, 2014, Helicobacter 2014 180

DOI: 10.1053/j.gastro.2010.09.048 DOI: 10.1111/hel.12145

LCS, local citation score; GCS, global citation score.
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in the past 10 years, researchers in this field have mainly specialized in 
the mechanisms by which the gastric microbiota causes GC, including 
immunity (cluster #0), metabolism (clusters #2, #3), environmental 
factors (cluster #6), tumor microenvironment (cluster #7), and paying 
attention to the types of bacterial flora (clusters #1, #8) and research 
methods (clusters #4, #9). In addition, H. pylori eradication treatment 
(cluster #5, #10) has been one direction of research. Furthermore, 
H. pylori infection and its eradication treatment are closely related to 
changes in gastric flora richness and the occurrence of GC. Overall, 
these clusters are related to each other. In terms of research progress, 
the timeline map can reflect the time span of each cluster and the 
correlation between different clusters, reflecting the evolution of 
research. This showed that clusters #0, #1, #4, #6, and #8 already had 
important keywords in 2013. Among them, the keywords in clusters 
#0 and #1 had high frequency and wide relationships with other 
keywords. Cluster #7 had its first important keyword, “adverse 
prognosis”, in 2018, which indicates that these fields are just beginning 
to develop and need more complete and thorough research 
(Figure 4D).

VOSviewer and Pajek were also used to generate clusters by 
analyzing keywords that appeared over 3 times. A total of 128 
keywords were displayed, and 10 clusters were obtained (Figure 4C). 
Each color represents a thematic cluster with different numbers of 
keywords. The bigger the node, the greater the frequency of the 

keyword. Links between nodes signal the relationship between topics. 
The thicker the link, the greater the occurrence of co-occurrence 
between keywords. The red cluster contained keywords reflecting 
H. pylori infection in the process of gastric carcinogenesis and had 
tight links with other clusters through keywords such as “Helicobacter 
pylori”, “intestinal metaplasia”, and “expression.” The green cluster 
mainly focused on the diagnosis and treatment of patients with 
precancerous status but had few links with other clusters. The dark 
blue cluster reflected the treatment of H. pylori infection. The yellow 
cluster included keywords with respect to identifying different 
members of the gastric microbiota. The violet cluster consisted of 
keywords reflecting the pathogenic mechanism of H. pylori. The light 
blue cluster contained keywords for factors that belong to gastric 
microbiota members or influence their components. The orange 
cluster reflected the in vitro research techniques for H. pylori infection. 
Other clusters consisted of keywords reflecting research regarding 
other microbiota associated with the gastric microbiota. Among all 
the keywords, except for “gastric cancer” and “gastric microbiota”, 
other keywords making associations with other clusters were 
“Helicobacter pylori”, “infection”, “risk”, “intestinal metaplasia”, 
“inflammation”, “colonization”, and “eradication”, which reflected that 
the eradication of H. pylori and its pathogenic mechanisms got 
noticed. In addition, keywords such as “proton pump inhibitor”, 
“Fusobacterium nucleatum”, “autoimmune gastritis”, “atrophic 

TABLE 5 The cited frequency and betweenness centrality of co-cited publications.

Count Author and DOI Centrality Author and DOI

1 95 Ferreira RM, 2018, Gut 1 0.33 Lertpiriyapong K, 2014, Gut

DOI: 10.1136/gutjnl-2017-314205 DOI: 10.1136/gutjnl-2013-305178

2 90 Coker OO, 2018, Gut 2 0.18 Coker OO, 2018, Gut

DOI: 10.1136/gutjnl-2017-314281 DOI: 10.1136/gutjnl-2017-314281

3 50 Liu XS, 2019, Ebiomedicine 3 0.15 Lofgren JL, 2011, Gastroenterology

DOI: 10.1016/j.ebiom.2018.12.034 DOI: 10.1053/j.gastro.2010.09.048

4 42 Li TH, 2017, Sci Rep-UK 4 0.14 Eun CS, 2014, Helicobacter

DOI: 10.1038/srep44935 DOI: 10.1111/hel.12145

5 38 Hsieh YY, 2018, Sci Rep-UK 5 0.14 Li TH, 2017, Sci Rep-UK

DOI: 10.1038/s41598-017-18596-0 DOI: 10.1038/srep44935

6 38 Castano-Rodriguez N, 2017, Sci Rep-UK 6 0.12 Yang I, 2016, Sci Rep-UK

DOI: 10.1038/s41598-017-16289-2 DOI: 10.1038/srep18594

7 35 Yang I, 2016, Sci Rep-UK 7 0.11 Maldonado-Contreras A, 2011, ISME J

DOI: 10.1038/srep18594 DOI: 10.1038/ismej.2010.149

8 35 Aviles-Jimenez F, 2014, Sci Rep-UK 8 0.11 Wang LL, 2016, Eur J Gastroen Hepat

DOI: 10.1038/srep04202 DOI: 10.1097/MEG.0000000000000542

9 32 Lertpiriyapong K, 2014, Gut 9 0.11 Ferreira RM, 2018, Gut

DOI: 10.1136/gutjnl-2013-305178 DOI: 10.1136/gutjnl-2017-314205

10 31 Eun CS, 2014, Helicobacter 10 0.1 Yu GQ, 2017, Front Cell Infect MI

DOI: 10.1111/hel.12145 DOI: 10.3389/fcimb.2017.00302

11 31 Yu GQ, 2017, Front Cell Infect MI 11 0.09 Aviles-Jimenez F, 2014, Sci Rep-UK

DOI: 10.3389/fcimb.2017.00302 DOI: 10.1038/srep04202

12 31 Schulz C, 2018, Gut 12 0.09 Liu XS, 2019, Ebiomedicine

DOI: 10.1136/gutjnl-2016-312904 DOI: 10.1016/j.ebiom.2018.12.034

108

https://doi.org/10.3389/fmicb.2024.1341012
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Ke et al. 10.3389/fmicb.2024.1341012

Frontiers in Microbiology 09 frontiersin.org

gastritis”, “mucosal microbiota”, and “regulatory T cells” were closely 
related to those important keywords, which may represent new 
research directions.

3.4.3 Research hotspot evolution
Keywords can reflect the core topics of research to some degree, 

helping to quickly elucidate the hotspots and progress in the research 
field. CiteSpace was used to undertake a burst analysis of keywords in 
the literature in this field from 2013 To 2023. A light blue line indicates 
that the keyword has not yet appeared, the dark blue line represents 
that the keyword has begun to appear, and the red line represents that 
the keyword has emerged (Table 8). Biblioshiny was applied to analyze 
the thematic evolution and trend topics. According to the distribution 
of publications per year, a Sankey diagram was drawn using the years 
2013 and 2017 as the cutting points, and the thematic maps in each 
time slice were also exported (Figures 5A–D). In the thematic maps, 
each bubble represents an emerging topic that moves toward 

mainstream themes. The names of bubbles are keywords with the 
highest occurrence in the clusters. The bubble size is proportional to 
the word occurrences, and the position is determined by its centrality 
and density. in the Sankey diagram, each block represents a keyword, 
and its width represents its frequency. The width of links between 
blocks represents the strength of the association. By detecting the 
frequency of keywords plus in a certain period, a trend topic scatter 
diagram was drawn (Figure 5E). The horizontal axis displays the time 
when high-frequency keywords appear, and the vertical axis displays 
the first three topics for each year in decreasing order of frequency. 
Each bubble on the graph represents a topic. The reference year for 
each topic is identified using the median of the distribution of 
occurrence over the time period considered, while the bar indicates 
the first and third quartiles of the occurrence distribution.

In short, these knowledge mappings lead to the same conclusion. 
Early research focused on H. pylori infection and eradication as well 
as GC progression, and the research content was relatively simple, 

FIGURE 4

Keywords and cluster analysis. (A) Word cloud map. (B) Tree map of keyword frequency. (C) Cluster network of keywords produced by VOSviewer and 
Pajek. (D) Timeline cluster map of keywords.
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TABLE 7 Keywords co-occurrence network clustering table.

Cluster ID Size Silhouette
Mean 
(year)

LLR

#0 56 0.61 2017 T cells (5.41, 0.05); gastrointestinal microbiota (5.41, 0.05); Barrett’s esophagus (5.41, 0.05); 16 s rRNA 

gene (4.23, 0.05); stomach cancer (4.17, 0.05)T cells

#1 36 0.59 2016 Stomach microbiota (16.2, 1.0E-4); bile acids (8.07, 0.005); bacterial microbiota (5.96, 0.05); accuracy 

rate (4.03, 0.05); identification (4.03, 0.05)Stomach microbiota

#2 33 0.707 2018 Metabolism (8.89, 0.005); disease (7.09, 0.01); epidemiology (5.3, 0.05); cytokines (5.3, 0.05); peptic 

ulcers (4.44, 0.05)Metabolism

#3 28 0.708 2018 Metabolomics (11.95, 0.001); pathogenesis (5.95, 0.05); distal gastric cancer (5.95, 0.05); association 

analysis (5.95, 0.05); thioredoxin (trxA; 5.95, 0.05)Metabolomics

#4 27 0.795 2016 16 s rRNA sequencing (12.9, 0.001); stomach (8.75, 0.005); s (8.59, 0.005); intestinal microbiota (8.59, 

0.005); children (8.59, 0.005)16 s rRNA sequencing

#5 25 0.782 2017 Antibiotic resistance (10.91, 0.001); chronic gastritis (9.94, 0.005); carcinoma (7.22, 0.01); chronic 

intestinal inflammation (5.44, 0.05); alternative treatments (5.44, 0.05)Antibiotic resistance

#6 19 0.9 2014 Dietary patterns (5.03, 0.05); 16 s ribosomal RNA (5.03, 0.05); prevention (5.03, 0.05); altered Schaedler 

flora (5.03, 0.05); migrating motor complex (5.03, 0.05)Dietary patterns

#7 17 0.843 2021 Tumor microenvironment (10.55, 0.005); microbiota (microorganism; 7.95, 0.005); treatment (7.95, 

0.005); host–microbe interactions (7.95, 0.005); TREGS (regulatory T cells; 7.95, 0.005)Tumor 

microenvironment

#8 16 0.893 2018 Gastric microbiota (11.05, 0.001); supplementation (5.37, 0.05); gastric non-Helicobacter pylori 

helicobacter (5.37, 0.05); Bifidobacterium (5.37, 0.05); prognosis (5.37, 0.05)Gastric microbiota

#9 14 0.754 2020 16 s rDNA (10.03, 0.005); animal models (5, 0.05); dysplasia (5, 0.05); candida albicans (5, 0.05); 

Epstein-Barr virus (5, 0.05)16 s rDNA

#10 6 0.963 2017 Containing triple therapy (9.17, 0.005); Saccharomyces boulardii supplementation (9.17, 0.005); 

containing quadruple therapy (9.17, 0.005); proton pump inhibitor (9.17, 0.005); low dose aspirin (9.17, 

0.005)
Containing triple 

therapy

LLR, log-likelihood ratio.

TABLE 6 The frequency and betweenness centrality of the top 15 keywords.

Count Year Keyword Centrality Year Keyword

1 118 2013 Helicobacter pylori 1 0.18 2013 Helicobacter pylori infection

2 99 2013 Gastric cancer 2 0.17 2013 Gut microbiota

3 49 2013 Infection 3 0.15 2013 Atrophic gastritis

4 45 2014 Cancer 4 0.14 2014 Cancer

5 38 2013 Gastric microbiota 5 0.14 2013 Gastric microbiota

6 33 2013 Gut microbiota 6 0.13 2014 Association

7 33 2013 Helicobacter pylori infection 7 0.13 2013 Bacterial microbiota

8 31 2018 Risk 8 0.11 2013 Colonization

9 29 2019 Intestinal metaplasia 9 0.11 2013 Gastric cancer

10 28 2013 Colonization 10 0.11 2013 Infection

11 27 2013 Stomach 11 0.09 2019 Intestinal metaplasia

12 23 2014 Eradication 12 0.08 2013 Inflammation

13 22 2013 Atrophic gastritis 13 0.07 2014 Carcinoma

14 20 2013 Bacterial microbiota 14 0.07 2014 Eradication

15 18 2014 Gastric microbiome 15 0.06 2015 Digestive tract microbiota
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TABLE 8 Emergent analysis of the top 64 keywords with the strongest citation bursts.

Keywords Year Strength Begin End 2013–2023

Bacterial microbiota 2013 4.47 2013 2017 ▃▃▃▃▃▂▂▂▂▂▂

Disease 2013 1.53 2013 2014 ▃▃▂▂▂▂▂▂▂▂▂

Gastric acid secretion 2013 1.49 2013 2016 ▃▃▃▃▂▂▂▂▂▂▂

Atrophic gastritis 2013 1.4 2013 2013 ▃▂▂▂▂▂▂▂▂▂▂

Endoscopic resection 2013 1.28 2013 2017 ▃▃▃▃▃▂▂▂▂▂▂

Colitis 2013 1.2 2013 2014 ▃▃▂▂▂▂▂▂▂▂▂

Flora 2014 2.12 2014 2016 ▂▃▃▃▂▂▂▂▂▂▂

Cells 2014 2.08 2014 2017 ▂▃▃▃▃▂▂▂▂▂▂

Diversity 2014 1.98 2014 2018 ▂▃▃▃▃▃▂▂▂▂▂

Mouse model 2014 1.48 2014 2014 ▂▃▂▂▂▂▂▂▂▂▂

Peptic ulcer 2014 1.27 2014 2014 ▂▃▂▂▂▂▂▂▂▂▂

Molecular analysis 2014 1.27 2014 2014 ▂▃▂▂▂▂▂▂▂▂▂

Dendritic cells 2014 1.16 2014 2015 ▂▃▃▂▂▂▂▂▂▂▂

Immune response 2014 1.14 2014 2014 ▂▃▂▂▂▂▂▂▂▂▂

Epithelial cells 2014 1.14 2014 2014 ▂▃▂▂▂▂▂▂▂▂▂

Helicobacter pylori infection 2013 1.13 2014 2015 ▂▃▃▂▂▂▂▂▂▂▂

Digestive tract microbiota 2015 1.57 2015 2017 ▂▂▃▃▃▂▂▂▂▂▂

H. pylori 2015 1.37 2015 2018 ▂▂▃▃▃▃▂▂▂▂▂

Stomach microbiota 2016 2.87 2016 2017 ▂▂▂▃▃▂▂▂▂▂▂

Colorectal cancer 2016 1.63 2016 2018 ▂▂▂▃▃▃▂▂▂▂▂

Mongolian gerbils 2016 1.5 2016 2019 ▂▂▂▃▃▃▃▂▂▂▂

Identification 2016 1.29 2016 2016 ▂▂▂▃▂▂▂▂▂▂▂

Mice 2016 1.29 2016 2016 ▂▂▂▃▂▂▂▂▂▂▂

Cancer risk 2017 1.32 2017 2020 ▂▂▂▂▃▃▃▃▂▂▂

China 2017 1.27 2017 2019 ▂▂▂▂▃▃▃▂▂▂▂

Pathology 2017 1.25 2017 2017 ▂▂▂▂▃▂▂▂▂▂▂

H. pylori 2017 1.25 2017 2017 ▂▂▂▂▃▂▂▂▂▂▂

Kegg modules 2017 1.25 2017 2017 ▂▂▂▂▃▂▂▂▂▂▂

Gastric cancer risk 2017 1.25 2017 2017 ▂▂▂▂▃▂▂▂▂▂▂

Proton pump inhibitors 2017 1.21 2017 2020 ▂▂▂▂▃▃▃▃▂▂▂

Intestinal microbiota 2015 1.13 2017 2017 ▂▂▂▂▃▂▂▂▂▂▂

Association 2014 2.27 2018 2019 ▂▂▂▂▂▃▃▂▂▂▂

Eradication 2014 2.24 2018 2020 ▂▂▂▂▂▃▃▃▂▂▂

Risk 2018 1.74 2018 2023 ▂▂▂▂▂▃▃▃▃▃▃

Meta-analysis 2018 1.58 2018 2019 ▂▂▂▂▂▃▃▂▂▂▂

Autoimmune gastritis 2018 1.3 2018 2020 ▂▂▂▂▂▃▃▃▂▂▂

Pernicious anemia 2018 1.26 2018 2018 ▂▂▂▂▂▃▂▂▂▂▂

Trends 2018 1.26 2018 2018 ▂▂▂▂▂▃▂▂▂▂▂

Adults 2018 1.2 2018 2018 ▂▂▂▂▂▃▂▂▂▂▂

Progression 2019 2.79 2019 2020 ▂▂▂▂▂▂▃▃▂▂▂

Molecular characterization 2019 2.18 2019 2021 ▂▂▂▂▂▂▃▃▃▂▂

Diagnosis 2019 1.85 2019 2020 ▂▂▂▂▂▂▃▃▂▂▂

Tumor microenvironment 2019 1.41 2019 2019 ▂▂▂▂▂▂▃▂▂▂▂

Sequences 2020 1.79 2020 2021 ▂▂▂▂▂▂▂▃▃▂▂

(Continued)
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containing keywords such as “Helicobacter pylori infection”, “gastric 
acid secretion”, and “atrophic gastritis”, and “peptic ulcer”. the keyword 
“bacterial microbiota” had the highest burst strength and lasted for a 
long time, which reflected that the concept of the microbiota began to 
receive significant and sustained attention. At this time, the topic of 
this research field was homogeneous, and the frequency of each 
keyword was low.

In the mid-term, the topic was still limited, but the word frequency 
increased. Research regarding H. pylori infection was still at the center 
position. There were still some keywords indicating studies on 
H. pylori eradication regimen, such as “eradication” and “proton pump 
inhibitors”. The burst detection showed that researchers began to 
increase their research on the gastrointestinal microbiota, with 
keywords such as “gastric microbiome”, “mucosa associated 
microbiota”, “community”, and the strength of the keyword “stomach 
microbiota” reaching 2.87. There were also keywords reflecting related 
research methods such as “molecular characterization”, “kegg 
modules”, and “next-generation sequencing”. In this period, “bacterial 
microbiota” served as the basis of research. In addition, some new 
research topics appeared, for example, “dendritic cells”, which reflected 
the focus on the mechanisms of gastric carcinogenesis caused by the 
gastric microbiota. The pathogenic mechanisms of the gastric 
microbiota in GC mainly included immune and “inflammation” 
mechanisms, reflected in keywords such as “dendritic cells”, “immune 
response”, and “inflammation”.

In recent years, the research topics have become heterogeneous, 
which is evidenced by the increasing number of topic words with high 
Callon centrality. In combination with burst detection, thematic 
evolution, and hotspot trend analysis, it can be inferred that researchers 

have paid more attention to the richness of bacterial flora and the 
mechanisms by which different microorganisms cause GC during this 
stage. Specifically, topics generated included those reflecting the 
pathogenic mechanisms of H. pylori, such as “Helicobacter pylori”, “n 
nitroso compounds” and “caga”, with burst keywords including “n 
nitroso compounds”, “nitrite”, “inflammation”, “apoptosis”, “epithelial 
cells”, “beta catenin”; those reflecting different members of the gastric 
microbiome, such as “epstein barr virus”, “Fusobacterium nucleatum”, 
with burst keywords including “tumor microenvironment”, “mucosa 
associated microbiota”, “community”, “dysbiosis”, “Fusobacterium 
nucleatum”; those reflecting the safety of H. pylori eradication therapy, 
such as “adverse events”; and those reflecting the clinical treatment of 
the precancerous stage of GC, such as “peptic ulcer”, “intestinal 
metaplasia”, “risk factors”, and “probiotics”, with keywords such as 
“gastric carcinogenesis”. Notably, the burst keywords “dysbiosis”, 
“Fusobacterium nucleatum”, “mucosal microbiota”, “risk factors”, 
“gastric carcinogenesis”, “community”, “intestinal metaplasia”, “therapy”, 
“inflammation”, “expression”, “gene”, “apoptosis”, “beta catenin”, and 
“adenocarcinoma” are still in a burst period, leading researchers’ 
attention to changes in the gastric microbiota and its clinical 
application, and the pathogenic mechanisms of H. pylori and other 
non-helicobacter bacteria. Among them, the thematic map of the time 
slice 2018 to 2023 suggested that topics such as “Fusobacterium 
nucleatum”, “mucosal microbiota” and “intestinal metaplasia” in the 
lower right quadrant are basic and transversal themes and play an 
important role in the development of this field, but they were 
understudied and may therefore become hotspots in the future.

Generally speaking, research in this field at this stage is mainly 
divided into two aspects: the eradication and pathogenic mechanisms 

TABLE 8 (Continued)

Keywords Year Strength Begin End 2013–2023

Juice 2020 1.2 2020 2020 ▂▂▂▂▂▂▂▃▂▂▂

Next-generation sequencing 2020 1.2 2020 2020 ▂▂▂▂▂▂▂▃▂▂▂

Nitrite 2020 1.2 2020 2020 ▂▂▂▂▂▂▂▃▂▂▂

N nitroso compounds 2020 1.2 2020 2020 ▂▂▂▂▂▂▂▃▂▂▂

Dysbiosis 2021 2.12 2021 2023 ▂▂▂▂▂▂▂▂▃▃▃

Gastric microbiome 2014 1.87 2021 2023 ▂▂▂▂▂▂▂▂▃▃▃

Fusobacterium nucleatum 2021 1.77 2021 2023 ▂▂▂▂▂▂▂▂▃▃▃

Mucosa associated microbiota 2021 1.63 2021 2021 ▂▂▂▂▂▂▂▂▃▂▂

Mucosal microbiota 2021 1.55 2021 2023 ▂▂▂▂▂▂▂▂▃▃▃

Risk factors 2021 1.41 2021 2023 ▂▂▂▂▂▂▂▂▃▃▃

Gastric carcinogenesis 2021 1.41 2021 2023 ▂▂▂▂▂▂▂▂▃▃▃

Community 2013 1.12 2021 2023 ▂▂▂▂▂▂▂▂▃▃▃

Intestinal metaplasia 2019 2.9 2022 2023 ▂▂▂▂▂▂▂▂▂▃▃

Therapy 2019 1.97 2022 2023 ▂▂▂▂▂▂▂▂▂▃▃

Inflammation 2013 1.85 2022 2023 ▂▂▂▂▂▂▂▂▂▃▃

Expression 2016 1.57 2022 2023 ▂▂▂▂▂▂▂▂▂▃▃

Gene 2018 1.35 2022 2023 ▂▂▂▂▂▂▂▂▂▃▃

Apoptosis 2022 1.23 2022 2023 ▂▂▂▂▂▂▂▂▂▃▃

Beta catenin 2022 1.23 2022 2023 ▂▂▂▂▂▂▂▂▂▃▃

Adenocarcinoma 2016 1.14 2022 2023 ▂▂▂▂▂▂▂▂▂▃▃

Light blue line: the year that keywords have not appeared; dark blue line: the year that keywords began to appear; red line: the year that keywords emerged.
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of H. pylori, which were well studied and becoming more important, 
and the role of different gastric microorganisms in the diagnosis and 
treatment of GC and their pathogenic mechanisms, which were less 
studied but important to this field. Among these topics, H. pylori, 
Fusobacterium nucleatum, immunity, and inflammation may be future 
research hotspots.

4 Discussion

This article is the first to identify the current research status, 
research hotspots, and trends in the field of gastric flora and gastric 

cancer based on bibliometric methods. The application of bibliometric 
analysis and visualization can display various topics and trends in 
basic or clinical research in order for researchers to carry out their 
work. In addition, our research shows that this research field has broad 
prospects and that there are still many clinical problems left to 
be solved.

While the annual cumulative number of papers has shown an 
exponential growth trend, in the past 3 years, the annual publications 
in this field have continued to grow rapidly, which suggests that the 
topic of gastric microbiota and GC has become popular. The analysis 
of funding showed that many countries are increasing capital input in 
this field, especially those that are productive. It can be predicted that 

FIGURE 5

Research hotspot analysis. Panels (A–C) are the thematic maps of each time slice and describe the evolution trend of keywords. (A) represents the 
period of 1993–2013, (B) is for 2014–2017, and (C) is for 2018–2023. (D) Thematic evolution: the Sankey diagram shows the flow of research themes 
that merged or split. (E) Trend topic scatter diagram.
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in the future, the number of publications in this field will continue to 
grow exponentially, and funding support may also increase, making 
this field attractive for researchers.

Among the countries that published articles from 2013 to 2023, 
the total number of articles published by the top eight countries 
accounted for more than 90% of all articles published in this field, 
indicating that these countries were the main contributors to research 
in this field. Developed countries such as the United  States and 
Germany published papers earlier, and their research results also had 
a relatively prominent influence. These countries often have advanced 
medical research institutions, outstanding scientific researchers, and 
sufficient financial support. As a developing country, China has been 
increasing its publication volume significantly since 2015, and the 
total number of articles quickly exceeded that of other countries. This 
may be due to the large population base, the large number of H. pylori 
infections and GC patients, and the popularization of endoscopic 
biopsy technology (Fan et al., 2021; Wang et al., 2022), as well as the 
rapid growth of national GDP and increased investment in scientific 
research (Lei et al., 2020; Zhou et al., 2021). However, although China 
is an important representative with respect to investment in this field, 
China’s betweenness centrality was not outstanding enough, indicating 
that Chinese researchers need to improve the quality of their research. 
The institutions that contributed the most to this field were mainly 
universities, mostly from the United States and European countries. 
Among them, Baylor College of Medicine has made prominent 
contributions and is considered one of the most outstanding medical 
schools in the United States. Through the analysis of authors and 
institutions, it can be seen that Fox JG and Wilson KT from Vanderbilt 
University, Figueiredo C and Ferreira RM from Universidade do 
Porto, have made great contributions in this field and published a 
series of highly influential articles, as well as actively participating in 
follow-up research. In recent years, with the largest number of 
publications, China’s output mainly came from Zhejiang University 
and Nanchang University. However, most researchers in this field 
currently tend to collaborate with domestic research institutions or 
within research groups in the same institution, even in productive 
countries. This might be due to the fact that this research field is only 
in its infancy. Therefore, as the number of publications increases, 
countries and institutions need to strengthen cooperation to promote 
the exchange of academic ideas and innovative development in the 
research field, which will also help to expand their influence.

In terms of journal analysis, the impact factor (IF) of a journal to 
some extent represents the influence of research in the field and the 
quality of the research results. The reference source journals have high 
IFs, indicating that the research foundation in this field is reliable. Gut 
was the most cited journal, indicating that the results published in this 
journal have an important influence in this research field, with an IF 
of 24.5. Helicobacter was the main journal publishing research in this 
field, with an IF of 4.4. Recently, journals such as Frontiers in 
Microbiology, Scientific Reports, and Gut Microbes have published 
numerous articles, among which the IF of Gut Microbes reached 12.2. 
However, compared to the cited literature, the current IFs of 
publications in this field are still lower in general. This may be due to 
the fact that research in this field has not attracted widespread 
attention, suggesting that researchers need to improve the quality of 
their research through reasonable experimental design and advanced 
research technology to produce more influential products and propose 
more novel perspectives.

A large number of studies have taken various directions, leading 
to pathogenesis research and clinical practical applications. By reading 
the key literature identified via the historiograph of citing documents, 
the research progression can be revealed. After identifying differences 
in the gastric microbiota characteristics between GC patients and 
those with dyspepsia, as the technique developed, the gradual shifting 
of the gastric microbiota in Correa’s cascade was confirmed, and 
genotoxic colonies were finally identified. In this process, the 
correlations between the gastric microbiota, gastric cancer, and 
specific pathogenic bacteria were gradually identified. The application 
of specific microbiota in the clinical identification of GC patients was 
gradually supported. Subsequently, through PICRUSt analysis and 
other means, the role of different gastric microorganisms in the 
progression of GC was gradually revealed. The article published by 
Ferreira RM et al. in Gut in 2018 (doi: 10.1136/gutjnl-2017-314205) 
had the highest citation frequency and the highest LCS and GCS, 
indicating that it was widely recognized by researchers as an important 
research basis. The researchers conducted a retrospective analysis of 
the gastric microbiota of patients with GC and chronic gastritis. They 
found that the diversity of the gastric microbiota was reduced in GC 
patients, and other bacterial genera, mainly intestinal commensal 
bacteria, were enriched, showing community characteristics different 
from chronic gastritis patients. This article revealed that gastric 
microbiota dysbiosis is related to GC and proved that the microbial 
dysbiosis index (MDI) can be used to identify GC, with the area under 
the curve (AUC) being 0.91 and 0.89, respectively (Ferreira et al., 
2018). “Mucosal microbiome dysbiosis in gastric carcinogenesis,” 
published by Coker OO et al. (doi: 10.1136/gutjnl-2017-314281) close 
to the same period, also proved that there are differences in the gastric 
microbial composition and bacterial interactions during the 
progression from chronic gastritis to GC, and the correlation strengths 
between enriched groups and reduced groups increased (p < 0.001; 
Coker et al., 2018).

The visualization and clustering of keywords also reveal the 
evolution of the research topic. The timeline graph and thematic 
evolution analysis showed that although many important keywords 
such as “Helicobacter pylori” and “gastric cancer” have emerged in the 
early years, this research field is still developing and the topics 
described by these keywords are still being studied. In addition, topics 
that have begun to receive attention in recent years, such as “tumor 
microenvironment” and “stomach microbiota”, may be the focus of 
future research. In this research field, H. pylori, as a major member of 
the gastric microbiota, receives constant attention. Keyword analysis 
showed that “helicobacter-pylori”, “infection”, “eradication”, “proton 
pump inhibitors”, “regulatory T cells”, “CagA”, etc. were important 
keywords. As H. pylori is associated with GC and has a high infection 
rate in the general population, the diagnostic approaches, eradication 
methods, and carcinogenesis mechanisms for H. pylori have been 
extensively studied (Yang et al., 2014; Ansari and Yamaoka, 2022). 
However, current H. pylori eradication therapies face challenges 
involving antibiotic resistance (Ansari and Yamaoka, 2022; Suzuki 
et al., 2022), dysbiosis (Gotoda et al., 2018, 2020), the potential danger 
of long-term PPI use, and other shortcomings (Kuipers et al., 1996; Xu 
et al., 2013; Jiang et al., 2019; McCarthy, 2020; Seo et al., 2021; Arai 
et al., 2023). Recent studies have shown that H. pylori eradication 
regimens based on Vonoprazan (VPZ) are effective and safe (Kakiuchi 
et  al., 2023) and have a higher H. pylori eradication rate than 
PPI-containing triple or quadruple therapy (Chey et al., 2022). The 
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dual therapy consisting of VPZ and amoxicillin has a low incidence of 
adverse reactions and can also avoid unnecessary use of antibiotics, 
reducing the incidence of dysbiosis of the intestinal microbiota 
(Ouyang et al., 2022; Zhang J. et al., 2023). The dosage regimen of VPZ 
and the adverse events associated with its strong acid-suppressive 
effect still need further evaluation (Hu et al., 2022; Arai et al., 2023). 
In addition, the eradication of H. pylori might not be necessary for 
children because infection by H. pylori has a protective effect against 
asthma and inflammatory bowel disease via the systemic immune 
tolerance induced by dendritic cells (DCs) and regulatory T cells (Treg 
cells; Ravikumara, 2023). Helicobacter pylori infection or seropositivity 
have a detrimental impact on the efficacy of cancer immunotherapies, 
and the eradication of H. pylori infection by antibiotherapy does not 
revert the H. pylori-induced hyporesponsiveness to cancer 
immunotherapy (Che et al., 2022; Oster et al., 2022a,b; Gong et al., 
2023). However, another meta-analysis has suggested that GC patients 
with H. pylori infection may respond better to PD-1/PD-L1 blockade 
therapy (Zhu et al., 2023). These divergent findings may be explained 
by differences in patients and treatment characteristics, as well as 
potential confounding factors. Thus, many experts are calling for a 
more individualized eradication approach in the context of additional 
risk factors rather than unconditionally eradicating H. pylori in every 
case. Clarifying the pathogenesis of H. pylori is still an important task. 
Helicobacter pylori infection triggers complex chronic immune 
responses, leading to the occurrence of a variety of diseases. 
Helicobacter pylori virulence factors such as cytotoxin-associated gene 
A (CagA), vacuolating cytotoxin A (VacA), and Helicobacter pylori 
neutrophil-activating protein (HP-NAP) significantly affect the 
function of DCs in tumor microenvironment or bone marrow-derived 
DCs and play an important role in the induction of GC (Fu and Lai, 
2023; Raspe et al., 2023; Yuan et al., 2023). The Treg cell-mediated 
inflammatory response caused by H. pylori infection (Bagheri et al., 
2016, 2018; Owyang et al., 2020) and the genome instability caused by 
CagA (Bagheri et al., 2018; Takahashi-Kanemitsu et al., 2020; Alipour, 
2021; Imai et  al., 2021; Murata-Kamiya and Hatakeyama, 2022; 
Marshall, 2023) have been extensively studied. Recent research has 
shown that H. pylori can inhibit miRNA-375 expression in the 
stomach. Downregulated miR-375 activates the JAK2-STAT3 pathway, 
which then promotes the secretion of IL-6, IL-10, and VEGF, leading 
to the immature differentiation of DCs and the induction of GC 
(Zhang et  al., 2021). Notch signaling regulates the function and 
phenotype of DCs, thus mediating the differentiation of CD4+ T cells 
during H. pylori infection (Liu et al., 2023).

As 16 s rRNA sequencing techniques developed and gut 
microbiome research boomed with the confirmation of the 
relationship between the gastric microbiota and gastric carcinogenesis, 
researchers began to turn their attention to the study of the gastric 
microbiota. In this respect, “gut microbiota”, “colonization”, “16 s rRNA 
sequencing”, “risk”, “atrophic gastritis”, and “intestinal metaplasia” are 
important keywords, indicating that the clinical application of gastric 
microbiota in GC risk assessment and treatment are also current 
hotspots. As H. pylori is a bacterium that affects and is affected by the 
gastric microbiota, it is closely related to other bacteria in the 
progression of GC. Non-H. pylori microorganisms interact with 
H. pylori in gastric carcinogenesis (Guo et  al., 2023). Successful 
H. pylori eradication can reverse gastric microbiota dysbiosis (Guo 
et al., 2020; Guo Q. et al., 2022), and its high eradication rate is related 
to specific flora members (Niu et al., 2021). The intestinal microbiota 

of H. pylori-positive GC patients is also transformed, and this may 
further contribute to GC (Gao et al., 2018; Dash et al., 2019; Seol et al., 
2019; Iino and Shimoyama, 2021). Modulation of the gastrointestinal 
microbiota is beneficial to the eradication of H. pylori and the 
treatment of gastric diseases related to microbial dysbiosis (Viazis 
et al., 2022; Musazadeh et al., 2023; Zhang L. et al., 2023). The study 
of specific strains or pathogenic pathways of non-H. pylori bacteria in 
GC progression is helpful in identifying relevant treatment measures 
accordingly. Using 16 s rRNA sequencing technology to analyze 
gastric epithelial bacteria at different stages of GC progression, it was 
found that some bacterial taxa, such as Peptostreptococcus stomatis, 
Streptococcus anginosus, Parvimonas micra, etc., were significantly 
enriched in GC patients and could be used to identify precancerous 
lesions and GC (Coker et  al., 2018; Liu et  al., 2022). Microbial 
taxonomic features (MTFs) can be  used to predict early gastric 
neoplasia (EGN; Png et al., 2022) and may improve the accuracy of 
the polygenic risk score (PRS) model in predicting GC (Wang et al., 
2023). As for the mechanism, many studies have revealed that 
non-H. pylori microorganisms promote GC by inducing inflammation, 
modulating the immune response, triggering DNA damage, and 
promoting epithelial–mesenchymal transformation (Yang et al., 2022; 
Liao et  al., 2023). Gastric non-H. pylori microorganisms may 
participate in the progression of GC by affecting host DNA 
methylation (Yue et al., 2023). Different bacterial taxa are related to 
certain types of infiltrating immune cells (Liao et al., 2023). In the 
gastric microbiota associated with atrophy/intestinal metaplasia, 
functional pathways such as amino acid metabolism and inositol 
phosphate metabolism are enriched, while folate biosynthesis and 
NOD-like receptor signaling are reduced, which may explain the 
ongoing progression of precancerous conditions even after H. pylori 
eradication (Sung et al., 2020). Research on the intestinal microbiota 
continuously activating host immunity and producing a variety of 
metabolites has illuminated its effect on GC (Nasr et al., 2020; Guo 
Y. et al., 2022), while the GC microflora can modulate macrophages 
and enhance gastric tumor development by suppressing antitumor 
immunity, activating oncogenic signaling pathways, and producing 
protumor metabolites (Zhang W. et al., 2023).

Through emergent analysis, we  can speculate that the role of 
Fusobacterium nucleatum (F. nucleatum) in the Correa cascade of GC 
development may become a research hotspot in the future. 
Fusobacterium nucleatum, which exists in the oral cavity and 
gastrointestinal tract of humans, is an opportunistic pathogen causing 
systematic diseases, for example, gastrointestinal cancers (Chen et al., 
2022; He Z. et al., 2022). A number of studies have demonstrated the 
potential pathogenic role of F. nucleatum in colorectal cancer (CRC; 
Lee et al., 2019). Fusobacterium nucleatum causes CRC by adhering 
and forming biofilm, invading host cells, producing metabolites, and 
releasing vesicles (Chen et  al., 2022). Fusobacterium nucleatum 
promotes CRC metastasis through M2 polarization of macrophages 
in the tumor microenvironment (Chen et al., 2018; Xu et al., 2021). 
However, its roles in GC are not so clear. In a study using Clostridium 
and Fusobacterium nucleatum in biopsy tissue to diagnose GC, the 
sensitivity reached 100%, the specificity was 68.8%, and the AUC was 
0.875 (Hsieh et al., 2018). The combined colonization of F. nucleatum 
and Helicobacter pylori has also been associated with a poor survival 
rate in late-stage GC patients treated with gastrectomy, suggesting that 
it may promote the progression or metastasis of GC by synergizing 
with H. pylori (Hsieh et al., 2021, 2023). Fusobacterium nucleatum has 
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strong interactions with Porphyromonas, Prevotella, etc., which may 
lead to shortened survival (Nie et  al., 2021; Lehr et  al., 2023). A 
bioinformatic analysis suggested that neutrophil transcriptional 
activation induced by F. nucleatum may be  implicated in the 
occurrence of GC through several candidate genes, including 
DNAJB1, EHD1, IER2, CANX, and PH4B. Functional analysis showed 
that membrane-bound organelle dysfunction, intracellular trafficking, 
transcription factors ER71 and Sp1, and miR580 and miR155 were 
other candidate mechanisms (Zhou et  al., 2022). The metabolic 
function analysis showed that F. nucleatum-positive GC tissues were 
significantly enriched in the biosynthesis of lysine, peptidoglycan, and 
tRNA metabolic functions (Nie et  al., 2021). These results await 
further verification. Existing studies have demonstrated the role of 
F. nucleatum in the ERBB2-PIK3-AKT–mTOR pathway and the 
miR-885-3p/EphB2/PI3K/AKT axis (Hsieh et al., 2023; Xin et al., 
2023). However, some researchers have questioned the actual role of 
F. nucleatum in gastric carcinogenesis. An F. nucleatum-positive result 
was associated with poor prognosis in patients with Lauren’s diffuse 
type GC but had no association with the prognosis of intestinal-type 
GC. These results still remain to be confirmed (Boehm et al., 2020; Nie 
et al., 2021). Fusobacterium nucleatum may promote carcinogenesis 
via Fusobacterium adhesionA (FadA), which binds to E-cadherin, 
activating Wnt/β-catenin signaling and various inflammatory and 
oncogenic properties of the cells (Rubinstein et al., 2013, 2019). Since 
the diffuse type of GC is strongly associated with E-cadherin 
deregulation, one may speculate on the potential molecular mimicry 
and specific prognostic relevance of F. nucleatum to the diffuse type of 
GC (Boehm et al., 2020). Furthermore, the interaction of F. nucleatum 
with non-H. pylori gastric microorganisms also requires 
more explanation.

This study has some limitations. Only relevant studies published 
by WoSCC were included in this study; cutting-edge research with 
high quality from other databases such as PubMed and Scopus might 
have been ignored. Second, the language was restricted to English, 
which may have excluded high-quality literature in other languages. 
In addition, the co-citation frequency of the literature is time-
dependent, and since the research in this field is still in the developing 
stage, the number of citations cannot accurately reflect the importance 
of the document, especially important documents published in recent 
years. With the exponential growth of publications in this field, our 
research needs to be constantly updated to keep up with the latest 
research developments. Finally, due to missing keywords reported by 
Biblioshiny in some literature, the outcome of the CiteSpace keyword 
analysis might be  a little inaccurate; however, we  used different 
bibliometric software to conduct our analysis and verify the results.

5 Conclusion

To the best of our knowledge, this study is the first to use 
visualization software and data mining methods to conduct a 
bibliometric analysis of publications in the field of gastric microbiota 
and gastric cancer and to determine the research status, hotspots, and 
development trends in this field. Research in this field has mainly 
focused on the eradication therapy and pathogenic mechanisms of 
Helicobacter pylori, as well as the utilization of gastric microbiota in 
the evaluation and treatment of gastric cancer. Future research 
hotspots may include the use of the gastric microorganisms 

represented by Fusobacterium nucleatum in the diagnosis of and for 
therapeutic effects on gastric cancer. Their mechanisms of action need 
to be  further explored in order to provide a theoretical basis for 
clinical application. Relevant researchers or researchers outside this 
field can use this study to improve their awareness and understanding 
of the field and to gain some perspectives for further research.
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Objectives: The study aims to systematically identify the alterations in gut 
microbiota that observed in gastric cancer through comprehensive assessment 
of case–control studies.

Methods: The systematic literature search of PubMed, Embase, Cochrane 
Library, and Web of Science was conducted to identify case–control studies 
that compared the microbiomes of individuals with and without gastric cancer. 
Quality of included studies was evaluated with the Newcastle-Ottawa Quality 
Assessment Scale (NOS). Meta-analyses utilized a random-effects model, and 
subgroup and sensitivity analyses were performed to assess study heterogeneity. 
All data analyses were performed using the “metan” package in Stata 17.0, and 
the results were described using log odds ratios (log ORs) with 95% confidence 
intervals (CIs).

Results: A total of 33 studies involving 4,829 participants were eligible for 
analysis with 29 studies provided changes in α diversity and 18 studies reported 
β diversity. Meta-analysis showed that only the Shannon index demonstrated 
statistical significance for α-diversity [−5.078 (−9.470, −0.686)]. No significant 
differences were observed at the phylum level, while 11 bacteria at genus-level 
were identified significant changed, e.g., increasing in Lactobacillus [5.474, 
(0.949, 9.999)] and Streptococcus [5.095, (0.293, 9.897)] and decreasing in 
Porphyromonas and Rothia with the same [−8.602, (−11.396, −5.808)]. Sensitivity 
analysis indicated that the changes of 9 bacterial genus were robust. Subgroup 
analyses on countries revealed an increasing abundance of Helicobacter and 
Streptococcus in Koreans with gastric cancer, whereas those with gastric cancer 
from Portugal had a reduced Neisseria. Regarding the sample sources, the study 
observed an increase in Lactobacillus and Bacteroides in the gastric mucosa 
of people with gastric cancer, alongside Helicobacter and Streptococcus. 
However, the relative abundance of Bacteroides decreased compared to the 
non-gastric cancer group, which was indicated in fecal samples.

Conclusion: This study identified robust changes of 9 bacterial genus in people 
with gastric cancer, which were country-/sample source-specific. Large-scale 
studies are needed to explore the mechanisms underlying these changes.
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1 Introduction

Gastric cancer, a prevalent and malignant tumor, is a major global 
health concern and one of the leading causes of cancer-related death 
(Sung et al., 2021). According to World Health Organization (2020), it 
ranked third in terms of cancer-related mortality worldwide. The 
development of gastric cancer involves multiple factors, including 
smoking, alcohol consumption, genetics, and alterations in the gut 
microbiota (Aviles-Jimenez et al., 2014; Rawla and Barsouk, 2019). The 
gut microbiome consists of a community of microorganisms that reside 
in the intestines, including bacteria, fungi, viruses, and other types of 
microorganisms. These communities of microbes perform crucial 
functions in human physiology and metabolism, including digestion 
and regulation of the immune system. Furthermore, they are closely 
linked to human health. In healthy individuals, the gut microbiota 
tends to remain stable. However, dysbiosis, an imbalance in the gut 
microbiota, can arise due to medication use, environmental changes, 
and dietary variation. Dysbiosis of the gut microbiota has been linked 
to the development of diverse ailments (Fan and Pedersen, 2021).

The relationship between gastric cancer and the gut microbiota has 
been a primary subject of investigation. Several studies indicate variations 
in the composition of the gut microbiota between gastric cancer and 
those without, implying a crucial role of the gut microbiota in the 
development of gastric cancer. However, the specific changes in bacterial 
composition vary between studies. Some studies suggest a decrease in 
microbial diversity (Coker et al., 2018; Peng et al., 2023), whereas others 
suggest an increase in diversity (Wang et al., 2016; Castaño-Rodríguez 
et al., 2017). Besides, the specific microbial species implicated in different 
studies also vary. For example, Castaño-Rodríguez et al. (2017) research 
detected an enrichment of Lactococcus, Fusobacterium, and Veillonella in 
gastric cancer compared to precancerous stages. Wei et al. (2023) found 
notable variations in the prevalence of Streptococcus, Rhodococcus, and 
Ochrobactrum between individuals with gastric cancer and healthy 
individuals. Meanwhile, Peng et al. (2023) indicated an increase in some 
genera such as Lautropia and Lactobacillus, and a decrease in others 
notably Peptostreptococcus and Parvimonas among the gastric cancer 
group in contrast to the control group. Additionally, the exact role of the 
gut microbiota in the development of gastric cancer remains the subject 
of ongoing debate. Although some researchers contend that alterations 
in the gut microbiota may be an independent risk factor for gastric 
cancer, others argue that it is a secondary factor. Lastly, differences in the 
source of samples, gene regions selected for sequencing, sequencing 
platforms, reference databases, and data analysis methods lead to 
variations in the results of different studies (Nearing et al., 2022). Thus, 
further research is essential to investigate the mentioned issues 
thoroughly. Meta-analysis is a possible method to address above issues 
by synthesizing published studies and combining the effects of different 
factors to produce more effective results.

Therefore, this study aims to fill the gaps of previous studies by 
meta-analysis to summarize research on changes in the gut microbiota 
of people with gastric cancer and without gastric cancer to elucidate 
microbial changes during gastric cancer development.

2 Materials and methods

2.1 Registration

The systematic review and meta-analysis was registered in the 
International Prospective Register of Systematic Reviews (PROSPERO) 
with the registration number CRD42023437426, which was reported 
according to the Preferred Reporting Items for Systematic Reviews and 
Meta-analyses (PRISMA) guidelines (Liberati et al., 2009).

2.2 Data sources and search strategy

A systematic search was executed utilizing computerized 
bibliographic databases such as PubMed, Embase, Cochrane Library, 
and Web of Science, covering all records up until April 4, 2023. The 
search strategy combined MeSH and free terms using the Boolean 
operators “AND” and “OR.” For instance, PubMed was searched with 
the following query: (microbio*[Title/Abstract]) AND (“stomach 
neoplasms”[MeSH Terms] OR “cancer of stomach”[Title/Abstract] OR 
“stomach cancers”[Title/Abstract] OR “gastric cancer*”[Title/
Abstract]). The detailed search protocols for each scientific database 
are shown in Supplementary Table S1.

2.3 Inclusion and exclusion criteria

The inclusion criteria were as follows: (1) adult diagnosed with 
gastric cancer through gastroscopic biopsy; (2) the control group 
consisted of non-gastric cancer individuals undergoing either 
endoscopy or biopsy, including healthy individuals and those with 
precancerous lesions such as chronic gastritis or intestinal metaplasia; 
(3) reporting the changes in gut microbiota composition/diversity; 
and (4) case–control study.

Study was excluded if it met any of the following situations: (1) 
people had undergone gastric cancer-related treatments, such as 
surgery, chemotherapy, radiation therapy, and immunotherapy; (2) 
pregnant women were involved; (3) samples were from oral, skin, or 
oropharyngeal; and (4) changes in the gut microbiota cultured in 
specific media were excluded since the culture conditions exert a 
significant influence on microbiota data (Goodrich et  al., 2014; 
Widder et al., 2016). Additionally, abstracts, editorials, comments, and 
studies written in languages other than English were also excluded.

2.4 Study selection and data extraction

Two researchers (Zhang and Wu) screened the searching results 
of databases according to the inclusion and exclusion criteria 
independently. Titles and abstracts were screened firstly, and then the 
full texts were reviewed to identify eligible studies. Four researchers 
(Zhang, Wu, Ju, and Wang) independently exacted the following 
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information from each eligible study: the study ID (first author and 
publication year), country, sample size, age, gender, H. pylori infection 
status, sample source, method for measuring the microbiome, DNA 
extraction methods, annotation database, composition and diversity 
of the gut microbiome in people with and without gastric cancer, and 
the differences in the gut microbiome between the two groups. The 
exacted data were cross-checked by four investigators. Any 
disagreement during study selection and data extraction was settled 
by consultation with the fifth researcher (Zhu) to reach a consensus.

2.5 Quality assessment

The quality of the included studies was evaluated using the 
Newcastle-Ottawa Quality Assessment Scale (NOS) (Wells et  al., 
2000). The NOS consists of selection, comparability, and measurement 
of exposure factors. Each study can receive a maximum of nine points. 
Two researchers (Zhang and Ju) assessed each study independently, 
and any discrepancies were resolved through consensus or with the 
assistance of a third researcher (Zhu) if necessary.

2.6 Data synthesis

Meta-analysis was conducted using the “metan” package in Stata 
17.0 with a random-effects model, and heterogeneity was assessed 
using the I2 statistic. Based on the alterations in the diversity and 
abundance of microbiota between people with and without gastric 
cancer, these results were transposed into a binary format to indicate 
whether there was an increase. The results of meta-analyses were 
presented as log odds ratios (log OR) and their 95% confidence 
intervals (CI). A log OR significantly less than 0 indicated a decrease 
in the abundance of a certain microbial community in people with 
gastric cancer compared to those without gastric cancer, while a log 
OR significantly greater than 0 indicated an increase in the abundance 
of a certain microbial community in people with gastric cancer. For a 
more intuitive evaluation, Forest plots were utilized. Meta-regression 
and subgroup analyses were performed to investigate potential 
heterogeneity, considering the country, sample source, amplification 
region of the 16S rRNA gene, and microbial database. Sensitivity 
analysis was performed on studies with a sample size exceeding 50. 
Funnel plot, Egger’s and Begg’s test were conducted to detect potential 
publication bias which was corrected by trim-and-fill analysis 
(Mavridis and Salanti, 2014). All p-values were two-tailed, and those 
p < 0.05 were considered statistically significant.

3 Results

3.1 Literature search and studies overview

A total of 2,364 studies were identified from PubMed, Embase, 
Cochrane Library, and Web of Science. After duplicates removal, 1,582 
studies remained for screening the title and abstract. Out of the 1,582 
studies, 1,491 studies were excluded. The excused studies included 
meta-analyses, reviews, protocols, meeting abstracts, experiments and 
non-English articles, and those that did not focus on gastric cancer or 
provide the required results. As a result, 91 articles entered the 

full-text review stage. Finally, 33 studies met the eligible criteria and 
were included in the meta-analysis. The selection process is illustrated 
in Figure 1.

Table 1 shows the main characteristics of the included studies 
which published between 2014 and 2023. The majority of studies were 
conducted in Asian countries, including China (n = 21), Korea (n = 8), 
and Mongolia (n = 1). Three studies were conducted in Europe, two in 
Portugal and one in Lithuania. In addition, one study was conducted 
in several countries. A total of 4,829 participants were included in 
these studies, with males outnumbering females. Fourteen studies 
reported on people infected with Helicobacter pylori. A total of 25 
studies collected samples from gastric mucosal biopsies during 
gastroscopy, while four studies used fecal samples (Liang et al., 2019; 
Qi et al., 2019; He et al., 2022; Kim et al., 2022), and four studies used 
gastric juice samples (Park et al., 2022; Sun et al., 2022; Peng et al., 
2023; Wei et al., 2023). Twenty-seven studies used 16S gene sequencing 
technology, but with different amplified regions. Of these, one study 
amplified the V1–V2 (Nikitina et al., 2023), V1–V4 (Wei et al., 2023), 
V1–V8 (Pimentel-Nunes et al., 2021), V4–V5 (Chen et al., 2019), V5 
(Eun et  al., 2014), and V5–V6 (Ferreira et  al., 2018) regions, 
respectively. Two studies amplified V1–V3 (Jo et al., 2016; Sohn et al., 
2017) and six studies amplified V4 (Coker et al., 2018; Wang et al., 
2020; He et al., 2022; Li et al., 2022; Miao et al., 2022; Peng et al., 2023). 
The most commonly amplified region was V3–V4, with thirteen 
studies using this region. Three studies did not specify the region 
amplified (Wang et al., 2016; Castaño-Rodríguez et al., 2017; Deng 
et al., 2021; Wu et al., 2021). To study the fungal composition of the 
gut microbiota, one study used the ITS2 region for PCR amplification 
(Yang et  al., 2022). Nine studies did not report the specific gene 
sequence database used, while the remaining studies mainly relied on 
databases such as SILVA (n = 9), Greengenes (n = 7), NCBI (n = 6), 
Ezbio (n = 2), EzTaxon-e (n = 2), and RDP (n = 1).

The NOS was used to assess the quality of the included studies. 
Three studies scored nine points, 10 studies scored eight points, 15 
studies scored seven points, and the remaining studies scored six 
points or less. The detailed quality assessment scores can be found in 
the Supplementary Table S2.

3.2 Primary outcomes

3.2.1 Biodiversity
Out of the 33 studies analyzed, 29 focused on investigating the 

α-diversity of the gastrointestinal microbiota and 18 studies explicitly 
reported differences in β-diversity between people with and without 
gastric cancer (refer to Supplementary Table S3). However, due to the 
diverse use of different indices and variations in expression across 
studies, quantitative analysis of β-diversity was not available. Meta-
analysis showed that only the Shannon index demonstrated statistical 
significance for α-diversity [−5.078 (−9.470, −0.686)] 
(Supplementary Figure S1).

3.2.2 Differences in the microbial composition
Eighteen studies with five phylum-level gut microbiotas were 

available for meta-analysis: Actinobacteria, Bacteroidetes, Firmicutes, 
Clostridia, and Proteobacteria. No statistically significant differences 
between people with and without gastric cancer in terms of these five 
phylum-level gut microbiotas were identified by meta-analysis. 
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Supplementary Table S4 presents the changes in relative abundance at 
the phylum level for people with and without gastric cancer in 
individual studies.

A total of 30 studies reported data on the relative abundance of 
bacteria at genus-level in people with gastric cancer compared to those 
without it (Supplementary Table S5). The most frequently reported 
genera in gastric cancer patient samples were Lactobacillus and 
Helicobacter. Meta-analysis of the data from these studies indicated 
significant changes in the abundance of 11 out of 32 evaluated genera, 
with nine exhibiting an increase and two exhibiting a decrease. The 
increased abundance of genera such as Lactobacillus and Streptococcus 
was characterized by log odds ratio (95% CI) of 5.474 (0.949, 9.999) 
and 5.095 (0.293, 9.897), respectively. In contrast, Porphyromonas and 
Rothia exhibited a significant and identical decrease in people with 
gastric cancer, with −8.602 (−11.396, −5.808). Table  2 presents a 
detailed summary of the findings.

3.3 Subgroup analyses

Subgroup analyses in gastric cancer microbiome research 
revealed significant findings, highlighting the impact of 

methodological and geographical variables (Table 3). At the phylum 
level, Actinobacteria exhibited significant abundance changes across 
different 16S rRNA regions, with a pronounced increase in the V1–
V3 region (6.748, 95% CI, 3.608, 9.889) and a decrease in the V4 
region when annotated with Greengenes (−10.334, 95% CI: −13.116, 
−7.552). Subgroup analysis on geographical regions found a higher 
prevalence of Helicobacter and Streptococcus in the Korean 
population, with 9.936 (4.611, 15.261) and 5.651 (2.795, 8.508), 
respectively, at genus-level. In contrast, the Portuguese population 
exhibited a reduced prevalence of Neisseria with −9.006 (−11.795, 
−6.218). The prevalence of Lactobacillus varied across different 16S 
rRNA gene amplification regions, with 8.365 (5.567, 11.162) for the 
V4 region and 7.449 (4.642, 10.257) for the NR region. In gastric 
biopsy samples, Lactobacillus was less prevalent with a log OR of 
−5.939 (0.300, 11.578), while Bacteroides showed a higher abundance, 
evidenced by a log OR of 11.154 (8.227, 14.082). The analysis of 
gastric acid samples showed a higher prevalence of Helicobacter and 
Streptococcus, with 8.552 (5.757, 11.348) and 8.598 (5.803, 11.393), 
respectively. Those results suggested that the bacteria were country-/
sample source-specific. Database analysis revealed a notable increase 
in the prevalence of Lactobacillus among individuals diagnosed with 
gastric cancer in studies utilizing Greengenes, with a mean of 9.598 

FIGURE 1

Description of the selection of the included studies.
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TABLE 1 Characteristics of the included studies.

Study ID Country Age Sample size (male/
female)

H. pylori status Sample source DNA extraction method 
(region amplified) 
database used

NOS

Eun et al. (2014) Korea Chronic gastritis: 50.4 ± 11.5

IM: 57.5 ± 7.3

GC: 65.7 ± 11.3

Chronic gastritis:10 (4/6)

IM: 10 (7/3)

GC: 11 (6/5)

Chronic gastritis: 70%

IM: 40%

GC: 64%

Gastric mucosal biopsies Phenol/chloroform method and a 

DNA clean-up kit;

16S rRNA(V5);

SILVA database

8

Jo et al. (2016) Korea GC: Hp (−), 61.8 ± 10.92; Hp (+), 

54.1 ± 12.50;

Control: Hp (−), 62.3 ± 13.61;

Hp (+), 55.9 ± 10.97

GC: 34 (24/10)

Control: 29 (12/17)

GC: 44.1%

Control: 55.1%

Gastric mucosal biopsies iNtRON Biotechnology;

16S rRNA(V1–V3);

EzTaxon-e database

8

Wang et al. (2016) China 55.8 ± 13.5 Chronic gastritis: 212

GC: 103

(200/115)

Chronic gastritis: 45.3%

GC: 49.5%

Gastric mucosal biopsies Qiagen Dneasy blood and tissue 

kit;

16S rRNA(region NR);

Ribosomal database

7

Castaño-Rodríguez 

et al. (2017)

China GC: 62.08

GU: 64.75

FD: 49.55

GC: 12 (5/7)

GU: 4 (4/0)

FD: 20 (13/7)

GC: 91.7%

GU: 100%

FD: 50%

Antral gastric biopsies Isolate II RNA mini kit and Tetro 

cDNA synthesis kit;

16S rRNA (region NR);

–

6

Li et al. (2017) China Normal: 49.13

Gastritis: 48

IM: 53.22

GC: 53.43

Eradication: 52.18

Normal: 8 (3/5)

Gastritis: 9 (2/7)

IM: 18 (8/10)

GC: 14 (10/4)

Eradication: 11 (3/8)

Normal: 0%

Gastritis: 100%

IM: 66.7%

GC: 28.6%

Eradication: 9%

Antrum and corpus gastric biopsies QIAGEN DNeasy Kit;

16S rDNA(V3–V4);

Greengene database

8

Sohn et al. (2017) Korea GC: Hp (−), 68; Hp (+): 52.8

Control: Hp (−), 53.5; Hp (+), 55.67

GC: Hp (−), 2; Hp (+),5; (3/4)

Control: Hp (−), 2; Hp (+), 3; (2/3)

GC: 28.57%

Control: 40%

Gastric mucosal (antrum and body) 

biopsies

iNtRON Biotechnology Kit;

16S rRNA(V1–V3);

EzTaxon-e database

6

Yu et al. (2017) China

Mexico

Non-malignant:

China, 60.8;

Mexico, 64.5;

Tumor, NA

non-malignant:

China, 77; Mexico, 80.

(27/130)

tumor:

China, 80; Mexico, 54.

(62/72)

– Tumor tissue and matched non-

malignant tissue

Allprep RNA/DNA/Protein mini 

kit (QIAGEN) and QIAamp DNA 

mini kit (QIAGEN);

16S rRNA(V3–V4);

Greengenes and BioProject 

database

8

Coker et al. (2018) China – AG: 77

SG: 74

IM: 17

GC: 39

Xi’an: 50.8–53.9%

Mongolia:44.8–47.5%

Antrum, body and fundus for SG, AG 

and IM.

Biopsies cancer lesions and adjacent 

non-cancerous tissues of GC.

QIAamp DNA Mini Kit;

16S rRNA(V4);

SIL VA database

7

(Continued)
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TABLE 1 (Continued)

Study ID Country Age Sample size (male/
female)

H. pylori status Sample source DNA extraction method 
(region amplified) 
database used

NOS

Ferreira et al. 

(2018)

Portugal Chronic gastritis: 43.6 ± 7.0

GC: 58.8 ± 13.2

Chronic gastritis:81 (79/2);

GC: 54 (32/22)

– Gastric biopsies or surgical specimens of 

non-neo plastic gastric mucosa adjacent 

to the tumour

–

16S rRNA(V5–V6);

Greengenes database

7

Hsieh et al. (2018) China Gastritis: 32.2

IM: 46.3

GC: 68.6

Gastritis:9 (3/6)

IM: 7 (4/3)

GC: 11 (5/6)

Gastritis: 55.5%

IM: 85.7%

GC: 0

Gastric biopsies
TRI Reagent®;

16S rRNA(V3–V4);

NCBI database

7

Chen et al. (2019) China 60 (N = 62, gastric adenocarcinoma)

124 gastric tissue samples 

(cancerous and paired non-

cancerous tissues)

29% Subtotal gastrectomy Lysozyme, proteinase K and SDS, 

phenol chloroform isoamyl alcohol, 

glycogen, sodium acetate and cold 

isopropanol;

16S rRNA(V4–V5);

NCBI and SIL VA database

5

Gunathilake et al. 

(2019)

Korea Control: 51.53 ± 7.21

GC: 53.68 ± 9.60

Control: 288 (181/107)

GC: 268 (172/96)

Control: 93.4%

GC: 99.6%

Gastric mucosa biopsy MagAttract DNA Blood M48 kit;

16S rRNA(V3–V4);

NCBI database

7

Liang et al. (2019) China GC: 52.3 ± 11.2

HC: 53.4

GC: 20

HC: 22

– Fecal samples E.Z.N.A Stool DNA Kit;

–

–

8

Qi et al. (2019) China GC: 58.06 ± 11.24

HC: 45.58 ± 8.86

GC: 116 (96/20)

HC: 88 (53/35)

– Fecal samples
E.Z.N.A.® Stool DNA Kit;

16 S rDNA(V3–V4);

NCBI and SIL VA database

9

Gantuya et al. 

(2020)

Mongolian 46.4 GC: 48

Normal: 22

Gastritis: 20

Atrophy: 66

IM: 40

(59/137)

– Gastric mucosal biopsies DNeasy Blood & Tissue Kit;

16 S rRNA(V3–V4);

SIL VA database

7

Gunathilake et al. 

(2020)

Korea Control: 51.53 ± 7.21

GC: 53.68 ± 9.60

Control:288

GC:268

(353/203)

Control: 93.4%

GC:99.63%

Gastric mucosal biopsy MagAttract DNA Blood M48 kit;

16 S rRNA(V3–V4);

Ezbio database

9

(Continued)
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TABLE 1 (Continued)

Study ID Country Age Sample size (male/
female)

H. pylori status Sample source DNA extraction method 
(region amplified) 
database used

NOS

Wang et al. (2020) China HC: 45.63

CG: 49.04

IM: 56.93

IN: 62.16

GC:57.35

HC: 30 (15/15)

CG: 21 (10/11)

IM: 27 (16/11)

IN: 25 (18/7)

GC:29 (18/11)

HC: 0%

CG: 28.57%

IM: 29.63%

IN: 60%

GC:58.62%

Gastric mucosal biopsy QIAamp DNA Mini Kit;

16S rRNA(V4);

Greengenes database

7

Deng et al. (2021) China Chronic superficial Gastritis: 45–70

GC: 46–75

Chronic superficial gastritis: 25 

(13/12)

GC: 34 (24/10)

Chronic superficial 

gastritis: 0%

GC: 26.47%

Chronic superficial gastritis: the antrum 

(n = 10), c o r p u s (n = 7) and cardia 

(n = 8)

GC: cancer in the antrum (n = 19) and 

corpus (n = 15).

–

16S rRNA(region NR);

RDP and NCBI database

9

Gunathilake et al. 

(2021)

Korea – GC: 268

HC: 288

(353/203)

– Gastric mucosal biopsies MagAttract DNA Blood M48 kit;

16 S rRNA(V3–V4);

Ezbio database

8

Kadeerhan et al. 

(2021)

China Normal/SG: 53.8 ± 7.8

CAG: 53.4 ± 9.3

IM: 58.5 ± 7.7

DYS/GC: 57.6 ± 6.4

Normal/SG: 35 (13/22)

CAG: 52 (29/23)

IM: 67 (43/24)

DYS/GC: 25 (20/5)

Normal/SG: 74.3%

CAG: 92.3%

IM: 94.0%

DYS/GC: 60.0%

Gastric mucosal biopsies QIAamp DNA Mini Kit;

16S rRNA(V3–V4);

Greengenes and SIL VA database

7

Pimentel-Nunes 

et al. (2021)

Portugal Controls: 53 (27–82)

Extensive atrophy/metaplasia: 63 

(53–87)

Early gastric cancer: 70 (43–89)

Controls: 17 (11/6)

Extensive atrophy/metaplasia: 12 

(5/7)

Early gastric cancer: 31 (17/14)

Controls: 41%

Extensive atrophy/

metaplasia: 25%

Early gastric cancer: 13%

Biopsy fragment from the antrum and 

the corpus

NZY Tissue gDNA isolation kit;

16S rRNA(V1–V8);

–

7

Wu et al. (2021) China GC: 62.50 ± 6.64

SG: 61.78 ± 6.25

GC: 18 (15/3)

SG: 32 (24/8)

– Gastric mucosa biopsy samples, samples 

were collected from the greater 

curvature of the antrum, the lesser 

curvature of the antrum, the greater 

curvature of the stomach body, the 

lesser curvature of the stomach body, 

and the fundus.

E.Z.N.A.® Stool DNA Kit;

16S rRNA(region NR);

SIL VA database

7

Zhang et al. (2021) China SG: 56.00 ± 10.25

AG: 63.58 ± 6.69

GIN: 64.80 ± 9.93

GC: 69.87 ± 11.57

SG: 17

AG: 10

GIN: 5

GC: 15

(20/27)

– Gastric mucosal biopsies
E.Z.N.A ®Stool DNA Kit;

16S rRNA(V3–V4);

SILVA database

8

(Continued)
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TABLE 1 (Continued)

Study ID Country Age Sample size (male/
female)

H. pylori status Sample source DNA extraction method 
(region amplified) 
database used

NOS

He et al. (2022) China – Gastric cancer: 30

Healthy people: 30

– Fecal samples CTAB method;

16S rDNA(V4);

–

7

Kim et al. (2022) Korea GC: 62.9 ± 10.2

Control: 50.7 ± 13.6

GC: 45 (31/14)

CG:49

IM:43

(Control:47/45)

0% Histological evaluation using 

endoscopic biopsy tissues.

DNeasy PowerSoil Kit;

16S rRNA(V3–V4);

NCBI and taxonomy databases

7

Li et al. (2022) China GC: 63.5

HC: 55

GI Cancer: 130 (93/37)

HC: 147 (84/63)

– Fecal samples NucleoSpin Soil DNA Kit;

16S rRNA(V4);

Greengenes database

6

Miao et al. (2022) China SG: 47.40 ± 12.37

AG: 45.77 ± 13.62

GMAH: 64.00 ± 11.83

GC: 69.60 ± 6.91

SG: 15 (7/8)

AG: 13 (8/5)

GMAH: 8 (5/3)

GC: 15 (11/4)

SG: 26.7%

AG: 61.5%

GMAH: 100%

GC: 73.3%

Gastric mucosal biopsies QIAamp PowerFecal Pro DNA Kit;

16S rRNA(V4);

Greengenes database

7

Park et al. (2022) Korea Gastritis: 59.8 ± 12.5

Gastric adenoma: 65.3 ± 9.6

EGC: 62.7 ± 10.8

AGC: 58.8 ± 15.8

Gastritis: 16 (6/10)

Gastric adenoma: 16 (12/4)

EGC: 36 (25/11)

AGC: 20 (14/6)

– Gastric juice DNeasy PowerSoil kit;

16S rRNA(V3–V4);

SILVA database

8

Sun et al. (2022) China SG: 50.29 ± 14.31

AG: 60.67 ± 10.71

IM: 60.27 ± 14.89

Dys: 62.71 ± 12.21

GC: 71.67 ± 9.87

SG: 56 (27/29)

AG: 9 (5/4)

IM: 27 (12/15)

Dys: 29 (15/14)

GC: 13 (7/6)

0% Gastric mucosal biopsies and Gastric 

juice
E.Z.N.A® Soil DNA Kit;

16S rRNA(V3–V4);

–

7

Yang et al. (2022) China GC: 60.59 ± 12.73

HC: 52.64 ± 10.92

GC: 22 (16/6)

HC: 11 (4/7)

– Gastric mucosal biopsies E.Z.N.A. R soil DNA Kit;

ITS2 rRNA PCR;

–

6

Nikitina et al. 

(2023)

Lithuania – GC: 76

HC: 29

– Gastric mucosal biopsies AllPrep DNA/RNA Mini kit;

16S rRNA(V1–V2);

–

8

Peng et al. (2023) China HC: 49.5 (32–60)

GPL: 48.5 (32–59)

GC: 59.5 (44–81)

HC: 22 (13/9)

GPL: 22 (10/12)

GC: 16 (10/6)

HC: 27.3%

GPL: 40.9%

GC: 68.8%

Gastric juice
QIAamp® FAST DNA Stool Mini 

Kit;

16S rRNA(V4);

–

8

(Continued)
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(6.813, 12.383). Conversely, studies referencing NCBI indicated an 
increase in Fusobacterium, with a mean of 8.163 (5.200, 11.127).

3.4 Meta-regression

Meta-regression analysis aimed to identify sources of 
heterogeneity in gastric cancer microbiome studies. Results showed 
that geographic differences significantly affect Bacteroidetes and 
Firmicutes abundance (Supplementary Table S6). Specifically, the 
analysis indicated a strong negative association of Bacteroidetes with 
country (−21.91816, p < 0.001) and a positive association for 
Firmicutes (9.307176, p = 0.018). Methodological factors, such as the 
choice of 16S rRNA gene amplification regions and databases for 
annotation, significantly impacted the abundance of Actinobacteria. 
The method used showed a negative coefficient (−20.59842, p = 0.009), 
while the database used showed a positive coefficient (18.17374, 
p = 0.008). Additionally, sample sources were found to contribute to 
the heterogeneity of Firmicutes (−19.25102, p = 0.006).

3.5 Sensitivity analysis and publication bias

After excluding studies with a sample size of less than 50, 
sensitivity analysis revealed trends in changes to microbial diversity 
indices as well as microbial community structure at the genus and 
phylum classification levels (Supplementary Table S7). As a result, 
changes in 9 out of the 11 bacterial genera identified by overall analysis 
were found to be robust. Notably, the analysis of the genus Clostridium 
showed a slight increase in the log OR from 7.994 to 8.227, and the 
p-value changed from an extremely low 7.55E-12 to 1.80E-07 when 
small-sample studies were excluded. Although the result remained 
statistically significant, the increase in heterogeneity to 17.70% 
suggested some inconsistency between studies. Regarding the 
Shannon index of α-diversity, the log odds ratio slightly decreased 
after exclusion, while the p-value rose from 0.023 to 0.048. This 
implied that the negative association’s statistical significance was 
somewhat strengthened. Overall, excluding small-sample studies 
caused only limited changes in the log odds ratios and p-values.

The funnel plots indicated possible publication bias in the meta-
analysis of microbial diversity and abundance related to gastric cancer. 
Asymmetries were observed for several bacteria. The funnel plot for 
Shannon appears symmetrical, indicating minimal bias, which was 
supported by a non-significant Egger’s test. However, a significant 
Begg’s test for Shannon suggested that further scrutiny might 
be necessary. For Actinobacteria, both Egger’s and Begg’s tests showed 
a low probability of bias. The plot for Proteobacteria displayed slight 
asymmetry, but only the trim-and-fill method indicated the need for 
adjustment, adding three studies to the left. Helicobacter, Lactobacillus, 
and Streptococcus exhibited asymmetrical plots. Begg’s test suggested 
potential bias for the latter two, although Egger’s test results did not 
align with this for all (Supplementary Table S8).

4 Discussion

This meta-analysis aggregated data from 33 studies and explored 
the evolution of the gut microbiome from pre-cancerous conditions to T
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TABLE 3 Statistically significant bacterial groups identified by the meta-analysis in subgroup analysis.

Outcome Subgroup
Bacterial 
groups

N
Sample 

size

Log odds ratio
p-value I2

(95% CI)

Phylum Method

16S rRNA(V1–V3) Actinobacteria 2 75 6.748 (3.608, 9.889) 2.54E-05 18.50%

16S rRNA(V4)
Bacteroidetes 2 409 10.334 (7.552, 13.116) 6.62E-13 97.20%

Actinobacteria 2 409 −10.334 (−13.116, −7.552) 6.62E-13 0.00%

Database

EzTaxon-e Actinobacteria 2 75 6.748 (3.608, 9.889) 2.54E-05 18.50%

Greengenes
Proteobacteria 3 469 9.531 (7.254, 11.808) 1.87E-15 0.00%

Actinobacteria 2 409 −10.334 (−13.116, −7.552) 6.62E-13 0.00%

NCBI and SILVA
Actinobacteria 2 328 10.143 (7.362, 12.923) 1.17E-12 0.00%

Firmicutes 2 328 −10.143(−12.923, −7.362) 1.17E-12 0.00%

Genus Country

Korea
Helicobacter 2 592 9.936 (4.611, 15.261) 2.78E-04 72.50%

Streptococcus 2 33 5.651 (2.795, 8.508) 1.27E-04 0.00%

Portugal Neisseria 2 195 −9.006 (−11.795, −6.218) 7.33E-10 0.00%

Method

16S rRNA (V4) Lactobacillus 2 170 8.365 (5.567, 11.162) 7.90E-09 0.00%

16S rRNA (region NR) Lactobacillus 2 86 7.449 (4.642, 10.257) 2.64E-07 0.00%

Sample source

Stomach
Bacteroides 12 680 11.154 (8.227, 14.082) 4.88E-13 9.90%

Lactobacillus 8 718 5.939 (0.300, 11.578) 0.039 93.80%

Gastric juice Helicobacter 2 175 8.552 (5.757, 11.348) 4.04E-09 0.00%

Feces
Streptococcus 2 177 8.598 (5.803, 11.393) 3.95E-09 0.00%

Bacteroides 3 306 −8.800 (−11.079, −6.520) 4.66E-13 0.00%

Database

Greengenes Lactobacillus 2 267 9.598 (6.813, 12.383) 5.69E-11 0.00%

NCBI Fusobacterium 2 151 8.163 (5.200, 11.127) 1.01E-07 10.60%

N, the number of studies.

the development of gastric cancer. In comparison to previous studies, 
our analysis was more comprehensive. Initially, we conducted a meta-
analysis, followed by subgroup analysis, sensitivity analysis, and 

meta-regression. Additionally, we  conducted a detailed analysis of 
publication bias. According to our study, a pattern of reduced microbial 
diversity was found, which is consistent with earlier studies (Liu et al., 

TABLE 2 Meta-analysis of changes on genus level between gastric and non-gastric cancer patients.

Genus No. of studies Simple size Log odds ratio 
(95% CI)

p-value I2

Lactobacillus 11 1027 5.474 (0.949, 9.999) 0.020 93.60%

Streptococcus 11 969 5.095 (0.293, 9.897) 0.038 93.80%

Achromobacter 2 184 8.716 (5.923, 11.510) 1.995e-09 0.00%

Bacillus 2 303 9.661 (6.876, 12.446) 1.058e-10 0.00%

Capnocytophaga 2 226 8.643 (5.847, 11.439) 1.995e-09 0.00%

Clostridium 3 204 7.994 (5.706, 10.283) 7.553e-12 0.00%

Dialister 2 257 8.995 (6.204, 11.787) 1.350e-09 0.00%

Klebsiella 2 253 9.141 (6.203, 12.080) 1.995e-09 9.70%

Slackia 2 254 8.909 (6.116, 11.703) 1.362e-09 0.00%

Porphyromonas 2 182 −8.602 (−11.396, −5.808) 1.995e-09 0.00%

Rothia 2 182 −8.602 (−11.396, −5.808) 1.995e-09 0.00%
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2022; Li et  al., 2023). However, it is important to note that earlier 
studies may have been limited by the scope of their sample selection, 
potentially not capturing the full spectrum of microbiome variability 
associated with gastric cancer. Our analysis builds upon and expands 
these findings by incorporating a broader and more diverse datasets, 
enhancing the comprehensiveness and generalizability of our 
conclusions. The reduction in microbial diversity observed in various 
studies emphasizes its potential impact on the immune system’s ability 
to respond to cancer. This highlights the critical role of the gut 
microbiome in the progression of gastric cancer.

The Shannon index, often used to measure species richness and 
evenness (Lozupone and Knight, 2008), was significantly reduced in 
people with gastric cancer compared to pre-cancerous conditions in 
this study, which implies a decrease in the diversity of the gastric 
microbial ecosystem when gastric cancer develops. The reasons for the 
decrease are not yet clear. A previous study suggested that it might be a 
result of factors such as gastric acid and Helicobacter pylori infection 
reshaping the microbial community during the carcinogenic process 
(Wang et al., 2018). However, changes in diet, use of antibiotics or 
other medications (David et al., 2014; Altveş et al., 2020) were reported 
to be associated with the reduction in Shannon index.

At the genus level, an increase in Lactobacillus and Streptococcus, 
alongside a decrease in Rothia and Porphyromonas, were identified in 
this meta-analysis. The variation in bacterial abundance is thought to 
influence the immune system’s ability to detect and eliminate cancer 
cells. For example, an increase in Lactobacillus correlates with higher 
counts of CD3+ T cells (Qi et  al., 2019), suggesting a complex 
relationship between microbiome composition and immune function. 
Furthermore, experimental evidence from studies such as 
Lertpiriyapong et al. (2014) highlighted how specific bacterial presences 
could trigger inflammation and promote cancer development. 
Interestingly, interventions such as post-surgical supplementation with 
Clostridium butyricum have been shown to modulate immune responses 
favorably, indicating potential therapeutic pathways (Cao et al., 2022). 
Epidemiological studies have suggested a correlation between the 
occurrence of gastric cancer and periodontal disease (Lo et al., 2021). 
Porphyromonas is one of the pathogens that cause periodontal disease 
(Darveau, 2010). Experiments have shown that lipopolysaccharide 
(LPS) from Porphyromonas can damage the gastric mucosal barrier, 
which is considered a promoting factor for cancer-related gastritis. 
Furthermore, LPS from Porphyromonas can regulate the host’s immune 
response (Oriuchi et al., 2024). Although direct research linking Rothia 
with gastric cancer is limited, it is important to note that Rothia is part 
of the core microbiota in the stomachs of healthy individuals (Nardone 
and Compare, 2015). The gut microbiota can produce butyrate, a short-
chain fatty acid that has been shown to suppress the expression of 
PD-L1 and IL-10  in immune cells and demonstrate tumor growth 
inhibition potential in mouse models (Lee et al., 2024). It is speculated 
that Rothia may influence the progression of gastric cancer through its 
metabolic products. Future studies will likely focus on elucidating the 
specific mechanisms of these associations.

The roles of Lactobacillus and Streptococcus in gastric cancer are 
nuanced, with Lactobacillus associated with both anti-inflammatory 
effects and cancer progression, potentially serving as a biomarker for 
the disease (Bali et al., 2021). Similarly, Streptococcus adheres to gastric 
mucosa, influencing cancer development through metabolic and 
immune modulation (Spiegelhauer et al., 2020). Notably, Streptococcus 
anginosus has been implicated in exacerbating gastric inflammation 
and cancer progression (Fu et al., 2024). Helicobacter pylori’s role in 

gastric cancer development is significant (Plottel and Blaser, 2011). 
The involvement of Helicobacter pylori, a well-documented factor in 
gastric cancer, showed variability in our analysis, contrasting with 
findings by Liu et  al. (2022), which could be  attributed to 
methodological and sample size differences.

Due to the high heterogeneity observed in certain microbial 
communities in the overall analysis, a series of analyses including 
subgroup analysis, sensitivity analysis, and meta-regression were 
conducted to identify the sources of heterogeneity. Subgroup analyses 
revealed regional variations in bacterial communities, suggesting that 
dietary or environmental factors contributed to a higher prevalence of 
Streptococcus in Asian populations compared to Europeans. 
Geographic differences had a significant impact on the levels of 
Bacteroidetes and Firmicutes. Research showed that there were 
significant geographic differences in the composition of the gut 
microbiota between populations from the United  States, Chile, 
South Africa, Kuwait and Malaysia, particularly in the distribution of 
Bacteroidetes and Firmicutes. In samples from the United  States, 
Firmicutes dominate, followed by other regions such as South Africa. 
In Chilean samples, however, Bacteroidetes took the lead. Moreover, 
by calculating the ratio of Firmicutes to Bacteroidetes (F:B), it was 
found that the F:B in US samples was the highest, reaching 4.15, while 
the F:B in Chilean samples was the lowest (Kumar and Bhadury, 
2023). Other studies in the Asian population also showed that 
geographic differences significantly affect the abundance of 
Bacteroidetes and Firmicutes in the gut. These differences were related 
to the unique dietary habits, cultural customs and environmental 
conditions of each region (Lim et al., 2021; Taha et al., 2023).

Additionally, methodological choices and sample sources 
introduced variability in the detection of bacteria such as Bacteroides 
and Lactobacillus. It became clear that methodological differences, 
including the choice of sample sources and DNA sequencing techniques, 
were the main cause of inconsistencies in microbiota research (Hiergeist 
et  al., 2016; Tang et  al., 2020). The choice between using feces or 
endoscopic biopsies as samples significantly affected the outcomes 
(Jalanka et al., 2015; Tropini et al., 2018), highlighting the nuanced 
impact of sample origin on research findings. Furthermore, variations 
in DNA isolation and sequencing methodologies, as well as the choice 
of database platforms, posed challenges in accurately differentiating 
microbial communities. These methodological considerations were 
crucial in microbiome studies, emphasizing the need for a rigorous and 
standardized approach to mitigate inconsistencies and enhance the 
comparability of results across studies. This comprehensive approach 
ensured that the complexities of microbial ecosystems were accurately 
interpreted, fostering advancements in our understanding of the 
microbiome’s role in health and disease. Variations in DNA isolation 
and sequencing methodologies, as well as database platforms, could 
introduce errors in microbial differentiation. Moreover, meta-regression 
also confirmed that geographic, methodological, and sample origin 
differences were the sources of heterogeneity.

Sensitivity analysis on studies with sample size no less than 50 
revealed an increase in the p-values for Lactobacillus and Streptococcus. 
This change suggested that smaller studies might have influenced the 
results due to their high variability or specific biases. These small-
sample studies sometimes showed a more significant association 
because of greater statistical variation or because of selective reporting 
and publication bias. Because most study samples were collected 
during health examinations, it was difficult to collect a large number 
of samples, which limited the ability to conduct large-scale research. 
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Therefore, future studies should aim to expand the research scale and 
include a broader population to explore the potential association 
between these bacteria and gastric cancer.

This meta-analysis presented a detailed examination of the 
changes in the gut microbiome that are linked to the development of 
gastric cancer. It highlighted the intricate relationship between 
microbial diversity and cancer, the potential of microbiome-focused 
therapies, and the need for methodological rigor in future research. 
The limitations of this study, including lack of data, potential bias, and 
inability to include all relevant factors, highlight the need for large-
scale studies. These limitations underscore the need for large-scale 
studies to confirm these findings and further explore the role of the 
microbiome in gastric cancer. Specifically, future research should 
focus on conducting long-term cohort studies to explore the dynamic 
changes in the gut microbiome during the development and 
progression of gastric cancer. In parallel, pathogenic mechanism 
studies should be conducted to understand how specific microbes 
promote or influence the development of gastric cancer. In addition, 
interventional studies could be conducted to evaluate the efficacy of 
specific microbes in the prevention and treatment of gastric cancer. 
Through these studies, we can gain a more complete understanding of 
the role of the microbiome in gastric cancer and provide guidance for 
targeted prevention and treatment strategies in the clinical setting.

5 Conclusion

This study identified robust changes of nine bacterial genus in people 
with gastric cancer, which were country-/sample source-specific, with 
lower α-diversity observed in individuals with gastric cancer. Large-scale 
studies are needed to explore the mechanisms underlying these changes.
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