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Editorial on the Research Topic

Linguistic biomarkers of neurological, cognitive, and psychiatric

disorders: verification, analytical validation, clinical validation, and

machine learning

Introduction

Speech production is a complex process involving the coordination of over 100muscles

across the respiratory, articulatory, and phonation systems. This intricate coordination

makes speech a valuable source of biomarkers for various diseases. By analyzing speech

production, we can gain insights into neuromuscular and psychological conditions,

making it a powerful tool for the early detection and monitoring of these disorders as

evidenced by the diverse studies in this Research Topic. These studies leverage and develop

innovative methodologies to uncover the diagnostic potential of speech characteristics.

Nine Original Research articles were accepted in this Research Topic out of 17

submissions. With each paper having on average 5.2 authors, the interdisciplinary nature

of this Research Topic is apparent. The nine articles cover seven broad types of disorders,

including neurodegenerative diseases (Dash et al.; Roland et al.), neurodevelopmental

disorders (Hong et al.), cognitive impairments (Oh et al.), psychological and emotional

disorders (Cohen et al.; Chao et al.), respiratory health (Zeng et al.), concussion (Patel et

al.) and stuttering (Barrett et al.). To illustrate what the nine articles cover, a word cloud

(Figure 1) was generated showing the 200 most frequent words found in the abstracts of

the articles.
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FIGURE 1

A word cloud which represents the 200 most frequent words found in the abstracts of the articles included in this special issue. The words were

converted to lower case, English stop words were removed, and lemmatization was performed using the R libraries “tm” (Feinerer et al., 2008;

Feinerer and Hornik, 2024) and “textstem” (Rinker, 2018). The resulting lemmas were visualized using the R library “wordcloud” (Fellows, 2018).

Neurodegenerative diseases

Dash et al. explore the use of magnetoencephalography

(MEG) to identify neural biomarkers for Amyotrophic Lateral

Sclerosis (ALS). By analyzing neuromagnetic patterns during

speech tasks, their study identifies distinct beta band activity as

a potential diagnostic marker, achieving high accuracy in single-

trial classifications. Roland et al. focus on detecting early speech

biomarkers of dysarthria in Parkinson’s disease (PD) through vowel

articulation analysis. Their use of vowel triangle areas (tVSA) and

vowel articulation index (VAI) effectively distinguishes between

dysarthric and non-dysarthric PD patients, highlighting the

potential of speech analysis for early detection and differentiation in

neurodegenerative diseases. These studies underscore the potential

of advanced neural and acoustic analyses in identifying early, subtle

markers of neurodegeneration.

Neurodevelopmental disorders

Hong et al. demonstrate that phonetic entrainment, where

people adjust their speech to match their partner’s phonetic

features, is challenging for individuals with Autism Spectrum

Disorder (ASD). Using a social robot to control speech variability

during conversations, the study found autistic children matched

their typically developing (TD) peers in vowel formants and

mean fundamental frequency (f0) but struggled with f0 range

entrainment. This highlights the potential of human-robot

interactions for assessing phonetic entrainment in autistic children.
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Cognitive impairments and dementia

Oh et al. focused on the differentiation of cognitive

impairments and various forms of dementia through speech

analysis. They investigate whether prosodic features can distinguish

between Alzheimer’s type dementia (DAT), vascular dementia

(VaD), mild cognitive impairment (MCI), and healthy cognition.

By identifying key features such as pitch, amplitude, rate, and

syllable, they demonstrate the feasibility of using acoustic measures

as diagnostic tools for cognitive conditions. This approach is

complemented by listener perceptions of emotional prosody, which

further validate the acoustic findings. These insights into speech

characteristics offer a non-invasive and potentially scalable method

for early diagnosis and differentiation of cognitive impairments.

Psychological and emotional disorders

Speech analysis also extends its utility to the realm of

psychological and emotional disorders. Cohen et al. evaluate

a multimodal dialog system (MDS) for characterizing mental

states in individuals with depression, anxiety, and suicide

risk. By integrating speech, language, and facial movement

biomarkers, their system offers a comprehensive approach to

remote patient monitoring. The ability to analyze multimodal

data not only improves classification performance but also

provides a scalable solution for ongoing mental health assessment.

Chao et al. introduce a novel ResGAT emotion recognition

framework, which combines residual networks and graph attention

networks, to enhance emotion recognition from EEG data. This

method effectively captures spatial and connection information,

significantly improving the accuracy of emotion recognition. These

studies highlight the potential of speech and multimodal analysis

in identifying and monitoring psychological and emotional states,

paving the way for more effective mental health interventions.

Speech and respiratory health

The link between speech and respiratory health is another

critical area of exploration. Zeng et al. investigate how

speech breathing can be linked to lung function in chronic

respiratory diseases. Their study uses articulation tasks to

challenge and quantify speech articulation and breathlessness.

The increase in pause ratios over successive runs provides

quantifiable evidence of respiratory demand, suggesting

that speech tasks can effectively assess respiratory health.

This approach offers a non-invasive method for monitoring

chronic respiratory conditions, potentially leading to better

disease management.

Speech and concussions

Speech analysis also shows potential in assessing neurological

impacts from mild head injuries. Patel et al. analyze speech error

rates in athletes post-concussion, revealing significant increases in

pauses and time fillers. This study demonstrates that even mild

head injuries can result in detectable speech changes, suggesting

that speech analysis could serve as a diagnostic tool for concussions.

The ability to identify subtle speech errors provides an additional

layer of assessment for sports-related injuries, contributing to more

comprehensive care for athletes.

Speech disorders

Finally, the application of speech analysis to detect and

manage speech disorders is exemplified by Barrett et al.’s study

on automatic recognition of stutters (ARS). By comparing event-

based and interval-based segmentation methods, their research

shows that event-based segmentation more effectively preserves

stutter boundaries and types, leading to better ARS performance.

This study emphasizes the importance of segmentation techniques

in speech analysis and suggests that refined methods and larger

datasets could further improve ARS systems. The findings point

to the potential of automated speech analysis in supporting

interventions for speech disorders, enhancing the ability tomonitor

and manage conditions like stuttering.

Conclusion

The studies presented in this Research Topic illustrate

the potential of speech analysis as biomarkers for a range

of neuromuscular and psychological disorders. The innovative

methodologies and findings underscore the importance of further

research in this field. By leveraging advanced acoustic, neural, and

multimodal analyses, as well as machine learning and automatic

speech recognition algorithms, researchers can enhance diagnostic

accuracy and patient care, paving the way for early intervention

and personalized treatment strategies. The preliminary nature of

the findings of some studies calls for more research involving larger

subject groups and patient populations with various diseases to

validate the differential power of speech-based biomarkers across

different conditions.
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Speech error rates after a 
sports-related concussion
Sona Patel 1,2*, Caryn Grabowski 1, Vikram Dayalu 1 and 
Anthony J. Testa 3

1 Department of Speech-Language Pathology, Seton Hall University, Nutley, NJ, United States, 
2 Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, United States, 
3 Center for Sports Medicine, Seton Hall University, South Orange, NJ, United States

Background: Alterations in speech have long been identified as indicators of 
various neurologic conditions including traumatic brain injury, neurodegenerative 
diseases, and stroke. The extent to which speech errors occur in milder brain 
injuries, such as sports-related concussions, is unknown. The present study 
examined speech error rates in student athletes after a sports-related concussion 
compared to pre-injury speech performance in order to determine the presence 
and relevant characteristics of changes in speech production in this less easily 
detected neurologic condition.

Methods: A within-subjects pre/post-injury design was used. A total of 359 
Division I  student athletes participated in pre-season baseline speech testing. 
Of these, 27 athletes (18–22 years) who sustained a concussion also participated 
in speech testing in the days immediately following diagnosis of concussion. 
Picture description tasks were utilized to prompt connected speech samples. 
These samples were recorded and then transcribed for identification of errors and 
disfluencies. These were coded by two trained raters using a 6-category system 
that included 14 types of error metrics.

Results: Repeated measures analysis of variance was used to compare the 
difference in error rates at baseline and post-concussion. Results revealed 
significant increases in the speech error categories of pauses and time fillers 
(interjections/fillers). Additionally, regression analysis showed that a different 
pattern of errors and disfluencies occur after a sports-related concussion 
(primarily time fillers) compared to pre-injury (primarily pauses).

Conclusion: Results demonstrate that speech error rates increase following even 
mild head injuries, in particular, sports-related concussion. Furthermore, the 
speech error patterns driving this increase in speech errors, rate of pauses and 
interjections, are distinct features of this neurological injury, which is in contrast 
with more severe injuries that are marked by articulation errors and an overall 
reduction in verbal output. Future studies should consider speech as a diagnostic 
tool for concussion.

KEYWORDS

sports-related concussion, concussion, mild traumatic brain injury, speech, fluency, 
disfluencies, speech error rate, pausing
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1. Introduction

Sports-related concussion (SRC) occurs as a result of impact to the 
head or neck during competitive or recreational athletic activities 
(Powell et al., 2021). SRC is a specific classification of concussion or 
mild traumatic brain injury (mTBI), broad terms used to define milder 
forms of traumatic brain injury (TBI) which result from insult in a 
closed-head nature due to linear and/or rotational forces to the head or 
neck (McCrory et al., 2013). SRCs are reported to occur at a rate of 4.13 
per 10,000 athlete exposure (Chandran et al., 2022). SRCs are typically 
characterized by a range of physical and cognitive symptoms, often 
initially determined by self-report of symptoms (McCrory et al., 2017). 
There are clinical factors that differentiate SRC as a less substantial 
injury than mTBI, such as an abbreviated recovery period, typically less 
than 10 days, as compared to mTBI, where recovery can take 2–4 weeks 
(King, 2019). In contrast with more severe brain injuries which cause 
visible abnormalities detectable through neuroimaging, the nature and 
relative severity of damage in SRCs make detection difficult through 
currently available methods of neuroimaging. Traumatic brain injury 
is typically classified in terms of severity using the Glasgow Coma Scale 
and other standardized scales. A concussion can be similarly graded 
according to scales such as the Nelson grading system (Nelson et al., 
1984) or the Colorado Grading System (Ommaya, 1985), however, 90% 
of concussions do not involve loss of consciousness and under 24 h of 
amnesia, resulting in a grading of 2 or less on the Nelson and 1 on the 
Colorado (Cantu, 2006). Detection and diagnosis therefore rely on a 
series of assessments spanning a host of domains including measures 
of physical symptoms (e.g., balance, visual disturbances, headache, 
fatigue) as well as some basic cognitive functions (e.g., concentration, 
memory; Broglio et al., 2014; Echemendia et al., 2017). Variance across 
domains can occur and must be appraised in aggregate and interpreted 
by the clinical provider to determine the presence of injury, often in 
relation to broad normative data. To date, no practically available 
diagnostic marker for concussion exists.

One possible diagnostic marker for concussion is speech errors, 
characterized by deviations in timing, articulatory precision, and 
fluency (Darley et al., 1969). The neurologic underpinnings of speech 
production cover an expansive range of structures and related 
functions within the brain, involving “feed-forward” and “feedback” 
pathways that drive the conversion of cognitive-linguistic thought to 
motor planning and ultimately to speech-motor movements 
(Murdoch, 2001; Wildgruber et al., 2001; Guenther, 2006; Hickok, 
2012). This complex neural circuitry constantly monitors and updates 
speech output through internal and external feedback loops, 
optimizing accuracy of production with minimal speech errors in 
neurologically healthy speakers (Fox Tree, 1995). On the other hand, 
brain injury and advanced diseases can impact cognitive and 
sensorimotor components of the speech production process and result 
in a substantial increase in the number of errors when speaking.

Speech errors are widely accepted as hallmark sequelae of 
neurotrauma in conditions such as stroke, brain injury, amyotrophic 
lateral sclerosis (ALS), Parkinson’s disease (PD), and multiple sclerosis 
(Yorkston, 1996; Hartelius et al., 2000; Tomik and Guiloff, 2010; Moro-
Velazquez et al., 2021). These conditions can result in alterations in 
acoustic properties (Holmes et al., 2000; Rusz et al., 2011), articulatory 
precision (Karlsson and Hartelius, 2019; Karlsson et al., 2020), and 
measures of timing (Juste et al., 2018). The patterns of speech errors 
that occur can often predict the specific neurological condition, 

holding potential for use as biomarkers of various conditions of the 
central and peripheral nervous system. For example, various 
parameters of speech production have been identified as markers for 
individuals with focal cerebrovascular accidents, commonly referred 
to as “stroke.” Individuals with right hemisphere stroke typically 
exhibit significant reductions in fundamental frequency range, which 
is especially apparent when expressing emotional tones, mainly “joy” 
and “anger” (Ross and Monnot, 2008; Guranski and Podemski, 2015; 
Patel et al., 2018). In addition, the prosodic quality of stress, comprised 
of multiple acoustic factors including pitch, intensity, vowel quality, 
and duration (Chrabaszcz et al., 2014), have been found to indicate 
cortical hemispheric effects. Balan and Gandour (1999) identified 
limitations in the ability of individuals with right hemisphere stroke 
to shift or adjust stress to the same degree as health controls. In 
addition, Vergis et al. (2014) identified significant difference in speech 
rate and vowel duration among individuals with left hemisphere 
stroke resulting in apraxia of speech and aphasia when compared to 
those with aphasia alone as well as healthy controls.

The specific neurological impacts of TBI vary based on the location 
and nature of the injury, including possible etiologies of hematoma, 
hemorrhage, and diffuse axonal injury (Mesfin and Taylor, 2017). Severe 
and moderate TBIs result in symptoms of motor speech impairment, 
such as dysarthria (Goozée et al., 2001; Solomon et al., 2001; Wang et al., 
2005; McAuliffe et al., 2010; Kuruvilla et al., 2012) and occasionally 
apraxia of speech (Yadegari et al., 2014). Common characteristics include 
a slower articulation rate, smaller proportion of phonation time relative 
to sample duration, and larger total pause time (Wang et al., 2005). Other 
research in severe TBIs using analysis of passage readings has identified 
deficits in rate, resonance, and precision of consonants/overall 
intelligibility, variations in pitch and general stress patterns, as well as 
changes in phrase length among other aspects of speech production 
compared to healthy controls (Theodoros et al., 1994). Recent research 
with severely injured young children (6–10 years) suggests that during 
conversations there are decreases in pitch variation, the number of 
unique phonemes spoken, pause lengths, and increased variability of 
articulation rate (Noufi et  al., 2019). All such findings indicate that 
speech deficits are a strong indicator of the presence and severity of TBI.

Deviations in various elements of speech production have also 
been identified as possible markers of injury in advanced stages of 
Alzheimer’s disease, a disease process resulting from deviations in 
neural cellular health and integrity associated with abnormal protein 
deposits and metabolic processing ultimately resulting in diffuse 
failure of brain health and function (Mohandas et al., 2009). Speech 
characteristics of individuals with Alzheimer’s disease include 
temporal changes, such as reduced rate of speech (phoneme or syllable 
production), increased pause or hesitation ratio, increased instances 
of repetitions, and increased frequency of within and between phrase 
pauses (Hoffmann et al., 2010; Fraser et al., 2016; Pistono et al., 2016; 
Slegers et  al., 2018). Even in milder or earlier stages of 
neurodegeneration, such as early-stage Alzheimer’s disease or mild 
cognitive impairment, differences in speech characteristics exist when 
compared to neurologically healthy controls. Analysis of connected 
speech samples in individuals with mild cognitive impairment has 
revealed alterations in articulation rate with and without hesitations, 
silent pauses, hesitation ratio, length of utterances, and pause per 
utterance when compared to healthy controls (Tóth et al., 2018).

Despite the scaled parallel in physical and cognitive symptoms 
commonly identified in concussion and more severe head injuries, 
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consideration of the impacts of concussion on speech production has 
been limited. Changes in speech are typically not captured on 
commonly used symptom inventories for milder injuries and sports-
related sideline assessments (Schatz et al., 2006; Asken et al., 2020). 
However, recent early evidence has shown significant alterations in 
rate of speech (Salvatore et al., 2019), acoustic features (Daudet et al., 
2017), articulatory precision (Chong et  al., 2021) and fluency 
(Robertson and Diaz, 2020; Rose et al., 2021; Toldi and Jones, 2021) 
in concussion. These preliminary findings suggest that further 
examination of speech changes in milder head injuries is necessary in 
a larger sample in order to establish the specific pattern of speech 
changes associated with concussion.

The goal of this study was to identify the speech changes that 
occur following an SRC using a comprehensive system for coding 
errors. Because error rates (disfluencies, misarticulations, speech 
errors) in typical speech production are low, small deviations from 
normal that might occur after a concussion may not be noticeable or 
identified as disordered because the errors do not interfere with 
functional communication, even though these errors may 
be systematically or consistently occurring. To investigate whether 
small deviations in speech fluency or patterns of speech errors exist, 
the present study analyzed speech samples of student athletes obtained 
in the days immediately following a concussion and compared these 
samples to their individual baseline recordings obtained prior to 
injury. A picture description task was used to obtain a more 
ecologically valid assessment of speech errors and disfluencies present. 
We expected student athletes with SRC to demonstrate an overall 
increase in the total number of speech errors compared to their 
individual pre-injury levels. Further, we  anticipated observable 
patterns of errors that resemble those of more severe head injuries, 
albeit reduced in frequency.

2. Materials and methods

2.1. Participants

From 2018 through 2021, consenting Division I student athletes 
at Seton Hall University (n = 359) underwent speech testing 
concurrent with baseline testing that is completed annually as 
standard of care by Sports Medicine. All participants were proficient 
in English in lines with academic demands. All participants reported 
no history of vision, hearing, speech, or language issues, neurological 
disorders, or diagnosed psychiatric disorders (e.g., anxiety, depression, 
bipolar disorder). Additionally, it was confirmed at intake that 
participants were not experiencing upper or lower respiratory 
infections or other conditions that would impact speech and voice 
quality at the time of testing. Of the individuals tested, 27 athletes (11 
males, 16 females; mean age: 18.3 years, range of 18–25 years) were 
determined to have a concussion by a Certified Athletic Trainer from 
Seton Hall University’s Sports Medicine. All of the athletes diagnosed 
with SRC in this study had 0 min of loss of consciousness and under 
no reported amnesia. Injured participants represented eight sports 
teams at the University (see Table 1). All injured participants were 
initially evaluated as per the Sports Medicine protocol and were 
referred for testing once presence of concussion was determined. In 
some cases, due to latency of symptom onset or evolving presentation 
(such as headaches, light or sound sensitivity, sleep disturbance, 

among others), confirmation of the presence of concussion occurred 
up to 36 h after injury (Ruff et al., 2009). Participants with concussion 
then underwent post-injury speech testing, matching baseline testing 
procedures. All participants provided informed consent in accordance 
with the Hackensack Meridian Health Institutional Review Board on 
behalf of Seton Hall University.

2.2. Procedures

This study used a pre-test/post-test design where the same speech 
and language tasks were performed by participants before and after 
injury. Each test session was completed in a quiet study room reserved 
for student-athletes in under 20 min. As a part of baseline testing, all 
participants completed an intake questionnaire at the time of consent 
that included questions pertaining to demographic information and 
relevant medical history. Injured participants were tested in the days 
after being diagnosed with a concussion (mean = 2.83 days; range 
0–6 days; see Table  1). Table  1 also provides the Standardized 
Assessment of Concussion (SAC) score post-injury as an indicator of 
concussion (out of 30; McCrea et al., 1998). Testing included a variety 
of speech elicitation tasks ranging in complexity and duration. Speech 
was recorded using an AKG head-worn microphone (HARMON 
International, Stamford, CT), which was routed through an Apollo 
audio interface with preamplifier (Universal Audio, Inc., Scotts Valley, 
CA) that was connected to a laptop computer dedicated for speech 
data collection. Audition software (Adobe, San José, CA) was used to 
record and store speech signals as.wav files onto the computer. Here 
we examined the audio files collected from one of the testing tasks, 
specifically the standard picture description task where participants 
were presented with a visual stimulus featuring a scene with multiple 
elements to elicit verbal output (e.g., “The Cookie Theft”; Goodglass, 
1983; Shimada et  al., 1998). Participants were instructed by the 
experimenter to “Take a look at this picture and explain to me what is 
happening. Tell me everything you can about the picture.”

2.3. Speech error coding

To prepare the sound files for analysis (27 pre-injury or baseline 
samples, 27 post-concussion samples), extraneous speech that 
indicated acknowledgement of the task (e.g., “Okay”) or the end of 
one’s description (e.g., “That’s about it”) was removed. All sound files 
were transcribed in order to compute the number of syllables per 
sample. Next, error analysis was performed by two coders, who 
listened to the sound files to identify speech disfluencies and errors. 
Speech disfluencies and errors were classified as 1 of 14 types based 
on a combination of coding procedures commonly utilized in fluency 
and speech analysis (Lutz and Mallard, 1986; St. Louis et al., 1991; 
Ambrose and Yairi, 1999; Shriberg, 2001; Roberts et al., 2009; Sawyer 
and Yairi, 2010; Duffy, 2019) and marked on the transcript. Both 
coders were trained to identify and code 14 error types based on the 
specific definitions noted in Table 2. These 14 error types were also 
collapsed into 6 major categories based on shared features: pauses, 
revision/incomplete utterances, repetitions, articulation errors, time 
fillers, and prolongations. For example, all errors featuring repeated 
speech output were grouped into one larger category of “repetition” 
errors; all sound-level errors were grouped into the larger category of 
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“articulation errors.” Both coders converged on the location and type 
of each error. The coders were blinded to the subject and condition 
when coding the speech samples. Reliability was assessed on 
approximately 15% of subjects (Corey and Cuddapah, 2008). Inter-
rater reliability was calculated as the Pearson’s correlation between 
raters for each error category. Inter-rater reliability across error 
categories was acceptable (greater than.81; McHugh, 2012): total 
errors = 0.98, articulation = n/a (no errors across samples tested), 
prolongation = 0.86, pause = 0.94, time fillers = 0.98, revision/
incomplete = 0.92, and repetition = 1.0.

2.4. Statistical analyses

Error rates were computed for each speech error type of each 
sample in order to normalize error totals to the amount of speech 
produced (number of errors divided by the number of syllables). Since 
this study sought to examine changes in the within-subjects factor of 
time (baseline, concussion), a repeated measures analysis was 
required. Kolmogorov-Smirnoff tests of normality were significant 

(p < 0.05) for all parameters except fillers and pauses and the larger 
categories of time fillers, total dysfluency, and number of syllables at 
baseline. Results were similar after concussion, in addition to a lack of 
significance (p > 0.05) for interjections, indicating deviations from 
normality for most parameters. Examination of the skewness and 
kurtosis values revealed larger values than the standard error for either 
the baseline or concussion data for each parameter, indicating that 
assumptions of homoscedasticity also appear to have not been fully 
met. Thus, non-parametric Friedman tests were performed in SPSS 
(IBM SPSS Statistics v.28, Chicago, IL) on the error rates for the 
number of syllables produced, the total error rate, each of the six 
major error categories, and the 14 individual error types.

Next, stepwise regressions with bidirectional selection were 
performed on the 14 error types separately at baseline and after 
concussion to determine the extent that these variables best captured the 
overall error rate. Bidirectional selection involves a mixture of the 
forward and backward procedures in which the variable that explained 
the most variance in the total error rate was entered into the model first 
(entry criteria: probably of f = 0.05), followed by the variable that 
explained most of the residual variance, resulting in a set of variables with 

TABLE 1 Demographic information of participants who sustained a concussion, including age, sex, sport, time of testing post-injury (days), and scores 
on the Standardized Assessment of Concussion (SAC).

Subject Age Sex Sport Days post-injury SAC post-injury

s21 22 m Men’s Basketball 2 25

s38 19 f Women’s Soccer 1 28

s40 20 f Women’s Soccer 6 27

s45 23 m Men’s Soccer 2 26

s49 19 m Men’s Soccer 2 28

s61 18 m Men’s Soccer <24 h 25

s63 18 f Women’s Soccer 4 25

s64 21 f Women’s Soccer 2 27

s73 21 m Men’s Soccer 4 28

s78 22 m Men’s Soccer 2 27

s108 19 f Softball 3 29

s102 18 f Women’s Basketball 4 19

s103 22 f Women’s Basketball 1 26

s104 18 f Women’s Golf 2 23

s116 22 f Women’s Basketball 2 29

s141 20 f Women’s Soccer 4 24

s144 20 m Baseball 5 29

s219 18 m Baseball 3 26

s227 20 f Women’s Basketball 3 26

s231 18 f Women’s Basketball 3 28

s233 24 m Men’s Soccer 2 27

s241 20 f Women’s Soccer 6 27

s244 25 m Men’s Soccer 2 22

s248 18 m Baseball 2 23

s270 19 f Softball 1 29

s315 20 f Volleyball 3 28

s321 18 f Volleyball 3 29
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the largest regression coefficients for inclusion in the model (Snyder, 
1991). Such procedures can be advantageous for identifying the primary 
contributors when the number of parameters is small, thus resulting in 
a model with the smallest number of variables (Lewis, 2007). At each 
step, the predictors that were no longer significant were removed 
(removal criteria: probability of f = 0.1). Variables that accounted for 
more than 3% of the variance in the total error rate are reported.

3. Results

Results showed no significant difference in the average number of 
syllables produced after a concussion (mean or M = 99.4; standard 

deviation or SD = 43.4) compared to baseline (M = 97.7; SD = 41.1) at 
the α = 0.05 level (Χ2 = 0.333, p = 0.564). Nevertheless, individual 
differences in the number of syllables produced by each person 
existed. Therefore, the number of errors within each error type were 
normalized to the number of syllables, resulting in an error rate for 
each error type. The total error rate was significantly different between 
baseline and concussion samples (Χ2 = 16.333, p < 0.001). The 
percentage of speech errors increased after sustaining a concussion 
(M = 18.5%; SD = 0.07) compared to baseline (M = 12.7%; SD = 0.06). 
Individual pre- and post-injury error scores are shown for each 
participant in Figure 1.

Next, changes in the number of errors and disfluencies in the six 
error categories were examined (see Figure 2). Friedman tests of the 

TABLE 2 Coding criteria for speech errors and disfluencies within six major error categories.

Error/Disfluency category Definition

Articulation Sound-level errors in articulation that include distortions, additions, omissions, substitutions

  Substitution Any sound substitution

  Distortion Any sound-level distortion

  Addition A sound that is added

  Omission A sound that is omitted from a word

Pause Pauses greater than 250 ms

Prolongation Sounds or syllables extended in duration more than 250 ms

Repetition Any utterance (sound, word, phrase) that is repeated

  Part-word Repetition of one or more phonemes within a word

  Single-syllable whole-word Repetition of a single syllable word

  Multisyllable whole-word Repetition of a word with two or more syllables

  Phrase Repetition of a phrase, i.e., a connected string of words

Revision/Incomplete A change or correction of an utterance(s) that did not convey a complete thought

  Revision Modifications to output at a syllable, word, or phrase level

  Incomplete segment Utterance terminated abruptly or does not convey a complete thought

Time Fillers Extraneous sounds, words, or phrases that do not contribute to the meaning of the utterance

  Interjection Words/phrases that are syntactically appropriate but do not add to the intended message (e.g., “So you know…,” “I guess”)

  Filler Sounds or “non-words” that add no meaning to the intended message (e.g., “um” and “uhh”)

FIGURE 1

Total speech error rates (percent) for individual participants before and after a sports-related concussion.
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error rates showed significant differences (α = 0.05) in the pause 
category (Χ2 = 10.704, p = 0.001) and the time filler category 
(Χ2 = 19.593, p < 0.001), with higher error rates occurring after a 
concussion (pauses: Mpre = 6.8%, Mpost = 9.7%; time fillers: Mpre = 2.9%, 
Mpost = 5.7%). No significant changes were found in articulation errors 
(Χ2 = 2.778, p = 0.096), prolongations (Χ2 = 1.190, p = 0.275), repetitions 
(Χ2 = 0.111, p = 0.739), or revisions/incompletes (Χ2 = 0.25, p = 0.617).

As the time filler, articulation error, repetition, and revision/
incomplete categories consisted of multiple parameters, additional 
Friedman tests were performed to examine changes in particular error 

types. Results showed significant differences in the rate of interjections 
after a concussion (p < 0.05). The change in fillers approached 
significance (p = 0.072). Results are shown in Table 3.

Stepwise regressions of the 14 error types at baseline showed that 
the total error rate was primarily driven by pauses [R2 = 0.628, 
ΔF(1,25) = 42.162, p < 0.001]. Prolongations accounted for an 
additional 28.1% of the variance [R2 = 0.909, ΔF(1,24) = 74.260, 
p < 0.001] followed by time fillers, which accounted for an additional 
3.1% of the variance [R2 = 0.940, ΔF(1,23) = 12.130, p = 0.002]. In 
contrast, the total error rate after a concussion was primarily driven 
by time fillers [R2 = 0.707, ΔF(1,25) = 60.252, p < 0.001]. Pauses 
accounted for an additional 18.4% of the variance [R2 = 0.891, 
ΔF(1,24) = 40.419, p < 0.001] followed by prolongations, which 
accounted for an additional 5.3% of the variance [R2 = 0.944, 
ΔF(1,23) = 21.882, p < 0.001]. Addition of a fourth variable accounted 
for less than 3% of additional variance. Despite significant p-values for 
additional parameters, overfitting of models can produce misleading 
results. We decided to exclude variables that were contributing 3% of 
the variance to avoid over-fitting and simply report on the major 
factors contributing to the model. Such procedures have been used in 
prior work (Patel and Shrivastav, 2011).

4. Discussion

Changes in the characteristics of speech production including the 
presence of errors or deviations from typical are known to occur 
across various neurological conditions, including moderate and severe 
brain injury. However, it is not known whether the patterns of speech 
changes that occur in milder forms of brain injury such as SRC 

FIGURE 2

Mean speech error rate (percent) for articulation errors (Artic.), 
pauses, prolongations, (Prolong.), repetitions (Rep.), revisions, and 
time fillers (TimeFill) at baseline and after concussion. A significant 
difference between conditions (α = 0.05 level) is indicated by an 
asterisk (*).

TABLE 3 Results of Friedman tests of speech error/disfluency rates at the α = 0.05 level for baseline compared to concussion.

Error/Disfluency category df Χ2 p

Articulation 1 2.778 0.096

  Substitution 1 – –

  Distortion 1 2.667 0.102

  Addition 1 0 1.000

  Omission 1 2.000 0.157

Pause 1 10.704 0.001*

Prolongation 1 1.190 0.275

Repetition 1 0.111 0.739

  Part-word 1 1.286 0.257

  Single-syllable whole-word 1 2.667 0.102

  Multisyllable whole-word 1 1.000 0.317

  Phrase 1 0.333 0.564

Revision/Incomplete 1 0.25 0.617

Revision 1 1.471 0.225

Incomplete segment 1 0.333 0.564

Time Fillers 1 19.593 <0.001*

Interjection 1 22.154 <0.001*

Filler 1 3.240 0.072

*There were no occurrences of sound substitutions for any subject.
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resemble more severe forms of brain injury or whether distinct errors 
patterns reflective of SRC exist. In this study we examined speech 
error patterns in Division I college athletes within 6 days following a 
SRC, with a prediction that the total number of speech errors and 
dysfluencies would increase after a concussion compared to individual 
pre-injury levels. The availability of individual baseline measures is 
uncommon in brain injury and is advantageous as it allows more 
sensitive identification of error trends. As predicted, within-subject 
comparisons demonstrated a significant increase in the speech error 
rate after an SRC. To the best of our knowledge, this is the first study 
to demonstrate increases in speech error rates using a comprehensive 
system for capturing errors across domains of articulation, fluency, 
and timing in a large sample.

Our second prediction was that error types in SRC would 
be  similar to those in more severe TBIs, specifically in the 
manifestation of articulation errors, reduced verbal output, and 
increased frequency of pausing (Power et  al., 2020). In order to 
evaluate this prediction, errors were coded based on a classification 
system comprised of six major categories representing a total of 14 
error types. Two of the six error categories, namely, number of pauses 
and time fillers, increased significantly after a concussion. The “pause” 
category captured any period of silence greater than 250 ms. Previous 
research has shown an increase in pausing, particularly pause 
duration, in TBI and even in health individuals under conditions of 
increased cognitive demand (Wang et al., 2005; Khawaja et al., 2008; 
Noufi et al., 2019). In line with these findings, the results of the present 
study in SRC showed that the number of pauses increased in milder 
head injuries. One other study by Banks et al. (2021) showed a similar 
pattern of results using a different task, namely that the time interval 
between syllables in a diadochokinetic speech task (repeated syllable 
production) was longer than the time interval in healthy controls. 
Despite the observed increase in the number of pauses in the present 
study, the number of syllables produced after a concussion was not 
significantly different from pre-injury baselines. In other words, the 
increased number of pauses contributed to a lengthening of the overall 
duration of the speech sample without a reduction in the total verbal 
output. These findings are in contrast with TBI research (more severe 
injuries than SRC) that shows a decrease in utterance length (Stubbs 
et al., 2018).

Although the total number of syllables did not reduce after an 
SRC, the verbal output might have been reduced in overall complexity, 
as indicated by a significant increase in the number of “time fillers” in 
the present study. The “time fillers” category examined in the present 
study included two error types that capture additional sounds, words 
or phrases that do not contribute to the sentence structure or meaning, 
namely interjections and fillers (see Table  1). Fillers differ from 
interjections in that they are extraneous sounds or non-words (Corley 
and Stewart, 2008), while interjections are extraneous words or 
phrases. In the present study, the number of interjections significantly 
increased but not the number of fillers, although they were trending. 
In other words, fillers occurred frequently prior to injury and 
continued to increase after injury. Both error types functionally serve 
to maintain continuity of connected speech production while 
accommodating increased demands on planning intended speech 
(Clark and Fox Tree, 2002).

The distribution of errors was also examined in athletes 
before any head injury to determine whether the pattern of errors 
changed after SRC. Results from the regression analysis of the 

total speech error rate at baseline by the six error categories 
showed that pre-injury errors primarily consist of pauses, 
followed by prolongations. Pausing is a behavior that allows time 
for linguistic ideation, motor planning, and execution for 
coherent and fluent speech production and a certain number of 
pauses are expected to occur when speaking. Prolongations slow 
down the rate of speaking allowing for thinking while still 
creating continuity/connectivity in verbal output as time fillers 
do, but in a subtle, less disruptive manner, that can in many cases 
can be perceived as typical alterations in stress patterning that 
occur in discourse. In contrast, errors after an SRC were primarily 
time fillers, followed by pauses. This suggests that individuals 
with SRC use time fillers (particularly interjections) to allow for 
seamless transition of thoughts while speaking more frequently 
than silent periods (pausing). This finding showcases that 
individuals with SRC may manifest a unique set of compensatory 
mechanisms to deal with the underlying neural insult. Further, 
in comparison to speech error data from more severe brain 
injuries, the use of time fillers is a unique communicative e 
pattern that may be  available only to individuals with 
milder concussions.

The increased number of pauses and time fillers in individuals 
with SRC suggests inefficiencies in the planning of linguistic content, 
which are rooted in the cognitive domains of attention, memory and 
higher order executive functions (King et al., 2006; Crawford et al., 
2007; Murray, 2012; Obermeyer et al., 2020). Concussion is known to 
impact the areas of cognition associated with the planning of speech 
output, specifically executive functions, attention, and memory 
(Covassin and Elbin, 2010; Kaltiainen et al., 2019). Incidentally, these 
cognitive linguistic functions primarily occur in cortical regions 
where axonal sheering and other trauma occur in SRC (Shaw, 2002). 
It is therefore likely that the increased rate of pauses and time fillers 
identified in this study is an indication of underlying 
cognitive dysfunction.

The relationship of these speech error categories and cognitive 
linguistic function is seen in typical, non-injured adults, where the 
number of speech errors increases with higher processing, cognitive 
load, and cognitive ability (Bortfeld et  al., 2001; Shriberg, 2001; 
Engelhardt et al., 2013). The relationship of cognitive impairment and 
speech errors has also been established across various clinical 
populations. Both Power et al. (2020) and Smith et al. (2018) have 
demonstrated that the time fillers category (interjections and fillers) 
is associated with cognitive deficits in adults with Parkinson’s disease. 
Other works have demonstrated higher-level relationships between 
speech output and cognitive-linguistic function, where individuals 
with left hemisphere stroke experience impairments in accessing the 
lexical-semantic network resulting in long pauses and decreased 
speech fluency (Yee et al., 2008; Lerman et al., 2020). In Alzheimer’s 
disease, studies note decreases in quantity of verbal output, decreases 
in richness of content, and increases in semantic errors as hallmark 
changes representative of the disease (Kavé and Levy, 2003; de Lira 
et al., 2014; Slegers et al., 2018). Milder forms of neurological decline 
such as mild cognitive impairment and early dementia have also 
shown impacts on verbal fluency and speech output, demonstrating 
differences in linguistic properties compared to healthy controls 
(Beltrami et al., 2018). The sum of findings across healthy individuals 
and those with various neurological conditions demonstrates that 
speech changes are linked to cognitive processes.
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In the present study, the error categories of revision/incomplete, 
repetition, and prolongation did not show significant changes in 
SRC. The categories of revision/incomplete, repetition, and 
prolongation have been reported error types in TBI, although the 
incidence is extremely low and often connected with acquired 
stuttering disorders (Jokel et al., 2007). Some studies report stuttering-
like behaviors, including speech hesitations, brief blocks, rapid 
repetitions, and occasional prolongations after TBI, in addition to 
interjections, silent pauses, broken words, revisions and starters 
(Lundie et al., 2014; Roth et al., 2015). These error categories, more 
stuttering-like in nature, may therefore be associated with more severe 
injuries or concomitant conditions (e.g., post-traumatic stress 
disorder) not typically present in SRC (Lundgren et al., 2010; Norman 
et al., 2018).

Finally, the error category of articulation also failed to show 
significant differences between baseline and concussion 
conditions. Articulation errors were predicted to contribute 
significantly to the error patterns in SRC as it is a common issue 
in more severe forms of neurotrauma and neurologic disease. 
Articulation errors are highly prevalent in TBI, as dysarthria, or 
speech dysfunction due to changes in muscle strength, range-of-
motion, and coordination, occurs in up to 60% of individuals 
with TBI in acute phases of recovery (Yorkston, 1996). Most 
forms of dysarthria associated with articulatory imprecision and 
related errors result from insult to subcortical brain regions or 
peripheral nerve damage (Duffy, 2019). In the case of SRC it is 
therefore likely that mild cortical level trauma associated with 
axonal sheering does not yield impacts to the neuromuscular 
substrates of speech production that would amount to causing 
errors of articulation. This further supports the notion that 
speech errors found in SRC, pauses and time fillers, are associated 
with cognitive-linguistic dysfunction rooted in insult to cortical 
regions of the brain.

One limitation of the current study is the inclusion of the mildest 
of mild cases. In order to provide the best care for student athletes, the 
health team identified all possible cases of concussion that might have 
occurred. In other words, anyone who had sustained an impact to the 
head underwent sideline testing for symptoms of concussion. Speech 
evaluations were performed on all such cases, which may have resulted 
in a few referrals where symptoms of concussion were minimal. In the 
future, these will be controlled by setting a minimum symptom score 
as part of the inclusion criteria. In addition, future work should 
examine other factors that may influence changes in disfluency, 
including cognitive-linguistic function, severity of injury, etc.

5. Conclusion

The purpose of this study was to determine whether changes in 
speech error patterns exist in the days following a sports-related 
concussion compared to pre-season baseline measures. Our findings 
suggest the presence of increased speech errors in SRC. Specifically, 
significantly increased rates of pauses and time fillers were observed. 
Therefore, speech errors serve as a measurable marker of SRC that is 
not typically considered in current methods of clinical evaluation. The 
error patterns in the present study differ from the patterns of speech 
changes reported in the literature for other types of neurologic 

disorders including severe TBI. Thus, speech changes may serve to 
indicate the presence of concussion or milder forms of TBI. Further 
work must be done to understand the relationship of speech errors in 
SRC to higher-order cognitive functions as well as other symptom 
measures of SRC.
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Phonetic entrainment is a phenomenon in which people adjust their phonetic 
features to approach those of their conversation partner. Individuals with 
Autism Spectrum Disorder (ASD) have been reported to show some deficits in 
entrainment during their interactions with human interlocutors, though deficits in 
terms of significant differences from typically developing (TD) controls were not 
always registered. One reason related to the inconsistencies of whether deficits 
are detected or not in autistic individuals is that the conversation partner’s speech 
could hardly be  controlled, and both the participants and the partners might 
be adjusting their phonetic features. The variabilities in the speech of conversation 
partners and various social traits exhibited might make the phonetic entrainment 
(if any) of the participants less detectable. In this study, we attempted to reduce 
the variability of the interlocutors by employing a social robot and having it do 
a goal-directed conversation task with children with and without ASD. Fourteen 
autistic children and 12 TD children participated the current study in their second 
language English. Results showed that autistic children showed comparable 
vowel formants and mean fundamental frequency (f0) entrainment as their TD 
peers, but they did not entrain their f0 range as the TD group did. These findings 
suggest that autistic children were capable of exhibiting phonetic entrainment 
behaviors similar to TD children in vowel formants and f0, particularly in a less 
complex situation where the speech features and social traits of the interlocutor 
were controlled. Furthermore, the utilization of a social robot may have increased 
the interest of these children in phonetic entrainment. On the other hand, 
entrainment of f0 range was more challenging for these autistic children even in 
a more controlled situation. This study demonstrates the viability and potential 
of using human-robot interactions as a novel method to evaluate abilities and 
deficits in phonetic entrainment in autistic children.
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1. Introduction

During conversations, the interlocutors from a typical population 
coordinate with each other in verbal and non-verbal ways. These 
cooperative behaviors—where individuals adjust their behaviors to 
match closely mirror their conversation partners—are referred to as 
entrainment (also called “convergence,” “alignment,” or 
“accommodation” in some studies). For example, it has been found 
that interlocutors who are strangers to one another use head nodding 
and eye gaze coordination to signal mutual understanding (Cassell 
et al., 2007). On the other hand, entrainment in speech is more subtle 
and complicated. Studies working on phonetic entrainment have 
adapted diverse cooperative tasks and involved a wide variety of 
speech features. For example, a series of English and Mandarin corpus 
studies revealed similar f0, intensity, and speech rate between 
interlocutors when they were playing computer games that required 
communication (Levitan and Hirschberg, 2011; Xia et  al., 2014; 
Levitan et al., 2015). In addition, children as young as 9 years old were 
found to converge in mean f0 in “spot-the-difference” games in 
Lehnert-LeHouillier et al. (2020). Hogstrom et al. (2018) also reported 
convergence of phoneme duration from children aged from 12 to 
18 in a cooperative map searching task.

In essence, phonetic entrainment is the product of the connection 
between perception and production (Coles-Harris, 2017). The process 
of phonetic entrainment requires the ability to detect the acoustic cues 
of the interlocutor(s) and adjust one’s own production accordingly 
(Phillips-Silver et al., 2010; Wynn et al., 2018). From this perspective, 
deficits in speech prosody might cause failure in phonetic entrainment. 
Atypical prosodic production—such as wider f0 range (Nadig and 
Shaw, 2012) and longer turn-taking gaps (Ochi et al., 2019)—was 
found in individuals with Autism Spectrum Disorder (ASD). Studies 
on phonetic entrainment of autistic children showed mixed results. 
Hogstrom et al. (2018) found that TD children converged in their 
phoneme duration in the post-interaction period while autistic 
children showed a trend of divergence. However, some studies 
reported a tendency of similar unchanged phonetic adjustment 
between autistic and TD children, for example, similar unchanged 
adjustment in speech rate (Wynn et al., 2018) and f0 range (Lehnert-
LeHouillier et al., 2020).

One reason for the undetected phonetic entrainment in children 
might be due to the fact that the required prosodic skills have not 
developed into an adult-like level (Wynn et al., 2018). Another reason 
is that both participants and conversation partners have the potential 
to adjust their phonetic features at the same time, which makes it 
harder to examine phonetic convergence from one side. Additionally, 
variation in conversation partners, such as their various social traits, 
might make the phonetic entrainment (if any) of the participants more 
varied and with less detectable patterns. Furthermore, as previous 
studies have indicated, the age range of 7–12 is a critical period for 
children’s development of rhythm recognition (Upitis, 1987). 
Therefore, if the speech of their interlocutors can be controlled with 
no phonetic adjustment and no variations throughout the 
experiments, we might be able to detect phonetic entrainment patterns 
in autistic children. This possibility has not been available until the 
application of social robots.

In this study, we use a social robot as a conversation partner to 
investigate whether phonetic entrainment can be  found among 
children with and without ASD in a conversation task with a better 

controlled interlocutor. During the experiment, the acoustic features 
and social traits (reflected in facial expressions and the manner of 
interactions) of the robot remained consistent. Children’s 
conversations with the robot were recorded and compared with their 
baseline production and post-interaction production. We target at the 
entrainment of fundamental frequency (f0), and formant frequencies 
(F1, F2). F0 refers to the vibration of vocal folds (Yavas, 2011). The 
perceptual correlate of f0 is pitch, which reveals signals of sound 
identity and information about meaning (McPherson and McDermott, 
2018). The variation of f0 is an important part of speech prosody 
manipulation. By examining mean f0 and f0 range, we can understand 
more about their adjustment of pitch during interaction. Formant 
frequencies relates to vocal tract configuration, reflecting the tongue 
position when the speaker articulates the vowels (Yavas, 2011). The 
investigation of first and second vowel formant improves our 
understanding about vowel space area manipulation during 
conversations (Pettinato et al., 2016).

2. Background

2.1. Entrainment in the broad sense

Humans show an in-born tendency to coordinate with outside 
stimuli (Phillips-Silver et al., 2010). For example, humans tend to clap 
hands or shake heads along with the rhythm of a song when they are 
exposed to it. Infants as young as 5 months old have shown 
coordinated body movement with music (Ilari, 2015). Such 
coordination is called entrainment.

Social entrainment occurs when the outside stimulus comes from 
another human (Phillips-Silver et  al., 2010). During the social 
interaction, social entrainment demonstrates social functions 
important in facilitating social communication. By entraining in the 
time domain (e.g., entrainment of turn-taking gaps), it improves 
mutual understanding between the interlocutors, helps build 
consensus and establish positive connections (Borrie and Liss, 2014). 
It fulfills the function of sustaining the emotional and social 
relationship between interlocutors (Borrie and Liss, 2014). Social 
entrainment also increases the interlocutors’ enjoyment of the 
communication and facilitates the development of the social 
relationship. In the study of Chartrand and Bargh (1999), they asked 
the interlocutor to intentionally mimic the gestures of the participants 
and asked the participants to rate the experience of social interaction 
after the experiment. They found that when interlocutors mimicked 
participants’ gestures, the participants rated the experience as 
smoother and the interlocutor as friendlier compared to the control 
group (where the interlocutors did not mimic any gestures). In regard 
to phonetic entrainment, Borrie and Delfino (2017) found that 
interlocutor dyads who showed a match of vocal fry frequency tended 
to find their communication more enjoyable. In a corpus study, Lee 
et al. (2010) demonstrated that couples with positive emotions during 
conversations showed f0 related entrainment as compared to those 
with negative emotions. Furthermore, social entrainment increases 
communication efficiency. It improves information transfer and 
enhances mutual agreement and sympathy (Gill, 2012). In the same 
study, Borrie and Delfino (2017) found that participants’ degree of 
entrainment on their frequency of vocal fry was also positively 
correlated with their efficiency in doing a cooperative task. Similarly, 
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Nenkova et  al. (2008) found that entrainment of high frequency 
lexicons led to higher scores in cooperative games. More specifically, 
Levitan et  al. (2011) found that entraining backchannel cues 
decreased turn-taking gaps and interruptions and improved task 
complication efficiency.

Since phonetic entrainment might be  correlated with social 
rapport and social communication efficiency, deficits in entrainment 
could be associated with poor social skills. Therefore, populations with 
communication disorders are more likely to have deficits in 
entrainment. Autism Spectrum Disorder (ASD) is one group of 
disorder correlated with communication and social interaction 
difficulties. According to American Psychiatric Association (2022), 
individuals with ASD demonstrate three core characteristics: atypical 
social communication, restricted interests, and repetitive behaviors. 
Empirical evidence has shown that autistic populations did present 
certain degrees of deficits in social entrainment. Previous studies have 
found that autistic individuals did not show comparable non-verbal 
social entrainment relative to their TD peers. Nakano et al. (2011) 
found that autistic adults failed to entrain their eyeblink with the 
speakers. The eyeblink entrainment occurred at conversation pause, 
forming an important part of conversation coordination. The 
disruption of eyeblink entrainment might affect autistic individuals’ 
social interactions. Other than the eyeblink, autistic individuals also 
demonstrated incomparable facial muscle movement when mimicking 
others’ emotions, which was suggested to affect their social reciprocity 
with conversation partners (Mathersul et  al., 2013). Similarly, 
Yoshimura et al. (2015) reported reduced times of facial expression 
synchrony of autistic individuals as compared to the TD population. 
They found that individuals with higher degree of social dysfunction 
tended to show lower frequency of facial expression synchrony. In a 
different study working with autistic children, Helt et  al. (2010) 
reported delays in development in yawning mimicry. They suggested 
that autistic children’s delayed acquisition of social behavior mimicry 
might be due to the lack of social interest in interaction, and in turn, 
they have fewer social experiences compared to their TD peers.

These behaviors are categorized as contextual and socially 
meaningful entraining behavior, distinguishable from simple 
automatic mimicry (Nakano et al., 2011). The breakdown of such 
behaviors could potentially be  associated with unpleasant and 
ineffective social communication. On the other hand, the model of 
social entrainment might provide a new perspective for understanding 
autistic populations’ social behaviors.

2.2. Speech features and phonetic 
entrainment of autistic children

Unlike non-verbal entrainment, entrainment in phonetic features 
is a more fine-grained process, where the interlocutors detect and 
perceive the phonetic features (e.g., speech rate, fundamental 
frequency (f0), vowel formant) of their conversation partners and 
adjust their own phonetic features in speech production accordingly. 
This process involves the processes of phonetic perception and 
production. Atypicality in any step of this process might lead to 
deficits in phonetic entrainment. The autistic population has long 
been found to show different speech features from the TD population, 
such as vowel formants and f0 range. Although the reasons behind 
their atypical speech features remain unclear, the empirical studies 

working on gaining a better understanding of their speech features 
might provide some hints on their phonetic entrainment.

Studies on vowels mainly reported exaggerated vowel formants 
produced by autistic children. Lyakso et al. (2016) found larger vowel 
formant triangles in autistic children when compared to their TD 
peers. Mohanta and Mittal (2022) reported higher vowel formants for 
autistic children than TD children, which was interpreted as atypicality 
in vowel production mechanism. However, their production tended 
to show less dispersion. Kissine and Geelhand (2019) and Kissine et al. 
(2021) reported lower variabilities of vowel formants in autistic 
children, compared to their f0. They proposed a possibility that autistic 
individuals tended to pay more attention to the precision of vowel 
pronunciation and thus might overact the target articulatory manners, 
leading to exaggerated vowel formants, while TD individuals spoke in 
a more leisure style.

In regard to speech prosody, discrepancies exist between the 
findings from production and perception. Nadig and Shaw (2012) 
found a significantly larger f0 range in the autistic group than TD 
group, but no significant difference in the mean f0. The larger pitch 
range of the autistic population, although acoustically abnormal, was 
not perceived as a signal of odd speech by TD listeners (Nadig and 
Shaw, 2012). Similarly, Patel et al. (2020) found larger f0 excursion in 
utterance-final position, but it did not serve as a marker of autism to 
non-clinical listeners. However, in contrast to this, Shriberg et  al. 
(2001) reported that over half of the autistic participants were rated as 
exhibiting unusual prosody while only about 6% in TD participants 
were rated the same. This finding was associated with differences in 
the mean f0 and f0 range between these two groups. The mixed 
findings of perceptual differences of their prosody indicated that it was 
difficult for listeners to interpret the prosodic cues of autistic 
individuals. This might be due to the fact that autistic population did 
not use prosody functionally in communication (Nadig and Shaw, 
2012). They tended to use a limited repertoire of prosody repetitively, 
which may be related to one of their core features—restricted and 
repetitive behaviors (Green and Tobin, 2009). On the other hand, the 
exaggerated style of prosody (higher f0 and larger f0 range) is similar 
to infant-directed speech, which is suggested to be a signal of inability 
to outgrow from motherese, indicating their undeveloped control of 
prosody (Sharda et  al., 2010). These two indications point to a 
possibility that autistic individuals are less flexible in adjusting 
prosodic features in communication relative to their TD peers. 
Therefore, it is suspected that their entrainment in prosodic cues 
might not be as comparable as their TD peers.

Some studies have revealed lack of entrainment in a variety of 
phonetic features from autistic adults in their first language. For 
instance, no flexible adjustment of speech volume by autistic adults was 
reported in Ochi et al. (2019). Autistic adults were also found to lack 
speech rate entrainment in a quasi-conversation experiment as 
opposed to their TD peers (Wynn et al., 2018). However, in terms of 
studies of entrainment from autistic children, the results were 
inconsistent. In the study of Wynn et al. (2018), although they found 
significant differences of speech rate convergence between autistic and 
TD adults, autistic children and TD children’s speech rate did not show 
significant differences. Hogstrom et al. (2018) compared the phoneme 
duration of keywords before and after a conversation task with a TD 
interlocutor. They reported that autistic children tended to diverge in 
phoneme duration from the interlocutor after the task, compared with 
the pre-task production, while TD children showed convergence. 
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However, they also found that neither autistic children dyads nor TD 
children dyads demonstrated f0 adjustment. Lehnert-LeHouillier et al. 
(2020) reported no significant difference of f0 range entrainment 
between autistic and TD teens. These findings suggest that we need to 
understand more about the conditions under which autistic children 
show or do not show TD-like phonetic entrainment, before one can 
better evaluate whether phonetic entrainment can serve as a linguistic 
biomarker for differentiating and TD children. Moreover, specifying 
these conditions inform us about their capabilities in achieving 
phonetic entrainment and their deficits in this aspect.

2.3. Phonetic entrainment in second 
language (L2)

Previous studies carrying out conversation task between L1 
and L2 speakers reported more phonetic convergence from L2 
speakers than their L1 interlocutors (Hwang et al., 2015). Similarly, 
in word shadowing task, L2 speakers are found with more phonetic 
convergence than L1 speakers (Lewandowski and Nygaard, 2018; 
Gnevsheva et  al., 2021). They argued that larger phonetic 
differences between L1 and L2 speech allow L2 speakers to have 
more space for entrainment (Lewandowski and Nygaard, 2018). It 
can also be  explained by a mediated priming effect with the 
intention of producing more native-like speech (Hwang et  al., 
2015), namely the more prestigious variety (Gnevsheva et al., 2021) 
and increasing communication efficiency. It remains unknown 
whether non-native autistic speakers demonstrated a similar 
pattern of L2 phonetic entrainment.

Although previous studies have reported a delay of autistic 
individuals’ L1 development, particularly in discourse and pragmatic 
functions (Kelley et al., 2006), there are studies reporting that their L2 
was relatively unaffected (Práinsson, 2012; Agostini and Best, 2015). 
These studies mainly involved autistic subjects who did not suffer 
from intellectual impairment and whose language abilities were 
comparable with their TD peers in general. For example, the case 
study in Práinsson (2012) reported that the autistic subjects showed a 
good command of pragmatics, discourse prosody, and syntax of 
second language and even surpassed their TD peers. Agostini and Best 
(2015) found that the second language grammatical development of 
young autistic children was comparable and even faster than their TD 
peers. Because studies focusing on autistic individuals’ second 
language are scarce, and no study examined phonetic entrainment of 
their L2, this study attempts to provide some innovative empirical 
evidence of autistic children’s phonetic entrainment in their L2 to 
further our understanding of their second language acquisition.

2.4. Benefits of using a social robot as a 
conversation partner

As compared to entrainment in non-social contexts, such as 
entrainment with musical rhythm, social entrainment is special 
because it is a mutual process where both individuals adjust their 
behaviors to approximate each other’s. This special condition brings 
uncertainty and might be the reason why previous findings on the 
phonetic entrainment of autistic population tended to be inconsistent. 
Lehnert-LeHouillier et al. (2020) found that the atypical entrainment 

behavior of autistic youth, evidenced by a manipulation of difference 
between conversation dyads, was in fact the result of adjustment from 
their conversation partner. Therefore, the current study uses a social 
robot as a conversation partner to investigate the phonetic entrainment 
of autistic children in comparison with their TD peers. A social robot 
has the advantages of controlled speech with no phonetic entrainment 
and consistent social complexities, which might facilitate the detection 
of children’s phonetic adjustment.

Social robots have been used previously in therapy and research 
on autism in a longitudinal study, Robins et al. (2005) found that 
autistic children’s social skills were improved with the help of a 
humanoid robot. Dautenhahn and Werry (2004) found that autistic 
children showed more engagement in activities with robots and 
learned how to take turns and imitate the robot. Similar findings were 
reported by Barakova et al. (2015) where a robot-present scenario led 
to more social initiations of autistic children. Stanton et al. (2008) also 
found that autistic children were able to treat social robots as a social 
category and produce more words than playing with a non-verbal 
robot. In addition, some studies working on robotic voice have 
reported that autistic children exhibit a special preference to mechanic 
voices rather than human voices (Kuhl et al., 2005).

These attempts of using social robots to assist autistic populations 
reveal benefits, such as reducing the social pressure of autistic 
individuals and attracting their attention. Compared to human beings, 
social robots have fewer social complexities, e.g., more controlled 
facial expressions. They are more predictable due to their consistent 
voice and gestures (Marchi et al., 2014). They provide a structured 
interaction environment for autistic individuals to converse and learn 
(Kumazaki et al., 2020). These advantages of social robot might resolve 
the uncertainty of phonetic entrainment in human-human 
interactions. By designing an experiment of human-robot interaction, 
we aim to examine autistic children’s phonetic entrainment in a more 
controlled context.

2.5. Research questions and predictions

As reviewed above, autistic individuals might have problems in 
manipulating phonetic features in conversations. The inconsistency of 
interlocutors increases their difficulties in phonetic entrainment and 
also makes the phonetic manipulation of autistic individuals less 
detectable. The controlled nature of a robot provides a controlled 
conversation environment which might facilitate phonetic 
entrainment and its detection of autistic individuals. Moreover, as 
convergence on more speech features toward words recorded naturally 
than words generalized in synthetic voice has been reported 
(Gessinger et al., 2021), more natural speech used in the current study 
might trigger more entrainment than previous child-robot interaction 
studies (see Section 3.2.2. for more details about the sound used in the 
robot). Therefore, our main research question is: do autistic children 
and TD children show comparable phonetic entrainment when 
interacting with a social robot?

We expect that autistic children may show phonetic entrainment 
in a more controlled phonetic and social environment, but their 
performance may still be different from TD children. Specifically, 
we will examine vowel formants and fundamental frequency in the 
speech production of a group of autistic children and compare their 
production with their TD peers to identify whether they would show 
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TD-like phonetic entrainment. We predict that autistic children are 
more likely to entrain vowel formant toward the standardized vowel 
target, consistently produced by the robot. On the other hand, 
we  predict that their deficits of prosody will still affect their 
entrainment even when they interact with a controlled interlocutor. 
Therefore, they are predicted to show problems in phonetic 
entrainment of f0-related parameters (mean f0 and f0 range in 
the study).

3. Methods

Because phonetic entrainment is supposed to occur in both 
segmental level and prosodic level, the main task should be able to 
elicit natural conversational speech, and also yield enough repetitions 
for word-level acoustic analysis. We  did not consider Map Tasks 
(Anderson et al., 1991), where one interlocutor found a route in the 
picture following the instruction of the other. Because the conversation 
dyads do not receive equal amount of information in the task, they 
have different pre-defined roles (i.e., a giver and a follower) and very 
uneven amount of production, which is not suitable for investigating 
phonetic entrainment. Therefore, we finally decided on a “spot the 
difference” game (van Engen et al., 2010). The main task was between 
the child and the robot, during which the participant interacted with 
a robot to find the differences between four pairs of pictures. The robot 
and the child participant would refer to pictures with slight differences 
in these four pairs. The robot asked questions regarding the color, 
number, and behavior of the objects in the pictures, guiding the child 
to notice the differences and to elicit keywords from him or her (see 
Section 3.2 for more details).

3.1. Participants

Fourteen L2 English-speaking autistic children and 12 
age-matched typically developing (TD) children were recruited in 
Hong Kong. The autistic children received a clinical diagnosis of ASD 
from clinical settings in Hong Kong according to information 
provided by their parents. Both autistic and TD children had 
nonverbal IQ above 80 as assessed by the Raven’s Standard Progressive 
Matrices Test (Raven, 2003). These children acquire Cantonese as 
their first and home language, and English and Mandarin as their 
second languages at school. Since this study focused on L2 English, 
their spoken English was assessed by Comprehensive Assessment of 
Spoken Language (CASL; Carrow-Woolfolk, 2017) and autistic 
children showed moderate English language proficiency. There were 
no reported hearing impairments nor neurological disorders for all 
participants. As previous study has found that musical experience 
might affect perception of phonetic details (Tsang et al., 2018), the 
musical training experience of two groups was controlled to 
be comparable. Their chronological age, duration of musical training, 
IQ standard score, CASL standard score, age of English acquisition, 
and their English proficiency (out of 5 as the maximum score) 
reported by their parents are shown in Table 1. One TD child (t10) did 
not take the Raven Test or the CASL test, and she showed no sign of 
abnormality according to the observation of the experimenter. Parents 
of the participants signed a written consent form, which was approved 
by the Departmental Research Committee of the Hong Kong 

Polytechnic University, and the participants were reimbursed 
for participation.

3.2. Materials and procedures

3.2.1. Pictures and keywords
The task materials were adapted from pictures designed in 

DiapixUK tasks (Baker and Hazan, 2011). They are 12 pairs of cartoon 
pictures specially designed for “spot-the-difference” game in English. 
The pictures included three themes. Each theme has four pairs of 
pictures, sharing similar vocabulary and depicting the same keywords. 
The picture set depicting the farm theme was selected. There were 
originally 12 differences (depicting 12 different keywords) per pair in 
their design. This design has been used in studies with native speakers 
as young as 8 years old (Pettinato et al., 2016; Tuomainen et al., 2022). 
Given the condition of our participants (children with Autism 
Spectrum Disorder often have issues with executive function), 
we revised the pictures to reduce the number of differences to five, to 
reduce the level of task complexity. The differences related to either a 
change of the item (e.g., an apple and a pear in picture A vs. two pears 
in picture B; an empty sack in picture A vs. a full sack in picture B; 
white sheep in picture A vs. gray sheep in picture B) or an item that 
was missing in one picture (e.g., a bush with flowers in picture A vs. a 
bush without flowers in picture B). To increase visual saliency, the 
areas associated with the differences between a pair of pictures were 
circled and numbered in the pictures (see Figure 1 for a sample picture 
pair). The keywords related to the differences will be  used for 
analyzing phonetic entrainment in segmental level while the 
conversational speech produced during interaction will be used for 
investigating prosodic entrainment.

3.2.2. Robot and experimental setup
The robot we used in this study as a conversation partner is social 

robot Furhat (Al Moubayed et al., 2012). Furhat robot has a physical 
body with a neck and a movable head with a light-projected face. Its 
speech production was pre-scripted to be triggered by corresponding 
keywords. The robot’s speech was generated using Amazon Polly 
neural TTS system. Compared to usual robotic speech, their speech 
showed more naturalness in dialog due to shorter response time and 
higher articulation accuracy (Amazon Polly Developer Guide, 2023). 
In particular, we  selected the voice of an American English male 
named Matthew which was produced by the neural TTS system rather 
than standard system. The neural system used a sequence-to-sequence 
method to generate “the most natural and human-like” sounds with 
rather higher quality (Amazon Polly Developer Guide, 2023, p. 1). The 
volume of the speech was set consistently for all the children.

The experiment took place in a soundproof booth, and the robot 
was placed on a table about 85 cm away from the participant. The child 
participant sat facing the robot, and the seat height was adjusted to 
make sure that each child was at the robot’s eye level. The picture to 
elicit speech interaction and a microphone Blue Snowball connected 
to the robot were placed on a table in between the participant and the 
robot. The robot used the microphone to receive speech from the 
participant so as to trigger its corresponding response upon perceiving 
certain keywords. The speech recordings were done at a 44.1 kHz 
sampling rate with 16-bit resolution by another microphone, an 
Azden ECZ-990 microphone, connected with audacity in the 
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computer. This recording microphone was placed on another table by 
the left of the participant. The experimental set-up is demonstrated in 
Figure 2.

3.3. Procedures

Before interacting with the robot, the child recorded five keywords 
as baseline production. They were shown pictures of keywords one by 
one on the screen and asked to say what they could see in the picture 
in English. Each keyword was produced in singular and plural forms, 
twice in isolation and once in a carrier sentence: I  can see the 
KEYWORD(s) in the picture. Each keyword was elicited in 2 forms * 
(2 isolation + 1 carrier) = 6 repetitions. After baseline production, the 
child watched a video introducing how to play the ‘spot the difference’ 
game presented in their first language Cantonese to ensure they 
understood the task expectation well. Then, one pair of pictures 
depicting themes different from the experimental test items was given 
to the child for practice. To allow adequate time to let the child 
become familiarized with the task procedures, each child was given 
5 min to try to determine the differences between the two pictures 
by themselves.

The interaction with the social robot started with a “say-hello” session. 
The robot greeted the child to familiarize the child with the robot’s voice. 
The “say-hello” session triggered four turns of interactions between the 
child and the robot. The experimenter double checked with the child to 
confirm their readiness before starting the interaction tasks. There are 
four pairs of pictures to look for differences (four tasks). These tasks were 

launched by the experimenter one at a time. The task order was 
randomized. Each task lasted for 10–15 min. The child was allowed to take 
a break between the tasks.

After the child finished all the tasks, the experimenter asked the 
child to record the keywords again following the same procedure as 
the baseline speech production. The keywords produced before, 
during and after the interaction will be compared.

3.4. Data analysis

3.4.1. Data extraction and normalization
The vowel portions of the five keywords produced in each 

recording by the child and the robot were segmented manually by a 
trained phonetician using Praat (Boersma and Weenink, 2018). The 
first formant (F1) and second formant (F2) values were extracted at 
the midpoint of each vowel portion. We adapted the praat script from 
Stanley and Lipani (2019) to extract the vowel formants automatically.

In order to investigate the adjustment of f0 parameters in more 
details, we segmented the child’s production into multiple inter-pause 
units (IPU). IPU is defined following Levitan and Hirschberg (2011) 
as a chunk of utterances with pauses in certain duration from one 
single speaker in one turn, with the adaptation that we adjusted the 
pause duration from 50 ms to 180 ms, based on previous studies 
showing that the articulation rate of children (as in our study) in 
spontaneous speech is significantly slower than adults (as in Jacewicz 
et al., 2010; Levitan and Hirschberg, 2011). This number was derived 
empirically from the maximum length of Voice Onset Time of all the 

TABLE 1 Means (and standard deviations) of chronological age, IQ standard score, CASL standard score, duration of musical training (months), age of 
English acquisition, and English proficiency score (5 points each) across the two groups of children.

Group Number 
(male)

Chronological 
age

IQ 
score

CASL 
score

AoA Musical 
training

Listening Writing Reading Speaking

ASD 14 (9) 9.5 (1.16) 102.29 

(14.79)

66.43 

(21.25)

2.8 

(1.65)

18 (21.05) 3.5 (0.76) 2.9 (1.07) 3.4 (1.01) 2.9 (1.07)

TD 12 (8) 9.1 (1.16) 103.2 

(14.03)

88.8 

(22.76)

2.6 

(1.44)

22 (19.54) 4.1 (0.51) 3.5 (0.90) 3.8 (0.87) 3.5 (1.09)

FIGURE 1

One of the four picture pairs for experiment. The child held picture (A). The robot held picture (B). Image source: https://doi.org/10.5281/
zenodo.3703202. Reproduced under the terms of Creative Commons Attribution 4.0.
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recordings. Mean f0, maximum f0, and minimum f0 were extracted in 
each IPU by Praat (Boersma and Weenink, 2018). The f0 range was 
calculated as the distance between the minimum f0 and maximum f0 
in each IPU. We  applied the log z-score normalization as in Zhu 
(2005) to f0 values.

3.4.2. Statistical analyses
The measurements of phonetic entrainment were to evaluate the 

similarity of acoustic cues between interlocutors. Regarding the three 
target parameters (i.e., vowel formant, log mean f0, log f0 range), 
we compared the differences between the robot and each child across 
baseline, early production (the first two tasks), late production (the 
last two tasks), and post-task production. Since the robot’s production 
was controlled to be  consistent throughout the experiment, the 
differences across time would be contributed by the child.

We first calculated the distance in each parameter (i.e., F1, F2, log 
mean f0, log f0 range) between the child’s production and the robot’s 
production. The absolute values of the robot’s production were 
subtracted from the corresponding values of the child’s production, 

yielding CRDiff (CRDiff = children’s baseline/early production/late 
production/post-task production—robot’s production). Linear mixed 
effects models were then fitted using the “lmerTest” package 
(Kuznetsova et al., 2017) in R (R Core Team, 2016) to determine 
whether CRDiffs in vowel formant, log mean f0, and log f0 range were 
significantly affected by group (autistic vs. TD children) and time 
period (base vs. early vs. late vs. post). The “effectsize” package 
(Ben-Shachar et  al., 2020) was used to report the standardized 
coefficient (β′) and confidential intervals of the optimal models.

4. Results

4.1. Vowel formant entrainment

To investigate whether vowel formant adjustment was influenced 
by subject group and time period, first, a linear mixed effects model 
was fitted with the CRDiff value as the response variable, the time 
period and group as fixed effects, and subject and keyword as random 
effects. The fixed effects and their interaction terms were tested using 
likelihood ratio tests by adding each variable one at a time for a 
comparison until the optimal model was chosen.

Regarding RCDiff in F1, only (Time) Period showed a significant 
effect (Df = 3, p = 0.01**). Neither adding Group nor the two-way 
interaction of Period and Group significantly improved the model. 
According to Figure 3, both groups of children reduced RCDiff of 
F1 in the early period. Marginally significant differences were found 
in comparison between the early and baseline periods (t = −1.68, 
p = 0.09; β′ = −0.06, 95%, CI [−0.13, 0.01]). Autistic children further 
reduced the RCDiff in the late production, but TD children did not, 
as indicated by an increase of RCDiff in late period. No significant 
difference was registered between post-task production and baseline, 
suggesting that the entrainment only occurred during the interaction.

The adjustment of RCDiff in F2 was more evident. Statistical 
modeling showed that, by adding Period as a fixed effect, the model 
significantly improved (p < 0.001***). By adding Group and Group * 
Period interaction, the model improved with marginal significance 
(p = 0.07). Early (t = −3.74; p < 0.001***; β′ = −0.22, 95% CI [−0.34, 
−0.11]) and late (t = −5.02; p < 0.001***; β′ = −0.30, 95% CI [−0.42, 
−0.18]) production showed significant reduction of RCDiff of F2 
compared to the baseline, suggesting that both groups of children 
significantly converged toward the vowel formant of the robot during 
interaction in terms of F2. We performed post-hoc tests using the 
“emmeans package” (Lenth et al., 2018) to further interpret the Group 
* Period interaction, and used the estimated marginal means 
difference (EMMdiff) measures to report the effect size by the “eff_
size” function of this package. The post-hoc analysis showed a 
significant reduction in RCDiff of F2 in both early (t = 3.74, p < 0.01**; 
Δ = 0.24, 95% CI [0.10, 0.39]) and late (t = 5.02, p < 0.001***; Δ = 0.33, 
95% CI [0.18, 0.48]) periods in the autistic group as compared to the 
baseline. The TD group showed a trend of reduction in RCDiff of F2, 
but the reduction did not reach significance. In addition, significant 
increases of CRDiff (i.e., indicating increasing divergence from the 
robot) in the post-production relative to early periods (t = −3.65, 
p < 0.01**; Δ = −0.24, 95% CI [−0.38, −0.09]) as well as in the post-
production relative to late periods (t = −4.95, p < 0.001***; Δ = −0.32, 
95% CI [−0.47, −0.18]) were registered for the autistic group, while 
TD group showed a significant increase of CRDiff in the 

FIGURE 2

Experimental setting. Image source: https://doi.org/10.5281/
zenodo.3703202. Reproduced under the terms of Creative 
Commons Attribution 4.0.

FIGURE 3

Difference of F1 and F2 between the children and the robot in 
different time periods. CRDiff = Children’s Production—Robot’s 
Production.
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post-production relative to early periods (t = −3.07, p = 0.04*; 
Δ = −0.22, 95% CI [−0.38, −0.06]), suggesting that the convergence 
toward the robot occurred specifically during the interaction with the 
robot interlocutor rather than an adjustment as a result of time/

practice with this speech production activity. These results indicate 
that F2 entrainment occurred more prominently during the early 
period and started to reduce in the late period for TD children. In 
contrast, F2 entrainment occurred more prominently in late period 
for autistic children. Similar to F1, no significant difference between 
the post-production and the baseline was registered for CRDiff of F2.

In summary, these autistic children entrained in a more gradual 
way. The degree of entrainment was larger in the late production than 
the early production in the autistic group. As for TD children, they 
entrained more prominently in early period and less prominently in 
late period. The entrainment did not persist in post-task production 
for either group.

4.2. Prosody entrainment

4.2.1. Mean f0
A linear mixed effects model was fitted to test the fixed effect of 

Period (i.e., early and late), Group and their interaction on CRDiff of 
log mean f0 with subject as a random effect. We performed the same 
modeling procedure as used to analyze vowel formant. Only the fixed 
effect of Period reached significance (p < 0.001***). As we can see from 
Figure 4, both groups of children reduced the difference of mean f0 
when interacting with the robot (early: β′ = 0.30, 95% CI [0.23, 0.38]; 
late: β′ = 0.33, 95% CI [0.25, 0.40]), and the differences increased in the 
post-interaction period (β′ = −0.01, 95% CI [−0.11, 0.09]). No 
difference between the early and late periods was found, indicating 
that they entrained as soon as interacting with the robot and that the 
entrainment remained throughout the tasks.

4.2.2. F0 range
Regarding the log f0 range, the linear mixed effects model 

improved significantly by adding Period (p < 0.01**) and the two-way 
interaction of Period and Group (p < 0.01**) as fixed effects. Post-hoc 
analyses to interpret the significant interaction of Period and Group 
showed that the contribution mainly came from the TD group. The 
TD group reduced the difference in f0 range significantly in early 
period (t = 4.9, p < 0.001***; Δ = 0.28, 95% CI [0.17, 0.39]) as compared 
to the baseline. They further adjusted f0 range difference in late period 
as compared to early period (t = −5.0, p < 0.001***; Δ = −0.14, 95% CI 
[−0.19, −0.08]). By contrast, autistic children did not show much 
entrainment in terms of f0 range, as shown in Figure 5. The differences 
in the f0 range between the robot and children remained similar when 
during interactions, suggesting that the participants’ f0 range were not 
affected by the interaction. The group difference reached significance 
in early period (t = 3.98, p < 0.01*****; Δ = 0.11, 95% CI [0.05, 0.16]), 
suggesting that at the baseline level, the two groups did not 
significantly differ in f0 range difference, but as soon as the TD 
children started to interact with the robot, their entrainment enlarged 
the group difference.

As we  can see from Figure  5, autistic children showed a 
similar f0 range with the robot throughout the time periods, even 
at baseline prior to interacting with the robot. In order to further 
our understanding of their f0 range entrainment, we calculated 
the standard deviation over each subject’s mean f0 range in each 
period, as shown in Table  2. Autistic children showed larger 
standard deviation in baseline, early, and late periods than TD 
children. We  also noticed a slight fluctuation of f0 range 

FIGURE 4

Log mean f0 difference between the children and the robot across 
different time periods. Each dot represents a child’s production.

FIGURE 5

Log f0 range difference between the children and robot across 
different time periods.
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difference from early period to late period for autistic children. 
We then calculated the number of autistic children showing a 
reduction of mean f0 range difference from early to late periods 
(i.e., more entrainment in late period than early period). Five out 
of fourteen autistic children exhibited a reduction of differences 
in late periods while seven out of twelve TD children showed a 
reduction. This indicated that there were indeed a few autistic 
children showing phonetic entrainment of f0 range during 
interaction. The large individual variation suggested that the 
reasons behind their lack of f0 range entrainment were 
complicated. It is challenging for some autistic children to entrain 
f0 range, but not others.

4.2.3. Summary
To summarize, both autistic and TD children exhibited a 

reduction of the mean f0 differences between them and the robot 
during their interaction. Regarding f0 range, our results showed that 
TD children exhibited reduction of the f0 range differences from the 
robot when interacting with the robot, while autistic children showed 
more individual differences in the phonetic entrainment of f0 range 
and did not exhibit adjustment of f0 range differences from the robot 
as a group.

5. Discussion

We present the first empirical study using a social robot as an 
interlocutor to investigate whether and how children with and without 
ASD showed phonetic entrainment in conversations. Since having a 
social robot interlocutor with speech features and social traits 
controlled may facilitate phonetic entrainment and its detection in 
autistic individuals, we expect autistic children may show phonetic 
entrainment in a more controlled phonetic and social environment, 
but they may still be different from TD children.

Our study aimed to conduct a more comprehensive investigation 
examining phonetic entrainment both in vowels and prosody. 
Specifically, we examined vowel formants and fundamental frequency 
in the speech production of a group of autistic children and compared 
these measurements with their TD peers to identify whether or not 
they would show TD-like phonetic entrainment behaviors. Consistent 
with our predictions, though autistic children showed some phonetic 
entrainment, they still exhibited some deficits. Autistic children 
showed comparable vowel formant entrainment as TD children. Both 
groups entrained more on F2 than F1. Regarding prosody 
entrainment, autistic children also showed comparable mean f0 
entrainment as their TD peers. However, while their TD peers showed 
f0 range entrainment, the group of autistic children did not exhibit 
significant convergence toward the interlocutor in terms of f0 range 
adjustment, suggesting that entrainment of f0 range was more 
challenging and vulnerable for these autistic children even in a more 
controlled situation.

The fact that autistic children produced vowels in a more extreme 
way has been documented. In the baseline and post-interaction 
production, autistic children did produce vowels with larger F2 values, 
consistent with the results reported by Mohanta and Mittal (2022). 
These previous findings were interpreted by the authors as attributable 
to the atypical oral and pharyngeal constriction in autistic individuals 
when they produced vowels. Nevertheless, our study demonstrated 
that this atypical mechanism of vowel production did not affect 
entrainment of vowel formants with an interlocutor producing more 
controlled speech. Our findings provide support for the claim by 
Kissine and Geelhand (2019) that autistic population might attend 
more to the precision of pronunciation. The observed extreme vowel 
production of autistic population might be due to their overact of 
articulatory gesture to approach a more precise pronunciation. In our 
study, the robot produced standard pronunciation of English vowels 
in a consistent manner, which might be preferred by autistic children 
and thus triggered their entrainment.

In addition to the findings of vowel formants, autistic children 
entrained their mean f0 comparably to their TD peers. This result 
was inconsistent with some previous studies, where neither autistic 
nor TD children showed prosody entrainment (Hogstrom et al., 
2018; Wynn et al., 2018). As most studies computed the differences 
between conversation partners to indicate phonetic entrainment, 
it is very likely that their findings about entrainment or lack of 
entrainment was actually driven by the adjustment of their 
interlocutors. In addition, the exaggerated production of the 
autistic population might trigger atypical judgment of their 
interlocutors, leading to these interlocutors’ adjustment being 
more unpredictable. They might entrain to compensate for the 
larger difference between themselves and the autistic individuals, 
or they might manipulate their phonetic features away from 
autistic population because of their atypical production. In our 
study, the interlocutor (i.e., the social robot) did not adjust its 
phonetic features no matter whom the robot was talking to. Any 
manipulation of differences between the dyads came from the 
child. The consistency of the robot interlocutor made the 
entrainment more detectable. Another possible reason for this 
discrepancy in our findings and previous findings could be that 
social robots were more attractive to children. Previous studies 
have shown that phonetic entrainment is not merely an automatic 
imitation process but is mediated by social factors (Coles-Harris, 
2017). According to Communication Accommodation Theory 
(CAT; Giles and Ogay, 2007), positive perception of a conversation 
partner would reduce the social distance between the individual 
and the interlocutor and motivate an individual to show 
entrainment. The attractiveness of a social robot might have 
reduced its social distance with children and motivated them to 
entrain phonetically. Yet, an anonymous reviewer pointed out 
another possibility that the entrainment of prosody might 
be motivated by a desire for being better understood by the robot. 
Previous studies have shown that autistic children could 

TABLE 2 Standard deviation of f0 range difference between children and robot in each time period.

Group Baseline Early interaction Late interaction Post-interaction

ASD 45.97 25.76 28.10 22.15

TD 24.50 22.82 19.32 24.68
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differentiate a human voice and a robotic voice (Stanton et al., 
2008). But the manipulation of mean f0 from the robotic voice did 
not significantly affect children’s performance in a learning task 
(Molenaar et al., 2021). It is possible that participants entrained to 
the robot to make themselves understood better. Future studies 
using both a more human-like voice with natural prosody and a 
robotic voice without natural prosody may help differentiate the 
underlying reasons for entrainment in speech prosody. If 
participants entrain to both a robotic voice without natural 
prosody, it is likely that they are attempting to build a relationship 
as lack of natural prosody will not lead to better understandability.

In fact, studies have reported that autistic children showed more 
interest in interacting with social robots than human beings 
(Dautenhahn and Werry, 2004; Barakova et  al., 2015). Autistic 
individuals have also been shown to have less interest in human 
speech voice (Yu and Wang, 2021) and be less able to orient their 
attention to the human sounds than their TD peers (Čeponienė et al., 
2003). It is likely that social robot speaks with a controlled and 
consistent voice, which may aid their perception and facilitate their 
phonetic entrainment. On the other hand, autistic individuals have 
been found to experience multiple difficulties in processing social 
information such as emotion evaluation (Embregts and Van 
Nieuwenhuijzen, 2009) and voice identification (Lerner et al., 2013). 
Previous studies have reported that social robots were usually treated 
as a human-like category (Eyssel and Kuchenbrandt, 2012; Cohn 
et al., 2020) and that people tended to compare them with human-
beings and evaluate them in a social way—for example, evaluating the 
‘membership’ of a robot from the cues of its gender and age (Eyssel 
and Kuchenbrandt, 2012). In spite of this, the social features of robots 
are far simpler than humans. Their social complexities demonstrated 
in interaction, such as facial expressions, social responses, are more 
limited and controllable. The relatively consistent social information 
in social robots can reduce the processing load for autistic children. 
The controlled voice and consistent social information together could 
have contributed to a more tractable and structured conversational 
environment, making it more predictable for autistic individuals and 
easier for them to demonstrate phonetic entrainment.

Apart from documenting comparable phonetic entrainment 
between the two groups in vowel formants and mean f0 in this 
phonetically and socially controlled communication environment, the 
current study also documented that these autistic children did not 
show significant f0 range entrainment as what the TD children 
exhibited, even with a partner of more controlled speech and social 
traits. Recall that we also reported larger individual variations of f0 
range differences in the autistic group relative to TD group. It can 
be inferred that their entrainment behaviors in terms of f0 range may 
show more variation compared to the TD group. But as a group, their 
f0 range entrainment is not as robust as the TD group. This is in line 
with findings by Lehnert-LeHouillier et al. (2020) that a few autistic 
children showing phonetic entrainment, but their statistical results 
indicated that the autistic children, as a group, did not show 
comparable entrainment with the TD group. This is also consistent 
with the emerging literature suggesting a high heterogeneity within 
the autistic population (Schadenberg et al., 2020). Future research is 
needed to examine factors that may predict why some autistic 
individuals are better than the others in phonetic entrainment.

One thing that needs to be noted is that our study examined 
second language entrainment. Our findings are in line with 

previous findings of neurotypical L2 speakers, who tended to 
entrain toward the more prestigious variety when interacting with 
native speakers (Gnevsheva et al., 2021). In our study, the social 
robot spoke standard American English, which was more likely to 
trigger more robust phonetic entrainment from our children 
participants who spoke English as second language. A few studies 
have reported signs of relatively intact L2 in autistic populations 
(Práinsson, 2012; Agostini and Best, 2015), but no study examined 
phonetic entrainment of their L2 so far. We cannot rule out the 
possibility that the lack of phonetic entrainment found in previous 
studies is due to their problems of linguistic entrainment skills in 
their L1, whereas their L2 entrainment skill might remain 
relatively intact.

The present study has some limitations, which might need to 
be addressed in future research. Due to poor speech recognition in 
Cantonese by the robot, we did not examine phonetic entrainment of 
the participants’ first language (i.e., Cantonese), which may provide 
some more direct evidence for phonetic entrainment in human-robot 
interaction than the evidence in the current study on their L2. It 
remains to be explored with a Cantonese-speaking social robot in 
future studies. Moreover, we observed larger individual variation of f0 
range entrainment by autistic children; yet, as the sample size is 
relatively small, we did not further investigate the contributing factors 
of their variation. Future work can include more participants and 
examine the interaction of severity of autism symptoms and phonetic 
entrainment. In addition, more age groups can be included to obtain 
a more comprehensive developmental trajectory of children’s 
phonetic entrainment.

6. Conclusion

To conclude, we  present the first study investigating phonetic 
entrainment in autistic children when they interacted with a social 
robot. The new evidence suggested that these autistic children could 
entrain phonetically similarly to their TD peers when the interlocutor 
was controlled in both phonetic and social features. On the other 
hand, these autistic children did not show entrainment in f0 range as 
a group compared to their TD peers, suggesting that phonetic 
entrainment in f0 range could be more challenging and vulnerable in 
autistic children. This study deepens our understanding of autistic 
children’s conversation behaviors and has implications in designing 
trainings for autistic children using social robots.
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Analysis of emotional prosody as a 
tool for differential diagnosis of 
cognitive impairments: a pilot 
research
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Introduction: This pilot research was designed to investigate if prosodic features 
from running spontaneous speech could differentiate dementia of the Alzheimer’s 
type (DAT), vascular dementia (VaD), mild cognitive impairment (MCI), and healthy 
cognition. The study included acoustic measurements of prosodic features (Study 
1) and listeners’ perception of emotional prosody differences (Study 2).

Methods: For Study 1, prerecorded speech samples describing the Cookie Theft 
picture from 10 individuals with DAT, 5 with VaD, 9 with MCI, and 10 neurologically 
healthy controls (NHC) were obtained from the DementiaBank. The descriptive 
narratives by each participant were separated into utterances. These utterances 
were measured on 22 acoustic features via the Praat software and analyzed 
statistically using the principal component analysis (PCA), regression, and 
Mahalanobis distance measures.

Results: The analyses on acoustic data revealed a set of five factors and four salient 
features (i.e., pitch, amplitude, rate, and syllable) that discriminate the four groups. 
For Study 2, a group of 28 listeners served as judges of emotions expressed by 
the speakers. After a set of training and practice sessions, they were instructed to 
indicate the emotions they heard. Regression measures were used to analyze the 
perceptual data. The perceptual data indicated that the factor underlying pitch 
measures had the greatest strength for the listeners to separate the groups.

Discussion: The present pilot work showed that using acoustic measures of 
prosodic features may be a functional method for differentiating among DAT, VaD, 
MCI, and NHC. Future studies with data collected under a controlled environment 
using better stimuli are warranted.

KEYWORDS

dementia, mild cognitive impairment, emotion, prosody, acoustic analysis, listener 
perception, diagnosis

Introduction

Currently, diagnosis of cognitive impairments relies heavily on invasive (e.g., lumbar 
puncture) and/or expensive (e.g., neuroimaging panel) biomarker tests (López-de-Ipiña et al., 
2015). The results of biomarker tests, primarily obtained using invasive lumbar punctures, 
depend significantly on the patient’s physical health and age, which decreases the efficacy of the 
method (Maclin et al., 2019). Expensive neuroimaging lacks definitive characteristics with 
significant diagnostic value (Filippi et al., 2012) which decreases the diagnostic accuracy, and 
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many patients experience claustrophobia, discomfort, or behavioral 
problems during the imaging sessions and cannot tolerate them 
(Bonifacio and Zamboni, 2016). These issues lead to the decreased 
diagnostic accuracy and eventually the overall costs for dementia care 
increase not only because of the high cost and invasive nature of the 
exams but also because of the extensive clinical testing that often takes 
place while individuals seek opinions from multiple providers 
regarding the source of their symptoms before ultimately reaching a 
provider in a facility that has access to these diagnostic exams. The 
extended time increases both personal and monetary costs associated 
with dementia diagnosis, which subsequently increases financial 
burden on people with cognitive impairment, families, and society 
and also delays the initiation of proper care.

Speech and language production requires coordination among 
highly complicated and calibrated brain systems, including but not 
limited to Broca’s and Wernicke’s areas. When the coordination is not 
accomplished properly due to a brain disease or accident, it may yield 
significant changes in the person’s speech and/or language functions. 
People with cognitive impairment such as dementia demonstrate 
various speech and language deficits. While linguistic deficits such as 
word finding difficulty and agrammatism are well documented and 
have been used to identify early-stage cognitive declines (e.g., 
Lundholm Fors et al., 2018; Calzá et al., 2021), data on speech deficits 
in people with different types of cognitive impairment are limited. It 
should also be noted that speech and language deficits are not clearly 
distinguished in the dementia literature; often, language deficits are 
misinterpreted as speech deficits or the two terms (i.e., speech 
impairment and language impairment) are used interchangeably. 
However, the distinction between speech and language impairments 
is critical to understanding any impaired communication functioning 
and for making more accurate diagnoses and creating appropriate 
management plans.

The use of vocal biomarker may provide useful information for 
diagnosis and monitoring of different diseases/disorders as well as for 
phenotyping a condition (Fagherazzi et al., 2021). Among many voice 
features, prosody is an aspect of speech that consists of perceptible 
suprasegmental modulations of vocal pitch, syllable length, loudness, 
and pauses (Odell et al., 1991). These modulations deliver the speaker’s 
meaning beyond the literal meaning of the utterance and give the 
listener clues to interpret the connotative meaning intended by the 
speaker (Hupp and Junger, 2013). The manipulation of prosody 
requires a wide range of interhemispheric cerebral networks, which 
are impaired in people with cognitive impairment to different extents 
depending on the type of condition (Lian et al., 2018; Qi et al., 2019; 
Cheung and Mak, 2020). For instance, the accumulation of amyloid 
fibrils decreases interhemispheric functional connectivity (IFC) in 
visual network for dementia of the Alzheimer’s type (DAT) while it 
increases with the IFC in default mode network, central executive 
network, sensory motor network, and dorsal attention network for 
vascular dementia (VaD) (Cheung and Mak, 2020). Such differences 
suggest that prosody, of which manipulation is completed via 
interhemispheric connectivity, may be  an effective, reliable, and 
low-cost method to differentiate cognitive impairment types. In 
particular, the emotional aspects of prosody (i.e., expression of 
emotion through variations of different parameters of speech) provide 
a method for the speaker to utter a nuanced message that can 
be accurately perceived by a listener and may vary systematically with 
the expression of emotion (Pell et al., 2009). However, the available 

data on emotion expression in people with different types of cognitive 
impairment and neurotypical speakers are sparse.

The production of the prosodic features involves movement 
variations in all components of the speech production mechanism 
(Pell et  al., 2009). Thus, changes in these acoustic measures may 
represent changes in the motor system associated with the neurologic 
changes associated with the different dementia types. In a review of 
cognitive, psychiatric, and motor symptoms of different dementia 
types, Magdy and Hussein (2022) reported that motor symptoms were 
significant indicators for Parkinson disease related dementias (e.g., 
corticobasal degeneration, dementia with Lewy bodies, and multiple 
system atrophy), normal pressure hydrocephalus, frontotemporal 
dementias and the posterior cortical atrophy variant of DAT. People 
with mild cognitive impairment (MCI) and DAT exhibit motor issues 
for complex tasks that can distinguish them from neurologically 
healthy controls (NHC) (Kluger et al., 1997). Although early-stage 
VaD and MCI can have similar cognitive symptoms, people with 
early-stage VaD do not tend to have motor symptoms (Kandasamy 
et al., 2020). The specific patterns of the motor issues relative to speech 
production for people with MCI and DAT have not been specifically 
described. Quite possibly, these motor issues may differ among the 
dementia types. Thus, the prosodic patterns for expressing emotion 
may provide a means to explore differences among cognitive 
impairment types.

Acoustic measurements that comprise prosody, such as 
fundamental frequency (f0), amplitude measured in dB level, and 
speech rate have been associated with the vocal expressions of 
emotions (Scherer, 2003), and several authors have reported evidence 
for emotion-specific patterns of acoustic cues (Banse and Scherer, 
1996; Juslin and Laukka, 2003; Hamnmerschmidt and Jurgens, 2007). 
Mean f0 tends to be high (with a fast speech rate) for happiness, fear, 
and anger, and low for sadness (with a slow speech rate). F0 variability 
tends to be wide for happiness and anger but narrow for fear and 
sadness (Juslin and Laukka, 2003). Listeners exhibit approximately 
60% accuracy for recognizing emotion from voice samples, although 
some emotions with more distinctive acoustic profiles (such as sadness 
and anger) may be easier for raters to identify than others (Johnstone 
and Scherer, 2000). However, this issue is complicated as the acoustic 
features of “emotional” prosody are not clear, given that there is no 
consensus on how acoustic features are manipulated to express 
different “emotions” (c.f., Bulut and Narayanan, 2008). For example, 
it is unclear how the frequency, amplitude, duration, and/or spectrum 
measures change when a person is in a state of emotional arousal, 
compared to when s/he is not (Patel et  al., 2011). Without this 
discussion, the investigations into emotional prosody cannot 
be complete.

The present investigation, thus, was designed to provide 
preliminary evidence of unique prosodic production profiles of people 
with three types of cognitive impairment: DAT, VaD, and MCI (Study 
1). Specifically, it was aimed to clarify how prosodic features differ 
acoustically across people with DAT, VaD, MCI, and healthy cognition 
and to determine whether the patterns of prosodic features can 
be used to differentially diagnose DAT, VaD, and MCI. One important 
concern of this study was whether these prosodic features could 
be  associated with the expression of emotion. Accordingly, the 
categorization of perceived acoustic features into emotional versus 
non-emotional, or neutral, prosody was also carried out (Study 2). It 
was hypothesized that (1) the types of cognitive impairments will 
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be  associated with different prosodic features in comparison to 
neurotypical older adults and (2) unique patterns of emotion 
expression will be perceived for each group by neurotypical listeners. 
Overall, it was expected that the different prosodic features could lead 
to a useful tool for differential diagnosis of DAT, VaD, and MCI.

Methods

Procedures

Study 1 – Acoustic analysis of emotional prosody

Materials
For the first purpose, audio recordings of people with DAT, VaD, 

MCI, and NHC were obtained through DementiaBank,1 a shared 
database supported by NIH-NIDCD grant R01-DC008524. The use 
of the secondary data was approved by Institutional Review Board at 
Ohio University (21-X-74). Included in this dataset were 10 people 
with DAT, 9 with MCI, 5 with VaD, and 10 NHC. On average, the 
speakers were 66.4 years old with 13.97 years of education at the time 
of original data collection. The one-way analysis of variance (ANOVA) 
revealed that across the four groups, the level of education (F(3, 
31) = 1.791, p = 0.169) and age (F(3, 31) = 2.094, p = 0.121) of 
participants were not significantly different but the difference in Mini 
Mental State Exam (MMSE) scores were significant (F(3, 31) = 34.761, 
p < 0.001). Detailed characteristics of the speakers can be found in 
Table  1. Among the speech samples available to DementiaBank 
members, those describing the Cookie Theft picture in English from 
the Pitt (Becker et al., 1994) corpus were used based on previous 
research showing that the Cookie Theft picture description task, from 
the Boston Diagnostic Aphasia Examination (Goodglass et al., 2001), 
provides a rich context in which mental state language and the 
cognitive processes associated with this language can be investigated 
(Cummings, 2019). It has been used to determine atypical emotional 
prosodic features of different clinical populations: Villain et al. (2016) 
found that stroke survivors described the picture using atypical 
emotional prosodic patterns, which is indicative of post-stroke 

1 https://dementia.talkbank.org

depression. Wright et  al. (2018) also reported atypical emotional 
prosody when describing the picture in right hemisphere stroke 
survivors and Patel et al. (2018) provided MRI images supporting the 
atypical prosodic patterns in this population. In individuals with 
dementia, Nevler et al. (2017) found that the Cookie Theft picture 
description task evoked emotional responses in people with behavioral 
variant frontotemporal dementia. Similarly, Haider et  al. (2020) 
demonstrated that when using the Cookie Theft picture description 
task with a focus on emotional prosody, the accuracy of detecting 
Alzheimer’s disease was 63.42%, which is comparable to when using 
the Berlin Database of Emotional Speech.

Acoustic analysis
The audio recordings and accompanying transcripts were 

downloaded and saved. The transcripts were compared to the audio 
files and amended as needed. Most amendments consisted of adding 
repetitions and filled pauses. The audio files were then parsed into 
utterances by the first and second authors of the current research 
independently, considering pauses and connectivity. After the 
independent work, the two researchers compared their evaluations 
and disagreements were resolved via discussions, until they reached 
100% agreement. This parsing process resulted in a final outcome of 
365 utterances including 108 utterances in the DAT, 75 in the MCI, 
49 in the VaD, and 133 in the NHC groups. The utterances were then 
analyzed acoustically using the Praat software (Boersma and 
Weenink, 2017, v. 6.1.14) via a set of timing, pitch, and 
amplitude measures.

For timing, the following set of measurements was made for each 
utterance: the duration of the complete utterance including pauses and 
repetitions. This measure was recorded as the speech time. Then, the 
pauses longer than 200 ms and filled pauses, word repetitions, and 
syllable repetitions were removed from the utterances and the 
duration of the remaining signal was measured. This measure was 
recorded as the articulation time. In addition, the number of syllables 
in the utterance and the number of repeated syllables and repeated 
words were recorded. Finally, the duration of the removed pauses and 
duration of the repeated syllables and words were recorded. The 
speech time was divided by the total number of syllables, repeated 
syllables, and repeated words to determine the speech rate in syllables 
per second. The articulation time was divided by the number of 
syllables in the utterance to determine the articulation rate.

Many of these duration, timing, and extra syllable measures have 
indicated differences in expressed emotions. Comparisons between 
neutral and emotional speech have revealed that syllable and word 
repetitions decrease for emotional speech (Buchanan et al., 2014). Tao 
et  al. (2018) reported that nonlinguistic fillers have no lexical 
information but contain emotional information. In addition, sad and 
fearful emotions are produced with more pauses, in comparison to 
neutral speech (Sauter et al., 2010). When rates have been calculated, 
they carry emotional valence as speaking rate differs among happiness, 
anger, sadness, fear, and neutral and articulation rate is slower for 
negative emotions (Petrushin, 1999; Erdemir et  al., 2018; Tao 
et al., 2018).

After completing the utterance rate measures, the waveform of the 
articulation time for each utterance was displayed and the voiceless 
segments were removed using hand-controlled cursors to mark the 
voiceless segments. This version of the utterance was used for the 
pitch, loudness, and LTAS measures.

TABLE 1 Speaker demographics.

Group Mean 
years 

of agea 
(σ)

Sex (men, 
women)

Mean years 
of 

education 
(σ)

Mean 
MMSEb 

score (σ)

NHC 63.00 

(9.24)

2, 8 14.9 (2.56) 29.3 (1.16)

DAT 69.36 

(5.90)

4, 6 13.45 (3.47) 17.91 (5.54)

VaD 72.6 (6.12) 2, 3 11.2 (2.71) 15.4 (1.74)

MCI 63.11 

(11.22)

5, 5 14.78 (3.42) 27.89 (1.45)

aStandard deviation.
bMini mental state exam (score range: 0–30).
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For pitch, the following set of f0 measurements were made for 
each utterance: the f0 of the first stable cycle of the first voiced sound 
and the f0 of the last stable cycle of the final voiced sound. In addition, 
the following measurements were collected using the output from the 
Voice Report from the Pulse menu in Praat: the highest f0  in the 
utterance, the lowest f0  in the utterance, and the median f0. The 
median f0 was used to reduce the effects of possible wide upward f0 
shifts on the mean f0. The minimum f0 was subtracted from the 
maximum f0 to determine the range of f0 used (Δf0).

Similar to the duration and timing measures, the frequency 
measures have been used to differentiate among emotions and f0 
measures considered to be primary indicators of emotional prosody 
(Bulut and Narayanan, 2008; Patel et al., 2011). Fear, joy, and anger are 
portrayed at a higher f0 than sadness and the f0 extent differs between 
happiness and fear (Bachorowski, 1999; Paeschke and Sendlmeier, 
2000). The initial f0 differs between anger and sadness and the final f0 
differs between happiness and sadness (Paeschke and Sendlmeier, 
2000; Sauter et  al., 2010). Finally, the average f0 differs between 
happiness and sadness (Paeschke and Sendlmeier, 2000).

For the loudness of the speech in dB (SPL), the following set of 
measurements was made for each utterance: the SPL of the first stable 
cycle of the first voiced sound and the SPL of the last stable cycle of 
the final voiced sound. In addition, the following measurements were 
collected using the output from the Intensity menu in Praat: the 
highest SPL in the utterance, the lowest SPL in the utterance, and the 
average SPL.

In comparison to the previous two sets of measures, measures of 
the relationship between SPL and emotion have been less explored. 
The average SPL differs between fear and sadness (Tao et al., 2006). In 
addition, the extent of SPL variations differs between anger and 
happiness (Tao et al., 2006). Since the SPL extent is determined from 
the maximum and minimum SPL levels, these measures may 
individually mark emotional differences. Similarly, the initial and final 
SPL levels may mark emotional differences.

Finally, three long-term average spectral (LTAS) measurements 
were made using the utterances without the voiceless segments: the 
LTAS slope, the LTAS offset, and the LTAS alpha ratio. These were 
extracted using standard bandwidth settings in the Praat LTAS 
routines. The LTAS measures indicate the pattern of amplitude by 
frequency. This interaction has indicated differences in emotional 
prosody as LTAS differences have been reported between sadness and 
anger and these measures mark the strength of emotional prosodic 
change (Tao et al., 2006; Cole et al., 2007).

Study 2 – Listener perception of emotional 
prosody

Study 2 was aimed at providing data to define “emotional” prosody 
to be used for differential diagnosis of cognitive impairments: when 
do listeners perceive emotion and what acoustic features are associated 
with the specific emotion? Neurotypical native English users were 
recruited to evaluate emotions expressed in each of the utterances per 
the approval of Institutional Review Board at Ohio University (21-X-
61). The listeners were tested for their cognitive functioning using the 
Montreal Cognitive Assessment (MoCA; Nasreddine et al., 2005) and 
only those who scored above 26 (out of 30) were allowed to participate 
in the emotion evaluation.

For the emotion evaluation, a perception experiment consisting 
of practice, screening, and main sessions, was built online with 

Gorilla™.2 The practice session was offered to anchor the listeners’ 
evaluation using pseudo examples of seven emotions (i.e., happiness, 
sadness, disappointment, fear, surprise, anger, and neutral), developed 
and validated by Pell et al. (2009). During the practice trials, each 
listener was asked to choose the emotion of each utterance spoken by 
a professional actor or actress from seven choices including the 6 
emotions mentioned above and a “neutral” option. The practice 
session consisted of 70 trials (with each of the six emotions and 
“neutral” appearing 10 times in random order) and feedback was 
provided following each response. After the practice session, each 
listener was asked whether s/he was confident to proceed to the 
screening test, which was shorter (10 trials) but followed the same 
format as the practice session. If the listener was not self-assured, 
another round of practice using a different set of utterances would 
be offered. A participant was considered passing the screening when 
s/he correctly identified at least 7 out of the 10 utterances. Failing the 
screening test would lead to an extra session of practice followed by a 
second screening test with a different set of utterances. Those who 
made two successive failures in the screening test would be excluded 
from participation. A total of 51 listeners participated in the screening 
test: 13 of them did not complete the screening and 28 of the 38 who 
completed the screening passed the screening at the pass rate of 73.6%. 
On average, the listeners were 29.6 years old (σ = 11.62) with 
15.67 years of education (σ = 1.75) and earned 27.9 (σ = 1.30) on 
MoCA. Fourteen of them were men.

These 28 listeners, who successfully passed the screening, then 
moved on to the main test, where they were instructed to judge the 
emotions expressed in the Cooke Theft description utterances obtained 
from the DementiaBank. The listeners were informed that no feedback 
would be provided during the test. They were also instructed to make 
their best judgments based on their knowledge gained through the 
practice and screening sessions.

Statistical analysis

All statistical analyses were done using R version 4.1.0. The 
acoustic measures in Study 1 were analyzed using a principal 
component analysis (PCA) to determine the separate factors and 
grouping of the acoustic measures and a regression model to 
determine the acoustic measures representing a unique aspect of the 
variance across the cognitive impairment types. The criteria used as 
the probability to for entering additional terms to the model was set 
at less than or equal to p = 0.05. Finally, a Mahalanobis distance 
measure for multivariate ANOVA to determine how well the factors 
discriminated among the cognitive impairment types.

The utterances used in acoustic measures were then categorized 
into different emotions based on the perceptual evaluations by 
listeners in Study 2. Specifically, the counts for all emotions were 
obtained for each utterance, and that utterance was labelled as the 
emotion with the most counts. For example, if an utterance was 
perceived as “Angry” by 10 listeners and “Sad” by 3 listeners, that 
utterance would be labelled as “Angry.” Utterances classified to the 
same emotion were then calculated for the descriptive statistics (i.e., 

2 https://app.gorilla.sc/admin/home
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mean and standard deviation) for each acoustic measure. A logistic 
regression model was constructed with the factor scores for each 
factor identified in the PCA for all utterances as independent variables 
and the emotion as the dependent variable. The emotion was coded 
into two classes: either neutral or emotional. The neutral class included 
utterances that were perceived as ‘Neutral’, and the emotional class 
included those identified as the rest 6 types of emotions.

Results

Study 1 – Acoustic analysis of emotional 
prosody

Factor analysis
The PCA was used to identify a small number of factors to 

represent relationships among sets of interrelated variables. The factor 
analysis of the acoustic measures revealed five factors with eigenvalues 
greater than 1.5. These factors and the included acoustic measures are 
depicted in Figure 1. The eigenvalues indicated the total variance 
explained by the correlated acoustic measures that comprise each 
factor. Two aspects of the data supported this stopping point for 
factors to include: first the variability accounted for dropped from 7 
to 5.5% and second, the cumulative variability flattened after factor 5, 
as displayed in the scree plot in Figure  1. The five-factor model 
explained 67% of the total variance among the acoustic measures 
when separating the cognitive impairment types.

Acoustic measures were considered components of a factor when 
the factor loading was greater than 0.5 (Table  2). The first factor, 
labeled ‘Mixed’, was comprised of the following acoustic measures: the 
number of syllables for the speech and the articulation measures, the 
change in dB level, and the elapsed time for the speech and the 
articulation samples. The second factor was labeled ‘Loudness’ and 
included the initial, final, maximum, and minimum dB levels. The 
third factor was labeled ‘Pitch’ and was comprised of the final and 
maximum fundamental frequency levels as well as the difference in 
fundamental frequency level within each sample. The fourth factor is 

titled ‘Rate’ and included the speech and articulation rates. The fifth 
factor included the extra syllable count and extra syllable time and was 
labeled ‘Syllable.’ The extra syllables were repetitions and filled pauses. 
The difference between the acoustic measures in Factor 1 and Factor 
4 was as follows: In Factor 1 the measures for speech and articulation 
are the number of syllables in the utterances and the elapsed time for 
each of those. In Factor 4, the acoustic measures are the division of the 
number of syllables by the elapsed time. It is noteworthy that these 
arithmetically related acoustic measures represented different aspects 
and proportions of the total variance of the differences among the four 
cognitive impairment groups.

Regression model
The stepwise fixed effects regression resulted in the inclusion of 

the following acoustic measures: the fundamental frequency at the end 
of the utterances, the articulation rates, the change in dB level during 
the utterance, and the sum of extra syllables in the utterances (Table 3). 
These acoustic measures were loaded onto separate factors in the 
factor analysis. The fixed effects regression model summary showed 
that all four measures were attributed to a significant amount of the 
total variance of the acoustic measures in relation to the cognitive 
impairment types. The negative Beta values for change in dB level 
within the utterance and articulation rate indicate that reductions in 
these two acoustic measures differentiated the cognitive impairment 
types. Finally, the tolerance information in the fourth model indicates 
that the variance explained by each of the acoustic measures was 
independent of the variance explained by the other acoustic measures 
included in the model.

Multivariate distance model
A set of Mahalanobis distance tests were completed. The 

Mahalanobis distance shows how far the test point is from the 
benchmark point. A Malahanobis distance of 1 or lower indicates that 
the test point is similar to the benchmark point. These measures 
indicate the distance between selected points in multivariate space. 
The Mahalanobis distance tests revealed that all of the factors exhibited 
relatively weak sensitivity; however, they exhibited good specificity. 
Although the discriminatory sensitivity was weak, the Mahalanobis 
distance factors had separate patterns across the cognitive impairment 
groups. The first, ‘Mixed,’ factor separated the DAT group from the 
other three factors (F(21,1,020) = 4.259, p < 0.001) with Mahalanobis 
distances that ranged from 0.423 to 1.06 which included the sum of 
extra syllables from the regression analysis. The second, ‘Loudness,’ 
factor distinguished the participants in the NHC and VaD groups 
from those in the DAT and MCI groups (F(15,986) = 3.489, p < 0.001) 
with Mahalanobis distances ranging from 0.231 to 0.773. ‘Loudness’ 
included the change in dB level during the utterance acoustic 
measurement from the regression analysis. The third, ‘Pitch,’ factor 
then separated the DAT and MCI groups from the NHC and VaD 
groups (F(9,874) = 9.378, p < 0.001) with Mahalanobis distances that 
ranged from 0.119 to 1.603 which included the final fundamental 
frequency measure from the regression analysis. The fourth, ‘Rate,’ 
factor included the articulation rate measure from the regression 
analysis which separated the DAT and NHC groups from the MCI and 
VaD groups (F(6,720) = 4.579, p < 0.001) with Mahalanobis distances 
of 0.008 to 0.438. The final, ‘Syllable,’ factor separated the NHC group 
from the three cognitive impairment groups (F(6,720) = 5.366, 
p < 0.001) with Mahalanobis distances that ranged from 0.109 to 0.491. 

FIGURE 1

Scree plot: factors accounted for 67% of the overall variance.
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TABLE 2 Output of the principal component factor analysis including the correlation between the acoustic measures and the factors, the factor 
eigenvalues, and the percentage of variance explained by each factor.

Construct Loadings Factors

1 2 3 4 5

Mixed Speech syllables 0.818

Speech time 0.837

Articulation syllables 0.802

Articulation time 0.849

Loudness dB change 0.732

dB initial 0.780

dB final 0.806

dB maximum 0.715

dB minimum 0.883

Pitch Frequency initial 0.559

Frequency final 0.645

Frequency maximum 0.792

Frequency change 0.708

Rate Speech rate 0.733

Articulation rate 0.805

Syllable Extra syllables 0.702

Sum of extra syllables 0.704

Eigenvalues 5.542 4.322 2.469 2.145 1.686

Variance percentage 23.093 18.009 10.289 8.936 7.024

The acoustic measures included in the model created by the stepwise regression are in bold type.

TABLE 3 Results of stepwise regression including the four models, the R2 explained, and the R2 change for each model.

Variable Beta (standard 
error)

t p 95% CI [lower]a 95% CI 
[upper]

Tolerance

Model 1 (R2 = 0.081, R2 change = 0.081)

(Constant) 12.336 <0.001 1.287 1.776

Frequency final 0.284 (0.001) 5.635 <0.001 0.003 0.005 1.000

Model 2 (R2 = 0.1451, R2 change = 0.064)

(Constant) 11.365 <0.001 2.052 2.91

Frequency final 0.277 (0.001) 5.691 <0.001 0.003 0.005 0.999

Articulation rate −0.254 (0.041) −5.204 <0.001 −0.294 −0.133 0.999

Model 3 (R2 = 0.163, R2 change = 0.017)

(Constant) 10.51 <0.001 2.425 3.541

Frequency final 0.279 (0.001) 5.772 <0.001 0.003 0.005 0.999

Articulation rate −0.281 (0.042) −5.694 <0.001 −0.318 −0.155 0.959

dB change −0.135 (0.007) −2.733 0.007 −0.034 −0.006 0.959

Model 4 (R2 = 0.174, R2 change = 0.012)

(Constant) 10.771 <0.001 2.504 3.622

Frequency final 0.284 (0.001) 5.898 <0.001 0.003 0.005 0.997

Articulation rate −0.296 (0.042) −5.981 <0.001 −0.331 −0.167 0.941

dB change −0.164 (0.008) −3.232 0.001 −0.039 −0.010 0.898

Sum of extra syllables 0.113 (0.139) 2.271 0.024 0.042 0.587 0.928

aConfidence interval.
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The ‘Syllable’ factor did not incorporate any acoustic measures 
included in the model from the stepwise regression.

Study 2 – Listener perception of emotional 
prosody

Neurotypical listeners perceived neutral prosody in most of the 
utterances in all speaker groups. The NHC and MCI groups were most 
similar in terms of the composition of perceived emotions, while the 
highest number of angry utterances was identified in the DAT group 
and sad utterances in the VaD group. Table 4 shows the counts of 
responses and corresponding percentages, and Figure 2 presents the 
percentage of each perceived emotion.

To evaluate potential linguistic cues on listener perception of 
emotional prosody, the words used in the Cookie Theft picture 
description tasks were collected. Words without semantic valence such 
as be verbs and articles were excluded from the collection. As 
illustrated in Figure 3, the speakers across the 4 groups used similar 
words to describe the picture. In particular, the 10 most frequently 
used words constituted approximately 30.67% of NHC speech, 31.07% 
of MCI speech, 26.11% of DAT speech, and 37.04% of VaD speech, as 
described in Table 5. Given this finding, the impact of word choice on 
listener perception of emotion was deemed minimal.

The logistic regression revealed that Factor 3 of the PCA 
containing pitch measures as loadings was a significant predictor of 
emotional prosody. The odds of identifying emotional prosody 
increased by 22.6% (95% CI: [1.063, 1.418]) for using pitch measures 
compared to using other measures (i.e., mixed, loudness, rate, and 
syllable measures). Table  6 presents the outputs of the logistic 
regression in detail.

Discussion

An accurate diagnosis of cognitive impairment is critical to 
understand the person’s condition, to establish care and treatment 
plans and to prepare for expected changes in different areas of daily 
living. However, the invasive nature and/or high cost of current 
diagnostic tools make it challenging for people experiencing cognitive 
impairment to get a precise diagnosis in a timely manner (López-de-
Ipiña et al., 2015). Differential diagnosis is particularly important as it 
guides healthcare professionals and family caregivers in looking into 

key features and pathology of each type of dementia, so individuals 
living with the condition can receive the most appropriate treatments 
and support services that will in turn lead to the highest possible 
quality of life (Alzheimer’s Association, n.d.). The current research was 
designed to address this issue by proposing a novel non-invasive and 
cost-efficient tool for differentiating cognitive impairment phenotypes. 
To achieve this goal, speech samples of people with different types of 
cognitive impairment (i.e., MCI, DAT, VaD) and healthy controls were 
analyzed acoustically for prosodic feature production (Study 1) and 
neurotypical listeners evaluated emotions conveyed by each utterance 
(Study 2).

The results of Study 1 demonstrated that acoustic features 
measured in this study can separate the cognitive impairment types. 
These features have been associated with emotional prosody (Patel 
et  al., 2011; Pell et  al., 2015). Five factors to separate cognitive 
impairment types were identified using the PCA and 4 of these factors 
were found salient for differentiating among cognitive impairment 
groups. Measures included in the 4 factors were the extent of dB 
changes, the fundamental frequency at the end of utterances, the 
number of extra syllables in the utterances, and the articulation rate. 
However, these factors and salient features provided a minimal 
separation among the cognitive impairment types. In Study 2, the 
neurotypical listeners perceived distinctive patterns in the utterances 
of the 4 groups. Although statistical differences were not calculated 
due to the imbalance of the number of utterances collected across the 
groups, NHC and MCI showed the most similar patterns. While 
listeners perceived a neutral prosodic pattern in the majority (>60%) 
of the utterances in NHC, MCI, and DAT, they indicated that 
approximately 40% of the utterances of the VaD group were neutral. 
Across NHC, MCI, and DAT groups, sad prosody consisted of 1 to 3% 
of all utterances. However, sad emotion was identified in approximately 
22% of the VaD utterances. In addition, the listeners perceived that the 
VaD speakers expressed more utterances in fearful and surprised 
emotions compared to the other groups. These differences are 
noteworthy, despite the small number of VaD utterances.

Compiling the results of the two studies, frequency measures were 
found most critical for the listeners to perceive emotional prosody. 
This finding agrees with the results of some previous acoustic studies: 
Bulut and Narayanan (2008) found that the synthetic f0 modification 
to mean, range, and shape parameters affected the listener’s perception 
of emotion embedded in the same utterance and Patel et al. (2018) 
demonstrated that voicing frequency affects the vocal expression of 
emotion. Although pitch was the strongest perceptual feature, 
amplitude and timing features also differentiated the four groups in 
the acoustic analyses. The manipulation of emotional prosody helps 
the speaker deliver the intention using non-linguistic clues and the 
listener interpret the intention accurately. This activity requires a wide 
range of interhemispheric cerebral networks, which is often impaired 
in people with cognitive impairment (Lian et al., 2018; Qi et al., 2019). 
The specific domains and severity of the impairment differ across the 
cognitive impairment groups and therefore, the analysis of emotional 
prosody can provide a low-cost and non-invasive tool to diagnose 
different types of cognitive impairment. Despite the strong potential 
of the analysis of emotional prosody, this line of study has been sparse 
and shown inconsistent findings. For example, some studies 
demonstrated that people with dementia struggle when attempting to 
express emotion (Horley et  al., 2010; Haider et  al., 2020) and the 
expression is completed in different ways than neurotypical speakers 

TABLE 4 Listener perception of emotional prosody.

NHC MCI DAT VaD

counts 
(%)

counts 
(%)

counts 
(%)

counts 
(%)

Neutral 86 (64.66) 51 (68.00) 67 (62.04) 15 (40.54)

Happy 12 (9.02) 6 (8.00) 11 (10.19) 2 (5.41)

Angry 10 (7.52) 4 (5.33) 14 (12.96) 3 (8.11)

Fearful 10 (7.52) 4 (5.33) 5 (4.63) 4 (10.81)

Surprised 6 (4.51) 3 (4.00) 4 (3.70) 4 (10.81)

Disappointed 5 (3.76) 3 (4.00) 5 (4.6) 1 (2.70)

Sad 4 (3.01) 4 (5.33) 2 (1.85) 8 (21.62)
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do (e.g., Meilán et al., 2014; Nevler et al., 2017). Themistocleous et al. 
(2020) also found that aspects of voice quality and speech fluency of 
people with MCI and healthy controls differ significantly. Yang et al. 

(2021) showed correlations between speech features and brain atrophy 
among people with MCI and DAT and concluded that speech analysis 
may assist in MCI detection. Other researchers investigated prosody 

FIGURE 2

Listener perception (%) of each emotion per group.

FIGURE 3

Ten common words used by the four groups of speakers.
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production impairments in people with dementia and reported the 
potential of acoustic analysis of prosodic features as a dementia 
diagnostic tool (Kato et al., 2015, 2018; Martinc et al., 2021). However, 
other studies showed no differences in speech prosody between people 
with cognitive impairment and those who are healthy (e.g., Testa et al., 
2001; Dara et al., 2013 – for spontaneous speech task only, Wright 
et  al., 2018). Nevertheless, these studies either did not report the 
specific acoustic measures used or assessed a small set of acoustic 
measures. In addition, they did not clearly distinguish emotional 
prosody from linguistic prosody.

The present research provides several novel findings: First, it is 
the first to utilize a large set of acoustic measures that are specifically 
important for emotion expression to differentially diagnose 3 types 
of cognitive impairment. In particular, the current research is the first 
to include the VaD group. According to a recent systematic review 
(Oh et al., 2021), prosody and dementia studies included DAT and 
frontotemporal dementia groups only. Second, in this study, 
emotional prosody was clearly distinguished from linguistic prosody, 
supported by the neurotypical listeners’ emotion evaluation. It is 
noteworthy that utterances of the NHC and MCI groups were 
perceived in a similar pattern while those of the VaD group 
were unique.

The current research has some limitations: First, the Cookie 
Theft picture description task may not be ideal to elicit emotional 
responses. Most of the utterances were perceived as neutral by the 

neurotypical listeners. Unlike the findings of previous studies 
showing the effectiveness of the Cookie Theft picture description 
task in evoking emotional responses (e.g., Villain et al., 2016; Nevler 
et al., 2017; Patel et al., 2018; Wright et al., 2018; Haider et al., 2020), 
the neurotypical listeners involved in this study as emotion raters 
identified neutral prosody in most of the speakers’ utterances. This 
leads to the need to develop and validate a more appropriate 
procedure and/or stimuli. Second, a larger dataset including similar 
amount of data for each cognitive impairment and healthy group is 
warranted. Particularly, the listeners’ perception was not statistically 
tested due to the different number of utterances collected for each 
group. Despite all the limitations, the findings of the research 
provide novel and functional implications that are clinically 
relevant. The findings demonstrate that the analysis of emotional 
prosody is a promising tool for differential diagnosis of 
cognitive impairment.

Data availability statement

The raw data supporting the conclusions of this article is available 
for verified members of DementiaBank (https://dementia.talkbank.
org). Researchers and clinicians working with dementia who are 
interested in joining the consortium should read the Ground Rules 
and then send email to macw@cmu.edu with contact information and 

TABLE 5 Words frequently used in the Cookie Theft picture description task.

Group (%)

Words NHC MCI DAT VaD

She 43 (6.39) 17 (4.13) 56 (7.78) 18 (9.52)

He 29 (4.31) 26 (6.31) 31 (4.31) 13 (6.88)

Cookie 29 (4.31) 18 (4.37) 17 (2.36) 7 (3.70)

Dish 13 (1.93) 12 (2.91) 11 (1.53) 2 (1.06)

Water 26 (3.83) 6 (1.46) 13 (1.81) 7 (3.70)

Sink 15 (2.23) 10 (2.43) 10 (1.39) 3 (1.59)

I 13 (1.93) 11 (2.67) 29 (4.03) 5 (2.65)

Stool 12 (1.78) 11 (2.67) 8 (1.11) 9 (4.76)

Jar 8 (1.19) 9 (2.18) 9 (1.25) 3 (1.59)

Mother 18 (2.67) 8 (1.94) 4 (0.56) 3 (1.59)

TABLE 6 Univariate logistic regression to differentiate emotional prosody from neutral prosody.

Variable B SEa Z value p Exp (B) 95% CI lower 95% CI upper

Intercept −0.505 0.112 −4.505 <0.001 0.603 0.483 0.750

Mixed 0.083 0.047 1.759 0.078 1.087 0.991 1.194

Loudness 0.024 0.054 0.447 0.655 1.025 0.922 1.141

Pitch 0.204 0.073 2.781 <0.01 1.226 1.063 1.418

Rate 0.057 0.076 0.749 0.454 1.059 0.911 1.231

Syllable −0.109 0.086 −1.265 0.206 0.896 0.754 1.059

aStandard error.
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affiliation. Please include a brief general statement about how you 
envision using the data.
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In this paper, a novel EEG emotion recognition method based on residual

graph attention neural network is proposed. The method constructs a three-

dimensional sparse feature matrix according to the relative position of electrode

channels, and inputs it into the residual network to extract high-level abstract

features containing electrode spatial position information. At the same time, the

adjacency matrix representing the connection relationship of electrode channels

is constructed, and the time-domain features of multi-channel EEG are modeled

using graph. Then, the graph attention neural network is utilized to learn the

intrinsic connection relationship between EEG channels located in di�erent brain

regions from the adjacency matrix and the constructed graph structure data.

Finally, the high-level abstract features extracted from the two networks are

fused to judge the emotional state. The experiment is carried out on DEAP

data set. The experimental results show that the spatial domain information of

electrode channels and the intrinsic connection relationship between di�erent

channels contain salient information related to emotional state, and the proposed

model can e�ectively fuse these information to improve the performance of

multi-channel EEG emotion recognition.

KEYWORDS

EEG, emotion recognition, residual network, graph attention neural network, feature

fusion

1 Introduction

Emotion is a physiological state of human beings accompanied by cognition and

consciousness. People’s daily cognitive and behavioral activities are almost driven by

emotion, which also affects interpersonal interaction and group activities (Guozhen et al.,

2016). Affective computing is a representative field, which aims to give computer systems

the ability to automatically recognize, understand and respond to human emotions, so as to

realize intelligent human-computer interaction. As the core and important component of

affective computing, emotion recognition has a wide range of applications in psychology,

emotional computing, artificial intelligence, computer vision, medical, and other fields

(Ramirez et al., 2001; Hu et al., 2019; Fürbass et al., 2020).

Physiological signals mainly include electrocardiogram (ECG), electromyography

(EMG), and electroencephalogram (EEG). Compared with facial expressions and voice

signals, physiological signals are not easy to disguise, and are more objective and reliable

in capturing the real emotional state of human beings. With the rapid development of

wearable devices, long-term monitoring of physiological signals has become a reality, which

makes it feasible and practical to judge emotional state based on EEG signals. In the medical

field, EEG classification models play a role in automatic diagnosis of psychiatric disorders.

Depression is one of the largest health problems in the world. It is a serious mental illness,

and there is a problem of untimely treatment. Severe patients often have thoughts of suicide.
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Current diagnostic criteria for depression are still based on

subjective clinical rating scales, such as The Hamilton Depression

Rating Scale (Hamilton, 1960), and require physician input (Sung

et al., 2005). Some research focuses on automatic diagnosis

of depression based on EEG (Alhaj et al., 2011; Mohammadi

et al., 2015), which can enable patients to quickly diagnose and

understand their own condition, so as to carry out scientific

treatment in advance.

The main components of the EEG signal are brain rhythm

from different brain regions, reflecting the activity of that region

(Niedermeyer and da Silva, 2005). The electrical activity of the

cerebral cortex is transmitted to the scalp through the anatomical

structure. Therefore, the acquired EEG is a mixture of source

signals from different brain regions, carrying a large amount of

spatial location information (Xing et al., 2019). In the research

field of emotion recognition based on EEG, some studies have

explored asymmetric features of brain regions, such as DASM

(differential asymmetry), RASM (rational asymmetry), DCAU

(differential causality) (Gogna et al., 2016; Li et al., 2018b). And

other works studied the connectivity of EEG signals (Nolte et al.,

2004, 2008; Supp et al., 2007; Haufe et al., 2013). Castelnovo

et al. finds that the electrical activity of the brain is mainly

concentrated in specific brain regions when people are in different

sleep states, scalp EEG analysis of all night NREM (non-rapid

eye movement) sleep revealed a localized decrease in slow wave

activity (SWA) power (1–4 Hz) over centro-parietal regions relative

to the rest of the brain in SADs compared to good sleeping

healthy controls (Castelnovo et al., 2016). Nowadays, there are

also some works that make better use of the spatial domain

information of EEG channels in EEG classification tasks. In order

to learn the spatiotemporal characteristics of EEG signals, Salama

et al. divided the original EEG signals into multiple frames, and

combined the original EEG signals of multiple channels into a

two-dimensional matrix in each frame, where the first dimension

represents the number of channels, and the second dimension

Indicates the time length of a frame. Multiple frames are then

superimposed to form a three-dimensional matrix, with the third

dimension representing time. Finally, the 3D matrix is used

as the input for 3D-CNN (3d convolutional neural networks)

training. Since the left and right hemispheres of the human

brain respond asymmetrically to emotion, a bi-hemisphere domain

adversarial neural network (BiDANN) model is proposed to

learn the discriminative emotional features of each hemisphere,

BiDANN contains one global and two local domain discriminators,

and learns discriminative sentiment features for each hemisphere

by adversarial with local domain discriminators and classifiers

(Li et al., 2018c). Li et al. (2017) captures the spatial domain

information contained in electrode positions by mapping into

EEG multidimensional feature image following a 10/20 system.

First, the spatial features, frequency domain and time features

of the EEG signal are integrated, and mapped into a feature

matrix according to the international 10/20 system, and then

the EEG multidimensional feature image is generated using the

interpolation method, using a combination of convolutional neural

network (CNN) and long-term and short-term A hybrid deep

network of memory (LSTM) recurrent neural network (RNN)

recognizes emotional states. Li et al. (2018a) also used the

distribution of electrodes on the scalp to extract the spatial

domain information of electrode locations. First, the differential

entropy features from 62 EEG signal channels are organized

into a two-dimensional map of 8×9, and are mapped to a

20×20 input map through sparse operations to avoid information

leakage in convolution and pooling operations. Finally, hierarchical

convolutional neural network (HCNN) is used to classify positive,

neutral and negative emotional states.

To a certain extent, the above research has applied the

extraction of the spatial domain information of the EEG

channel, and used the multi-dimensional feature matrix mapped

according to the international 10/20 system and CNN to fuse

the information of the neighbor nodes. However, there still

exist several challenges in multi-channel EEG-based emotion

recognition. First of all, the brain activity in emotional state

is complex, and multiple brain regions are involved in the

interaction. How to effectively characterize the interaction between

brain regions is a problem to be considered. Furthermore,

due to the local perception characteristics, CNN (Convolutional

Neural Networks) tends to pay more attention to adjacent

electrode channels and is good at learning local spatial patterns.

Therefore, in the process of extracting electrode spatial position

information, CNN can mine the significant information of

correlation and interaction of different EEG signals in the

same brain region. However, it cannot effectively capture the

intrinsic connection relationship between EEG channels located

in different brain regions and the global spatial position

information of electrodes. Finally, the features extracted from

the EEG signal and the distance between different electrodes

are a kind of non-Euclidean data, only mapping the features

extracted from each channel into a multi-dimensional sparse

feature matrix according to the international 10/20 system

ignores the distance information between electrodes, and ignores

that all electrodes are not positioned in an absolute plane on

the scalp.

To solve the above problems, this paper proposes a noval

emotion recognition method based on residual graph attention

neural network (ResGAT). In the proposed method, the residual

network is utilized to achieve the spatial position information

of the electrode channel and the correlation information of the

adjacent EEG channels through the 3D feature matrix. Considering

that the graph neural network (GAT) can update the state of

vertices by periodically exchanging neighborhood information

without being limited by vertex distance, it is employed to

learn the neural functional connections between different brain

regions, and the multi-head self-attention mechanism is used to

adaptively adjust the adjacency matrix in the network. Therefore,

the ResGAT model makes full use of the electrode spatial position

information and the intrinsic connection relationship between

EEG channels located in different brain regions. Moreover, when

the EEG channel aggregates the characteristics of neighboring

nodes, it pays more attention to the channel that is more relevant

to itself. Finally, the high-level abstract features representing

electrode space domain information and the high-level abstract

features representing intrinsic connection relationship between

EEG channels located in different brain regions are fused to judge

the emotional state.
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2 Datasets and feature extraction

2.1 Data set

The DEAP data set used in the experiment is an open data set

collected through experiments by Koelstra et al. from Queen Mary

University of London, University of Twente, University of Geneva,

Switzerland, and Swiss federal Institute of Technology in Lausanne

to analyze human emotional states (Koelstra et al., 2011). The

dataset records multimodal physiological signals of 32 volunteers

under the stimulation of selected music videos, including EEG and

peripheral physiological signals, and 22 of the 32 volunteers also

record facial expression videos. Each volunteer needs to watch 40

1-min long videos using 32 active AgCl electrodes (Fp1, AF3, F3,

F7, FC5, FC1, C3, T7, CP5, CP1, P3, P7, PO3, O1, Oz, Pz, Fp2,

AF4, Fz, F4, F8, FC6, FC2, Cz, C4, T8, CP6, CP2, P4, P8, PO4,

and O2) recording EEG signals, these electrodes were placed on

the scalp according to the international 10/20 system. At the end

of each trial, the valence, arousal, dominance, and liking of the

video were evaluated on a scale of 0–9. Physiological signals were

sampled at 512 Hz and resampled at 128 Hz. The physiological

signal matrix of each subject is 40×40×8064 (40 trials, 40 channels,

8,064 sampling points). Eighty thousand and sixty-four is 63 s data

at 128 Hz sampling rate, 3 s silent time.

In addition, the effectiveness of ResGAT was verified using

the SEED-IV brain emotion dataset (Zheng et al., 2018). This

data set selected 72 movie clips containing 4 emotions (Happy,

Sad, Neutral, and Fear) as EEG-induced materials. A total of 15

subjects recorded 62-channel EEG signals and eye movements

when watching movie clips.

2.2 Feature extraction

In the DEAP set, each person watched 40 emotion-inducing

videos, and the duration of EEG signals recorded in each video

was 60 s. In the experiment, a sliding window divides the raw

EEG signal of each channel into several segments, and the duration

of each sliding window is set to 6 s. The segments do not over

lap. Each segment is considered an independent sample, and the

six new samples inherited the labels of the original. Thus, 12,800

samples were be obtained. A set of time domain features can

be extracted from the 32-channel EEG signals of each sample,

specifically including mean, variance, first difference value, second

difference value, standard deviation, and fuzzy entropy. Among

them, Fuzzy Entropy was proposed by Chen et al. (2007) and

applied to the representation of EMG signals. Fuzzy Entropy

introduces the concept of fuzzy sets. Based on the exponential

function and its shape, the similarity of vectors is vaguely defined

in FuzzyEn, compared with ApEn and SampEn, the FuzzyEn is

an effective measure algorithm for analyzing chaotic sequence

complexity, it has better robustness andmeasure value continuities.

The soft continuous boundary of the fuzzy function ensures

the continuity and effectiveness of the fuzzy entropy under small

parameters, so the more details obtained by the fuzzy function

also make the fuzzy entropy a more accurate definition of entropy.

Assuming that the EEG signal of each channel is represented

by s(T), t = 1, 2..., T, T is the signal length, which is 128×60

(frequency×second), the measure of the length of the EEG signal

subsequence in fuzzy entropy m is 2. By reconstructing the original

sequence, we can get

Xm
i =

{

s(i), s(i+ 1), ..., s(i+m− 1)
}

− s0(i) (1)

Among them, i=1,2,...,N-m+1. Xm
i represents m consecutive s

values, s0(i) represents the average value, calculated as follows,

s0(i) =

∑m−1
j=0 s(i+ j)

m
(2)

Define the maximum difference dmij between elements in two

m-dimensional vectors Xm
i and Xm

j as the distance between them,

dmij = max
k∈(0,m−1)

{

| s(i+ j)− s0(j)− (s(i+ k)− s0(i)) |
}

(3)

The similarity between Xm
i and Xm

j can be defined by a

fuzzy function,

Dm
ij = µ(dmij , r) (4)

Structure ϕm(r) and ϕm+1(r),

ϕm(r) = (N −m)−1

N−m
∑

i=1

φm
i (r) (5)

ϕm+1(r) = (N −m)−1

N−m
∑

i=1

φm+1
i (r) (6)

Then can define the parameter FuzzyEn(m, r) of the time

series as:

FuzzyEn(m, r) = lim
x→−∞

[lnϕm(r)− lnϕm+1(r)] (7)

Among them, when N is finite, it can be estimated by statistics,

FuzzyEn(m, r,N) = lnϕm(r)− lnϕm+1(r) (8)

Two emotion dimensions are used in the experiments. For each

sample, if the self-assessment value of the arousal is greater than

5, the category label of the sample is set as the high arousal (HA),

otherwise it is set as the low arousal (LA). In the valence-sentiment

dimension, the same label division is used for samples, including

the high valence (HV) and the low valence (LV).

3 ResGAT emotion recognition
framework

The structure of the proposed ResGAT model is described

in Figure 1. The framework includes feature extraction and

feature mapping module, ResNet modules, GAT modules and

Classification modules. The first part is feature extraction and

feature mapping modules, which extracts 6 kinds of temporal

features from 32 EEG signals. Then, a 2D electrode position

mapping matrix and a 3D sparse feature matrixand are constructed

according to the temporal features. The 2D electrode position

mapping matrix is input into the GAT modules to extract high-

level abstract features, which contain the intrinsic connection
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FIGURE 1

ResGAT emotion recognition framework.

FIGURE 2

International 10/20 system, 9×9 mapping matrix and 3D sparse feature matrix.

relationships between EEG channels located in different brain

regions. The ResNet modules is employed to receive the 3D

sparse feature matrix and generate high-level abstract features

representing electrode spatial position information. Finally, the

classification modules is utilized to fuse the two high-level abstract

features and judge the emotional state.

3.1 Extraction of spatial domain
information based on ResNet Module

Figure 2 shows the international 10/20 system plan, 2D

electrode position mapping matrix and 3D sparse feature matrix

XR ∈ R
h×w×c. The values of parameter h and parameter w are

both set to 9, and the value of parameter c is 6, indicating that

the shape of the 3D feature matrix is. The left side of Figure 2

shows the International 10/20 system, where the EEG electrodes

marked by green circles are the test points used in the DEAP

dataset. Some researches (Li et al., 2017; Chao and Dong, 2020;

Cui et al., 2020) have found that spatial features of EEG channels

can improve the performance of emotion recognition. In order

to represent the spatial location information of all EEG signal

channels, a feature matrix is constructed according to the positions

of electrodes on the brain, and the spatial parts of different EEG

signal channels are mined. In the feature matrix, the time-domain

features extracted from different EEG channels are put into the

corresponding positions in the matrix by name, and the positions
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of unused electrodes in the matrix are set to 0. Finally, a 9×9×6

three-dimensional feature matrix is constructed according to the

six extracted features, as shown in the right of Figure 2. For each

9×9×1 matrix, different time domains are arranged according to

the mapping rules shown in Figure 2 mapping matrix. Finally, the

extracted 3D sparse featurematrix is represented byXR, h = w = 9,

c = 6, indicating that the shape of the 3D feature matrix is 9×9×6.

After constructing the three-dimensional sparse mapping

matrix, it is input into the residual network to extract high-

level abstract features. The residual network structure adopted is

shown in Figure 1. It is composed of multiple residual blocks.

Each residual block is composed of multiple convolution layers,

batch normalization layers and activation layers. The size of the

convolution kernels used in this part is 3×3. The residual block is

calculated as follows:

First, the 3D sparse feature map U ∈ R
h′×w′×c′ is obtained

from XR ∈ R
h×w×c by transforming Ftr . For transform Ftr , it is

a Convolution operation. Use V = [v1, v2, ..., vc′ ] to represent the

filter set, where vi refers to the parameter of the ith filter. The output

is U = [u1, u2, ..., uc′ ], and

ui = vi ∗ X
R (9)

Here, * means convolution, the filter can learn the

spatial position information of electrodes and the interaction

information between electrodes in local spatial position through

convolution operation.

The normalized network response after batching is Z =

BN(U) = [z1, z2, ..., zc′ ].

Batch normalization can effectively prevent the gradient

explosion and gradient disappearance in the network, and speed

up the convergence speed of the network. Finally, the nonlinear

interaction between the feature map channels is learned through

the activation layer, and the complete dependence between the

channels is obtained. It is expressed by the following formula:

S = WZ,W ∈ R
c′ (10)

Among them, δ refers to the relu activation function. After

multiple convolutions and activation calculations, the final EEG

signal characteristics are expressed as SR = [s1, s2, ..., sc′ ].

3.2 Dynamic learning of the intrinsic
connection relationship between EEG
channels located in di�erent brain regions

As the basis of ResGAT method, some basic knowledge about

graph representation is introduced first. A directed connected

graph can be defined as G = V ,E,W, where V represents the

node set with the number of |V| = N, and E represents the

edge set connecting these nodes. Let W ∈ R
N×N represents the

adjacency matrix describing the connection between any two nodes

in V , in which the entry of W in row i and column j measures

the importance of the connection between node i and j. Figure 3

shows five nodes and edges connecting those nodes, as well as the

adjacency matrix associated with the graph. The different colored

arrows on the left side of the figure represent the edges connecting

the source node and the target node, while the corresponding

adjacency matrix is on the right side of the figure.

In the past, convolutional neural networks have been applied

in many fields due to their powerful modeling capabilities, such

as computer vision, speech recognition, and natural language

processing. Due to its locality and translation invariance properties,

it is very suitable for processing Euclidean data.However, many

elements in the real world exist in the form of graph data, such as

social networks, transportation networks, and drug discovery.The

features extracted from the EEG signal and the distance

between different electrodes are non-European data. Although

the number of features on each signal channel is consistent, the

distance between each adjacent electrode is uneven, and brain

functional connectivity tends to capture global relationships among

EEG channels. Therefore, the graph neural network is more

suitable for learning the potential internal connections between

different channels.At present, the graph attention network (GAT)

(Veličković et al., 2017) is a widely used graph neural network.

GAT achieves information aggregation in the spatial domain

by introducing an attention mechanism, making the model pay

more attention to the mutual influence between neighbor nodes,

and applying it to EEG data to make the channels aggregate

the characteristics of neighbor nodes and pay more attention to

channels that are more relevant to themselves. Each EEG electrode

can be regarded as a node of the graph, and the connection between

the electrodes corresponds to the edge of the graph. The weights of

all edges, which representing the functional relationship between

electrodes, constitute the adjacency matrix of the graph. Therefore,

GAT can learn the internal relationship between different EEG

electrodes. As shown in the attention neural network in Figure 1,

although GAT can describe the connection between different nodes

according to their spatial positions, the connection between EEG

channels should be determined in advance before applying it to

the construction of emotion recognition model. In addition, it

should be noted that the spatial location connection between EEG

channels is different from the functional connection between them.

In other words, closer spatial relationships may not guarantee

closer functional relationships.

The flow of processing EEG signal features with GAT is

shown in Figure 1. After data acquisition, preprocessing and

feature extraction, EEG data are represented by undirected graph

G = V ,E,W. The data on can be represented as feature matrix

XG ∈ R
n×d, where n represents the number of electrodes and

d represents the number of features extracted on each electrode

channel. The constructed initial adjacency matrix WG ∈ R
n×n,

where n represents the number of electrode channels, characterizes

the correlation between 2D space electrodes. Assume that each

electrode channel has an internal relationship with the other 31

electrode channels, and is initialized as a diagonal matrix with the

main diagonal of 0 and other values of 1. The feature combination

extracted from each EEG channel is represented as a node in the

graph neural network model, can be expressed as:

XG =
→
x1,

→
x2, ...,

→
xn,

→
xi ∈ R

d (11)

In order to obtain sufficient expression ability to transform

input features into higher-level features, at least one learnable linear
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FIGURE 3

A directed graph and the corresponding adjacency matrix.

transformation is needed. A shared H ∈ R
d′×d applies to all nodes

to increase the expression ability of node features.

Then, a self attention mechanism is used on all nodes. At this

time, the dimension of features on the nodes remains unchanged,

which is Rd′ . The self attention mechanism is described as:

eij = Att(H
→
xi ,H

→
xj ) (12)

where Att stands for self attention mechanism, and eij
represents the importance of the characteristics of node j to i. Only

the first-order neighbors of each node is calculated. In order to

make the coefficients easy to compare between different nodes, the

softmax function is used to normalize the attention coefficients of

node j to other neighbor nodes.

aij = softmax(eij) =
exp(eij)

∑

k∈Ni
exp(eik)

(13)

where aij is the coefficient of attention mechanism. In fact, the

attention mechanism a is composed of a single-layer feedforward

neural network, and the leakyrelu activation function is used

for non-linear processing. Finally, the coefficient of attention

mechanism can be expressed as:

aij =
exp(eij)

∑

k∈Ni
exp(eik)

=
exp(LeakyReLU(

→

aT[H
→

xi ‖H
→

xj]))

∑k∈Ni

k=1
exp(exp(LeakyReLU(

→

aT[H
→

xi ‖H
→

xj])))

,
→
a ∈ R

2d (14)

where ‖ indicates connection operation.

Then apply the normalized attention coefficient to the

features corresponding to the node, and get the output after

feature recalibration:

→

x′i = σ (
∑

j∈Ni

aijH
→
xj ) (15)

Veličković et al. (2017) found that it is beneficial to use multi

head attention mechanism in graph neural network. Using K

independent attention mechanisms at the same time, Formula 14

will produce K outputs. Then splice the above K outputs together,

as shown in the following formula:

→

x′i = ‖Kk=1σ (
∑

j∈Ni

akijH
k →
xj ) (16)

The output of each node changes to Kd′. In the experiment, the

K is 2.

The aggregation process of multi head attention mechanism on

nodes is shown in Figure 4.

The above is a complete graph convolution process. After

multi-layer graph convolution, the EEG features will be further

transmitted to the full connection layer, fused and classified with

the extracted high-level abstract spatial features, and the SG is

obtained by batch normalization before full connection.

3.3 Feature fusion

The deep features extracted from convolution network and

graph network are flattened and spliced, as shown below:

Output(SR, SG) = Concat(flatten(SR), flatten(SG)) (17)

Finally, the softmax function is used to output the emotional

state. The loss function of this model is the cross-entropy function,

and the loss function is minimized using the Adam optimizer with

an initial learning rate of 0.0001.

4 Experimental results and analysis

4.1 Performance analysis

The emotion classification network in the experiment consists

of residual network and graph attention neural network. The

residual network consists of multiple blocks, and each block

contains two convolutional layers. In order to increase the fitting

ability of the network, an activation layer is added after all

convolutional layers. The first two residual blocks employ 64 filters

with a size of 3×3 for convolution calculations, and the last two

residual blocks use 128 filters of the same size.
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FIGURE 4

(A) The attention mechanism a(H
→
xi ,H

→
xj ) is parameterized by the weight vector a ∈ R

2d′ . (B) Illustration of multi headed attention (k = 2) of node 1 in

its neighborhood. Arrows of di�erent colors indicate independent attention calculation. Aggregate features from each head are connected

to obtain
→

x′
i
.

FIGURE 5

The training process of the proposed network in the two dimensions of Arousal and Valence.

The effect of the proposed network is verified on the DEAP

dataset. In order to make the experimental results more objective,

10-fold cross-validation technique is used.

Figures 5, 6 show the training process of the proposed network

on the dataset, Figure 5 shows the training process of the two

emotional dimensions of arousal and valence on the DEAP data

set, and Figure 6 shows the training process of the SEED data set

process. Among them, when the training period is less than 750 in

the DEAP dataset, the training accuracy and validation accuracy

increase with the increase of the epoch. When the epoch is greater

than 750, the training accuracy and validation longitude tend to

be stable.

The classification accuracy (Acc) and F1 score (F1) are used

to evaluate the performance of the proposed model. The emotion

recognition results are shown in Figure 7, respectively. In the

arousal dimension, the accuracy is 0.8706 and the F1 score is 0.8833.

In the valence dimension, the recognition accuracy and F1 score are

0.8926 and 0.9042, respectively. In addition, 0.9773 Acc and 1.0 F1

Frontiers inNeuroscience 07 frontiersin.org47

https://doi.org/10.3389/fnins.2023.1135850
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Chao et al. 10.3389/fnins.2023.1135850

FIGURE 6

The training process of the proposed network in the SEED-IV.

FIGURE 7

Emotion recognition results of the proposed network for binary

classification.

were achieved on the four-category task of the SEED-IV dataset.

The results of three classified tasks demonstrate the effectiveness of

the proposed method.

The receiver operating curve (ROC) is also used to evaluate

the performance of the proposed network. The ROC curve is

located at the upper left triangle of the square, which reflects

a more satisfactory classification rule. The higher the area

under ROC Curve (AUC) value, the better the classification

effect. Figure 8 shows the receiver operating curves on the

two classifications of arousal and valence. The values of AUC

in the two dimensions are 0.9378 and 0.9565, respectively.

The relatively convex curve and high AUC value prove the

FIGURE 8

ROC curve of the proposed network.

excellent classification performance of the proposed classification

network.

4.2 Comparison between the ensemble
method and the single network

In the experiment, an independent GAT model and an

independent ResNet model are constructed, respectively. The

network structures of the independent GAT and the independent

ResNet used in the experiment are consistent with those in

the proposed ensemble ResGAT network. When these two

independent models are used for emotion classification, the

high-level abstract features are flattened and fed into a fully

connected layer for classification. The 10-fold cross-validation

technique are also used here, and other hyperparameters remain

the same.

Firstly, the comparison is carried out on the emotion

recognition accuracy. Compared with the GAT model, the

proposed ResGAT improves the emotion recognition accuracies

by 21.85% in the arousal dimension and 24.68% in the valence

dimension. Compared with the ResNet model, the proposed

ResGAT improves the emotion recognition accuracies by 1.64%

in the arousal dimension and 2.99% in the valence dimension.

Secondly, the comparison is carried out on the F1 scores.

Compared with the GAT model, the proposed ResGAT improves

the emotion recognition accuracies by 17.5% in the arousal

dimension and 21.54% in the valence dimension. Compared

with the ResNet model, the proposed ResGAT improves the

emotion recognition accuracies by 0.9% in the arousal dimension

and 2.26% in the valence dimension. The results show that

the performance of the proposed ResGAT is obviously better

than that of GAT, and it is also improved compared with

ResNet.

In addition, it was also verified on the SEED-IV dataset,

and the model recognition results are shown in Table 2. The
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TABLE 1 The results of ResGAT and the two single networks.

Recognition results

Emotion dimension ResGAT GAT ResNet

Accuracy F1 Accuracy F1 Accuracy F1

Arousal 0.8706 0.8833 0.6521 0.7083 0.8542 0.8743

Valence 0.8926 0.9042 0.6458 0.6888 0.8627 0.8816

TABLE 2 The results of ResGAT and the two single networks (SEED-IV).

Recognition results

Emotion dimension ResGAT GAT ResNet

Accuracy F1 Accuracy F1 Accuracy F1

Four classification 0.9773 0.9973 0.9522 0.9635 0.9021 0.9251

FIGURE 9

Recognition results of the single networks and the ensemble models integrated by the single networks.

experimental results in Tables 1, 2 show that the performance of the

integrated network is better than that of a single network, because

each network in the integrated network can extract different

information, that is, the spatial position information of electrodes

and the internal relationship of EEG channels in different brain

regions. These two kinds of information complement each other

to improve the model recognition performance.

To further verify the complementarity between the electrode

spatial position information and the intrinsic connection

relationship between EEG channels, a variety of CNN networks,

graph convolution network (GCN) (Kipf and Welling, 2016),

vision in transformer network (VIT) (Dosovitskiy et al., 2020)

and the ensemble models integrated by the above networks are

constructed. The CNN networks constructed specifically include

Alex (Krizhevsky et al., 2017), VGGNet (Simonyan and Zisserman,

2014), DenseNet (Huang et al., 2017), and GoogLeNet (Szegedy

et al., 2015), which focus on extracting the electrode spatial position

information. Similar to GAT, GCN and VIT focus on extracting

the intrinsic connection relationship between EEG channels. An

ensemble model is constructed by a CNN network and GCN, or

by a CNN network and VIT, which means these ensemble models

can capture both the electrode spatial position information and the

intrinsic connection relationship between EEG channels.

In the CNN networks, the AlexNet structure is affected by

the size of the input data. Compared with the structure in the

reference (Krizhevsky et al., 2017), the maximum pooling is

removed, and the size of the convolution kernel is modified. Other

structures remain unchanged. Compared with the residual network

in this paper, the structure of VGG only removes the spanning

connection. DenseNet employs 1×1 convolutions for better data
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representation, where the depth of the convolutional layers is 9.

GoogLeNet contains a multi-branch convolution structure, which

uses convolution kernels of 3×3, 5×5, and 7×7, respectively.

GCN is a natural extension of convolutions on graph structure.

Because GCN is suitable for extracting structural features of graphs

and can customize local receptive fields, it is widely used in network

analysis, traffic prediction. and recommender systems. Inspired by

the reference (Kipf and Welling, 2016), a spectral domain-based

graph convolutional network is constructed, which contains two

convolutional layers. Transformer has been successfully applied in

FIGURE 10

Recognition results of ResGAT1, ResGAT2, ResGAT3, and ResGAT4.

TABLE 3 Recognition results using residual networks.

3D 2D

DEAP-Arousal 0.8542 0.6203

DEAP-Valence 0.8627 0.6136

SEED-IV 0.9021 0.9020

natural language processing and computer vision. Therefore, in the

experiment, the standard transformer is directly applied to the EEG

signal features with minimal modification. Similar to the reference

(Dosovitskiy et al., 2020), the 3D feature matrix is divided into

small blocks, and the linear embedding sequence of these blocks

is provided as the input of the transformer.

The recognition results of the above networks and the

ensemble models are shown in Figure 9. Most of the ensemble

models have higher classification accuracy than the corresponding

single network, which proves that the electrode spatial position

information and the intrinsic connection relationship between

EEG channels are complementary to emotion classification. ResNet

has the highest classification accuracy in a single network, which

achieves 85.42% classification accuracy in arousal dimension and

86.27% classification accuracy invalence dimension, respectively. In

the integrated models, ResGAT achieves the highest classification

accuracy in the valence dimension, and ResNet-VIT achieves the

highest classification accuracy in the arousal dimension. Among

the above ensemble models, the ensemble models including

GAT performs well in emotion recognition tasks. Combining

GAT with any kind of CNN, the classification accuracy can be

improved. The experimental results show that GAT has better

information capture ability than GCN and VIT, and is more

suitable for combining with convolutional networks, which makes

the extracted high-level abstract features contain relatively less

redundant and irrelevant components.

4.3 ResGAT with di�erent model structures

In addition to the ResGAT (ResGAT1) proposed in this

paper, three other ResGAT models (ResGAT2, ResGAT3, and

ResGAT4) are also constructed. In the ResGAT1, all 3×3 filters

are used in the residual network, and the number of multi-

head attention in all graph attention layers in GAT is 2.

ResGAT2 sets the multi-head attention number of GAT to 4.

ResGAT3 is twice as deep as ResGAT1. ResGAT4 uses 3×3

FIGURE 11

Heatmap representation of adjacency matrices in GAT on DEAP-Arousal and DEAP-Valence a�ective dimensions.
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FIGURE 12

Heatmap representation of adjacency matrices in GAT on SEED-IV.

and 5×5 filters to cross the residual structure on the basis of

increasing the network depth. The other parameters in ResGAT

for the three comparisons remain unchanged. All samples of

subjects and 10-fold cross-validation technique are also used

here. The recognition results of ResGAT with different structures

under the two sentiment annotation schemes are shown in

Figure 10.

Compared with ResGAT2, ResGAT3, and ReGAT4, the

recognition accuracy of the proposed ResGAT in the arousal

dimension is improved by 1.02, 1.85, and 0.24%, respectively. In

the dimension of valence, the recognition accuracy of the proposed

ResGAT is improved by 0.59, 3.36, and 1.61%, respectively.

It can be seen from the comparison results that increasing

the complexity and depth of the network will not necessarily

improve the accuracy, but will increase the calculation of the

model. Therefore, it is very important to choose the appropriate

network structure.

4.4 Sensitivity analysis

To further prove that the proposed network can extract the

spatial domain information of EEG signal channels and learn

the internal relationship of different EEG signal channels, the

information extraction ability of the proposed model is analyzed.

In the proposed method, the three-dimensional sparse feature

matrix and deep residual network are used to capture the

dependence between local EEG signal channels. As a contrast,

the deep residual network model is also used to deal with the
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FIGURE 13

t-SNE analysis on the emotional dimensions of DEAP-Arousal and DEAP-Valence.

FIGURE 14

t-SNE analysis on the emotional dimensions of SEED-IV.

same time-domain characteristics without mapping and arranging

according to the international 10/20 standard. Six features of 32

channels can construct a two-dimensional feature matrix with

a size of 32×6. The hyperparameters in the experiment remain

unchanged. The recognition results using 3D feature matrix and

2D feature matrix, respectively, are shown in Table 3.
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TABLE 4 Details of previous research.

Study Feature Classifier DEAP SEED-IV

Arousal Valence

Samara et al. (2016) Band power SVM 0.7367 0.8599 –

Guo et al. (2017) DWT SVM 0.6279 0.6021 –

Alhagry et al. (2017) Raw EEG signals LSTM 0.8565 0.8545 –

Yang and Liu (2019) Differential entropy TCN 0.7140 0.7440 –

Tripathi et al. (2017) Statistical parameters DNN 0.7313 0.7578

CNN 0.7336 0.8141 0.8599

Gao et al. (2022) Differential entropy GCN 0.8193 0.8177 -

Zhong et al. (2020) Differential entropy RGNN - - 0.7750

Du et al. (2022) Differential entropy MD-GCN - - 0.9083

Li et al. (2023) Differential entropy FGCN - - 0.7714

Vafaei et al. (2023) Time domain features SAETM 0.8037 0.8173 -

The proposed method Time domain features ResGAT 0.8706 0.8926 0.9773

Compared with the two-dimensional feature matrix, the

accuracy of emotion recognition of the three-dimensional feature

matrix in the arousal dimension is increased by 23.39%, the

accuracy of emotion recognition in the valence dimension is

increased by 24.91%, 0.01% improvement on the SEED-IV dataset.

The results show that three-dimensional feature matrix and

deep residual network can effectively extract local dependency

information of signal channels.

In order to illustrate the intrinsic connection relationship

between EEG channelsmined byGAT, the adjacencymatrix learned

during the training process is displayed. The adjacency matrix is

affected by the input data. Input all training data into the GAT in

turn to obtain the adjacency matrix corresponding to each sample.

The average value of all adjacency matrices can construct a heat

map, as shown in Figures 11, 12.

It can be clearly seen that the graph neural network is not

limited by distance when collecting neighbor node information in

32 electrode channels. In terms of arousal and valence emotion,

C4 electrode channel pays more attention to FC5 channel when

aggregating neighbor node information, and FC2 channel pays

more attention to F7 and FC5 channels, and CP5 pays more

attention to FP2 channel. In the SEED-IV dataset, all nodes focus

more on the four channels CZ, CPZ, PZ, and POZ.

4.5 t-SNE analysis

In order to demonstrate the effectiveness of ResGAT in

extracting high-level abstract features, the t-SNE tool is used

to visually analyze the features in two-dimensional space, these

features extract all data from a single person. As shown in

Figures 13, 14, the input data of the model and the high-level

abstract features extracted by ResGAT are displayed in the two

emotional dimensions of arousal and valence. The results in the

figure demonstrate the effectiveness of the proposed ResGAT in

extracting affective state discriminative features.

4.6 Comparison with existing methods

The recognition performance of the proposed method is

compared with several existing studies. The dataset and labeling

scheme are the same for all reported studies. Table 4 details

the features and classifiers used in the comparative study. Since

recognition accuracy and F1 score are the most commonly used,

these two indicators are adopted for comparison. As shown in

Table 4, the performance of our approach is better than the

comparisonmethods in both the arousal dimension and the valence

dimension. The comparison results show that our approach is

excellent in multichannel EEG emotion recognition.

5 Conclusion

A novel ensemble deep learning framework is proposed in this

work. In the framework, the residual network is employed to extract

the spatial position information of the electrode channel through

the 3D characteristic matrix. The graph neural network is utilized

to learn the neural functional connections between different brain

regions, and the multi-head self-attention mechanism is used to

adaptively adjust the adjacency matrix in the network. The results

show the proposed ResGAT framework makes full use of the

electrode spatial position information and the intrinsic connection

relationship between EEG channels located in different brain

regions. Moreover, the emotion recognition performance of the

proposed method is compared with some existing methods and

shows advantages, which proves the feasibility and effectiveness of

the proposed emotion recognition method.

The experiments in this manuscript were conducted on public

datasets DEAP and SEED, and the proposed emotion recognition

method demonstrated good performance. However, the number

of subjects on the dataset is limited, and the effectiveness of

its use in a large population needs further verification. The

monitoring and regulation of emotional state is of great significance
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for the psychological and physiological health of individuals.

For example, in clinical treatment, monitoring and regulating

emotional states can help doctors better understand patients’

emotional states, thereby providingmore personalized and effective

treatment plans for patients. In daily life, monitoring and

regulating emotional states can help individuals better manage

their emotions and improve their quality of life. Moreover, the

emotion recognition performance of the proposed method is

compared with some existing methods and shows advantages,

which proves the feasibility and effectiveness of the proposed

emotion recognition method. In addition, the proposed emotion

recognition classification model can also be applied in disease

diagnosis, such as identification of patients with depression;

issuing execution commands to control external devices, helping

patients to carry out active rehabilitation training; diagnosis

of schizophrenia; quantifying the neurophysiological changes

associated with a variety of work-related physical activities (Ismail

et al., 2023).
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Vowel production: a potential 
speech biomarker for early 
detection of dysarthria in 
Parkinson’s disease
Virginie Roland 1,2*, Kathy Huet 1,2, Bernard Harmegnies 2, 
Myriam Piccaluga 1,2, Clémence Verhaegen 1,2 and 
Véronique Delvaux 1,2,3

1 Metrology and Language Sciences Unit, Mons, Belgium, 2 Research Institute for Language Science and 
Technology, University of Mons, Mons, Belgium, 3 National Fund for Scientific Research, Brussels, Belgium

Objectives: Our aim is to detect early, subclinical speech biomarkers of dysarthria 
in Parkinson’s disease (PD), i.e., systematic atypicalities in speech that remain 
subtle, are not easily detectible by the clinician, so that the patient is labeled “non-
dysarthric.” Based on promising exploratory work, we  examine here whether 
vowel articulation, as assessed by three acoustic metrics, can be used as early 
indicator of speech difficulties associated with Parkinson’s disease.

Study design: This is a prospective case–control study.

Methods: Sixty-three individuals with PD and 35 without PD (healthy controls-
HC) participated in this study. Out of 63 PD patients, 43 had been diagnosed with 
dysarthria (DPD) and 20 had not (NDPD). Sustained vowels were recorded for 
each speaker and formant frequencies were measured. The analyses focus on 
three acoustic metrics: individual vowel triangle areas (tVSA), vowel articulation 
index (VAI) and the Phi index.

Results: tVSA were found to be  significantly smaller for DPD speakers than for 
HC. The VAI showed significant differences between these two groups, indicating 
greater centralization and lower vowel contrasts in the DPD speakers with 
dysarhtria. In addition, DPD and NDPD speakers had lower Phi values, indicating a 
lower organization of their vowel system compared to the HC. Results also showed 
that the VAI index was the most efficient to distinguish between DPD and NDPD 
whereas the Phi index was the best acoustic metric to discriminate NDPD and HC.

Conclusion: This acoustic study identified potential subclinical vowel-related 
speech biomarkers of dysarthria in speakers with Parkinson’s disease who have 
not been diagnosed with dysarthria.

KEYWORDS

Parkinson’s disease, dysarthria, early detection, acoustic analyses, vowel production

1. Introduction

Parkinson’s disease (PD) is a disease that causes degeneration of the nervous system, 
especially the substructures that control movement. This disease is characterized with the 
progressive loss of dopaminergic neurons. One of the strongest risk factors associated with 
disease is aging. Therefore, with the advancing age of the world’s population, the early detection 
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of characteristic patterns of the disease is a health challenge. 
Moreover, as pointed out by Agüera-Ortiz et  al. (2021), 
neurodegenerative diseases are an increased global economic and 
healthcare system burden.

The motor symptoms associated with PD may involve bradykinesia 
accompanied by resting tremor and/or rigidity. Patients with PD may 
experience symptoms that significantly affect their quality of life. 
Hypokinetic dysarthria, which includes a wide variety of speech disorders 
associated with PD, is one of them (Sapir, 2014; Postuma et al., 2015). 
Classical perceptual and acoustic studies have repeatedly shown that 
dysarthria affects the respiratory, phonatory and/or articulatory aspects 
of speech on both segmental and suprasegmental levels, i.e., dysprosody 
(e.g., Duffy, 2019). Dysarthric speech is then characterized by reduced 
loudness, monopitch and/or monoloudness, harsh voice, imprecise 
speech articulation or inappropriate silences. On the articulatory level, 
most of previous studies have focused on imprecision in consonant 
production (e.g., Ackermann and Ziegler, 1991) and vowel articulation 
(e.g., Skodda et al., 2011), in particular at moderate and advanced stages 
of the disease and for patients with moderate dysarthria (e.g., Martel-
Sauvageau et al., 2015; Dias et al., 2016; Martel-Sauvageau and Tjaden, 
2017; Duez et al., 2020). One of the most commonly reported impairments 
in individuals with PD who have hypokinetic dysarthria is difficulty in 
producing consonants accurately as typically evidenced by oral 
diadochokinetic tasks (e.g., Ackermann and Ziegler, 1991; McRae and 
Tjaden, 1998; Wong et al., 2011; Karlsson and Hartelius, 2019). The stops, 
affricates, and fricatives are often distorted, potentially due to the reduced 
range and strength of the movements used to produce them. Ackermann 
and Ziegler (1991), Ackermann et al. (1995) have suggested that this may 
be caused by PD patients trying to maintain a fluid speaking rate, at the 
risk of causing articulatory undershoot. However, research on muscle 
activity during speech in PD has yielded inconsistent results (for a review, 
see Walsh and Smith, 2012). For example, Mcauliffe et  al. (2006) 
demonstrated that listeners perceived consonants as being produced with 
undershoot but did not find a corresponding reduction in tongue-palate 
contact on EPG examination. Wong Ackermann and Ziegler, 1991(2011) 
even found that some individuals with PD had increased distance of 
tongue movement when producing certain coronal and velar consonants. 
More research is needed to fully understand the dynamics of supra-
laryngeal articulators in PD.

Interestingly, aspects of speech production related to sound 
resonance – central to the production of vowels, diphthongs and 
approximants – are thought to be preserved in PD, but have been little 
studied (Goberman et  al., 2002). However, accurate execution of 
motor plans involving the jaw, tongue, and lips is as essential to the 
production of vowel-like sounds as it is to the production of 
consonants. The present study concerns vowel production in 
francophone speakers with PD. The study of vowel-like sounds, 
especially if it encompasses both stable and dynamically changing 
phases, could be a valuable area of research for better understanding 
speech motor control in PD. Indeed, adequate vowels and diphtongs 
can only be produced if one can both maintain stable articulatory 
configurations over time and properly execute dynamic sequences of 
coordinated articulatory gestures. Note that the available evidence 
about dysarthria in PD is often based on the English language 
although the variability across different languages should 
be considered in a speech assessment framework (Rusz et al., 2021). 
As it happens, English and French differ in their vowel inventory as 

well in the phonological structures associated with dynamic vocalic 
sounds: English counts a dozen vowels and several diphtongs, whereas 
the French inventory contains only monophtongs but also three 
approximants /w, ɥ, j/ resulting in sequences such as V.C[glide]V (kayak, 
brouillard, kiwi, etc.) (Fougeron and Smith, 1999).

A previous acoustic study was conducted on the speech 
productions of PD patients with mild dysarthria compared to healthy 
speakers (Delvaux et  al., 2016). We  specifically focused on the 
production of steady vowels and intervocalic glides, based on the 
hypothesis that parkinsonian speech production may be characterized 
by vowel centralization resulting in a reduction of the vowel space 
(Kent and Kim, 2003; Skodda et al., 2011; Mollaei et al., 2016). The 
study involved two groups of participants: 9 people (6 men and 3 
women) with intermediate-stage Parkinson’s disease (according to the 
Hoehn and Yahr scale), and a healthy group of 10 people (5 men and 5 
women) who had no speech or language disorders. Acoustic 
measurements were taken for sustained oral vowels, including overall 
duration and frequencies of formants (F1, F2) at the midpoint of the 
vowel, and individual triangular vowel space areas (tVSA) were 
calculated. Results showed that the mean areas did not differ 
significantly between the PD group and the control group. These results 
suggest that although there is more variation in the production of 
sustained vowels among persons with PD (here, with mild dysarthria), 
the size of their vowel spaces is not significantly different from those of 
HC. Other, complementary acoustic metrics would have to be used to 
capture subtle alterations in vowel production when dysarthria is mild.

In fact, a variety of acoustic metrics can help identify alterations 
in the productions of PD compared to HC speakers. In some studies, 
vowels metrics are calculated to identify a possible marker of the 
progression of the disease in PD (Sapir et al., 2010; Skodda et al., 2012; 
Rusz et al., 2013; Rountrey and Molett, 2020). The tVSA is one of the 
most frequently used acoustic indicator for the evaluation of 
imprecision in vowel production, as it can reflect major changes in 
articulatory movements in speech disorders. However, some 
researchers suggest that the tVSA is not sensitive enough to signal 
mild and moderate forms of dysarthria (Sapir et al., 2007; Neel, 2008; 
Skodda et al., 2011). Sapir et al. (2007) suggest that variations across 
speakers can statistically reduce the differences between those with 
mild dysarthria and those without dysarthria. Yet, a better 
understanding of the potential impairment in patients with mild 
dysarthria and those without dysarthria in PD is essential to identify 
speech deteriorations in the early stages of the disease. As far as 
we know, only the study conducted by Audibert and Fougeron (2012) 
proposes a direct comparison of several metrics derived from F1/F2 
measurements to describe and quantify the possible distortions to 
be observed in the vowel space of French dysarthric speakers.

In the present study, we have selected three acoustic metrics which 
have been previously tested with PD patients for the complementary 
information they provide: (1) the triangular vowel space area (tVSA) 
representing the maximum working space of each individual, (2) the 
vowel articulation index (VAI), which is the reciprocal of the formant 
centralization ratio (Roy et al., 2009; Sapir et al., 2010) and (3) the PHI 
index which expresses the relationship between inter-category distance 
and intra-category variability within the vowel space considered as an 
organized system of phonemic categories (Huet and Harmegnies, 2000). 
Inter-category distance can be considered as a centralization metric and 
intra-category variability as an index of (in) consistency in the production 
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of acoustic targets. Audibert and Fougeron (2012) suggest that metrics of 
intra-category dispersion and centralization are complementary. Their 
results show that intra-category variability is only weakly correlated with 
other metrics, arguing for its informational potential since it cannot 
be predicted by other measures.

Note that in clinical practice, the detection of alterations by an 
objective approach is intended to complete the perceptual analysis 
made by the clinician. In fact, the methodology of this study is 
designed to be applicable to a professional practice. The productions 
requested from the speakers are those that would be expected from a 
typical speech assessment by a speech therapist (recommendations by 
the American Speech-Language-Hearing Association, 2004). The 
number of productions per participant is intentionally limited, less 
than in typical experimental phonetics studies, which allows to 
eliminate a possible fatigue effect among participants.

Besides, while the majority of patients interviewed declare 
themselves dissatisfied with their communication performance 
(Miller et al., 2011), only a few individuals initiate speech therapy, 
even though available statistics tend to show an increase in speech 
therapy over the past few decades (Hartelius and Svensson, 1994; Kalf 
et al., 2011; Sunwoo et al., 2014; Schalling et al., 2017). Also, when it 
is present, speech therapy appears rather late in the course of 
dysarthria, with patients presenting moderate to severe dysarthria, 
whereas many recommendations suggest early speech therapy 
(Gentilhomme et al., 2020).

The purpose of this study is to use acoustic metrics to objectively 
identify speech biomarkers in oral vowel production in PD patients 
who do not have hypokinetic dysarthria, in order to identify speech 
alterations that are difficult to detect by even careful listening by the 
clinician. The long-term goal of this research is to identify early, subtle 
symptoms of dysarthria as a prodromal marker of PD. Indeed, recent 
evidence suggests that speech atypicalities might be the first motor 
signs to emerge (Sapir, 2014; Hlavnička et al., 2017; Rusz et al., 2021).

2. Methods

2.1. Participants

This study included 98 participants, divided into two groups. There 
were 63 participants diagnosed with idiopathic PD and 35 healthy 
controls (HC). The group of PD speakers was composed of Belgian 
French native speakers ranging in age from 38 to 85 years (mean age: 70), 
with an average disease duration of 7 years (ranging from 1 to 25 years) 
and representing all stages of Parkinson’s disease on the Hoehn and Yahr 
(1967) disability scale. All patients were diagnosed by the same neurologist 
following the UK Parkinson’s Disease Society brain bank criteria. Of the 
63 participants with PD, 43 were dysarthric (DPD) and 20 were not 
dysarthric (NDPD) as determined by expert perceptual assessment 
during a complete speech assessment (respiratory aspects, articulatory 
aspects, oro-linguo-facial and pneumo-phono-articulatory coordination) 
and with the speech item (item 3.1) of the Movement Disorders Society-
Unified Parkinson’s Disease Rating Scale part III/MDS-UPDRS (Goetz 
et al., 2008). All patients were evaluated by the same speech therapist 
during a speech assessment. The neurologist and the speech therapist are 
both specialized in the assessment and management of individuals with 
Parkinson’s disease. Both work in a day hospital department dedicated to 
individuals with PD.

Table 1 presents the characteristics of participants with PD in 
terms of sex, stage of disease (referring to Hoehn & Yahr stages), time 
since first diagnosis and dysarthria. It also provides scores on the 
original versions of UPDRS-III (motor score), Beck Depression 
Inventory/BDI-II (Beck et al., 1996), Montreal Cognitive Assessment/
MoCA (Nasreddine et al., 2005), as well as the Parkinson’s Disease 
Questionnaire/PDQ-39 (Auquier et al., 2002) specific to quality of life.

HC participants were aged 41 to 84 years (mean: 66) and presented 
nor reported any previous speech-language pathology.

2.2. Tasks

All PD patients were met in the ON (dopaminergic treatment) 
phase. Study participants were subjected to a variety of speech tasks, 
one of which was to repeat the cardinal French vowels/a, i, u/ five 
times. Steady oral vowels are the most easy-to-collect speech material 
in clinical settings. Furthermore, this production number allows for a 
compromise between clinical care and evaluation constraints while 
ensuring a sufficient number of repetitions to allow for robust 
statistical analysis of the collected data. Each participant thus 
performed fifteen isolated vowel productions. Only the results of this 
controlled task will be presented in this study. PD participants were 
assessed individually in a quiet room in the hospital and HC subjects 
were recorded under similar conditions, at home. The two groups 
were recorded with the same Zoom H5 portable recorder.

2.3. Acoustic measurements and acoustic 
metrics

Acoustic measurements were performed using Praat formant 
tracking and customized Praat scripts. The F1 and F2 values were 
obtained through a semi-automatic procedure from the steady state 
portion of each vowel. Specifically, the stable part of each vowel was 
manually identified based on information from the speech 
waveform and spectrogram, excluding unstable phases 
characterized by creaky voice, voicing interruption, breathing 
resumption, etc. The formant frequencies were automatically 
detected and manually verified, and their average value over the 
whole stable part was calculated.

Three different acoustic metrics were computed from the vowels 
produced by each speaker:

 • The triangular Vowel Space Area (tVSA, in Hz2), which gives the 
size of the working vowel space for each participant (e.g., Kent 
and Vorperian, 2018). The tVSA is calculated using the formula:

 

tVSA F u F i F u F i F a F u

F u F a F a F i

= × +( )× −( ) − +( )
× −( ) − +

0 5 2 2 1 1 2 2

1 1 2 2

.

(( )× −( )F a F i1 1

The higher the tVSA, the larger the participant’s vowel space.
 • The Vowel Articulation Index (VAI), which concerns the 

tendency for vowel centralization, was developed by Sapir 
et al. (2010,  2011) to account for inter-speaker variability. 
According to these authors, since the measure of maximum 
vowel space is sensitive to inter-individual variability, the 
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TABLE 1 Characteristics of participants with PD in terms of sex, stage of disease, time since first diagnosis, dysarthria and scores of UPDRS-III, BDI-II, 
MoCA  and PDQ-39.

Sexe Stage 
(Hoehn 

and 
Yahr)

Duration_
PD

UPDRS_
III

Dysarthria Severity_
dysarthria

BECK (cut-
off mild 

depression: 
10–18)

MoCA (cut-
off detecting 
MCI  ≤  25/30)

PDQ_39 
(QoL 

deteriorated 
>50)

M 3 6 10 No N/A 6 24 17

F 3 7 16 No N/A 13 27 33

F 1,5 9 5 No N/A 12 30 12

M 0 6 3 No N/A 3 30 11

F 2,5 2 7 No N/A 11 24 21

M 2 8 6 No N/A 0 28 5

F 2,5 4 12 No N/A 2 30 17

M 2,5 7 15 No N/A 5 28 19

M 1 5 1 No N/A 3 29 5

M 2 11 2 No N/A 3 28 7

M 3 6 15 No N/A 7 29 5

M 3 5 10 No N/A 7 29 11

F 1,5 6 2 No N/A 1 30 15

F 1,5 2 4 No N/A 7 28 18

F 2 2 8 No N/A 5 28 5

F 3 19 13 No N/A 16 27 36

M 2 3 16 No N/A 6 28 7

M 2 7 9 No N/A 2 30 6

M 3 6 33 No N/A 4 26 8

F 3 2 16 No N/A 9 25 25

F 1,5 10 6 Yes mild 6 29 26

M 2,5 13 15 Yes moderate 6 27 13

M 3 24 4 Yes mild 10 30 43

M 3 7 15 Yes mild 11 29 19

M 4 2 45 Yes moderate 8 30 23

F 4 7 20 Yes mild 10 29 25

M 2 7 12 Yes mild 11 27 14

F 2,5 11 11 Yes mild 6 23 14

M 2,5 11 10 Yes moderate 1 30 7

M 1,5 15 9 Yes moderate 4 27 15

F 4 9 16 Yes moderate 9 28 42

F 4 10 26 Yes mild 12 27 37

F 1,5 9 7 Yes moderate 8 30 21

M 2 3 16 Yes moderate 25 26 30

F 2,5 3 13 Yes mild 15 25 32

M 1,5 3 8 Yes mild 5 29 12

M 2 3 1 Yes moderate 0 29 3

M 3 6 35 Yes mild 6 28 20

M 2,5 6 14 Yes moderate 9 29 32

F 2,5 8 16 Yes mild 15 30 30

F 3 9 20 Yes moderate 9 28 23

(Continued)
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VAI allows to better represent any centralization of vowel 
formants. The goal of this index is to minimize sensitivity to 
interindividual variability and maximize sensitivity to vowel 
centralization with respect to tVSA (Sapir et  al., 2010). 
Caverlé and Vogel (2020), in a study in which they compared 
several metrics to quantify vowel production (including 
tVSA and VAI), suggest that VAI is the most stable and 
sensitive measure under fatigue and noise conditions in 
healthy participants. According to Skodda et al. (2012), the 
VAI is considered to be a more effective measure than the 
Triangular Vowel Space Area (tVSA) for identifying speech 
difficulties in individuals with PD.

The VAI is calculated using the formula:

 VAI F i F a F i F u F u F a= +( ) + + +( )2 1 1 1 2 2

The lower the calculated value, the higher the vowel centralization, 
and vice versa.

 • The PHI index, which characterizes the level of organization of 
the vowel space, was calculated by determining the ratio 
between inter-category and intra-category dispersion within 

the vocalic system (Huet and Harmegnies, 2000). In addition to 
inter-category variability (e.g., variability due to vowel 
centralization), it can account for intra-category variability 
(e.g., variability due to vowel distortions). The phi index is the 
ratio between inter- and intra-categorical variability computed 
by analogy with the Fisher-Snedecor F-statistic in an analysis-
of-variance model:

 
Φ =

inter MS

intra MS

_

_

Where:   
 
inter MS

inter category sum of squares

inter category degrees
_ =

−
−   of freedom  

And:
    

intra MS
intra category sum of squares

intra category degrees
_ =

−
−   of freedom  

The inter-category mean square (inter_MS) is defined as the sum 
of the squares of the differences between the centroid of each vowel 
category and the general centroid of the entire vowel space, weighted 

TABLE 1 (Continued)

Sexe Stage 
(Hoehn 

and 
Yahr)

Duration_
PD

UPDRS_
III

Dysarthria Severity_
dysarthria

BECK (cut-
off mild 

depression: 
10–18)

MoCA (cut-
off detecting 
MCI  ≤  25/30)

PDQ_39 
(QoL 

deteriorated 
>50)

M 1,5 2 11 Yes mild 1 28 0

M 1,5 12 7 Yes mild 1 30 9

M 1,5 6 7 Yes mild 1 30 3

M 3 4 19 Yes moderate 6 27 37

F 3 11 16 Yes mild 11 26 30

F 2 8 5 Yes mild 7 28 18

M 4 4 27 Yes mild 18 24 49

M 3 4 18 Yes mild 7 23 19

M 2 7 12 Yes mild 3 26 7

F 4 15 35 Yes mild 16 17 46

F 2 7 5 Yes mild 2 28 3

F 5 18 48 Yes moderate 10 21 46

M 4 6 14 Yes mild 6 29 16

M 4 6 41 Yes moderate 12 28 60

F 3 4 18 Yes mild 6 30 21

M 1,5 1 5 Yes mild 2 30 3

F 2,5 2 14 Yes mild 11 27 25

F 2,5 2 13 Yes mild 9 25 28

M 2 5 6 Yes mild 11 26 24

F 1,5 5 8 Yes moderate 8 27 13

M 1 4 2 Yes mild 7 30 23

M 4 25 43 Yes moderate 10 24 26

60

https://doi.org/10.3389/fpsyg.2023.1129830
https://www.frontiersin.org/journals/psychology


Roland et al. 10.3389/fpsyg.2023.1129830

Frontiers in Psychology 06 frontiersin.org

by the number of vowels in each category and standardized by the 
total number of categories minus 1.

The intra-category mean square (intra_MS), on the other hand, is 
defined as the sum of the squares of the differences between each 
repetition of the same vowel and the centroid of the corresponding 
category, normalized by the number of vowels considered minus the 
number of categories.

Therefore, a lower PHI value suggests a lower degree of 
vocalic organization.

2.4. Statistical analysis

In order to assess the differences in acoustic parameters between 
PD patients and HC, statistical analyses were performed on all 
collected measurements using SPSS software (IBM SPSS Statistics 25). 
Because of the non-normality of the distributions non-parametric 
tests were chosen. Specifically, a series of Mann Whitney U tests were 
performed in order to make all possible pairwise comparisons 
between the three groups of participants.

3. Results

The demographic data (Table 1) allow us to observe a link between 
disease stage and motor symptoms (proportion of variance accounted η2: 
0.677) and between disease stage and quality of life (η2: 0.468). Only a 
marginal fraction of the total variance was explained by the relationship 
between disease stages and time since first diagnosis (η2: 0.138). Moreover, 
no link is found between disease progression stages and presence/absence 
of dysarthria (η2: 0.047), nor between the presence/absence of dysarthria 
and disease duration (η2: 0.023), depressive symptoms (η2: 0.040), 
cognitive impairment (η2: 0.012), or quality of life (η2: 0.098).

The proportion of participants did not differ significantly in the 
groups either in terms of sex (Pearson chi-square test, χ2 = 0.075; 
p = 0.785) or age (χ2 = 43.151; p = 0.298).

3.1. Triangular vowel space area

The calculation of the triangular vowel space area (tVSA) showed 
that on average, the mean area was significantly smaller for DPD 
patients than for HC participants (U = 1,400, p = 0.027). The area 
values were significantly greater for HC participants (mean: 
363679 Hz2) compared to those in the DPD group (mean: 306501 Hz2), 
except for the first repetition. Indeed, when the five iterations per 
vowel produced by the participants were considered separately, 
we  found that, the first production of the phonemes /a, i, u/ had 
similar characteristics in both groups. The four other productions 
were significantly different between the two groups.

However, these differences were only found for DPD speakers 
compared to HC speakers. No differences were observed between the 
productions of NDPD and HC participants. We  also observe no 
significant differences between the productions of DPD and NDPD 
participants, which is in contradiction with the distinction made by 
clinicians regarding the presence or absence of dysarthric symptoms in 

these patients. Overall, we also observe a high interindividual variability 
in PD speakers.

3.2. Vowel articulation index

The VAI values were found to be significantly different between 
DPD patients and HC speakers (U = 1,519, p = 0.001), indicating that 
the dysarthric speakers with PD had more centralized vowel 
productions and less contrast between vowels when compared to 
HC participants.

As observed from the tVSA metric, we were unable to identify 
differences between NDPD and HC participants from the VAI 
centralization index. However, unlike the results obtained from the 
calculation of the tVSA metric, the VAI centralization index allows us 
to uncover significant differences between the productions of the DPD 
and NDPD speakers.

3.3. Index of the level of organization of 
the vowel space (PHI)

Regarding the PHI index, there was no difference between the 
productions of DPD and NDPD speakers. However, the PHI values 
were found to be significantly higher for HC speakers (mean: 1477) 
compared to DPD patients (mean: 150) (U = 1960, p < 0.001). Indeed, 
a high level of formant centralization was observed in DPD speakers, 
resulting in lower inter-category differentiation than in HC speakers 
(U = 1,511, p = 0.001). Furthermore, intra-category dispersion was 
significantly lower in HC speakers than in the DPD group (intra_MS: 
mean: 8751 vs. mean: 31125; U = 278, p < 0.001).

The PHI metric also showed a significant difference between 
NDPD and HC speakers (U = 639, p < 0.001). This difference was 
primarily due to a higher intra-categorical dispersion in NDPD 
patients, likely resulting from larger variability in vowel production 
(U = 86, p < 0.001) (see Figure 1).

4. Discussion

The purpose of this study was to identify objective vocal 
biomarkers in the production of oral vowels among parkinsonian 
speakers. The aim was to support the clinicians in identifying subtle 
acoustic alterations that may be difficult to detect perceptually, in 
order to allow an early diagnosis of dysarthria, even when clinical 
symptoms are subclinical. Furthermore, the relationships between PD 
and dysarthria are not bidirectional: not all Parkinson’s patients 
necessarily develop dysarthria, and the presence and severity of 
dysarthria can vary from one patient to another and evolve at a 
different pace than the progression of the disease (Dias et al., 2016; 
Karan et  al., 2022). Moreover, the analysis of demographic data 
highlights a lack of correlation between the progression of the disease 
(disease stages and duration since diagnosis) and the presence or 
absence of dysarthric symptoms. Therefore, the sole progression of the 
disease does not appear to be a reliable indicator of the progression 
of dysarthria.
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Through an acoustic analysis of the productions of the vowels /a, 
i, u/, we computed three acoustic metrics considered as complementary 
because of the information they provide: information on the 
maximum vowel working space (tVSA), information on the accuracy 
during the productions (PHI, and more particularly intra_MS, the 
intra-category variability), information on a possible phenomenon of 
centralization of the vowel targets (VAI as well as inter_MS, the 
component of the PHI metric that reflects inter-category variability).

Using these combined metrics, the overall goal was to better 
identify global variations in the exploitation of the vowel system in the 
three groups of participants. The results demonstrate the benefits of 
combining several acoustic metrics to characterize the vowel system of 
PD speakers. First, the tVSA metric, which is the most frequently used 
in research on the vowel system in pathological speech, enables to 
uncover alterations in DPD speakers compared to HC speakers. In fact, 
both groups of speakers had similar tVSA values for the first repetition 
of the phonemes /a, i, u/, but differed significantly for the other four 
productions, DPD speakers exhibiting smaller vowel space areas than 
healthy controls. This result pattern can be interpreted as DPD speakers 
transiently resorting to hyperarticulation (relative to their own 
routines) on their first attempt to repeat the vowel. The significant 
differences observed on subsequent repetitions suggest that they could 
not maintain this strategy for the remainder of the vowel sequence.

Importantly, tVSA does not allow to distinguish NDPD speakers 
from parkinsonian participants with dysarthria or from healthy 
speakers. Thus, this metric is not sensitive enough to identify subclinical 
manifestations of dysarthria, supporting Skodda et al. (2011) suggestion 
of a low informative potential of tVSA in detecting slight changes during 
vowel production by PD speakers. The lack of significant differences in 
our study between DPD and NDPD in terms of tVSA would result from 
the fact that dysarthria-related alterations in steady-state vowel 
production are too subtle to be highlighted by tVSA calculation.

Second, the VAI centralization metric is valuable in that it reflects 
the categorization made by the speech therapists during speech 
assessment between PD patients with and without dysarthria. These 
findings which corroborates the perceptual distinction between the 
groups as formulated by the speech therapist, in accordance with 
Skodda et al. (2011), suggest that speech therapists may use vowel 
centralization as a cue of dysarthria, i.e., a form of hypoarticulation 
characterized by a general shift of vowel targets toward the center of 
the vowel space. However, this metric does not appear to be useful in 

searching for potential early, subtle speech alterations that might 
distinguish NDPD speakers from HC, which suggests that NDPD 
speakers produce vowels as dispersed in the vowel space as those of 
typical, healthy participants.

Third, the PHI metric yields very different results depending on 
whether participants are healthy controls or Parkinsonian participants 
(both with and without dysarthria). PHI values were found to 
be significantly lower for parkinsonian speakers which indicates that their 
vocalic system is substantially less organized than that of control speakers.

For DPD speakers, inter-category dispersion was reduced and 
intra-category variability was increased. Significantly lower inter-
category dispersion is in line with higher centralization, in accordance 
with the results of the VAI metric for these speakers. Greater intra-
category variability suggests difficulty in repeatedly producing the 
same vowel in the same way, which may reflect articulatory instability 
and/or more variable speech targets.

As to NDPD speakers, PHI was the only metric that showed a 
significant difference between their vocalic productions and those of 
healthy speakers. However, this difference was primarily due to a 
higher intra-categorical dispersion in NDPD patients, likely resulting 
from larger variability in vowel production. Therefore, what was 
significantly reduced among NDPD speakers was not so much the 
overall articulatory range/workspace (indexed by tVSA), but the 
internal organization of the vowel system itself due to the lack of 
accuracy around vowel targets.

Unlike the other two metrics, PHI accounts for intra-category 
variability (intra_MS) in vowel production, which appears to 
be substantially increased for all PD participants, even for those who 
have not been diagnosed with dysarthria.

In summary, following our acoustic analyses based on a diversity 
of metrics, we confirm in the present study the presence of potential 
speech biomarkers of dysarthria in NDPD. The PHI metric could 
be considered a potential biomarker for the early stages of dysarthria 
in people with PD as it is the only measure capable of detecting 
subtle differences in vowel production between NDPD and 
HC speakers,

even though it does not allow for the differentiation of DPD and 
NDPD speakers. Those differences reside in larger intra-categorical 
variability presumably due to a difficulty in reaching vowel targets 
with accuracy and consistency. Such alterations seem to occur in the 
initial stages of PD, or at least when the dysarthria is still subclinical, 

FIGURE 1

Mean tVSA [KHz2], VAI and PHI across the three groups of participants. Error bars represent 95% confidence intervals. Significant pairwise comparisons 
are represented by asterisks (** 0.01 significant threshold).
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which is in line with recommendations for early evaluation of 
dysarthria in PD, so that early speech therapy can be considered.

It should be noted that the limited number of data points collected 
per speaker should be considered, in our opinion, not as a limitation, 
but as an asset of the present study. Indeed, our goal was to propose 
an analysis based on a procedure that could be easily integrated into 
the clinical practice of speech therapists. Faced with a clinical problem, 
the intention is to propose an early detection method for a systematic 
screening of hypokinetic dysarthria with a semi- automatic acoustic 
analyses routine. Such semi-automatic screening procedures involving 
manually supervised acoustic measures to be integrated into clinical 
practice of speech therapists are currently tested in the framework of 
the MonPaGe protocol so that they require no more than a few 
minutes of analysis per patient for the clinician, the intervention of the 
speech therapists required to check the automatic segmentation as 
well as adjusting some key parameters (Laganaro et al., 2021).

Among the limitations of the present study, the most significant 
one concerns the evolution of NDPD patients. A longitudinal study 
confirming or refuting the subsequent appearance of dysarthric 
symptoms would allow us to reinforce or qualify our results.

Moreover, we ensured that the relative proportions of men and 
women in each group were identical to ensure the relevance of 
comparisons between groups even though the data was not 
standardized. Examining the effects of normalizing formant values, as 
recently proposed by Kuo and Berry (2023), may be relevant to a 
future study.

Furthermore, the characteristics of our PD patients allow us to 
identify participants with mild cognitive impairment (N = 11). 
However, the results on the MoCA do not appear to be correlated with 
the presence/absence of dysarthria (η2 = 0.012). A future study 
focusing on the effects of cognitive impairments and the progression 
of dysarthria in Parkinson’s disease could be conducted, as speech 
motor control requires significant cognitive resources.

The perspectives of the present work relate to the potential value of 
the PHI index for the differential diagnosis of Parkinson’s disease. 
Currently, we are conducting an acoustic analysis of spontaneous vowels 
produced by the same participants in a picture description task. The 
objective is to consolidate the findings of the present study concerning the 
interest of the PHI index for the detection of subtle, subclinical speech 
alterations in PD, i.e., even in patients without dysarthria. Next, we will 
recruit patients in the diagnostic phase as well as previously diagnosed 
patients in order to identify biomarkers that can be used to guide the 
diagnosis of PD vs. other related pathologies (e.g., Parkinson +, 
progressive supranuclear palsy, multiple system atrophy). Indeed, there 
are still few studies comparing the productions of these patients for 
differential diagnosis purposes as highlighted by Daoudi et al. (2022).
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Introduction: Speech breathing is a term usually used to refer to the manner

in which expired air and lung mechanics are utilized for the production of the

airflow necessary for phonation. Neurologically, speech breathing overrides the

normal rhythms of alveolar ventilation. Speech breathing is generated using the

diaphragm, glottis, and tongue. The glottis is the opening between the vocal

folds in the larynx; it is the primary valve between the lungs and the mouth, and

by varying its degree of opening, the sound can be varied. The use of voice as

an indicator of health has been widely reported. Chronic obstructive pulmonary

disease (COPD) is the most common long-term respiratory disease. The main

symptoms of COPD are increasing breathlessness, a persistent chesty cough with

phlegm, frequent chest infections, and persistent wheezing. There is no cure for

COPD, and it is one of the leading causes of death worldwide. The principal cause

of COPD is tobacco smoking, and estimates indicate that COPD will become

the third leading cause of death worldwide by 2030. The long-term aim of this

research program is to understand how speech generation, breathing, and lung

function are linked in people with chronic respiratory diseases such as COPD.

Methods: This pilot study was designed to test an articulatory speech task that

uses a single word (“helicopter”), repeated multiple times, to challenge speech-

generated breathing and breathlessness. Specifically, a single-word articulation

task was used to challenge respiratory system endurance in people with healthy

lungs by asking participants to rapidly repeat the word “helicopter” for three 20-s

runs interspersed with two 20-s rest periods of silent relaxed breathing. Acoustic

and prosodic features were then extracted from the audio recordings of each adult

participant.

Results and discussion: The pause ratio increased from the first run to the third,

representing an increasing demand for breath. These data show that the repeated

articulation task challenges speech articulation in a quantifiable manner, which

may prove useful in defining respiratory ill-health.
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speech breathing, COPD, respiration, pause, helicopter task
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1. Introduction

Chronic obstructive pulmonary disease (COPD) is the most

common long-term respiratory disease. The main symptoms of

COPD are increasing breathlessness, a persistent chesty cough with

phlegm, frequent chest infections, and persistent wheezing.1 There

is no cure for COPD, and it is one of the leading causes of death

in the world. The principal cause of COPD is tobacco smoking,

and estimates indicate that it will become the third leading cause

of death worldwide by 2030. This pilot study tested an articulatory

speech, which uses a single word “helicopter,” repeated multiple

times, to challenge speech-generated breathing and breathlessness.

1.1. COPD and lung function

COPD develops slowly, appearing in middle age; initially, it has

little effect on lung function, and its impact on lifestyle is minor.

As the disease develops, the associated lung dysfunction becomes

disabling; the person with COPD becomes increasingly immobile

and eventually requires oxygen support. This slow decline can be

marked by exacerbations that require acute healthcare intervention.

The ability to identify these exacerbations before they occur or early

on would improve the quality of life of those with COPD and help

reduce healthcare costs.

Severe COPD leads to pronounced breathlessness and alters

pulmonary ventilation. These COPD-induced changes subtly affect

other breathing-related functions, such as speech articulation and

the pause time between words.

A clinical test used to diagnose and stage the severity of

COPD is spirometry, which is performed under the supervision

of a trained healthcare practitioner. Although speech production

is altered by COPD and other lung diseases, signals from speech

production have not been used as a diagnostic tool, partially

because the changes in voice are subtle.

1.2. Speech breathing

The term “speech breathing” is usually used when referring to

the manner in which expired air and respiratory mechanics are

utilized to produce the airflow necessary for phonation. During

speech breathing, a quick inspiration is followed by a prolonged

expiration. Quick inspiration can reduce pause time and allows a

speaker to retain the floor in a speaking exchange. A volume of

air is taken into the lungs and then pushed out through the glottis

to enable utterance of speech sounds. The variable amounts of air

inhaled are based on the content to be produced.

The cycle of inspiration and expiration in speech breathing

is generated using the abdominal muscles, diaphragm, glottis,

mouth, and nose. The abdominal muscles (rectus abdominus,

external oblique, internal oblique, and transverse abdominus) are

located between the ribs and the pelvis on the front of the body.

These muscles support the rib cage to expand during inspiration

1 https://www.nhs.uk/conditions/chronic-obstructive-pulmonary-

disease-copd/

(Hixon et al., 1973). The diaphragm is a large, dome-shaped muscle

located at the base of the lungs. When the diaphragm contracts

and flattens and the chest cavity enlarges, this contraction creates

a vacuum and pulls air into the lungs. Upon exhalation, the

diaphragm relaxes and returns to its domelike shape, and air is

forced out of the lungs. The abdominal muscles can move the

diaphragm and provide more power to empty the lungs. The glottis

is the opening between the vocal folds in the larynx; it is the primary

valve between the lungs and themouth, and the sound can be varied

by varying its degree of opening.

Usually, speech begins once the lungs have been filled upon

the end of inspiration. It therefore begins with a large lung

volume (LV), which is associated with longer voice onset times,

increased subglottal pressure, increased sound pressure levels, a

higher fundamental sound frequency, and increased glottal leakage.

In contrast, speech produced at low LVs has been found to be

associated with a more adducted vocal state compared with speech

produced at high LVs. For instance, Iwarsson et al. (1998) studied

the effects of lung volume on the glottal voice source and found

that the closed quotient increases with decreasing lung volume,

while subglottal pressure, peak-to-peak flow amplitude, and glottal

leakage tend to decrease. In addition, Murray et al. (2018) asked

speakers to read passages with two speaking voices: typical (baseline

and return phases) and breathy vocals (experimental phase). They

found that the participants spoke with larger LV excursions during

the experimental phase, characterized by increased LV initiation

and decreased LV termination compared with the baseline phase.

Regarding the airstreammechanism of speech breathing, many

studies have explored the possibility of using speech breathing

to predict and diagnose lung function. For specific groups, e.g.,

patients with asthma or Parkinson’s disease, speech measures offer

promising monitoring and diagnosis methods. Tayler et al. (2015)

reported that healthcare professionals can estimate the predicted

forced expiratory volume in one second (FEV1 %) based on speech

samples from asthma patients. This finding provides evidence that

speech is altered in acute asthma.

1.3. E�ects of age and sex on speech
breathing

Across an individual’s lifespan, the anatomy of the respiratory

system changes, and the functioning of breathing can become

limited in association with these changes. For instance, larger

bodies typically result in larger lungs and respiratory systems

(McDowell et al., 2008). Until age 14, lung length and width both

expand linearly (Polgar and Weng, 1979; Zeman and Bennett,

2006). Boys’ lungs continue to grow until between the ages of

18 and 20, while girls’ lung growth patterns settle at ∼14 years

of age (Polgar and Weng, 1979). However, men and women

typically start to lose weight beyond the age of 60, and this loss

continues into the seventh and eighth decades of life. Lung volume,

static recoil pressure, and respiratory muscle strength all undergo

physiological changes because of the respiratory system. Along with

anatomical and physiological changes in the respiratory system,

speech breathing patterns and features change across the lifespan.

Vocal intensity is an acoustic measure. During everyday speech

production, speakers have to raise their vocal intensity to ensure
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that they are heard in noisy environments. To increase vocal

intensity, the respiratory system will generate higher subglottal air

pressures (Finnegan et al., 2000). There are differences between age

groups in terms of the way in which intensity is increased during

speech production: children, teenagers, and young adult speakers

can use larger lung and rib cage volume excursion to increase

intensity, but older adults do not show the same pattern. Utterance

length is a measure of the linguistic (prosodic) feature of speech,

and there is a significant correlation between utterance length and

respiratory function. Utterance length is defined as the number of

syllables or words produced in one speech breath.

Speech breathing patterns change with age, but little

consideration has been given to sex-based differences within

COPD clinical research (Somayaji and Chalmers, 2022). There is,

however, emerging and considerable evidence to suggest that sex

contributes to disease pathogenesis, risk, diagnosis, prevalence,

severity, and clinical outcomes (Fletcher and Peto, 1977; Doyal,

2001; Carey et al., 2007; Townsend et al., 2012). In addition,

there have been calls for researchers to better understand the

mechanisms underpinning these observed differences (Silveyra

et al., 2021). Despite these calls, the literature is scant, but it

points to anatomical differences between sexes and the influence

of sex hormones, the menstrual cycle, and other diseases (e.g.,

asthma), which are said to modulate these sex differences in

COPD (LoMauro and Aliverti, 2018). For example, standard

morphometric measures have shown that males have larger

lungs than females (Thurlbeck, 1982). In addition, females have

smaller airway diameters and lung volume, resulting in lower peak

expiratory flow than males. Furthermore, respiratory symptoms

in females (e.g., wheezing, dyspnea, and cough) vary significantly

with menstrual cycle-induced hormonal changes: specifically,

these COPD symptoms tend to get worse in the mid-phase of

the cycle (Macsali et al., 2012). Understanding the contribution

of sex and gender to COPD will help with the development

of precision medicine and the effective daily management

of COPD.

1.4. Three-tier feature measures

Speech breathing is a special breathing function. It is a multi-

faceted phenomenon integrating breathing, speech production, and

articulation. Distinct types of information can be extracted from

the utterance of speech sounds by examining the characteristics

of speech, e.g., acoustic features, prosodic features, and certainly

breathing-related features. Therefore, we developed a systematic

analysis method with three tiers of feature measures. The three tiers

consist of acoustics, prosody, and breathing. Acoustics refers to the

physical properties of sounds, and this measure captures speech-

related information, e.g., vowel formants, intensity (perceived as

loudness), or fundamental frequency (perceived as pitch). Prosodic

features, in this study, refers to how speech sounds are organized,

including length of run and pause ratio. Measures of breathing

features, specifically in relation to speech breathing, are under

development. People usually take around 10–15 breaths per minute

when resting. This is described as the respiratory rate. In the

current study, we adopted respiratory rate as the key measure

of breathing.

Vocal intensity is the most widely investigated acoustic

feature in studies of speech breathing. Speakers use larger lung

and rib cage volume excursions when increasing their vocal

intensity (Stathopoulos and Sapienza, 1997). Further studies on

prosodic information have revealed the correlation of these

measures with respiratory functions. For instance, studies have

revealed a correlation between utterance length and respiratory

function (e.g., Sperry and Klich, 1992; Whalen and Kinsella-

Shaw, 1997). Age-related effects also occur, with older adults

producing shorter utterances than young adults do. Huber (2008)

examined age-related changes in speech breathing by measuring

utterance length and loudness, and found that age-related effects

increased as utterances became longer. These results suggest that

older adults have a more challenging time when the speech

system is being taxed by both utterance length and loudness.

The data were also consistent with the hypothesis that both

young and older adults use utterance length in premotor speech

planning processes.

A wide range of speech features have been judged relevant

for and investigated in relation to health status. Farrús et al.

(2021) proposed two types of speech features, acoustic and prosodic

information, and applied them for the detection and classification

of bipolar disorder. They argued that prosodic information,

which is conveyed through intonation, stress, and rhyme, could

reflect the emotional aspects of the individual. In this study, we

investigated acoustic and prosodic features and focused on the

prosodic information.

In recent years, computerized deep learning methods have

offered newways ofmodeling speech and analyzing it for healthcare

applications (Cummins et al., 2018). For instance, Nallanthighal

et al. (2021) proposed using deep learning to investigate breathing.

Breathing (i.e., inhalation and expiration) is essential and these are

the primary mechanisms driving speech production. These authors

explored techniques for sensing the breathing cycle and extracting

breathing metrics from speech using deep learning architectures,

and addressed the challenges involved in establishing the usefulness

of applying this technology. Estimating breathing patterns from

speech provides information about the corresponding respiratory

parameters, which would enable assessment of the speaker’s

respiratory health using speech alone.

Specifically, in the present study, pause ratio was measured

as one key feature of rhythm. Fuchs and Rochet-Capellan (2021)

reviewed the respiratory foundations of spoken language and

highlighted the fact that breathing interacts with respiration,

syntax, and planning. We should distinguish respiratory and

linguistic pauses in a breathing cycle. A typical respiratory pause

occurs during a breathing cycle. In a normal breathing cycle at

rest, there is an in-breath (inhalation) followed by an out-breath

(exhalation). The out-breath is followed by an automatic pause (or

period of no breathing) lasting ∼1 to 2 s. In contrast, a linguistic

pause is a silent pause or filled pause containing um or uh. In

terms of speech breathing, an in-breath may play the role of such

a linguistic pause, which can inspire speech and empower the

following articulation. In the following section, we introduce the

potential use of prosodic information as a measure of lung function

and analyse the potential correlation between prosodic features and

lung function.
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In the present study, a speech breathing task, namely the

“helicopter task,” was designed to measure the acoustic, prosodic,

and breathing characteristics of speech. The helicopter task requires

participants to repeat the word “helicopter” as quickly as possible

for 20 s, followed by a 20-s break of silence. This was repeated

twice, creating a task consisting of three runs lasting∼100 s in total.

Based on previous studies, acoustic features include a wide range of

parameters, e.g., frequency and vocal intensity. Vocal intensity is

of specific interest. Utterance length is the key umbrella concept

of prosodic features; in this study, it was calculated in terms of

speech rate and word duration. A pause, as a critical parameter for

measurement of speech breathing, was defined as a silence filled

with no utterance of the word “helicopter” and measured in terms

of pause ratio. The pause ratio was calculated as the duration of the

pause divided by the entire 20-s duration of word repetition.

Three main research hypotheses were addressed:

1. Run effect: It was assumed that, with airflow consumed over

the course of the task, prosodic measures would be affected: in

particular, pauses would become longer, and, correspondingly,

pause ratio would increase and more breaths would be taken in

the later runs.

2. Sex differences: It was predicted that female speakers would

produce higher-frequency speech, lower-intensity speech,

shorter syllable durations, and longer pause ratios compared to

male speakers.

3. As the three tiers of features included a wide range of

variables in the study, we predicted that acoustic and prosodic

features would be significant predictors of measures of lung

function. A multiple regression method was employed to

explore these predictors.

2. Materials and methods

2.1. Participants

A total of 27 healthy, native English-speaking participants

(12 men, 15 women; mean age: 26, range 19–55 years; height:

1.68 ± 0.12m; weight: 68.8 ± 14.0 kg, n = 24) were recruited

from the University of South Wales community through random

sampling. Two participants did not follow the instructions, and

their data were not included in the analysis. All participants

filled out the Clinical Report Form One (Appendix 1), which

consisted of seven questions: age, sex, height, weight, respiratory

condition, smoking history, and breathing status. No other

general health status, medication, or physical activity parameters

were investigated.

Predicted lung function was calculated using the Global

Lung Function Initiative index (European Respiratory Society).

Two measures of forced expired volume (FEV1) and forced

vital capacity (FVC) were predicted from weight and height

data. A t-test showed that the means of FEV1, FVC, and

FEV1/FVC ratio were statistically different between sexes

(p-values < 0.01).

The study was approved by the Faculty of Life Science and

Education Ethics Panel, University of SouthWales (No 210901HR),

in accordance with the Declaration of Helsinki. Written and verbal

informed consent were obtained from each participant.

TABLE 1 Phonemes in ten common words used in speech therapy tests.

Word Number of
syllables

IPA (International
Phonetic Alphabet)

Ambulance 3 /"ambjUl( e)ns/

Hippopotamus 5 /�hIp

e’p at em es/

Computer 3 /k em"pju:t e/

Spaghetti 3 /sp e

"gεti/

Vegetables 3 /"vεdZt eb( e)l/z//

Helicopter 4 /hεlIk apt e/

Animal 3 /"anIm( e)l/

Caravan 3 /"kar evan/

Caterpillar 4 /kat epIl e/

Butterfly 3 /"b vt efl/ai//

2.2. Protocol

The study used a speech articulation task designed to test lung

health. The design was derived from that of the diadochokinesis

(DDK) task, which is one of the oldest and most frequently

used tasks for evaluating various types of speech communication

problems. It often involves fast repetition of single words or

of non-speech oral movements such as opening and closing

of the lips. It has numerous variations and is also referred

to as verbal, oral, or phonoarticulatory DDK. It has cross-

disciplinary applications in areas such as aging, biomedical

engineering, biological sciences, communication sciences and

disorders, computational methods in biomedicine, craniofacial

surgery, dentistry, neurology and neurosciences, and oral surgery

(Kent et al., 2022).

In the current study, we used a task involving the repetition

of a single polysyllabic word to explore its potential in measuring

lung function. This word “helicopter” was chosen from a list of

words commonly used in speech therapy testing. This list is shown

in Table 1. In this list, the words “ambulance,” “vegetable,” and

“animals” can be pronounced either with a mid-central vowel, the

schwa / e/, or without. The uncertainty of the presence of the schwa

could result in changes in syllable structure, duration, loudness, and

other aspects of articulation. In order to keep all measurements

consistent and accurate, these words were not chosen for the

current task. Among the rest of the words, “hippopotamus”

and “helicopter” contain the voiceless glottal fricative /h/, which

requires the maximum amount of airflow to maintain articulation

compared with the consonants in the other words, which aremostly

stops, nasals, or approximants. Between the two words containing

/h/, “hippopotamus” is a low-frequency word and may prevent

speakers from articulating fluently. Therefore, “helicopter” was

chosen as the word for our task.

2.3. Procedures

Each participant was asked to sit still in a quiet room at

a distance of ∼40 cm from their computer. Their task was to

Frontiers in Psychology 04 frontiersin.org68

https://doi.org/10.3389/fpsyg.2023.1167902
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Zeng et al. 10.3389/fpsyg.2023.1167902

produce the word “helicopter” as quickly as possible and as

many times as possible within a 20-s production period. Each

participant was given three 20-s production periods with a 20-

s forced break between the first and second production periods

and between the second and third production periods. The

experimenter gave a signal for the start of each production

period and the start of each break. The instructions were

as follows:

“For this exercise, you will be asked to repeat the word

‘helicopter,’ as before, but this time for only 20 s at a time. For this

exercise, I want you to do this three times but with a short break

in between. When I say ‘go,’ please start repeating ‘helicopter’

until I say ‘stop.’ After a short interval I will say ‘go,’ so like before

keep going until I say ‘stop.’ After another short rest, I will ask

you to do this one more time. I will time and record the whole

exercise, so please sit quietly during the two resting intervals.”

“Do you have any questions you would like to ask?”

“Are you ready to begin?”

The recordings were made online via Microsoft Teams, with

both the experimenter and the participant in the session. During

testing, the camera was switched off and only speech was recorded.

Only participants’ speech was analyzed.

The audio recordings were converted into.wav files using the

audio editing software package Audacity. The three 20-s runs were

extracted as separate files for acoustic analysis. Only instances

of the word produced in full were kept for analysis; instances

with disfluencies, prominent background noise, or overlap with

the experimenter’s instructions were excluded from acoustic

analysis. Audible breaths (inspirations) in each run were identified

and matched to the digital recording, allowing the number of

breaths to be counted and the duration of each breath to be

calculated. Word boundaries and pause boundaries were manually

segmented in all audio files in Praat (Boersma and Weenink,

2022) by a first annotator; a second annotator, who was a trained

phonetician, then checked the boundaries and made corrections to

the annotation.

For the acoustic analysis, F0 and formants were both extracted

as mean values across each word as a whole, using a Praat

script. F0 data were extracted with a range of 60–500Hz, and

the formants were extracted with a ceiling of 5,000Hz. Mean F1

and mean F2 values were measured with a ceiling of 5,000Hz.

Intensity data were extracted using a minimum F0 of 60Hz, with

a 0.01 step. The length of pauses was measured, including only

periods when the speaker was taking a breath between words;

the initial and final silence periods at the start and end of each

production period were excluded. The pause ratio was the total

duration of the pauses in the production period divided by the

total duration of the production period from the production of the

first instance.

2.4. Statistical analysis

Means ± SD are reported. Acoustic features (e.g., intensity,

F0, F1, F2, and F0 range) and prosodic features, e.g., speech rate

TABLE 2 Comparison of voice characteristics between male and female

speakers.

Mean Female Male

Mean SD Mean SD

Height (cm) 161.00 9.18 176.60 8.90

Weight (kg) 58.67 8.72 79.80 11.41

Predicted FEV1 (liters) 3.31 0.46 4.53 0.36

Predicted FVC (liters) 3.83 0.58 5.45 0.40

FEV1/FVC ratio 0.88 0.02 0.84 0.03

Intensity (dB) Run 1 66.52 6.65 68.70 4.50

Run 2 67.87 6.48 69.23 3.71

Run 3 67.64 6.20 68.47 3.73

F0 (Hz) Run 1 194.39 28.22 133.27 10.85

Run 2 195.94 37.01 137.84 15.39

Run 3 198.39 30.76 141.76 8.36

F1 (Hz) Run 1 762.62 81.90 722.10 73.01

Run 2 752.83 89.48 726.87 81.66

Run 3 769.09 88.08 754.37 89.28

F2 (Hz) Run 1 1868.28 148.26 1826.54 174.60

Run 2 1868.10 123.51 1843.20 151.93

Run 3 1887.05 141.15 1865.62 133.49

F0 range (Hz) Run 1 89.08 47.66 154.49 106.14

Run 2 80.42 41.09 187.64 98.44

Run 3 101.17 44.23 191.69 82.15

Speech rate

(number of words

per second)

Run 1 1.47 0.20 1.72 0.22

Run 2 1.53 0.19 1.69 0.26

Run 3 1.47 0.17 1.67 0.26

Word duration

(milliseconds)

Run 1 164 21 140 19

Run 2 157 18 139 22

Run 3 159 18 142 20

Pause ratio (%) Run 1 6.5 3.1 5.4 3.7

Run 2 5.9 2.8 8.9 3.7

Run 3 8.0 2.3 9.1 4.0

(number of words per second for the entire run), word duration

(mean duration for the word “helicopter” across the entire run),

and pause ratio (mean pause duration for the entire run), are

reported in Table 2. As the lung growth pattern stabilizes at 13–

14 years of age for females and 18–20 years for males (Polgar and

Weng, 1979), age is not a factor that we aimed to investigate in

the study. Instead, the two independent variables in this study were

sex and run (the repetition order in the task). A two-way repeated

measure ANOVA (analysis of variance) was conducted to test for

the effects of these variables on acoustic, prosodic, and breathing

measures. If there was an effect of run on any feature, a regression

was conducted to predict the effect on the lung function measures.
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3. Results

3.1. Voice characteristics: acoustic and
prosodic features

Among the acoustic features, mains effect of run were found

on intensity and F1. Specifically, a two-way repeated measures

ANOVA showed a significant main effect of run on intensity, F

(2.38) = 5.35, p = 0.009, η2
p = 0.220. Pairwise comparison showed

that the intensity of the first run (Mean = 67.61, SE = 1.34) was

significantly lower than that of the second run (Mean = 68.55, SE

= 1.26), p< 0.001. It is intriguing that a two-way repeatedmeasures

ANOVA also showed a significant main effect of run on F1, F (2.38)

= 5.53, p = 0.008, η
2
p = 0.225. Pairwise comparison showed that

F1 was significantly higher for the third run (Mean = 761.73, SE

= 19.90) than for the first run (Mean = 742.36, SE = 17.69, p =

0.018) and the second run (Mean= 739.85, SE= 19.48, p= 0.006),

but there was no difference between the first and second runs in

terms of F1.

Main effects of sex on F0 and F0 range were observed.

Specifically, a two-way repeated measures ANOVA showed a

significant main effect of sex on F0, F (1.19) = 25.21, p < 0.001,

η
2
p = 0.570. Pairwise comparison showed that F0 was significantly

higher in female speakers (Mean = 196.24, SE = 7.21) than in

male speakers (Mean = 137.62, SE = 9.19), which is consistent

with previous studies. A two-way repeated measures ANOVA also

showed a significant main effect of sex on F0 range, F (1.18) =

9.49, p = 0.006, η2
p = 0.345. Pairwise comparison showed that F0

range was significantly wider in male speakers (Mean = 177.94, SE

= 22.96) than in female speakers (Mean= 90.22, SE= 16.85).

With regard to prosodic features, there was a significant main

effect of run on pause ratio, F (2.36)= 5.26, p= 0.010, η2
p = 0.226.

Pairwise comparison showed that the third run was associated with

the highest pause ratio (Mean = 0.085, SE = 0.007), and that this

was significantly higher than that of the first run (Mean = 0.059,

SE = 0.008, p = 0.014), but not the second run. There was no

significant difference between the second and third runs.

A main effect of sex on speech rate was also observed, F

(1.19) = 4.85, p < 0.001, η
2
p = 0.203. The interaction between

sex and run was significant, F (2.38) = 3.83, p = 0.031, η
2
p =

0.168. Pairwise comparison showed that, in the first run only,

male speakers articulated the word “helicopter” more quickly than

female speakers (men: Mean= 1.72, SE= 0.07 vs. women: Mean=

1.47, SE= 0.06, p= 0.012).

A multiple regression analysis was conducted to explore which

features contribute significantly to lung function, specifically FEV1

and FVC. Based on the ANOVA results, we selected intensity,

F1, and pause ratio for inclusion as predictor variables. The two

criterion variables were FEV1 and FVC. A multiple regression with

backward elimination was conducted in SPSS for each run. Using

backward elimination, we attempted to only include significant

predictor variables in the regression model.

The regression results showed that the regression model was

significant for the criterion variable of FEV1 only in the case of the

second run, F (1.16) = 6.23, p = 0.025; pause ratio was the only

significant predictor included, adjusted R-squared = 0.246, Beta =

0.542, p= 0.025. For the first and third runs, none of the predictors

FIGURE 1

Frequency of inspiration in each run (green: no inspirations

detected; orange: 1, 2 inspirations; purple: 3+ inspirations). Number

of cases is shown in brackets.

tested (intensity, F1, and pause ratio) was a significant predictor.

A similar pattern occurred for FVC. A significant regression model

only emerged in the case of the second run, F (1.16) = 6.61, p =

0.021, where pause ratio was the only significant predictor, adjusted

R-squared= 0.26, Beta= 0.553, p= 0.021.

3.2. Breathing characteristics

All three runs for each participant (n = 26) were analyzed (a

total of 168 breathes, split between men and women at a ratio of

85:83). For four participants, no inspirations were recorded.

The mean duration of the inspirations taken while completing

the three “helicopter” runs was 0.283 ± 0.161 s (range: 0.04–

0.88 s), n = 168, with no differences observed between the sexes.

There were also no statistically significant differences (p = 0.149)

between runs in terms of duration or number of inspirations. The

occurrence of the first inspiration was significantly earlier in the

second run compared to the first (Run 1: 59± 19%; Run 2: 43± 15

%; Run 3: 49± 22 %).

In the first run, approximately half (14/26) of the participants

took 1–2 inspirations, but by the third run, this had risen to more

than 3 inspirations (12/26) (Figure 1).

4. Discussion

In summary, the effects of both sex and run number on different

acoustic features, prosodic features, and breathing measures were

investigated in this study. Effects of sex occurred for F0, F0

range, and speech rate. Female speakers showed higher F0 values

than male speakers, which is consistent with previous studies.

Male speakers articulated the word “helicopter” more quickly than

female speakers, but only during the first run, which might suggest

that their speech rate decreased as articulation load increased.

However, the current study also found that male speakers showed

a broader F0 range than female speakers. This result differs from
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those of some previous studies, and further investigation should

be considered.

Effects of run number on intensity, F1, and pause ratio were

also observed in the present study. As more runs were taken,

intensity and F1 increased among male and female speakers.

Correspondingly, as intensity and F1 increased with each run,

the speakers took more inspirations, which was indicated by the

increase in pause ratio over the course of the three runs. The

speakers needed to takemore pauses to inhale air as they articulated

the words in the later (second and third) runs. The mechanism

underlying the effect of run on intensity needs further investigation.

Huber et al. (2005) proposed three means of increasing speech

loudness: increased recoil pressures, increased expiratory tension,

and a combination of both. Unlike their design, in which the

speaker was requested to increase loudness, the current “helicopter”

task is deliberately designed to induce respiratory load by requiring

participants to repeat words quickly over the course of three runs.

We need to clarify which approach was adopted by speakers to

increase intensity and F1. In addition, we need to clarify whether

the increase in air intake was used to increase intensity or to

compensate for respiratory load or physiological fatigue.

The multiple regression results indicated that pause ratio was

the sole significant variable to predict two lung function measures,

FEV1 and FVC, and did so only on the second run. The analysis of

breathing characteristics showed that the first inspiration occurred

earliest in the second run, among all three runs. The correlation of

pause ratio and inspiration indicates that the relationship between

run number and inspiration in speech breathing might not be

linear. Essentially, to understand this finding, the mechanism

underlying the use of pauses in speech breathing should be

interpreted in relation to whether it represents an inhaling process

or is mixed with another breathing event, for instance, breathiness.

In the present study, three tiers of features have been proposed

to extract and categorize rich information from speech breathing

and to provide insight into the relevance of factors on each of

these tiers to lung function. In the current data analysis, for

instance, the weights and roles of acoustic, prosodic, and breathing

features are one issue that calls for more work. Even within the

category of acoustic features, the changes in various features and

measures that could be attributed to speech breathing patterns or

loads are not clear. Previous studies have investigated the roles

of F0, F1, and F2. Lively et al. (1993) found that, in a workload

condition, talkers produced utterances with increased amplitude

and amplitude variability, decreased spectral tilt and F0 variability,

and increased speaking rate. However, no changes in F1, F2, or F3

were observed across conditions. In contrast, Huttunen et al. (2011)

studied the utterances of 13 male military pilots that were recorded

during simulated combat flights, and found that the strongest

associations were observed between three types of cognitive load

and F1 and F2 changes in back vowels.

The present study provides empirical evidence for the use

of acoustic and prosodic features of speech as health sensors

and indicators. Specifically, the repeated articulation “helicopter”

task and the pause ratio measure are sensitive to changes in

speech breathing and reflect lung function. Within the range

of other available acoustic and prosodic features, we need to

further screen for sensitive and specific indicators and investigate

their mechanistic link with lung function. Our single-word-

based articulation task may potentially represent a rapid tool

for prediction of lung health in people with COPD. Therefore,

the use of speech breathing and relevant linguistic–prosodic

information could be further integrated into future home-based

healthcare systems.
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Background: The rise of depression, anxiety, and suicide rates has led to increased

demand for telemedicine-based mental health screening and remote patient

monitoring (RPM) solutions to alleviate the burden on, and enhance the e�ciency

of, mental health practitioners. Multimodal dialog systems (MDS) that conduct

on-demand, structured interviews o�er a scalable and cost-e�ective solution to

address this need.

Objective: This study evaluates the feasibility of a cloud basedMDS agent, Tina, for

mental state characterization in participants with depression, anxiety, and suicide

risk.

Method: Sixty-eight participants were recruited through an online health registry

and completed 73 sessions, with 15 (20.6%), 21 (28.8%), and 26 (35.6%) sessions

screening positive for depression, anxiety, and suicide risk, respectively using

conventional screening instruments. Participants then interacted with Tina as

they completed a structured interview designed to elicit calibrated, open-ended

responses regarding the participants’ feelings and emotional state. Simultaneously,

the platform streamed their speech and video recordings in real-time to a HIPAA-

compliant cloud server, to compute speech, language, and facial movement-

based biomarkers. After their sessions, participants completed user experience

surveys. Machine learning models were developed using extracted features and

evaluated with the area under the receiver operating characteristic curve (AUC).

Results: For both depression and suicide risk, a�ected individuals tended to have

a higher percent pause time, while those positive for anxiety showed reduced lip

movement relative to healthy controls. In terms of single-modality classification

models, speech features performed best for depression (AUC = 0.64; 95% CI =

0.51–0.78), facial features for anxiety (AUC = 0.57; 95% CI = 0.43–0.71), and text

features for suicide risk (AUC=0.65; 95%CI = 0.52–0.78). Best overall performance

was achieved by decision fusion of all models in identifying suicide risk (AUC =

0.76; 95% CI = 0.65–0.87). Participants reported the experience comfortable and

shared their feelings.

Conclusion: MDS is a feasible, useful, e�ective, and interpretable solution

for RPM in real-world clinical depression, anxiety, and suicidal populations.

Facial information is more informative for anxiety classification, while speech
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and language are more discriminative of depression and suicidality markers. In

general, combining speech, language, and facial information improved model

performance on all classification tasks.

KEYWORDS

machine learning, multimodal dialog systems, speech features, natural language

processing, facial features, suicide, depression, anxiety

1. Introduction

Globally, ∼301 million people and 280 million people were

affected by anxiety and depression in 2019, respectively.1 According

to the World Health Organization, over 700,000 people die by

suicide every year, with more than 20 suicide attempts per suicide

death (World Health Organization, 2021). In 2022 in the United

States (US), 5.0% of adults report regular feelings of depression,

and 12.5% report regular feelings of worry, nervousness, or

anxiety.2 Regarding the frequency of suicidal thoughts in the

US, 3.7% of adults had serious thoughts of suicide in 2021.

Initial estimates of the impact of the COVID-19 pandemic show

more than a 25% increase in mental disorders, worldwide (World

Health Organization, 2022). As the prevalence of these conditions

increases, technological solutions are needed to more efficiently

identify, monitor, and manage these conditions.

The identification and monitoring of mental health conditions

related to depression, anxiety, and suicide risk often rely on self

report from individuals or evaluation from a trained professional.

Self report scales, such as the Patient Health Questionnaire-9 Item

(PHQ-9) for depression (Kroenke et al., 2001) or the Generalized

Anxiety Disorder-7 Item (GAD-7) for anxiety (Spitzer et al., 2006),

have reported excellent sensitivity and specificity but rely on the

honesty of a patient and typically only screen for a single condition,

requiring additional time to screen for more than one condition.

For suicide risk, a 2017 meta analysis suggests current methods of

predicting death by suicide are no better than random chance, and

recommends other techniques such as machine learning (ML) to

improve predictive capabilities (Franklin et al., 2017).

In clinical settings, information from a patient’s visual

appearance and body language, verbal communications, and speech

may aid clinicians’ diagnoses. More recently, these signals have

Abbreviations: AUC, area under receiver operating characteristic curve; C-

SSRS, Columbia-Suicide Severity Rating Scale; CI, Confidence; CRC, Clinical

Research Coordinator; F0, fundamental frequency; GAD-7, Generalized

Anxiety Disorder-7; HNR, harmonics-to-noise ratio; KW, Kruskal-Wallis; LR,

Logistic Regression; MHSAFE, Mental Health Hopes Secrets Anger Fear and

Emotional Pain; MDS, Multimodal Dialog System; ML, Machine Learning; NLP,

Natural Language Processing; PHQ-9, Patient Health Questionnaire-9; PPT,

percent pause time; SFT, speech, facial, and text (modalities); SIT, speech

intelligibility test; SVM, support vector machine; TF-IDF, Term Frequency-

Inverse Document Frequency.

1 Global Health Data Exchange (GHDx), https://ghdx.healthdata.org/

[accessed: 2022-12-20].

2 Centers for Disease Control, https://www.cdc.gov/nchs/fastats/mental-

health.htm [accessed: 2023-07-11].

been combined with supervised ML as biomarkers to identify

the presence of mental health conditions (Ramanarayanan et al.,

2022). In this context, signals from different modalities (e.g., speech

or visual inputs) are transformed into features, leading to 100’s

to 1,000’s of data points that describe aspects of the signal. For

example, speech (S) features describe characteristics of an acoustic

signal, such as pitch or intensity. Facial features (F) describe aspects

of face movements, such as the number of eye blinks per second

or the speed of the lower lip and jaw center. Text (T) features

are derived from a patient’s language and may capture relevant

semantic information. During supervised ML, features are paired

with a clinical label, such as having a condition (case) or not

(control), and then used to train a model to allow the discovery of

patterns from the data for classification.

Reviews of articles using ML with SFT features for the

identification of depression, anxiety, and suicide risk indicate

good to excellent model performance, with many investigators

reporting areas under the receiver operating characteristic curve

(AUC) in the range of 0.7–0.9 (Cummins et al., 2015, 2018; Arif

et al., 2020; Bernert et al., 2020; Neumann et al., 2020; Kusuma

et al., 2022). Comparatively, under realistic clinical conditions,

many traditional mental health diagnostic checklists perform with

AUCs in the range of 0.7–0.8 (Rice and Harris, 2005; Youngstrom,

2013). While ML models appear to perform with a similar

discriminative ability as traditional methods, they face unique

challenges. A key challenge is model overfitting, which occurs

when a model learns from idiosyncrasies of a dataset as opposed

to clinically meaningful variables. This leads to overly optimistic

estimates of model performance and may result in a model

that is overly sensitive to specific expressions of mental health

conditions, reducing its effectiveness when symptoms are expressed

differently (Berisha et al., 2022). Mitigation strategies include cross-

validation, regularization, or using models with fewer parameters.

Additionally, there are significant challenges to generalizability.

Work by Botelho et al. (2022) shows a high degree of separability

among six popular speech datasets, demonstrating the limitation

that a model trained on one population or dataset might not

accurately predict outcomes in another. This necessitates rigorous

external validation and diverse, representative data collection.

Biases in the dataset represent another source of error. If the

training data predominantly represents a specific demographic or

cultural group, the model may not perform as well on other groups,

leading to misdiagnosis or underdiagnosis. Furthermore, Berisha

et al. (2022) recently reported a negative association between

model performance and sample size among 77 publications on

speech-based ML for the identification of dementia, attributing

this to not only model overfitting but also publication bias. This

finding underscores the importance of transparency and balanced
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reporting in research publications. Taken together, these issues

emphasize the importance of not solely focusing on classification

performance but also on selecting clinically meaningful and

generalizable features, ensuring a representative dataset, and

employing robust validation methodologies. While ML shows

promising potential in mental health diagnostics, these challenges

must be recognized and addressed to maximize its clinical utility.

Previous research related to this work has found a semi-

structured, in-person interview promising for the collection of SFT

features to be used with ML models for the identification of suicide

risk (Pestian et al., 2010, 2016, 2017; Laksana et al., 2017; Cohen

et al., 2020, 2022; Wright-Berryman et al., 2023). In these studies,

trained staff (therapists, clinical research coordinators, or licensed

behavioral health clinicians) recorded a semi-structured interview

with hundreds of suicidal or non-suicidal participants in emergency

departments, psychiatric units, and in-school therapy settings with

adolescents and adults. Support vector machine (SVM) models

were trained to identify suicidal vs non-suicidal participants, with

AUCs ranging from 0.69 to 0.93 depending on the features and

cross-validation approach used (Pestian et al., 2016, 2017). Notably,

two of these investigations included an external validation of the

models developed with separately collected corpora (Cohen et al.,

2020, 2022). It is also important to note that while these studies

involved hundreds of participants, there is no universally accepted

minimum sample size for ML analyses. The required sample size

can vary greatly depending on the complexity of the model, the

number of features, the variability in the data, and the specific

research question being addressed. Some studies have successfully

applied ML techniques with as few as 60 sessions (Pestian et al.,

2016).

While these initial results are encouraging for the use of SFT

features for the identification of suicide risk in clinical settings,

the procedures relied on trained staff to conduct the interview.

There is a shortage of mental health professionals (Satiani et al.,

2018), which may limit the uptake of technology requiring more of

their time. Therefore, techniques to accurately and autonomously

screen for mental health concerns are needed. One option may

be to use multimodal dialog systems (MDS), which have recently

been developed for remote health screening and monitoring. For

example, DeVault et al. (2014) presented the SimSensei Kiosk,

a virtual human interviewer specifically built to render clinical

decision support. It captures verbal and non-verbal features to

extract distress indicators correlated with mental conditions such

as depression. Lisetti et al. (2015) presented results of a large-scale

effort building a virtual health assistant for “brief motivational

interventions,” for example, interviews about a subject’s drinking

behavior. The described system uses text input from the subject’s

keyboard (or, alternatively, a speech recognition hypothesis) along

with facial expression features to determine next steps in the

interaction. In addition to cost reduction and scalability, MDSsmay

reduce participants’ fear associated with the perception of being

judged (Cummins et al., 2015). Gratch et al. (2014) found that

participants felt more comfortable disclosing personal information

with an agent that was framed as autonomous as opposed to one

that was framed as human-controlled.

For the present study, the Modality service, a cloud-based

MDS (Suendermann-Oeft et al., 2019; Ramanarayanan et al.,

2020) was used to conduct automated, structured interviews with

participants. Neumann et al. (2020) recently demonstrated the

utility of the Modality MDS in differentiating people with mild,

moderate and severe depression, and similar studies have also

been conducted in ALS (Neumann et al., 2021), Parkinson’s

disease (Kothare et al., 2022), schizophrenia (Richter et al., 2022),

and autism (Kothare et al., 2021). The Modality MDS can be

used with widely available endpoints such as smartphones and

laptops as opposed to the dedicated, locally administered hardware

used in other studies. Speech, facial, and language data was

collected by the MDS for feature analysis and ML classification of

depression, anxiety, and suicide risk. Overall, we found participants

accepting of the technology and procedures, and ML models

using a combination of features led to the greatest discriminative

ability.

This case-control study sought to (1) examine the feasibility

of collecting a mental health interview with an MDS with

participants with and without depression, anxiety, and suicide

risk, (2) evaluate candidate features for the identification of

these conditions, and (3) internally validate models trained to

identify each condition with different modalities (speech, facial,

and text).

2. Methods

2.1. Data

Sixty-eight participants enrolled in the study between October

2021 and April 2022, providing a total of 73 sessions. Notably,

participants were allowed (but not required) to participate again

after 2 weeks, out of whom five participants chose to take part in

another session each. The PHQ-9 to measure depression (Kroenke

et al., 2001), the GAD-7 to measure anxiety (Spitzer et al., 2006),

and the Columbia-Suicide Severity Rating Scale (C-SSRS) Screener

(Posner et al., 2011) to measure suicide risk were collected in

all sessions. Participant demographics and distributions of case

sessions are shown in Table 1. For a more complete picture of the

study participants, statistics of control participants and additional

demographic information are available in Supplementary Table 1.

Criteria for participant recruitment were: (1) age ≥ 18, (2) able

to provide informed consent, (3) English as a primary language,

and (4) located in the United States. Recruitment for the study

was done via ResearchMatch, a national health volunteer registry

that was created by several academic institutions and supported

by the U.S. National Institutes of Health as part of the Clinical

Translational Science Award program. ResearchMatch has a large

population of volunteers who have consented to be contacted by

researchers about health studies for which they may be eligible. For

this study, we specifically targeted individuals who had self-selected

to be contacted by studies related to depression, anxiety, and suicide

risk. This targeted recruitment strategy was designed to ensure a

sufficient number of participants with the conditions of interest.

Review and approval for this study and all procedures was obtained

from our commercial Institutional Review Board. All participants

gave informed consent in accordance with the Declaration of

Helsinki before they participated in the study. Participants received

a $15 gift card for each session they completed.
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TABLE 1 Participant descriptive statistics and case session summaries.

Case sessions

Variable Participants Sessions PHQ-9 ≥ 10 GAD-7 ≥ 10 C-SSRS ≥ Mod.

Count (%) 68 (100.0%) 73 (100.0%) 15 (20.6%) 21 (28.8%) 26 (35.6%)

Average age (SD) 38.8 (14.7) 38.7 (14.7) 39.3 (13.3) 34.5 (13.1) 38.8 (15.7)

Average interview length (min) (SD) 9.6 (2.2) 9.3 (2.3) 9.7 (2.5) 9.0 (2.4) 9.7 (2.2)

Average word count (SD) 917.0 (302.06) 925.0 (309.9) 912.1 (374.2) 899.1 (308.5) 964.1 (316.2)

Sex

Male (%) 15 (22.1%) 16 (21.9%) 3 (4.11%) 6 (8.2%) 9 (12.3%)

Female (%) 52 (76.5%) 56 (76.7%) 12 (16.4%) 15 (20.6%) 16 (21.9%)

Prefer not to answer 1 (1.5%) 1 (1.4%) - (-%) - (-%) 1 (1.4%)

Race

White or Caucasian (%) 50 (73.5%) 54 (74%) 12 (16.4%) 17 (23.3%) 21 (28.8%)

Black or African American (%) 10 (14.7%) 11 (15.1%) 2 (2.7%) 3 (4.1%) 2 (2.7%)

Asian (%) 5 (7.4%) 5 (6.9%) - (-%) 1 (1.4%) - (-%)

Other (%) 3 (4.4%) 3 (4.1%) 1 (1.4%) - (-%) 3 (4.1%)

2.1.1. Study sta�
The study staff was composed of three clinical research

coordinators (CRC) who are all mental health practitioners

or graduate-level students in the mental health field. They are

extensively trained in all study procedures, human subjects

protection, good clinical practice, and crisis management

procedures. The CRCs oversaw all study procedures.

2.2. Study design

Participants invited through ResearchMatch completed

informed consent and demographic information electronically and

scheduled a remote study session time with a CRC to meet via the

video conferencing platform Microsoft Teams. During the study

session, the CRC confirmed participant consent and that they

understood the study procedures and their rights as participants,

and then administered the PHQ-9, GAD-7, and the C-SSRS

Screener. These instruments have been administered via video

conferencing platforms in a variety of studies. Figure 1 outlines the

study procedures.

The PHQ-9 is a rigorously tested, reliable and valid instrument

for depression in adults, with a sensitivity and specificity of 88%,

corresponding with a threshold score ≥ 10 out of 27, which

includes “Moderate,” “Moderately Severe,” and “Severe” levels of

depression (Kroenke et al., 2001). Similarly, the GAD-7 has been

widely tested with adults to measure anxiety, with a sensitivity

and specificity of 89 and 82%, respectively, corresponding with a

threshold score ≥ 10 out of 21, which includes “Moderate” and

“Severe” levels of anxiety (Spitzer et al., 2006). The C-SSRS Screener

is a structured interview which has demonstrated high sensitivity

and specificity for classifying suicidal ideation and behaviors in

a multi-site emergency department study (Posner et al., 2011).

The screener asks six questions about the past month to measure

suicidal ideation and suicidal behaviors on an ordinal scale, with a

final question about lifetime suicidal behavior (more than 3months

ago). The C-SSRS Screener designates suicide risk as “None” if

all questions are answered negatively, “Low” if passive suicidal

ideation is present, “Moderate” if suicidal ideation with a method

OR lifetime suicidal behavior is present, and “High” if suicidal

ideation with intent (with or without a method) OR suicidal

behavior in the past 3 months is present. In this study a severity

threshold ≥ “Moderate” was used for the binary identification

of all conditions to maximize sensitivity and specificity of the

instruments. Table 2 is a summary of the assessments and scores

used for case definitions.

For participant safety, all participants received wellness

resources such as the 988 Suicide and Crisis Lifeline and the Crisis

Text Line. The 988 National Suicide Prevention Lifeline and the

Crisis Text Line are U.S.-based single line immediate access to

trained crisis counselors. For participants that score “High” risk

on the C-SSRS Screener, a more comprehensive contingency plan

was followed, including asking additional questions about their

mental state, access to lethal means, engagement in mental health

services, and protective factors. In the event of imminent risk,

the contingency safety plan included a warm hand-off to the 988

Suicide and Crisis Lifeline and/or a call to 911. No participants

in this study were at imminent risk and required following of the

contingency safety plan.

Following the PHQ-9, GAD-7, and C-SSRS, the CRCs provided

a link to the MDS, a web-based program that accesses the

participant’s computer’s microphone and webcam to record their

voice and facial video. To supervise this section of the study,

CRCs instructed participants to share their computer’s screen and

audio. The CRC then muted their microphone and turned off their

webcam.

Before participants start their conversation with the virtual

agent, Tina—implemented via a scalable, cloud-based MDS to

conduct automated structured interactions (Suendermann-Oeft

et al., 2019; Ramanarayanan et al., 2020)—tests of the speaker,

microphone, and camera need to be passed to ensure that the

participants’ devices are correctly configured so that the collected
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FIGURE 1

Schematic of study and modeling procedures.

data has sufficient quality. Once all device tests pass, Tina guides

participants through an interactive interview.

In each participant’s first session, Tina introduced the graphical

interface and asked the participant to read a sentence, taken

from a speech intelligibility test (SIT) corpus. At the start of

every interview, Tina first asked participants “how they are feeling

today” as a warm up question. Participants then began a semi-

structured inteview (renamedMHSAFE—hope, secrets, anger, fear,

and emotional pain–from the “Ubiquitous Questionnaire”). The

MHSAFE interview has been used in previous studies with human

interviewers to collect language for ML models to identify suicide

risk (Pestian et al., 2010, 2016, 2017; Laksana et al., 2017; Cohen

et al., 2020, 2022). The interview asks participants open-ended

questions about five topics: hope, secrets, anger, fear, and emotional

pain (Pestian, 2010; Cohen et al., 2020, 2022). In the present study,

for each topic, Tina asks if they have that topic and how that makes

them feel, for example, “do you have hope and how does that feel?”

The question about secrets is not intended for participants to reveal

what their secrets are, but to gather information about whether they

are keeping secrets at all, and how they feel about this. The SIT task

and warm up question from the beginning were included in the

analysis, because these speech samples may contain useful features

in addition to the MHSAFE interview.

Tina is equipped with a voice activity detection system to

measure the length of participant responses. To collect enough

language for analysis, Tina required a minimum of 1 min of speech

for each topic of the MHSAFE interview. Participants that did not

speak for the minimum amount of time were nudged up to two

times to tell Tina more about that topic. Tina moved onto to the

next question if after two nudges the participant’s speaking time

for that questions was still <1 min. The recorded audio files were

manually transcribed using a HIPAA-compliant service.

2.3. User feedback

For user feedback, we used two forms of data collection, a

qualitative questionnaire (likes/advantages, dislikes/disadvantages,

and improvements) and a five-question survey with Likert scale

responses, shown in Table 3. Qualitative data were analyzed
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TABLE 2 Summary of completed assessments, associated mental state

measured, and case definition for model development.

Assessment Mental state Case definition

PHQ-9 Depression Total ≥ 10

GAD-7 Anxiety Total ≥ 10

C-SSRS screener Suicidal risk Risk ≥Moderate

TABLE 3 Post interview survey.

Item Survey questions

Likert scale questions: 1 = most negative to 5 = most positive

1. How did it feel to express your emotions of your hope, secrets,

anger, fear, and emotional pain to a virtual assistant?

2. How honest were you in your responses to the virtual assistant?

3. How comfortable were in your responses to the virtual assistant?

4. What was your impression of the virtual assistant in terms of

visual appearance and voice?

5. What was your impression of the virtual assistant in terms of pace

of interview including interruptions and pauses from the virtual

assistant, and your time to respond?

Open-ended questions:

6. What did you like about Tina?

7. What did you not like about Tina?

8. What could be improved with this experience?

using thematic analysis. Two investigators coded the responses

and annotated the emerging themes. Likert scale responses

were analyzed using frequency distribution, mean, and standard

deviation. Student’s t-tests were performed with SciPy’s ttest_ind

function to identify any statistically significant differences between

case and control groups for Likert scale responses.

2.4. Data preprocessing and featurization

All analysis was performed using the Python programming

language (version 3.9.12; Van Rossum and Drake, 1995). The

following open-source Python libraries were also used: Pandas

(version 1.4.2; McKinney, 2010; The Pandas Development Team,

2020), Numpy (version 1.22.3; Oliphant, 2007; Van Der Walt et al.,

2011), scikit-learn (version 1.0.2; Pedregosa et al., 2011), Matplotlib

(version 3.5.1; Hunter, 2007), and SciPy (version 1.8.0; Virtanen

et al., 2020). For calculating effect sizes, we also used the R package

effsize (version: 0.7.6; Torchiano, 2020) and the rpy2 interface

(version 2.9.4).3

In our methodology, three modalities—acoustic (speech),

facial, and textual—were examined, each contributing a distinct set

of features to our models and are described in more detail below.

3 https://github.com/rpy2/rpy2

TABLE 4 Overview of speech, facial, and text features.

Domain Features

Speech Energy Shimmer (%), signal-to-noise ratio (dB)

Timing Speaking and articulation duration (sec.),

percent pause time (PPT, %)

Voice quality Harmonics-to-noise ratio (HNR, dB)

Frequency Mean, max., min. fundamental frequency F0

(Hz), jitter (%)

Facial Mouth (distances) Lip aperture/opening, lip width, mouth

surface area, Mean symmetry ratio between

left and right half of the mouth

Movement Velocity, acceleration, jerk, and speed of

lower lip and jaw center

Eyes Number of eye blinks per sec., eye opening,

vertical displacement of eyebrows

Text TF-IDF
Count of n-gram in interview

Count of interviews containing n-gram

For facial features, functionals (minimum, maximum, and average) are applied to produce

one value across all video frames of an utterance.

2.4.1. Speech features
For the acoustic speech analysis, a variety of commonly

established measures for clinical voice analysis were extracted

(France et al., 2000; Mundt et al., 2007, 2012). These include

timing measures, such as percentage of pause time (PPT), frequency

domain measures, such as fundamental frequency (F0) and jitter,

energy-related measures, such as intensity and shimmer as well as

the harmonics-to-noise ratio (HNR) as a measure for voice quality.

All measures were extracted with Praat (Boersma and Van Heuven,

2001). Table 4 lists all features. More detailed descriptions of speech

features are available in Supplementary Table 2.

2.4.2. Facial features
The set of facial features is based on facial landmarks generated

in real time by the MediaPipe Face Mesh algorithm (Kartynnik

et al., 2019). For each user turn, the following algorithm is applied

to compute features. First, MediaPipe Face Detection, which is

based on BlazeFace (Bazarevsky et al., 2019), is used to determine

the (x, y)-coordinates of the face for every frame. Then, facial

landmarks are extracted using MediaPipe Face Mesh. We use 14

key landmarks to compute features like the speed and acceleration

of articulators (jaw and lower lip), surface area of the mouth, and

eyebrow raises (see Table 4). The key facial landmarks are illustrated

in Figure 2. Lastly, the features are normalized by dividing them by

the inter-caruncular or inter-canthal distance, which is the distance

between the inner canthi of the eyes (see Figure 2 for a visual

illustration), to handle variability across participant sessions due

to position and movement relative to the camera (Roesler et al.,

2022). More detailed descriptions of facial features are available in

Supplementary Table 3.

2.4.3. Text features
The natural language processing (NLP)/ML pipeline used

in this study focused on the term frequency-inverse document
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FIGURE 2

Illustration of the 14 facial landmarks used to calculate the facial

features used in this study and the inter-caruncular distance (shown

in red) between the inner canthi of the eyes (RELC and LERC).

Adapted with permission from iStock Photo/meshaphoto.

frequency (TF-IDF) of unigrams (single words), calculated using

scikit-learn’s TfidfVectorizer. TF-IDF is a numerical statistic

that reflects how often a term appears in a document (i.e.,

interview), while also taking into account how common the term is

in the entire corpus of documents. This weighting scheme assigns

higher importance to terms that are more distinctive to a particular

document, and lower importance to terms that are common across

many documents (Rajaraman and Ullman, 2011).

The text was preprocessed so all characters were lowercase and

to remove any punctuation and non-letter characters. Language

was tokenized by splitting on white spaces. Following the

preprocessing steps, each session was subject to L2 normalization,

a process designed to control for varying response lengths. L2

normalization, also known as Euclidean normalization, works by

adjusting the values in the data vector so that the sum of the squares

of these values equals one. Specifically, each value in the vector is

divided by the Euclidean length (L2 norm) of the vector itself—the

square root of the sum of the squared vector values.

2.4.4. Missing data
Features may be missing if a participant skipped a segment or a

technical issue arose. To handle missing speech and facial features,

scikit-learn’s SimpleImputer was used to replace the missing

feature with its mean value for each cross-validation fold. Any

feature missing from > 3% of sessions was removed prior to model

evaluation to ensure the robustness of our analyses and to avoid

potential biases or inaccuracies that could arise from imputing a

large amount of missing data.4

2.5. Feature analysis and classification
experiments

Due to the limited size of our dataset, we performed feature

analysis on the entire dataset to identify the number of significant

features (but importantly, not which features). In other words,

during classification experiments, we only specified the number

of features, and not the specific features, per cross-validation

fold to avoid information leakage across training and validation

folds. To test statistical meaningfulness of the features, non-

parametric Kruskal-Wallis (KW) tests (McKight and Najab, 2010)

were conducted on the entire dataset for each feature, which test the

hypothesis that feature medians are significantly different between

cohorts (cases and controls) at the α = 0.05 level. In order

to give equal weight to the features of individual participants,

we selected only one session per user for this test. This results

in kcm number of features per modality (m), per condition (c).

For speech and facial features, effect sizes were then calculated

with Cohen’s d (Cohen, 1988), which analyzes the direction and

magnitude of effects between cohorts. Cohen’s d was introduced to

measure effect sizes in units of variability by dividing the difference

of cohorts’ means by the pooled standard deviation. Because TF-

IDF featurization of participant language results in sparse matrices,

we did not measure effect sizes, but instead extracted the top 10

case and control features by feature weight per condition from a

linear SVM fit to the entire dataset after feature selection for the kcm
features determined by the KW test. Figure 1 includes a schematic

of feature analysis and model development procedures.

Discrimination power was assessed by evaluating the

classification performance using a logistic regression (LR) classifier

for speech and facial features and a linear SVM for text features.

These classifiers were selected for their relative simplicity and

promising performance in previous studies (Pestian et al., 2016,

2017; Laksana et al., 2017; Cohen et al., 2020, 2022). To prune our

high-dimensional feature set, the number of speech and facial input

features for the classifier was determined by kcm. We selected the

top kcm features that resulted from a KW test on n− 1 participants’

session(s) in each classification fold. To ensure robustness and

reliability of our results, we only reported ML experiments if they

were based on at least five significant features. This threshold was

set to avoid over-reliance on a small number of features or outliers,

and to provide a more robust basis for classification.

4 We consider each combination of a speech/facial measure and a task

(interview question) as one feature. Twenty-eight percent of speech features

(26) and 33% of facial features (146) were removed because of missing data.

The majority of these were from the initial SIT sentence and the warm up

question.
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The acoustic characteristics of male and female voices have

been studied in detail and found to differ in a variety of variables

such as pitch, voice quality, and timing measures (see, for example,

Titze, 1989; Mendoza et al., 1996; Simpson, 2009). Furthermore,

facial behavior as well as classification accuracy based on facial

features was found to differ by gender (Dimberg and Lundquist,

1990; Drimalla et al., 2020). To ensure that analyses between case

and control cohorts are unbiased with respect to widely reported

differences between males and females, we standardized scores for

speech and facial features by z-scoring for both groups separately.5

Both feature- and decision-level fusion were examined to

identify any potential predictive benefits of including information

from multiple modalities. During feature fusion, features are

independently preprocessed and selected, and then merged into

a single matrix prior to model development and evaluation. An

LR classifier was used for feature fusion classification. Decision

fusion involves independently training models on each modality or

a combination thereof (e.g., speech and facial features combined

together), and then combining outputs from each model through

different rules. For decision fusion, LR classifiers were used for

speech and facial features, while a linear SVM was used with text

features. Model output combination rules considered include the

minimum, maximum, and mean of all model output scores.

Models were trained using different feature combinations

paired with each session’s label as a case or control. Models were

evaluated using a leave-one-subject-out cross-validation approach,

where a model is iteratively trained on all but one participants’

session(s). The features from the held out subject’s session(s) were

fed into the model and a probability for belonging to the case

group was returned. When done iteratively, this results in a list of

probabilities for each session to be compared to the true label to

compute overall model performance metrics. Model performance

was primarily evaluated with the AUC and Brier score. AUC values

range from 0.5 (random chance) to 1.0 (perfect model). The Brier

score is a measure of model calibration and ranges from 0 to

1 where low scores indicate less discrepancy between labels and

predicted probabilities.

The selection of features in the cross-validation folds in the

classification experiments based on a KW test on n− 1 participants

may differ from the result of the KW test on the entire cohort.

To identify the most important features for each mental state in

terms of robustness and generalizability across experiments and

thus independence from participant partitions, we assessed these by

determining the intersection of features that (a) were consistently

selected across all cross-validation folds and (b) were found to be

statistically significant in the KW test for the entire cohort. We

then examined these features in more detail by reviewing previous

research and by testing their association with the respective mental

states. For the latter, Pearson correlations were calculated between

the assessment total scores and the speech and facial features. A

threshold of |r| ≥ 0.2 and p < 0.05 was used to identify weak,

but statistically significant correlations. We acknowledge that an

|r| value of 0.2 is often considered a “small” effect size. However,

5 One out of 68 participants did not specify their sex at birth. This

participant’s session was excluded from the analysis of speech and facial

features.

in the context of our exploratory analysis with a relatively smaller

dataset, we chose this threshold to highlight any potential weak,

but statistically significant relationships that may warrant further

investigation in larger studies. This approach allows us to focus on

potentially clinically meaningful features and gives a more nuanced

understanding of the data, rather than focusing exclusively on

model performance.

3. Results

3.1. Feature analysis and classification
experiments

Figure 3 shows the effect sizes of the speech and facial features

that are statistically significantly different between the respective

cohorts. For PHQ-9 assessments, we find one facial and 15 speech

features, as can be seen in Figure 3A. These features include a

higher percent pause time as well as lower shimmer, jitter and

F0 standard deviation for cases than controls. Conversely, for

comparisons based on GAD-7 scores, more facial features (24)

are evident than speech features (seven), as shown in Figure 3B.

Similar to the GAD-7 assessments, seven speech and 24 facial

features were found to be significant in the statistical analysis based

on the C-SSRS scores, which is shown in Figure 3C. For each

of the conditions examined in our study - depression, anxiety,

and suicide—the top 10 text features (words) for both cases

and controls were extracted using linear SVM models fit to the

entire corpus, after the feature selection process. Importantly, these

textual features do not overlap with or include acoustic or facial

features - they are entirely separate. Table 5 provides a list of these

top textual features for each condition.

Receiver operating characteristic (ROC) curves can be seen in

Figure 4 for the identification of depression, anxiety, and suicide

risk for single modalities, feature fusion, and decision fusion

models. The results in terms of AUC and Brier score are shown in

Table 6. Of the single-modality models, the best performance for

depression occurred with speech features (AUC = 0.64; 95% CI =

0.51–0.78); for anxiety, facial features performed best (AUC = 0.57;

95% CI = 0.43–0.71); and for suicide risk, text features performed

best (AUC = 0.65; 95% CI = 0.52–0.78). While these AUC values

indicate that the models have some predictive power, it’s important

to highlight that an AUC of 0.5 would be equivalent to random

chance and values in the range of 0.7–0.8 are often considered

indicative of a good performing model. Thus, it can be seen that

some of our single-modality models are performing at near-chance

or sub-optimal levels (see Figure 4).

In general, we found a combination of features or models

improved discriminative ability, with a decision fusion of all

models leading to the best overall performance in the identification

of suicide risk (AUC = 0.76; 95% CI = 0.65–0.87). The best

discriminative ability for depression (AUC = 0.70; 95% CI = 0.56–

0.84) resulted from a decision level fusion of speech and text

features. For anxiety, a feature-level fusion of all features performed

best (AUC = 0.71; 95% CI = 0.59–0.83). The best performance for

all decision-level fusion models resulted by selecting the minimum

score of considered mode.
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FIGURE 3

E�ect sizes (Cohen’s d) of speech and facial metrics that show statistically significant di�erences between controls and cases based on (A) PHQ-9

≥ 10, (B) GAD-7 ≥ 10, and (C) C-SSRS (suicide risk) ≥ Moderate at α = 0.05. Error bars show the 95% confidence interval. Positive values indicate

features where cases had higher mean values than controls. Numbers in parentheses indicate the number of included samples for cases and

controls. The respective task/ interview question is specified in the prefix. LL, lower lip; JC, jaw center; MH, mouth half; acc, acceleration. (A) E�ect

sizes based on PHQ-9. (B) E�ect sizes based on GAD-7. (C) E�ect sizes based on C-SSRS.
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Further, we found the models’ performance sensitive to the

number of features fed into the classifier. Therefore, we performed

a follow-up analysis to determine the optimal number of features

for classification performance based on the AUC. We found that

a small set of speech features with only three features is most

beneficial for classifying depression, and similarly, a small set of

nine features from combined speech and facial modalities is useful

for classifying anxiety. The performance increased to a maximum

AUC of 0.8 and 0.79, respectively.

Speech and facial features selected across experiments (KW

tests on the entire sample and selected features in each leave-one-

speaker-out cross-validation fold) are shown in Table 7. As can

be seen for depression, speech frequency and timing metrics were

found to be discriminative across experiments. Percent pause time

in speaking about fear as well as about secrets is significantly higher

in cases than in controls, while the standard deviation of F0 is

lower. These results are in agreement with the conducted Pearson

correlation analysis that revealed a statistically significant positive

correlation (p = 0.025, r = 0.268) between percent pause time (fear)

and PHQ-9 total scores as well as a negative correlation (p: 0.003,

r: –0.346) between standard deviation of F0 (fear) and PHQ-9 total

scores.

Individuals with a GAD-7 score ≥ 10 reveal a different voice

quality compared to controls expressed by a higher harmonics-

to-noise ratio when speaking about hope, fear and secrets.

Moreover, cases showed reduced movement and facial expression

indicated by smaller lip aperture in the SIT task, slower lip

movements in terms of velocity, acceleration and jerk measures,

in particular while speaking about emotional pain and fear.

In line with these findings, we found a statistically significant

negative correlation between average absolute acceleration of the

lower lip for the fear task and GAD-7 total scores (p: 0.007,

r: –0.320). For the cohort with a suicidal risk ≥ Moderate,

we observed a higher percent pause time while speaking about

fear and hope than for controls. In addition, we detected

reduced movement and facial expression for cases than controls

captured by less eyebrow displacement when asked about anger,

lip opening in the SIT task (p: 0.004, r: –0.332) and lower

maximum downwards velocity of the lower lip when speaking

about fear.

3.2. User feedback

3.2.1. Survey
Forty participants (59%) completed the five-question Likert

scale survey about their experience, shown in Table 3. Frequency

distributions, means, and standard deviations of the responses

are shown in Figure 5. Student t-tests yielded no significant

difference between case and control Likert scale ratings for all

questions, for all conditions, except between suicide risk cases

and controls for question four (p = 0.03), which asks about the

virtual assistant’s appearance and voice. Participants who scored

“Moderate” risk or above on the C-SSRS Screener were more likely

to rate Tina’s visual appearance and voice higher compared to

controls.

TABLE 5 Top 10 text model features with the associated mental state.

Mental
state

Control features Case features

Depression Friends, little, certain, think,

right, this, some, unable,

suffer, across

Homeless, nice, being, paper,

very, NAME, times, following,

poetry, should

Anxiety Right, year, well, family,

theres, friends, best,

depression, far, thought

Lot, anxious, heart, his, mad,

parents, everyone, another,

sensitive, worst

Suicide School, family, money,

having, cry, these, changes,

loss, worry, point

Yeah, very, at, fear, her, one,

whether, still, when, seem

3.2.2. Likes/advantages
The most frequent theme among the things that participants

liked about the dialog agent was a “comfortable experience” (N

= 43, 60%). One user reported: “I am very impressed by the

realism of the experience. It felt almost as if I were talking to

a real human being... the voice was pleasant and felt calming.”

The second-most recurrent theme was “accessibility” (N = 24,

32%). Another respondent stated: “There’s value in screening for

immediate risk when people aren’t available.” The third commonly

occurring theme was “confidentiality” (N = 17, 22.7%), yet another

participant commented: “I felt that I was able to be more open

because it wasn’t a real person; I didn’t feel as though anyone was

judging me.”

3.2.3. Dislikes/disadvantages
Themost common themewas “lack of human likeness” (N = 62,

82.7%). Users felt “awkward with the conversation flow” and were

concerned about the virtual agent’s “ability to understand nuances

in someone’s tone.” The second theme was “perception of lack of

risk intervention” (N = 3, 4%). One participant stated: “If somebody

is in crisis, they wouldn’t be caught in time to keep them safe.”

3.2.4. Improvements
The most frequent theme was “interview flow” (N = 13, 17.3%).

Users felt the pressure to speak for a certain time. A respondent

conveyed: “I felt like I was grasping at straws trying to make

up more things to say.” The second-most occurring theme was

“diversity in prompts” (N = 12, 16%). A user suggested to have

“more specific questions based on responses.” The third common

theme was “different visual” (N = 9, 12%). One respondent

recommended: “have an option on what kind of voice/face to

interact with.” Another user suggested: “it would be helpful to have

an avatar that moved and blinked. It would feel less hollow.”

4. Discussion

In this study, we explored the potential of using an MDS

to collect speech, facial, and semantic text information to aid

in the detection of depression, anxiety, and suicidal risk. Most

participants indicated they honestly shared their feelings with the
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FIGURE 4

ROC curves for text, speech, facial, and the combination of speech and facial features in distinguishing controls from case participants. (A) ROC

curves for PHQ-9 ≥ 10. (B) ROC curves for GAD-7 ≥ 10. (C) ROC curves for C-SSRS ≥ Mod.

virtual agent and found the experience comfortable, highlighting

the potential acceptability of this approach. However, participants

also identified areas for improvement in the conversational agent,

such as the need for more contextually appropriate responses,

indicating that further refinement of this methodology is needed.

While previous work has examined using MDSs with

participants with depression and anxiety (DeVault et al., 2014;

Cummins et al., 2015; Neumann et al., 2020), few studies

have included individuals with an elevated suicide risk, which

pose unique safety concerns. Indeed, some studies avoid any

suicide-related questions and use the PHQ-8 (Kroenke et al., 2009)

rather than the PHQ-9 (Kroenke et al., 2001), which skips the

last question about suicide risk. In this study, participants received

resources such as the 988 Suicide and Crisis Lifeline, and CRCs

observed the interaction live and were able to follow the safety

contingency plan if an acute risk arose. As several participants

noted, there are limits to the degree a system such as this could

immediately intervene. This is a valid concern and is true of

any remote screening or patient monitoring system for suicide

risk. Whether used clinically or in future studies where direct

Frontiers in Psychology 11 frontiersin.org83

https://doi.org/10.3389/fpsyg.2023.1135469
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Cohen et al. 10.3389/fpsyg.2023.1135469

TABLE 6 Evaluation metric scores for all conditions for best performing models.

Condition Features No. of features AUC (95% CI) Brier score

Depression
Speech 15 0.64 (0.51–0.78) 0.22

Text 450 0.54 (0.37–0.70) 0.26

Anxiety

Speech 7 0.53 (0.37–0.69) 0.23

Facial 24 0.57 (0.43–0.71) 0.23

Text 80 0.52 (0.36–0.67) 0.30

Su. Risk

Speech 7 0.56 (0.42–0.70) 0.26

Facial 24 0.62 (0.49–0.76) 0.25

Text 54 0.65 (0.52–0.78) 0.27

Feature fusion (best performing combination)

Depression Speech+Text 15+450 0.64 (0.51–0.78) 0.22

Anxiety All 7+54+80 0.71 (0.59–0.83) 0.22

Su. Risk All 7+24+54 0.73 (0.61–0.85) 0.22

Decision fusion (best performing combination, min. scores)

Depression Speech+Text 15+450 0.70 (0.56–0.84) 0.16

Anxiety All 7+24+80 0.70 (0.56–0.83) 0.20

Su. Risk All 7+24+54 0.76 (0.65–0.87) 0.21

Note that we do not report AUC for the depression classification task with facial features because only one feature remained after feature selection, with the resulting AUC less than chance,

suggesting that facial features are not as useful as other modalities for depression discrimination in this study cohort.

TABLE 7 Intersection of speech and facial features identified as statistically significant between respective cohorts for the entire sample and selected in

every leave-one-speaker-out cross-validation fold.

Mental state Features E�ect sizes Categories

Depression PPT (fear, secrets) 0.99, 0.75 Speech, timing

F0 stdev. (fear) −0.89 Speech, frequency

Anxiety HNR (fear, hope, and secrets) 0.84, 0.78, 0.68 Speech, voice quality

Max. jerk lower lip down (emotional pain) 0.5 Facial, movement

Average speed lower lip (fear) −0.94 Facial, movement

Max. half mouth surface area right (SIT) −0.93 Facial, mouth

Average acc. lower lip (fear) −0.92 Facial, movement

Avg. jerk lower lip (fear) −0.89 Facial, movement

Max. lip aperture (SIT) −0.81 Facial, mouth

Max. mouth surface area (SIT) −0.81 Facial, mouth

Max. jerk lower lip up (fear, emotional pain) −0.62,−0.48 Facial, movement

Max. velocity lower lip up (fear) −0.61 Facial, movement

Abs. max. jerk lower lip (emotional pain) −0.57 Facial, movement

Max. acc. lower lip down (emotional pain) −0.53 Facial, movement

Abs. max. acc. lower lip (emotional pain) −0.48 Facial, movement

Suicide PPT (hope and fear) 0.71, 0.55 Speech, timing

Max. velocity lower lip down (fear) 0.61 Facial, movement

Avg. lip aperture (SIT) −0.77 Facial, mouth

Avg. half mouth surface area right (SIT) −0.57 Facial, mouth

Avg. eyebrow displacement (anger) −0.38 Facial, eyes

The respective interview question or task is shown in parentheses.
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FIGURE 5

Survey distribution.

observation is not possible, safeguards will need to be in place to

address this concern.

During feature analysis, we found many features agreed with

previous clinical mental health ML studies. Our findings for

depression are in line with other work that found a higher PPT

(Cannizzaro et al., 2004; Mundt et al., 2012; Bennabi et al., 2013)

or an increase in total pause time associated with lower total speech

duration (Albuquerque et al., 2021) for individuals with depression,

as well as a correlation between clinical condition and standard

deviation of F0 and PPT (Åsa Nilsonne, 1987). The lower standard

deviations of the F0 for cases with a PHQ-9 ≥ 10 compared to

controls indicate less variation in speech.

In agreement with our findings, previous studies have reported

different voice quality in individuals with anxiety disorder

compared with control participants, measured as harmonics-to-

noise ratio (Murray and Arnott, 1993; Siegman and Boyle, 1993).

The findings, however, show an irregular trend (increase vs.

decrease). Moreover, as suggested by our results, a lower HNR

score in controls seems to be counter-intuitive, as a low HNR is

associated with a higher degree of hoarseness (Yumoto et al., 1982),

which refers to abnormal voice quality (Feierabend and Shahram,

2009). Anxiety may be more intensely manifested in facial features,

as our study suggests that (a) the facial modality performs better

than speech and language features in classifying cases with anxiety

disorder vs. controls and (b) twelve facial features are consistently

selected across experiments compared to only one speech feature.

Our results indicate that adults affected by this disorder show

reduced facial behavior. However, anxiety disorders and especially

facial features on this are understudied (Low et al., 2019), and more

research is needed to investigate multimodal markers of the disease.

As in depression, a higher PPT for individuals with suicidal risk

≥ Moderate has been observed, which was also shown in clinician-

patient interaction (Venek et al., 2015). Regarding the PPT, the

largest effect between cases and controls is found when talking

about hope, as can be seen in Table 7, suggesting individuals at

moderate or high suicidal risk struggle more with this topic. In

addition, decreased facial activity, as evidenced by lower eyebrow

displacement and mouth opening in our study, has been associated

with higher suicide risk in previous research studies (Galatzer-Levy

et al., 2020). Cases show a higher downward, but not upward,

velocity of the lower lip compared to controls, which may be

interpreted as a more abrupt opening of the mouth compared to

controls. However, future investigations are needed to provide a

more thorough understanding of the observed behaviors.

The text features shown in Table 5 are the top 10 case and

control features by weight of linear SVMs fit to the entire dataset

for each condition, and represent a fraction of the total number

of features. A full linguistic analysis is out of scope here, however,

there are some noteworthy observations. First, other studies have

found personal pronouns related to depression and suicide risk

(Chung and Pennebaker, 2007), yet no personal pronouns appear in

Table 5. For depression, the appearance of a name as a case feature

is likely related to the limited number of depression cases in this

study. For anxiety, the word “anxious” appears as a top feature for

cases, while “depression” appears as a control feature. Interestingly,

for suicide, some of the control features could be associated with

stressors or protective factors related to suicide risk, depending on

context. The use of n-grams (contiguous sequence of n nummber

of words) or more advanced NLP techniques, such as word

embeddings (Mikolov et al., 2013; Pennington et al., 2014), could

capture more nuanced aspects of language. In a clinical setting,

tools such as Local Interpretable Model-Agnostic Explanations

(LIME; Ribeiro et al., 2016) could improve the interpretability of

text features by considering their impact per prediction, as opposed

to globally, and displaying the features within the context they were

used.

For the classification tasks, we found that the combination of

modalities typically improvedmodel performance for all tasks. This

is not altogether surprising as one might expect more information

to help classification performance. However, an exception to this
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was observed for the depression classification task with facial

features, which was not run due to the low number of significant

features. It is likely that facial features would improve model

performance with a larger, more balanced sample.

It is also worth noting that not all our single-modality

models performed above the chance level, with five out of

eight delivering near-chance results. We elected to report these

lower-performing models as they are are also informative and

contribute to a comprehensive understanding of the dataset and

the performance characteristics of the different modalities. This

approach underscores the importance of having a sufficient number

of significant features for reliable classification performance.

Text features performed the best when identifying suicide risk

and performed with near chance levels for the identification of

depression and anxiety. The interview questions of the MHSAFE

interview (hopes, secrets, anger, fear, and emotional pain) were

originally developed to screen for suicide risk (Pestian et al., 2010),

therefore, classification performance for depression and anxiety

may improve if questions more relevant for those conditions are

added. The nature of the interaction may also have influenced the

semantic content shared by participants which may have affected

classifier performance, as some indicated a pressure to speak long

enough to fill the required amount of time.

As the prevalence of mental health conditions increases amidst

greater health system strain, digital approaches to screen and

monitor these conditions are emerging as promising avenues for

research. Our interviews, which on average took <10 min, suggest

the possibility of providing clinically useful information for three

conditions, given that models have been appropriately validated.

However, these are early findings and further research is needed to

confirm and expand upon our results. The results of the interview

could potentially offer a new perspective as clinical decision support

for difficult cases, or direct appropriate resources or referrals to

individuals when a mental health professional is not available.

4.1. Limitations and future directions

Although these findings align with the earlier-discussed studies

with regards to the identification of important features and general

model discriminative ability, some limitations should be noted.

First, studies with small sample sizes face inherent limitations, such

as limited representation of different genders and races, which

may impact generalizability. Additionally, small sample size ML

studies may lead to overly optimistic estimates of classification

performance as it is difficult to eliminate information leakage across

folds when both train and test sets are used for feature selection

(Vabalas et al., 2019; Berisha et al., 2022). Our method to determine

the number of features to include during the classification tasks was

based on the number of features identified as statistically significant

when fit on the entire dataset. Therefore, we acknowledge some

information leakage across the folds, however, the specific features

selected were determined during each CV fold, and as seen in

Table 7, only a fraction of the statistically significant features

from the entire dataset (Figure 3) appear in all of the CV folds.

While this technique may have lead to more reasonable estimates

of model performance, we intend to repeat our analysis with a

larger sample size in future work and ultimately explore more

advanced modeling techniques, including deep learning. Note that

we did not explore deep learning methods in this work, for two

important reasons—the primary one being the need to clearly

interpret the results/performance of the system in order to be

practically applicable in the healthcare setting, and the second being

the limited sample size. Lastly, we tried oversampling techniques

to account for our dataset’s case imbalance, but did not see any

improvements; we will continue to explore these techniques with

a larger dataset.

The supervision of participants by CRCs during this study may

have influenced participant responses. Previous research indicates

that participants interacting with a computer reported lower fear

of self-disclosure and displayed more intense sadness than when

they believed they were interacting with a human (Gratch et al.,

2007; Lucas et al., 2014; Rizzo et al., 2016). In our study, some

participants even pointed out the potential advantage of system

confidentiality, and none expressed negative feedback regarding the

presence of CRCs. The identification of features consistent with

the literature and the discriminative ability of the classifiers suggest

that most participants expressed themselves at least as openly as

in studies involving human interviewers. In future studies, we

aim to remove direct CRC supervision to better reflect real-world

scenarios of remote patient monitoring and to possibly elicit more

authentic user responses. By doing so, we also hope to facilitate

the collection of larger datasets, crucial for overcoming common

machine learning challenges such as overfitting, generalizability,

and bias.

Participants indicated several areas of improvement in the user

feedback section that we have implemented and will test in future

studies. First, we have added slight animation of the virtual agent

with the aim of increasing human likeness. To improve the flow of

the interview and aid in prompting participants, we have reduced

the minimum amount of time required for each response to 30

s and included nudges specific to each question of the MHSAFE

interview.

5. Conclusions

This study found that a multimodal dialog system (MDS) is

a feasible, scalable, and interpretable solution for remote patient

monitoring (RPM) in real-world clinical depression, anxiety and

suicidal populations. A novelty of this study is that it investigates

features derived from multiple modalities—speech, language,

and facial behavior—to analyze and characterize three mental

disorders—depression, anxiety, and suicide risk—simultaneously.

An interesting finding to highlight here is that different modalities

were found to be most effective at distinguishing controls from

cases for each disorder considered: speech for depression, facial

for anxiety, and text/language for suicidality. We also found that

a combination of features from different modalities extracted

during a brief, standardized MDS interview generally improved the

discriminative ability of machine learning models for mental state

characterization in all three disorders. Furthermore, both healthy

participants and those affected by a mental disorder indicated

acceptance of the technology. Finally, we presented several lessons

learned from implementation, user experience, feature engineering

and machine learning perspectives for future practitioners.
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Comparison of performance of 
automatic recognizers for stutters 
in speech trained with event or 
interval markers
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of Arts and Humanities, Heinrich Heine University Düsseldorf, Düsseldorf, Germany, 3 Department of 
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Introduction: Automatic recognition of stutters (ARS) from speech recordings can 
facilitate objective assessment and intervention for people who stutter. However, the 
performance of ARS systems may depend on how the speech data are segmented 
and labelled for training and testing. This study compared two segmentation 
methods: event-based, which delimits speech segments by their fluency status, 
and interval-based, which uses fixed-length segments regardless of fluency.

Methods: Machine learning models were trained and evaluated on interval-
based and event-based stuttered speech corpora. The models used acoustic 
and linguistic features extracted from the speech signal and the transcriptions 
generated by a state-of-the-art automatic speech recognition system.

Results: The results showed that event-based segmentation led to better ARS 
performance than interval-based segmentation, as measured by the area under 
the curve (AUC) of the receiver operating characteristic. The results suggest 
differences in the quality and quantity of the data because of segmentation 
method. The inclusion of linguistic features improved the detection of whole-
word repetitions, but not other types of stutters.

Discussion: The findings suggest that event-based segmentation is more suitable 
for ARS than interval-based segmentation, as it preserves the exact boundaries 
and types of stutters. The linguistic features provide useful information for 
separating supra-lexical disfluencies from fluent speech but may not capture 
the acoustic characteristics of stutters. Future work should explore more robust 
and diverse features, as well as larger and more representative datasets, for 
developing effective ARS systems.

KEYWORDS

stuttering, speech pathology, automatic speech recognition, machine learning, 
computational paralinguistics, language diversity, language model, whisper

1 Introduction

Human assessment of stuttering is time consuming and even trained observers give 
variable scores for the same materials (Kully and Boberg, 1988). If automatic recognition of 
stuttering (ARS) met acceptable performance standards, these assessments would save time 
and could standardize score reports. Practical applications other than reducing workload in 
clinics, include ease of inter-clinic comparisons and making voice-controlled online 
applications accessible to people who stutter, PWS (Barrett et al., 2022). Given these desirable 
goals, ARS work began in the late 1990s (Howell et al., 1997a,b). Initial progress was limited 
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because few labs had appropriate training material. Matters improved 
after the release of the first online audio database of stuttered speech, 
the University College London Archive of Stuttered Speech (UCLASS) 
(Howell et al., 2009). UCLASS has time markers indicating where 
stutters start, and end and the types of stutters are coded (an example 
of an ‘event-based’ procedure). Each event-based segment varies in 
duration. Databases that have been established subsequently have 
segmented speech into fixed length intervals (usually 3 s; 3-s) referred 
to here as ‘interval-based’ procedures (Lea et al., 2021; Bayerl et al., 
2022a). They provide labels for each interval (‘fluent’ or ‘stuttered’ or, 
in some cases, ‘fluent’ and the specific type of stutter). Whereas fluent 
intervals are fluent throughout, stuttered intervals with or without 
symptom-type annotations may not be delimited to these intervals 
and, when stutters are less than 3-s long, contain some fluent speech 
and, in some cases, additional stuttered symptoms (Howell et  al., 
1998). Generally speaking, the fact that intervals are made ambiguous 
with respect to fluency designation when a fixed duration is imposed 
onto speech segments, limits overall recognition accuracy of 
ARS. Surprisingly however, no comparison checks have been made 
between interval and event-based procedures to verify or disconfirm 
this prediction.

Additionally, interval-based methods usually report poor 
performance with respect to whole-word repetitions (WWR) (Lea 
et  al., 2021; Bayerl et  al., 2022a). In fact, this might be  a correct 
outcome since there is a wider debate about whether WWR are indeed 
stutters (Howell, 2010) and because repetition of each constituent 
word has all phones and these are in their correct positions (implying 
each word is produced fluently). Whether or not WWR are stutters, it 
would be difficult to separate them from the same words in fluent 
speech for procedures that use short-window, acoustic inputs because 
the segments (events or intervals) may not extend long enough to 
include any repeated words. In summary, recognition of WWRs and 
separation of them from fluent speech may be  improved if ARS 
procedures are trained on intervals long enough to include lexical and 
supra-lexical features (e.g., n-grams for spotting multi-phone 
repetition representing word and phrase repetition).

Identifying stuttering events may be  more appropriate than 
identifying intervals since stuttering events dominate in clinical and 
research reports. For example, Stuttering Severity Index (SSI) 
measures (Riley, 2009) that is partly based on symptoms are always 
reported in research publications whereas reports that use intervals 
are rare (Ingham et al., 1993). Additionally, there seems to be little 
justification as to why a duration of 3-s was chosen as the interval-
length other than saving assessment time [see Ingham et al. (1993) for 
rationale and Howell et al. (1998) for evaluation]. To validate whether 
3-s intervals are the preferred length for best ARS model performance, 
intervals of 2-s and 4-s were also investigated in our study.

The UCLASS database and the Kassel State of Fluency (KSoF) 3-s 
interval dataset (Bayerl et al., 2022a) were used in the investigation. 
UCLASS data were also reformatted into the 3-s interval format 
(intervals of 2-s and 4-s were also computed). UCLASS and KSoF 
interval data were each used to train and test a shallow (Gaussian 
support vector machine) and a deep (multi-layered perceptron neural 
network) machine learning model to establish whether model 
performance was equivalent for the two datasets. The shallow and 
deep learning models were then used to determine how model 
performance was affected by segmentation method for the same 
(UCLASS) data.

We hypothesized that the distribution of speech types (stutters 
and fluent speech) should be  similar across KSoF, and UCLASS, 
interval datasets. Also, models trained using these datasets should 
perform similarly. If these predictions hold, they confirm that 
UCLASS and KSoF interval data are comparable and validate the 
subsequent interval-event comparisons made using UCLASS 
data alone.

Second, performance was compared for models trained on 
interval-based, or event-based, UCLASS data. It was predicted that 
models trained using the event-based format would outperform the 
interval-based models because only the former delimits speech 
extracts exclusively associated with their fluency types. Area under the 
curve for the receiver operating characteristic (AUC-ROC) was used 
as the performance indicator.

Third, the distribution of fluency types for 2-s, 3-s, and 4-s 
intervals and the effects of using these different-length intervals on 
model performance were assessed. It was predicted that using shorter 
interval lengths should lead to a greater proportion of fluent speech 
intervals relative to disfluent intervals.

Fourth, the model inputs for the 3-s interval and event-based 
models were switched to investigate whether the features 
transferred across segmentation formats. Specifically, after 
training a model on features derived from the 3-s subset of 
UCLASS, the model was tested on features derived from the 
event-based subset and vice-versa. By switching the feature inputs, 
this tested whether the parameters learned by one method 
transferred to the other. This is the first time such a method has 
been used to investigate whether a trained ARS model is robust to 
changes in the feature extraction process. A difference was 
hypothesized in model performance due to this switch, but no 
direction was hypothesized.

Finally, we compared models with and without language-based 
features. We  hypothesized that the inclusion of language-based 
features: (i) could lead to better recognition of WWRs, and possibly 
of fluent speech; (ii) longer intervals should perform better than 
shorter intervals because of the increased chance that the language-
based features identify whole-word repetitions; (iii) using interval data 
should improve performance over using event data for these models 
because intervals usually have more scope for including supra-
segmental features. Together these experiments should afford a clear 
and direct comparison of the effects of using the two training-material 
types on model performance.

2 Method

2.1 Datasets

UCLASS data are in British English that includes 249 speakers 
(Howell et  al., 2009) of which, audio from 14 speakers with 
approximately 180 min of valid and labelled speech were used for the 
current study. The KSoF data are in German from 37 speakers with 
approximately 230 min of valid and labelled speech (Bayerl et  al., 
2022a). In both datasets, a hard split was used to keep the speakers in 
the training, validation and test splits distinct. Hard, separate speaker, 
splits are key to evaluating models in the ARS field (Bayerl et al., 
2022c). As such, the UCLASS data were split into nine speakers for 
Training, two speakers for Validation and three speakers for Test. 
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For KSoF, 23, six and eight speakers were assigned to Training, 
Validation and Test, respectively.

2.1.1 The UCLASS dataset
The UCLASS data used has transcriptions at word and syllabic 

levels aligned against the audio recordings. Annotations also separate 
fluent speech, prolongations, part-word repetitions (PWR), WWR 
and blocks. These UCLASS data were segmented at both the event-
based and interval-based levels as described below. The breakdown of 
observations per split varied by segmentation method (Table 1).

2.1.1.1 UCLASS event-based subset
Speech can be annotated at different levels of precision with the 

event-based method. Here, syllables were the defined event. Applying 
the event-based scheme to UCLASS yielded 14,351 unique 
annotations, each of which had a single, valid label.

2.1.1.2 UCLASS interval-based subset
The interval-based format that applies annotations to fixed, 3-s 

intervals of speech was the main focus in comparisons with event-
based methods since this is the only interval length used for ARS to 
date (Lea et al., 2021; Bayerl et al., 2022a). The continuous UCLASS 
speech recordings were split automatically into 3-s intervals and their 
corresponding transcriptions were examined to identify candidate 
intervals and their type. The interval designation scheme used by 
Bayerl et al. (2022a) was applied and generated 3,984 intervals. Of 
these, 3,117 had a single type of stutter or were fluent throughout 
(valid labels) and 867 were dropped which had either multiple 
disfluency types, contained interlocutor speech or had no transcription 
(were silent).

Additionally, interval datasets for 2-s and 4-s were created to 
investigate the effect of interval length. From the 2-s scheme, 5,985 
intervals were extracted. Of these, 3,508 intervals had singular and 
valid labels. The 4-s scheme yielded 2,982 intervals, of which 2,020 
had singular and valid labels. Comparison across the 2-, 3-, and 4-s 
UCLASS interval subsets is made in section 3.2.2.

2.1.2 The KSoF dataset
The KSoF dataset contains 4,601 3-s intervals of speech of which 

2,907 had valid singular labels for fluent speech, prolongation, part-
word repetition (PWR), whole word repetition (WWR), and blocks. 
Here, the data were split into training (N = 1,545), validation (N = 662), 
and test (N = 700) folds which was the split that Schuller et al. (2022) 
used. KSoF also has filler (N = 390), modified speech (N = 1,203), and 

garbage intervals (N = 101). However, since these classes were not 
available in UCLASS and some are specific to Kassel’s stuttering 
treatment, these intervals were dropped to allow cross dataset 
comparisons.1 Any intervals where there was more than one type of 
disfluency within the 3-s interval were dropped in KSoF.

Comparison of the distribution of speech annotations for the 
UCLASS-Event subset and both Interval sets (Table 1) revealed some 
marked differences. Fluent speech accounted for >80% of 
observations in the event subset whereas, the relative frequency of 
fluent observations in both 3-s interval sets were 37 and 53%. Note 
that the UCLASS-Event and UCLASS-Interval sets were obtained 
from the same audio files. The difference in fluency distribution was 
due to the interval method reducing the percentage of fluent 
observations by marking whole intervals with disfluent speech as 
stuttered whereas they often contained some fluent speech. The 
event-based scheme preserved all instances of fluent speech since 
stutter labels delimited the exact extent of the disfluent speech. 
Effectively, the interval method under-samples fluent speech and 
would lead to interval-based schemes over-estimating stuttering 
severity. The absolute and relative frequencies of each type of event 
for the training, validation and test sets are given in a link in 
section 10.

2.2 Feature extraction

Acoustic and linguistic features were extracted to separate stutters 
from fluent speech. Acoustic features were extracted directly from the 
audio signal. The linguistic features were derived from a separate 
speech recognition model’s prediction from the audio signal. Acoustic 
and linguistic feature sets were generated for all the available 
audio data.

2.2.1 Acoustic features
The acoustic features should provide information concerning 

how temporal and spectral components change across 2/3/4-s 
intervals and events. Before acoustic feature extraction was 
performed, all audio data were normalized such that the oscillogram 

1 Since certain classes of speech were dropped from KSoF to allow 

comparison with UCLASS, the number of observations in each split differed 

from that reported in (Schuller et al., 2022).

TABLE 1 Absolute and relative frequencies of the five classes of speech fluency in the UCLASS event, UCLASS 3-s interval and KSoF 3-s interval subsets.

Type UCLASS event UCLASS 3-s interval KSoF 3-s interval

Absolute 
frequency

Relative 
frequency (%)

Absolute 
frequency

Relative 
frequency (%)

Absolute 
frequency

Relative 
frequency (%)

Fluent 11,837 82.48 1,228 37.39 1,538 52.91

Prolongation 396 2.76 383 12.69 346 11.90

PWR 469 3.27 733 24.30 339 11.66

WWR 173 1.20 44 1.46 94 3.23

Block 1,476 10.29 729 24.16 590 20.30

Total 14,351 100.00 3,117 100.00 2,907 100.00
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had maximum and minimum amplitudes in each audio file of +1 dB 
and –1 dB. For the acoustic set, a set of classical acoustic features 
were defined. These were: zero-crossing rate, entropy and 13 Mel 
Frequency Cepstral Coefficients (MFCCs) that were extracted for 
successive 25 ms time-windows (15 ms overlap). Delta derivatives 
were calculated across adjacent windows to represent how the 
features change dynamically across time. Together this resulted in 
32 acoustic features per time-frame (Figure  1). These acoustic 
features are commonly used in the ARS field (Barrett et al., 2022) 
and pick up on both static (Ifeachor and Jervus, 2002; Tyagi and 
Wellekens, 2005) and dynamic features of speech (Fredes 
et al., 2017).

Additionally, a pre-trained deep neural network for representing 
speech was used to further increase the information presented to 
the classification models. Here, we  used wav2vec 2.0 XLSR-53 
(Conneau et al., 2020), as it was trained to represent cross-lingual 
speech representations from the raw waveform. Note, wav2vec 2.0 
XLSR-53 was used for acoustic feature extraction only. For linguistic 
features a different model, Whisper, was used (Section 2.2.2). The 
raw waveforms from the data used in this project were inputted to 
the system, with the resultant tensors of each transformer layer 
model being used to represent latent aspects of the speech in the 
signal. This was combined with the classical acoustic features 
mentioned previously.

The feature matrices were mean-normalized and scaled on the 
training and validation splits. The resulting feature extraction 
process produces many features including 1,024 features from the 
pre-trained network and an additional 32 features from the classic 
acoustic features. The dynamics of a given feature over the time 
course of each interval/event was reduced to a singular observation 

using principal component analysis (Wei, 2019). That is, there was 
one observation (row of features) for each interval/event. As there 
were 3,117 intervals in the 3-s UCLASS dataset, its feature set had 
3,117 rows.

2.2.2 Linguistic features
The linguistic feature set should provide supra-lexical information 

that is not readily captured by acoustic features. Stuttered speech 
contains non-words/syllables that are not included in standard 
language model vocabularies. Also, disfluent syllables/words/phrases 
are likely to be  infrequent in standard text corpora used to train 
language models. Furthermore, the audio records in stuttered speech 
corpora often contain background noise particularly when they are 
collected in clinical settings. For these reasons, the current state-of-
the-art automatic speech recognition model, Whisper, was used 
(Radford et al., 2023b) first because its architecture can decode speech 
without a language model, thus enabling it to transcribe both fluent 
and disfluent speech. Second, it was trained with 680,000 h of audio 
speech from a wide range of datasets which allows it to be robust 
against background noise such as those present in stuttered speech 
audio samples. Finally, its performance on English is reportedly 
similar to professional human transcribers and it outperformed 
another state-of-the-art system Wav2Vec2.0 (Conneau et al., 2020) 
with an improvement of 55% across a range of English datasets.

Whisper comes with multiple pre-trained models. The 
multilingual model of medium size was chosen. The medium model 
has 769 million parameters and is capable of transcribing English and 
German. The medium model performed similarly on English and 
German with a Word Error Rate (WER) of 4.4 and 6.5%, respectively, 
on Fleurs (a multilingual dataset).

FIGURE 1

Pipeline for acoustic feature extraction. Reproduced with permission from Barrett (2024).
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The respective language identity information (English or German) 
was provided when transcribing the two datasets.2 Given that Whisper 
was not established for its ability to transcribe stuttered speech 
including WWRs, we first explored what parameters would encourage 
a faithful transcription of stuttered speech in a set of small-scale 
experiments. We  found that the default temperature parameter 
influenced its ability to transcribe stuttered speech, especially for 
WWRs. A model with a temperature of 0 always selected the candidate 
with the highest probability, and this often failed to generate any 
repeated syllables/words/phrases in our tests. We  therefore 
experimented with raising the temperature parameter to encourage 
the model to generate more diverse transcriptions. In our experiments, 
we generated multiple top-ranked transcription candidates per audio 
sample. We found that stuttered speech samples were only sometimes 
faithfully transcribed as one of the candidates, whilst fluent speech 
samples were transcribed more consistently across transcriptions. 
We therefore opted to generate multiple possible transcriptions per 
audio sample following the procedures outlined in the GitHub 
discussion forum (Radford et al., 2023a). We did this by raising the 
temperature parameter to 0.1 and setting the best of parameter to 5 
which selected from five independent random samples. Each audio 
sample was decoded three times, yielding three sets of transcriptions.

The model’s decoding strategy generated transcription chunks 
(called segments in Whisper) which were similar to phrases. The three 
sets of information returned for each decoded stimulus were: (a) a 
sequential string of orthographic characters (including spaces and 
punctuation symbols) for each chunk; (b) the probability of the 
transcription and the non-speech probability of each decoded chunk; 
and (c) the timestamps of the acoustic signal that corresponded to 
each decoded chunk. Sub-sets of Orthographic, Probabilistic and 
Temporal ARS features were obtained using these respective outputs.

The orthographic features were computed over the entire 
transcription by concatenating the transcriptions from all chunks. 
Three types of orthographic features were computed: Sequential 
lexical n-gram repetition, non-sequential lexical n-gram repetition 
and non-sequential segmental-n-gram repetition. Sequential lexical 
n-gram repetition is the number of space-separated-word n-grams 
which are repeated sequentially. This feature was computed using 
unigrams to capture word/syllable repetitions, e.g., das das Buch “the 
the book,” and an additional feature used bigrams to capture phrase 
repetitions, e.g., das Buch das Buch “the book the book.”

Non-sequential lexical n-gram repetition is similar to sequential 
lexical n-gram repetition, but allows non-sequential repetitions, i.e., 
not immediately following the n-gram in question, For example, das 
Buch nicht das Buch (“the book no the book”). Two features were 
computed using unigrams and bigrams, respectively.

Non-sequential segmental n-gram repetition is, in turn, similar to 
non-sequential lexical n-gram repetition, but applies over characters 
rather than lexical units. This feature is required because the decoded 
lexical units had spaces that were not always correctly delimited such 
that the final instance of prefix repetitions were fragmented. In such 
cases segmental n-grams can tackle this issue. To avoid detecting 

2 Note that we did not rely on Whisper’s ability to automatically identify the 

language from speech because its reported performance is not competitive, 

and it was not an objective of the current study.

repetitions that corresponded to the normal use of repeated syllables/
inflectional morphemes in English and German, the repetitions of 
longer-grams (the length of the orthographic character string minus 
one) were computed first and. if no repetition was found, then the size 
of the character n-gram was successively decreased until trigrams 
were reached. The stopping rule was applied at trigram level to avoid 
picking up syllable/part-word repetitions. The algorithm stopped 
immediately at n-grams>3 when repetition was found.

The durations of all the decoded chunks were computed using the 
timestamps of each chunk. The following summary statistics for 
temporal features were computed over the durations: the sum, max, 
min, mean, median, standard deviation, lower quartile (25%), upper 
quartile (75%), and interquartile range. Two types of probability 
features were computed: the mean of the probability scores of the 
transcription and the non-speech probability scores of all 
decoded chunks.

Each of the above five orthographic features, two probabilistic 
features and nine temporal ARS features had three values, one from 
each of the three separately decoded transcriptions. Five summary 
statistic values (sum, mean, max, min and standard deviations) were 
computed over each of the three values. The final language-based 
feature set consisted of 80 feature values [(5 + 2 + 9) * 5 = 80] per 
audio sample.

As indicated, when applied to continuous speech, event-based 
segmentation delimits speech types exactly and they vary in duration 
whereas interval-based segmentation imposes fixed length durations 
irrespective of the type and extent of speech. Incorporation of 
language features into the interval-based segments occurs directly 
when long intervals are used (2-s, 3-s, and 4-s) where interval-length 
defined the language model’s window. As the best way to provide 
comparability between event-based models and interval procedures 
that included language-based features, extracts of speech preceding 
the event were taken so that events were exactly 2-s, 3-s, or 4-s (as 
required). Two timeframes around an event were used. One where the 
lookback windows always ended at the end of the event defined for this 
interval (unlike what occurs in standard interval data). The other was 
where the event was in the middle of the timeframe. I.e., for a 500 ms 
event with a 3-s lookback, the linguistic features would be derived 
from 1.5-s before the end of the event and 1.5-s after the event. Note, 
the lookback could include other speech classes. Although the acoustic 
features from an event contain orthogonal information pertaining to 
the class of that event, the linguistic features contain information that 
pertains to other classes of speech in some cases. This cross-class 
information was allowed in the current experiments since this is 
allowed in standard interval datasets. Possible effects on the resultant 
models are discussed in section 4.3.

For the interval subsets, the ARS model was run for all interval 
lengths (2-s, 3-s, and 4-s). For the event-based subset, each event 
lasted approximately 450 ms on average (Table 2). Hence, the language 
model would have too short an extract to work with. Consequently, 
look-backs of 2–3- and 4-s were employed so that the ARS model had 
equivalent duration to the interval-lengths they were compared with 
(2-, 3-, and 4-s).

2.2.3 Summary
Thirty-two classic acoustic features were extracted directly from 

the audio signal. Additionally, the pre-trained acoustic model 
yielded 1,024 features. The linguistic procedure provided a further 

94

https://doi.org/10.3389/fpsyg.2024.1155285
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Barrett et al. 10.3389/fpsyg.2024.1155285

Frontiers in Psychology 06 frontiersin.org

80 features. The two sets of features were concatenated, and z-score 
scaled (Obaid et al., 2019). This resulted in 11 feature sets (Figure 2) 
with 1,136 columns and the number of rows equaled the number of 

intervals/events. The feature sets were then split into training, 
validation, and test sets, using the same hard, speaker-independent 
split (Section 2.2).

TABLE 2 Estimated mean, standard deviation and quartiles for the length of an event (in ms), split by fluency classes from UCLASS Event subset.

Class Mean event 
length (ms)

Standard  
deviation (ms)

Lower  
quartile (ms)

Upper  
quartile (ms)

IQR (ms)

Fluent 222 208 102 270 168

Prolongation 521 311 313 660 347

PWR 763 418 467 980 513

WWR 237 155 142 302 160

Block 578 467 201 836 635

FIGURE 2

Flow diagram of feature extraction permutation. The final feature-sets used, the original dataset, segmentation method, interval length and included 
features are given. Reproduced with permission from Barrett (2024).
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2.3 Metrics

Classification reports are available for each model in the links in 
section 10. Here, AUC-ROC was the main metric of comparison. 
This provided an appropriate measure for unbalanced multiclass 
problems (Jeni et  al., 2013) whilst also allowing for simple 
comparisons. While AUC-ROC provides a reasonable abstracted 
statistic of model performance, it can mask how the model performs 
for individual classes. AUC-ROC is used for brevity, but it is 
recommended to inspect the confusion matrices of all models (see 
Supplementary materials) for class-level comparisons.

2.4 Experimental models

Two types of model are reported in this paper: a Gaussian-kernel 
SVM (G-SVM) and a multi-layered perceptron neural network (MLP-
NN). The Gaussian kernel of the SVM used a penalty term C of 1.15 
and gamma varied as a function of the training sets (Equation 1):

 
� �

�
1

n Xvar  
(1)

Where, n is the number of classes (5) and X var  is the variance of 
the training set. Predictions were weighted by the class frequencies 
present in the training set, Equation 2.
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Where ωi is the weight for the ith class, n was the number of classes 
(5), N  was the total number of observations in the training set and Ni 
was the number of observations in the training set for the ith class.

For the MLP-NN, a sequential deep neural network was 
constructed with an input layer, five densely connected hidden layers, 
five drop-out layers and an output layer yielding probabilities for each 

speech class. The features were input to the first layer with an equal 
number of nodes. Then, node outputs were propagated through seven 
densely connected hidden layers, each with a normalization layer with 
10% node drop-out. In each of the hidden layers, the outputs were 
passed through the Rectified Linear Unit activation function (Agarap, 
2018), which returned the original input to the function if the input 
was positive. Finally, outputs from hidden layers were passed through 
the SoftMax activation function to yield the class probabilities for a 
given observation. This architecture yielded 819,205 
trainable parameters.

The model was trained across 15 epochs with a batch size of 32. 
Loss was minimized using cross-categorical entropy, which permitted 
estimation of loss between multi-class probability densities, and was 
optimized with the solver ‘Adam’, a form of stochastic gradient descent 
(Kingma and Ba, 2014).

3 Results

The field of ARS lacks standards for comparing multiclass models 
making cross-model comparisons fallible (Barrett et al., 2022; Sheikh 
et al., 2022). Here, the unweighted AUC-ROC statistic was used as it 
provides a valid metric for model comparisons as it is virtually unaffected 
by skewness in datasets and can weight each class of speech equally (Jeni 
et al., 2013). If a weighted metric was used, it can lead to spuriously high 
performance due to over-learning fluent speech which is the most 
frequent class.

3.1 Distribution for the datasets

3.1.1 Distribution of the 3-s intervals and 
event-based subsets

Before report of the model performance on the UCLASS subsets, 
the differences in overall fluency/disfluency rates between datasets 
were reviewed. Table 3 gives the absolute and relative frequencies of 

TABLE 3 Total and relative frequencies of intervals and events in the KSoF and UCLASS datasets with each datasets ratio of fluent speech to stuttered.

Sub-set Class Absolute frequency Relative  
frequency (%)

Ratio to fluent 
speech

KSoF|3-s interval (N = 2,907) Fluent 1,538 52.91 1

Prolongation 346 11.90 0.22

Part-word repetition 339 11.66 0.22

Whole word repetition 94 3.23 0.06

Block 590 20.30 0.38

UCLASS|3-s interval (N = 3,117) Fluent 1,228 39.47 1

Prolongation 383 12.31 0.31

Part-word repetition 733 23.56 0.60

Whole word repetition 44 1.41 0.04

Block 723 23.24 0.59

UCLASS|Event (N = 14,351) Fluent 11,837 82.48 1

Prolongation 396 2.76 0.03

Part-word repetition 469 3.27 0.04

Whole word repetition 173 1.21 0.01

Block 1,476 10.28 0.12
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each class of speech per dataset. Additionally, the ratio of each class of 
speech relative to fluent speech is given.

When segmentation schemes applied to the same data were 
compared, drastic differences occurred in the relative frequencies of 
each speech class. In UCLASS-Interval, fluent speech accounted for 
less than half the labels whereas fluent speech accounted for over 80% 
of labels in the 3-s Event-based version of UCLASS. A Chi-square test 
for independence confirmed that the two distributions of speech 
classes differed significantly (�

4

2
3031 80 0 001� �. ; .p ). As discussed 

in the introduction, this is due to under-sampling the occurrences of 
fluent intervals. As this paper is approaching stuttering and machine 
learning from a detection standpoint, fluent speech can be thought of 
as an absence of stuttering. When removing fluent speech from the 
distributions we again get a significant difference between UCLASS 
event and 3-s interval subsets, however with an appreciably smaller 
statistic (�

3

2
305 39 0 001� �. ; .p ).

The distribution of stuttering classes for the 3-s interval types was 
compared across the KSoF and UCLASS Interval datasets. There was 
good agreement with respect to relative frequencies of event classes. 
Both estimated fluent speech to be the most frequent class, although the 
proportion in KSoF was higher. The higher relative frequency of fluent 
speech in KSoF was probably due to annotators knowing that a modified 
speech technique was used by participants (Euler et al., 2009). This 
would have led to some intervals which would have been categorized as 
one of the classes of stuttered speech being considered fluent. For 
example, modified KSoF speech allows intervals that are similar to 
prolongations to be designated fluent as Bayerl et al. (2022a) noted. 
Otherwise, the order of stuttering subtype by frequency was usually 
similar across the 3-s interval datasets. However, KSoF had more part-
word repetitions than prolongations whereas the opposite was the case 
with the UCLASS-Interval subset. This was probably because some 
prolongation intervals were classified as modified intervals that reduced 
their incidence in KSoF. A Chi-square test showed that the distributions 
for the two datasets differed significantly across stuttered and fluent 
speech (�

4

2
207 13 0 001� �. ; . )p . Hence, the hypothesis that the 

distribution of both the KSoF and UCLASS interval datasets would 
be homogenous was only partially supported. When fluent speech is 
dropped, this difference is further reduced (�

3

2
98 98 0 001� �. ; .p ). 

However, the difference between the UCLASS-Event and 
UCLASS-3 s-Interval distributions (�

4

2
3031 80� . ) was still larger than 

the difference between the UCLASS-3 s-Interval and KSoF-3 s-Interval 
distributions (�

4

2
207 13� . ). This is explored further in section 4.1.

Unlike the interval subset, where the length of an interval was 
known a priori, the length of events varied. Since the events in the 
current subset were defined by syllable onsets and offsets, the event 
length was expected to be approximately 200 ms for fluent speech and 
500 ms for disfluent speech (Howell, 2010). Table 2 provides further 
support for these estimates. This is the first time that the length of 
stuttered events, split by type, have been reported to our knowledge 
(Figure 3).

3.1.2 Distribution of fluency types in 2-s, 3-s, and 
4-s interval subsets

When UCLASS datasets for different interval-lengths were 
compared, all had relatively small ratios of fluent to disfluent 
speech compared to the UCLASS event dataset apart from whole-
word repetitions. For interval approaches, a high rate of fluent 
speech would be expected when shorter time windows (<3-s) were 
used and a low rate of fluent speech when longer time windows 
(>3-s) were used. The expected trends in the interval length 
permutations were confirmed; the shorter the interval, the greater 
the proportion of fluent speech (Table 4). Prolongations showed 
much the same relative frequency across the subsets while the 
proportion of PWR and blocks increased considerably as interval 
length increased.

3.1.3 Word error rates of the automatic 
transcriptions

As mentioned, the linguistic features were generated from the 
outputs of a pre-trained ASR model. While the performance of this 

FIGURE 3

Gaussian kernel density estimates of the relative frequencies of event lengths split by speech class from the UCLASS Event subset. X-axis gives event 
length in seconds and the Y-axis shows probability. Reproduced with permission from Barrett (2024).
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model is well documented on reference speech corpora (Radford 
et al., 2023b), how the model performs with stuttered speech is not 
known. Here, manual transcripts of the selected UCLASS data were 
compared against automatically generated transcripts from Whisper. 
The same model settings were used as defined in section 2.2.2. 
Whisper’s performance here was evaluated using word-error rate 
(Equation 3).

 
WER

N
�

� �S D I

 
(3)

Where S is the number of substitutions, D is the number of 
deletions, I is the number of insertions and N is the number of 
words in the veridical transcription. In the context of ASR 
transcriptions, substitutions are where the system replaces the 
reference word, for example “lose” with phonetically similar 
hypothesized word, for example “rouse.” Deletions are where a 
reference word is removed completely from the hypothesis I.e., 
the “it” in the reference “has it gone missing” to the hypothesized 
“has gone missing.” Finally, insertions are hypothesized words 
that are completely missing from the reference. As in the 

hypothesis “they wore many masks” from the reference “they 
wore masks.”

Overall, Whisper yielded an average WER of 24.65% across all the 
UCLASS audio files (Table 5). For comparison, Radford et al. (2023b) 
reported an average WER of 12.8% across multiple speech corpuses. 
Stuttered speech presents an almost doubling of WER. This is one of 
the first investigations of how stuttered speech affects WER of state-
of-the-art ASR models. How and why stuttered speech causes such 
decreases in performance remain unclear. While it is beyond the scope 
of the current work, this would be well worth further research.

3.2 Model performance on UCLASS 
datasets

3.2.1 Event subsets

3.2.1.1 Three second lookback
G-SVM and MLP used the principal components of the acoustic 

features, the outputs from a pre-trained deep neural net, along with 
the orthographic features. The ARS model was provided with a 

TABLE 4 Total and relative frequencies of intervals for 2-, 3-, and 4-s UCLASS interval subsets, split by class.

Type 2-s (N  =  3,508) 3-s (N  =  3,117) 4-s (N  =  2,020)

Absolute Relative (%) Absolute Relative (%) Absolute Relative (%)

Fluent 1,532 43.67 1,228 39.40 605 29.95

Prolongation 442 12.60 383 12.29 249 12.33

PWR 644 18.36 733 23.52 422 20.89

WWR 89 2.54 44 1.41 56 2.77

Block 801 22.83 729 23.39 688 34.06

TABLE 5 The word error rate (WER), number of substitutions, deletions, insertions, correct and total words from Whisper (Radford et al., 2023b) split by 
UCLASS file.

ID Substitutions Deletions Insertions Correct 
words

Total words WER (%)

M_0030_16y4m_1 34 9 9 354 406 12.81%

M_0061_16y9m_1 36 30 9 272 347 21.61%

M_0078_16y5m_1 8 18 14 198 238 16.81%

M_0107_07y7m_1 16 29 30 145 220 34.09%

M_0121_11y1m_1 5 29 28 45 107 57.94%

M_0121_15y1m_1 10 26 18 38 92 58.70%

M_0553_10y0m_1 6 22 26 127 181 29.83%

M_0553_11y0m_1 11 14 23 116 164 29.27%

M_1064_47y0m_1 27 90 52 824 993 17.02%

M_1100_28y0m_1 28 88 38 889 1,043 14.77%

M_1101_35y0m_1 36 63 56 470 625 24.80%

M_1103_20y0m_1 35 78 41 555 709 21.72%

M_1104_40y0m_1 28 32 41 602 703 14.37%

M_1105_21y0m_1 63 324 203 765 1,355 43.54%

M_1106_25y0m_1 7 17 16 172 212 18.87%

Total 350 869 604 5,572 7,395 24.65%
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TABLE 8 Classification reports of the G-SVM and MLP-NN tested on the UCLASS 3-s interval subset.

Class Gaussian SVM MLP-NN Observations

Precision Recall F1-score Precision Recall F1-score

Fluent 44.68 9.38 15.50 46.83 26.34 33.71 224

Prolongation 11.37 57.14 18.97 8.63 28.57 13.26 42

Part-word repetition 0.00 0.00 0.00 29.00 24.79 26.73 117

Whole word 

repetition
2.13 20.00 3.84 1.92 10.00 3.23 10

Block 23.81 34.48 28.17 26.98 19.54 22.67 84

Accuracy: 16.04 24.58 480

Unweighted Average 16.40 24.20 13.30 22.67 21.85 19.92 480

Weighted Average 26.21 16.04 14.08 34.61 24.58 27.58 480

maximum of 3-s of audio before the end of the speech event of 
interest. Where there were less than 3 s of speech available (i.e., within 
the first 3-s of the audio recording), the length was set to the longest 
duration available. The G-SVM yielded an average AUC-ROC of 
0.83 in test. The MLP-NN performed less well with an AUC-ROC of 
0.73. (Table 6 has the full classification report).

Given the large imbalance in class frequencies, accuracy should 
not be used as the sole metric for comparison (Barrett et al., 2022). 
How performance of these models compared to their interval-based 
counterparts is reviewed in section 3.3.2.

3.2.1.2 Varying lookback length and window length
Next, 2-s, 3-s, and 4-s lookback lengths were investigated to 

determine any effects they have on ARS trained on events. When the 
length of the window was varied with the window ending at the end of 
the event, there appears to be little effect of varying the duration of the 

lookback on the model’s ability to classify the current event (Table 7). 
However, there was a drop off in performance for the NN-MLP when 
extending the lookback to 4-s (AUC-ROC = 0.69) as opposed to 2-s and 
3- lookbacks (both AUC-ROC = 0.73). Additionally, it appears that 
allowing the linguistic features to represent both the preceding and 
succeeding speech improved performance with respect to 
AUC-ROC. This was the case with the NN-MLP models, where 
performance improved for all window lengths as a result of moving the 
window to include the preceding and succeeding signal.

3.2.2 Interval subsets
As mentioned, the reference interval length was 3-s. The 

G-SVM and MLP models were trained on the 3-s acoustic and 
linguistic features. The G-SVM yielded an AUC-ROC of 0.52 at test 
while the NN-MLP yielded AUC-ROC = 0.54 (Table 8 has the full 
classification report).

TABLE 6 Classification reports of the G-SVM and MLP-NN tested on the UCLASS Event subset.

Class Gaussian SVM MLP-NN Observations

Precision Recall F1-score Precision Recall F1-score

Fluent 92.89 75.30 83.18 82.29 17.06 28.83 1822

Prolongation 4.03 12.82 6.14 8.82 7.69 8.82 39

Part-word repetition 18.60 25.00 21.33 18.52 7.81 10.99 64

Whole word 

repetition
4.17 20.00 6.90 1.56 76.67 3.05 30

Block 48.37 70.18 57.27 51.11 58.55 54.57 275

Accuracy: 71.39 22.56 2,230

Unweighted average 33.61 40.66 34.96 32.26 33.56 21.03 2,230

Weighted average 82.52 71.39 75.83 74.77 22.56 30.36 2,230

TABLE 7 Summary of AUC-ROC scores for each event-based model from the UCLASS data, split by lookback duration (2-, 3-, and 4-s) and context of 
the language-based features.

Context 2-s (N  =  2,230) 3-s (N  =  2,230) 4-s (N  =  2,230)

G-SVM MLP G-SVM MLP G-SVM MLP

Before 0.82 0.73 0.82 0.73 0.82 0.69

Middle 0.82 0.75 0.82 0.74 0.82 0.71

‘Before’ is a lookback of N-seconds before the end of the event. Middle is ± N
2

 seconds around the end of the event.
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The hypothesis that event-based data should yield better 
performance than interval-based data was supported. Performance 
using AUC-ROC improved when models were trained and tested on 
data from event-based segmentation rather than from intervals.

The hypothesis that the smaller the interval length, the better the 
model performance was not supported. Rather the relationship 
between performance and interval length depended on the type of 
model used. For NN-MLP models, a quadratic relationship occurred 
with performance in terms of AUC-ROC peaking when a 3-s interval 
was used (AUC-ROC = 0.54) and dropping off with smaller 
(AUC-ROC = 0.48) and longer interval lengths (AUC-ROC = 0.49). In 
contrast, G-SVM models improved with increased interval length 
(AUC-ROC 2-s = 0.50; 3-s = 0.50; 4-s = 0.54). However, the variation 
across interval lengths for both types of model was minor throughout.

3.2.3 Input switching
To further investigate how event- and interval-based inputs 

influenced how models learned to separate classes of speech, the inputs 
to the trained models were switched. Thus, models trained and 
validated on event-based inputs were tested on interval-based inputs 
and vice-versa. This novel method allowed for investigation of a model’s 
input-invariant properties. The audio data used was the same but the 
method of segmentation differed. Thus, if performance remained 
stable, models should be  able to separate the classes of stuttering 
irrespective of segmentation method. When using a NN-MLP 
architecture, however, switching the input type between intervals and 
events resulted in models performing equally well, regardless of input 
(ROC-AUC = 0.54). A G-SVM, model trained on event inputs yielded 
a greater ROC-AUC (0.57) as compared to the G-SVM trained on 
intervals and tested on events (ROC-AUC = 0.51). Indeed, the model 
trained on events outperformed any model trained and tested on 
intervals (all ROC-AUC in section 3.2.2 < 0.57). This suggests that 
segmentation method is causal to a machine learning model’s learnt 
class boundaries. Additionally, G-SVM models trained on event-based 
data can be used successfully to predict stutters in interval type data.

The hypothesis was made that switching input would yield 
different responses depending on what the models were trained on. 
However, it seems that regardless of how the data were segmented 
during training, if data were used from the other segmentation 
method, learning performance did not transfer. Therefore, deciding 
on segmentation a priori has lasting effects on their future utility for 
ARS. Given that event-based procedures are usually employed by 
speech-language pathologists, SLPs (Riley, 2009), this suggests a 
preference for training models on event-based data.

3.2.4 Effect of linguistic features
As reviewed in the introduction, classification of stutters has 

usually used acoustic features as input. Here, linguistic features were 
also used to help separate supra-lexical disfluencies from fluent speech 
(WWR) as these are reported to be difficult to separate when using 
acoustic features alone. Performance with the linguistic features has 
been reported in 3.1.1 and 3.2.2 for events and intervals, respectively. 
When these features were dropped from the models, using only the 
acoustic features, similar pattern of results were seen; models trained 
on events had AUC-ROCSVM = 0.82; AUC-ROCMLP-NN = 0.74 and these 
outperformed models trained on 3-s intervals (AUC-ROCSVM = 0.54; 
AUC-ROCMLP-NN = 0.55). For full classification report, visit the link in 
section 10. Using an AUC-ROC metric, it is not clear whether the 

linguistic features provided significant benefit to models trained on 
either Event- or Interval-based data. Indeed, the MLP models trained 
on events without the linguistic model features performed minorly 
worse than models with linguistic features, scoring an AUC-ROC of 
0.74 as compared to a maximum of 0.75 on events with a 2-s lookback 
(Table 7). When considering the AUC-ROC, the addition of language-
model features provided limited benefit. However, the changes at the 
class level for precision and recall showed some improvements as a 
result of language features (Figure 4).

Although the linguistic model features did not systematically 
improve performance with respect to AUC-ROC, the original purpose 
was to increase performance with respect to supra-lexical 
classifications (i.e., WWR). When linguistic features were included, 
only the disfluent classes of PWR and WWR showed an increase in 
F1-Score, however the nature of improvement was not the same for 
the two classes. For PWR, the linguistic features improved the models’ 
recall while reducing the precision, while, for WWR, the opposite was 
true. Therefore, a tradeoff emerged between precision and recall, 
depending on whether PWR or WWR are considered. Another 
trade-off emerged but, in the identification of fluent speech. Fluent 
speech followed a similar pattern to PWR, with recall improving 
through inclusion of linguistic features while precision reduced. The 
implications of this trade-off are explored further in section 4.3.

When considering WWR’s alone, events yielded better recall in 
2-s and 3-s lookbacks (Figure 5). When the lookback was increased to 
4-s, however, recall was worse in events than in 4-s intervals. 
Additionally, precision improved in all event-interval comparisons 
except when the linguistic features were input with 2-s of speech 
(Figure 5A).

3.2.5 KSoF interval dataset
The G-SVM yielded an AUC-ROC of 0.55 on the test set. The 

MLP-NN performed similarly with an AUC-ROC of 0.53 (Table 9 for 
the full classification report).

From AUC-ROC, the G-SVM outperformed the MLP-NN.  
However, there were substantial differences with respect to sub-class 
performance. When performance was compared with respect to 
precision, recall and F1-score, the G-SVM defined the classes of 
prolongation and part-word repetition better (Table 9), whereas the 
MLP described fluent speech, whole-word repetition and blocks better 
in most cases.

It was hypothesized that models trained on KSoF interval data and 
models trained on UCLASS interval data would perform differently with 
respect to AUC-ROC. KSoF models yielded AUC-ROC of 0.55 and 0.53 
for the G-SVM and MLP-NN, respectively. UCLASS interval models 
yielded 0.52 for the G-SVM and MLP-NN, respectively. Although the 
deep learning model provided evidence for the hypothesized result, there 
does seem to be some non-negligible differences in performance due to 
the dataset when testing the shallow models.

4 Discussion

4.1 Summary of results

From the shape of the datasets, interval-based methods yielded a 
significantly lower proportion of fluent speech (KSoFFluent = 52.97%; 
UCLASS|IntervalFluent = 39.47%; UCLASS | EventFluent = 82.48%). 
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Due to the limited size of the datasets, it was not possible to 
specify which, if any, stuttering sub-types were over-sampled. The 
frequency of WWR, however, did not seem to alter drastically by 
segmentation approach.

Figure 6 shows the macro-average ROC curves for each model. 
The models trained and tested on both interval datasets performed 
poorly with respect to AUC-ROC. Interval models yielded an average 
macro-AUC-ROC of 0.51. This indicated that these models did not 
perform above chance when classifying stuttered speech. By contrast, 
the models trained and tested on event-based data performed 
reasonably well, with an average macro-AUC-ROC of 0.80.

Models trained on interval data from KSoF and UCLASS showed 
comparable performance. In both cases, the shallow G-SVM 
outperformed the deep-learning model on most metrics. It is 
interesting that the performance on the interval models performed 
similarly in terms of the ARS problem since they used completely 
different datasets collected for different purposes. The UCLASS data 
used here was solely from monologue or conversational speech 
recorded in the clinic. The KSoF dataset contained speech from 
monologues in the clinic but, also PWS reading aloud as well as when 

making phone calls. In KSoF, there were multiple additional sources 
of variance as compared to the UCLASS Interval subset. As 
mentioned, the speaking situations varied but also there were more 
speakers within the KSoF dataset (N = 37) than the subset used from 
UCLASS (N = 14). Additionally, the datasets were in different 
languages, German and English. The similar performance suggests 
that the features extracted for the class separation seem to be language 
independent, at least for those within the Germanic language family. 
The feature set may extract acoustic features that are universal to 
stuttered speech which allows fluent and disfluent speech to 
be separated regardless of the specific language. Future studies should 
extend examination to other language families to better examine the 
universality of our acoustic features.

Comparing the current models that used 3-s KSoF data with 
Schuller et al. (2022) showed that our models performed less well. 
Schuller et al. (2022) reported only unweighted average recall (UAR), 
achieving a 37.6 UAR in test using a set of one hundred principal 
components from a 6,373-feature set. In comparison, using a feature 
set of 1,136 on the KSoF intervals, the G-SVM yielded a UAR 25.47. 
Using the UCLASS intervals, a UAR of 24.20 again with a 

FIGURE 4

Average precision, recall and F1-score for each class of speech. Inputs to the model are split by inclusion (blue) and exclusion (orange) of linguistic 
features. Additionally, the unweighted average of each metric are plotted (F). Along the x-axis of each plot are the metrics precision, recall and 
F1-Score of each class (A. Fluent; B. Prolongation; C. PWR; D. WWR; E. Block) as well as the unweighted average across all classes (F). These are further 
split into models which input both acoustic and language features (blue) and models which input only acoustic features (orange). Here, the effect of 
language features on each class is apparent. Along the y-axis, the precision, recall and F1-Scores are measured. The scores are an average of G-SVM 
and NN-MLP models trained and tested on Event-based inputs with a 2-, 3-, and 4-s lookback. In all stuttering classes, language-based features 
improved recall and reduced precision as compared to their Acoustic-Only counterpart models. Whereas, in fluent speech, the reverse was true, with 
recall diminishing and precision improving as a result of language features. Reproduced with permission from Barrett (2024).
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G-SVM. This suggests that performance can be boosted by using 
further feature dimension reduction techniques. This does not 
invalidate the conclusion that event-based approaches lead to better 
machine learning models since the UAR of the UCLASS event-based 
G-SVM (UAR = 40.66) outperformed Schuller’s reference. Rather, 
models can be further improved by: (a) Supplying a richer feature set 
as demonstrated by Schuller et al. (2022); and (b) Using event-based 
segmentation methods.

The hypothesis that models trained on event-based inputs 
would outperform interval-based inputs was supported. Both 
shallow- and deep-learning models trained on events outperformed 
their interval-based counterparts in terms of AUC-ROC (Tables 7, 
9). Indeed, for all aggregate metrics reported (accuracy, weighted 
and unweighted recall, precision, and F1-Score), the event-based 
UCLASS models outperformed the interval-based models UCLASS 
(Tables 6, 8).

4.2 Changes in performance due to 
segmentation approach

Considering the interval- and event-based segmentation method 
procedures, it was hypothesized that interval-based procedures would 
limit performance of machine learning models applied to the ARS 
problem. This hypothesis was confirmed. Interval-based methods led 
to sub-optimal performances across KSoF and UCLASS datasets 
compared to interval-based methods.

However, the hypothesis that as the interval length was 
shortened the performance would increase was not clearly 
supported. There was some evidence that lengthening the standard 
interval length from 3-s to 4-s was further detrimental to model 
performance. In the current study, the minimum interval-length 
was only reduced to 2-s. As seen in Figure 3, events were closer to 
200 (fluent) and 500 ms (disfluent). It may be that further reductions 

FIGURE 5

Along the x-axis of each plot are the metrics precision, recall and F1-Score of whole-word repetitions. The y-axis indicates the precision, recall and 
F1-Scores. Subplots are split by lookback (A. 2-s; B. 3-s; C. 4-s). The scores are an average of G-SVM and NN-MLP models trained and tested on Event- 
and Interval-based data. Sub-plots are separated by the lookback length given at the top. For Intervals, this is simply the length of the interval. For 
events, the lookback is the period of time before the end of an event that the linguistic features are derived from. That is, a 3-s lookback means that the 
linguistic features represent the speech 3-s prior to the end of the stuttered event. Reproduced with permission from Barrett (2024).

TABLE 9 Classification report for Gaussian SVM and MLP-NN models on the KSoF test data.

Class Gaussian SVM MLP-NN Observations

Precision Recall F1-score Precision Recall F1-score

Fluent 45.65 23.86 31.13 39.82 33.33 36.29 264

Prolongation 22.83 26.36 24.47 27.78 9.10 13.70 110

Part-word repetition 22.35 28.79 25.12 18.40 22.73 20.34 132

Whole word 

repetition
5.97 22.22 9.41 2.29 2.78 4.24 18

Block 23.23 26.14 24.60 16.13 5.68 8.40 176

Accuracy: 25.57 20.43 700

Unweighted average 24.01 24.47 23.00 20.88 19.72 16.59 700

Weighted average 31.02 25.71 26.84 26.97 20.43 21.90 700

Precision, recall and F1-score were split by each class. Additionally, overall model accuracy, unweighted and weighted average precision, recall and F1-score for each model are reported. 
Finally, the number of observations for each class is reported.
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in interval length are necessary to observe the predicted effects 
on performance.

Additionally, input switching analyses revealed that G-SVM 
models trained on events and tested on intervals outperformed 
G-SVMs trained on intervals and tested on events. This suggests that 
the learnt parameters to identify stuttered speech are somewhat 
preserved when training on events. Indeed, the parameters learned 
from events seem to allow for a superior class separation to intervals 
even when a model trained on events is tested with intervals. As 
mentioned earlier, event-based approaches allow speech to 
be delimited such that each observation contains only one class of 
speech whereas stuttered intervals may contain some, or a majority of, 
fluent speech. As such, the acoustic features extracted from an event 
contain no concomitant information from another class, allowing 
models to learn fine grained differences which are likely to be removed 
when cross-segment orthogonality is disrupted, as in the interval 
method. Finally, the input switching analyses also suggest that models 
trained on events can be successfully used to predict speech fluency 
on intervals.

4.3 Effect of linguistic features

We were not able to find clear evidence that linguistic features 
increased separation of supra-lexical disfluencies from fluent 
speech. Despite the addition of features designed to highlight 

whole-word repetitions, the models overall performed worse when 
provided with these features. It is unclear why this was the case but, 
due to the multi-dimensionality of the problem, by increasing the 
complexity of the inputs to the model, the previously learnt 
patterns in the acoustic data that help separate sub-lexical 
disfluencies may become obscured when linguistic features are 
added. This may explain why linguistic features also reduced the 
F1 score in speech classes apart from WWR. Another possibility 
lies with a stopping parameter used to generate the non-sequential 
segmental n-gram repetition features. The algorithm started with 
a high n-gram size to find repetitions. The n-gram size decreased 
if a repetition was not found, whereas it stopped if a repetition was 
found or if it reached tri-grams to avoid picking up non-lexical 
repetitions (such as part-word repetitions and prolongation). This 
tri-gram parameter might be too small to start with and possibly 
should be increased.

Additionally, linguistic features may have had a detrimental 
effect on model performance due to possible cross-class correlations 
within the features. As mentioned, using event-based segmentation 
the acoustic features represented only the target class. However, the 
linguistic features incorporated information of up to 4 s before the 
end of the event. It is feasible, then, that a non-target stutter that 
precedes the target event influenced the linguistic features. For 
example, in a 4-s utterance ‘the cat sat sat on the mmmat,’ (target 
event the prolonged ‘mmm’), there is also the preceding WWR ‘sat.’ 
The language model would then flag a WWR in the resultant 

FIGURE 6

Unweighted average receiver operating characteristics for each model and segmentation method. The X-axis measures to unweighted average false 
positive rate. The Y-axis measures the unweighted true positive rate. The black dotted line shows where the true positive rate is equal to the false 
positive rate (i.e., chance). The solid lines represent performance by the G-SVM and dashed lines represent the MLP-NN. G-SVM models trained on the 
UCLASS event data yield the largest unweighted AUC-ROC with lookback length inseparable at this level. MLP-NN models on event data performing 
less well. Finally, all models trained on interval-based inputs vary around the TPR  =  FPR line. Reproduced with permission from Barrett (2024).
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features, leading to contradictory inputs to the ARS model. Future 
uses of language model features should avoid this issue by ensuring 
features are relevant to the target event/interval only. Of course, this 
problem is avoided if event segmentation is employed. We consider 
that non-orthogonality in the inputs leads to a major limitation in 
the optimization of ARS modelling. It is proposed that this source 
of non-orthogonality is a significant factor concerning why the 
linguistic features did not improve overall performance.

Linguistic features improved the precision of the disfluent 
classes (including WWR), at the expense of their respective recall. 
This tradeoff suggests that the quality of the linguistic features has 
room for improvement. Our small-scale inspection of the ASR 
transcription suggested that the ASR model would not over-
transcribe WWR, that is, the ASR would not transcribe WWR when 
the signal does not contain WWR (low false positive rate). Future 
work should inspect the precision and recall of WWR in terms of 
the ASR transcription. The tradeoff between the recall of the fluent 
class and the disfluent classes (including WWR) suggests that 
linguistic features might have helped the model to distinguish 
between WWR and fluent speech since they cannot be  easily 
distinguished by acoustic features alone.

When considering the quality of the transcripts generated from 
the ASR system, there is a large error (Table 5). As mentioned, the 
reference WER of the ASR system used is between 5 and 13% 
(Radford et al., 2023b). Here, however, an average WER of 24.65% 
was found with a range of 12.81–58.70%. By far the most frequent 
type of error made by the ASR system was the deletion of spoken 
words, reducing the number of transcribed words as compared the 
number of words actually said by the speaker. Again, deletion here 
is the complete removal of a word present in a reference transcript 
in the ASR’s hypothesized transcript. I.e., the “it” in the reference 
“has it gone missing” to the hypothesized “has gone missing.” Note, 
this is the number of errors by the ASR system and not the number 
of errors (stutters) by the speaker. This may be due to stuttered 
speech being ignored by the ASR system, resulting in a loss of 
words transcribed. However, a dedicated analysis is required to 
confirm this hypothesis which is beyond the scope of the current 
paper. Additionally, deletions might result from the ASR system 
removing repetitions. Despite the current paper’s attempt to reduce 
this through adjustment of the hyper-parameters (See section 
2.2.2). This not only increases the estimated WER of the system but 
also removes information of interest for the current purposes. The 
relatively poor quality of the transcriptions may, therefore, 
contribute to the current linguistic features’ limited effect on model 
performance. This poor performance of ASR on stuttered speech 
was also found in (Thomas et  al., 2023) which examined the 
potential for enhancing automatic cognitive decline detection 
(ACDD) systems through the automatic extraction of disfluency 
features using ASR systems. The accuracy of ACDD systems was 
much lower (78.4%) when trained on automatic disfluency 
annotations than when trained on manual annotations (88.8%).

When model type and segmentation method were combined and 
the overall difference between models with and without linguistic 
features was compared (Figure  5) a consistent trade-off between 
precision and recall emerged. In all stuttering sub-classes, recall 
improved and precision worsened with the inclusion of features from 
a language model whereas in fluent speech, the opposite was true; 
recall worsened and precision improved.

Precision is the ratio of true positive predictions to all positive 
predictions. Hence, in the fluent speech class precision is the 
percentage of correct predictions for fluent speech out of all a 
model’s predictions of fluent speech. Recall is the ratio of true 
positive predictions to all instances of the chosen class. In fluent 
speech, it is the percentage of correctly predicted cases of fluent 
speech out of all fluent observations.

Therefore, it seems as though language features improved the 
representation of stuttering classes at a population level. However, 
the features also lowered the confidence in an individual prediction 
being true. In contrast, for fluent speech, language features resulted 
in an increase in confidence of a prediction being true.

The precision-recall trade-off leads to a decision on the aims of 
the ARS model. In other fields of machine learning which focus on 
symptom detection, such as cancer, a high recall is preferred over 
a high precision since the cost of missing a case of cancer is greater 
than a false positive. In the field of ARS, however, it is not clear 
whether precision is preferred over recall or vice-versa. For Speech 
and Language Pathologists who may review the predictions, an 
emphasis on recall may be optimal since wrong predictions can 
be resolved later.

As Dinkar et al. (2023) noted, a language model’s abstraction 
from audio input to textual output may result in critical loss of the 
information which makes the speech stuttered. State-of-the-art 
language models are often trained using highly fluent materials 
which are unrealistic in real world scenarios and indeed the audio 
used in the current work. A large increase in WER was reported 
here for transcriptions from PWS’s speech. This may explain why 
the linguistic features were of limited benefit to the ARS models. 
The linguistic features often provided inaccurate information about 
the represented speech, reduce class separation. For linguistic 
features to be better utilized for the ARS classification problem, the 
ASR systems themselves need to be improved for stuttered speech. 
Work by Rohanian and Hough (2021) highlighted how the ASR 
outputs can be modified to better capture certain types of disfluent 
inputs. However, this was limited to fillers in Rohanian and Hough 
(2021)work. Further work is required to investigate: (a) which 
stutters are vulnerable to reduction in an ASR’s outputs; and (b) 
how to improve the ASR’s outputs for the aims of 
stuttering detection.

4.4 On event-based approach

The current study presented consistent evidence that the event-
based procedure for segmenting stuttered speech allowed models 
to better classify stuttered and fluent speech than the interval 
procedure. Regardless of whether the models were shallow or deep, 
whether language features were included or not and irrespective of 
length of interval, all event-based models outperformed all interval-
based models in AUC-ROC (Tables 7, 9), amongst other metrics. 
Therefore, it is highly recommended for future research to employ 
event-based data to train ARS models.

Beyond the practical implications, the results also highlight the 
importance of class orthogonality in training. A key difference in 
the features provided to the models by event- and interval-based 
schemes is the level of cross-class orthogonality. Although the 
interval-based scheme resulted in no cross-stutter correlation 
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(no intervals contained more than one class of stutter), there was a 
significant level of fluent-stutter correlation. From the novel 
analyses on event lengths (Section 3.1.1.), a prolonged syllable is on 
average 521 ms. Given a 3-s interval labelled as prolonged, with a 
single prolonged syllable, the expected proportion of audio which 
pertains to the labelled class is only a sixth of the audio used for 
feature extraction. The other five-sixths audio provide information 
of non-target classes (fluent speech, silence, noise, etc.).

However, the event-based procedure is not without its 
limitations. First, event-based approaches require labelling events 
rather than intervals. This is time-consuming, with limited 
opportunity for automation. Syllabic levels of transcription and 
annotation, as used here, often require expertise in linguistics for 
reliable markers within the signal to be  inserted. Also, unlike 
interval-based labelling, label permutation or over−/under-
sampling methods are not feasible.

Second, as shown in 3.1.1, event-based segmentation resulted 
in a large class imbalance. The classes of interest (stutters) were 
dramatically skewed by the predominance of the fluent class. 
Although this is representative of fluency rates in PWS, this does 
lead to possible limits and pitfalls for machine learning approaches 
(Gosain and Sardana, 2017). Given this class imbalance, it is more 
surprising that event-based models outperformed interval-based 
models uniformly, as the latter allow for a more balanced dataset. 
From Table 3, the relative frequency of blocks in the event-based 
segmentation (10.28) was less than half the relative frequency of 
blocks in the 3-s interval-based segmentation (23.24%). Yet, the 
event-based models’ ability to represent blocks outperform the 
interval-based models in every reported metric (Tables 6, 8). Again, 
event-based data provides superior materials for training ARS 
models. However, there may still be detrimental effects of this class 
imbalance. The same 3-s interval models outperformed the event-
based models in certain metrics on prolongations and part-word 
repetitions. Therefore, when using event-based approaches, future 
research may benefit from using methods to counteract this 
class imbalance.

Third, the event-based approach assumes a priori knowledge of 
event onset and offset times. When given an unlabeled, purely 
continuous audio stream, a separate event onset-offset model would 
be required. This contrasts with the interval-based approach where 
the audio stream is automatically ‘chunked’ into the prior set time 
intervals. Also, how one segments events in speech in an online, 
real-time approach is a further limitation. In the interval-based 
scheme this problem is trivial. Buffer the Input by the length of the 
pre-set time window (e.g., 3-s), perform feature extraction and 
reduction over the signal in this timeframe and feed the resultant 
features to the model. As discussed above, this may inherently limit 
the speed of predictions of a model using the interval-based scheme 
since there is a preset buffer, in our case, 3 s.

Overall, the event-based procedure for speech segmentation 
provided the best training materials for ARS models.

4.5 On interval-based approach

There are several aspects of the interval-based approach that 
could be  automated where the event-based one cannot. For 
example, the time duration of an interval is preset. Hence, 

extracting intervals from a file is easy to process whereas, events 
must usually be done manually. As traditional ASR models can 
automate word/phonemic boundary locations in speech, the events 
could feasibly be automated at this stage also. In a similar vein, the 
annotator does not need to be  trained on separating linguistic 
components of speech (i.e., syllables, phonemes, etc.) in the 
interval-based method. This is another stage at which the event-
based procedure is more time consuming and costly. However, an 
interval-based approach cannot ensure that an interval contains 
only one type of stuttering. Therefore, unless using a multi-label 
system, the interval approach is fallible to data loss where the event 
is not. Bayerl et al. (2022b) used a multi-label approach on interval-
based data with positive results. Models were able to incorporate 
this more complex multi-label information without detriment to 
model performance relative to single-label methods as in Lea et al. 
(2021) and Bayerl et al. (2022a). Therefore, if using an interval-
based dataset, a multi-label approach should be used to limit data 
drop-out.

Finally, given the inputs to an interval-based model are 
temporally inflexible, the interval procedure is highly applicable. 
In the event procedure, events would first need to be separated out 
in online speech classification, requiring a phoneme recognizer as 
an initial layer to the model. Whereas an interval method simply 
makes predictions about the interval provided. For example, a 3-s 
interval model would be able to make predictions on any 3-s input 
of audio signal. This does, however, also lead to a critique of the 
interval method in that the classification speed is, at minimum, the 
same lag as the interval speed. It therefore seems incompatible with 
real-time uses where latency is critical.

4.6 On whole word repetition

In both the current paper and a baseline model for kSoF 
(Schuller et al., 2022), WWR was the most difficult class of speech 
to recognize. Unlike blocks or prolongations, for example, WWR 
have no within-word disfluency. Rather, the perceived disfluency 
is only identified at the word or phrase level. For instance, the 
prolongation in “The cat ssssat on the mat” occurs on the “s,” alone. 
Whereas, in the phrase repetition “The cat sat on the on the mat,” 
the disfluency occurs across the two words “on the.” Given that the 
models presented here were mainly based on acoustic features with 
no language model or decoder-encoder components, would 
WWRs be  separable from, for example, fluent speech? It is 
proposed (a) that WWR are not separable at an acoustic level and 
(b) they should not be  included in the same roster as 
sub-segmental disfluencies.

Point (a) is supported by the spread of model predictions when 
an instance of a WWR is input to the model. In Schuller et al.’s 
(2022) model and the 3-s interval MLP-NN model, WWRs were 
predominantly assigned to the ‘Fluent’ speech class. In the 
Gaussian SVM, the ‘Fluent’ class was the second-best predicted 
class for true instances of WWRs after Fillers.

It was hypothesized that the inclusion of language features 
would increase class separation for WWR. There is limited 
evidence for this hypothesis. Recall rate improved across all 
stuttering classes after inclusion of language features. Although 
language features were detrimental to precision, the theoretical 
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motivation remains clear; if WWR cannot be separated from fluent 
speech at an acoustic level, information at the supra-segmental/
lexical level is required. Continued exploration of features such as 
phone and word-level n-grams is suggested with special attention 
to sequence of words. Further investigation with more complex 
language models may help solve this class inseparability.

4.7 Clinical implications

The human assessment of stuttering, a significant bottleneck for 
clinical work, is costly in terms of valuable clinical time and often 
yields variable assessment outcomes (Kully and Boberg, 1988). 
Automated procedures have promised to lighten workloads (Howell 
et al., 1997b; Barrett et al., 2022), but they have yet to be implemented 
in clinical practice.

Despite 25 years of research into automatic stuttering detection 
and labelling, a significant trade-off remains between model 
flexibility and model performance. Models are either highly specific 
to a task within stuttering recognition and yield adequate 
performance for application in a clinic (Mahesha and Vinod, 2016), 
or they are flexible enough to better handle the complex nature of 
stuttering and its classification but do not meet the necessary 
standards for use in clinical settings. For example, Mahesha and 
Vinod (2016) present a Gaussian Mixture model with an approximate 
95% accuracy. However, the model is only able to classify repetitions 
(it is unclear whether this includes PWR, WWR or both), 
prolongations, and interruptions. The models presented here, as well 
as those presented in Lea et  al. (2021) and Mishra et  al. (2021), 
among others (See Barrett et al., 2022 for review), all perform with 
less than 95% accuracy.3 However, some works, such as that by 
Gupta et al. (2020), which achieve more than 95% accuracy, are 
trending towards a level of performance where use in a clinic should 
be considered. It is unclear whether the model was provided with an 
event- or interval-based segmentation scheme.

The study provides compelling evidence that employing event-
based procedures enhances the capacity of machine learning models 
to address the ARS problem in comparison to interval-based 
procedures. This observation is congruent with common human 
assessment practices for stuttering (Riley, 2009), which frequently 
utilize event-based metrics like the percentage of syllables stuttered. 
Models generated through event-based procedures offer predictions 
based on events and seamlessly align with prevailing clinical practices, 
presenting an avenue for not only partially automating stuttering 
severity assessment but also achieving full automation. While the 
current models provide important insights for ARS research, they are 
not suitable for use in clinical scenarios ‘out-of-the-box.’ As mentioned 

3 95% accuracy is chosen as a threshold as we consider that for adequate 

use in the clinic. In that, the probability that a predicted dysfluency is not 

actually present for a given prediction should be at least 0.05 or lower. Further 

work should seek to establish a set of thresholds across accuracy, precision 

and recall – amongst other metrics – both theoretically and empirically to 

guide application to clinical settings. While state-of-the-art performance of 

ARS models can vary freely within research, translation to in-clinic practice 

requires a separate set of baseline standards.

earlier, the performance levels do not meet the necessary standards. 
This is demonstrated by a comparison of the true and predicted cases 
of stuttering in the test (see the Supplementary materials for confusion 
matrices). For example, the 3-s event-based G-SVM with linguistic 
features included (described in section 3.2.1.1) yielded a set of 
predictions (see Supplementary Data Sheet 10) which significantly 
changed the shape of the speech fluency distribution. Event-based 
segmentation types led to an approximate distribution of 83% fluent, 
3% prolongation, 3% PWR, 1% WWR, and 10% block/break. This 
approximates the true distribution in the test set. However, if one were 
to implement automated labelling using the aforementioned model 
(arguably the best presented here), the shape of speech fluency changes 
drastically: 46% fluent, 12% prolongation, 3% PWR, 24% WWR, and 
15% block/break. Clearly, the models presented are for research 
purposes only and not for use in the clinic.

While in-clinic work with ARS models has yet to take place, the 
current work contributes to a growing field providing proof-of-concept 
evidence that ML models could improve workflows in clinical 
assessments of stuttering. The current work strongly supports the use 
of event-based segmentation in the preparation of data for ARS 
models. Additionally, this form of segmentation fits well with 
commonly used stuttering assessments (Riley, 2009). Future work 
should seek to compare how partial and full automation of stuttering 
assessment performs in comparison to the current standard (no 
automation). Research should consider the trade-off between the time 
taken for the assessment and the error imparted due to automation.

5 Conclusion

The current work investigated methods of speech segmentation 
for machine learning classification. The two main methods of speech 
segmentation for stuttering classification have been employed: 
interval- and event-based. While interval-based methods are time and 
cost effective, event-based methods yield far superior models with less 
data. This is particularly pertinent given the lack of openly-available 
stuttering event data currently available (Barrett et al., 2022). Further 
research could make use of the additional interval databases (Lea 
et al., 2021) to provide further power to the current study’s findings.4 
It is therefore highly recommended that future research uses event-
based segmentation methods to build stuttering classifier models. 
Software to add annotations about stuttering events (onsets, offsets, 
and stuttering type) to continuous audio files has been provided in 
Howell and Huckvale (2004).
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Automatic detection of ALS from 
single-trial MEG signals during 
speech tasks: a pilot study
Debadatta Dash 1, Kristin Teplansky 2, Paul Ferrari 3, 
Abbas Babajani-Feremi 4, Clifford S. Calley 1, Daragh Heitzman 5, 
Sara G. Austin 1 and Jun Wang 1,2*
1 Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United 
States, 2 Department of Speech, Language, and Hearing Sciences, University of Texas at Austin, Austin, 
TX, United States, 3 Helen DeVos Children’s Hospital, Corewell Health, Grand Rapids, MI, United States, 
4 Department of Neurology, University of Florida, Gainesville, FL, United States, 5 MDA/ALS Center, 
Texas Neurology, Austin, TX, United States

Amyotrophic lateral sclerosis (ALS) is an idiopathic, fatal, and fast-progressive 
neurodegenerative disease characterized by the degeneration of motor 
neurons. ALS patients often experience an initial misdiagnosis or a diagnostic 
delay due to the current unavailability of an efficient biomarker. Since impaired 
speech is typical in ALS, we hypothesized that functional differences between 
healthy and ALS participants during speech tasks can be explained by cortical 
pattern changes, thereby leading to the identification of a neural biomarker 
for ALS. In this pilot study, we  collected magnetoencephalography (MEG) 
recordings from three early-diagnosed patients with ALS and three healthy 
controls during imagined (covert) and overt speech tasks. First, we computed 
sensor correlations, which showed greater correlations for speakers with ALS 
than healthy controls. Second, we compared the power of the MEG signals in 
canonical bands between the two groups, which showed greater dissimilarity 
in the beta band for ALS participants. Third, we  assessed differences in 
functional connectivity, which showed greater beta band connectivity for ALS 
than healthy controls. Finally, we  performed single-trial classification, which 
resulted in highest performance with beta band features (∼ 98%). These findings 
were consistent across trials, phrases, and participants for both imagined and 
overt speech tasks. Our preliminary results indicate that speech-evoked beta 
oscillations could be a potential neural biomarker for diagnosing ALS. To our 
knowledge, this is the first demonstration of the detection of ALS from single-
trial neural signals.

KEYWORDS

amyotrophic lateral sclerosis, beta oscillation, functional connectivity, 
magnetoencephalography, speech

1 Introduction

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease, causes rapidly 
progressive upper and lower motor neuron degeneration, thereby disrupting the ability of the 
brain to control voluntary motor function leading to dysphagia (disordered swallowing), 
dysarthria (disordered speech), impaired limb function, poor respiratory function, and 
ultimately fatality (Kiernan et al., 2011). The disease is categorized by significant across-patient 
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heterogeneity in onset region, pattern, and rate of progression (Ravits 
et  al., 2007). There is currently no universal standard for early 
detection or for monitoring the progression of ALS (Nzwalo et al., 
2014; Malekzadeh, 2021). Due to the lack of a biomarker, patients with 
ALS are often initially misdiagnosed (up to 45% of the time) and their 
diagnosis can be delayed up to 12 months (Iwasaki et al., 2001).

Regardless of the focality of motor neuron degeneration at clinical 
onset, progressive bulbar motor deterioration is common in most 
patients with ALS, which leads to dysarthria (Green et al., 2013). Thus, 
the identification of a speech-motor biomarker for early detection of 
ALS has been an active area of research recently (An et al., 2018; Vieira 
et al., 2019; Stegmann et al., 2020). The degree to which clinicians can 
identify speech impairments in ALS using perceptual characteristics 
of speech (e.g., listening for deviations in articulation, voice quality, 
resonance, and prosody) is only moderately reliable (Allison et al., 
2017). Early detection and monitoring of the progression of bulbar 
symptoms based on behavioral observations remain limited because 
oral-motor functional changes may not occur until muscle weakness 
progresses to a critical level (DePaul and Brooks, 1993; Green et al., 
2013). However, physiologically, these subtle symptoms could 
be identified earlier by quantifying the neural activity pattern changes 
during speech tasks.

There have been intense investigations for diagnostic and 
prognostic biomarkers in the brain that can provide evidence for ALS 
mechanisms and thus novel targets for therapeutic intervention. 
Studies using functional magnetic resonance imaging (fMRI) have 
shown evidence of increased functional connectivity in ALS patients 
(Konrad et al., 2002; Lulé et al., 2007; Verstraete et al., 2010; Agosta 
et al., 2013). Similar findings have been reported using resting-state 
electroencephalography (EEG) (Iyer et al., 2015; Fraschini et al., 2016; 
Dukic et al., 2021) and magnetoencephalography (MEG) (Proudfoot 
et al., 2018; Sorrentino et al., 2018). Using MEG during a spinal motor 
task, another study demonstrated intensified cortical beta 
desynchronization followed by a delayed rebound for participants 
with ALS (Proudfoot et  al., 2017), which hinted that beta-band 
oscillation may be used as an early distinguishing cortical feature for 
ALS. Such prior neuroimaging studies have provided tremendously 
impactful insights toward a better understanding of the major 
mechanisms of neurodegeneration due to ALS in the attempt to 
identify a neural biomarker. However, most neuroimaging studies 
have focused on group-level connectivity analyses during resting-state 
or spinal motor tasks. How cortical activation is impacted by ALS 
during speech-motor tasks has not been investigated. In addition, it is 
unknown if single-trial detection of ALS from neural signals is 
possible. In theory, single-trial ALS detection could instantly diagnose 
ALS in real-time thereby strengthening medical treatments for 
ALS. Classifying ALS on a single-trial basis involves training a 
machine learning model with multiple samples/trials of a quantifiable 
objective marker that can efficiently predict a sample/trial as ALS or 
healthy after proper training. Single-trial detection using machine 
learning has shown great potential in several neural disorders 
including major depressive disorder (MDD) (Liu et al., 2022), autism 
spectrum disorder (ASD) (Ezabadi and Moradi, 2021), post-traumatic 
stress disorder (PTSD) (Georgopoulos et al., 2010), schizophrenia (Xu 
et al., 2013), amongst other neurologic disorders (Aoe et al., 2019).

In this study, we investigated cortical differences between healthy 
and ALS brain signals during overt (involving bulbar motor 
coordination) and imagined speech (without motor involvement). The 

assumption is that there is a cortical disturbance during motor 
functions in the early stage of ALS which has been shown in previous 
studies (Kew et al., 1993; Mills and Nithi, 1997; Geevasinga et al., 2016; 
Shibuya et al., 2016; Eisen et al., 2017). Here, we used speech-motor 
tasks to trigger the disturbance and then detect the presence of ALS 
using machine learning. To our knowledge, this is the first study to use 
functional neuroimaging data during speech tasks for ALS detection. 
We  examined cortical differences between healthy controls and 
patients with ALS using the following approaches: (1) signal 
correlation across sensors, (2) band power distance estimation for 
individual neural oscillations, (3) functional connectivity analysis, and 
(4) single-trial classification of ALS and healthy samples using 
machine learning. These approaches have been widely used in the 
literature to examine cortical differences between neurotypical 
controls and patients with neural disorders (Bob et al., 2010; Proudfoot 
et al., 2017, 2018; Aoe et al., 2019). Using these approaches, we found 
significant cortical differences between patients with ALS and healthy 
controls, particularly in the beta band MEG activity, which we detected 
at the single-trial level.

2 Materials and methods

2.1 Data collection

This study included data collected from three healthy volunteers 
(1 female; 52 ± 14 years) and three patients with ALS (1 female; 
52 ± 12 years); see Table 1. Informed consent in accordance with the 
ethical committee of the participating institutions was collected from 
all the participants prior to data collection. The patients with ALS were 
in the early to mid-stage of the disease. A certified neurologist 
confirmed the diagnosis of ALS (one bulbar onset, one spinal onset, 
and one had generalized ALS symptoms). All the patients had a mild, 
but noticeable speech impairment (Table 1). Speech intelligibility was 
auditorily evaluated by a speech-language pathologist trainee who is 
not familiar with these patients. A commonly used software, Sentence 
Intelligibility Test (SIT), was used in this procedure. SIT first generated 
a randomized list of sentences with an increasing length from 5 to 15 
words (Yorkston et al., 1996). The listener typed down what they heard 
from the patient’s recording in the SIT software. The software then 
automatically calculated the percentage of correct words (speech 
intelligibility) as well as speaking rate.

MEG (Neuromag TRIUX; MEGIN, LCC) was used to collect the 
neuromagnetic signals from the participants (Figure 1). This device 
has 306 SQUID sensors (204 gradiometers and 102 magnetometers). 
A magnetically shielded room (MSIR) housed the MEG machine to 
restrict external magnetic noise. A digital light processing projector 
was used to present the visual stimuli approximately 90 cm from the 
subjects on a back projection screen. The stimuli were generated by a 
computer running the STIM2 software (Compumedics, Ltd.). Two 
pairs of bipolar EEG electrodes were used to record the 
electrocardiogram (EKG) and the electrooculogram (EOG) signals. A 
custom air-pressure transducer located outside the MSR and 
connected to the analog input of the MEG system was used to measure 
jaw displacement during the tasks. An air-bladder was fixed under the 
subjects’ chin and relayed jaw movement (via pressure on the bladder) 
to the transducer via tubing connected to the air-inlet on the sensor. 
Voice data was recorded using a standard built-in microphone 
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connected to a transducer placed outside the MSR. Both voice and jaw 
movement analog signals were then digitized by feeding into the MEG 
ADC in real-time as separate channels. Five commonly used phrases 
were used as stimuli for the speech tasks: 1. Do you understand me; 2. 
That’s perfect; 3. How are you? Good-bye; 5. I  need help. The task 
phrases came from phrase lists commonly used in alternative 
augmented communication (AAC) devices and were selected to 
be more familiar to the patients and easier to recite than novel speech 
(Beukelman et  al., 1984; Dash et  al., 2020). The experiment was 
designed as a time-locked delayed overt reading task where each trial 
was time-locked to stimulus onset (display of phrases on the screen). 
The phrases were individually presented for 1 s in a pseudorandomized 
order followed by a 1 s fixation cross. The subjects were previously 
instructed to think of speaking the phrase without mouthing during 
the fixation and to overtly articulate the phrase at their normal 
speaking rate and loudness when the fixation disappeared. The 
subjects had 3 s to perform the articulation before the next stimulus 
trial. Each participant completed 100 trials per phrase. To overcome 
potential difficulties verifying the timing of imagined speech (Cooney 
et  al., 2018), we  designed our protocol to collect both speech 
imagination and speech production consecutively, in the same trial 
and under time constraints.

The MEG data were recorded with 4 kHz sampling frequency with 
an online filter of 0.3–1,330 Hz. The data were low pass filtered to 

250 Hz with a 4th order Butterworth filter and resampled to 1 kHz. 
Power line noise (60 Hz) and harmonics were removed with a 2nd 
order infinite impulse response (IIR) notch filter. Only gradiometer 
sensors were used for analysis. From the 204 gradiometer sensors, it 
was observed that four sensors exhibited substantial channel noise 
during the data collection process from various participants. 
Additionally, in certain cases, one or two additional sensors displayed 
irregularities resembling artifacts. Consequently, a total of eight 
sensors were deemed unsuitable and excluded from the analysis. The 
discarded sensors were the same for both ALS and healthy data. 
Therefore, the analysis was conducted using data exclusively from 196 
sensors. Independent component analysis (ICA) was used to remove 
artifacts (cardiac activity, eye blinks, and saccades) from the data. The 
continuous MEG signals were epoched into trials from −0.5 to +4.5 s 
centered at stimulus onset. Covert speech segment was parsed as the 
data from 1 s to 2 s and overt speech segment was parsed as the data 
from 2 s to 4.5 s of each trial. By visually inspecting the data, trials were 
discarded if they contained high-amplitude artifacts or if the 
participant did not comply with the paradigm timing (e.g., the 
participant spoke before being provided the cue to articulate). Jaw 
movement data during the covert speech segment was used to verify 
that the participants were not moving their articulators during the 
covert speech task. Jaw movement data were not used for analysis in 
this study. Following preprocessing, a single participant’s dataset 

TABLE 1 Demographics of ALS patients.

Participant Gender Age (years) Speech intelligibility (%) Speaking rate (words/min)

A1 M 56 71.81 116.83

A2 F 39 100.00 179.45

A3 M 61 92.00 132.53

SI: Speech Intelligibility; SR: Speaking rate; wpm: words per minute.

FIGURE 1

The MEG scanner and a subject with ALS.
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contained only 63 valid trials for a particular phrase. Therefore, to 
ensure an impartial comparison, we exclusively considered the initial 
60 trials per phrase per participant. The preprocessing of the raw MEG 
data was conducted using FieldTrip (Oostenveld et  al., 2011) in 
MATLAB 2021b.

2.2 Data analysis

2.2.1 Sensor correlation
Sensor correlation has been often used to characterize neurological 

disorders (Schindler et al., 2007; Bob et al., 2010). Here, we computed 
Pearson’s correlation between each pair of gradiometer sensor signals. 
Analyses were performed for both speech imagination and speech 
production for each stimulus (phrase) and participant separately. 
Correlation values were computed at the single-trial level and then 
averaged across all trials. For this analysis, we used all the spectral 
information (0.3–250 Hz) in the signals. Statistical 2-sample t-tests 
were used to compare the ALS and healthy groups (N = 15: 3 
participants × 5 phrases) based on number of sensors showing larger 
absolute correlation coefficients (r > 0.5) and correlation density (sum 
of all absolute correlation values over total number of sensor-pairs) for 
both imagined and overt speech separately.

2.2.2 Band power distance
Each neural oscillation is associated with a key functional role in 

the brain and could potentially carry a neural biomarker of a disorder. 
Beta-band power has traditionally been associated with motor 
function in the brain (Fisher et al., 2012; Khanna and Carmena, 2015). 
Thus, for the speech-motor task (overt speech) and the speech-motor 
imagination task (imagined speech), we compared power in this band 
and other canonical bands between the two groups. We computed the 
average power of the neuromagnetic signals for each frequency range 
of interest: delta (1–4 Hz), theta (4–8 Hz), alpha (8–16 Hz), beta 
(16–30 Hz), gamma (30–59 Hz), and high gamma (61–119 Hz). 
We then averaged the band powers (this was completed separately for 
each band) across both trials and participants. The pairwise Euclidian 
distances between healthy and ALS band powers were calculated 
across all sensors for each phrase and after averaging across the 5 
phrases. 1-way analysis of variance (ANOVA) and post-hoc Tukey test 
was conducted with the six bands as independent groups and 5 
phrases as different samples for both imagination and articulation.

2.2.3 Functional connectivity
Functional connectivity is defined as the statistical dependence 

among measured neural signals which explains the temporal 
coincidence of spatially distant neurophysiological events (Friston, 
1994). Functional connectivity analysis has become the conventional 
choice for a better understanding of the in vivo pathology of ALS. In 
this study, we used amplitude envelope correlation (AEC) (O’Neill 
et al., 2015) to measure the functional connectivity for each frequency 
band. For single-trial functional connectivity analysis, we used a 4th 
order Butterworth bandpass filter to first bandpass the gradiometer 
signals from all 196 sensors at each frequency range of interest, 
obtained the amplitude envelopes using Hilbert transform, and then 
computed the pairwise linear correlation of the amplitude envelopes 
across all sensors for each frequency range of interest separately. 
Connectivity was defined as the averaged pair-wise correlation across 

trials. For the individual subject analysis, first, we  temporally 
concatenated all bandpass-filtered single trials, extracted the envelope, 
and then computed the correlations. We performed the AEC-based 
functional connectivity analysis for each phrase separately during 
both imagined and overt speech. A 2-sample one-sided t-test was 
conducted between healthy and ALS samples (3 subjects × 5 phrases—
for each group) of functional connectivity density (sum of AEC values 
over total number of sensor pairs) to check for the hypothesis of 
whether patients with ALS show greater beta band connectivity than 
healthy controls.

2.2.4 Single-trial classification
We used power in the six canonical frequency bands of the MEG 

signals as features to train a linear discriminant analysis (LDA) 
algorithm and classified ALS and healthy data during both speech 
imagination and overt speech. We trained the model separately for 
each frequency range of interest and separately using a wide frequency 
range (0.3–250 Hz) which contained spectral information from all the 
neural oscillations. The choice of the LDA model was inspired by our 
previous work on speech decoding for ALS where the LDA model 
performed equivalently to both support vector machines and 
multilayer perceptron classifiers (Dash et al., 2020) at classifying 5 
phrases. The fitcdiscr function in the Statistical and Machine Learning 
Toolbox of MATLAB was used for classification. The lower sample size 
than the feature dimension motivated for a linear type of discriminant. 
The linear coefficient threshold (‘Delta’) and the amount of 
regularization (‘Gamma’) of the model were tuned as the 
hyperparameters of the model, computed based on the Bayesian 
optimization search using a 10-fold cross-validation on the training 
data. All other parameters were set to the default values of the toolbox. 
We  used a leave one-pair out cross-validation strategy where 
we  trained the model with all trials from 2 healthy and 2 ALS 
participants and tested using the remaining data from 1 healthy and 1 
ALS participant, irrespective of the phrase. This was repeated until 
each healthy-ALS pair was tested. This led to a training data size of 
1,200 trials (4 participants (2 healthy +2 ALS) × 5 phrases × 60 trials) 
and a test data size of 600 trials (2 participants (1 healthy +1 ALS) × 5 
phrases × 60 trials) for each fold. In this manner, the trained decoder 
was tested with completely unseen new participant data.

3 Results

Figure 2 shows the comparative histogram distribution of sensor-
level signal correlations for ALS and healthy controls for each phrase 
(top for imagined speech and bottom for overt speech). A significantly 
larger number of sensors showed greater correlations for ALS 
compared to healthy controls across all phrases during both overt 
(one-sided, 2-sample t-test: t = 3.76, df = 28, p < 0.001) and imagined 
speech (one-sided, 2-sample t-test: t = 6.01, df = 28, p < 0.001). This is 
also evident by the higher variance in the distribution of correlations 
for ALS compared to healthy controls for both imagined and overt 
speech across all phrases. In other words, the majority of the 
correlations were near mean (i.e., zero correlation) for the controls 
compared to ALS. For imagined speech, 95% (Bayesian analysis based 
on Monte Carlo simulations) of the correlation values were in a range 
of −0.5 to 0.5 for healthy participants. The range was between −0.8 to 
0.8 for ALS participants. For overt speech, the correlation range for 
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healthy controls was approximately within the range − 0.8 to 0.8, 
which was greater for the ALS ranging from −1 to 1. A heatmap plot 
of the correlation distribution for each subject is shown in Figure 3 
(Top for imagined speech and middle for overt speech), which depicts 
stronger correlations across the whole brain for participants with ALS 
compared to the healthy controls, especially for the first participant 
with ALS (A1) who also had the lowest speech intelligibility and 
speaking rate scores (Table 1). To interpret these correlation heatmaps, 
correlation density was calculated as the sum of all absolute correlation 

values over total number of sensor-pairs and shown for each 
participant in Figure 3—Bottom panel. Mean correlation density was 
higher for participants with ALS (Overt: 0.428; Imagination: 0.326) 
compared to healthy subjects (Overt: 0.292; Imagination: 0.192) 
averaged across trials, phrases, and participants as well as statistically 
across all phrases and participants (one-sided, 2 sample t-tests: overt: 
t = 6.13, df = 28, p < 0.001; imagined: t = 6.68, df = 28, p < 0.001). As 
expected, a stronger correlation for overt speech was observed 
compared to speech imagination, irrespective of healthy or ALS data.

FIGURE 2

Histogram distribution of all pair-wise sensor correlations of healthy and ALS participants for each phrase during imagined speech (top) and overt 
speech (articulation) (bottom) for patients with ALS and healthy controls, respectively.
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FIGURE 3

Heatmap of pair-wise sensor correlations for each subject on phrase “Do you understand me” for imagination (top) and articulation (middle), and the 
distribution of sensor density across the phrase for all participants (bottom). In the heatmaps, each colorful dot/point represents the correlation 

(Continued)
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Figure 4 shows the mean band-power distances between healthy 
and ALS for each during overt speech task (articulation), where panels 
(A) to (F) are for delta, theta, alpha, beta, gamma, and high gamma 
bands, respectively. For better visualization, the distances are shown 
as heatmaps where the color range from blue to red indicates 
minimum to maximum range of the normalized distance values. Each 
cell in the heatmap represents a pairwise distance between the band 
powers of a healthy sensor (y-axis) and an ALS sensor (x-axis) across 
all the phrases. The distances were significantly greater for the beta 
band powers than the other canonical bands for both imagination 
(1-way ANOVA: F = 208.55, p < 0.001; post-hoc Tukey tests: beta vs. 
rest: p < 0.0019) and articulation (1-way ANOVA: F = 206.59, p < 0.001; 
post-hoc Tukey tests: beta vs. rest: p < 0.0021, see Figure 4—Panel G 
and H). Also, a larger number of pairwise (ALS—healthy) 
dissimilarities were observed in the beta band. These oscillatory 
patterns were similar for each phrase and across all phrases for 
individual and group subject analysis irrespective of speech task, i.e., 
imagination or production. A couple of sensors showed the highest 
distance (solid red lines in the heatmap) which could be because those 
sensors were noisy.

Figure 5 shows the AEC-based beta-band functional connectivity 
for both groups during the production of the phrase ‘Do 
you understand me?’ in the form of heatmaps; showing the correlation 
range of −1 to 1 (from blue [minimum] to red [maximum]). Greater 
beta band connectivity was significant for ALS patients compared to 
healthy subjects (one sided, 2-sample t-test: p < 0.05; see 
Supplementary Figure S3 for distributions of connectivity strengths 
for both patients with ALS and healthy controls). This is notably 
apparent in the first patient (A1), who had more severe bulbar 
impairment than the other two (A2 and A3). Interestingly, similar 
patterns of increased connectivity were also prominent during speech 
imagination (Supplementary Figure S2). A more diverse connectivity 
pattern among the 3 patients with ALS compared to the healthy 
participants can be observed by visualizing the connectivity strengths.

Figure 6 shows the median single-trial classification accuracy for 
the healthy versus ALS group for both speech imagination and overt 
speech tasks. The best performance (median accuracy ~98%) was 
obtained using beta bands and was similar for both speech tasks. The 
performance using each individual frequency range of interest 
(excluding delta) was significantly higher than chance level (50%) and 
was also higher when compared to performance using all frequency 
information (all: 0.3–250 Hz). The distribution of the test performance 
for different folds (i.e., for each pair of ALS-healthy single-trial test 
accuracy) is shown in Supplementary Figure S4. The performance 
accuracy was lowest for the first ALS patient (A1) (mean across 
folds = 65% for overt speech; 83% for imagined speech), likely because 
this participant’s speech symptoms were severe compared to the other 
two participants with ALS. Although median performance was 
highest for beta band, statistically, 1-way ANOVA based comparison 
did not show a significant difference between the performances of 
different bands (F = 1.33, p = 0.05), possibly due to the low sample size. 
For the case of imagined speech, performances obtained with theta 
and gamma band were comparable to beta band performance.

4 Discussion

The evidence of greater inter-sensor correlation for ALS compared 
to healthy participants is a clear distinguishable marker between the 
two groups. This has been previously observed with M/EEG resting 
state (Proudfoot et al., 2019) and motor imagery studies (Yang et al., 
2018). This difference in sensor correlations was apparent across all 
phrases and participants which further illustrates that this feature is 
independent of stimuli and an across-subject observation. A stronger 
correlation during the overt speech task compared to the imagined 
speech task indicated greater cortical activity for producing overt 
speech compared to speech imagination, which was true for both 
healthy and ALS groups and was expected. The signal artifacts 
introduced by movement during the production of speech gestures 
could have also contributed to the higher sensor correlation during 
overt speech production (Dash et al., 2018). Participant (A1) with the 
most severe symptoms (lowest speech intelligibility and speaking rate 
scores: Table 1) showed the strongest correlation (Figure 3) suggesting 
that the proposed approach may be useful as a marker of disease 
progression. We  must note that a larger sample size is needed to 
statistically validate this observation. Further, sensor correlation 
differences could also arise from the differences in the head positions 
inside the scanner. Mapping the sensor data into source space and 
performing the correlations across parcels/voxels would be a better 
way to remove these confounds, as planned for future studies.

Beta band has been traditionally associated with motor function, 
and the observed differences in the beta band power during overt 
speech are consistent with the hypotheses that ALS is associated with 
cortical hyperexcitability, possibly due to the loss of inhibitory 
interneuron (Proudfoot et  al., 2017). Our results reproduced the 
importance of beta band for identifying ALS during a bulbar motor 
task (speech). The prominent beta band differences during the speech 
imagination task (which does not involve motor execution) 
(Supplementary Figure S1) suggest that the beta band during speech 
tasks that involve motor planning could be  a potential neural 
biomarker of ALS. Crucially, the pattern of band-power differences 
was similar for both imagination and overt speech in the beta band, 
possibly indicating a functional similarity between the two speech 
tasks. Clear differences in band power were also observed in the theta 
and the gamma band; however, they were less prominent compared 
to the beta band differences.

This finding of significantly greater beta band connectivity in the 
ALS group compared to healthy controls was expected since beta band 
functional connectivity changes have been previously shown (Verstraete 
et al., 2010; Agosta et al., 2013; Proudfoot et al., 2017) both during 
resting state as well as for spinal motor tasks. An increase in beta band 
functional connectivity has been hypothesized as the result from loss of 
intracortical inhibitory influence supported in vivo by neurophysiology 
findings of accentuated cortical beta-desynchronization during 
movement preparation and diminished post-movement beta-rebound 
(Proudfoot et  al., 2017). This inhibitory influence may lead to 
compensatory mechanisms in early-stage ALS resulting in higher 
functional connectivity. Behaviorally, it may be  explained as a 

between a pair of the 196 gradiometers. In the bottom panel, correlation density was calculated as the sum of all absolute correlation values over total 
number of sensor-pairs across five phrases for each participant.

FIGURE 3 (Continued)
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FIGURE 4

Heatmap of pairwise band-power distances between healthy and ALS sensors for each band during articulation. (A) Delta; (B) Theta; (C) Alpha; (D) Beta; 
(E) Gamma; (F) High Gamma. In the heatmaps, each colorful dot/point represents the bandpower distance between a pair of the 196 gradiometers. The 
bottom panels provide the bandpower distances for all frequency bands in speech imagination (G) and articulation task (H), respectively.
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compensatory mechanism for speech tasks in early-stage ALS due to the 
recruitment of larger neural networks, supported by tongue kinematic 
studies (Green et  al., 2013; Kuruvilla-Dugdale and Mefferd, 2017; 
Teplansky et  al., 2019). Additionally, disruption of efficient motor 
control networks in ALS may lead to higher cognitive control demands 

and attention increases, both of which are known to modulate beta-
band oscillation power and connectivity (Cheyne and Ferrari, 2013; 
Riddle et al., 2021). This study provides the first evidence of increased 
beta band connectivity during a speech-motor task. Interestingly, 
increased connectivity was also prominent during speech imagination 

FIGURE 5

Heatmap of beta band AEC based functional connectivity across all sensors for participants with ALS (top row) and healthy controls (bottom row) 
during the overt speech task.

FIGURE 6

Single-trial ALS detection accuracy using band power [Delta: 1–4  Hz; Theta: 4–8  Hz; Alpha: 8–16  Hz; Beta: 16–30  Hz; Gamma: 30–59  Hz; High 
Gamma: 61–119  Hz; Broadband: 1–119  Hz].
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(Supplementary Figure S2) indicating higher beta band connectivity 
during speech planning, thereby strengthening the role of beta band as 
a neural biomarker for ALS. Similar to the observations with band-
power differences, beta-band functional connectivity was greatest for 
our most severe patient (participant A1), providing additional 
confidence in the specificity of this marker. Accumulating the 
connectivity strength (i.e., correlation values) of all three subjects and 
for all 5 phrases showed greater connectivity strength for the ALS group 
than the control group (Supplementary Figure S2) indicating beta-band 
connectivity to be an across-subject marker.

Evidence of a high single-trial ALS detection accuracy with beta-
band suggests that the neural mechanisms for ALS could be specific 
to spectral content, particularly to the beta band during speech tasks. 
From the previous qualitative analyses (sensor correlation, band 
power difference, and functional connectivity) beta-band was 
expected to perform the best for single-trial classification. The median 
accuracy with beta band was superior when both overt and imagined 
phrases were considered, although theta and gamma band also 
showed comparable performance with beta band for the case of 
imagined phrases. A recent study suggested covert speech emphasizes 
both beta and gamma band (Moon et al., 2022), which may explain 
why gamma band also obtained high accuracies. In short, greater 
performance accuracies during the speech imagination task suggest 
that neural signals derived while imagining speech may be optimal for 
diagnosing early-onset ALS, whereas overt speech may be  more 
appropriate for evaluating the rate of disease progression. Crucially, 
this is the first demonstration of ALS detection from single-trial 
neural signals.

In terms of behavior, individuals with ALS exhibited larger onset 
latency and duration in overt speech tasks when compared to their 
healthy counterparts (2-sample t-tests, t = 3.09, p = 0.002, N = 900 [3 
participants × 5 phrases × 60 trials]; Supplementary Figure S5), as one 
would expect the patients to take longer time to complete the task. It is 
plausible that these behavioral effects manifest in elevated sensor 
correlation and functional connectivity strength for ALS patients as 
opposed to healthy controls. However, there is notable convergence in 
these behaviors at the single-trial level between the two population 
groups, with more than 44% overlap in onset time and over 22% overlap 
in duration. The behavioral difference was mostly driven by the first ALS 
participant (A1) with the lowest speaking rate and speech intelligibility. 
Consequently, relying solely on behavioral indicators for single-trial 
detection proves to be inefficient. In addition, similar cortical differences 
were also observed during the covert speech task, a scenario where these 
behavioral markers are absent. Further, covert speech segments are 
immune to movement artifacts that can be present during overt speech 
and bias the results. Hence, the optimal approach for single-trial ALS 
detection involves analyzing neural activity during covert speech tasks.

Although these results are encouraging, this study suffers from a 
very small sample size and the omission of a non-ALS clinical control 
group. Future studies should include larger cohorts and include 
another patient population with a movement disorder, e.g., Parkinson’s 
disease and other motor neural diseases, in order to reveal the 
specificity of these detection methods. If validated, neuromagnetic 
signals during speech tasks with machine learning would open a new 
direction for assisting the diagnosis of ALS. As bulbar onset of ALS 
represents about 30% of the total and spinal onset accounts for about 
70% (Van Es et al., 2017), we plan to combine neural signals during 
speech and spinal motor tasks (e.g., finger tapping) in future studies. 
A further step is to combine neuromagnetic signals with (speech) 

audio (An et  al., 2018). Finally, individuals with ALS and other 
neurological diseases that show some similar symptoms such as 
Parkinson’s disease will be included for differential analysis.

5 Conclusion

In this study, we  investigated the neuromagnetic pattern 
differences between individuals with ALS and healthy subjects during 
imagined and overt speech tasks, towards identifying a potential 
neural biomarker. Our preliminary results showed a greater number 
of sensors with larger correlations, a higher dissimilarity in the beta 
band power, and a larger beta band connectivity for ALS patients 
compared to healthy controls. Single-trial ALS detection analysis 
resulted in the highest median classification accuracy using beta band 
features, which were significant across trials, phrases, and participants 
for both speech imagination and articulation. The preliminary results 
of this study provide a proof of concept for the use of beta band as a 
potential neural biomarker during speech tasks and machine learning 
for early detection of ALS.
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