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Objective: This study aimed to investigate the diagnostic efficacy of

computed tomography (CT)-guided transthoracic lung core needle biopsy

combined with aspiration biopsy and the clinical value of this combined

routine microbial detection.

Materials and methods: We retrospectively collected the electronic medical

records, CT images, pathology, and other data of 1085 patients with sequential

core needle biopsy and aspiration biopsy of the same lung lesion under

CT guidance in the First Affiliated Hospital of Wenzhou Medical University

from January 2016 to January 2021. GenXpert MTB/RIF detection and BD

BACTECTM Mycobacterium/fungus culture were applied to identifying the

microbiological results of these patients. We then compared the positive

diagnostic rate, false negative rate, and diagnostic sensitivity rate of three

methods including core needle biopsy alone, aspiration biopsy alone, and

both core needle biopsy and aspiration biopsy.

Results: The pathological results of cutting histopathology and aspiration of

cell wax were examined for 1085 patients. The diagnostic rates of cutting

and aspiration pathology were 90.1% (978/1085) and 86.3% (937/1085),

respectively, with no significant difference (P> 0.05). Considering both cutting

and aspiration pathologies, the diagnostic rate was significantly improved,

up to 98% (1063/1085) (P < 0.001). A total of 803 malignant lesions

were finally diagnosed (803/1085, 74.0%). The false negative rate by cutting

pathology was 11.8% (95/803), which was significantly lower than that by

aspiration biopsy [31.1% (250/803), P < 0.001]. Compared with core needle

biopsy alone, the false negative rate of malignant lesions decreased to 5.6%

(45/803) (P < 0.05). Next, the aspirates of the malignant lesions highly

suspected of corresponding infection were cultured. The results showed

that 16 cases (3.1%, 16/511) were infected with Mycobacterium tuberculosis
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complex, Aspergillus niger, and Acinetobacter baumannii, which required

clinical treatment. 803 malignant tumors were excluded and 282 cases of

benign lesions were diagnosed, including 232 cases of infectious lesions

(82.3%, 232/282). The diagnostic rate of Mycobacterium/fungus culture for

infectious lesions by aspiration biopsy (47.4%) was significantly higher than

that by lung core needle biopsy (22.8%; P < 0.001). The diagnostic rate

of aspiration biopsy combined with core needle biopsy was 56% (130/232).

The parallel diagnostic rate of aspirated biopsy for GenXpert detection and

Mycobacterium/fungal culture combined with core needle biopsy was 64.7%

(150/232), which was significantly higher than that of lung core needle biopsy

alone (P < 0.001). Finally, pulmonary tuberculosis was diagnosed in 90 cases

(38.8%) of infectious lesions. Compared with the sensitivity of core needle

biopsy to detect tuberculosis (27.8%, 25/90), the sensitivity of aspirating biopsy

for GenXpert detection and Mycobacterium/fungal culture was significantly

higher, at 70% (63/90) and 56.7% (51/90), respectively. Although there was

no significant difference in the sensitivity of aspirated biopsy for GenXpert

and Mycobacterium/fungal culture to detect pulmonary tuberculosis, the

sensitivity was significantly increased to 83.3% (P < 0.05) when the two tests

were combined. Moreover, when aspirated biopsies were combined with

GenXpert detection, Mycobacterium/fungus culture, and core needle biopsy,

the sensitivity was as high as 90% (81/90).

Conclusion: CT-guided lung aspiration biopsy has a significant supplementary

effect on core needle biopsies, which is indispensable in clinical application.

Additionally, the combination of aspiration biopsy and core needle biopsy

can significantly improve the diagnostic rate of benign and malignant lesions.

Aspiration biopsy showed that pulmonary malignant lesions are complicated

with pulmonary tuberculosis, aspergillus, and other infections. Finally, the

diagnostic ability of lung puncture core needle biopsy and aspiration biopsy

combined with routine microbial detection under CT positioning in the

diagnosis of pulmonary infectious diseases was significantly improved.

KEYWORDS

CT-guided lung biopsy, core needle biopsy, aspiration biopsy, pathology, microbial
diagnosis

Introduction

Lung cancer is the leading cause of cancer-related death
worldwide. The 5-year survival rate of lung cancer across
all stages is only 4–17% (Nasim et al., 2019), which is
mainly due to the high rates of recurrence and metastasis
(He et al., 2020; Liu et al., 2021). Therefore, early diagnosis
and intervention are crucial to successful treatment of lung
cancer. The continuous development of computed tomography
(CT) imaging technology has increased the ability to detect
suspicious lung lesions, which may have otherwise been missed
(Zurstrassen et al., 2020). A large number of the lung lesions
found by CT are caused by infection rather than cancer, and
their rapid progress can lead to systemic multiple organ failure.

Due to the inability to identify the pathogen, treatment is
often delayed, which is equally as life-threatening as the cancer
itself. However, CT cannot accurately determine the benign and
malignant lesions, which instead require the use of small biopsy
or surgical pathology.

The most common methods of small lung biopsy include
endobronchial ultrasound-guided biopsy, image-guided
transthoracic lung biopsy, and video-assisted thoracoscopic
biopsy. The combination of radiography and biopsy has
developed to such an extent that image-guided transthoracic
lung puncture is now considered as a safe and effective
diagnostic method (Lee et al., 2019; Mallow et al., 2019; Ma
et al., 2020; Chen et al., 2021), which has the advantages of
high sensitivity and specificity, and low cost. CT-assisted
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lung puncture mainly includes cutting needle biopsy and
aspiration needle biopsy. The cut specimens are subjected
to histopathological analysis, while the needle aspiration
specimens are commonly used for cytological evaluation.
Studies have shown that the simultaneous use of both methods
under CT guidance has stronger diagnostic ability than the use
of one method alone. Indeed, the sensitivity and specificity are
as high as 92.52% ± 3.14% and 97.98% ± 3.28%, respectively,
while the puncture risk is not significantly increased (Yamagami
et al., 2003; Choi et al., 2013).

Numerous studies have confirmed that core needle biopsy,
also known as core biopsy, is the preferred choice for
the diagnosis of malignant lung lesions. The diagnostic
accuracy of pathological tissue analysis by cutting needle
biopsy is higher than that by aspiration biopsy (McLean
et al., 2018; Zhang et al., 2018; Sattar et al., 2019; Li
et al., 2020; Tsai et al., 2020; Ye et al., 2022), but there
is insufficient basis for identifying the pathogen responsible
for lung infections. Lung aspiration biopsy can directly
connect the aspirated tissue with the sterile culture bottle
through the aspirating needle and attract the tissue through
negative pressure. Compared with cutting into strip tissue,
this technique can avoid the crushing and pollution of lung
tissue and improve the detection rate of pathogens. However,
in aspiration biopsy, the aspirate contains more bloody fluid,
which affects the pathological diagnosis of aspirated cell wax
and increases the false negative rate. Here, we focus on the
diagnostic efficacy of lung cutting combined with aspiration
biopsy, specifically, the clinical utility and potential value of
combined routine microbial detection in clinical application,
with the aim to provide a basis for diagnosis and decision-
making.

Materials and methods

We retrospectively collected the electronic medical records,
CT images, pathology, and other data of 1085 patients who
underwent continuous CT-guided core needle biopsy and
aspiration biopsy of the same lung lesion at our institution
(provincial first-class hospital) from January 2016 to January
2021. GenXpert MTB/RIF detection and BD BACTECTM
Mycobacterium/fungus culture were applied to identifying the
microbiological results of these patients. All included patients
provided informed consent for the study. Before the biopsy, a
thoracic interventional radiologist with 30 years of experience
evaluated the radiological characteristics of the patients’ CT
pulmonary lesions and determined the appropriate puncture
point under CT positioning. The biopsy was completed
by a senior pulmonary physician with extensive experience
in interventional technology using a coaxial biopsy needle.
Cytopathologists and Cytotechnologists were present at all
of the biopsies to assess the adequacy of the samples. The

inclusion criteria and exclusion criteria of this study are shown
in Figure 1.

Biopsy procedure

Before biopsy
For patients with lung lesions screened by CT, the necessity

of lesion biopsy was first preliminarily evaluated. Next, the
hospitalization was arranged, while considering the patient’s
medical history in detail before biopsy. The results of blood
routine examination and blood coagulation, and lung function
were improved, and a puncture needle with appropriate
specifications was selected. The puncture method and path
were designed in advance, avoiding blood vessels, the heart,
and lung bullae.

Biopsy procedure
The patient was placed in the supine, lateral, or prone

position according to the location of the lesion. Usually, 2-
mm thick spiral CT scanning was performed to determine the
puncture focus, and a self-made fence-like metal surface locator
was used to assist in determining the needle entry point of
the chest wall skin. The skin at the puncture position was
disinfected at least twice with an Iodophor cotton swab, and the
diameter of the disinfection range was ≥15 cm. The operator
wore sterile gloves, laid a sterile hole towel, and used a 5-ml
syringe to extract 2% lidocaine for local infiltration anesthesia,
being careful to avoid puncture to the blood vessel. The puncture
needle was a semi-automatic combined biopsy needle (fine core
biopsy needle; Nagano, Gyoda City, Saitama, Japan), with two
specifications of 10 cm and 15 cm in length. The semi-automatic
spring core needle biopsy gun is equipped with a cutting needle
core with 18 gauge or 20 gauge and a 2-cm groove (the length
of the cutting groove can be adjusted to 1 cm according to
the size of the lesion). The corresponding supporting sheath
tube of 17 gauge or 19 gauge was used for aspiration biopsy,
and the supporting sheath tube also has a needle core to assist
in pre needle insertion. First, the matching sheath and sheath
needle core were inserted into the lower edge of the chest wall,
before conducting CT scanning to confirm the angle and needle
distance of the puncture needle before inserting the needle
into the edge of the target lesion. After plain CT scanning to
confirm the correct position of the needle tip, the needle core
was pulled out, the length of the cutting needle core groove
was preset to 1 cm or 2 cm, the needle core of the core needle
biopsy gun was inserted into the sheath, and the spring plug
was pressed to complete the core needle biopsy. If the operator
judged the tissue to be insufficient, the core needle biopsy
needle core was re-inserted for repeated operation without
pulling out the sheath. The biopsy needle was generally used
to puncture 2–3 times to obtain 2–3 tissues. The biopsy prints
tended to be made first, before the cut specimens were placed
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Inclusion criteria: (1) Patients with suspected
malignant tumors in the lung confirmed by CT

imaging; (2) no response to suspicious shadow

or nodule treatment; and (3) had no

contraindications of percutaneous lung puncture

(n = 1085)

Exclusion criteria: (1) Patients with severe
cardiopulmonary insufficiency; (2) suspected vascular

diseases, such as arteriovenous malformations and

aneurysms; (3) pulmonary bullae and cysts close to

the lesion; (4) coagulation dysfunction or

thrombocytopenia with anticoagulant drugs; (5)

patients who were unable to cooperate with the

operator due to being in a critical condition; (6) those

in whom it was not possible to determine the final

diagnosis or who had a lack of clinical follow-up data;

and (7) patients with incomplete clinical data

(n = 2095)

From January 2016 to January 2021, CT-

guided lung biopsy was performed on 3180

patients

FIGURE 1

Inclusion and exclusion flowchart of the study.

in 10% formalin solution for histopathological evaluation. For
specimens suspected to have specific infection, acid fast staining,
silver hexamine staining (MSN), and Schiff periodate (PAS)
staining can be used to perform further investigation. After
the core needle biopsy gun was removed, the end of the tube
sheath was connected with a 10-ml syringe barrel to form
negative pressure suction. The aspirated tissue was placed in
10% formalin solution to prepare cell blocks for cytological
evaluation. For those with clinical indications of pathogen
infection and high suspicion of corresponding infection, the
pulmonary physician decided whether to use part of the
aspirates for microbiological examination, such as GenXpert
MTB/RIF detection, BD BACTECTM Mycobacterium/fungal
culture (Becton, Dickinson and Company, USA, and BacT/Alert
aerobic and anaerobic microbial culture (bioMerieux, Inc.,
USA). Cut tissue samples were stained with hematoxylin eosin
(HE) to observe the histomorphology under the microscope
for further immunohistochemical analysis, or were used for
gene testing and formulating individualized treatment plans.
If the cut samples were too small, immunohistochemical
analysis was conducted on paraffin sections of aspirated cells to
determine the subtype or source of cancer. For the lesions with
unsatisfactory materials, repeat CT scanning was conducted to
confirm the position of the needle tip, followed by puncture
and resampling. During the operation, the patients were
closely observed for signs including chest tightness, shortness
of breath, palpitation, hemoptysis, severe chest pain, and
other abnormalities.

After biopsy
After the operation, routine CT scanning was performed

to observe whether there were immediate complications related
to biopsy, such as pneumothorax, intrapulmonary hemorrhage,
and hemoptysis. Patients rested in the examination room for

≥3 h, during which time, their vital signs were closely monitored
and they underwent chest plain film to detect whether there was
delayed pneumothorax within 3 h after surgery. Some cases of
asymptomatic pneumothorax (more stable pneumothorax and
slight blood in the sputum) can be treated conservatively, and
the clinical condition can be closely observed for improvement.
However, when patients present with respiratory distress and
progressive pneumothorax, a thoracic drainage tube should
be placed for treatment. Moreover, in cases with high levels
of hemoptysis, symptomatic treatment should be given with
hemostatic drugs to prevent asphyxia.

Final diagnostic criteria

The final diagnosis was determined by a comprehensive
analysis of the hospitalized patients’ electronic medical record
data and clinical follow-up data. The final determination
of malignant lesions was based on the following: (1) in
patients who underwent surgery, the final diagnosis is surgical
pathology; (2) other non-surgical biopsy pathology considers
malignancy, including CT-guided lung puncture or secondary
lung puncture pathology, which clearly considers malignancy,
and the malignant tumor is confirmed by endobronchial
ultrasound-guided transbronchial needle aspiration (EBUS-
TBNA), transbronchial lung biopsy (TBLB), pleural effusion
cell block, or cervical lymph node metastasis biopsy; and (3)
a typical malignant growth process is observed in the clinic.
Positron emission computed tomography (PET-CT) tumor
imaging considers malignancy, CT image follow-up, progressive
enlargement of primary lesions, and occurrence of metastases,
and can be used to initiate the treatment of malignant tumors.

The final diagnosis of benign lesions was based on the
following criteria, provided that the lesions had no malignant
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basis: (1) the biopsy lesions were confirmed to be benign by
surgery and pathology; (2) the biopsy lesions were confirmed
to have other benign changes determined by non-surgical
biopsy pathology, such as pulmonary tuberculosis, pulmonary
cryptococcosis, pulmonary aspergillosis, and hamartoma; (3)
clinical imaging follow-up after discharge showed that the
diameter of the lesion decreased by ≥20%, the lesion subsided,
the lesion was stable for ≥24 months without special treatment
(Min et al., 2009; Fontaine-Delaruelle et al., 2015; Li et al.,
2020), there were no new solid components or invasive
changes (e.g., short hair prick sign, lesion enlargement, pleural
adhesion); (4) clear findings of microbial pathogens, such
as acid-fast bacteria detected by tissue acid fast staining,
Mycobacterium tuberculosis complex, non-Mycobacterium
tuberculosis, pulmonary Aspergillus, or Cryptococcus cultured
in lung tissue puncture or bronchoscopic alveolar lavage
fluid, and genes of Mycobacterium tuberculosis were detected,
which facilitated the initiation of relevant treatment; and (5)
clear discharge clinical diagnosis should be considered benign.
Considering benign lesions along with outpatient follow-up
records, the follow-up time was generally 24 months.

In conclusion, we excluded from this analysis patients in
whom it was not possible to determine the final diagnosis, or
those without clinical follow-up data.

Data collection and definition of
diagnostic results

The following information was collected from the medical
electronic medical record system and CT images: (1) basic
data, including the patient’s age, sex, smoking history, history
of extrapulmonary malignant tumor, presence of lesion cavity
and type of lesion (the density under the lung window of CT
image is divided into pure ground glass, partial solid, and solid),
and smoking history, including never smoking (no smoking
history), previous smoking (i.e., no smoking for the 3 months
prior to the biopsy), and current smoking (i.e., smoking within
the 3 months prior to the biopsy); (2) biopsy process data,
including the patient’s body position (supine, lateral, or prone),
the size of the biopsy target focus (the longest axial diameter of
the cross section of the focus measured under the lung window),
the lung lobe (left upper lobe, left lower lobe, right upper lobe,
right lower lobe, and middle lobe or interlobular fissure) of the
puncture biopsy, and the puncture depth (distance of the focus
passing through the lung parenchyma along the puncture path);
and (3) biopsy results, including the histopathology of the core
needle biopsy, the pathology of the cell block of the aspiration
biopsy, the corresponding immunohistochemical analysis, the
microbial results, and complications related to biopsy [e.g.,
hemoptysis (excluding hemoptysis caused by primary diseases),
pneumothorax, further placement of thoracic drainage tube, and
other rare and serious complications].

According to the description of the pathological report, the
pathological results of core needle biopsy and aspiration biopsy
under CT positioning were divided into three main categories:
(1) malignant, with malignant tumor cells, including heterocyst
cells showing a tendency toward malignancy; (2) benign, no
obvious malignant findings; and (3) insufficient specimens, such
as only bloody fluid, normal lung tissue, or too few puncture
objects directly indicated in the operation record.

Histopathologically positive infectious diagnosis included
the following: (1) pulmonary tuberculosis, as evidenced
by granulomatous inflammation with caseous necrosis and
surrounding Langhans giant cells, with or without positive
acid fast staining; (2) pulmonary cryptococcosis (Setianingrum
et al., 2019), in which cryptococcal spores or bacteria are
observed, which may manifest as granulomatous inflammation
or pneumonia of multinucleated giant and epithelioid cells,
with positive PAS and hexamine silver staining; (3) pulmonary
aspergillosis, as shown by the Aspergillus filaments or spheroids;
and (4) other pulmonary fungal (Roden and Schuetz, 2017) or
bacterial infections, in which fungal filaments or bacteria can be
observed under the microscope.

Statistical analysis

When analyzing the diagnostic rate of lung puncture
for infectious diseases, if the histopathology only indicates
granulomatous inflammation, organized pneumonia, interstitial
pneumonia, and chronic inflammation, no infectious diagnosis
can be made; thus, such cases were not be included in
the calculation of the positive diagnostic rate of infectious
diseases in this study.

The measurement data are expressed as the
mean ± standard deviation or median (range) according
to whether the data were normally distributed. The count data
are expressed as the rate. The sensitivity or diagnostic rate of
the two methods were compared using chi-square test and
McNemar’s test, and the p-value was calculated. A two-tailed
p < 0.05 was considered to indicate statistical significance. SPSS
software version 22.0 was used to conduct all statistical analyses.

Results

Pathological diagnostic value of core
needle biopsy and aspiration biopsies

This study included 1085 cases who underwent pathological
analysis of cutting histopathology and aspiration of cell block
in parallel (Table 1). The median age of the patients was 63
(19–93) years, and 62.5% were male. The cases comprised 981
solid lesions (90.4%), 94 sub-solid lesions (8.7%), and 10 pure
ground glass density lesions (0.9%). Moreover, there were 331
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biopsy lesions with a diameter ≤20 mm, accounting for 30.5%;
369 cases with a diameter >20 mm and≤40 mm, accounting for
34.0%; and 385 cases with a diameter >40 mm, accounting for
35.5%. We observed cavities in 5.2% (n = 56) of all cases. The
corresponding lung lobes punctured were 22.7% (n = 246) in
the left upper lobe, 19.9% (n = 216) in the left lower lobe, 23.0%
(n = 250) in the right upper lobe, 25.1% (n = 272) in the right
lower lobe, and 9.3% (n = 101) in the middle lobe or interlobular
fissure. The body position distribution of patients during the
operation the supine position in 397 (36.6%), the prone position
in 660 (60.8%), and the lateral position in 28 (2.6%). The median
puncture depth was 15 (0–79) mm. Pneumothorax occurred
in 388 cases (35.8%) after puncture, of which 28 cases (2.6%)
required thoracic tube drainage, while 88 cases (8.1%) had
hemoptysis and recovered after conservative treatment. No rare
or serious complications were found.

Pathological diagnostic rate of core needle
biopsy and aspiration biopsy

Table 2 lists the pathological classification of cut
tissues and aspirated cells, which were mainly divided
into malignant, benign, and insufficient. Of the analyzed
lesions, 708 (65.3%) were malignant, 270 (25.0%) were
benign, and 107 (9.9%) were insufficient specimens. The
diagnostic rate was 90.1% (978/1085). The pathological
diagnosis by aspiration biopsy identified 553 cases of
malignant lesions (51.0%), 384 cases of benign lesions
(35.5%), and 148 cases of insufficient specimens (13.7%),
with a diagnostic rate of 86.3% (937/1085). There was no
significant difference between the pathological diagnosis
rate of cutting and aspiration (P > 0.05). Compared
with the diagnostic rate of cutting or aspiration alone,
when considering the pathology of both, the number of
insufficient specimens decreased to 22 cases, and the diagnostic
rate was significantly improved, up to 98.0% (1063/1085,
P < 0.001).

False negative rate of core needle biopsy and
aspiration biopsy pathology for malignant
lesions

We found no misdiagnosis of malignant tumors in the
pathological dataset used in this study. The histopathology
of core needle biopsy, while 41 cases (15.2%, 41/270)
and 54 cases (50.5%, 54/107) were finally diagnosed as
malignant. The false negative rate of malignant lesions was
11.8% (95/803). Moreover, 107 (27.9%, 107/384) and 143
(96.6%, 143/148) cases were finally diagnosed as malignant,
with a false negative rate of malignant lesions of 31.1%
(250/803). The false negative rate of cut tissue pathology
was significantly lower than that of aspiration (P < 0.001);
however, compared with cutting alone, when considering
cutting histopathology and aspiration cell pathology, the false

negative rate of malignant lesions decreased significantly (5.6%,
45/803; P < 0.05).

Clinical significance of aspiration tissue culture
in malignant lesions

Among the above 803 cases of pulmonaryung malignant
lesions, 511 cases (63.6%) were highly suspected of pathogen
infection due to the relevant pathogen signs and clinical

TABLE 1 General patient information related to biopsy (n = 1085).

Basic information Number of cases (%)

Age (years)

Median (range) 63 (19–93)

Sex

Male 678 (62.5)

Female 407 (37.5)

Smoking history

Never smoke 663 (61.0)

Previous smoking 227 (20.9)

Current smoking 195 (18.0)

Puncture lung lobes

Left upper lobe 246 (22.7)

Right upper lobe 250 (23.0)

Middle lobe or cleft lungs 101 (9.3)

Left lower lobe 216 (19.9)

Right lower lobe 272 (25.1)

Lesion type

Pure ground glass 10 (0.9)

Partial reality 94 (8.7)

Reality 981 (90.4)

Lesion size

≤20 mm 331 (30.5)

20–40 mm 369 (34.0)

>40 mm 385 (35.5)

Puncture depth (mm)

Median (range) 15 (0–79)

Puncture depth

≤10 mm 453 (41.8)

10–30 mm 326 (30.0)

>30 mm 306 (28.2)

Cavity focus 56 (5.2)

Puncture position

Supine 397 (36.6)

Prone 660 (60.8)

Lateral 28 (2.6)

Final diagnosis

Malignant 803 (74.0)

Benign 282 (26.0)

Complication

Pneumothorax 388 (35.8)

Thoracic tube drainage 28 (2.6)

Hemoptysis 88 (8.1)
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TABLE 2 Pathological classification of cutting and aspiration.

Core needle biopsy tissue pathology, n (%) Aspiration biopsy tissue pathology, n (%) Total

Malignant Benign Insufficient specimens

Malignant 503 (46.4) 107 (9.9) 98 (9.0) 708 (65.3)

Benign 18 (1.7) 224 (20.6) 28 (2.6) 270b41 (25.0)

Insufficient specimens 32 (2.9) 53 (4.9) 22 (2.0) 107b54 (9.9)

Total 553 (51.0) 384b107 (35.5) 148b143 (13.7) 1085 (100)

bn n cases were finally diagnosed as malignant, that is, n cases of malignant lesions were missed.

test results, and their aspirates were subjected to microbial
culture. The results of aspirated tissue culture showed that
of the 16 cases (3.1%, 16/511) with primary malignant
lesions of the lung, nine cases were simultaneously infected
with Mycobacterium tuberculosis complex, four cases were
simultaneously infected with Aspergillus niger, and three
cases were simultaneously infected with Acinetobacter
baumannii; clinical intervention and targeted treatment
measures were required in all cases with simultaneous
bacterial infection.

Significance of routine culture of
aspirated tissue in the diagnosis of
benign lesions

The above 282 cases of pathological exclusion of malignant
tumors were analyzed retrospectively. The aspirates were
routinely subjected to GenXpert MTB/RIF detection (Xpert)
and BD BACTECTM Myco/F lytic culture (MFC), with or
without BacT/Alert aerobic and anaerobic microbial culture.

Classification of infectious and non-infectious
benign lesions

The final diagnosis of 282 cases of benign diseases was
divided into two categories. First, there were 232 cases (82.3%,
232/282) of infectious diseases, including 90 cases of pulmonary
tuberculosis, three cases of atypical mycobacterial lung disease,
52 cases of pulmonary fungal infection [35 cases of pulmonary
cryptococcosis, 14 cases of pulmonary aspergillosis (one of
which was complicated with Escherichia coli), one case of
pulmonary marneffei basket fungus infection, one case of
cerdospora infection at the tip of the lung, and one case
of pulmonary filamentous fungus infection], and 29 cases
of bacterial pneumonia. Additionally, there were 58 cases
of pulmonary infection with unknown pathogens; in these
cases, after empirical anti-infective treatment, the CT follow-
up lesions subsided significantly or the clinical symptoms were
relieved, but no pathogen was found. Second, there were 50 cases
of non-infectious lesions (17.7%, 50/282), including 12 cases
of benign tumors (three cases of sclerosing pneumocytoma,

three cases of pulmonary hamartoma, two cases of schwannoma,
two cases of thymoma, one case of pleural solitary fibrous
tumor, one case of inflammatory myofibroblastic tumor),
one case of interstitial pneumonia, two cases of cryptogenic
organic pneumonia, seven cases of pneumoconiosis, and 28
cases of other non-infectious benign lesions (lesions were
stable or reduced at follow-up of ≥1 year). Among the non-
infectious lesions, histopathological diagnosis included three
cases of sclerosing alveolar cell tumor (100%, 3/3), two cases
of pulmonary hamartoma (66.7%, 2/3), two cases of thymoma
(100%, 2/2), one case of interstitial pneumonia (100%, 1/1),
and seven cases of pneumoconiosis pathological changes (100%,
7/7), with one case of suspected organic pneumonia. No specific
cause was found in other clinical examinations, and the final
diagnosis was cryptogenic organic pneumonia (50%, 1/2). The
histopathology of the remaining 34 cases (68%, 34/50) only
suggested inflammatory changes and it was not possible to
make a specific benign-type diagnosis. In non-infectious benign
lesions, aspiration culture was negative, and no signs of infection
were found in the clinical follow up.

Diagnostic rate of cutting pathology, aspiration
biopsy for mycobacterial/fungal culture, and
GenXpert for infectious lesions

The diagnostic rate of core needle biopsy for pulmonary
infectious diseases was 22.8% (53/232), including 25 cases of
pulmonary tuberculosis, 20 cases of pulmonary cryptococcosis,
four cases of pulmonary aspergillosis, three cases of fungi,
and one case of bacteria. The remaining 179 cases (77.2%,
179/232) had no specific infection diagnosis. The diagnostic
rate of Mycobacterium/fungus culture in infectious lesions was
47.4% (110/232). Fifty-one cases of Mycobacterium tuberculosis
complex, three cases of non-Mycobacterium tuberculosis (one
case of abscess Mycobacterium and two cases of intracellular
Mycobacterium), 36 cases of fungi (23 cases of Cryptococcus,
10 cases of Aspergillus, one case of filamentous fungi, one
case of marneffei cyanobacteria, and one case of Cercospora
apicalis), 20 cases of bacteria, and four cases of excluding
contaminated bacteria were cultured. The diagnostic rates
of mycobacterial/fungal culture of cut biopsy and aspiration
biopsy were compared (Table 3), and 33 cases of infectious
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lesions were consistent between the two. The diagnostic
rate of mycobacterial/fungal culture of aspiration biopsy was
significantly better than that of cut biopsy (22.8%, McNemar’s
test, P < 0.001). When combined with parallel diagnosis, the
diagnostic rate reached 56% (130/232). The lung aspirated tissue
was routinely cultured with Xpert and Mycobacterium/fungus.
When either of the two results was positive, the aspirated
biopsy result was considered to be positive for microbial
culture. The positive number of aspirated biopsies for Xpert
combined with Mycobacterium/fungus culture was 134 (57.8%,
134/232), and the positive number of both and core needle
biopsies was 37 (Table 3), which was significantly higher
than the diagnostic rate of core needle biopsies alone (22.8%,
McNemar’s test, P < 0.001). The parallel diagnostic rate of the
three methods was 64.7% (150/232), which was 8.7% higher
than that of Mycobacterium/fungus culture combined with
core needle biopsy, although without statistical significance
(P = 0.058).

Detection rate of BacT/Alert microbial culture
BacT/Alert microbial culture includes BacT/Alert fa

(aerobic microorganism) and Sn (anaerobic bacteria). Fifty-
seven cases (24.6%, 57/232) of pulmonary infectious diseases
were sent for examination. The final diagnoses were 15 cases
of pulmonary tuberculosis, one case of non-tuberculous
Mycobacterium, 10 cases of fungal infection, 13 cases of
bacterial infection, and 18 cases of unspecified pathogens.
BacT/Alert microbial culture was positive in 10 cases (eight
cases of anaerobic bacteria, one case of Legionella, and one
case of Cryptococcus), and the diagnostic rate was only 17.5%
(10/57). The positive diagnostic rate for core needle biopsies
was 12.3% (7/57). The diagnostic rate of core needle biopsy
combined with BacT/Alert microbial culture was 26.3% (15/57),
which was not significantly different to that of core needle biopsy
(P = 0.058). Comparing the results of the BacT/Alert microbial
culture bottle with BD BACTECTM Mycobacterium/fungus
culture bottle (Table 4), only the detection rate of bacterial
culture in the BacT/Alert microbial culture (69.2%) was
higher than that in the Mycobacterium/fungus culture bottle
(38.5%), but the difference was not statistically significant
(P > 0.05).

Sensitivity of core needle biopsy, aspiration for
mycobacterium culture, and Xpert in the
diagnosis of pulmonary tuberculosis

According to the clinical diagnosis and follow-up results,
90 cases (38.8%, 90/232) were finally diagnosed as pulmonary
tuberculosis. According to the histopathology of lung cutting,
25 cases were considered as tuberculosis, and the sensitivity
was 27.8% (25/90) (Table 5). Compared with the sensitivity of
cutting histopathology, the sensitivity of GenXpert MTB/RIF
for aspiration biopsy was 70% (63/90), rifampicin resistance
genes were detected in two cases (2.2%, 2/90), and the sensitivity

TABLE 3 Infectious diagnosis of core needle biopsy and aspiration
biopsy (n = 232).

Aspiration
biopsy

Result Core needle biopsy Total P-value

Positive Negative

MFC Positive 33 77 110 P < 0.001∗

Negative 20 102 122

Total 53 179 232

Xpert+MFC Positive 37 97 134 P < 0.001∗

Negative 16 82 98

Total 53 179 232

Xpert: GeneXpert MTB/RIF, MFC: BD BACTECTM Mycobacterium/fungus culture.
∗McNemar’s test.

TABLE 4 Results of BacT/ALERT culture and BD BACTECTM culture
(n = 57).

Final diagnosis No. of
cases

MFC (%) BacT
ALERT

(%)

Pulmonary tuberculosis 15 7 (46.7) 0

Non-tuberculosis mycobacteria 1 1 (100) 0

Pulmonary fungal infection 10 6 (60) 1 (10)

Bacterial pneumonia 13 5 (38.5) 9 (69.2)

Pathogens not detected 18 – –

Total 57 19 (33.3) 10 (17.5)

BacT/ALERT: BacT/ALERT microbial cultivation, MFC: BD BACTECTM

Mycobacterium/fungus culture.

of Mycobacterium/fungus culture for aspiration biopsy in the
diagnosis of pulmonary tuberculosis was 56.7% (51/90), which
was significantly increased (P < 0.05). GenXpert test and
Mycobacterium/fungus culture for aspiration biopsy was both
positive in 39 cases, and there was no significant difference
in sensitivity (P > 0.05). However, compared with the single
GenXpert MTB/RIF detection or Mycobacterium/fungal culture
for aspiration biopsy, the combined detection identified 75
cases of Mycobacterium tuberculosis, and the sensitivity was
significantly improved by 83.3% (P < 0.05). The sensitivity was
as high as 90% (81/90).

Sensitivity of core needle biopsy and aspiration
for fungal culture in the diagnosis of
pulmonary fungal infection

According to the clinical diagnosis and follow-up results,
52 cases (22.4%, 52/232) were diagnosed as pulmonary
fungal infections. The results of core needle biopsy and
bacterial/fungal culture for aspiration biopsy are shown in
Table 6. The sensitivity of combined detection (86.5%, 45/52)
was significantly higher than that of single core needle biopsy
(51.9%, 27/52; P < 0.001).
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TABLE 5 Diagnosis of pulmonary tuberculosis by core needle biopsy and aspiration biopsy (n = 90).

Core needle biopsy Aspiration biopsy

Xpert MFC Xpert + MFC

Positive Negative Positive Negative Positive Negative

Positive 16 9 15 20 19 6

Negative 47 18 36 19 56 9

Total 63 27 51 39 75 15

Xpert: GeneXpert MTB/RIF, MFC: BD BACTECTM mycobacterium/fungus culture.

Discussion

Transthoracic lung puncture under CT positioning is widely
used in the clinic. Research has shown that the accuracy of
cutting needle and aspiration needle biopsy is high, but the
choice of biopsy method depends on the operator’s operation
experience (VanderLaan, 2016). A recent survey of American
Thoracic Radiology members showed that 85% of radiologists
used cutting needles with or without suction needles for lesion
biopsy (Lee et al., 2017), while there are still differences
in opinion regarding whether to diagnose lung lesions by
combined cutting and aspiration biopsy (Aviram et al., 2007;
Schoellnast et al., 2010; Choi et al., 2013; Coley et al., 2015;
Marchiano et al., 2017). This retrospective analysis showed that
core needle biopsy pathology combined with aspiration biopsy
cell wax pathology can significantly improve the diagnostic rate
of lung puncture lesions under CT localization and reduce the
false negative rate of malignant lesions. The diagnostic rate of
the combination is significantly higher than that of the single
core needle biopsy, indicating that the core needle biopsy and
aspiration biopsy under CT positioning are complementary and
reduce the insufficient rate of samples, which is critical for
accurate diagnosis and effective treatment decisions relating
to lung lesions. Biopsy pathology is the gold standard for
diagnosing lung lesions, and, crucially, may be repeated in cases
with insufficient specimens in which malignant lesions are still
suspected in combination with PET-CT images. However, repeat
biopsy increases CT radiation exposure as well as the inherent

TABLE 6 Diagnosis of pulmonary fungal infection by core needle
biopsy and aspiration biopsy (n = 52).

Core needle biopsy MFC for aspiration biopsy Total

Positive Negative

Positive 18 9 27

Negative 18 7 25

Total 36 16 52

MFC: BD BACTECTM mycobacterium/fungus culture.

risks related to biopsy, such as pneumothorax, focal bleeding,
fever, and chest pain, which increases the medical burden.
Therefore, the combination of core needle biopsy and aspiration
biopsy improves the diagnostic ability of lesions and has greater
clinical benefits.

Studies have shown that core needle biopsy is the first
choice for the diagnosis of malignant lung lesions. The false
negative rate of cutting histopathology for malignant lesions
is significantly lower than that of aspiration pathology. The
analysis of pathological tissue has high accuracy in the diagnosis
of malignant diseases (McLean et al., 2018; Zhang et al., 2018;
Sattar et al., 2019; Li et al., 2020; Tsai et al., 2020; Yang et al.,
2022; Ye et al., 2022), but it is insufficient to clarify the basis of
lung infection. The diagnosis of benign diseases by cutting tissue
is mainly analyzed from histopathology and corresponding
special staining. When the pathological diagnosis of cutting
tissue is non-specific inflammatory changes, it cannot be clearly
diagnosed due to the lack of a pathogen basis. Lung aspiration
biopsy can directly connect the aspirated tissue with the sterile
culture bottle through the suction needle and suck it out through
negative pressure. Compared with cutting tissues into strips,
this method can save energy in the follow-up treatment ring,
avoid crushing and pollution of lung tissue, and improve the
detection rate of pathogens. However, in aspiration biopsy,
due to more bloody fluid in the aspirate, a large number of
red blood cells observed under the cell wax slice microscope
may obscure heterotypic cells, thus increasing the false negative
rate. Experienced doctors will choose to aspirate at different
sites of the focus, but the judgment of operation will still
be affected because the local bleeding usually shows that the
focus is enlarged and the boundary is blurred on CT images.
Additionally, it is easier to obtain necrotic and liquefied tissue
by suction, which is not conducive to pathological analysis,
affects the suction, and causes false negative. We also found
that the false negative rate of malignant lesions was lower
than that of cutting or aspiration alone. Chen et al. (2020)
also believe that the application of two types of biopsies in
the same lesion can effectively reduce false negative diagnosis,
improve the diagnostic efficiency, and maximize the value of
lung puncture. Clinically, most patients underwent lung biopsy
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to determine the nature of the lesion because they either
suspected or could not rule out malignant tumor. Based on
various clinical auxiliary examinations and medical history
analysis, even if the small biopsy pathology does not clearly
indicate malignancy, if the possibility of malignancy is high,
it is still be recommended to strengthen the clinical image
follow-up or consider further diagnosis and treatment. Cutting
combined with aspiration biopsy pathology can maximize the
diagnostic ability of malignant lesions in a single operation,
which optimizes the use of medical resources, reduces false
negative, achieves early diagnosis, early decision-making and
treatment, and improves the survival time of patients.

Immunohistochemical staining analysis is helpful to
clarify the subtypes of lung cancer (particularly poorly
differentiated cancer) and understand the source of cancer.
In clinical application, because cutting can obtain a relatively
complete small tissue, operators prefer to cut lung tissue for
immunohistochemical analysis and gene detection. However,
when the focus is located in the lower lobe and close to the
diaphragm, the needle tip may deviate greatly during puncture
due to the large respiratory amplitude, which is not conducive
to accurate positioning. For small lesions (≤20 mm) and
subpleural lesions (Yu et al., 2020), the lesion tissue itself
is fragile and the mucus changes, so it is difficult to cut the
tissue. In such cases, the puncture passes through the lung
parenchyma for a long distance, which is more likely to lead
to pneumothorax and bleeding (Chen et al., 2021), affect the
effectiveness of the operation, and lead to cutting failure. It is
still necessary to attempt aspiration biopsy before the cutting
becomes too difficult and the needle sheath is pulled out.
Aspiration is the final chance to obtain suitable. Studies have
shown that immunohistochemical analysis can be performed in
cell wax samples (Lozano et al., 2015; Bayrak et al., 2021). In this
retrospective study, we found that the immunohistochemical
analysis of aspirated cell wax had a significant supplementary
effect on malignant tumors.

Our results also showed that the risk of complications such
as pneumothorax and hemoptysis was less when the routine
suction was increased (Gupta et al., 2010b). The incidence
of pneumothorax through sequential chest wall cutting and
aspiration lung biopsy under CT guidance was 35.8%, which
was equivalent to the 15.4–42.0% (Bae et al., 2020; Ruud
et al., 2021) previously reported by interventional radiologists.
Most pneumothorax can be observed conservatively, with only
2.6% requiring thoracic catheterization and drainage, which
was lower than the pneumothorax catheterization rate of 4.3–
7.3% reported by Heerink et al. (2017). Depending on the
study population and the type of needle used, the incidence
of CT-mediated transthoracic lung puncture hemoptysis ranges
from 0.5 to 14.4% (Tai et al., 2016; Heerink et al., 2017).
In this study, 8.1% of patients had hemoptysis, including
some blood in the sputum. No serious complications, such as
tumor needle metastasis, air embolism, and death, occurred.
As lung suction is performed to generate negative pressure

suction through the guide needle sheath after the cutting is
completed, the sheath tube will be pulled out immediately
after the completion, and the relevant specimens will be sent
for examination without additional puncture needle placement,
which will serve to reduce the operative duration. Moreover,
lung aspirated tissue can be used for pathological HE staining,
morphological analysis, and immunohistochemical analysis of
cell blocks. Furthermore, especially in the case of insufficient
cutting tissue or cutting failure, more tissue can be saved,
which can also be used in subsequent molecular research
(Zhao et al., 2014).

Some studies have shown that the combination of lung
cutting and aspiration has no significant advantage in the
diagnosis of certain inflammatory pathologies (e.g., pulmonary
tuberculosis, pulmonary cryptococcosis) compared with cutting
alone (Aviram et al., 2007; Schoellnast et al., 2010; Choi
et al., 2013; Chen et al., 2020), and the specificity of cutting
histopathology is significantly higher than that of aspiration
pathology. This may be due to the histopathological evaluation
of cutting needle biopsy and the cytological diagnosis of
aspirates in most institutions. Histopathology can more
effectively determine benign types, including tumors, under
the microscope (e.g., pulmonary hamartoma, inflammatory
pseudotumor, schwannoma, organized pneumonia, and
granulomatous inflammation). However, in clinical practice,
there remain deficiencies in the etiological diagnosis of lung
cutting histopathology, with some studies showing that the
sensitivity of lung cutting histopathology in the diagnosis of
lung infection is 36%. Furthermore, most pathological results
can only suggest chronic inflammation and cannot identify a
specific infection. In lesions suspected of pulmonary infection,
Kim et al. (2020) found that aspiration could detect more
pathogenic microorganisms than cutting. Microbial culture is
the gold standard for diagnosis, and its role in benign lesions,
especially in infectious lesions, cannot be ignored. The aspirated
tissue can be quickly and easily inhaled into the culture bottle
through the sheath, which is simple and convenient to operate
and has a low risk of pollution.

Recently, the application of aspiration in the diagnosis
of infectious diseases has been increasing (Haas et al.,
2017). Previous studies have found that the diagnostic
rate of lung aspirate culture under CT localization for
pulmonary opportunistic infection was 36.5%–80% in
patients with immune impairment (Hwang et al., 2000;
Carrafiello et al., 2006; Gupta et al., 2010a; Ideh et al., 2011;
Hsu et al., 2012; Clement et al., 2014; Liu et al., 2022).
The diagnostic rate of Mycobacterium/fungus cultures of
lung aspirates was 47.4%, which was significantly higher
than that of core needle biopsy. Although GenXpert
MTB/RIF is only sensitive to Mycobacterium tuberculosis,
the parallel diagnostic rate of GenXpert MTB/RIF detection and
Mycobacterium/fungus culture for aspiration biopsy combined
with lung cutting pathology is still 8.7% higher than that of
Mycobacterium/fungus culture for aspiration biopsy combined
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with core needle biopsy. Abundant materials can be obtained
by one suction for auxiliary examination. Compared with
core needle biopsy alone, GenXpert MTB/RIF detection and
Mycobacterium/fungus culture by increasing the suction can
substantially improve the overall diagnostic rate of pulmonary
infectious diseases, and reduce subsequent invasive operations
and targeted antiviral therapy.

China has a high incidence of tuberculosis, with the
infection rate ranking second worldwide (MacNeil et al.,
2020). The hidden onset of tuberculosis has become a major
burden to public health, and the situation of prevention and
control is grim. Early diagnosis and treatment are crucial
to controlling the progression of pulmonary tuberculosis and
reducing infection. Pulmonary lesions cannot be routinely
screened for Mycobacterium tuberculosis infection by CT
imaging, so effective clinical detection methods are required.
According to the recommendations of the World Health
Organization, among all adults with suspected tuberculosis,
the Xpert MTB/RIF test should be preferentially used as the
initial diagnosis method. In our study, the sensitivity of the
lung cutting histopathology in the diagnosis of pulmonary
tuberculosis was only 27.8%, which is similar to that reported
in previous studies (Montenegro et al., 2014; Jiang et al.,
2016). For histopathology describing inflammation, such as
granulomatous inflammation, with or without coagulative
necrosis, mycobacterium culture or molecular detection must
be further clarified clinically. The Xpert MTB/RIF reported
in the literature shows considerable variation in the detection
sensitivity of tissue samples, with a reported range of 42%–
100%. This variation may be related to the heterogeneity of
sampling lesions, resulting in the actual detected tissues not
being the most representative samples. In this study, there was
no significant difference in the sensitivity of GenXpert MTB/RIF
to pulmonary tuberculosis compared to Mycobacterium/fungal
culture, but the sensitivity was significantly improved when
they were diagnosed in parallel (up to 83.3%). Mycobacterium
tuberculosis grows slowly and requires high nutrition culture
medium, with the culture taking 42 days on average. GenXpert
MTB/RIF detection has high sensitivity and specificity, requires
less tissue, is simple and safe to operate, and has fast
detection time. Additionally, it can detect Mycobacterium
tuberculosis complex DNA and rifampicin resistance within
2 h (Yu et al., 2019), which can facilitate individualized
anti-tuberculosis treatment as soon as possible. Therefore, as
long as conditions permit, the Xpert gene detection of lung
aspirates and mycobacterium culture should be conducted in
parallel to diagnose the infection early, reduce transmission
(Han et al., 2021), and adopt individualized anti-tuberculosis
treatment more effectively. For patients with rapid progress of
tuberculosis, this combination can be employed to better control
tuberculosis activity and improve prognosis.

Additionally, 57 cases underwent BacT/Alert microbial
culture simultaneously, and most of the results detected
anaerobic bacteria. The diagnostic rate of combined detection

with histopathology did not increase significantly, which
may be related to the inability of BacT/Alert FA and Sn
culture bottles to culture mycobacteria and the low detection
rate of fungi. The average culture time of the BacT/Alert
bottle is 5 days, which cannot meet the growth time of
most fungi, whereas the culture time of the BD BACTECTM

Mycobacterium/fungus bottle is 42 days. The detection rate
of BacT/Alert microbial culture bacteria is higher than that
of the BD BACTECTM Mycobacterium/fungus culture bottle,
which is related to the detection of obligate anaerobic
bacteria, while the BD BACTECTM Mycobacterium/fungus
culture bottle cannot detect obligate anaerobic bacteria. Despite
no statistical difference between the two, this may have
relevance for selecting clinical antibiotics. The results of
this study suggest that GenXpert MTB/RIF detection, BD
BACTECTM Mycobacterium/fungus culture, and BacT/Alert
specific anaerobic bacteria culture should be conducted
routinely to maximize the detection rate of pathogens.

In this study, 20.6% of pulmonary infections did not identify
the pathogen in other auxiliary examinations, such as blood
culture, related serum antibody detection, and bronchoscopic
interventional diagnosis and treatment, and the CT follow-up
lesions subsided significantly or the clinical symptoms were
relieved after empirical anti-infection treatment. The early
use of antibiotics may make it difficult to detect sensitive
bacteria in the follow-up examination. Additionally, many
microorganisms are difficult to cultivate and require specific
culture medium and strict culture conditions, such as Brucella,
Chlamydia trachomatis, flagellin spirochete, and Neisseria
gonorrhoeae (Glaser and Montone, 2020). Aspiration culture
should be performed as soon as clinically feasible. Additionally,
molecular technology, such as high-throughput sequencing, is
not restricted by culture conditions and can directly detect
nucleic acids, which is worthy of popularization.

In 50 cases of benign non-infectious lesions, the
histopathological diagnosis was consistent with the imaging and
clinical analysis. Indeed, the clinical CT follow-up was sufficient
to exclude malignancy and consider the lesion to be benign. The
combination of cutting histopathology and aspiration microbial
detection is more conducive to the diagnosis of benign lesions,
with the exception of infection (Hwang et al., 2000). In this
study, in 3.1% of malignant lesions, infectious bacteria was
detected simultaneously, including Mycobacterium tuberculosis,
Aspergillus, and Acinetobacter baumannii. For patients with
cancer, timely effective anti-infection programs will be crucial
to control the spread and progress of infection.

Aspiration has a unique complementary value in the
diagnosis of benign and malignant diseases. Aspiration is an easy
means to process microbial samples and plays a decisive role
in the diagnosis of infectious pathogens. However, this study
has the following limitations: (1) it is a retrospective study, only
evaluated the lung puncture data of one hospital, was limited to
the operation of a single biopsy needle, and did not analyze the
situation of other institutions; (2) we could not directly compare
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the differences in immunohistochemistry in histopathology and
cell pathology because immunohistochemical analysis is the first
choice of histopathological specimens, and cell pathology is
often used as auxiliary research, especially when histopathology
is insufficient; and (3) due to the lack of corresponding
standards, the local bleeding of lesions observed on CT images
was not graded and evaluated.
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People with coronavirus disease 2019 (COVID-19) have different mortality

or severity, and this clinical outcome is thought to be mainly attributed to

comorbid cardiovascular diseases. However, genetic loci jointly influencing

COVID-19 and cardiovascular disorders remain largely unknown. To identify

shared genetic loci between COVID-19 and cardiac traits, we conducted

a genome-wide cross-trait meta-analysis. Firstly, from eight cardiovascular

disorders, we found positive genetic correlations between COVID-19 and

coronary artery disease (CAD, Rg = 0.4075, P = 0.0031), type 2 diabetes (T2D,

Rg = 0.2320, P = 0.0043), obesity (OBE, Rg = 0.3451, P = 0.0061), as well

as hypertension (HTN, Rg = 0.233, P = 0.0026). Secondly, we detected 10

shared genetic loci between COVID-19 and CAD, 3 loci between COVID-19

and T2D, 5 loci between COVID-19 and OBE, and 21 loci between COVID-19

and HTN, respectively. These shared genetic loci were enriched in signaling

pathways and secretion pathways. In addition, Mendelian randomization

analysis revealed significant causal effect of COVID-19 on CAD, OBE and HTN.

Our results have revealed the genetic architecture shared by COVID-19 and

CVD, and will help to shed light on the molecular mechanisms underlying the

associations between COVID-19 and cardiac traits.

KEYWORDS

COVID-19, cardiovascular diseases, shared genetics, meta-analysis, GWAS

Introduction

The coronavirus disease 2019 (COVID-19) arises from severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) infection, and it rapidly outbreak since
November 2019 and recently become a public health emergency of international concern
(The Severe Covid-19 Gwas Group, 2020). Up to now, there have been more than 170
million confirmed cases and nearly 3.9 million deaths globally. However, its etiology is
not fully understood.
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People with COVID-19 have different mortality or
severity, and the clinical outcome are worse in patients
with cardiovascular related disorders, which suggests the
comorbidity of COVID-19 and cardiovascular diseases (CVD)
(Guan et al., 2020b). More evidences showed the concordant
result (Guan et al., 2020a; Ruan et al., 2020; Sisnieguez et al.,
2020; Wang et al., 2020; Yang et al., 2020). On the one hand,
it was reported that hypertension (21.1%) and diabetes (9.7%)
ranked as the top two most prevalent comorbidities for COVID-
19 (Wang et al., 2020). The odd ratios of hypertension (2.36)
and coronary heart disease (3.42) were larger than 1 when
comparing severe COVID-19 patients to non-severe cases
(Yang et al., 2020). On the one hand, genome-wide association
studies (GWAS) have identified several associated-variants
involved in COVID-19 and cardiovascular disease-related
traits. For example, a gene known as ERI3 has been associated
with COVID-19 related mortality, coronary artery disease and
type 2 diabetes (MacArthur et al., 2017). Moreover, COVID-
19 cardiovascular epidemiology showed that nearly 12% of
COVID-19 cases have been found to have sustained cardiac
injuries, COVID-19 might have a direct and indirect effect on
the cardiovascular system (Tajbakhsh et al., 2021). The etiologic
agent of COVID-19 can infect the heart, vascular tissues, and
circulating cells through the host cell receptor for the viral spike
protein (Chung et al., 2021). All the above studies lead us to
wonder whether the comorbidity between COVID-19 and CVD
is due to the potential shared genetic factors. However, there
is few genetic study to reveal the common genetic architecture
between COVID-19 and CVD. To this end, the goal of this
study was to identify genetic loci shared between COVID-19
and cardiac traits by conducting a large-scale genome-wide
cross-trait meta-analysis, and provide more knowledge about
common molecular mechanisms of them.

Our study mainly includes three parts. Firstly, we estimated
both the overall and local genetic correlation between
COVID-19 and eight cardiac traits, including coronary artery
disease (CAD), type 2 diabetes (T2D), hypertension (HTN),
obesity (OBE), high-density lipoproteins (HDL), low-density
lipoproteins (LDL), triglycerides (TC), and total cholesterol
(TG). Secondly, we carried out a large-scale cross-trait meta-
analysis to identify shared genetic loci between trait pairs that
showed significant genetic correlation in the first part of the
study. Finally, we conducted transcriptome-wide association
study (TWAS), pathway enrichment analysis and Mendelian
randomization (MR) analysis to obtain more biological insight.

The overall study design is shown in Figure 1.

Materials and methods

Data sources

The GWAS summary statistic for COVID-19 was extracted
from the Genetics of Mortality in Critical Care (GenOMICC)

study, which performed GWAS on 2244 critically ill patients
with COVID-19 in 208 UK intensive care units (Pairo-
Castineira et al., 2021). We downloaded the summary
statistic with European cases vs UK Biobank controls in
this study. We also retrieved the summary statistics of eight
cardiac traits in the following public available datasets. The
summary statistic for CAD was from the Coronary ARtery
DIsease Genome Wide Replication and Meta-analysis plus The
Coronary Artery Disease Genetics (CARDIoGRAMplusC4D)
Consortium (60,801 cases and 123,504 controls) (Nikpay
et al., 2015). The summary statistic for T2D was from the
Diabetes Genetics Replication and Meta-Analysis (DIAGRAM)
Consortium (26,676 cases and 132,532 controls) (Scott et al.,
2017). The summary statistic for OBE was from the Genetic
Investigation of ANthropometric Traits (GIANT) Consortium
(32,858 cases and 65,839 controls) (Berndt et al., 2013). The
summary statistic for HTN was from the Genome wide
association study ATLAS (GWASATLAS) database (99,665
cases and 189,642 controls) (Watanabe et al., 2019). The
summary statistics for four lipid traits (LDL, HDL, TC,
and TG) were from the Global Lipids Genetics Consortium
(GLGC) Consortium (188,577 samples) (Willer et al., 2013).
The details of each summary statistic dataset are provided in
Supplementary Table 1.

Genome-wide genetic correlation
analysis

We employed the high-definition likelihood methodology
(Ning et al., 2020) to estimate the genetic correlation between
COVID-19 and eight cardiac traits. This approach provides
more accurate estimation by fully accounting for linkage
disequilibrium (LD) information across the whole genome. The
χ2 statistic of single nucleotide polymorphisms (SNPs) in high
LD regions is higher than that of those in low LD regions, and
similar results are observed by replacing one study test statistic
with the product of two z-scores in the study. We used the
reference panel with imputed HapMap3 SNPs, which are based
on genotypes in UK Biobank.

Local genetic correlation

We applied ρ-HESS (Shi et al., 2017) to investigate whether
COVID-19 and cardiac traits show local genetic correlation.
ρ-HESS quantifies the correlation between traits at each LD-
independent region of the genome due to genetic variation.
A total of approximately 1.5 Mb was used for estimating local
genetic heritabilities and genetic covariances from independent
LD blocks. We chose the cardiac traits that showed significant
genetic correlation with COVID-19 in this analysis, thus, four
pairs of traits were included (COVID-19 and CAD, COVID-19
and T2D, COVID-19 and OBE, COVID-19 and HTN). Notice
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FIGURE 1

Flow chart of the present work.

that we removed the empty loci (with no SNP in it) in each local
region in ρ-HESS.

Cross-trait meta-analysis

We conducted a large-scale cross-trait meta-analysis to
identify genetic loci shared between severe COVID-19 and
cardiac traits that showed significant genetic correlation, using
PLEIO framework (Lee et al., 2021). PLEIO is a summary-
statistics approach to mapping pleiotropic loci in a multiple trait
analysis, either binary, quantitative, independent or correlated
traits. Besides, this method can maximize power by adequately
modeling the genetic architectures (genetic correlation and
heritability) and control false positive rate by accounting for
environmental correlation. SNPs with Pmeta < 5 × 10−8 and
trait-specific P < 0.05 were considered to be significant for both
traits. We performed the operations on a computer of Intel Xeon
E5-2695 CPU 2.10 GHz. For each disease pair, it will waste 8–
10 mins for the standardization of raw summary statistics first,
and then about 2 mins for the identification of pleiotropic loci
with PLEIO.

The independent loci were identified using the clumping
function of PLINK (version 1.9) tool (Purcell et al., 2007) with
clumping parameters p1 = 5 × 10−8, p2 = 1 × 10−5, r2 = 0.1,

and kb = 500, that is, SNPs with p value less than 1 × 10−5, r2

greater than 0.1 and distance less than 500 kb from the peak will
be assigned to the clump with that peak. Distance to the nearest
gene was calculated using NCBI human genome build37 gene
annotation.

Transcriptome-wide association study

We performed transcriptome-wide association study
(TWAS) to detect gene expression associations in specific
tissues for COVID-19 and cardiac traits, using FUSION
software (Gusev et al., 2016) based on 43 Genotype-Tissue
Expression Project (GTEx: version 6) tissue expression weights.
FUSION is a powerful strategy that uses cis-regulated gene
expression measurements to identify genes associated with
complex traits through large-scale summary statistics. TWAS p
values for each trait were corrected for multiple testing by using
Benjamini-Hochberg’s False Discovery Rate (FDR) procedure
(FDR < 0.05).

Pathway enrichment analysis

To obtain biological insight for shared risk genes that
were identified from cross-trait meta-analysis, we used Enrichr
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tool (Kuleshov et al., 2016) to perform Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analysis. The
Benjamini-Hochberg procedure was used on p value to account
for multiple testing.

Mendelian randomization analysis

In order to examine the causal relationships between
COVID-19 and cardiac traits, we conducted MR analysis using
MR-PRESSO test (Verbanck et al., 2018). The MR-PRESSO
method estimates exposure effects in multi-instrument MR
using SNPs significantly associated with exposure, as well
as horizontal pleiotropy in multi-instrument MR utilizing
summary statistics. Instruments were constructed using LD-
independent SNPs with p values lower than 5 × 10−8.

Results

Overall and local genetic correlations
between coronavirus disease 2019 and
cardiac traits

We estimated the genetic correlation between COVID-19
and eight cardiac traits using high-definition likelihood method.
Four out of eight cardiac traits showed strong and significant
genetic correlation with COVID-19. There was the strongest
genetic correlation between COVID-19 and CAD (Rg = 0.4075,
P = 0.0031), followed by T2D and HTN in a similar magnitude
(Rg = 0.232, P = 0.0043 and Rg = 0.233, P = 0.0026, respectively).
Moreover, a positive genetic correlation was also found with
COVID-19 in OBE (Rg = 0.3451, P = 0.0061). However, no
significant genetic correlation was found between COVID-19
and four lipid traits (LDL, HDL, TC, and TG). The detailed
results of genetic correlation are displayed in Table 1.

TABLE 1 Genetic correlation between coronavirus disease 2019 and
cardiac traits.

Phenotype 1 Phenotype 2 Rg SE P

COVID-19 CAD 0.4075 0.1379 0.0031

T2D 0.232 0.1147 0.0043

OBE 0.3451 0.1259 0.0061

HTN 0.233 0.0774 0.0026

LDL 0.0335 0.1058 0.7510

HDL −0.1923 0.1169 0.1000

TC 0.0292 0.0852 0.7320

TG 0.1928 0.1049 0.0661

Rg , genetic correlation estimate; SE, standard error of genetic correlation; COVID-
19, coronavirus disease 2019; CAD, coronary artery disease; T2D, type 2 diabetes;
OBE, obesity; HTN, hypertension; LDL, low-density lipoproteins; HDL, high-density
lipoproteins; TC, total cholesterol; TG, triglycerides.

Due to the significant genetic correlation between COVID-
19 and four cardiac traits (CAD, T2D, OBE, and HTN),
we conducted ρ-HESS to explore whether there is a genetic
correlation between COVID-19 and cardiac traits in certain
regions of the genome. Result of the COVID-19/CAD
trait pair showed that the 19p13.2 region (chromosome
19: 9238393-11284028) had strong local genetic correlation
(P = 3.76 × 10−6). Besides, result of the COVID-19/T2D trait
pair showed strong local genetic correlation (P = 1.39 × 10−7)
in the 4q21.23 region (chromosome 4: 83372593-84799656). We
did not find significant local genetic correlations for neither
COVID-19/HTN nor COVID-19/OBE trait pair (Figure 2).

Cross-trait meta-analysis results
between coronavirus disease 2019 and
cardiac traits

We performed a large-scale genome-wide cross-
trait meta-analysis to improve the statistical power to
identify shared genetic loci between COVID-19 and four
cardiac traits that show significant genetic correlations.
We considered SNPs with Pmeta < 5 × 10−8 and trait-
specific P < 0.05 to be significant for both COVID-19
and cardiac traits. Based on these criteria, we identified 39
independent loci significantly associated with COVID-19
and cardiac traits, of which eight loci failed to be detected
in trait-specific GWAS of COVID-19 and cardiac traits
(Tables 2, 3).

We observed two overlapped significant loci in the cross-
trait meta-analysis of COVID-19/CAD and COVID-19/HTN.
The first association signal was 9q34.2 (index SNP: rs495828,
Pmeta = 1.19 × 10−12 for COVID-19/CAD; Pmeta = 1.61 × 10−12

for COVID-19/HTN). This locus was located at the ABO
blood group, which contributed to the immunopathogenesis
of SARS-CoV-infection (The Severe Covid-19 Gwas Group,
2020). Similarly, it was concluded that group A individuals
had a higher risk of COVID-19 respiratory failure while
group O individuals had a protective effect via blood type-
specific analysis (Deleers et al., 2021). The other locus (index
SNP: rs4691707, Pmeta = 6.15 × 10−9 for COVID-19/CAD;
Pmeta = 3.03 × 10−10 for COVID-19/HTN) was in the intergenic
region closet to the MTND1P22 gene, which may have a role in
transcription regulation.

In addition to rs495828 and rs4691707, a further eight
loci were identified to be associated with COVID-19 and
CAD (Table 2). The strongest association signal (index SNP:
rs1122608, Pmeta = 2.23 × 10−13) was found near gene
SMARCA4 on chromosome 19, which was previously reported
to regulate atherosclerosis (Ma et al., 2019) and play a protective
role to against the risk of HTN (Xiong et al., 2014).

Three loci were identified in a cross-trait meta-analysis of
COVID-19 and T2D (Table 2). The first locus (index SNP:
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FIGURE 2

Local genetic correlation and local SNP-heritability between COVID-19 and CAD (A), T2D (B), respectively. For each subfigure, the top part
represents local genetic correlation, the middle part represents local genetic covariance, and blue or red highlights indicate significant local
genetic correlation and covariance after multiple testing correction, the bottom part represents local SNP heritability for each trait.

rs6446490, Pmeta = 2.30 × 10−13) was mapped on PPP2R2C, a
gene that increased insulin resistance (Daily et al., 2019). The
second locus represented by rs6798189 (Pmeta = 1.08 × 10−10)
was mapped on ADCY5, a gene coupled glucose to insulin
secretion in human islets (Hodson et al., 2014). The third
locus (index SNP: rs1359790, Pmeta = 3.89 × 10−9) located
in intergenic region, which was previously reported to be
associated with T2D (Flannick et al., 2019).

We also found five significant loci that were associated
with both COVID-19 and OBE (Table 2). The top locus
(index SNP: rs16917237, Pmeta = 8.07 × 10−14) was mapped
on BDNF, a gene was not only associated with body mass
index but also CAD (Winkler et al., 2015; van der Harst
and Verweij, 2018). The second locus (index SNP: rs3136673,
Pmeta = 5.90 × 10−10) was originally significant associated with
COVID-19 (P = 6.87 × 10−9), the mapped gene CCR1 involved
in heart and blood communication in cardiac diseases.

In the cross-trait meta-analysis of COVID-19 and HTN,
we identified 21 significant loci (Table 3). One of the most
important loci is characterized by the ATP2B1 gene (index SNP:
rs1401982, Pmeta = 4.32 × 10−32), which plays a key role in
regulating blood pressure by altering calcium handling and
vasoconstriction in vascular smooth muscle cells (Wain et al.,
2011).

Results of transcriptome-wide
association analysis, pathway
enrichment analysis, and Mendelian
randomization analysis

To identify association between COVID-19 and cardiac
traits with gene expression in specific tissue, we performed
TWAS in 43 GTEx tissues. A total of 20 gene-tissue pairs
were significantly associated with COVID-19, in addition to
263 gene-tissue pairs with CAD, 142 gene-tissue pairs with
T2D, 2030 gene-tissue pairs with HTN, and 256 gene-tissue
pairs with OBE (Supplementary Tables 2–6). There is no
gene-tissue pair overlapped between COVID-19 and the four
cardiac traits in TWAS.

To investigate the biological pathways represented by shared
genes, we assessed enrichment of shared genes between COVID-
19 and cardiac traits. KEGG pathway enrichment analysis
revealed cGMP-PKG signaling pathway as the most significant
pathway, as well as other signaling pathways and secretion
pathways (Figure 3).

We identified three significant causal relationships by using
MR-PRESSO test, including the effect of COVID-19 on CAD
(causal estimate = 0.0045, P = 3.70 × 10−6), OBE (causal
estimate = 0.0494, P = 1.86 × 10−4), and HTN (causal
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estimate = 0.0019, P = 1.20 × 10−6). However, we did not
observed causal effect of COVID-19 on T2D (causal estimate = –
0.0026, P = 0.2281; Supplementary Table 7).

Discussion

To the best of our knowledge, this is the study to identify
shared genetic architecture between COVID-19 and cardiac
traits. Specifically, we found substantial and significant genetic
correlation between COVID-19 and CAD, T2D, OBE, and HTN.
These findings are consistent with the study which estimated
the genetic correlation by LD score regression method (Chang
et al., 2021), and further confirmed the fact that patients with
certain underlying medical conditions (such as CAD, T2D, OBE,

and HTN) are at increased risk for poor outcome in COVID-19
(Richardson et al., 2020).

In the original GWAS summary statistics, there were
hundreds to thousands of significant loci (P < 5 × 10−8)
in each of these diseases. However, no shared genetic locus
was found between COVID-19 and any of the four cardiac
traits. After cross-trait meta-analysis, we identified 10 shared
loci between COVID-19 and CAD, three shared loci between
COVID-19 and T2D, five shared loci between COVID-19 and
OBE, and 21 shared locus between COVID-19 and HTN.
This series of comparative data highlights the superiority
of cross-trait meta-analysis. These shared genetic loci could
be used to predict the occurrence of COVID-19 as well as
the abnormal cardiac traits. In addition, we identified eight
loci that failed to reach significance in trait-specific GWAS,

TABLE 2 Cross-trait meta-analysis results between coronavirus disease 2019 and CAD, T2D, and OBE (Pmeta < 5 × 10−8; single trait P < 0.05).

Traits SNP Genome
position

Eff.
alle.

Ref.
alle.

MAF COVID-19
P

Cardiac
trait
P

Meta
OR

Meta
P

Genes
within

clumping
region

CAD rs1122608 chr19:10891239–
11177408

T G 0.259 0.017 2.73 × 10−11 1.08 2.23 × 10−13 C19orf38,
C19orf52,

CARM1, DNM2,
SMARCA4,
TMED1, and

YIPF2

rs495828 chr9:136154867–
136154867

T G 0.217 0.019 1.29 × 10−10 0.93 1.19 × 10−12 ABO*

rs6705971 chr2:85755357–
85809989

C A 0.468 0.004 4.52 × 10−10 0.94 3.23 × 10−12 GGCX, MAT2A,
and VAMP8

rs6694817 chr1:154401972–
154426264

T C 0.425 0.037 2.96 × 10−9 0.95 1.59 × 10−10 IL6R

rs17678683 chr2:145286559–
145286559

G T 0.091 0.035 3.00 × 10−9 0.91 2.61 × 10−10 LINC01412*

rs2437935 chr10:44752268–
44793299

G A 0.358 0.014 6.98 × 10−9 1.06 3.46 × 10−10 C10orf142

rs4691707 chr4:156441314–
156441314

G A 0.348 0.003 5.95 × 10−7 0.95 6.15 × 10−9 MTND1P22*

rs17612742 chr4:148401190–
148414651

C T 0.138 0.039 1.61 × 10−7 0.93 1.29 × 10−8 EDNRA

rs3002124 chr1:222748085–
222748085

G A 0.293 0.011 7.98 × 10−7 1.06 2.84 × 10−8 TAF1A

rs17251589 chr19:41756085–
41756906

C T 0.119 0.025 3.29 × 10−7 0.92 3.44 × 10−8 AXL

T2D rs6446490 chr4:6323465–
6325086

G A 0.451 1.00 × 10−4 1.70 × 10−10 1.08 2.30 × 10−13 PPP2R2C

rs6798189 chr3:123095312–
123095312

G A 0.266 0.040 1.30 × 10−10 0.91 1.08 × 10−10 ADCY5

rs1359790 chr13:80717156–
80717156

G A 0.288 0.011 1.40 × 10−8 0.92 3.89 × 10−9 Intergenic region

OBE rs16917237 chr11:27702383–
27702383

T G 0.204 0.048 3.60 × 10−11 1.11 8.07 × 10−14 BDNF

rs3136673 chr3:46031957–
46272440

T C 0.086 6.87 × 10−9 0.0093 1.06 5.90 × 10−10 CCR1, FYCO1,
and XCR1

rs7189927 chr16:28913787–
28922149

C T 0.356 0.013 3.40 × 10−7 1.07 6.07 × 10−10 ATP2A1 and
RABEP2

rs1541984 chr2:25079770–
25100328

G A 0.428 0.049 1.80 × 10−8 1.07 7.42 × 10−10 ADCY3

rs1766530 chr6:97576742–
97576742

A G 0.314 2.40 × 10−3 6.90 × 10−6 1.06 6.42 × 10−9 KLHL32 and
MIR548H3

*The nearest genes to these loci. COVID-19, coronavirus disease 2019; CAD, coronary artery disease; T2D, type 2 diabetes; OBE, obesity; SNP, single nucleotide polymorphisms; chr,
chromosome; Eff. alle., effect allele; Ref. alle., reference allele; MAF, minor allele frequency; OR, odds ratios.
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demonstrating cross-trait meta-analysis’ excellent statistical
power similarly.

We performed GWAS-Catalog analysis to understand
whether the shared genes have been reported in the previous
studies (Supplementary Table 8). Gene ABO, mapped by the
locus rs495828 in 9q34.2 region, was reported to be associated
with COVID-19, CAD, OBE and HTN (Covid-19 Host Genetics
Initiative., 2021). Additionally three genes (CCR1, FYCO1, and
XCR1) were not only associated with COVID-19, but also at
least two cardiac traits (Shelton et al., 2021). Beyond them, other

shared genes were newly found. In terms of gene function, ABO,
which determines blood type, may affect COVID-19 disease
severity, but there was no evidence to confirm ABO blood group
influences risk of COVID-19 infection or outcome (Lehrer
and Rheinstein, 2021). Genes CCR1, FYCO1, and XCR1 were
involved in T-cell and dendritic-cell function (Kaser, 2020).

In the local genetic correlation analysis between COVID-19
and cardiac traits that showed significant genetic correlation,
we found that SMARCA4 region to have genetic correlation
between COVID-19 and CAD, which was also identified by

TABLE 3 Cross-trait meta-analysis result between coronavirus disease 2019 and HTN (Pmeta < 5 × 10−8; single trait P < 0.05).

Traits SNP Genome
position

Eff.
alle.

Ref.
alle.

MAF COVID-19
P

HTN
P

Meta
OR

Meta
P

Genes
within

clumping
region

HTN rs1401982 chr12:89989599–
90441215

G A 0.413 0.0056 8.50 × 10−28 0.94 4.32 × 10−32 ATP2B1

rs35441 chr12:115552499–
115553115

T C 0.383 0.0256 3.04 × 10−25 0.94 1.19 × 10−28 Intergenic region

rs2137320 chr11:1884342–
1884342

A G 0.387 0.022 3.82 × 10−23 1.06 1.34 × 10−25 LSP1

rs17080093 chr6:150989698–
151027008

T C 0.069 0.0232 3.86 × 10−20 0.90 3.23 × 10−22 PLEKHG1

rs936228 chr15:75131661–
75225415

T C 0.277 0.0081 9.97 × 10−19 1.05 6.33 × 10−21 COX5A,
FAM219B, MPI,
SCAMP2, and

ULK3

rs3942852 chr11:48028343–
48136990

C T 0.209 0.0329 9.92 × 10−19 0.94 7.33 × 10−20 PTPRJ

rs6055976 chr20:8629857–
8630692

A C 0.229 0.0442 1.56 × 10−17 0.94 1.25 × 10−18 PLCB1

rs2279500 chr1:113230394–
113248791

T C 0.167 0.0017 1.31 × 10−12 0.95 1.87 × 10−13 MOV10 and
RHOC

rs17419291 chr5:87780432–
88178683

C T 0.086 0.0079 1.29 × 10−12 0.93 3.20 × 10−13 MEF2C

rs2242261 chr11:47038220–
47282024

G T 0.155 0.0424 4.34 × 10−13 0.94 1.05 × 10−12 ACP2, ARFGAP2,
C11orf49, DDB2,
NR1H3, and
PACSIN3

rs495828 chr9:136139265–
136154867

T G 0.217 0.0187 1.11 × 10−12 0.95 1.61 × 10−12 ABO

rs7716011 chr5:157525853–
157525853

G T 0.252 0.0366 6.21 × 10−12 1.04 2.48 × 10−11 LINC02056*

rs3744251 chr17:7760983–
7760983

A G 0.076 0.0483 3.94 × 10−11 1.07 1.84 × 10−10 NAA38

rs1918966 chr3:169098791–
169181582

A G 0.455 0.0342 5.56 × 10−11 1.04 2.04 × 10−10 MECOM

rs4691707 chr4:156441314–
156499985

G A 0.348 0.0025 1.36 × 10−9 1.04 3.03 × 10−10 MTND1P22*

rs11858678 chr15:41353079–
41542591

G A 0.428 0.0362 1.00 × 10−10 1.04 3.64 × 10−10 CHP1, EXD1, and
INO80

rs7254154 chr19:17169936–
17178119

C A 0.410 0.0258 7.99 × 10−9 1.03 1.54 × 10−8 HAUS8

rs2228615 chr19:10403368–
10403368

A G 0.377 4.45 × 10−6 7.67 × 10−6 0.97 3.41 × 10−8 ICAM5

rs11707155 chr3:53608306–
53608306

G A 0.038 0.0183 3.14 × 10−8 1.09 4.23 × 10−8 CACNA1D

rs3809278 chr12:111725185–
111725185

A C 0.130 0.0222 2.78 × 10−8 0.95 4.31 × 10−8 CUX2

rs2348427 chr4:111414399–
111414399

T C 0.447 0.0016 5.00 × 10−7 1.03 4.98 × 10−8 ENPEP

*The nearest genes to these loci. COVID-19, coronavirus disease 2019; HTN, hypertension; SNP, single nucleotide polymorphisms; chr, chromosome; Eff. alle., effect allele; Ref. alle.,
reference allele; MAF, minor allele frequency; OR, odds ratios.
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FIGURE 3

Bubble chart of enrichment analysis of shared genes.

cross-trait meta-analysis. SMARCA4 is a well-known gene
associated with CAD, and it mediated nucleosome remodeling
which was considered another epigenetic mechanism that can
affect the course of COVID-19 (Peng et al., 2020; Shirvaliloo,
2021). Moreover, we also identified HELQ region to be
significantly associated with COVID-19 and T2D. HELQ is
predominantly known for its ATP-dependent helicase activity
and participation in DNA repair.

Post-GWAS function analyses provided biological insights
into the shared genes between COVID-19 and four cardiac
traits. In TWAS analysis, we detected 20 significant gene-
tissue pair associated with COVID-19, 263 with CAD, 142
with T2D, 256 with OBE and 2030 with HTN. Of these, none
of the gene-tissue pair significantly associated with COVID-
19 and cardiac traits. In addition, we also performed GTEx
tissue enrichment analysis, and did not identify any enrichment
signal in tissues. These results suggest that the distribution
of pleiotropic genes between COVID-19 and cardiac traits is
scattered and not limited to a specific tissue. Moreover, KEGG
pathway enrichment analysis showed that the shared genes
enriched in some signaling pathways and secretion pathways,
such as cGMP-PKG signaling pathway, pancreatic secretion and
insulin secretion. The recent studies reported that signaling
pathways significantly related to COVID-19 (Messina et al.,
2021; Wang et al., 2021), and secretion pathways significantly
related to cardiovascular diseases (Chae and Kwon, 2019).

Our MR analysis showed causal effect of COVID-19 on
CAD, OBE, and HTN, these findings supported the idea that
the genetic correlation of polygenic diseases may be due to both
causality and pleiotropy (van Rheenen et al., 2019). Moreover,
there is no causal relationship between COVID-19 and T2D,
this result indicated the shared genetic effect between COVID-
19 and T2D is more likely to be pleiotropic effect, rather than
causal effect or mechanism.

As well as genetic factors, environmental factors and lifestyle
also play an important role in the comorbidity of COVID-
19 and cardiac traits. Although there are many studies on
screening anti-SARS-CoV-2 drugs and discoverying potential
therapeutic drugs for COVID-19 (Zhou et al., 2020; Peng et al.,
2021; Shen et al., 2022; Tian et al., 2022), home quarantine
and staying away from infection prevention, vaccination,
appropriate immunomodulatory diet and drugs that modulate
cardiovascular system are currently the most effective approach
to prevention (Lotfi et al., 2020).

We also acknowledge some limitations of our work. First, we
restricted the analysis to the participants of European ancestors
to avoid population stratification, so the findings may not be
applicable to general populations. Second, we observed some
positive genetic correlation between COVID-19 and TG as well
as negative genetic correlation between COVID-19 and HDL,
but they failed to reach the standard significant level. The genetic
relationship between severe COVID-19 and lipid traits deserves
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further study. Third, although large sample cohorts were used in
this study, we did not perform replication with other COVID-19
cohorts, which would be meaningful to confirm our findings.

Conclusion

In conclusion, our genome-wide cross-trait meta-
analysis confirmed the association between COVID-19 and
cardiovascular disorders. Investigation of the shared genetic
loci between COVID-19 and cardiac traits can be helpful to
understand the common biological mechanisms underlying
the comorbidity.
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Background: Local recurrence and distant metastasis are the main causes 

of death in patients with lung cancer. Multiple studies have described the 

recurrence or metastasis of lung cancer at the genetic level. However, 

association between the microbiome of lung cancer tissue and recurrence 

or metastasis remains to be  discovered. Here, we  aimed to identify the 

bacterial biomarkers capable of distinguishing patients with lung cancer from 

recurrence or metastasis, and how it related to the severity of patients with 

lung cancer.

Methods: We applied microbiome pipeline to bacterial communities of 

134 non-recurrence and non-metastasis (non-RM) and 174 recurrence or 

metastasis (RM) samples downloaded from The Cancer Genome Atlas (TCGA). 

Co-occurrence network was built to explore the bacterial interactions in lung 

cancer tissue of RM and non-RM. Finally, the Kaplan–Meier survival analysis 

was used to evaluate the association between bacterial biomarkers and patient 

survival.

Results: Compared with non-RM, the bacterial community of RM had lower 

richness and higher Bray–Curtis dissimilarity index. Interestingly, the co-

occurrence network of non-RM was more complex than RM. The top 500 

genera in relative abundance obtained an area under the curve (AUC) of 

0.72 when discriminating between RM and non-RM. There were significant 

differences in the relative abundances of Acidovorax, Clostridioides, 

Succinimonas, and Shewanella, and so on between RM and non-RM. These 

biomarkers played a role in predicting the survival of lung cancer patients and 

were significantly associated with lung cancer stage.

Conclusion: This study provides the first evidence for the prediction of lung 

cancer recurrence or metastasis by bacteria in lung cancer tissue. Our results 

highlights that bacterial biomarkers that distinguish RM and non-RM are also 

associated with patient survival and disease severity.
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Introduction

Lung cancer is still the leading cause of cancer deaths 
worldwide. Local recurrence and distant metastasis are the 
primary causes of morbidity and mortality, and account for up to 
95% of deaths related to lung cancer (Seyfried and Huysentruyt, 
2013). Despite advances in therapeutic strategies, especially 
targeted therapy and immunotherapy, the prognosis remains poor 
because most patients have extensive metastases at diagnosis 
(Herbst et al., 2018; Liu et al., 2021). Clinically, a large number of 
patients with early-stage lung cancer relapse after surgery due to 
the neglected distant metastasis (Lu Y. et al., 2021). Thus, capturing 
the signal of metastasis in patients with early-stage lung cancer 
and continuously monitoring cancer progression after surgery is 
of great significance for reducing patient mortality.

Growing research has suggested that microbial communities 
influence the occurrence, progression, metastasis, and response to 
therapy of multiple cancers (Cullin et al., 2021; Yang M. et al., 
2022). For example, studies have shown that Fusobacterium 
nucleatum may trigger cancer through multiple ways, and is 
related to cancer cell invasion and metastasis (Bullman et  al., 
2017). Recently, Bertocchi et  al. found that intratumoral 
CRC-associated Escherichia coli could migrate to the liver 
following gut vascular barrier disruption and then prime the liver 
microenvironment to directly promote metastasis (Bertocchi 
et  al., 2021). In addition, multiple studies have shown that 
enterotoxigenic Bacteroides fragilis could encode a toxin that 
ultimately induces chronic intestinal inflammation and tissue 
damage in colorectal cancer by targeting intestinal cells (Boleij 
et al., 2015; Cheng et al., 2020). However, the potential association 
between microbial communities of cancer tissue and lung cancer 
metastasis remains a knowledge gap.

A prominent reason for the high mortality rate of lung cancer 
is that it is initially asymptomatic and typically discovered at 
advanced stages (Nasim et al., 2019). Therefore, it is urgent to 
accurately identify the biomarkers in each stage of lung cancer and 
adjust the treatment measures for different stages (Yang et al., 
2021). Zheng et al. identified 13 gut microbes as biomarkers with 
high accuracy in predicting early-stage lung cancer by 16 s rRNA 
sequencing analysis (Zheng et al., 2020). A survey of the gut and 
sputum microbiota of lung cancer patients at different stages by 
Lu et al. revealed that these two microbiomes were associated with 
distant metastasis and that microbial biomarkers across disease 
stages were largely shared (Lu H. et al., 2021). However, although 
the potential relationship between gut microbes and non-gut-
related cancers is largely unraveled (Erdman and Poutahidis, 2015; 
Kwa et al., 2016; Zhao F. et al., 2021), the microbes at the original 
site of cancer development, the cancer tissue, deserve further 
exploration. The unclear mechanism of tissue microbiome in 
distant metastasis and lung cancer stage urgently needs to 
be investigated.

In this study, 174 samples of patients with recurrence or 
metastasis (RM) and 134 samples of patients without recurrence 
or metastasis (non-RM) were collected, and the tissue microbiome 

of all patients with lung cancer was characterized. The main 
objectives of this study were (1) to identify the bacterial 
biomarkers capable of discriminating between RM and non-RM, 
(2) to investigate the effect of smoking on RM and non-RM 
differential bacteria, and (3) to correlate bacterial biomarkers with 
survival and disease stage in lung cancer patients. Our study sheds 
light on the ability of tissue microbial markers of lung cancer to 
predict recurrence or metastasis and that these biomarkers are 
strongly associated with the survival and stage of patients with 
lung cancer.

Materials and methods

Patient cohorts and data preparation

Rob Knight’s team rechecked the microbial readings from 
18,116 cancer tissue samples included 10,481 patients and 33 
cancers in The Cancer Genome Atlas1 (TCGA; Poore et al., 2020). 
Of the 6.4′1012 sequencing readings in TCGA, 7.2% were classified 
as non-human, of which 35.2% were assigned to bacteria, archaea, 
or viruses; the sequencing readings were clustered into operational 
taxonomic units (OTUs) to the genus level by Kraken (Wood and 
Salzberg, 2014). Microbial sequencing technologies included 
whole-genome sequencing (WGS) and whole-transcriptome 
sequencing (RNA-seq). To obtain more tissue samples from lung 
cancer patients, we downloaded the microbial data obtained by 
RNA-seq in TCGA database, and obtained clinical indicators and 
patient information of all samples.

In total, we obtained 308 lung tissue samples from 298 patients 
with lung cancer. We divided the samples into two groups based 
on the presence of recurrence or metastasis within 3 years after the 
initial diagnosis of lung cancer. Specifically, we defined patient 
samples without recurrence or metastasis within 3 years as 
non-RM, and defined patient samples with recurrence or 
metastasis, or both recurrence and metastasis as RM. We obtained 
174 RM samples and 134 non-RM samples. We also collected 
related important clinical indicators of the patients, such as age, 
gender, TNM stage, smoking history, etc. Specific information for 
all samples is provided in Table 1.

Network analyses and keystone taxa

We performed network analysis to assess microbiome 
complexity and identify potential keystone genera for RM and 
non-RM. We  used Spearman’s rank correlation to assess the 
association among genera. We  used the Hmisc package for 
calculating correlation coefficients and p values. Correlation 
coefficients greater than 0.7 with a corresponding p-value less than 
0.001 were considered statistically significant. Eligible correlations 

1 https://portal.gdc.cancer.gov
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are used to generate the networks. The undirected networks were 
explored and visualized with the interactive platform Gephi 
(Bastian et  al., 2009), using the Fruchterman-Reingold layout. 
Some important topological parameters and node scores of the 
resulting network are obtained through Gephi (Newman, 2006). 
In our networks, nodes represented the genera, and the edges 
represented Spearman’s rank correlations. The average degree is 
the number of edges on each node. Path length and diameter, 
respectively, represent the nearest distance and the largest distance 
between two nodes in a network. Clustering coefficient indicates 
the extent a node is connected to its neighbors. We used high 
degree to statistically identify the keystone taxa (Banerjee 
et al., 2019).

Machine-learning classification model 
and biomarkers identification

We used the microbiome at the genus level as a feature to 
predict the possibility of recurrence or metastasis of patients in the 
future. We labeled the patients of RM as “0,” and the patients of 
non-RM as “1.” Thus, this problem can be considered a binary 
classification task. We selected Random Forest (RF) to complete 
our classification task. RF is used for classification purposes and it 
had a good performance in recent years. This model was 
implemented by Python’s Sklearn module. We  estimated the 
performance of the classification algorithms using the 5-fold 

cross-validation (5-fold-cv) procedure. We evaluated the predicted 
goodness at each abundance level in steps of one hundred. The 
performance of the classification algorithm was estimated by 
averaging the area under the curve (AUC) in the 5 test datasets. 
To ensure comparability, the division of the datasets on each 
abundance was consistent.

We calculated the variable importance of the top 100 bacteria 
in relative abundance for identifying RM and non-RM using the 
Random Forest algorithm. We identified 15 bacterial biomarkers 
that best discriminated between RM and non-RM based on two 
variable importance metrics from Random Forest, mean decrease 
accuracy (MDA) and mean decrease gini (MDGini). Further, 
Wilcoxon rank-sum test was used to compare the differences of 
these 15 biomarkers between RM and non-RM. p-value <0.05 was 
considered statistically significant.

Validation of predictions on survival

From the 15 bacterial biomarkers that discriminate between 
RM and non-RM, we used the bacteria with the top 6 variables in 
importance to predict all samples into two groups, recurrence or 
metastasis (Pred_lable = RM) and without recurrence or 
metastasis (Pred_lable = non-RM), respectively. Then, overall 
survival time and status were used to evaluate the prognosis of 
lung cancer patients in the two groups. The survival curve was 
performed by using the Kaplan–Meier method and the log-rank 
test was used to compare the difference in survival probability 
with R package “survival.” p-value <0.05 was considered 
statistically significant.

Analysis of tissue microbes in different 
stages of lung cancer

The TNM staging system was first proposed by the French 
Pierre Denoix between 1943 and 1952(Asare et al., 2019), and later 
the American Joint Committee on Cancer (AJCC) and the Union 
for International Cancer Control (UICC) gradually began to 
establish an international system. In 1968, the first edition of the 
‘TNM Classification of Malignant Tumors’ manual was officially 
published. It has become the standard method for staging 
malignant tumors by clinicians and medical scientists.

In the TNM staging system: (1) T refers to the condition of the 
primary tumor. With the increase in tumor volume and the 
increase in the extent of adjacent tissue involvement, it is 
represented by T1 ~ T4 in turn. (2) N refers to the involvement of 
regional lymph nodes. When the lymph nodes are not involved, it 
is indicated by N0. With the increase in the degree and scope of 
lymph node involvement, it is represented by N1 ~ N3 in turn. (3) 
M refers to distant metastasis (usually blood duct metastasis), M0 
is used for those without distant metastasis, and M1 is used for 
those with distant metastasis. On this basis, use the combination 
of the three indicators of TNM to draw a specific stage. To 

TABLE 1 Basic characteristics of study participants.

Characteristics All
(n = 308)

RM
(n = 174)

Non-RM
(n = 134)

Gender

(F/M)

140/168 77/97 63/71

T stage

(T1/T2/T3/T4/TX)

77/173/49/8/1 36/92/40/5/1 41/81/9/3/0

N stage

(N0/N1/N2/N3/NX)

180/83/39/2/4 97/49/25/1/2 83/34/14/1/2

M stage

(M0/M1/MX)

234/7/67 118/6/50 116/1/17

Stage

(I/II/III/IV/Unknown)

140/98/60/7/3 64/63/40/6/1 76/35/20/1/2

Age

(Mean ± SD)

65.44 ± 9.55 65.66 ± 9.27 65.15 ± 9.88

Histology

(LUAD/LUSC)

173/135 114/60 59/75

Smoking history

(Never/Reformed 

smoker≤15 years/

Reformed 

smoker>15 years/

Current smoker/

Unknown)

30/136/57/71/14 20/68/35/43/8 10/68/22/28/6

LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma.
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investigate changes in bacterial composition at different stages of 
lung cancer, we compared the relative abundances of 15 bacterial 
biomarkers capable of distinguishing metastatic and 
non-metastatic between different stages. Wilcoxon rank-sum test 
was used to compare the differences between groups. Besides, 
taking the T stage as an example, we constructed five-fold cross-
validation random forest models with features from the 
combinations of three bacterial biomarkers (Dickeya, Lactococcus, 
and Pseudogulbenkiania) to validate the performance of bacterial 
biomarkers in predicting the tumor stage.

Identification of the patient’s smoking 
history

Based on the smoking history information of patients 
provided by TCGA, we  divided all patients into four groups: 
smoking history >15 years, smoking history ≤15 years, current 
smokers, and unknown. Among them, the smoking age of current 
smoker is not clear, so we  focused on comparing the relative 
abundance of bacterial biomarkers between the two groups of 
samples with a smoking history of more than 15 years and less 
than 15 years. Wilcoxon rank-sum test was used to compare the 
differences between groups.

Statistical analysis

All analyses were implemented with R version 4.1.32 and its 
appropriate packages. Principal coordinate analysis (PCoA) was 
performed with R package ‘ape’ based on the Bray-Curtis distance 
matrix. The Shannon index and Bray–Curtis dissimilarity index 
were calculated by using the R package “vegan.” Non-metric 
multidimensional scaling (NMDS) was performed with the R 
package “vegan.” Comparison between groups was conducted 
utilizing Wilcoxon rank-sum test. p-value <0.05 was set as 
the threshold.

Results

Characteristics of the lung cancer 
datasets in meta-analysis

A total of 308 lung tissue samples from 298 patients with lung 
cancer were obtained. We  determined the recurrence or 
metastasis of patients based on the follow-up information 
provided by TCGA. Detailedly, we  defined patients without 
recurrence or metastasis within three years after the initial 
diagnosis of lung cancer as non-RM samples, and patients with 
recurrence, metastasis, and simultaneous recurrence and 

2 http://www.R-project.org

metastasis within 3 years as RM samples. The demographics and 
clinical characteristics are provided in Table 1.

Bacterial profile of the lung cancer 
microbiome is dominated by 
proteobacteria

Previous microbial studies of lung cancer have shown that 
bacterial composition of cancerous lungs shifts compared to 
non-cancerous lungs (Huang et  al., 2011); however, these 
compositional changes have not been examined in distant 
metastatic lung cancer. To obtain a comprehensive characteristic of 
the bacterial community of metastatic lung cancer, we thoroughly 
compared the bacterial compositions of RM and non-RM. As 
shown in Figure  1, Proteobacteria dominated the tissue 
microbiome of lung cancer with an average relative abundance of 
52.3%, followed by Firmicutes (21.8%) and Actinobacteria (16.0%). 
Importantly, Proteobacteria was generally more dominant in 
non-RM (Wilcoxon p = 0.041), indicating that this is a recurrent 
phenomenon in lung cancer (Woerner et al., 2022).

Bacterial composition carry information 
on recurrence or metastasis in lung 
cancer

We next computed the firth two principal coordinates based on 
the Bray–Curtis dissimilarity and the PCoA plot showed two distinct 
clusters (Figure 1B). The two groups (RM and non-RM) were not 
randomly dispersed between the two clusters. Instead, enrichment 
was observed in specific clusters for certain groups, providing 
further evidence that the bacterial composition may carry RM/
non-RM information in lung cancer. Then, we examined the alpha 
diversity (Shannon) and richness of the microbiome within samples 
of RM and non-RM. Specifically, there was no significant difference 
in the Shannon index between RM and non-RM; however, 
we  observed a significant increase in richness in non-RM as 
compared to RM tissue (Figures 1C,D). Further, we calculated the 
Bray–Curtis dissimilarity for each pair of samples to measure how 
different each pair is regarding bacterial composition. Non-RM 
samples were far more similar to one another than to the RM 
samples (Wilcoxon p < 0.0001; Figure 1E). We detected 1,509 and 
1,500 genera in non-RM and RM, respectively, indicating that the 
vast majority of genera were shared in lung cancer tissues regardless 
of recurrence or metastasis (Figure 1F).

Co-occurrence networks and keystone 
taxa of RM and non-RM

We know that bacterial composition in the tissues of lung 
cancer patients with and without metastasis is different; however, 
the interaction pattern of bacterial communities in lung cancer 
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tissues has not been disclosed. To reveal the underlying patterns, 
based on genus pairs with significant positive correlations 
screened by thresholds, we mapped co-occurrence networks for 
RM and non-RM, respectively (Figures  2A,B). Network 
complexity varied considerably between the two groups. 
Specifically, compared to non-RM, microbial communities in RM 
had a less complex network with fewer edges (6286), fewer nodes 
(738), a lower average degree (17.04), and a lower average 
clustering coefficient (0.78, Figure 2C). In the RM, the keystone 
genera we detected was Azoarcus, while in the non-RM, it was 

Variovorax, Ramlibacter, and Sphaerotilus. Although limited 
studies have directly linked these genera to lung cancer 
metastasis, the difference in keystone certainly implies a 
divergence in bacterial interactions between RM and non-RM.

Further, we  drilled down into the largest module in the 
network, i.e., with the most nodes, which we called Module 1 in 
this study. Module1 of RM and non-RM contained 135 and 218 
genera, respectively, of which 90 were shared (Figure 2D). NMDS 
analysis showed that the bacterial composition in Module 1 of the 
two groups was significantly different (Figure 2E; stress = 0.0889). 

A

B C D

E F

FIGURE 1

Bacterial community structures of RM and non-RM patients with lung cancer. (A) Bacteria composition at phylum level for all samples; (B) The 
PCoA plot, on the genus level, colored by group as in panel; Comparisons of (C) Shannon index and (D) richness of bacterial communities 
between RM and non-RM; (E) Bray–Curtis dissimilarity measures, on the genus level, based for all pairs of samples; (F) Common and unique 
genera between RM and non-RM. Wilcoxon test, * p < 0.05, **** p < 0.0001.

33

https://doi.org/10.3389/fmicb.2022.1007831
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Yuan et al. 10.3389/fmicb.2022.1007831

Frontiers in Microbiology 06 frontiersin.org

Detailedly, Proteobacteria were the core phylum in these two 
modules, accounting for 82.1 and 89.4%, respectively 
(Figures 2F,G), further indicating that Proteobacteria dominated 
the lung cancer tissue bacterial community.

Bacterial biomarkers for differentiating 
RM and non-RM are associated with 
patient outcomes in lung cancer

Given the observed differences in bacterial content between 
RM and non-RM (Figures  2A,B,3), we  reasoned that bacteria 

might be able to classify recurrence or metastasis of patients with 
lung cancer. To this end, we  constructed a machine-learning 
classifier to identify recurrence or metastasis from tissue bacteria. 
The top  500 genera in relative abundance were chosen as a 
compromise between reduced resolution with more genera and 
decreased representation of bacterial community with fewer 
genera. The average AUC of the classifier using bacterial content 
reached 0.72 (Figure  3A). The performance of our machine-
learning classifier provides evidence that bacterial composition 
contains a signal that tracks recurrence or metastasis.

In addition to providing an algorithm to assign classes (RM/
non-RM in our case) based on features (relative abundance of 

A

C

D E F G

B

FIGURE 2

Network analysis reveals distinct bacterial community interaction patterns between RM and non-RM. Network of co-occurring bacteria of (A) RM 
and (B) non-RM. Only Spearman’s correlation coefficient (r > 0.7 significant at p < 0.001) is shown. The nodes are colored according to module. The 
percentage indicates the ratio of the number of nodes in the module to the total number; (C) Network parameters and the potential keystone 
genera of RM and non-RM. Average degree is the number of edges on each node. Path length and diameter, respectively, represent the nearest 
distance and the largest distance between two nodes in a network. Clustering coefficient indicates the extent a node is connected to its 
neighbors; (D) Common and unique genera in the largest modules of RM and non-RM; (E) NMDS analysis shows significant differences in the 
largest modules of RM and non-RM; Phylum-level bacterial composition in the largest modules of (F) RM and (G) non-RM.

34

https://doi.org/10.3389/fmicb.2022.1007831
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Yuan et al. 10.3389/fmicb.2022.1007831

Frontiers in Microbiology 07 frontiersin.org

bacterial genera). Random Forest also assigns variable 
importance to each categorical feature. Based on the MDA value, 
we identified the top 15 genera with variable importance and 
significant differences between RM and non-RM (Figures 3B,C). 
Acidovorax has been reported to develop as a panel of sputum 
biomarkers that could diagnose lung squamous cell carcinoma 
(Leng et al., 2021). It is currently known that patients with lung 
cancer are at high risk of developing Clostridium difficile 
infection (CDI) due to continued chemotherapy, prolonged 
hospital stay, and general debility (Hwang et al., 2013). However, 
we  detected a reduced relative abundance of Clostridium in 
recurrence or metastasis lung cancer patients, suggesting that its 
mechanism in recurrence or metastasis remains to be elucidated. 
Many other genera that contribute to discrimination between 
RM and non-RM (Figure 3D) are known to be associated with 
lung disease or lung cancer chemotherapy outcomes, e.g., 
Leuconostoc (Zhao Z. et al., 2021), Shigella (Zhang et al., 2018), 
Rhodococcus (Haramati and Jenny-Avital, 1998), and 
Bradyrhizobium (Jin et al., 2019).

Given the significance of predicting the prognosis of lung 
cancer patients and the relationship between bacteria and lung 
cancer patient survival demonstrated by multiple studies (Salazar 
et al., 2020; Tomita et al., 2020; Zhao Y. et al., 2021), we tried to 

correlate these bacterial biomarkers with patient survival. First, 
we selected the top 6 genera of variable importance as biomarkers 
(Figure 3D), then used these biomarkers to predict the recurrence 
or metastasis of all lung cancer patients, and finally performed 
survival analysis on the predicted two groups. As shown in 
Figure 3E, non-RM showed a significant overall survival benefit 
as compared with RM (p = 0.0025). Our results further prove the 
accuracy and clinical significance of the bacterial biomarkers 
we identified, as well as the fact that the patients with lung cancer 
recurrence or metastasis have reduced survival.

Smoking history influences bacteria that 
distinguish recurrence or metastasis in 
lung cancer patients

Smoking is the greatest risk factor for lung cancer, up to 90% 
of lung cancers can be attributable to smoking (de Groot et al., 
2018). Previous studies have demonstrated that nicotine-induced 
N2-neutrophils have a pro-metastatic role in lung cancer cell 
colonization (Tyagi et al., 2021). However, whether bacteria are 
mediators linking smoking and lung cancer recurrence or 
metastasis is still unknown.

A B C

D E

FIGURE 3

Metastasis and survival in lung cancer patients share some bacterial biomarkers. (A) Fivefold cross-validation random forest models with feature 
from top 500 genera in relative abundance; (B) The top 15 genera of variable importance predicted by random forest. The top 6 genera of MDA 
are shown in red; (C) The relative abundances of these 15 genera were significantly different between RM and non-RM; (D) Heatmap shows the 
enrichment of these 15 genera in RM and non-RM; (E) Kaplan–Meier survival curve shows that non-RM showed a significant overall survival 
benefit as compared with RM.
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Thus, we  associated smoking history with recurrence or 
metastasis-related bacterial biomarkers (Figure 3B) in lung cancer 
patients. Coincidentally, we found that the relative abundance of 
most bacterial biomarkers was reduced in patients with a longer 
smoking history (Figure  4A). The relative abundances of the 
genera Acidovorax, Clostridioides, and Lactococcus varied with 
smoking history (Figures  4B–D). In particular, the relative 
abundance of the genus Acidovorax was significantly higher in 
patients with a smoking history of less than 15 years than in 
patients with a smoking history of more than 15 years (Figure 4B). 
Similarly, we  also detected a reduced relative abundance of 
Acidovorax in RM compared to non-RM (Figure 3C). Naturally, 
we  speculate that excessive smoking can cause changes in the 
content of certain bacteria, which, in turn, promotes the 
recurrence or metastasis of lung cancer patients.

Bacterial biomarkers of disease stage and 
lung cancer recurrence or metastasis 
intersect

It has long been recognized that regional and metastatic 
cancers have a worse prognosis, and many cancers can be traced 
back to this gradual progression (Cserni et al., 2018). This has 
become the basis for cancer staging, including lung cancer. The 
Tumor-Node-Metastasis (TNM) system established by the Union 
for International Cancer Control (UICC) has become a worldwide 
means of describing the anatomical extent of cancer and 
determining its stage.

We have known that bacterial biomarkers that can distinguish 
recurrence or metastasis of lung cancer are related to patient 
survival (Figure  3E), and then we  wondered whether these 
biomarkers also carry disease stage information. Interestingly, 
we found that the relative abundances of some of these 15 bacterial 
markers (Figure  2B) varied significantly between stages 
(Figures 5A–I). For example, the relative abundance of Dickeya 
was significantly lower in T4 patients compared to T2 patients 
(Figure 5A). Rhodococcus has the lowest relative abundance in N3 
stage patients compared to other stages (Figure 5F). Then, taking 
the T stage as an example, we  constructed five-fold cross-
validation Random Forest models with features from these three 
biomarkers (Figures  5A–C). As expected, features from the 
combination of these three bacteria showed capabilities for 
identifying the T stage for patients with lung cancer (Figure 5J). 
The genera Dickeya, Lactococcus, and Pseudogulbenkiania 
displayed the strongest ability to identify the T stage with an 
average AUC of 0.84.

Wu and his colleagues found that mannan exopolysaccharides 
(EPS) produced by a subsp. of Lactococcus lactis affected the 
production of inflammatory cytokine (Wu et al., 2016). Similarly, 
we  also detected a decrease in the relative abundance of 
Lactococcus in advanced patients (Figure  5B). In general, our 
results demonstrate that bacteria capable of discriminating 
recurrence or metastasis from lung cancer also carry disease stage 

information, thereby assisting clinicians and medical scientists in 
staging malignancies.

Discussion

Genetic and environmental factors have long been recognized 
as contributors to cancer recurrence or metastasis (Bhujwalla 
et  al., 2001; Rosell and Karachaliou, 2015; Song et  al., 2020). 
Recently, histopathological images are also been found capable of 
predicting cancer recurrence or metastasis (Yang J. et al., 2022; Ye 
et al., 2022); however, little is known about the tissue microbiome 
that promotes cancer recurrence or metastasis. We demonstrate 
that recurrence or metastasis in lung cancer patients is associated 
with specific bacteria and that smoking significantly affects the 
relative abundance of these bacteria. In-depth, by building 
machine-learning classifiers, we  found that six recurrence- or 
metastasis-distinguishing bacterial biomarkers (Acidovorax, 
Clostridioides, Succinimonas, Shewanella, Leuconostoc, and 
Dickeya) were associated with survival in lung cancer patients. 
Further, we  verified that bacteria capable of discriminating 
recurrence or metastasis also carry information on tumor stage in 
lung cancer, and three genera, Dickeya, Lactococcus, and 
Pseudogulbenkiania, can accurately predict tumor T stage. 
Collectively, the above results support our proposal that smoking 
can lead to changes in the bacterial community in lung cancer 
tissue, which, in turn, affects tumor metastasis in patients, and the 
bacteria closely associated with recurrence or metastasis are 
inseparable from patient prognosis and tumor stage.

The number one risk factor for lung cancer development is 
tobacco exposure, which outweighs all other factors that lead to 
lung cancer (Bade and Dela Cruz, 2020). Tobacco smoke contains 
many potential carcinogens and bacterial products, which can 
induce epithelial cells to secrete inflammatory cytokines, cause 
barrier function impairment, and even alter the microbiome to 
influence lung carcinogenesis (Sapkota et  al., 2010; Pauly and 
Paszkiewicz, 2011; Heijink et  al., 2012; Checa et  al., 2016). 
We observed significantly lower relative abundances of certain 
bacteria, such as Acidovorax, in patients with a smoking history of 
more than 15 years compared with patients with a smoking history 
of less than 15 years. Similarly, in a study of tumor (n = 143) and 
non-tumor adjacent tissues (n = 144), they observed a significant 
difference in the relative abundance of Acidovorax among smokers 
as compared to non-smokers (Greathouse et  al., 2018). In 
addition, a study of non-malignant lung tissue showed that a 
greater abundance of Acidovorax was specifically found in the 
extracellular vesicles of smokers (Kim et al., 2017). Innovatively, 
we are the first to suggest that the relative abundance of Acidovorax 
is reduced in recurrence or metastasis patients compared to 
without recurrence or metastasis patients, echoing the reduced 
relative abundance of Acidovorax in patients with a longer 
smoking history. Nevertheless, future studies should 
mechanistically elucidate the role of Acidovorax between tobacco 
exposure and lung cancer metastasis.
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Lung cancer patients face severe mortality even when 
detected in the early stages of cancer. Different from other types 
of cancers that are detected early and have obvious survival 
advantages, about 35–45% of patients with stage I lung cancer 
will die due to recurrence within 5 years even if the operation is 
successful (Molina et  al., 2008; Zhao et  al., 2017). We  have 
verified that lung cancer patients with recurrence or metastasis 
are associated with lower survival rates. Further, our 

machine-learning classifier with features of Acidovorax, 
Clostridioides, Succinimonas, Shewanella, Leuconostoc, and 
Dickeya predicted recurrence or metastasis information in lung 
cancer patients, and patients predicted to be  recurrence or 
metastasis had lower survival rates. Although the mechanism 
remains to be elucidated by more evidence, the current findings 
undoubtedly provide guidance for clinicians to preliminarily 
judge patient survival.

A

B C D

FIGURE 4

Relative abundances of bacterial biomarkers vary in patients with different smoking histories. (A) Heatmap shows the relative abundance of 15 
bacterial biomarkers in patients with different smoking histories. The relative abundances of (B) Acidovorax, (C) Clostridioides, and (D) Lactococcus 
are significantly different among patients with different smoking histories.
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Our study showed that bacteria capable of distinguishing 
recurrence or metastasis can predict tumor stage in patients. In a 
study of 156 incident lung cancer cases and 156 individually 
matched controls, they found that species Lactococcus lactis was 
associated with decreased lung cancer risk (Shi et  al., 2021). 
We  also detected a decrease in the relative abundance of 
Lactococcus from the T1–T4 stages. Dickeya, Lactococcus, and 
Pseudogulbenkiania outperformed in predicting T4 and T1 stages 
in lung cancer patients.

The strength of our findings includes two accurately divided 
lung cancer cohorts with and without recurrence or metastasis 
within 3 years, the microbiome at the site of initial cancer 
development, and detailed follow-up information for nearly all 
patients. But our research still has some limitations. The 
distribution of samples in different stages is not uniform; for 
example, the number of samples in the T4 stage is much smaller 
than that in the T2 stage, we admit that this may skew the results. 
Although we comprehensively compared the tissue microbiome 
of patients without and those with recurrence or metastasis, the 

absence of healthy controls is a pity. Functional experiments are 
needed in the future to determine if and how bacteria influence 
the progression of lung cancer. Such experiments will reveal the 
potential of bacteria as biomarkers in lung cancer recurrence or 
metastasis and may provide treatment options for patients. 
Functional experiments to further provide treatment assistance 
for lung cancer patients is the focus of our future work.

Conclusion

Through a comprehensive comparison of tissue microbes in 
recurrence or metastasis and without recurrence or metastasis lung 
cancer patients, we  identified 15 bacterial biomarkers that 
differentiate between RM and non-RM lung cancer, with the relative 
abundance of most bacteria decreasing in recurrence or metastasis 
patients. Besides, six recurrence or metastasis-distinguishing 
bacterial biomarkers (Acidovorax, Clostridioides, Succinimonas, 
Shewanella, Leuconostoc, and Dickeya) were associated with survival 

A B C J

D E F

G H I

FIGURE 5

Bacterial biomarkers can identify disease stage in lung cancer patients. Relative abundance of specific genera varies significantly between different 
stages of lung cancer. (A–C) T stage; (D–F) N stage; (G–I) Stage; (J) Fivefold cross-validation random forest models with features from Dickeya, 
Lactococcus, and Pseudogulbenkiania to predict the T stage of lung cancer patients. Wilcoxon test, *p < 0.05.
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in lung cancer patients. Further, we found that patients with longer 
smoking history were associated with lower abundances of these 
biomarkers, such as the genus Acidovorax. Finally, these bacterial 
biomarkers (Dickeya, Lactococcus, and Pseudogulbenkiania) 
accurately predicted the tumor T stage in lung cancer patients. 
We propose that smoking induces tissue microbial changes in lung 
cancer patients, which, in turn, promotes recurrence or metastasis 
in lung cancer patients, and the altered bacteria are associated with 
patient prognosis and tumor progression. With these results, 
we foresee a new avenue for mechanistic studies to address the role 
of microbes in the recurrence or metastasis of lung cancer patients, 
patient prognosis, and tissue tumor progression monitoring.
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Patients infected with SARS-CoV-2 at various severities have different clinical 

manifestations and treatments. Mild or moderate patients usually recover 

with conventional medical treatment, but severe patients require prompt 

professional treatment. Thus, stratifying infected patients for targeted 

treatment is meaningful. A computational workflow was designed in this 

study to identify key blood methylation features and rules that can distinguish 

the severity of SARS-CoV-2 infection. First, the methylation features in the 

expression profile were deeply analyzed by a Monte Carlo feature selection 

method. A feature list was generated. Next, this ranked feature list was fed into 

the incremental feature selection method to determine the optimal features for 

different classification algorithms, thereby further building optimal classifiers. 

These selected key features were analyzed by functional enrichment to detect 

their biofunctional information. Furthermore, a set of rules were set up by a 

white-box algorithm, decision tree, to uncover different methylation patterns 

on various severity of SARS-CoV-2 infection. Some genes (PARP9, MX1, 

IRF7), corresponding to essential methylation sites, and rules were validated 

by published academic literature. Overall, this study contributes to revealing 

potential expression features and provides a reference for patient stratification. 

The physicians can prioritize and allocate health and medical resources for 

COVID-19 patients based on their predicted severe clinical outcomes.
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Introduction

Since its outbreak in late 2019, COVID-19, which is caused by 
SARS-CoV-2, has resulted in more than 5 million deaths. SARS-
CoV-2 binds to the spike (S) protein primarily through its 
functional receptor ACE2, an 805-amino acid type 
I transmembrane protein, allowing the virus to attach to the host 
cell membrane. This process results in alteration of the 
extracellular domain of ACE2 and internalization of the 
transmembrane domain, leading to further fusion of the viral 
particle with the host cell (Schulte-Schrepping et al., 2020). The 
SARS-CoV-2 infection progresses to different severities, including 
discharge from the emergency department, hospitalization, 
transfer to the ICU, and death, due to a variety of factors, such as 
age, gender, and other underlying diseases (Konigsberg et  al., 
2021). Therefore, rapidly determining the severity of the patient 
and taking corresponding treatment measures for timely and 
effective diagnosis and treatment is crucial.

Viruses can escape the immune clearance of the body through 
a variety of ways, among which epigenetic modification is an 
important way for respiratory viruses to resist the immune 
response of the body. DNA methylation, mainly of CpG islands, is 
a crucial reversible epigenetic regulation process (Fan et al., 2017; 
Benhamida et al., 2020). The regulation of the activity of a variety 
of DNA/RNA viruses, including HIV, HBV, and HPV, is related to 
changes in DNA methylation (Castro De Moura et  al., 2021). 
Studies have shown that MERS-CoV and H5N1 influenza virus 
infection leads to methylation of antigen-presenting gene 
promoters in infected cells, which eliminates the expression of 
related genes, thereby antagonizing antigen presentation, resulting 
in impaired T-lymphocyte function during acute infection and 
aggravating the degree of virus infection in the body (Hatta et al., 
2010; Menachery et al., 2018). Similarly, as a respiratory virus, 
SARS-CoV infection also results in DNA methylation in host cells 
(Menachery et al., 2018). Among them, the hypermethylation of 
the IFN pathway and inflammation-related genes is an important 
feature of severe COVID-19 (Corley et al., 2021). The study of 
ACE2 revealed that the DNA in the CpG island of the ACE2 
promoter in lung epithelial cells is hypomethylated, indicating its 
high expression in the lung. Moreover, its methylation status was 
significantly correlated with age and gender, explaining the effect 
of age and gender on the severity of COVID-19 (Kianmehr et al., 
2021). In addition, ACE2 mRNA is highly expressed in various 
diseases, especially cancer, which may be an important reason for 
the severe COVID-19 caused by the underlying disease in 
SARS-CoV infection (Sen et al., 2021). RNA modification, namely 
N 6-methylation of adenosine (m6A), also plays an important role 
in evading the innate immune recognition of exogenous RNA of 
the host, affecting virus structure and replication (Eberle et al., 
2021). The study of human metapneumovirus showed that 
m6A-binding protein can label viral RNA as the RNA of the host 
after binding to m6A, thereby evading the antiviral response of the 
host (Durbin et al., 2016; Chen et al., 2019). In addition, some 
studies have found that the N region of the SARS-CoV-2 virus 

genome is rich in m6A modification and is regulated by the host 
cell methyltransferase METTL3. The reduced expression level of 
METTL3 will lead to a decrease in the level of SARS-CoV-2 m6A 
and correspondingly increased expression of inflammatory genes 
(Li S. et al., 2021). This process is more pronounced in severely 
infected patients than that in moderately infected patients. These 
findings suggest the possibility of using methylation to characterize 
disease states, and numerous studies have demonstrated the 
feasibility of this approach.

This study conducted a computational investigation on the 
blood methylation profile on severity of SARS-CoV-2 infection. 
Several advanced machine learning methods were adopted. First, 
the profile was analyzed by the Monte Carlo feature selection 
(MCFS) method (Dramiński et  al., 2007) to analyze the 
importance of methylation features. One feature list was produced, 
which was further analyzed by incremental feature selection (IFS) 
(Liu and Setiono, 1998) method. Four classification algorithms 
were adopted in the IFS method to discover their optimal features, 
and build the optimal classifiers and classification rules. For the 
essential methylation features, their corresponding genes were 
picked up for gene ontology (GO) and KEGG enrichment analysis. 
Some results, including essential methylation sites, classification 
rules, and enrichment analysis results, were extensively discussed 
and can be validated by existing literature. The results reported in 
this study are helpful for the stratification of clinical patients and 
provide an effective reference for clinical diagnosis and treatment.

Materials and methods

Methylation dataset

The blood DNA methylation dataset investigated in this study 
was obtained from the Gene Expression Omnibus (GEO) database 
with the accession ID of GSE167202 (Konigsberg et al., 2021). This 
dataset comprised 164 SARS-CoV-2-positive samples, 296 SARS-
CoV-2-negative infection samples, and 65 other infection samples. 
In addition, the positive samples were classified into four 
categories based on severity score. The severity score is determined 
primarily by discharge from emergency, admission to inpatient 
care, progression to the ICU, and death. The above four categories, 
negative infection, and other infections were termed as six classes 
in this study. The methylation dataset was deeply analyzed by 
modeling a classification problem on the dataset. The sample size 
of each class is listed in Table 1. Each sample was represented by 
655,010 methylation features. This dataset would be analyzed in 
the following steps.

Monte Carlo feature selection

A large number of methylation features were used to represent 
each sample. However, only a few of them were highly related to 
the severity of SARS-CoV-2 infection. It was necessary to reveal 
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essential methylation features with advanced computer techniques. 
Here, MCFS method was employed (Dramiński et al., 2007).

MCFS is a tree-based feature selection method that is widely 
used in methylation profiling analysis as it is deemed to be good 
at dealing with datasets containing small number of samples and 
huge number of features. It randomly constructs several decision 
trees (DTs) from the original training dataset and uses these DTs 
to evaluate the importance of features. More specifically, s subsets 
with m features are randomly selected from the original training 
dataset. t trees for each subset are then constructed based on 
samples randomly sampled from the original dataset. The 
performance of each tree is evaluated on test samples that are not 
selected as training samples. Overall, s t×  DTs are built in this 
process. The overall position of a feature on the tree node partition 
is used to estimate a measurement, called relative importance (RI). 
A high RI score of a feature indicates the importance of a feature. 
The RI score is defined as follows:
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where IG ng τ( )( )  indicates the information gain of tree 
node ng τ( ) , no in ng. τ( )  and no in. τ  represent the number of 
samples in node ng τ( )  and tree τ , respectively, and wAcc  
indicates the weighted accuracy of the DT τ . In addition, u and v 
are the two parameters for RI calculation.

The MCFS program developed by Dramiński et al. was applied 
in this study, which can be downloaded at https://home.ipipan.
waw.pl/m.draminski/mcfs.html, to rank the methylation features. 
Default parameters were used, where u and v were set to 1. By 
applying the MCFS program on the methylation dataset, a ranked 
feature list was obtained.

Incremental feature selection

Based on the MCFS method, the methylation features were 
ranked in a list. However, the threshold was difficult to determine, 
that is, which features were selected for further analysis. In view of 
this, we further employed the IFS method (Liu and Setiono, 1998).

The IFS method is always used to determine the optimal 
number of features in a ranked feature list combined with one 

supervised classification algorithm, such as random forest (RF). 
More specifically, IFS first generates a series of feature subsets 
based on a step size. For example, the first and second subsets, 
respectively, comprise the top 5 and 10 features when the step size 
is five. Next, on each feature subset, the samples represented by 
features in such subset are learned by the given classification 
algorithm, thereby building a classifier. Its performance is 
evaluated by the 10-fold cross-validation (Kohavi, 1995). After the 
evaluation metrics of all classifiers are obtained, the classifier with 
the highest performance is easy to find. Such classifier is called the 
optimal classifier. The corresponding feature subset is picked up 
and features in this subset are termed as the optimal features for 
the used classification algorithm.

Synthetic minority oversampling 
technique

As shown in Table 1, the sample sizes under six classes were 
quite different. The largest class contained samples about 17 times 
as many as those in the smallest class. This may lead to biased 
performance of the established classifiers. Therefore, the synthetic 
minority oversampling technique (SMOTE) algorithm (Chawla 
et al., 2002; Ding et al., 2022; Zhou et al., 2022), an oversampling 
method, was applied to solve the problem. The core idea of 
SMOTE is to generate new samples to each minor class for 
enlarging its size. For each minor class, SMOTE randomly selects 
one sample, say x, from this class and finds its k-nearest neighbor 
samples in the same class. One sample, say y, is randomly selected 
from these k-nearest neighbor samples. One new sample is 
synthesized by the linear combination of x and y. As such new 
sample is highly related to x and y, it belongs to the same class with 
a high probability. Thus, it is put into the minor class. Such 
procedures execute several times until the size of the minor class 
is equal to that of the major class.

In this study, the SMOTE program from the imblearn 
package1 was used to process the methylation data for solving the 
imbalanced problem when constructing classifiers in the 
IFS method.

Classification algorithm

As the execution of IFS method needs one classification 
algorithm, four classic classification algorithms were attempted in 
this study to fully assess each constructed feature subset. They 
were k-nearest neighbor (kNN; Cover and Hart, 1967), RF 
(Breiman, 2001), support vector machine (SVM; Cortes and 
Vapnik, 1995), and DT (Safavian and Landgrebe, 1991). Their 
brief descriptions were as follows.

1 https://imbalanced-learn.org/stable/

TABLE 1 Sample size of each class for the methylation profile.

Class name Sample size

Negative infection 296

Other infection 65

Discharged from emergency department 34

Admitted to inpatient care 84

Progressed to ICU 35

Death 11
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k-Nearest neighbor
k-Nearest neighbor is one of the most classic classification 

algorithms. It determines the class of a sample based on measuring 
the distance between samples. Given a training dataset, for a new 
test sample, the k neighbors closest to such sample are found in 
the training dataset. By counting the classes of its k neighbors, the 
class of the test sample can be determined. Generally, the class that 
occurs most for its k neighbors is assigned to the test sample.

Random forest
RF is an ensemble algorithm that contains several DTs. Each 

DT is constructed by randomly selecting samples from the 
original dataset and features from all features. RF provides the 
final prediction result using the voting strategy on predictions 
yielded by DTs. RF is generally much more powerful than its 
component DT, and few parameters are involved in this algorithm.

Support vector machine,
SVM is an excellent classification algorithm in machine 

learning. The original SVM can only tackle binary classification. 
It separates samples into two classes by constructing a hyperplane, 
which can separate samples into two classes with the maximum 
interval. However, such hyperplane does not always exist or is not 
easy to find out. SVM maps samples into a high-dimensional 
space using one kernel function. In the new space, the hyperplane 
can be easily constructed. For a test sample, it is also mapped into 
the high-dimensional space. Its class is determined by the side it 
lies. The “one-versus-rest” or “one-versus-one” can be adopted to 
generalize the original SVM so that it can tackle multi-class 
classification problems.

Decision tree
Different from the above algorithms, which are deemed as 

black-box algorithms, DT can make the classification procedures 
interpretable. By learning the distributions of samples under each 
feature, a tree-like structure is built by DT. In this structure, each 
internal node indicates a decision on an attribute, outputting a 
judgment result, and each leaf node denotes a classification 
outcome. Besides, DT can also be represented by a set of rules. 
Each rule is obtained by a path from the root node to one leaf 
node in the tree. In terms of these rules, the class of a test sample 
can be determined. This operation also makes the classification 
procedures completely open, giving more chances for us to 
understand the procedures. In this case, more meaningful and 
hidden information in the dataset can be mined.

Above classification algorithms have wide applications in 
many fields. They are always important candidates for building 
classifiers in tackling various biological and medical problems 
(Zhou et al., 2020a,b, 2022; Chen et al., 2021, 2022; Onesime et al., 
2021; Zhang Y. et al., 2021; Ding et al., 2022; Li et al., 2022; Ran 
et al., 2022; Tang and Chen, 2022; Wang and Chen, 2022; Wu and 
Chen, 2022; Yang and Chen, 2022). These algorithms were 
implemented in this study through the scikit-learn (Pedregosa 
et al., 2011) program in Python and run with default parameters.

Performance measurement

The prediction performance of each classifier was mainly 
evaluated with the weighted F1. Its calculation is based on the F1 
score on each class. The F1 score for one class can be computed by
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where TP, FP, and FN represent true-positive, false-positive, and 
false-negative for the class, respectively. The weighted F1 is defined 
as the weighed mean of F1 scores on all classes. The direct mean of 
F1 scores on all classes was also provided, which was called macro F1.

To fully evaluate the performance of classifiers in the IFS 
method, we also adopted overall accuracy (ACC) and Matthews 
correlation coefficients (MCC; Matthews, 1975; Gorodkin, 2004). 
ACC is defined as the ratio of correctly predicted samples and all 
samples, which is the most accepted measurement. However, it is 
not perfect when the class sizes are of great differences. In view of 
this, MCC was proposed, which is deemed as a balanced 
measurement. For computing MCC, two binary matrices X and Y 
should be constructed first, where X stands for the true class of 
each sample and Y represents the predicted class of each sample. 
Then, MCC can be computed by
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=
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(5)

Enrichment analysis

According to the IFS results, the essential methylation features 
for severity of SARS-CoV-2 infection can be  obtained. Their 
corresponding genes can be picked up for further analysis. GO 
and KEGG enrichment analysis is a common method for 
uncovering biological meanings behind a set of genes. Here, it was 
applied to discover the biofunctional information of the genes 
corresponding to essential methylation features. Such analysis was 
performed by using the R package clusterProfiler 4.0 (Wu et al., 
2021) with a threshold of 0.05.

Results

This study conducted a deep computational investigation on 
the blood methylation profile with six severity types from the 
GEO database. The entire procedures are illustrated in Figure 1. 
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The MCFS method was first used to rank methylation features 
based on their importance, and a ranked feature list was generated. 
This list was then fed into the IFS method with different 
classification algorithms to determine the optimal features for 
each classification algorithm and construct optimal classifiers. 
Classification rules generated by the optimal DT classifier were 
used to analyze the expression pattern of key methylation features.

Results of methylation feature ranking by 
the MCFS method

Initially, the MCFS method was used to rank 655,010 
methylation features contained in blood the methylation profile. 
Each feature was assigned a RI score. A ranked feature list in 
descending order based on RI scores was generated. As some 
features were assigned RI scores of 0, they were removed. Thus, 
the final list contained 654,081 features with RI scores larger than 
0, which is provided in Supplementary Table S1. The top  10 
features alone with their RI score are plotted in Figure 2.

Identification of the optimal number of 
methylation features with IFS

The IFS method was applied to determine the optimal features 
in the ranked feature list for each classification algorithm. To save 

time, we only considered top 2000 features in the list because of 
the huge number of features. The step size is set to five in the IFS 
method, thereby generating 400 feature subsets. The sample 
dataset comprising these feature subsets was learned by each of 
four classification algorithms, namely DT, kNN, RF, and 
SVM. Lots of classifiers were built, which were evaluated by 
10-fold cross-validation. The evaluation metrics for each classifier 
are provided in Supplementary Table S2. To clearly display the 
performance of classifiers under different feature subsets, an IFS 
curve is plotted for each classification algorithm, which is provided 
in Figure 3. For SVM, the highest weighted F1 was 0.921 when 
top 1,025 features were adopted. These features constituted the 
optimal features for SVM and an optimal SVM classifier was built 
based on these features. As for kNN and RF, their highest weighted 
F1 values were 0.790 and 0.895, respectively. Their optimal 
features were top 10 and 35 features in the list. Furthermore, the 
optimal kNN and RF classifiers were set up with their optimal 
features, respectively. For DT, its highest weighted F1 was 0.780, 
which was obtained by using top  590 features. Such features 
comprised the optimal features for DT and the optimal DT 
classifier was built using these optimal features. According to the 
weighted F1 values of above optimal classifiers, the optimal SVM 
classifier was best, followed by the optimal RF and kNN classifiers, 
whereas the optimal DT classifier provided the lowest 
performance. Table 2 further lists other overall measurements for 
four optimal classifiers. It can be  observed that on each 
measurement, the optimal SVM classifier always provided the 

FIGURE 1

Workflow of this study. First, the Monte Carlo feature selection (MCFS) method was used to rank methylation signatures based on their 
importance, and a ranked feature list was generated. This list was then fed into the incremental feature selection (IFS) method with different 
classification algorithms to determine the optimal features for each classification algorithm. Optimal classifiers were set up. Classification rules 
generated by the optimal decision tree (DT) classifier were used to analyze the methylation expression pattern. The genes corresponding to 
essential methylation sites were subjected to functional enrichment analysis.
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FIGURE 3

IFS curves to show the performance of different classification algorithms under different feature subsets. The highest weighted F1 for each 
classification algorithm was marked on the corresponding IFS curve. The SVM yielded the highest weighted F1 of 0.921 when top 1,025 features 
were used.

FIGURE 2

Bar chart to show top 10 key methylation features and their relative importance scores.
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highest performance, and the optimal RF classifier yielded slightly 
lower performance than the optimal SVM classifier. The 
performance of the other two optimal classifiers was much lower. 
The optimal DT classifier was a little inferior to the optimal kNN 
classifier. As for the performance of the above four optimal 
classifiers on six classes, it is illustrated in Figure 4. Clearly, the 
optimal SVM classifier generated the highest performance on all 
classes. On most classes, the optimal RF classifier occupied the 
second places. The optimal kNN and DT classifiers gave an almost 

equal performance. These results conformed to the overall 
performance of four optimal classifiers mentioned above.

With the above arguments, the optimal SVM classifier was 
best. It can be an efficient tool to determine the severity of SARS-
CoV-2 infection. The optimal RF classifier was inferior to the 
optimal SVM classifier. However, its efficiency was much higher 
than that of the optimal SVM classifier as much less features were 
used. This classifier can be used to conduct large-scale tests.

Classification rules generated by the 
optimal DT classifier

Although the optimal DT classifier provided lower 
performance than the other three optimal classifiers, it can provide 
much more explicable information than other classifiers. As the 
optimal DT classifier adopted top 590 features in the list, a DT 
classifier trained with all samples comprising these features was 
built. Classification rules were extracted from the tree, resulting in 
77 rules. These rules are provided in Supplementary Table S3. The 
number of rules for each class is displayed in Figure 5. The rules 

TABLE 2 Overall performance of the optimal classifiers.

Classification 
algorithm

Number 
of 

features
ACC MCC Macro 

F1
Weighted 

F1

k-nearest neighbor 10 0.784 0.730 0.793 0.790

Random forest 35 0.893 0.842 0.873 0.895

Support vector 

machine

1,025 0.920 0.881 0.926 0.921

Decision tree 590 0.771 0.686 0.749 0.780

FIGURE 4

Performance of four optimal classifiers on six classes. The optimal SVM classifier produced best performance on all classes.

FIGURE 5

Distribution of classification rules on six classes.
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FIGURE 6

Top five GO terms enriched by the genes converted by the 
top 1,025 methylation features.

for “negative infection” were most, whereas those for “Death” were 
least. In section “Analysis of rules for different classes”, some rules 
would be discussed.

Results of functional enrichment  
analysis

As the optimal SVM classifier gave the best performance. 
This meant that features used in this classifier, that is the 
optimal features for SVM, were essential for determining the 
severity of SARS-CoV-2 infection. The corresponding genes 
of these features were picked up and the GO and KEGG 
enrichment analyses were performed on these genes, 
uncovering the biological meaning behind these genes. The 
detailed results are listed in Supplementary Table S4. 
Figures 6, 7 reveal that these genes were mainly enriched in 
biological processes, such as T-cell activation, regulation of 
neurotransmitter levels, and type I interferon signaling and 
KEGG pathways (e.g., Rap1 signaling pathway, Yersinia 
infection, and T-cell receptor signaling pathway). The role of 
these biological functions in SARS-CoV-2 infection will 
be verified in the section “Functional analysis based on GO 
and KEGG pathway”.

Discussion

Most studies only distinguish COVID-19-positive and negative 
samples. In this study, based on blood methylation biomarkers, 
we can not only classify COVID-19 from negative controls and 
other infections, but also accurately predict the clinical outcome of 
COVID-positive patients in detail. In practice, the physicians can 
prioritize and allocate health and medical resources for COVID-19 
patients based on their predicted severe clinical outcomes. For the 
least severe patient, they can be discharged from hospital and avoid 
medical resource overstretch. For the second least severe patient, 
they can be hospitalized but without intensive health care. For the 
severe patient, intensive health care should be prepared. For the 
most severe patient who may die from COVID-19, life support 
system should be prepared.

A variety of machine learning methods were used to 
investigate the methylation profile on severity of SARS-CoV-2 
infection. Some essential methylation features that can 
characterize the severity of SARS-CoV-2 infection were identified. 
Furthermore, a set of rules were also set up, which can not only 
classify SARS-CoV-2 infection samples, but also depict the 
methylation patterns for different severity of SARS-CoV-2 
infection. These methylation features and rules would then 
be discussed below.

FIGURE 7

Top five KEGG pathways enriched by the genes converted by the 
top 1,025 methylation features.

48

https://doi.org/10.3389/fmicb.2022.1007295
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Liu et al. 10.3389/fmicb.2022.1007295

Frontiers in Microbiology 09 frontiersin.org

Analysis of essential features

Key methylation signatures that can be used to distinguish 
severity of SARS-CoV-2 infection were obtained by using a set of 
machine learning methods. The genes corresponding to the 
top-ranked methylation signatures, listed in Table 3, were analyzed 
to demonstrate the reliability of the results.

As a type I  IFN regulatory gene, high expressions of 
polyadenosine diphosphate ribose polymerase 9 (PARP9, 
cg22930808) accompanied by hypomethylation at relevant sites 
can enhance IFN signaling (Zhu et al., 2019), thereby playing a 
role in solid tumors, macrophage regulation, and antiviral 
immunity (Xing et al., 2021). PARP9 mediates the production of 
type I  interferon after binding to viral RNA by activating the 
PI3K/AKT3 signaling pathway, thereby protecting against viral 
infection (Zhang et al., 2015). In addition, PARP9 is involved in 
the activation of anti-inflammatory M2 macrophages. This 
condition showed that the SARS-CoV-2 Nsp3 protein is similar to 
PARP9 and can inhibit PARP9 through molecular mimicry, 
depleting M2 macrophages, and weakening interferon signaling, 
which then weakens the ability of the host to resist viral infection 
(Da Silva et al., 2020; Fehr et al., 2020). The reduction of PARP9 
combined with the reduction of NK and CD8+ cells leads to a 
weak viral response of the host, which may be  an important 
reason for the life-threatening severe infections in patients.

Similar to PARP9, as an important host interferon-stimulated 
gene in antiviral infection (Anderson et  al., 2021), MX1 
(cg25888371) is hypomethylated in CpG after viral infection (Luo 
et  al., 2021) and then participates in regulating the defense 
response of the host to infection. The study found that the 
expression of MX1 was significantly increased in COVID-19 
patients compared with non-COVID-19 patients and increased 
with the viral load (Bizzotto et  al., 2020). In addition, the 
methylation of CpG in MX1 is associated with the severity of HIV 
patients using cocaine in HIV infection studies (Shu et al., 2020), 
suggesting that MX1 methylation levels may be a reliable predictor 
of COVID-19 severity.

IRF7 (cg17114584), a member of the interferon regulatory 
factor (IRF) family, can regulate the response of type I IFN to viral 
infection. Phosphorylation of IRF7 upon pathogen stimulation 
followed by nuclear translocation induces the expression of IFN-α 
(Puthia et al., 2016). The methylation level of its promoter region 
affects the clinical manifestations of diseases (Konigsberg et al., 
2021). Studies have shown that the expression level of IRF7 is 

increased in patients with mild/moderate COVID-19 (Li N. et al., 
2021), while those with reduced IRF7 expression due to 
hypermethylation of the IRF7 promoter gene are likely to develop 
severe infection after SARS-CoV-2 infection (Liu and Hill, 2020).

Overall, the obtained genes showed differential expression of 
methylation in different infection groups, suggesting that the 
methylation status of different genes may be an important feature 
to distinguish different SARS-CoV2 infection severities.

Analysis of rules for different classes

The decision rules (Supplementary Table S3) revealed the 
importance of IRF7 (cg17114584) in predicting the clinical outcome 
of SARS-CoV-2 infection. IRF7 is markedly hypermethylated in 
patients with poor clinical response (progressed to ICU or death) 
compared with patients with mild clinical response (discharged 
from the emergency department or admitted to inpatient care). This 
finding is consistent with a previous result, in which IRF7 can 
regulate the response of type I  IFN to viral infection and the 
expression level is negatively correlated with clinical manifestations. 
Recent studies show that methylation levels of IRF7 correlate with 
COVID-19 severity (Barturen et al., 2021), which is also consistent 
with the conclusions in the data source literature (Konigsberg 
et al., 2021).

The decision rule for distinguishing between other infections 
and non-COVID-19/COVID-19 infections indicated that FHL1 
(cg00012680) was highly methylated in patients with other 
infections. As a member of the FHL protein family, FHL1 is mainly 
expressed in the heart and skeletal muscles (Shathasivam et al., 
2010). As a tumor suppressor gene, FHL1 is downregulated in a 
variety of tumors (Wang et al., 2017). Studies have also shown that 
FHL1 is associated with viral infections (e.g., acting as a host factor 
to promote chikungunya virus infection; Meertens et al., 2019). 
Conversely, patients in the “death” cohort had low levels of FHL1 
methylation. A study has shown that in COVID-19 patients, FHL1 
is associated with the JAK–STAT pathway, which can indirectly 
activate STATs and induce various inflammatory responses (Bass 
et al., 2021). Another key criterion in distinguishing patients from 
other infections is the methylation level of TGFB3 (cg06958766), 
which is hypomethylated in COVID-19 patients (especially ICU 
and death patients). Existing studies have demonstrated that 
TGFB3 is a gene related to immune dysregulation in cardiovascular 
disease, and its expression is also dysregulated in COVID-19 (Lee 
et al., 2021). The association of the methylation level of TGFB3 
with the clinical outcome of COVID-19 infection has not been 
revealed, and such level is speculated to be possibly associated with 
poor clinical response to COVID-19.

The result also indicated that the methylation level of the 
interferon type I pathway-related gene RSAD2 (cg10549986) for 
COVID-19 patients was negatively correlated to the severity of 
COVID-19, and the expression of RSAD2 is reported to have 
reached the highest level in the early stage compared with the late 
stage of COVID-19 (Zhang C. et  al., 2021). This finding may 

TABLE 3 Essential methylation sites and their corresponding genes 
for distinguishing severity of SARS-CoV-2 infection.

Methylation sites Gene symbol Description

cg22930808 PARP9 Poly (ADP-Ribose) Polymerase 

Family Member 9

cg25888371 MX1 MX Dynamin Like GTPase 1

cg17114584 IRF7 Interferon Regulatory Factor 7
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be related to the decrease in IFN activity in patients with severe 
infections. In COVID-19 patients, RSAD2 can enhance antiviral 
and immunomodulatory functions after viral infection, and 
patients discharged from the emergency department in the 
current results had lower levels of RSAD2 methylation, possibly 
related to high RSAD2 expression levels and enhanced antiviral 
immunity (Zhu et al., 2020).

Functional analysis based on go and 
KEGG pathway

T-cell activation is the most significantly enriched pathway. 
Studies have shown that RNA m6A methylation is crucial for 
controlling the activation and differentiation of T lymphocytes 
(Qiu et al., 2021). m6A with T-cell activation function mainly 
mediates the activation and proliferation of T cells by increasing 
TGF-β and PI3K-AKT signaling necessary for T-cell 
differentiation and plays an anti-COVID-19 role (Li et al., 2017). 
Increased m6A regulator expression in COVID-19 patients results 
in the high expression of activated CD4 memory T cells (Yao et al., 
2021). As a crucial immune cell in SARS-CoV-2 infection, T cells 
have dual roles in patients with COVID-19. The expression level 
of T cells is increased in patients with mild infection; among 
which, CD8+ T cells highly express cytotoxic molecules, such as 
granzyme A, which play an antiviral immune effect (Liao et al., 
2020). Meanwhile, the expression levels of cytotoxic molecules 
and Tregs in severe patients are reduced (De Biasi et al., 2020; Toor 
et  al., 2021). Studies have shown the presence of a complete 
memory T-cell response in asymptomatic or mildly infected 
COVID-19 patients (Sekine et al., 2020) and detected SARS-CoV-
2-related T-cell responses in healthy blood samples, which may 
be due to seasonal coronavirus-induced T-cell responses and may 
further prevent serious infections (Braun et  al., 2020; Mateus 
et al., 2020).

The current study also observed enrichment of pathways that 
regulate the level of neurotransmitters, suggesting the role of 
methylation of neurotransmitter-related genes in immunity to 
virus infection. Studies have shown that in addition to 
macrophages, viral infection also activates mast cells to release 
histamine, arachidonic acid, and other neurotransmitters, and 
histamine can strongly raise the level of IL-1, which, in turn, 
increases lung inflammation in SARS-CoV-2 infection (Conti 
et al., 2020). Furthermore, SARS-CoV2 infection will reduce the 
synthesis of dopamine and acetylcholine, resulting in the 
weakened immune function of the body (Blum et  al., 2020; 
Alexandris et al., 2021).

Type I interferon plays a crucial role in antiviral immunity, 
and studies have shown that hypermethylation of IFN-related 
genes is a unique methylation signature of severe COVID-19. 
Moreover, three of the significant enrichment pathways are related 
to type I interferon response, further confirming the important 
role of IFN-related methylation in determining the severity of 
COVID-19 and the reliability of the current study. In vivo, IFN can 

bind to IFN receptors in an autocrine and paracrine manner to 
activate the JAK/STAT signaling pathway, thus demonstrating 
antiviral effects (Liu et al., 2012). IFN activity was also lower in 
patients with severe infection than mild infection patients, and 
impaired IFN-α production is an important sign of severe 
infection (Hadjadj et  al., 2020), which may be  related to the 
hypermethylation of IFN-related genes and the inhibition of the 
expression of related genes. In addition, studies have shown that 
IFN expression is delayed in SARS-CoV-2 infection (Kim et al., 
2016). Such a delay leads to high levels of interferon expression in 
severely infected patients but does not reduce viral load; 
meanwhile, IFN pretreatment can significantly reduce viral 
infection levels, suggesting that drugs that can boost IFN 
production may be  an effective option for early treatment of 
SARS-CoV-2 (Park and Iwasaki, 2020).

The enrichment of cellular components of differentially 
methylated genes mainly focused on the virus infection process of 
cells, including cell junction and migration. Synapses mainly 
mediate information transmission between neurons; they can also 
transmit large particles and mediate virus particles into the central 
nervous system, thus reflecting the neuroinvasiveness of 
coronaviruses (Li et al., 2020). As the main site of cell adhesion, 
focal adhesions help viral particles enter cells, and its functional 
integrity is critical to the infection and spread of SARS-CoV-2 
(Sulzmaier et al., 2014).

This study also found enrichment of differentially methylated 
genes in the RAP1 pathway. RAP1 pathway plays an important 
role in processes, such as cell adhesion, junction, and polarity, and 
promotes tumor cell invasion and migration (Looi et al., 2020). 
Pulmonary vascular barrier integrity defection is a fatal factor in 
severe COVID-19 patients (Yamamoto et al., 2021). Meanwhile, 
studies have found that RAP1 can enhance endothelial cell–cell 
junctions mediated by VE-cadherin and regulate vascular 
permeability (Rho et al., 2017), suggesting that the RAP1 signaling 
pathway may serve as a potential therapeutic target for COVID-19.

The analysis of key features and related decision rules verified 
the effectiveness of methylation status in distinguishing different 
states of SARS-CoV-2 infection, which will provide a reference for 
studying the stratification of patients and help develop new 
treatment strategies.

Conclusion

A computational workflow containing several machine 
learning methods was designed to identify the blood methylation 
features and their expression rules, which can distinguish the 
severity of SARS-CoV-2 infection. First, the methylation features 
in the expression profile were analyzed by the MCFS algorithm, 
producing a ranked feature list. Next, this list was introduced into 
the IFS method to generate a series of feature subsets. Different 
classification algorithms were used to train samples comprising 
these feature subsets to build classifiers. After evaluating their 
performance, the optimal features were determined. The 
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classification rules were extracted by the optimal DT classifier. The 
essential features were analyzed by functional enrichment to 
detect their biofunctional information. Some key features and 
rules are justified by recently published academic literature, which 
provides a reference for further related research.
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Background: Human papillomavirus (HPV) infection is the leading cause of

cervical cancer. More and more studies discovered that cervical microbiota

(CM) composition correlated with HPV infection and the development of

cervical cancer. However, more studies need to be implemented to clarify

the complex interaction between microbiota and the mechanism of disease

development, especially in a specific area of China.

Materials and methods: In this study, 16S rDNA sequencing was applied on

276 Thin-prep Cytologic Test (TCT) samples of patients from the Sanmenxia

area. Systematical analysis of the microbiota structure, diversity, group,

and functional differences between different HPV infection groups and age

groups, and co-occurrence relationships of the microbiota was carried out.

Results: The major microbiota compositions of all patients include

Lactobacillus iners, Escherichia coli, Enterococcus faecalis, and Atopobium

vaginae at species level, and Staphylococcus, Lactobacillus, Gardnerella,

Bosea, Streptococcus, and Sneathia in genus level. Microbiota diversity was

found significantly different between HPV-positive (Chao1 index: 98.8869,

p < 0.01), unique-268 infected (infections with one of the HPV genotype

52, 56, or 58, 107.3885, p < 0.01), multi-268 infected (infections with two or

more of HPV genotype 52, 56, and 58, 97.5337, p = 0.1012), other1 (94.9619,

p < 0.05) groups and HPV-negative group (83.5299). Women older than

60 years old have higher microbiota diversity (108.8851, p < 0.01, n = 255)

than younger women (87.0171, n = 21). The abundance of Gardnerella and

Atopobium vaginae was significantly higher in the HPV-positive group than

in the HPV-negative group, while Burkholderiaceae and Mycoplasma were

more abundant in the unique-268 group compared to the negative group.

Gamma-proteobacteria and Pseudomonas were found more abundant in

older than 60 patients than younger groups. Kyoto Encyclopedia of Genes

and Genomes (KEGG) and Clusters of Orthologous Groups (COG) analysis
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revealed the effects on metabolism by microbiota that the metabolism of

cells, proteins, and genetic information-related pathways significantly differed

between HPV-negative and positive groups. In contrast, lipid metabolism,

signal transduction, and cell cycle metabolism pathway significantly differed

between multi-268 and negative groups.

Conclusion: The HPV infection status and age of women were related to CM’s

diversity and function pathways. The complex CM co-occurrent relationships

and their mechanism in disease development need to be further investigated.
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Introduction

Cervical cancer is one of the most common malignant
tumours among women. Clinical and epidemiological studies
have determined that persistent Human Papillomavirus (HPV)
infection is the leading risk factor for developing cervical cancer
(Khan et al., 2020). The average time interval from carcinogenic
HPV infection to cervical cancer progression is 25–30 years.
The Thin-prep Cytologic Test (TCT) and HPV DNA were
recommended to be used for HPV infection and cervical cancer
status determination (Zhang et al., 2020). TCT detects the
morphology of the cells and analyses the bacterial population
in the sample through 16S rDNA (Deoxyribonucleic Acid) (Liu
et al., 2020), which makes it possible to perform large-scale
testing of samples.

Recent research revealed that microbiota might be a
significant factor in the relationship between HPV and cervical
cancer. Klein et al. found that changes in the cervical
microbiota (CM) are related to cervical cancer (Kunene and
Mahlangu, 2017). Some studies have shown that cervical/vaginal
Lactobacilli can produce lactic acid that inhibits the growth
of bacteria associated with bacterial vaginosis (BV) and viral
infections (Polatti, 2012). The change in the proportion of
microorganisms is related to pathological changes in the
reproductive tract. In addition, recent studies have shown a
clear correlation between microbiota and HPV infection (Libby
et al., 2008; Anahtar et al., 2015). A report also explained
a positive correlation between cervical HPV infection and
BV-related microbiota (Gillet et al., 2011; Lee et al., 2013).
Therefore, microbiota may play an important role in between,
which implies that the reveal of the mechanism microbiota
play is beneficial to comprehend the HPV infection and cancer
evolution. However, the current research results have not
clarified the mutual influence (Libby et al., 2008; Anahtar et al.,
2015). So far, there are relatively few studies on the association
amongst CM, cervical cancer and HPV infection, especially in
China, which prompted this research to be conducted.

Therefore, samples from 276 patients were obtained to
conduct microbiota research for further analysis. This research
aimed to explore the relationship between the HPV infection
and CM changes by analysing microbiota changes and the HPV
infection concerning HPV infection group, different genotype
HPV groups, and the impact of microbiota on cell and metabolic
functions, as well as to explore the microbiota changes amongst
the group divided by ages in a cohort of populations in
Sanmenxia, Henan Province. Aside from that, this research also
provides a new reference basis for further understanding the
CM’s overall characteristics.

Materials and methods

Study population and specimen
collection

A total of 276 cervical lesion samples were collected
from patients at Sanmenxia Central Hospital for high-
grade squamous intraepithelial lesion (HSIL) screening. The
hospital’s medical ethics committee approved this study,
and all experiments were carried out following the relevant
guidelines and regulations. A fluorescent HPV genotyping
kit (Bioperfectus Technologies, Jiangsu, China) was used to
analyse the samples for confirmation and subsequent HPV
typing. Women who came to Sanmenxia central hospital to do
cervical tests in 2019, including TCT test and HPV genotype
test, were enrolled in this study. Those samples were not
qualified for further study, or low-quality sequencing results
were excluded from the study.

DNA extraction

After Pap Smear preparation, 1-ml of the remaining
fluid sample was used for DNA isolation. According to the
manufacturer’s instructions, the total Genomic DNA sample was
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extracted using TIANamp Micro DNA Kit (TIANGEN, Beijing,
China). The double-stranded (ds) DNA was quantified using a
Nanodrop 2000 and Qubit dsDNA HS assay kit (Thermo Fisher
Scientific, Inc., Waltham, MA, USA). The average fragment size
of DNA (> 5 Kbp) was measured (identified by comparison
to a DL2000 PLUS DNA Ladder, Life Technologies, Carlsbad,
CA, USA) on a 1.0% agarose gel in 1×TAE buffer on a Bio-Rad
CHEF DRII system.

Sequencing and bioinformatic
processing

To build a sequencing library, use PCR primers to amplify
the V3–V4 hypervariable region of the 16S rDNA gene.
This area provides sufficient information for the taxonomic
classification of microbial communities in specimens related
to human microbiota research and is used by the Human
Microbiota Project.

Then use Agencourt AMPure XP (Beckman Coulter,
Indianapolis, Indiana) to select the product size in a ratio of 0.9
and group in equal moles. Then, a Qubit 2.0 fluorometer (Life
Technologies) was used to quantify the pool of the selected size
and loaded into the Illumina HiSeq flow cell (Illumina, Inc., San
Diego, CA, USA) 2 × 250. Mix the library with the Illumina-
generated PhiX control library and our genomic library, and use
fresh NaOH for denaturation. Perform image analysis, base calls,
and data quality assessment on the MiSeq instrument.

Data analysis

Paired-end sequencing (2 × 250) was performed on
Illumina HiSeq. The FASTQ conversion of the original data file
is completed after demultiplexing with MiSeq Reporter. The
quality assessment of FASTQ files is carried out using FASTQC,1

then quality filtering is performed using the FASTX toolkit.2

The high-quality reads used for analysis (where 80% of the base
Q scores > 20 reads) and reads with unknown bases (“N”)
are discarded. The remaining steps are performed using the
Quantitative Analysis of Microbial Ecology (QIIME) software
package version 1.8. Use UCHIME to filter chimeric sequences
and use UCLUST to group sequences into the Operational
Taxa Unit (OTU) with a similarity threshold of 97%. The
Ribosomal Database Program (RDP) classifier trained using
Greengenes 16S rDNA database (v13.8) assigns all OTUs to
all OTUs with a confidence threshold of 80%. OTUs with an
average abundance of less than 0.005% are eliminated. Use
PyNAST v1.2 for multiple sequence alignment and FastTree v2.1

1 http://www.Bioinformatics.babraham.ac.uk/projects/fastqc/

2 http://hannonlab.cshl.edu/fastx_toolkit/

to construct a phylogenetic tree. The alpha and beta diversity
indicators are calculated according to the method implemented
in QIIME. A Phylogenetic Investigation of Communities by
Reconstruction of Unobserved States (PICRUSt) is used to
predict the orthologs from the Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Clusters of Orthologous Groups (COG)
(i.e., the count of functional genes) for each sample and inferred
genes. The count is allocated to the KEGG and COG channels.

Statistic analysis

The numeric values representing the relative abundance of
the OTU were analysed for statistical significance by performing
a t-test. The statistical software in Sigma Plot version 11.0
was used (Systat Software Inc., San Jose, CA, USA). A total
of 95% confidence intervals were estimated for sensitivity and
specificity with a binomial test. Differences in means with
p-values less than 0.05 were considered statistically significant.
When tests for normality failed, the non-parametric data were
analysed using the Mann–Whitney Rank Sum test and median
values were determined.

Results

Patient cohort sociodemographic and
characteristics

Complete data were available for 276 cervical smear samples
taken from eligible women. The patients’ characteristics of the
study population were summarised in Table 1, and detailed
information about each patient was shown in Supplementary
Table 1. The mean age of the patient’s cohort was 44.68 ± 10.94,
from 17 to 80 years old. There were 83 HPV-infected patients
in the 255 candidates under 60 years old and 11 HPV-infected
patients in the 21 candidates over 60. The infection status of
the subjects, including HPV single-type infection and multi-
type infection. Five majors HPV types were detected, including
HPV16 (n = 10), HPV39 (n = 7), HPV52 (n = 8), HPV56
(n = 7), and HPV58 (n = 12), and 36 subjects were infected by
other HPV genotypes. Several cases were detected as unique-
268 infections (52, 56, or 58 genotype infections, n = 27) among
the 80 single infections and other related co-infections were
multi-268 infections (52, 56, and 58 genotypes infecting two
or more, n = 13) among the 14 multiple infections. Hence, the
number of infections excluding 52, 56, and 58 were 54 infections,
denoting as other1. Among the 21 subjects diagnosed with
Cervical Intraepithelial Neoplasms (CIN), thirteen patients were
infected by HPV and eight were not. While 81 HPV-positive
and 174 (255 totally) HPV-negative subjects were identified in
subjects without CIN status.
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TABLE 1 Patients age and infection status.

Characteristics Positive Negative

Age

A 83 172

A60 11 10

HPV infection situation

Single-type infection 80 –

HPV16 10 –

HPV39 7 –

HPV52 8 –

HPV56 7 –

HPV58 12 –

Other 36 –

Unique-268 27 –

Multi-type infection 14 –

Muiti-268 13 –

Other1 54 –

CIN suffering

CIN 13 8

Normal 81 174

A refers to age under 60, A60 refers to age over 60; Unique-268 refers to HPV single
infection with one of 52, 56, or 58 subtypes, multi-268 refers to HPV multiple infections
with at least two of 52, 56, or 58 subtypes, other1 refers to HPV infections besides 52, 56,
and 58 subtypes. *Denotes no data.

Baseline composition similar but the
structure of the cervical microbiota
variant between samples

The average length of the PCR product was about 465 bps
from V3 to V4 segments of the 16S rDNA genes. After
sequencing, the data amount and quality of each sample
were evaluated by GC content (averagely 52.8%), Q20 value
(averagely 96.2%), Q30 value (averagely 92%), and effectiveness
(averagely 73.3). The detailed information of each sample was
summarised in Supplementary Table 1. After removing the low-
quality sequencing reads, a total number of 14,435,817 clean tags
and an average of 79,095 tags of each specimen (each specimen
generating at least 8,807 clean tags) were obtained. After the
removal of singletons and rare OTUs (species abundance less
than 0.005%), a total of 11 phyla, 17 classes, 30 orders, 53
families, 99 genera, and 132 species (Supplementary Table 2)
were identified from the study cohort sequencing data.

The abundance of the ten most abundant bacteria families
was summarised and listed in Supplementary Table 3.
Lactobacillaceae, Enterobacteriaceae, Staphylococcaceae,
Enterococcaceae, Bifidobacteriaceae, Beijerinckiaceae,
Streptococcaceae, Leptotrichiaceae, Burkholderiaceae, and
Corynebacteriaceae were the top 10 most abundant bacteria
families in all the samples. The corresponding distribution
figure is shown in Supplementary Figure 1. Results showed
that the microbiota structure variant obviously between

samples, but there were still pattern similarities between parts of
the samples. As previously published papers mentioned, the CM
was classified into five clusters (Zhou et al., 2020). Our results
showed sample clusters with highly abundant Escherichia-
Shigella, Lactobacillus, Enterococcus, Staphylococcus, and
Lactobacillus in each cluster, respectively (Supplementary
Figure 1). Moreover, some samples showed different
characteristics with more bacterium types in the structure.
Sample alpha diversity, including Chao1, ACE, Shannon,
and Simpson indexes of all the samples, was calculated and
summarised in Supplementary Table 4, indicating that the
diverse samples differentiated significantly between samples.

Differences in human papillomavirus
infection status or age are highly
relevant to the change of microbiota
structure and diversity

This study explored the difference in microbiota
composition and diversity between sample groups. Two
group pairs showed significant differences in HPV infection
status and age. The relative abundance results of different
HPV infection status groups (Figure 1A and Supplementary
Table 4) showed the following conclusions: (1) Both normal
sample groups with HPV infection (n = 78) and non-infection
(n = 187) were predominated by the following types of bacteria,
including Lactobacillus iners (HPV-positive/HPV-negative:
0.185/0.104), Escherichia coli (0.112/0.143), Enterococcus
faecalis (0.071/0.108), and Atopobium vaginae (0.033/0.013) in
species level, and Staphylococcus (0.116/0.117), Lactobacillus
(excluding Lactobacillus iners AB1, 0.078/0.069), Gardnerella
(0.076/0.048), Bosea (0.026/0.049), Streptococcus (0.015/0.043),
and Sneathia (0.031/0.020) in genus level; (2) In the microbiota
structure (relative abundance), which may illustrate a structure
change before and after the HPV infection (Figure 1A and
Supplementary Table 4). Further study on the unique-268
(sum of 52, 56, and 58 genotype HPV infection cases, n = 27)
and multi-268 (co-infections with one or two HPV 52, 56,
and 58 genotypes, n = 13) types of HPV infected samples,
the microbiota detected was almost the same as the HPV-
positive except for the composition proportion (Figure 1B and
Supplementary Table 4). Additionally, the age group under 60
(n = 255) and above 60 (n = 31) detected a similar microbiota
with a different proportion of composition (Figure 1C and
Supplementary Table 4).

Alpha diversity was applied to analyse the complexity of
species diversity. Regarding the analysis, the HPV-positive
group had higher diversity (Chao1 index: 98.8869, p < 0.01)
compared to the negative group (Chao1 index: 83.5299,
Figures 1C,D and Supplementary Table 5). This disparity in
microbiota diversity resulted from the significant differences

Frontiers in Microbiology 04 frontiersin.org

57

https://doi.org/10.3389/fmicb.2022.1004664
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-13-1004664 October 12, 2022 Time: 15:22 # 5

Hu et al. 10.3389/fmicb.2022.1004664

FIGURE 1

Relative abundance and alpha-diversity analysis of this study. (A) Microbiota relative abundance distribution of HPV-positive and HPV-negative
patient groups; (B) microbiota relative abundance distribution of HPV-positive unique-268 infection and multiple 268 infection, and
HPV-negative patient groups; (C) microbiota relative abundance analysis of the elder (age > 60) and the younger (age ≤ 60) patient groups;
alpha-diversity analysis; a-diversity comparison bar diagram, (D) Chao1 index for normal (without CIN) HPV-positive and HPV-negative patient
groups, (E) Chao1 index for HPV-positive unique-268, and multiple 268 infections, HPV-negative patient groups, (F) Chao1 index for the elder
(age > 60) and the younger (age ≤ 60) patient groups. neg: HPV-negative without CIN, pos: HPV-positive without CIN, multi-268: HPV 52, 56,
and 58 genotypes multiple infection (regardless of CIN), unique268: HPV 52, 56, or 58 genotypes unique (single) infection (regardless of CIN),
other1: other HPV infection situations (regardless of CIN). A: age under 60, A60: age above 60, ∗p-value < 0.05, ∗∗p-value < 0.01.

between the two cases and evidenced structural change. Unique-
268 (Chao1 index: 107.3885, p < 0.01), multi-268 (Chao1
index: 97.53) and other1 (Chao1 index: 94.9619, p < 0.05) had
a higher microbiota diversity compared to the HPV-negative
groups (Figure 1E and Supplementary Table 5). In addition,
compared to younger patients, the elder group (age > 60,
n = 31) has a higher diversity with statistical significance (Chao1
index: 108.8851, p < 0.01) than the younger group (age ≤ 60,
n = 255, Chao1 index: 87.0171, Figure 1F and Supplementary
Table 5), which also demonstrates the difference in microbiota
structure. Hence, this diversity analysis indicates the following
conclusions: (1) The normal HPV-positive groups and (2)
unique-268 HPV and other1 infections were more diverse in
microbiota than the HPV-negative groups, while (3) the age
group over 60 had higher diversity concerning the microbiota.

Bacteria biomarkers were identified in
different subject groups

Linear discriminant analysis (LDA) score was used to
compare the different bacteria of each group. The results

showed that Bifidobacteriales (order), Bifidobacteriaceae
(family), Gardnerella (genus), Coriobacteriia (class),
Atopobium vaginae (species), and Clostridia (class)
were higher in HPV-infected group compared with the
negative (Figure 2A). Between multi-268 and unique-268
groups, Betaproteobacteriales (order), Burkholderiaceae
(family), Weeksellaceae (family), Flavobacteriales (family),
Gardnerella (genus), Pseudomonas aeruginosa (species),
and Mycoplasma (genus) were found with higher relative
abundance in unique-268. In contrast, Saccharimonadales
(order), Saccharimonadia (class), Patescibacteria (phylum),
Bifidobacteriales (order), and Bifidobacteriaceae (family)
were higher in the multi-268 group (Figure 2B). Among
them, Bifidobacteriaceae was the most significantly
different between the two groups, indicating its strong
association with multi-268 infection (Figure 2B).
Corynebacterium (genus), Lactobacillus iners AB-1
(species), Bacilli (class), and Firmicutes (phylum) were
identified higher in the group with age younger than
60 and Gamma-proteobacteria (class) and Pseudomonas
(genus) higher in the group older than 60 years old
(Figure 2C).

Frontiers in Microbiology 05 frontiersin.org

58

https://doi.org/10.3389/fmicb.2022.1004664
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-13-1004664 October 12, 2022 Time: 15:22 # 6

Hu et al. 10.3389/fmicb.2022.1004664

FIGURE 2

Microbiota significant difference analysed by LEfSe. (A) HPV-positive and HPV-negative patient groups, (B) HPV-positive single infection and
multiple infection patient groups, and (C) age above and below 60 years old patient groups. LDA score threshold set as 4, above 4 will be shown
in charts. LDA, linear discriminant analysis; LEfSe, LDA effective size. HPV, Human Papillomavirus. k_: kingdom, p_: phylum, c_: class_, o_: order,
f_: family_, g_: genus.

Microbiota function difference of
subjects group was identified

Kyoto Encyclopedia of Genes and Genomes and COG
analysis were applied, and functional difference between
groups was explored. Among the three group comparisons,
two group pairs were found significantly different and
they are HPV-negative/positive group pair and the multi-
268/negative group pair. No significant function difference
was identified between Age groups. Between HPV-positive and
negative groups, KEGG pathways, including Cell growth and
death, Excretory system, Folding, sorting, and degradation,
Endocrine and metabolic diseases, Nucleotide metabolism,
Replication and repair, Immune system, and Transcription,
were significantly different (Figure 3A). Moreover, the COG
categories of Amino acid transport and metabolism, Cell cycle
control, cell division, chromosome partitioning, Inorganic ion
transport and metabolism, Translation, ribosomal structure
and biogenesis and Defence mechanisms between the two

groups were significantly different (Figure 3B). Comparison
analysis results of multi-268 and the negative group showed
that KEGG pathway Excretory system, Lipid metabolism, Signal
transduction and Folding, sorting and degradation and COG
categories of Cell cycle control, cell division, chromosome
partitioning were significantly different (Figures 3C,D).

Complexed cervical microbiota
network relationships existed in the
cervical microbiota system

Co-occurrent analysis of identified microbiota in cervical
samples and results are shown in Figure 4. There were
80 genera of bacteria identified with more than seven
relationships with other bacteria, and the correlation was
higher than 10%, with a p-value less than 0.05. A network
relationship was identified between them (Figure 4). The
top 50 bacteria with high correlation were shown in the
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FIGURE 3

Microbiota KEGG and COG function difference diagrams. The picture shows the difference analysis diagram of the KEGG (and COG) metabolic
pathway under the second level (also can be analysed for the third or first level): the different colours in the picture represent different groups.
The figure shows the abundance ratio of different functions in the two sets of sample groups, the middle shows the difference ratio of the
function abundance within the 95% confidence interval, and the rightmost value is the p-value. (A) KEGG pathway difference between
HPV-positive and HPV-negative patient groups, (B) COG pathway difference between HPV-positive and HPV-negative patient groups. (C) KEGG
pathway difference between multi-268 HPV infections and HPV-negative patient groups, (D) COG pathway difference between multi-268 HPV
infections and HPV-negative patient groups. KEGG, Kyoto Encyclopedia of Genes and Genomes; COG, Clusters of Orthologous Groups.

figure (Figure 4), 24 of which were correlated with two
or more other genera. The abundance of the genera was
different, ranging from 12.0 to 15463.4, and no significant
correlation was observed between genera abundance and its
correlation with other genera. The abundance of Lactobacillus
(abundance of 15463.4), Escherichia-Shigella (10609.8), and
Staphylococcus (9270.3) were high, but the correlation with
other bacteria is relatively low, less than 0.34, 0.32, and 0.27,
respectively. On the contrary, some genera’s abundance was
relatively low, but the correlations with others were quite high
(Supplementary Table 6). For example, Atopobium (abundance:
1510.4) is highly correlated to Dialister (correlation: 0.675,
abundance: 236.2), Prevotella (0.656, 1259.3) and Fastidiosipila
(0.573, 1121.7); Achromobacter (483.5) is tensely correlated to
Stenotrophomonas (0.793, 305.4), Sphingobium (0.759, 241.9),

and Herbaspirillum (0.648, 21.8); Gardnerella (4349.4) is highly
correlated to Atopobium (0.659, 1510.4), Aerococcus (0.527,
246.2) and Sneathia (0.0.498, 2389.7); Sneathia (2389.7) is
highly correlated to Fastidiosipila (0.648, 1121.7), DNF00809
(0.604, 242.4), Parvimonas (0.572, 278.8), and Atopobium (0.546,
1510.4). In summary, a complexed bacteria network relationship
was existing in cervical system and the interactions between
genera was not correlated with its abundance.

Discussion

Data analysis showed that changes in the cervical
microbiome, especially anaerobic bacteria, were significantly
correlated with HPV infection status. Gardnerella, Atopobium
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FIGURE 4

Microbiota network diagram. The top 50 most relevant genera were shown here. The circle in the figure represents the species, and the size of
the circle represents the abundance; the line represents the relation between the two species, the thickness of the line represents the strength
of the relation, and the colour of the line: orange represents positive correlation, and the green represents negative correlation.

vaginae, and Sneathia were the three most increased amongst
microbiota, and these microorganisms form pathogenic
biofilms through close cooperation. Gardnerella acts as a
“scaffold” for biofilms (Harwich et al., 2010; Fethers et al.,
2012; Curty et al., 2017; Khan et al., 2020), promoting the
growth of Atopobium vaginae (Libby et al., 2008; Anahtar et al.,
2015), Sneathia and other related pathogens by altering the
microenvironment (Lee et al., 2013; Zhou et al., 2020). The
growth of these pathogens has led to a rise in microbial diversity.
Not only that, the cellular pro-inflammatory responses that
these pathogenic microorganisms elicited will affect cellular
metabolisms (Kacerovsky et al., 2015; Mitra et al., 2015, 2020;
Onderdonk et al., 2016; Gosmann et al., 2017; Khan et al., 2020),
such as amino acid transport (Mitra et al., 2020) and inorganic
ion transport, and even cell shedding (Harwich et al., 2012;
Africa et al., 2014). This deteriorates the immune response and
leads to a defection of the microenvironment (Anahtar et al.,
2015), making cervix HPV susceptible and possibly leading to
the cervical cancer. Therefore, these three microorganisms are
of great significance as biomarkers in the clinical identification
of HPV infection.

In addition to the correlation with HPV, there is also a
relationship between CM and age status. Lee et al. (2013)
suggested that the decline in oestrogen and progesterone levels
in the female reproductive tract after menopause is associated
with an increased proportion of anaerobic bacteria. Several
studies have also confirmed that older women have a higher
proportion of anaerobic bacteria, and the biofilm produced
by them is an important factor in HPV susceptibility (Singh
et al., 2015; Zhou et al., 2020). Besides, Lee’s experiment
also evidenced that due to the presence of oestrogen and
progesterone, the proportion of Lactobacillus in young women
is higher to maintain the homeostasis of the reproductive tract

microenvironment (Lee et al., 2013; Oh et al., 2015). In contrast,
the proportion of Lactobacillus in older women is lower,
so it insufficiently maintains the homeostasis of the internal
environment, making the proportion of γ-proteobacteria and
Pseudomonas species increase as biomarkers.

However, this study also showed some results that differed
from the prevailing view. In this study, the proportion of
Lactobacillus in the HPV-positive group was higher than that
in the normal group. It contradicts the mainstream ideas that
the presence of Lactobacillus can maintain pH stability (Larsson
et al., 1991; Brotman et al., 2014) and homeostasis in the
reproductive tract (Mitra et al., 2016; Borgogna et al., 2020)
and is therefore reduced in the HPV-positive group. However,
a report from Iran showed the same results as this research
and concluded that the proportion change of Lactobacillus was
not strongly correlated with HPV infection status but did not
rule out the influence of factors such as customs on sample
interference (Ghaniabadi et al., 2020). Therefore, the influence
of other factors, such as personal habits, could not be ruled out
for the presence of interference with the sample microbiota. The
more detailed mechanisms still need more experiments to verify
and analyse.

Aside from that, this study also presented some new
findings. A higher abundance of Bifidobacterium was also found
in the multi-268 group than in the unique-268 group when
comparing the two case samples. Under such circumstances,
the same bacteria have different environmental adaptations in
different case samples. Besides, by analysing the low-abundance
flora of different groups, it was found that there were differences
in the microbial composition of different HPV infection states.
Comparing the LEfSe analysis of unique-268 and multi-268,
it could be seen that some low-abundance bacterial groups
play important roles in different HPV-infected samples. In the
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unique-268 group of patients, Burkholderiaceae, a pathogenic
bacteria, could sensitise cells to HPV (Brenner et al., 2005).
Mycoplasma could promote HPV penetration, survival and
persistence, and it is frequently present in high-risk HPV
patients (Biernat Sudolska et al., 2011; Ye et al., 2018; Wei et al.,
2021). Pseudomonas aeruginosa is a prevalent factor in high-
risk HPV samples, especially in the cancerous cervix (Werner
et al., 2012; Di Paola et al., 2017; Zhang et al., 2021). The low-
abundance species Saccharimonadales, Saccharimonadia, and
Patescibacteria in the multi-268 group were all related to the
synthesis of compound elements (Herrmann et al., 2019; Lemos
et al., 2019; Tian et al., 2020; Hosokawa et al., 2021; Mason et al.,
2021; Zhou et al., 2021; Wang et al., 2022). The results of the
above microbiota under different HPV infection statuses have
clinical implications for biomarkers for identifying cases.

In addition to the above microorganisms, this study
also found that the microbiota (especially pathogenic
microorganisms) significantly impacted metabolic function.
Apart from the abnormal cellular metabolism mentioned above,
differences in genetic metabolism, lipid metabolism, signal
transduction and cell cycle metabolism were also detected
between the HPV-positive group and the multi-268 group.
Abnormalities in these functions are likely associated with
increased microbial diversity and an increased proportion of
pathogenic microorganisms (Mitra et al., 2020). However, there
are few studies in this regard, so further experiments are needed
to explore their relationship.

This study analysed the possible effects of cervical
microbiome changes from different aspects. However, due
to the limited number of statistical samples in the research
process, we could not perform significant statistics for some
more refined HPV genotypes. In addition, the lack of clinical
information about patients (such as smoking, eating and other
behaviours that may cause cervical cancer) also interfered with
the experiment to a certain extent. However, the data analysis
of this experiment still provides a sufficient factual basis and
data support for clinical examination. Meanwhile, the microbial
changes of single-infection and multi-infection case samples
and the differences in metabolic functions under different HPV
infection conditions were compared from a new perspective.

Conclusion

Overall, the characteristics of cervical samples microbiota
were explored in this study. Escherichia coli, Enterococcus
faecalis, and Atopobium vaginae in species level, Staphylococcus,
Lactobacillus (excluding Lactobacillus iners AB1), Gardnerella,
Bosea, Streptococcus, and Sneathia in genus level were
found as high abundant bacteria in studied samples.
Microbiota composition was related to HPV infection
status and age, which further influenced the diversity.
Specific bacteria were identified with significantly different

abundance between groups. For instance, compared with
unique-268, Bifidobacteriaceae impacted more on the
multi-268 group. Moreover, some low abundance bacteria
also play a vital role in specific HPV infections, such as
Saccharimonadales, Saccharimonadia, and Patescibacteria in
multi-268, Burkholderiaceae Mycoplasma, and Pseudomonas
aeruginosa in unique-268. Besides, the different composition
of microbiota also affected the disparities of function
pathways to the metabolism of the cell, protein and genetic
information between HPV infection and HPV-negative
groups, and the metabolism of lipid, signal transduction
and cell cycle between multi-268 infection and HPV-
negative groups. In summary, our study descriptively
explored the microbiota characteristics of cervical samples
from Sanmenxia area patients. The analysis of single
infections was not developed due to the sample size.
The research concerns specific single infections, and CIN
could be further investigated into their microbiota in future
works.
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Local recurrence and distant metastasis are the main causes of death

in patients with pancreatic adenocarcinoma (PDAC). Microbial content in

PDAC metastasis is still not well-characterized. Here, the tissue microbiome

was comprehensively compared between metastatic and non-metastatic

PDAC patients. We found that the pancreatic tissue microbiome of

metastatic patients was significantly different from that of non-metastatic

patients. Further, 10 potential bacterial biomarkers (Kurthia, Gulbenkiania,

Acetobacterium and Planctomyces etc.) were identified by differential

analysis. Meanwhile, significant differences in expression patterns across

multiple omics (lncRNA, miRNA, and mRNA) of PDAC patients were found.

The highest accuracy was achieved when these 10 bacterial biomarkers were

used as features to predict recurrence or metastasis in PDAC patients, with

an AUC of 0.815. Finally, the recurrence and metastasis in PDAC patients

were associated with reduced survival and this association was potentially

driven by the 10 biomarkers we identified. Our studies highlight the association

between the tissue microbiome and recurrence or metastasis of pancreatic

adenocarcioma patients, as well as the survival of patients.

KEYWORDS

pancreatic adenocarcinoma,multi-omics, microbial community, random forest, local
recurrence, distant metastasis

Introduction

Pancreatic adenocarcinoma (PDAC) remains one of the most lethal malignancies,
owing in part to its early onset of metastasis (Roe et al., 2017). Most PDAC patients
have metastasized at the time of diagnosis, when there is minimal benefit from surgical
or chemotherapy interventions (Ryan et al., 2014; Liu et al., 2021). Consequently,
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only 5% of PDAC patients survive more than 5 years
after diagnosis because of its unpredictability (Chen, 2015).
Improving the dismal prognosis requires a better understanding
of the mechanisms of PDAC metastasis, especially the
identification of metastasis biomarkers.

The microbiota inhabiting the human body is estimated
to be between 10 and 100 trillion (Costello et al., 2009).
While most microorganisms reside in the gastrointestinal tracts,
microbiota can be found in other organs and tissues (Li
et al., 2021). They play an important role in maintaining body
homeostasis, and dysbiosis of the microbiota may contribute
to the pathogenesis of many diseases (Liang et al., 2018).
Growing researches have suggested that microbial communities
influence the occurrence, progression, and response to therapy
of pancreatic adenocarcioma and other cancers (Fan et al.,
2018; Riquelme et al., 2019; Yang M. et al., 2022). For
example, studies have shown that cancerous pancreas has
significantly richer microbiota compared to normal pancreas
(Pushalkar et al., 2018). Recently, Riquelme et al. (2019)
found that interaction between pancreatic adenocarcioma
microbiome composition and gut microbiome affects host
immune responses. Besides, studies have shown that oral
antibiotic depletion of gut microbiota in mice suppresses tumor
growth and metastasis while activating antitumor immunity
in the tumor environment (Wei et al., 2019; Liu J. et al.,
2022). However, the potential association between microbial
communities of cancer tissue and pancreatic adenocarcioma
metastasis remains a knowledge gap.

The occurrence and development of pancreatic
adenocarcioma are affected by multiple factors. Previous
studies have revealed that the development of pancreatic
adenocarcioma is accompanied by changes in the expression
patterns of large set of mRNAs (He et al., 2022) and non-
coding RNAs, such as lncRNAs and miRNAs (Xiao et al.,
2018; Wang et al., 2019; Xu et al., 2020b; Zhang et al.,
2020). LncRNA PSMB8-AS1 contributes to pancreatic
adenocarcioma progression via modulating miR-382-
3p/STAT1/PD-L1 axis (Zhang et al., 2020). LncRNA
DANCR promotes proliferation and metastasis in pancreatic
adenocarcioma by regulating miRNA-33b (Luo et al.,
2020). Wang et al. (2020) reported that the upregulation
of METTL14 led to the decrease of PERP levels via m6A
modification, promoting the growth and metastasis of
pancreatic adenocarcioma. Sohrabi et al. (2021) found
that 6 out of 43 common miRNAs (hsa-miR-210, hsa-
miR-375, hsa-miR-216a, hsa-miR-217, hsa-miR-216b,
and hsa-miR-634) had significant differences in their
expression profiles between the tumor and normal groups
of pancreatic adenocarcioma. However, comparative studies
on the accuracy of different omics in predicting recurrence
and metastasis in pancreatic adenocarcioma patients are
still vacant.

In this study, 37 samples of patients with recurrence
or metastasis (RM) and 42 samples of patients without
recurrence or metastasis (no-RM) were collected, and the tissue
microbiome of all patients with pancreatic adenocarcioma were
characterized. The main objectives of this study were: (1)
to identify the bacterial biomarkers capable of discriminating
between RM and non-RM, (2) to compare the differences
in transcriptome levels between RM and no-RM patients,
and (3) to compare the performance of microbes and
mRNAs in predicting pancreatic adenocarcioma recurrence
or metastasis. Our study sheds light on the ability of tissue
microbial biomarkers of pancreatic adenocarcioma to predict
recurrence or metastasis.

Materials and methods

Sampling populations and datasets

Microbiome data and transcriptome data were obtained
from the Cancer Genome Atlas (TCGA) database.1 The
microbiome data of pancreatic adenocarcioma patient tissues
were derived from the re-cleaning of the sequencing data
of samples from the TCGA database by Rob Knight’s team
(Poore et al., 2020). The microbial RNA data of pancreatic
adenocarcioma patients were selected and the clinical data
of pancreatic adenocarcioma in TCGA were downloaded.
The samples were divided into two groups according to
whether the patients had recurrence or metastasis within
1 year after the initial diagnosis. Patients with recurrence
or metastasis or both within 1 year were defined as RM,
and those without recurrence or metastasis were defined as
no-RM. In total, we matched 79 samples, including 37 RM
and 42 no-RM. We also collected some essential clinical
indicators of the patients, such as age, gender, and disease
stage, etc.

Statistical analysis

Statistical analysis was performed using R language.
Wilcoxon rank sum test was used to determine the
relationship between different clinical features and
patients’ recurrence and metastasis. If the p-value between
the two groups is less than 0.05, it is considered that
there is a statistically significant difference. At the same
time, by constraining the p-value to be less than 0.01,
the microbial characteristics with significant differences
were screened as potential microbial markers for
downstream analysis.

1 https://portal.gdc.cancer.gov
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Identification of differentially
expressed genes

Differentially expressed genes (DEGs) of mRNA, lncRNA,
and miRNA were identified using the “Deseq2” R package. Up-
regulated genes were obtained by adjusted p-value < 0.1 and
log2 Fold Change > 0. Down-regulated genes were obtained
by adjusted p-value < 0.1 and log2 Fold Change < 0. Then,
genes with significant differences were screened by | log2 (Fold
Change)| ≥ 1 and adjusted p-value less than 0.05. Significantly
different genes were displayed by the “pheatmap” package in R.
Gene Ontology (GO) enrichment analysis was conducted by the
“clusterProfiler” package in R. Enrichment pathways of DEGs
were displayed by the “ggplot2” package in R.

Diversity analysis

Alpha-diversity (Richness, Chao, Shannon, and Simpson
indices) were calculated using the “vegan” package in R.
Principal coordinate analysis (PCoA) was conducted with the
“vegan” package in R to analyze differences between microbial
communities. Wilcoxon rank sum test was used for two group
comparisons of microbial diversity. P-value less than 0.05 was
considered statistically different.

Machine learning classification model

To evaluate the performance of different omics in predicting
the recurrence and metastasis of patients with PDAC, we
labeled the RM patients as “0” and the no-RM patients as
“1,” which turned our research into a binary classification
of machine learning. Random Forest (RF) model in Python’s
Sklearn module was used for classification. RF randomly
samples all the original data, generates n different sample
datasets, builds a decision tree model for each dataset, and finally
obtains the prediction result of the final model according to
the voting results of each decision tree model. We estimated
the performance of the classification algorithms using the
fivefold cross-validation (fivefold-cv). The performance of
the classification algorithm was calculated by averaging the
AUC (area under curve) in the five test datasets. Finally,
metrics including AUC, ACC (accuracy), precision, recall,
and F1-score were used to comprehensively evaluate the
performance of the model.

Survival prediction

Ten bacterial biomarkers were identified using Wilcoxon
rank sun test. Then, these 10 biomarkers were used to predict
the survival of patients with PDAC. The survival curve was

TABLE 1 Clinical information.

Parameters RM (n = 42) no-RM (n = 37) P-value

Gender (M/F) 22/20 23/14 NS

Age (avg years) 66.79 61.97 NS

N0/N1/unknown 9/33/0 16/18/3 *

M0/M1/MX 16/0/26 23/2/12 *

T1/T2/T3/T4/unknown 2/3/36/1/0 3/7/24/1/2 NS

Stage I and Stage II/Stage
III and Stage IV/unknown

40/2/0 34/2/2 NS

Tumor Node Metastasis classification (TNM): T stage refers to the situation of the
primary tumor focus. With the increase of tumor volume, the depth of invasion and the
range of adjacent tissue involvement, it is expressed by T1–T4 in turn. N stage refers to
the regional lymph node involvement, which is represented by N0 when the lymph node
is not involved. With the increase of the degree and scope of lymph node involvement,
it is indicated by N1–N2 in turn. M stage means M refers to distant metastasis, with
M0 for those without distant metastasis and M1 for those with distant metastasis; RM,
recurrence or metastasis; no-RM, without recurrence and metastasis; NS, no significant
differences. *Indicated p-value < 0.05.

conducted using the Kaplan–Meier (KM) method and log-
rank test was used to compare the difference of survival
probability. The analysis and visualization were conducted with
the “survival” package in R.

Results

Tumor node metastasis classification
stages are significantly correlated with
recurrence and metastasis of
pancreatic adenocarcioma

The correlations between clinical phenotype and recurrence
and metastasis of pancreatic adenocarcioma patients were
shown in Table 1. Both N stage and M stage have significant
differences between RM and no-RM (Figure 1). Specifically,
PDAC patients with advanced disease (N1) had a significantly
increased probability of recurrence or metastasis. That means
PDAC patients with recurrence or metastasis were accompanied
by increased lymph node involvement. Besides, there were no
significant differences in gender and age between RM and no-
RM patients. The demographics and clinical characteristics are
provided in Table 1.

Bacterial profiles of pancreatic tissue
differ between recurrence or
metastasis and no-recurrence or
metastasis patients

Previous microbial studies of pancreatic adenocarcioma
have shown that bacterial composition shifted compared to non-
diseased pancreatic (Pushalkar et al., 2018). Here, we intend
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FIGURE 1

The correlations of Tumor Node Metastasis classification (TNM) stage with recurrence and metastasis. (A) Patients with recurrence or metastasis
are accompanied by increased lymph node involvement. (B) Comparisons of M staging in patients with RM and no-RM; Wilcoxon test is used to
compare between different groups of samples. The X-axis represents the different stages of patients; Y-axis represents the recurrence and
metastasis, 0: recurrence or metastasis; 1: without recurrence and metastasis.

to examine these compositional changes in distant metastatic
PDAC. As shown in Figure 2, Pseudomonas dominated the
tissue microbiome of pancreatic adenocarcioma with an average
relative abundance of 12.8%, followed by Staphylococcus (7.3%)
and Bacillus (6.9%) (Figure 2A). Further, there was no difference
in alpha-diversity (richness, Chao, Shannon, and Sipmson)
between RM and no-RM (Figure 2B). PCoA plot also showed
no significant differences in bacterial communities between RM
and no-RM (Bray–Curtis P = 0.172; Figure 2C). These data
indicated similar global community alpha-diversity and beta-
diversity between the RM and no-RM patients. Riquelme et al.
(2019) found higher alpha-diversity in the tumor microbiome
of long-term survival (LTS) patients compared with short-term
survival (STS) patients. Our results demonstrate that metastasis
in PDAC patients does not alter the overall tissue microbial
community structure.

Next, we identified 10 potential biomarkers capable
of distinguishing between RM and no-RM (Figure 3).
The relative abundance of Kurthia, Gulbenkiania,
Acetobacterium, Planctomyces, Xenophilus, Gardnerella,
Advenella, Catenuloplanes, Leptolyngbya, and Proteus was
significantly different between RM and no-RM (P < 0.01).
Among them, the relative abundance of most bacterial
biomarkers decreased in patients who developed recurrence
or metastasis. Only the relative abundance of Acetobacterium,
Catenuloplanes, and Leptolyngbya increased in the RM patients.
The results demonstrated that decreased relative abundance
of key bacteria in PDAC patient tissues may be a contributing
factor to recurrence or metastasis. Although the overall

microbial communities of RM and no-RM appear to be
similar, recurrence and metastasis are still accompanied by
increased or decreased relative abundance of some specific
bacteria. These abundance-changing bacteria may be used
as important indicators for clinical prediction of recurrence
and metastasis of PDAC patients, so in-depth research such
as experimental verification is urgently needed to reveal the
underlying functional mechanisms of these bacteria.

Transcriptome expression in pancreatic
adenocarcioma patients carries
information on recurrence or
metastasis

Interactions and complex regulatory mechanisms among
lncRNA, miRNA, and mRNA play key roles in the occurrence
and development of multiple diseases (Huang, 2018; Liao
et al., 2019; Cheng et al., 2020; Ma et al., 2020). In this
study, instead of considering the regulation among lncRNA,
miRNA, and mRNA, we analyzed the differences in these
three transcriptomes between RM and no-RM separately.
We performed a comprehensive analysis of the differential
expression of each omics between the RM and no-RM. For
lncRNA, 402 up-regulated and 288 down-regulated genes were
identified. For miRNA, we identified 107 up-regulated and 44
down-regulated genes, while for mRNA, 3,074 up-regulated
and 1,539 down-regulated genes were identified. After adjusting
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FIGURE 2

Difference in microbial composition and diversity between the two groups. (A) The top 10 genus levels in two groups; the stacked bar chart
showed the composition of patient genus level in two groups of recurrence or metastasis. (B) Comparison of alpha-diversity of two groups
based on different indexes. (C) Comparison of beta-diversity of two groups with PCoA. Wilcoxon test was used to detect variation between
different groups based on the microbial composition at the genus level. Richness, Chao, and Ace index represent the richness of the microbial
species; Shannon, Simpson, and Pielou index represent the diversity of the microbial species; RM, recurrence and metastasis; no-RM,
no-recurrence and metastasis.

for the P-value, we obtained 309 significantly differentially
expressed lncRNAs, 62 significantly differentially expressed
miRNAs, and 1,287 significantly differentially expressed mRNAs
(details in Supplementary Tables 1–3). Heatmap showed the
differences in the expression levels of the top 40 lncRNAs,
miRNAs, and mRNAs between RM and no-RM (Figures 4A–C).

Further, we explored the biological function of these
significantly differentially genes (Figure 4D). For GO terms,
all GO terms can be classified into three categories: (1)
Biological process (BP), (2) Cellular component (CC), and
(3) Molecular function (MF). First, for biological process,
most of the BP terms have been confirmed to be related
to the signal release and modulation of chemical synaptic

transmission. Second, for cellular component, most of the CC
terms can be clustered into synaptic membrane and transporter
complex. Finally, as for molecular function, MF terms mostly
contributed to the passive transmembrane transporter activity
and channel activity. Furthermore, potential pathological
pathways in PDAC metastasis were further analyzed with Kyoto
Encyclopedia of Genes and Genomes (KEGG) annotations
(Figure 4E). The results showed that the differentially expressed
genes were mainly enriched in neuroactive ligand-receptor
interaction, cAMP signaling pathway, and adrenergic signaling
in cardiomyocytes, and other signaling pathways.

Chen et al. (2020) reported that for lower-grade glioma
(LGG) and normal tissues, neuroactive ligand-receptor
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FIGURE 3

Ten potential biomarkers capable of distinguishing between RM and no-RM. Wilcoxon test was used to detect variation between different
groups based on the relative abundance of tissue microbes, When the p-value was less than 0.01, 10 potential genus level microbial markers
were identified; the boxplot was used to show the differences between the two groups; RM, recurrence or metastasis; no-RM, without
recurrence and metastasis.

interaction was identified as differentially enriched pathway
in KEGG. Also, in our study, a possible key pathway in RM
patients with PDAC is neuroactive ligand-receptor interaction
(Figure 4E). Different disease subjects share certain enriched
pathways, which have also been reported in other studies (Priya
et al., 2022). We strongly recommend further research on this
topic to progressively improve the transcriptomic evidence on
PDAC metastasis.

Microbes are the best predictors of the
recurrence and metastasis in patients
with pancreatic adenocarcioma

Predicting the recurrence or metastasis of pancreatic
adenocarcioma patients plays a huge role in improving
patient survival and reducing medical costs. Therefore, we
further evaluated the performance of different omics in
predicting the recurrence and metastasis in patients with
pancreatic adenocarcioma (Figure 5A). Firstly, based on all
the characteristics of each omics, RF fivefold cross-validation

showed that lncRNA obtained the highest accuracy in predicting
the recurrence and metastasis of pancreatic adenocarcioma
patients (AUC = 0.791). However, when the 10 identified
bacterial biomarkers were used as features, the prediction
performance was the best with an AUC of 0.815. Besides AUC,
other metrics (ACC, precision, recall, and F1-score) were also
used to evaluate the predictive effect of each omics (Figure 5B).
The results also showed that the 10 bacterial biomarkers
performed best, which further indicate that the 10 bacteria may
serve as potential biomarkers of recurrence and metastasis of
PDAC.

Recurrence and metastasis in
pancreatic adenocarcioma patients are
associated with reduced survival

Many studies have shown that microbes are closely related
to the survival of cancer patients (Chattopadhyay et al., 2019;
Peters et al., 2019; Riquelme et al., 2019). Besides, in this study,
we found that the tissue microbiome significantly influenced the
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FIGURE 4

Difference analysis and enrichment analysis of different omics between two groups. The heat map of the DEGs of (A) lncRNA; (B) miRNA;
(C) mRNA between the RM and no-RM group, the x-axis is the sample of two groups, and the y-axis is the top 40 expressions with significant
differences screened by DEseq2. (D) GO analysis of DEGs between RM and no-RM. (E) KEGG analysis of the DEGs between RM and no-RM, the
X-axis is the ratio of differentially expressed genes enriched in the corresponding pathway, and the Y-axis is the name of the pathway; BP,
biological process category; CC, cellular component category; MF, molecular function category; RM, recurrence or metastasis; no-RM, without
recurrence and metastasis.

recurrence and metastasis of patients with PDAC. Therefore,
we wonder whether recurrence and metastasis in patients are
associated with survival and whether this association is driven
by tissue microbes.

Based on these 10 bacterial biomarkers, all patients were
classified to two clusters with machine learning classification
model used previously. Then, survival analysis was conducted
on the predicted clusters (Figure 6). First, survival time of
RM patients were significantly shorter than those of no-RM
patients (P < 0.0001; Figure 6A). Meanwhile, similar result was
found when we conducted survival analysis on the two predicted
clusters, that is, there was a significant difference in survival

between the two clusters (P = 0.0059; Figure 6B). Our results
demonstrate that the recurrence and metastasis in pancreatic
patients are associated with reduced survival and this association
is potentially driven by key tissue microbes.

Discussion

The recurrence and metastasis have become a critical
problem in cancer diagnosis, treatment, and metastasis (He
et al., 2020; Shi et al., 2022). Through a comprehensive
comparison of tissue microbes in non-metastatic and metastatic

Frontiers in Microbiology 07 frontiersin.org

71

https://doi.org/10.3389/fmicb.2022.1032623
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-13-1032623 October 31, 2022 Time: 8:48 # 8

Li et al. 10.3389/fmicb.2022.1032623

FIGURE 5

Ten identified bacterial biomarkers perform best in predicting recurrence and metastasis in patients with PDAC. (A) Comparison of AUC in
patients with recurrence and metastasis predicted by different omics. (B) Evaluation of predictive ability of different evaluation indices for
recurrence and metastasis of PDAC patients; micro, microbiome; sig bacteria, 10 identified bacterial biomarkers; sig genes, identified DEGs from
mRNA data; AUC, area under curve; ACC, accuracy.

FIGURE 6

Kaplan–Meier survival curve showed significantly different overall survival between RM and no-RM. (A) Relationship between true recurrence
and metastasis labels and overall survival of patients. (B) Relationship between recurrence and metastasis labels predicted by the model and the
overall survival of patients; RM, recurrence or metastasis; no-RM, without recurrence and metastasis.

pancreatic adenocarcioma patients, we identified 10 bacteria
that differentiate between RM and no-RM patients. Among
them, the relative abundance of most bacterial biomarkers
decreased in patients who developed recurrence or metastasis.
Although there were significant differences in the expression
patterns of multiple omics between RM and no-RM patients,
the accuracy of these 10 bacteria in predicting recurrence and
metastasis in pancreatic adenocarcioma patients was higher
than that of other omics (lncRNA, miRNA, and mRNA). More
importantly, these bacterial biomarkers potentially drive the
association between metastasis and patient survival.

Beyond the simple description of tissue microbiome
changes in pancreatic adenocarcioma patients, our study
proposes the idea of microbe-based predictors for metastasis
of PDAC. Groundbreaking, we identified 10 potential bacterial
biomarkers. The microbe composition comparing normal
esophagus with intestinal metaplasia, low grade dysplasia,

high grade dysplasia, and adenocarcinoma showed significant
decreases in the phylum Planctomycetes and the genus
Planctomyces in diseased tissue compared with healthy controls
and intrasample controls (Peter et al., 2020). We find that
the relative abundance of Planctomyces in RM patients is
significantly lower than that in no-RM patients. Bacterial
dysbacteriosis, characterized by a predominance of Gardnerella
vaginalis may accelerate the process of cervical carcinogenesis
(Kovachev, 2020). Similarly, we also find an increased relative
abundance of the genus Gardnerella in patients with recurrence
or metastasis.

We find that the microbe-based predictor is more accurate
compared with lncRNA, miRNA, and mRNA, possibly due
to the tissue microbes play a dominant role in recurrence
and metastasis of PDAC. The 10 bacterial biomarkers we
identified could be used to clinically assist in the diagnosis
of early stage pancreatic adenocarcioma patients for future
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recurrence and metastasis. Consequently, the medical costs
and patient suffering will be greatly reduced. However, the
detailed link between the tissue microbes and the pathological
mechanism of pancreatic metastasis remains to be further
clarified. It is of note that besides microbe and molecular
biomarkers, histopathological images have been adopted to
evaluate recurrence and metastasis risk for many cancers (Liu
X. et al., 2022; Yang J. et al., 2022; Ye et al., 2022). Feasible
directions to improve prediction accuracy include exploring
more advanced machine learning models used in other related
biological problems (Xu et al., 2020a; Meng et al., 2022) and
integrating more types of prediction data.

The strength of our study includes two accurately divided
pancreatic adenocarcioma cohorts with and without recurrence
or metastasis within 1 year, the microbiome data at the site
of initial cancer, and detailed follow-up information for all
involved patients. Several limitations to the present study
exist. First, the small sample size may make the findings
less generalizable. Although we comprehensively compared the
tissue microbiome of RM and no-RM patients, the absence
of healthy controls is not conducive to underpinning the
findings. In addition, we used the public data of TCGA
database, which needs to be verified by the clinical data of the
Chinese population. At the same time, the image information of
patients was likely to be added to the framework of predicting
recurrence and metastasis, and further model fusion will help
to improve the prediction accuracy. Functional experiments
are needed in the future to deeply explore the physiological
mechanism of tissue microbes affecting the recurrence and
metastasis of PDAC. Complete and organized experiments
will help unravel pancreatic adenocarcioma metastases and aid
clinicians in diagnosis.

Conclusion

In conclusion, we characterize the system alterations of
tissue microbiome in pancreatic adenocarcioma patients. We
uncover the microbial signature associated with recurrence and
metastasis of pancreatic adenocarcioma and develop a highly
accurate microbe-based predictor for recurrence and metastasis
diagnosis of PDAC.
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Combining p-values from 
various statistical methods for 
microbiome data
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Motivation: In the field of microbiome analysis, there exist various statistical 

methods that have been developed for identifying differentially expressed 

features, that account for the overdispersion and the high sparsity of 

microbiome data. However, due to the differences in statistical models or test 

formulations, it is quite often to have inconsistent significance results across 

statistical methods, that makes it difficult to determine the importance of 

microbiome taxa. Thus, it is practically important to have the integration of the 

result from all statistical methods to determine the importance of microbiome 

taxa. A standard meta-analysis is a powerful tool for integrative analysis and it 

provides a summary measure by combining p-values from various statistical 

methods. While there are many meta-analyses available, it is not easy to 

choose the best meta-analysis that is the most suitable for microbiome data.

Results: In this study, we  investigated which meta-analysis method most 

adequately represents the importance of microbiome taxa. We  considered 

Fisher’s method, minimum value of p method, Simes method, Stouffer’s 

method, Kost method, and Cauchy combination test. Through simulation 

studies, we showed that Cauchy combination test provides the best combined 

value of p in the sense that it performed the best among the examined 

methods while controlling the type 1 error rates. Furthermore, it produced 

high rank similarity with the true ranks. Through the real data application of 

colorectal cancer microbiome data, we demonstrated that the most highly 

ranked microbiome taxa by Cauchy combination test have been reported to 

be associated with colorectal cancer.

KEYWORDS

microbiome analysis, integration method, p-value combination, power simulation, 
rank simulation

Introduction

Since the roles of the microbiome in human body sites and their importance arise, there 
have been many studies focusing on revealing differentially expressed microbiome taxa in 
a variety of cancer types and diseases (Hayes et al., 2018; Osman et al., 2018; Qian et al., 
2018; Dong et al., 2019; Ramsheh et al., 2021). In the meanwhile, there are certain common 
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characteristics among microbiome datasets that make analyses 
difficult: overdispersion and high sparsity (presence of zero 
counts; Sohn and Li, 2018; Xia et al., 2018). To account for these 
characteristics, many statistical methods have been developed. 
DESeq2 and edgeR are widely used methods to find differentially 
expressed features in the field of RNA-Seq data analysis, and 
account for overdispersion of the dataset using a negative binomial 
distribution modeling strategy (Robinson et al., 2010; Love et al., 
2014). MetagenomeSeq was developed to account for sparsity 
using a distinct normalization method, known as cumulative sum 
scaling (CSS) and using a zero-inflated model (Paulson et  al., 
2013). ZIBseq and ZINB are methods that account for the sparsity 
through incorporating zero-inflated beta model and zero-inflated 
negative binomial model, respectively (Peng et al., 2016; Xia et al., 
2018). There also are methods that use centered log-ratio (CLR) 
transformation to account for the compositional nature of relative 
abundance data in analysis (Gloor et al., 2017).

Microbiome analysis methods are broadly classified into two 
classes: taxa-level method and community-level method (Plantinga 
et al., 2017). Taxa-level method performs analyses in terms of each 
taxon, and includes aforementioned methods. The community-level 
method accounts for phylogenetic distances between representative 
sequences. MiRKAT, the microbiome regression-based kernel 
association test, uses kernels that incorporate microbiome-wise 
similarity matrix that can be  calculated from various distances 
(Zhao et al., 2015). MiSPU, the microbiome-based sum of powered 
score, uses the idea of the sum of powered score (SPU) to be applied 
to microbiome datasets through variable weighting of representative 
sequences (Wu et al., 2016). OMiAT, optimal microbiome-based 
association test, is an approach that integrates SPU and MiRKAT by 
taking the minimum value of p from the two methods (Koh et al., 
2017). TMAT, the phylogenetic tree-based microbiome association 
test, uses log-transformed read count per million (CPM) and tests 
whether an internal node of a phylogenetic tree is associated with 
the outcome, using the phylogenetic tree structure (Kim K. J. et al., 
2020). All the methods introduced above are used to find the 
differentially expressed (DE) features. There have been studies that 
attempted a comprehensive review of these statistical methods (Xia 
and Sun, 2017; Pollock et al., 2018; Nearing et al., 2022). However, 
it is not easy to tell which is the best method among the individual 
DE method because each method is specialized for the specific 
characteristics of microbiome data. Furthermore, the significance 
results provided from different statistical methods tend to 
be inconsistent. In other words, a DE feature from one method does 
not necessarily be a DE feature from the other method (Khomich 
et al., 2021). Thus, several studies summarized the inconsistent 
results obtained from different statistical methods by using a Venn 
diagram that represented commonly significant features under a 
certain significance level (Chen et  al., 2015; You et  al., 2018; 
Nazarieh et al., 2019; Wang et al., 2019; Kim S. I. et al., 2020). In 
addition to the significance, the ranking of DE features is also 
inconsistent between the methods.

In this study, we  combine the value of ps from different 
statistical methods to determine the importance of DE features. 

Rather than focusing on an individual method, our focus lies in 
combining different test results from a set of multiple methods. 
There exist many methods for combining value of ps, depending 
on whether value of ps are independent (Fisher, minimum value 
of p, Simes, Stouffer) or correlated (Kost, Cauchy). The most 
common method is Fisher’s method that uses a chi-square 
distribution to calculate the combined value of p (Fisher, 1925). 
The method using the minimum value of p can also be taken to 
maximize the power (Tippett, 1931; Casella and Berger, 2017). 
Simes method for combining value of p is similar to the minimum 
value of p method, but uses ordered value of ps to determine the 
significance (Simes, 1986). Stouffer’s method takes the inverse 
standard normal cumulative distribution function (CDF) of value 
of ps so that the statistic follows a normal distribution (Stouffer 
and Suchman, 1949). Kost method accounts for the correlation 
between p-values by modifying the chi-square distribution of the 
Fisher’s method (Kost and McDermott, 2002). Cauchy 
combination test accounts for the correlation between p-values by 
using Cauchy distribution, which makes the distributional 
changes in the tail limited in the existence of p-value correlation 
(Liu and Xie, 2020). The combined p-values were then used to 
rank the importance of microbiome.

In this study, we  investigate the most appropriate p-value 
combination method in the analysis of microbiome dataset in terms 
of significance testing and ranking DE features. Simulation settings 
were designed to assess: (i) the type 1 error and power of differentially 
expressed feature discovery, (ii) rank similarity between the true 
ranks and ranks determined by combined p-values.

In our empirical studies, we only considered the genus level. 
Many differential abundance analyses have been conducted only 
at the genus level, due to the limitation in microbiome annotation 
and not enough high resolution provided by 16 s rRNA sequence 
to classify species. Popular microbiome databases, including Silva, 
and Greengenes databases, recommend not to use the annotation 
at the species level (Ritari et  al., 2015; Dueholm et  al., 2020). 
Although databases such as NCBI and EzBioCloud EzTaxon 
provide more accurate annotations than Silva and Greengenes at 
the species level (Kim et al., 2012; Schoch et al., 2020), uncultured 
and unidentified species still exist and are often filtered out in the 
differential abundance analyses. Additionally, the microbiome 
resolution provided by 16 s rRNA is limited because the length of 
highly variable region is short for accurately classifying species 
except for few species. Therefore, analysis was conducted in the 
genus level at this study.

Materials and methods

Microbiome datasets

Baxter’s colorectal cancer data
Stool samples obtained through the Great Lakes-New England 

Early Detection Research Network were used in this study (Baxter 
et al., 2016). Raw sequencing data and metadata are available at 
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NCBI Sequencing Read Archive (SRA) with the accession number 
SRP062005. A total of 314 samples with 187 normal and 127 
colorectal cancer (CRC) were available.

Experimental procedures were previously reported as follows 
(Kozich et  al., 2013). The V4 region of 16 s rRNA gene was 
amplified using custom-designed primers, and sequenced using 
an Illumina MiSeq sequencer with paired-end sequencing. Raw 
FASTQ data were processed through Qiime2 pipeline from raw 
file processing to taxonomy assignment (https://qiime2.org/, 
version 2021.04). Qiime2 Cutadapt plugin was used to trim 
primer sequences, and representative sequences were obtained 
through DADA2 denoising algorithm. Taxonomies were assigned 
using SILVA databases (release 138) with 99% similarity. Fasttree 
plugin was used to generate the phylogenetic tree. After removing 
singletons and doublets, data comprised 4,772 representative 
sequences. After filtering representative sequences with <0.005% 
of total read count (Bokulich et  al., 2013), 803 representative 
sequences with 80 genera were available.

Zeller’s colorectal cancer data
Stool samples obtained through the European Molecular 

Biology Laboratory (EMBL) were used in the real analysis of this 
study. Raw sequencing data and metadata are available at 

European Nucleotide Archive (ENA) with the project number 
PRJEB6070. Excluding samples without the disease status 
information, a total of 91 samples with 50 normal and 41 CRC 
were available.

Experimental procedures were previously reported as follows 
(Zeller et al., 2014). The V4 region of 16 s rRNA gene was amplified 
using targeted primers (F515 5’-GTGCCAGCMGCCG 
CGGTAA-3′, R806 5’-GGACTACHVGGGTWTCTAAT-3′), and 
sequenced following Illumina MiSeq platform (Illumina, San 
Diego, United  States) at the Genomics Core Facility, EMBL, 
Heidelberg. Raw FASTQ data were processed through the same 
pipeline as the Baxter’s data described above using Qiime2. After 
the filtering, 329 representative sequences with 81 genera 
were available.

Methods for identifying DE features

The methods for identifying DE features are classified into 
taxa-level and community level methods, as summarized in 
Table  1 with the corresponding null hypotheses. Taxa-level 
method includes DESeq2[Wald/LRT], edgeR, Wilcoxon rank sum 
test with CLR transformation (Wilcoxon CLR), ZIBSeq, 
MetagenomeSeq [Gaussian/log normal], and ZINB. Community-
level method includes oMiRKAT, aMiSPU, aSPU, and 
TMAT. aSPU was considered instead of OMiAT, that takes the 
minimum value of p of SPU and MiRKAT. For this study, the value 
of p generated by MiRKAT was already included, so only value of 
p generated by SPU was considered. All analysis results were 
obtained at the genus level. R1 software was used for the analyses. 
Unless stated, default options were used for all analysis.

Methods for integration analysis

For the value of p combination, Fisher’s method, minimum 
value of p method (min P method), Kost method, Simes method, 
Stouffer’s method, and Cauchy combination test were used. Details 
of each method are described below.

Fisher’s method
It is also called Fisher’s combination test. Under the null 

hypothesis, for independent value of ps,

 
T p

i

k
i kFisher = -

=
å

1
2
2

2log ~ c

for k  tests to be combined, and pi  represents ith  value of p.
Minimum value of p method (Min P method). Under the null 
hypothesis, for independent value of ps,

1 https://www.r-project.org/

TABLE 1 Null hypotheses of statistical methods.

Category Method Null hypothesis (H0) Detail

Taxa-level DESeq2 0iβ = β =LFC (Log-

fold change) For 
thi  taxa

edgeR 01 2λ λ− = For group 1, 

group 2

Wilcoxon CLR 01 2
median medianλ λ− = For group 1, 

group 2

ZIBSeq 0iβ = For thi  taxa

MetagenomeSeq 0iβ = For thi  taxa

ZINB 0iβ = For thi  taxa

Community-

level

oMiRKAT 0τ = Kernel regression 

Random effect 

f(Z) ~ (0, τ K) 

For kernel K 

( )
1

β=

=
∑f Z Z
p

i ij j
j

,  

if the model is 

linear for p 

OTUs

aMiSPU ( ), , , 01 2 pβ β β β= … =
′

For p OTUs

aSPU ( ), , , 01 2 pβ β β β= … =
′

For p OTUs

TMAT ( ), , , 01 2 _1Mβ β β β= … =
′ For _1M  

internal nodes in 

phylogenetic tree
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Kost method
For dependent value of ps, scale the chi-square distribution of 

Fisher’s method as follows (Kost and McDermott, 2002):
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Cauchy combination method
For value of ps under arbitrary dependency structure, defined 

by the weighted sum of the Cauchy transformed value of each 
value of p as follows:
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i
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å
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where wi  is nonnegative weight that satisfies 1 1,ω= =∑k
ii  and 

pi  is the value of p from i th test. Cauchy combination test 
accounts for the dependence of value of ps using the heaviness of 
the Cauchy tail (Liu and Xie, 2020). Equal weights were used in 
this study.

Simes method
For independent value of ps, let 1, ,… kp p  be  the ordered 

p-values for k  tests. The null hypothesis is rejected if p i ki £ a /  
for any i k= ¼1, ,  for a significance level a . It is mainly used in 
multiple testing correction, but also suggested for the p-value 
combination in some studies (Cheng and Sheng, 2017; Ganju and 
Ma, 2017).

Stouffer method
For independent p-values,
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( )
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1

stouffer
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~ 0,1
−
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k

where Φ  represents the standard normal cumulative 
distribution function.

Simulation settings

Simulation setting 1
Simulation setting 1 was designed to assess type 1 error rates 

and power of each p-value combination method. The simulation 
datasets were generated as previously reported (Zhao et al., 2015). 
Microbiome datasets were simulated according to Chen and Li’s 
approach (Chen and Li, 2013). The simulated OTU counts were 
generated using Dirichlet-multinomial (DM) model, that 
incorporates the mean OTU proportion and the overdispersion 
measure as the shape parameter α. The sample size was set to 300 
and 20,000 total read counts were generated per sample. The OTU 
counts were set to have different levels of sparsity (e.g., the total 
proportion of zero counts) to account for the zero-inflated nature 
of microbiome datasets. For sparsity, sparsity parameter π ϵ 
{0.3,0.5,0.7,0.8} was set. The OTU counts were simulated 
as follows:

 
Zij = - ( )

0 with probability

Dirichlet multinomial with probabi

p
a llity1-

ì
í
î p

where Zij  is OTU counts for ith  sample and jth  OTU.
The dependent variable was generated as practiced in 

MiRKAT (Zhao et al., 2015). For the binary outcome variable, the 
outcome was simulated under the model
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where yi  represents the dependent variable of the sample i , Xi  
represents the covariates of sample i , scale(·) represents the 
standardization with mean 0 and standard deviation 1, b  represents 
the degree of association and G  represents the given cluster of 
OTUs. Here, the OTU-level datasets are simulated so that each 
cluster of OTUs indicates each genus. Among the statistical methods, 
the taxa level analysis methods used a collapsed sum of OTUs 
corresponding to a genus, while the community-level analysis 
methods used simulated OTU data as it is.

One virtual covariate X i1  was simulated as ~ .Bernouill 0 5( ) . 
The other virtual covariate X i2  was simulated as ~ N ,0 1( ) , 
assuming the covariate and the taxa counts Zi  were 
independent. b  was set to have the values of 

0 0 01 0 02 0 03 0 04 0 05 0 1 0 15 0 2, , , , , , , ,. . . . . . . .{ } . Type 1 error was 
measured when b = 0 . A total of 1,000 dependent variables were 
generated for each combination of b s and Às to calculate the type 
1 error rates and the power.

Among the DE feature analysis methods, the taxa-level 
analysis methods used a collapsed sum of OTUs corresponding to 
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a genus, while the community-level analysis methods used 
simulated OTU data as it is.

Simulation setting 2
Simulation setting 2 was designed to assess the rank similarity 

between the true rank and the rank determined using each value 
of p combination method. The real CRC dataset introduced in 
Method 2.1 was used to reflect the microbiome counts of the real 
data. To control the degree of association ( b ), the dependent 
variable was generated under the same model from simulation 
setting 1. For the same dataset, ten different dependent variables 
were generated by previously determined b s as in Figure 1. The 
larger effect size, the higher rank. For each dependent variable, 
100 replications were performed.

Three scenarios were considered using different numbers of 
non-causal dependent variables. Non-causal dependent variables 
were set to have b =0, assuming microbiome features that are not 
related to the dependent variables. Each scenario was designed to, 
respectively, have 6, 4, and 8 non-causal dependent variables, and 
the causal dependent variables were generated to have different 
degrees of association (with different βs).

The rank difference was presented with two measurements: 
rank squared difference and Spearman correlation coefficient. The 
rank squared difference was measured using

 g

N
gd

=
å

1

2

where d rank rankg = -( )real computed  of g th genus.
Similarly, the Spearman rank correlation coefficient was 

used as:

 
( )

2

2
6

1
1

∑
ρ = −

−
gd

N N

With each value of p combination method, both measures 
were applied and the results of 100 replications were compared.

Results

Simulation result

Result of simulation setting 1
In this section, the type 1 error rates and the power of 

individual statistical method are first shown, then that of value of 
p combination methods are subsequently shown.

FIGURE 1

Simulation setting 2 with different scenarios. ZG  represents a collection of OTUs comprising a genus. sY  represent dependent variables that 
were generated by various effect sizes (βs). The larger effect size represents the higher rank. Non-causal βs have the value of zero, while causal βs 
have the value of more than zero.
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The type 1 error rates of individual methods are given in 
Table 2. Under the significance level of 0.05, the type 1 error rates 
of most statistical methods were well-controlled below 0.05. The 
type 1 error rates of ZIG Gaussian was uncontrolled in some cases, 
but not in ZIG log Normal. It was previously reported that the 
type 1 error rate of ZIG Gaussian was off the nominal range, 
compared to other statistical methods (Calgaro et al., 2020).

Figure 2 shows the statistical power of the individual methods 
in terms of the degree of association. The power tended to decrease 
as the level of sparsity increased, and the power of community-level 
analysis methods tended to be lower than the taxa-level analysis 
methods. The methods used in RNA-Seq data analysis showed 
higher performances in terms of power (ZIG, DESeq2). The 
Wilcoxon rank sum method showed a higher performance when the 
sparsity level was low (Genus sparsity 1.3%).

Table  3 represents the type 1 error rates of value of p 
combination methods. The type 1 error rates were not controlled 
in Fisher’s method and Stouffer’s method. The type 1 error rates 
were considered to be not controlled if the confidence interval for 
proportion test did not include 0.05 (i.e., for Stouffer’s method 
with sparsity 0.3, the 95% confidence interval of [0.0694, 0.1051] 
did not include 0.05, for Cauchy combination test with sparsity 
0.5, the 95% confidence interval of [0.0435, 0.0732] include 0.05.). 
The type 1 error rates of other value of p combination methods did 
not exceed the given significance level of 0.05 considering the 
confidence interval. Since the type 1 error rates of Fisher’s 

combination method and Stouffer’s methods were not controlled, 
we focused only on the other methods for value of p combination. 
The results for Fisher’s and Stouffer’s methods can be found in the 
Supplementary Figure 1.

Figure  3 shows the statistical power of the value of p 
combination methods as the degree of association increases. 
Although the performances of value of p combination methods 
were similar, the power of Cauchy combination test was observed 
to be the best for all levels of sparsity. The performance of min P 
method was the worst. The differences in power between the 
methods tended to be smaller as the sparsity level becomes higher.

Result of simulation setting 2
Three scenarios were considered to evaluate the rank 

difference. In scenario 1, the rank squared difference was the 
lowest when combined with Cauchy combination test, Min P and 
Simes methods being next (Figure 4). Similarly, the Spearman 

TABLE 3 The type 1 error rates of p-value combination methods.

Sparsity Fisher MinP Kost Cauchy Simes Stouffer

0.3 0.032 0 0.005 0 0 0.086

0.5 0.09 0.029 0.045 0.057 0.032 0.096

0.7 0.01 0 0 0 0 0.016

0.8 0 0 0 0 0 0.005

Bold value indicates to inflated type I errors.

TABLE 2 Type 1 error rates of individual statistical methods.

Sparsity DESeq2 
LRT

DESeq2 
Wald

edgeR Wilcoxon ZIBSeq ZIG 
Gaussian

ZIG Log 
Normal

ZINB aSPU oMiRKAT aMiSPU TMAT

0.3 0.000 0.000 0.000 0.017 0.002 0.000 0.000 0.000 0.014 0.014 0.014 0.014

0.5 0.037 0.037 0.026 0.006 0.031 0.094 0.000 0.043 0.042 0.042 0.042 0.042

0.7 0.000 0.000 0.000 0.013 0.000 0.009 0.000 0.000 0.000 0.000 0.000 0.000

0.8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Bold value indicates to inflated type I errors.

FIGURE 2

The statistical power of the individual methods. The x-axis represents the degree of association ( β ). The value of sβ  were given as 

{ }0.01,0.02,0.03,0.04,0.05,0.1,0.15,0.2 . The y-axis represents the power. The blueish colors represent methods that consider zero-inflation.
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rank correlation was the highest for Cauchy combination test. In 
both measures, the paired Wilcoxon test value of p between 
Cauchy combination test results and others were significant (value 
of p < 0.001). Similarly, Cauchy combination test showed the 
lowest rank squared difference and the highest correlation 
coefficient in scenarios 2 and 3 (Figure 4).

Real microbiome data analysis

Baxter’s colorectal cancer data analysis
The differentially expressed microbiome feature analysis was 

conducted for every genus in the Baxter’s CRC dataset, and the 
importance was determined by the magnitude of value of ps 
generated for each genus. DE feature analyses were used as 
described in the Method section. The Spearman rank correlation 
between each pair of statistical methods was compared as in 
Figure 5. A Spearman rank correlation coefficient of 0.46 was 
observed between DESeq2 and edgeR, which are both used in 
RNA-Seq analysis and based on the negative binomial distribution 
in common. A lower spearman rank correlation coefficient was 
observed between edgeR and Wilcoxon rank sum test results, 
between ZIBSeq and others, ZIG and others, ZINB and others 
except for RNA-Seq analysis methods, and the community-level 
analysis methods (oMiRKAT, aSPU, aMISPU, and TMAT) and 
others. The correlation tests were significant between some pairs 
of methods, that means there was a linear trend between value of 
ps ranks generated for those methods. However, the linear trend 
does not assure that the pairwise p-values have the same ranks. 
For example, although the correlation test between edgeR and 
ZINB is significant with the coefficient of 0.79, and thus they have 
a linear trend of p-value ranks, the pairwise p-values are not 
aligned as DESeq2_LRT and DESeq2_Wald. Furthermore, except 
for the DESeq2_LRT and DESeq2_Wald, which are both derived 
from DESeq2, no pair of methods produced similar rank list of 
microbiome genera (Supplementary Figure 2).

CRC stool samples were analyzed with different statistical 
methods and the resulting p-values were combined using Cauchy 
combination test. These p-values were further adjusted for 
controlling the false discovery rate (FDR) as practiced (Yoon et al., 
2021). Table 4 shows the top microbiome genera in the order of 
adjusted p-values (q-values).

The first taxon was the most significant. Although it was 
uncultured in both genus and family levels, Rhodospirillales in 
order level was previously identified in the dextran sulfate sodium-
induced colitis group but not in the control group (Yang et al., 
2017). Also, the microbiome family Rhodospirillaceae was increased 
in colitic mice and IBD patients (Burrello et al., 2018). The bacterial 
genus Megasphaera was found to be  a butyrate-producer, that 
induces epigenetic modifications in CRC development (Tarashi 
et  al., 2019). Gastranaerophilales was previously reported as 
correlated with the late phase of aging through gene expression 
profiles of C57BL/6 J mice (van der Lugt et al., 2018). The genus 
Cloacibacillus was observed to be enriched in CRC patients with 
stage IV (Sheng et al., 2019). The bacterial species Porphyromonas 
asaccharolytica and Porphyromonas gingivalis, both rarely 
detectable in healthy individuals, were shown to be enriched in 
CRC patients in previous studies (Sinha et al., 2016; Okumura 
et al., 2021; Wang et al., 2021). Clostridia vadinBB60 group was 
observed to be  enriched in low-graded; right-sided/transverse 
tumors (Zwinsová et al., 2021). The genus Sutterella was reported 
to be the most representative in the colorectal adenocarcinoma 
groups (Mori et  al., 2018). The bacterial species Odoribacter 
splanchnicus was previously reported as a potential inducer of 
TH17cells and might protect against colitis and CRC in wild type 
mice (Xing et al., 2021; York, 2021). The abundance of Turicibacter 
was observed to be higher in the colitis or CRC group than in the 
groups with treatments, but the causative role of Turicibacter is to 
be further studied (Wu M. et al., 2019). The genus Slackia was 
studied to be overrepresented in CRC (Coleman and Nunes, 2016).

Most microbiome genera in Table 4 that had high ranks from 
Cauchy combination test had been previously reported as associated 

FIGURE 3

The statistical power of value of p combination methods. The x-axis represents the degree of association ( β ). The value of sβ  were given as 
{ }0.01,0.02,0.03,0.04,0.05,0.1,0.15,0.2 . The y-axis represents the power.
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with CRC or related symptoms. The ranks generated by min P and 
Simes method were similar to the Cauchy combination test, which 
corresponds to the results from the simulation setting 2. On the 
other hand, the other methods did not include some highly ranked 
taxa discovered from Cauchy combination test in the lists of their 
top  10 taxa (Supplementary Table  1). For example, Cauchy 
combination test ranked the genera Sutterella and Odoribacter at 7th 
and 8th, while Stouffer’s method ranked them at 18th and 13th, 
respectively, despite their reported associations with CRC.

Zeller’s colorectal cancer data analysis
A different CRC stool samples were analyzed with statistical 

methods and the resulting p-values were combined using Cauchy 
combination test. Table 5 shows the top microbiome genera in the 
order of q-values.

The most significant microbiome, Porphyromonas has been 
reported to be  enriched in gut microbiota profiling of CRC 
patients in several studies (Yang et  al., 2019). Hungatella was 

found to be a CRC-enriched marker, and was found to be depleted 
after the removal of CRC compared with newly diagnosed CRC 
patients (Cronin et  al., 2022). Also, the species Hungatella 
hathewayi WAL-18680 is a common cancer-associated biomarker 
(Wu et  al., 2021). Fusobacterium nucleatum is commonly 
associated with CRC, and found to promote tumor development 
by inducing several immune responses including inflammation 
(Wu J. et al., 2019; Queen et al., 2022). Rikenellaceae RC9 gut group 
was suggested as a potential biomarker of CRC from gut 
microbiota profiles in mice (Shao et al., 2022). Cloacibacillus was 
reported to show statistical differences in the gut microbiota 
between CRC patients with stage III and IV (Sheng et al., 2019). 
Veillonella and a strain of Streptococcus together were reported to 
modulate inflammation, and were increased in fibrosis and 
cirrhosis compared to samples without cirrhosis (Jia et al., 2021). 
The relative abundance of Catenibacterium was found to 
be significantly different between CRC and normal patients (Yang 
et al., 2019). A low abundance of Mitsuokella in CRC patients 

FIGURE 4

Results of the simulation setting 2. The graphs in the left column represent rank difference of each value of p combination method. The graphs in 
the right column represent the Spearman rank correlation of each p-value combination method.
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compared to healthy controls was reported (Sobhani et al., 2019). 
Bilophila wadsworthia was reported to produce genotoxic 
hydrogen sulfide in the gut, enhancing carcinogenesis (Coker 
et al., 2022). The relative abundance of Anaerostipes were reported 
to be  reduced in CRC patients compared to healthy controls 
(Chen et al., 2012).

Similar to the previous results with Baxter’s data, Fisher’s 
method, Kost’s method, and Stouffer’s method ranked CRC-related 
important genera lower than Cauchy combination test. For 
example, Fusobacterium, which was ranked 3rd by Cauchy 
combination test, was ranked 12th, 12th, and 36th, respectively. 
Similarly, Cloacibacillus, which was ranked 5th by Cauchy 
combination test, was ranked 15.5th, 15th, and 18th, respectively.

We also compared the results obtained from two CRC datasets 
(Baxter’s data and Zeller’s data). A total of 64 common genera 
were found. Fusobacterium was found to be the rank of 27.5 out 
of 80 genera in Baxter’s data, but the rank of 3 out of 81 genera in 
Zeller’s data. The value of p trend of the two datasets, and there 
were four commonly significant genera (q-value <0.05). 
Fusobacterium was found to be significant in Zeller’s data, but not 
in Baxter’s data with q-value of 0.133.

The commonly significant genera from the real datasets were 
investigated. There were 22 significant microbiome genera (q-value 
<0.05) from Zeller’s data, and 9 significant microbiome genera from 
Baxter’s data (q-value <0.05). Among them, there were four 
commonly significant microbiome genera from the two datasets. 
Cloacibacillus was previously found to be related to late-stage CRC 
patients (Sheng et al., 2019). Porphyromonas has been reported to 
be enriched in gut microbiota profiling of CRC patients in several 
studies (Yang et  al., 2019). Clostridia vadinBB60 group was 
previously found to be  enriched in low-graded; right-sided/
transverse tumors (Zwinsová et  al., 2021). Streptococcus was 
reported to have increased relative abundance in CRA compared to 
healthy controls (Sun et  al., 2020). Furthermore, Streptococcus 
gallolyticus is known as opportunistic pathogen causing infections 
associated with colon neoplasia in the elderly (Périchon et al., 2022).

Discussion

In this study, we conducted empirical studies to determine the 
most appropriate value of p combination method for microbiome 

FIGURE 5

Pairwise Spearman correlation coefficients computed from various statistical methods. Spearman correlation of each pair of methods are 
represented in the upper diagonal graphs. The bigger the numbers the stronger the correlation. Lower diagonal scatterplots represent p-values. 
Diagonal graphs with the method name have histogram of p-values. Methods are in the order of DESeq2[LRT/Wald], edgeR, Wilcoxon CLR, 
ZIBSeq, ZIG[Gaussian/log normal], ZINB, oMiRKAT, aSPU, aMiSPU, TMAT.
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data. Cauchy combination test was determined to be the most 
appropriate in terms of type 1 error rates, power, and showed the 
highest consistency with the true rank than other methods.

The power and type 1 error rates were assessed because it was 
important to know whether the combined value of ps controlled 
type 1 error rates. For Fisher’s method and Stouffer’s method, the 
uncontrolled type 1 error rates were observed. Since it was shown 
that the value of ps produced from various methods had significant 
correlations, Fisher’s method and Stouffer’s method that combine 
value of ps based on the independent assumption of p-values 
tended to show uncontrolled type 1 error rates in some conditions. 
On the other hand, Kost method incorporating the correlation 
between the combined p-values yielded well-controlled type 1 
error rates. Cauchy combination test is a powerful p-value 
combination method robust to arbitrary dependency structures, 
effectively accounting for the dependency structure of the 
microbiome dataset.

In our analysis, we considered 12 DE analyses and proposed 
combining all 12 value of ps. Our method can be applicable to any 
number of DE analyses. For illustrative purposes, we performed the 
similar analyses using only a fewer DE methods. We considered 
combining the following methods: (1) taxa-level methods, (2) 
community-level methods, (3) three randomly chosen methods, (4) 

five randomly chosen methods, (5) seven randomly chosen 
methods, (6) a correlated set of methods, (7) another correlated set 
of methods, and (8) less correlated set of methods. For the randomly 
chosen three/five/seven methods, we simply applied on a single 
random set of methods each. Each case resulted similar power trend 
with that of using all 12 methods (Supplementary Figures 3–10).

In this study, we  formulated the difficulty of analyzing 
microbiome datasets in the sense of overdispersion and high 
sparsity, by using different analysis methods accounting for these 
traits. However, one may want to focus on other traits, such as 
different normalization strategies. We leave it as a future study.

From the rank simulation, Cauchy combination test showed the 
best performance with significant differences from other value of p 
combination methods for scenarios 1 and 3, while it showed similar 
performance in scenario 2. Note that scenarios 1 and 3 had six and 
eight non-causal dependent variables, respectively, while scenario 2 
had four non-causal dependent variables and six different causal 
dependent variables. This implies that Cauchy combination test has 
the better performance when several non-causal microbiome genera 
exist. This corresponds to the real microbiome dataset that has 
several non-causal microbiome taxa and few causal taxa.

The microbiome ranks generated by Cauchy combination test 
and min P or Simes method did not differ much for the top ranks 

TABLE 4 Top 10 microbiome genera ranked by Cauchy combination test.

Taxa (o:order, f:family, g:genus) q-value

o__Rhodospirillales; f__uncultured; g__uncultured 5.64E-20

o__Veillonellales-Selenomonadales; f__Veillonellaceae; g__Megasphaera 1.22E-16

o__Gastranaerophilales; f__Gastranaerophilales; g__Gastranaerophilales 3.72E-15

o__Synergistales; f__Synergistaceae; g__Cloacibacillus* 7.42E-13

o__Bacteroidales; f__Porphyromonadaceae; g__Porphyromonas* 4.23E-09

o__Clostridia_vadinBB60_group; f__Clostridia_vadinBB60_group; g__Clostridia_vadinBB60_group* 1.12E-07

o__Burkholderiales; f__Sutterellaceae; g__Sutterella 2.13E-05

o__Bacteroidales; f__Marinifilaceae; g__Odoribacter 1.09E-05

o__Erysipelotrichales; f__Erysipelotrichaceae; g__Turicibacter 1.51E-04

o__Coriobacteriales; f__Eggerthellaceae; g__Slackia 1.87E-04

*Commonly significant microbiome genera with Zeller’s data.

TABLE 5 Top 10 microbiome genera ranked by Cauchy combination test.

Taxa (o:order, f:family, g:genus) q-value

o__Bacteroidales; f__Porphyromonadaceae; g__Porphyromonas* 1.80E-14

o__Lachnospirales; f__Lachnospiraceae; g__Hungatella 3.26E-13

o__Fusobacteriales; f__Fusobacteriaceae; g__Fusobacterium 2.78E-09

o__Bacteroidales; f__Rikenellaceae; g__Rikenellaceae_RC9_gut_group 1.11E-06

o__Synergistales; f__Synergistaceae; g__Cloacibacillus* 1.35E-06

o__Veillonellales-Selenomonadales; f__Veillonellaceae; g__Veillonella 1.47E-06

o__Erysipelotrichales; f__Erysipelatoclostridiaceae; g__Catenibacterium 1.11E-05

o__Veillonellales-Selenomonadales; f__Selenomonadaceae; g__Mitsuokella 1.36E-05

o__Desulfovibrionales; f__Desulfovibrionaceae; g__Bilophila 5.75E-05

o__Lachnospirales; f__Lachnospiraceae; g__Anaerostipes 1.05E-04

*Commonly significant microbiome genera with Baxter’s data.
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in the real data analysis. Rather, similar trends of value of ps and 
high correlation coefficients between those methods were observed 
(Supplementary Figure 11). The difference of microbiome ranks 
was most obvious with Stouffer’s method, and it was shown that the 
top ranks generated by Cauchy combination test and Stouffer’s 
method were quite different. The top ranks generated using Fisher’s 
method and Kost method did not differ much from those generated 
using Cauchy combination test. The ranks generated using Fisher’s 
method and Kost method were the same because they both follow 
chi-square distributions with different degrees of freedom. Kost 
method follows a scaled chi-square distribution, but scaling did not 
alter the resulting ranks.

Most microbiome features have very high sparsity and low 
abundance, making the statistical analysis difficult. In this study, 
we considered those characteristics in assessing the different value 
of p combination methods by simulating different levels of sparsity 
and setting a microbiome feature with high sparsity and low 
abundance as causal.

The value of p combination approach used to determine 
microbiome importance considering microbiome-specific 
characteristics can be easily extended to other omics data analyses. 
For example, our approach can be applied to analysis in RNA-seq 
or copy number variation data considering data-specific 
characteristics. There also are several methods to analyze each type 
of dataset. Note that there is “no one real winner that performs the 
best.” Thus, combining the results from various methods can have 
the advantage of using all methods available and being robust to the 
method-specific assumptions. Cauchy combination test can 
effectively combine different statistical methods, and produces a 
representative result of all methods, instead of using a single method 
that could possibly have a good performance in one dataset, but not 
in others. Our empirical study showed that the performance of 
Cauchy combination method provided robust and reasonable result 
compared to the best performing individual DE method, and 
performed the best among the value of p combination methods in 
terms of power and rank similarity, and controlling type 1 error 
rates (supplementary Figure 12). Furthermore, we made a python 
script with the module “mpmath” that enables floating point 
arithmetic in case the resulting value of ps from individual analysis 
methods are minute for the combined value of p of Cauchy 
combination test (Cauchy_pval.py). All combination methods used 
in this script are provided as a R script in https://github.com/
HyeonJungHam/P_value_combination, that also includes 
automatic execution of python script for calculating Cauchy 
combination test p-value.

While Cauchy combination test was introduced with equal 
weights for each method, it can be  easily extended to handle 
unequal weights. By the authors, Cauchy combination test still 
accounts for the arbitrary dependency structure when the weights 
are random variables and independent of test statistics (Liu and 
Xie, 2020). Thus, it is reasonable to assign a larger weight to the 
method providing more reliable and accurate result. We expect 
that the optimal weights would result in an increased performance 
of Cauchy combination test. However, the choice of optimal 

weights can change across dataset. Thus, given a dataset, it would 
not be straightforward to choose the optimal weights. We will 
leave the choice of optimal weights as a future research topic.
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Coronavirus disease 2019 (COVID-19), a disease caused by severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently spreading rapidly 

around the world. Since SARS-CoV-2 seriously threatens human life and health 

as well as the development of the world economy, it is very urgent to identify 

effective drugs against this virus. However, traditional methods to develop 

new drugs are costly and time-consuming, which makes drug repositioning 

a promising exploration direction for this purpose. In this study, we collected 

known antiviral drugs to form five virus-drug association datasets, and then 

explored drug repositioning for SARS-CoV-2 by Gaussian kernel similarity 

bilinear matrix factorization (VDA-GKSBMF). By the 5-fold cross-validation, 

we found that VDA-GKSBMF has an area under curve (AUC) value of 0.8851, 

0.8594, 0.8807, 0.8824, and 0.8804, respectively, on the five datasets, which 

are higher than those of other state-of-art algorithms in four datasets. Based 

on known virus-drug association data, we  used VDA-GKSBMF to prioritize 

the top-k candidate antiviral drugs that are most likely to be effective against 

SARS-CoV-2. We confirmed that the top-10 drugs can be molecularly docked 

with virus spikes protein/human ACE2 by AutoDock on five datasets. Among 

them, four antiviral drugs ribavirin, remdesivir, oseltamivir, and zidovudine 

have been under clinical trials or supported in recent literatures. The results 

suggest that VDA-GKSBMF is an effective algorithm for identifying potential 

antiviral drugs against SARS-CoV-2.
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Introduction

Caused by severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2), a new infectious disease called coronavirus 
disease 2019 (COVID-19) has caused a big pandemic worldwide 
since 2019 (Eurosurveillance editorial team, 2020; Cheng et al., 
2021a; Zhang et al., 2021). SARS-CoV-2 can transmit by human-
to-human contacts, and is currently spreading rapidly to more 
than 400 countries around the world, causing millions of deaths 
(Coronaviridae Study Group of the International Committee on 
Taxonomy of V, 2020; Li et al., 2020; Cohain et al., 2021). Thus, 
SARS-CoV-2 seriously threatens human life and health as well as 
the development of world economy (Wu et al., 2020; Zhou P. et al., 
2020; Zhu et al., 2020; Cheng et al., 2021b), and it is critical to find 
effective measures to prevent the transmission and fight against 
this virus.

One effective way to prevent the transmission of a virus is 
through vaccination. However, viruses like SARS-CoV-2 and 
influenzas are under rapid genetic and antigenic evolution, 
especially in their spike proteins (Yao et al., 2017; Zhang et al., 
2017), which will make the vaccine less effective. Another method 
is to develop specific drug against the viruses. However, traditional 
methods to develop new drugs usually take years and cost tens of 
millions of dollars (Novac, 2013). With the development of 
various computational algorithms for mining intrinsic associations 
in biomedical data (Zhang et al., 2019; Xu et al., 2020a; Liu et al., 
2021; Xiang et al., 2021a, 2022b; He et al., 2022; Yang et al., 2022), 
drug repositioning has become an effective way of exploring new 
uses for approved drugs, since it can significantly reduce the time 
and cost in the development of drugs (Liu et al., 2016, 2020; Yang 
J. et al., 2020; Zhu et al., 2021).

There are a few studies to prioritize approved drugs against 
SARS-CoV-2. For example, Zhou et al. proposed a KATZ method 
to probe antiviral drugs against SARS-CoV-2 through virus-drug 
association prediction (Zhou L. et al., 2020). More recently, Tang 
et  al. prioritized drugs for COVID-19 through an indicator 
regularized non-negative matrix factorization method (Tang 
et al., 2020). Peng et al. collected an antivirial drug database and 
minied it to repurpose drugs aginst SARS-CoV-2 (Peng et al., 
2020; Zhou L. et  al., 2020). Wang et  al. predicted anti-
SARS-COV-2 drugs by bound nuclear norm regularization (Wang 
et al., 2021). Meng et al. builded the human drug virus database 
and identified anti-SARS-COV-2 drugs by similarity constrained 
probabilistic matrix factorization (Lu et al., 2021; Meng et al., 
2021; Parsza et al., 2021). Shen et al. prioritized anti-SARS-CoV-2 
drugs by combining an unbalanced bi-random walk and 
Laplacian regularized least squares (Shen et al., 2022). Though 
these methods achieved relatively good prediction performance 
in cross-validation and literature mining, the accuracy of 
prediction is yet to be improved and a more robust validation 
method is needed for further wet-lab experiments. Therefore, in 
this study, we collected the data of well-studied viruses that are 
similar to SARS-CoV-2 and their known antiviral drugs, forming 
a virus-drug association matrix (VDA). Then, we  proposed a 

novel method for exploring potential virus-drug associations of 
SARS-CoV-2 by using Gaussian kernel similarity bilinear matrix 
factorization (VDA-GKSBMF).

The rest of the work is organized as follows. First, we collect 
five datasets and propose the details of the VDA-GKSBMF method 
for predicting potential virus-drug associations of SARS-CoV-2. 
Then, we study the effectiveness of the method by the 5-fold cross-
validation experiments and compare VDA-GKSBMF with other 
state-of-art algorithms. Based on known virus-drug association 
data, we  use VDA-GKSBMF to prioritize top-10 candidate 
antiviral drugs that are most likely to fight against SARS-CoV-2, 
and then evaluate the molecular binding activity between predicted 
antiviral drugs and SARS-CoV-2 spike protein (Gralinski, 2020) 
or human ACE2 (Zhao et al., 2020), to confirm whether the top-10 
drugs are to be molecularly docked with the virus spikes protein 
or human ACE2. We also explore literatures to check if the top 
predicted drugs are under clinical trials or experiments against 
SARS-CoV-2.

Materials and methods

The overall workflow of the method is illustrated in Figure 1. 
We first introduce the datasets in this study, and then describe the 
details of the VDA-GKSBMF method for drug repositioning of 
SARS-CoV-2, including the construction of virus–drug 
heterogeneous network and the VDA-GKSBMF model, along with 
the alternating direction method of multipliers (ADMM) for 
solving the model to fill out unknown associations in virus–
drug matrix.

Materials

To identify potential VDAs involving SARS-COV-2, we collect 
five datasets. There is Virus similarity matrix, drug similarity 
matrix, and VDA matrix in each dataset. Viruses are similar to 
SARS-CoV-2, small-molecule drugs and VDAs between them 
from the DrugBank (Wishart et al., 2018), PubChem (Kim et al., 
2016), and NCBI (Wheeler et al., 2004) databases (see Table 1 
for details).

These VDAs are represented by a VDA matrix Bm × n, where 
Bdv = 1 if the d-th drug is associated with the v-th virus, otherwise, 
Bdv = 0. This forms a virus-drug association network, which can 
be  denoted as a bipartite graph G V D E, ,( ) , where 
E G e V Dij( ) = { } ⊆ ×  contains edges representing known 

associations between viruses and drugs.
For viruses, we  obtain the sequence-based similarities 

between viruses that are calculated by MAFFT (Katoh and Toh, 
2008). For drugs, we  obtain the chemical structure-based 
similarity scores between drugs by RDKit (Landrum, 2014), 
where chemical structures of drugs are obtained from the 
DrugBank database (Wishart et al., 2018). The details are shown 
in Table 1.
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Methods

Drug similarity matrix
Considering that drugs with common associated viruses may 

be similar, we denote the Gaussian association profile (AP) of 

drug di  by AP di( ) , i.e., the i -th row of the VDA matrix B, 
which is a binary vector encoding the associations between this 
drug and viruses in the VDA matrix. Then, we  calculate the 
similarity M d dd i j,( )  between two drugs di  and d j  based on 
association profiles of drugs by,

 
( ) ( ) ( )( )2, exp AP APd i j d i jM d d d dγ= − − 

where γ γd d= ′ /( ( ) 2

1

1 m
k

k
AP d

m =
∑   ) is the normalized core 

band-width based on bandwidth parameter γ ′d , and m denotes 
the number of drugs.

Then, we obtain the chemical structure (CS)-based similarity 
between drugs calculated by RDKit (Landrum, 2014), which is 

A

B

C

FIGURE 1

Workflow of Gaussian kernel similarity bilinear matrix factorization (VDA-GKSBMF). (A) Virus–drug association network and its association matrix. 
(B) Drug–drug similarity matrix and Virus–virus similarity matrix. (C) The model of VDA-GKSBMF.

TABLE 1 The statistics of datasets.

Datasets No. of 
viruses

No. of 
drug

No. of 
VDAS Sparsity

Dataset1 12 78 96 89.7%

Dataset2 69 128 770 91.3%

Dataset3 34 203 407 95.0%

Dataset4 34 210 437 93.9%

Dataset5 34 219 455 93.9%
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denoted as Zd . Finally, we generate the drug–drug similarity 
matrix (DDS) by,

 
S M Zd d d d d= + −( )ω ω1 ,

where ωd ∈[ ]0 1,  balances the contribution of the CS-based 
and AP-based drug similarity matrices. This forms a drug–drug 
network with edges weighted by the pairwise drug similarity scores.

Virus similarity matrix
Considering that viruses with common associated drugs may 

be similar, in the same way, we denote the Gaussian association 
profile (AP) of virus va  by AP va( ) , i.e., the a -th column of the 
VDA matrix B, which is a binary vector encoding the associations 
between this virus and drugs in the VDA matrix. We calculate the 
AP-based similarity M v vv a b,( )  between two viruses by,

 
( ) ( ) ( )( )2, exp AP AP ,v a b v a bM v v v vγ= − − 

where ( ) 2

1

1/ (
n

v v k
k

AP v
n

γ γ
=

= ′ ∑   ), and n  denotes the 
number of viruses.

Then, we obtain the sequence (SQ)-based similarity matrix 
calculated by MAFFT (Katoh and Toh, 2008), which is denoted as 
Zv . Finally, the virus-virus similarity matrix (VVS) is 
calculated by,

 
S M Zv v v v v= + −( )ω ω1 ,

where ωv ∈[ ]0 1,  balances the contribution of the SQ-based 
and AP-based virus similarity matrices. This forms a virus-virus 
network with edges weighted by the pairwise virus similarity scores.

Constructing heterogeneous network
To make use of information in the above DDS, VVS, and VDA 

matrices, we integrate them to construct a heterogeneous virus–drug 
network, by connecting the virus–virus network and drug–drug 
network through virus–drug associations. In the heterogeneous 
network, there are a set of m  viruses V v v v vm= …{ }1 2 3, , , ,  and a 
set of n  drugs D d d d dn= …{ }1 2 3, , , , ; the edge  
between drugs d di j,( )  is weighted by the score S d dd i j,( )  in the 
DDS matrix, the edge between viruses v va b,( )  is weighted by the 
score S v vv a b,( )  in the VVS matrix, and the edge between drug di  
and virus va  denotes the existence of association  
between them.

The VDA matrix B is extremely sparse due to the rarity of 
known virus–drug associations, where 1/0 denotes known/
unknown virus–drug associations, respectively. We would like to 
fill out the missing values in the matrix as scores to predict 
unknown VDAs. The integration of information of DDSs, VVSs, 
and known VDAs into the heterogeneous network will benefit the 
discovery of unknown VDAs due to the intrinsic correlation 
among drugs and viruses.

VDA-GKSBMF model to predict virus–drug 
associations

To predict potential virus-drug associations of COVID-19, 
we define the VDA prediction as a problem of completing virus-
drug matrix in a heterogeneous virus-drug network, and explore 
potential VDAs of COVID-19 by Gaussian kernel similarity 
bilinear matrix factorization (Yang M. et  al., 2020; called as 
VDA-GKSBMF).

Matrix factorization is an effective method, which intends to 
calculate an optimal approximation to the target matrix by 
decomposing it into two low-rank matrices. In a word, the 
mathematical model of matrix factorization is formulated as

 

2
,

min ,T
FU V

B UV−
 

(1)

where B n m∈ ×  is the given incomplete matrix with n drugs 
and m viruses, U∈ ×n k  and V∈ ×m k are the indicator 
feature matrices of B and k is the subspace dimensionality 
[k min n,m( ) ], . F   denotes the Frobenius norm. Many 
algorithms have been designed to provide numerical solutions for 
the above model or alternative forms. However, compared with 
other algorithms, the classic ADMM algorithm is superior to 
solving our proposed matrix factorization model.

The elements in the association matrix B are either 0 or 1. 
Thus, the predicted values in the un-known entries are expected 
to be in the interval of [0, 1], where a predicted value closer to 1 
indicates that this is likely to be an indication and vice versa. 
Nevertheless, in the above matrix completion model, the entries 
in the completed matrix can be any real value in (−∞, +∞).

Moreover, based on the assumption that similar drugs share 
similar molecular pathways to treat similar viruses, the underlying 
factors that determine drug-virus associations are highly 
correlated. Since B is extremely rare and low rank, usually less 
than 1% of known associations are present, while the rest of the 
elements are unknown. Therefore, the error term is only computed 
on items with known associations. At the same time, Tikhonov 
regularization terms are often used to avoid overfitting. To achieve 
this, the matrix factorization model can be expressed as,

 

( ) ( )2 221

,

1min ,
2 2

T
F FF

U V

B UV U Vλ
− + +Ω     

 

(2)

where Ω  is a set containing index pairs i j,( )  of all known 
entries in B  and Ω  is the projection operator onto Ω , λ1  is 
regularization parameter. However, the above objective function 
does not involve a large amount of prior information about 
viruses and drugs, such as disease similarity and drug similarity. 
Since U  and V  are matrices containing potential eigenvectors 
of drugs and viruses, given a drug similarity matrix Zd  and a 
virus similarity matrix Zv , UUT  and VVT  are expected to 
match Sd  and Sv , respectively. Therefore, model (2) is described 
as follows:
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λ
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(3)

Model (3) deals with a single drug and virus similarity measure. 
Here, in order to integrate the Gaussian kernel similarity measure, 
we propose the VDA-GKSBMF model, which is expressed as follows:

 

( ) ( )

( )
( )

2 2 21

, , , ,
2 22

2 23

1min
2 2

2

2

T
FFF

U V P Q A

T T
d vF F

F F

A UV U V

S UP S VQ

P Q

λ

λ

λ

− + +

+ − + −

+ +
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 

  









 

(4)

 ( ) ( ).s t A BΩ Ω= 

 U V≥ ≥0 0, ,

where Sd  and Sv  are matrices concatenating Gaussian kernel 
similarity measure of drug and virus, and 1λ , 2λ , and 3λ  are 
balancing parameters. A is an auxiliary matrix for facilitating 
optimization. The approximation of similarity matrix Sd and Sv  
are constructed based on characteristic matrices U and V, where 
P and Q are potential characteristic matrices representing drug 
similarity and virus similarity, respectively. We solve model (4) by 
ADMM framework. Introducing two riving matrices X and Y, 
model (4) is transformed into

 

( ) ( )

( )
( )

2 221

, , , , , ,
222

2 23

1min
2 2

2

2

T
F F F

U V P Q X Y A

T T
d vF F

F F

A UV U V

S UP S VQ

P Q

λ

λ

λ

− + +

+ − + −

+ +

     

   

   

 

(5)

 
s t A B.  © ©( ) = ( )

 U X V Y= =,

 X Y≥ ≥0 0, .

The augmented Lagrangian function becomes

 

( ) ( )
( )
( ) ( )( )
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Tr R U X U X V Y

λ

λ

λ
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(6)

where W and R are the Lagrange multiplier and ρ >0 is the 
penalty parameter. At the i-th iteration, it requires alternatively 
computing U V P Q X Y Ai i i i i i i+ + + + + + +1 1 1 1 1 1 1, , , , , , .

Molecular docking method
Molecular docking method can be used to study the behavior 

of small molecules at the binding sites of target proteins. It has 
been widely used in drug design, since structures of more and 
more target proteins have been confirmed by experiments. 
AutoDock (Goodsell, 1996) is an open source molecular 
simulation software available to identify the conformation of a 
small molecule binding to a large molecule target. AutoDock has 
an affinity scoring function, which can sort candidate poses 
according to the sum of van der Waals and electrostatic energy. 
We used AutoDock to evaluate the molecular binding activity 
between predicted antiviral drugs and biomolecules.

Evaluation metrics
In this work, we evaluate the predictive performance of our 

method by 5-fold cross-validation. Popular evaluation metrics: 
AUC and AUPR are used to quantify the predictive performance 
of methods. Given a threshold of predictive scores, the candidate 
associations above this threshold are regarded as positives, and 
others are negatives. Then, true positive rate (TPR), false positive 
rate (FPR) and Precision can be calculated by,

 TPR = TP/(TP+FN) (7)

 FPR = FP/(FP+TN) (8)

 Precision = TP/(TP+FP) (9)

where TP, FP, TN, and FN represent true positive, false positive, 
true negative, and false negative, respectively. TPR is also called as 
Recall, which measures the ratio of correctly predicted positive 
samples to all positive samples. Precision measures the ratio of 
correctly predicted positive samples to all predicted positive samples.

With the increases of the threshold, TPR/Recall, FPR, and 
Precision will vary. TPR and FPR can form a TPR- FPR curve, called 
as the receiver-operating characteristic (ROC) curve. The area 
under the ROC curve is generally denoted as AUC. Precision and 
Recall (equivalent to TPR) can form a Precision–Recall (PR) curve. 
The area under the PR curve is generally denoted as AUPR. AUC 
and AUPR are scalar with the evaluation criterion: the larger AUC/
AUPR is, the better the predictive performance is. AUC and AUPR 
can evaluate the overall performance of prediction algorithms.

Results

Parameter setting

In VDA-GKSBMF algorithm, there are tunable 
parameters ′γ ω λ λ λ, , , .1 2 3and  In order to prevent 
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multi-parameter overfitting, we set λ λ1 2, and λ3 to the same 
value and remove two parameters. Because they are used to 
punish the related terms of U and V, P and Q in model (3) and 
model (4). VDA-GKSBMF has three parameters ( ′γ ω λ, , 1 ) 
needed to be determined. We first set ′γ  to 0.5, and then ω λ, 1  
are set in range of {0, 0.1, 0.2,…, 1}, {0.001, 0.01, 0.1, 1} by using 
the fivefold cross-validation on the training dataset. Table  2 
displays the top 3 AUCS values as a function of ′γ ω λ λ λ, , ,1 2 3and  
in five datasets.

Comparison with other methods

By 5-fold cross-validation experiment, we  evaluate the 
performance of VDA-GKSBMF. We  plot its ROC curve in 
Figure 2, and we find that it has a high AUC value in five datasets.

Further, we compare the VDA-GKSBMF method with other 
methods for drug repositioning: VDA-KATZ (Yang et al., 2019), 
IRNMF (Tang et al., 2020), VDA-GBNNR (Wang et al., 2021), 
and SCPMF (Meng et al., 2021). VDA-KATZ (Yang et al., 2019) 
used a KATZ algorithm to infer drug-virus association. The 
Indicator Regularized non-negative Matrix Factorization 
(IRNMF) method (Tang et al., 2020) introduced the indicator 
matrix and Karush-Kuhn-Tucker condition into the 
non-negative matrix factorization algorithm. VDA-GBNNR 
based on kernel similarity to predict anti-SARS-COV-2 drug. 
SCPMF used similarity constrained probabilistic matrix to infer 
drug-virus association. The experiment was carried out 50 times, 
with average performance as the final result. Table  3 shows 
sensitivities, specificities, accuracies, and AUCs of the five 
models on the five datasets. From Table 3, VDA-GBNNR obtains 
the best performance for other methods in dataset 1. However, 
VDA-GKSBMF achieves the best sensitivity, accuracy, specificity, 

and AUC on dataset 2, dataset 3, dataset 4, and dataset 5. 
Figure 2 displays the results of the methods in five datasets. The 
results show that the VDA-GKSBMF method outperforms the 
baseline methods in terms of the ROC curves and the 
corresponding AUC values, meaning that it can better discover 
antiviral drugs.

Case study

After verifying the good performance of VDA-GKSBMF, to 
discover unknown antiviral drugs against SARS-CoV-2, 
we  predict potential associations between SARS-CoV-2 and 
small molecule drugs based on known drug-virus association 
data, and we obtain the top-10 drugs with the highest score (see 
Table 4) in five datasets. Among the top-10 predicted drugs, 
there are 10 drugs that have been reported in the relevant 
literature, but the small molecule drugs were never confirmed 
to be anti-SARS-CoV-2 antiviral drugs. Ribavirin, Remdesivir, 
Oseltamivir, and Zidovudine were existed in at least 
four datasets.

Ribavirin is a road-spectrum antiviral drug that can inhibit 
the replication of respiratory syncytial virus (van Laarhoven and 
Marchiori, 2013). It can prevent respiratory syncytial virus 
infection in lung transplant recipients, and has been used to treat 
SARS-CoV and MERS-CoV. Similar to SARS-CoV and MERS-
CoV, SARS-CoV-2 are a respiratory syndrome beta coronavirus 
that may cause severe respiratory diseases, and a few studies have 
reported that ribavirin may take an inhibitory effect on SARS-
CoV-2 (Peng et al., 2020).

Remdesivir is a nucleoside analog with antiviral activity. 
Remdesivir has broad-spectrum activities against RNA viruses, 
such as SARS and MERS, and has been studied in a clinical trial 
for Ebola.

Oseltamivir is an antiviral neuraminidase inhibitor 
(Oseltamivir, n.d.) and has been used to prevent the infection of 
influenza A virus (for example, A-H1N1; Meijer et  al., 2009, 
A-H5N1; De Jong et al., 2005, and influenza B virus). Oseltamivir 
can prevent the germination, replication, and infectivity of the 
virus in the host cell. More importantly, Oseltamivir combined 
with other drugs has been reported to inhibit the infection of 
SARS-CoV-2 (Huang et al., 2020).

Molecular docking

To further study the effectiveness of predicted drugs against 
SARS-CoV-2, the top  10 predicted small molecules are 
molecularly docked with SARS-CoV-2 spike protein/ACE2. From 
the DrugBank database, the chemical structures of these small 
molecule drugs have been obtained. The structure of spinous 
process protein of SARS-CoV-2 is calculated based on the 
homology model of Zhang lab (Wang et  al., 2020). We  used 
AutoDock, a bioinformatics tool, to conduct molecular docking 
between the predicted antiviral drug and SARS-CoV-2 spike 

TABLE 2 The top three AUCs using different , , , ,and1 2 3γ ω λ λ λ′ values 
in 5-fold cross-validation.

Dataset γ ′ ω 1λ 2λ 3λ AUC

Dataset1 0.5 0.3 1 1 1 0.8851

0.5 0.4 1 1 1 0.8825

0.5 0.5 1 1 1 0.8663

Dataset2 0.5 0.1 0.1 0.1 0.1 0.8594

0.5 0.2 0.1 0.1 0.1 0.8590

0.5 0.3 0.1 0.1 0.1 0.8583

Dataset3 0.5 0.4 1 1 1 0.8807

0.5 0.3 1 1 1 0.8793

0.5 0.2 1 1 1 0.8756

Dataset4 0.5 0.2 0.1 0.1 0.1 0.8824

0.5 0.3 0.1 0.1 0.1 0.8809

0.5 0.4 0.1 0.1 0.1 0.8766

Dataset5 0.5 0.4 1 1 1 0.8804

0.5 0.3 1 1 1 0.8789

0.5 0.5 1 1 1 0.8787

Bold represented the best AUC values of different parameters in the same datasets.
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protein/ACE2. The search algorithm scans the entire protein in 
AutoDock by genetic algorithm and grid box.

We calculate the predicted molecular binding energies of 
ribavirin, remdesivir, oseltamivir, and zidovudine small 
molecules with the spinous process protein and ACE2 of 
SARS-CoV-2  in Table  5. The results show that the binding 
activities of ribavirin with these two proteins are −5.29 and 
−6.39 kcal/mol, followed by remdesivir with −5.22 and 
−7.4 kcal/mol, and oseltamivir with −4.04 and − 4.73 kcal/mol. 
More importantly, ribavirin and remdesivir have been used to 
treat SARS, and their sequence homology with SARS-CoV-2 is 
about 79%.

Zidovudine has molecular binding energies of −6.54 
and − 7.93 kcal/mol. Zidovudine is the drug which is an effective 

HIV replication inhibitor, which can improve immune function 
and partially reverse the neurological dysfunction caused by 
HIV. zidovudine, as an HIV nucleoside/nucleotide analogues 
reverse transcriptase inhibitor, has the potential to be a clue for 
SARS-COV-2 treatment.

Figures  3, 4 represent the docking results of four small 
molecules including ribavirin, remdesivir, oseltamivir, and 
zidovudine with two target proteins. The circles in each subgraph 
indicate the binding sites of the drug to the target protein. For 
example, the amino acids L387, L368, P565, and V209 are inferred 
to be the key residues for ribavirin binding to the SARS-CoV-2 
spike protein/ACE2, while L849, T827, W1212, L144, and P504 
are predicted as the key residues for remdesivir binding to these 
two target proteins.

A B

C

E

D

FIGURE 2

The performance of all methods in predicting virus–drug associations on five datasets: (A) Dataset1, (B) Dataset2, (C) Dataset3, (D) Dataset4, and 
(E) Dataset5.
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TABLE 5 The molecular binding energies between the predicted 4 
antiviral drugs and two target proteins at least four datasets.

Drugs
Binding energies of target proteins

Spike protein ACE2

Ribavirin −5.29 −6.39

Remdesivir −5.22 −7.40

Oseltamivir −4.04 −4.73

Zidovudine −6.54 −7.93

Discussion

Severe acute respiratory syndrome coronavirus 2 is quickly 
diffusing throughout the world, and it is urgent to find 
effective treatments against this virus. Drug repositioning, 
seeking to find new uses, offers a new strategy for the 
treatment of SARS-COV-2. However, to date, only a few 
databases have collated relevant drugs that may be used to 
treat SARS-COV-2. Thus, we developed a drug-virus as well 

TABLE 3 Performance indicators for different models.

Datasets Methods Accuracy Sensitivity Specificity AUC

Dataset1 VDA-GKSBMF 0.5172 0.8757 0.5091 0.8851

VDA-GBNNR 0.5181 0.8957 0.5095 0.9056

VDA-KATZ 0.5171 0.8735 0.5090 0.8829

SCPMF 0.5126 0.7708 0.5067 0.7778

IRNMF 0.5098 0.7088 0.5052 0.7142

Dataset2 VDA-GKSBMF 0.5136 0.8515 0.5072 0.8594

VDA-GBNNR 0.5134 0.8466 0.5071 0.8544

VDA-KATZ 0.5125 0.8211 0.5066 0.8284

SCPMF 0.5124 0.8187 0.5065 0.8259

IRNMF 0.5120 0.8077 0.5063 0.8146

Dataset3 VDA-GKSBMF 0.5097 0.8748 0.5052 0.8807

VDA-GBNNR 0.5097 0.8731 0.5051 0.8790

VDA-KATZ 0.5089 0.8416 0.5047 0.8471

SCPMF 0.5093 0.8557 0.5049 0.8613

IRNMF 0.5079 0.8015 0.5042 0.8063

Dataset4 VDA-GKSBMF 0.5102 0.8763 0.5054 0.8824

VDA-GBNNR 0.5098 0.8631 0.5052 0.8691

VDA-KATZ 0.5091 0.8345 0.5048 0.8400

SCPMF 0.5097 0.8581 0.5051 0.8639

IRNMF 0.5081 0.7990 0.5044 0.8040

Dataset5 VDA-GKSBMF 0.5101 0.8743 0.5054 0.8804

VDA-GBNNR 0.5096 0.8572 0.5051 0.8630

VDA-KATZ 0.5090 0.8322 0.5048 0.8376

SCPMF 0.5095 0.8532 0.5051 0.8590

IRNMF 0.5081 0.7966 0.5043 0.8015

Bold represented the best value of different methods under the same evaluation condition.

TABLE 4 The predicted top-10 antiviral drugs against SARS-CoV-2 in five datasets.

Dataset1-drug Dataset2-drug Dataset3-drug Dataset4-drug Dataset5-drug

Remdesivir Favipiravir Ribavirin Nitazoxanide Ribavirin

Oseltamivir Remdesivir Nitazoxanide Ribavirin Chloroquine

Zanamivir Cidofovir Chloroquine Oseltamivir Zidovudine

ribavirin ribavirin Camostat Camostat Camostat

Laninamivir Mycophenolic acid Umifenovir Zidovudine Umifenovir

Peramivir Navitoclax Remdesivir Favipiravir Favipiravir

Presatovir Itraconazole Zidovudine Hexachlorophene Rifamycin

zidovudine BCX4430 (Galidesivir) Berberine Remdesivir Oseltamivir

Mycophenolic acid Pleconaril Amantadine Sirolimus Berberine

Mizoribine Cyclosporine Oseltamivir Suramin Niclosamide

Bold indicated that the drug existed in at least four datasets.
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as a method VDA-GKSBMF to prioritize drugs against 
SARS-COV-2.

Specifically, VDA-GKSBMF has a high AUC in cross-
validation, which is better than other state-of-art methods in four 
datasets. We measured the molecular binding activity between 
predicted antiviral drugs and SARS-CoV-2 spike protein/human 
ACE2 (Zhao et al., 2020). Among them, the molecular binding 
energies between ACE2 and the four drugs were: Ribavirin 
(−6.39 kcal/mol), Remdesivir (−7.4 kcal/mol), Oseltamivir 
(−4.73 kcal/mol), zidovudine (−7.93 kcal/mol), and the four 
drugs have been in clinical trials or supported in recent 
publications. The results suggest that the VDA-GKSBMF 
algorithm can effectively infer unknown drugs of SARS-COV-2.

However, there a few limitations of this study. First, due to the 
limited size of the current virus-drug dataset and the complexity 
of intrinsic relationship in biomedical data, VDA-GKSBMF still 
has room for further improvement. On the one hand, we would 
like to expand the virus-drug dataset by including more virus-
related and drug-related information, so as to further improve the 

predictive power of mining hidden virus-drug associations. On 
the other hand, it is also possible to enhance the ability of 
discovering potential drugs against SARS-COV-2 by more 
advanced and methods in related fields (Xu et al., 2020b; Xiang 
et  al., 2021b, 2022a; Meng et  al., 2022). Second, though 
we  performed literature mining and molecular docking to 
validate our results, they are all in-silico methods. The prioritized 
drugs should be validated using wet-lab experiments. However, 
it is out of the scope of this study.

Conclusion

In this study, we collected five virus-drug datasets including 
VDAs matrix, virus genomic sequence similarity matrix, and 
drug chemical structure similarity matrix and explored drug 
repositioning of SARS-COV-2 by a novel method called 
VDA-GKSBMF.VDA-GKSBMF combined Gaussian similarity 
and extracted useful features to deduce potential virus-drug 

A B

C D

FIGURE 3

Molecular docking between the spike protein and four drugs: (A) ribavirin, (B) remdesivir, (C) oseltamivir, and (D) zidovudine.
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associations. It combined Gaussian similarity and virus-drug 
association into the target function. The non-negative constraint 
was used in VDA-GKSBMF, ensuring that the predicted scores of 
association matrix were non-negative for the biological 
interpretability. Our results showed that VDA-GKSBMF is an 
effective approach for discovering new drugs of SARS-COV-2. In 
the future, we will combine different data resources to create 
larger dataset and design integrated algorithm, integrating 
multiple heterogeneous network and multiple similarities for 
predicting potential virus-drug associations.
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Introduction: In December 2019, a novel epidemic of coronavirus pneumonia 

(COVID-19) was reported，and population-based studies had shown that 

cancer was a risk factor for death from COVID-19 infection. However, the 

molecular mechanism between COVID-19 and cancer remains indistinct. In 

this paper, we analyzed the nucleic acid sensor (DDX58) of SARS-CoV-2 virus, 

which is a significant gene related to virus infection. For purpose of clarifying 

the characteristics of DDX58 expression in malignant tumors, this study began 

to systematically analyze the DDX58 expression profile in the entire cancer 

type spectrum.

Methods: Using TCGA pan-cancer database and related data resources, 

we analyzed the expression, survival analysis, methylation expression, mutation 

status, microsatellite instability (MSI), immune related microenvironment, gene 

related network, function and drug sensitivity of DDX58.

Results: The expression level of DDX58 mRNA in most cancers was higher 

than the expression level in normal tissues. Through TIMER algorithm mining, 

we found that DDX58 expression was closely related to various levels of immune 

infiltration in pan-cancer. The promoter methylation level of DDX58 was 

significantly increased in multiple cancers. In addition, abnormal expression of 

DDX58 was related to MSI and TMB in multiple cancers, and the most common 

type of genomic mutation was “mutation.” In the protein–protein interaction 

(PPI) network, we  found that type I  interferon, phagocytosis, ubiquitinase, 

and tumor pathways were significantly enriched. Finally, according to the 

expression of DDX58 indicated potential sensitive drugs such as Cediranib, 

VE−821, Itraconazole, JNJ−42756493, IWR−1, and Linsitinib.

Discussion: In conclusion, we had gained new insights into how DDX58 might 

contribute to tumor development, and DDX58 could be used as an immune-

related biomarker and as a potential immunotherapeutic target for COVID-19 

infected cancer patients.
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1. Introduction

Globally, 590 million cases of COVID-19 infection and 6.4 
million deaths have been reported as of August 15, 2022. A recent 
study found that about 66 cancer patients were immunosuppressed 
with increasing susceptibility to infection and risk of serious 
complications (Al-Quteimat and Amer, 2020). Compared with 
other diseases, the genomes of 68 cancers have been fully studied. 
However, the gene information associated with COVID-19 
remains largely unknown.

Genome-wide association study on COVID-19 patients with 
severe and critical illness showed that DDX58 gene was closely 
associated to severe COVID-19. It is urgent to study the role of this 
gene in different cancers. RIG-I or DExD/H-box helicase 58 
(DDX58) is a protein that recognizes viral double-stranded RNA 
and produces type I interferon, an antiviral and innate immune 
response medium as previous described (Morelli et al., 2021). At the 
same time, DDX58 is considered as a potential novel target for 
COVID-19 treatment and a key component of COVID-19 infection 
and progress (Yamada et al., 2021). In cancer patients exposed to 
viruses, their condition worsened and their mortality increased 
(Han et al., 2021). Therefore, we aimed to find the role of DDX58 in 
cancer immunotherapy, in order to provide a more suitable 
treatment idea for cancer patients infected with COVID-19.

Here, we  showed the landscape analysis of DDX58 
expression level in healthy tissues and pan-cancer tissues using 
GTEx and TCGA, and then studied the relationship between 
DDX58 and various tumor prognoses. We  explored the 
relationship between DDX58 and immune cell infiltration in 
specific tumor patients and studied the potential role of 
DDX58 in tumor patients, we also analyzed the methylation 
profile of DDX58 promoter and the mutation of DDX58 in the 
UALCAN database. These findings might have important 
significance in preventing SARS CoV-2 infection and mitigate 
cytokine storm in patients infected with cancer. This study 
might also point out the therapeutic potential of DDX58 
inhibitors in preventing or mitigating SARS CoV-2 infection 
in specific cancer patients.

2. Materials and methods

2.1. Transcriptome data analysis

TCGA database and genotypic tissue expression (GTEx) 
database were used to obtain gene expression profiles. An analysis 
of 31 normal tissues was performed using mRNA data obtained 
from the GTEx project. Cancer cell lines were analyzed in 31 
tissues according to their expression levels, and then the Kruskal 
Wallis test was performed on the mRNA data between adjacent 
tissues and tumor tissues, as well as healthy tissues and tumor 
tissues, to determine the difference of DDX58 expression. DDX58 
expression levels were compared between healthy tissues and 
tumor tissues, as well as between adjacent tumor tissues and 
tumor tissues.

HPA1 contains normal tissue and tumor tissue protein levels 
of human gene expression profile information. In this study, 
we compared the expression of DDX58 protein in normal tissues 
and cancer tissues of four different organs by HPA. The 
significance of the difference was calculated using the Wilcoxon 
test. p < 0.05 suggests that the expression of tumor tissue is 
different from that of normal tissue.

2.2. Clinical relevance analysis

The expression level of DDX58 was examined using univariate 
COX regression analysis to determine whether it was associated 
with tumor prognosis in various cancers. According to the median 
of DDX58, samples were divided into two groups based on their 
expression levels: high-and low-expression groups of DDX58. In 
order to determine the importance of survival differences, a log 
rank test was used, with a threshold of p = 0.05. What’s more, 
we used the limma package to learn the relationship between 
DDX58 and T stage in pan-cancer.

2.3. Construction and enrichment 
analysis of gene-gene, protein-protein 
and gene-disease networks

We constructed gene–gene interaction network through 
GeneMANIA2 and built PPI network through STRING database.3 
We  had further constructed a gene disease network on the 
OPENTARGET platform. Gene ontology (GO) terminology, 
Kyoto Encyclopedia of Genes and Genomes (KEGG) and GSEA 
were used to gene enrichment analysis. The term “GO” refers to 
molecular function (MF), cellular components (CC), and 
biological processes (BP). Use the “ClusterProfiler” package to 
perform GO, KEGG analysis, and GSEA. The TIMER4 was a 
comprehensive online database, analysis of a wide variety of 
cancer types related to immune infifiltrating. In this study, we used 
TIMER to determine the relationship between DDX58 expression 
and ACE2.

2.4. Epigenetic methylation analysis and 
association analysis of 
methyltransferase

As a form of DNA chemical modification, DNA methylation 
controls gene expression by changing epigenetics without 
changing DNA sequence. To analyze the methylation level of 
tumor and normal tissues, we obtained them from the methylation 

1 https://proteinatlas.org/

2 https://genemania.org/

3 https://string-db.org/

4 https://cistrome.shinyapps.io/timer/
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module of UALCAN database. Later, from UCSC5 database, 
we have downloaded a standardized pan-cancer dataset: TCGA 
Pan Cancer (PANCAN, N = 10,535, G = 60,499), from which 
we further extracted the expression data of DDX58 gene and 44 
marker genes of three kinds of RNA modified m6A genes in each 
sample. We filtered the samples from: Primary Blood Derived 
Cancer-Peripheral Blood, Primary Tumor. Further, log2 (x + 1) 
transformation has been performed for each expression value. 
Next, we had calculated the spearman correlation between DDX58 
and marker genes of five different immune pathways.

2.5. Analysis of tumor mutation load and 
genome changes in pan-cancer

The total number of substitutions, insertions and deletions per 
megabase in the coding region of tumor gene exons was used to 
calculate the tumor mutation load (TMB). We got the expression 
data of DDX58 gene in every sample from the previously 
downloaded datasets, combined with the previously screened 
samples. In addition, we also had download the Simple Nucleotide 
Variation dataset of level4 of all TCGA samples processed through 
MuTect2 software from GDC (https://portal.gdc.cancer.gov/; 
Beroukhim et al., 2010). To calculate the tumor mutation burden 
(TMB), we used the TMB function of the R software package 
maftools (version 2.8.01). Then we integrated the TMB and gene 
expression data of the samples. Finally, we obtained the expression 
data of 37 cancer species after removing those with fewer than 
three samples in a single cancer species. Through cBioPortal 
resources,6 we had analyzed the genetic changes of DDX58 in the 
TCGA dataset (Reimer et  al., 2021). The gene changes and 
mutation sites of DDX58 were obtained in the “Oncoprint,” 
“Cancer Type Summary,” and “Mutations” sub modules.

2.6. Analysis of immune checkpoint 
genes and new immune antigens

Biological phenomena such as gene fusion, deletion mutation 
and point mutation are called new antigens encoded by mutated 
genes in tumor cells. We had calculated the binding affinity score 
of epitopes with 8–11 amino acids of a certain length and the 
epitopes with a score less than 500 nm were defined as new 
antigens. Then, we ranked the predicted new antigens according 
to antigenicity index value, affinity and mutation allele frequency. 
In each tumor sample, scannedo was used to count the new 
antigens and analyze the relationship between DDX58 expression 
and new antigens. The immune checkpoint genes had been 
extracted and analyzed along with the DDX58 expression to 
further investigate their relationship.

5 https://xenabrowser.net/

6 http://www.cbioportal.org/

2.7. DDX58 expression and microsatellite 
instability analysis

From UCSC (see Footnote 5) database we had downloaded a 
standardized pan-cancer dataset: TCGA Pan Cancer (PANCAN, 
N = 10,535, G = 60,499). Based on the previously extracted 
expression data and screened samples, we  obtained MSI 
(Microsatellite instance) scores of each tumor from the previous 
study (Gounder et al., 2022). Next, the MSI and gene expression 
data of the samples were integrated.

2.8. Immune infiltration analysis

We screened the metastatic samples from the following 
sources: Primary Blood Derived Cancer  - Peripheral Blood 
(TCGA-LAML), Primary Tumor, and TCGA-SKCM. The gene 
expression profiles of each tumor were extracted, mapped to 
GeneSymbol, and further analyzed using the Timer method of the 
R software package IOBR (version 0.99.9, https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC8283787/; Li et al., 2017). The B cell, T 
cell CD4, T cell CD8, Neutrophil, Macrophage and DC infiltration 
scores of each patient in each tumor were reevaluated according 
to gene expression.

2.9. Drug sensitivity of DDX58 in 
pan-cancer

To study the drug sensitivity of pan-cancer patients to DDX58, 
the CallMinerTM database was used7 to get activity data and RNA 
seq expression profile of NCI-60 compounds. In order to analyze 
and select drugs approved by FDA or clinical trials, R packages 
“impute,” “limma,” “ggplot2,” and “ggpubr” were used for analysis.

3. Results

3.1. Differential DDX58 expression 
analysis in pan-cancer tissues and 
normal tissues

The analysis of gene disease network interaction showed that 
DDX58 was mainly related to genetic, familial or genetic disease, 
immune system disease, infectious disease, benign tumor, etc. In 
particular, DDX58 had a certain relationship with benign tumor 
(Figure  1A). Subsequently, we  investigated the role of human 
DDX58 expression in pan-cancer. A comparison of the expression 
levels of DDX58 in tumors and normal tissues was performed 
using the TCGA database. As compared to normal tissues, DDX58 
was found to be highly expressed in BRCA, ESCA, STES, KIPAN, 

7 https://discover.nci.nih.gov/cellminer
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STAD, HNSC, KIRC, LIHC, CHOL, while it was low expressed in 
LUAD, COAD, READ, KIRP, LUSC, KICH (Figures 1B,C). At the 
same time, DDX58 protein levels in four different organs and 
tissues also showed significant differences (Figure 1D).

3.2. Pan-cancer analysis of prognostic 
value of DDX58 expression in different 
stages of cancers

Next, an analysis of DDX58 expression and cancer prognosis 
was conducted using univariate Cox regression. According to the 
forest map of pan-cancer, the expression of DDX58 had a 
significant impact on the OS of LGG, KIRC, SKCM, MESO, 
TGCT, PAAD, LUAD patients (Figure 2). In addition, we also 
analyzed the expression of DDX58 in different cancer T stages, and 
the results showed that there were significant differences in the 
expression of DDX58 in different stages of 10 cancers 
(Supplementary Figure S1).

3.3. Construction of DDX58 gene, 
protein, disease network correlation with 
SARS CoV-2 receptor–ACE2

In order to understand the DDX58 related network, the 
STRING and GeneMANIA protein-protein and gene-gene 
interaction networks that interact with DDX58 were used (20 
potential related genes were selected respectively; Figures 3B,C). 
We  obtained 8 genes from the intersection of two data sets 
(Figure 3A) and carried out GO and KEGG analysis on 9 genes 
including DDX58 (Figure 3D). We found that BP was enriched in 
negative regulation of type I interchange production, regulation of 
type I interchange production, type I interchange production. CC 
was mainly enriched in phagophore assembly site membrane, 
phagophore assembly site, phagocytic vascular membrane. MF was 
significantly enriched in protein tag, Lys63 specific dehydrogenase 
activity, and Lys48 specific dehydrogenase activity. KEGG analysis 
showed that many related pathways were significantly enriched, 
including RIG-I-like receiver signaling pathway, NF kappa B 
signaling pathway, Influenza A. In addition, it could be seen from 
the correlation analysis with AEC2 (SARS CoV-2 receptor) that 
there was a positive correlation between the expression of DDX58 
and ACE2 in many cancers (Supplementary Figure S2).

3.4. Epigenetic modification of DDX58

According to promoter methylation analysis, DDX58 is 
hypermethylated in a variety of cancer types (Figure 4A). DDX58 
methylation seems to be  correlated with the level of DNA 
methyltransferase mRNA expression in various cancers (all 
p < 0.05; Figure 4B). As we all know, DNA methylation is the result 
of DNA methyltransferase, which plays a role by covalently 

binding to the methyl at the 5′ carbon position of cytosine, a CpG 
dinucleotide in the genome. A correlation was found between 
methyl related genes and various cancers. There was a positive 
correlation between the expression of DDX58 in pan-cancer and 
methyl-related genes, which meant that DDX58 may mediate 
tumor genesis and progression by regulating epigenetic status. 
Moreover, it was worth noting that the correlation coefficient was 
higher in DLBC and UVM.

3.5. Genetic variation analysis of DDX58 
in pan carcinoma

Based on the cBioPortal database, we found that there were 
higher DDX58 gene changes in LUSC, UCEC, STAD, and SKCM, 
and mutation was the main type (Figure 5A). It further proved the 
type, location and quantity of DDX58 gene modification. R244K/I 
changes were detected in 4 patients with DDX58 (Figure 5B). Then 
the 3D structure of DDX58 protein at this mutation site was 
mapped (Figure 5C). The most common type of mutation found 
in pan-cancer analysis were gain and diploid (Figure  5D). In 
addition, TRAJ6, TMEM158, YY1P2, TTN, TAF1L, TP53, 
TOPORS, MUC16, ACO1, RYR2 gene changes were more 
common in the altered group than in the unchanged group 
(Figure 5E).

3.6. DDX58 is associated with TMB and 
MSI in some cancers

TMB and MSI are effective prognostic biomarkers and 
indicators of immunotherapeutic response in many tumors. From 
these two analyses, we  can conclude the relationship between 
DDX58 and immunotherapy prognosis of specific cancer types.

The tumor cell genome’s TMB is usually expressed as the total 
number of non-synonymous mutations within an average 1 M 
base region. In some cases, it is also expressed directly as the 
number of somatic mutations. Base substitution, frameshift 
mutation, deletion mutation, insertion mutation and other 
mutation types are the most common mutation type. In tumor 
cells, TMB is a quantifiable indicator of mutation frequency. The 
correlation between DDX58 and TMB was calculated for each 
tumor. Ten tumors showed a significant correlation, including a 
significant positive correlation in 6 tumors, such as GBMLGG 
(N = 650; R = 0.1430, p = 0.0002), COAD (N = 282; R = 0.1328, 
p = 0.0257), COADREAD (N = 372; R = 0.1103, p = 0.0334), KIPAN 
(N = 679; R = 0.194, p = 3.4926e-7), UCS (N = 57; R = 0.3099, 
p = 0.01895), BLCA (N = 407; R = 0.0996, p = 0.0444), significantly 
negative correlation in 4 tumors, for example: BRCA (N = 981; 
R = −0.0669, p = 0.0361), HNSC (N = 498; R = −0.1226, p = 0.0061), 
THCA (N = 489; R = −0.2149, p = 0.00001), UVM (N = 79; 
R = −0.3177, p = 0.0043; Figure 6A).

DDX58 expression correlated with MSI in different types of 
cancer and we had calculated their spearman correlation in each 
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A

B

C

D

FIGURE 1

Differential expression analysis of DDX58 in pan-cancer tissues and normal tissues. (A) DDX58 related disease prediction (B) cancer and normal 
tissues in TCGA database (C) cancer and normal tissues in GTEx database (D) the protein expression level of DDX58 in normal and tumor 
tissues of four different organs *p < 0.05, **p < 0.01, ***p < 0.001. BLCA, Bladder Urothelial Carcinoma; BRCA, Bladder Urothelial Carcinoma; 
CHOL, Cholangiocarcinoma, COAD, Colon adenocarcinoma; ESCA, Esophageal carcinoma, GBM, Glioblastoma multiforme; HNSC, Head and 
Neck squamous cell carcinoma; KICH, Kidney Chromophobe; KIRC, Kidney renal clear cell carcinoma; KIRP, Kidney renal papillary cell 
carcinoma; LIHC, Liver hepatocellular carcinoma; LUAD, Lung adenocarcinoma; LUSC, Lung squamous cell carcinoma; PRAD, Prostate 
adenocarcinoma; READ, Rectum adenocarcinoma; STAD, Stomach adenocarcinoma; THCA, Thyroid carcinoma; UCEC, Uterine Corpus 
Endometrial Carcinoma.
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tumor. A significant correlation was observed in 10 tumors, 
including significant positive correlation in 3 tumors, such as 
COAD (N = 285; R = 0.1526, p = 0.0098), COADREAD  
(N = 374; R = 0.1068, p = 0.0389), THYM (N = 118; R = 0.1868, 
p = 0.0428), and the significant negative correlation in 7 tumors, 
such as GBMLGG (N = 657; R = −0.1286, p = 0.0009) LGG 
(N = 506; R = −0.0878, p = 0.0483), KIPAN (N = 688; 
R = −0.3528,p = 1.351e-21), PRAD (N = 495; R = −0.1286, 
p = 0.0041), THCA (N = 493; R = −0.0967, p = 0.0317), PAAD 
(N = 176; R = −0.1677, p = 0.0260), DLBC (N = 47; R = −0.4937, 
p = 0.0004; Figure 6B).

It was worth noting that the absolute coefficients associated 
with TMB or MSI in the COAD cohort were relatively high 
compared with other cancer types, suggesting that the it may 
be sensitive to immunotherapy.

3.7. DDX58 might regulate tumor 
immune microenvironment by 
influencing immune invasion of various 
cancer types and expression of immune 
checkpoints

To determine whether this pathway affects the tumor 
immune microenvironment, we studied the expression of DDX58 
with the degree of immune cell infiltration in each cancer type. 
Using the data collected from TCGA and the six types of immune 
cells available in TIMER database (B cells, CD4 + T cells, CD8 + T 
cells, neutrophils, macrophages and dendritic cells) for analysis, 
the results indicated that there was significant correlation in 
multiple tumors (Figure 7). It was worth noting that CD8 + T cells 

FIGURE 2

Pancancerous analysis of the diagnostic and prognostic value of DDX58 expression. The forest map shows the HR and 95% CI of DDX58 
expression related to cancer OS.
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had the highest DLBC correlation coefficient. Their 
corresponding linear regression diagram showed that the high 
expression of DDX58 may be related to the increased level of 

immune cell infiltration. Similarly, DDX58 also affected the 
expression of immune checkpoints in different cancers 
(Supplementary Figure S3).

A

B

D

C

FIGURE 3

Gene, protein and disease networks use the DDX58 related gene network mapped by GeneMANIA. (A) The Venn diagram where STRING and 
GeneMANIA intersect. (B) DDX58 related gene network mapped by GeneMANIA (C) DDX58 related protein network mapped by STRING. 
(D) Enrichment analysis of cross genes.
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3.8. DDX58 drug sensitivity analysis

The database was further analyzed to determine whether 
DDX58 expression was correlated with drugs using 
CellMiner™ (Figure  8). Our results indicated that the 
expression of DDX58 was positively correlated with the 

sensitivity to Cediranib, VE−821, Itraconazole, JNJ−42756493, 
IWR−1, Linsitinib. And the expression of DDX58 was 
negatively correlated with the drug sensitivity of geldanamycin 
analysis, Tanespimecin, TYROTHRICIN, Panobinostat, 
Alvespimycin, Quisinostat, XR−5944, Lapiphone, 
Paclitaxel,Tamoxifen.

A

B

FIGURE 4

Correlation analysis between DDX58 methylation level and methyltransferase expression level in pan-cancer tissues. (A) Display the difference of 
DDX58 methylation level between tumor and adjacent normal tissues in TCGA database (β Value). (B) Correlation between DDX58 expression and 
methylation related gene expression.
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4. Discussion

As of December 2019, COVID-19 had caused a worldwide 
pandemic and posed a serious threat to global public health (Talic 
et  al., 2021). As a result of the COVID-19 pandemic, cancer 
patients were more likely to be  infected with SARS CoV-2. 

According to these findings, COVID-19 might have an impact on 
cancer patients’ survival. RNA sensor RIG-I (DDX58) was a 
protein coding gene. The diseases related to RIG-I included 
Singleton Merten syndrome2 and Singleton Merten syndrome2. 
Signaling pathways that leaded to the production of type 
I  interferon and proinflammatory cytokines in response to 

A

B

D

E

C

FIGURE 5

Genetic changes of DDX58. (A) Summary of DDX58 changes in TCGA pan-cancer dataset. (B) The type, number and location of mutations in 
DDX58 gene changes. (C) The 3D structure of DDX58 at 232 mutation site. (D) The type of DDX58 change in pan carcinoma. (E) Change 
frequency of related genes in DDX58 changed and unchanged groups.
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cytoplasmic viral nucleic acids (Bamming and Horvath, 2009; Shi 
et al., 2017; Zhao et al., 2017; Cadena et al., 2019). It formed 
ribonucleoprotein complex with viral RNA, on which 
homologous polymerization forms silk (Yoneyama et al., 2004; 

Sumpter et al., 2005). 3pRNA (RIG-1 agonist) treatment could 
increase cell death in melanoma cell lines and keep most 
melanoma cells in a non-proliferative state (Thier et al., 2022). In 
addition, RIG-1 activation inhibited STAT3/CSE pathway activity 

A

B

FIGURE 6

The relationship between the mRNA expression levels of TMB, MSI and DDX58 in various cancers found in TCGA database. TMB was calculated 
based on the total incidence of mutations per megabase pair in each tumor, and MSI was calculated based on the total incidence of deletions or 
insertions in repeated sequences per megabase pair. (A) Correlation between TMB and DDX58 expression. (B) Correlation between MSI and 
DDX58 expression. Spearman correlation test, p < 0.05 is significant.
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to restrain the proliferation of colon cancer cells (Deng 
et al., 2022).

Thus, to clarify how DDX58 contributes to the pathogenicity 
of COVID-19, we must examine its relation to DDX58, this study 

systematically analyzed the expression profile of DDX58 in the 
entire cancer type spectrum. Using TCGA pan-cancer database 
and related data resources, we analyzed the expression, survival 
analysis, methylation expression, mutation status, microsatellite 

FIGURE 7

The expression level of DDX58 mRNA calculated by TCGA and TIMER in the database was significantly correlated with the infiltration score of six 
common immune cells (B cells, CD4 + T cells, CD8 + T cells, neutrophils, macrophages, dendritic cells). Spearman correlation test, p < 0.05 is 
significant.
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FIGURE 8

DDX58 drug sensitivity analysis.

instability (MSI), immune related microenvironment, gene related 
network, function and drug sensitivity of DDX58. Analysis of the 
relationship between DDX58 expression and cancer immune 
invasion, tumor mutation, microenvironment and drug sensitivity 
had been finished, in order to determine DDX58’s potential for 
cancer immunotherapy and anti-COVID-19 treatment. We also 
carried out the correlation analysis between DDX58 and AEC2 
(SARS CoV-2 receptor; Supplementary Figure S2) to better 
understand the role of DDX58 in COVID-19 and cancers.

In this study, we  found the changes of DDX58 mRNA in 
tumors. According to our research, pan-cancer was closely 
associated with the expression of DDX58 protein. DDX58 was 
highly expressed in BRCA, ESCA, STES, KIPAN, STAD, HNSC, 
KIRC, LIHC, CHOL, while it was low expressed in LUAD, COAD, 
READ, KIRP, LUSC, and KICH. DDX58 was significantly 
associated with poor prognosis of LGG, TGCT, PAAD, LUAD, but 
significantly associated with improved prognosis of KIRC, SKCM, 
MESO patients. It indicated that DDX58 might play different roles 
and functions in different cancers.

Eight genes were obtained by crossing the potential genes 
that interact with DDX58 in the two databases, and nine genes 
including DDX58 were analyzed by GO and KEGG. These 8 
genes were ATG5, ATG12, RNF135, NLRC5, MAVS, ISG15, 
TRIM25, and CYLD, respectively. ATG5 usually combined with 

ATG12, catalyzed ATG7 and ATG10, played a role in autophagy, 
and regulates various functions of the body (Cui et al., 2022). It 
was known that RNF135 regulated the expression of IFN, and it 
participated in the RIG-I signal pathway by targeting RIG-I (Lai 
et al., 2019). NLRC5 could combine with LC3 to mediate MHC 
class I antigen presentation pathway (Zhan et al., 2022). MAVS 
mediated antiviral innate immunity (Zhang et  al., 2022). The 
protein encoded by ISG15 gene was a ubiquitin like protein, 
when it was activated by interferon-αand-β, it binded to target 
proteins in cells. The encoded protein had a variety of functions, 
including chemotactic activity to neutrophils, orientation of 
junction target protein to intermediate filament, intercellular 
signal transduction and antiviral activity during viral infection 
(Jurczyszak et al., 2022). In responsd to ubiquitin E3 ligase and 
ISG15 E3 ligase (Zou and Zhang, 2006), TRIM25 played a role in 
the innate immune response to viruses by ubiquitinating DDX58 
and IFIH1 (Chiang et  al., 2021). CYLD was a ubiquitin free 
enzyme that participates in NFκB activation and TNF-α induced 
necrosis (Dobson-Stone et  al., 2020). Through enrichment 
analysis, it was found that these genes were associated with 
interferon related pathways, phagosomes, ubiquitination, RIG-I, 
NFκB related pathway, suggesting that it may affect the 
development of cancer through regulating immunity (Overman 
et al., 2017; Yang et al., 2021).
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Disease network analysis found that DDX58 was related to 
genetic, family or genetic disease, immune system disease, 
infectious disease, cancer or disease. This also showed that this 
gene was closely related to tumor and infectious diseases. 
Afterwards, we  examined the relationship between DDX58 
expression and immune cell infiltration, and found that DDX58 
was significantly correlated with six types of immune cells (B 
cells, CD4 + T cells, CD8 + T cells, neutrophils, macrophages, and 
dendritic cells). In addition, abnormal DNA methylation was 
highly related to the occurrence, growth and carcinogenesis of 
tumors (Yang et al., 2021). Our study found that compared with 
their normal counterparts, cancer tissues were significantly 
hypermethylated, indicating that DDX58 might promote tumor 
development by altering DNA methylation. However, the exact 
mechanism was still unclear. TMB and MSI are effective 
biomarkers to predict the prognosis of various tumors and 
indicators of immune response. TMB and MSI had been shown 
to be indicators of drug response in previous studies, particularly 
those that target immune checkpoint inhibitors such as CTLA4 
and PD-1/PD-L1 (Overman et al., 2017; Mariathasan et al., 2018; 
Shim et  al., 2020). Subsequently, we  used the CellMinerTM 
database to find that the expression of DDX58 was related to the 
sensitivity to many drugs, including Cediranib, VE−821, 
Itraconazole, JNJ−42,756,493, IWR−1, Linsitinib. These results 
are helpful to promote clinical drug guidance.

However, there were still some deficiencies in our research. 
First, based on bioinformatics analysis, there was a lack of relevant 
experimental or clinical data. In addition, although there was a 
correlation between the expression of DDX58 in some tumors and 
survival rates, and DDX58 changed the infiltration of immune 
cells, we  were unable to establish a direct causal relationship. 
Future biological research needs to further clarify and confirm the 
role of DDX58 in cancer.

In conclusion, the expression level of DDX58 was significantly 
different in pan carcinoma.Turning RIG-I Sensor Activation 
Against Cancer had been used in clinical trails (Iurescia et al., 
2020).And it had been proved that SARS CoV-2 M protein could 
inhibit the expression of IFNb and interferon stimulated genes 
induced by RIG-1(Sui et al., 2021). However, how DDX58 played 
a role in these two diseases had not been reported. As an immune 
related biomarker, DDX58 could be used to diagnose and predict 
the prognosis of COVID-19 cancer patients and their potential 
therapeutic targets.

5. Conclusion

We found that DDX58 expression, survival prognosis, 
methylation, MSI, TMB, tumor immune microenvironment and 
drug sensitivity were different in pan-cancer. It was expected that 
DDX58 might become a potential target for COVID-19 cancer 
therapy based on its abnormal expression in pan-cancer and 
significant differences in prognosis and immune environment. As 
a result, this study provided new insight into DDX58’s possible 

role in drug regulation as well as exploring its multiple roles in 
pan-cancer.
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The research on microbe association networks is greatly significant for 

understanding the pathogenic mechanism of microbes and promoting the 

application of microbes in precision medicine. In this paper, we studied the 

prediction of microbe-disease associations based on multi-data biological 

network and graph neural network algorithm. The HMDAD database provided 

a dataset that included 39 diseases, 292 microbes, and 450 known microbe-

disease associations. We proposed a Microbe-Disease Heterogeneous Network 

according to the microbe similarity network, disease similarity network, and 

known microbe-disease associations. Furthermore, we integrated the network 

into the graph convolutional neural network algorithm and developed the 

GCNN4Micro-Dis model to predict microbe-disease associations. Finally, 

the performance of the GCNN4Micro-Dis model was evaluated via 5-fold 

cross-validation. We randomly divided all known microbe-disease association 

data into five groups. The results showed that the average AUC value and 

standard deviation were 0.8954 ± 0.0030. Our model had good predictive 

power and can help identify new microbe-disease associations. In addition, 

we  compared GCNN4Micro-Dis with three advanced methods to predict 

microbe-disease associations, KATZHMDA, BiRWHMDA, and LRLSHMDA. The 

results showed that our method had better prediction performance than the 

other three methods. Furthermore, we selected breast cancer as a case study 

and found the top 12 microbes related to breast cancer from the intestinal 

flora of patients, which further verified the model’s accuracy.
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graph neural network, multi-data heterogeneous networks, microbe-disease 
association, biological network, graph convolution neural network
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Introduction

In microecology, human microbes, especially intestinal 
microbes, have been found to play a key role in the generation and 
development of human complex diseases (Baron, 1996). This 
discovery provided a new perspective for revealing the inherent 
pathological mechanism of complex diseases. Microbes are 
responsible for the development of infectious diseases, such as 
SARS, MERS, and COVID-19 (Singh et al., 2014; Gong et al., 
2022). According to the latest real-time statistics from WHO, 618 
million confirmed cases and 6.5 million deaths have been reported 
globally between the outbreak of COVID-19 up until 9 October 
2022 (World Health Organization, 2022). Although the 
composition, morphology, and functions of microbial 
communities are well understood and thoroughly studied, 
systematically analyzing the mechanisms by which human 
microbes initiate and drive diseases is still a major challenge 
(Karstens et  al., 2018). Generally, the interaction between 
microbes and diseases can be  verified to high accuracy using 
traditional experimental techniques, which can determine 
whether a certain microbe is directly or indirectly related to 
diseases. However, this method requires advanced experimental 
setup, environmental conditioning, and scientific research skill 
(Teh et  al., 2021). Experimentally identifying the relationship 
between millions of microbes and human diseases takes a lot of 
time, highly-skilled human labor, and financial resources. This 
pinch could be obliviated by combining deep learning methods 
and biological network methods to identify the potential 
interactions between microbes and diseases on a large scale, 
allowing us to systemically understand the pathogenic mechanism 
of complex human diseases and provide a reference for the 
prevention, diagnosis, and treatment of diseases (Liu et al., 2021).

To address the challenges above, we  propose a graph 
convolutional neural network approach, termed 
GCNN4Micro-Dis, for microbe-disease prediction. The key 
motivation is to model associations between diverse biological 
domains through a graph neural network.

Related work

In 2016, Ma et al. (2017) established the Human Microbe-
Disease Association Database (HMDAD) by collecting published 
literature and collating 483 pairs of human microbe-disease 
association information. These highly-accurate data sources have 
attracted the attention of the bio information field. Researchers 
have successively proposed microbe-disease prediction models 
based on different theories, which can be roughly divided into the 
following three categories: (1) methods based on network 
algorithms, (2) methods based on dichotomous local features, (3) 
Machine learning-based methods.

In network algorithm-based methods, the similarity or 
heterogeneous network is first constructed, then the association 
probability is calculated based on the network and the specific 

network algorithm. In 2017, Chen et al., (2018) proposed the first 
KATZHMDA, which used the known topological information of 
microbe-disease association network to infer the potential 
relationship between microbes and diseases by using the social 
network relationship prediction method. In this model, the 
problem of predicting potential associations is transformed into 
the calculation of the similarity between corresponding nodes 
according to the length and number of paths connecting two 
nodes in the network. This model not only exhibited excellent 
predictive power, but also pioneered the field of microbe-disease 
prediction. Huang et al. (2017) proposed the path-based human 
microbe-disease association prediction computing model 
(PBHMDA), which used a special depth-first search algorithm to 
traverse all the paths communicated between nodes in the 
heterogenous network, thereby obtaining the prediction score of 
each pair of microbe-disease association. Shen et al. (2016) used 
the restart random walk algorithm to score each candidate 
microbe-disease pair in the microbe network based on Spearman 
correlation and the disease network based on symptom similarity. 
The main advantage of these models is their ability to make full 
use of the network’s topological information. They also involve few 
parameters, which greatly reduces the difficulty of 
parameter selection.

The second type of method is based on dichotomous local 
features. It considers microbes and diseases as local objects and 
calculates the final prediction by combining their characteristics. 
Huang et al., (2017) integrated two independent recommendation 
models and developed NGRHMDA to infer disease-related 
microbes. NGRHMDA considers diseases that share the same 
associated microbes or microbes that share the same associated 
diseases as neighbors. It then considers microbes and diseases as 
users and items, respectively, and adopts a collaborative filtering 
recommendation algorithm for local recommendation to make 
association predictions. Shen et al. (2018) proposed BiRWMP to 
predict microbe-disease association. The model first builds the 
microbe-disease associated-network, then it calculates the 
correlation between microbes and diseases based on the random 
walk algorithm, using the disease-to-microbe node as the initial 
starting point. Since the model is a combination of random walks, 
the local information of microbes, and the random walk of disease 
information, it can make better predictions than the one-way 
random walk model. This method improves the local feature bias 
by considering different perspectives, solving the noise problem 
caused by the known uneven distribution of associations in the 
data set to a certain extent and improving the model’s overall 
predictive power.

The third category is machine learning-based methods. Wang 
et  al. (2017) proposed LRLSHMDA for predicting potential 
disease-related microbes. Two objective functions were 
constructed using the Laplacian Regularized Least Squares 
classification method. An optimal classifier was trained by 
combining the known topological information of the microbe-
disease association network. Potential disease-associated 
microbes are eventually inferred. Peng et  al. developed 
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ABHMDA, which reveals disease-related microbes through a 
strong classifier consisting of weak classifiers with corresponding 
weights. ABHMDA assigns different weights to multiple weak 
classifiers, which proves that the computational method can 
achieve satisfactory performance in identifying potential 
associations between microbes and diseases. This work inspired 
researchers to further explore more novel and effective 
computational methods to predict the association between 
microbes and diseases.

Materials and methods

Dataset

The dataset used in this study was downloaded from the 
newly built Human Microbe-Disease Association Database 
(HMDAD1), which collects human microbe-disease association 
data from 61 published studies. HMDAD contains 450 verified 
microbe-disease association records between 292 microbes and 39 
diseases (Ma et al., 2017; Table 1).

Microbe-disease heterogeneous 
network

HMDAD allows the download of data on 39 diseases, 292 
microbes, and 450 microbes with known association and disease 
data. This data can be represented as a microbe-disease binary 
network, which combines all microbe species (M = {m1, m2, m3, …, 
mx}) and diseases (D = {d1, d2, d3, …, dy}) as A network node. If the 
microbe mj is known to be associated with disease di, add an edge 
between node mj and di. Using the adjacency matrix A ∈ Rx*y, 
where x and y represent the database of different kinds of diseases 
and the number of microbes, an adjacency matrix A may 
be constructed. If di has been proven to be linked with mj, then 
A(i,j) = 1, or 0, resulting in an adjacency matrix A with 39 rows and 
292 columns containing 1 s and 0 s.

A microbe-disease heterogeneous network is illustrated in 
Figure 1. The network is constructed from microbe similarity 
network, disease similarity network, and known microbe-disease 
associations. The heterogeneous network contains two node types: 
microbe nodes and disease nodes, and three types of connecting 
edges: microbe connecting edges, disease connecting edges, and 

1 http://www.cuilab.cn/hmdad

microbe-disease association edges. The present study aimed to 
predict the potential association between microbes and diseases 
using the constructed microbe-disease heterogeneous network, 
and subsequently find new microbe-disease association pairs with 
high association possibility from it.

Graph convolutional neural 
network

Graph convolutional neural network (GCNN) is a model 
that applies convolution to the field of graph data (Wu et al., 
2021). Its core idea is to learn a mapping function f(x) by which 
the characteristics of a node x and its neighbors can 
be aggregated together, resulting in the representation vector of 
node x. In CNN, the image processing method is to further 
convolve and pool the matrix data by arranging the image pixels 
into a matrix (LeCun and Bengio, 1995). In GCNN, the image 
is processed by establishing a topological graph of corresponding 
relationships between vertices and edges. The spatial features on 
the topological graph are then extracted (Shou et al., 2022). The 
structure of GCNN is shown in Figure 2. The biggest difference 
between GCNN and CNN is that GCNN is stacked at multiple 
layers, and the parameters between layers are different. The 
parameters of each layer are shared iteratively. The biggest 
advantage of GCNN is its introduction of an optimized 
convolution parameter that extracts graph structure data 
features. This function is realized through a Laplace matrix in 
GCNN (Zhang et al., 2022).

GCNNs are divided into two major forms: spatial domain 
and spectral domain. Spatial domain GCNNs are similar to the 
application of convolution in deep learning and are optimized to 
collect information from adjacent nodes. Although this class of 
network intuitively borrows image convolution operations, it 
lacks a specific theoretical basis (He et al., 2022). In contrast, 
spectral domain GCNNs can extract features from nonlinear data 
more easily. They do so in three steps: (1) perform graphic 
Fourier transform on input data, (2) convolve the transform 
result in the spectral domain, (3) inverse Fourier transform 
convolution result.

Based on graph theory, the coefficient matrix obtained is 
defined as a graph with nodes and edges. Any graph composed 
of multiple nodes and edges can be expressed as G = (V, E, W), 
where V is a node, E is the edge between two nodes, and W is the 
weighted adjacency matrix of connection weights between two 
vertices. It is usually represented by a Laplace matrix defined as 
L = D−A, where D and A represent the degree matrix and 
adjacency matrix, respectively. The degree matrix is a diagonal 
matrix representing the number of connected nodes. The 
adjacency matrix represents the relationship between nodes. 
Connected nodes are represented as 1, and unconnected nodes 
are represented as 0. The formula of the Laplace matrix is 
as follows:

TABLE 1 Data features of verified microbe-disease association.

Number of 
diseases

Number of 
microbes

Number of 
microbe-disease 
association

39 292 450
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In Equation 1, U is a matrix composed of unit eigenvectors, 
and A is a diagonal matrix composed of the eigenvalues of the 
Laplace matrix.

Model performance evaluation 
metrics

For a prediction model, the model is under-fitted if the 
deviation is too large, and over-fitted if the variance is too large. A 
model’s output is strongly distorted when it is under-fitted or 

over-fitted. To solve these two thorny problems, a set of evaluation 
methods and performance indicators are needed to 
comprehensively evaluate the prediction effect of the model. 
Evaluation methods evaluate the generalizability of the model. 
Performance indicators evaluate the performance of a single 
model. The evaluation methods and performance indicators are 
described in detail below.

Selecting appropriate evaluation methods and performance 
indicators is important for the evaluation of the model. In this 
study, common performance index parameters such as accuracy 
(Acc), recall (Rec), and F1 score (F1) are used (Zhou and Li, 2010). 
Their definitions are as follows:

 
Acc TP TN

TP TN FN FP
=

+
+ + +  

(2)

 
Rec TP

TP FN
=

+  
(3)

 
F TP

TP FN FP
1

2

2
=

+ +

∗

∗
 

(4)

TP represents the number of known microbe-disease 
association data that can be correctly identified; FP represents the 
number of unknown microbe-disease association data that have 
not been correctly identified; TN represents the number of 
unknown microbe-disease association data that can be correctly 
identified; FN represents the number of known microbe-disease 
association data that have not been correctly identified.

The ROC and PR curves were widely used in model 
evaluation. In the microbe-disease association prediction 
literature, researchers used the area under the ROC curve (AUC 

FIGURE 1

Microbe-disease heterogeneous network.

FIGURE 2

The flowchart of GCNN.
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value) and the area under the PR curve (AUPR value) as the 
comprehensive evaluation indicators of the model. The larger the 
AUC and AUPR values, the better the predictive power of the 
model (Zhou and Washio, 2009).

ROC stands for “receiver operating characteristic.” Its vertical 
axis is the true positive rate (TPR), while its horizontal axis is the 
false positive rate (FPR). FPR and TPR are calculated using the 
following formulae:

 
TPR TP

TP FN
=

+  
(5)

 
FPR FP

FP TN
=

+  
(6)

TPR represents the proportion of correctly identifying the 
known microbe-disease associations. FPR represents the 
proportion of incorrectly identifying the unknown microbe-
disease associations. The meanings of TP, FN, FP, and TN have 
been described in detail in the literature. TP + FN represents all 
known microbe-disease associations, while FP + TN represents all 
unknown microbe-disease associations.

PR stands for Precision-Recall. Its vertical axis is Precision 
(Pre), while its horizontal axis is Recall (Rec). Precision is 
calculated as follows:

 
Pre TP

TP FP
=

+  
(7)

Precision represents the proportion of correctly predicted 
known microbe-disease associations in all predicted known 
microbe-disease associations. Recall represents the proportion of 
correctly predicted known microbe-disease associations in all 
known microbe-disease associations.

To sum up, the ROC curve considers both positive and 
negative samples in the data set: the known microbe-disease 
associations and the unknown microbe-disease associations. This 
parameter can be applied to evaluate the overall performance of 
the model. The PR curve covers only the positive samples, the 
known microbe-disease associations. It is an indispensable 
indicator when there is an imbalance between positive and 
negative samples.

Results

Data preprocessing

The positive samples comprise 450 known interactions. The 
negative samples comprise 450 randomly selected data from the 
unknown interactions. If the node code of the disease is di and the 
microbe node code is mj, then the sample code of the interaction 
between the disease and the microbe is di + mj.

Dataset partition

When evaluating the merits and demerits of a prediction 
model, the choice of evaluation method is very important. In 
model evaluation, data sets are commonly divided into training 
and test sets. The partitioning should satisfy two conditions: the 
data in the respective sets follow the real distribution, and the data 
in the sets are mutually exclusive. Considering the different 
partitioning methods, the evaluation methods are mainly divided 
into three types: cross-validation, self-help, and set-aside (Zhou 
and Washio, 2009).

The present study utilized the same assessment method as the 
existing microbe-disease association predictive models. The 
proposed model was evaluated using the cross-validation method, 
specifically 5-fold cross-validation (5-fold CV). For the microbe-
disease association data, these three datasets contained only 
known microbe-disease association data and unknown microbe-
disease association data. The known microbe-disease association 
data were used as positive samples, while the unknown microbe-
disease association data were used as negative samples.

Based on the 5-fold CV, all known microbe-disease 
associations were randomly divided into five groups.

 1. Divide the positive samples into five subsets of equal size.
 2. Divide the negative samples into five subsets of equal size.
 3. One of the five subsets of positive and negative samples 

takes turns as the test set.
 4. Remove the positive samples in the test set from the 

adjacency matrix by deleting their links with known 
interactions in the test set network.

 5. In the remaining four subsets of positive and negative 
samples, the training set is 0.875, and the validation set 
is 0.125.

 6. Randomly generate the initialization code of each node.
 7. Repeat all experiments five times, with iteration set to 5, 

and average the final results to reduce the bias caused by 
random grouping.

Hyper-parameters selection

Convolutional neural network training can be regarded as a 
process of minimizing the loss function. The training network 
must initialize the parameters, set the appropriate learning rate, 
select the appropriate batch normalization method, and 
continuously iterate and update the parameters according to the 
optimization algorithm and strategy, including hyper parameters 
like Epoch, Batch, Batch_size, iteration, learning rate, etc.

In this experiment, we set Epoch to 100, learning rate to 0.001, 
coding dimension to 256, and the number of GCN coding layers 
to 3. Epoch refers to the complete training of the model using all 
the data in the training set, called “generation training.” Iteration 
is the process of updating the model parameters using a Batch of 

118

https://doi.org/10.3389/fmicb.2022.1077111
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Gong et al. 10.3389/fmicb.2022.1077111

Frontiers in Microbiology 06 frontiersin.org

data, called “a training session.” The learning rate determines how 
fast the parameters move to the optimal value. If the learning rate 
is too large, it is likely to cross the optimal value and lead to 
function convergence failure or even divergence. On the contrary, 
if the learning rate is too low, the optimization becomes inefficient, 
the convergence is too slow, and the algorithm can easily fall into 
a local optimum. The appropriate learning rate should converge 
as soon as possible on the premise of ensuring convergence.

Model effects

Samples with the same number of positive samples were 
randomly selected as negative samples from the unknown samples 
to ensure the balance of positive and negative samples. The 5-fold 
CV method was used to ensure that each sample data was used as 
a test set. The experiment was repeated five times, which greatly 
reduced the influence of randomness. The 25 experimental results 
reported 19 AUC values that are mostly above 0.8 with an average 
value of 0.8154, indicating that the model can be well applied to 
predict the link between diseases and microbes.

There is still a lot of room to improve the model’s performance. 
Its results are largely limited by the amount of data, with only 450 
positive samples utilized in this study. Furthermore, the node 
initialization coding adopted random initialization coding, which 
cannot express the inherent attribute characteristics of different 
node entities well.

The average AUC value and standard deviation given by the 
model was 0.8954 ± 0.0030. Our model evidently performed well 
and can help identify novel disease-microbe associations (Table 2).

The ROC and AUPR curves of the fifth experiment (Iter5) are 
shown in Figure 3.

TABLE 2 The summary of model performance under 5-fold CV.

Iter1 Iter2 Iter3 Iter4 Iter5

Fold0 Acc 0.7556 0.7722 0.7722 0.7722 0.7833

Rec 0.7444 0.7556 0.7444 0.7333 0.7778

F1 0.7528 0.7684 0.7657 0.7630 0.7821

AUC 0.8121 0.8169 0.8223 0.8254 0.8328

AUPR 0.7866 0.8071 0.8148 0.8223 0.8065

Fold1 Acc 0.7444 0.7333 0.7333 0.7556 0.7722

Rec 0.7444 0.7667 0.7889 0.8111 0.7778

F1 0.7444 0.7419 0.7474 0.7684 0.7735

AUC 0.8020 0.8137 0.8230 0.8181 0.8207

AUPR 0.7661 0.8146 0.8138 0.7945 0.7913

Fold2 Acc 0.7444 0.7222 0.7444 0.7278 0.7556

Rec 0.7333 0.7556 0.7556 0.7667 0.7556

F1 0.7416 0.7312 0.7473 0.7380 0.7556

AUC 0.8258 0.8084 0.8226 0.7947 0.8126

AUPR 0.8279 0.8282 0.8283 0.7794 0.8125

Fold3 Acc 0.7389 0.6833 0.7278 0.7333 0.7278

Rec 0.7444 0.6667 0.7444 0.7222 0.7222

F1 0.7403 0.6780 0.7322 0.7303 0.7263

AUC 0.7795 0.7670 0.7985 0.7968 0.7974

AUPR 0.7906 0.7539 0.7866 0.7919 0.7713

Fold4 Acc 0.7722 0.7556 0.7611 0.7556 0.7611

Rec 0.7333 0.7111 0.7333 0.7000 0.6889

F1 0.7630 0.7442 0.7543 0.7412 0.7425

AUC 0.8485 0.8204 0.8338 0.8260 0.8190

AUPR 0.8468 0.8250 0.8164 0.8237 0.7981

A B

FIGURE 3

(A) The ROC curves of Iter5. (B) The AUPR curves of Iter5.
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Comparison with other methods

To verify the superiority of the GCNN4Micro-Dis model 
proposed in this study, it is compared with three advanced 
methods used to predict microbe-disease associations: 
KATZHMDA (Chen et al., 2018), BiRWHMDA (Zou et al., 2017), 
and LRLSHMDA (Wang et al., 2017).

 • The KATZ measure for Human Microbe-Disease Association 
(KATZHMDA) is a novel computational model based on the 
assumption that functionally similar microbes tend to have 
similar interaction and non-interaction patterns with 
non-infectious diseases and vice versa (Chen et al., 2018).

 • BiRWHMDA is a novel computational model to predict 
potential microbe-disease associations using bi-random walk 
on the heterogeneous network (Zou et al., 2017).

 • The Laplacian Regularized Least Squares for Human-
Microbe Disease Association (LRLSHMDA) is a semi-
supervised computational model using the Gaussian 
interaction profile kernel similarity calculation and Laplacian 
regularized least squares classifier (Wang et al., 2017).

The AUC of BiRWHMDA reached 0.7984, while the AUCs of 
LRLSHMDA and KATZHMDA were 0.8410 and 0.8428, 
respectively. The AUC of GCNN4Micro-Dis was better than that 

of BiRWHMDA. Therefore, the performance of GCNN4Micro-Dis 
was not different from the other three methods in terms of 
prediction accuracy.

The data set used in this study was unbalanced, making the 
AUPR value an indispensable model evaluation index. The AUPR 
of LRLSHMDA, KATZHMDA, and BiRWHMDA were 0.5045, 
0.4782, and 0.4363, respectively. The AUPR of GCNN4Micro-Dis 
was 0.8092, better than the other three competitors. The 
experimental data conclusively demonstrated that 
GCNN4Micro-Dis had a better prediction performance than the 
other three methods (Table 3).

Case study

In this section, a prevalent human disease, breast cancer, was 
selected as a case study to further analyze the performance of 
GCNN4Micro-Dis. Given that the role of gut microbiome in 
health and disease has recently attracted more and more attention, 
many observations and in vitro studies depict that it may 
be involved in the development of breast cancer. The 12 microbes 
most related to breast cancer were selected from the intestinal 
flora of patients as case studies. The result has been verified in the 
literature (Liu et al., 2020; Huang et al., 2021). Some fecal intestinal 
bacteria were found to be associated with breast cancer and are 
expected to become new targets for breast cancer treatment (Wu 
et al., 2016; Zheng et al., 2018; Table 4).

Conclusion

A heterogeneous network of microbe-disease association was 
constructed from data extracted from the HMDAD database. A 
graph neural network algorithm was proposed, and the accuracy 
of our algorithm was evaluated using a 5-fold cross-validation. 
The main parameters involved in the algorithm were verified, 
proving the effectiveness of the prediction method. The main 
research results of this paper are as follows.

GCNN4Micro-Dis, a microbe-disease prediction method 
based on the Graph Neural Network and Multi-Data 
Heterogeneous Networks, was proposed. The heterogeneous 
network was obtained by integrating the known microbe-disease 
networks. The network was applied to the Graph Neural Network 
model for prediction. The methods proposed in this study 
predicted the association between potential microbes and diseases. 
Although these methods performed well in experimental 
verification and analysis, there are still some limitations that could 
be addressed in future works:

(1) The known microbe-disease association dataset was too 
small, which reduced its accuracy to some extent. In the future, 
the method’s predictive power will improve with more data 
available. (2) More similarity data can be added. The microbe and 
disease similarity in this paper are calculated from the known 
microbe-disease associations, which were inadequate. The 

TABLE 3 Comparison of AUC and AUPR for different microbe-disease 
association predictions methods.

Methods AUC AUPR

GCNN4Micro-Dis 0.8154 0.8092

LRLSHMDA (Wang et al., 2017) 0.8410 0.5045

KATZHMDA (Chen et al., 2018) 0.8428 0.4782

BiRWHMDA (Zou et al., 2017) 0.7984 0.4363

Bold values represent the effect of our model.

TABLE 4 Top 12 potential microbes related to breast cancer.

BRCA subtypes Rank Microbes

HER2 positive 1 Megasphaera

2 Barnesiellaceae

3 Alloprevotella

ER positive 1 Megasphaera

2 Roseburia

3 Prevotellaceae

PR positive 1 Prevotellaceae

2 Tyzzerella

3 Enorma

Ki67 positive 1 Tenericutes

2 Izimaplasmatales

3 Sporobacter
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prediction could be more accurate if more similarity data could 
be integrated into the heterogeneous networks. (3) More network 
information can be  added. The current prediction methods 
require known microbe disease association data. Without this 
information, most methods cannot be  implemented. More 
information may be  mined if the potential microbe disease 
association can be  predicted without this information. For 
example, the correlation data between microbes and RNA and 
between RNA and microbes allows the use an RNA network as 
an intermediate layer to build a three-layer microbe RNA disease 
network. The three-layer heterogeneous network can mine more 
unknown information.

Due to the relatively late development of microbe-disease 
association prediction, there are still many deficiencies and 
challenges at the present stage. Nevertheless, many studies have 
made preliminary exploration on the design of the prediction 
model (Peng et al., 2017, 2021, 2022a,b; Shen et al., 2022), which 
can be summarized as follows:

 1. There are relatively few validated microbe-disease 
association data. Relatively few microbe-disease 
associations have been demonstrated through biological 
experiments compared to other biomarkers, such as 
non-coding RNAs. Since current computational methods 
often infer possible microbe-disease associations based on 
known association data, more known associations are 
needed to enrich the training set of the prediction models 
and improve their prediction power. Therefore, more 
accurate microbe-disease associations should be mined, 
using biological experiments as the fundamental data 
source for the calculation methods.

 2. Few available datasets. The number of publicly available 
microbe-disease association databases is limited, yet few 
researchers have constructed new data sets, forcing a broad 
consensus of data sets used in the field. Most of the data sets 
used currently are microbe-disease associations provided by 
the HMDAD database. Although they are true and reliable 
associations verified by biological experiments, the number 
is small. Small and single data sets cannot fully depict the 
performance of the prediction model and render the 
prediction model unreliable. Therefore, there is an urgent 
need to build a larger microbe-disease association database.

 3. The design of some methods should be improved. Methods 
based on network algorithms usually make assumptions 
about probability distributions, which fail if the data 
sources are not conformant. For example, this part of the 
model constructs similarity networks by assuming that 
functionally similar microbes have similar interaction 
patterns with diseases, which is more beneficial for 
microbes with more known related diseases. Optimizing 
the network structure by introducing local features is 
expected to improve this deficiency.

 4. The prediction performance must be improved. Microbe-
disease association prediction is a relatively new research 

field, so the performance of the proposed prediction 
models must be  improved. In the future, more diverse 
biological information and more effective computational 
methods (such as neural networks) can be used to design 
prediction models with superior performances.

As an unsupervised deep neural network, GCN can learn and 
extract features from unlabeled data, obtain low-dimensional 
feature expressions from high-dimensional original data, simplify 
the classification work, and overcome the randomness of weight 
coefficient initialization in traditional neural networks. In future 
works, biological information features, such as functional 
similarity of microbes and semantic similarity of diseases, will 
be  considered for addition to GCNN4Micro-Dis to more 
accurately predict the associations between microbes and diseases 
and help prevent, diagnose, treat, and prognose diseases.
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Prediction of drug-target interactions (DTIs) plays an important role in drug 

development. However, traditional laboratory methods to determine DTIs 

require a lot of time and capital costs. In recent years, many studies have 

shown that using machine learning methods to predict DTIs can speed up 

the drug development process and reduce capital costs. An excellent DTI 

prediction method should have both high prediction accuracy and low 

computational cost. In this study, we noticed that the previous research based 

on deep forests used XGBoost as the estimator in the cascade, we applied 

LightGBM instead of XGBoost to the cascade forest as the estimator, then the 

estimator group was determined experimentally as three LightGBMs and three 

ExtraTrees, this new model is called LGBMDF. We  conducted 5-fold cross-

validation on LGBMDF and other state-of-the-art methods using the same 

dataset, and compared their Sn, Sp, MCC, AUC and AUPR. Finally, we found 

that our method has better performance and faster calculation speed.

KEYWORDS

drug-target interactions, machine learning, LightGBM, deep forest, prediction

1. Introduction

In recent years, with the rapid development of computer data processing capabilities, 
the continuous enrichment of data content, and the improvement of algorithm models, 
more and more researches on artificial intelligence in the fields of biology and medicine 
have been carried out (Guo et al., 2021; Chen and Yin, 2022; Zhou et al., 2022). Many 
computational methods based on machine learning have been proposed to solve biological 
problems (Lihong et al., 2021; Zhou et al., 2021; Peng et al., 2022; Shen et al., 2022). 
Especially in drug development, the prediction of drug-target interactions (DTIs) played 
an important role in drug development and drug repositioning, so using machine learning 
methods to predict DTIs became a research hotspot.

Over the past decade, a large number of machine learning-based methods were 
proposed for identifying DTI (Zhou et  al., 2019). Among them, binary classification 
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methods account for the majority. Some methods identify drug-
target pairs based on drug and protein information, Li et al. (2020) 
used protein sequences and drug substructure fingerprint 
information to predict DTIs. In addition, there were many models 
(Mousavian et al., 2016; Li et al., 2020; Zhan et al., 2020; Tanoori 
et  al., 2021) that predicted new DTIs based on 
information similarity.

In fact, there are more methods based on network inference, 
Yamanishi et  al. (2010) integrated chemical, genomic and 
pharmacological information in bipartite graph to uncover 
potential DTIs. Mei J. P et al. (Mei et al., 2013) proposed Neighbor-
based Interaction-profile Inferring (NII) based on bipartite local 
model (BLM). Chen et  al. (2012) proposed the method of 
Network-based Random Walk with Restart on the Heterogeneous 
network (NRWRH) which integrates three different networks into 
a heterogeneous network through known DTIs, and achieves 
random wandering on this heterogeneous network. Cao et al. 
(2014) proposed a computational method for DTI prediction by 
combining the information from chemical, biological, and 
network properties. Ding et al. (2017) used molecular substructure 
fingerprints, multivariate mutual information (MMI) of proteins 
and network topology to represent drugs, targets and their 
relationships, and employ SVM and Feature Selection (FS) to 
build predictive models. Thereafter, scholars began to extract 
features from more complex networks. SNF-CVAE (Jarada et al., 
2021) integrates similarity network fusion (SNF) and collective 
variational autoencoder (CVAE) to improve prediction accuracy. 
An and Yu (2021) proposed a Network Embedding framework in 
mulTiPlex networks (NEDTP) to predict DTIs. Jin et al. (2021) 
proposed a machine learning model called HeTDR, the method 
combines drug features in multiple networks and disease features 
in biomedical corpora to predict the degree of association between 
drugs and diseases. In addition, there are some computational 
methods based on matrix factorization (Gönen, 2012; Liu et al., 
2016; Bagherian et al., 2021) and multi-label learning (Yuan et al., 
2016; Pliakos et al., 2019; Chu et al., 2021b).

Moreover, with the rise of deep learning methods, people have 
made a lot of achievements in the field of DTI prediction based on 
deep learning methods. Many scholars consider graph analysis 
(Olayan et al., 2018; Peng et al., 2021; Yang et al., 2022) as an 
important means to predict DTIs. Many models apply deep neural 
networks (DNN) to DTI prediction, LASSO-DNN (You et al., 
2019) combines LASSO with DNN, deepDTnet (Zeng et  al., 
2020b) applies DNN algorithm to network embedding, 
DeepFusionDTA (Pu et  al., 2021) proposes a two-stage deep 
neural network ensemble model, based on DNN, DNN-DTIs 
(Chen et al., 2021) employs layer-by-layer learning method to 
predict DTIs. Besides, DeepACTION (Hasan Mahmud et  al., 
2020), AutoDTI++ (Sajadi et al., 2021), GCNMK (Wang et al., 
2022) and DeepStack-DTIs (Zhang et al., 2022) also use deep 
learning methods.

Specially, inspired by DNN, Zhou and Feng (2017) proposed 
Deep Forest, and some DTI prediction methods based on Deep 
Forest showed good performance. Such as AOPEDF (Zeng et al., 

2020a), DTI-CDF (Chu et  al., 2021a) and EC-DFR (Lin 
et al., 2022).

In this study, we  make some improvements based on the 
AOPEDF model, thus proposing a new method termed 
LGBMDF. We add LightGBM (Ke et al., 2017), which outperforms 
XGBoost and CatBoost in another work (Al Daoud, 2019), to 
Cascade Forest as a new estimator. For the convenience of 
comparison, we  used the same feature extraction method as 
AOPEDF. For the obtained vector features, we input them into a 
modified Cascade Forest for predicting DTIs. Finally, we compared 
our model with other models in terms of performance and speed, 
our model is comparable to and in some way ahead of the state-of-
the-art models. In conclusion, LGBMDF is a very practical method 
for DTI prediction, which can help new drug development and 
some other fields, such as identifying miRNA-disease associations 
or the associations between cancers and microbes.

2. Materials and methods

2.1. Data resource

DTI-related information was collected from DrugBank (v4.2) 
(Wishart et al., 2018), the Therapeutic Target Database (Yang et al., 
2016), and the PharmGKB (Hernandez-Boussard et  al., 2007) 
database. Bioactivity data for drug–target pairs are collected from 
ChEMBL (v20) (Gaulton et al., 2012), BindingDB (Liu et al., 2007), 
and IUPHAR/BPS Guide to PHARMACOLOGY (Pawson et al., 
2014). The chemical structure of each drug with SMILES format is 
extracted from DrugBank (v4.0) (Law et al., 2014). Here, only DTIs 
meeting the following three criteria are used: (i) the human 
target is represented by a unique UniProt (Apweiler et al., 2004) 
accession number; (ii) the target is marked as ‘reviewed’ in the 
UniProt  database; (iii) binding affinities, all  the 
K K IC or EC Mi d, , 50 50 10≤ µ . In short, we constructed a DTI 

network by using 732 FDA-approved drugs and 1915 targets. In 
addition, we used 9 drug-related networks and 6 protein-related 
networks (Cheng et al., 2019a,b; Zeng et al., 2020a). For the feature 
extraction approach, in order to facilitate comparison, we referred 
to the previous studies (Zhang et al., 2018; Zeng et al., 2020a).

2.2. Deep forest

The deep neural network has shown good performance in 
many works. Inspired by DNN, Zhou and Feng (2017) proposed 
an ensemble algorithm with deep structure based on decision tree. 
It has much fewer hyperparameters than DNNs, and the 
complexity of the model can be automatically determined based 
on the input variables.

After obtaining low-dimensional vector representations of 
drugs and proteins (targets), we input them into Cascade Forest to 
predict DTIs. In the cascade structure, the output features vector of 
the previous layer and the original features vector is used as the 
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input features vector of the next layer. Furthermore, when a new 
layer is generated, the performance of the entire cascade is estimated 
on the validation set, and the training process is terminated if there 
is no significant increase in performance. The estimators setting at 
each layer are also important, after experimental testing, we set up 
three ExtraTrees and three LightGBMs (Figure 1).

To prevent overfitting, class vectors for each estimator are 
generated by k-fold cross-validation. Specifically, the average of 
the generated k-1 class vectors is obtained to obtain the final class 
vector as the enhanced feature of the next layer.

2.3. LightGBM classifier

2.3.1. Histogram algorithm
The basic idea: First, the continuous floating-point feature 

values are discretized into k  integers, and a histogram of width 
k  is constructed (Figure 2). When the samples are traversed 
once, the histogram accumulates the required statistics and then 
traverses the histogram to find the optimal partition point based 
on the discrete values of the histogram.

Another improved speedup of LightGBM is to subtract the 
histogram of sibling nodes from the histogram of the parent node 

so that the speed can be  doubled (Figure  3). Usually, when 
constructing a histogram, it is necessary to traverse all the data on 
that leaf, but histogram differencing only requires traversing k 
bins of the histogram. In the actual process of constructing the 
tree, LightGBM can also calculate the smaller leaf nodes of the 
histogram first, and then use histogram difference to obtain the 
larger leaf nodes of the histogram, so that we can get the histogram 
of its sibling leaf at a very small cost.

2.3.2. Leaf-wise algorithm with depth 
restriction

Based on the histogram algorithm, LightGBM is further 
optimized. First, it abandons the level-wise (Figure 4A) tree 
growth strategy used by most GBDT algorithms and applies the 
leaf-wise tree growth (Figure  4B) with depth restriction. 
XGBoost uses level-wise growth strategy, which can split the 
leaves of the same level at the same time by traversing the data 
once, making it easy to perform multi-threaded optimization 
and control the model complexity without overfitting. However, 
level-wise is an inefficient algorithm because it treats the leaves 
of the same layer indiscriminately, and in fact, many leaves have 
low splitting gain, so there is no need to split, thus bringing a 
lot of unnecessary computational overhead. LightGBM uses 

FIGURE 1

The pipeline of LGBMDF. After getting the features of drugs and targets, we process these features with cascade forest, and set 3 LightGBMs and 3 
ExtraTrees for each level as estimators, each estimator outputs a 2-dimensional class vector, and then concatenate the output class vector and the 
original feature vector as the input vector for the next layer.
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leaf-wise tree growth strategy, which can locate the leaf with the 
largest splitting gain from all the current leaves, and then splits 
it, cycling as this way. Therefore, compared with level-wise, the 
advantage of leaf-wise is that it can reduce more errors and get 
better accuracy with the same number of splits; the disadvantage 
of leaf-wise is that it may grow a deeper decision tree and 
produce overfitting. For this reason, LightGBM adds a 
maximum depth limit to leaf-wise to ensure high efficiency and 
prevent overfitting at the same time.

2.3.3. Gradient-based one-side sampling
The feature vector in Adaboost can represent the importance 

of a sample well, but there is not a weight vector like this one in 
GBDT. Fortunately, we found that the sample gradient of GBDT 
is a good indicator, and samples with small gradients will have 
small training errors and have been well-trained. Generally, the 
simpler idea is to discard samples with small gradients, but this 
will affect the model performance, thus we propose a new method 
named gradient-based one-side sampling (GOSS).

The basic idea of GOSS is to reduce the complexity of the model 
by reducing the sample size. GOSS first sorts the samples by the 
gradient from largest to smallest, uses the top-ranked a×100% , 
and  then randomly samples the rest data with small gradients 

b×100% . Then GOSS amplifiers the data with a small gradient by a 

constant 

1− a
b  when calculating the information gain.

In GBDT, we assume the input space as X s , the gradient space 
as G . Suppose that there are n  i.i.d instances x x xn1 2, , ,{ } , xi  is 
a vector of dimension s  in X s . The negative gradient of the loss 
function is represented as g g gn1 2, , ,{ } . The Decision tree model 
splits nodes where information gain is the largest, and the information 
gain is usually determined by the variance after the split.

Let O  be the training set of a node d  on the decision tree, 
and the variance of the split feature j  at this point is defined as:
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FIGURE 2

The construction of histogram.

FIGURE 3

Subtract the histogram of sibling node from the histogram of the parent node so that the speed can be doubled.
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In GOSS, First, all instances absolute values of gradients are 
sorted in descending order. We select the first a×100%  samples 
as set A , and then randomly sample B of size × cb A∣# from the 
remaining instance set Ac . Finally, we  split the instance via 
estimated variance V dj ( )  on A B∪ .
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is to normalize the size of B  to the size of Ac .

2.3.4. Exclusive feature bundling
High-dimensional space is always sparse, and in a sparse feature 

space, many features are mutually exclusive, so we can bind mutually 
exclusive features into a single feature (Figure 5). Through the feature 
scanning algorithm, we  can use the designed feature scanning 
algorithm to construct the same histogram from the feature bundles 
as the original single feature. In this way, we  can decrease the 

complexity of histogram building from 
O sample feature# #×( )  to 

O sample bundle# #×( ) , while # #bundle feature , thus we can 
greatly improve the training speed of GBDT.

In general, compare to XGBoost, LightGBM has the 
advantages of faster speed and smaller memory usage. LightGBM 
uses the histogram algorithm to transform the traversal samples 
into traversal histograms, which greatly reduces the time 
complexity; applies the GOSS algorithm to filter out many 
samples with small gradients and adopts leaf-wise growth 
strategy to build the trees, which reduces a lot of unnecessary 
calculations. In addition, LightGBM utilizes EFB algorithm to 
decrease the number of features.

2.4. Evaluation metric

To compare with other methods, we perform a 5-fold cross-
validation and adopt Sn, Sp, MCC, AUC and AUPR as 
evaluation metrics.

Sn, Sp and MCC are commonly used evaluation indicators for 
binary classification problems, and their calculations are based on 
the confusion matrix.

 
S TP

TP FNn =
+  

(3)

A

B

FIGURE 4

Comparison of tree growth patterns between XGBoost and LightGBM. (A) XGBoost uses the level-wise growth strategy, which can split the leaves 
of the same level at the same time by traversing the data once. (B) LightGBM uses the leaf-wise growth strategy, which finds the leaf with the 
largest splitting gain from all the current leaves, and then splits it.
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S TN

TN FPp =
+  

(4)

 

MCC TP TN FP FN
TP FP TP FN TN FP TN FN

=
× − ×

+( ) +( ) +( ) +( )
 

(5)

Receiver operating characteristic (ROC) curve is often used to 
evaluate the model’s prediction performance. It is calculated based 
on the confusion matrix. The higher the curve on the upper left, 
the better the performance of the model. The vertical axis of the 
ROC curve is the “True Positive Rate,” and the horizontal axis is 
the “False Positive Rate,” which are, respectively, defined as:

 
TPR TP

TP FN
=

+  
(6)

 
F R FP

TN FP
P =

+  
(7)

However, the ROC curves of some models will cross, so 
we  generally choose the AUC (Area Under ROC Curve) for 
comparison. We assume that the points of the ROC curve are 
connected in order by the points of x y x y x ym m1 1 2 2, , , , , ,( ) ( ) ( ){ }

, then the AUC can be estimated as:
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The PR curve represents the relationship between Precision 
and Recall. In general, Recall is set to the abscissa and Precision is 

set to the ordinate. Precision and Recall can be  calculated 
according to the confusion matrix.

 
Precision TP

TP FP
=

+  
(9)

 
Recall TP

TP FN
=

+  
(10)

AUPR is the Area Under PR curve. In such a highly 
imbalanced dataset, AUPR can provide better performance 
evaluation because it penalizes false positives more severely.

3. Results

3.1. Parameter optimization

We optimized the parameters of the estimators, considering 
the impact of parameters on model performance. By the means of 
employing GridSearchCV function, we  set the interval of the 
parameter, the “scoring” is set as “accuracy.” The parameter 
optimization results are shown in Table 1.

3.2. Estimators setting for each layer

When reproducing the AOPEDF model, we noticed that the 
XGBoost in cascade is time-consuming, so we chose LightGBM, 
a classifier that performs better than XGBoost in another work (Al 
Daoud, 2019), as estimator to accelerate the calculation speed of 
the model and reduce the computing cost and time cost. We tested 
five combinations and compared their Sn, Sp, MCC, AUC, AUPR 
(Table  2) and running time. The experiments are run in the 
environment of Python3.9, CPU: 2* Intel (R) Xeon (R) Gold 
6320R, RAM: 128G.

The names of each combination in the Figure 6 are explained 
as follows:

 • AOPEDF: 2 ExtraTrees, 2 RFs and 2 XGBoosts
 • 2LGB-2RF-2ET: 2 LightGBMs, 2 RFs and 2 ExtraTrees
 • 3LGB-3RF: 3 LightGBMs and 3 RFs
 • 3LGB-3ET: 3 LightGBMs and 3 ExtraTrees.

After experiments, we found that the MCC, AUC and AUPR 
values of 3LGB-3ET are higher than that of the others. Moreover, 
the calculation speed of 3LGB-3ET is more than twice as fast as 
AOPEDF. Therefore, we choose the combination of 3LGB-3ET to 
set the estimators for each layer finally.

3.3. Model comparison

The following 4 models were adopted as baseline methods.

FIGURE 5

Bind mutually exclusive features into a single feature.
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NEDTP (An and Yu, 2021): A node similarity network is 
constructed based on 15 heterogeneous information networks, 
and then random walks are applied to extract the topology 
information of each node in the network and learn it as a 
low-dimensional vector. Finally, employ LightGBM algorithm to 
complete the classification task.

AOPEDF (Zeng et  al., 2020a): It integrates 15 biological 
networks to construct a heterogeneous network, and then learns 
low-dimensional vector representations of features from this 
heterogeneous network that keep arbitrary-order proximity. Then 
use the deep forest to predict new DTIs.

Random Forest (Breiman, 2001): It is a combination of tree 
predictors such that each tree depends on the value of an 
independently sampled random vector and all trees in the forest 
have the same distribution.

Support Vector Machine, SVM (Vapnik and Chervoneva, 
1964): It is a class of generalized linear classifiers for binary 
classification of data in a supervised learning manner.

We took drug-protein pairs with known interactions as 
positive samples, and pairs with unknown interactions as 
negative samples, and then selected all positive samples and 
randomly sampled negative samples with the same number of 
positive samples for 5-fold cross-validation to evaluate model 
performance (Figure  7, Table  3). For each 5-fold cross-
validation, we select 80% positive pairs and the corresponding 
number of randomly sampled negative pairs as the training set, 
and the remaining 20% positive pairs and the corresponding 
number of randomly sampled negative pairs as the test set. 
We found that the Sp, MCC, AUC, and AUPR of LGBMDF are 
all higher than those of other methods. In addition, in previous 
experiments, we  have found that LGBMDF is faster than 
AOPEDF. An excellent model needs to consider both the 
accuracy and the computing power cost of the model. 
Therefore, our model is better than the current advanced model 
in general.

4. Discussion

This paper investigated the application of machine 
learning methods for DTI prediction. Traditional drug-target 
effect testing methods are time-consuming and labor-
intensive. And Machine learning methods have attracted the 
attention of many researchers due to these methods can 
greatly reduce the related costs. We chose the same feature 
extraction method as AOPEDF, and used this method to 
extract low-dimensional representations of drug and protein 
features from 15 biological networks, and these features 
maintain arbitrary order proximity.

After obtaining low-dimensional feature representations of 
drugs and targets, we  used cascaded deep forests for DTI 
prediction. Specifically, we used LightGBM as the estimator in the 
cascade to reduce the computational cost. And the LightGBM has 
shown better performance and computational speed than 
XGBoost in other experiments. Considering the effect of estimator 
diversity in the cascade, we also chose ExtraTree as the estimator. 

TABLE 1 The result of parameter optimization.

Model Parameter Range Used

RandomForest n_estimators [100, 200, 400, 500, 600] 400

LightGBM n_estimators [100, 200, 400, 500] 400

max_depth [7, 8, 9, 10, 11] 11

num_leaves [100, 200, 300, 400, 500] 200

ExtraTree n_estimators [100, 200, 400, 500, 600] 500

TABLE 2 Performance comparison under each estimator setting.

Estimators Sn Sp MCC AUC AUPR

AOPEDF 0.9463 0.9447 0.8911 0.9842 0.9855

2LGB-2RF-2ET 0.9439 0.9477 0.8918 0.9841 0.9854

3LGB-3RF 0.9443 0.9453 0.8898 0.9839 0.9849

3LGB-3ET 0.9451 0.9471 0.8924 0.9844 0.9857

 The bold values represent the maximum value of each estimator setting under each 
evaluation metric.

A B

FIGURE 6

Model performance comparison under each estimator setting. (A) AUC and AUPR for 4 estimator combinations. (B) Computational time for 4 
estimator combinations.

129

https://doi.org/10.3389/fmicb.2022.1092467
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Peng et al. 10.3389/fmicb.2022.1092467

Frontiers in Microbiology 08 frontiersin.org

By comparing the Sn, Sp, MCC, AUC, AUPR and computation 
time of the 4 estimator combinations, we chose three ExtraTrees 
and three LightGBMs as estimators at each layer, and then utilized 
this cascade forest for DTI prediction. To demonstrate the merits 
of our model, we compared it with other four baseline models on 
the same dataset. After 5-fold cross-validation, we obtained the 
Sn, Sp, MCC, AUC and AUPR of the five models, the Sp (0.9471), 
MCC (0.8924), AUC (0.9844) and AUPR (0.9857) of LGBMDF 
were higher than AOPEDF, NEDTP, RF and SVM. The Sn (0.9451) 
was slightly inferior to AOPEDF, but higher than other three 
methods. Furthermore, the calculation time of LGBMDF was less 
than half of that of AOPEDF.

In summary, the method proposed in this paper shows 
higher prediction accuracy with the current state-of-the-art 
methods, and greatly improves the computational speed. 
We believe this will accelerate the drug development process to 
a certain extent. Certainly, there are still some shortcomings in 
this paper, such as feature extraction method. We believe that if 
there is a better way to extract features, the prediction accuracy 

will also be  improved. Moreover, our method could also 
be  applied in other studies, such as in exploring the link 
between microbes and cancer.
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TABLE 3 Performance of LGBMDF and baseline methods.

Model Sn Sp MCC AUC AUPR

LGBMDF 0.9451 0.9471 0.8924 0.9844 0.9857

AOPEDF 0.9463 0.9447 0.8911 0.9842 0.9855

NEDTP 0.9194 0.9267 0.8462 0.9714 0.9690

SVM 0.8869 0.9286 0.8162 0.9668 0.9664

RF 0.9138 0.9348 0.8488 0.9784 0.9798

 The bold values represent the maximum value of each estimator setting under each 
evaluation metric.

FIGURE 7

Sn, Sp, MCC, AUC and AUPR of LGBMDF, AOPEDF, NEDTP, RF, SVM.
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Gene differential co-expression 
analysis of male infertility patients 
based on statistical and machine 
learning methods
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Male infertility has always been one of the important factors affecting the infertility 
of couples of gestational age. The reasons that affect male infertility includes living 
habits, hereditary factors, etc. Identifying the genetic causes of male infertility can 
help us understand the biology of male infertility, as well as the diagnosis of genetic 
testing and the determination of clinical treatment options. While current research 
has made significant progress in the genes that cause sperm defects in men, genetic 
studies of sperm content defects are still lacking. This article is based on a dataset 
of gene expression data on the X chromosome in patients with azoospermia, mild 
and severe oligospermia. Due to the difference in the degree of disease between 
patients and the possible difference in genetic causes, common classical clustering 
methods such as k-means, hierarchical clustering, etc. cannot effectively identify 
samples (realize simultaneous clustering of samples and features). In this paper, 
we  use machine learning and various statistical methods such as hypergeometric 
distribution, Gibbs sampling, Fisher test, etc. and genes the interaction network 
for cluster analysis of gene expression data of male infertility patients has certain 
advantages compared with existing methods. The cluster results were identified by 
differential co-expression analysis of gene expression data in male infertility patients, 
and the model recognition clusters were analyzed by multiple gene enrichment 
methods, showing different degrees of enrichment in various enzyme activities, 
cancer, virus-related, ATP and ADP production, and other pathways. At the same 
time, as this paper is an unsupervised analysis of genetic factors of male infertility 
patients, we constructed a simulated data set, in which the clustering results have 
been determined, which can be used to measure the effect of discriminant model 
recognition. Through comparison, it finds that the proposed model has a better 
identification effect.

KEYWORDS

male infertility, hypergeometric distribution, Fisher test, Gibbs sampling, machine learning, 
gene interaction network, HPV

1. Introduction

For a long time, infertility has been a difficult problem for many couples of gestational age. With 
the increase of life pressure, infertility is increasing every year. About 15% of gestational age couples 
suffer from infertility symptoms of varying degrees, of which about 50% are caused by male infertility 
(Dada et al., 2003). About 7% of men in the general population suffer from different degrees of 
infertility. The causes of male infertility are related to many influencing factors, including different 
diseases, genetics, living habits and other factors that may cause or interact to cause male infertility. 
Although men with this disorder cannot pass on their genetic information naturally, genetic factors 
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can still contribute to male infertility. In approximately 15% of infertile 
men a genetic defect is most likely the underlying cause of the pathology 
(Tournaye et al., 2017; Krausz and Riera-Escamilla, 2018). For example, 
autosomal recessive or X-linked male infertility mutations transmitted 
by normal parents can cause infertility (Chillón et al., 1995; Yatsenko 
et al., 2015). Genetic causes have also been found to have an important 
role in severe male infertility, such as severe oligospermia (<5 million 
sperm cells per milliliter) or azoospermia (azoospermia in ejaculation; 
Lopes et al., 2013; Krausz and Riera-Escamilla, 2018). Identifying the 
genes responsible for male infertility is important for increasing our 
understanding of the biology of the disease and for genetic testing for 
diagnosis and clinical treatment. Genes such as NLRP3, BRD7 and 
others have been shown to affect male fertility (Aquila et al., 2004; Wang 
et al., 2016; Antonuccio et al., 2021). At the same time, with the rapid 
development of genetics, more than 3,000 genetic diseases have been 
discovered, of which about 250 are only found in men, and women have 
no or little disease. Because women have two X chromosomes, the 
pathogenic gene on one X chromosome can often be masked by the 
normal gene on the other X chromosome, so they do not show 
symptoms. Men, on the other hand, have only one X chromosome. If 
there is a disease-causing gene on it, there is no corresponding normal 
gene to cover up, resulting in the disease. In recent years, with the 
deepening of research, there are about 521 genes that cause male 
infertility in different forms (Xavier et al., 2021), many of which are 
related to the X chromosome, such as mouse androgen receptor gene 
mutation, through chain reaction mapping The X chromosome leads to 
infertility in mice (Lyon et  al., 1970), and there is one more X 
chromosome in males, that is, the sex chromosome is XXY (Jacobs and 
Strong, 1959) and so on.

Many scholars have carried out various experimental methods to 
study the genetic causes of male infertility. Through RNA interference 
or knockout experiments, the gene cannot be expressed normally, and 
whether the target abnormality occurs in cells or individuals is observed, 
and whether the gene is related to the cause of the disease is detected. 
However, experimental methods are generally time-consuming, labor-
intensive, and expensive, and experimental methods are generally 
designed in a targeted manner on the premise that the experimenter 
obtains genes that may have basic interference. Technological advances 
and methodological developments in genomics are critical for 
identifying genetic factors in male infertility.

In this paper, we use a data set covering all gene expression levels of 
the male X chromosome in the GEO database, the Gene Expression 
Omnibus (GEO), a public database that contains 659,203 gene sample 
data from 9,528 different platforms (Ron et al., 2002). And based on a 
variety of statistical methods and machine learning analysis of gene 
expression data of male infertility patients, to identify groups of 
interacting gene clusters that may contribute to male infertility of 
various phenotypes in various ways. Common hierarchical clustering, 
k-means and other clustering algorithms are clustering under the 
assumption that all samples have certain characteristics, and the cluster 
data of the identified clusters have the same characteristics in all samples. 
However, the expression of gene data is affected by different sampling 
individuals, different tissues of the same individual, etc., resulting in 
different expression of measured gene data in different samples, and 
common clustering algorithms cannot meet the identification of 
differential gene expression modules (implementation basis Partial 
samples of gene expression data to partition gene sample data). For the 
identification of differentially co-expressed modules, a biclustering 
algorithm can be  used to screen functionally related genes, genes 

involved in the same pathway, and genes affected by the same drug or a 
pathological condition. The biclustering algorithm was first proposed in 
Hartigan (1972), is a two-dimensional data mining technique that allows 
simultaneous clustering of rows (representing genes) and columns 
(representing samples/conditions) in a gene expression matrix. 
Developments continued in the following decades, with (Cheng and 
Church, 2000; Lazzeroni and Owen, 2000; Bergmann et al., 2003; Kluger 
et al., 2003; Chiu et al., 2004; Prelić et al., 2006; Dhollander et al., 2007; 
Gu and Liu, 2008; Li et al., 2009; Hochreiter et al., 2010; Madeira et al., 
2010; Medina et al., 2010; Chen et al., 2011; De Smet and Marchal, 2011; 
Zhao et  al., 2011; Zhou et  al., 2012; Goncalves and Madeira, 2014; 
Henriques and Madeira, 2016a,b; Alzahrani et al., 2017; Guo et al., 2021) 
being articles on different clustering algorithms. Among them, BCPlaid 
(Lazzeroni and Owen, 2000), QUBIC (Li et al., 2009), C&C (Cheng and 
Church, 2000), FABIA (Hochreiter et al., 2010) are the more popular 
biclustering algorithms. Genomics data analysis clustering using 
machine learning, deep learning, etc., for identifying cell subpopulations, 
genomic analysis, etc.(Jiang et al., 2020; Lazareva et al., 2020; Peng et al., 
2020; Gerniers et al., 2021; Peng et al., 2021; Yi et al., 2021; Peng et al., 
2022; Zhai et al., 2022). Analysis of bronchoalveolar immune cells in 
COVID-19 patients based on genetic data (Liao et  al., 2020). By 
processing the GSE37948 data set (Krausz et al., 2012), which contains 
expression levels of gene data on the X chromosome in testicular tissue 
from patients with varying degrees of infertility, we identified 19 distinct 
double clusters, indicating the existence of multiple double clusters 
identified in this paper there are multiple enriched pathways and there 
are functional and organizational correlations between the enriched 
pathways. And the performance of the method is verified using a data 
set similar to the real gene expression level.

2. Materials and methods

2.1. Methods

Rank-rank hyper geometric overlap (RRHO; Plaisier et al., 2010) 
uses unsupervised learning to sort the gene expression profile data of 
two samples of different categories, and uses hyper geometric 
distribution to iteratively calculate the p-values of all combinations to 
find the optimal overlap gene combination. In this paper, the sample 
expression data of two different genes is brought into the RRHO method 
to find the optimal overlapping sample set, and the SNR value of the 
signal-to-noise ratio of the sample gene set is calculated to determine 
whether the clusters have differential expression. For a single gene in the 
sample set, the SNR value is defined as:
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mg P, ¢ , mg P, ¢  are the mean in the delimited sample set ¢P  and the 
mean in the data outside the sample set, respectively.sg, ¢P , sg, ¢P
represent the standard deviation of the data in the corresponding set. 
The overall signal-to-noise ratio of the cluster is the average of the 
signal-to-noise ratios of individual genes in the sample set.

If the signal-to-noise ratio value of the identified sample and gene set 
is greater than the specified threshold, the set will be retained, and the 
corresponding genome is considered to have a relationship with the gene 
data. If one gene cannot form a relationship with other genes in the data, 
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it will be discarded in the subsequent processing, so as to realize the 
dimensionality reduction processing of the gene data. However, since the 
genes known to be associated with disease from Ghiassian et al. (2015) 
form a compact but not tightly connected subgraph on the PPI, this 
paper does not loop through all the genes in the data set, but adds a gene 
interaction network to the data processing. Using the String database, 
there is known and predicted gene-protein interaction networks in the 
database. In this paper, the genes involved in the data set are searched for 
the interaction network, and the isolated gene points are discarded. The 
genes existing in the gene network are combined in pairs, and the 
hierarchical clustering method is used for preliminary clustering to assist 
in determining the default set signal-to-noise ratio threshold. The set of 
gene samples constructed by preliminary clustering is calculated as the 
average of the signal-to-noise ratio values in all sets, and 1/2 of this mean 
is used as the threshold. When the signal-to-noise ratio of the gene 
sample set constructed by the RRHO method is used. If the ratio is 
greater than this threshold, the gene is retained and a new set of double 
clusters is obtained. Otherwise, in the gene network, the connected edges 
are discarded. Due to the large number of genes, a partial gene network 
is shown in Figure 1. Figure 2 briefly depicts the model’s approach. The 
interrelation data of all genes are presented in Supplementary Table 1.

Since only gene pairs and their corresponding sample sets can 
be obtained after using the RRHO method, Gibbs sampling (Sheng et al., 
2003) is used for the data processed in the first step to make assumptions 
about the distribution of gene sample data to merge gene clusters. The 
statistical assumptions for sampling are as following:
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Among them, k is set to the number of clusters retained after the 
calculation and processing of the RRHO method. Finally, the statistical 
part of Gibbs sampling assumes that the data has a certain prior 
distribution involving parameter α and β, but because the genetic data 
lacks the corresponding statistical research foundation, the parameter α 
and β are set as hyperparameters. At the end of data processing, Fisher’s 
exact test is used to process the calculated set data again, and the sample 
data in the two clusters are processed to calculate its value of p. The set 
threshold is used to determine whether there is a significant difference 
between the two sets, and the genes in the two sample sets without 
significant differences are merged, and the sample data of the 
corresponding gene is taken out and brought into the hierarchical 
clustering, and the number of clusters is 2. Since a gene is up-regulated 
in half of the samples, it will be differentially expressed in the remaining 
part, so, we limit samples in clusters to less than 55% of the total number 
of samples in the data set as a difference in the gene set. At the same 
time, in order to limit that the cluster is differentially expressed in the 
whole data, the SNR value of the newly formed cluster is required to 
be greater than the threshold value. Otherwise it will not be merged. All 
the identified clusters are merged cyclically until no new clusters 
are generated.

FIGURE 1

Interaction network of some genes in GDS37948.
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2.2. Datasets

2.2.1. Male infertility gene expression data
First, the corresponding gene expression data were obtained from 

the micro array gene expression database. In this paper, the GSE37948 
(Krausz et al., 2012) gene expression data set was selected. This data set 
contains relevant gene expression data of 96 patients with different 
degrees of infertility, including 74 cases of azoospermia, 6 cases of mild 
oligozoospermia, and 16 cases of severe oligozoospermia. Excluding 
known causes of impairing spermatogenesis in patients, gene expression 
data identification was performed using testicular tissue from 47 men, 
and KNN nearest neighbor algorithm was used to impute missing values 
in gene expression profile data while normalizing data for each gene, to 
remove the effect of different units on the data. The GSE37948 data set 
contains 1855 genes and gene-identified expression data from 200 male 
sperm samples. The genes identified therein to cover the entire X 
chromosome. The related gene network based on the GSE37948 data set 
was extracted from the String database. Specific gene interaction data 
are shown in the Supplementary Table: Interrelation data among genes.

2.2.2. Synthetic datasets
Since the method in this paper belongs to unsupervised learning, 

there are no standard results for the study of male infertility-related 
genes, so we  constructed simulation data similar in structure to 
GSE39748. The GSE37948 data set has a total of 1,855 genes and 200 
samples, but the size of the double-cluster deletion is unknown. To this 
end, simulated data of 20 known differentially expressed modules were 
constructed with gene and sample dimensions of 2,000 and 200, 
respectively. Based on previous research (Prelić et al., 2006; Eren et al., 
2013), we can generate simulation data according to the following rules: 
Genes and sample numbers are sampled from (100, 50, 20, 10, 5) and 
(100, 50, 20, 10) respectively, the data within the cluster is sampled from 
N (2, 1), and the rest of the data are sampled from N (0, 1) and allow the 
intersection of different clusters. Simulated data is used to determine 
hyperparameters and statistics are used to evaluate clustering results. 
Since the gene interaction network graph used in the gene data 
processing corresponds to the gene interaction graph with certain 
connectivity, we  correspondingly construct the connected network 
graph according to the determined clustering data. Studies have shown 

that in the gene interaction network, genes related to disease can form 
compact linker maps (Ghiassian et al., 2015), so we use the method 
proposed in Bollobás et al. (2003) to construct the network diagram, 
which can construct a reasonable gene network connection map 
according to the clustering modules in the expression data.

3. Results

3.1. Experimental results of male 
infertility-related gene expression data

By processing the GSE37948 data set, which contains expression 
levels of gene data on the X chromosome in testicular tissue from 
patients with azoospermia, mild and severe oligozoospermia. 
We identified 19 distinct double clusters. There are multiple enriched 
pathways and there are functional and organizational correlations 
between the enriched pathways. The hypergeometric test involved in the 
RRHO method, in which the significance index is adjusted from the set 
(0.01, 0.05), and the parameter α and β/k involved in the statistical 
hypothesis in Gibbs sampling are adjusted from the set (5.0, 1.0, 0.5, 0.1) 
and (100, 1.0, 0.01), respectively. According to the recognition effect of 
the model on the simulated data set, the final parameters p = 0.01, 
α = 0.5, and β/k = 1.0 were determined. The data processed based on the 
GSE39748 data is brought into the model to identify the gene sample 
module, and the results were analyzed using a variety of biometric 
indicators Includes: Disease (OMIN_DISEASE, UP_KW_DISEASE), 
Functional_Annotations (COG_ONTOLO, UP_KW_BIOLOGICAL_
PROCESS, UP_KW_CELLOULAR_COMPONENT, UP_KW_
MOLECULAR_FUNCTION, UP_KW_PTM, UP_SEQ_FEATURE), 
Protein_Domains (INTERPRO, PIR_SUPERFAMILY, SMART, UP_
KW_DOMAIN), Gene_Ontology (GOTERBP, CC, MF), Interactins 
(UP_KW_LIGAND), Pathways (KEGG_PATHWAY, 
BBID,BIOCARTA), Protein_Domains (INTERPRO, PIR_
SUPERFAMILY, SMART, UP_KW_DOMAIN).

Corresponding to the Enrichment analysis results with the cluster 
id of 1 in Table 1, there were four significantly enriched pathways after 
analysis by GO and KEGG, two of which were associated with proteins 
of the autism spectrum, which includes different phenotypic 
manifestations such as classic autism, Asperger’s syndrome, childhood 

FIGURE 2

Introduction to the model process.
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disintegration Sexual disorder, Rett’s syndrome, and pervasive 
developmental disorder not otherwise specified. Also significantly 
enriched into axons, the site of neurotransmitter storage and release. 
And outside the cytoplasmic membrane, referring to gene products 
attached to the plasma membrane or cell wall.

Corresponding to the Enrichment analysis results with the cluster 
id of 2  in Table  1, enriched in chemical synaptic transmission, cell 
membrane, and plasma membrane pathways. Release of 
neurotransmitter molecules from presynaptic vesicles across chemical 
synapses followed by post synaptic activation of neurotransmitter 
receptors on target cells (neurons, muscles, or secretory cells), and the 
effect of this activation on synapses Post-membrane potential and ionic 
composition of the post synaptic cytoplasm. This process includes 
spontaneous and evoked release of neurotransmitters and all parts of 
synaptic vesicle exocytosis. Evoked transmission begins when the action 
potential reaches the presynaptic.

Corresponding to the Enrichment analysis results with the cluster 
id of 3  in Table  1, by SMART, INTERPRO, UP_KW_DOMAIN 
showed enrichment to the SH3 domain. The SH3 (src homology-3) 
domain is a small protein module containing approximately 50 amino 
acid residues. They are present in a variety of intracellular or 
membrane-associated proteins, for example, in a variety of proteins 
with enzymatic activity, in adaptor proteins such as fodrin and the 
yeast actin-binding protein ABP-1. The SH3 domain has a 
characteristic fold, which consists of five or six β-strands arranged in 
two tightly packed antiparallel β-sheets. The linker region may 
contain short helices. The surface of the SH3 domain bears a flat 
hydrophobic ligand-binding pocket consisting of three shallow 
grooves defined by conserved aromatic residues in which the ligands 
are arranged in an extended left-handed helix. Ligands bind with low 

affinity, but this can be enhanced by multiple interactions. The region 
bound by the SH3 domain is proline-rich in all cases and contains 
PXXP as a core conserved binding motif. The function of SH3 
domains is unclear, but they may mediate many different processes, 
such as increasing the local concentration of proteins, changing their 
subcellular location and mediating the assembly of large 
multiprotein complexes.

Through enrichment analysis, we found that the gene sets of the 
identified clusters were enriched in a variety of enzyme activities, 
ADP and ATP related generation reactions, replication and translation 
of genetic material DNA and RNA, neurotransmitter transmission 
links and other pathways. Multiple clusters were enriched in RNA 
polymerase II forward and transcriptional regulatory pathways, 
protein tyrosine related enzyme pathways, neural synapses, 
neurotransmitter transmission links, ATP, ADP synthesis related 
links. There were two clusters of gene sets enriched to human 
papillomavirus infection pathway. One cluster was significantly 
enriched in calcium ion related pathways. Another cluster was 
significantly enriched in the inositol phosphate metabolism pathway. 
SH3 (src Homology-3) domains, proteoglycan cancer pathway, PDZ 
domain, Hippo signaling pathway, Tight junction pathway, PB1 
domain and other pathways were also enriched in some clusters. Each 
cluster enriched in the above described pathways at the same time 
there are other enrichment pathways with different functions. There 
may be  multiple gene interactions enriched in different pathways 
leading to differences in sperm motility.

In order to determine whether the data is significantly enriched, the 
p-values of the enrichment results are corrected using the Benjamini 
method and the Bonferroni method. The specific identified differentially 
expressed genes and the number of samples is shown in Table 1. Specific 
gene and sample data are included in the Supplementary Table: The 
result of identification. Table 2 is the cluster-related enrichment results, 
Figure  3 visualizes the correlation enrichment results, and the 
enrichment analysis results of all clusters are shown in 
Supplementary Data.

3.2. Simulation data experimental results

Since this paper belongs to unsupervised learning, there is no 
standard answer for the quantitative study of male sperm motility. At the 
same time, in order to better determine the value of hyper-parameters 
in the statistical method used in this paper, simulated data similar to 
gene expression profile datasets are constructed to be  used in the 
method proposed in this paper. The clustering results in the simulated 
data have been determined and can be  used to evaluate the model 
performance. Comparing the identification results of the simulated data 
set with the results of similar methods, and the results show that the 
model proposed in this paper may have higher accuracy in the analysis 
of genetic factors in the quantitative study of male sperm (Table 3).

To identify the differential expression module of the simulated data, 
we used the C&C (Cheng and Church, 2000) and BCPlaid (Lazzeroni 
and Owen, 2000) methods to cluster the data, and calculated the jaccard 
similarity coefficient of the results, which was often used to compare the 
similarity and difference between the limited sample sets, among which 
the jaccard coefficient. The higher the value, the higher the similarity 
between sets. The stable parameters were tuned best in each model. The 
specific results are shown in Supplementary Table  3, and the 
corresponding box plot is in Figure 4.

TABLE 1 Clustering results identified in the statistical method proposed in 
this paper based on the GDS37948 male infertility data set.

ID avgSNR Number of 
samples

Number of 
samples

1 0.700870148 13 56

2 0.816555484 3 110

3 0.775713429 3 88

4 0.745638081 8 101

5 0.743384851 3 72

6 0.743381552 4 71

7 0.730139247 351 20

8 0.718222619 6 110

9 0.716803164 3 91

10 0.70627255 3 101

11 0.703721749 3 68

12 1.15234204 482 12

13 0.678448517 6 95

14 0.678084094 11 103

15 0.67773126 25 110

16 0.674885829 3 38

17 0.671869245 6 92

18 0.668664873 3 84

19 0.667155842 3 49
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4. Conclusion

Based on the analysis of the GSE37948 male infertility-related 
gene detection data set in the GEO database, this paper proposes a 
bicluster analysis method based on hypergeometric distribution, 
Gibbs sampling and machine learning, and establishes simulation 
data similar to the GSE37948 data set. The common bicluster analysis 
methods C&C (Cheng and Church, 2000) and BCPlaid (Lazzeroni 
and Owen, 2000) have compared the experimental results. The results 
show that the method proposed in this paper has a higher accuracy 
in the identification of biclusters on the established simulation 
data set.

Through enrichment analysis, we found that the gene sets of the 
identified clusters were enriched in a variety of enzyme activities, ADP 
and ATP related generation reactions, replication and translation of 
genetic material DNA and RNA, neurotransmitter transmission links 

and other pathways. Multiple clusters were enriched in RNA polymerase 
II forward and transcriptional regulatory pathways, protein tyrosine 
related enzyme pathways, neural synapses, neurotransmitter 
transmission links, ATP, ADP synthesis related links. There were two 
clusters of gene sets enriched to human papillomavirus infection 
pathway. One cluster was significantly enriched in the inositol phosphate 
metabolism pathway. Each cluster enriched in the above described 
pathways at the same time there are other enrichment pathways with 
different functions. There may be multiple gene interactions enriched in 
different pathways leading to differences in sperm motility.

Infertility is a complex pathological condition that presents with a 
wide range of heterogeneous prototypes, and identifying the genes that 
cause male infertility is important to increase our biological 
understanding and clinically relevant treatments. The genetic causes of 
male infertility are chromosomal abnormalities, gene mutations and 
other reasons, which may be  present in autosomes or in sex 

TABLE 2 Enrichment results of genes in a cluster identified by our method in the male infertility data set.

Category Term Genes Bonferroni Benjamini

GOTERM_CC_DIRECT GO:0030424 ~ axon CNTNAP2, CNTN5, 

IL1RAPL1, DMD, SCN1A

0.002330526 0.002333212

GOTERM_CC_DIRECT GO:0009986 ~ cell surface LGALS3, CNTNAP2, 

NLGN4X, IL1RAPL1, DMD

0.021009445 0.010615268

UP_KW_DISEASE KW-1269 ~ Autism CNTNAP2, NLGN4X, 

SCN1A

0.002854718 0.002858289

UP_KW_DISEASE KW-1268 ~ Autism spectrum 

disorder

CNTNAP2, NLGN4X, 

SCN1A

0.014578999 0.007336422

Only the pathways and related parameters that were modified and significantly enriched by Bonferroni and Benjamini are listed in the table. The cluster is the id in Table 1: 1.

FIGURE 3

Enrichment circle plot of genes in clusters identified by our method in the male infertility data set. The cluster is the id in Table 1: 1. (Visualization of the 
relationship between genes and enrichment pathways).
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chromosomes, considering the particularity of male infertility, this 
article only considers the study of related genes on the X chromosome. 
With the development of genetic testing technology, the relevant data 
has increased significantly, and follow-up research can fully explore the 
information contained in the gene expression data of relevant patients 
from more aspects.
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Breast, ovarian, prostate, lung, and head/neck cancers are five solid cancers with

complex interrelationships. However, the shared genetic factors of the five cancers

were often revealed either by the combination of individual genome-wide association

study (GWAS) approach or by the fixed-e�ect model-based meta-analysis approach

with practically impossible assumptions. Here, we presented a random-e�ect model-

based cross-cancer meta-analysis framework for identifying the genetic variants

jointly influencing the five solid cancers. A comprehensive genetic correlation analysis

(genome-wide, partitioned, and local) approach was performed by using GWAS

summary statistics of the five cancers, and we observed three cancer pairs with

significant genetic correlation: breast–ovarian cancer (rg = 0.221, p = 0.0003),

breast–lung cancer (rg = 0.234, p = 7.6 × 10−6), and lung–head/neck cancer

(rg = 0.652, p = 0.010). Furthermore, a random-e�ect model-based cross-trait

meta-analysis was conducted for each significant cancer pair, and we found 27

shared genetic loci between breast and ovarian cancers, 18 loci between breast

and lung cancers, and three loci between lung and head/neck cancers. Functional

analysis indicates that the shared genes are enriched in human T-cell leukemia virus

1 infection (HTLV-1) and antigen processing and presentation (APP) pathways. Our

study investigates the shared genetic links across five solid cancers and will help to

reveal their potential molecular mechanisms.

KEYWORDS

solid cancers, summary statistics, shared genetic loci, meta-analysis, random e�ect model

1. Introduction

Cancer has become one of the most fatal diseases and it poses a serious threat to human life

and health. There have been ∼18.1 million new cancer cases and 9.6 million cancer deaths each

year (Bray et al., 2018). According to the prediction of the National Cancer Institute, the number

of new cancer cases per year is expected to rise to 29.5 million, and the amount of cancer-related

deaths will go up to 16.4 million by 2040. The high incidence of cancer has not only brought

an enormous health burden to individuals but also caused heavy economic losses to countless

families. Numerous pieces of evidence indicated widespread genetic pleiotropy and shared

genetic basis among different cancers (Rashkin et al., 2020). As a few representative elements

of solid cancer, breast, ovarian, prostate, lung, and head/neck cancers showed substantial

heritability (ranging from 9 to 57%) in previous twin and family studies (Polderman et al.,

2015; Mucci et al., 2016; Yu et al., 2017). Moreover, Jiang et al. (2019) quantified the pairwise

genetic correlations of six solid cancers and found significant correlations between breast and

ovarian cancers, breast and lung cancers, breast and colorectal cancers, and lung and head/neck

cancers. The aforementioned conclusions demonstrate indirectly that these solid cancers may

share inherited genetic mechanisms, which play important roles in cancer etiology. We would

like to understand the shared genetic loci influencing the five solid cancers.
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Genome-wide association studies (GWASs) have identified a

number of susceptibility loci associated with each of the five solid

cancers, ranging from dozens to hundreds (Buniello et al., 2019),

but few of them overlap in at least two of these cancers. This

indicates that rare pleiotropic loci are detected by cancer-specific

GWAS. Identifying the shared genetic loci between diseases can

help to reveal the underlying mechanisms driving disease etiology

(Guo et al., 2020). There are mainly two strategies available to

identify the shared loci in the previous literature. One strategy is

based on the combination of GWASs and other scan analyses. For

example, Ghoussaini et al. found pleiotropic loci located at 8q24,

associated with breast, prostate, and other specific cancers by using

this approach (Ghoussaini et al., 2008). Another strategy is based on

a cross-cancer meta-analysis. For example, Kar et al. identified seven

new loci shared by at least two of the three hormone-related cancers

(breast, ovarian, and prostate); Fehringer et al. (2016) detected a novel

pleiotropic locus 1q22 associated with both breast and lung cancers

by performing a cross-cancer genome-wide analysis of breast, ovary,

prostate, lung, and colorectal cancers. However, the pleiotropic loci

identified by the above studies are still not sufficient, and this may due

to the fact that the cross-cancer meta-analyses in the existing studies

are based on the fix-effect model. The fix-effect model meta-analysis

causes the loss of statistical power because it assumes the same real

effect for each genetic variant in different studies, which is practically

impossible and will inevitably yield inaccurate conclusions.

Random-effect model-based cross-trait meta-analysis methods

can effectively account for the heterogeneous effect of each genetic

variant by adding an additional variance term, addressing the

shortcomings of fix-effect model-based meta-analysis. Here, we

use the summary statistics of five solid cancers (breast, ovarian,

prostate, lung, and head/neck) from the largest-to-date cancer-

specific GWAS consortia, which include a total of 241,479 cases

and 226,810 controls. We then estimate the genetic correlation

between different cancer pairs. Furthermore, we conducted a cross-

cancer meta-analysis to detect shared genetic loci between the cancer

pairs using the current state-of-the-art random-effect model-based

approach PLEIO (Pleiotropic Locus Exploration and Interpretation

using Optimal test) (Lee et al., 2021), which enables us to properly

account for the correlation of traits and the heterogeneity of variants.

Finally, we perform functional analyses of pleiotropic variants to

uncover the underlying biological mechanisms shared across the five

solid cancers.

2. Materials and methods

2.1. Data and contributing consortia

We used the most recent GWAS summary-level data from the

Breast Cancer Association Consortium (BCAC) for breast cancer

(122,977 cases and 105,974 controls) (Michailidou et al., 2017),

the Ovarian Cancer Association Consortium (OCAC) for ovarian

cancer (25,509 cases and 40,941 controls) (Phelan et al., 2017), the

Prostate Cancer Association Group to Investigate Cancer Associated

Alterations in the Genome (PRACTICAL) consortium for prostate

cancer (79,148 cases and 61,106 controls) (Schumacher et al., 2018),

the International Lung Cancer Consortium (ILCCO) for lung cancer

(11,348 cases and 15,861 controls) (Wang et al., 2014), and the

Oncoarray oral cavity and oropharyngeal cancer consortium for

head/neck cancer (2,497 cases and 2,928 controls) (Lesseur et al.,

2016).

2.2. Genome-wide genetic correlations

To measure genome-wide genetic correlations for each cancer

pair, we used the linkage disequilibrium (LD) score regression

(LDSC) method (Schizophrenia Working Group of the Psychiatric

Genomics Consortium et al., 2015). We applied pre-computed LD

scores derived from ∼1.2 million imputed variants from European

populations that did not include the HLA region in the HapMap3

reference panel. LDSC controls for population structure using GWAS

summary statistics without individual-level data.

2.3. Partitioned genetic correlations

We evaluated the partitioned genetic correlation across the

five solid cancers within functional categories by using partitioned

LDSC (ReproGen Consortium et al., 2015). We chose 11 functional

categories as previously recommended (Zhu et al., 2019), including

the DNase I digital genomic footprinting (DGF) region, DNase I

hypersensitivity sites (DHSs), fetal DHS, intron, super-enhancer,

transcription factor-binding sites (TFBS), transcribed region, and

the histone markers H3K9ac, H3K4me1, H3K4me3, and H3K27ac

from the Roadmap Epigenomics Project (Bernstein et al., 2010).

Re-computed LD scores for variants classified in each particular

annotation were used for estimating the cross-cancer genetic

correlation within that functional group.

2.4. Local genetic correlations

We estimated local genetic correlations between each pair of

cancers in 1,703 pre-specified LD-independent regions using ρ-HESS

(Shi et al., 2017). The goal of this method was to detect small

contiguous regions of the genome in which the genetic associations

of two traits are locally concordant, and to measure the local genetic

correlation and p-values (pρ−HESS) between pairs of traits at local

regions. Cancer pairs were considered to have genetic correlation

at the local region if pρ−HESS passed the multiple testing correction

(pρ−HESS < 0.05/1703).

2.5. Cross-cancer meta-analysis

For the cancer pairs with significant genome-wide genetic

correlation, we conducted a pairwise cross-cancer meta-analysis by

using PLEIO (Lee et al., 2021). The approach is based on a random-

effect model, which can not only model genetic correlations across

pairs of traits but can also correct for environmental correlations. It

can seamlessly test multiple traits with various types by standardizing

the effect sizes. Moreover, it maps pleiotropic loci through a variance

component test and calculates statistical significance through an

important sampling method. It overcomes the drawback of fixed-

effect model methods such as ASSET (association analysis based on

subsets) (Bhattacharjee et al., 2012). We conducted the cross-cancer
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FIGURE 1

Schematic overview of the present study.

meta-analysis on an Intel Xeon E5-2695 computer with the CPU

operating at 2.10 GHz. This wastes∼10min for each pair of cancers.

To separate the independent loci from the significant loci (p <

5×10−8), we used the clumping function in PLINK software (Purcell

et al., 2007). SNPs with p < 1 × 10−5, an LD statistic r2 > 0.05, and

a distance from the peak < 1,000 kb were assigned to the clump of

that peak. Moreover, we set the NCBI human genome build 37 as the

reference gene list.

2.6. Transcriptome-wide association studies

We performed TWAS to identify gene–tissue pairs for each of

the five solid cancers and used FUSION software based on the pre-

computed 48 GTEx (version 7) tissue expression reference weights

(Gusev et al., 2016). LD-reference data were derived from European

descendants from the 1,000 Genomes Project. For each cancer,

we conducted 48 TWASs, one tissue-cancer pair at a time. The

false discovery rate (FDR) Benjamin–Hochberg procedure correction

was used, and a result with an FDR < 0.05 was considered to

be significant.

2.7. Replication analysis in the UK Biobank
cohort

To validate our findings, we further conducted genome-wide

genetic correlation analysis and cross-cancer meta-analysis of the five

solid cancer GWAS datasets with the UK Biobank cohort from the

IEU GWAS database project (Matthew et al., 2021): breast cancer

(ID: ieu-b-4810), ovarian cancer (ID: ieu-b-4963), prostate cancer

(ID: ieu-b-4809), lung cancer (ID: ieu-b-4954), and head/neck cancer

(ID: ieu-b-4912). We applied the 1,000 Genomes Project variants

(Phase 3) as the reference panel. The cross-cancer meta-analysis

between each pair of replication datasets was implemented using

the R software RE2C (Lee et al., 2017), which is another classical

random-effect model-based method that tests heterogeneous effect

size between individual summary statistics.

2.8. Pathway enrichment analysis

To gain biology insights from the shared risk genes, we performed

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

analysis using the Enrichr web server (Kuleshov et al., 2016), which

is a comprehensive resource for curated gene sets and a search

engine that accumulates biological knowledge for further biological

discoveries. The significant criterion is that the adjusted p-value

is <0.05.

2.9. Protein–protein interaction network
analysis

We used STRING v10 (Szklarczyk et al., 2015) to analyze

the PPI network. The basic assumption is that if two proteins

are functionally associated, they may contribute to a common

biological purpose. The interaction scores were derived

from different sources, including experimentally determined

interaction, database annotated information, and automated text

mining knowledge.

A schematic overview of the present study is shown in Figure 1,

that is, we estimated genome-wide, partitioned, and local genetic

correlations of the five solid cancers. For the cancer pairs with
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significant genome-wide genetic correlation, we performed a cross-

cancer meta-analysis to identify shared genetic loci. Finally, we

conducted TWAS, pathway enrichment analysis, and PPI network

analysis of the shared risk genes.

3. Results

3.1. Three cancer pairs have significant
genetic correlations

Among pairs of solid cancers, we found three pairs with positive

genetic correlations at a significant threshold of p = 0.05: breast and

ovarian cancers (rg = 0.221, p = 0.0003), breast and lung cancers

(rg = 0.234, p = 7.6 × 10−6), and lung and head/neck cancers

(rg = 0.652, p = 0.010). The remaining pairs do not show significant

genetic correlations (Table 1).

TABLE 1 Genome-wide genetic correlation between five solid cancers.

Cancer
typea

Breast Ovarian Prostate Lung Head/
neck

Breast 1 0.221 0.077 0.234 −0.065

Ovarian 0.0003 1 0.026 0.139 −0.072

Prostate 0.087 0.672 1 0.069 0.160

Lung 7.6× 10−6 0.164 0.272 1 0.652

Head/neck 0.528 0.761 0.070 0.010 1

aThe upper off-diagonal shows the genetic correlation estimates of the LD score regression (rg

ranges from−1 to 1), and the lower off-diagonal shows the corresponding p-values.

3.2. Most of the three cancer pairs have
significant functional partitioned genetic
correlations

In the partitioned genetic correlation analysis, we observed

significant genetic correlation in all 11 functional categories

for the breast–lung cancer pair, with only two exceptions:

Intron and SuperEnhance for the lung–head/neck cancer pair.

As to the breast–ovarian cancer pair, there is no significant

signal in H3K27ac, H3K4me3, H3K9ac, and SuperEnhance. The

partitioned genetic correlations range from 0.033 to 0.546 (Figure 2;

Supplementary Table S1).

3.3. Two cancer pairs have four genomic
regions with significant local genetic
correlations

We conducted ρ-HESS to investigate whether specific regions

had a genetic correlation between each pair of the five solid cancers.

The results show that the breast–ovarian cancer pair has a strong local

genetic correlation in the 2q33 region (chromosome 2: 201576284-

202818637, p = 8.83× 10−6) (Figure 3A). In addition, three regions,

including the 9p21 region (chromosome 9: 20463534-22206559, p =

6.71× 10−6), 10q26 region (chromosome 10: 123231465-123900545,

p = 4.26 × 10−7), and 11q13 region (chromosome 11: 68005825-

69516130, p = 4.90 × 10−6), are found to have strong local genetic

correlations in the breast–prostate cancer pair (Figure 3B). We did

not observe any significant local genetic correlations for the other

cancer pairs.

FIGURE 2

Partitioned genetic correlation between breast and ovarian cancers, breast and lung cancers, and lung and head/neck cancers. The vertical axis

represents the genetic correlation rg, and the horizontal axis represents 11 functional categories. The asterisk represents significance (p < 0.05).
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FIGURE 3

Local genetic correlation and local SNP heritability between cancer pair. (A) Breast and ovarian cancers; (B) Breast and prostate cancers. For each

subfigure, the top part represents local genetic correlation, the middle part represents local genetic covariance, blue or red highlights indicate significant

local genetic correlation and covariance after multiple testing corrections, and the bottom part represents local SNP heritability for each trait.

3.4. Pleiotropic loci were identified for the
three cancer pairs by
cross-cancer meta-analysis

3.4.1. Breast and ovarian cancer
In the cross-cancer meta-analysis, we identified 27 independent

loci with a significant association between breast and ovarian cancers

(pmeta < 5 × 10−8 and single-trait p < 0.05, Table 2). The strongest

pleiotropic signal is mapped to FGFR2 in the region 10q26.13

(rs1219648, pmeta = 4.16 × 10−254), a gene that has been altered

in a number of patients with malignant solid tumors according to

the AACR Project GENIE (The AACR Project GENIE Consortium

et al., 2017). This SNP showed a pleiotropic association between

breast and ovarian cancers according to a previous cross-cancer

analysis (Kar et al., 2016). The second strongest signal is observed

for chromosome 9q31.2 (rs630965, pmeta = 1.01 × 10−63). Patients

with deletions on 9q31.2 may have delayed puberty (Iivonen et al.,

2021). The third strongest signal observed on BNC2 (rs3814113,

pmeta = 2.16 × 10−43) is a putative tumor suppressor gene in high-

grade serous ovarian carcinoma, which impacted cell survival after

oxidative stress (Cesaratto et al., 2016). Notably, four loci (rs7098100,

rs4277389, rs4808616, and rs10069690) are not only significant after

the meta-analysis but also reach a significant level in their original

single-trait GWAS.

3.4.2. Breast and lung cancers
For the breast–lung cancer pair, we detected 18 pleiotropic loci

in the cross-cancer meta-analysis (Table 3). The most significant

pleiotropic association is in the region 5q11.2 (rs16886181, pmeta =

4.57 × 10−122), and the mapped gene MAP3K1 regulates apoptosis,

survival, migration, differentiation, and other functions, which

suggests that it may be a target for cancer treatment (Pham et al.,

2013). Moreover, we also found dense signals in the HIST1H

gene family.

3.4.3. Lung and head/neck cancers
A total of three loci were identified after conducting a

meta-analysis of lung and head/neck cancers (Table 4). The first

(rs380286, pmeta = 2.72 × 10−12) is mapped on CLPTM1L

and MIR4457, genes encoding the catalytic subunit of human

telomerase reverse transcriptase (McKay et al., 2017). The second

(rs3117575, pmeta = 8.06 × 10−12) is in close proximity to

ABHD16A and many other genes. ABHD16A is an emerging enzyme,

mainly involved in lipid metabolism and intracellular signaling,

leading to the metastasis of cancer (Xu et al., 2018). The third

(rs2736100, pmeta = 1.09 × 10−9) is mapped on TERT, a

gene that plays a central role in modulating telomerase activity in

tumors (Colebatch et al., 2019).
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TABLE 2 Cross-trait meta-analysis result between breast and ovarian cancers (pmeta < 5 × 10−8; single-trait p < 0.05).

SNP Genome position Allele Breast cancer Ovarian cancer Meta Genes within
clumping region

Beta p Beta p p

rs1219648 chr10:123274062-123438122 A/G 0.2338 1.00× 10−200
−0.0266 0.0480 4.16× 10−254 FGFR2

rs630965 chr9:110759922-111073103 C/T 0.0992 3.21× 10−54 0.0301 0.0269 1.01× 10−63 CHCHD4P2#

rs3814113 chr9:16846323-16915021 T/C 0.0135 0.0410 −0.1780 9.40× 10−36 2.16× 10−43 BNC2

rs244353 chr17:52975892-53256579 G/A −0.0754 1.14× 10−28
−0.0295 0.0399 1.40× 10−31 COX11, STXBP4, TOM1L1

rs6826366 chr4:175822759-175914966 G/A −0.103 5.20× 10−26
−0.0426 0.0380 2.74× 10−28 ADAM29

rs7098100 chr10:21782842-22288132 G/A 0.0572 1.47× 10−18 0.0852 6.14× 10−10 4.41× 10−27 CASC10, DNAJC1,

MIR1915, MLLT10, SKIDA1

rs4277389 chr17:43513441-44865603 A/G −0.0484 2.01× 10−10 0.1151 1.20× 10−12 1.20× 10−23 ARL17, CRHR1, KANSL1,

LRRC37A,

MAPT,MGC57346,

MIR4315, NSF, PLEKHM1,

SPPL2C, STH, WNT3

rs4808616 chr19:17354825-17403033 C/A 0.0379 1.97× 10−8 0.1194 8.11× 10−17 1.94× 10−23 ABHD8, ANKLE1,

BABAM1, NR2F6, USHBP1

rs10069690 chr5:1279790-1279790 C/T 0 .0599 7.79× 10−17 0.0830 3.42× 10−8 5.28× 10−23 TERT

rs2290202 chr15:91489705-91561182 G/T −0.0728 1.87× 10−15
−0.0985 4.38× 10−7 4.20× 10−20 PRC1, RCCD1, UNC45A,

VPS33B

rs851980 chr6:152008780-152070928 T/C 0.0619 1.13× 10−18 0.0400 0.0083 9.44× 10−20 ESR1

rs3769823 chr2:202119789-202271347 A/G −0.0554 1.43× 10−16
−0.0289 0.0448 1.33× 10−16 ALS2CR12, CASP8, TRAK2

rs1474961 chr22:28324866-29318724 C/T 0.0667 1.74× 10−10
−0.1091 1.80× 10−6 2.02× 10−15 CCDC117, CHEK2, HSCB,

MIR5739, TTC28, XBP1,

ZNRF3

rs7017073 chr8:129143680-129218127 T/C 0.0572 2.32× 10−14 0.0359 0.0227 3.95× 10−14 MIR1208

rs35958868 chr17:29164023-29247715 G/A −0.0426 1.37× 10−9
−0.0747 5.21× 10−7 5.44× 10−13 ATAD5, TEFM

rs10498635 chr14:93086918-93111120 C/T −0.0571 3.46× 10−12
−0.0748 0.0109 9.26× 10−13 RIN3

rs381551 chr6:13638243-13722523 G/A −0.0447 6.45× 10−13
−0.0297 0.0250 2.37× 10−12 RANBP9

rs12233670 chr4:38765720-38894380 C/T 0.0509 2.20× 10−12 0.0370 0.0178 8.05× 10−12 FAM114A1, MIR574, TLR1,

TLR6, TLR10

rs2277509 chr14:91749595-91749595 C/A 0.0473 2.32× 10−12 0.0296 0.0381 1.53× 10−11 CCDC88C

rs2916074 chr19:19358672-19650096 G/A 0.0444 7.15× 10−12 0.0357 0.0097 2.04× 10−11 CILP2, GATAD2A,

HAPLN4, MAU2, NCAN,

NDUFA13, SUGP1,

TM6SF2, TSSK6, YJEFN3

rs495828 chr9:136153875-136326248 G/T 0.0377 5.99× 10−7 0.0860 9.25× 10−8 7.21× 10−11 ADAMTS13, C9orf96,

CACFD1, MED22, REXO4,

RPL7A, SNORD24, SURF

rs720475 chr7:144074929-144074929 G/A −0.0488 1.20× 10−11
−0.0308 0.0409 8.55× 10−11 ARHGEF5

rs2822991 chr21:16343812-16413682 T/C 0.0533 2.44× 10−10 0.0447 0.0094 5.50× 10−10 NRIP1

rs1550623 chr2:174207470-174212894 G/A 0.0531 5.39× 10−10 0.0360 0.0472 2.80× 10−9 CDCA7#

rs4743687 chr9:106856452-106898410 C/T 0.0322 2.29× 10−7 0.0545 4.15× 10−5 4.93× 10−9 SMC2

rs9878602 chr3:71517643-71535338 T/G −0.0337 5.21× 10−8 0.0297 0.0243 3.72× 10−8 FOXP1

rs2941478 chr8:76474058-76476737 A/C −0.0433 3.70× 10−8
−0.0430 0.0101 4.85× 10−8 HNF4G

#The nearest gene to this locus. SNP, single nucleotide polymorphisms; chr, chromosome; Allele, the character before the slash is the effect allele, and the character after the slash is the reference allele.

3.5. Overlapped gene–tissue pairs shared by
cancer pairs in TWAS

To assess the association of gene expression in specific tissue

between each pair of the five solid cancers, we performed

TWAS. A total of 1,669 gene–tissue pairs are significantly

associated with breast cancer after Benjamini–Hochberg correction

(Supplementary Table S2), in addition to 418 gene–tissue pairs with

ovarian cancer (Supplementary Table S3), 1,116 gene–tissue pairs

with prostate cancer (Supplementary Table S4), 155 gene–tissue pairs
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TABLE 3 Cross-trait meta-analysis result between breast and lung cancers (pmeta < 5 × 10−8; single-trait p < 0.05).

SNP Genome position Allele Breast cancer Lung cancer Meta Genes within
clumping region

Beta p Beta p p

rs16886181 chr5:55983856-56306286 T/C 0.1730 8.89× 10−98
−0.0670 0.0078 4.57× 10−122 MAP3K1, MIER3, SETD9

rs2736108 chr5:1287194-1355058 C/T −0.0622 3.88× 10−19 0.0988 6.49× 10−5 4.65× 10−24 CLPTM1L, MIR4457, TERT

rs7097066 chr10:80883083-80891631 G/A 0.0765 6.18× 10−20
−0.0571 0.0228 7.47× 10−22 ZMIZ1

rs3217992 chr9:21953137-22072719 C/T −0.0581 1.18× 10−19
−0.0512 0.0227 1.78× 10−21 C9orf53, CDKN2

rs13214023 chr6:27413924-28366151 G/A −0.0710 1.01× 10−9 0.1398 1.73× 10−5 8.48× 10−13 HIST1H family, LINC01012,

LOC100131289, NKAPL,

OR2B, PGBD1, TOB2P1,

ZKSCAN family

rs10498635 chr14:93086918-93111120 C/T −0.0571 3.46× 10−12 0.0513 0.0292 5.24× 10−12 RIN3

rs4971059 chr1:155148781-155666961 G/A 0.0424 4.83× 10−11 0.0549 0.0041 4.36× 10−11 ASH1L, CLK2, DAP3,

FAM189B, FDPS, GBA,

GBAP1, HCN3, MIR92B,

MIR555, MSTO1, MSTO2P,

MTX1, MUC1, PKLR,

POU5F1P4, RUSC1,

SCAMP3, THBS3, TRIM46,

YY1AP1

rs13207082 chr6:26309908-27251379 A/T −0.0710 2.10× 10−9 0.1225 0.0002 5.13× 10−11 ABT1, BTN1A1, BTN2A,

BTN3A, GUSBP2, HCG11,

HIST1H, HMGN4,

LINC00240, LOC285819,

LOC100270746, MIR3143,

PRSS16, ZNF322

rs3117574 chr6:31081838-32064726 G/A −0.0233 0.0286 0.1839 2.18× 10−10 4.27× 10−10 ABHD16A, AIF1, APOM,

ATP6V1G2, BAG6, C2,

C4A, C4B, C6orf25,

C6orf47, C6orf48, CCHCR1,

CDSN, CFB, CLIC1,

CSNK2B, CYP21A, DDAH2,

DDX39B, DXO, EHMT2,

GPANK1, HCG26, HCG27,

HCP5, HLA-B, HLA-C,

HSPA1 family, LSM2, LST1,

LTA, LTB, LY6G family,

MCCD1, MICA, MICB,

MIR1236, MIR4646,

MIR6832, MIR6891, MSH5,

NCR3, NELFE, NEU1,

NFKBIL1, POU5F1,

PRRC2A, PSORS1C,

SAPCD1, SKIV2L,

SLC44A4, SNORA38,

SNORD family, STK19,

TCF19, TNF, TNXA, TNXB,

VARS, VWA7, ZBTB12

rs1550623 chr2:174207470-174212894 G/A 0.0531 5.39× 10−10 0.0655 0.0090 7.07× 10−10 CDCA7#

rs4930103 chr11:2018168-2024683 G/A 0.0382 6.60× 10−10 0.0389 0.0318 1.95× 10−9 H19

rs4635969 chr5:1308552-1308552 G/A −0.0173 0.0276 −0.1444 5.33× 10−10 2.28× 10−9 MIR4457#

rs13212534 chr6:25874423-25983010 G/A −0.0647 1.72× 10−7 0.1241 0.0005 5.70× 10−9 SLC17A2, SLC17A3,

TRIM38

rs1707302 chr1:46600917-46603348 A/G 0.0364 2.95× 10−8 0.0625 0.0016 7.40× 10−9 PIK3R3#

rs13718 chr5:132384689-132444509 A/G −0.0437 9.38× 10−9
−0.0560 0.0092 9.17× 10−9 HSPA4

rs224121 chr10:64447352-64588680 A/C 0.0396 7.38× 10−8
−0.0614 0.0041 1.72× 10−8 ADO, EGR2

rs2524005 chr6:29899677-29899677 G/A −0.0297 0.0003 0.1080 2.12× 10−6 4.17× 10−8 HLA-K#

rs4808616 chr19:17403033-17403033 C/A 0.0379 1.97× 10−8 0.0414 0.0380 4.43× 10−8 ABHD8

#The nearest gene to the locus, SNP, single nucleotide polymorphisms; chr, chromosome; Allele, the character before the slash is the effect allele, and the character after the slash is the reference allele.
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TABLE 4 Cross-trait meta-analysis result between the lung and head/neck cancers (pmeta < 5 × 10−8; single-trait p < 0.05).

SNP Genome position Allele Lung cancer Head/neck cancer Meta Genes within clumping
region

Beta p Beta p p

rs380286 chr5:1299213-1355058 G/A −0.1286 3.39× 10−12 0.0890 0.0332 2.72× 10−12 CLPTM1L, MIR4457

rs3117575 chr6:31094703-32059867 T/C 0.1839 2.37× 10−10 0.2990 0.0024 8.06× 10−12 ABHD16A, AIF1, APOM,

ATP6V1G2, BAG6, C2, C4A, C4B,

C4B_2, C6orf25, C6orf47, C6orf48,

CCHCR1, CFB, CLIC1, CSNK2B,

CYP21A1P, CYP21A2, DDAH2,

DDX39B, DXO, EHMT2, GPANK1,

HCG26, HCG27, HCP5, HLA-B,

HLA-C, HSPA1A, HSPA1B,

HSPA1L, LOC102060414, LSM2,

LST1, LTA, LTB, LY6G5B, LY6G5C,

LY6G6C, LY6G6D, LY6G6E,

LY6G6F, MCCD1, MICB, MIR1236,

MIR4646, MIR6832, MIR6891,

MSH5, MSH5-SAPCD1, NCR3,

NELFE, NEU1, NFKBIL1, POU5F1,

PRRC2A, PSORS1C1, PSORS1C2,

PSORS1C3, SAPCD1, SKIV2L,

SLC44A4, SNORA38, SNORD48,

SNORD52, SNORD84, SNORD117,

STK19, TNF, TNXA, TNXB, VARS,

VWA7, ZBTB12

rs2736100 chr5:1286516-1286516 C/A −0.1062 3.97× 10−9
−0.0970 0.0210 1.09× 10−9 TERT

SNP, single nucleotide polymorphisms; chr, chromosome; Allele, the character before the slash is the effect allele, and the character after the slash is the reference allele.

with lung cancer (Supplementary Table S5), and 15 gene–tissue pairs

with head/neck (Supplementary Table S6). Among them, 306 gene–

tissue pairs are overlapped for the breast–ovarian cancer pair, and the

tissues involved are scattered; however, a number of genes are almost

concentrated in the clumping region of rs4277389 on chromosome

17, such as CRHR1, LRRC37A, andMAPT (Supplementary Table S7).

Moreover, 23 gene–tissue pairs are overlapped for the breast–lung

cancer pair, and most of the gene signals are observed in the 1q22

region, especially gene GBAP1, which is simultaneously significant

in eight tissues (adipose, artery, breast, fibroblast cell, sigmoid colon,

transverse colon, esophagus, and vagina) (Supplementary Table S7).

In addition, one gene–tissue pair (CFB-pituitary) is overlapped for

the lung–head/neck cancer pair (Supplementary Table S7).

3.6. Results of replication analysis in the UK
Biobank cohort

In the replication analysis, we confirmed the significance of the

genetic correlation between the breast and ovarian cancer pair (rg =

0.175, p = 0.0061), the breast and lung cancer pair (rg = 0.125,

p = 0.0018), and the lung and head/neck cancer pair (rg = 0.506,

p = 0.0005) in the UK Biobank. Then, we used cross-cancer meta-

analysis (RE2C) to identify the shared genes between each of the three

cancer pairs. For the breast–ovarian cancer pair, nine loci showed

genome-wide significance. Of these, genes FGFR2, BNC2, ADAM29,

ESR1, ATAD5, and TEFM were replicated when compared with their

specific consortium results (Supplementary Table S8). Moreover, six

loci demonstrated significance in the breast–lung cancer pair. Some

genes were found to be replicated, such as MAP3K1 (rs12653202,

pmeta = 4.34 × 10−23), HIST1H family (rs13214023, pmeta = 2.83 ×

10−14), ASH1L (rs4971059, pmeta = 5.47 × 10−9), and ZMIZ1

(rs7904249, pmeta = 1.22 × 10−8) (Supplementary Table S9). In

addition, we identified two loci shared in the lung–head/neck cancer

pair, but neither was replicated (Supplementary Table S10).

3.7. Results of biological analysis and
pathway enrichment analysis

We observed shared genes enriched in human T-cell leukemia

virus 1 infection (HTLV-1) and antigen processing and presentation

(APP) pathways. HTLV-1 was the first retrovirus discovered to

cause adult T-cell leukemia (ATL), a highly aggressive blood cancer

(Matsuoka and Jeang, 2011). TheAPP pathway is a key element for an

efficient response to immune checkpoint inhibitor therapy, which can

be exploited to enhance tumor immunogenicity and to increase the

efficacy of immunotherapy. The use of immune checkpoint inhibitors

has already shown significant clinical advances in a wide range of

patients with cancer (D’Amico et al., 2022).

3.8. Results of protein–protein interaction
network analysis

In total, we found 849 pairs of interaction in the PPI network

(Supplementary Table S11). A total of 44 gene pairs have combined

scores >0.95, in which the ESR1-NRIP1 pair has the highest score

of 0.999. HIST1H family genes around the 6p22.1 region show

strong interactions with high scores. We observed 26 genes with

degrees >20, most of which are HIST1H family genes, in addition to

ESR, HSPA4, TNF, and EHMT2 genes. HIST1H gene set expression

was reported to be positively correlated with large tumor size,

high grade, metastasis, and poor survival in patients with breast
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FIGURE 4

Protein–protein interaction network of share genes.

cancer (Liao et al., 2021), which were used as prognostic factors

for survival prediction among patients with cervical cancer (Li

et al., 2017). The PPI network for shared risk genes is shown in

Figure 4.

4. Discussion

In the present study, we conducted a comprehensive analysis

measuring the genetic correlation of five solid cancers, leveraging

summary statistics from the current largest GWAS cancer consortia.

We found significant positive genome-wide genetic correlations in

three cancer pairs: breast–ovarian cancer, breast–lung cancer, and

lung–head/neck cancer. Although the correlation in the prostate–

head/neck cancer pair was up to 0.139, it failed to reach a

significant level.

In partitioned genetic correlation, we detected positive genetic

correlation and statistical significance in most function regions of

the genome for the three cancer pairs, which showed significance

in LDSC. Among them, the transcribed region had the strongest

magnitude and significance. Most of the susceptibility variants

detected by GWAS are located in non-coding regions and affect

most cancers by affecting gene expression (Sud et al., 2017). Histone

markers, including H3K27ac, H3K4me1, H3K4me1, andH3K9ac, are
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important modifications that are associated with the dysregulation

of many genes that play important roles in cancer development

and progression (Kurdistani, 2007). Transcribed regions have diverse

transcripts that impact cancer initiation and progression through

several mechanisms of action (Gibert et al., 2022).

In the analysis of local genetic correlation, we identified

a novel pleiotropic region (11q13) that showed a significant

local genetic correlation between breast and prostate cancers.

Although the 2q33 region was previously reported as a shared

region for breast–ovarian and breast–prostate cancers (Jiang

et al., 2019), we only observed the pleiotropic signal in the

breast–ovarian cancer pair. In addition, the 9p21 and 10q26

regions we identified were indicated to share breast and prostate

cancers (Jiang et al., 2019). However, we did not find any

significant local correlation between the breast–lung cancer pair

and the lung–head/neck cancer pair, which showed genome-wide

statistical significance.

There are some common findings in the aforementioned three

kinds of genetic correlation analyses. The three cancer pairs (breast–

ovarian, breast–lung, and lung–head/neck), which were significant

in genome-wide genetic association analysis, also showed strong

significance in most functional categories in the partitioned genetic

correlation analysis (Figure 2). In addition, the breast–ovarian cancer

pair also showed strong significance in the 2q33 region in the local

genetic correlation analysis (Figure 3A).

In the cross-cancer meta-analysis, we discovered 27 shared

loci between breast and ovarian cancers, 18 shared loci between

breast and lung cancers, and three shared loci between lung

and head/neck cancers. Except for four of the shared loci

that showed a significant association in trait-specific GWAS of

two cancers, the others were newly discovered. In contrast, a

previous study, which used the fixed-effect model-based approach

ASSET, only identified one novel pleiotropic association at 1q22

involved in breast and lung cancers (Kar et al., 2016). This

comparison demonstrated the high statistical power of the cross-

cancer meta-analysis via the PLEIO test, which is based on a

random-effect model.

In the TWAS analysis, we explored the significant gene–tissue

pair in the five solid cancers by integrating GWAS summary statistics

and GTEx tissue expression data. We identified 1,669 gene–tissue

pairs associated with breast cancer at the transcriptome-wide level,

in addition to 418 with ovarian cancer, 1,116 with prostate cancer,

155 with lung cancer, and 15 with head/neck cancer. Furthermore,

we noticed that 306 gene–tissue pairs overlapped in the breast–

ovarian cancer pair, 23 pairs overlapped in the breast–lung cancer

pair, and one pair overlapped in the lung–head/neck cancer pair.

These overlaps may implicate specific common regulations for

biological function.

In the replication analysis, we found some shared genes in two

independent cohorts, such as FGFR2 for the breast–ovarian cancer

pair and MAP3K1 for the breast–lung cancer pair. Since there are

more cases (tens of thousands) in specialized cohorts (such as BCAC

for breast cancer) than those in the UK Biobank cohort (nearly

1,000), the small number of cases could affect the genetic correlation

estimation; this may be the reason only a fraction of pleiotropic genes

were found in UK Biobank replications.

The post-GWAS analyses enabled us to provide biological

insights into the shared genes. We found that the shared genes were

enriched in HTLV-1 and APP pathways via pathway enrichment

analysis. In the PPI network analysis, we observed obvious

aggregations around HIST1H family genes, which were proved to be

used as prognostic factors for survival prediction among patients with

cancer (Li et al., 2017).

There are some advantages of the present study. On the one

hand, we conducted a cross-cancer meta-analysis using two large-

scale cohorts for each cancer separately, which facilitated the

detection of novel associations. On the other hand, we performed

association analyses under two kinds of mainstream random-effect

model-based methods, which confirmed some of the discoveries.

We also point out the limitations of this study. First, the UK

Biobank cohort cancers we used in our replication analysis are

not independent because there may be some shared cases and

substantial shared controls among these five solid cancers. Moreover,

the identified pleiotropic loci can be divided into causal and

non-causal, and further experiments are required to distinguish

the causal loci and to study their biological function. Finally,

our study focuses on identifying shared genetic factors across

five solid cancers, and their shared environmental factors require

further investigation.

5. Conclusion

Identifying the shared genetic loci across five solid cancers

plays an important role in the etiology and pathogenesis

of each cancer. Our study finds several significant genetic

correlations in specific cancer pairs, and their corresponding

pleiotropic variants are detected by a cross-cancer meta-

analysis. We observe shared genes enriched in the human

T-cell leukemia virus 1 infection (HTLV-1) and antigen

processing and presentation (APP) pathways. These shared

genes and pathways may help to provide clues for future

drug development.
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The epitope is the site where antigens and antibodies interact and is vital to 
understanding the immune system. Experimental identification of linear B-cell 
epitopes (BCEs) is expensive, is labor-consuming, and has a low throughput. Although 
a few computational methods have been proposed to address this challenge, there 
is still a long way to go for practical applications. We  proposed a deep learning 
method called DeepLBCEPred for predicting linear BCEs, which consists of bi-
directional long short-term memory (Bi-LSTM), feed-forward attention, and multi-
scale convolutional neural networks (CNNs). We extensively tested the performance 
of DeepLBCEPred through cross-validation and independent tests on training and 
two testing datasets. The empirical results showed that the DeepLBCEPred obtained 
state-of-the-art performance. We  also investigated the contribution of different 
deep learning elements to recognize linear BCEs. In addition, we have developed a 
user-friendly web application for linear BCEs prediction, which is freely available for 
all scientific researchers at: http://www.biolscience.cn/DeepLBCEPred/.

KEYWORDS

epitope, B-cell, CNN, LSTM, protein sequence

1. Introduction

B cells are a class of leukocytes that are subtypes of lymphocytes in the immune system (Murphy 
and Weaver, 2012). B cells respond to foreign antigens by producing B-cell receptors that bind to the 
antigen (Murphy and Weaver, 2012). The sites where an antigen binds to an antibody are called 
epitopes (also known as antigenic determinants), which are specific pieces of the antigen. According 
to the structure and interaction with antibodies, epitopes can be grouped into conformational and 
linear epitopes (Huang and Honda, 2006). Conformational epitopes consist of discontinuous amino 
acid residues, and linear epitopes comprise contiguous amino acid residues. Identification of B-cell 
epitopes (BCEs) is not only essential for understanding the mechanisms of antigen–antibody 
interactions but also for vaccine design and therapeutic antibody development (Sharon et al., 2014; 
Shirai et al., 2014).

In contrast to labor-intensive and costly experimental methods, computational identification 
is cheap and high-throughput (Peng et al., 2022; Shen et al., 2022; Tian et al., 2022). Over the past 
decades, no less than 10 computational methods for predicting BCEs have been created 
(El-Manzalawy et al., 2008a, 2017; Ansari and Raghava, 2010; El-Manzalawy and Honavar, 2010; 
Jespersen et al., 2017; Ras-Carmona et al., 2021; Sharma et al., 2021; Alghamdi et al., 2022). The 
sequence is the simplest manifestation of protein but is pivotal for structure and function formation, 
and thus, the sequence compositions were frequently employed as a factor to identify BCEs (Chen 
et al., 2007; Singh et al., 2013). The sequence composition included but was not limited to the 

OPEN ACCESS

EDITED BY

Lihong Peng,  
Hunan University of Technology, China

REVIEWED BY

Baoshan Ma,  
Dalian Maritime University,  
China
Lei Xu,  
Shenzhen Polytechnic,  
China

*CORRESPONDENCE

Guohua Huang  
 guohuahhn@163.com

SPECIALTY SECTION

This article was submitted to  
Systems Microbiology,  
a section of the journal  
Frontiers in Microbiology

RECEIVED 06 December 2022
ACCEPTED 17 January 2023
PUBLISHED 22 February 2023

CITATION

Qi Y, Zheng P and Huang G (2023) 
DeepLBCEPred: A Bi-LSTM and multi-scale 
CNN-based deep learning method for 
predicting linear B-cell epitopes.
Front. Microbiol. 14:1117027.
doi: 10.3389/fmicb.2023.1117027

COPYRIGHT

© 2023 Qi, Zheng and Huang. This is an open-
access article distributed under the terms of 
the Creative Commons Attribution License (CC 
BY). The use, distribution or reproduction in 
other forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in this 
journal is cited, in accordance with accepted 
academic practice. No use, distribution or 
reproduction is permitted which does not 
comply with these terms.

153

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2023.1117027﻿&domain=pdf&date_stamp=2023-02-22
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2023.1117027
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1117027/full
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1117027/full
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1117027/full
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1117027/full
http://www.biolscience.cn/DeepLBCEPred/
mailto:guohuahhn@163.com
https://doi.org/10.3389/fmicb.2023.1117027
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Qi et al. 10.3389/fmicb.2023.1117027

Frontiers in Microbiology 02 frontiersin.org

physico-chemical profile (Ansari and Raghava, 2010), amino acid pair 
propensities (Chen et al., 2007; Singh et al., 2013), the composition–
transition–distribution (CTD) profile (El-Manzalawy et al., 2008b), the 
tri-peptide similarity and propensity score (Yao et  al., 2012), and 
subsequence kernel (El-Manzalawy et  al., 2008a). The sequence 
composition might not represent all characteristics of the BCEs because 
it lacks position-related or order-related information. Other 
representations such as evolutionary features (Hasan et al., 2020) and 
structural features (Zhang et al., 2011) were explored as a determinant 
for identifying BCEs. There are three key factors responsible for the 
accuracy of identifying BCEs: the number and quality of BCEs served 
as training samples, representations, and learning algorithms. Jespersen 
et  al. (2017) used the BCEs derived from crystal structures as the 
training set to improve prediction accuracy. Informative representations 
for BCEs are highly desirable but are too difficult to achieve in practice. 
Exploring new representations or combining various existing 
representations are two inevitable selections. Hasan et  al. (2020) 
employed a non-parametric Wilcoxon rank-sum test to explore 
informative representations, while Chen et al. (2007) proposed a new 
amino acid pair antigenicity scale to represent BCEs. New 
representations are not always more informative than existing 
representations, and searching for an optimal combination of 
representations is both time-consuming and not always efficient. The 
learning algorithm is another factor to consider when developing 
methods for BCEs recognition, which plays equivalent roles with 
representations. The effectiveness of the learning algorithm might 
be  associated with representations, that is, algorithms are 
representation-specific. It is ideal to search for an optimal scheme 
between algorithms and representations to enhance predictive 
performance. For example, Manavalan et  al. (2018) explored six 
machine learning algorithms as well as appropriate representations and 
proposed an ensemble learning algorithm for linear BCEs recognition. 
Recently, deep learning is emerging as the next-generation artificial 
intelligence, exhibiting powerful learning ability. Deep learning has 
made a great breakthrough in areas such as image recognition 
(Krizhevsky et al., 2017) and mastering Go game as well as protein 
structure prediction (Silver et al., 2017; Cramer, 2021; Du et al., 2021; 
Jumper et al., 2021). To the best of our knowledge, there are more than 
three deep learning-based methods for predicting BCEs (Liu et al., 
2020; Collatz et al., 2021; Xu and Zhao, 2022). Liu et al. demonstrated 
remarkable superiority of deep learning over traditional machine 
learning methods by cross-validation. Collatz et al. (2021) proposed a 
bi-directional long short-term memory (Bi-LSTM)-based deep learning 
method (called EpiDope) to identify linear BCEs. The EpiDope showed 
better performance in empirical experiments. Inspired by this, 
we improved EpiDope by adding a multi-scale convolutional neural 
networks (CNNs) to promote representation.

2. Dataset

We utilized the same benchmark datasets as BCEPS 
(Ras-Carmona et al., 2021) to evaluate and compare our proposed 
method with state-of-the-art methods. These datasets were initially 
extracted from the Immune Epitope Database (IEDB) (Vita et al., 
2015, 2019), a repository of experimentally validated B- and T-cell 
epitopes (Vita et al., 2010). Ras-Carmona et al. (2021) constructed a 
nonredundant dataset BCETD555 as the training set, which includes 

555 sequences of BCEs and 555 sequences without BCEs. The BCEs 
in BCETD555 consisted of linearized conformational B-cell epitopes 
(Ras-Carmona et al., 2021), obtained from the tertiary structure of 
the antigen–antibody complexes (Ras-Carmona et  al., 2021). 
Ras-Carmona et al. (2021) used CD-HIT (Li and Godzik, 2006) to 
reduce sequence redundancy by deleting epitope sequences with more 
than 80% homology. Two independent testing sets were downloaded 
directly from https://www.mdpi.com/article/10.3390/cells10102744/
s1 (Ras-Carmona et  al., 2021): one set is the ILED2195 dataset 
containing 2,195 sequences of linear BCEs and 2,195 sequences of 
non-BCEs and another set is the IDED1246 dataset containing 1,246 
sequences of BCEs and 1,246 sequences of non-BCEs. The ILED2195 
dataset and the IDED1246 dataset were retrieved from the experimental 
B-cell epitope sequences retrieved from the IEDB database (Vita et al., 
2015, 2019). All non-BCE sequences were extracted randomly from 
the same antigens as the BCEs.

3. Method

Figure 1 showed the schematic diagram of the proposed method 
DeepLBCEPred, which mainly consists of input, quantitative coding, 
embedding, feature extraction, and classification. Inputs are protein 
primary sequences that comprise 20 amino acid characters. For any 
sequences of less than a given length, we added the corresponding 
number of special characters ‘X’ at the end of it. Inputs were 
21-character text sequences. The character sequence must 
be converted into an integer sequence by quantization coding using 
a conversion table (Table  1) so that the integer sequence can 
be  embedded in a continuous vector using an embedding layer. 
Feature extraction includes two paralleling parts, one consisting 
mainly of the Bi-LSTM (Schuster and Paliwal, 1997) layer followed by 
a feed-forward attention layer (Raffel and Ellis, 2015) and another 
comprising multi-scale CNNs. Bi-LSTM (Schuster and Paliwal, 1997) 
was intended to extract the contextual semantics of the sequences, 
while the feed-forward attention (Raffel and Ellis, 2015) was intended 
to promote the semantic representation of protein sequences. CNNs 
at different scales reflect the representation of protein sequences at 
different scales. We used three different scale CNNs for extracting 
multi-scale features of sequences. The classification includes three 
fully connected layers, where the first has 64 neurons, the second has 
nine neurons, and the third has one neuron, which represents the 
probabilities of predicting inputs as BCEs.

3.1. Bi-LSTM

Long short-term memory (LSTM) (Hochreiter and Schmidhuber, 
1997) is a specific type of recurrent neural network (RNN). Long short-
term memory is capable of learning semantic relationships between 
long-distance words (Hochreiter and Schmidhuber, 1997). LSTM acts 
as a conveyor belt since it runs directly along the entire chain with only 
a few linear interactions (Hochreiter and Schmidhuber, 1997). At the 
heart of the LSTM is the cell state, which allows information to flow 
selectively by gate mechanisms (Hochreiter and Schmidhuber, 1997). 
There are three common gates: forget gate, input gate, and output gate. 
The forget gate is to determine how much information flows into the 
next cell state. The forget gate uses a sigmoid function to map the hidden 
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state and input variables into a number between 0 and 1. While 1 
represents all information to pass completely, 0 indicates that no 
information is passing through. The question of how much information 
is added to the state cell is determined jointly by the input gate and the 
candidate cell state. The hidden state is updated jointly by the cell state 
and the output gate. To capture bidirectional dependency between 
words, we  used Bi-LSTM (Schuster and Paliwal, 1997) to refine 
the semantics.

3.2. Feed-forward attention

Attention mechanisms have received increasing attention from the 
deep learning community due to better interpretability. Over the past 
5 years, many attention mechanisms have been proposed to facilitate the 
interpretation of representations, such as well-known self-attention 
(Vaswani et al., 2017), feed-forward attention (Raffel and Ellis, 2015), 
external attention (Guo et al., 2022), and double attention (Chen et al., 
2018). The attention mechanism is a scheme for assigning weights to 
different parts. Here, we employed feed-forward attention (Raffel and 
Ellis, 2015) for improving semantic representation. The attention weight 
was computed by
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where e a ht t� � � . ht  denoted the hidden state at the time step t in 
the Bi-LSTM and a  was the learnable parameter. The output was 
computed by
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3.3. Multi-scale CNNs

CNNs are one of the most popular machine learning algorithms and 
thus have extensively been applied for image recognition. CNNs are 
mainly comprised of two elements: a convolutional layer and a pooling 
layer. At the heart of the CNNs is convolutional operation, which is to 
multiply the convolutional kernel by the receptive field in an element-
wise manner and then sum them up. The convolution operation is 
accompanied by the activation function that produces a non-linear 
transformation. The activation function is associated with the efficiency 
and effectiveness of CNNs to a certain extent, and thus, selecting the 
appropriate activation function is critical to promote the performance 
of CNN. The commonly used activation function includes sigmoid, 
tanh, and rectified linear unit (ReLu). The convolutional kernel slides 
along the input to convolve with the receptive field to generate different 
feature maps. The convolutional kernel is shared by all the receptive 
fields in the same input and is the learnable parameter. The size of the 
convolutional kernel determines the different-scale characterization of 
the input. The larger size convolutional kernel reflects the global 
information, and the smaller size convolutional kernel discovers the 
local structure. To capture multi-scale characterization, we used multi-
scale CNNs. The pooling layer is a sub-sampling operation, which 
reduces the dimensionality of the representation and thus speeds up the 
calculation. The pooling includes max, average, overlapping, and spatial 

FIGURE 1

Schematic diagram of DeepLBCEPred.

TABLE 1 Conversion between amino acid and integer.

X A C D E F G H I K L M N P Q R S T V W Y

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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pyramid pooling (Wang et al., 2012; He et al., 2015; Khan et al., 2020). 
The dropout layer is used to randomly drop out some connections with 
a given probability to reduce computation and avoid overfitting (Hinton 
et al., 2012).

3.4. Fully connected layer

The fully connected layer is similar to the hidden layer in the 
multilayer perceptron where each neuron is linked to all the neurons 
in the previous layer. The outputs of the attention layer and the CNNs 
are of more than one dimension and, therefore, must be converted into 
one dimension to link to the fully connected layer. We  used the 
flattened layer to bridge the fully connected layers and the non-fully 
connected layers. The flattened layers do not have any learnable 
parameters, and its actual task is to transform the shape of the data. 
We used three fully-connected layers. The first fully connected layer 
contains 64 neurons, the second contains 9 neurons, and the third 
contains only 1 neuron, which represents the probabilities of identifying 
inputs as BCEs.

4. Metrics

This is a binary classification question. The commonly used 
evaluation indices, namely, sensitivity (Sn), specificity (Sp), 
accuracy (ACC), and Matthews correlation coefficient (MCC), were 
employed to assess performance. Sn, Sp, ACC, and MCC were 
defined as follows:
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where TP stands for the number of correctly predicted BCEs, TN 
stands for the number of correctly predicted non-BCEs, FP stands for 
the number of the non-BCEs, which were in reality non-BCEs but were 
erroneously predicted as BCEs, and FN stands for the number of the 
BCEs, which were in reality BCEs but were erroneously predicted as 
non-BCEs. Sn, Sp, and ACC lie between 0 and 1. The more the value is, 
the better performance there is. MCC considers not only TP and TN but 
also FP and FN and thus is generally viewed as a better measure for 
imbalanced datasets. MCC ranges from −1 to 1. An MCC of 1 implies 
perfect prediction, 0 implies random prediction, and − 1 implies 
inverse prediction.

5. Results

Protein sequences of BCEs are of variable length, which is not 
favorable for subsequent sequence embedding. Therefore, we had to 
standardize the length of all BCEs sequences. The maximum length of 
BCEs sequences is 25, the average length is 16, and the minimum length 
is 11. We used 20% of the training BCEs in the training set to validate 
the effect of sequence length on the predictive performance. As listed in 
Table 2, the maximum length reached the best performance, followed 
by the average length and then the minimum length. Therefore, 
we uniformed all the sequences into a fixed length of 25.

Different scales reflect different scale characterization of the 
sequences. In this study, we used multi-scale CNNs. The combination of 
multi-scale CNNs is an optimal issue. To date, there is no scientific 
theory on how to effectively combine CNNs of different scales. In most 
cases, it relies on experience, especially experimental performances, to 
make choice. We investigated the effects of different scale combinations 
on the proposed method. The size of each scale ranged from 7 to 15 with 
a step size of 2. We used holdout to examine the performance. In the 
holdout, 80% was used to train the DeepLBCEPred and the remaining 
20% was used to test the trained DeepLBCEPred, and the performance 
is presented in Table 3. When three scales of CNNs were set to 11, 13, 
and 15, respectively, the DeepLBCEPred reached the best ACC and the 
best MCC. Therefore, we set three scales to 11, 13, and 15, respectively.

6. Discussion

6.1. Comparison with existing models

As mentioned previously, many computational methods, including 
BepiPred (Larsen et al., 2006; Jespersen et al., 2017), LBtope (Singh et al., 
2013), IBCE-EL (Manavalan et al., 2018), LBCEPred (Alghamdi et al., 
2022), and BCEPS (Ras-Carmona et al., 2021), have been developed for 
BCEs prediction over the recent decades. We extensively compared the 
DeepLBCEPred with those methods by conducting 10-fold cross-
validation on the BCETD555 and independent tests on both ILED2195 and 
IDED1246. The 10-fold cross-validation divides BCETD555 into 10 parts 
in equivalent or approximately equivalent size, with one part used to test 
the trained DeepLBCEPred by the other nine parts. The process is 
repeated 10 times. When this process is over, each sample is used only 
one time for testing the model and nine times for training the model. 
The independent test is to use ILED2195 or IDED1246 to test the 
DeepLBCEPred trained by BCETD555. Table 4 lists their performance 
comparisons in 10-fold cross-validation. Compared to BCEPS, 
DeepLBCEPred increased ACC by 0.02, Sn by 0.05, and MCC by 0.03.

We compared DeepLBCEPred with five state-of-the-art algorithms 
by independent tests: BepiPred (Larsen et al., 2006; Jespersen et al., 
2017), LBtope (Singh et al., 2013), LBCEPred (Alghamdi et al., 2022), 
IBCE-EL (Manavalan et al., 2018), and BCEPS (Ras-Carmona et al., 

TABLE 2 Performance over the various sequence length.

Sequence 
length

Sn Sp ACC MCC

11(minimum) 0.64 0.78 0.70 0.42

16(average) 0.74 0.73 0.73 0.47

25(Maximum) 0.80 0.74 0.77 0.54
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2021). The LBCEPred is a newly developed method for predicting linear 
BCEs (Alghamdi et al., 2022). We uploaded two independent datasets 
to the LBCEPred webserver which are available at http://lbcepred.
pythonanywhere.com/pred for prediction. All the predictive 
performances are listed in Tables 5 and 6. The DeepLBCEPred obtained 
a distinct superiority in ACC as well as MCC over BepiPred (Larsen 
et al., 2006; Jespersen et al., 2017), LBtope (Singh et al., 2013), LBCEPred 
(Alghamdi et al., 2022), and IBCE-EL (Manavalan et al., 2018). On the 
ILED2195 independent dataset, the DeepLBCEPred exceeded the 
IBCE-EL by 0.16 of ACC as well as 0.33 of MCC, the LBtope by 0.17 of 
ACC as well as 0.35 of MCC, the BepiPred by 0.31 of ACC as well as 0.63 
of MCC, and the LBCEPred by 0.15 of ACC as well as 0.31 of MCC. On 
the IDED1246 independent dataset, the DeepLBCEPred exceeded the 
IBCE-EL by 0.14 of ACC as well as 0.26 of MCC, the LBtope by 0.10 of 
ACC as well as 0.21 of MCC, the BepiPred by 0.19 of ACC as well as 0.39 
of MCC, and the LBCEPred by 0.15 of ACC as well as 0.29 of 
MCC. Compared with the BCEPS (Ras-Carmona et  al., 2021), the 
DeepLBCEPred still has a slight advantage in ACC as well as MCC. The 

DeepLBCEPred increased ACC by 0.04 and MCC by 0.08 over the 
ILED2195, and MCC by 0.01 over the IDED1246.

6.2. Ablation experiments

Over the past decades, many basic structural units such as CNN, 
LSTM (Hochreiter and Schmidhuber, 1997), and self-attention (Vaswani 
et al., 2017) have been developed for deeper neural networks. Different 
units play different roles in characterizing studied objects. For instance, 
the CNN does well in refining local structure and Bi-LSTM (Schuster 
and Paliwal, 1997) in capturing long-distance dependency between 
words, while the self-attention emphasizes the key relationship of words. 
We investigated the contribution of a single individual to predicting 
BCEs by removing the corresponding part from the DeepLBCEPred. 
For the investigation, we performed independent tests after, respectively, 
removing (a) Bi-LSTM; (b) scale 1 in multi-scale CNNs; (c) scale 1 and 
scale 2 in multi-scale CNNs; (d) multi-scale CNNs; and (e) attention 
mechanism. As shown in Tables 7 and 8, the removal of these parts leads 
the performance to decrease. Deleting Bi-LSTM causes Sp to 
significantly reduce.

TABLE 3 Performance of different scale combinations.

Scale 1 Scale 2 Scale 3 Sn Sp ACC MCC

7 9 11 0.79 0.58 0.69 0.38

7 9 13 0.61 0.84 0.72 0.46

7 9 15 0.86 0.55 0.72 0.43

7 11 13 0.70 0.81 0.75 0.50

7 11 15 0.75 0.68 0.72 0.43

7 13 15 0.63 0.80 0.71 0.43

9 11 13 0.72 0.81 0.76 0.53

9 11 15 0.71 0.70 0.70 0.40

9 13 15 0.78 0.73 0.76 0.51

11 13 15 0.80 0.74 0.77 0.54

TABLE 4 Ten-fold cross-validation results of DeepLBCEPred.

Ten-fold 
cross-
validation

Sn Sp ACC MCC

1 0.82 0.71 0.77 0.54

2 0.75 0.73 0.74 0.48

3 0.73 0.79 0.76 0.51

4 0.85 0.70 0.77 0.56

5 0.69 0.82 0.76 0.52

6 0.88 0.62 0.75 0.51

7 0.77 0.82 0.79 0.59

8 0.75 0.80 0.77 0.55

9 0.70 0.82 0.76 0.52

10 0.86 0.73 0.79 0.59

Ten-fold cross-

validation (Mean)

0.78 0.75 0.77 0.54

BCEPS (Ras-

Carmona et al., 

2021)

0.73 0.78 0.75 0.51

TABLE 5 Comparison with existing models on the ILED2195 independent 
dataset.

Model Sn Sp ACC MCC

IBCE-EL (Manavalan 

et al., 2018)

0.64 0.33 0.48 −0.04

LBtope (Singh et al., 

2013)

0.36 0.58 0.47 −0.06

BepiPred (Jespersen 

et al., 2017)

0.24 0.43 0.33 −0.34

LBCEPred (Alghamdi 

et al., 2022)

0.74 0.24 0.49 −0.02

BCEPS (Ras-

Carmona et al., 2021)

0.50 0.71 0.60 0.21

DeepLBCEPred 0.56 0.73 0.64 0.29

TABLE 6 Comparison with existing models on the IDED1246 independent 
dataset.

Model Sn Sp ACC MCC

IBCE-EL (Manavalan 

et al., 2018)

0.86 0.20 0.53 0.09

LBtope (Singh et al., 

2013)

0.40 0.74 0.57 0.14

BepiPred (Jespersen 

et al., 2017)

0.42 0.52 0.48 −0.04

LBCEPred (Alghamdi 

et al., 2022)

0.79 0.26 0.52 0.06

BCEPS (Ras-

Carmona et al., 2021)

0.63 0.71 0.67 0.34

DeepLBCEPred 0.60 0.75 0.67 0.35
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FIGURE 2

t-SNE visualization of outputs of (A) the embedding layer, (B) the Bi-LSTM layer, (C) the attention layer, (D) the multi-scale CNNs, and (E) overall 
combination.

TABLE 8 Comparison of five ablation experiments on the IDED1246 
independent dataset.

Ablation 
experiments

Sn Sp ACC MCC

delete Bi-LSTM 0.79 0.55 0.67 0.35

delete scale 1 0.62 0.70 0.66 0.31

delete scale 1_2 0.66 0.70 0.68 0.36

delete Multi-scale CNN 0.61 0.73 0.67 0.35

delete Attention 

mechanism

0.68 0.66 0.67 0.35

DeepLBCEPred 0.60 0.75 0.67 0.35

6.3. t-distributed stochastic neighbor 
embedding (t-SNE) visualization

We investigated the discriminative power of the representation 
captured by different layers in the DeepLBCEPred. We used the t-SNE 
(Van der Maaten and Hinton, 2008) to plot a scattering diagram of the 
first two components in the ILED2195 dataset. The initial embedding was 
highly indistinguishable. The representations output by multi-scale 
CNNs and Bi-LSTM were significantly distinguishable. The feed-
forward attention improved representations to a tiny extent. The overall 
combined representations promoted discriminative ability, 
demonstrating the ability to distinguish between BCEs and non-BCEs 
from a representational perspective (Figure 2).

6.4. Deep learning community due to better 
interpretability web server

To help researchers use DeepLBCEPred more easily, we have exploited 
a user-friendly web server, which is available at: http://www.biolscience.cn/
DeepLBCEPred/. As shown in Figure 3, after the user writes a sequence in 
the text box or uploads a sequence file and clicks “Submit,” the page will 
display the final prediction result. It is worth noting that only the sequence 
in FASTA format is allowed, and the input sequence must consist of the 
characters in “ACDEFGHIKLMNPQRSTVWY.” Otherwise, it will prompt 
Format Error. To clear the contents of the text box, click “Clear.” Click 
“Example” to see a sample. The dataset used in this study can 
be downloaded from the bottom left corner of the page.

TABLE 7 Comparison of five ablation experiments on the ILED2195 
independent dataset.

Ablation 
experiments

Sn Sp ACC MCC

delete Bi-LSTM 0.69 0.53 0.61 0.22

delete scale 1 0.56 0.70 0.63 0.26

delete scale 1_2 0.53 0.68 0.60 0.21

delete Multi-scale CNN 0.45 0.71 0.58 0.17

delete Attention 

mechanism

0.55 0.66 0.60 0.21

DeepLBCEPred 0.56 0.73 0.64 0.29
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7. Conclusion

B-cell epitopes play critical roles in antigen–antibody interactions 
and vaccine design. Identification of BCEs is a key foundation for 
understanding BCEs functions. In the article, we developed a deep 
learning-based method DeepLBCEPred to predict linear BCEs. The 
DeepLBCEPred is an end-to-end method that takes protein sequence 
as input and directly outputs decisions about BCEs. On the 
benchmark datasets, DeepLBCEPred reached state-of-the-art 
performance and was implemented as a user-friendly web server for 
ease of use.
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To date, COVID-19 remains a serious global public health problem. Vaccination 
against SARS-CoV-2 has been adopted by many countries as an effective coping 
strategy. The strength of the body’s immune response in the face of viral infection 
correlates with the number of vaccinations and the duration of vaccination. In 
this study, we aimed to identify specific genes that may trigger and control the 
immune response to COVID-19 under different vaccination scenarios. A machine 
learning-based approach was designed to analyze the blood transcriptomes of 
161 individuals who were classified into six groups according to the dose and 
timing of inoculations, including I-D0, I-D2-4, I-D7 (day 0, days 2–4, and day 7 
after the first dose of ChAdOx1, respectively) and II-D0, II-D1-4, II-D7-10 (day 
0, days 1–4, and days 7–10 after the second dose of BNT162b2, respectively). 
Each sample was represented by the expression levels of 26,364 genes. The 
first dose was ChAdOx1, whereas the second dose was mainly BNT162b2 (Only 
four individuals received a second dose of ChAdOx1). The groups were deemed 
as labels and genes were considered as features. Several machine learning 
algorithms were employed to analyze such classification problem. In detail, five 
feature ranking algorithms (Lasso, LightGBM, MCFS, mRMR, and PFI) were first 
applied to evaluate the importance of each gene feature, resulting in five feature 
lists. Then, the lists were put into incremental feature selection method with four 
classification algorithms to extract essential genes, classification rules and build 
optimal classifiers. The essential genes, namely, NRF2, RPRD1B, NEU3, SMC5, and 
TPX2, have been previously associated with immune response. This study also 
summarized expression rules that describe different vaccination scenarios to help 
determine the molecular mechanism of vaccine-induced antiviral immunity.
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1. Introduction

Coronavirus disease-19 (COVID-19) is a pandemic infectious 
disease that is currently affecting many people in approximately 200 
countries around the world. It is caused by acute respiratory syndrome 
coronavirus-2 (SARS-CoV-2), a highly pathogenic coronavirus that 
belongs to the subfamily Coronaviridae. The SARS-CoV-2 genome 
contains a variety of structural and nonstructural proteins. The rapid 
rate at which the virus mutates and spreads has created enormous 
challenges for prevention and control efforts. Currently, vaccination 
against SARS-CoV-2 is accepted as an effective strategy against 
COVID-19 (Folegatti et al., 2020; Amano et al., 2022), with two or 
more doses giving better protection than one dose alone. The risk of 
death from COVID-19 varies widely in different countries and may 
be  related to factors such as vaccination rate and number of 
vaccinations (Masic et al., 2020).

When the body receives the first dose of the COVID-19 vaccine 
(basic immunization injection), it recognizes viral-specific antigens 
and produces antibodies and memory cells against SARS-CoV-2. 
However, the amount of antibodies produced by the primary immune 
response is much lower than the level required to resist viral invasion. 
Early clinical trials showed that with just one dose (initial exposure), 
the body’s resistance to SARS-CoV-2 is very low at about 50%. 
Therefore, a second vaccine dose and a booster shot have been 
recommended after a period of time (3–4 weeks). When exposed to 
the same antigen twice, the memory cells that have been generated in 
the human body respond rapidly, producing sufficient antibodies and 
a strong secondary immune response. Therefore, two doses of 
vaccination are more effective for protection. The ChAdOx1 nCoV-19 
(AZD1222) vaccine is constructed from a replication-defective simian 
adenovirus vector encoding the spike (S) protein of SARS-CoV-2. 
Clinical trials have shown that the ChAdOx1 vaccine is 74% protective 
against symptomatic COVID-19 (Cross et  al., 2003). Meanwhile, 
BNT162b2, also known as the Pfizer-BioNTech COVID-19 vaccine, 
is a messenger RNA (mRNA) vaccine that has been approved by the 
US FDA for the prevention of COVID-19 caused by the SARS-CoV-2 
Beta coronavirus. A heterologous ChAdOx1-S-nCoV-19 and 
BNT162b2 vaccination combination provides better protection 
against severe SARS-CoV-2 infection in a real-world observational 
study (n = 13,121). Studies have shown that T-cell responses following 
ChAdOx1 vaccination were higher than those elicited by BNT162b2. 
Meanwhile, T-cell responses elicited by BNT162b2 booster doses were 
enhanced in different vaccination strategies. Both homologous and 
heterologous vaccinations were able to induce progressively increased 
frequencies of CD4 and CD8 T cells. However, the heterologous 
combination elicited stronger CD4 T-cell responses; CD8 T-cell 
responses were also progressively stronger after the booster dose 
(Pozzetto et al., 2021). The tolerability and safety profile of BNT162b2 
at 30 μg administered as a 2-dose regimen are favorable. In participants 
who received only one ChAdOx1 dose, antibodies against the SARS-
CoV-2 spike protein peaked at day 28 (median 157 ELISA units [EU]); 
on day 56, the median was 119 EU. Among participants who received 
the booster dose, the median antibody at day 56 was 639 EU (Folegatti 
et al., 2020). Studies have demonstrated the efficacy of a two-dose 
regimen of the BNT162b2 vaccine (Mizrahi et al., 2021).

An increasing number of studies have confirmed that high-
throughput sequencing data information can provide important 
guidance for revealing the pathogenic mechanism of diseases and 

tackling various medical problems (Dai et al., 2018; Kong et al., 2020; 
Yang et al., 2020, 2022). Our team has long been working on using 
machine learning analysis methods to screen for disease-related 
signatures and explain their pathogenic mechanisms. We divided the 
data on 161 people vaccinated against COVID-19 into six groups 
according to the injection and vaccination time, aiming to further 
explore changes in blood gene expression after different doses, 
especially the molecular characteristics of antiviral immunity. A 
variety of algorithms were used to analyze gene expression information 
on vaccines from different vaccinations. The algorithms included 
feature ranking algorithms, such as least absolute shrinkage and 
selection operator (Lasso) (Tibshirani, 2011), light gradient-boosting 
machine (LightGBM) (Ke et al., 2017), Monte Carlo feature selection 
(MCFS) (Dramiński et al., 2007), max-relevance and min-redundancy 
(mRMR) (Peng et al., 2005), and permutation feature importance 
(PFI) (Fisher et al., 2019), as well as classification algorithms, such as 
decision tree (DT) (Safavian and Landgrebe, 1991), random forest 
(RF) (Breiman, 2001), K-nearest neighbor (KNN) (Cover and Hart, 
1967), and support vector machine (SVM) (Cortes and Vapnik, 1995). 
Based on feature ranking algorithms, gene feature lists were obtained, 
which were subjected to incremental feature selection (IFS) method 
(Liu and Setiono, 1998), incorporating four classification algorithms, 
for extracting essential genes, classification rules, and build optimal 
classifiers. This study revealed that blood gene expression changed 
after the initial immunization and booster vaccination. A number of 
important genes (e.g., NRF2, RPRD1B, NEU3, SMC5, and TPX2) may 
be closely related to the antiviral immunity induced by vaccines. These 
findings are helpful for understanding the importance of vaccination 
and boosting injections by revealing the effects of different injections 
on the expression of immune-related molecules in the host and by 
providing a reference for viral immune intervention strategies for 
COVID-19.

2. Materials and methods

The workflow of the machine learning framework is shown in 
Figure  1. The samples were grouped according to the number of 
inoculations and inoculation time. The genes were subsequently 
ranked using five methods and further processed by IFS method with 
four classification algorithms. By observing the performance of the 
classifiers, a number of key genes and summarized quantitative 
classification rules were identified. Last, the key genes were 
functionally enriched to determine the biological processes involved 
in their action. The methods used are described in detail in this section.

2.1. Data

Blood transcriptome data from 161 individuals were obtained from 
the GEO database under the registration number GSE201533 (Lee 
et al., 2022a). We divided the vaccinees into two groups: I for the first 
COVID-19 vaccination dose and II for the second dose. For the first 
group, three subsets were included: I-D0, I-D2-4, and I-D7, meaning 
day 0, days 2–4, and day 7 after the first dose of ChAdOx1, respectively. 
There were also three subsets in the second group, say II-D0, II-D1-4, 
II-D7-10, meaning the day 0, days 1–4, and days 7–10 after the second 
dose of BNT162b2, respectively. Four of the vaccinees received a second 
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dose of ChAdOx1. Table 1 shows the number of samples in each subset. 
Each sample was represented by 26,364 gene expression levels, which 
were deemed as features in this study. The six subsets (I-D0, I-D2-4, 
I-D7, II-D0, II-D1-4, and II-D7-10) were termed as labels. The current 
study was conducted by deeply investigating such classification problem.

2.2. Feature ranking algorithms

Lots of features were used to represent each sample. Evidently, 
some were important and others were useless. It was necessary to 

extract important features. To date, several feature analysis 
methods have been proposed, which can evaluate the importance 
of features. The selection of such method is a challenge problem 
as each method has its own merits and defects. Generally, one 
method can only output a part of essential features. Thus, it was 
beneficial to employ multiple methods, thereby providing a more 
complete picture on essential features. Here, five algorithms, 
namely, Lasso (Tibshirani, 2011), LightGBM (Ke et al., 2017), 
MCFS (Dramiński et al., 2007), mRMR (Peng et al., 2005), and 
PFI (Fisher et al., 2019), were employed to rank genes according 
to their importance. These algorithms have been frequently 
applied to solve many life science problems (Zhao et al., 2018; 
Ren et al., 2022; Li et al., 2022a,b,c; Huang et al., 2023a,b).

2.2.1. Least absolute shrinkage and selection 
operator

Based on the nonnegative garrote proposed by Breiman (1995), 
Robert Tibshirani first proposed the Lasso algorithm in 1996 
(Tibshirani, 2011). The algorithm proposes a first-order penalty 
function containing regularized formulas, where each feature is 
regarded as an independent variable in the function. The coefficients 
of the features are then obtained by solving the optimization function. 
The absolute value of a coefficient indicates the degree of correlation 
of each feature to the target dependent variable. To achieve data 
compression and reduce overfitting, the algorithm regularizes the 
coefficients of some variables while setting some to zero to eliminate 
the features that tend to contribute less to the follow-up prediction. 
Accordingly, the algorithm can rank features according to the absolute 
values of their coefficients. In present study, the Lasso program in 
Scikit-learn (Pedregosa et al., 2011) was adopted, which was executed 
using default parameters.

2.2.2. Light gradient-boosting machine
LightGBM (Ke et al., 2017) is based on the gradient-boosting 

decision tree framework and introduces gradient one-sided sampling, 
exclusive feature bundling, histogram algorithm, and leaf-wise growth 
strategy. It enables data slicing, bundling, and dimensionality 
reduction and ultimately reduces computational cost while improving 
prediction accuracy. The importance of each feature is determined by 
the number of trees that the feature participates in building: the higher 
the participation, the higher the importance. Thus, features can 
be ranked in a list with decreasing order of this number. The current 
study used the LightGBM program obtained from.1 For convenience, 
it was performed using default parameters.

2.2.3. Monte Carlo feature selection
Monte Carlo feature selection was originally developed by 

Dramiński et al. (2007). The algorithm selects some features randomly 
and repeatedly to obtain p feature subsets. Each feature subset is then 
divided into a training set and a test set t  times, and t  trees are 
constructed. Thus, p × t trees are obtained. The importance of features 
can be evaluated by their contributions to building these trees and is 
defined as the relative importance (RI) score, which is calculated 
as follows:

1 https://lightgbm.readthedocs.io/en/latest/

FIGURE 1

Flow chart of the entire analysis process. The blood transcriptome 
data of 161 vaccinees with different COVID-19 vaccination was 
investigated. Each vaccinee was represented by 26,364 gene 
expression levels. Five feature ranking algorithms (Lasso, LightGBM, 
MCFS, mRMR, and PFI) were used to rank gene features according to 
their importance. Subsequently, these lists were fed into incremental 
feature selection method, which contained four classification 
algorithms, to extract essential genes, classification rules, and build 
optimal classifiers.
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where CCAω  is the weighted precision of the tree τ  under 
consideration, ( )ng τ  is a node of the tree whose information gain is 
denoted as ( )( )IG ng τ , and ( ) ( ). .no in ng no inτ τ  denotes the 
sample size of ( ) ( )ng τ τ . u  and v  are two positive numbers 
weighting the CCAω  and the ratio ( ). / .no in ng no inτ τ , respectively. 
To execute MCFS, we  downloaded its program from.2 Default 
parameters were used.

2.2.4. Max-relevance and Min-redundancy
The mRMR method was proposed by Peng et al. (2005) in 

2005. It screens features based on their correlation with the target 
variable and the redundancy between features. The correlation 
and redundancy can be calculated from the mutual information 
between features or target variables. The tradeoff of correlation 
and redundancy is used to evaluate the importance of features. 
At each round, one feature with the maximum correlation to 
target variables and minimum redundancy to features in the 
current list is selected and appended to the current list. Here, 
we used the mRMR program sourced from.3 It was executed with 
default parameters.

2.2.5. Permutation feature importance
The PFI for RFs was first introduced in 2001 by Breiman (2001) 

and was later extended to any fitted estimator for features by Fisher 
et al. (2019). The idea is relatively simple. If a feature is important, the 
prediction error will further increase after the feature’s values are 
shuffled. If a feature is not important, shuffling its values does not 
increase the prediction error. The PFI program used in this study was 
retrieved from scikit-learn (Pedregosa et  al., 2011), which was 
executed with default parameters.

Above five algorithms were applied to the blood transcriptome 
data one by one. Each algorithm produced one feature list. For easy 
descriptions, the generated lists were called Lasso, LightGBM, MCFS, 
mRMR and PFI feature lists.

2 http://www.ipipan.eu/staff/m.draminski/mcfs.html

3 http://home.penglab.com/proj/mRMR/

2.3. Incremental feature selection

When the feature list contains an excessive number of features, it 
is not suitable for direct use in building prediction models. In this 
study, the IFS (Liu and Setiono, 1998) method was used to extract the 
best subset of features. From the feature list, a series of feature subsets 
can be constructed. Each subset includes 10 more features than the 
previous subset in the order of the list. These feature subsets were then 
fed to one classification algorithm to build the classifier. The 
performance of these classifiers was evaluated by 10-fold cross-
validation. Lastly, the best classifier can be  obtained, which was 
termed as the optimal classifier. The feature subset for constructing 
this classifier was called the optimal feature subset.

2.4. Synthetic minority oversampling 
technique

According to Table  1, some classes (e.g., I-D0) contained 
much more samples than other classes (e.g., II-D7-10). The 
dataset was imbalanced. The results of the classifier would have 
preferences for the majority class when the number of samples 
from different categories differs significantly. This study used 
synthetic minority oversampling technique (SMOTE) (Chawla 
et al., 2002) to balance the dataset. For each class with a small 
number of samples, a sample is random chosen. Then its k nearest 
neighbors in the same class are identified by Euclidean distance. 
A neighbor is randomly selected. A new sample is then randomly 
generated by linearly interpolating the randomly chosen sample 
and the selected nearest neighbor. New samples are continuously 
generated until such class contains samples as many as those in 
the largest class. The SMOTE package reported in4 was used in 
this study. Default settings were adopted.

2.5. Classification algorithms for building 
classifiers

Four classification algorithms were used in the IFS approach. Key 
genes were then screened based on the performance of the 
constructed classifiers.

4 https://github.com/scikit-learn-contrib/imbalanced-learn

TABLE 1 Sample sizes of six vaccination status.

Index Vaccination status Sample size

1 I-D0 (Day 0 after the first dose) 37

2 I-D2-4 (Day2 2–4 after the first dose) 36

3 I-D7 (Day 7 after the first dose) 37

4 II-D0 (Day 0 after the second dose) 17

5 II-D1-4 (Days 1–4 after the second dose) 18

6 II-D7-10 (Days 7–10 after the second dose) 16
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2.5.1. Decision tree
The DT algorithm (Safavian and Landgrebe, 1991) constructs a 

tree-like structure in which instances are judged in each internal node 
of the tree. Starting from the root node, all samples are assigned to 
different classes through continuous judgments. Each tree branch 
contains clues to the classification of instances and thus provides 
interpretable classification rules that underlie the understanding of 
biological mechanisms. In this study, we used the CART classification 
tree algorithm with node ranking using the Gini coefficient.

2.5.2. Random forest
In the RF algorithm for classification, a judgment is 

completed by constructing DTs based on different training sets 
and then combining their results to make predictions (Breiman, 
2001; Wang et al., 2021; Ran et al., 2022; Tang and Chen, 2022; 
Wu and Chen, 2023). The training set with the same number of 
samples in the input dataset is repeatedly sampled to generate 
numerous new training sets. Each new training set is then used 
to build a new DT, and an ensemble of DTs is constructed. Given 
a new instance, each DT makes a prediction. Predictions taken 
from all DTs are combined to reach a final decision.

2.5.3. K-nearest neighbor
In KNN (Cover and Hart, 1967), new samples are predicted by 

comparing each with samples with known labels (training samples) 
and determining the k-nearest neighbors. Subsequently, the class of a 
new sample is determined by voting according to the classes of the 
k-nearest neighbors. In this study, the distance was defined as the 
Minkowski distance.

2.5.4. Support vector machine
The SVM algorithm (Cortes and Vapnik, 1995; Wang and Chen, 

2022; Wang and Chen, 2023) utilizes a kernel function that maps the 
attributes of the instances, i.e., the feature vectors, into a higher-
dimensional space and attempts to find a separating hyperplane. This 
hyperplane partitions the instances by class and ensures that the 
margin between the two categories is maximum. This method is 
generally to have good generalization.

We adopted public packages in scikit-learn (Pedregosa et  al., 
2011) to implement above four classification algorithms. All packages 
were performed using default parameters.

2.6. Performance evaluation

In the multi-class classification problem, weighted F1 is an 
important measurement to evaluate the performance of the classifier. 
It is obtained by calculating and integrating the F1-measure values of 
different classes based on the proportion of the samples in each class. 
It is known that F1-measure is an integrated measurement combining 
precision and recall, which can be computed by
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where i represents the index of class, TP  represents true positive, 
FP  represents false positive, and FN  represents false negative. Then, 
weighted F1 can be calculated by
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where L  represents the number of classes and wi  represents the 
proportion of samples in the i-th class to overall samples. Here, 
weighted F1 was selected as the major measurement.

In addition, overall accuracy (ACC) and Matthew correlation 
coefficient (MCC) (Matthews, 1975) are also widely used to assess 
the quality of classifiers. ACC is defined as the proportion of 
correctly predicted samples to all samples. MCC is a balanced 
measurement, which is more objective than ACC when the dataset 
is imbalanced. For the calculation of MCC, two matrices X and Y 
must be constructed first, which store the one-hot representation of 
true and predicted class of each sample. Then, MCC can 
be computed by

 

( )
( ) ( )
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X Y
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where ( )cov ,X Y  denotes the correlation coefficient 
of X and Y .

2.7. Functional enrichment analysis

Using the IFS method, we can obtain the best subset of features 
under different rankings. To clarify the biological processes behind 
genes in these subsets, thereby uncovering their relationship with 
antiviral immunity, this study used gene ontology (GO) enrichment 
analysis to discover the role of the genes and applied Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway analysis to 
identify the underlying pathways. ClusterProfiler package (Wu et al., 
2021) in R was used to perform GO and KEGG enrichment analyses.

3. Results

3.1. Results of feature ranking

To evaluate the importance of features from multiple aspects. 
Five feature ranking algorithms were employed, which were applied 
to the blood transcriptome data one by one. As a result, five feature 
lists, named Lasso, LightGBM, MCFS, mRMR and PFI feature lists, 
were obtained, which are provided in Supplementary Table S1. 
Table 2 shows the top 10 genes in each list. It can be observed that 
top genes in different lists were very different, meaning that the 
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importance of one feature was quite different under the evaluation 
of different methods. Usage of different methods can provide more 
opportunities to discover more essential features.

3.2. Results of incremental feature 
selection

Five feature lists were subjected to the IFS method one by 
one. From each feature list, a series of feature subsets with step 
ten were constructed. On each subset, one classifier was built for 
each of four classification algorithms (DT, KNN, RF, and SVM). 

When constructing the classifiers, the dataset was processed by 
SMOTE to tackle the imbalanced problem. All classifiers were 
evaluated by 10-fold cross-validation. The evaluation results were 
counted as weighted F1, ACC, and MCC, which are provided in 
Supplementary Table S2. Weighted F1was selected as the major 
measurement. Thus, several IFS curves were plotted for different 
classification algorithms and feature lists, as shown in 
Figures 2–6, in which weighted F1 was set as Y-axis and number 
of features was defined as X-axis.

For the Lasso feature list, the IFS curves of four classification 
algorithms are illustrated in Figure  2. It can be  observed that 
when top 11,950, 12,740, 9,150 and 1,460 features were adopted, 

TABLE 2 The top 10 features in five feature lists.

Index Lasso feature list LightGBM feature list MCFS feature list mRMR feature list PFI feature list

1 CENPF RPRD1B NEU3 FAM98B SLC16A14

2 NDUFB9 ITM2C C2 TSSK4 THRAP3

3 BRCA2 HSP90B1 SMC5 CSF1R STAC3

4 LOC102031319 TK1 ZFC3H1 TOP1 ATF5

5 SSBP1 LPAR3 GLS2 NEU3 RAD51

6 PDP1 CENPF NFE2L2 UBE2H CDC45

7 LINC01089 TPX2 C1QC ATP6V1E1 GABPB1

8 C2orf16 ITGAE SDC1 SRPRB CTNNBL1

9 ID2 SPATA24 CAV1 ZNF672 ARHGAP42

10 LINC00630 GTSE1 SNORA2B CUL3 PSME2

FIGURE 2

IFS curves of four classification algorithms on Lasso feature list. DT, KNN, RF, and SVM yielded the highest weighted F1 values of 0.838, 0.765, 0.938, 
and 0.889 when top 11,950, 12,740, 9,150, and 1,460 features were adopted, respectively. RF can yield quite high performance (weighted F1 = 0.906) 
when top 290 features were used.
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four algorithms yielded the highest weighted F1 values of 0.838, 
0.765, 0.938, and 0.889, respectively. Thus, the optimal DT, KNN, 
RF, and SVM classifiers can be built using these features. The 

ACC and MCC values of these classifiers are listed in Table 3. 
Evidently, the optimal RF classifier was best among these 
optimal classifiers.

FIGURE 4

IFS curves of four classification algorithms on MCFS feature list. DT, KNN, RF and SVM yielded the highest weighted F1 values of 0.851, 0.895, 0.951, and 
0.914 when top 20,120, 60, 17,550, and 3,140 features were adopted, respectively. RF can yield quite high performance (weighted F1 = 0.932) when 
top 70 features were used.

FIGURE 3

IFS curves of four classification algorithms on LightGBM feature list. DT, KNN, RF, and SVM yielded the highest weighted F1 values of 0.857, 0.808, 
0.957, and 0.920 when top 15,650, 1,030, 2,730, and 2,750 features were adopted, respectively. RF can yield quite high performance (weighted 
F1 = 0.951) when top 60 features were used.
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For the LightGBM feature list, Figure 3 shows the IFS curves of 
four classification algorithms. The optimal DT/KNN/RF/SVM 
classifier can be built using top 15,650/1030/2730/2750 features in this 

list. Their ACC, MCC, and weighted F1 values are listed in Table 3. 
Clearly, RF still provided the best performance as the optimal RF 
classifier yielded the highest weighted F1 of 0.957.

FIGURE 6

IFS curves of four classification algorithms on PFI feature list. DT, KNN, RF, and SVM yielded the highest weighted F1 values of 0.849, 0.778, 0.944, and 
0.927 when top 5,440, 1,510, 3,630, and 1,530 features were adopted, respectively. RF can yield quite high performance (weighted F1 = 0.919) when 
top 60 features were used.

FIGURE 5

IFS curves of four classification algorithms on mRMR feature list. DT, KNN, RF, and SVM yielded the highest weighted F1 values of 0.845, 0.876, 0.957, 
and 0.926 when top 15,930, 870, 5,150, and 6,750 features were adopted, respectively. RF can yield quite high performance (weighted F1 = 0.931) when 
top 80 features were used.
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As for the rest three feature lists, the IFS curves are shown in 
Figures 4–6. The optimal DT/KNN/RF/SVM classifier can be set up 
on each feature list. The numbers of top features used in these 
classifiers are listed in Table  3, where the performance of these 
classifiers is also provided. Similar to the results on the Lasso and 
LightGBM feature lists, the optimal RF classifier was also better than 
other three optimal classifiers on each feature list.

To make full use of the utility of five algorithms, the best features 
should be extracted from each feature list, thereby obtaining the latent 
essential gene features. As mentioned above, the optimal RF classifier 
was best for each feature list. Thus, the features used in these classifiers 
can be  picked up as important candidates. However, such feature 
numbers (9,150 for Lasso feature list, 2,730 for LightGBM feature list, 
17,750 for MCFS feature list, 5,150 for mRMR feature list, 3,630 for PFI 
feature list) were too large to make detailed analyses. In view of this, 
we tried to find out another RF classifier, which adopted much less 
features and provided a little lower performance than the optimal RF 
classifier, on each feature list. By carefully checking the IFS results on 
RF on each feature list, such RF classifiers adopted the top 290 features 

in the Lasso feature list, top 60 features in the LightGBM feature list, 
top 70 features in the MCFS feature list, top 80 features in the mRMR 
feature list, and top 60 features in the PFI feature list. The corresponding 
points have been marked on the IFS curves of RF, as illustrated in 
Figures 2–6. The detailed performance of these RF classifiers is listed 
in Table 4. It can be observed that their performance was still quite 
high, the weighted F1 values were all higher than 0.900. Compared with 
the weighted F1 yielded by the optimal RF classifier on the same feature 
list, this RF classifier provided a little lower weighted F1. However, their 
efficiencies were sharply improved because much less features were 
involved. This indicated the extreme importance of features used in 
these RF classifiers. For easy descriptions, these RF classifiers were 
called feasible RF classifiers. Furthermore, the performance of the 
feasible RF classifier on one feature list was generally better than the 
optimal DT/KNN/SVM classifier on the same feature list, further 
confirming the importance of features in the feasible RF classifiers. To 
clear show the relationship between the feature sets used in five feasible 
RF classifiers, a Venn diagram was plotted, as shown in Figure 7. The 
detailed results of the intersection are shown in Supplementary Table S3. 

TABLE 3 Performance of the optimal classifiers based on different classification algorithms and feature lists.

Feature list Classification 
algorithm

Number of 
features

Weighted F1 MCC ACC

Lasso feature list

Decision tree 11,950 0.838 0.801 0.839

K-nearest neighbor 12,740 0.765 0.722 0.770

Random forest 9,150 0.938 0.924 0.938

Support vector machine 1,460 0.889 0.863 0.888

LightGBM feature list

Decision tree 15,650 0.857 0.825 0.857

K-nearest neighbor 1,030 0.808 0.764 0.807

Random forest 2,730 0.957 0.947 0.957

Support vector machine 2,750 0.920 0.901 0.919

MCFS feature list

Decision tree 20,120 0.851 0.817 0.851

K-nearest neighbor 60 0.895 0.870 0.894

Random forest 17,550 0.951 0.939 0.950

Support vector machine 3,140 0.914 0.894 0.913

mRMR feature list

Decision tree 15,930 0.845 0.809 0.845

K-nearest neighbor 870 0.876 0.847 0.876

Random forest 5,150 0.957 0.947 0.957

Support vector machine 6,750 0.926 0.908 0.925

PFI feature list

Decision tree 5,440 0.849 0.817 0.851

K-nearest neighbor 1,510 0.778 0.734 0.783

Random forest 3,630 0.944 0.932 0.944

Support vector machine 1,530 0.927 0.909 0.925

TABLE 4 Performance of feasible classifiers on different feature list.

Feature list Classification 
algorithm

Number of 
features

Weighted F1 MCC ACC

Lasso feature list Random forest 290 0.906 0.886 0.907

LightGBM feature list Random forest 60 0.951 0.939 0.950

MCFS feature list Random forest 70 0.932 0.916 0.932

mRMR feature list Random forest 80 0.931 0.916 0.932

PFI feature list Random forest 60 0.919 0.901 0.919
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Some gene features occurred in multiple subsets, meaning that they 
were deemed to be important by multiple feature ranking algorithms. 
They may have strong associations with antiviral immunity. Some of 
them would be discussed in detail in the subsequent sections.

3.3. Classification rules

Although the performance of DT was much lower than RF and 
SVM according to the IFS results on five feature lists, DT has an 
exclusive merit as it is a white-box algorithm. It can provide 
quantitative rules that can be interpreted to aid in the analysis. On the 
Lasso, LightGBM, MCFS, mRMR, and RF feature lists, the optimal DT 
classifier adopted the first 11,950, 15,650, 20,120, 15,930, and 5,440 
gene features. Based on the samples represented by these features, five 
trees were obtained, from which five groups of classification rules can 
be extracted. Supplementary Table S4 shows these classification rule 
groups. Some conditions in major rules would be  discussed in 
detail later.

3.4. Enrichment analysis

Five feature sets used to construct five feasible RF classifiers 
were combined into one set. To uncover the underlying biological 
meanings behind gene features in such set, the enrichment 
analysis was conducted on these genes. Figure 8 visualizes top five 
GO terms in three GO clusters and top five pathways. The GO 
terms, such as thioester and fatty acid metabolic processes, were 
enriched, along with peroxisomes and some terms related to 
metabolism and transport. KEGG enriched pathways included 
fatty acid biosynthesis, catabolism, and metabolism. Thioesters 
can be directly involved in the immune response as carriers of 
antigen presentation and thioesterified fatty acids or other lipid 
products can be  involved in the regulation of immune cells as 
signaling molecules. Their metabolism is inseparable from 
the peroxisome.

A B

FIGURE 8

Gene ontology (GO) and KEGG pathway enrichment analysis on the union of five feature sets used to construct feasible random forest classifiers. The 
FDR < 0.05 criterion was used to filter GO terms and KEGG pathways. The top five significant GO terms in three GO clusters (A) and top five KEGG 
pathways (B) were shown.

FIGURE 7

Venn diagram of the feature sets used to construct feasible random 
forest classifiers on five feature lists that were obtained by Lasso, 
LightGBM, MCFS, mRMR, and PFI, respectively. The overlapping 
circles indicated genes that occurred in multiple sets. These genes 
were deemed to be important by multiple feature ranking algorithms.
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4. Discussion

As listed in “Results”, some essential genes and classification rules 
were discovered. As they can be strongly related to the response to 
vaccination in antitumor viral immunity, they were discussed in this 
section. We collected the scientific findings of other researchers and 
initially summarized the experimental evidence of the aforementioned 
genes and rules, proving the accuracy of the findings.

4.1. Analysis of essential conditions in rules

Five rule groups were discovered as listed in 
Supplementary Table S4. As each rule contained multiple gene features 
and thresholds on expression levels, it was not easy to confirm the 
special pattern expressed by each rule through existing publications. 
Thus, we divided each rule into multiple conditions and analyzed the 
reasonability of some essential conditions. If the conditions used the 
same gene and same expression trend, they were deemed to 
be identical. The occurrence number of each condition in five rule 
groups was counted, which represented how many feature ranking 
methods identified the condition to be important. Some representative 
conditions with such numbers larger than two were discussed.

4.1.1. Analysis of conditions identified via four 
methods

IFI27 occurred in four rule groups, including rule groups on Lasso, 
LightGBM, mRMR, and MCFS feature lists. The study found that the 
expression levels of antiviral-related genes such as IFI27 decreased 
during the vaccinations. This result is consistent with the dynamically 
enhanced inflammatory response in vaccinated individuals. IFI27 is 
considered a biomarker with high sensitivity and specificity 
(AUC > 0.85) (Wang et al., 2022). Vaccination can improve the body’s 
ability to fight viruses. Our analysis results show that the expression 
level of IFI27 gradually increased within 2–4 days of the first injection 
and decreased 7 days after vaccination. However, after the second 
injection, the expression level of IFI27 gradually increased within 
1–4 days after the injection. Compared with the first injection, some 
patients had the fastest response times earlier than the first injection. 
The expression level of IFI27 decreased 7–10 days after vaccination. The 
peak duration of the second injection is speculated to be longer than 
that of the first injection. The antiviral immune-related molecular 
mechanism of IFI27 has been reported. As a common interferon 
(IFN)-stimulated gene, IFI27 encodes a mitochondrial protein that is 
normally induced by IFN to express and function in most responding 
cells. It may regulate apoptosis through the stability of mitochondrial 
membrane, thereby affecting immune response (Cheriyath et al., 2011). 
In addition, IFI27 can inhibit viral DNA replication and gene 
expression (Ullah et al., 2021). In vitro studies have shown that IFI27 is 
up-regulated in plasmacytoid dendritic cells, which are antigen-
presenting cells sensitive to viral infection (Tang et  al., 2017). 
Transcriptome results showed that vaccinated patients had significantly 
attenuated IFN responses compared to unvaccinated Omicron and 
Alpha-infected patients, represented by IFI27, which controls antiviral 
responses (Lee et  al., 2022b). The results of RNA sequencing data 
analysis showed that macrophages in the blood of SARS-CoV-2-
infected patients released a large number of IFNs, activated 
mitochondrial IFI27 expression, and disrupted energy metabolism in 

immune cells, ultimately aggravating viral immune evasion and 
replication (Duan et al., 2022). Based on existing research reports and 
our analysis, we speculate that after vaccination, the release of IFN 
increases, which promotes an increase in mitochondrial protein IFI27, 
inhibits SARS-CoV-2 replication and gene expression, and enhances 
antiviral immunity. In addition, after two vaccine doses, some people’s 
antiviral immunity takes effect earlier than after the first dose, and 
vaccine efficacy lasts longer. Therefore, IFI27 may be  used as a 
biomarker for antiviral immunity of vaccines.

4.1.2. Analysis of conditions identified via three 
methods

Syndecan-1 (SDC1) and small nuclear ribonucleoprotein polypeptide 
G (SNRPG) were found in rule groups on LightGBM, mRMR, and 
MCFS feature lists. SDC1 encodes a transmembrane (type I) heparan 
sulfate proteoglycan protein that belongs to the syndecan proteoglycan 
family. As a component of glycocalyx (GAC), SDC1 plays an important 
role in cell proliferation, cell migration, and other processes through 
extracellular matrix protein receptors (Reszegi et al., 2022). SDC1 was 
found to be elevated in COVID-19 patients (Goonewardena et al., 
2021). SDC1 may contribute to early risk stratification of staged 
diseases such as COVID-19 and provide a pathobiological reference 
(Goonewardena et al., 2021). Studies have confirmed that patients 
infected with COVID-19 can produce inflammation-induced 
degradation of the GAC layer of endothelial cells, and SDC1 can 
be used as an important parameter to assess GAC damage (Vollenberg 
et al., 2021). High levels of SDC1 may cause more severe endothelial 
damage and inflammation (Zhang et al., 2021). Molecular experiments 
demonstrate that SDC1 acts as a target gene of miR-10a-5p during 
porcine hemagglutinating encephalomyelitis virus (PHEV) infection 
and is involved in host defense mechanisms. Decreased expression 
levels of SDC1 lead to reduced viral replication, and downstream 
inhibition of SDC1 exerts an antiviral effect in PHEV-induced disease 
(Hu et al., 2020). Transcriptome analysis showed that the expression 
level of SDC1 increased only 7 days after the first dose of vaccination. 
After the second dose, the expression level remained low. On the one 
hand, this low level may help prevent endothelial damage and severe 
inflammatory response. On the other hand, it may inhibit viral 
replication and facilitate a more efficient antibody production.

SNRPG is a protein-coding gene involved in the formation of the 
U1, U2, U4, and U5 small nuclear ribonucleoprotein complexes. 
Related pathways include SARS-CoV-2 infection and gene expression.5 
Studies have shown that SNRPG-related risk models are associated 
with infiltration of immune cells such as T cells and M2 macrophages 
(Liu et al., 2022). The specific mechanism between SNRPG and SARS-
CoV-2 infection is limited. Transcriptome analysis showed that the 
SNRPG expression level was high on the day of the first vaccine 
injection, whereas the expression level was lower on the day of the 
second vaccine injection. The low SNRPG level continued until day 10 
after vaccination. The obvious differences in SNRPG levels after 
different injections suggest that the gene can be  regarded as an 
indicator of the effectiveness of vaccination. However, the molecular 
mechanism needs to be further explored.

5 https://pathcards.genecards.org/Card/

sars-cov-2_infection?queryString=SNRPG

171

https://doi.org/10.3389/fmicb.2023.1138674
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://pathcards.genecards.org/Card/sars-cov-2_infection?queryString=SNRPG
https://pathcards.genecards.org/Card/sars-cov-2_infection?queryString=SNRPG


Li et al. 10.3389/fmicb.2023.1138674

Frontiers in Microbiology 12 frontiersin.org

4.1.3. Analysis of conditions identified via two 
methods

Rules found in two methods included TPX2, CCDC28A, 
FAM227B, PKN2-AS1, NEK2, USP46, C22orf15, SLC20A1, TMSB15A, 
C2, and ZFC3H1. Some of these genes are associated with antiviral 
immunity. For example, TPX2 (microtubule nucleation factor) is a 
gene whose encoded product is involved in the activation of protein 
kinase activity, DNA damage, gene transcription, and other 
physiological processes. PPI network analysis from STRING revealed 
that as a hub gene, TPX2 may be a novel COVID-19 intervention target 
and biomarker (Hasan et al., 2022). As one of the antigen components 
of a multivalent recombinant fusion protein prophylactic vaccine 
(rBmHAXT), TPX2 can promote the production of high titers of 
antigen-specific antibodies and their isotypes. Animals vaccinated with 
the TPX2 antigen secreted higher levels of blood IFN-γ and showed 
better immune protection compared with unvaccinated animals 
(Khatri et al., 2018). Studies have shown that TPX2 can activate Aurora 
A kinase (AURKA), which is involved in cell cycle regulation. TPX2 
overexpression enhanced cell proliferation and migration (Zou et al., 
2018). The TPX2 gene may be a potential target for diagnosis and 
prognosis in patients already infected with hepatitis B virus (HVB) (Ji 
et al., 2020). Transcriptome data analysis showed that TPX2 expression 
levels increased within 7–10 days after the patients received the second 
vaccine dose. This is consistent with activation of IFN-induced 
responses, increased transcripts of specific IGHV clones, and a trend 
toward memory B cell enrichment (Lee et  al., 2022a). TPX2 may 
be related to antiviral immunity caused by different doses. However, 
the correlation and mechanism of action need to be further verified.

4.2. Top features identified via multiple 
methods

On the basis of the features identified by the five feature ranking 
algorithms (Figure 7), an intersection of results obtained by multiple 
methods (≥3) was selected as important candidates. We summarized 
the evidence for some vital gene features, listed in Table 5, based on 
the broad studies shown below.

NFE2-like bZip transcription factor 2 (NRF2), also called NFE2L2, 
encodes a cap‘n’collar (CNC) transcription factor and belongs to the 
small family of basic leucine zipper (bZIP) proteins (Khan et al., 2021). 
NRF2 can bind to antioxidant response elements and participate in the 
transcription of downstream target genes. Thus, it plays an important 
role in physiological processes such as cellular redox, tissue damage, and 
metabolic homeostasis. The encoded protein of NRF2 is involved in 
various injury and inflammatory responses involving class 
I MHC-mediated antigen presentation and KEAP1-NFE2L2 pathway, 

among others. NRF2 contributes to GSH metabolism and stress response 
and is associated with the pro-inflammatory effects of SARS-CoV-2 in 
host cells (Galli et al., 2022). The protein synthesis of SARS-CoV-2 may 
increase Cys and activate endoplasmic reticulum stress of transcription 
factors, which ultimately promotes changes in cellular oxidation, cellular 
metabolism, and GSH transmembrane flux (Galli et  al., 2022). 
Importantly, NRF2 activation has been shown to benefit respiratory 
infections in various animal models (Muchtaridi et al., 2022). NRF2 
exerts anti-inflammatory effects by inhibiting pro-inflammatory genes 
such as IL6 and IL1B (Huang et al., 2022). NRF2 induces the expression 
of genes that promote specificity of macrophages such as the macrophage 
receptor, which is responsible for bacterial phagocytosis (Schaefer et al., 
2022), and the cluster of differentiation gene 36 (CD36), which resists 
viral infection (Hillier et  al., 2022). NRF2 Activation is involved in 
inflammatory cascade (Jayakumar et al., 2022), regulation of innate 
immune responses, and antiviral cytosolic DNA sensing. NRF2 inhibits 
pro-inflammatory signaling pathways such as TNF-α signaling and is 
involved in regulating the innate immune response during sepsis. NRF2 
increases susceptibility to DNA virus infection by inhibiting the 
expression of the adaptor protein STING1, thereby inhibiting antiviral 
cytosolic DNA sensing (Olagnier et  al., 2018). After SARS-CoV-2 
infection, NRF2 is activated and restricts the release of pro-inflammatory 
cytokines by inhibiting IRF3 dimerization. In addition, NRF2 inhibits 
the replication of SARS-CoV-2 and other viruses through a type 
I IFN-independent pathway (Olagnier et al., 2020).

Regulation of nuclear pre-mRNA domain containing 1B (RPRD1B), 
also named cell-cycle-related and expression-elevated protein in 
tumor (CREPT) or C20ORF77, is located on chromosome 20q11 and 
can bind to RNA polymerase on the cyclin D1 gene, resulting in the 
formation of a cyclin D1 ring structure, which can promote 
transcription (Lu et al., 2012; Wang et al., 2014). RPRD1B can also 
participate in the transcription of genes related to the Wnt/β-catenin 
signaling pathway (Wu et al., 2010). GO annotation results showed 
that RPRD1B can bind to the RNA polymerase II complex and play a 
role in pathways such as TCR signaling and T-cell activation. The 
mRNA and protein expression of RPRD1B in patients under 50 years 
old were significantly different from those in patients over 50 years of 
age. RPRD1B expression levels correlate with human papillomavirus 
infection and may be affected by age (Wen et al., 2021). The expression 
level of RPRD1B in peripheral blood T cells of psoriasis, lichen planus 
(LP), and atopic dermatitis (AD) was found higher than that of healthy 
subjects. RPRD1B is involved in the pathogenesis of inflammatory 
diseases by regulating the transcription of genes such as IL-4, RGS16, 
and CD30 (Li et al., 2013). Our analysis showed that the RPRD1B 
expression level changed in patients who received different 
vaccinations. Combined with existing evidence, we  speculate that 
RPRD1B uses T cells as a carrier to play a role in antiviral immunity.

Neuraminidase 3 (NEU3) is a protein-encoding gene whose product 
is located in the plasma membrane and belongs to the glycohydrolase 
family. Its activity is specific to gangliosides and may be involved in 
gangliosides in lipid bilayer adjustment. Pathways associated with NEU3 
include protein metabolism and glycosphingolipid metabolism. It can 
directly interact with signaling receptors such as EGFR to regulate 
transmembrane signaling (Wada et  al., 2007; Mozzi et  al., 2015). 
Sialidase activity in human polymorphonuclear leukocytes plays a key 
role in infection and inflammatory responses (Cross et al., 2003; Sakarya 
et al., 2004). Sialidase activity is determined by membrane-associated 
sialidase (NEU3), which promotes cell adhesion and cell proliferation. 

TABLE 5 Essential genes identified by three feature ranking algorithms.

Index Gene symbol Description

1 RPRD1B
Regulation of nuclear pre-mRNA 

domain containing 1B

2 NFE2L2 NFE2-like bZip transcription factor 2

3 SMC5
Structural maintenance of 

chromosome 5

4 NEU3 Neuraminidase 3
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Combined with existing evidence, our results indicate that after 
vaccination, the body produces antibodies against SARS-CoV-2 that 
regulate the host immune response by affecting the activity of NEU3.

The encoded product of structural maintenance of chromosome 5 
(SMC5) has ATP-binding activity and is involved in physiological 
processes such as DNA recombination, cellular senescence, protein 
metabolism, and transport of mature mRNAs. In addition, SMC5 can 
bind to SMC6, participate in the repair of DNA double-strand breaks 
through homologous recombination, and prevent the transcription of 
free DNA such as circular virus DNA genomes (Decorsière et  al., 
2016). Proteomic analysis revealed that Epstein–Barr virus infection 
disrupts the adhesion proteins SMC5/6, thereby affecting DNA damage 
repair. In the absence of the involucrin protein BNRF1, SMC5/6 
interferes with the formation and encapsidation of viral replication 
compartments (RCs), ultimately affecting viral lytic replication. 
SMC5/6 may act as intrinsic immunosensors and restriction factors of 
human herpes virus RC in viral infectious diseases (Yiu et al., 2022). 
The SMC5/6 complex compresses viral chromatin to silence gene 
expression; thus, its depletion enhances viral expression. The SMC5/6 
complex also functions in immunosurveillance of extrachromosomal 
DNA (Dupont et al., 2021). As an intrinsic antiviral restriction factor, 
Smc5/6, when localized to nuclear domain 10 (ND10) in primary 
human hepatocytes, inhibits HBV transcription without inducing an 
innate immune response (Niu et  al., 2017). We  screened SMC5 
signatures in populations vaccinated with different doses. The results 
suggest that SMC5 may serve as an indicator of vaccine effectiveness.

5. Conclusion

The purpose of this study was to analyze the blood transcriptome 
in response to different numbers and timing of vaccinations through 
a variety of machine learning algorithms. It also aimed to identify 
antiviral immunity-related molecules in different vaccinated 
populations. The feature intersection of multiple analysis methods 
reflects the effects of different vaccinations on host gene expression. 
The analysis results showed that the key gene features were highly 
consistent with existing research conclusions, which helped us to 
further clarify the possible mechanisms of these genes. The important 
antiviral immune characteristics obtained in this study will help in 
understanding the differences in mechanisms of action of different 
vaccinations and provide a reference for targeted COVID-19 
intervention and for optimization of vaccine strategies.
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The microbiome types of 
colorectal tissue are potentially 
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As the second leading cause of cancer worldwide, colorectal cancer (CRC) 
is associated with a poor prognosis. Although recent studies have explored 
prognostic markers in patients with CRC, whether tissue microbes carry prognostic 
information remains unknown. Here, by assessing the colorectal tissue microbes 
of 533 CRC patients, we  found that Proteobacteria (43.5%), Firmicutes (25.3%), 
and Actinobacteria (23.0%) dominated the colorectal tissue microbiota, which 
was different from the gut microbiota. Moreover, two clear clusters were obtained 
by clustering based on the tissue microbes across all samples. By comparison, 
the relative abundances of Proteobacteria and Bacteroidetes in cluster 1 were 
significantly higher than those in cluster 2; while compared with cluster 1, 
Firmicutes and Actinobacteria were more abundant in cluster 2. In addition, the 
Firmicutes/Bacteroidetes ratios in cluster 1 were significantly lower than those in 
cluster 2. Further, compared with cluster 2, patients in cluster 1 had relatively poor 
survival (Log-rank test, p = 0.0067). By correlating tissue microbes with patient 
survival, we  found that the relative abundance of dominant phyla, including 
Proteobacteria, Firmicutes, and Bacteroidetes, was significantly associated with 
survival in CRC patients. Besides, the co-occurrence network of tissue microbes 
at the phylum level of cluster 2 was more complicated than that of cluster 1. 
Lastly, we detected some pathogenic bacteria enriched in cluster 1 that promote 
the development of CRC, thus leading to poor survival. In contrast, cluster 2 
showed significant increases in the abundance of some probiotics and genera 
that resist cancer development. Altogether, this study provides the first evidence 
that the tissue microbiome of CRC patients carries prognostic information and 
can help design approaches for clinically evaluating the survival of CRC patients.

KEYWORDS

colorectal cancer, tissue microbe, prognostic biomarkers, survival, pathogenic bacteria

1. Introduction

The incidence and mortality of colorectal cancer (CRC) have increased significantly in 
recent years, ranking the 3rd and 5th among all malignant tumors, respectively (Siegel et al., 
2020; Zhao et al., 2020; Lu et al., 2021). Most patients are in the middle and late stages when 
diagnosed, which seriously threatens the survival and quality of life of patients (Dekker et al., 
2019; Cienfuegos-Jimenez et al., 2021; Peng et al., 2022). The 5-year relative survival ranges from 
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more than 90% in stage I patients to slightly more than 10% in stage 
IV patients (Brenner et al., 2014; Biswas et  al., 2021). Due to the 
frequent recurrence and metastasis, the prognosis of CRC is yet to 
be improved, especially for those with unknown tissue origin (He 
et al., 2020a,b; Liu et al., 2021). Accurate prediction of the prognosis 
of CRC patients is of great significance for targeted treatment and 
avoidance of overtreatment. However, at present, most studies are 
focused on identifying biomarkers for early screening of CRC 
(Ahlquist et al., 2000; Tanaka et al., 2020; Wu et al., 2021), and the 
exploration of biomarkers for patient prognosis is still limited, except 
for a few initial tries (Yang et al., 2022; Yuan et al., 2022).

Microbial communities are thought to influence the initiation, 
progression, metastasis, and response to the treatment of a variety of 
cancers (Cullin et al., 2021; Qi et al., 2022; Wang et al., 2022). In 
addition to gut microbes, microbes in other niches may influence host 
physiology. Many members of the microbial community can induce 
cell proliferation by activating certain signaling pathways. Microbial 
communities can act as a source of activating signals for aberrant 
epithelial cell proliferation, initiating cancer (Fulbright et al., 2017). 
This includes microbes on the outer surface and mucosal sites, as well 
as tissue-resident microbes (Heymann et al., 2021). Castellarin et al. 
(2012) found that Fusobacterium nucleatum transcripts were 400 
times more abundant in CRC tumor tissues than in normal tissues. In 
addition, F. nucleatum has been associated with liver metastases 
(Bullman et  al., 2017), amplifying its potential impact on cancer. 
Bacteroides fragilis is a commensal bacteria active in the whole colon, 
among which enterotoxigenic B. fragilis (ETBF) is believed to 
be associated with the induction of colitis and colon tumorigenesis 
due to its enrichment in stool and mucosal samples of cancer patients 
(Boleij et al., 2015; Haghi et al., 2019). Besides, healthy gut microbes 
are typically made up of dominant populations of Lactobacilli, 
Bacteroides, and Bifidobacterium (Nakatsu et  al., 2015). In CRC, 
Fusobacterium, Porphyromonas, Parvimonas, Peptostreptococcus, and 
Gemella showed excessive dominance, indicating the occurrence of 
bacterial flora imbalance (Nakatsu et al., 2015; Wirbel et al., 2019; 
Cheng et al., 2022). However, there is no consensus that one or more 
microbes can be  associated with the prognosis of CRC patients, 
whether it is intestinal flora or intratumoral microbes of tumor tissue. 
Consequently, there is an urgent need to study the association between 
microbial communities and the prognosis of patients with 
malignant tumors.

Enterotype is a new concept proposed by Arumugam et al. (2011) 
in the study of intestinal microbiota in 2011. Arumugam et al. (2011) 
found that the gut microbiota can be  divided into three groups 
according to the dominant genera, with Bacteroides, Prevotella, and 
Bifidobacteria as the dominant types. Different enterotypes have 
different microbiota structures and functional genes, and people with 
different enterotypes have different ways of energy metabolism and 
storage. In recent years, more and more studies have shown that a 
large number of microbes are enriched in tumor tissues (Hu et al., 
2017; Nejman et  al., 2020; Wong-Rolle et  al., 2021). Therefore, 
we wonder whether the colorectal tumor tissue microbiota of CRC 
patients can be classified similarly to the gut microbiota and whether 
this classification carries prognostic information of CRC patients, 
such as the propensity for recurrence and metastasis as well as 
survival time.

To this end, we collected colorectal microbiological samples from 
533 CRC patients at The Cancer Genome Atlas (TCGA). By 

characterizing the microbial diversity of all samples, we found that the 
Shannon index of 533 samples showed bimodal distribution. 
Therefore, based on the clustering of tissue microbiota from all CRC 
patients, we obtained colorectal tissue microbiota typing. Further, 
we correlated tissue microbiota typing with prognosis in CRC patients 
and found that increased relative abundance of certain microbes was 
significantly associated with worse or better prognosis. This study 
provides new insights into inferences about the prognosis of CRC 
patients based on the composition of the dominant bacteria in the 
tissue microbiota.

2. Materials and methods

2.1. Data collection and preparation

A total of 533 tissue microbiome samples of CRC patients and 
the corresponding metadata were obtained in this study. Cancer 
microbiome data and the clinical metadata data used in this study 
were available at ftp://ftp.microbio.me/pub/cancer_microbiome_
analysis/ (Poore et al., 2020). The microbial abundance matrix in 
the data set was annotated by two methods, Kraken and Shotgun. 
Given Kraken’s high usage rate in metagenomic analysis, only the 
microbial abundance obtained from Kraken’s annotation was used 
in this study. Microbiome data included six levels of microbial 
count including kingdom, phylum, class, order, family, and genus. 
We calculated the relative abundance of microbes at each level for 
subsequent analysis.

2.2. Clustering analysis

Based on the tissue microbiome abundance matrix, all samples 
were clustered using the “partitioning around medoids” (PAM) 
clustering method. Clustering was conducted with package “cluster” 
in R. Different from K-means clustering based on means, PAM is 
based on more robust partitioning around central points. In this 
study, we obtained five groups based on the microbial community 
at the phylum level by PAM clustering. To reduce the complexity 
and improve the rationality of the analysis, we further combined 
these five groups into two groups with significant differences in 
tissue microbes.

2.3. Survival analysis and dimension 
reduction

The overall survival between different groups was compared by 
Kaplan–Meier (KM) analysis, and the p value was generated with the 
log-rank test. In this study, we divided all samples equally into two 
groups (High vs. Low) based on the relative abundances of 
Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes, 
respectively. Then, survival analysis was conducted on these two 
groups. Principal component analysis (PCA) was performed with 
packages “FactoMineR” and “factoextra” in R. The R2 and p value 
were calculated by an ANOSIM test. Univariate cox regression was 
performed by the R package “survminer.”
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2.4. Linear discriminant analysis effect size 
analysis

Linear discriminant analysis effect size (LEfSe) (Segata et  al., 
2011), an analytical tool for discovering and interpreting high-
dimensional data biometrics (genes, pathways, taxons, etc.) was used 
to determine the significantly different genera in relative abundance 
between the two clusters. LEfSe used linear discriminant analysis 
(LDA) to estimate the magnitude of the effect of the abundance of 
each component (species) on the differential effect. In this study, 
we identified 11 potential biomarkers at the genus level with an LDA 
score > 4 and p < 0.05.

2.5. Network analysis

We mapped the co-occurrence network of tissue microbiota in 
two groups of colorectal cancer patients. Correlation coefficients and 
p value between the microbes at the phylum level were generated by 
the R function “rcorr” in the “Hmisc” package. Further, the network 
was visualized by Gephi (Bastian et  al., 2009), a software tool for 
building and visualizing bibliometric networks. Only the correlation 
p-values less than 0.01 were shown in the network. The network graph 
showed only edges with correlation coefficients greater than 0.2 and 
less than −0.2. Nodes in the network diagram represent microbes, and 
edges represent correlations between microbes. Node size indicates 
the relative abundance of microbes. The microbes whose names are 
shown in the network diagram are the important ones in the network, 
namely the nodes with a high degree.

3. Results and discussion

3.1. Tissue microbe profiles of colorectal 
cancer patients

Colorectal tissue has a different microbiota profile than the gut. 
Proteobacteria was the phylum with the highest relative abundance in 
CRC patient tissues with an average relative abundance of 43.5%, 
followed by Firmicutes, Actinobacteria, and Bacteroidetes, with the 
relative abundance of 25.3, 23.0, and 5.1%, respectively (Figure 1A). 
Similarly, the dominant flora in the gut is mainly composed of 
Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria, 
accounting for more than 97% of the intestinal flora (Eckburg et al., 
2005). However, different from tissue microorganisms, the dominant 
phyla of gut microbiota are Firmicutes and Bacteroidetes, with only a 
small proportion of other phyla (Stopinska et al., 2021). An increase 
in Proteobacteria in the gut is considered a microbial marker of 
dysregulation of the gut microbiota and a potential diagnostic feature 
of disease risk (Shin et al., 2015). We detected a high abundance of 
Proteobacteria in the tissues of CRC patients, which also represents 
the deterioration of colorectal tumors in patients.

Next, to explore the microbial diversity of CRC patients’ tissues, 
we  calculated the Shannon index of all samples. Notably, the 
distribution of microbial diversity was bimodal (Figure 1B), with a 
smaller peak at 2.3 and a larger peak at 3.7. Further, we created a 
clustering heatmap based on the abundance matrix of phylum-level 
microbes for all samples (Figure  1C). Similarly, all samples could 

be clustered into two main groups based on phylum-level microbes 
across the samples. Preliminarily, we found that the abundances of the 
four dominant phyla (Proteobacteria, Firmicutes, Actinobacteria, and 
Bacteroidetes) in the tissues showed differences between the two 
groups. The large differences in the abundance of dominant phyla led 
us to wonder whether the tissue microbiota of CRC patients is 
classified as similar to the enterotype of gut microbiota.

3.2. CRC patients can be divided into two 
clusters based on tissue microbiome, and 
the prognosis of the two clusters is 
significantly different

We next investigated whether the tissue microbiome abundance 
reflected the same bimodal distribution as observed for the 
Shannon index. For this, we  used a clustering method called 
“partitioning around medoids” (PAM) for the abundance of the four 
dominant phyla with the highest relative abundance. The clustering 
results showed that all samples were divided into five groups with 
silhouette widths of 0.58, 0.46, 0.50, 0.53, and 0.44, respectively 
(Figures  2A,B). We  further verified the clustering quality with 
silhouette width, and the result showed that the silhouette width 
was the highest (0.53) with k = 5, suggesting that was the optimal 
number of clusters (Figure  2C). These two components explain 
79.26% of the point variability. Besides, considering the bimodal 
distribution presented by the Shannon index of all samples 
(Figure  1B) and the clear two groups presented by clustering 
heatmap (Figure 1C), we further combined these five groups into 
two clusters according to the patient survival. Finally, we obtained 
two clusters of the five groups, with significant differences 
(p  = 0.0067) in survival between the two clusters 
(Supplementary Table S1). PCA showed that the relative abundance 
of the four dominant phyla of the two clusters was significantly 
different (Figure  2D; ANOSIM, p = 0.001, R2 = 0.63). Besides, 
consistent with the bimodal distribution (Figure 1B), the Shannon 
index of cluster 1 was significantly higher than that of cluster 2 
(Supplementary Figure S1). In-depth, we compared the differences 
of single species between the two clusters separately. Results showed 
that the relative abundance of Proteobacteria, Actinobacteria, 
Firmicutes, and Bacteroidetes were significantly differences between 
cluster 1 and cluster 2 (Figures 2E–H, Wilcoxon test, p < 4.2e-12). 
Specifically, the relative abundance of Proteobacteria and 
Bacteroidetes in cluster 1 was significantly higher than that in 
cluster 2, while Actinobacteria and firmicutes were significantly 
enriched in cluster 2 compared with cluster 1. Besides, the 
Firmicutes/Bacteroidetes (F/B) ratios of cluster 2 were significantly 
higher than that of cluster 1 (Figure 2I). The low F/B ratio in the gut 
is usually considered a biomarker of obesity in humans and animals 
(Magne et al., 2020). Studies have found reduced F/B ratios in the 
gut in patients with a variety of diseases, including Alzheimer’s 
disease, cholelithiasis, and rheumatoid arthritis (Grigor'eva, 2020; 
Artacho et  al., 2021; Sheng et  al., 2021). Consequently, 
we hypothesized that the reduced F/B ratio in colorectal tissues of 
CRC patients in cluster 1 may affect the tumorigenesis process and 
thus change the prognosis.

Next, we  investigated whether there were differences in 
prognosis, such as survival, among CRC patients in the two 
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clusters. Since these two clusters were obtained based on the four 
dominant phyla with the highest relative abundance, we further 
compared the overall microbial communities of these two clusters. 
The results showed that the overall tissue microbial communities 
of cluster 1 and cluster 2 were also significantly different 
(Figure  2J; ANOSIM, R2 = 0.65, p = 0.001). Then, the survival 
analysis of patients in these two clusters showed that compared 
with cluster 2, patients in cluster 1 had significantly worse survival 
(Figure  2K, p = 0.0067). Besides, to verify the computational 
stability of our results, we randomly selected 50% of the samples 
and repeated PAM clustering and survival analysis 
(Supplementary Figure S2). Repeated analysis based on a 50% 
sample size confirmed the consistency of the results. A significant 
difference in survival between the two groups could still be found 
even when the sample size was reduced.

Our results demonstrate that tissue microbiota in CRC patients 
potentially influences tumor development and that tissue microbiota 
characteristics carry patient prognostic information.

3.3. Microbes with significantly different 
abundance are responsible for the 
differentiation of prognosis between the 
two groups

Previously, we found that colorectal microbiota may affect the 
prognosis of CRC patients. Next, we focused on which microbiota 
plays a role in tumor progression. For this, all samples were equally 
divided into two groups (High and low) according to the relative 
abundance of the four dominant phyla (Proteobacteria, Actinobacteria, 
Firmicutes, and Bacteroidetes). Then, we performed survival curves 
for the two groups, respectively, and compared them (Figures 3A–D). 
Survival analysis showed that patients with a high abundance of 
Proteobacteria in colorectal tissue had significantly worse survival 
(Figure 3A, p = 0.0025). In contrast, patients with a high abundance 
of Firmicutes had significantly improved survival compared with 
patients with fewer Firmicutes in colorectal tissue (Figure 3C, p = 
0.035). Similar to Proteobacteria, patients with more abundant 
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FIGURE 1

Tissue microbe profiles of CRC patients. (A) Tissue microbial community composition at phylum level across all samples. Different color represents 
different phyla. The four phyla with the highest relative abundance are shown in the figure. Each column represents a sample. (B) Density plot of 
Shannon index of all samples. (C) Clustering heatmap based on the relative abundance of 33 species at the phylum level in all samples. Rows represent 
species and columns represent samples. The names of the four phyla with the highest relative abundance are shown in red. Samples separated by red 
dashed lines differed in relative abundance at the phylum level species.
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Bacteroidetes had significantly better survival (Figure 3D, p = 0.048). 
Among the four dominant phyla, only Actinobacteria do not affect the 
survival of CRC patients through their actions (Figure 3B, p = 0.83). 
In conclusion, the significantly lower survival rate of patients in cluster 
1 compared with patients in cluster 2 is most likely due to the high 
abundance of Proteobacteria and Bacteroidetes, as well as the low 
abundance of Firmicutes in tissue microbes of patients in cluster 1.

A study showed that with the development of health-polyp-
adenomas-CRC, the relative abundance of Proteobacteria increased 
gradually, while the relative abundance of Firmicutes decreased 
gradually (Liu et al., 2020). A comparative analysis of bacterial phyla 
levels between groups in 40 samples showed a significant increase in 
Proteobacteria abundance and a significant decrease in Firmicutes in 
colorectal cancer tissue compared with normal intestinal mucosa 
(Yang et al., 2019). Liu et al. (2022) found that Proteobacteria had a 
positive promoting effect on the risk of colorectal cancer and other 

diseases. Besides, one study confirmed that compared with healthy 
individuals, inflammatory bowel disease (IBD) and CRC patients had 
reduced bacterial diversity and abundance, and significantly enriched 
Bacteroidetes (Quaglio et al., 2022). While our results are consistent 
with previous studies, more depth, our data suggest that increased 
Proteobacteria and Bacteroidetes, and decreased Firmicutes in 
colorectal tissue may be accompanied by poorer patient survival.

3.4. Genera belonging to these dominant 
phyla showed significant differences in 
abundance between the two clusters of 
patients

Having found significant differences in tissue microbial 
composition between the two clusters at the phylum level, we next 
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FIGURE 2

Two clusters obtained by clustering the tissue microbiome abundance. (A) All samples were clustered into five groups by PAM clustering method. 
These two components explain 79.26% of the point variability. (B) The silhouette width and sample size of the five groups. (C) The corresponding 
silhouette width when the clustering number is 1–10. (D) PCA plot of relative abundance of four dominant phyla for CRC samples reveals considerable 
variation between cluster 1 and cluster 2. The R2 and p value was calculated by an ANOSIM test. Boxplot of differences in (E) Proteobacteria, 
(F) Actinobacteria, (G) Firmicutes, (H) Bacteroidetes, and (I) Firmicutes/Bacteroidetes (F/B) between cluster 1 and cluster 2. The p value was calculated 
by a Wilcoxon rank-sum test. (J) PCA plot of relative abundance of tissue microbe data at the phylum level for CRC samples reveals considerable 
variation between cluster 1 and cluster 2. (K) Kaplan–Meier survival curve for overall survival of cluster 1 and cluster 2. The p value was calculated by 
log-rank test.
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aimed to explore the similarities and differences between the two 
groups at other levels. For this, LEfSe analysis with a linear 
discriminant analysis (LDA) threshold of 4 was used to identify 
significantly different species in the two clusters (Figures 3E–H). First, 
at the class level, 6 significantly different species were identified. 
Specifically, Alphaproteobacteria, Betaproteobacteria, and 
Gammaproteobacteria were significantly enriched in cluster 2, while 
Deltaproteobacteria and Bacilli were more abundant in cluster 1 
(Figure 3E). At the order level, we identified 7 species enriched in 
cluster 1 and 4 species enriched in cluster 2. Lactobacillales was more 
abundant in cluster 2 and Burkholderiales and Enterobacteriales were 
enriched in cluster 1 (Figure 3F). At the family level, Staphylococcaceae, 
Propionibacteriaceae, and Elusimicrobiaceae were enriched in cluster 
1, while Mycobacteriaceae and Streptococcaceae were enriched in 
cluster 2 (Figure 3G). At the genus level, a total of 11 significantly 
different genera were identified, of which 5 were significantly enriched 
in cluster 2 and 6 were significantly more abundant in cluster 1 
(Figure 3H). It has been proposed that Mycobacteria as non-specific 
immune enhancers may have the potential to be effective agents for 
the prevention or treatment of gastrointestinal diseases, including 
CRC (Kim et al., 2022). The researchers indicated that heat-killed 
Mycobacteria tuberculosis had a protective effect in a model of 
inflammation-associated CRC. Meanwhile, we  found that 
Mycobacteria were significantly enriched in the tissues of cluster 2 
patients, and the better survival of cluster 2 patients confirmed this 
conclusion. Li et  al. (2021) demonstrated that co-culture with 

Streptococcus thermophilus or its conditioned medium reduced the 
proliferation of CRC cells in culture, and oral gavage of S. thermophilus 
significantly reduced tumorigenesis. Streptococcus, a genus belonging 
to the phylum Firmicutes, similarly showed a significant increase in 
abundance in cluster 2 patients compared with cluster 1. Lactobacillus, 
a genus belonging to Firmicutes, was found to be significantly more 
abundant in cluster 2 patient tissues. Lactobacillus has long been 
considered an important probiotic for gut health. Studies have 
suggested that Lactobacillus gallinarum prevented intestinal tumors by 
producing protective metabolites that promoted CRC cell apoptosis 
(Sugimura et  al., 2021). Besides, the F/B ratio in obese mice was 
reduced by the treatment of Lactobacillus sakei NR28 and Lactobacillus 
rhamnosus GG (Stojanov et al., 2020). In a human clinical trial, the 
beneficial influence of Lactobacillus salivarius was demonstrated 
(Larsen et al., 2013). Besides, univariate cox regression analysis was 
performed for the genera with the top  30 relative abundance 
(Supplementary Figure S3). Among them, four genera (Escherichia, 
Streptococcus, Pseudomonas, and Bacteroides) were significantly 
correlated with patient survival, which was consistent with KM 
survival analysis (Figure 3H). What’s more, the four genera belong to 
Proteobacteria, Firmicutes, and Bacteroidetes, which was also 
consistent with our PAM clustering.

Most of the genera significantly enriched in the tissues of cluster 
1 patients were pathogenic bacteria of CRC or harmful to intestinal 
health. For instance, recent studies have identified Escherichia coli, a 
species belonging to Escherichia, as one of the candidate pathogens for 
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FIGURE 3

Tissue microbes are responsible for the significant difference in survival between cluster 1 and cluster 2. All samples were divided into two groups 
based on the relative abundance of (A) Proteobacteria, (B) Actinobacteria, (C) Firmicutes, and (D) Bacteroidetes, respectively, and survival curves were 
performed based on these two groups. The p value was calculated by log-rank test. LEfSe identified the significantly different species in relative 
abundance between the two clusters at the (E) class, (F) order, (G) family, and (H) genus level, respectively. The LDA threshold is set to 4.
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CRC (Cheng et  al., 2020). A metabolomic and 16S microbiome 
analysis of 224 stool samples showed a significant increase in 
Staphylococcus in CRC patients (Clos-Garcia et al., 2020). Besides, the 
relative abundance of Enterococcus and Neisseria was significantly 
higher in the fecal microbiota of patients with invasive cancer 
compared with early cancer. The genus Pseudomonas contains a series 
of pathogens, among which Pseudomonas aeruginosa is a common 
opportunistic pathogen, which is a common nosocomial infection 
pathogen in patients with immune deficiency (Mielko et al., 2019). 
The abnormal proportion of Pseudomonas nucleomonas produced a 
proinflammatory microenvironment, promoted the proliferation of 
CRC cells, and promotes the chemotherapy resistance of CRC (Chen 
et  al., 2022). Neisseria meningitides, an aerobic gram-negative 
diplococcus, contribute to high morbidity in young adults through an 
epidemic or sporadic meningitis (Rouphael and Stephens, 2012). 
Taken together, our data demonstrate that the tissue microbes of CRC 
patients in cluster 1 tend to enrich some pathogenic bacteria that 
promote the development of CRC, thus leading to poor survival, while 
patients in cluster 2 have significantly more bacteria that resist the 
development of tumors.

3.5. The two clusters of patients had 
different tissue microbiome co-occurrence 
network properties

The role of a single or single class of microbes in affecting the 
occurrence and development of tumors is limited, and the synergistic 
or antagonistic effects of sufficient species in the microbial community 
cannot be ignored. Therefore, we constructed co-occurrence networks 
for the two clusters based on the correlation between species at the 
phylum level (Figures 4A,B). Network analysis revealed that the nodes 
and edges of cluster 1 were 29 and 147, respectively, while for cluster 
2, they were 33 and 192. For cluster 1, the positive and negative 
correlations between phylum species were 11.6 and 88.4%, 
respectively, while for cluster 2, they were 13.0 and 87.0%, respectively. 
The proportion of positive and negative correlations between tissue 
microbes in the two clusters was similar. Further, we compared other 
important network properties between the two clusters, including 
average degree, diameter, and clustering coefficient (Figure 4C). The 
results showed that the diameter and clustering coefficient of cluster 
1 (6 and 0.755, respectively) were higher than those of cluster 2 (3 and 
0.687, respectively), while the average degree of cluster 2 (11.636) was 
higher than that of cluster 1 (10.138). The important species in the two 
networks, namely keystone, were significantly different (Table 1). In 
cluster 1, Chloroflexi, Proteobacteria, and Actinobacteria occupied an 
important position in the network. However, the keystone species in 
the network were Acidobacteria, Verrucomicrobia, and 
Gemmatimonadetes. Besides, compared with cluster 1, the keystone 
in cluster 2 had a higher degree and weight.

Our study demonstrated that compared with cluster 1, the 
network of cluster 2 was more complicated. Microbial communities 
in tumor tissues are not merely collections of independent individuals, 
but interconnected complexes that communicate, recombine, and 
coevolve with each other (Layeghifard et al., 2017). Yuan et al. (2022) 
compared the tissue microbiological co-occurrence networks in 134 
lung cancer patients without recurrence or metastasis (non-RM) and 
174 patients with recurrence or metastasis (RM) and found that the 

co-occurrence network of non-RM was more complicated than 
RM. Recurrence and metastasis as well as survival in our study are 
both important prognostic indicators of cancer patients (Usuda et al., 
2014). Our study shows that the poorer survival of CRC patients is 
accompanied by a microbiome co-occurrence network of reduced 
complexity in tissues.

There are several limitations in this study. First, this cohort of 
533 CRC patients included confounding factors such as race, 
country, sex, and age. A recent study looked at the intratumoral 
microbiota of different cancer types to better understand the 
influence of age, sex, body mass index (BMI), and ethnicity on the 
composition of the intratumoral microbiota (Luo et al., 2022). The 
authors found that race was strongly associated with microbiota 
abundance, while age, sex, and BMI had little to do with it. 
Consequently, further analyses should be conducted to distinguish 
patients of different races and to more accurately identify 
biologically meaningful microbial markers. A study divided patients 
with CRC into proximal and distal (Jin et al., 2021), which are not 
considered the same disease. They found differences in the 
association of microbes with these two subtypes in CRC patients. 
For instance, in patients with proximal colon cancers, a high 
abundance of Fusobacteria was associated with poor prognosis, but 
not in patients with distal CRC. However, in our study, we did not 
detect a significant association between Fusobacteria and patient 
survival. The possible reason is that there are many subtypes of 
colorectal cancer, and different subtypes may have different 
associations with tissue microbes. Second, though we show that 
clusters based on tissue microbiome are associated with survival, 
we did not provide any prediction model using related microbes. In 
the future, it will be interesting to develop microbe-based prognosis 
models. Third, recent studies suggested that tissue histopathological 
image is correlated with the prognosis of cancers (Liu et al., 2022; 
Yang et al., 2022; Yao et al., 2022). It would be interesting to study 
the relationship between tissue microbes and histopathology. 
Finally, the lack of a healthy control cohort in this study adds a 
barrier to further understanding changes in tissue microbiota 
abundance between CRC patients and the normal population. 
However, tissue from perfectly healthy populations is extremely 
difficult to obtain, so for colorectal cancer, future studies could 
consider a control cohort of patients with other intestinal diseases 
that do not significantly alter the microbial composition of 
colorectal tissue.

4. Conclusion

The present study advances the understanding of the 
colorectal microbiota in CRC patients, providing evidence for the 
critical role of tissue microbes influencing the prognosis of 
patients via the variation of the proportion of probiotics, 
pathogens, or bacteria that can alter the progression of 
CRC. Moreover, it provides one possible explanation for the 
heterogeneity of postoperative survival in CRC patients, such that 
differences in microbial community composition in colorectal 
tumor tissues of different patients. Thus, we  recommend that 
before the treatment of CRC patients, it is considered to obtain the 
microbial content of the tumor tissue of the patients to determine 
the survival time and other prognosis index of the patients, and 
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FIGURE 4

Comparison of co-occurrence network structure and properties between cluster 1 and cluster 2. Co-occurrence networks based on correlation 
between species at the phylum level of (A) cluster 1 and (B) cluster 2. The red and green edges represent positive and negative correlations, 
respectively. Node size is proportional to the relative abundance of species. (C) Comparison of co-occurrence network properties between cluster 1 
and cluster 2. Avg. Degree, Average degree. Clust. Coeff., Clustering coefficient.

TABLE 1 Comparison of co-occurrence network properties between cluster 1 and cluster 2.

Phylum Degree Eccentricity Closeness 
centrality

Betweenness 
centrality

Clustering

Cluster 1 Chloroflexi 18 5 0.518519 31.274242 0.69281

Proteobacteria 17 5 0.509091 15.065909 0.772059

Actinobacteria 17 5 0.509091 17.482576 0.772059

Bacteroidetes 16 5 0.5 10.774242 0.833333

Chlamydiae 16 5 0.5 6.274242 0.858333

Cyanobacteria 16 5 0.5 6.274242 0.858333

Planctomycetes 16 5 0.5 6.274242 0.858333

Synergistetes 16 5 0.5 19.848485 0.758333

Cluster 2 Acidobacteria 25 2 0.820513 121.520854 0.326667

Verrucomicrobia 20 2 0.727273 36.331713 0.542105

Gemmatimonadetes 18 2 0.695652 45.134963 0.424837

Chloroflexi 17 2 0.680851 16.273766 0.661765

Cyanobacteria 17 2 0.680851 20.251597 0.654412

Deinococcus_Thermus 16 2 0.666667 9.267849 0.741667

Synergistetes 16 2 0.666667 12.196489 0.691667

The degree represents the number of all edges connected by each node. Closeness centrality represents the sum of the number of nodes that a node can reach divided by the shortest path that 
can reach the node. Betweenness centrality indicates the ratio between the number of betweenness paths passed by a node by other nodes and the total number of shortest paths in the figure. 
The eccentricity represents the largest shortest path that a node can reach.
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to assist clinicians in making accurate decisions to avoid 
overtreatment. Extrapolating from this concept, we suggest that 
for CRC therapy to be beneficial it needs to be coupled to the 
tissue microbiome profile of patients.
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Researches have demonstrated that microorganisms are indispensable for the 
nutrition transportation, growth and development of human bodies, and disorder 
and imbalance of microbiota may lead to the occurrence of diseases. Therefore, it 
is crucial to study relationships between microbes and diseases. In this manuscript, 
we  proposed a novel prediction model named MADGAN to infer potential 
microbe-disease associations by combining biological information of microbes 
and diseases with the generative adversarial networks. To our knowledge, it is the 
first attempt to use the generative adversarial network to complete this important 
task. In MADGAN, we  firstly constructed different features for microbes and 
diseases based on multiple similarity metrics. And then, we further adopted graph 
convolution neural network (GCN) to derive different features for microbes and 
diseases automatically. Finally, we  trained MADGAN to identify latent microbe-
disease associations by games between the generation network and the decision 
network. Especially, in order to prevent over-smoothing during the model training 
process, we introduced the cross-level weight distribution structure to enhance 
the depth of the network based on the idea of residual network. Moreover, in 
order to validate the performance of MADGAN, we conducted comprehensive 
experiments and case studies based on databases of HMDAD and Disbiome 
respectively, and experimental results demonstrated that MADGAN not only 
achieved satisfactory prediction performances, but also outperformed existing 
state-of-the-art prediction models.

KEYWORDS

microbe-disease associations, graph convolution neural network, generative adversarial 
network, residual network, computational prediction model

1. Introduction

Microbes are far more numerous than human cells (Integrative HMP (iHMP) Research 
Network Consortium, 2014; Sender et al., 2016), and play an important role in human beings 
(Human Microbiome Project Consortium, 2012). The microorganisms parasitic on the human 
body constitute the human microbial community, and their composition varies from person to 
person (Human Microbiome Project Consortium, 2012). These microbial populations can not 
only protect the human body from foreign microorganisms and pathogens, but also participate 
in intestinal digestion and absorption, and promote metabolism (Guarner and Malagelada, 2003; 
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Kau et al., 2011). Therefore, to some extent, the human microbial 
population can even be regarded as human “forgotten organs”(Quigley, 
2013), the imbalance of microorganisms will not only lead to the 
occurrence of nervous system diseases, but also affect the immune and 
metabolic functions of the human body (Cenit et al., 2017; Li et al., 
2017). For example, changes in intestinal microbiota are highly 
correlated with the pathogenesis of various nervous system diseases, 
including depression, autism (Kim et al., 2018), asthma (Al-Moamary 
et al., 2021) and cancer (Schwabe and Jobin, 2013), etc. Of course, 
there is also evidence showing that microbial populations can help 
regulate disease as well (Cryan and Dinan, 2012). For instance, 
researches show that lactic acid bacteria and bifid bacteria play a 
positive role in regulating anxiety, cognition, pain and depression 
symptoms (Desbonnet et al., 2010). In addition, Huang pointed out 
that microorganisms can affect the hypersensitivity and asthma of 
susceptible people. Early intervention to promote the healthy 
composition of human microbiome may help prevent asthma (Huang, 
2013). Hence, it is meaningful to infer potential relationships between 
microorganisms and diseases, which can not only help researchers 
understand the pathogenesis of diseases, but also help us to prevent, 
diagnose and treat diseases, thus promoting global human health. 
Utilizing biotechnology to identify microbe-disease associations is 
time-consuming, costly and blind, so it is meaningful to identify 
potential microbe-disease associations through computational 
methods. Up to now, representative calculative methods can 
be roughly divided into four categories, such as the network-based, 
binary local features-based, matrix factorization/completion-based 
and graph neural network-based methods. Among them, the network-
based methods infer latent microbe-disease associations by mainly 
adopting the topology information of different networks. For example, 
Chen et al. (2017) proposed a KATZ-based model KATZHMDA to 
infer possible microbe-disease associations based on a newly 
constructed heterogeneous network, which scores potential disease 
related microbes by step size and path numbers. Zeng et al. (2022) 
introduced the knowledge graph into the field of drug discovery, 
integrated data information through a displayed structure, and 
strengthened the structured connection and semantic relationship 
between entities. However, the methods based on binary local features 
focus on taking microbes and diseases as local objects, and identify 
potential microbe-disease associations by combining the features 
between them. For instance, Huang et al. (2017) developed a combined 
recommendation algorithm based on neighborhood and graph by 
integrating two independent recommendation models to recommend 
disease related microbes. In addition, Matrix factorization/
completion-based methods aim to decompose the known incidence 
matrix into two characteristic matrices, and approximate the incidence 
matrix with the product of the two matrices. For instance, Shen et al. 
(2017) proposed a matrix factorization-based model for microbe-
disease association prediction, which integrated known microbe-
disease associations and introduced a collaborative matrix 
factorization scheme to update the correlation matrix about microbes 
and diseases for inferring the most possible disease-related microbes. 
Finally, the graph neural network-based methods used to learn 
structural data by taking microbe and disease related data as the input 
of the neural networks, so as to extract and explore features and 
patterns in graph structural data. For example, Long et al. (2021) 
developed a graph attention network with inductive matrix 
completion to detect potential microbe-disease associations. Cheng 

et al. (2021) used the deep generative model as an entry point to 
discuss and study the de novo molecular design for drug discovery (de 
novo molecular design for drug discovery).

The emergence of generative adversarial networks is another 
milestone in the field of computer vision. It provides a new tool for 
solving various image prediction problems. For instance, in 2014, Lan 
et al. proposed a framework for estimating the generative adversarial 
network model through the confrontation process, and improved the 
ability of the model through the mutual game between generative 
adversarial networks (Goodfellow et  al., 2020). However, the 
generative adversarial network still has problems such as unstable 
results and difficult training. Hence, Arjovsky et al. (2017) conducted 
a theoretical analysis of the generative adversarial network and 
provided an optimal solution. Later, new results appeared in the field 
of image processing, such as Style GAN (Karras et al., 2019), Cycle 
GAN (Zhu et al., 2017), SeCGAN (Wu et al., 2019), etc. In recent 
years, many researchers have begun to explore the application of 
generative adversarial networks in other fields. For example, Lei et al. 
(2019) applied it in the direction of dynamic information generation 
to build a nonlinear time link prediction model. Dai et al. (2021) 
introduced generative adversarial networks to natural language 
translation work. Zheng et al. (2022) utilized a generative adversarial 
network model to predict urban traffic flow.

In this paper, a generative adversarial network framework called 
MADGAN was designed for latent microbe-disease association 
prediction, in which, a GCN was adopted to obtain the microbe-
disease association features first, and then, we would train the ability 
of MADGAN by games between the generation network and the 
decision network. And at the same time, inspired by the idea of 
residual network, we introduced the cross-level weight distribution 
structure to enhance the depth of the network to prevent over-
smoothing during the model training process. Finally, intensive 
experiments based on the k-fold cross-validation framework were 
implemented to compare the prediction performance between 
MADGAN and state-of-the-art prediction models. And as a result, 
MADGAN was proved to be of satisfactory prediction ability and 
outperformed existing representative competing models.

2. Materials and methods

2.1. Construction of the microbe-disease 
association network

In this section, we  would download known microbe-disease 
associations from two well-known public databases including 
HMDAD (Ma et  al., 2017) and Disbiome (Janssens et  al., 2018) 
respectively. Among them, HMDAD1 is the first microbe-disease 
association database constructed by ma et al. in 2017, which contains 
483 known microbe-disease associations. After removing duplicate 
data, we  finally obtained 450 different known microbe-disease 
associations between 39 diseases and 292 microbes. Besides, 
Disbiome2 is a public microbe-disease association database 

1 http://www.cuilab.cn/hmdad

2 https://disbiome.ugent.be/home
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constructed by Janssens et  al., in which, there are 5,573 known 
associations between 240 diseases and 1,098 microbes collected from 
published academic papers. After removing duplicate data, we finally 
derived 4,351 known microbe-disease associations between 218 
diseases and 1,052 microbes. For convenience, let nd  and nm  denote 
the numbers of newly-downloaded diseases and microbes respectively, 
then we can obtain a adjacency matrix A n nd m∈ × as follows: for any 
given disease di  and a microbe mj , if there is a known association 
between them, there is Aij =1, otherwise, there is Aij =0.

2.2. Multiple similarity calculation of 
disease

2.2.1. Gaussian interaction profile kernel similarity 
of disease

Based on the assumption that two similar diseases will show 
similar interaction and non-interaction relationship with the same 
microorganism (Chen et  al., 2017), in this section, we  will first 
calculate the Gaussian interaction profile kernel similarity between a 
pair of diseases di and d j  as follows:

 
GD d d A i A ji j d, , ,( ) = − ( ) − ( )( )exp : : ||||λ 2

 
(1)

Where A i, :( )  and A j, :( ) represent the ith and jth  rows of the 
adjacency matrix A  respectively, and λd  denotes the normalized 
kernel bandwidths that can be calculated as follows:

 

λd

d i
n

n
A id

=
( )







=∑

1

1

1

2
|| : ||,

 

(2)

2.2.2. Cosine similarity of disease
Based on the assumption that if two diseases are similar to each 

other, then their cosine curves will be more coincident, in this section, 
we will define the cosine similarity between a pair of diseases di and 
d j  as follows:

 
CD d d A i A j A i A ji j, , , , | , |( ) = ( ) ⋅ ( )( ) ( ) ∗ ( )( ): : / | : | :

 
(3)

The result of cosine similarity has good stability and certainty, the 
calculation speed is fast and the result is more intuitive. Suitable for 
large-scale information retrieval. Where A i A j, ,: :( ) ⋅ ( )  denotes 
multiplying the vectors of row i  and row j , A i, :( )  represents the 
mode of A i, :( ) , and A j, :( )  represents the mode of A j, :( ) . 
| : | | : |A i A j, ,( ) ∗ ( )  represents the multiplication of two moduli, and 
then the value of the modulus is removed by the product of the vector, 
and finally the cosine value of the angle between the two diseases is 
obtained, that is, the cosine similarity. The calculation result of cosine 
similarity is between −1 and 1. When the similarity between two 
diseases is extremely high, the calculation result tends to be 1. When 
the similarity between two diseases is very low, the calculation result 
tends to −1.

2.2.3. Functional similarity of disease
Based on the assumption that similar diseases tend to interact 

with similar genes, in this section, we  will calculate the disease 
functional similarity based on the functional associations between 
disease-related genes (Xu and Li, 2006; Wei and Liu, 2020) as follows: 
Firstly, we  download the gene interactions from HumanNet 
database3, in which, every interaction has an associated log-likelihood 
score (LLS). And then, for any given diseases di  and d j , let 
G g g gi i i im= …{ }

1 2
, , , and G g g gj j j jn= …{ }

1 2
, , ,  denote the newly-

obtained gene sets of di  and d j  separately, we  will define the 
functional similarity between di  and d j  as follows:

 
DFS d d

F g F g

m ni
g G G k g G G k
k i

j
k j

i

, j( ) =
( ) + ( )

+
∈ ∈∑ ∑

 
(4)

Where F g FSS g gG p
g G

p qt
q t

( ) = ( )( )
∈

max , , and FSS g gp q,( )  is 

the functional similarity score between the genes g p  and gq , which 
can be calculated as follows:

 

FSS g g
if p q
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if p q
p q p q, ,( ) =

=
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−
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min

max min  

(5)

Where LLSmax  and LLSmin  represent the maximum value of 
LLS and the minimum value of LLS in HumanNet, respectively.

Thereafter, by combining above GIP kernel similarity, disease 
cosine similarity and functional similarity of disease, we can obtain an 
integrated similarity matrix of disease as follows:

 
DS GD CD DFS

=
+ +

3  
(6)

2.3. Multiple similarity calculation of microbe

2.3.1. Gaussian interaction profile kernel similarity 
of microbe

In the same way, we can calculate the gaussian interaction profile 
kernel similarity between any two microbes mi  and mj  as follows:

 
MD m m A i A ji j m, , ,( ) = − ( ) − ( )( )exp : :|| ||λ 2

 
(7)

Where A i: ,( )  and A j: ,( ) represent the ith and jth  columns of 
the adjacency matrix A  respectively, and λm  denotes the normalized 
kernel bandwidths that can be calculated as follows:

 

λm

m i
n

n
A im

=
( )
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1

1
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(8)

3 https://www.inetbio.org/humannet
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2.3.2. Cosine similarity of microbe
Similarly, the cosine similarity between any two microbes mi and 

mj  can be obtained as follows:

 
CM m m A i A j A i A ji j, , , | , | | , |( ) = ( ) ⋅ ( )( ) ( ) × ( )( ): : / : :

 
(9)

The calculation process of cosine similarity between two 
microorganisms is the same as that of disease cosine similarity. Similarly, 
when the similarity between two microorganisms is extremely high, the 
calculation result tends to be  1. When the similarity between two 
microorganisms is very low, the calculation result tends to −1.

2.3.3. Functional similarity of microbe
In this section, we will calculate the functional similarity of microbe 

by using the following method proposed in the reference (Zhang et al., 
2018): for any given disease dt , it is first represented by a Directed 
Acyclic Graph DAG V Ed d dt t t

= ( ), , where Vdt  includes the disease dt  
and its ancestor diseases, Edt  contains all the directed edges from 
parent nodes to children nodes (Wang et  al., 2010), and then, the 
semantic contribution of the disease dl  in Vdt  to dt  is defined as:

 

SC d
if d d

SC d d children of d other

d i

l t

d l l l

t

t

( ) =
=

× ( ) ∈{ }′ ′

1

0 5max . |  wwise





  

(10)

The semantic value of disease dt  is formulated by:

 

SV SC dd
d V

d lt

l dt

t
= ( )

∈
∑

 

(11)

Then, the semantic similarity between any two diseases di and 
d j  can be defined as follows:

 
DSS d d
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SV SVi j
d V V d l d l

d d

l di d j
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(12)

Besides, based on above formulae, we  can further define the 
similarity between the disease di  and a set of diseases D as follows:

 
DS d D DSS d di

d D
i j

j

, ,( ) = ( )( )
∈

max

 
(13)

Hence, for any two given microbes mi  and mj , we can calculate 
the function similarity between them as follows:

 
MFS m m

DS d D DS d D

D Di j
d D j i d D j j

i j

j j j i,
, ,

( ) =
( ) + ( )

+
∈ ∈∑ ∑

 
(14)

Where Di  denotes the set of diseases associated with the microbe 
mi , and Dj  represents the set of diseases associated with the 
microbe mj .

Obviously, by combining above GIP kernel similarity, disease 
cosine similarity and functional similarity of microbe, we can obtain 
an integrated similarity matrix of microbe as follows:

 
MS MD CM MFS

=
+ +

3  
(15)

2.4. Construction of the heterogeneous 
network

Based on above descriptions, it is easy to see that we can construct 
a heterogeneous network Y  through integrating the integrated 
similarity matrix DS  of disease and the integrated similarity matrix 
MS  of microbe with the adjacency matrix A as follows:

 
Y

DS A

A MST=










  

(16)

3. Methods

The main framework of this paper is generative adversarial 
networks. A generative adversarial network consists of a generative 
network and a decision network, and it works by enhancing the model’s 
capabilities during the mutual gaming of the two networks. As shown 
in Figure 1, the information of known microbial-disease association 
data is extracted from the database, and after the calculation of 
similarity, it is input into the generative network. The core of the 
generative network consists of a GCN layer and an attention 
mechanism, which consists of a graph convolutional layer and a sparse 
graph convolutional layer. The data are passed through the generative 
network to generate prediction results, and the prediction results and 
the original sample data are input into the discriminator, which 
distinguishes the real results from the generated results and returns to 
update the model parameters of the generative network. This is a game 
process, in which the generative network needs to generate prediction 
results that are sufficient to confuse the judgment of the discriminator, 
while the discriminator needs to correctly distinguish the generated 
results from the true results. The ability of the generative network 
model is continuously improved during the game until the 
discriminator and the generative network reach an equilibrium, i.e., the 
probability of both the predicted and true outcomes is one half.

The generator network uses the information of the data set to 
output data samples, and the generator G •( )  obtains a random 
sample z  from the data samples, and z  conforms to the p z( )  
probability distribution. After the generator generates data, it will 
be sent to the discriminator D •( ) , and the discriminator will try 
to predict the authenticity of the data after receiving real data or 
generated data. At the same time, it also needs a sample x  from 
the real data distribution p xdata ( ) , the discriminator uses the 
activation function to solve a binary classification task, and 
outputs a value of 0–1 to distinguish the real result from the 
predicted result.
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The game process of generative adversarial networks can 
be expressed as follows:

 

min max

~ ~

V D G
E logD x E logD G zx p x z p zdata

,( ) =
( )  + − ( )( ) ( ) ( ) 1   

(17)

Among them, x is the real feature matrix, and G z( )  is the 
feature matrix generated by the generation network. p xdata ( )  is the 
probability distribution of x , and p z( )  is the probability 
distribution of z . The optimization goal of training D  to adjust its 
parameters is to maximize D x( )  and minimize D G x( )( ) , and the 
optimization goal of training G  to adjust its parameters is to 

minimize maxV D G,( ) . E  stands for entropy, x p xdata~ ( )  stands 
for x  is from p xdata ( )  real data distribution. The meaning 
represented by E logD xx p xdata~ ( ) ( )   is the entropy value from the 
real data distribution after passing the identifier. For data from the 
real data distribution, the ideal goal of the discriminator is to fully 
identify it, that is, predict the result as 1. Therefore, 
E logD xx p xdata~ ( ) ( )   can also be regarded as the probability of the 

discriminator to distinguish real data, and the higher the probability, 
the better. The log function does not affect the relationship between 
variables, and its function is to amplify our loss to facilitate the 
calculation and optimization of the model. E logD G zz p z~ ( ) − ( )( ) 1  
can be regarded as the entropy value after the input generated data 
passes through the discriminator, and also represents the probability 

FIGURE 1

The general framework of the model.
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of the discriminator to distinguish the fake sample data. The smaller 
the probability, the better. min maxV D G,( )  is expressed as a 
confrontation between the generator and the discriminator. The 
generator G •( )  hopes that the discriminator cannot distinguish fake 
samples, so it hopes to minimize the result of 1− ( )( )logD G z . The 
discriminator is the opposite, it hopes to better distinguish between 
true and false, that is, the result of maximizing 1− ( )( )logD G z . This 
is also the origin of this formula. At the end of training, there will 
often be a balanced form.

The core of the principle of generative adversarial networks 
lies in the game between the generative network and the decision 
network. The core of the generative network is composed of GCN 
layers. In order to deepen the model depth of the generative 
network and thus generate more accurate prediction results, 
we  use a residual network-like idea to optimize the model. 
We  deepen the network while retaining the shallow features 
according to the weights, which makes the model less susceptible 
to phenomena such as oversmoothing and gradient explosion 
during the iterative process. As shown in Figure  2, the direct 
mapping is shown on the left, and the associated graph 
convolution operation and activation function are shown on 
the right.

The purpose of adding this structure is to increase the depth of the 
network. Under this premise, problems such as over-smoothing and 
gradient explosion are avoided. At the same time, combined with the 
attention mechanism, we have carried out weight ratios on both sides 
on the basis of similar residual ideas to achieve better results. Its 
formula derivation is as follows:

 

h h F h Wl
i j

L
i j= + ( )

=
∑0

1,

,

 

(18)

Among them, hL  is the feature matrix output by each layer, and 
l L∈{ }1, ,.. . Wj  is the weight assigned to each layer, and F •( )  is the 
graph convolution function.

And the relevant formula of F •( )  is as follows:
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(19)

Where l L∈{ }1, ,.. , F z l( )  is the feature matrix generated by the 

lth  layer GCN network, 
D diag Y

j

N N
i j

m d

=










=

+

∑
1

,
 is a diagonal matrix, 

and Wl  is the weight matrix trained on the lth  layer. And µ •( )  is an 
activation function. In this paper, the RELU function is used as the 
activation function. The formula is as follows:

 
RELU x

x x
x

( ) =
>
≤


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

,

,

0

0 0  
(20)

The weight calculation formula of Wl  is as follows:

 
W

Ll =
1

 
(21)

Graph Convolution (GCN) is a convolutional model applied by 
CNN in the field of graph structure. Different from CNN to achieve 
feature extraction by processing pixels, graph convolution uses spectral 
graph theory to map the graph structure transformation to the 
frequency domain through Fourier transform for processing, and 
finally perform inverse transformation. Compared with CNN that 
handles neat pixels, GCN can more effectively extract the correlation 
features between two points. For data with associated structures, the 
ability to effectively extract spatial features brought by GCN can better 
help them complete their tasks. In our model, the reconstructed 
heterogeneous network feature matrix is input into the generative 
network and processed as the input of the GCN model. Formula (19) 
reflects the training process of the GCN model, and z  is the input data. 
The function of D YD

− −
1

2

1

2  is to dilute the importance of nodes with 
high degrees, and to balance the weight information of nodes with 
different degrees. Therefore, formula (19) can also be simplified as:

 
F z W YF z Wl l l,( ) = ( )( )− −µ 

1 1  
(22)

Among them, the role of YF z l( ) −1  is to retain the information 
inherited by the upper layer nodes during the information 
transmission process, that is, to aggregate the information of the 
surrounding nodes to update the information of its own nodes.

The role of the discriminator is to distinguish between real and fake 
samples, and our discriminator consists of a fully connected feed-
forward network, a hidden layer and an output layer. The discriminator 
alternately receives generated samples and real samples, and updates the 
parameters of the generated network through the discriminative results. 
Here we  adopt the framework of WassersteinGAN to train the 
discriminator. The biggest difference between WGAN and traditional 
GAN is that the output layer is a linear layer and does not require a 
nonlinear activation function. Expressed in a formula it is:

 
D z z W b W bh h o o( ) = +( ) +′µ

 
(23)

Among them, z  is the input data, and z  is the long vector after 
dimension reconstruction. µ •( )  is the activation function of the 
hidden layer, Wh  and bh  are the hidden layer parameters, and Wo  
and bo  are the output layer parameters.

As shown in Algorithm 1, the input is a known microbial-disease 
association matrix A. The similarity matrix of microorganisms and 
diseases is computed to construct the heterogeneous network Y. The 
new feature matrix is fed into the generative network. After 
initializing the optimizer, the generated prediction results are output 
after N rounds of training. The generated prediction results and 
sample data are input into the discriminator, and the parameter 
information of the generative network is updated according to the 
output results of the discriminator, and the completed generative 
network model is saved after several rounds of training.

191

https://doi.org/10.3389/fmicb.2023.1159076
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Hu et al. 10.3389/fmicb.2023.1159076

Frontiers in Microbiology 07 frontiersin.org

Algorithm 1: Algorithm of our proposed method

Inputs: Known associations matrix A m dn n∈ × , microbe similarity matrix 
m mK m N Ns ∈ × , disease similarity matrix d dK d n ns ∈ × ;

Output: The completed training of the generative network model

Step 1: Constructing the heterogeneous network ( ) ( )m d d mY n n n n∈ + × +  

according to Formula (16);

Step 2: Input the feature matrix into the generative network, initializing Optimizer 

Parameter Information;

Step 3: for 1 doi N= →  (N is the number of training rounds of the generative 

adversarial network)

for 1 dol L= →  (L is the depth of the graph convolution model)

 Compute the feature embedding of the L layer and output the generated 

prediction results

end for

Input the generated results and sample data into the decision network

Update optimizer parameter information

end for

Step 4: Save the model of the generative network

4. Experiments and results

4.1. Experimental setup

In this section, we adopted 5-fold cross validation(5cv) and 2-fold 
cross validation to assess the performance of our model. In the k-fold 
cross validation framework, all known microbe-disease associations 
in HMDAD and Disbiome were divided to k-subsets. In the process 
of model training, (k-1)-subsets are selected as the training set, and 
the remaining one as the test set. It is worth noting that there are no 
known negative samples, we  regarded unknown associations as 
negative samples. After the training samples are input into MADGAN, 
all association pairs will get a predictive value. If the prediction score 
is higher than the given threshold, it will be considered as successful 
prediction. Obviously, different true positive rate and false positive 
rate can be obtained when setting different thresholds. The specific 
calculation formula is as follows:

 
TPR =

+
TP

TP FN

 
FPR =

+
FP

FP TN  
(24)

Where TP and TN represent the numbers of positive samples 
correctly judged as positive samples and negative samples correctly 
judged as negative samples, respectively; FP and FN are the numbers 
of negative samples incorrectly judged as positive samples and positive 
samples incorrectly judged as negative samples. By setting different 
thresholds, we can get multiple groups of different TPRs and FPRs. 
Then, TPR and FPR under different thresholds are taken as the x-axis 
and y-axis respectively, the receiver operating characteristics (ROC) 
can be further plotted, and the area under the line is taken to evaluate 
the prediction performance of the model.

4.2. Parameter analysis

We performed multiple experimental and parametric analyses on 
the HMDAD database and the Disbiome database, respectively. As 
shown in Figure 3, we analyzed the experimental results generated by 
HMDAD in terms of the number of layers and embedding. We used 
a similar idea of residual network to deepen the number of layers of 
GCN to 4. After several rounds of training, the experimental results 
and loss values were maintained at a certain level, but we could see 
from the experimental results that after the number of layers was 
raised to 5, the experimental results could not be maintained at a 
certain level as in the previous layers, which we judged to be due to 
the limitation of the size of the dataset that made it impossible to 
deepen the network further. We judge that this is due to the limitation 
of the dataset size, which makes it impossible to deepen the network 
further, otherwise the phenomenon of oversmoothing will occur. 
We also compared different embedding values. Different embedding 
values take different time to train. When the embedding value is 128, 
the training time cost is greater than when the embedding value is 32. 
However, when the model depth is deepened to 5 layers, the 
embedding value of 128 cannot maintain good experimental results, 
and the embedding values of 32 and 64 are not affected much, but 
we think that further deepening the model depth and embedding 
values of 32 and 64 is also oversmoothing can occur, resulting in 
poor results.

For the Disbiome database, we  also conducted multiple 
experiments, but the Disbiome database is much larger than the 
HMDAD database, and we  were able to maintain the results at a 
certain level after deepening the GCN layers with our network up to 
20 layers, without reaching the limit. We did not find the limit value 
due to the limitation of the experimental equipment, but we  can 
understand that the experimental results did not deteriorate after 
deepening to more than 20 layers.

4.3. Comparison with state-of-the-art 
methods

In order to evaluate the performance of MADGAN, we compare 
our model with six state-of-the-art methods that includes network-
based methods, binary local features-based methods, matrix 
factorization/completion-based methods and graph neural network-
based methods. KATZHMDA and NTSHMDA are network-based 
methods, NGRHMDA and BiRWMP are binary local features-based 
methods, GRNMFHMDA is matrix factorization-based method, and 
GATMDA is graph neural network-based method. The comparison 
results of all these methods were shown in Tables 1, 2 respectively.

As shown in Tables 1, 2, we used 5 times of cross-validation and 2 
times of cross-validation to conduct comparative experiments on the 
two databases. In experiments on the HMDAD database, our model 
performs better than other models. The 5-fold cross-validation method 
makes better use of the data set than the 2-fold cross-validation 
method, so it performs better. The data sample size of the Disbiome 
database is much larger than that of HMDAD, and its training time is 
also much longer than that of HMDAD. However, compared with 
HMDAD, the experimental results of all models have declined. 
We believe that part of the reason is that the depth of the model cannot 
support the training of a large number of sample data. Even if we use 
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FIGURE 3

Model parameters analysis on the HMDAD dataset.

FIGURE 2

Generate network core model structure diagram.
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the method to deepen the depth of the model, it can only slightly 
improve the experimental effect. Another part of the reason may 
be because of the equipment environment.

5. Case study

In this section, we  choose three diseases of asthma, Chronic 
Obstructive Pulmonary Disease (COPD) and Type 2 Diabetes (T2D) 
for case studies on the HMDAD to further verify the performance of 

our model. Specifically, we rank the above three related microorganisms 
in the predicted score results, and then select the top 20 microorganisms 
and evaluate the prediction performance of MADGAN through 
literature retrieval.

Asthma is a disease with heterogeneous process, accompanied by 
recurrent wheezing, chest tightness, dyspnea, indirect cough and other 
symptoms(Al-Moamary et al., 2021). It is reported that in 2010, about 
8% of people were affected by asthma, especially in children, and the 
incidence rate is still rising(Guilbert et  al., 2014). Asthma has been 
proved to be closely related to microorganisms(Çalışkan et al., 2013). For 
example, Haemophilia, Neisseria and Moraxella in the lungs of asthmatic 
patients have been proved to be closely related to the increased risk of 
neonatal oral and pharyngeal asthma, and Staphylococcus has been 
found in the respiratory tract of asthmatic children(Sullivan et al., 2016). 
These findings may provide a new method for the treatment of asthma. 
We choose the top 20 microorganisms related to asthma predicted by our 
model and then search the literature for further verification. The results 
are shown in the Table 3.

COPD is a lung disease that worsens over time, as long as the 
symptoms are shortness of breath and cough. By 2015, COPD patients 
accounted for about 2.4% of the global population (James et al., 2018). 
Due to the high smoking rate and aging population in developing 
countries, the death toll of COPD patients is rising rapidly. Although 
the treatment can delay the deterioration of COPD, there is no cure. 
Considering that there is a lot of evidence indicating the association 
between microbiome and COPD, for example, Galiana et al. (2014) 
found that the diversity of patients with high COPD was lower than 
that of patients with mild and moderate COPD. Therefore, we select 
the top 20 microorganisms related to COPD predicted by our model 
and then search the literature for further verification. The results are 
shown in the Table 4.

6. Conclusion

Deeply understanding the relationship between microorganisms 
and diseases can not only reveal the pathogenesis of more human 
diseases, but also provide new insights into disease prevention, diagnosis 
and treatment, thus promoting human health. Predicting the potential 
microbe-disease associations can help biologists to screen the most 
relevant microorganisms that cause diseases, thus reducing the time and 
cost of biological verification experiment (Zhou et al., 2017; Uchiyama 
et al., 2019). In this paper, we developed a deep learning model, named 
MADGAN, to predict potential microbe-disease associations. 
We  adequately exploit multi-sources of abundant biological data to 
capture similarity features of microbes and diseases. This helps to predict 
new microbes (or new diseases) with few or no known association. In 
order to derive more informative representations, we propose graph 
convoluted neural network to learn representations for microbes and 
diseases. Meanwhile, the model is trained through the game between the 
generation network and the decision network. Finally, we  utilized 
residual network and the cross-level weight distribution structure to 
enhance the depth of the network to prevent over-smoothing during 
model training. Comprehensive experiments demonstrated that 
MADGAN achieved satisfactory predictive performance.

However, although our model has good prediction performance, it 
still has some limitations and is expected to be further improved in the 
future. On the one hand, our model is a supervised learning framework, 
which means that our model cannot predict all new microorganisms 

TABLE 1 Comparison performance between our model and state-of-the-
art models based on HMDAD dataset.

Methods AUC(5-fold cv) AUC(2-fold cv)

KATZHMDA (Zhu et al., 

2021) (network-based)
0.8703±0.0199 0.8755±0.0103

NTSHMDA (Luo and 

Long, 2018) (network-

based)

0.8982±0.0312 0.8615±0.0151

NGRHMDA (Huang 

et al., 2017) (binary local 

features-based)

0.8921±0.0327 0.8929±0.0059

BiRWMP (Luo and Xiao, 

2017) (binary local 

features-based)

0.8777±0.0089 0.8698±0.0079

GRNMFHMDA (He 

et al., 2018) (matrix 

factorization-based)

0.8806±0.0156 0.8756±0.0164

GATMDA (Long et al., 

2021) (graph neural 

network-based)

0.9554±0.0184 0.9538±0.0049

Our model 0.9867±0.0078 0.9708±0.0117

TABLE 2 Comparison performance between our model and state-of-the-
art models based on Disbiome dataset.

Methods AUC(5-fold cv) AUC(2-fold cv)

KATZHMDA (Zhu et al., 

2021) (network-based)
0.6779±0.0141 0.6696±0.0058

NTSHMDA (Luo and 

Long, 2018) (network-

based)

0.8294±0.0071 0.8086±0.0058

NGRHMDA (Huang 

et al., 2017) (binary local 

features-based)

0.8313±0.0052 0.8233±0.0046

BiRWMP (Luo and Xiao, 

2017) (binary local 

features-based)

0.8344±0.0089 0.8139±0.0060

GRNMFHMDA (He 

et al., 2018) (matrix 

factorization-based)

0.8609±0.0047 0.8501±0.0017

GATMDA (Long et al., 

2021) (graph neural 

network-based)

0.9307±0.0079 0.9296±0.0154

Our model 0.9428±0.0026 0.9290±0.0068
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and diseases. In the future, we will consider integrating multiple prior 
biological information, such as microbe-drug disease association and 
drug-disease association, to develop an unsupervised learning 
framework. On the other hand, it is still a huge challenge for MADGAN 
to forecast on large-scale datasets. In the future, we  will consider 
integrating the results of multiple datasets to build datasets, so as to 
improve the prediction performance of the model on large datasets.
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TABLE 3 The top 20 asthma-associated microbes predicted by MADGAN.

Rank Microbe Evidence

1 Clostridium innocuum PMID:18672296

2 Staphylococcus epidermidis PMID:6694502

3 Streptobacillus PMID:6326694

4 Burkholderiales bacterium Smarlab 3,302,047 Unconfirmed

5 Dorea PMID:30937143

6 Stenotrophomonas maltophilia PMID:20537287

7 Mannheimia PMID:10967288

8 Rikenellaceae PMID:33204702

9 Streptococcus parasanguinis PMID:17950502

10 Yersinia PMID:10719781

11 Alistipes PMID:33759390

12 Corynebacterium PMID:22994424

13 Erysipelotrichales PMID:22994424

14 Mobiluncus Unconfirmed

15 Cronobacter Unconfirmed

17 Eubacteriaceae Unconfirmed

18 Unidentified bacterium ZF3 Unconfirmed

19 Prevotellaceae PMID: 34422359

20 Oxalobacteraceae PMID: 21194740

TABLE 4 The top 20 COPD-associated microbes predicted by MADGAN.

Rank Microbe Evidence

1 Bacteroides PMID: 36498063

2 Bacteroides sp. CJ78 Unconfirmed

3 Bacteroides vulgatus Unconfirmed

4 Bacteroidetes PMID: 33063421

5 Clostridiales bacterium 80/3 Unconfirmed

6 Clostridium cocleatum PMID:20857523

7 Clostridium ramosum Unconfirmed

8 Enterococcus PMID:24629344

9 Erwinia Unconfirmed

10 Escherichia PMID: 21605476

11 Eubacteriaceae Unconfirmed

12 Firmicutes PMID: 32353489

13 Firmicutes bacterium EG14 Unconfirmed

14 Fusobacterium PMID: 35034433

15 Verrucomicrobia PMID: 32295442

17 Actinomyces PMID: 31174538

18 Lachnospiraceae bacterium A2 Unconfirmed

19 Enterococcus faecalis PMID: 26623628

20 Clostridia bacterium TSW07CA7 Unconfirmeda
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MicroRNAs (miRNAs) are short RNA molecular fragments that regulate gene

expression by targeting and inhibiting the expression of specific RNAs. Due to

the fact that microRNAs a�ect many diseases in microbial ecology, it is necessary

to predict microRNAs’ association with diseases at the microbial level. To this

end, we propose a novel model, termed as GCNA-MDA, where dual-autoencoder

and graph convolutional network (GCN) are integrated to predict miRNA-disease

association. The proposed method leverages autoencoders to extract robust

representations of miRNAs and diseases and meantime exploits GCN to capture

the topological information of miRNA-disease networks. To alleviate the impact of

insu�cient information for the original data, the association similarity and feature

similarity data are combined to calculate a more complete initial basic vector of

nodes. The experimental results on the benchmark datasets demonstrate that

compared with the existing representative methods, the proposed method has

achieved the superior performance and its precision reaches up to 0.8982. These

results demonstrate that the proposed method can serve as a tool for exploring

miRNA-disease associations in microbial environments.

KEYWORDS

miRNA-disease association, microbial ecology, dual-autoencoder, graph convolutional

network, insu�cient information, topological information, robust representations

1. Introduction

MiRNAs are a class of endogenous short RNAs that have multiple important regulatory

functions in the microbial environment. MiRNAs exert a significant influence in microbial

ecology such as metabolism (Karp and Ambros, 2005), cell growth (Ambros, 2003), immune

response (Jung et al., 2006), proliferation (Miska, 2005), cell cycle regulation (Liu et al.,

2022a) and tumor invasion (Meng et al., 2007). Moreover, miRNAs completes the process of

regulating gene expression by base-pairing with target RNA (Jopling et al., 2005; Vasudevan

et al., 2007). As a result, miRNAs can effectively predict the occurrence of diseases in

microbial ecology and contribute in prevention and diagnosis. HMDD and Human Cancer

Differentially Expressed miRNA Database (dbDEMC) contains miRNA-disease related

information (Li et al., 2014). However, the data available for research are relatively scarce,

and the choice of wet assays to determine miRNA-disease associations is expensive. Thus, it

is crucial to design an effective model to handle the experimental testing process (Chen et al.,

2019a, 2021; Wang et al., 2019; Zhu et al., 2021).
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In the field of biocomputing, correlation studies between

various molecules have been conducted. For example, researchers

predict the interaction between circRNA and disease (Wang et al.,

2021), miRNA and lncRNA (Zhang et al., 2021), lncRNA and

protein (Hu et al., 2018), etc. The aforementioned methods are

necessary to predict miRNA-diseases, and most of them are based

on complex networks. This line of research works builds one or

multi networks on the original interaction datasets, and predicts

disease-related miRNAs by integrating multi-level data. In general,

these approaches can make reasonable predications about miRNA

relatedness based on similar disease phenotypes and similar

functions, and vice versa (You et al., 2017; Chen et al., 2018a,d,

2019b). For instance, Jiang et al. established a scoring mechanism

for predicting disease-miRNA correlations based on miRNA-

disease heterogeneous networks, and applied hypergeometric

distribution to predict the strength of miRNA-disease associations

(Jiang et al., 2010). Guided by global information of the data,

Chen et al. proposed a strategy based on random walk to predict

the association between diseases and miRNAs (Chen et al., 2012).

Considering the fact that most of models cannot accurately predict

miRNAs associated with isolated disease individuals, Zeng et al.

added some perturbations to the network to train the predictor

(Zeng et al., 2018). Recently, researchers have explored a wide

range of miRNA functions, which increases the complexity of

analyzing gene expression and regulatory networks in common

diseases today (Vickers et al., 2014). Moreover, studies have shown

that miRNAs participate in the regulation of many cardiovascular-

related diseases. These studies demonstrate new aspects of miRNAs

in the field of life sciences, and analyzing the regulation of these

miRNAs on cardiovascular-related diseases is extremely valuable

for proposing new diagnostic and preventive strategies.

Some studies based on statistical methods to predict miRNA-

disease associations are attracting more and more attention from

the researchers. For example, Li et al. constructed an SVM classifier

based on miRNAs associated with specific tumor phenotypes (Li

et al., 2012). This model is only for the prediction of diseases such

as tumors and may not be suitable for other diseases. Considering

the shortage of negative samples in supervised learning models,

Yan et al. proposed a model that can reveal the interaction

between diseases and miRNAs based on the principle of regularized

least squares (Chen and Yan, 2014). This model can predict

the associated miRNAs of emerging diseases, thanking to its

semi-supervised learning strategy. Chen et al. demonstrated a

computational model of matrix decomposition and heterogeneity

network inference for predicting miRNA-disease associations

(Chen et al., 2018c). In this model, similarities in disease signatures

and disease-miRNA associations are integrated into a unified

network. However, model parameters are relatively large, and how

to reasonably set the parameters is a very challenging task. Xu et al.

developed a novelmodel based on probabilisticmatrix factorization

(Xu et al., 2019). This model firstly integrates the similarity in the

miRNA-disease network; And then performs a probability matrix

factorization operation based on the interaction matrix and the

similarity matrix.

However, the aforementioned models cannot still achieve

promising performance in predicting miRNA-disease associations.

Note that deep learning technology has recently been applied to the

field of biological computing (Fu et al., 2020; Cai et al., 2021a,b; Liu

et al., 2022c; Peng et al., 2022a,b,c; Tian et al., 2022; Xu et al., 2023;

Zhang et al., 2023). For instance, Chen et al. constructed a restricted

Boltzmannmodel that can predict associations in different domains

(Chen et al., 2015). Because the variability among multiple types

cannot be fully modeled, the prediction accuracy is not promising.

Chen et al. pre-trained all miRNA-disease pairs on a restricted

Boltzmann model and fine-tuned on DBN on the same proportion

of positive and negative samples to obtain prediction scores (Chen,

2021). Peng et al. extract features based on a three-autoencoder and

then apply a convolutional network to predict the final label (Peng

et al., 2019).

Recently, graph neural networks have received much attention

from the researchers. For instance, Chen et al. developed a

method for miRNA disease association determination based on

heterogeneous graphs (Vickers et al., 2014). Furthermore, Chen

et al. proposed a network-integrated miRNA-disease-associated

internal and external score prediction method (Chen and Zhang,

2014). Chen et al. proposed a predictive model integrating matrix

deconstruction and heterogeneous graph aggregation (Chen et al.,

2016). Chen et al. utilized matrix factorization to alleviate the

influence of noise in adjacent matrices, and then perform node

aggregation operations on heterogeneous networks. Mugunga

proposed a predictive model based on path features and random

walk to obtain correlation scores for miRNA-associated diseases,

and potential miRNA-disease associations would be associated with

high prediction scores (Mugunga et al., 2017). Guo et al. used a

decision fusion strategy to prioritize the results of existingmethods,

and then verified the effectiveness of the decision fusion strategy

(Guang, 2018). Zeng et al. constructed a heterogeneous network to

predict potential associations between miRNAs and disease, while

also accounting for dataset imbalance (Zeng, 2017). The model also

uses a multi-layer perceptron-based approach to predict miRNA-

disease pairs, integrating a variety of biological data resources.

Although the aforementioned methods are outstanding in

predicting miRNA-disease associations, few studies consider

the similarity and topological information comprehensively.

Generally speaking, when the topological structure is very sparse,

feature information becomes more important in association

prediction; when feature information is incomplete, topological

information can also play an auxiliary role. Inspired by this

guidance, we propose a GCN and autoencoder-based approach

that can comprehensively consider both feature and topological

information in miRNA-disease networks. Our contributions can be

summarized as follows:

1. We develop a GCNA-MDA model to predict miRNA-disease

association based on GCN and autoencoders, which achieves the

excellent performance. We employ dual-autoencoders to extract

disease and miRNA features, which improves the robustness of

node presentation. At the same time, we apply a 2-layer GCN

to further aggregate disease and miRNA node features by fully

considering the topological information.

2. We propose a robust strategy for constructing miRNA and

disease basic feature matrix. Combining feature similarity

and Gaussian similarity, a unified similarity matrix is

constructed. Adding association information to the disease and
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miRNA nodes respectively make the feature representation

more abundant, thus alleviate the negative impact of

insufficient data.

3. We conduct multiple comparison experiments on the HMDD

dataset to verify that the GCNA-MDA model can accurately

perform the prediction task. Moreover, we construct case studies

to verify that the GCNA-MDA model can indeed be applied to

examine the specific miRNA-disease associations.

2. Materials and methods

2.1. Dataset

The dataset used in the experiment could be downloaded from

the HMDD v2.0 database (Li et al., 2014). The dataset includes 5430

validated associations generated by 495 miRNAs and 383 diseases.

It can be abbreviated as adjacency matrix A, in which there are

495 × 383 miRNA disease associations. If disease d is associated

with miRNA m, the association relationship is satisfied, that is,

A(m, d) = 1, otherwise its value is 0.

2.2. Constructing miRNA and disease basic
feature matrix

In this section, we describe in detail the process of constructing

robust initial feature for miRNAs and diseases. These similarity

matrices can be used as the input matrices for the autoencoder in

the next stage. The main process will be introduced below.

2.2.1. Disease feature similarly
Based on the collected disease original feature information, its

feature similarity network can be constructed (Schriml et al., 2012).

Specifically, we apply the strategy of DAG to denote these diseases.

For a disease node d, it is denoted byDAG(d) = (d, v(d), e(d)).

v(d) represents the set of nodes reached to d, and e(d) represents

all edges linked to d. In the DAG graph, the feature contribution

weightW of the upper node x to d is calculated as follows:

W1d(x) =

{

1 if x = d

max{▽ ∗W1d(x
′)|x′ ∈ xchildren} if x 6= d,

(1)

where ▽ represents the adjustment parameter of W, which is

empirically set to 0.5 (Chen and Yan, 2013). Based on d and its

upper nodes, the feature representation value of d can be calculated

as follows:

Df 1(d) =
∑

x∈v(d)

W1d(x). (2)

We hypothesize that the greater the number of DAGs shared

between two disease nodes, the smaller the difference between the

two nodes may be. Thus, the feature similarity of two disease nodes

A and B can be calculated as:

FS1(A,B) =

∑

x∈v(A)
⋂

v(B) W1A(x)+W1B(x)

Df 1(A)+ Df 1(B)
(3)

For disease node d, if two nodes involve approximately

the same DAG(d) level, then two nodes should have different

occurrence ratios and their contribution to the feature weight of

disease d should be different. Thus, we propose the following

equation to compute the influence of disease x on d:

W2d(x) = −log

∣

∣DAG(x)
∣

∣

|D|
, (4)

where D denotes the disease set, and |·| denotes the operation of

calculating the number of elements in the set. Similarly, the feature

representation value of d and the feature similarity of two disease

nodes A and B can be calculated as Equations 5 and 6, respectively:

Df 2(d) =
∑

x∈v(d)

W2d(x), (5)

FS2(A,B) =

∑

x∈v(A)
⋂

v(B) W2A(x)+W2B(x)

Df 2(A)+ Df 2(B)
. (6)

Combining the two measure methods to obtain a more

reasonable feature similarity, the calculation equation is as follows:

FS(A,B) =
FS1(A,B)+ FS2(A,B)

2
. (7)

2.2.2. Similarity based on Gaussian
We hypothesize that two miRNAs with small functional

differences should be associated with diseases with similar

properties (Van Laarhoven et al., 2011). Based on this assumption,

we apply the Gaussian kernel distance calculation equation to

calculate the similarity between disease nodes Da and Db:

GD(Da,Db) = exp(−γd‖Index(Da)− Index(Db)‖
2), (8)

where

− γd = −γ ′

d(
1

|D|

|D|
∑

i=1

‖Index(Di)‖
2), (9)

and γd represents the Gaussian kernel parameter, and represents

the index function, which can index the row vector of the matrix.

Similarly, the Gaussian kernel distance formula between miRNA

nodesmiRa andmiRb is as follows:

GM(miRa,miRb) = exp(−γm‖Index(miRa)− Index(miRb)‖
2),

(10)

where

− γm = −γ ′

m(
1

|M|

|M|
∑

i=1

‖Index(miRi)‖
2), (11)

andM represents the miRNA node set, and γd and γm are often set

to 1 empirically (Chen and Yan, 2013).
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2.2.3. Similarity integration
Due to missing data, some disease pairs may not exist in the

feature similarity. For this case, using Gaussian kernel distance

to measure the distance between diseases can robustly reflect the

differences between diseases. Therefore, the calculation formula of

the overall similarity between disease nodes A and B is formulated

as

SD(A,B) =

{

GD(A,B) + FS(A,B)
2 if x = d

GD(A,B) if x 6= d.
(12)

Similarly, the calculation equation of the overall similarity

between miRNA nodes X and Y is representated as follows:

SM(X,Y) =

{

GM(X,Y) + FM(X,Y)
2 if FM(X,Y) exists

GM(X,Y) otherwise,
(13)

where FM(·, ·) denotes the functional similarity score between two

miRNA nodes.

2.3. Model design

In this section, we propose GCNA-MDA model for

predicting miRNA-disease associations based on GCNs and

dual-autoencoders. It mainly consists of three parts: firstly, a

new similarity calculation strategy is used to obtain the initial

basic feature matrix of miRNA (or disease); secondly, a dual-

autoencoder is applied to extract the robust expression of miRNA

and disease respectively; finally, a 2-layer GCN is applied to

predict miRNA-disease associations. Next, the GCNA-MDAmodel

architecture will be introduced in detail, and its overall framework

is shown in Figure 1.

2.3.1. Node representation
In this subsection, a novel signature expression for miRNA (or

disease) nodes is proposed. Considering that the direct interaction

information between miRNA and disease is very important, we

add disease-related information to the features of miRNA nodes.

Similarly, we also add the corresponding miRNA information to

the disease node. Specifically, according to formulas (13) and (12),

we calculate the respective feature vectors based on miRNAs and

diseases, respectively. Based on the above formula, the fusion with

the miRNA-disease association matrix can be obtained:

Fd = (SD1R1, ..., SD1R495, ..., SD383R1, ..., SD383R495)
T , (14)

Fm = (SM1C1, ..., SM1C495, ..., SM383C1, ..., SM383C495)
T , (15)

where Ri andCj represent the i−th row and j−th column vectors of

the miRNA-disease association matrix, respectively. Subsequently,

the matrices Fm and Fd of miRNAs and diseases were fed into a

dual-autoencoder, respectively.

2.3.2. Feature extraction with dual-autoencoders
Based on the above presentation, the node expression of the

miRNA (or disease) node fused with the correlation relationship

can be obtained. Obviously, the number of nodes is small (383

and 495), but the vector length of each node is high (equal to

twice the number of nodes of each type). In this case, the deep

neural network may suffer from insufficient samples. Fortunately,

autoencoders can play their unique role in this situation. With the

strategy of unsupervised learning, the automatic encoding machine

no longer needs a large number of samples for its training. This is

convenient for us to extract more robust features for the next stage

of association prediction tasks.

We extract features of miRNAs and disease nodes separately

based on a symmetric dual-autoencoder. The process is mainly

divided into two stages of encoding and decoding. During the

encoding phase, the basis vectors of the nodes obtained in the

previous section is fed into the encoder network. By setting a

reasonable number of dimensions, low-rank feature vectors of

miRNAs and diseases can be obtained. The calculation method in

the encoder is:

Y = σe(WeX + be), (16)

where σe() represents the sigmod activation function. We and be
represent the weight and bias matrices in the encoder, respectively.

Both matrices can be efficiently trained in the encoder. Thus, the

low-rank vectors obtained from the encoding stage are fed into the

decoder network. By setting a reasonable number of dimensions,

robust feature vectors for miRNAs and diseases can be obtained.

The calculation method in the decoder is:

F = σd(WdX + bd), (17)

where σd(·) represents the sigmod activation function. Wd and bd
represent the weight and bias matrices in the decoder, respectively.

F is stored as the final feature vector and is fed to the GCN in the

next stage for association prediction tasks. To minimize the final

feature distribution and the node’s initial basic feature distribution,

an optimization objective of the dual-autoencoder can be set as:

Loss =
∑

x∈X

‖x− Fx‖
2. (18)

In our research, we apply the common square loss function as

the optimization objective. The X matrix covers all miRNA and

disease nodes, and x is a row vector in the X matrix, which can be

regarded as a certain node. In the last layer of the decoder, the node

vector length is empirically set to 128.

2.3.3. Predict miRNA–Disease association by GCN
Through the aforementioned process, we can obtain robust

features of miRNAs and disease nodes. It is well known that

graph neural networks can well aggregate node features and fully

consider the topological information of miRNA-disease networks.

Therefore, this study uses GCN to predict whether there is an

association between miRNA nodes and disease nodes. Since GCN

is suitable for tasks on graphs with only one type of nodes and

one type of links. Therefore, in order to obtain a unified node

adjacency matrix, it is necessary to splice miRNA nodes and

disease nodes. For adjacency matrix A, the first 495 indexes of

its row (or column) represent miRNA, and the last 383 indexes
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FIGURE 1

The concatenated feature representations are input to dual-autoencoders.

represent disease. For the elements in the matrix, the sub-matrix

composed of elements from 1 to 495 rows and 496 to 878 columns

represents miRNA-disease association. The specific calculation is

as follows:

A =

(

NMM NMD

NDM NDD

)

. (19)

In the above equation, the size of the adjacency matrix

A is 878 × 878. NMD and NDM represent miRNA-disease

association, and NDD and NMM are set to 0. In GCN, the

feature matrix F obtained in the previous section is fed into

the GCN network as the initial node embedding matrix. Along

with it, matrix A participates in GCN. GCN can aggregate

nodes based on topology information to obtain more effective

node embedding. The node embedding aggregation calculation is

as follows:

Hi+1 = σ (Γ̂ −
1
2 ÂΓ̂ −

1
2HiWi), (20)

where Hi represents the node embedding of the i-th layer,

H0 comes from Fd or Fm. Â represents the adjacency matrix

with self-loops, and Γ̂ represents the degree matrix of Â, Wi

represents the trainable matrix. In this study, we design a 2-

layer GCN to predict miRNA-disease associations as shown

in Figure 2.

3. Results

In this section, our model compares the performance of several

typical models on the HMDD dataset. In order to verify the

reliability of the model, we also conducted 5-fold and 10-fold

cross-validation experiments. At the same time, to demonstrate

that the proposed model has certain practical significance, such

as preliminary prevention and guidance for diseases, we also

constructed corresponding case studies for certain diseases.

3.1. Evaluation strategy

We used common AUC and precision metrics to validate the

performance of our model. Among them, AUC is a comprehensive

indicator, which can reflect the comprehensive performance of the

model. Since the sparse rate in the dataset is ((495X383)− 5430)÷

(495X383) ≈ 97.14%, in other words, the number of negative

samples is far more than that of positive samples. However, from

a practical point of view, we need to pay more attention to the

performance of the model in the positive sample. Therefore, we use

Precision to evaluate the performance of the model. Its calculation

formula is as follows:

Precision =

True Positive rate

True Positive rate+ False Negative rate
. (21)
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FIGURE 2

Prediction of miRNA-disease associations using GCN.

TABLE 1 Precision of six methods in miRNA-disease classification task.

Models Precision (%)

RFMDA (Chen et al., 2018b) 62.53

LMTRDA (Wang et al., 2019) 80.13

ABMDA (Zhao et al., 2019) 81.52

GAEMDA (Li et al., 2021) 81.37

GBDT_LR (Zhou et al., 2020) 83.15

GCNA-MDA 87.80

Furthermore, in N-fold cross-validation experiments, we

perform N-fold cross-validation by randomly splitting the sample

into N equal parts. N − 1 parts are used as the training set, and

the rest are used as the test set. According to this strategy, N

parts are used in turn as test sets, and the remaining parts are

used as training sets to complete all cross-validation experiments.

In the experiment, we consider the AUC metric to measure the

performance of the model.

3.2. Comparative evaluation

We compare the GCNA-MDA model with GAEMDA (Li et al.,

2021), GBDT_LR (Zhou et al., 2020), ABMDA (Zhao et al., 2019),

LMTRDA (Wang et al., 2019), RFMDA (Chen et al., 2018b)

models. The GAEMDA (Li et al., 2021) model fuses similarity

information and topological neighborhood information in the

miRNA-disease network, and integrates GCN and autoencoder

for prediction tasks. GBDT_LR (Zhou et al., 2020), ABMDA

(Zhao et al., 2019) and RFMDA (Chen et al., 2018b) use

ensemble learning strategies to obtain high-quality features and

then make corresponding predictions. Besides, GBDT_LR (Zhou

et al., 2020), ABMDA (Zhao et al., 2019) used a new negative

sample collection strategy to weaken the impact of negative sample

coverage. LMTRDA (Wang et al., 2019) combined multi-way

data for prediction tasks. Table 1 lists the results of performance

comparison, indicating that the GCNA-MDA model obtains the

highest Precision value of 89.82%. Our model fully incorporates

multi-level information, while applying a dual-autoencoder to

further refine the features. Meanwhile, we applies GCN to predict

miRNA-disease associations, making the good use of topological

information. Combining the above two reasons, our model has

achieved the best accuracy results.

For the compared models, RFMDA (Chen et al., 2018b)

achieves the worst performance. The main reason is attributed

that although the model adopts the strategy of integrated learning,

RFMDA (Chen et al., 2018b) does not consider the skew caused by

excessive negative samples and it does not synthesize information

from multiple sources. While the rest of the models employing

multiple information significantly outperform the RFMDA (Chen

et al., 2018b) model, which exhibits the importance of integrating

multiple information. In addition, GBDT_LR (Zhou et al., 2020)

combined with ABMDA (Zhao et al., 2019) applied the strategy of

ensemble learning and weakening negative samples, resulting in a

significant performance improvement.

3.3. Scalability evaluation

To measure the scalability of the GCNA-MDA model, we

perform 5- and 10-fold cross-validation on the HMDD dataset. The

results of 5-fold cross-validation are shown in Figure 3. The GCNA-

MDA model achieved AUC values of 0.867, 0.878, 0.875, 0.878,

and 0.867 in five experiments. The average of 5 AUCs is 0.8730,

and the standard deviation is 0.00526. This shows that our model

has good scalability and its performance is not easily affected by
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FIGURE 3

AUC performance of GCNA-MDA model on 5-fold cross-validation.

random factors. In order to further eliminate the interference of

other factors, our GCNA-MDA model was subjected to a 10-fold

cross-validation experiment on the HMDD dataset. Figure 4 shows

the AUC performance of 10-fold cross-validation. The GCNA-

MDA model achieved AUC values of 0.860, 0.863, 0.877, 0.889,

0.873, 0.879, 0.881, 0.882, 0.875, and 0.876 in 10 experiments. It can

be calculated that the average value of the AUC indicator is 0.8755,

and the standard deviation is 0.00561. We can find that there is

only a difference of 0.0003 between the means of the two groups

of experiments, and a difference of 0.00338 between the standard

deviations of the two groups. Such variance is perfectly acceptable

because random sampling is not controllable. It shows that the

performance of the GCNA-MDA model is very stable, and it also

shows that its accuracy will not be affected by random sampling. In

addition, thismay also be due to the local sampling strategy adopted

in our research, so that the distribution and ratio of positive and

negative samples tend to be similar at the same time.

3.4. Evaluation of di�erent forecasting
methods

Table 2 compares the performance of two autoencoder-based

methods. The DFELMDA model (Liu et al., 2022b) employs

autoencoders for feature extraction and random forests formiRNA-

disease association prediction. While it performs well on the AUC

indicator, its performance on other indicators is unsatisfactory,

possibly due to overfitting caused by random forests. Moreover,

the extreme imbalance of positive and negative samples further

contributes to the low indicators. In contrast, the GCNA-MDA

model performs consistently across all indicators, likely because

it utilizes GCN in the prediction module, which effectively

incorporates topological information. Additionally, we address the

issue of imbalanced samples by maintaining a 1:1 ratio of positive

and negative samples.

FIGURE 4

AUC performance of GCNA-MDA model on 10-fold

cross-validation.

TABLE 2 Performance comparison of twomodels using autoencoders (%).

Models AUC AUPR MCC F1-
score

Precision

86.66 86.80 55.90 73.97 85.78

87.80 88.42 58.33 73.61 90.24

GCNA-MDA 87.54 88.60 58.77 74.57 89.33

87.75 87.99 57.19 75.49 85.19

86.73 87.23 53.51 69.86 88.43

Average 87.30 87.81 56.74 73.50 87.80

DFELMDA

(Liu et al.,

2022b)

95.56 58.49 13.17 14.23 20.57

3.5. Case analysis

In order to verify the validity of our model, we conduct

case analysis of 10 related diseases on the miRNA numbered

hsa-mir-29a. In a more detailed operation, we selected the best

model parameters in a 5-fold cross-validation experiment, and then

selected these diseases in Table 3 as an external test set to predict

the association with hsa-mir-29a. We picked 7 positive samples

associated with hsa-mir-29a and 3 negative samples not associated

with hsa-mir-29a. Table 3 presents the results of the case analysis.

By comparing the results in the original database, the GCNA-MDA

model correctly predicted all associations in the case analysis. This

shows that the GCNA-MDAmodel does have certain reliability and

can be further used as a reference for disease prediction.

We also performed a case analysis of the model on the disease

side. For instance, we analyzed miRNAs potentially associated

with Renal Cell-related cancer. Table 4 presents the analysis

results, indicating that the GCNA-MDAmodel accurately identifies

miRNAs associated with the disease by comparing databases. Thus,

our model is effective for case studies involving both miRNAs

and diseases.
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TABLE 3 A case study of the association of miRNA named hsa-mir-29a

with various diseases.

Diseases Predicted Diseases Predicted

Carcinoma,

hepatocellular

Verified Heart failure Verified

Liver neoplasms verified Cerebral infarction Unverified

Influenza, human verified Colonic neoplasms Verified

Scleroderma,

localized

Verified Gerstmann-Straussler-

Scheinker

disease

Verified

Skin neoplasms Unverified Carcinoma, Small cell Unverified

TABLE 4 A case study of the association of disease named Carcinoma,

Renal Cell with various miRNAs.

miRNAs Predicted miRNAs Predicted

hsa-mir-132 Verified hsa-mir-1303 Verified

hsa-mir-378b Verified hsa-mir-378e Verified

hsa-mir-141 Verified hsa-mir-218 Verified

hsa-mir-19b Verified hsa-mir-196b Unverified

hsa-mir-498 Unverified hsa-mir-3196 Verified

4. Conclusion

In this paper, a GCNA-MDA model that accurately

predicts miRNA-disease associations is proposed based on

dual autoencoders and GCN. We proposed a novel feature

integration strategy based on the combination of multi-way

data such as association similarity and feature similarity. This

allows for a more complete initial representation of the node.

Furthermore, we further perform feature extraction on these

initial node representations with higher dimensions based on the

dual-autoencoder. The self-supervised learning strategy alleviates

the problem of insufficient positively correlated data, resulting in

a more robust initial node embedding matrix. Finally, based on

GCN, we perform corresponding aggregation operations on all

miRNAs and disease nodes, and perform association prediction

tasks. We constructed comparative experiments and scalability

experiments to verify the effectiveness and scalability of our model.

The case analysis of hsa-mir-29a shows that the GCNA-MDA

model has certain practical significance.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding authors. Our data and code are

available at https://github.com/Lqingquan/GCNA-MDA.

Author contributions

All authors listed have made a substantial, direct, and

intellectual contribution to the work and approved it

for publication.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Ambros, V. (2003). Microrna pathways in flies and worms: growth, death, fat, stress,
and timing. Cell 113, 673–676. doi: 10.1016/S0092-8674(03)00428-8

Cai, L., Ren, X., Fu, X., Peng, L., Gao, M., and Zeng, X. (2021a). ienhancer-xg:
interpretable sequence-based enhancers and their strength predictor.Bioinformatics 37,
1060–1067. doi: 10.1093/bioinformatics/btaa914

Cai, L., Wang, L., Fu, X., Xia, C., Zeng, X., and Zou, Q. (2021b). Itp-
pred: an interpretable method for predicting, therapeutic peptides with fused
features low-dimension representation. Briefings Bioinformat. 22, bbaa367.
doi: 10.1093/bib/bbaa367

Chen, X. (2021). Deep-belief network for predicting potential mirna-disease
associations. Briefing Bioinformat. 22, bbaa186. doi: 10.1093/bib/bbaa186

Chen, X., Clarence Yan, C., Zhang, X., Li, Z., Deng, L., Zhang, Y., et al. (2015).
Rbmmmda: predicting multiple types of disease-microrna associations. Sci. Rep. 5,
13877. doi: 10.1038/srep13877

Chen, X., Huang, L., Xie, D., and Zhao, Q. (2018a). Egbmmda: extreme gradient
boosting machine for mirna-disease association prediction. Cell Death Dis. 9, 3.
doi: 10.1038/s41419-017-0003-x

Chen, X., Liu, M.-X., and Yan, G.-Y. (2012). Rwrmda: predicting novel human
microrna–disease associations.Mol. Biosyst. 8, 2792–2798. doi: 10.1039/c2mb25180a

Chen, X., Sun, L.-G., and Zhao, Y. (2021). Ncmcmda: mirna–disease association
prediction through neighborhood constraint matrix completion. Briefings Bioinformat.
22, 485–496. doi: 10.1093/bib/bbz159

Chen, X., Wang, C.-C., Yin, J., and You, Z.-H. (2018b). Novel human mirna-disease
association inference based on random forest. Mol. Ther. Nucleic Acids 13:568–579.
doi: 10.1016/j.omtn.2018.10.005

Chen, X., Xie, D., Zhao, Q., and You, Z.-H. (2019a). Micrornas and complex
diseases: from experimental results to computational models. Briefings Bioinformat. 20,
515–539. doi: 10.1093/bib/bbx130

Chen, X., Yan, C. C., Zhang, X., You, Z.-H., Deng, L., Liu, Y., et al. (2016). Wbsmda:
within and between score for mirna-disease association prediction. Sci. Rep. 6, 1–9.
doi: 10.1038/srep21106

Chen, X., and Yan, G.-Y. (2013). Novel human lncrna–disease association
inference based on lncrna expression profiles. Bioinformatics 29, 2617–2624.
doi: 10.1093/bioinformatics/btt426

Chen, X., and Yan, G.-Y. (2014). Semi-supervised learning for potential human
microrna-disease associations inference. Sci. Rep. 4, 5501. doi: 10.1038/srep05501

Chen, X., Yin, J., Qu, J., and Huang, L. (2018c). Mdhgi: matrix
decomposition and heterogeneous graph inference for mirna-disease association

Frontiers inMicrobiology 08 frontiersin.org204

https://doi.org/10.3389/fmicb.2023.1170559
https://github.com/Lqingquan/GCNA-MDA
https://doi.org/10.1016/S0092-8674(03)00428-8
https://doi.org/10.1093/bioinformatics/btaa914
https://doi.org/10.1093/bib/bbaa367
https://doi.org/10.1093/bib/bbaa186
https://doi.org/10.1038/srep13877
https://doi.org/10.1038/s41419-017-0003-x
https://doi.org/10.1039/c2mb25180a
https://doi.org/10.1093/bib/bbz159
https://doi.org/10.1016/j.omtn.2018.10.005
https://doi.org/10.1093/bib/bbx130
https://doi.org/10.1038/srep21106
https://doi.org/10.1093/bioinformatics/btt426
https://doi.org/10.1038/srep05501
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Liao et al. 10.3389/fmicb.2023.1170559

prediction. PLoS Comput. Biol. 14, e1006418. doi: 10.1371/journal.pcbi.
1006418

Chen, X., Zhu, C.-C., and Yin, J. (2018d). Predicting mirna-diseaseassociation
based on inductive matrix completion. Bioinformatics 34, 4256–4265.
doi: 10.1093/bioinformatics/bty503

Chen, X., Zhu, C.-C., and Yin, J. (2019b). Ensemble of decision tree
reveals potential mirna-disease associations. PLoS Comput. Biol. 15, e1007209.
doi: 10.1371/journal.pcbi.1007209

Chen, X. Y. C., and Zhang, X. (2014). Hgimda: heterogeneous graphinference
for mirna-disease association prediction. Oncotarget 7(10):65257–65269.
doi: 10.18632/oncotarget.11251

Fu, X., Cai, L., Zeng, X., and Zou, Q. (2020). Stackcppred: a stacking and
pairwise energy content-based prediction of cell-penetrating peptides and their uptake
efficiency. Bioinformatics 36, 3028–3034. doi: 10.1093/bioinformatics/btaa131

Guang, H. (2018). Predicting microrna-disease associations using label propagation
based on linear neighborhood similarity. J. Biomed. Informat. 82, 169–177.
doi: 10.1016/j.jbi.2018.05.005

Hu, H., Zhang, L., Ai, H., Zhang, H., Fan, Y., Zhao, Q., et al. (2018). Hlpi-ensemble:
prediction of human lncrna-protein interactions based on ensemble strategy. RNA Biol.
15, 797–806. doi: 10.1080/15476286.2018.1457935

Jiang, Q., Hao, Y., Wang, G., Juan, L., Zhang, T., Teng, M., et al. (2010).
Prioritization of disease micrornas through a human phenome-micrornaome network.
BMC Syst. Biol. 4, 1–9. doi: 10.1186/1752-0509-4-S1-S2

Jopling, C. L., Yi, M., Lancaster, A. M., Lemon, S. M., and Sarnow, P. (2005).
Modulation of hepatitis c virus rna abundance by a liver-specific microrna. Science 309,
1577–1581. doi: 10.1126/science.1113329

Jung, Baltimore David, T. K. D., P, B. M., and Kuang, C. (2006). NF-KappaB-
Dependent Induction of microRNA miR-146, an Inhibitor Targeted to Signaling Proteins
of Innate Immune Responses (Thesis).

Karp, X., and Ambros, V. (2005). Encountering micrornas in cell fate signaling.
Science 310, 1288–1289. doi: 10.1126/science.1121566

Li, X., Xu, J., and Li, Y. (2012). Prioritizing candidate disease mirnas by topological
features in the mirna-target dysregulated network. Syst. Biol. Cancer Res. Drug Discov.
2012, 289–306. doi: 10.1007/978-94-007-4819-4_12

Li, Y., Qiu, C., Tu, J., Geng, B., Yang, J., Jiang, T., et al. (2014). Hmdd v2. 0: a database
for experimentally supported human microrna and disease associations. Nucleic Acids
Res. 42, D1070–D1074. doi: 10.1093/nar/gkt1023

Li, Z., Li, J., Nie, R., You, Z.-H., and Bao, W. (2021). A graph auto-encoder
model for mirna-disease associations prediction. Briefings Bioinformat. 22, bbaa240.
doi: 10.1093/bib/bbaa240

Liu, W., Jiang, Y., Peng, L., Sun, X., Gan, W., Zhao, Q., et al. (2022a). Inferring
gene regulatory networks using the improved markov blanket discovery algorithm.
Interdiscipl. Sci. Computat. Life Sci. 2022, 1–14. doi: 10.1007/s12539-021-00478-9

Liu, W., Lin, H., Huang, L., Peng, L., Tang, T., Zhao, Q., et al. (2022b). Identification
of mirna–disease associations via deep forest ensemble learning based on autoencoder.
Briefings Bioinformat. 23, bbac104. doi: 10.1093/bib/bbac104

Liu, W., Sun, X., Yang, L., Li, K., Yang, Y., and Fu, X. (2022c). Nscgrn: a network
structure control method for gene regulatory network inference. Briefings Bioinformat.
23,bbac156. doi: 10.1093/bib/bbac156

Meng, F., Henson, R., Wehbe–Janek, H., Ghoshal, K., Jacob, S. T., and Patel, T.
(2007). Microrna-21 regulates expression of the pten tumor suppressor gene in human
hepatocellular cancer. Gastroenterology 133, 647–658. doi: 10.1053/j.gastro.2007.
05.022

Miska, E. A. (2005). How micrornas control cell division, differentiation and death.
Curr. Opin. Genet. Dev. 15, 563–568. doi: 10.1016/j.gde.2005.08.005

Mugunga, I., Ju, Y., Liu, X., and Huang, X. (2017). Computational prediction of
human disease-related micrornas by path-based random walk. Oncotarget 8, 58526.
doi: 10.18632/oncotarget.17226

Peng, J., Hui, W., Li, Q., Chen, B., Hao, J., Jiang, Q., et al. (2019). A
learning-based framework for mirna-disease association identification using
neural networks. Bioinformatics 35, 4364–4371. doi: 10.1093/bioinformatics/
btz254

Peng, L., Wang, C., Tian, G., Liu, G., Li, G., Lu, Y., et al. (2022a).
Analysis of ct scan images for covid-19 pneumonia based on a deep ensemble

framework with densenet, swin transformer, and regnet. Front. Microbiol. 13, 995323.
doi: 10.3389/fmicb.2022.995323

Peng, L., Wang, F., Wang, Z., Tan, J., Huang, L., Tian, X., et al. (2022b). Cell–
cell communication inference and analysis in the tumour microenvironments from
single-cell transcriptomics: data resources and computational strategies. Briefings
Bioinformat. 23, bbac234. doi: 10.1093/bib/bbac234

Peng, L., Yang, C., Huang, L., Chen, X., Fu, X., and Liu, W. (2022c).
Rnmflp: predicting circrna–disease associations based on robust nonnegative
matrix factorization and label propagation. Briefings Bioinformat. 23, bbac155.
doi: 10.1093/bib/bbac155

Schriml, L. M., Arze, C., Nadendla, S., Chang, Y.-W. W., Mazaitis, M., Felix, V.,
et al. (2012). Disease ontology: a backbone for disease semantic integration. Nucleic
Acids Res. 40, D940–D946. doi: 10.1093/nar/gkr972

Tian, G., Wang, Z., Wang, C., Chen, J., Liu, G., Xu, H., et al. (2022).
A deep ensemble learning-based automated detection of covid-19 using lung
ct images and vision transformer and convnext. Front. Microbiol. 13, 1024104.
doi: 10.3389/fmicb.2022.1024104

Van Laarhoven, T., Nabuurs, S. B., and Marchiori, E. (2011). Gaussian interaction
profile kernels for predicting drug–target interaction. Bioinformatics 27, 3036–3043.
doi: 10.1093/bioinformatics/btr500

Vasudevan, S., Tong, Y., and Steitz, J. A. (2007). Switching from repression
to activation: micrornas can up-regulate translation. Science 318, 1931–1934.
doi: 10.1126/science.1149460

Vickers, K. C., Rye, K.-A., and Tabet, F. (2014). Micrornas in the
onset and development of cardiovascular disease. Clin. Sci. 126, 183–194.
doi: 10.1042/CS20130203

Wang, C.-C., Han, C.-D., Zhao, Q., and Chen, X. (2021). Circular rnas and complex
diseases: from experimental results to computational models. Briefings Bioinformat. 22,
bbab286. doi: 10.1093/bib/bbab286

Wang, L., You, Z.-H., Chen, X., Li, Y.-M., Dong, Y.-N., Li, L.-P., et al. (2019).
Lmtrda: Using logistic model tree to predict mirna-disease associations by fusingmulti-
source information of sequences and similarities. PLoS Comput. Biol. 15, e1006865.
doi: 10.1371/journal.pcbi.1006865

Xu, J., Cai, L., Liao, B., Zhu, W., Wang, P., Meng, Y., et al. (2019). Identifying
potential mirnas–disease associations with probability matrix factorization. Front.
Genet. 10, 1234. doi: 10.3389/fgene.2019.01234

Xu, J., Xu, J., Meng, Y., Lu, C., Cai, L., Zeng, X., et al. (2023). Graph
embedding and gaussian mixture variational autoencoder network for end-to-
end analysis of single-cell rna sequencing data. Cell Rep. Methods 2023, 100382.
doi: 10.1016/j.crmeth.2022.100382

You, Z.-H., Huang, Z.-A., Zhu, Z., Yan, G.-Y., Li, Z.-W., Wen, Z., et al.
(2017). Pbmda: A novel and effective path-based computational model for
mirna-disease association prediction. PLoS Computat. Biol. 13, e1005455.
doi: 10.1371/journal.pcbi.1005455

Zeng, X. (2017). Inferring microrna-disease associations by random walk on a
heterogeneous network with multiple data sources. IEEE-ACM Transact. Comput. Biol.
Bioinformat. 14, 905–915. doi: 10.1109/TCBB.2016.2550432

Zeng, X., Liu, L., Lü, L., and Zou, Q. (2018). Prediction of potential disease-
associated micrornas using structural perturbation method. Bioinformatics 34, 2425–
2432. doi: 10.1101/223693

Zhang, L., Yang, P., Feng, H., Zhao, Q., and Liu, H. (2021). Using network distance
analysis to predict lncrna–mirna interactions. Interdiscipl. Sci. Comput. Life Sci. 13,
535–545. doi: 10.1007/s12539-021-00458-z

Zhang, Z., Xu, J., Wu, Y., Liu, N., Wang, Y., and Liang, Y. (2023). Capsnet-lda:
predicting lncrna-disease associations using attention mechanism and capsule network
based onmulti-view data. Briefings Bioinformat. 24, bbac531. doi: 10.1093/bib/bbac531

Zhao, Y., Chen, X., and Yin, J. (2019). Adaptive boosting-based computational
model for predicting potential mirna-disease associations. Bioinformatics 35, 4730–
4738. doi: 10.1093/bioinformatics/btz297

Zhou, S., Wang, S., Wu, Q., Azim, R., and Li, W. (2020). Predicting potential
mirna-disease associations by combining gradient boosting decision tree with logistic
regression. Comput. Biol. Chem. 85, 107200. doi: 10.1016/j.compbiolchem.2020.107200

Zhu, C.-C., Wang, C.-C., Zhao, Y., Zuo, M., and Chen, X. (2021). Identification of
mirna–disease associations viamultiple information integration with bayesian ranking.
Briefings Bioinformat. 22, bbab302. doi: 10.1093/bib/bbab302

Frontiers inMicrobiology 09 frontiersin.org205

https://doi.org/10.3389/fmicb.2023.1170559
https://doi.org/10.1371/journal.pcbi.1006418
https://doi.org/10.1093/bioinformatics/bty503
https://doi.org/10.1371/journal.pcbi.1007209
https://doi.org/10.18632/oncotarget.11251
https://doi.org/10.1093/bioinformatics/btaa131
https://doi.org/10.1016/j.jbi.2018.05.005
https://doi.org/10.1080/15476286.2018.1457935
https://doi.org/10.1186/1752-0509-4-S1-S2
https://doi.org/10.1126/science.1113329
https://doi.org/10.1126/science.1121566
https://doi.org/10.1007/978-94-007-4819-4_12
https://doi.org/10.1093/nar/gkt1023
https://doi.org/10.1093/bib/bbaa240
https://doi.org/10.1007/s12539-021-00478-9
https://doi.org/10.1093/bib/bbac104
https://doi.org/10.1093/bib/bbac156
https://doi.org/10.1053/j.gastro.2007.05.022
https://doi.org/10.1016/j.gde.2005.08.005
https://doi.org/10.18632/oncotarget.17226
https://doi.org/10.1093/bioinformatics/btz254
https://doi.org/10.3389/fmicb.2022.995323
https://doi.org/10.1093/bib/bbac234
https://doi.org/10.1093/bib/bbac155
https://doi.org/10.1093/nar/gkr972
https://doi.org/10.3389/fmicb.2022.1024104
https://doi.org/10.1093/bioinformatics/btr500
https://doi.org/10.1126/science.1149460
https://doi.org/10.1042/CS20130203
https://doi.org/10.1093/bib/bbab286
https://doi.org/10.1371/journal.pcbi.1006865
https://doi.org/10.3389/fgene.2019.01234
https://doi.org/10.1016/j.crmeth.2022.100382
https://doi.org/10.1371/journal.pcbi.1005455
https://doi.org/10.1109/TCBB.2016.2550432
https://doi.org/10.1101/223693
https://doi.org/10.1007/s12539-021-00458-z
https://doi.org/10.1093/bib/bbac531
https://doi.org/10.1093/bioinformatics/btz297
https://doi.org/10.1016/j.compbiolchem.2020.107200
https://doi.org/10.1093/bib/bbab302
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Frontiers in Microbiology 01 frontiersin.org

Composition of subgingival 
microbiota associated with 
periodontitis and diagnosis of 
malignancy—a cross-sectional 
study
Aswathy Narayanan 1,2†, Birgitta Söder 3†, Jukka Meurman 4, 
Anna Lundmark 5, Yue O. O. Hu 6,7, Ujjwal Neogi 8 and 
Tülay Yucel-Lindberg 5*
1 Division of Clinical Microbiology, Department of Laboratory Medicine, ANA Futura, Karolinska Institutet, 
Stockholm, Sweden, 2 Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska 
Institutet, Stockholm, Sweden, 3 Division of Periodontology, Department of Dental Medicine, Karolinska 
Institutet, Huddinge, Sweden, 4 Department of Oral and Maxillofacial Diseases, University of Helsinki and 
Helsinki University Hospital, Helsinki, Finland, 5 Division of Pediatric Dentistry, Department of Dental 
Medicine, Karolinska Institutet, Huddinge, Sweden, 6 Department of Microbiology, Tumor and Cell 
Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden, 
7 School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, China, 
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Periodontitis is one of the world’s most prevalent infectious conditions, affecting 
between 25 and 40% of the adult population. It is a consequence of the complex 
interactions between periodontal pathogens and their products, which trigger 
the host inflammatory response, chronic inflammation, and tissue destruction. 
Chronic systemic low-grade inflammation is involved in numerous diseases, and 
it is also known that long-lasting inflammation and chronic infections predispose 
one to cancer. Here, we characterized and compared the subgingival microbiota 
associated with periodontitis and diagnosis of malignancy in a longitudinal 10-
year follow-up study. The study was conducted on 50 patients with periodontitis 
and 40 periodontally healthy individuals. The recorded clinical oral health 
parameters were periodontal attachment loss (AL), bleeding on probing (BOP), 
gingival index (GI), probing depth (PD), and plaque index (PI). Subgingival plaque 
was collected from each participant, from which DNA was extracted, and 16S 
rRNA gene amplicon sequencing performed. Cancer diagnoses data were 
collected between the years 2008–2018 from the Swedish Cancer Registry. 
The participants were categorized based on having cancer at the time of sample 
collection (CSC), having developed cancer later (DCL), and controls without any 
cancer. The most abundant phyla across all 90 samples were Actinobacteria, 
Proteobacteria, Firmicutes, Bacteroidetes, and Fusobacteria. At the genus level, 
Treponema, Fretibacterium, and Prevotella were significantly more abundant in 
samples of periodontitis patients compared to non-periodontitis individuals. With 
regard to samples of cancer patients, Corynebacterium and Streptococcus were 
more abundant in the CSC group; Prevotella were more abundant in the DCL 
group; and Rothia, Neisseria, and Capnocytophaga were more abundant in the 
control group. In the CSC group, we also found that the presence of periodontal 
inflammation, in terms of BOP, GI, and PLI, significantly correlated with species 
belonging to the genera Prevotella, Treponema, and Mycoplasma. Our results 
revealed that several subgingival genera were differentially enriched among the 
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studied groups. These findings underscore the need for further research to fully 
understand the role that oral pathogens may play in the development of cancer.

KEYWORDS

periodontitis, supragingival plaque, cancer, malignancy, 16S rRNA gene sequencing, 

oral microbiota

Introduction

The oral cavity harbors thousands of different microbial species 
that can be  found on soft tissue and teeth forming biofilms, or 
communities of microorganisms attached to a surface (Keijser et al., 
2008). The most prevalent oral biofilm, dental plaque, exists on tooth 
surfaces in the form of complex multispecies communities. As the 
biofilm matures and develops, there is also a gradual shift from Gram-
positive aerobic bacteria towards Gram-negative and anaerobic 
species, affecting the gingival environment with respect to pH and 
oxygen levels, which promotes species favored by this milieu 
(Asikainen and Chen, 1999; O'Toole et al., 2000). In addition, the 
inflammatory response from the host can enrich the environment 
with inflammatory mediators that enhance the growth of certain 
“inflammophilic” bacteria, which feed off inflammatory products 
(Hajishengallis, 2014). Such inflammation is generally resolved in 
normal healing processes, whereas insufficient resolution results in 
neutrophil-mediated chronic inflammation and destruction of tissue 
and bone structures (Serhan, 2014). Chronic inflammation involves 
several diseases, such as rheumatoid arthritis, periodontitis, type 2 
diabetes mellitus, and cardiovascular disease. It is also known that 
long-lasting inflammation, secondary to chronic infections or 
infectious agents, predisposes one to cancer development (Coussens 
and Werb, 2002; de Martel et al., 2012; Garrett, 2015).

Periodontal disease (periodontitis) is a major cause of tooth loss 
in adults and one of the world’s most prevalent chronic infectious 
inflammatory diseases, affecting up to 25–40% of the adult population. 
The most severe form of the disease affects 5–15% of the global 
population (Page and Eke, 2007; Dye, 2012; Eke et  al., 2015). 
Periodontitis is characterized by the destruction of tooth-supporting 
tissue and bone, which may ultimately result in tooth loss. The disease 
results from the complex interactions between periodontal 
microorganisms and their products, triggering the host inflammatory 
response. The process is initiated when a biofilm forms near the 
gingiva and releases various substances, such as lipopolysaccharides, 
peptidoglycans, and toxins, which elicit a host response (Page and 
Kornman, 1997; Pollanen et al., 2012; Yucel-Lindberg and Bage, 2013). 
The “red complex” bacteria comprising Porphyromonas gingivalis 
(P. gingivalis), Treponema denticola, and Tannerella forsythia has long 
been associated with the disease, but this view has changed with the 
emergence of new technologies towards a model where periodontitis 
is associated with a shift in the whole microbial composition rather 
than focusing on individual microbial species. As a consequence of 
bacterial challenge, the host immune response initiates the activation 
and stimulation of pro-inflammatory cytokines, chemokines, 
prostaglandins, toll-like receptors, and proteolytic enzymes, 
collectively contributing to the pathogenesis of periodontitis 
(Bascones et al., 2005). The expression and/or production of these 
factors have been demonstrated using gingival tissue biopsies, gingival 

fluid, and saliva, as well as different types of oral cells (Båge et al., 2011; 
Davanian et al., 2012; Cavalla et al., 2015). The ongoing “battle” of 
inflammation is not only measurable locally in the oral samples but 
also systemically, as increased levels of inflammatory mediators have 
been demonstrated in the blood of patients with oral diseases, 
particularly in those with periodontitis (Van Dyke, 2009; 
Hajishengallis and Chavakis, 2021).

Chronic inflammatory conditions associated with infections may 
lead to environments that promote genomic lesions and the initiation 
of tumors. Previous studies have reported an association between 
periodontitis and an increased risk of total cancer (Romandini et al., 
2021; Kim et al., 2022). One meta-regression analysis based on seven 
case–control studies showed a statistically higher risk of oral cancer 
with increasing number of missing teeth, with the latter considered a 
proxy for chronic dental/oral infections (Virtanen et al., 2014). A 
systematic review and meta-analysis performed recently demonstrated 
that periodontal disease significantly increases the risk of colorectal 
cancer by 44% (Li et al., 2021). Additionally, it has been reported that 
oral squamous cell carcinoma, representing 95% of oral malignancies, 
is associated with alterations in the oral microbiome. Several studies 
have linked oral microbiota and periodontal pathogens to head and 
neck cancer, pancreatic cancers, and colorectal cancer (Ahn et al., 
2012; Michaud, 2013; Flemer et  al., 2018; Irfan et  al., 2020). For 
example, both in vivo and in vitro studies have suggested that the key 
periodontal pathogen P. gingivalis contributes to oral carcinogenesis 
(Groeger et  al., 2011; Gallimidi et  al., 2015). In contrast, it was 
reported (Soder et al., 2021) that P. gingivalis and Prevotella intermedia 
were more prevalent among subjects without malignancy, whereas the 
periodontal bacteria Aggregatibacter actinomycetemcomitans was 
strongly associated with malignancy. According to different meta-
analyses and reviews (Michaud et al., 2017; Nwizu et al., 2017; Li et al., 
2022), the existing data provide support for an association between 
periodontal disease and risk of different types of cancer including 
head and neck, lung, colorectal, and pancreatic cancers, although 
additional research efforts are necessary to further identify the role of 
oral infections in malignancy. In this study, we aimed to characterize 
and compare subgingival microbiota associated with periodontitis and 
the diagnosis of cancer, data extracted from national register of 
malignancies, in a longitudinal 10-year follow-up study, using 16S 
rRNA gene sequence analysis.

Materials and methods

Sample collection, DNA extraction and 
sequencing

A total of 99 individuals divided into two groups, a periodontitis 
group (n = 55) and a non-periodontitis control group (n = 44), were 
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included in the present study. The participants of this study were 
derived from our Swedish cohort study, which was described in detail 
previously (Soder et al., 2007). In total, 1,676 participants (838 women 
and 838 men) were randomly selected from a database registry of all 
citizens of Stockholm County who were born on the 20th of the 
month (between years 1945–1954) and underwent an initial oral 
clinical examination (1985). In 2009, the participants were clinically 
reexamined for the prevalence of periodontal disease, from which 99 
age- and gender-matched subjects with and without periodontitis 
were enrolled in the study. The included oral clinical parameters were 
gingival index (GI), pocket depth (PD), bleeding on probing (BOP), 
clinical attachment loss (CAL), and plaque index (PLI). For each 
tooth, BOP and CAL were assessed from six different surfaces using a 
periodontal probe (HU-FRIEDY Perio Probe). The criteria used for 
the classification of periodontitis were at least one site with PD 
≥5 mm, CAL ≥5 mm, and BOP as described previously (Soder et al., 
2007; Yakob et al., 2012). Subgingival plaque samples were carefully 
collected from four sites on each participant, from the second 
premolar in each quadrant, and stored at −80°C until 
microbiome analysis.

The diagnoses of malignancy were obtained from the Swedish 
Cancer Registry included in the registers of the National Board of 
Health and Welfare, Sweden. For the present study, the 10-year 
cumulative cancer diagnoses were collected between the years 2009–
2018. The cancer cases that had been diagnosed were: orodigestive 
cancer, breast cancer, prostate cancer, gynaecological cancers, 
haematological malignancies, head and neck cancers and liver cancer. 
The study was approved by the Ethics Committee of the Karolinska 
University Hospital at Huddinge (Dnr 2007/1669-31; 2012/590-32; 
2017/2204-32), and all participants gave their informed consent to 
be included in the study.

DNA extraction, 16S rRNA gene 
amplification, and sequencing

DNA was extracted from the 99 subgingival plaque samples 
(pooled together from all sites) using the QIAamp DNA Mini Kit 
(Qiagen, Valencia, CA, United States) and eluted into 50 μL H2O. The 
V3–V4 regions of the bacterial 16S rRNA gene were amplified with 
1.0 μM 341′F primer (CCTAHGGGRBGCAGCAG), 1.0 μM 805R 
primer (GACTACHVGGGTATCTAATCC) (Herlemann et al., 2011), 
KAPA HotStart ReadyMix (Biosystems, Wilmington, MA, 
United  States), 0.5 ng/μL bovine serum albumin (New England 
Biolabs, Ipswich, MA, United States), and 2.0 ng of DNA. PCR was 
performed at 98°C for 2 min followed by 26 cycles of 98°C for 20 s, 
54°C for 20 s, and 72°C for 15 s, and a final elongation step of 72°C for 
2 min. The samples were purified with polyethylene glycol 6000 
(Merck Millipore, Darmstadt, Germany) and carboxylic acid beads 
(Dynabeads® MyOne™, Thermo Fisher Scientific, Waltham, MA, 
United States) using the procedure described by Lundin et al. (2010). 
Thereafter, 12 μL of the amplified and purified product was used for 
indexing (0.4 μM forward and 0.4 μM reverse indexing primer and 
KAPA HotStart ReadyMix). The conditions for PCR cycling were 
98°C for 2 min followed by 10 cycles of 98°C for 20 s, 62°C for 30 s, and 
72°C for 30 s, and a final step of 72°C for 2 min. After amplification, 
the samples were quantified using a Qubit® 2.0 Fluorometer 
(Invitrogen, Carlsbad, CA, United States), diluted to 2.0 ng/μL, and 

pooled before purification by the same procedure as described above. 
An Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, 
United States) and a Qubit® 2.0 Fluorometer (Invitrogen, Carlsbad, 
CA, United States) were used for checking the amplicon fragment 
sizes and quantification. Equimolar amounts of the indexed samples 
were mixed and sequenced with Illumina MiSeq (Illumina Inc., San 
Diego, CA, United States) at the National Genomics Infrastructure/
Science for Life Laboratory Stockholm.

After sequencing, nine samples with sequencing reads of less than 
10,000 were excluded from further downstream analysis, resulting in 
a final dataset of 90 samples comprising 50 samples with periodontitis 
and 40 samples without periodontal disease (non-periodontitis). After 
the exclusion of low-depth libraries, the median depth of sequencing 
was 195,300 reads per sample [interquartile range (IQR): 146,700–
218,600 reads].

Bioinformatics analysis

The raw paired-end sequences obtained from the Illumina 
sequencing were first checked for base call quality. The base quality 
checking was performed using the FastQC tool (Andrews, 2015). The 
Phred score (Q20) was used as a base quality score threshold for the 
analysis. Adapters were trimmed using TrimGalore (v0.6.4)1, and 
primer sequences were removed with the help of the cutPrimers tool 
(Kechin et al., 2017). A rarefaction curve was generated to ensure 
sufficient sequencing depth in order to proceed with further 
downstream analysis (Supplementary Figure S1). The curves were 
generated by using R package phyloseq to plot the sequencing depth 
of the samples vs. the diversity indices, which showed that all the 
samples had sufficient sequencing depth to capture most of the 
microbial community, as the curves stabilized after 10,000× coverage.

Amplicon sequence variants estimation, 
taxonomic classification, and statistical 
analysis

The pre-processed paired-end sequences were used for further 
downstream analysis using various bioinformatic tools. First, the 
pre-processed reads were analyzed using Quantitative Insights into 
Microbial Ecology version 2 (QIIME2). Amplicon sequence variants 
(ASVs) generated using QIIME2 were used for functional 
interpretation of the microbiota (Bolyen et al., 2019).

To visualize the abundance of taxonomy, sample-wise stacked bar 
plots were constructed at phylum, family, and genus levels using the 
ggplot2 (3.2.1) R package. The results were further analyzed with the 
phyloseq (1.28.0) R package to study the alpha and beta diversity of the 
samples. Alpha diversity was calculated using the estimate_richness R 
function and visualized using the ggplot2 R package. Beta diversity 
was estimated using the ordinate R function and visualized using the 
plot_ordination R function. The clustering of the samples was 
presented with a non-metric multidimensional scaling (NMDS) plot 
based on Bray–Curtis distance. Rarefaction analyses were conducted 

1 https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
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using the rarefy (Vegan v2.6-2) R function. Permutational multivariate 
analysis of variance (PERMANOVA) was performed to test for 
significant differences between the two groups at the genus taxonomic 
level using the vegan (version 2.4-3) R package. The analysis compared 
the groups and provided the top organisms that were responsible for 
their differentiation (Anderson, 2017). Statistical tests were performed 
between NMDS1 and NMDS2 to obtain the significant coordinate, 
and Welch’s t-test (two) was used to calculate the p-values. Correlation 
between microbial taxa and periodontal clinical parameters was 
assessed by the Spearman rank correlation coefficient (significance 
level p  < 0.05) using the psych v2.2.3 R package. The graphical 
representation of the results was done using GraphPad Prism v8.4.2, 
where red indicates a positive correlation and blue indicates a 
negative correlation.

Results

Subgingival plaque microbiota 
composition and its relationship with 
periodontitis

The study cohort comprised 90 participants separated into two 
groups: the periodontitis group (n = 50) and the non-periodontitis 
group (n = 40). The mean age was 58.4 ± 2.7 years for the periodontitis 
group and 59.8 ± 2.9 years for the non-periodontitis group. We also 
categorized the patients based on their longitudinal follow-up of 
10 years as having cancer (n = 35) at the time of sample collection 
(CSC, n = 13), those who developed cancer later (DCL, n = 22), and 
controls who did not have any cancer at the time of sampling but also 
did not develop cancer during the follow-up period (n = 55).

Figure 1A shows the relative abundance distribution of all 90 
included plaque samples at the genus level. The most prominent 
genera (phylum in brackets) across all samples were Rothia, 
Corynebacterium, Actinomyces (Actinobacteria), Neisseria 
(Proteobacteria), Streptococcus (Firmicutes), Capnocytophaga, 
Prevotella (Bacteroidetes), and Leptotrichia (Fusobacteria). Figure 1B 
shows the Beta diversity of samples visualized using a non-metric 
multidimensional scaling (NMDS) plot. There were no clear clusters 
for the periodontitis and non-periodontitis groups. Statistical analyses 
showed no significant differences for NMDS2 but did show significant 
differences with NMDS1 (p < 0.05) between the periodontitis and 
non-periodontitis groups (Figure 1B). At the genus level, the samples 
belonging to the periodontitis and non-periodontitis groups were 
ordered as per the NMDS1 ordinates to visualize the differences in the 
bacterial composition between each sample, as shown in Figure 1B. A 
boxplot of alpha diversity indices with corresponding p-values 
(Supplementary Figure S2) did not show any significant differences 
between groups.

When comparing the periodontitis and non-periodontitis groups, 
the phyla Firmicutes, Bacteroidetes and Epsilonbacteraeota were found 
to be more abundant in individuals having periodontitis, whereas 
Proteobacteria and Fusobacteria were more abundant in the 
non-periodontitis group. The phylum Actinobacteria was found at 
similar levels in both the periodontitis and non-periodontitis groups 
(Figure  2A). The abundances of phyla Firmicutes, Bacteroidetes, 
Proteobacteria Fusobacteria and Epsilonbacteraeota were not 
significantly different between the groups. However, the abundances 

of Spirochaetes and Synergistetes were significantly different between 
the groups (p = 0.01 and p = 0.023, respectively).

At the family level, the most abundant bacteria were 
Actinomycetaceae, Cardiobacteriaceae, Flavobacteriaceae, Neisseriaceae, 
Prevotellaceae, Veillonellaceae, and Streptococcaceae (Figure 2B). The 
abundances of Pasteurellaceae, Spirochaetaceae, Synergistaceae, and 
Carnobacteriaceae were significantly differentially abundant between the 
two groups (p = 0.004, p = 0.01, p = 0.013, p = 0.023, and p = 0.032, 
respectively). The most abundant bacteria at the genus level were 
Actinomyces, Corynebacterium, Neisseria, Prevotella, Streptococcus, and 
Rothia (Figures  2C,D). When comparing the periodontitis vs. 
non-periodontitis samples, the abundances of Haemophilus, Treponema, 
Fretibacterium, Granulicatella, and Prevotella were significantly different 
between the groups (p = 0.01, p = 0.013, p = 0.023, p = 0.03, and p = 0.031, 
respectively) (Figure  2C). Of these, Treponema, Fretibacterium, and 
Prevotella were significantly more abundant in samples of periodontitis 
patients compared to non-periodontitis individuals.

A PERMANOVA analysis was performed to test for differences 
between the two groups. When comparing the oral microbial 
composition between periodontitis and non-periodontitis individuals, 
at the genus level, the periodontitis microbiome had a high abundance 
of Prevotella, Campylobacter, and Treponema, whereas the 
non-periodontitis samples had Rothia, Haemophilus, and 
Capnocytophaga as the top-three most abundant genera (Figure 3). 
However, there were no significant differences in overall microbial 
composition between the two groups (p = 0.27).

Subgingival microbiota composition and its 
association with cancer

Next, we categorized the patients included in this study based on 
their longitudinal follow-up of 10 years as having cancer (CSC), 
developed cancer later (DCL), and controls (Figure  4). The most 
abundant bacteria at the phylum level were Actinobacteria, 
Proteobacteria, Firmicutes, and Bacteroidetes. A comparison of the 
three groups revealed that Actinobacteria were more abundant in the 
non-cancer control group, as were Firmicutes in the CSC group, 
whereas Proteobacteria were enriched in the DCL group (Figure 4A). 
The abundant phyla Firmicutes and Bacteroidetes were not statistically 
significant between among all groups.

At the family level, Streptococcaceae and Corynebacteriaceae were 
enriched in the CSC group, whereas Flavobacteriaceae, Micrococcaceae 
and Neisseriaceae were more abundant in the control group, and 
Leptotrichiaceae were more highly abundant in the DCL group 
(Figure 4B). Moreover, Paludibacteraceae was found to be significantly 
more enriched in the CSC group compared to both the control and 
DCL groups (p = 0.019 and p = 0.02, respectively). At the genus level, 
Streptococcus, Corynebacterium and Fusobacterium were more 
abundant in the CSC group; Neisseria, Rothia, and Capnocytophaga 
were abundant in the control group; and Prevotella were more 
abundant in the DCL group (Figures  4C,D). The genus 
Paludibacteraceae-F0058 was significantly (p = 0.02) enriched in the 
CSC group compared to both the controls and the DCL group.

A PERMANOVA analysis was performed to compare the 
subgingival microbiota between the two different cancer groups (CSC 
and DCL) and the control group. The results revealed that 
Streptococcus, Corynebacterium, and Fusobacterium were enriched in 
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the CSC group, whereas Rothia, Neisseria, and Actinomyces were 
enriched in the control group (Figure 5A). Furthermore, Leptotrichia, 
Streptococcus, and Haemophilus were the top-three most abundant 
genera in the DCL group, whereas Rothia, Capnocytophaga, and 
Campylobacter were more abundant in the control group (Figure 5B). 
The PERMANOVA analysis was also used to compare the cancer 
group (CSC and DCL groups combined) with the control group (with 
no cancer diagnosis). The results showed that the phyla Firmicutes, 

Fusobacteriota, Proteobacteria, and Spirochaetes were more abundant 
in samples from patients diagnosed with cancer, whereas 
Actinobacteria, Bacteroidetes, Epsilo bacteraeota, and Patescibacte were 
more abundant in samples from the control group (Figure not shown).

We also analyzed the relationship between periodontitis and 
cancer using an NMDS plot, and no clear clustering was observed 
between four groups (Supplementary Figure S4), which were 
categorized based on having or not having periodontitis and cancer. 

FIGURE 1

Relative abundance and beta diversity between groups. (A) Relative abundance of the most abundant organisms of all the 90 samples at the genus 
level grouped according to disease status (i.e., periodontitis or non-periodontitis). (B) Difference in beta diversity between the groups represented as 
non-metric multidimensional scaling (NMDS) ordination plots using Bray–Curtis distances; the separations between groups at each axis are seen in 
respective boxplot. The boxplots represent the median (horizontal black line), 25th and 75th quartiles (box edge), and upper and lower ends (whiskers). 
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FIGURE 2

Relative abundance plots of microbiome compositions at different taxonomic levels and comparisons of alpha and beta diversity between periodontitis  
(P) and non-periodontitis (NP) individuals. Distribution of abundant organisms at the (A) phylum, (B) family, and (C) genus levels. (D) Extended error 
barplot showing the most abundant microbiome compositions between periodontitis and non-periodontitis individuals at the genus level. Organisms 
with a mean relative abundance of at least 1% across all samples are represented in different colors, whereas those with <1% abundance and 
unclassified are represented as “Unknown/Others”. The microbial communities denoted with an asterisk (*) are the significant ones between groups.
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The four groups were individuals with non-periodontitis with cancer, 
NPC (n = 15); individuals with both periodontitis and cancer, PC 
(n = 19); individuals with periodontitis but no cancer, PNC (n = 31); 
and individuals with non-periodontitis and without cancer, NPNC 
(n = 25). When comparing these groups, Pseudopropionibacterium was 
differentiated between PC and PNC; as was Granulicatella, Lautropia, 
Haemophilus, and Desulfobulbus between NPC and PNC; and 
Eubacterium saphenum, Filifactor, and Desulfobulbus between 
NPC and PC.

Correlations between microbiota and 
periodontal clinical variables

A correlation analysis (for p  < 0.05) was also performed to 
investigate the relationship between microbiota and periodontal 
disease. A matrix of the correlations between the periodontal clinical 
parameters AL, BOP, GI, PD, and PLI and microbial taxa (species 
level) for the three different groups, CSC, DCL and controls, is 
illustrated in Figure 6. In the CSC group, strong positive correlations 
were observed between the periodontal parameters AL, BOP, and GI 
and the species Prevotella pleuritidis and Treponema parvum 
(coefficients ranging from 0.6 to 0.75). In addition, PLI strongly 
correlated with the bacteria Eubacterium nodatum, Eubacterium 
saphenum, Mycoplasma salivarium, Porphyromonas asaccharolytica, 
Prevotella dentalis, Prevotella pleuritidis, and Treponema parvum. 
Negative correlations were found between AL, BOP, GI, PD, and PLI 
and Actinomyces massiliensis; as well as between Capnocytophaga sp. 
oral taxon and BOP and GI values (Figure 6A). In the DCL group, the 
strongest correlations (coefficients ranging from 0.50 to 0.59) were 
shown between all the periodontal parameters and the bacterium 
Mitsuokella sp. oral taxon. In this group, Prevotella scopos JCM was 

negatively correlated with AL and PD scores (Figure 6B). In contrast 
to the two cancer groups, CSC and DCL, no strong correlations 
(ranging between 0.27 to 0.45) were observed in the control group 
between the periodontal variables and the significantly abundant 
species (Figure 6C).

Discussion

Periodontal infection causes chronic inflammation in the oral 
cavity and is considered an important statistical risk factor for 
several types of cancer (Hajishengallis, 2014; Hajishengallis, 2015; 
Flemer et  al., 2018). Some have proposed that the association 
between periodontitis and the risk of different types of cancer is due 
to the chronic inflammation caused by periodontitis, which drives 
cancer development by infiltration of leukocytes in the tumor 
microenvironment (Hanke et al., 1990; Garrett, 2015). Numerous 
studies have indeed reported a relationship between periodontal 
disease and various types of cancer (Aas et al., 2005; Keijser et al., 
2008; Bik et al., 2010; Segata et al., 2011; Soder et al., 2011, 2021; 
Norder Grusell et al., 2013; Dong et al., 2018; Bai et al., 2022). In 
addition, studies have also shown that the oral microbiota may 
contribute to carcinogenesis by altering the homeostasis/cellular 
metabolism, the immune responses creating a proinflammatory 
microenvironment, cell migration and production of carcinogenic 
metabolites (Garrett, 2015; Bai et al., 2022; Lamont et al., 2022). In 
the current study, we aimed to investigate the subgingival microbial 
composition in periodontal health and disease and its relationship 
with the diagnosis and development of cancer in a longitudinal 
10-year follow-up study. Our 16S rRNA results identified several 
significant genera differentiating individuals with periodontitis 
from those without periodontitis (Haemophilus, Treponema, 

FIGURE 3

PERMANOVA analysis of microbial composition between the periodontitis and non-periodontitis groups at the genus level.
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Fretibacterium, Granulicatella, Prevotella and Defluviitaleaceae 
UCG-011). However, only one genus (Pseudopropionibacterium) 
appeared to be significantly different between the cancer patient 
samples and controls with no cancer.

Our bacterial abundance study was carried out at different 
taxonomic levels, including phylum, family, and genus. First, 
we analyzed the subgingival microbial composition in periodontally 
healthy individuals and patients with periodontitis. In agreement with 

FIGURE 4

Distribution of the most abundant microbiome compositions between control, cancer at sample collection (CSC), and developed cancer later (DCL) 
groups at the (A) phylum, (B) family, and (C) genus levels. (D) Extended error barplot showing the distribution of the most abundant microbiome 
compositions between control, CSC and DCL groups at the genus level. Organisms with a mean relative abundance of at least 1% across all samples 
are represented in different colors, whereas those with <1% abundance and unclassified are represented as “Unknown/Others”.

FIGURE 5

PERMANOVA analysis of microbial composition between control and cancer groups at the genus level: (A) cancer at sample collection (CSC) vs. 
control; (B) developed cancer later (DCL) vs. control.
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previous findings, the most abundant bacteria at the phylum level 
were Actinobacteria, Proteobacteria, Firmicutes, and Bacteroidetes 
(Griffen et al., 2012; Cai et al., 2021; Sedghi et al., 2021). Firmicutes 
and Bacteroidetes were more abundant in the periodontitis group 
compared to the non-periodontitis group, also confirming previous 
findings reporting an increased abundance of Bacteroidetes and 
Firmicutes in periodontitis (Segata et al., 2012; Sedghi et al., 2021). The 
most abundant microbial communities at the genus level were 
Actinomyces, Corynebacterium, Neisseria, Prevotella, Streptococcus, 
and Rothia, whereas Haemophilus, Treponema, Fretibacterium, 
Granulicatella, Prevotella, and Defluviitaleaceae UCG-011 genera were 
significantly different when comparing individuals with and without 
periodontitis. Notably, samples from periodontitis patients had 
significantly higher levels of Treponema, Fretibacterium, and Prevotella 
compared to non-periodontitis individuals. Thus, our results confirm 
earlier research as Treponema, Fretibacterium, and Prevotella 
(belonging to the phyla Spirochetes, Synergistetes, and Bacteroidetes, 
respectively) are reported to play essential roles in the pathogenesis of 
periodontitis (Perez-Chaparro et  al., 2014; Hajishengallis, 2015; 
Lundmark et al., 2019). Similarly, the genus Defluviitaleaceae UCG-011 
(belonging to phylum Firmicutes) is more abundant in supragingival 
plaque samples of periodontitis than healthy controls (Kawamoto 
et al., 2021). Treponema, on the other hand, is a diverse bacterial genus 
and a constituent of healthy oral flora; however, with a vital role in the 
etiology and pathogenesis of periodontal disease, its reduction 
prompts the dysbiosis of microbiota (Buyuktimkin et  al., 2019; 
Velusamy et al., 2019; Li et al., 2021).

Second, we analyzed the distribution of subgingival microbial 
composition and its relationship with occurrence of cancer in the CSC 
and DCL groups. At the phylum level, similar microbial composition 

was observed between the cancer and control groups. Indeed, 
Actinomyces, Corynebacterium, Fusobacterium, Neisseria, Prevotella, 
Rothia, and Streptococcus were the differentially abundant genera 
found in the periodontitis as well as in the cancer groups. In agreement 
with our findings, microbes including Fusobacterium, Streptococcus, 
and Prevotella have been detected in high abundance in cancerous 
periodontal tissues (Dong et al., 2018). Consistent with these findings, 
genomic analysis, 16S rDNA sequence analysis, and quantitative PCR 
have revealed that Fusobacterium sequences are enriched in colorectal 
carcinoma (Kostic et al., 2012). When comparing the three groups 
(CSC, DCL and controls) at the genus level, Neisseria, Rothia, and 
Capnocytophaga were more abundant in the control group, whereas 
Corynebacterium and Streptococcus were more abundant in the CSC 
group, and Prevotella were more abundant in the DCL group. Indeed, 
the genus Corynebacterium, has been shown to be enriched in saliva 
samples of gastric cancer patients (Oliveira et al., 2017). Similarly, 
strains of Streptococcus have been reported to be involved in numerous 
types of cancer including colorectal adenocarcinomas and gastric 
cancer (Abdulamir et  al., 2011). On the other hand, a higher 
abundance of Corynebacterium has also been associated with reduced 
risk of head and neck squamous cell cancer, as well as good oral health 
(Meuric et al., 2017; Hayes et al., 2018).

Several subgingival genera were differentially enriched among the 
study groups. For example, Pseudopropionibacterium (phylum 
Actinobacteria) was found to be  significantly enriched in the 
periodontitis group with cancer, whereas Eubacterium saphenum, 
Filifactor, and Desulfobulbus were found to be  enriched in the 
non-periodontitis group with cancer, suggesting that these genera may 
be involved in cancer development. Notably, Pseudopropionibacterium 
has been found to be more prevalent in cases of apical periodontitis 

FIGURE 6

Spearman rank correlation analysis between subgingival microbiota and periodontal clinical parameters (AL, BOP, GI, PD, PLI). The heatmap shows 
statistically significant (p < 0.05) correlations between microbial taxa (at the species level) and periodontal parameters for the (A) cancer at sample collection 
(CSC), (B) developed cancer later (DCL), and (C) control groups. Positive correlations are displayed in red and negative correlations in blue color.
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and to have a significant difference in abundance in esophageal cancer 
cases compared to controls (Liu et  al., 2020; Perez-Carrasco 
et al., 2023).

Our PERMANOVA results showed that Rothia were the most 
prevalent genus in the oral microbiota in both the non-cancer and 
non-periodontitis groups, which suggests that this genus may have a 
protective effect on periodontitis and cancer development. This 
hypothesis is supported by a previous study demonstrating that the 
genus Rothia were more prevalent in healthy controls compared to 
subjects with oral squamous cell carcinoma (Zhao et al., 2017).

Finally, we investigated the inter-relationship and correlations 
between the microbial communities and periodontitis/
periodontal parameters and cancer (in the CSC and DCL 
samples). The differential abundance of microbial composition 
was confirmed using a PERMANOVA analysis, which compared 
the bacterial compositions between two groups and characterized 
the top discriminative taxa between them. The alpha diversity 
results showed that non-periodontitis individuals had lower 
diversity compared to periodontitis patients. However, there were 
no significant differences in the diversity between periodontitis 
and non-periodontitis groups (Supplementary Figure S2). 
Similarly, there were no significant differences in the diversity 
between the CSC, DCL, and control groups 
(Supplementary Figure S3). Notably, the correlation analysis, 
which was performed to evaluate the relationship between 
microbiota and different clinical periodontal parameters, 
revealed strong correlations between BOP, GI, PLI, and several 
species belonging to genera Prevotella, Treponema, and 
Mycoplasma in the CSC group. Both BOP and GI are well-known 
indicators of gingival inflammation, which may thus contribute 
to the development of cancer.

The strength of our study was the homogeneity of the subject 
material, as the cohort (n = 1,676) was followed-up together for over 
30 years, with cumulated disease data from the national population 
registers of Sweden. The current study is a clinically examined 
sample of the large cohort that was followed-up for 10 years. 
However, the study was limited by the relatively small 10-year 
sample that was available for the present investigation, as well as the 
relatively short follow-up period considering the development of 
new cancer cases. Indeed, the development of cancer is a slow 
process. With regard to the cross-sectional design of the study, 
providing a snapshot of the microbiota collected at one point in 
time, longitudinal studies that follow participants over time are 
needed to gain deeper insights into the relationship between oral 
microbiota and various types of cancer. Another limitation is that 
the study did not consider confounding factors such as smoking, 
medication use or diet into consideration, which may have 
influenced the composition of the subgingival microbiota. 
Furthetmore, in the current study, we did not differentiate between 
healthy and diseased sites when pooling subgingival samples from 
each participant, which may have contributed to the lack of clear 
beta diversity clusters between the periodontitis and 
non-periodontitis groups. This is consistent with previous findings 
indicating that the subgingival microbiota can differ between 
healthy and diseased sites in patients with periodontitis, suggesting 
a site-specific presence of periodontal pathogens in plaque samples 
(Belstrøm et al., 2017).

In conclusion, in the present study, we  identified several 
genera differentiating periodontitis from non-periodontitis 
groups of subjects (Haemophilus, Treponema, Fretibacterium, 
Granulicatella, Prevotella and Defluviitaleaceae UCG-011). Only 
one genus, Pseudopropionibacterium, differentiated individuals 
with periodontitis having cancer (PC) from periodontitis 
patients without any cancer (PNC). Additionally, in the CSC 
group, we  also found that the presence of periodontal 
inflammation (as reflected in BOP, GI, and PLI scores) strongly 
correlated with species belonging to the genera Prevotella, 
Treponema, and Mycoplasma. Collectively, our findings revealed 
significant differences in the subgingival microbiota among the 
studied groups, underscoring the need for further investigation 
into the potential role of oral pathogens in the development 
of cancer.
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SUPPLEMENTARY FIGURE S1

Rarefaction curves generated according to the different alpha diversity 
indices between periodontitis and non-periodontitis individuals, aiming to 
determine how many microbial communities can be detected with 
increasing numbers of sequencing reads. The curves do not converge, 
indicating that increasing the number of sequencing depths may result in the 
identification of additional species.

SUPPLEMENTARY FIGURE S2

Boxplots comparing alpha diversity indices (Observed, Chao1, ACE, Shannon, 
Simpson, and Inverse simpson) between the periodontitis and non-
periodontitis groups.

SUPPLEMENTARY FIGURE S3

Boxplots comparing alpha diversity indices (Observed, Chao1, ACE, Shannon, 
Simpson, and Inverse simpson) between the control, cancer at sample 
collection (CSC), and developed cancer later (DCL) groups.

SUPPLEMENTARY FIGURE S4

Relative abundance and beta diversity between non-periodontitis and cancer 
(NPC), periodontitis and cancer (PC), periodontitis and no cancer (PNC), and 
non-periodontitis and no cancer (NPNC) groups. The significant bacteria 
(P<0.05) at the genus level, comparing the different groups with the 
periodontitis vs. cancer groups, is presented.
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