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In the last twenty years, many attempts have been made to provide neurobiological models of 
autism. Functional, structural and connectivity analyses have highlighted reduced responses 
in key social areas, such as amygdala, medial prefrontal cortex, cingulate cortex, and superior 
temporal sulcus. However, these studies present discrepant results and some of them have been 
questioned for methodological limitations. The aim of this research topic is to present advanced 
neuroimaging methods able to capture the complexity of the neural deficits displayed in autism. 
This special issue presents new studies using structural and functional MRI, as well as magne-
toencephalography, and novel protocols to analyze data (Analysis of Cluster Variability, Noise 
Reduction Strategies, Source-based Morphometry, Functional Connectivity Density, Restriction 
Spectrum Imaging and the others). We believe it is time to integrate data provided by different 
techniques and methodologies in order to have a better understanding of autism.
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Editorial on the Research Topic

Advanced Neuroimaging Methods for Studying Autism Disorder

Autism spectrum disorder (ASD) is a pervasive developmental disorder that affects 1 in 68 children
(Christensen et al., 2016), and whose causes are still mostly unknown. Autistic symptomatology is
characterized by impairments in social interaction, communication, and emotional abilities, while
sparing basic cognitive skills. Many attempts have been made to provide neurobiological models
of autism. Functional, structural, and connectivity analyses based on magnetic resonance imaging
data have highlighted reduced responses in key social areas, such as amygdala, medial prefrontal
cortex, cingulate cortex, and superior temporal sulcus. However, these studies present discrepant
results and some of them have been questioned for methodological limitations. During the last
few years, new neuroimaging methodologies have been developed providing more sophisticated
techniques and more precise methods for investigating brain structure and function.

The aim of this research topic is to present advanced neuroimaging methods able to capture
the complexity of the neural deficits displayed in autism. We present new studies using
structural and functional MRI, as well as Magnetoencephalography, and novel protocols to analyze
data (Analysis of Cluster Variability, Noise Reduction Strategies, Source-based Morphometry,
Functional Connectivity Density, Restriction Spectrum Imaging and others). Understanding
the main differences between patients and controls is of fundamental importance in at least
four aspects. First, to help scholars develop more comprehensive models of autism. Second, to
improve the diagnosis of autism based on objective neural markers rather than on subjective
behavioral measures. Third, to facilitate early diagnosis of ASD, following clinical observations
according to which the earlier the diagnosis, the better is the outcome of interventions. Fourth,
a better knowledge of the neural mechanism of autism can refine and even create new treatment
protocols to help these individuals. The theories and methods for studying autism presented
in this state-of-the-art research topic are strongly grounded in affective neuroscience and bring
together scientists describing newways to understand the developmental pathology with innovative
neuroimaging protocols and fresh ideas on the problems of diagnosis and intervention.

The issue starts with two methodological papers. Vidal et al. explore the possibility of using
the Analysis of Cluster Variability to identify alterations in clustering structure of functional
brain networks, and, through this method, they are able to show an atypical organization of
domain-specific functional brain modules in ASD. Jann et al. evaluate the effectiveness of different
noise strategies to improve perfusion-based connectivity analyses, suggesting that the removal
of physiological noise and motion parameters is critical for detecting altered connectivity in
neurodevelopmental disorders such as ASD.
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Two morphometric studies explore the possibility of
structural differences in ASD individuals. Eilam-Stock et al.
apply Voxel-based Morphometry to a large sample of ASD
children, trying to overcome the limitations of previous studies
that used smaller samples. Decreased gray matter volume
in posterior brain regions, as well as increased gray matter
volume in frontal brain regions, were found in individuals with
ASD. Building on the limitations of univariate approaches to
morphological analyses, Grecucci et al. applied for the first time
a multivariate whole brain approach known as Source-based
Morphometry (SBM). This method was used on ASD individuals
and controls to detect maximally independent networks of gray
matter. Group comparisons revealed a network comprising
broad temporal and frontal regions differently expressed in ASD
individuals that correlated with social and behavioral deficits.

Alterations in brain connectivity are explored in two papers.
Chen et al. used a network logic to identify abnormal functional
connectivity of resting state fMRI in ASD individuals. In another
connectivity study, Lee et al. decompose the inter- and intra-
hemispheric regions and compare the functional connectivity
density (FCD) between ASD and controls, finding evidence
of FCD decreases in subjects with ASD in the posterior
cingulate cortex, lingual/parahippocampal gyrus, and postcentral
gyrus.

Magnetoencephalography (MEG) has been used to find
cortical activation differences in ASD individuals in two studies.
Khan et al. applied a novel method that measured the spatio-
temporal divergence of cortical activation. It was found that
the ASD group, relative to controls, is characterized by an
increase in the onset component of the cortical response, and a
faster spread of local activity. In an attempt to integrate fMRI
with Magnetoencephalography (MEG), Datko et al. explored the
links between sources of MEG amplitude in various frequency
bands and functional connectivity in resting state fMRI.
Hypoconnectivity between many sources of low and high gamma
activity was found. This may pave the way to study differences in
functionally defined networks. These studies confirm and extend
results using Electroencephalography (Murias et al., 2007; Coben
et al., 2014; Boutros et al., 2015; Shou et al., 2017).

One of the main practical problems clinicians are faced with
is the use of objective markers to diagnose autism. Three papers
make relevant contributions to this problem. A useful approach
that looks for informative biomarkers of pathology in the brain
is a multivariate analysis techniques based on Support Vector
Machines that has been explored by Retico et al. The authors
used the One-Class Classification (OCC), a reliable method that
could be used as a diagnostic tool looking at language and default
mode network regions that contribute most to distinguishing
individuals with ASD from controls. Carper et al. used for
the first time Restriction Spectrum Imaging (RSI), a multi-shell
diffusion-weighted imaging technique, to examine gray matter
microstructure in ASD individuals and controls, making multi-
shell diffusion imaging a promising technique to understand the
underlying cytoarchitecture of ASD. Last but not least, Simas and

Suckling in a short commentary discuss a graph theory approach,
specifically a semi-metric analysis of the functional connectome
that is both sensitive and specific to psychopathologies. This
suggests that resting state data are a valuable measure on which
several network connectivity analysis methods can be easily
applied.

On the important issue of intervention, the paper by Sperdin
and Schaer reviews the critical role of orienting to speech in ASD,
as well as the neural substrates of human voice processing, and
claim that aberrant voice processing could be a promisingmarker
to identify ASD very early on. Calderoni et al. review the neural
circuit modifications after non-pharmacological interventions
and stress the importance of MRI evaluation for the detection of
neural changes in response to treatment.

CONCLUSIONS AND FURTHER

CONSIDERATIONS

The past 20 years witnessed a dramatic increase in the number
of studies trying to uncover the pathophysiology of ASD. If it is
true that neuroscience provided several proofs of abnormalities
involved in autism, it is also true that this scientific endeavor
failed in creating a coherent and clear picture of autism biology,
so that the etiology of autism remains nowadays elusive. We
suggest that in order to make progresses on this issue we need
to (1) build explicit pathophysiologic models, (2) use advanced
neuroimaging methods based on a whole brain and multivariate
approaches; (3) integrate different neuroscientific methods (as
well as other methodologies such as genetics, computational
models, and other). About the first point, we believe that the
practice of gathering new data not driven by explicit and testable
models will not lead to a clear understanding of autism and
will leave the field even more confused. Explicit pathological
models are necessary to narrow down the number of factors
to be taken into account. Computational methods like machine
learning can find specific cerebral patterns for the disorder
and classify them. For the second point, it is now clear that
using a region of interest approach may obscure the importance
of complex distributed networks. This is especially true for
complex neuropsychiatric disorders such as autism. Third, we
believe that every methodology is partial. We need to integrate
data provided by different techniques in order to have a better
understanding of how the brain creates autistic behavioral
symptoms, and to increase the pace of a comprehensive view of
autism.
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ANOCVA in R: A Software to
Compare Clusters between Groups
and Its Application to the Study of
Autism Spectrum Disorder
Maciel C. Vidal 1, João R. Sato 2, Joana B. Balardin 3, Daniel Y. Takahashi 4 and

André Fujita 1*

1Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil,
2Center of Mathematics, Computation, and Cognition, Universidade Federal do ABC, Santo André, Brazil, 3Hospital Israelita

Albert Einstein, São Paulo, Brazil, 4Deparment of Psychology and Princeton Neuroscience Institute, Princeton University,

Princeton, NJ, USA

Understanding how brain activities cluster can help in the diagnosis of

neuropsychological disorders. Thus, it is important to be able to identify alterations in the

clustering structure of functional brain networks. Here, we provide an R implementation

of Analysis of Cluster Variability (ANOCVA), which statistically tests (1) whether a set of

brain regions of interest (ROI) are equally clustered between two or more populations and

(2) whether the contribution of each ROI to the differences in clustering is significant. To

illustrate the usefulness of our method and software, we apply the R package in a large

functional magnetic resonance imaging (fMRI) dataset composed of 896 individuals

(529 controls and 285 diagnosed with ASD—autism spectrum disorder) collected by

the ABIDE (The Autism Brain Imaging Data Exchange) Consortium. Our analysis show

that the clustering structure of controls and ASD subjects are different (p < 0.001)

and that specific brain regions distributed in the frontotemporal, sensorimotor, visual,

cerebellar, and brainstem systems significantly contributed (p < 0.05) to this differential

clustering. These findings suggest an atypical organization of domain-specific function

brain modules in ASD.

Keywords: Analysis of Cluster Variability, silhouette statistic, functional brain network, ABIDE, fMRI

INTRODUCTION

The brain activity is organized in clusters/modules that have different roles in our behavior
(Tononi et al., 1999). Alterations in the clustering pattern can be associated with neurologic
disorders (Grossberg, 2000; Sato et al., 2016). Thus, it is important to systematically discriminate
the clustering structures among different populations. This leads to the problem of how to
statistically test the equality of clustering structures of two or more populations and how to identify
the features that contribute to the differential clustering structure. These statistical problems
were recently solved for a large class of clustering algorithms by using the Analysis of Cluster
Variability—ANOCVA (Fujita et al., 2014a).

Here, we provide an implementation of ANOCVA in R for a better dissemination of this
technique in the scientific community. ANOCVA was designed to test whether the clustering
structures of several populations are equal. Briefly, ANOCVA uses the silhouette statistic

8
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(Rousseeuw, 1987) as a measure of variability of the clustering
structure of each population and then compares the variability
among populations using an idea similar to the classical analysis
of variance (ANOVA). To calculate the statistical significance
value, we use a bootstrap procedure that was previously shown
to control the type I error.

We illustrate the step-by-step application of ANOCVA by
analyzing a large functional magnetic resonance imaging (fMRI)
data acquired under a resting-state protocol (ABIDE—The
Autism Brain Imaging Data Exchange Consortium) composed
of 529 controls and 285 patients diagnosed with autism.
Subjects with Autism Spectrum Disorders (ASD) have significant
differences in the resting state functional connectivity when
compared to healthy subjects (for review, see Kana et al.,
2011), suggesting that ASD is as a neural systems disorder with
disruptions in several distributed neurocognitive networks of
brain regions (Ecker et al., 2015). However, most studies describe
integration (Washington et al., 2014; Sporns and Betzel, 2016)
and segregation (Assaf et al., 2013) as separate processes. Instead,
in this study we consider both processes simultaneously using
the idea of clusters, where structures within are integrated and
structures between are segregated.

MATERIALS AND METHODS

To formalize ANOCVA, we will first describe the silhouette
statistic to define “clustering variability” and then we introduce
the ANOCVA. Finally, we describe its implementation and
application to ABIDE dataset.

The Silhouette Statistic
The silhouette statistic is a measure of how well an item (regions
of interest—ROI in fMRI data) is clustered given a clustering
algorithm. In other words, it can also be interpreted as a measure
of clustering variability (Rousseeuw, 1987). Formally, let χ =

{x1, .., xN} be the N ROIs of one subject that are clustered into
C = {C1, . . . , Cr} clusters by a clustering algorithm. Denote
the dissimilarity between ROIs x and y by d(x, y). Let |C| be the
number of ROIs of C. Then, define d (x,C) = 1

|C|

∑
y∈C d(x, y) as

the average dissimilarity of x to all ROIs of clusterC. DenoteDq ∈

C as the cluster to which xq has been assigned by the clustering
algorithm. Define aq = d(xq,Dq) (the within dissimilarity of xq)
and bq = minCp 6=Dq d(xq,Cp) (the smallest between dissimilarity
of xq), for q = 1, . . . , N. Then, we can measure how well each
ROI xq has been clustered by analyzing the silhouette statistic
given by

sq =

{
bq − aq

max {bq , aq}
, if |Dq| > 1,

0, if |Dq| = 1.

The silhouette statistic sq assumes values from −1 to +1 and
its interpretation given by Rousseeuw (1987) is as follows. If
sq ≈ 1, it means aq ≪ bq, i.e., the ROI xq has been assigned to
an appropriate cluster because the second-best choice cluster is
not as close as the actual cluster. If sq ≈ 0, then aq ≈ bq. In this
case, it is not clear whether ROI xq should have been assigned to

the actual cluster or to the second-best choice cluster because it
is equally far away from both. If sq ≈ −1, then aq ≫ bq. In other
words, the ROI xq should be assigned to the second-best choice
cluster because it lies much closer to it than to the actual cluster.
In summary, sq is a measure of how well the clustering algorithm
labeled ROI xq.

ANOCVA
In the present section, we briefly describe the ANOCVA. For
further details, refer to Fujita et al. (2014a). Let T1,T2, . . . ,Tk

be k types of populations (e.g., controls and ASD). For the j th
population, nj subjects are collected, for j = 1, . . . , k. The items
(e.g., ROIs) of the i th subject taken from the j th population are
represented by the matrix Xi,j = (xi,j,1, . . . , xi,j,N), where each
ROI xi,j,q (q = 1, ..,N) is a vector containing a time series (the
blood-oxygen-level dependent signal).

First, define the (N×N) matrix of dissimilarities among ROIs
of each matrix Xi,j by Ai,j = {d(xi,j,q, xi,j,q′ )}, for i = 1, . . . , nj,

j = 1, . . . , k. Second, let n =
∑k

j= 1 nj, then define the following

average matrices of dissimilarities:

Āj =
1

nj

∑nj

i = 1
Ai,j =

1

nj

∑nj

i= 1
{d(xi,j,q, xi,j,q′ )} and

=
A =

1

n

∑k

j= 1
njĀj, where q, q

′ = 1, . . . ,N.

Next, apply a clustering algorithm on the matrix of dissimilarities
=
A, to determine the clustering labels l=

A
. Finally, compute the

following silhouette statistics: s
(
=
A,l=

A
)

q (the silhouette statistic of the

qth ROI based on the dissimilarity matrix
=
A and the labeling l=

A
)

and s
(Āj ,l=

A
)

q (the silhouette statistic of the qth ROI based on the
dissimilarity matrix Āj and the labeling l=

A
), for q = 1, . . . , N.

The statistical test consists in verifying whether all k populations
are equally clustered (present the same clustering structure) or
if at least one is clustered in a different manner. If the ROIs
from all populations T1, . . . , Tk are equally clustered, then the

quantities s
(
=
A,l=

A
)

q and s
(Āj ,l=

A
)

q must be close for all j = 1, . . . , k
and q = 1, . . . , N.

Given a clustering algorithm and a distance metric, define the
following vectors:

S = (s

(
=
A,l=

A

)

1 , . . . , s

(
=
A,l=

A

)

N )T and Sj = (s

(
Ā,l=

A

)

1 , . . . , s

(
Ā,l=

A

)

N )T.

Define δSj = S− Sj. We will use the statistic 1S =
∑k

j= 1 δSTj δSj
to build the test statistic. Notice that under the null hypothesis,
all N ROIs are equally clustered along the k populations, i.e.,

s
(
=
A,l=

A
)

q ≈ s
(
=
A,l=

A
)

q′ for all q = 1, . . . , N and thus, we expect small

1S. On the other hand, large 1S suggests a rejection of the null
hypothesis.

To test the contribution of each ROI for the differential

clustering, define δsq = s
(
=
A,l=

A
)

q − 1
k

∑k
j= 1 s

(Ā,l=
A
)

q , for q = 1, . . . , N.
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FIGURE 1 | Pipeline schema of the ANOCVA analysis.
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This test consists in verifying whether the qth ROI (q =

1, . . . , N) is equally clustered among populations. We will use
the statistic1sq = δs2q, for q = 1, . . . ,N to build the test statistic.
Under the null hypothesis, we expect small 1sq. On the other
hand, large 1sq suggests a rejection of the null hypothesis.

To compute distributions of 1S and 1sq under the null
hypothesis, Fujita et al. (2014a) proposed a bootstrap procedure
described as follows:

1. Resample with replacement nj subjects from the entire dataset
{T1,T2, . . . , Tk} in order to construct bootstrap samples T∗

j ,

for j = 1, . . . , k.

2. Calculate Ā∗
j ,

=
A∗, s

(
Ā,l=

A

)
∗

q and s

(
Ā,l=

A

)
∗

q , for q = 1, . . . ,N,

using the bootstrap samples T∗
j .

3. Calculate 1̂S
∗
and 1̂sq

∗
.

4. Repeat steps 1 to 3 until the desired number of bootstrap
replications is obtained.

5. The p-values from the bootstrap tests based on the observed
statistics 1S and 1Sq are the fraction of replicates of 1̂S

∗
and

1̂sq
∗
on the bootstrap dataset T∗

j , respectively, that are at least

as large as the observed statistics on the original dataset.

R Implementation
ANOCVA is implemented in R and is freely available at the R
project website1 (package “anocva”).

This implementation requires as input, the functional brain
networks (ROIs dissimilarity matrices), a vector of labels
describing which individual belongs to which group, the number
of clusters, and the number of bootstrap samples.

ANOCVA uses the spectral clustering algorithm to cluster
the ROIs (Ng et al., 2002). Internal to the spectral clustering
algorithm, we use the k -medoids procedure instead of the usual
k -means because the former is more robust to outliers than
the latter (Aggarwal and Reddy, 2013). If the number of clusters
is not known a priori, the ANOCVA R package provides the
option to estimate it by using the silhouette or the slope statistic
(Fujita et al., 2014b). The slope criterion is the difference of the
silhouette statistic as a function of the number of clusters. The
difference between the slope and silhouette is the fact that by
maximizing the silhouette statistic as described by Rousseeuw
(1987) the number of clusters is estimated correctly only when
the within-cluster variances are equal. The slope criterion is more
robust than the silhouette when the within-cluster variances are
unequal.

The output consists in one p-value, which represents whether
there is at least one group that clusters in a different manner
and a vector of p-values representing which ROI is differentially
clustered among groups. The entire ANOCVA analysis pipeline
can be visualized in Figure 1.

ABIDE Data Description and
Pre-processing
The ABIDE Consortium dataset is a large resting state fMRI
dataset that includes controls and ASD subjects. It can be

1www.r-project.org

FIGURE 2 | Selection of the number of clusters. The number of clusters

was selected by using the silhouette criterion. The number of clusters that

presented the highest silhouette statistic is five. In other words, the silhouette

criterion suggests that this dataset can be split into five sub-networks.

downloaded from the ABIDE website2. This data was collected
in 17 sites that compose the ABIDE Consortium. Data collection
was conducted with local internal review board approval, and
also in accordance with local internal review board protocols.
For further details regarding this dataset, refer to the ABIDE
Consortium website.

Data pre-processing and network construction (dissimilarity
matrices) were carried out as our previous works (Sato et al.,
2015, 2016) using the ABIDE dataset. The final dataset used here
is composed of 529 controls (430 males, mean age ± standard
deviation of 17.47 ± 7.81 years) and 285 autistic patients (255
males, 17.53± 7.13 years).

RESULTS

The problem that we want to solve is the following. Given
k populations T1,T2, . . . , Tk where each population Tj (j =

1, . . . , k) is composed of nj subjects, and each subject has N
items that are clustered, we would like to verify whether the
clustering structures of the brain networks of the k populations
are equal and, if not, which ROIs are differently clustered.
In our case, we have k = 2 populations with T1 and T2

as controls and ASD, respectively. The number of subjects
in each population is n1 = 529 and n2 = 285, for
T1 and T2, respectively. The number of ROIs (items) to be
clustered is N = 316. Since head movement during magnetic
resonance scanning may affect statistical analysis, ANOCVA was

2http://fcon_1000.projects.nitrc.org/indi/abide/
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applied to both “scrubbed” and “not scrubbed” data (Power
et al., 2012) with the number of bootstrap samples set to
1000.

The first step in ANOCVA analysis is the construction
of the average dissimilarity matrix

=
A and its clustering.

The estimated number of clusters by the silhouette criterion
was five as depicted in Figure 2. Notice that the highest
silhouette statistic was obtained when the number of clusters
is five. The sub-networks obtained by applying the spectral
clustering on the dissimilarity matrix

=
A can be visualized

in Figure 3 where each color represents one sub-network
(cluster).

Then, ANOCVA calculates the silhouette statistic for each
ROI by using the labels obtained by clustering the dissimilarity
matrix

=
A and performs the test. We verified that in fact the

entire clustering structure of subjects diagnosed with ASD
differs from controls (p < 0.001). Next, we tested each
ROI to identify which ones significantly contribute to the
differential clustering between controls and subjects diagnosed
with ASD. ROIs that presented a difference in p > 5%
between “scrubbed” and “not scrubbed” datasets were excluded
for subsequent analysis. Remaining p-values were corrected
for multiple comparisons by the Bonferroni method. Figure 4
illustrates the statistically significant ROIs at a p-value threshold
of 0.05 after Bonferroni correction. The highlighted regions
include portions of the cerebellum and middle frontal gyrus,
pre- and post-central gyri, inferior temporal gyrus, and lateral
occipital cortex.

DISCUSSION

In the current study, we combined spectral clustering analysis
with ANOCVA implemented in R to investigate which brain
regions are clustered in a different way between controls and
ASD groups. Our results suggest that several regions distributed
across different neurocognitive systems significantly contributed
to the different clustering network structure observed in ASD.
First we demonstrated that the spectral clustering method
yielded partitions that were well-characterized as functional
modules of the brain that have been consistently identified
in previous studies using different approaches (Damoiseaux
et al., 2006; Power et al., 2011), including the fronto-temporal,
sensorimotor, visual, and cerebellar systems. This is consistent
with the hypothesis that the spectral clustering algorithm groups
anatomically contiguous and also spatially distributed areas with
common brain functionalities in the same cluster. Then, using
ANOCVA we showed that the superior division of the lateral
parietal cortex, precentral, and postcentral gyri, anterior dorsal
middle frontal gyrus, and a medial portion of the cerebellum
and of the brainstem have a distinct cluster organization between
ASD and controls. All these brain regions have been previously
identified as presenting ASD-related differences in studies using
functional MRI. For example, the recruitment of portions of the
precentral and postcentral gyri as well as the cerebellum across
sensorimotor tasks are atypical in ASD, and may underlie deficits
in fine motor sequencing and visual motor learning observed in
autistic individuals (Müller et al., 2001; Mostofsky et al., 2009).

FIGURE 3 | The five brain sub-networks obtained by the spectral clustering algorithm on the dissimilarity matrix
=

A. Each color represents one functional

sub-network: sensorimotor (blue), visual (green), frontotemporal (orange), cerebellar (pink), and brainstem (white). R, right; L, Left.
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FIGURE 4 | ROIs clustered in a different manner between controls and ASD. ROIs that present a p-value (obtained by ANOCVA) lower than 5% after

Bonferroni correction were converted to z-scores and highlighted.

Interestingly, these regions have also been implicated in cognitive
process crucial for interpersonal interactions such as theory-of-
mind (Martineau et al., 2010; Wang et al., 2014). This suggests
that these areas are involved in the social communication deficits

that are a core clinical feature of ASD. Moreover, the lateral
parietal cortex is an important node of the default-mode network,
and abnormalities in the connectivity between nodes of this
network have been widely investigated in ASD (Kennedy and
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Courchesne, 2008; Assaf et al., 2010; Weng et al., 2010) giving
its associations with social cognition (Buckner et al., 2008). The
identification of these regions by our study therefore confirms
that they are key brain structures in ASD that may have a
role in the development of sub-networks organization in this
population.

Head motion is one of the most challenging obstacles in
functional connectivity studies involving clinical populations,
which usually present high levels of movement. Our attempt
to handle this problem was to apply the scrubbing method
proposed by Power et al. (2012), which discards scans acquired
under excessive head motion. However, although this approach
may reduce the influence of movement artifacts, they may
still be present in the scrubbed data. Thus, we opted for a
more conservative approach, which consisted in excluding the
regions where the p-values were more sensitive to scrubbing. We
assumed that the analyses of these regions were more vulnerable
to artifacts and thus they were removed. This approach is
also helpful to reduce the number of multiple comparisons, by
excluding the less reliable tests. Another important limitation
to be mentioned is that the ABIDE data is multicentric
with heterogeneous acquisition parameters across sites. We
minimized the site effect by removing it in the pre-processing
stage of the data. Finally, all analyses are based on the CC400
atlas (Craddock et al., 2012), obtained by using a functional
parcellation. Since other atlases are different on ROIs size,
number of ROIs and spatial location, the parcellation choice
is expected to influence our findings. However, this variability
does not invalidate the results obtained with CC400 because

the procedures adopted here are conservative (regarding type
I error control). Finally, an important future question for the
presented results is whether the contribution of these specific
brain regions to a differential network clustering in ASD is static
or may exhibit dynamic changes during rest (Hutchison et al.,
2013).
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Arterial Spin Labeling (ASL) perfusion image series have recently been utilized for

functional connectivity (FC) analysis in healthy volunteers and children with autism

spectrum disorders (ASD). Noise reduction by using nuisance variables has been

shown to be necessary to minimize potential confounding effects of head motion and

physiological signals on BOLD based FC analysis. The purpose of the present study is

to systematically evaluate the effectiveness of different noise reduction strategies (NRS)

using nuisance variables to improve perfusion based FC analysis in two cohorts of healthy

adults using state of the art 3D background-suppressed (BS) GRASE pseudo-continuous

ASL (pCASL) and dual-echo 2D-EPI pCASL sequences. Five different NRS were

performed in healthy volunteers to compare their performance. We then compared

seed-based FC analysis using 3D BS GRASE pCASL in a cohort of 12 children with

ASD (3f/9m, age 12.8 ± 1.3 years) and 13 typically developing (TD) children (1f/12m;

age 13.9 ± 3 years) in conjunction with NRS. Regression of different combinations of

nuisance variables affected FC analysis from a seed in the posterior cingulate cortex

(PCC) to other areas of the default mode network (DMN) in both BOLD and pCASL

data sets. Consistent with existing literature on BOLD-FC, we observed improved spatial

specificity after physiological noise reduction and improved long-range connectivity using

head movement related regressors. Furthermore, 3D BS GRASE pCASL shows much

higher temporal SNR compared to dual-echo 2D-EPI pCASL and similar effects of noise

reduction as those observed for BOLD. Seed-based FC analysis using 3D BS GRASE

pCASL in children with ASD and TD children showed that noise reduction including

physiological and motion related signals as nuisance variables is crucial for identifying

altered long-range connectivity from PCC to frontal brain areas associated with ASD.

This is the first study that systematically evaluated the effects of different NRS on ASL

based FC analysis. 3D BS GRASE pCASL is the preferred ASL sequence for FC analysis

due to its superior temporal SNR. Removing physiological noise and motion parameters

is critical for detecting altered FC in neurodevelopmental disorders such as ASD.

Keywords: functional connectivity (FC), noise reduction, default mode network (DMN), arterial spin labeling (ASL),

blood oxygenation level dependent (BOLD), cerebral blood flow (CBF)
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INTRODUCTION

Functional connectivity (FC) analysis to compute functionally
connected networks (FCNs) has become a major imaging
approach to investigate the brain’s organization and function.
Moreover, comparing different cohorts such as elderly subjects
to young adults, or healthy control groups to psychiatric
populations, have identified patterns of altered connectivity
within specific FCNs. In the past few years, however, it has
become evident that there are several potential confounding
factors that may lead to spurious findings when not properly
addressed. Physiological noise such as fluctuations in respiratory
and cardiac cycles or headmovements can influence BOLD signal
intensities in fMRI. This is particularly relevant since different
study cohorts could exhibit different patterns or amounts of
such confounding factors (e.g., children, elderly, and psychiatric
patients tend to have more difficulties to lay motionless inside the
MR scanner). Accordingly, using nuisance variables to account
for noise related signal fluctuations in BOLD-fMRI based FC
analysis has been shown to be imperative to minimize or avoid
potential confounding effects of motion or other physiological
factors (e.g., respiration and heart rate) on network connectivity
measures (Murphy et al., 2013).

Physiological fluctuations or changes in cardiac pulsation
and respiratory cycles can cause changes in blood CO2

pressure (Wise et al., 2004), which in turn influences the
BOLD signal. Hence variability in respiration and cardiac
pulsation could give rise to spuriously correlated signals in
distributed brain areas (Birn, 2012). Furthermore, the set of
brain areas affected by these physiological fluctuations could
resemble the patterns associated with certain FCNs (Birn
et al., 2008). Accordingly, separating physiological noise from
BOLD signal fluctuations increases sensitivity for detecting
neuronal related FCNs. While these variations in physiological
parameters are ideally measured by concurrent recordings
with pulse oximetry and respiration belt (Chang and Glover,
2009b), data driven techniques have been proposed to estimate
nuisance regressors from the fMRI data itself. Furthermore,
regions that are unlikely to exhibit neuronal related BOLD
signal changes such as in cerebro-spinal fluid (CSF) or white

matter (WM) have been used to efficiently remove these
physiological variations (Birn et al., 2008; Weissenbacher et al.,
2009).

In addition to physiological noise, recent observations
indicate also that head movements during the MR acquisition
can have detrimental effects on FC measures (Power et al.,
2012; Satterthwaite et al., 2012; Van Dijk et al., 2012). Head
motion in the magnetic field perturbs the spin history and
can introduce spurious signal variances that tend to be more
similar locally than between distant brain areas. This biases
FC analyses toward increased local correlations and reduced
long-range correlations, a critical issue when comparing subject
cohorts that might differ in their ability to lie still (e.g., children
or psychiatric patients). Indeed children and psychiatric cohorts
have displayed this pattern of increased local but reduced long-
range FC, raising the critical question as to whether and to
what extent these findings reflect motion effects. A variety of

approaches to deal with motion effects in FC analyses have
since been proposed, most of which include nuisance variables
to regress out potential signal fluctuations related to head
movements by using motion parameters estimated from rigid
body volume alignments (for review see Power et al., 2015). In
summary, in BOLD fcMRI several confounding factors have been
identified and strategies have been proposed to minimize their
influences.

Besides BOLD fcMRI, Arterial Spin Labeling (ASL) datasets
have been recently used to compute FCNs (Viviani et al., 2011;
Liang et al., 2012; Jann et al., 2015a) (review Chen et al.,
2015).This approach was made feasible by technical advances
in state-of-the-art ASL pulse sequences resulting in improved
signal-to-noise ratio (SNR) and temporal stability (Chen et al.,
2011; Vidorreta et al., 2013). These technical advances include
pseudo-continuous ASL (pCASL) (Wu et al., 2007; Dai et al.,
2008), background suppression and three-dimensional (3D)
fast imaging sequences such as GRASE (a hybrid of gradient
and spin echo) or stack of spirals. In addition to improved
acquisition techniques, physiological noise regression in ASL
has been shown to increase temporal SNR (Wang, 2012). To
date, however, no study has systematically investigated the
effect of noise reduction, using the same nuisance variables as
proposed for BOLD, on ASL based FC. Therefore, the primary
purpose of this study was to investigate the effect of motion
and physiological noise reduction on ASL based FC. A second
goal of this study was to apply the optimal noise-reduction
strategy for ASL based FC analysis in a cohort of children
with autism spectrum disorders (ASD) and typically developing
children.

METHODS

All adult neurotypical participants in this study gave written
informed consent according to a research protocol approved
by the UCLA Institutional Review Board. Inclusion criteria
of healthy volunteers included no history of psychiatric or
neurological disorders, and no contraindications to MRI scan.
Scans were performed on a 3T Siemens TIM Trio scanner,
using body coil as the transmitter and 12-ch head coil as
the receiver. We acquired ASL and BOLD data in 10 healthy
young participants (6f/4m; age [mean ± sd] = 22 ± 3
years) with a 3D background-suppressed (BS: 85% suppression)
GRASE pCASL sequence (60 label/control pairs, TR/TE/τ/PLD
= 4000/22/1200/1000ms; 26 slices, 64 × 64 matrix, voxel-size
3.44 × 3.44 × 5mm3) and a standard 2D EPI BOLD sequence
(240Volumes, TR/TE = 2000/30ms, 30 slices, 64 × 64 matrix,
slice thickness = 4mm with 1mm gap). For comparison, a
separate cohort of 10 healthy volunteers (7f/3m; age [mean ±

sd] = 25.7 ± 8 years) underwent resting state fMRI scans using
a dual-echo 2D EPI pCASL sequence (128 label/control pairs,
TR/TE1/TE2/τ/PLD= 4000/10/25/1200/1500ms; 18 slices, 64×
64 matrix, voxel-size 3.44 × 3.44 × 6mm3) to simultaneously
acquire ASL and BOLD data. All datasets were first realigned to
account for spatial motion displacements (for ASL separately for
label and control images). Five different regression models using
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different sets of nuisance variables [here termed Noise Reduction
Strategies (NRS)] were then performed:

- NRS1: no nuisance variables for noise reduction.
- NRS2: 6 motion parameters (3 translations x, y, z and 3
rotations α, β, γ) and their 1st derivatives.

- NRS3: same as NRS2 plus additional regressor for Framewise
Displacement (FD). FD was computed following the procedure
described by Power et al. (2012). Rotational displacements
were recomputed to millimeters of displacement on a sphere
with 5 cm radius. The volume by volume (framewise) head
displacement in translational and recomputed rotational
parameters were then calculated and summed up. Mean FD
(±SD) in mm for the groups in each dataset were: 3D GRASE
pCASL 0.244 (±0.065), standard BOLD 0.192 (±0.060), 2D
dual-echo pCASL 0.179 (±0.066) and dual-echo BOLD 0.153
(±0.049). T-tests did not reveal a significant difference between
ASL and BOLDwithin the groups (t3D = 1.81; p = 0.086/t2D =

0.996; p = 0.333), nor between groups for BOLD (t = 1.612;
p = 0.124). There was a small difference showing slightly
higher motion in 3D pCASL than 2D pCASL (t = −2.194;
p = 0.042).

- NRS4: White matter and CSF fluctuations (mean signal
fluctuations within brain segmentation tissue probability
masks thresholded at 0.95 for WM and 0.85 for CSF and
coregistered/resampled to functional images).

- NRS5: NRS3+ NRS4.

CBF images were computed for all NRSs (one compartment
model, pair-wise subtraction of Label/Control images) (Alsop
et al., 2015). BOLD and CBF images were coregistered
to individual anatomical scans, normalized to MNI
template and smoothed with an 8mm FWHM Gaussian
kernel.

Connectivity Analysis
FC analysis was performed with Seed Based Correlation Analysis
(SBA) using the posterior cingulate cortex (PCC) as a seed
(template seed from Shirer et al., 2012) to identify the Default
Mode Network (DMN). DMN maps for each NRS in all
four datasets as well as overall DMNs for the four datasets
were calculated by one-sample t-tests to identify all areas with
correlations significantly greater than zero across all subjects.
We determined the similarity of the DMN maps derived using
different NRSs between each other as well as to a template BOLD-
DMN (Shirer et al., 2012) and template ASL-DMN (Jann et al.,
2015a) using Dice Similarity Coefficients (Dice, 1945; Jann et al.,
2015a), which compares the number of common voxels between
two maps based on the formula DSC (A,B) = 2(A∩B)/(A + B),
where A and B are the two maps.

To investigate the effect of NRS on the often-discussed long-
range connectivity between PCC and anterior cingulate/medial
prefrontal cortex (ACC/mPFC) (Power et al., 2012, 2015;
Satterthwaite et al., 2012; Van Dijk et al., 2012), we calculated
the correlation between those two ROIs based on the template
DMNnodes (Shirer et al., 2012) using different NRSs. FC changes
due to different NRSs were further investigated by a voxel-wise
analysis on the individual subjects’ SBA connectivity maps for

each NRS by computing voxel-wise repeated-measures ANOVA
and post-hoc ROI based paired t-tests.

Distance Related Effects of Motion
We further investigated the relationship between spatial distance,
the use of head motion related nuisance variables and FC
changes in BOLD and pCASL data, respectively. Specifically, we
parcellated the brain into 264 spherical ROIs defined by the
Power-Atlas (Power et al., 2012). For the parcellated data we
then computed the cross-correlation matrix using data processed
with NRS4 (WM/CSF regression only) and NRS5 (WM/CSF
regression + motion regression), respectively. Subtraction of
the two cross-correlation matrices provides the difference in
connectivity between any two ROIs (1FC) between NRS5 and
NRS4. Plotting these 1FC values against the Euclidean distance
between the respective ROIs and fitting a linear equation to these
plots examined the presence of a relation between 1FC and
spatial distance (Power et al., 2014, 2015).

Effects on Temporal SNR and Global-CBF
Quantification
Finally, we estimated tSNR within gray matter and performed
an ANOVA on these values to test for significant improvements
in tSNR following noise reduction. Global mean CBF was also
compared to test whether NRS affects mean CBF quantification
between the two pCASL sequences.

Application of NRS in Children with ASD
To investigate the effects of NRS on seed-based FC analysis in
a clinical cohort, we compared FC differences between a group
of 12 children with ASD (3f/9m, age 12.8 ± 1.3 years; IQ =

107.0 ± 14.9) and an age and IQ matched group of 13 typically
developing (TD) children (1f/12m; age 13.9 ± 3 years; IQ =

104.8 ± 14.4). Subjects and parents provided written consent
according to the guidelines specified by the UCLA Institutional
Review Board. Clinical diagnosis of ASD was confirmed with
the Autism Diagnostic Observation Schedule (ADOS; Lord et al.,
2000), Autism Diagnostic Interview-Revised (ADI-R; Lord et al.,
1994) and best clinical judgment. Mean ADOS severity score was
7.6 (range 6–10). Statistical tests to compare group characteristics
were not significant: Mann-Whitney U-Test for age (U = 44,
z = 1.822, p = 0.068) and IQ (U = 73.5, z = −0.2178,
p = 0.826) and Chi-square test with Yates correction for small
samples for gender (0.401, p = 0.527).

We used the 3D BS GRASE pCASL sequence to acquire
CBF data in these two groups given its favorable temporal
characteristics shown in the above analyses. Preprocessing
was identical as described above and NRS4 and NRS5 were
compared to NRS1 in these cohorts. FC from the PCC-seed
was computed for each subject and NRS. Within group analyses
included comparisons between NRSs using voxel-wise paired-
sample t-tests. In addition, between-group comparisons were
performed by voxel-wise two-sample t-tests (correction for
multiple comparison at α < 0.05 was done by cluster-size
estimation, CSE for NRS0 = 133 voxels, NRS4 = 115 voxels
and NRS5 = 114 voxels). This analysis will reveal the effects of
different NRSs on the outcome of ASL-FC differences between
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FIGURE 1 | Statistical t-maps displaying the spatial pattern of the DMNs as identified by Seed based Correlation analysis from a PCC seed (Lower left,

green) on pCASL and BOLD datasets.

ASD and TD. To minimize the effects of differences in head
motion between the groups, the ASD and TD groups were
also matched for the amount of motion: mean frame-wise
displacement (FD) for ASD was 0.453 ± 0.238 and TD 0.392 ±

0.241 (t-test t = −0.641, p = 0.528).

RESULTS

Both pCASL and BOLD data showed correlation maps using the
PCC as the seed that resemble the DMN. Figure 1 displays the
PCC-Seed and the DMNs computed as t-maps across all NRSs
for each dataset thresholded at family wise corrected p < 1e−10.
Dice Similarity Coefficients (DSCs) to the template BOLD-DMN
(Shirer et al., 2012) and the template ASL-DMN (Jann et al.,
2015a), respectively, are listed in Table 1. NRS1–3 showed low
similarity while NRS4&5 showed greater overlap with the DMN
templates. Furthermore, 2D pCASL showed the lowest DSC
values, especially to the template ASL-DMN. Figure 2 displays
the cross-comparison of NRSs within each dataset to the template
BOLD-DMN. Notably, DSC values between the separate NRS-
DMNs showed that the DMN-maps withoutWM/CSF correction
(NRS1–3) were highly similar to each other, while the DMNswith
WM/CSF correction (NRS4, 5) showed high similarity to each
other.

TABLE 1 | Dice Similarity Coefficients (DSCs) for all NRS in each condition

to a template BOLD-DMN (Shirer et al., 2012) and a template ASL-DMN

(Jann et al., 2015a), respectively.

NRS1 NRS2 NRS3 NRS4 NRS5 Combined

TEMPLATE BOLD-DMN

BOLD conventional 0.10 0.12 0.12 0.18 0.19 0.25

3D BS GRASE pCASL 0.12 0.11 0.11 0.19 0.19 0.17

BOLD dual-echo 0.09 0.09 0.09 0.28 0.39 0.39

2D pCASL 0.09 0.08 0.08 0.19 0.21 0.19

TEMPLATE ASL-DMN

BOLD conventional 0.24 0.27 0.27 0.40 0.43 0.51

3D BS GRASE pCASL 0.36 0.40 0.40 0.51 0.49 0.55

BOLD dual-echo 0.24 0.23 0.23 0.51 0.55 0.58

2D pCASL 0.29 0.26 0.26 0.33 0.32 0.35

The column termed combined represents the DMN t-maps across all subjects and NRSs

as displayed in Figure 1.

Effects of NRS on FC
Analysis of the connectivity between PCC and ACC/mPFC
ROIs in both BOLD datasets showed a general decrease of FC
after WM/CSF regression [FBOLDconv(4, 9) = 25.53, p < 1e-10,
tNRS0vsNRS4 = 5.34, p = 0.0005; FBOLDdual−echo(4, 9) = 12.49,
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FIGURE 2 | Dice Similarity Coefficients (DSCs) between the spatial maps of the DMNs after different stages of noise reduction (NRS1–5). Template DMN

derived from Shirer et al. (2012). Combined DMN computed as one-sample t-test across spatial correlation maps of all subjects and NRS. Clusters along the diagonal

indicate that WM/CSF regression has large effect on similarity. Specifically after WM/CSF correction (NRS4/5) DSC values to the template DMN are increased (green

rectangle and also bar-plots below cluster-plots), indicating increased spatial specificity of the DMN.

p < 1e−10, tNRS0vsNRS4 = 2.69, p = 0.025], while motion
parameter regression showed a tendency to slightly increase FC
(t-test between NRS5 and NRS4 = tBOLDconv = 1.55, p = 0.155;
tBOLDde = 1.14, p = 0.284). The same trend was observed for 3D
GRASE pCASL [F3DpCASL(4, 9) = 75.5, p < 1e−10; tNRS0vsNRS4 =

14.19, p < 0.0001 and t-test NRS5 vs. NRS4: t3DpCASL = 1.51,
p= 0.165]; however, FC values were overall lower. For 2D pCASL
there was little to no correlation between the two ROIs and no
significant effect in the ANOVA (F2DpCASL = 1.4, p = 0.254).
Mean values of correlation coefficient across subjects for all NRSs
and datasets are displayed in Figure 3.

A more detailed analysis of NRS effects throughout the
DMN was performed by voxel-wise repeated-measures
ANOVA (Figure 4). Results revealed that FC between PCC
and mPFC/ACC were modified by NRS. Details for all ROIs
including the results of the repeated-measures ANOVAs are
listed in Table 2. For every ROI showing an effect of NRS, the
boxplots represent the FC values (median and 75% interval across
subjects) after different NRSs, revealing the directions of FC
changes (i.e., increases or decreases). Moreover, the horizontal
lines above the boxplots indicate the significance of post-hoc
paired t-tests (p < 0.05) between any NRSs (t and p values for all
post-hoc t-tests can be found in Supplemental Table 1). Similar
to the analysis of connectivity between the PCC and ACC/mPFC
ROIs, the voxel-wise ANOVA and post-hoc t-tests indicated that
WM/CSF signal regression significantly reduces FC throughout
the DMN. Furthermore, using head movement related nuisance
variables in addition to WM/CSF (comparison between NRS5
and NRS4) tended to increase long-range FC from PCC to
frontal areas while reducing local (within PCC) FC (Table 2).
This distance-related effect was further investigated in a highly
parcellated seed based approach.

Distance Dependence of
Motion-Regression Effects
The scatter plots in Figure 5 suggest a relationship between
motion correction effects (after WM/CSF signal regression) and
the distance between the connected ROIs. Specifically, 1FC was
increasingly positive the farther apart any two areas, thus yielding
increased long-range connectivity and reduced or constant local
short-range connectivity.

NRS Effects on Temporal SNR and Global
CBF
Global tSNR in BOLD was expectedly higher than that of
pCASL; furthermore, 3D pCASL showed 4.4 ± 0.4 times
higher global tSNR than 2D pCASL. Differences in tSNR after

NRS were observed for all modalities and with a similar
behavior suggesting that motion regression increases tSNR and
combining motion regression with WM/CSF regression results
in highest increase in tSNR (Figure 6). This observation is
supported by repeated-measures ANOVA analyses for both
BOLD and 3D GRASE pCASL sequences: F(4, 9)BOLD−S =

7.5, p < 0.001, FBOLD−DE = 21.92, p < 5e−10,
FASL−3D−BS = 7.78, p < 7.5e−5, whereas there was no
significant effect for 2D dual-echo pCASL: FASL−2D−DE = 0.73,
p = 0.58.

Along with the increase in temporal SNR for 3D GRASE
pCASL, global mean CBF was also slightly higher for NRS4&5
than those observed for NRS1–3 [F(4, 9) = 63.36, p < 0.00001].
An opposite effect was observed for 2D dual-echo pCASL
where regression of WM/CSF signals (NRS4&5) slightly reduced
global mean CBF [F(4, 9) = 3.36, p < 0.02], as shown in
Table 3.

Frontiers in Neuroscience | www.frontiersin.org August 2016 | Volume 10 | Article 371 | 20

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Jann et al. Noise in ASL Functional Connectivity

FIGURE 3 | Region-to-Region correlation between two template areas

of the DMN: the PCC and the ACC/mPFC (shown in green in the small

inlet figure). Overall BOLD exhibits stronger correlation values than ASL.

Noise reduction shows similar behavior in FC changes for both BOLD datasets

(solid lines) as well as the 3D BS GRASE pCASL data (blue dashed line), while

showing little effect for 2D pCASL. A more regionally detailed analysis of these

effects is displayed in Figure 4.

Results of NRS in Children with ASD vs. TD
Children
Within-group

Comparing correlation maps seeded from the PCC revealed
differences in long-range connections to the frontal cortex
after noise reduction in both groups (TD and ASD children).
Specifically, differences between NRS4 and NRS5 revealed
increased long-range and decreased local correlations within the
DMN, which are in accordance with the general observations
of motion-regression effects (Supplemental Figure 1). In TD
children, we found increased correlation to superior frontal gyri
and to the hippocampi, as well as reduced local connectivity in
PCC. In ASD children, we observed increased correlations with
the orbitofrontal cortex (OFC) and similarly reductions in FC in
PCC. Furthermore, we observed increases in anti-correlation to
areas associated to other large-scale networks in autism: from
PCC to the dorsal ACC, part of salience network, as well as
regions of the motor network. Hence, in addition to within
network effects (DMN), noise reduction might also increase the
separation between networks.

Between-group

Direct comparisons between the TD and ASD groups revealed
evidence highlighting the importance of noise reduction
(Figure 7). While group differences without any noise-reduction
(NRS1) showed decreased local FC in the precuneus and
increased FC to lateral temporal areas bilaterally in the ASD
group as compared to the TD group, group differences after noise
regression (NRS4&5) revealed areas with reduced long-range FC

from PCC to the dorsal portion of the prefrontal cortex and
parahippocampal gyri in the ASD vs. the TD group. The areas
showing reduced connectivity with the lateral temporal lobes in
the ASD group were no longer evident.

DISCUSSION

FC analysis has become a major tool to assess the functional
organization of brain networks as well as their integrity or
alterations in clinical populations. However, to be clinically
applicable, possible confounding factors for FC analysis need to
be identified, understood and accounted for. For BOLD based
FC such effects include physiological noise related to pulsatile
fluctuations of the blood flow caused by heart beat (Shmueli et al.,
2007; Chang et al., 2009) as well as changes in BOLD signal due
to variations in rate and depth of respiration (Birn et al., 2006;
Birn, 2012). More recently, it has been shown that even slight
head movements can affect FC analysis outcomes (Power et al.,
2012; Van Dijk et al., 2012).

By using different sets of nuisance variables (here termed
Noise Reduction Strategies: NRS) representing noise from
physiological noise sources and head movements in two separate
BOLD and pCASL implementations, our study showed that
accounting for physiological noise and motion-induced effects
could indeed alter the connectivity strength and hence spatial
maps of the DMN. For BOLD rs-fMRI, these effects have been
described and were replicated in our study. For ASL, so far little
has been known regarding how noise reduction affects ASL signal
and ASL based FC analysis.

Noise Reduction Effects in Bold Based FC
Our findings generally align well with what has been described
with regard to noise reduction effects in BOLD based FC analysis.
First, regression of physiological noise related nuisance variables
from WM and CSF signal fluctuations (Dagli et al., 1999;
Windischberger et al., 2002; Birn et al., 2008; Weissenbacher
et al., 2009; Jo et al., 2010) reduces connectivity in several brain
areas but at the same time increases the spatial specificity of
FC maps (Chang and Glover, 2009a; Birn, 2012; Power et al.,
2015). The correlation maps generated by NRS4 and NRS5 are
highly restricted to areas of the DMN while NRS1–3 display
more widespread correlation maps that comprise areas affected
by respiratory and heart rate pulsatility (Birn et al., 2008).
Statistical comparisons usingDCSs further demonstrated that the
spatial maps for NRSs including physiological noise regression
improved their similarity to the template DMN. A decrease in
connectivity strength after removing physiological fluctuations is
expected since noise induced spurious correlations are removed
from the signal (Weissenbacher et al., 2009). Furthermore,
temporal SNR was improved by noise reduction indicating
reduced signal variance.

Using head motion nuisance regressors showed less
pronounced effects. For conventional BOLD and dual-echo
BOLD, frontal regions showed a trend of FC increases between
NRS4 and NRS5 as well as FC decreases in the medial posterior
cortex and PCC. Significant increases were only observed in
ACC for the conventional BOLD dataset and the right angular
gyrus for dual-echo BOLD (Table 2). However, the data overall
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FIGURE 4 | Voxel-wise repeated-measures ANOVA F-maps highlighting the areas with significant FC changes after NRS. Results are limited to areas

within the DMNs as displayed in Figure 1. Box plots display the regional FC values for NRS1–5. Generally physiological noise reduction (WM and CSF fluctuations)

reduced FC significantly (bars above box plots indicate significance between NRS-FC values). Motion correction had more subtle effects on FC but nevertheless

significant increases can be seen in several areas mainly in the frontal cortex.

suggest that reduction of head movement related signals
improves FC strength between anterior and posterior areas. This
effect has attracted wide interest in recent years since the head
movement effects are subtle and can cause group differences
between cohorts with different movement profiles (e.g., patient
populations or children Van Dijk et al., 2010; Satterthwaite et al.,
2012). Notably, in this study, there were no head movement
differences within the neurotypical adult groups nor between
the ASD and TD groups as evidenced by mean framewise
displacement. Moreover, the spatial extent of DMN and regional
effects of NRS onto FC within the DMN were compared within
datasets separately (except for the between-group comparison of

ASD vs. TD discussed below). Our participants further showed
only small amount of motion hence changes were expected to
be subtle. In a further analysis, we segregated the cortex into 264
regions and computed the distance dependence of FC due to
reduction of head motion effects. This confirmed that long-range
connections show proportionally larger increase in FC than
connections between more proximal areas. This finding is in line
with prior evidence that motion affects long- and short-range
connections differently (Power et al., 2012, 2014; Van Dijk et al.,
2012). Comparing our linear fitting results to recent work by
Power et al. (2012, 2015) confirms that the distance dependency
effects are in the same order of magnitude.
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TABLE 2 | Clusters showing a change in functional connectivity across noise reduction strategies (NRS).

Cluster size Peak MNI coordinate peak F Anatomical area BA rm-ANOVA Effects of motion regression

Cluster #voxels x y z F(4, 9) P Post-hoc t-test

NRS5-NRS4

p

3D BOLD

1 91 34.0 −70.1 −23.9 47.3898 Fusiform_R 19 6.02 8.10E-04 −0.40 0.6996

2 329 −52.0 −14.1 −9.9 61.1242 Temporal_Mid_L 21 4.45 0.005 −0.01 0.9912

3 5290 0.0 −60.1 56.1 97.9045 Precuneus/posterior cingulate (7/31) 15.95 1.34E-07 −1.20 0.2598

4 54 −18.0 −44.1 −11.9 38.5708 Fusiform_L 19 13.77 6.60E-07 −1.22 0.2534

5 53 −6.0 41.9 2.1 29.5438 Cingulum_Ant_L 32/10 4.03 0.0084 2.42 0.0386*

6 52 10.0 43.9 8.1 46.4137 Cingulum_Ant_R 32 11.14 5.56E-06 0.08 0.9390

7 259 28.0 −76.1 40.1 28.0085 Occipital_Sup_R 19 7.67 1.41E-04 −0.59 0.5716

8 86 −20.0 −62.1 38.1 42.1778 Parietal_Sup_L 7 4.37 0.0055 −0.72 0.4925

3D ASL

1 129 14.0 63.9 6.1 23.8028 Frontal_Sup_Medial_R (11/10) 6.67 4.03E-04 0.54 0.6032

2 184 −10.0 45.9 −3.9 44.5863 Cingulum_Ant_L 32 6.29 6.03E-04 3.34 0.0087*

3 4003 4.0 −44.1 46.1 37.23 Precuneus/posterior cingulate 7,31 3.17 0.0248 −0.61 0.5562

4 864 50.0 −46.1 28.1 28.0536 SupraMarginal_R 39 11.67 3.55E-06 0.11 0.9122

5 70 28.0 −34.1 12.1 33.0022 sub lobar 4.31 0.0059 −0.05 0.9604

6 1338 −56.0 −54.1 28.1 27.4496 SupraMarginal_L 39 6.06 7.78E-04 2.00 0.0770

2D BOLD

1 333 −60.0 −24.1 −5.9 40.2981 Temporal_Mid_L 21 0.86 0.499 1.35 0.2113

2 81 −46.0 25.9 −9.9 50.8921 Frontal_Inf_Orb_L 47 4.32 0.0059 0.13 0.8987

3 91 −6.0 43.9 −3.9 19.2798 Cingulum_Ant_L 10.11 2.27 0.0805 0.59 0.5717

4 5609 4.0 −28.1 44.1 243.5297 Cingulum_Mid_R 31 0.85 0.5048 −1.46 0.1791

5 975 8.0 31.9 24.1 85.5258 Cingulum_Ant_R 10,32,9 2.74 0.0435 1.56 0.1521

6 833 48.0 −56.1 40.1 97.0885 Angular_R 39 2.97 0.0321 2.64 0.0268*

7 1014 −40.0 −54.1 34.1 66.9547 Angular_L 19,39 2.91 0.0347 0.99 0.3491

8 314 −22.0 15.9 44.1 251.0319 Frontal_Mid_L 8 4.41 0.0053 −0.15 0.8875

9 74 26.0 23.9 52.1 55.824 Frontal_Sup_R 8 3.12 0.0265 2.03 0.0735

10 188 8.0 −44.1 64.1 154.553 Paracentral_Lobule_R 6 0.49 0.745 −2.46 0.0363*

2D ASL

1 2273 4.0 −36.1 58.1 72.8902 Posterior Cingulate 31,7 6.14 7.11E-04 −3.26 0.0099*

Listed are cluster coordinates, size, and anatomical location as well as statistical test results for repeated measures ANOVA and post-hoc T-test between NRS5 vs. NRS4 (FC changes

due to motion regression). *Indicate significant differences between NRS5 vs NRS4.

TABLE 3 | Mean global CBF for both pCASL sequences and all NRSs.

Global CBF [ml/100g/min] NRS1 NRS2 NRS3 NRS4 NRS5

2D EPI pCASL 59.66± 11.45 59.79± 11.45 59.79±11.45 58.21± 9.77 58.17± 9.88

3D BS GRASE pCASL 59.99± 9.70 59.98± 9.68 59.99±9.69 64.37± 10.78 64.37± 10.78

No differences were observed.

In summary, in both BOLD datasets the observed effects
of noise reduction are in agreement with previous work,
highlighting the importance of taking into account the effect of
physiological and motion related confounds in FC analyses.

Noise Reduction Effects in ASL based FC
ASL based FC has recently gained interest in the research
community (Chuang et al., 2008; Zou et al., 2009; Viviani et al.,
2011; Jann et al., 2013; Dai et al., 2015; Jann et al., 2015a, for recent
review see Chen et al., 2015) and in clinical studies (Orosz et al.,
2012; Kindler et al., 2013; Jann et al., 2015b), since it provides
not only assessments of functional brain networks but also a
surrogate measure of metabolism, cerebral blood flow (CBF).
Moreover, there appears to be a relation between connectivity

strength and local CBF suggesting that increased connectivity of
a region is more energy demanding (Liang et al., 2013; Tomasi
et al., 2013; Jann et al., 2015a). While the feasibility of ASL
based FC and the similarity of the identified networks to BOLD
networks has been previously demonstrated (Chuang et al., 2008;
Zou et al., 2009; Viviani et al., 2011; Jann et al., 2013, 2015a; Dai
et al., 2015), it remains unknown how noise regression in ASL
could benefit these analyses. Our results show that 3D GRASE
pCASL with background suppression (BS) benefits from noise
reduction as temporal SNR (tSNR) significantly increases in a
similar manner as for BOLD (Figure 6). For 2D pCASL without
BS there was a minor gain in tSNR (Wang et al., 2008; Wang,
2012) although this did not reach significance. Furthermore, we
observed that 3D BS GRASE pCASL offers a four-times higher
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FIGURE 5 | Distance dependence of FC changes between NRS4 and NRS5 (indicating motion correction effects only, after correction for physiological

noise). Scatter plots reveal that FC between more distant areas is increased more than for proximal areas. Red lines represent the linear fit between distance and

1FC (see also equations).

tSNR than that of 2D pCASL. This higher tSNR across all NRSs
can mainly be attributed to the background suppression (brain
tissue signal suppressed by 85%), while the 3D readout mainly
contributes to improved spatial SNR (Vidorreta et al., 2013; Chen
et al., 2015; Wang et al., 2015). Based on tSNRmeasurements, 3D
BS GRASE pCASL should be more suitable for CBF based FC
analyses than 2D pCASL without BS.

The FC analysis on the CBF datasets demonstrated that the
DMN can be detected in both pCASL implementations, albeit
with less statistical power in the 2D pCASL due to lower tSNR
and/or small sample size of this study. Removing WM and
CSF fluctuations to minimize cardiac and respiration related
noise prior to FC analysis resulted in reduced FC between PCC
and ACC in the ROI based analysis for 3D BS GRASE pCASL
whereas no significant effect was found for 2D pCASL. Notably,
at the selected statistical threshold, 2D dual-echo pCASL did
not show significant correlations between CBF signals in the
seed area in the PCC and the anterior part of the DMN (i.e.,
the mPFC/ACC). It remains to be determined whether using
larger samples or lower statistical thresholds will make 2D ASL
based FC analysis feasible. Furthermore, as discussed above, the
BOLD images acquired at the second echo of the dual echo ASL
sequence used in our study showed highly similar network maps,
correlation strength and behavior to NRS as the conventional
BOLD sequence. On the other hand, the FC strength decrease

between PCC and the frontal ROI in 3D BS GRASE pCASL
mirrors the effects observed for BOLD. Not surprisingly, the
CBF-FC was generally lower than that of BOLD in both ASL
implementations, in agreement with other studies comparing
ASL and BOLD FC (Viviani et al., 2011; Jann et al., 2015a). This
globally decreased FC strength is a consequence of intrinsically
lower tSNR in ASL and due to the subtraction of label and
control images that generates shorter timeseries for FC analysis
in CBF data. However, while FC strength is lower, comparison
of the spatial maps using DSC analysis revealed that the DMNs
were similar between CBF and BOLD datasets. Similar to BOLD
rs-fMRI, physiological noise reduction by using WM and CSF
derived nuisance variables in 3D BS GRASE pCASL also resulted
in improved spatial specificity when compared to a template
DMN. Including head movement related nuisance variables into
the preprocessing pipeline resulted in slight improvements of
FC in anterior-posterior connections in 3D BS GRASE pCASL.
This effect again was similar to the effect observed in the BOLD
data (Van Dijk et al., 2010, 2012; Power et al., 2012, 2015). The
voxel-wise repeated-measures ANOVA across NRSs confirmed
the template-ROI based analyses between PCC and frontal areas
and revealed additional areas in the inferior parietal lobes (IPL)
where noise reduction had effects on FC. Voxel-wise maps were
dominated by effects from physiological noise reduction that
generally reduced FC in all DMN areas. Furthermore, the two
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FIGURE 6 | Boxplots indicating tSNR increases after different noise reduction strategies (NRS1–5) in all analyzed MRI sequences. Significant effects

were found for all but the 2D dual-echo pCASL datasets.

FIGURE 7 | Group differences between typically developing (TD) children and children with autism spectrum disorder (ASD) for different NRS in 3D BS

GRASE pCASL data: NRS1 no noise reduction, NRS4 WM/CSF fluctuations removed, NRS5 WM/CSF and motion regression. While seed based FC (from

PCC) in NRS1 did not reveal differences in frontal areas, NRS5 clearly delineates reduced long-range connections in ASD compared to TD.

frontal areas in 3D BS GRASE pCASL showed an increase
in FC after motion correction although only the right mPFC
ROI reached significance (Figure 4B1). The IPLs showed minor
increases in FC whereas the PCC exhibited a minor reduction
of local FC (Table 1). In 2D pCASL only the PCC was above
the threshold for defining the DMN (compared to Figure 1).
It showed significant decrease of local connectivity strength
following motion regression in addition to physiological noise
removal, and thus results are in agreement with the general
observations of this study.

Finally, the whole brain parcellated connectivity analysis
showed a similar motion related distance dependence of FC
changes (Figure 5), with effects more pronounced for long-range
than short-range connections. Notably, since this analysis was
not limited to the DMN areas, the effect was observed in both the

3D BS GRASE and 2D dual-echo pCASL datasets. This suggests
that although 2D pCASL shows low connectivity overall, on a less
stringent threshold for connectivity results, it could still benefit
from motion regression prior to FC analysis in the same fashion
as the other datasets.

In summary, 3D BS GRASE pCASL revealed similar DMN
maps at the same statistical threshold as BOLD, albeit with
generally reduced FC strength. Moreover, 3D BS GRASE
pCASL displayed similar FC changes as a function of different
sets of nuisance variables used in the preprocessing, showing
improved spatial specificity after physiological noise reduction
and improved long-range connectivity with motion correction.
In contrast, 2D dual-echo pCASL showed weak connectivity
overall, which did not survive the same statistical threshold set
for this study. This is most likely a problem of low tSNR for this
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ASL implementation that has no background suppression or the
small sample size.

Results for Clinical Cohort: Children with
ASD vs. Matched TD Children
In both ASD and TD groups, motion regression reduced
local connectivity in posterior DMN areas while it significantly
increased connectivity with superior frontal areas in the
TD group and with orbitofrontal areas in the ASD group.
Furthermore, in ASD we observed an increased anti-correlation
between PCC and areas of the anterior salience network as well
as areas of the somatomotor network. This suggests that noise
reduction might affect not only within network effects (DMN),
it may also benefit the separation between functional networks
in autism. These alterations in FC due to noise reduction were
also observed in direct group comparisons, leading to marked
changes in observed group differences, both in terms of hyper-
and hypoconnectivity. While all NRS (NRS 1,4,5) yielded altered
connectivity in somatomotor network in ASD, NRS4&5 revealed
reduced long-range FC from PCC to the dorsal portion of the
prefrontal cortex and parahippocampal gyri, with suppression
of hyperconnectivity with lateral-temporal areas. Overall, noise
reduction altered the pattern of temporal lobe hyperconnectivity
highlighting instead long-range hypoconnections to frontal
areas and the medial temporal lobes (i.e., parahippocampal
gyri). Similar motion related effects on FC were found in a
study using independent component analysis to identify BOLD-
DMN subnetworks in ASD (Starck et al., 2013). They reported
that after accounting for motion effects, group differences
between posterior and anterior DMN subnetworks, as well as
in a ventral subnetwork including the parahippocampal gyrus
were accentuated. Moreover, altered connectivity from PCC to
superior frontal and the parahippocampal gyri in ASD have also
been related to deficits in social functioning (Monk et al., 2009;
Weng et al., 2010).

Recently, an anterior-posterior gradient of hyper-
and hypoconnectivity received considerable attention in
neuroimaging studies of ASD (Keown et al., 2013; Rudie and
Dapretto, 2013; Di Martino et al., 2014) and is discussed in
the context of improved selective cognitive abilities (local
hyperconnectivity) and impaired social functioning (long-range
hypoconnectivity between frontal and posterior cortices) (Jann
et al., 2015b).

CONCLUSION

Noise reduction affected FC analysis from a seed in the PCC to
other brain areas of the DMN in all datasets (BOLD and pCASL).
First, changes in FC strength and spatial maps of the DMN with
regard to physiological nuisance variables (WM/CSF signals)
and head movement related nuisance variables were replicated
in two separate BOLD datasets, one with a conventional EPI
implementation and another based on data acquired in a 2D
dual-echo pCASL sequence. Second, analysis of NRS effects on
FC analysis of CBF data demonstrated that 3D BS GRASE
pCASL shows similar behavior as that observed for BOLD.

The favorable noise properties of 3D BS GRASE pCASL as
compared to 2D dual-echo pCASL and the improved tSNR
after noise reduction render this pCASL implementation more
suitable for CBF based FC analyses showing similar networks
(Dai et al., 2015; Jann et al., 2015a) and dependence on noise
reduction as BOLD. The dual-echo 2D pCASL used here provides
perfusion and BOLD images with optimal contrasts, hence can
provide proper BOLD based FC results and quantitative CBF
(Zhu et al., 2013). FC analysis on the CBF timeseries of 2D
pCASL should be treated with caution due to intrinsically low
tSNRin conjunction with small sample size. However, a potential
advantage of dual-echo ASL, that was not investigated here, is
that the TE dependence of signal relaxation might be utilized
to separate BOLD and non-BOLD signals (Kundu et al., 2012,
2013). The sensitivity of 2D pCASL can be improved in the
future with optimized background suppression strategies in
conjunction with multiband acquisitions (Shao et al., 2016).

Finally, applying the full spectrum of NRS in a cohort
of children with ASD and typically developing controls we
observed that 3D BS GRASE pCASL based FC analysis yielded
results that are in accordance with effects of head motion and
group differences between ASD and TD children observed in
BOLD-DMNs. These findings underline the complex changes in
functional organization in ASD and the impact that different
preprocessing steps could have on the research findings (Nair
et al., 2014).
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Autism spectrum disorder (ASD) is a pervasive neurodevelopmental condition, affecting

cognition and behavior throughout the life span. With recent advances in neuroimaging

techniques and analytical approaches, a considerable effort has been directed toward

identifying the neuroanatomical underpinnings of ASD. While gray-matter abnormalities

have been found throughout cortical, subcortical, and cerebellar regions of affected

individuals, there is currently little consistency across findings, partly due to small sample-

sizes and great heterogeneity among participants in previous studies. Here, we report

voxel-based morphometry of structural magnetic resonance images in a relatively large

sample of high-functioning adults with ASD (n = 66) and matched typically-developing

controls (n = 66) drawn from multiple studies. We found decreased gray-matter volume

in posterior brain regions, including the posterior hippocampus and cuneus, as well as

increased gray-matter volume in frontal brain regions, including the medial prefrontal

cortex, superior and inferior frontal gyri, and middle temporal gyrus in individuals with

ASD. We discuss our results in relation to findings obtained in previous studies, as well

as their potential clinical implications.

Keywords: autism, voxel-based morphometry, gray matter volume, autism brain imaging data exchange, ABIDE

INTRODUCTION

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by abnormal
social interactions and communication, repetitive behaviors, restricted interests, and atypical
sensory processing (American Psychiatric Association, 2013). Advances in neuroimaging
techniques and analyses over the past two decades have led to a burgeoning of structural studies
aimed toward identifying the neuroanatomical underpinnings of ASD. Overall, findings suggest a
complex neurodevelopmental trajectory, characterized by an early brain overgrowth (Courchesne
et al., 2003; Zielinski et al., 2014; Zwaigenbaum et al., 2014), followed by arrested growth later in
childhood and early adolescence (Courchesne et al., 2001; Mak-Fan et al., 2012), and accelerated
neural atrophy later in adulthood (Courchesne et al., 2011; Lange et al., 2015). While studies
were able to localize the neuroanatomical alterations in ASD to specific brain regions (Carper and
Courchesne, 2005; Schumann et al., 2010; Scheel et al., 2011; Zielinski et al., 2014; Dierker et al.,
2015; Libero et al., 2015), structures (Stanfield et al., 2008; Schumann et al., 2009; Via et al., 2011;
Nickl-Jockschat et al., 2012; Maier et al., 2015) and networks (Ameis et al., 2011; Barttfeld et al.,
2011; Solso et al., 2015), reports have been largely inconsistent.
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The inconsistency in neuroanatomical findings of previous
studies may have stemmed from several factors, including
differences in methodology, data acquisition, analytical
approaches, clinical and demographic characteristics of the
samples, as well as small sample-sizes. As ASD is a complex
condition with multiple etiologies, risk factors, and diverse
clinical manifestations (Amaral et al., 2008; Ecker et al., 2013b;
Chen et al., 2015), there is an inherent variability among
individuals with ASD that is likely related to variations in
neuroanatomical abnormalities. Indeed, ASD is linked to a great
variety of gene mutations, each of which has the potential to
affect neural development through different pathways and in
different ways, including gene transcription, expression and
regulation, protein synthesis and translation, synaptic formation
and function, as well as cell migration (Persico and Bourgeron,
2006; Sahin and Sur, 2015). The clinical manifestation of ASD
symptoms can also vary between affected individuals (Amaral
et al., 2008), and there is an ongoing debate among scientists and
clinicians regarding the inclusion of previously diagnostically-
segregated groups (e.g., Asperger’s syndrome vs. autism) under
the unifying umbrella of the new guidelines for ASD diagnosis
(Mcalonan et al., 2008; Toal et al., 2010; Mandy et al., 2012).
In addition, intelligence quotient (IQ) scores vary significantly
between individuals with ASD, with intellectual disability in the
majority of affected individuals, but average or above-average
scores in the high-functioning end of the spectrum (Toal et al.,
2010).

In order to address the inconsistency in neuroanatomical
reports of ASD, recent studies have used meta-analytic
approaches (Cauda et al., 2011; Duerden et al., 2012; DeRamus
and Kana, 2015), larger sample-sizes (Toal et al., 2010; Ecker
et al., 2012; Haar et al., 2014; Itahashi et al., 2015; Sussman et al.,
2015), and stricter inclusion criteria according to age (Raznahan
et al., 2009; Toal et al., 2010; Greimel et al., 2013), gender (Ecker
et al., 2012; Itahashi et al., 2015), IQ (Ecker et al., 2012; Itahashi
et al., 2015; Maier et al., 2015), and diagnosis (Mcalonan et al.,
2008; Toal et al., 2010; Via et al., 2011). Multivariate classification
techniques were also used in an attempt to better characterize the
complex patterns of neuroanatomical alterations in ASD (Ecker
et al., 2010a,b; Jiao et al., 2010; Uddin et al., 2011; Haar et al.,
2014). Only a few studies, however, investigated brain anatomy
in large, matched samples of high-functioning adults with ASD
and typically-developing controls (TDC) (e.g., Ecker et al., 2012).

To mitigate issues of sample variability and inconsistent
findings, we conducted a neuromorphometric study in a
relatively large sample of high-functioning adults with ASD
(n = 66) and gender, age, and IQ-matched TDC (n = 66).
The samples were selected from the Autism Brain Imaging
Data Exchange (ABIDE) database (Di Martino et al., 2014),
and included data from ASD and TDC participants collected
in a previous study from our lab as well. We used voxel-
based morphometry (VBM) (Ashburner and Friston, 2000), an
automated, unbiased, and conservative approach, to investigate
alterations in regional gray-matter (GM) volume of individuals
with ASD. We also examined the possible contributions of
gender, age, and ASD symptom severity by including them as
regressors in our model.

MATERIALS AND METHODS

Participants
The samples were selected from the ABIDE database (Di
Martino et al., 2014), which is a multicenter database containing
anatomical MRI scans, clinical measures, and demographic data
from approximately 1000 participants, with age range of 6–65
years. The ABIDE database offers a non-precedent opportunity
for investigating neuroanatomical alterations in large samples
of individuals with ASD. The MRI data selected for this
study were collected from ASD and TDC adult participants
in three different sites: New York University Langone Medical
Center (NYU), Social Brain Lab at the Research School of
Behavioral and Cognitive Neurosciences, NeuroImaging Center,
UniversityMedical Center Groeningen andNetherlands Institute
for Neurosciences (SBL), and Katholieke Universiteit Leuven
(KUL). Only participants with T1 images and sites that provided
a relatively large number of adult participants (at least 12
in each group) were included. Participants who could not be
matched according to their demographic data were excluded.
MRI data from a previous study conducted in our lab at the
Icahn School of Medicine at Mount Sinai (ISMMS; Eilam-Stock
et al., 2014) were also used. The total number of participants
was 66 in the ASD group and 66 in the TDC group (NYU
n = 19; SBL n = 15; KUL n = 14; ISMMS n = 18).
Demographic information for the combined samples are shown
in Table 1.

Selected participants with ASD were all in the high-

functioning end of the spectrum (IQ > 80), and received a

DSM-IV-TR diagnosis of Autistic Disorder, Asperger’s Disorder,

or Pervasive Developmental Disorder Not-Otherwise-Specified.
Detailed information regarding the diagnostic protocols for

the ABIDE database at each site are publicly available on the

ABIDE website (http://fcon_1000.projects.nitrc.org/indi/abide).
After matching for gender, the ASD and TDC groups were

matched on age across sites [t(130) = 0.2; p = 0.99] and
within each site separately [NYU t(36) = 0.23; p = 0.81;
SBL t(28) = 0.40; p = 0.69; KUL t(26) = −1.10; p =

0.28; ISMMS t(34) = 0.18; p = 0.86]. The ASD and TDC
groups were also matched on full score IQ (FSIQ) across sites
[t(113) = 1.7; p = 0.9] and within each site [NYU t(36) =

−1.16; p = 0.25; KUL t(26) = −0.72; p = 0.48; ISMMS
t(34) = 1.25; p = 0.22], with the exception of participants
from the SBL dataset for whom FSIQ scores were not available.
Of note, however, all ASD and TDC participants from the
SBL dataset were tested for FSIQ, and their scores were all
within the normal range (http://fcon_1000.projects.nitrc.org/
indi/abide/).

All sites contributing to the ABIDE database received

approval from their local Institutional Review Boards for

the acquisition of their data. In addition, all data retrieved

from the ABIDE database are completely anonymous with

no inclusion of protected health information, as required by

the HIPAA guidelines (http://fcon_1000.projects.nitrc.org/indi/

abide/). For the data acquired at ISMMS, all participants provided
written informed consent, approved by the Institutional Review

Board.
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TABLE 1 | Demographic information.

Group n Age (years) Gender Full Scale IQ

Mean SD Max Min M F Mean SD Max Min

TDC

Total 66 27 7 43 18 60 6 114 12 143 89

SBL 15 34 7 42 20 15 – – – –

KUL 14 23 3 29 18 14 113 10 134 98

NYU 19 25 5 32 18 15 4 113 12 139 91

ISMMS 18 28 7 43 20 16 2 117 15 143 89

ASD

Total 66 27 8 64 18 60 6 110 14 143 80

SBL 15 35 10 64 22 15 – – – –

KUL 14 22 4 32 18 14 109 13 128 89

NYU 19 25 6 39 18 15 4 108 13 137 80

ISMMS 18 28 6 42 19 16 2 111 17 143 87

TDC, typically-developed controls; ASD, autism spectrum disorder; SD, standard deviation; the two samples (TDC, ASD) did not differ in age [t(130) = 0.20; p = 0.99] and in IQ [t(113) =

1.70; p = 0.90].

Voxel-Based Morphometry Analysis
To measure differences in GM volume between the ASD and
TDC groups, we conducted VBM analyses using the VBM8
toolbox (http://dbm.neuro.uni-jena.de/vbm) and Statistical
Parametric Mapping (SPM8, Welcome Trust Centre for
Neuroimaging, University College London, UK) in MATLAB
R2012b (Mathworks Inc., Sherborn, MA). First, all T1-weighted
images were manually reoriented to the anterior commissure—
posterior commissure plane to improve the coregistration of T1
images to the template. Then, each image was segmented into
six tissue classes (i.e., GM, white matter, cerebrospinal fluid,
bone, non-brain soft tissue, and air outside of the head and in
nose, sinus, and ears) using the SPM standard tissue probability
map (Mazziotta et al., 1995) with default parameters. Segmented
GM images were spatially normalized to the “IXI500_MNI152”
template, using the DARTEL algorithm (Ashburner, 2007)
with default parameters. Non-linear warping for the effect of
spatial normalization was corrected to generate these modulated
normalized images, which represent relative volume after
correcting for brain size. Each image was then smoothed using
an 8-mm full width at half maximum Gaussian kernel.

A two-sample t-test was conducted for smoothed GM volume
images from the ASD and TDC groups using a random-effect
general linear model (GLM), with gender and age as nuisance
regressors. Because the scans were taken at multiple sites which
may have different MRI scanners and scanning protocols, an
inherent variability may exist within the data. Therefore, we
included an equal number of ASD and TDC participants within
each site. We also used the locations as a dummy variable in

our model. As suggested by the VBM8 manual, an absolute
threshold mask of 0.1 was used for all the second-level analyses.
To test the relationship between autism symptom severity and
GM volume, we conducted an additional second-level GLM
analysis for ASD participants, using their Autism Diagnostic
Observation Schedule (ADOS) scores (Lord et al., 2000) as a
regressor. Higher ADOS scores are indicative of increased ASD

severity. Forty ASD participants for whom the ADOS scores were
available (ABIDE n = 27; ISMMS n = 13) were selected from
the original sample for this analysis. The significance level for
the height of each voxel was set to p < 0.005 (uncorrected),
with a contiguous-voxel extent threshold k> 17 voxels, to correct
for multiple voxel comparisons. This threshold was estimated by
using 10,000 Monte Carlo simulations with a customized Matlab
program (Slotnick et al., 2003). The corrected a priori height
threshold was p < 0.05.

RESULTS

Between-Group Differences in Gray-Matter
Volume
A between-group comparison of GM volume revealed increased
volume in frontal, temporal, and cerebellar brain regions in
the ASD group, compared to the TDC group. These regions
included the medial prefrontal cortex (extending to the right),
left superior frontal gyrus, left inferior frontal gyrus—pars
opercularis (Broca’s area), left inferior frontal gyrus—pars
orbitalis, left middle temporal gyrus, and left cerebellum VIIb
(Figure 1 and Table 2). In addition, compared to the TDC
group, decreased GM volume in posterior brain regions in the
ASD group was found, including the left posterior hippocampus
and the cuneus bilaterally (Figure 1 and Table 2). These results
remained consistent following an additional GLM analyses with
age, gender, and site as nuisance regressors.

Neuroanatomical Correlations with ASD
Symptom Severity
To assess the relationship between ASD symptom severity
and GM volume, ADOS scores of 40 participants with ASD
were used as a regressor in our GLM model. Results revealed
negative correlations between symptom severity and GM volume
in the right superior frontal gyrus, left middle frontal gyrus,
inferior frontal gyri—pars orbitalis bilaterally, restrosplenial
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FIGURE 1 | Differences in gray-matter volume between the ASD and TDC groups. Red indicates areas of increased gray-matter volume in ASD (ASD > TDC).

Blue indicates areas of decreased gray-matter volume in ASD (ASD < TDC).

TABLE 2 | Brain regions with abnormal gray-matter volume in ASD.

Region L/R BA x y z T Z K

ASD < TDC

Posterior Hippocampus L 36 −35 −36 −3 3.53 3.44 283

Cuneus L 18/19 −12 −83 23 3.48 3.40 83

Cuneus R 18 17 −72 32 2.82 2.77 31

ASD > TDC

Superior frontal gyrus L 8 −21 12 44 3.85 3.74 455

Superior frontal gyrus (medial) R 10 2 54 11 3.50 3.41 634

Inferior frontal gyrus L 44 −39 15 32 3.37 3.29 91

Inferior frontal gyrus L 44 −51 11 26 3.35 3.27 196

Middle temporal gyrus L 21 −62 −12 −14 3.12 3.06 86

Middle temporal gyrus L 21 −59 −27 −12 3.06 3.00 35

Superior frontal gyrus (medial) L 10 −18 62 21 2.97 2.91 28

Inferior frontal gyrus R 45 44 29 26 2.92 2.87 18

Cerebellum VIIb L −33 −57 −41 2.91 2.86 24

Inferior frontal gyrus L 47 −50 39 −15 2.87 2.82 34

Height threshold: T = 2.72, p < 0.005, Extent threshold: k > 17.

cortex bilaterally, supplementary motor area bilaterally, right
middle cingulate cortex, thalamus bilaterally, and putamen
bilaterally (Figure 2 and Table 3), indicating that decreased GM
volume in these regions is associated with more severe ASD
symptoms. No significant positive correlations between symptom
severity and GM volume were found.

DISCUSSION

Gray-Matter Volume Abnormalities along
the Anterior-Posterior Axis
Our results show a general pattern of increased GM volume
in anterior brain regions and decreased GM volume in
posterior brain regions in the ASD group, relative to TDC.
A few theoretical accounts for the lobular specificity of

neuroanatomical abnormalities in ASD across development
have emerged, and may shed light on the differences in GM
volume found in our study. Research on brain development
in ASD across the lifespan has demonstrated a complex
neurodevelopmental trajectory in affected individuals,
characterized by an early brain overgrowth (Courchesne
et al., 2003; Zielinski et al., 2014; Zwaigenbaum et al., 2014),
followed by arrested growth later in childhood and early
adolescence (Courchesne et al., 2001; Mak-Fan et al., 2012),
and accelerated neural atrophy in adulthood (Courchesne et al.,
2011; Lange et al., 2015). Studies in very young individuals
with ASD (i.e., 2–4 years old) observed an increase of 5–12% in
brain volume that was specifically localized to the frontal and
temporal lobes (Carper et al., 2002; Redcay and Courchesne,
2005; Courchesne et al., 2007). This significant enlargement
in anterior brain regions is reduced in older ages, though
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FIGURE 2 | Correlations between gray-matter volume and ASD symptom severity as indicated by the ADOS scores of each participant (n = 40). All

significant correlations found were negative and are indicated in blue.

TABLE 3 | Correlations between gray-matter volume and ASD symptom severity.

Region L/R BA x y z T Z K

NEGATIVE

Inferior frontal gyrus R 47 54 24 −9 4.35 3.88 301

Inferior frontal gyrus R 45 54 32 3 3.18 2.97

Corpus mamillare R 3 −12 −12 4.27 3.82 1342

Restrosplenial cortex L 30 −15 −41 −6 3.67 3.36

Thalamus R 9 −18 −3 3.54 3.26

Thalamus L 6 −19 −3 3.33 3.09

Mid cingulate cortex R 6 14 −11 50 4.26 3.81 77

Restrosplenial cortex R 30 8 −42 0 4.04 3.65 193

Inferior frontal gyrus L 47 −47 23 −6 3.70 3.39 178

Supplementary motor area R 6 6 0 74 3.69 3.38 198

Mid cingulate cortex R 23 8 −39 48 3.24 3.02 139

Precuneus L 7 −14 −59 56 3.22 3.00 19

Putamen R 30 2 −9 3.10 2.90 143

Middle frontal gyrus L 8/9 −32 36 44 3.07 2.87 20

Putamen L −30 −6 −6 2.97 2.79 95

Supplementary motor area L 6 −9 9 51 2.96 2.78 79

Superior frontal gyrus R 6 21 −6 59 2.90 2.73 25

n = 40, Height threshold: T = 2.72, p < 0.005, Extent threshold: k > 17. Structures listed below clusters with a K-value were within that same cluster with different local maxima.

GM volume in these regions continues to be greater in ASD
participants relative to TDC throughout development (1–3%
increase) (Redcay and Courchesne, 2005; Courchesne et al.,
2007). By contrast, the occipital lobe is not enlarged in young
children with ASD (Carper et al., 2002; Courchesne et al.,
2007). The occipital lobe is phylogenetically older than the
frontal and temporal lobes, and its maturation occurs earlier in
development (Ecker et al., 2013b); while the frontal and temporal
lobes continue to develop throughout the first years of life, the
occipital lobe does not change dramatically across the life span
in typically developing individuals (Gogtay and Thompson,
2010).

Models of ASD suggest that the frontal and temporal
enlargements that characterize early brain development in ASD
may be a result of increased numbers of excitatory pyramidal
neurons in these regions (Courchesne and Pierce, 2005a;
Courchesne et al., 2007, 2011; Santos et al., 2011). This localized
overgrowth may damage the local connectivity patterns within
these regions, as well as the large-scale connectivity between these
regions and the rest of the brain (Courchesne and Pierce, 2005b;
Courchesne et al., 2007; Geschwind and Levitt, 2007; Ecker et al.,
2013b; Chen et al., 2015). In the typically-developing brain, the
connectivity patterns that develop throughout the first years of
life allow for the higher-level cognitive skills that develop at
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the same time, including socio-emotional skills, language, and
executive functions (Akshoomoff et al., 2002; Courchesne et al.,
2007). Thus, it is reasonable to hypothesize that the aberrant
connectivity patterns in ASD within the overgrowing frontal and
temporal lobes, as well as between these regions and the rest of
the brain, are at the core of the cognitive and behavioral deficits in
ASD (Akshoomoff et al., 2002; Geschwind and Levitt, 2007). As
individuals with ASD reach adulthood, processes of accelerated
neuronal atrophy take place throughout the brain (Courchesne
et al., 2011; Lange et al., 2015), perhaps to compensate for
the early overgrowth in these individuals. The early localized
enlargement of the anterior brain in ASD, together with the later
broader neuronal atrophy in these individuals may, therefore,
account for both our and others (e.g., Ecker et al., 2012) findings
in adult ASD samples. The accelerated atrophy in adulthood may
cause a GM volume decrease in both anterior parts of the brain,
which are still greater relative to TDC though to a lesser extent,
as well as in the posterior brain (mainly in the occipital cortex),
which is now reduced relative to TDC.

Gray-Matter Volume Abnormalities in
Cortical and Sub-Cortical Brain Regions
ASD is a complex disorder with multiple symptoms affecting
both high-level (e.g., socio-emotional processing, self-referential
processing, language) and low-level (e.g., sensory processing)
functions. It is not surprising, therefore, that the extent
of neuroanatomical alterations found in our study, as well
as in previous empirical investigations, encompasses regions,
structures, and neural networks throughout the brain. A
hallmark of ASD is abnormal socio-emotional processing,
including deficits in theory of mind (i.e., the ability to understand
other’s beliefs, intentions and perspectives; Baron-Cohen et al.,
1985; Baron-Cohen, 2000; Pilowsky et al., 2000), affective
evaluations (Hill et al., 2004; Dapretto et al., 2006), and empathy
(Minio-Paluello et al., 2009; Fan et al., 2013; Hadjikhani et al.,
2014; Gu et al., 2015). Theory of mind relies on several
neural regions, including the medial prefrontal cortex, lateral
orbitofrontal cortex, middle frontal gyrus, superior temporal
gyrus, temporal pole, temporoparietal junction, and cuneus
(Frith and Frith, 1999; Gallagher and Frith, 2003; Saxe and
Kanwisher, 2003; Amodio and Frith, 2006; Völlm et al., 2006). In
our study we found GM abnormalities in the medial prefrontal
cortex (increased GM volume) and cuneus (decreased GM
volume). We also found negative correlations between GM
volume in the middle frontal gyrus and ASD symptom severity.
These structural abnormalities may be related, therefore, to the
commonly seen theory of mind deficits in individuals with ASD.
Our finding of increased GM volume in the medial prefrontal
cortex in ASD may also explain the emotional evaluation
difficulties commonly seen in this disorder, as this region plays
a role in that domain as well (Phan et al., 2002; Harris et al., 2007;
Etkin et al., 2011).

Our results of GM abnormalities in the inferior frontal
gyrus, but not the ventromedial prefrontal cortex, may be
related to a specific deficit in emotional empathy (e.g.,
feeling another person’s pain) but preserved cognitive empathy

(e.g., understanding that another person is in pain) in ASD
(Minio-Paluello et al., 2009; Fan et al., 2013; Hadjikhani et al.,
2014). Indeed, a recent lesion study demonstrated an anatomical
dissociation between the cognitive and emotional components
of empathy, such that the ventromedial prefrontal cortex is
necessary for cognitive empathy, while the inferior frontal gyrus
is essential for emotional empathy (Shamay-Tsoory et al., 2009).
Additionally, in a functional MRI study investigating brain
regions associated with empathy for pain, we found abnormal
brain activation in the inferior frontal gyrus in ASD, with no
group differences in ventromedial prefrontal cortex activation
(Gu et al., 2015).

Our findings also point to several GM abnormalities in
ASD that may be related to limited self-referential processing
(Lombardo et al., 2007, 2010; Uddin, 2011) and autobiographical
memory (Bowler et al., 2000; Crane and Goddard, 2008; Lind
and Bowler, 2010) in this disorder. Studies that investigated
the neural substrates of self-referential processing in typically-
developing samples found that these processes activate a set of
regions along the medial axis of the brain, commonly termed
cortical midline structures (Northoff et al., 2006), including the
medial prefrontal cortex/pregenual anterior cingulate cortex, the
dorsomedial prefrontal cortex/middle cingulate cortex, and the
precuneus/posterior cingulate cortex (Kelley et al., 2002; Northoff
et al., 2006; Lombardo et al., 2010). The left inferior frontal gyrus
was also found to be activated during self-related judgments
(Kelley et al., 2002). In addition, the posterior hippocampus
is involved in the storage and retrieval of autobiographical
memories (Fernández et al., 1998; Kim, 2015). Our results of
increased GM volume in the medial prefrontal cortex and the
left inferior frontal gyrus, decreased GM volume in the posterior
hippocampus, and negative correlations between GM volume in
the middle cingulate cortex and precuneus and ASD symptom
severity, may be related, therefore, to aberrant self-referential
processing and autobiographical memory in individuals with
ASD.

The increased GM volume in the left inferior frontal gyrus
and left middle temporal gyrus in the ASD group in the present
study may be related to altered language functions in affected
individuals, especially in the semantics domain. Although
language abilities vary greatly across the ASD spectrum, ranging
from a severe language delay to normal language development,
there is empirical evidence suggesting that semantic processing
is compromised even in high-functioning individuals with ASD
who do not exhibit any language delay (Harris et al., 2006;
Kamio et al., 2007). High-functioning adults with ASD also
showed significantly reduced activation in the left inferior
frontal gyrus (Broca’s area) during semantic processing (Harris
et al., 2006). Indeed, the left inferior frontal gyrus, together
with the left middle temporal gyrus, is involved in semantic
processing in the typically-developing brain (Goel and Dolan,
2001; Visser et al., 2012). In our study, both of these regions were
identified as areas of increased GM volume in ASD, which may
serve as neuroanatomical substrates for the abnormal semantic
processing in this disorder.

Although we did not find GM alterations in the thalamus
in ASD, we did find a significant negative correlation between
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thalamic GM volume and ASD symptom severity. In addition,
we observed decreased GM volume in the cuneus in the ASD
group. The thalamus is a main hub for sensory processing across
modalities, and it can affect sensory perception by integrating
and relaying feedforward and feedback information between the
sensory cortices and higher-order cortical regions (e.g., frontal
lobe; Alitto and Usrey, 2003; Cudeiro and Sillito, 2006; Briggs
and Usrey, 2008). The cuneus is a secondary visual area which
may play a role in modulation of visual processing (Vanni
et al., 2001). Abnormal sensory processing (both hyper-and-
hypo-sensitivity) have been extensively documented in the ASD
literature, especially in the visual modality (Behrmann et al.,
2006; Vandenbroucke et al., 2008), and are now included in the
ASD diagnostic criteria in the diagnostic and statistical manual
of mental disorders (DSM-5) (American Psychiatric Association,
2013). Together, these findings may be related to the abnormal
sensory processing commonly seen in individuals with ASD.

LIMITATIONS

Although our results are consistent with some previous reports,
they did not replicate other findings of GM alterations in adults
with ASD. For example, in a study that specifically examined
between-group differences in the amygdala and hippocampus in
30 high-functioning (IQ > 100) adults with ASD and gender,
age, and IQ matched control participants (Maier et al., 2015),
increased hippocampal volume bilaterally was found in ASD,
opposite to our results. Yet, other studies failed to find any
significant differences in GM volume between adults with ASD
and TDC (Haar et al., 2014; Riedel et al., 2014; Riddle et al.,
2016). This variability in structural findings may be due to
relatively small sample sizes (Riedel et al., 2014; Maier et al.,
2015) or differences in methodology and sample characteristics
(Haar et al., 2014; Riddle et al., 2016). Thus, large-sample studies
of different sub-groups within the ASD spectrum will likely
promote a better characterization of neuroanatomical alterations
that contribute to ASD symptomatology.

The current study took advantage of the relatively large sample
of participants with ASD provided by the ABIDE database,
and limited the inclusion criteria (i.e., high-functioning adults)
to increase statistical power and reduce variability. However,
as ASD is a complex condition with multiple contributing
factors and etiologies, it is possible that our sample was not
sufficiently homogeneous. While we attempted to control for
different variables that may have contributed to the previously
reported inconsistent findings, such as age and IQ, there are
many other factors we did not take into account, such as genetic
factors or clinical presentations. On the other hand, when using
stricter inclusion criteria, the generalizability of the data is
inevitably reduced. For example, it is possible that our findings
represent neuroanatomical alterations in high-functioning adults
with ASD only, and are less applicable to the majority of the
ASD population, which has lower level of functioning and greater
symptom severity. Studies with more individuals across the
spectrum and higher severity of autism may shed a different light
on the matter entirely. Future studies that continue to investigate

neuroanatomy in large samples of affected individuals from
different clinical and demographic subgroups, will, therefore,
significantly contribute to our understanding of neuroanatomical
alterations in individuals with ASD.

We measured GM volume using voxel-based morphometry,
as this is one of the most informative and commonly used
measures in the study of neuroanatomical abnormalities in
clinical populations. However, other neuroanatomical measures
were used in previous studies of ASD, which may also be useful
indicators of structural abnormalities. These include measures of
cortical folding and sulcal depth (Nordahl et al., 2007), cortical
thickness (Hyde et al., 2010), cortical surface area (Ecker et al.,
2013a), local gyrification index (Wallace et al., 2013), as well
as diffusion tensor imaging for white-matter tract (Ameis et al.,
2011; see Ecker et al., 2015 for review). Multivariate classification
techniques were also recently used as a viable method for
identifying complex patterns of neuroanatomical alterations in
ASD (Ecker et al., 2010a,b; Jiao et al., 2010; Uddin et al., 2011;
Haar et al., 2014). It would be valuable, therefore, to conduct
studies with large samples that look at other structural measures
as well.

CLINICAL IMPLICATIONS

Our study adds to the growing literature investigating
neuroanatomical abnormalities in ASD. The research endeavor
to characterize the profile of brain anatomy in ASD across
development may have clinical implications, as it may facilitate
identification of biomarkers for different subgroups within the
ASD spectrum (Ecker et al., 2013b, 2015). While the behavioral
markers of ASD have been extensively investigated and are
relatively defined and agreed upon by researchers and clinicians,
the neuroanatomical, neurofunctional and genetic profiles of
ASD still warrant rigorous research. Once our knowledge of the
different markers of ASD has been sufficiently advanced, the
different pieces of the puzzle will come together to create a clear
picture of this currently ill-understood disorder. This will allow
for better diagnosis and treatment for ASD, which may be more
specific to individuals or subgroups within the spectrum.
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Autism is a neurodevelopmental disorder that mainly affects social interaction and

communication. Evidence from behavioral and functional MRI studies supports the

hypothesis that dysfunctional mechanisms involving social brain structures play a major

role in autistic symptomatology. However, the investigation of anatomical abnormalities in

the brain of people with autism has led to inconsistent results. We investigated whether

specific brain regions, known to display functional abnormalities in autism, may exhibit

mutual and peculiar patterns of covariance in their gray-matter concentrations. We

analyzed structural MRI images of 32 youngmen affected by autistic disorder (AD) and 50

healthy controls. Controls were matched for sex, age, handedness. IQ scores were also

monitored to avoid confounding. A multivariate Source-Based Morphometry (SBM) was

applied for the first time on AD and controls to detect maximally independent networks of

gray matter. Group comparison revealed a gray-matter source that showed differences

in AD compared to controls. This network includes broad temporal regions involved in

social cognition and high-level visual processing, but also motor and executive areas

of the frontal lobe. Notably, we found that gray matter differences, as reflected by SBM,

significantly correlated with social and behavioral deficits displayed by AD individuals and

encoded via the Autism Diagnostic Observation Schedule scores. These findings provide

support for current hypotheses about the neural basis of atypical social andmental states

information processing in autism.

Keywords: autism, morphometric analysis, social deficits, neuroscience, developmental disabilities

INTRODUCTION

Autism Spectrum Disorder (ASD) is a category of pervasive developmental disorders (PDD) that
affect 1 in 150 children (Rapin and Tuchman, 2008). Autistic symptomatology is characterized
by severe impairments that mainly affect social interaction, communication, while sparing basic
cognitive skills (Misra, 2014), and not implying emotional disturbance (Rapin and Tuchman,
2008). The term ASD was introduced by Allen (1988) and included: autistic disorder (AD),
Asperger syndrome (AS), and PDD not otherwise specified (Levy et al., 2009; Pina-Camacho
et al., 2012). Recently, the DSM V revised the conceptualization of those disorders and currently
diagnostic classifications only include Autism Spectrum Disorders (ASD) (Lord and Bishop, 2015).
Nevertheless, the diagnostic criteria adopted in the current study still refer to DSM IV, and we
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focused primarily on autism disorder (AD). Consequently, we
use the words “autism” and “autistic” to specifically refer to AD.

The mind-blindness theory proposed that characteristic
problem in social interaction arises because AD have difficulties
in mentalizing and understanding psychological dynamics in
other people and in oneself (Baron-Cohen et al., 1985; Frith
et al., 1991). Support for this model comes from behavioral
studies showing that autistics poorly perform on tasks that
require theory of mind (ToM) abilities (Baron-Cohen et al., 1985;
Misra, 2014). The poor performance of people with autism on
ToM task is thought to be due to a conceptual deficit or to
processing peculiarities. In normally developing children ToM
tasks elicit intuitive social insights into people. In contrast,
autistic children treat these tasks as logical-reasoning problems
relying on language and non-social cognitive functions (Tager-
Flusberg et al., 2009). In line with this hypothesis, functional
MRI investigations of AD have highlighted reduced responses in
cortical areas related to social interaction (Frith, 2003; DiMartino
et al., 2009; Lombardo et al., 2011; Gliga et al., 2014), and the
engagement of areas associated with general problem solving
abilities (Frith, 2003). Moreover, functional connectivity in a
group with autism shows abnormal pattern in areas mediating
ToM and in the mirror neuron system (MNS) as well (Fishman
et al., 2014; Cheng et al., 2015; Kana et al., 2015).

On the other hand, studies of volumetric changes in the
autistic brain resulted in inconsistent brain structures across
studies: prefrontal cortex (Courchesne et al., 2011b), cerebellum
(Sparks et al., 2002), temporal lobe (Palmen et al., 2006),
both the frontal (Herbert et al., 2004; Jiao et al., 2010) and
parietal lobes (Courchesne et al., 1993) and amygdala (Schumann
et al., 2004). Some inconsistencies in the structural MRI
literature may be attributed to differences in methodology, age,
heterogeneity of the disorder (Geschwind, 2009), or diffuse
structural abnormalities. Diffuse structural abnormalities in
autism could reflect impairment of many, if not most, brain
networks (Müller, 2007).

Recently, predictive models of autism based on pattern
recognition in structural MR images have been successfully
developed. Ecker et al. (2010) adopted a support vector machine
(SVM) method to discriminate ASD individuals from controls.
Brain areas in the temporal lobe, precuneus, hippocampal,
and fusiform gyri were crucial for discrimination. Neural
abnormalities discovered with such methodologies, however,
rarely correlate with clinical criteria, or correlate only with
generic total scores, and not with specific subscales (Eliez and
Reiss, 2000; Lord et al., 2000; Hardan et al., 2006a,b; Ecker et al.,
2010; Griebling et al., 2010). In other words, these correlations
may refer more to a general severity of pathology than to specific
deficits.

We suggest that neuroanatomical markers of autism disorder
may be better understood by studying large-scale anatomical
networks (Minshew and Williams, 2007; Schaer et al., 2013).
SBM is a data-driven multivariate alternative to the standard
Voxel-Based Morphometry (VBM), and it may be particularly
suitable to the investigation of anatomical changes in autism.
SBM takes into account information across different voxels and
identifies unpredicted, naturally occurring patterns of covariance
across brain regions (Xu et al., 2009). Notably, such anatomical

covariance has been shown to reflect functional connectivity
(Evans, 2013). For these reasons, we expect SBM to individuate
large anatomical networks of gray-matter which show aberrant
patterns of covariance in AD, as compared to control. We also
expect those networks to include brain areas that previous studies
showed to be anatomically or functionally abnormal.

Given the heterogeneity of AD and the need for large-scale
samples of MR and clinical measures, the present study utilizes
the ABIDE (Autism Brain Imaging Data Exchange) database.

METHODS

Participants
Structural MRI of 82 participants (32 AD and 50 controls) were
extracted from Autism Brain Imaging Data Exchange (ABIDE).
Details of acquisition, informed consent, site-specific protocols,
specific diagnostic criteria for each data set can be found
at http://fcon_1000.projects.nitrc.org/indi/abide/index.html. The
following committees approved the protocols of each site: the
Human Subjects Protection Committee of the California Institute
of Technology (CAL), the Institutional Review Board at the
University of Pittsburgh (PBG) and the University of Utah School
of Medicine (USM).

From around 3000 subjects available, we carefully selected
participants by gender (males), age (range: 18–39 years old),
as well as parameters of the MR scanners (image type: T1;
magnetic field strength: 3T). This first selection resulted in a
dataset composed by structural MRI of 283 subject acquired
with 12 different MRI scanners. Next, the 283 subjects were
screened on the basis of the DSV-IV for either the absence of any
neuropsychiatric disorders (control group), or the diagnosis of
Autism (AD) (patients group). Further inclusion criteria were: (a)
the indication of the IQ score computed on the basis of Wechsler
abbreviated scale of intelligence (WASI); (b) scores on at least
three specific subscales of the Autism diagnostic observation
schedule (ADOS) for AD participants. Finally, individuals with
any other pathology or comorbidity were rejected. An in house
made Dori script iteratively sampled the database until controls
and AD group were balanced for age and there was no association
between groups and a particular scanner.

This procedure yielded a dataset comprising 82 participants
(32 AD and 50 controls) tested on one of the two MR scanners,
with the sameMR sequence (Table 1 in Supplementary Material).
The scanners belonged to the same vendor (i.e., Siemens
MAGNETOM TrioTim, Siemens MAGNETOM Allegra), and
participants were equally distributed between scanners (See Table
1 in Supplementary Material). The two groups did not differed
for age [t(31) = 0.2953, p = 0.7728]. However, there was a
difference in IQ scores [t(31) = 2.9586, p = 0.0041]. See Table
1 in Supplementary Material. This is in line with previous
observations for which the prevalence of mental retardation in
autism is ∼60% groups, and AD naturally differ from normal
controls for IQ (Amaral et al., 2008).

Data Analysis
Source-based morphometry (SBM) is a multivariate technique
that takes advantage of independent component analysis (ICA)
(Lee, 1998; Xu et al., 2009). ICA is a statistical technique that
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is widely used in many fields of biomedical research for signal
analysis. In the field of neuroscience ICA has found important
application in EEG/MEG/fMRI data analyses to isolate noisy
artifacts.

Pulling images from different MR scanners is known to
lead to confounding, even though MR sequences are the
same (Han et al., 2006). This is especially true for a massive
univariate analysis, such as VBM. However, SBM can decompose
the MR signal in several maximally independent sources, or
independent components (ICs). In this study, few sources
may reflect signal differences among MR scanners, while the
majority of ICs individuate networks of gray-matter that share
patterns of covariance among subjects (Xu et al., 2009; Kaspárek
et al., 2010; Kubera et al., 2014). Artifactual components are
usually easy to detect because are asymmetric, do not follow
the anatomical organization of the brain, and do not exhibit
any coherent patterns. In addition, the distribution of subjects
throughout scanners is similar in both controls and AD, and this
should guarantee that group differences are not due to artifact
components.

The preprocessing of images is identical to the procedure
adopted for classical VBM analyses. Brain extraction and robust
center estimation was automatically carried out using FSL Brain
extraction tool (BET) (Smith, 2002). For normalization and
segmentation we used the SPM toolbox VBM8. Images were
spatially normalized to the 152 average T1 MNI (Montreal
Neurological Institute) template, and segmented into gray-matter
(GM), white-matter (WM), and cerebrospinal fluid (CSF). The
normalized gray-matter images were smoothed with 8-mm full
width at half-maximum (FWHM) Gaussian kernel to establish
spatial correspondence between the different brains.

Source-based morphometry analysis was carried out using
the GIFT toolbox (http://icatb.sourceforge.net) (Xu et al.,
2009). The minimum description length (MDL) principle
was used to estimate a number of independent components.
MDL found eight reliable ICs. We performed ICA using
a neural network algorithm (Infomax) that attempts to
minimize the mutual information of the network outputs to
identify naturally grouping and maximally independent sources
(Bell and Sejnowski, 1995). ICA was repeated 20 times in
ICASSO (http://research.ics.aalto.fi/ica/icasso/) and the resulting
components were clustered to ensure the consistency and
reliability of the results. Reliability is quantified using a quality
index Iq, ranging from 0 to 1 and reflecting the difference
between intra-cluster and extra-cluster similarity (Himberg et al.,
2004). All the 8 components extracted from the GM images were
found to be associated with an Iq> 0.97 indicating a highly stable
ICA decomposition.

SBM involves converting each gray-matter volume into a
vector. As a result, we obtained a matrix where the 82 rows
represent the 82 subjects (the first 50 rows represent controls,
while the other 32 AD), and each column indicates a voxel. This
matrix was decomposed into two matrices by ICA. The first
matrix is named “mixing matrix” and it is composed by a subject
per row and an IC per column. Therefore, the mixing matrix
indicates how much a subject expresses a given component.
For this reason, values in the mixing matrix are called “loading

coefficients.” The second matrix is named source matrix and
it specifies the relation between the ICs and the voxels. For
gray-matter volume component visualization the source matrix
was reshaped back to a three-dimensional image, scaled to unit
standard deviations (Z maps) and thresholded at Z > 2.5.

We used the mixing matrix to verify whether components are
differently expressed between controls and AD. A two sample
t-test without assuming equal variances (F-test revealed unequal
variances) was used to test whether all the ICs are similarity
expressed by either of the groups. Similarly, we used the loading
coefficients in the mixing matrix to test a linear relation among
ADOS scores and the level of components’ expression. All the
results were thresholded at p < 0.05 corrected for Family Wise
Error (FWE).

RESULTS

We extracted eight independent components (Figure 1).
However, only the 7th component was significantly different
[t(31) = 2.9482, p(FWE) = 0.0042] between AD and controls.
We call this component “autism-specific structural network”
(ASN). Anatomical labels of the regions composing ASN were
obtained using the WFU PickAtlas (Tzourio-Mazoyer et al.,
2002). Among regions that differ between AD and controls we
found: inferior, middle, superior temporal gyri, fusiform gyrus,
parahippocampal gyrus, paracentral lobule, precuneus, cerebellar
tonsil, and portions of the inferior, middle, and superior frontal
gyri (Figure 2). All the gray-matter regions of ASN are presented
in Table 2 in Supplementary Material, and in Figure 2.

To ensure that differences in IQ (see Table 1 in Supplementary
Material) did not account for brain differences we correlated
ASN loading coefficients (i.e., 7th column of the mixing matrix)
against IQ values. The correlation was not significant (p =

0.6336), thus excluding the relevance of IQ on this component.
Notably, ASN significantly correlated with the total scores

of ADOS, and also with two ADOS subscales measuring
highly relevant impairments in AD, i.e., difficulties in social
interactions and stereotyped behavior. Both variables show
significant correlation with the loading coefficient of ASN, after
Bonferroni correction for multiple comparisons. Classic Total
ADOS Score: r = 0.4708, p(FWE) = 0.0065. Social Total subscore:
r= 0.4269, p(FWE) = 0.0148. Stereotyped behaviors and restricted
interest: r = 0.4152, p(FWE) = 0.0181. See Figure 2.

DISCUSSION

In this study we presented for the first time a whole brain
morphometricmethod (SBM), based on independent component
analysis, which shows alterations in gray-matter between AD
individuals and controls. This innovative multivariate procedure
was applied to detect brain networks that exhibit abnormal
pattern of gray-matter covariance in AD. We showed that
morphometric changes in autism, as detected by SBM, are
significantly associated with observable social and behavioral
deficits (ADOS scores).
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FIGURE 1 | Sources discovered by SBM. According to the estimation of the number of components, eight independent components were extracted. Note that IC1

is not graphically represented because no voxel survived after thresholding for Z > 2.5.
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FIGURE 2 | Representation of ASN in the brain and behavior in AD. (A) Only the seventh component shows different loading coefficient between ASD and

controls. The regions involved are: inferior frontal gyrus, middle frontal gyrus, superior frontal gyrus, inferior temporal gyrus, middle temporal gyrus and superior

temporal gyrus, fusiform gyrus, parahippocampal gyrus, paracentral lobule, precuneus and cerebellar tonsil (Table 2 in Supplementary Material). (B) Correlations of

behavioral measures with loading coeficients values in IC 7: Classic Total ADOS Score (communication subscore + social interaction subscore); Social Total subscore:

Stereotyped behaviors and restricted interest. (C) Covariance plots showing each subjects’ ADOS scores and individual ASN loading coefficients.
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SBM addresses a different question in comparison with
massive univariate approaches to morphological changes, as
Voxel-Base-Morphometry (VBM) or ROI differences between
groups. Univariate approaches detect voxel- or ROI-based
changes in gray-matter concentrations, while SBM individuates
different levels of expression in maximally independent gray-
matter networks. Differences in network expression in turn
implicate differences in gray-matter concentrations, distributed
along patterns of voxel-covariation. SBM is particularly suitable
to study autism as spectrum disorder, since anatomical changes
are likely to be distributed along networks of brain regions. In this
scenario, such anatomical changes may not be locally detectable
by univariate approaches.

In the present study we found an autism-specific structural
network (ASN) which covers brain regions found to exhibit
functional and structural abnormalities in previous studies
compared with controls (Castelli et al., 2002; Saxe and Wexler,
2005; Amaral et al., 2008; Courchesne et al., 2011b; Ecker et al.,
2012; Nickl-Jockschat et al., 2012; Pappaianni et al., 2016).

Autism-Specific Structural Network (ASN)
Temporal Lobe

The core of ASN is localized in temporal regions involved in
processing and integrating social stimuli, such as faces and
intention-related movements.

ASN is centered in vast portions of the temporal lobes,
suggesting that the temporal lobe may have particular relevance
in the autistic disorder. ASN includes parts of the inferior,
medial and superior temporal sulci, the fusiform gyrus, and the
parahippocampal gyrus. Temporal lobe regions are implicated
in social perception, auditory processing, language, and theory
of mind. These abilities were shown to be the most damaged
in autism (Gendry Meresse et al., 2005). In the present study
inferior temporal and fusiform gyri are the brain regions
which disclosed the greatest differences between AD and
controls. These are the areas involved in high-level visual
processing and object recognition, in particular face recognition
(Rossion et al., 2003). Furthermore, the posterior superior
temporal sulcus (STS) is a core region for perception of social
acts (Zilbovicius et al., 2006). STS appears to respond also
to biological motion and to how another person’s motion
is related to his/her intentions (Vander Wyk et al., 2009).
Pelphrey et al. (2007) individuated a functional deficit in ASD

regarding neural mechanisms for processing emotional facial
expressions and biological motion. This system of regions
referring to the deficit includes the amygdala, posterior STS
and fusiform gyrus. This evidence provides further support
for the idea that autism disorder relates to an impairment
in processing social-relevant information (Baron-Cohen et al.,
1985).

Frontal Lobe

ASN includes bilateral clusters in both the superior frontal gyrus
(BA6) and in the precentral gyrus (BA4). Those areas correspond
to premotor, supplementary, and primary motor cortices.
Action processing impairments and repetitive movements are
commonly observed among subjects affected by autism. Even

though motor impairments are not considered one of the
main symptoms of ASD, recently increasing attention has been
directed to motor aspects aiming to improve a diagnostic process
(Torres et al., 2013).

Our results also showed abnormalities in the inferior part of
the frontal gyrus, a brain region implied in executive processes
and language (Gotts et al., 2012; Libero et al., 2014). Since AD
are largely characterized by deficits in imitation, language, ToM
and empathy, a theory known as “broken mirror” hypothesis of
ASD, has suggested that a dysfunctional MNS is an important
factor in AD pathogenesis (Oberman et al., 2005). Sustaining this
hypothesis, some recent studies have found abnormal pattern of
functional connectivity in networks believed to underlie social
abilities, as MNS and ToM systems (Fishman et al., 2014).
However, the role of the mirror system in understanding AD
symptomatology is still controversial (Grecucci et al., 2013;
Hamilton, 2013; Enticott et al., 2014).

Other Areas Implicated in Autism
Cerebellar pathology is usually reported in autism (Courchesne
et al., 1994, 2011a; Cauda et al., 2011; Rogers et al., 2013),
both at structural and functional level (Fatemi et al., 2012).
We also found cerebellum to be a part of the autism-specific
structural network. Evidence suggests that the cerebellum
supports cognitive functions, including language and executive
functions (Becker and Stoodley, 2013), which are typically
damaged in autism.

Previous meta-analyses of VBM in ASD have proposed that
the amygdala and the insula are two brain regions frequently
associated with abnormalities in autism (Cauda et al., 2011). In
our study, we did not find structural changes in those regions.
Our interpretation is that the amygdala and the insula are likely
to play a role in autism, though these areas belong to a broader
limbic system that, considered as a whole, may be sufficiently
preserved in AD. Therefore, the neurostructural configuration of
the limbic system was not markedly different between AD and
controls.

Correlations with Behavioral Deficits
Finally, we found that the autism-specific structural network
(ASN loading coefficients) significantly correlates with ADOS
social and ADOS stereotypic behavior scores. Such evidence
further supports the relation between the structural differences
in ASN and the behavioral deficits displayed by AD individuals.
These findings provide support for current hypotheses about
the neural basis of atypical social and mental states information
processing in autism.

CONCLUSION

Autism is a behaviorally diagnosed pathology, although
evidence of brain abnormalities in AD, such as atypical
neural “connectivity” (Ecker et al., 2012), are increasing. MRI
investigation is a precious tool for shedding light on both the
neurological causes and the neurodevelopment of AD. This
knowledge is needed to get fast and objective diagnosis, but
also for developing appropriate treatments. The present study,
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along with increasing evidence (Ecker et al., 2010; Jiao et al.,
2010), suggests that structural MRI may become a diagnostic
instrument useful to improve the traditional behavior-based
diagnosis.
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Autism spectrum disorder (ASD) is associated with disrupted brain networks.

Neuroimaging techniques provide noninvasive methods of investigating abnormal

connectivity patterns in ASD. In the present study, we compare functional connectivity

networks in people with ASD with those in typical controls, using neuroimaging data from

the Autism Brain Imaging Data Exchange (ABIDE) project. Specifically, we focus on the

characteristics of intrinsic functional connectivity based on data collected by resting-state

functional magnetic resonance imaging (rs-fMRI). Our aim was to identify disrupted

brain connectivity patterns across all networks, instead of in individual edges, by using

advanced statistical methods. Unlike many brain connectome studies, in which networks

are prespecified before the edge connectivity in each network is compared between

clinical groups, we detected the latent differentially expressed networks automatically.

Our network-level analysis identified abnormal connectome networks that (i) included a

high proportion of edges that were differentially expressed between people with ASD and

typical controls; and (ii) showed highly-organized graph topology. These findings provide

new insight into the study of the underlying neuropsychiatric mechanism of ASD.

Keywords: Autism spectrum disorder, biomarker, brain connectivity, fMRI, graph topology, network

1. INTRODUCTION

Autism spectrum disorder (ASD) is a neurodevelopmental disorder whose clinical symptoms
include impaired social communication and language abilities, and repetitive behaviors (American
Psychiatric Association, 2013). Its prevalence is increasing; one in 68 children were diagnosed with
ASD in the United States in 2014 (CDC reports, 2014). However, the etiology of ASD remains
unclear. Many recent studies have focused on the neural pathophysiology of brain structures and
functions associated with ASD symptoms.

Neuroimaging techniques provide noninvasive methods of studying the neuropathology of
ASD by learning about abnormal connectivity patterns. Mounting evidence suggests that ASD is
associated with disturbances of neural connectivity rather than solely local neural activities (Di
Martino et al., 2014; Hahamy et al., 2015). Resting-state functional magnetic resonance imaging
(rs-fMRI) has become widely used to measure the functional connectivity between brain regions
by calculating the correlations between time series of spontaneous low-frequency fluctuations
in cerebral blood flow. The Autism Brain Imaging Data Exchange (ABIDE) consortium has
contributed a publicly available set of existing rs-fMRI data frommore than 1000 subjects, with the
aim of improving the quality and reliability of functional connectivity research in ASD (Di Martino
et al., 2014; Cheng et al., 2015). Many studies have yielded interesting, yet controversial, findings
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of altered connectivity patterns (Shih et al., 2010; Vissers et al.,
2012; Chen et al., 2015a; Ecker et al., 2015; Ha et al., 2015;
Hahamy et al., 2015). For example, hypoconnectivity is associated
with ASD, particularly in long-range and cross-hemispheric
connections, such as those between the left and right insula and
left and right parieto-occipital regions, which are known as the
default mode network (DMN) (Broyd et al., 2009; Anderson
et al., 2010; Schipul et al., 2011; Just et al., 2012; Di Martino
et al., 2014). However, these claims have been challenged by
findings reporting hyperconnectivity within networks (including
the DMN, and frontostriatal, frontotemporal, motor, visual, and
salience networks), as well as between the striatum, insula, and
superior temporal gyrus, in children with ASD compared with
typical children (Di Martino et al., 2011; Müller et al., 2011;
Keown et al., 2013; Lynch et al., 2013; Supekar et al., 2013; Uddin
et al., 2013).

The conflicting evidence regarding differentially expressed
connectome features may arise for many possible reasons, such as
demographic variation between subjects recruited in the studies,
preprocessing steps, network selection methods, and statistical
analysis methods. Recently, Cheng et al. (2015) report reduced
connectivity in ASD based on the ABIDE data (418 autism
and 509 matched healthy controls) using a voxel-wise meta-
analysis, and more importantly they also report that the reduced
connectivity is significantly correlated with symptom severity.
Building on these findings, we aim to further investigate whether
the disrupted brain connections in ASD are systematically
organized from a network perspective. However, the disrupted
networks in ASD are not known prior to the experiment, making
it even more challenging to examine them with statistical rigor.

Conventionally, seed voxel analysis, descriptive statistics
and mass univariate analysis are used for group-level brain
connectivity analyses (Yeo et al., 2011; Craddock et al., 2013;
Sporns, 2014; Smith et al., 2015). Descriptive graph metrics
denote brain regions as nodes, and connections between them
as edges, and have yielded many interesting findings (Bullmore
and Sporns, 2009; Rubinov and Sporns, 2010; Biswal et al., 2010;
Achard et al., 2012; Crossley et al., 2013, 2014; Fornito et al., 2013,
2015; van den Heuvel and Sporns, 2013; Stam, 2014). However,
such metrics (i.e., modularity, clustering coefficients, and rich-
club coefficients) summarize all edges as individual measures
and lose localized connectivity (edge-specific) information. Thus,
they may lack specificity and sensitivity, making it difficult
to interpret such data clinically (Simpson et al., 2015). Mass
univariate analysis (e.g., network-based statistics—NBS and
family-wise error control; Zalesky et al., 2010), based on the
connectome of the whole brain or prespecified brain regions,
retains localized information about differentially expressed
features but is subject to the trade-off between false positives and
a lack of statistical power, and does not account for organized or
complex network properties.

Our goal is to detect the latent and abnormal networks
that (i) exhibit well-organized topology; and (ii) have a high
proportion of differentially expressed edges (hypo- and/or
hyperconnections). This approach integrates topological,
differentially expressed, and localized edge features, to identify
altered connectivity patterns. Recently, network object-oriented

algorithms have been developed to detect and test these hidden
disease-related brain connectivity networks (Chen et al., 2015b,
2016).

Here, we apply these recently developed statistical techniques
to the ABIDE rs-fMRI data sets. Using these new statistical graph
methods, our aim was to ASD related abnormal connectivity
networks by automatically detecting latent networks with
well-organized topological structures. Our resulting edgewise
findings converge with previous studies using ABIDE data sets
(Cheng et al., 2015). Moreover, we detect networks showing
idiosyncratic distortion (Hahamy et al., 2015), which may
help uncover the underlying mechanisms responsible for the
joint hypo- and hyperconnectivity observed in ASD in many
topological organization studies. Our findings may improve
the understanding of neuropathological machinery and identify
biomarkers that assist with disease diagnosis and treatment
selection.

2. MATERIALS AND METHODS

2.1. Data Sets and Preprocessing
The data set was collected at the University of Michigan, one of
the ABIDE data collection sites (Monk et al., 2009; Weng et al.,
2010; Di Martino et al., 2014). The publicly available data set
comprises data from 48 people with ASD and 65 TCs, with no
significant differences in demographics between the two groups.
For example, the mean age of the people with ASD at scan
was 13.85 years (standard deviation (sd) = 2.31; range, 9.2–
18.6); the mean age of the TCs was 15.03 (sd = 3.66; range,
8.2–28.8). Thirty-nine of the 48 people in the ASD group were
male, compared with 49 of the 65 TCs. The p values from the
Wilcoxon rank sum test (age) and Pearson χ2 test (sex) were
both greater than the α level at 0.05. The study was approved
by the local institutional review boards, and data were fully de-
identified by removing all 18 Health Insurance Portability and
Accountability (HIPAA)-protected health information identifiers
as well as facial information from structural images, and data
were carefully examined before release to the public (Di Martino
et al., 2014). TCs had no behavioral or mental concerns; inclusion
and exclusion criteria for TCs are described on the ABIDE project
website (http://fcon_1000.projects.nitrc.org/indi/abide/), Typical
controls (TCs) were included by the criteria that either verbal or
non-verbal IQ was ≥ 85 and were aged at least 7 years, whereas
TCs were excluded for those who received a score of 10 or higher
on the Social Communication Questionnaire 14 or a score of 6
or higher on the Obsessive/Compulsive subscale of the Spence
Children’s Anxiety Scale (SCAS) 16.

Imaging was performed on a 3 Tesla GE Signa scanner.
Data were obtained using a gradient echo T2∗-weighted echo
planar imaging sequence, echo time = 30ms, repetition time
= 2,000ms, 64 × 64 matrix with 40 slices, each 4.0mm thick,
no skip, resulting in whole brain coverage with a voxel size of
3.4× 3.4× 3.0mm. During the scan, all subjects were asked to lie
as still as possible, keep their eyes open, look at a fixation cross,
and to try not to think about anything in particular.

On these rs-fMRI data we performed preprocessing based
on the Configurable Pipeline for the Analysis of Connectomes
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(C-PAC, http://fcp-indi.github.io). The images were slice-time
and motion corrected. The data were then registered to a
standardMontreal Neurological Institute (MNI) space with voxel
size 2mm3 and converted to percent signal change. Masks of
white matter, gray matter and cerebrospinal fluid (CSF) were
created in the standard MNI space. The mean time series of
the white matter, CSF and the six movement parameters were
regressed from the gray matter. The linear trend was removed
from the signal, and the fMRI time series were bandpass filtered
(0.009–0.08Hz) and spatially smoothed with a 6mm full width
at half maximum Gaussian kernel. Using automated anatomical
labeling (AAL), we then used the first 90 regions of interest
(ROIs) as nodes (Tzourio-Mazoyer et al., 2002), and took the
weighted average of the temporal profiles of all voxels within
each ROI as the region level signal for all subjects. The Pearson
correlation coefficients were calculated between the 90 nodes
and then Fisher’s Z transformation was performed on each
correlation. In our analysis, we focused on detecting and testing
alterations in connectivity networks by comparing connectivity
matrices between TCs and people with ASD.

2.2. Group Level Analysis
The goal of group-level functional connectivity analysis is
to examine whether different groups (or individuals) show
differences in connectivity. Conventional brain connectivity and
network methods are conducted from two distinct perspectives:
testing which edges are differentially expressed, or whether the
global graph descriptive metrics differ (Simpson and Laurienti,
2016). Hybrid analyses are more attractive because they
enable the identification of well-organized (systematic) networks
(subgraphs) where most contained edges are differentially
expressed. Such findings may provide insight into systematic
disruptions of the brain connectome in people with ASD. To
achieve this goal, we used network object-oriented algorithms
(Chen et al., 2015b, 2016).

We first compared the TC and ASD data by performing two-
sample t tests on each of the 4005 edges.Whole-brain results were
denoted as a graph, G = (V ,E), where the node set V represents
a brain region, and an edge eij ∈ E connects regions i and j.
For each edge (eij) we assigned the weight as Wij = − log(pij).
The greater the Wij value, the greater the difference in this edge
between the TC and ASD data. Thus, the weighted adjacency
matrixW is our input data for the detection of altered networks.

Next, we applied parsimonious differential brain connectivity
network detection (Pard, for community detection) and k-partite
algorithms (Chen et al., 2015b, 2016). The joint use of these
algorithms enabled the automatic detection of latent abnormal
networks with organized clique and k-partite graph topology. For
each altered network detected, we performed a permutation test
to obtain the statistical significance (network-level p-value).

We specified null and alternative hypotheses for testing
differentially expressed connectivity networks (Chen et al., 2016).
H0: There is no altered connectivity network when comparing
the connectivity matrices across clinical subpopulations; this
is equivalent to: (i) there are no differentially expressed edges
(C1), or (ii) there are differentially expressed edges but they
are randomly distributed in the graph G (C2). H1: There are

altered connectivity networks; this is equivalent to: (i) there are
differentially expressed edges, or (ii) the differentially expressed
edges are not distributed randomly in the graph G, but in an
organized pattern.

Therefore, the statistical significance of an altered connectivity
network is determined by two factors: (1) the significance
levels of all individual edges within the network; (2) the
distribution of the differentially expressed edges in G. If C2 in
the null hypothesis is true and differentially expressed edges are
distributed randomly in G, then the detected network/subgraph
Gk ⊂ G is expected to contain a similar proportion
of differentially expressed edges in G. Thus, based on the
combinatorics and graph theory, the probability that the detected
subgraph includes a much larger proportion of differentially
expressed edges is extremely low, so we reject the null hypothesis.
In theory, there are numerous possible subgraphs with various
topological structures in G and thus testing detected networks
is subject to multiplicity. We accounted for this multiple
testing issue by using permutation testing techniques (Nichols
and Holmes, 2002). In each permutation, we recorded the
detected network with the maximum test statistic, and then
calculated the percentiles of observed networks among the
maximum test statistics from all permutations. We collected the
suprathreshold networks as our resulting object-oriented altered
connectivity networks. We set the α level of the permutation test
as 0.05.

3. RESULTS

We applied the above network analysis procedure to the ABIDE
data sets. Below is a summary of the latent differentially expressed
networks we identified.

We compared the connectivity metrics (i.e., Fisher’s Z-
transformed correlation coefficients) on each edge between TC
and ASD data using two-sample t tests, and stored the p value as
Wij = − log(pij) where i and j were the first 90 AAL brain region
indices (i 6= j ∈ {1, · · · , 90}). Figure 1A displays the input data: a
90 × 90 pairwise connectivity testing result matrix (W) with the
entry Wij = − log(pij). The ROIs in the heatmap of Figure 1B
are listed in ascending order of regions in the AAL atlas.
Next, we applied the Pard algorithm to determine whether the
informative edges were distributed in communities, to capture
the most differentially expressed edges in parsimonious (clique)
networks. We then implemented the k-partite graph detection
algorithm to obtain multi-partite subgraphs. In the heatmap of
Figure 1B, we list the ROIs in order of identified networks and
highlight three diagonal blocks, each representing one network.
We then performed the permutation test on these networks,
which revealed that the first two were significantly different (both
p < 0.001) whereas the third was not (p = 0.068). Therefore,
the differentially expressed edges were not randomly distributed
in the 90 × 90 graph, but instead they were clustered within
well-organized subgraphs.

Next, we investigated the two significant networks in detail.
Figure 2 shows the altered connections in the first network in
an enlarged heatmap and as 3D images. The region names and
corresponding information are listed in Tables 1, 2. The heatmap
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FIGURE 1 | (A) Heatmap of − log(pij ) values in the original order of the first 90 AAL regions; (B) heatmap of − log(pij ) values reordered to list the detected networks

first.

FIGURE 2 | (A) Enlarged heatmap showing altered connections between brain regions. (B–D) 3D images showing altered connections within the identified network.

Yellow edge, TC > ASD; green edge, ASD > TC. The width of an edge reflects the statistical significance of the difference between TC and ASD data.
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TABLE 1 | Altered network 1 with clique topology.

AAL region name Abbreviation Index x y z

Superior frontal gyrus, orbital part Right ORBsup.R 6 18 48 −14

Middle frontal gyrus, orbital part, Left ORBmid.L 9 −31 50 −10

Inferior frontal gyrus, triangular part,Left IFGtriang.L 13 −46 30 14

Rolandic operculum,Right ROL.R 18 53 −6 15

Olfactory cortex, Left OLF.L 21 −8 15 −11

Superior frontal gyrus, medial, Left SFGmed.L 23 −5 49 31

Superior frontal gyrus, medial, Right SFGmed.R 24 9 51 30

Superior frontal gyrus, medial orbital, Left ORBsupmed.L 25 −5 54 −7

Superior frontal gyrus, medial orbital, Right ORBsupmed.R 26 8 52 −7

Gyrus rectus, Left REC.L 27 −5 37 −18

Anterior cingulate and paracingulate gyri, Left ACG.L 31 −4 35 14

Anterior cingulate and paracingulate gyri, Right ACG.R 32 8 37 16

Supramarginal gyrus, Left SMG.L 63 −56 −34 30

Supramarginal gyrus, Right SMG.R 64 58 −32 34

Angular gyrus, Right ANG.R 66 46 −60 39

Precuneus, Left PCUN.L 67 −7 −56 48

Precuneus, Right PCUN.R 68 10 −56 44

Superior temporal gyrus, Right STG.R 82 58 −22 7

Temporal pole: middle temporal gyrus, Left TPOmid.L 87 −36 15 −34

Temporal pole: middle temporal gyrus, Right TPOmid.R 88 44 15 −32

TABLE 2 | Altered network 2 with bipartite topology.

AAL region name Abbreviation Index x y z set

Precentral gyrus, Left PreCG.L 1 −39 −6 51 2

Olfactory cortex, Right OLF.R 22 10 16 −11 2

Median cingulate and paracingulate gyri, Left DCG.L 33 −5 −15 42 1

Median cingulate and paracingulate gyri, Right DCG.R 34 8 −9 40 1

Posterior cingulate gyrus, Left PCG.L 35 −5 −43 25 1

Posterior cingulate gyrus, Right PCG.R 36 7 −42 22 1

Superior occipital gyrus, Left SOG.L 49 −17 −84 28 2

Superior occipital gyrus, Right SOG.R 50 24 −81 31 2

Middle occipital gyrus, Left MOG.L 51 −32 −81 16 2

Middle occipital gyrus, Right MOG.R 52 37 −80 19 2

Inferior occipital gyrus, Left IOG.L 53 −36 −78 −8 1

Inferior occipital gyrus, Left IOG.R 54 38 −82 −8 1

Postcentral gyrus, Right PoCG.R 58 41 −25 53 2

Superior parietal gyrus, Left SPG.L 59 −23 −60 59 2

Superior parietal gyrus, Right SPG.R 60 26 −59 62 2

Inferior parietal, but supramarginal and angular gyri, Left IPL.L 61 −43 −46 47 2

Angular gyrus, Left ANG.L 65 −44 −61 36 1

Paracentral lobule, Right PCL.R 70 7 −32 68 2

Inferior temporal gyrus, Right ITG.R 90 54 −31 −22 1

(Figure 2A) shows the symmetric brain regions related to the
altered connections; these include the left and right precuneus
(involved in self-consciousness; Margulies et al., 2009), middle
temporal gyri (face recognition; Acheson and Hagoort, 2013),
supramarginal gyri (empathy; Silani, 2013), superior frontal gyri
(self-awareness; Goldberg et al., 2006), and anterior cingulate
cortices (emotion Decety and Jackson, 2004). Therefore, the

systematic differences may provide a more comprehensive image
for us to compare connectomes between TCs and people
with ASD. Generally, there are more over-connections across
hemispheres in TCs than in people with ASD. Patients with
ASD have hypoconnections for most edges linked with right and
left middle temporal gyri and precuneus, consistent with that
reported by Cherkassky et al. (2006), Anderson et al. (2010),
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and Lynch et al. (2013). Edgewise comparisons are shown in
Supplementary Table 1.

We further validate the detected subnetwork features by
performing classification analysis. We employ the support vector
machine with radial basis function kernel and linear kernel as our
classifier. The leave-one-out cross-validation results show that
the accuracy rates are 89 and 84% correspondingly.

By implementing network detection and testing algorithms,
we were able to conclude that the differentially expressed edges
in the second abnormal connectivity network exhibited a k-
partite topological structure (the algorithm selected k = 2
for this data set). The abnormal connectivity network is shown
with a bipartite graph topological structure in Figure 3. In a
bipartite graph there two disjoint sets of nodes; edges within
each set are less differentially expressed than those between the
two sets (Figure 3A). The first set of nodes includes lingual
gyri, cingulate gyri, and the left angular gyrus, whereas the
second set contains regions from the occipital, parietal, and
frontal lobes. Interestingly, the brain regions in the second

network are also fairly symmetric. The results suggest that people
with ASD have hyperconnections for edges associated with the
posterior cingulate gyrus (left and right), and hypoconnections
for edges associated with the inferior occipital gyrus (left and
right). In addition, all hyperconnections in our ASD group were
associated with the angular and cingulate gyrus nodes. The hypo-
and hyperconnected edges are in a well-organized topological
structure and these results seem to be consistent with those of
Monk et al. (2009), Just et al. (2012), Supekar et al. (2013), Uddin
et al. (2013), Keown et al. (2013), and Di Martino et al. (2014).
Overall, the findings may suggest that the coordination between
the visual network (set two) and part of the DMN (set one) may
be disrupted. A detailed edgewise comparison table and 3D video
are presented as Supplementary Material.

4. DISCUSSION

Evidence of abnormal functional connectivity patterns in
people with ASD has, to date, been inconsistent. The aim

FIGURE 3 | (A) Enlarged heatmap showing altered connections between brain regions. (B–D) 3D images showing altered connections within the detected network.

Yellow edge, TC > ASD; green edge: ASD > TC. The width of an edge reflects the statistical significance of the difference between the TC and ASD groups. Blue

nodes, first disjoint set; red nodes, second disjoint set.
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of the present study was to provide a novel strategy for
brain connectivity analysis: to simultaneously uncover altered
connectivity metrics and network structures. The findings
of the present study suggest that unknown, systematic, and
organized brain connectivity networks are disrupted in people
with ASD. Within these aberrant networks, most edges
are differentially expressed between TCs and people with
ASD, and these differentially expressed edges show highly
organized graph topology. Therefore, in the present study,
we consider the altered connectivity as a network unit,
rather than as individual edges or global graph summary
metrics. This approach has several advantages: (i) the new
statistical methods reveal specific nodes and edges within the
abnormal networks; (ii) the statistical power is greatly increased
while carefully controlling for multiple testing; and (iii) the
topology of hypo- and hyperconnections in the abnormal
networks could provide insight into the complex machinery
underlying ASD. We used advanced graphical statistical
methods to detect these hidden disease-related connectivity
networks, and performed statistical tests to provide formal
inferences.

From a statistical point of view, brain connectivity matrices
are intercorrelated, high-throughput data. However, established
statistical methods, including multiple-testing adjustment
techniques (such as family error and false-positive discovery
rate control) and shrinkage techniques (such as least absolute
shrinkage and selection operator (Lasso) and elastic net) may not
be directly applicable to connectivity analysis. The main reason
is that connectivity edges are subject to spatial constraints and
are thus dependent on each other in a highly complex, organized,
yet unknown, topological structure. Without appropriately
accounting for such a dependency structure, we risk a loss of
statistical power and possible masking of significant findings.
These new network-level connectivity analysis methods (Chen
et al., 2015b, 2016) avoid the long-term trade-off between
false positive findings and statistical power that arises from
the universal cut-off in conventional statistical methods,
because the edges borrow statistical strengths from each other
through the topological structure. The latent topology provides
additional information for statistical modeling and as a result
we gain statistical power without increasing false positive error
rates.

The topology of detected networks may reveal important
underlying neuropathological mechanisms and provide valuable
insight for future biological studies. In the networks we identified,
most nodes were symmetric across hemispheres, and edges of
hypo- and hyperconnections also seemed to be well organized.
If we were to perform individual edge statistical analysis, only
a small proportion of differentially expressed edges would pass
the multiple testing adjustment threshold and no topological
patterns would be detected. Interestingly, the two networks we
identified include the functional hub nodes of the DMN, such
as the posterior cingulate cortex, medial prefrontal cortex, and
angular gyri, and the nodes from the dorsomedial subsystem,
such as the temporoparietal junction (e.g., inferior parietal
lobule and superior temporal gyrus; STG), lateral temporal

cortex (e.g., inferior temporal gyrus), and anterior temporal pole
(e.g., left and right middle temporal gyri). The first network
also involved bilateral anterior, median, and posterior cingulate
gyri and the occipital lobes. Our findings largely overlap with
previously reported abnormalities in DMN, visual, and motor
networks (Di Martino et al., 2011; Just et al., 2012; Uddin et
al., 2013; Lynch et al., 2013; Ha et al., 2015; Cheng et al.,
2015). The first network is mainly involved in the functional
hubs of the DMN and is related to self-consciousness and
emotion. The second network reflects the abnormal pattern
of connections between parts of the DMN and the visual
network. The first and second networks are jointly involved
in many features of ASD including those related to receptive
language, social cognition, joint attention, action observation,
and empathy/emotion. The networks do not identify any
consistent hypo- or hyperconnectivity in ASD; instead, the
(significant) aberrant connectivities are organized systematically
in topological structures. The organized topology of the
altered connectivity networks identified here provides further
evidence that these findings are promising clinical biomarker
candidates.

Throughout this study, we limited our topological structure
detection methods to clique and multipartite subgraphs. We are
extending these methods to identify various other organized
topological structures. We also focused on cross-sectional
imaging data and did not address developmental changes of
the brain connectome. Although we applied our methods
only to fMRI data here, we may further extend these new
network-based connectivity analysis tools to various other
types of data including functional connectivity data (e.g.,
from EEG and fMRI) and structural connectivity data (e.g.,
from diffusion-weighted imaging) to investigate multimodal
altered connectivity networks in ASD. The only requirements
of the input data are an undirected graph, and that there is
no restriction by the choice of connectivity metrics (such as
in functional connectivity analysis correlation coefficients,
maximum information coefficient, or spectral coherence). In
addition, we only utilize a subset of ABIDE data base, and
we plan to compare results from different study sites and
perform meta-analysis in future work. We also plan to perform
multivariate regression analysis to investigate association
between brain connectivity and symptom severity at the network
level.

We plan to develop more sophisticated algorithms for the
automatic detection of complex latent topological structures
that have explicit neurological significance, such as rich-club
and hyper-graph topology. These new topological structure
detection and statistical testing tools have the potential to
become important research techniques for understanding the
human connectome and its association with neuropsychiatric
disorders.
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Recently, the Autism Brain Imaging Data Exchange (ABIDE) project revealed decreased

functional connectivity in individuals with Autism Spectrum Disorders (ASD) relative to

the typically developing controls (TDCs). However, it is still questionable whether the

source of functional under-connectivity in subjects with ASD is equally contributed by

the ipsilateral and contralateral parts of the brain. In this study, we decomposed the

inter- and intra-hemispheric regions and compared the functional connectivity density

(FCD) between 458 subjects with ASD and 517 TDCs from the ABIDE database. We

quantified the inter- and intra-hemispheric FCDs in the brain by counting the number of

functional connectivity with all voxels in the opposite and same hemispheric brain regions,

respectively. Relative to TDCs, both inter- and intra-hemispheric FCDs in the posterior

cingulate cortex, lingual/parahippocampal gyrus, and postcentral gyrus were significantly

decreased in subjects with ASD. Moreover, in the ASD group, the restricted and repetitive

behavior subscore of the Autism Diagnostic Observation Schedule (ADOS-RRB) score

showed significant negative correlations with the average inter-hemispheric FCD and

contralateral FCD in the lingual/parahippocampal gyrus cluster. Also, the ADOS-RRB

score showed significant negative correlations with the average contralateral FCD in the

default mode network regions such as the posterior cingulate cortex and precuneus.

Taken together, our findings imply that a deficit of non-social functioning processing in

ASD such as restricted and repetitive behaviors and sensory hypersensitivity could be

determined via both inter- and intra-hemispheric functional disconnections.

Keywords: Autism Spectrum Disorder (ASD), inter-hemisphere, intra-hemisphere, functional connectivity, resting

state fMRI
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INTRODUCTION

Autism Spectrum Disorder (ASD) is characterized by
impairments in social interaction and communication, and
restrictive and repetitive behaviors (American Psychiatric
Association, 2013). ASD is caused by genetic and neurobiological
factors (Frith and Happe, 1993; Bogdashina, 2006; Hughes, 2009;
Amaral, 2011). Among the neurobiological mechanisms, the
prevailing theory is that ASD is caused by abnormalities in the
neuronal system and social brain network (Bogdashina, 2006;
Minshew and Keller, 2010; Nebel et al., 2014). In functional
neuroimaging studies, researchers have investigated the
functional connectivity in subjects with ASD (Just et al., 2007),
and the under-connectivity theory of ASD has been supported
by many previous studies (Muller et al., 2011; Rudie et al.,
2012; Vissers et al., 2012; Di Martino et al., 2014). A neuronal
network study using electroencephalography showed long-range
under-connectivity and short-range over-connectivity in patients
with ASD (Barttfeld et al., 2011). The white matter integrity
of the brain network has been examined with diffusion tensor
imaging analysis. Furthermore, a decreased size of the corpus
callosum was observed in the ASD group in a structural magnetic
resonance imaging (MRI) study (Keary et al., 2009). Because
the corpus callosum is the biggest part of the transcallosal
connectivity in the human brain, a decreased corpus callosum
size has been argued as an indication of long-range under-
connectivity. Moreover, decreased volumes and abnormal
integrity of the corpus callosum have been observed in diffusion
tensor imaging studies (Alexander et al., 2007; Keller et al., 2007;

Cheon et al., 2011).
Many researchers utilized the resting state functional MRI and

found atypical brain activities in ASD (Cherkassky et al., 2006;
Di Martino et al., 2014). Due to the restricted computational
power, studies in the neuroimaging, and psychiatric research
areas predominantly used a seed-based analysis by considering
a default network alteration (Monk et al., 2009; Weng et al.,
2010). Recently, voxel-wise data-driven functional connectivity
density (FCD) mapping method was proposed (Tomasi and
Volkow, 2010), in which all voxels in the whole brain region
would be examined rather than using a specific seed region of
interest for a connectivity analysis. The FCD method has been
applied successfully to analyze the sex differences in functional
connectivity in both healthy control subjects (Tomasi and
Volkow, 2012b) and subjects with attention deficit hyperactivity
disorder (ADHD) using large samples (Tomasi and Volkow,
2012a).

Due to the diverse symptoms and complexity of ASD, a
large dataset is needed to investigate the characteristic features
of ASD. Recently, the Autism Brain Imaging Data Exchange
(ABIDE) collected 1112 resting state functional MRI datasets
of subjects with ASD and typically developing control (TDC)
subjects from 17 international sites. Previously, large datasets
from multiple centers have been successfully analyzed to identify
features of the functional human brain (Lord et al., 2000; Biswal
et al., 2010; Tomasi and Volkow, 2012a). In particular, the FCD
method was applied successfully to the ADHD-200 dataset to
identify differences in the functional hubs among children with

ADHD (Tomasi and Volkow, 2012a). A deeper understanding
of the connectivity abnormalities in ASD has been achieved
with the worldwide neuroimaging data sharing initiative. Di
Martino et al. analyzed brain connectivity in 1000 subjects using
global connectivity measures, and revealed over- and under-
connectivity in the ASD group (Di Martino et al., 2014).

Several studies have examined the regional inter-hemispheric
under-connectivity in ASD by evaluating the correlation
between a voxel and its opposite hemispheric counterpart on
a symmetric template (Anderson et al., 2011; Di Martino
et al., 2014). However, the whole-brain inter- and intra-
hemispheric functional under-connectivity studies have been
rarely investigated to uncover the deficit of social and non-
social functioning in ASD. Because the global FCD was originally
proposed to identify the functional hub regions, the ipsilateral
FCD and contralateral FCD measure the intra-hemispheric
and inter-hemispheric functional hub regions, respectively. A
recently published study using the ABIDE datasets examined
both intra-hemispheric and inter-hemispheric connectivity in
participants with ASD, and revealed both increased and
decreased connectivity in the ASD groups in comparison to
the control groups, depending on the different types of brain
connectivity and distortions in connectivity patterns examined at
the individual level (Hahamy et al., 2015). In the current study, we
aimed to examine both inter- and inter-hemispheric connectivity
in the brains of participants with ASD by decomposing the
functional connectivity into ipsilateral and contralateral parts.
These approaches would allow us to investigate how connectivity
abnormalities in the ASD group would be determined by
interactions between the intra- and inter-hemispheric functional
connectivity. The results would also confirm that the abnormal
regions of the resting state functional connectivity in ASD are
related to the default mode network (Raichle and Snyder, 2007;
Assaf et al., 2010; Weng et al., 2010; Lynch et al., 2013) and brain
regions implicated in the non-social functioning processes such
as restricted and repetitive behaviors (Di Martino et al., 2009;
Supekar et al., 2013; von dem Hagen et al., 2013; Fishman et al.,
2014).

MATERIALS AND METHODS

Dataset
We used resting state fMRI data of 458 subjects with ASD and
517 TDCs (see Table 1 for additional demographic information)
among 1112 datasets from the ABIDE datasets (http://fcon_
1000.projects.nitrc.org/indi/abide). To minimize the institution
dependent variability, our study included data from research
centers that contributed to both the ASD and TDC groups.
Therefore, the present study included neuroimaging datasets
from California Institute of Technology (CALTECH), Kennedy
Krieger Institute (KKI), Ludwig Maximilians University, Munich
(MAX_MUM), New York University Langone Medical Center
(NYU), Olin Institute of Living at Hartford Hospital (OLIN),
Oregon Health & Science University (OHSU), University
of Pittsburgh School of Medicine (PITT), San Diego State
University (SDSU), Stanford University (STANFORD), Trinity
Center for Health Sciences (TRINITY), University of California,

Frontiers in Neuroscience | www.frontiersin.org May 2016 | Volume 10 | Article 191  | 57

http://fcon_1000.projects.nitrc.org/indi/abide
http://fcon_1000.projects.nitrc.org/indi/abide
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Lee et al. Abnormalities of Functional Connectivity Density in ASD

Los Angeles (UCLA), University of Leuven (LEUVEN),
University of Michigan (UM), University of Utah School of
Medicine (USM), and Yale Child Study Center (YALE). All
experimental protocols were in compliance with the policies
of site-specific institutional review boards. The demographic
variables and scanning parameters are summarized in Table 1.
The graphical illustration of the demographic variables can
be found in elsewhere (Di Martino et al., 2014). We excluded
datasets from the social brain Lab BCN NIC UMC Groningen
and Netherlands Institute for Neurosciences due to the missing
information of a full-scale intelligence quotient (IQ) for many
subjects. After preprocessing, we found that a large part of the
cerebellum was missing in the imaging dataset of Carnegie
Mellon University, and all datasets from Carnegie Mellon
University were excluded. To control for potential confounding
effects of IQ in our analysis, we decided to exclude five datasets
that included some subjects with IQ lower than 70. Finally, we
performed voxel-wise group comparisons with 975 imaging
datasets.

Image Preprocessing
Datasets were preprocessed with SPM8 (http://www.fil.ion.ucl.
ac.uk/spm/software/spm8/). The first step was realignment for
head motion correction. Images were realigned to the first
image and a mean echo planar image (EPI) was created during
this step. Subsequently, structural T1 images were coregistered
to their mean EPI data. Registered EPI data of each subject
were normalized to Montreal Neurological Institute (MNI)
template and spatially smoothed with 8mm of full-width at half-
maximum. Then, in the temporal domain, the linearly increasing
trend due to heat absorption was removed at each voxel, and
the effects of the head motion, white matter, cerebrospinal fluid,
and global signal were regressed out. Lastly, temporal band-pass
filtering was applied (0.01–0.08Hz).

Functional Connectivity Density Mapping
Preprocessed resting state fMRI data were normalized into the
MNI template space with a voxel size of 2 × 2 × 2mm. At each
voxel, we applied a voxel-wise data-driven FCDmappingmethod
to calculate the global FCD, which was introduced by Tomasi and
Volkow (2010). In this study, we divided the global functional
connectivity density into two parts. One is the contralateral FCD
and another is the ipsilateral FCD (Figure 1). The global FCD is
the number of functional edges connected with all other voxels.
For a given voxel i, a voxel j is said to be connected to the voxel
i if the correlation coefficient between i-th and j-th time series is
larger than 0.6 (Tomasi and Volkow, 2010, 2012a,b,c). Then the
degree between the two voxels is defined to be 1 (Sij = 1); and
otherwise, the degree is zero (Sij = 0). Likewise, we could obtain
the degree from other voxels and the sum of all degrees at a given
voxel i is defined as the global FCD at that voxel. At a voxel i, the
global FCD is calculated as,

global FCDi =

N∑

j= 1

Sij,

where N is the number of voxels (or nodes) in the gray matter
regions.

The contralateral (or inter-hemispheric) FCD is evaluated by
counting the number of functional connectivity with all voxels in
the opposite hemispheric brain regions as follows:

contralateral FCDi =

N∑

j= 1

hijSij,

where hij is 1 if j-th voxels are in the opposite hemispheres and 0
otherwise.

Lastly, the ipsilateral (or intra-hemispheric) FCD was
computed by subtracting the number of contra-lateral functional
connectivity from the total number of functional connectivity as
follows:

ipsilateral FCDi = global FCDi − contralateral FCDi.

The graphical illustrations of global, contralateral, and ipsilateral
functional connectivity densities are presented in Figure 1.
Finally, the normalized contralateral FCD (cFCD), normalized
ipsilateral FCD (iFCD), and normalized global FCD (gFCD) were
obtained by normalizing the number of functional connections
at each voxel with respect to the average value of the global
functional connectivity of each subject.

iFCDi =
ipsilateral FCDi

mean
(
global FCD

) , cFCDi =
contralateral FCDi

mean
(
global FCD

) ,

and gFCDi =
global FCDi

mean
(
global FCD

) ,

where mean(global FCD) is the average of the global FCD for all
voxels.

The use of the normalized functional connectivity density
minimizes the individual variability of the overall connectivity
and makes it easier to detect the fractionally increased or
decreased connectivity. Consequently, the average of the gFCD
becomes one.

Statistical Analysis
The images of the gFCD, cFCD, and iFCDwere used for a second-
level analysis, comparing the subjects with ASD and TDCs using
SPM8, in which a 2-tailed t-test design with two covariates of age
and sex was used to compute the statistical significance of the
FCD differences between the two groups. Statistical significance
was based on the false discovery rate corrected P < 0.05 together
with requiring 20 voxels for the minimum continuous voxel
size within a cluster (corrected P < 0.05). For brain regions
showing significantly decreased FCDs, we computed the partial
correlations between the averages (or regional maximum) of
the FCD values for each cluster and the scores from symptom
severity scales while controlling for effects of age and sex. The
Benjamini-Hochberg procedure was applied to control multiple
comparison corrections (Benjamini and Hochberg, 1995). The
significances of the correlation analysis were set at a threshold
of (Benjamini–Hochberg) corrected P < 0.05.
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TABLE 1 | Demographic variables and imaging parameters for the selected resting-state functional MRI datasets from Autism Brain Imaging Data

Exchange database.

Center No. of scans TR(ms) TDC ASD

M/F Age FIQ M/F Age FIQ

PITT 200 1500 23/4 18.9±6.5 110.1± 9.2 26/4 18.9± 7.1 110.0± 14.1

OLIN 210 1500 14/2 16.9±3.6 114.9± 16.0 16/2 16.3± 3.0 113.0± 17.4

OHSU 82 2500 15/0 10.1±1.0 115.7± 10.7 10/0 10.9± 1.8 109.7± 18.4

SDSU 180 2000 16/6 14.2±1.9 108.1± 10.3 13/1 14.7± 1.7 111.4± 17.4

TRINITY 150 2000 25/0 17.1±3.7 110.9± 12.0 24/0 17.3± 3.5 109.3± 14.7

UM 300 2000 56/17 14.6±3.6 108.0± 9.7 50/9 13.2± 2.5 107.3± 16.8

USM 240 2000 43/0 21.4±7.6 115.1± 13.6 57/0 22.4± 7.5 100.9± 15.2

YALE 200 2000 20/8 12.7±2.7 105.0± 17.1 18/8 12.7± 3.0 97.9± 17.8

LEUVEN 250 1667 15/0 23.3±2.8 114.8± 12.4 14/0 21.9± 4.0 109.4± 12.6

KKI 156 2500 23/9 10.1±1.2 113.8± 8.9 16/4 10.0± 1.5 97.8± 16.4

NYU 180 2000 79/26 15.8±6.2 113.2± 13.1 68/10 14.5± 7.0 108.1± 16.5

STANDFORD 180 2000 16/4 10.0±1.6 112.1± 15.0 16/3 9.9± 1.5 113.3± 17.5

UCLA 120 3000 38/6 13.0±1.9 106.3± 10.8 46/6 13.1± 2.4 100.9± 13.2

MAX_MUN 120 3000 29/4 26.2±9.7 111.5± 8.7 16/3 22.9± 14.1 107.6± 13.7

CALTECH 150 2000 15/4 28.9±10.9 114.2± 9.4 14/4 27.8± 10.2 108.2± 12.2

Total 427/90 16.5±7.3 111.2± 12.4 404/54 16.2± 7.4 106.0± 16.3

ASD, autism spectrum disorder; CALTECH, California Institute of Technology; F, female; FIQ, full scale IQ standard score; KKI, Kennedy Krieger Institute; M, Male; MAX_MUM, Ludwig

Maximilians University Munich; NYU, New York University Langone Medical Center; OLIN, Olin Institute of Living at Hartford Hospital; OHSU, Oregon Health and Science University;

PITT, University of Pittsburgh School of Medicine; SDSU, San Diego State University; STANFORD, Stanford University; TDC, Typically developed control group; TRINITY, Trinity Center

for Health Sciences; UCLA, University of California, Los Angeles; LEUVEN, University of Leuven; UM, University of Michigan; USM, University of Utah School of Medicine; YALE, Yale

Child Study Center.

FIGURE 1 | Calculating three measures of functional connectivity density. cFCD (contralateral functional connectivity density) is the number of functional

connectivity from the opposite hemisphere; iFCD (ipsilateral functional connectivity density) is from the same hemisphere; gFCD (global functional connectivity density)

is computed as the sum of cFCD and iFCD.

RESULTS

Demographic Variables and Clinical
Measures
We included data from 458 subjects (54 females) with ASD and
517 TDCs (90 females) in the data analysis. The two-sample t-
test showed that the age distribution of subjects with ASD were
not significantly different from that of TDCs, but the full-scale
IQ score was significantly lower in the ASD group than that in
the TDC group (P < 0.05).

Functional Connectivity Density
For both the ASD and TDC groups, the average values of gFCD,
iFCD, and cFCD are presented (Figure 2), and the distribution
of the functional connectivity density were bilateral. For each
measure of the normalized gFCDs, iFCDs, and cFCDs, the two-
sample t-test with covariates of age and sex found significantly
decreased functional connectivity in multiple regions in the ASD
group, but no significantly increased functional connectivity was
detected (Figure 3 andTable 2). For example, in the comparisons
of gFCD, the ASD group showed a significantly decreased
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FIGURE 2 | Average maps of functional connectivity densities for the typically developing controls (TDCs) and autism spectrum disorders (ASDs).

Distribution of gFCD, cFCD, and iFCD are averaged over 458 patients with ASDs and 517 TDCs. The color bar represents the number of functional connectivities.

functional connectivity in the default mode network regions
including themedial prefrontal cortex, posterior cingulate cortex,
and inferior parietal lobule, and the sensorimotor regions
including the bilateral postcentral gyri, paracentral lobule, and
parahippocampal gyrus (corrected P < 0.05; Table 2 gFCD;
Figure 3). The group differences in the iFCD showed similar
patterns to that of the gFCD. Furthermore, iFCDs of the right
inferior frontal gyrus, left superior frontal gyrus, and precuneus
were significantly decreased in the ASD group (corrected P <

0.05; Table 2 iFCD, Figure 3). Finally, the comparison of cFCD
revealed regional under-connectivity of the ASD group in the
posterior cingulate cortex, parahippocampal gyrus, precentral
gyrus, and right angular gyrus (corrected P < 0.05; Table 2
cFCD, Figure 3).

In particular, common brain regions showing under-
connectivity in ASD across different institutions were
the default mode network regions, such as the medial
prefrontal cortex, posterior cingulate cortex, precuneus,
and lingual/parahippocampal gyrus. The extent of regional
overlaps in the normalized global, contralateral, and ipsilateral
FCDs are presented in Figure 4.

Correlation between Clinical Data and FCD
In several sites, the datasets contained clinical information
such as the Autism Diagnostic Interview-Revised (ADI-
R), the restricted and repetitive behavior subscore of the
Autism Diagnostic Observation Schedule (ADOS-RRB),
and communication subscore of the ADOS (ADOS-COM).
The average values of FCDs in each region of interest
showed meaningful correlations with the ADI-R scores

(Lord et al., 1994) and ADOS scores (Lord et al., 2000).
Figure 5 shows the significant correlations between the FCDs
and the ADOS-RRB score. In the ASD group, the ADOS-
RRB score showed significant negative correlations with the
average gFCD (ρ = −0.24, corrected P = 0.003, df = 217),
iFCD (ρ = −0.23, corrected P = 0.006, df = 217), and
cFCD (ρ = −0.24, corrected P = 0.003, df = 217) in the
lingual/parahippocampal gyrus cluster. Also, the ADOS-RRB
score showed significant negative correlations with the average
cFCD in the PCC (ρ = −0.18, corrected P = 0.03, and
df = 217) and precuneus (ρ = −0.15, corrected P = 0.05,
and df = 217). Moreover, significances of those correlations
were preserved if we use a regional maximum value of FCDs
instead of a regional mean within each region of interest
(corrected P < 0.05).

DISCUSSION

Abnormalities in the neuronal systems of individuals with ASD
have been reported in many studies over the last two decades,
using small sample ASD groups. We used data from 517 TDCs
and 458 patients with ASD from the ABIDE database to examine
the abnormalities of functional connectivity in the ASD group
relative to TDCs. We used a data-driven voxel-wise method,
which examined all voxels in the entire brain. We computed
the FCD maps by calculating the connectivity degree of each
voxel with all other voxels. The FCD maps were used to compare
the functional connectivity between the ASD and TDC groups.
A group difference analysis showed regional under-connectivity
in the ASD group relative to the TDC group. The abnormal
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FIGURE 3 | Decreased functional connectivity density (FCD) in autism spectrum disorder (ASD) group. Group differences in the normalized global,

contralateral, and ipsilateral FCDs were visualized with the statistical significance at corrected P < 0.05. Detailed information on each cluster is written in Table 2.

regions of intrinsic functional connectivity in the ASD group
were the lingual/parahippocampal gyrus, posterior cingulate
cortex, precuneus, postcentral gyrus, paracentral lobule, medial
prefrontal cortex, precentral gyrus, angular gyrus, inferior frontal
gyrus, superior frontal gyrus, and supplementary motor area,
which are related to the default mode network and social
functioning processes.

To the best of our knowledge, the present study is the
first attempt to decompose the functional connectivity into
ipsilateral and contralateral parts to explore abnormalities in the
intrinsic neural networks of ASD. Inter-hemispheric connectivity
in ASD was examined previously in several studies (Anderson
et al., 2011), in which a correlation between each voxel and a
corresponding voxel in the opposite hemisphere was calculated.
The present study used all voxels in the opposite hemisphere
to calculate the inter-hemispheric connectivity. Consequently,
inter-hemispheric FCD is somewhat analogous to long distance
connectivity. Intra-hemispheric FCD was used to identify
the characteristics of the short distance connectivity. Global
functional connectivity density was obtained by combining the
inter- and intra-hemispheric FCDs.

Functional Under-Connectivity vs.
Over-Connectivity
Neuroimaging studies have shown abnormal brain networks in
ASD, but the issue of over-connectivity or under-connectivity
in those findings remains controversial (Muller et al., 2011).
Children with ASD showed both over-and under-connectivity
(Lynch et al., 2013). The precuneus was underconnected with
other brain regions, as we observed in this study, but the
posterior cingulate cortex was overconnected, which was the

opposite result from our study. For adolescents with ASD,
functional connectivity between the medial prefrontal cortex and
precuneus (theory of mind regions) and some regions in the
mirror neuron system have been found to be overconnected
(Northoff et al., 2006; Fishman et al., 2014). However, when the
brains of adults with ASD were examined, the medial prefrontal
cortex and precuneus were underconnected. This result may
be explained by two reasons. First, including adult subjects
may change the overall result from over-connectivity to under-
connectivity. However, it is unlikely that the inclusion of adult
subjects may change the connectivity pattern of subjects with
ASD because the majority of subjects with ASD in our study were
children and adolescents. Second, the medial prefrontal cortex
and precuneus were overconnected with some regions in the
mirror neuron system but underconnected with a majority of
other brain regions. In summary, the medial prefrontal cortex
and precuneus may appear underconnected in some specific
brain regions.

In a prior study where the posterior cingulate cortex
had been used as a single seed (Monk et al., 2009), the
ASD group showed under-connectivity in the right superior
frontal gyrus and over-connectivity in the right temporal
pole and right parahippocampal gyrus, compared to the
TDC group. In our results using the voxel-wise data-
driven method, both the posterior cingulate cortex and
parahippocampal gyrus in the ASD group showed reduced
functional connectivity compared to TDCs. This result is
consistent with the result from prior studies showing a weaker

connectivity between the posterior cingulate cortex and

precuneus in the ASD group compared to that of the TDC group
(Cherkassky et al., 2006).
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TABLE 2 | Group differences in the normalized global, contralateral, and ipsilateral FCDs (gFCD, cFCD, and iFCD) between the ASDs and TDCs.

Cluster Name BA gFCD cFCD iFCD

Cluster Size (MNI) Cluster Size (MNI) Cluster Size (MNI)

Lt. Medial prefrontal cortex* 10 303 (0, 62, −6) 538 (0, 62, −6)

Lt. Superior frontal gyrus 10 58 (−14, 72, 28)

Rt. Inferior frontal gyrus 22 60 (54, 16, −4)

Lt. Supplementary motor area 6 49 (0, −6, 76)

Lt. Precentral gyrus 4 51 (−64, −4, 22) 29 (−62, −4, 22) 25 (−64, −4, 22)

Lt. Postcentral gyrus 2 648 (−64, −20, 50) 751 (−60, −18, 48) 387 (−64, −20, 48)

Rt. Postcentral gyrus 2 136 (40, −36, 58) 91 (66, −2, 16) 234 (44, −34, 60)

Rt. Lingual/parahippocampal gyrus 30 74 (12, −44, −2)

4190 (−6, −56, 28)Lt. Cerebellum (Culmen) 29 4014 (−6, −56, 28) 113 (−6, −44, 2)

Rt. Posterior cingulate cortex* 23 2682 (6, −50, 22)

Rt. Precuneus 7 127 (24, −76, 56)

Lt. Angular gyrus* 39 43 (−54, −68, 32)
176 (−46, −78, 46)

Lt. Inferior parietal lobule* 39 46 (−48, −76, 46)

Rt. Angular gyrus 39 29 (50, −62, 26)

Rt. Supramarginal gyrus 40 24 (62, −22, 42) 224 (62, −22, 40)

Lt. Paracentral lobule 6 333 (0, −24, 60)
1338 (0, −24, 60)

Rt. Paracentral lobule 6 56 (8, −38, 76)

The number of voxels and the corresponding center of mass in MNI for each cluster were described accordingly.

Cortical clusters that cover wide range of brain areas were highlighted in dark gray.

Asterisk(*) indicates the default mode network regions.

BA, Brodmann areas; Lt, left; Rt, right.

FIGURE 4 | The extent of regional overlaps for functional underconnectivities in the normalized global, contralateral, and ipsilateral FCDs (gFCD,

cFCD, and iFCD). Yellow color represents the overlapping areas for functional underconnectivities observed in gFCD, cFCD, and iFCD. Orange color represents the

overlapping areas of functional underconnectivities observed in any pairs of FCDs: gFCD and cFCD, gFCD and iFCD, or cFCD and iFCD. Purple color represents

functional underconnectivities observed in gFCD, cFCD, or iFCD without overlapping areas.

Hypofunctional Connectivity Density
Functional connectivity differences between the ASD and
TDC groups were found in the medial prefrontal cortex,
posterior cingulate cortex, precuneus, and parahippocampal

gyrus. The medial prefrontal cortex, posterior cingulate cortex,

and precuneus have been reported to be an important parts
of the default mode network, and abnormalities in the default
mode network have been reported in subjects with ASD
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FIGURE 5 | Scatter plots of functional connectivity density (FCD) vs. clinical variable. (A) gFCD in the Lingual/PHG and ADOS-RRB score; (B) iFCD in the

Lingual/PHG and ADOS-RRB score; (C) cFCD in the Lingual/PHG and ADOS-RRB score; (D) cFCD in the PCC and ADOS-RRB score; and (E) cFCD in the

precuneus and ADOS-RRB score.

(Ochsner et al., 2005; Northoff et al., 2006). The above-
mentioned brain regions are involved in many impaired mental
functions seen in the ASD group, such as difficulty in decision
making (Luke et al., 2012), lack of identification with self
(Northoff et al., 2006), cognitive deficits (Baron-Cohen et al.,
1985) and problems in self-referential thought (Ochsner et al.,
2005) and mentalizing (Frith and Happe, 1993; Frith and
Frith, 1999; Gallagher and Frith, 2003; Kana et al., 2009;
Gotts et al., 2012; Schurz et al., 2014). Especially, the medial
prefrontal cortex and posterior cingulate cortex are implicated
in the theory of mind network, a key symptomatic feature
of patients with ASD. Therefore, we assert that the under-
connectivity in the medial prefrontal cortex and posterior
cingulate cortex may cause the social functioning impairments
in ASD.

Inter- and Intra-Hemispheric Connectivity
Using inter-hemispheric correlation, Anderson et al. showed a
lower inter-hemispheric correlation in the sensorimotor cortex,
superior parietal lobule, and frontal insula in subjects with
ASD compared to that in controls (Anderson et al., 2011).
Moreover, the mean corpus callosum volume in the ASD group
was significantly smaller than that of TDCs. Although, both
corpus callosum volume and gray matter inter-hemispheric
functional connectivity were significantly reduced in autism,
no direct relationship was observed between them, suggesting
that the structural and functional imaging measure different
aspects of inter-hemispheric connectivity (Anderson et al.,
2011).

In our study, the inter-hemispheric differences between the
two groups were computed by the difference in cFCDs between
the two groups. Regions showing lower cFCD in the ASD group
were the posterior cingulate/precuneus, somatosensory areas,
parahippocampal gyrus, and angular gyrus. However, the mean
cFCD in the ASD group was not significantly different from
that of TDCs and the mean cFCD in the ASD group was even
higher than that of TDCs after normalization. On the contrary,
the examination of the mean iFCD showed that it is significantly
reduced in the ASD group compared to that of TDCs. As intra-
hemispheric under-connectivity contributed more to the overall
results of our study, global under-connectivity in patients with
autism may be a result of intra-hemispheric under-connectivity
rather than inter-hemispheric under-connectivity. This result
is consistent with that of a prior study showing altered intra-
hemispheric connectivity in the autistic brains (Minshew and
Williams, 2007). In reality, intra-hemispheric connectivity has
been less studied than inter-hemispheric connectivity, due to
the complex and time-consuming processes needed to calculate
these values. However, our results suggest that the models of
under-connectivity in autism should consider intra-hemispheric
as well as inter-hemispheric connectivity for more sophisticated
understanding of how connectivity abnormalities would be
determined by interactions between the intra- and inter-
hemispheric functional connectivity in the ASD group.

Correlation between Connectivity and
Clinical Measures
We found that there were significant correlations between
the average of gFCD, cFCD, and iFCD values in the
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lingual/parahippocampal gyrus and ADOS-RRB scores
(Figure 5). The lingual/parahippocampal gyrus is connected
with the amygdala and limbic structure in the brain, and
is believed to play an important role in the processing of
visual information about parts of the human faces (McCarthy
et al., 1999) and processing high-emotion words or images,
identifying visual scene and social context, and paralinguistic
communication (Epstein and Kanwisher, 1998). These
functions are the main areas in which individuals with ASD
suffers from severe impairment, and the abnormality in the
lingual/parahippocampal gyrus has been reported in individuals
with autism (Weng et al., 2010). The significant correlation
between gFCD and iFCD in the lingual/parahippocampal and
ADOS-RRB scores can be explained by a theoretical framework
provided by the salience landscape theory (Ramachandran and
Oberman, 2006). Although autism is mainly considered a social
disability, it also has non-social features, such as restricted and
repetitive behavior/interests and sensory hypersensitivity. The
salience landscape theory provides a compelling explanation
for this symptom dimension of autism, suggesting that
the altered connections between the limbic system and the
sensory areas could cause extreme emotional responses and
autonomic hyperactivity to the surrounding environment in
patients with ASD, and repetitive behavior has a compensatory
calming effect by reducing the child’s autonomic arousal.
The lingual/parahippocampal area is adjacent to, or a part
of the limbic system. Therefore, our result suggests that the
functional connectivity of this area might be altered in a
different way in individuals with ASD, and these alterations
may explain the restricted and repetitive behaviors in the ASD
group.

Differences in a Recent Study Using ABIDE
Dataset
Recently, a study using a large dataset fromABIDEwas published
with 360 male subjects with ASD and 403 male TDCs (Di
Martino et al., 2014). They used four different imaging analysis
methods. Among the four methods, the degree centrality was
similar to gFCD used in this study. However, their results using
the degree centrality were different from our results, in that
the ASD group showed over-connectivity in the right middle
frontal gyrus. In the right posterior cingulate cortex, no difference
was observed between the two groups according to the degree
centrality analysis, but in our analysis, the ASD group showed
under-connectivity in the posterior cingulate cortex. Even though
the degree centrality method and FCD methods are both data-
driven voxel-wise methods, several factors may explain such
different results. The degree centrality method used eight times
lower resolutions in voxel dimensions (4 × 4 × 4mm) (Zuo
et al., 2012) than our method (2 × 2 × 2mm). Their sample
size was smaller than our sample size; they used only male
subjects, whereas we used all subjects, including females and
adults.

LIMITATIONS

There are several potential limitations in this study. First, the age
of the subjects with ASD and TDCs are widely distributed from
childhood through adolescence to adulthood. We considered
only the average FCDs of all subjects from these broad age groups.
Although we found average patterns of functional connectivity in
the ASD group compared to those in the TDC group after setting
age as a covariate, we may have missed age-related changes in
the functional connectivity of the ASD group. Brain structure
changes during human development (Sowell et al., 1999, 2003).
In particular, adolescence is a time of human brain maturation
as remarkable physical and behavioral changes occur (Paus et al.,
2008; Koyama et al., 2011). Thus, future research should focus
on the age effects on the neural system in ASD. The second
limitation is that the FCD mapping analytical method found
cortical hubs, but we did not examine which regions were
strongly connected with those hubs after group comparison. This
approach may require higher computational power. Third, the
inconsistent findings regarding over- vs. under-connectivity in
the brains of patients with ASD might be due to individualized
alterations in the functional connectivity patterns, and the group
comparison study like ours may not have taken functional
idiosyncrasy into consideration as a possible source of these
discrepant findings in functional connectivity (Hahamy et al.,
2015).

CONCLUSIONS

In conclusion, we observed abnormalities of global functional
connectivity in ASD by applying FCD mapping on data from
517 TDC subjects and 458 patients with ASD from the ABIDE
datasets. We found regional under-connectivity in ASD by
comparing of intra-hemispheric, inter-hemispheric, and global
functional connectivity. Our findings suggest that a deficit
of non-social functioning process in ASD, such as restricted
and repetitive behaviors and sensory hypersensitivity, might be
determined by both the inter- and intra-hemispheric functional
disconnections in the posterior limbic and sensorimotor regions.
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Abnormalities in cortical connectivity and evoked responses have been extensively

documented in autism spectrum disorder (ASD). However, specific signatures of these

cortical abnormalities remain elusive, with data pointing toward abnormal patterns

of both increased and reduced response amplitudes and functional connectivity. We

have previously proposed, using magnetoencephalography (MEG) data, that apparent

inconsistencies in prior studies could be reconciled if functional connectivity in ASD

was reduced in the feedback (top-down) direction, but increased in the feedforward

(bottom-up) direction. Here, we continue this line of investigation by assessing

abnormalities restricted to the onset, feedforward inputs driven, component of the

response to vibrotactile stimuli in somatosensory cortex in ASD. Using a novel method

that measures the spatio-temporal divergence of cortical activation, we found that relative

to typically developing participants, the ASD group was characterized by an increase in

the initial onset component of the cortical response, and a faster spread of local activity.

Given the early timewindow, the results could be interpreted as increased thalamocortical

feedforward connectivity in ASD, and offer a plausible mechanism for the previously

observed increased response variability in ASD, as well as for the commonly observed

behaviorally measured tactile processing abnormalities associated with the disorder.

Keywords: autism spectrum disorders (ASD), magnetoencephalography (MEG), somatosensory cortex,

feedforward, feedback, tactile sensing, cortical connectivity, biomarker

INTRODUCTION

Autism spectrum disorder (ASD) is diagnosed by hallmark abnormalities in social behavior, and
has a complex genetic basis (Berg and Geschwind, 2012; Skafidas et al., 2014; Pramparo et al.,
2015) with no clear disease etiology. The neural correlates of ASD have been extensively explored,
using a wide range of paradigms and non-invasive neuroimaging methods. One of the more
consistent findings in ASD is that the connectivity between different brain areas is abnormal in
ASD (Khan et al., 2013). This has been explored using both anatomical connectivity measures

67

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnins.2016.00255
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2016.00255&domain=pdf&date_stamp=2016-06-08
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:tal@nmr.mgh.harvard.edu
http://dx.doi.org/10.3389/fnins.2016.00255
http://journal.frontiersin.org/article/10.3389/fnins.2016.00255/abstract
http://loop.frontiersin.org/people/64066/overview
http://loop.frontiersin.org/people/352664/overview
http://loop.frontiersin.org/people/129853/overview
http://loop.frontiersin.org/people/76352/overview
http://loop.frontiersin.org/people/159389/overview
http://loop.frontiersin.org/people/126609/overview
http://loop.frontiersin.org/people/4461/overview
http://loop.frontiersin.org/people/144201/overview
http://loop.frontiersin.org/people/352638/overview
http://loop.frontiersin.org/people/79954/overview
http://loop.frontiersin.org/people/66638/overview


Khan et al. Increased Feedforward Connectivity in ASD?

(Wolff et al., 2012; Mueller et al., 2013; Peeva et al., 2013) and
functional connectivity measures (Kana et al., 2011; Müller et al.,
2011; Wass, 2011; Vissers et al., 2012).

The prevailing hypothesis in the field (Rubenstein and
Merzenich, 2003; Just et al., 2004), has been that long-
range functional connectivity is reduced and local functional
connectivity is increased in ASD (Belmonte et al., 2004; Minshew
and Williams, 2007). However, evidence for this dual hypothesis
is inconclusive. In particular, the hypothesis that long-range
functional connectivity, i.e., connectivity between two spatially
distinct brain regions, is universally reduced in ASD has been
challenged by recent studies showing instances of both increased
(Cerliani et al., 2015) and normal (Tyszka et al., 2014) long-range
functional connectivity in ASD.

Previously, we proposed that the inconsistencies in long-range
functional connectivity studies in ASD might be reconciled if
the directionally of the connectivity, i.e., the direction in which
two areas are connected, would be considered. Specifically, we
proposed that long-range feedforward (bottom-up along the
cortical hierarchy) connectivity would be abnormally increased
in ASD, while feedback (top-down along the cortical hierarchy)
long-range connectivity would be abnormally reduced (Khan
et al., 2015; Kitzbichler et al., 2015). In particular, in our
recent study of cortical responses to vibrotactile stimuli in ASD,
we showed that long-range functional connectivity was indeed
significantly increased in the ASD group in the feedforward
direction, from the primary somatosensory cortex (S1), upwards
toward the secondary somatosensory cortex (S2) (Khan et al.,
2015).

In that same study, we also found a significantly increased
onset response in S1 in the ASD group. While the response
in S1 was significantly increased at onset in the ASD
group, it was not possible to determine, based on our prior
analysis, whether this increase was generated locally, or via
abnormal long-range connectivity, such as reduced feedforward
functional connectivity from the thalamus for instance. This
question is important, because increased local connectivity
and increased long-range functional connectivity might have a
similar final signature in the cortex, but would be generated
and mediated by substantially different neural mechanisms, and
thus different neural abnormalities. Thus, delineating the neural
mechanisms that underlie the observed abnormal response in
ASD is absolutely essential for understanding the abnormal
neurophysiology of ASD.

To address this question, we focused here on the transient
component of the response, and specifically on the rising edge
of the evoked response. This transient response window, 30–
70ms immediately following the onset of the cortical response,
has not been previously studied in relation to abnormal tactile
processing in ASD. Given its timing, this part of the response
is most likely generated at least in part by feedforward inputs
from the thalamus. However, the mere observation of an
increased response amplitude during that period is not sufficient
to indicate whether the processes leading to that increase are
local, or generated by long-range connections. Here, to test our
hypothesis, that the increase in the transient evoked response
observed in ASD is due to feedforward inputs from subcortical

regions, we applied a novel measure that indicates how activation
of a small neural population spreads in adjoining areas to become
locally synchronized (Khan et al., 2009). This method, which
is referred to as Spatio-Temporal Divergence (S-T Div), uses
techniques based on the concept of optical flow, and was recently
adapted tomap the time-course of spatiotemporal propagation of
brain activity across different cortical region (Khan et al., 2011).

RESULTS

Spatial Localization of Evoked Response
to Tactile Vibrations
As expected and as described previously (Khan et al., 2015),
the cortical evoked responses to the 25Hz vibrotactile stimulus
(Figure 1A) localized to the contralateral (left) S1 and S2
(Figure 1B).

Sharper Evoked Response in ASD
There was no group difference in the latency of the response.
The amplitude of the evoked transient response was slightly
increased in the ASD group relative to the TD group, but
this difference was not statistically significant (Figure 2A). In
contrast, when the cortical response was examined over the onset
time window in the time-frequency domain, i.e., with spectral
specificity rather than averaging over the frequency domain as
for the standard evoked response shown in Figure 2A, significant
group differences emerged (Figure 2B, p = 0.0470, corrected).
The difference arose primarily from the higher frequencies, at the
25–60Hz range.

Increased Onset Response Divergence in
ASD
We computed the spatio-temporal divergence (S-T Div) at the
onset component of the response, and specifically at the rising
edge of the first peak (30–70ms). This was done by selecting
the latency for each subject individually, computing S-T Div for
that particular subject at their latency, and then averaging the
results at the group level. At this time window, the ASD groups
demonstrated significantly increased S-T Div in S1 (Figure 3,
p = 0.034, corrected). As a control, we also examined S-T Div
during the steady state component of the response (t = 250–
550ms). As expected, there were no significant group differences
in this later time window.

Correlations with Behavioral Measures and
Prior Neurophysiological Measures
The neurophysiologically derived S-T Div was negatively
correlated with the behaviorally derived ADOS (ASD group,
P < 0.002, r = 0.74, Figure 4A) and touch perception
score (TD group, P < 0.008, r = −0.58; ASD group, P <

0.02, r = −0.63, Figure 4B). Because the participants are
identical to those in our prior study (Khan et al., 2015), we
also assessed whether the onset derived S-T Div correlated with
the steady-state derived neurophysiological measures from our
prior study. Our steady state measures consisted of the LFCi
(“Local Functional Connectivity index”), which estimated local
functional connectivity in S1 during the steady state component
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FIGURE 1 | Stimulus and source localization. (A) 500ms train of pulses at 25Hz (green trace) was delivered via a pneumatic stimulator and experienced as gentle

vibrations on the index and middle right fingers. (B) The estimated cortical sources showing activation in S1 and S2. The contour plot represents average activation on

the cortical manifold. The distance between adjacent contours is 10%.

of the response, and the GCS (Granger Causality score), which
estimated the strength of feedforward connectivity from S1 to S2
during the steady state component of the response. Both were
abnormal in the ASD group, with LFCi abnormally decreased,
and the GCS abnormally increased. Our correlation analysis
showed that LFCi was correlated with S-T Div for both the TD
(Figure 4C, P < 0.002, r = −0.66) and ASD (P < 0.007, r
= − 0.67) groups. In contrast, S-T Div was not correlated with
the GCS (Figure 4D).

Statistical Classification
Lastly, we tested whether S-T Div could be used to blindly
classify participants with ASD (neuroimaging Biomarker) from
TD participants, using a Linear Discriminant Analysis classifier
(LDA). This approach evaluates the sensitivity and specificity,
and thus the relevance, of the assessed neurophysiological
measure to the behavioral phenotype. Using S-T Div alone, the
classifier had 83.3% accuracy (80% sensitivity, 90% specificity).
We then repeated the classifier computations using S-T Div
alongside our two previously derived neurophysiological
measures, LFCi, and GCS. The combination of these three
neurophysiological features yielded a mean classification
accuracy of 91.6%, with 95% specificity and 90% sensitivity
(Figure 5, Figure S1 and Movie M1). In our prior work the
accuracy of the classifier was 89.7%. To assess whether adding
the S-T Div measure significantly improved the classifier,
the prior model (using LFCi, GCA) and the current model
(using LFCi, GCA, S-T Div) were compared using the Akaike
Information Criterion (AIC). The AIC score was −79.98 for the
first model, and−92.17 for the second model. These scores, with
a greater than 12-point difference, indicate that adding S-T Div
significantly improved the model.

DISCUSSION

In the vast majority of studies, abnormal functional connectivity
in ASD and abnormal evoked responses in ASD have been

addressed separately. It is clear that functional connectivity and
evoked responses are not independent from one another, but
instead are tightly coupled. In our prior study using the same
paradigm (Khan et al., 2015), we showed that the observed
increases in steady state responses in the ASD group at 25Hz
in S2, were due to increased feedforward connectivity from S1.
We also hypothesized that the observed increased onset response
in S1 was due to increased feedforward connectivity from the
thalamus, but were not able to test this hypothesis at the time.

The current method (S-T Div) allowed us to test this
hypothesis indirectly, since it measures the flow (magnitude and
velocity of spread) of neural activation in a given region and time
window. The velocity at the onset of the response in S1, at the
rising edge of the response, before local connections are strongly
activated through recurrent loops, is likely to arise entirely or
nearly entirely from feedforward connections into S1, primarily
from the thalamus. While an increase in magnitude might arise
from local recurrent connections, an increase in the velocity
of spread can be attributed with relatively high certainty to an
increase in feedforward inputs (Papadelis et al., 2012). Indeed, we
found that at rising edge of the transient response in S1, this flow
was greatly and significantly increased in ASD relative to TD.

Interestingly, as is evident from the time-frequency plots
presented in Figure 2B, the evoked response in S1 in ASD is
abnormally increased not only at the 25Hz component of the
response, but also at higher frequencies, including the 50Hz
component of the response. This seemingly contradicts our
prior results. In our prior study (Khan et al., 2015), using a
computational model and prior literature, we argued that only
the 25Hz component of the response, which was increased
in ASD, is generated via feedforward connectivity, while the
steady state of the 50Hz component of the response, which was
reduced in ASD, is generated via local connectivity within S1
and its immediate vicinity, i.e., horizontal connections across
layers II/III. Simply put, why would the response in higher
frequencies, and specifically around 50Hz, be increased in
ASD in the transient component immediately following the
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FIGURE 2 | Evoked responses. (A) Evoked responses in S1 (Orange ASD; Cyan TD). Stimulus is represented with green curve at the bottom. Magenta box shows

the window for the first transient peak [30–70ms]. (B) Time-frequency representations of Z-scored phase locking (Z-PL) at S1 in the TD group. (C) Time-frequency

representations of Z-scored phase locking (Z-PL) at S1 in the ASD group. White contour outlines the region where the response was significantly increased in the ASD

group (p = 0.0470, cluster corrected). Magenta boxes show time window for the transient response in the time-frequency domain [0–140ms].

onset, but decreased during the steady state component of
the response? If both the transient onset component and the
steady state component of the cortical response were generated
by the same neural mechanisms (local recurrent connections),
the interpretation of the 50Hz component of the response we
proposed earlier would be inconsistent with the current proposed
interpretation.

The logical resolution of this apparent conflict emerges from
a line of studies affirming the fundamentally different nature of
the onset component of the response relative to the steady state
component (Nangini et al., 2006). For instance, somatosensory
inputs from the thalamus to area 3b have been shown to evoke
fast and slow adapting response patterns in non-human primates
where one set of cortical cells respond only to stimulus onset
and offset, while the other module respond throughout stimulus
presentation (Sur et al., 1984). In contrast, the steady state
response serves to more linearly convey detailed information
about attended stimulus features (Ramcharan et al., 2005;
Sherman, 2012). Furthermore, the corticothalamic pathways
that would be most active during the onset component of the
response, are largely distinct from the interareal corticocortical
pathways that would be most active during the steady state
component of the response (Petrof et al., 2012). Thus, the

opposite patterns we observed in ASD for the onset component
and the steady state components of the response around 50Hz
are not contradictory, as they are probably generated by at least
partially independent neuronal assemblies.

That said, it is worthwhile to note that the strong correlation
we observed between S-T Div and LFCi suggests that while these
two temporally differentiated components of the response are
distinct, they are not independent. However, from the current
data, it is not possible to determine to what extent the abnormal
response in ASD during the steady state component of the
response is influenced by the initial abnormality in the onset
component of the response. Since the two measures, S-T Div
and LFCi, are correlated but not perfectly so, it is plausible that
the reduced steady state response in ASD is a result both of the
state of the neuronal assemblies following the increased onset
response, alongside the previously discussed (Khan et al., 2015)
inherent abnormalities in the local networks that mediate the
steady state component of the response. Furthermore, the results
from our classifier analysis indicate that the S-T Div analysis
of the onset period adds independent information to the prior
analyses of the steady state component of the response.

The differentiation proposed here between the feedforward
dependent onset component of the response and the local
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FIGURE 3 | S-T Div during the onset of the transient tactile response. S-T DIV in (A) The TD group, (B) The ASD group. The colormap represents the

magnitude of divergence, and the purple vectors represent the velocity of the divergence. Black outline represents the area that is statistically significantly different

(p = 0.034, cluster corrected) between the TD and ASD groups.

FIGURE 4 | Correlations between S-T Div and other measures. Correlation between S-T Div and: (A) ADOS score, (B) Touch score, (C) LFCi, and (D) GCS. The

shaded areas (TD in green, ASD in purple) delineate the standard error, and the dashed lines encompass 95% of the confidence interval for the correlation.

feedback dependent steady state component of the response, is in
line with studies of ASD that indirectly infer increased bottom-up
perceptual processing tendencies in ASD (Neumann et al., 2006;
Jarvinen-Pasley et al., 2008; Cook et al., 2012; Amso et al., 2014;
Robertson et al., 2014). They are also in line with prior fMRI-
based studies finding increased thalamocortical connectivity in
ASD, in paradigms that were more likely to activate feedforward
networks (Mizuno et al., 2006; Cerliani et al., 2015). These
results are also intriguing in the context of a recent finding of
increased inter-trial variability in ASD (Dinstein et al., 2012).
Unmodulated, i.e., inconsistently gain controlled, feedforward
inputs, as observed previously in ASD (Peiker et al., 2015),
would likely result in more variable trial to trial onset responses.

Lastly, these results are also relevant in the context of the high
prevalence of behavioral sensory hypo- and hyper- sensitivities
in ASD (Tommerdahl et al., 2007; Marco et al., 2011, 2012).
Increased feedforward inputs and flow of sensory information
would naturally result in hyper-sensitive behavior. It is possible
that the observed hypo-sensitivities are due to generalized down
regulation, as a compensatory strategy to the increased input
intensities. Such a compensatory strategy would likely result in
hypo-sensitivities.

An important limitation of the study is that this method does
not directly measure thalamocortical feedforward connectivity
from the specific thalamic nuclei, since no thalamic activation
has been observed directly. Thus, the proposed interpretation,
while relying strongly on known properties of response onset in
early sensory cortex, and while fitting well with other studies,
remains an indirect interpretation. Alternatively, other processes
may also impact the observed abnormal dynamics of the onset
response. For instance, it has been suggested that excitatory
feedforward drive and feedback input from higher-order cortex
or non-specific thalamic nuclei might also contribute to the onset
component of the response (Cauller and Kulics, 1991; Jones
et al., 2009). In addition, local interactions between excitatory and

inhibitory circuits that occur before theM70 peak (Peterson et al.,
1995) may also impact the abnormal dynamics observed here.

In summary, in our previous studies (Khan et al., 2015;
Kitzbichler et al., 2015), we found increased forward cortical
functional connectivity in ASD during the steady state
component of the cortical response, from S1 to S2. We also
found an increased onset response in S1 in the ASD group. In
the present investigation we used the novel S-T Div measure to
assess the dynamics of the onset response in S1. The observed
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FIGURE 5 | Classifier results, using S-T Div, LFCi and Granger

Causality. Visualization of LDA analysis using the full dataset. Each axis

corresponds to each neurophysiological imaging feature. The probability of a

participant having a diagnosis of ASD is shown as color of the sphere. Plain

sphere represents the TD participants, while sphere with a cross represent

ASD participants. The black line represents classification boundary (see also,

Figure S1 and Movie M1).

dynamics are consistent with an interpretation of increased
feedforward thalamocortical connectivity. The interpretation
proposed here of the result of the S-T Div measure, is consistent
with the conjecture that stronger feedforward connectivity is
likely characteristic of ASD, andmay underlie the behaviorally
observed aberrant somatosensory and vibrotactile processing in
ASD.

MATERIALS AND METHODS

Participants
Participants were 15 males diagnosed with ASD and 20 age-
matched TD males, ages 8–18 (11.6 mean age). ASD participants
had a prior clinically verified ASD diagnosis, met a cutoff
of > 15 on the SCQ, Lifetime Version, and were assessed
with either Module 3 (n = 3) or 4 (n = 12) of the ADOS
(ADOS, Lord et al., 1999), administered by trained research
personnel who had established inter-rater reliability. Individuals
with autism-relatedmedical conditions, e.g., Fragile-X syndrome,
tuberous sclerosis, and other known risk factors, e.g., premature
birth, were excluded from the study. All TD participants were
below threshold on the SCQ and were confirmed to be free
of any comorbid neurological or psychiatric conditions, and of
substance use for the past 6 months, via parent and self-reports.
The ASD and TD groups did not differ in verbal or nonverbal
IQ, as measured with the Kaufman Brief Intelligence Test—II
(Kaufman and Kaufman, 2004). Handedness information was
collected using the Dean Questionnaire (Piro, 1998). Only right-
handed participants were included in the study. Additional
details on the participants are provided in Table T1. Participants
overlapped in full with those studied in our prior publication on
this paradigm (Khan et al., 2015). All the experimental protocols

were approved by The Massachusetts General Hospital (MEG)
Institutional Review Board and all procedures were carried out
in accordance with the approved guidelines. Written informed
consent was obtained from all subjects.

Experimental Paradigms and MEG Data
Acquisition
Vibrotactile stimulation in the MEG consisted of pulses applied
to the index and middle right fingers at 25Hz using a custom
made pneumatic tactile stimulator with latex tactor tips, based
on a published design (Briggs et al., 2004). The duration of
each stimulus train was 500ms with an inter-stimulus interval
of 3 s with a 500ms jitter. The stimuli were presented while
participants were watching a movie. Participants were instructed
to not pay attention to the stimulation and not move their hands.
Hands were kept still using an armrest, and a blanket positioned
over the arm. The sequence of stimuli was presented using the
psychophysics toolbox (www.psychtoolbox.org). A total of 100
trials were collected. The total recording time was 6min per
subject.

MEG data were acquired inside a magnetically shielded room
(IMEDCO, Hagendorf, Switzerland) (Khan and Cohen, 2013)
using a whole-head VectorViewMEG system (Elekta-Neuromag,
Helsinki, Finland), comprised of 306 sensors arranged in
102 triplets of two orthogonal planar gradiometers and one
magnetometer. The MEG signals were acquired at 600Hz, with
a hardware bandpass filter set between 0.1 and 200Hz. The
position and orientation of the head with respect to the MEG
sensor array was recorded continuously with help of four Head
Position Indicator coils (Uutela et al., 2001; Zaidel et al., 2009).
To allow co-registration of the MEG and MRI data, the locations
of three fiduciary points (nasion and auricular points) that
define a head-based coordinate system, a set of points from
the head surface, and the sites of the four HPI coils were
digitized using a Fastrak digitizer (Polhemus, Colchester, VT,
USA) integrated with the Vectorview system. The ECG and
EOG signals were recorded simultaneously to identify epochs
containing heartbeats as well as vertical and horizontal eye-
movement and blink artifacts. During data acquisition, on-line
averages were computed from artifact-free trials to monitor data
quality in real time. All off-line analysis was based on the saved
raw data. In addition, 5min of data were recorded from the
room void of a subject before each experimental session for noise
estimation purposes.

Structural MRI Data Acquisition and
Processing
T1-weighted high-resolution magnetization-prepared rapid
gradient echo (MPRAGE) structural images were acquired using
a 3.0 T Siemens Trio whole body MR scanner (Siemens Medical
Systems, Erlangen, Germany) and a 32 channel head coil. The in-
plane resolution was 1 × 1mm2, slice thickness 1.3mm with no
gaps, and a TR/TI/TE/Flip Angle 2530ms/1100ms/3.39ms/7◦.
Cortical reconstructions and parcellations for each subject were
generated using FreeSurfer (Dale et al., 1999; Fischl et al., 1999a).
After correcting for topological defects, cortical surfaces were
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triangulated with dense meshes with ∼130,000 vertices in each
hemisphere. For visualization, the surfaces were inflated, thereby
exposing the sulci (Dale et al., 1999).

MEG Data Pre-Processing
Cleaning and Motion Correction
The data were spatially filtered using the SSS method (Elekta-
Neuromag Maxfilter software) to suppress noise generated by
sources outside the brain (Taulu et al., 2004; Taulu and Simola,
2006). SSS also corrects for headmotion between and within runs
(Taulu et al., 2004). Cardiac and ocular artifacts were removed
by signal space projection (Gramfort et al., 2013). The MEG
data were then further low-pass filtered at 145Hz to remove the
HPI coil signals. The filtered data were then used for all further
analyses.

Epoching
The data were epoched into single trials lasting 2.5 s, from
1000ms prior to stimulus onset to 1500ms following it. Epochs
were rejected if the peak-to-peak amplitude during the epoch
exceeded 1000 fT and 3000 fT/cm in any of the magnetometer
and gradiometer channels, respectively. This resulted in the loss
of 2–20 trials per participant. To maintain a constant signal to
noise ratio across conditions and participants, the number of
trials per condition per participant was fixed at 80, the minimum
number of accepted trials that we had for each condition and
participant. For participants that had more than 80 good trials,
we selected 80 trials randomly from the available trials.

Transient Response Time Window Selection
For the standard evoked response (Figure 2A), we selected the
first transient peak in the time window between 30 and 70ms
from stimulus onset, to evaluate latency and amplitude. For the
response in the time-frequency domain, we needed to account for
smoothing due to the convolution of the seven cycles complex
Morlet wavelet with the data. Therefore, the time window of
interest was 0–140ms from stimulus onset.

Data Quality
There were no group differences in overall quality of the data, and
the number of good (un-rejected) trials per condition was similar
between groups and across conditions. For each participant, the
same set of trials was used for all analyses.

Mapping MEG Data Onto Cortical Space
Source Estimation
The cortical source space consisted of 10,242 dipoles per
hemisphere, corresponding to a spacing of approximately 3mm
between adjacent source locations. The forward solution was
computed using a single-compartment boundary-element model
(Hämäläinen and Sarvas, 1989). The individual inner skull
surface triangulations for this model were generated with the
watershed algorithm in FreeSurfer. The current distribution was
estimated using theminimum-norm estimate by fixing the source
orientation to be perpendicular to the cortex (Gramfort et al.,
2014). The noise covariance matrix was estimated from data
acquired in the absence of a subject prior to each session. We
employed depth weighting to reduce the bias of the minimum
norm estimates toward superficial currents (Lin et al., 2006).

Inter-Subject Cortical Surface Registration for Group

Analysis
A morphing map to optimally align the cortical surface of each
participant to an average cortical representation (FsAverage in
FreeSurfer) was computed in FreeSurfer (Fischl et al., 1999b).

Data Analysis
Phase Locking
Inter Trial Phase Locking (PL) is a method to quantify phase
synchrony across multiple trials. To compute PL, we convolved
the epoched time series with a dictionary of complex Morlet
wavelets (each spanning seven cycles). We then normalized
the resulting complex coefficients by dividing by their absolute
magnitude and averaging the unit-norm phasors across trials for
each time-frequency bin. We then took their absolute value so
that each number ranged between 0 and 1, with 0 representing a
uniform distribution of phase angles and 1 representing perfectly
synchronized phase angles, across trials (Tallon-Baudry et al.,
1996; Makeig et al., 2002). Mathematically PL is defined as:

PL(f , t) =
1

N

∣∣∣∣∣

N∑

n=1

eφ
k(f ,t)

∣∣∣∣∣

Where ØK represent instantaneous phase resulting from
convolution of the trial with the complex Morlet wavelet, and N
is the numbers of trials.

Z-PL (Normalized Phase Locking)
To compute Z-PL (Figure 2), we compared each PL value to
a set of surrogate null distributions, to correct for statistical
biases proportional to the number of epochs. This approach is
non-parametric, and makes no a-priori assumptions besides the
independence across the trials in the experimental data. The
independence across trials was motivated by the fact that there
was an average 3 s time interval between trials, and anticipation
effects were eliminated because our experimental paradigm had a
500ms jitter in Stimulus-Onset Asynchrony. Z-PL was computed
as follows: each trial was first circularly shifted by a random
lag (τǫ(0,T], where T = period (1/f) in samples) and PL was
computed on the shifted epoched data. This process was repeated
500 times. Z-PL was then computed by subtracting the mean and
dividing by the standard deviation of the null distributions from
the actual PL values.

S-T Div Decomposition
S-T Div is composed of two components. The first is the scalar
component of the extent of divergence of the source estimates,
i.e. the magnitude of the divergence, illustrated in Figure 3 as a
colormap. The second is the velocity of this divergence, illustrated
in Figure 3 with purple vectors, to represent both direction and
magnitude. The S-T Div decomposition involves two steps: (i)
The optical flow of distributed MEG/EEG MNE normalized
estimates, where the relative maximum is set to be one unit for
each individual subject, is computed on the cortical manifold.
This step ensures that amplitude does not impact the result, so
that different data sets where signal to noise may not be constant,
can nonetheless be directly compared. (ii) Helmholtz-Hodge
decomposition is then applied to the optical flow computed
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previously. The details and mathematics of the approach were
published previously (Khan et al., 2011). Briefly, optical flow V
is a vector field which defines the motion of scalar quantity I,
defined on a surfaceM and at time t, such that:

∂ t + g (V,∇MI) = 0

Where g(.,.) is the scalar product, modified by the local curvature
of M. Given optical flow vector field V defined on a surface M,
there exists: a scalar field U, a rotational vector field A, and a
harmonic vector fieldH such that:

V = ∇MU + ∇ x A + H The scalar field U is the divergnce
of the scalar field I, and Vdiv = ∇MU is the divergence vector
field component of vector field V defined on a surface M and at
time t. Optical flow and S-T Div are availaible as part of open-
source MEG/EEG toolboxes; Brainstorm (Tadel et al., 2011) and
MNE-Python (Gramfort et al., 2013).

Lastly, it is important to note that S-T Div is not affected by
the point spread of MNE solution. This is because S-T div is
computed by taking the gradient in space and time. The point
spread of MNE results from the regularization of the ill-posed
inverse solution. Therefore, for a particular location in space, the
spread is “constant” across different time points. Thus, because
it is constant, taking the gradient cancels the impact of the point
spread. This is discussed at length in prior publications on the
topic (Khan et al., 2011).

Correlations Analyses
All correlation coefficients and the corresponding P-values were
computed using Pearson correlation (Figure 4). Correlations
resulting in significant P-values were then tested using Robust
Correlation (Pernet et al., 2012), which strictly checks for
false positive correlations using bootstrap resampling and

6 correlation tests (bootstrap Pearson correlation, bootstrap
Spearman correlation, bootstrap Bend correlation, bootstrap
Pearson skipped correlation and bootstrap Spearman skipped
correlation). Significant correlations were further tested for
survival of multiple comparison correction by controlling
for family-wise error rate using maximum statistics through
permutation testing (Groppe et al., 2011).

Linear Discriminant Analysis (LDA)
The performance of LDA was evaluated using 10-fold cross
validation (a model validation technique for assessing how the
results of a model will generalize to an independent data set).
To perform this cross validation, both TD and ASD Subjects (35
total) were randomly partitioned into 10 equal size subsamples.
Of the 10 subsamples, 9 subsamples were used as training data
for model learning and then applied on the remaining subsample
to test the validity of the model. The cross-validation process was
then repeated 10 times, with each of the subsamples used once
as the validation data. Scikit-learn Machine Learning in Python
(Pedregosa et al., 2011) was used for the above analysis.

Akaike Information Criterion (AIC)
Given a set of models for the data, the Akaike Information
Criterion (AIC) is a measure that assesses the quality of each

model, relative to the remaining models in the set. The chosen
model minimizes the Kullback-Leibler distance between the
model and the ground truth. AIC takes into account both
descriptive accuracy and parsimony, since it carries a penalty
for increasing the number of free parameters. The model
with the lowest AIC is considered the best model among
all models specified for the data at hand. The absolute AIC
values are not particularly meaningful since they are specific
to the data set being modeled. The relative AIC value (1AICi

= AICi – min{AICp}) is used to rank models: 1AICi <

2 suggest that models are basically equivalent, whereas a
1AICi > 10 indicates that the model with the minimum AIC
(min{AICp}) is significantly better than the alternative model
(Akaike, 1992).

Statistical Analyses on Cortical Surface
Our statistical analyses (Figure 3) were based on cluster-
based statistics which is a non-parametric method (Maris and
Oostenveld, 2007; Maris et al., 2007) that also corrects for
multiple comparisons. We used 1000 permutations and the test
statistics used were Wilcoxon Rank Sum test.
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Figure S1 | ROCs showing performance of statistical classifier. We

evaluated the performance of the classifier using the standard approach of

measuring the area under the curve (AUC), where an AUC of 0.5 represents

chance (dashed blacked line). Orange line, represent average ROC curve for

10-fold validation, standard error of the folds is represented as shaded area

around the line. (AUC = 0.95).

Movie M1 | Rotating visualization of the 4D depiction of the LDA shown in

Figure 5.

Table T1 | Participants in experimental paradigm. As expected, only ADOS

scores and Touch scores were significantly different between the groups.
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Social and communicative impairments are among the core symptoms of autism

spectrum disorders (ASD), and a great deal of evidence supports the notion that these

impairments are associated with aberrant functioning and connectivity of various cortical

networks. The present study explored the links between sources of MEG amplitude

in various frequency bands and functional connectivity MRI in the resting state. The

goal of combining these modalities was to use sources of neural oscillatory activity,

measured with MEG, as functionally relevant seed regions for a more traditional pairwise

fMRI connectivity analysis. We performed a seed-based connectivity analysis on resting

state fMRI data, using seed regions derived from frequency-specific amplitude sources

in resting state MEG data in the same nine subjects with ASD (10–17 years of age). We

then compared fMRI connectivity among these MEG-source-derived regions between

participants with autism and typically developing, age-matched controls. We used a

source modeling technique designed for MEG data to detect significant amplitude

sources in six frequency bands: delta (2–4Hz), theta (4–8Hz), alpha (8–12Hz), beta

(12–30Hz), low gamma (30–60Hz), and high gamma (60–120Hz). MEG-derived source

maps for each participant were co-registered in standard MNI space, and group-level

source maps were obtained for each frequency. For each frequency band, the 10 largest

clusters resulting from these t-tests were used as regions of interest (ROIs) for the

fMRI functional connectivity analysis. Pairwise BOLD signal correlations were obtained

between each pair of these ROIs for each frequency band. Each pairwise correlation

was compared between the ASD and TD groups using t-tests. We also constrained

these pairwise correlations to known network structures, resulting in a follow-up set of

correlation matrices specific to each network we considered. Frequency-specific MEG

sources had distinct patterns of fMRI resting state functional connectivity in the ASD

group, but perhaps the most significant was a finding of hypoconnectivity between many

sources of low and high gamma activity. These novel findings suggest that in ASD there

are differences in functionally defined networks as shown in previous fMRI studies, as

well as between sets of regions defined by magnetoencephalographic neural oscillatory

activity.

Keywords: autism, magnetoencephalography, fMRI, functional connectivity, multimodal
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INTRODUCTION

Autism spectrum disorders (ASD) are characterized by
social and communicative impairments, as well as repetitive
and stereotyped behaviors (DSM-V, American Psychiatric
Association (APA), 2013). It is well established that these
impairments may result from aberrant anatomy and functional
connectivity, defined as inter-regional correlations in the time-
course of the fMRI BOLD signal (Biswal et al., 1995), within and
between various cortical networks (Vissers et al., 2012). These
atypical patterns of functional connectivity may underlie the
disordered information integration characteristic of the ASD
brain (Brock et al., 2002), therefore accounting for the myriad
symptoms along the autism spectrum (Belmonte et al., 2004).

Unsurprisingly, functional connectivity in the ASD
population is largely idiosyncratic across tasks (Vissers
et al., 2012), methodologies (Müller et al., 2011), and
behavioral symptoms (Hahamy et al., 2015). Findings include
hypoconnectivity in some systems (Just et al., 2004, 2007; Kana
et al., 2006, 2007), and hyperconnectivity in others (Welchew
et al., 2005; Mizuno et al., 2006; Turner et al., 2006; Noonan et al.,
2009; Shih et al., 2010). More recent studies have refined the
characterization of functional connectivity in ASD, highlighting
the contrast between within-network and out-of-network
connectivity patterns, and argue for reduced within-network
integration along with increased out-of-network connectivity,
which ultimately results in reduced network segregation in
ASD (Fair et al., 2009; Rudie et al., 2011, 2013; Shih et al., 2011;
Fishman et al., 2014; Nebel et al., 2014). This characterization is

supported by observations from Keown et al. (2013) and Supekar
et al. (2013), who found functional hyperconnectivity in children
with ASD across multiple networks, and from Pérez Velázquez
and Galán (2013), who found an increase in information gain
in the absence of external stimuli in ASD subjects, possibly as a
consequence of hyperconnectivity and network cross-talk.

Current understanding about the neurophysiological etiology
of ASD may shed light on the functional connectivity
abnormalities observed during rest and task performance.
It has been hypothesized that in ASD, cortical GABAergic
interneurons may fail to preserve proper excitation/inhibition
dynamics during development, causing irregularities in synaptic
pruning and network maturation (Hensch, 2005; Coghlan
et al., 2012; Rosenberg et al., 2015). In a recent study on
adults with ASD, low GABA concentrations in visual cortex
were shown to correlate with decreased performance on a
binocular rivalry task (Robertson et al., 2016). In addition to
these GABAergic interneuron dysfunctions, abnormalities in
cortical minicolumns in the frontal cortex (Casanova et al.,
2002), as well as enlarged frontal gray and white matter
(Carper and Courchesne, 2005; Courchesne and Pierce, 2005),
may also contribute to the functional connectivity issues in
ASD. Whatever the sources of the abnormalities seen in ASD
are, functional connectivity remains an important metric in
elucidating the neurophysiological substrates of the disorder.

Non-invasive electrophysiological measures like EEG and
MEG have been crucial in providing converging evidence for
functional connectivity abnormalities in ASD (Vissers et al.,

2012). These biophysical signals are often examined in spectral
bands prescribed in the literature: delta (0–4Hz), theta (4–8Hz),
alpha (8–12Hz), beta (12–30Hz), low gamma (30–60Hz), and
high gamma (60+Hz), many of which exhibit abnormal patterns
in ASD compared to typically developing controls. Subjects
on the spectrum show reduced interhemispheric coherence in
the gamma band (Peiker et al., 2015), a finding that provides
support for the weak central coherence hypothesis of autism.
Barttfeld et al. (2011), on the other hand, found distinct EEG
connectivity patterns within the delta range during rest in an
ASD population. These subjects lacked long-range connections,
with most prominent deficits in fronto-occipital networks, and
increased short-range connections in lateral-frontal networks.
But while electrophysiological approaches provide important
results like these on their own, the complementary use of MEG
and fMRI can provide both millisecond and millimeter precision
capable of spanning the multiple orders of temporal and spatial
magnitudes involved in neocortical processing (Dale et al., 2000;
Dale and Halgren, 2001; Liu et al., 2006; Salmelin and Baillet,
2009).

Research on these modalities suggests that the cortical
neuronal activity that generates measurable electromagnetic
fields imposes metabolic demands that are discernable by fMRI
BOLD (Dale et al., 2000; Dale andHalgren, 2001; Logothetis et al.,
2001; Arthurs and Boniface, 2002; Logothetis, 2002, 2003, 2008;
Logothetis and Wandell, 2004). In particular, power in the mid-
gamma band (60–120Hz) has been shown to positively correlate
with BOLD signals, whereas beta (13–30Hz) power shows a
negative correlation with BOLD (Conner et al., 2011). The
higher co-localization of gamma band synchronous activity with
fMRI BOLD becomes relevant in the discussion of ASD when
considering that GABAergic interneurons are responsible for
generating the gamma cortical oscillation (Cardin et al., 2009),
and there may be dysfunction among GABAergic interneurons
in ASD (Coghlan et al., 2012). Indeed, the combined use of MEG
and fMRI to investigate functional connectivity could provide
important new insights into the functional properties of gamma
activity in ASD. Yet despite the complementarity of these two
methods, there is a lack of cross-modal investigations that link
measures of MEG and fMRI connectivity in autism.

The present study explored the links between MEG current
source amplitudes in various frequency bands and functional
connectivity MRI (fcMRI) in a resting state. More specifically,
we performed a seed-based connectivity analysis on fMRI data,
with seed regions based on amplitude sources from MEG data
within a subgroup of subjects. We then compared connectivity
among these regions between participants diagnosed with ASD
and typically developing controls. First, we predicted that MEG
amplitude sources for each frequency band would be located in
areas previously associated with those frequencies for both ASD
and typically developing controls. For instance, we predicted that
alpha sources would be concentrated in visual areas, while areas
associated with the mu rhythm centered more on somatosensory
and premotor cortex (Pfurtscheller et al., 2006; Bernier et al.,
2007). Furthermore, beta sources were expected near the central
gyrus but also to extend to more frontal areas (Jensen et al.,
2005). We predicted theta sources would be located in midline
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frontal and prefrontal areas (Iramina et al., 1996), while gamma
sources were expected to show a sparse and widely distributed
pattern (Cardin et al., 2009). We further predicted that ASD
would show abnormal resting state fMRI connectivity patterns
among regions corresponding to MEG current sources in the
various frequency bands. Based on previous observations of
reduced within-network integration (Rudie et al., 2011, 2013),
we predicted that MEG current sources falling within the same
networks would show hypoconnectivity in ASD.

METHODS

Participants
Nine participants with high-functioning autism (mean age =

13.1 ± 2.59, range = 10–17; 1 female; mean WASI IQ = 96.1 ±
15.6, range = 72–121; mean ADOS Communication and Social
Interaction score = 13.7 ± 3.14, range = 12–20) were scanned
with both MEG and fMRI. A clinical psychologist collaborator
verified autism diagnoses through the administration of the
ADOS test (Rutter et al., 2012). Nine age-matched, typically
developing (TD) participants (Mean age = 10.6 ± 2.75, range
= 8–16; 3 female; mean WASI IQ = 118.33 ± 13.1, range =

103–138) completed both resting state fMRI and anatomical

MRI scans, but not MEG scans. TD participants had no major
diagnoses and did not have ASD siblings or parents. Groups did
not differ significantly for age (p = 0.14), but were not matched
for WASI IQ (p = 0.005). All participants gave informed consent
or assent, and read forms describing the nature of the experiment
and their rights as participants. There were two different age-
appropriate forms, one for children ages 7–12 and the other for
ages 13–17.

MEG Data Collection and Preprocessing
Participants in the ASD group completed two back-to-back, 4-
min resting state MEG scans, during which they were instructed
to keep their eyes open with their gaze directed at a fixation point,
and let their mind wander. MEG data were collected for ASD
participants using the Elekta/Neuromag Vectorview whole-head
MEG system. Data were sampled at 1000Hz and were bandpass
filtered between 0.1 and 330Hz. Eye blinks and eye movements
as measured via electrooculography (EOG), and heart activity
as measured by electrocardiogram (ECG) were collected MEG
sensor data were filtered for movement-related artifacts using
the program MaxFilter (Taulu et al., 2005). Feeding continuous
magnetic sinusoidal signals to five head position indicator coils
allowed for subjects’ head positions to be continuously collected.
These signals are used to continuously adjust the coordinate
transformation from the device to the head frame of reference,
necessary for applying MaxFilter. These signals were removed
from the data post-hoc, in addition to interference from other
magnetic sources (e.g., 60Hz line frequency and its harmonics).
The spatiotemporal signal space separation (tSSS) method was
used in this case to remove noise and artifacts originating from
outside the brain (Taulu et al., 2004b, 2005). By continuously
tracking the subjects’ head positions, we minimized the influence
of movement artifacts on our analyses, a common consideration
when working with the pediatric ASD population.

Precautions were taken to ensure head stability: foam wedges
were inserted between the subject’s head and the inside of the
unit. During collection, the head positions were measured to
ensure that head movement across different sessions was <5mm
(usually 2–3mm). The ECG artifacts in the MEG data were also
removed when the MEG data were passed through MaxFilter.
This feature of MaxFilter has been described previously (Taulu
et al., 2004a,b; Song et al., 2008).

Sensor data were co-registered with subjects’ anatomical MRI
scans for accurate source localization. To co-register the MEG
with MRI coordinate systems, three anatomical landmarks (i.e.,
left and right preauricular points, and nasion) were measured
for each subject using the Probe Position Identification system
(Polhemus, USA). By identifying the same three points on
the subject’s MR images using MRILAB software developed
by Elekta/Neuromag, a transformation matrix involving both
rotation and translation between the MEG and MRI coordinate
systems was generated. To increase the reliability of the MEG-
MRI co-registration,∼300 points on the scalp were digitized with
the Polhemus system, in addition to the three landmarks, and
those points were co-registered onto the scalp surface of the MR
images.

MEG Analysis
We used a source modeling technique (Fast-VESTAL) designed
for MEG data, which consists of two steps (Huang et al., 2014).
First, L1-minimum-norm MEG source images were obtained for
the dominant spatial (i.e., eigen-) modes of the sensor-waveform
covariance matrix. Next, accurate source time-courses were
obtained using an inverse operator constructed from the spatial
source images of Step 1. This approach has been successfully
used to obtain comprehensive MEG source-magnitude images
covering the entire brain for different frequency bands of resting-
state brain rhythms (Huang et al., 2014). The six different
frequency bands of interest in the present study were: delta
(2–4Hz), theta (4–8Hz), alpha (8–12Hz), beta (12–30Hz), low
gamma (30–60Hz), and high gamma (60–120Hz).

In the present study, each of the artifact-free, 8-min long,
resting-state MEG sensor-space scans were bandpass filtered for
each frequency band of interest. The sensor-waveform covariance
matrix was calculated and used to obtain MEG frequency band
source magnitude images that cover the whole brain for each
subject following the fast-VESTAL procedure (Huang et al.,
2014). AnObjective PrewhiteningMethod was applied to remove
correlated environmental noise and to select the dominant eigen-
modes of the sensor-waveform covariance matrix (Huang et al.,
2014).

For each frequency band, a three-dimensional image volume
showing the locations and intensities of each amplitude source
was obtained for each participant. These individual subject
volumes were then aligned to standard Montreal Neurological
Institute (MNI) space. Using the neuroimaging software suite
Analysis of Functional Neuroimages (AFNI; Cox, 1996), we
then performed a one-sample t-test with a whole-brain field-of-
view to determine the most significant amplitude sources at the
group level. The resulting images met an uncorrected voxel wise
statistical threshold of p < 0.02, and were cluster corrected for
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FIGURE 1 | Group-level MEG-derived source maps for each frequency band. The first column shows all sources that were significant at corrected p < 0.01,

while the second column shows the 10 sources with the most voxels.

multiple comparisons at p < 0.01. For each frequency band, the
10 clusters with the largest volumes resulting from these t-tests
were saved as regions of interest (ROIs) for the fMRI functional
connectivity analysis (Figure 1).

fMRI Data Collection and Preprocessing
For ASD subjects, resting state and anatomical imaging data were
acquired on a GE 1.5T Excite MRI scanner. The anatomical scan
was acquired as a standard high-resolution anatomical volume
with a resolution of 0.94 × 0.94 × 1.2mm3 using a T1-weighted
3D-IR-FSPGR pulse sequence. Functional T2∗-weighted images
were acquired with a single-shot gradient-recalled, echo-planar
pulse sequence, as a single 7:48-min scan with 156 whole-brain

volumes (TR = 3000ms, TE = 40ms, flip angle = 90◦, FOV =

240mm, 40 axial slices, 4× 4× 4mm3 resolution).
For TD subjects, resting state and anatomical imaging data

were acquired on a GE 3T MR750 scanner with an eight-channel
head coil. High-resolution anatomical images were obtained
using a standard T1-weighted inversion recovery spoiled gradient
echo sequence (TR= 8.108ms, TE= 3.172ms, flip angle 8◦, 172
slices, 1mm3 resolution). Functional T2∗-weighted images were
acquired using a single-shot gradient-recalled, echo-planar pulse
sequence, in one 6:10-min resting state scan consisting of 185
whole brain volumes (TR= 2000ms, TE = 30ms, flip angle 90◦,
FOV= 220mm, 64× 64 matrix, 3.4× 3.4× 3.4mm3 resolution,
42 axial slices).
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The instructions to participants during resting state fMRI
scans were identical to those received by ASD participants in the
resting state MEG scans: they were told to keep their gaze on a
fixation point, and remain awake. While ASD and TD groups
were scanned on different magnets, all other scanning procedures
and instructions to participants were identical, and subjects were
scanned by the same researcher (MD).

Anatomical MRI scans for each subject were reconstructed
using AFNI (Cox, 1996), and were warped to standardMNI space
using FSL’s nonlinear registration program fnirt (Andersson
et al., 2007; Jenkinson et al., 2012). Standard preprocessing
procedures were performed for the anatomical and resting state
fMRI data, including image reconstruction, registration to MNI
standard space, motion correction, spatial blurring to 6mm full
width at half maximum, spectral bandpass filtering from 0.008
to 0.08Hz, and regression of nuisance signals derived from
motion parameters, white matter, and ventricles. Time points
with motion exceeding 1.5mm from the previous time point
were censored from the final analysis to reduce erroneously high
correlations resulting from head motion (Power et al., 2012).

fMRI Analysis
Using the ROIs derived from the MEG source amplitude images,
pairwise correlations were obtained between the BOLD time
series of each possible pair of regions. These pairwise correlations
were performed separately for each of the six sets of ROIs,
corresponding to each of the six frequency bands for which we
modeled amplitude sources. Each pairwise correlation was also
compared between the ASD and TD groups using t-tests, to
determine which nodes of each frequency-source-based network
showed abnormal connectivity in ASD. Prior to these between-
group tests, Pearson product moment correlation values were
converted into Z-scores using the Fisher transformation.

We also sought to determine the extent to which the
VESTAL-derived MEG amplitude sources overlapped with
various functionally defined cortical networks. To define cortical
network structure, we used a set of ROIs derived from a cortical
parcellation created by Gordon et al. (2014). In that parcellation,
which is shared publicly by the authors (http://www.nil.wustl.
edu/labs/petersen/Resources.html), the cortex is divided into 333
separate ROIs. The authors of that paper then organized the
parcels into 13 communities, which corresponded to various
resting state and task-related networks and were derived from
the Infomap community detection method developed by Rosvall
and Bergstrom (2008). We focused on seven of the parcel
communities they describe: default mode network (DMN),
somatomotor (combining their separate somatomotor hand
and mouth communities into one), visual, cingulo-operculum,
frontoparietal, dorsal attention, and ventral attention. To adapt
those regions for the present study, the parcels from each of
the seven communities were combined into seven different
community masks. Since the original parcels were created from
a very thin layer of cortex, we then dilated our community
masks by 1 voxel in all directions, using the AFNI command
3dmask_tool. The resulting community masks used for the
present study are shown in Figure 2.

We conducted two follow-up correlation analyses with
network-based constraints. Notably, unlike the first analysis,
all between-group tests were bonferroni-corrected for multiple
comparisons to a corrected p < 0.05. First, we looked at
the pairwise correlations specifically within MEG amplitude
sources that overlapped strongly with one of the seven previously
discussed networks. We defined “strong” overlap as an ROI
with >50% of its voxels falling within the bounds of one of
our dilated network masks. For this analysis, MEG-source-based
ROIs were included regardless of the frequency band from
which they were derived, as it is argued that multiple frequency
oscillations could emanate from the same region (Mantini et al.,
2007). For instance, 1 beta source ROI, 1 gamma source ROI,
and 2 high gamma source ROIs overlapped with the cingulo-
opercular network, and these were examined together within one
correlation matrix. ROIs included in these network-constrained
correlation matrices are listed in Table 7.

Second, we focused on ROIs that were derived from the same
MEG frequency band and also overlapped (>50% of voxels in
each ROI) with the same network. Therefore, this analysis was
limited to networks for which we found at least twoMEG sources
in the same band. Pairwise correlations were obtained for a total
of nine of these sets of correlations (listed in Table 8). Between-
group t-tests were performed for each pairwise correlation, and
these were bonferroni-corrected for the number of multiple
comparisons in each set, to a corrected p < 0.05.

RESULTS

MEG Fast-VESTAL Spectral Current
Sources
We performed one-sample t-tests across all ASD subjects for
the fast-VESTAL output for each frequency band. We applied a
threshold to these group-level sourcemaps in a voxel wise fashion
at p < 0.02, and were then corrected for multiple comparisons at
the cluster level to p < 0.01. Here we only report detailed results
from the largest 10 clusters for each frequency band, although this
level of correction resulted in the following number of clusters for
each band: delta: 129, theta: 91, alpha: 84, beta: 128, low gamma:
19, and high gamma: 22. Anatomical labels, volumes, and MNI
coordinates for the largest 10 clusters for each frequency band
are listed in Tables 1–6.

FMRI Functional Connectivity among
Regions Derived from MEG Amplitude
Sources
Our first analysis compared the pairwise correlations of the
BOLD signal among MEG-based ROIs in each frequency band
of interest. For each of the six frequency bands, there were 10
ROIs, resulting in a 10 × 10 pairwise correlation matrix and a
total of 45 between-group comparisons for each band. In this
analysis, there were no significant between-group differences
after strict bonferroni correction for multiple comparisons in
each matrix (45), so we report results that passed an uncorrected
p < 0.05. SeeTables 1–6 for reference of the anatomical locations
of the numbered ROIs to which we refer in each frequency
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FIGURE 2 | Dilated network masks derived from the cortical parcellation from Gordon et al. (A) Cingulo-opercular, (B) Default mode network (DMN),

(C) Dorsal Attention, (D) Frontoparietal, (E) Somatomotor, (F) Ventral attention, (G) Visual.

band. In the delta band, ASD showed hyperconnectivity between
ROIs 1–4, 1–10, 6–10, and 7–10. Also in delta, ASD showed
hypoconnectivity between ROIs 2–8, 2–9, 3–10, and 8–10. In
theta, ASD showed hyperconnectivity between ROIs 1–7, 1–9,
and 2–9, and hypoconnectivity between ROIs 4–6. In alpha,
ASD showed hyperconnectivity between ROIs 1–2, 1–8, 1–10,
2–10, 3–10, and 8–10, and hypoconnectivity between ROIs
5–6, 5–9, and 5–10. In beta, ASD showed hyperconnectivity
between ROIs 2–6, 4–10, and 6–8. In gamma, ASD showed
hyperconnectivity between ROIs 2–3, 2–5, 4–7, 6–10, 7–10,
and 9–10, and hypoconnectivity between ROIs 4–5. In high

gamma, ASD showed hyperconnectivity between ROIs 1–4, and
hypoconnectivity between ROIs 2–4, 2–9, 4–7, 7–8, and 8–10.
See Tables 1–6 and Figure 3 for detailed summaries of these
results.

The VESTAL-derived MEG amplitude sources overlapped
with several of our dilated adaptations of the Gordon parcel
communities. Details about the extent of these overlaps
can be found in Tables 1–6. The 10 largest delta source
clusters, totaling 842 voxels, overlapped with the following
networks (each listed with number of overlapping voxels):
DMN: 106, somatomotor: 80, visual: 280, frontoparietal: 18,
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TABLE 1 | Delta band ROIs: Labels, Brodmann areas (BA), peak coordinates, size (voxels), and overlaps with networks.

ROI label No. of voxels Region BA x y z DMN SM Vis FP Vent. attn. Dor. attn. C-O

1 134 L occipital 19 34 90 19 7 (5.2%) 0 120 (90%) 0 0 0 0

2 117 R precuneus 7 −18 78 52 0 0 51 (44%) 0 0 11 (9.4%) 0

3 106 R IPL 40 −66 39 28 44 (42%) 0 0 3 (2.8%) 0 2 (1.9%) 42 (40%)

4 83 L fusiform 37 49 69 −21 0 0 13 (16%) 5 (6%) 0 0 0

5 75 L SPL 7 28 69 61 21 (28%) 0 11 (15%) 0 0 5 (6.7%) 0

6 74 R IPL 40 −57 39 55 0 56 (76%) 0 0 0 10 (14%) 7 (9.5%)

7 73 R occipital 18 −24 99 1 0 0 61 (84%) 0 0 0 0

8 63 L cerebellum 7a 49 51 −48 0 0 0 0 0 0 0

9 60 R occipital 19 −42 84 22 13 (22%) 0 24 (40%) 0 0 0 0

10 57 L middle Frontal 9 −36 −37 46 21 (37%) 0 0 10 (18%) 0 2 (3.5%) 0

TABLE 2 | Theta band ROIs: Labels, Brodmann areas (BA), peak coordinates, size (voxels), and overlaps with networks.

ROI label No. of voxels Region BA x y z DMN SM Vis FP Vent. attn. Dor. attn. C-O

1 58 L occ (V4) 18 43 84 −3 0 0 51 (88%) 0 0 0 0

2 46 L orbitofrontal 11 4 −37 −27 5 (11%) 0 0 0 0 0 0

3 44 L precentral 6 58 3 37 0 44 (100%) 0 0 0 6 (14%) 12 (27%)

4 43 R angular gyrus 39 −51 69 34 30 (70%) 0 0 0 0 0 0

5 36 R postcentral 2 −57 27 52 0 33 (92%) 0 0 0 1 (2.8%) 0

6 27 L V1 17 13 96 −18 0 0 7 (26%) 0 0 0 0

7 27 R IFG 46 −57 −31 19 0 0 0 7 (26%) 12 (44%) 2 (7.4%) 0

8 26 L ITG 20 58 36 −24 0 0 12 (46%) 8 (31%) 0 0 0

9 26 R middle frontal 6 −36 −1 43 11 (42%) 0 0 0 14 (54%) 12 (46%) 8 (31%)

10 24 L temporal pole 38 55 −10 −15 13 (54%) 0 0 0 0 0 7 (29%)

TABLE 3 | Alpha band ROIs: Labels, Brodmann areas (BA), peak coordinates, size (voxels), and overlaps with networks.

ROI Label No. of voxels Region BA x y z DMN SM Vis FP Vent. attn. Dor. attn. C-O

1 88 L precentral 4 31 30 73 0 88 (100%) 0 0 0 8 (9.1%) 0

2 74 R Precentral 4 −42 15 52 0 72 (97%) 0 0 0 29 (39%) 6 (8.1%)

3 50 R occipital 18 −27 99 7 0 0 49 (98%) 0 0 0 0

4 42 L postcentral 2 49 33 58 0 13 (31%) 0 22 (52%) 0 0 22 (52%)

5 39 R cerebellum 8a −12 69 −54 0 0 0 0 0 0 0

6 35 R angular gyrus 39 −54 60 34 32 (91%) 0 0 1 (2.9%) 0 1 (2.9%) 0

7 35 R precentral 6 −63 12 40 0 31 (89%) 0 0 0 0 6 (17%)

8 33 R precuneus 7 −21 78 49 0 0 19 (58%) 0 0 7 (21%) 0

9 31 L IPL 40 40 57 58 1 (3.2%) 0 4 (13%) 1 (3.2%) 0 4 (13%) 0

10 29 R precuneus 7 −3 54 67 0 5 (17%) 0 0 0 19 (66%) 0

ventral attention: 0, dorsal attention: 30, cingulo-operculum:
49. The 10 largest theta source clusters, totaling 357 voxels,
overlapped with the following networks (each listed with
number of overlapping voxels): DMN: 59, somatomotor: 93,
visual: 70, frontoparietal: 15, ventral attention: 26, dorsal
attention: 21, cingulo-operculum: 27. The largest alpha source
clusters, totaling 456 voxels, overlapped with the following
networks (each listed with number of overlapping voxels):
DMN (33), somatomotor (224), visual (72), frontoparietal (24),
dorsal attention (68), and cingulo-operculum (34). The 10
largest beta source clusters, totaling 734 voxels, overlapped
with the following networks (each listed with number of

overlapping voxels): DMN: 85, somatomotor: 331, visual: 46,
frontoparietal: 35, ventral attention: 21, dorsal attention: 132,
cingulo-operculum: 133. The 10 largest gamma source clusters,
totaling 130 voxels, overlapped with the following networks
(each listed with number of overlapping voxels): DMN: 9,
somatomotor: 38, visual: 2, frontoparietal: 2, ventral attention:
0, dorsal attention: 20, cingulo-operculum: 16. The 10 largest
high gamma source clusters, totaling 98 voxels, overlapped
with the following networks (each listed with number of
overlapping voxels): DMN: 10, somatomotor: 32, visual: 0,
frontoparietal: 2, ventral attention: 0, dorsal attention: 7,
cingulo-operculum: 15.
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TABLE 4 | Beta band ROIs: Labels, Brodmann areas (BA), peak coordinates, size (voxels), and overlaps with networks.

ROI label No. of voxels Region BA x y z DMN SM Vis FP Vent. attn. Dor. attn. C-O

1 121 R IPL 40 −45 45 46 1 (0.83%) 82 (68%) 0 0 0 68 (56%) 4 (3.3%)

2 98 R precentral 3 −45 18 55 1 (1%) 82 (84%) 0 0 1 (1%) 1 (1%) 13 (13%)

3 91 R STG 22 −60 −1 −6 13 (14%) 43 (47%) 0 0 3 (3.3%) 9 (9.9%) 29 (32%)

4 80 R IPL 40 −51 45 31 51 (64%) 1 (1.2%) 0 0 0 4 (5%) 30 (38%)

5 79 R mid frontal 9 −39 −22 34 1 (1.3%) 0 0 27 (34%) 15 (19%) 7 (8.9%) 4 (5.1%)

6 68 R SPL 7 −21 51 70 0 48 (71%) 0 0 0 39 (57%) 0

7 58 R/L cuneus 19 −6 90 28 0 0 43 (74%) 0 0 0 0

8 48 L IPL 2 43 30 43 0 46 (96%) 0 8 (17%) 0 4 (8.3%) 4 (8.3%)

9 46 L IPL 40 64 30 25 0 2 (4.3%) 0 0 0 0 46 (100%)

10 45 L pSTS 40 58 54 22 18 (40%) 0 3 (6.7%) 0 2 (4.4%) 0 3 (6.7%)

TABLE 5 | Gamma band ROIs: Labels, Brodmann areas (BA), peak coordinates, size (voxels), and overlaps with networks.

ROI label No. of voxels Region BA x y z DMN SM Vis FP Vent. attn. Dor. attn. C-O

1 21 R precentral 6 −63 −1 31 0 20 (95%) 0 0 0 1 (4.8%) 1 (4.8%)

2 19 L postcentral 7 4 57 67 0 0 0 0 0 8 (42%) 0

3 15 R sup temporal 42 −66 30 16 0 0 0 0 0 0 4 (27%)

4 12 R cerebellum 7a −48 45 −33 0 0 0 0 0 0 0

5 12 L mPFC 11 13 −61 −18 9 (75%) 0 0 2 (17%) 0 0 0

6 11 R ITG 20 −63 42 −24 0 0 0 0 0 0 0

7 11 R postcentral 7 −12 54 73 0 10 (91%) 0 0 0 9 (82%) 0

8 10 L pMTG 39 −57 69 13 0 0 2 (20%) 0 0 2 (20%) 0

9 10 L STG 22 64 36 16 0 0 0 0 0 0 6 (60%)

10 9 R postcentral 43 −66 9 19 0 8 (89%) 0 0 0 0 5 (56%)

TABLE 6 | High Gamma band ROIs: Labels, Brodmann areas (BA), peak coordinates, size (voxels), and overlaps with networks.

ROI label No. of voxels Region BA x y z DMN SM Vis FP Vent. attn. Dor. attn. C-O

1 12 R med orbitofrontal 11 −12 −52 −24 2 (17%) 0 0 0 0 0 0

2 11 R cerebellum 8a −33 45 −54 0 0 0 0 0 0 0

3 11 L precentral 6 25 12 73 0 9 (82%) 0 0 0 0 1 (9.1%)

4 10 L precuneus 7 4 69 64 0 0 0 0 0 1 (10%) 0

5 9 R inferior temporal 20 −63 39 −24 0 0 0 0 0 0 0

6 9 R SPL 7 −42 69 52 8 (89%) 0 0 0 0 0 0

7 9 R IPL 40 −54 39 58 0 0 0 0 0 3 (33%) 5 (56%)

8 9 L precentral 6 43 −1 58 0 5 (56%) 0 2 (22%) 0 3 (33%) 9 (100%)

9 9 L postcentral 1 49 27 61 0 9 (100%) 0 0 0 0 0

10 9 R postcentral 2 −42 36 67 0 9 (100%) 0 0 0 0 0

The first follow-up analysis included correlation matrices
containing all ROIs overlapping with a specific network
regardless of the MEG frequency band on which they were based.
Overall, four networks overlapped with at least two ROIs each.
Among the six ROIs that overlapped with the DMN (2 theta, 1
alpha, 1 beta, 1 gamma, 1 high gamma), there were no significant
differences in connectivity between ASD and TD groups. Among
the 16 ROIs that overlapped with the Somatomotor network (1
delta, 2 theta, 3 alpha, 4 beta, 3 gamma, 3 high gamma), there
were three ROI pairs in which ASD showed hypoconnectivity:
a delta to a high gamma ROI, theta to high gamma, and alpha

to high gamma. Among the six ROIs that overlapped with the
Visual network (2 delta, 1 theta, 2 alpha, 1 beta), there were
no significant differences in connectivity between ASD and TD
groups. Among the four ROIs that overlapped with the cingulo-
operculum network (1 beta, 1 gamma, 2 high gamma), the ASD
group showed hypoconnectivity between the gamma and a high
gamma ROI. These results are further summarized inTable 7 and
Figure 4.

The second follow-up analysis looked only at correlations
between sources that (a) were derived from the same MEG
frequency band and (b) overlapped with the same network.
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FIGURE 3 | Correlation matrices for ROIs derived from each frequency band. ASD correlations are in the top right triangle of each matrix, while TD correlations

are in the bottom left. “−” and “+” indicates ROI pairs for which ASD trended toward hypo- or hyperconnectivity, respectively. In this first analysis, none of the group

differences were significant after strict Bonferroni correction. Therefore, the group differences shown here had an uncorrected p < 0.05. Occ, Occipital; IPL, Inferior

Parietal Lobule; SPL, Superior Parietal Lobule; PreCG, Precentral Gyrus; PostCG, Postcentral Gyrus; MFG, Middle Frontal Gyrus; Cereb, Cerebellum; Precun,

Precuneus; STG, Superior Temporal Gyrus; MTG, Middle Temporal Gyrus; ITG, Inferior Temporal Gyrus; AG, Angular Gyrus; Ofront, Orbito Frontal Cortex; TempPo,

Temporal Pole.

Overall, nine separate sets of correlations were performed
based on this criteria. Three significant effects emerged from
this analysis, all surviving bonferroni-correction for multiple
comparisons at p < 0.05. In the ASD group, two alpha ROIs
were hyperconnected to each other within the somatomotor

network, two high gamma ROIs were hypoconnected to each
other within the somatomotor network, and two high gamma
ROIs were hypoconnected to each other within the cingulo-
operculum network. See Table 8 for a more detailed summary of
results from this analysis.
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TABLE 7 | ROIs used in network-constrained correlation matrices.

Network Derived from ROI Location Percent overlap of

MEG band label ROI with network

(%)

DMN Theta 4 R angular gyrus 70

Theta 10 L temporal pole 54

Alpha 6 R angular gyrus 91

Beta 4 R IPL 64

Gamma 5 L mPFC 75

High gamma 6 R SPL 89

Somatomotor Delta 6 R IPL 76

Theta 3 L precentral 100

Theta 5 R postcentral 92

Alpha 1 L precentral 100

Alpha 2 R Precentral 97

Alpha 7 R precentral 89

Beta 1 R IPL 68

Beta 2 R precentral 84

Beta 6 R SPL 71

Beta 8 L IPL 96

Gamma 1 R precentral 95

Gamma 7 R postcentral 91

Gamma 10 R postcentral 89

High gamma 3 L precentral 82

High gamma 9 L postcentral 100

High gamma 10 R postcentral 100

Visual Delta 1 L occipital 90

Delta 7 R occipital 84

Theta 1 L occ (V4) 88

Alpha 3 R occipital 98

Alpha 8 R precuneus 58

Beta 7 R/L cuneus 74

Cingulo-

opercular

Beta 9 L IPL 100

Gamma 9 L STG 60

High gamma 7 R IPL 56

High gamma 8 L precentral 100

DISCUSSION

The present study used a multimodal approach to investigate
brain network dynamics in children with ASD, and provides
new evidence for abnormal functional connectivity in cortical
networks. The integration of both MEG and fMRI data collected
during a resting state enabled groupwise comparisons of
functional connectivity between MEG current sources for delta,
theta, alpha, beta, and gamma bands. Our primary connectivity
analysis was performed on fMRI data, while the ROIs derived
from MEG amplitude-sources provided a novel framework
within which to test that fMRI data. One advantage of this
method is that MEG allowed us to localize important hubs of
fast neuronal oscillations not normally detected with fMRI. Most

studies define ROIs for connectivity analyses using data from task
activation studies, anatomical atlases, meta-analyses, and data
driven approaches such as independent component analyses.
However, no study has explored the possibility of detecting novel
differences between ASD and TD samples among regions that
function as neuronal oscillatory generators. Another advantage is
that the use of fMRI connectivity as an outcome measure allows
us to compare our results to a large body of previous evidence.
Unlike MEG, the literature on fcMRI in ASD is quite extensive.

Using a spectral MEG current source-modeling algorithm
(fast-VESTAL) in resting state MEG scans, we found that the
spatial distribution of spectral current sources in a group of
ASD participants followed general patterns reported in a previous
investigation of VESTAL-derived MEG sources in healthy adults
(Huang et al., 2014). Alpha sources were highly concentrated in
visual and somatosensory areas, in line with previous findings
on both the mu rhythm and occipital alpha (Pfurtscheller et al.,
2006; Bernier et al., 2007). Beta sources overlapped with some
somatosensory alpha sources, but were concentrated in more
anterior and fewer posterior regions compared to alpha. Low
and high gamma sources showed a wider spatial distribution,
including regions such as medial prefrontal cortex, precuneus,
and inferior temporal gyrus.

To determine how the distribution of spectral MEG current
sources compared to previously described resting state network
structure, we looked at the number of voxels from each ROI that
overlapped with an existing map of cortical parcel communities
from Gordon et al. (2014). Delta ROIs overlapped largely
with DMN and visual areas; theta ROIs overlapped somewhat
evenly with DMN, visual, and somatomotor areas; alpha ROIs
overlapped largely with somatomotor and visual areas; beta
ROIs overlapped mostly with somatomotor areas, but also had
considerable overlap with DMN, dorsal attention, and cingulo-
opercular networks; gamma ROIs overlapped mostly with
somatomotor, dorsal attention, and cingulo-opercular networks;
and high gamma ROIs overlapped with somatomotor and
cingulo-opercular networks. The pattern of activity that emerged
was one where current sources of lower frequency bands (delta,
theta) were found in areas associated with resting state activity,
in line with electrophysiological findings on the DMN (Mantini
et al., 2007). As expected, lower frequency sources were also
found in primary sensory (visual and somatomotor) cortices
(Pfurtscheller et al., 2006; Bernier et al., 2007). In contrast,
higher frequency bands (beta, gamma, and high gamma)
were associated with areas involved in higher-order sensory
integration and attention regulation such as dorsal attention and
cingulo-opercular networks. Notably, these sources were derived
exclusively from an ASD group, yet they displayed a general
distribution consistent with previous findings in healthy adults
(Huang et al., 2014). This leaves open the possibility that, while
MEG current sources have a typical distribution in ASD, there
exist abnormalities in their functional, coordinated activity.

The results of our first analysis of functional connectivity in
resting state fMRI data using seed ROIs based onMEG amplitude
sources found pairs of regions showing trends toward differences
between ASD and TD groups, although none proved statistically
significant after correction for multiple comparisons. There was
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FIGURE 4 | (Top) Correlation matrices for network-constrained MEG source ROIs. ASD correlations are in the top right triangle of each matrix, while TD

correlations are in the bottom left. Pairwise correlations with significant group differences (p < 0.05, Bonferroni corrected) are depicted by a “−” or “+” to indicate ASD

hypo- or hyperconnectivity. Labels for each ROI correspond to the first letter of each ROI’s frequency band, and the number it is associated with in Tables 1–6.

(Bottom) Regions showing significant hypoconnectivity in ASD. Regions connected by blue lines correspond to those shown in the above correlation matrices as

being hyperconnected.

a trend toward hyperconnectivity among alpha sources located
in sensorimotor cortex, while an alpha source in the cerebellum
showed a trend of hypoconnectivity to multiple regions in the
parietal and temporal lobes. While not statistically significant in
the present study, this trend is consistent with recent findings
of cerebellum hypoconnectivity to supramodal cortical regions,
including parietal and temporal regions (Khan et al., 2015).

We then performed two sets of follow-up correlation
analyses based on the overlaps of our VESTAL-derived ROIs

with previously described network structure. First, we looked
at pairwise correlations between MEG-derived sources that
overlapped with one of seven networks, based on the parcel
communities described by Gordon et al. (2014). Unlike the first
analysis, we used ROIs across any of the six frequency bands,
as long as they overlapped with a network. This was done
to highlight possible group differences in neural information
encoding across multiple frequencies, in light of previous
findings of abnormal coupling between different frequency
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TABLE 8 | ROIs used in correlation matrices constrained by both network membership and frequency band of origin.

Network Band ROI label Location Percent overlap of ROI with network (%) ASD vs. TD P-values for pairwise r

Visual Delta 1 L occipital 90 0.14

7 R occipital 84

Alpha 3 R occipital 98 0.4

8 R precuneus 58

DMN Theta 4 R angular gyrus 70 0.82

10 L temporal pole 54

Somatomotor Theta 3 L precentral 100 0.52

5 R postcentral 92

Alpha 1 L precentral 100 0.01 (ROIs 1 and 2)

2 R precentral 97 0.55 (ROIs 1 and 7)

7 R precentral 89 0.10 (ROIs 2 and 7)

Beta 1 R IPL 68 0.02 (1 and 2), 0.83 (1 and 6), 0.47 (1 and 8)

2 R precentral 84 0.53 (2 and 6), 0.99 (2 and 8)

6 R SPL 71 0.97 (6 and 8)

8 L IPL 96

Gamma 1 R precentral 95 0.91 (1 and 7), 0.61 (1 and 10)

7 R postcentral 91 0.25 (7 and 10)

10 R postcentral 89

High gamma 3 L precentral 82 0.001 (3 and 9)

9 L postcentral 100 0.43 (3 and 10)

10 R postcentral 100 0.52 (9 and 10)

Cingulo-opercular High gamma 7 R IPL 56 0.013

8 L precentral 100

bands in various disease states Voytek and Knight (2015).
Hyperconnectivity of the BOLD signal between the MEG sources
we identified could indicate problematic overcoupling between
neuronal oscillations of different frequencies. Also unlike the first
analysis, we found several between-group results that survived
bonferroni correction for the number of pairwise correlations
in each network’s matrix. Within the somatomotor network, the
ASD group showed hypoconnectivity in three ROIs based on high
gammaMEG sources, including between a high gamma source in
left postcentral gyrus to a delta source in right postcentral gyrus
and to a theta source in right postcentral gyrus. Additionally,
ASD was hypoconnected from a high gamma source in left
precentral gyrus to an alpha source located more ventrally in
left precentral gyrus. Within the cingulo-opercular network, the
ASD group showed hypoconnectivity between a gamma ROI
in right lateral visual cortex (V5) and a high gamma ROI in
left precentral gyrus (Brodmann Area 6). In another follow-
up fMRI correlation analysis, we further narrowed our focus
to include only ROIs that overlapped with the same network
and which were derived from the same MEG frequency band.
ASD showed significant hypoconnectivity between two ROIs
based on high-gamma sources within the somatomotor network.
That group also showed hypoconnectivity between two other
gamma ROIs (one low gamma and the other high gamma),
which were instead located in the cingulo-operculum network.

Thus, across both secondary analyses, there was a clear pattern
of hypoconnectivity among many sources of gamma activity that
overlapped with several networks. This pattern could represent
the increased neural noise that is a consequence of dysfunctional
inhibitory processing of GABAergic interneurons (Brock et al.,
2002; Casanova et al., 2002; Brown et al., 2005; Wilson et al.,
2007; Sun et al., 2012; Peiker et al., 2015). These stronger findings
of within-network connectivity abnormalities support the notion
of reduced within-network integration (Fair et al., 2009; Rudie
et al., 2011, 2013; Fishman et al., 2014; Nebel et al., 2014),
and recapitulate MEG and EEG findings on abnormal gamma
connectivity, in ASD.

There were no significant differences between groups in
any pairwise correlations among ROIs overlapping with the
DMN, suggesting that electrophysiological activity may be
relatively normal in ASD in this network. This is in contrast
to some previous studies that have shown abnormal functional
connectivity in DMN (Cherkassky et al., 2006; Monk et al., 2009;
Lynch et al., 2013), but it could be the case that our VESTAL-
derived MEG sources were located in unaffected sub regions of
this network.

There are several limitations that call for caution in the
interpretation of our results. First, we only collected MEG data
from ASD subjects. It is possible that we would see a qualitatively
different distribution of MEG amplitude sources if the VESTAL
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algorithms were performed on TD participants alone, or on
a combination of ASD and TD participants. However, many
other studies, including the initial report of the VESTAL source
localization technique (Huang et al., 2014), have found source
distribution patterns in neurotypical individuals were similar
to those displayed by our ASD sample. Thus, while the exact
locations of some current sources may differ between groups,
their overall similarity to previously observed typical patterns
justifies the use of these sources as the basis for the rest of our
analyses. Another caveat to these results is that the TD and
ASD groups were scanned on magnets of differing strength:
3T and 1.5T, respectively. Although the acquisition parameters
differed between these scanners, the larger voxel size, longer
TR, longer total scan length for the 1.5T scans ensured that
the signal-to-noise ratio was comparable between both groups.
Finally, groups were not matched for IQ, with ASD showing
a lower full score on the WASI. In a follow-up analysis, we
used participant IQ as a covariate in the between-group t-
tests of pairwise functional connectivity between sources. Of the
eight source pairs showing significant group differences before
accounting for IQ, two pairs still showed significant differences
after doing so. These included an alpha to a high gamma source
within the somatomotor network (p = 0.019, hypoconnected
in ASD), and a theta to a beta source within the visual network
(p = 0.005, hyperconnected in ASD). The persistence of these
effects after controlling for IQ is evidence that, despite a low
sample size and suboptimal group matching, this novel approach
to integrating resting state MEG and fMRI data was still able to
detect group differences in brain connectivity between ASD and
TD individuals. Thus, this approach could inform future studies
with larger, well-matched samples.

The present study demonstrates a novel approach to
a multimodal investigation of brain connectivity in ASD.
By using an MEG-amplitude source modeling technique as
the basis for fcMRI analyses, we found further evidence
supporting the notion of aberrant functional connectivity
in ASD. This is also is the first study to report ASD
hypoconnectivity of the BOLD signal specifically between sources
of MEG gamma oscillations, providing supporting evidence
that dysfunctional inhibitory processing mediated by gamma
oscillations may play an important role in the neuroetiology
of ASD.
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The identification of reliable brain endophenotypes of autism spectrum disorders (ASD)

has been hampered to date by the heterogeneity in the neuroanatomical abnormalities

detected in this condition. To handle the complexity of neuroimaging data and to

convert brain images in informative biomarkers of pathology, multivariate analysis

techniques based on Support Vector Machines (SVM) have been widely used in

several disease conditions. They are usually trained to distinguish patients from healthy

control subjects by making a binary classification. Here, we propose the use of the

One-Class Classification (OCC) or Data Description method that, in contrast to two-class

classification, is based on a description of one class of objects only. This approach,

by defining a multivariate normative rule on one class of subjects, allows recognizing

examples from a different category as outliers. We applied the OCC to 314 regional

features extracted from brain structural Magnetic Resonance Imaging (MRI) scans of

young children with ASD (21 males and 20 females) and control subjects (20 males and

20 females), matched on age [range: 22–72 months of age; mean = 49 months] and

non-verbal intelligence quotient (NVIQ) [range: 31–123; mean = 73]. We demonstrated

that a common pattern of features characterize the ASD population. The OCC SVM

trained on the group of ASD subjects showed the following performances in the ASD

vs. controls separation: the area under the receiver operating characteristic curve (AUC)

was 0.74 for the male and 0.68 for the female population, respectively. Notably, the ASD

vs. controls discrimination results were maximized when evaluated on the subsamples

of subjects with NVIQ ≥ 70, leading to AUC = 0.81 for the male and AUC = 0.72

for the female populations, respectively. Language regions and regions from the default

mode network—posterior cingulate cortex, pars opercularis and pars triangularis of the

inferior frontal gyrus, and transverse temporal gyrus—contributed most to distinguishing
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individuals with ASD from controls, arguing for the crucial role of these areas in the

ASD pathophysiology. The observed brain patterns associate preschoolers with ASD

independently of their age, gender and NVIQ and therefore they are expected to

constitute part of the ASD brain endophenotype.

Keywords: features classification, One-class support vector machine, Brain Magnetic Resonance Imaging (MRI),

autism spectrum disorders, preschool children

INTRODUCTION

Different approaches have been proposed to date to explore
the clinical (Grzadzinski et al., 2013), genetic (De Rubeis
and Buxbaum, 2015), and neurobiological (Hernandez et al.,
2015) heterogeneity of Autism Spectrum Disorders (ASD),
which are complex neurodevelopmental conditions affecting
1 in 68 children in USA (Centers for Disease Control
Prevention, 2014), and are characterized by impairment in socio-
communicative abilities, as well as restricted and stereotyped
behaviors (American Psychiatric Association, 2013). The non-
invasive and non-harmful Magnetic Resonance Imaging (MRI)
is a promising tool to study and characterize ASD, as it
allows the in vivo observation of the brain involvement in the
disorder. Several post-processing methods to analyze brain MRI
data were developed and a wide range of studies aimed to
explore the predictive power of MRI by comparing the brain
characteristics of patients with ASD and controls with the final
aim of identifying reliable markers of ASD diagnosis (Ecker et al.,
2010a,b; Jiao et al., 2010; Ingalhalikar et al., 2011; Calderoni et al.,
2012; Wee et al., 2014; Zhou et al., 2014; Gori et al., 2015; Retico
et al., 2016).

Machine-learning techniques, e.g., those based on support
vector machines (SVMs; Vapnik, 1995), have been shown
to be valuable tools to make predictive diagnoses in single
subjects in a large variety of psychiatric and neurodevelopmental
disorders (Wolfers et al., 2015), including ASD (Retico et al.,
2014). They can be implemented for diagnosis prediction, for
assessment of the disease progression and to evaluate the
treatment effectiveness (Orrù et al., 2012). Machine learning
refers to all procedures where the learning by example paradigm
is implemented. In most cases conventional binary (also
called two-class) classification algorithms are applied to image
features to classify an unknown object into one of two pre-
defined categories. The classification is particularly challenging
when dealing with psychiatric disorders, as the reported
neuroanatomical alterations are often very small and quite un-
replicated among different studies. Subtle signs of pathology
are difficult to catch especially in extremely heterogeneous
conditions such as ASD.

In the present study, we propose the use of the One-Class

Classification (OCC) or Data Description method (Moya et al.,

1993), which, in contrast to two-class classification, makes a

description of a single class of objects only (referred to as

the positive class or target class) and detects which (new)
objects resemble this target class, thus distinguishing them from
examples considered outliers. Using OCC instead of two-class

classification methods in standard binary classification problems,

where objects from both the classes are at disposal, could result in
worse recognition accuracy, as the complete knowledge encoded
in the available training set is not fully exploited. However, OCC
could provide more robustness in case of difficulties embedded
in the nature of data, since they seek to describe properties of
the target class instead of minimizing the classification error.
Therefore, in case of difficult datasets (e.g., when the positive class
is well-characterized, whereas the negative class is not sufficiently
representative of the negative population) it could be useful to
transform the binary classification problem into an OCC task.

The usefulness of OCC in the biomedical domain was
already proved in a number of applications, e.g., the automatic
recognition of the hypertension type (Krawczyk and Woźniak,
2015) or breast cancer biopsy and 3D optical coherence
tomography (OCT) retinal image classification (Zhang et al.,
2014) and on brain MRI data. In the latter domain OCC were
implemented to learn multivariate normative rules on a group
of healthy individuals, thus allowing the interpretation of the
distance to the OCC boundary as an abnormality score (Mourão-
Miranda et al., 2011; Sato et al., 2012a,b). Working on both
voxel- and region-based features, Mourão-Miranda et al. (2011)
investigated whether patterns of fMRI response to sad facial
expressions in depressed patients would be classified as outliers in
relation to patterns of healthy control subjects. They interestingly
found out that most patients classified as non-outliers responded
to treatments and most patients classified as outliers did not
respond to treatments. Sato et al. (2012b) obtained anOCC-based
abnormality index analyzing functional connectivity patterns of
adults and children with Attention Deficit and Hyperactivity
Disorder (ADHD), and found out that the ADHD patients
differ significantly from the age-matched control group, showing
instead stronger similarity to the group of younger control
subjects.

We analyzed with OCC the features extracted from brain
structural MRI data in order to measure the OCC performance in
the discrimination of patients with ASD with respect to controls
in the preschool age. Moreover, we used the OCC to define
multivariate normative rules, i.e., we investigated the distribution
of patterns of brain structures in control subjects to test the
homogeneity of the latter sample and its potential to enable the
definition of a robust boundary in relation to which the patients
with ASDwould be classified as outliers. To carry out a symmetry
test, we investigated also whether a consistent neuroanatomical
pattern among the ASD patients allows the definition of a robust
boundary in relation to which the controls are classified as
outliers.

Finally, the relative contribution of the anatomical brain
features to the decision function was studied to localize the
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regions more involved in the one-class classifier boundary
definition. To this purpose we extended to the case of OCC
the previous literature referring to the generation of a preimage
when non-linear kernel SVM are used to localize the relevant
brain features (Schölkopf et al., 1999).Moreover, the permutation
testing usually implemented in two-class classification problems
(Mourão-Miranda et al., 2005; Wanh et al., 2007; Gaonkar and
Davatzikos, 2013; Gori et al., 2015) was extended to the OCC
formulation to allow assigning a statistical significance both
to the classification performances and to the brain features
contributing most to the OCC boundary definition.

MATERIALS AND METHODS

Participants and MRI Data Acquisition
A group of 21 male and 20 female preschoolers with ASD [mean
age ± standard deviation (SD) = 49 ± 12 months; age range =
28–70 months] and a group of 40 control subjects matched by
gender, age, non-verbal IQ (NVIQ), and socioeconomic status
were selected for this case-control study (see Table 1).

Participants in the ASD group were recruited at the ASD
Unit of IRCCS Stella Maris Foundation (Pisa), a tertiary
hospital and research university in Italy. They were rigorously
diagnosed with ASD according to the DSM-IV-TR criteria
(American Psychiatric Association, 2000) by a multidisciplinary
team including a senior child psychiatrist, an experienced clinical
child psychologist and a speech–language pathologist during 3–
5 days of extensive evaluation, and confirmed by the ADOS-G
(Lord et al., 2000) administrated by clinical psychologists who
met standard requirements for research reliability. ASD patients
were included if their age was between 2 and 6 years and their
NVIQ ≥ 30. Exclusion criteria were: (a) anomalies detected by
MRI (b) neurological syndromes or focal neurological signs;
(c) significant sensory impairment (e.g., blindness, deafness);
(d) anamnesis of birth asphyxia, premature birth, or epilepsy;
(e) use of any psychotropic medication; (f) absence of major
dysmorphic features including microcephaly or macrocephaly;
and (g) potential secondary causes of ASD determined by
high-resolution karyotyping, DNA analysis of Fragile-X, or
screening tests for inborn errors of metabolism (plasma and
urine aminoacid analysis, urine organic acid measurement, urine
mucopolysaccarides quantitation, plasma and urine creatine, and
guanidinoacetate analysis). The control group was composed
of 20 preschoolers with idiopathic developmental delay (DD),
i.e., with NVIQ score < 70, and 20 preschoolers without
developmental delay (noDD), i.e., with NVIQ score ≥ 70,
recruited at the same hospital. Subjects with DD were included
within the control group in order to obtain a match for NVIQ
between patients and controls, as well as to increase the size of the
data sample under investigation. The diagnosis of idiopathic DD
was made after a negative thorough assessment for underlying
causes, including audiometry, thyroid hormone disorders, high-
resolution karyotyping, DNA analysis of Fragile-X and screening
tests for inborn errors of metabolism. The control group was
selected so as to meet the same exclusionary criteria as the
ASD patients—except the criterion (g) specified above—with the
further requirements of exclusion of ASD diagnosis (performed T
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by a senior child psychiatrist and based on the DSM-IV-TR
criteria), and no family history of ASD. ASD and DD patients
underwent the brain MRI examination as a completion of the
assessment pathway with the aim of excluding brain alteration,
whereas noDD subjects performed brain MRI because of various
reasons (including headache, seizures with fever, strabismus,
cataract, paroxysmal vertigo, diplopia).

MRI data were acquired using a GE 1.5 T Signa Neuro-
optimized System (General Electric Medical Systems) at IRCCS
Stella Maris Foundation, fitted with 40 mT/m high-speed
gradients. Within the MRI protocol for children a whole-brain
fast spoiled gradient recalled acquisition in the steady-state T1-
weighted series (FSPGR) was collected in the axial plane with
repetition time 12.4 ms, echo time 2.4 ms, inversion time 700
ms, flip angle of 10◦, yielding to contiguous axial slices with voxel
size of 1.1 × 1.1 × 1.1 mm3. All children were sedated with a
general anesthesia with a halogenated agent while spontaneously
breathing. For all MRIs performed between September 2006
and February 2013 the same sequence of acquisition was used
and the written informed consent from a parent or guardian of
children was obtained. The research protocol was approved by
the Institutional Review Board of the Clinical Research Institute
for Child and Adolescent Neurology and Psychiatry.

Data Preprocessing and Feature Extraction
The preprocessing of the entire data set of structural
MRI included the volumetric segmentation and cortical
reconstruction by the Freesurfer image analysis suite version
5.1.0, documented and freely available online (http://freesurfer.
net/; Fischl et al., 1999, 2004; Klein and Tourville, 2012). In the
cortical parcellation step, Freesurfer assigns a neuroanatomical
label to each location on the cortical surface according to a
previously prepared atlas file. We used the Desikan-Killiany-
Tourville (DKT) cortical atlas which divides the cerebral cortex
into 62 structures (31 structures per hemisphere) (Klein and
Tourville, 2012): 14 in the temporal lobe, 20 in the frontal lobe,
10 in the parietal lobe, 8 in the occipital lobe, and 10 in the
cingulate cortex.

The following five surface-based features for each of the
62 DTK structures are computed: Area (white surface area in
mm2); Volume (gray matter volume in mm3); Thickness (average
cortical thickness in mm); ThicknessStd (standard deviation of
cortical thickness in mm);Mean-Curv (integrated rectified mean
curvature in mm−1). The Volume is computed according to
a surface-based method, as the average of the white and pial
surface areas, multiplied by the cortical thickness. In addition we
considered the white surface total area (in mm2) and the mean
thickness (in mm) of the cerebral cortex in the two hemispheres,
thus obtaining a vector of 314 characteristics for each subject.

Feature Classification
We analyzed the brain image features with both standard two-
class classifiers and OCC based on SVMs. The SVM (Vapnik,
1995) are quite extensively applied as conventional binary
classification algorithms. They are supervised binary classifiers
that require a training set of labeled input examples to learn the

differences between the two sample classes, and a labeled test set
to quantify the classification performance.

In the context of classification of brain images, each input
example is a vector x of features extracted from each input
image. The label y associated to each input example indicates its
membership, e.g., “1” for vectors belonging to the patients class,
“−1” for controls. Detailed information about two-class SVM can
be found in (Pontil and Verri, 1997; Ben-Hur andWeston, 2010).
Basically, during the training phase an optimization problem is
solved to identify the largest-margin hyperplane (w·x + b = 0
for linear kernel SVM) allowing for an optimal separation of the
training examples of the two classes. The goal is to find a vector
w and a scalar b, which maximize the margin, i.e., the distance
between the two classes in the direction of w.

The SVM can then predict the classification of an unlabeled
input vector by checking on which side of the separating
hyperplane the example lies.

The SVM belong to the class of kernel methods (Schölkopf
and Smola, 2002; Shawe-Taylor and Cristianini, 2004), i.e., they
depend on data only through dot products. To achieve good
separation results even in case of non-linearly separable classes,
the dot product can be replaced by a kernel function, which
computes a dot product in some (possibly) higher dimensional
feature space. This allows carrying out a linear classification in
the feature space, without explicitly mapping in it the original
observations. The separating hyperplane found in the feature
space corresponds to a non-linear boundary in the input space.
This property is commonly known as kernel trick. Formally,
a kernel function is defined as a function that, given two
observations x, x′ ∈ X, satisfies k(x,x′) = φ (x) φ′(x′), where
X is the input space or domain and φ is a function mapping
from X to a feature space. In this case, the prediction of the
class membership of an unlabeled input vector is performed by
mapping it into the feature space, and checking on which side of
the separating hyperplane the example lies.

Among the non-linear kernel functions the Radial Basis
Function (RBF) kernel is the most popular. It depends on the
Euclidean distance between the examples and it is defined as
k (x, x’) = exp(−γ || x - x’||2). The parameter γ determines
the smoothness of the boundary (in the input space). Like
the regularization parameter C in linear-kernel SVM, also the
parameter γ is usually set using heuristics or tuned using cross-
validation procedures.

Taking inspiration from the two-class SVM, Tax and Duin
(2004) addressed the OCC problem by proposing a method
to obtain a spherically shaped boundary around the target set.
The method is called Support Vector Data Description (SVDD).
During the training phase, an optimization problem is solved to
minimize the volume of the sphere by minimizing the square of
its radius, while demanding that the sphere contains most of the
training objects. Similarly to what happens in two-class SVM, a
regularization parameter C has to be set to control the trade-
off between the sphere volume and the errors allowed in the
target set.

Schölkopf et al. (2000) in presented a new formulation of two-
class SVM, where the C parameter was removed and replaced
with a new parameter ν with a more natural interpretation: it is
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an upper bound to the fraction of misclassifications and margin
errors and a lower bound on the fraction of support vectors
(SV). The authors showed that for certain parameter settings,
the results of this new algorithm coincide with the conventional
one.Moreover, desirable properties of previous SV algorithms are
retained.

In 2001, Schölkopf and colleagues modified the previous
approach (Schölkopf et al., 2000) to address the OCC problem
and called the new algorithm single-class SVM. During the
training phase of a single-class SVM, a hyperplane is placed such
that it separates the target set from the origin with maximal
margin. Similarly to the standard two-class SVM, when a more
flexible data description is required, an implicit mapping of the
data into another (possibly high dimensional) feature space is
defined, such that the dot product in this feature space can
be computed by evaluating a simple kernel function. An ideal
kernel function would map the target examples onto a bounded,
spherically shaped area in the feature space and outlier objects
outside this area.

The constrained optimization problem to be solved is
formulated as follows:

Minimize(w,ξ,ρ) . . . . . . . . .½||w||2 +
1

νN

∑N

i = 1
ξi − ρ (1)

subject to

w φ(xi) ≥ ρ − ξi; i = 1, ...,N; ξi ≥ 0. (2)

where xi are the target examples. The single-class SVM attributes
a new point x to the target or the outlier class by evaluating which
side of the hyperplane it falls on in the feature space.

As in two-class algorithm, the regularization parameter ν ∈ (0,
1] has to be set. Similarly to what happens in the two-class case, it
can be interpreted as an upper bound on the fraction of training
points outside the estimated region, and a lower bound on the
fraction of support vectors. It is usually set based on its meaning
or tuned using cross-validation procedures.

Although the method by Schölkopf et al. (2001) does not find
a closed boundary around the data, it gives comparable solutions
to Tax and Duin approach when the data is preprocessed to have
unit norm (Tax and Duin, 2004). In particular, this happens when
a RBF kernel is used. More in details, the solutions of the two
approaches are identical when the same RBF kernel with γ and
C = 1/(νN), where N is the number of objects in the target set,
are used, as reported by Sato et al. (2012a). In their practical
implementation the two approaches operate comparably. Both
perform best when the RBF kernel is used. Like in the two-class
situation, the parameter γ can be set using heuristics or tuned
using cross-validation procedures.

In this work, we first applied two-class SVM to the vector
of 314 characteristics extracted for each subject of our datasets
to obtain reference classification performances, and then we
analyzed the same data with single-class SVM with RBF kernel.
We performed the classification on the male subset and on the
female subset separately, and then on the entire dataset. As
pictorially shown in Figure 1, in contrast to the standard two-
class classification approach to distinguish two well-characterized

groups of subjects (Figure 1A), the OCC based on SVM can be
implemented tomake amultivariate description of the normative
data, and thus to define a homogeneous baseline in comparison
to which subjects with different diseases cluster out of the
boundary enclosing the control group (Figure 1B). However,
the latter approach relies on the hypothesis that the control
group consists of typical individuals sharing a core of common
distinctive features at neuroanatomical of functional levels,
whereas non-typical individuals present alterations in many
different ways, especially when highly heterogeneous condition
are investigated, such as the ASD. Thus, in case the control class
is not extremely homogeneous and it is matched to the patient
class for many known aspects (e.g., age, gender, NVIQ) except for
the presence of the disease condition, it may happen that OCC
based on SVM capture common features according to which
the patients can be described (Figure 1C). In the latter case, a
boundary enclosing most patients can be identified, according to
which most controls lie outside.

Pre-Image for RBF Kernel
In the linear kernel classifiers, the entries of the vector w can be
directly considered as the relative weights of each characteristic
for the decision function (Gori et al., 2015). Conversely, in
the non-linear case (e.g., the RBF kernel), the interpretation of
the vector w is non-intuitive and complex, since the separating
hyperplane is found in the feature space. Since the map 8 is non-
linear, we cannot generally assert that each vectorw in the feature
space will have a preimage under 8, i.e., a point z in the input
space such that 8(z) = w. In the present work we used for the
single-class SVM with RBF kernel the approach proposed in by
Schölkopf et al. (1999) to generate preimages by approximating
the inverse mapping from the feature space to the input space.

Additionally, to understand which features and which
neuroanatomical regions drive the SVM boundary definition, we
tailored the permutation testing method (Mourão-Miranda et al.,
2005; Wanh et al., 2007; Gaonkar and Davatzikos, 2013; Gori
et al., 2015) to the case of single-class classifiers.

RESULTS

Classification Performance
The Freesurfer pipeline was applied to preprocess the MRI of
each subject according to the Freesurfer guidelines.

Patients with ASD and controls were matched on age and
NVIQ, thus resulting in 20 matched case-control pairs in the
female subset and in 19 matched case-control pairs and one
group constituted by two patients and one control in the male
subset, because of its dimensionality. We used these M (M =

20 for male and female subsets considered separately, M = 40
for the entire dataset) matched groups as subsets in a cross-
validation procedure to evaluate the performance of the SVM
classifiers: for each subset Sj, j = 1,...,M, we trained the SVM
using the remaining subsets Si, i 6= j, while retaining Sj as testing
subset. Then we repeated the training and testing process for each
subset, thus obtaining an estimate of the classifier performance
on the entire dataset. Given the nature of the subsets, we refer
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FIGURE 1 | Pictorial data representation in a two-dimensional space. (A) Classical application of a binary classifier to distinguish two well-characterized groups

of subjects; (B) OCC approach based on the hypothesis that the control group is the homogeneous baseline in comparison to which, subjects with different diseases

cluster out of the boundary enclosing the controls; (C) schematization of the OCC result in the case where common features associate the patients, thus the OCC

boundary encloses most patients leaving outside most control cases. Solid lines are drawn around the groups entering the training of the classifiers, i.e., both case

and control subjects are needed in training a binary classifier (A), whereas only on control cases in (B) and only the patients’ group in (C) are necessary to train a

OCC, respectively.

to the cross-validation procedure we applied as leave-pair-out
cross-validation (LPO-CV).

The performance of the SVM classifiers is evaluated in terms
of the sensitivity (percentage of subjects with disease correctly
identified, i.e., true positive rate) and the specificity (percentage
of control subjects correctly identified, i.e., true negative rate).
By varying the classifier decisional threshold, the trade-off
between the sensitivity and the rate of false-positive detection
can be represented in a curve known as Receiver Operating
Characteristic (ROC) curve (Metz, 2006). The area under the
ROC curve (AUC) is a global index to compare the ROC curves
of different classifiers (Hanley and McNeil, 1982).

The LPO-CV scheme was implemented in the performance
evaluation of both the two-class and the OCC SVM. A difference
in the case of OCC SVM occurs only in the training step: to apply
LPO-CV in the context of single-class classification we simply
trained the single-class classifiers only on one class (target class)
inside the cross validation, but tested it on both classes for the
subset that was left out for testing.

To train and test two-class and single-class classifiers we
used RapidMiner (http://rapidminer.com/) advanced analytics
platform version 5.3, which includes both two-class and single-
class SVM as a part of the LibSVM operator.

Two-Class Classification Performance

A standard two-class SVM classification with linear and RBF
kernels was carried out to discriminate subjects with ASD from
controls, including the optimization of the SVM free parameters
during the training. We reported the results in Table 2. The
best performances we obtained were: AUC = 0.74 by using the
linear kernel for the male subset and AUC = 0.65 by using the
RBF kernel for the female subset. The reported two-class SVM
performance already take into account the regularization and

kernel parameter optimization, carried out through the nested
LPO-CV procedure. We obtained the best results with linear
kernel for males and with RBF kernel for females. These results
represent a reference classification performance to compare with
the new OCC SVM approach we propose.

One-Class Classification Performance

We first performed single-class classification by setting ν = 0.1
and γ using heuristics (i.e., as the inverse of the number of
features). Then, following the procedure adopted in Mourão-
Miranda et al. (2011), we carried out the optimization of the
parameters ν and γ, within nested LPO-CV loops, as follows: at
each iteration j of the outer LPO-CV scheme we had at disposal
a subset Aj = {Si}i=1,...,N,i6=j for training. Before training, we
performed an optimization procedure based on an internal LPO-
CV twice. In the first run, we kept the parameter ν fixed at
an initial value (0.1) and we performed a LPO-CV for several
values of γ in order to find its optimal estimate (i.e., the one
that maximizes the AUC). To cover a wide range of possible γ-
values, we let this parameter vary first on a coarse grid (19 steps
from 2−15 to 23 by power of 2); then, we refined the search
in the interesting regions we identified. In the second run, we
kept γ fixed at the optimal value and we performed a second
optimization procedure to choose the optimal ν, using a coarse
optimization with 10 linearly spaced values in the [0.01–0.5]
range, then a fine search in [0.01–0.3] range using 20 linearly
spaced values. A single-class SVM was finally trained on Aj using
the optimal values of γ and ν and tested on the subset Sj left out in
the outer LPO-CV scheme. This procedure was repeated for each
j, each time leaving a different subset outside as test subset.

The intuitive approach for transforming a binary
discrimination problem into a single-class task in the context of
highly heterogeneous conditions like ASD is to use the control
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class as target class, figuring that it could enable the definition
of a robust boundary, in relation to which the ASD patients
would be classified as outliers. Consequently, we first trained a
single-class SVM by considering only control examples to form
the decision boundary, thus discarding information about the
ASD class during the training phase.

This would be the optimal approach if the control class
had characteristics of homogeneity, since the single-class SVM
could capture the control class structure, by adjusting itself
to its properties. This would allow recognizing ASD examples
as outliers, even if the available ASD samples were not
representative of the real ASD population, due to the extreme
ASD heterogeneity.

However, the results obtained in this case in terms of AUC
were not above the chance level, despite the optimization on of
the parameters ν and γ.

Therefore, we repeated the same procedure using the ASD
patient group as the target class to investigate whether there was
a consistent neuroanatomical pattern among the ASD patients in
relation to which the controls can be classified as outliers.

The results obtained in terms of AUC were: AUC = 0.73 for
the male subset and AUC = 0.66 for the female subset by setting
ν = 0.1 and γ using heuristics; by optimizing the parameters ν

and γ, AUC = 0.74 for the male subset and AUC = 0.68 for
the female subset. We summarized in Table 2 the classification
results we obtained in the different classification experiments we
conducted.

These results show that the control class does not have
characteristics of homogeneity allowing recognizing ASD
examples as outliers. Conversely, there is a common structure
among the ASD patients that the OCC–SVM could capture. The
OCC–SVM assigns to a test case a continuous output providing
the confidence for it to belong to the target class or to be an
outlier. To investigate whether the AUC performance obtained
in the case-control discrimination were significantly above the
chance level we implemented the permutation test. To obtain the
null distribution of the AUC, we carried out a permutation test
procedure in the training phase, tailoring it to the single-class
classifiers. In a standard two-class classification the permutation
test is performed by randomly exchanging several times the
class labels (i.e., by randomly assigning positive and negative
labels either to the ASD and the control cases) and repeating
the classification procedure. In the OCC case, the training is
performed on the target class only, e.g., the ASD class in our
analysis. To find the null distribution for AUC, we permuted the
group labels 10000 times, creating “artificial” training datasets
where randomly chosen ASD cases were exchanged with their
matched controls. Each “artificial” ASD dataset was then used to
train one single-class SVM, i.e., to generate a decision function.
We counted the number of times the AUC exceeded the value
obtained with the real class labels. Dividing this value by
the number of permutations provided a statistical significance
for the AUC. The permutation testing procedure was applied
separately for the male and the female subsets. We used the
Matlab (The MathWorks, Inc.) interface to the LIBSVM package
(http://www.csie.ntu.edu.tw/∼cjlin/libsvm/) to train the single-
class classifiers in the permutation test procedure, implementing

the RBF parameter optimization as nested LPO-CV loops. The
AUC values and the significance values of the permutation test
are reported in Table 2.

Finally, to investigate the impact of some known heterogeneity
factors present in the ASD sample, we estimated the OCC
performance on the entire dataset, by using the group of both
male and female subjects with ASD as the target class. We
achieved AUC = 0.64 in the case-control discrimination. This
slight performance decrease is not surprising and we ascribed
it to the introduction of the gender as additional heterogeneity
factor.

Another relevant heterogeneity factor in our data is the NVIQ
of subjects, which is in the [31–123] range. If the performance
of OCC trained on male subjects with ASD (leading to AUC
= 0.74 on the male population) is evaluated separately on the
subsamples of subjects with NVIQ ≥ 70 and NVIQ < 70,
the values of AUC = 0.81 and AUC = 0.64 were obtained,
respectively. A similar trend holds for the OCC trained on the
female subjects with ASD (leading on AUC = 0.68 on the female
population). In this case AUC = 0.72 and AUC = 0.65 were
obtained on the subsamples of subjects with NVIQ ≥ 70 and
NVIQ < 70, respectively.

Maps of Discriminant Brain Regions
To understand which of the 314 characteristics (i.e., which
brain regions and which of the five computed features) are the
most relevant to the single-class SVM boundary definition, we
trained a single-class SVM with RBF kernel using all the ASD
patient group as the target class (with ν = 0.1 and heuristic
γ) and we applied the algorithm proposed in Schölkopf et al.
(1999) to generate the preimage vector z. We used the Statistical
Pattern Recognition Toolbox for Matlab (STPRTool) (http://
cmp.felk.cvut.cz/cmp/software/stprtool/index.html) to generate
the preimage.

To obtain the null distribution of the preimage z, we carried
out a permutation test in the training phase by permuting the
group labels 10000 times, as described above. Each “artificial”
ASD dataset generated a decision function and a corresponding
preimage vector z. Since each component of z corresponds to
one of the 314 characteristics, we obtained a null distribution
associated with every characteristic. We counted the number of
times the so-generated components of z exceeded (comparing
the absolute values) the corresponding values in the z map
obtained for the real ASD cases; dividing this value by the
number of permutations provided a statistical significance map.
Then, we retained only the characteristics with p < 0.05. The
relevant characteristics (features and regions) resulting from the
permutation test applied to male and female data groups are
shown in Tables 3, 4. As stated before, in case of linear-kernel
SVM, the separating hyperplanew can be represented as an image
showing which brain regional features are more relevant for the
classification problem. Additionally, the sign of each element of
w directly identifies whether the corresponding feature is greater
either in the case or in the control group. This information is
inaccessible when using RBF, as the linear problem is solved in
the space defined by the non-linear transformation w = 8(z),
thus the signs of the elements of the z vector (i.e., the preimage)
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do not indicate whether a relevant feature in the classification
problem is greater in the case or in the control group. To foresee
this information, which is important to compare the result we
obtain with those presented in other studies, we simply analyzed
the distributions of each feature and reported the trend of the
sign of the case-control difference.We indicate inTables 3, 4with
arrows pointing up/down the features significantly contributing
to the OCC boundary definition whose individual trend is toward
increased/decreased values in the group of male subjects with
ASD with respect to matched controls.

We show in Figures 2, 3 the brain regions contributing
most to the definition of the OCC boundary, as reported in
Tables 3, 4 for male and female subsets, respectively. For themale
population the main regions are: left (L) and right (R) medial
orbito frontal cortices, L pars triangularis and R pars opercularis
of the inferior frontal gyrus, middle temporal cortex and R insula.
For the female population the main regions are: L and R caudate
anterior cingulate, pars opercularis, posterior cingulated, cuneus;
R pars triangularis postcentral gyrus, superior temporal cortex
and superior parietal cortex. They are mostly among the network
of structural brain alterations widely reported in the population
with ASD, including frontal and temporal areas. Thus, despite the
phenotypical heterogeneity in ASD, a common neuroanatomical
profile of core features could be detected with the OCC SVM
approach.

DISCUSSION

We analyzed the brain structural MRI features of patients with
ASD with OCC SVM, starting with the estimation of the OCC
performance in the ASD vs. controls discrimination task. Then,
we investigated whether the distribution of patterns of brain
structures in control subjects is homogeneous enough to enable
the definition of a robust boundary, in relation to which the
patients with ASD would be classified as outliers. This approach
is consistent with previously proposed methods where OCCwere
implemented on fMRI features to build multivariate normative
rules on the healthy control population, which would allow
recognizing abnormal cases as outliers (Mourão-Miranda et al.,
2011; Sato et al., 2012a,b). In the specific case of the population
of young children with ASD we analyzed, we found out that
an OCC boundary enclosing the controls, built upon structural
MRI brain features, will allow most ASD cases to fall within the
boundary. By contrast, a consistent pattern among the patients
with ASD could be identified by the OCC approach, which
provided a boundary in relation to which most controls were
classified as outliers. In other words, we found out evidence
that the control group is the more heterogeneous one and
therefore the hypersphere or decision boundary enclosing most
of the controls contains data in the ASD range. Vice versa, the
ASD group showed a common structure that the SVM OCC
could capture. This apparently counterintuitive result might
be understood in the light of the following considerations.
First, we performed a priori heterogeneity reduction of the
ASD sample by excluding subjects with ASD secondary to
known causes and/or with dysmorphic features (see Exclusion

criteria in Section Participants and MRI Data Acquisition).
Conversely, the control group was highly heterogeneous, since
it comprises children who span the full range of cognitive
ability (NVIQ score range: 31–123). This selection is motivated
by the our primary choice of including within the cases all
ASD children who performed MRI, since focusing just on
those who are high-functioning would be non-representative
of ASD population comprising about 55% of subjects in the
intellectual disability range (Charman et al., 2011). As a necessary
consequence, subjects with idiopathic developmental delay (DD)
were included within the control group in order to obtain a
match on NVIQ and thus a reliable MRI data interpretation
(Crone et al., 2010). Therefore, the heterogeneity of MRI
structural features within the control sample could be ascribed
not only to the normal inter-individual brain variability that
occurs among individuals with typical development (Wilke
and Holland, 2003; Kanai and Rees, 2011), but also to the
heterogeneous subsample of individuals with DD. In fact, by
definition, idiopathic DD appears to be a highly heterogeneous
disorder in terms of etiopathogenesis and clinical features: it
is therefore plausible that also its neuroanatomical substrate is
heterogeneous and hence contributes to amplify the cerebral
differences detected in our control population. Moreover, we
restricted our analysis to an early and relatively narrow age-
range (2–6 years), a time-period in which structural MRI findings
of ASD patients are more consistent and less heterogeneous
across studies (Wolff and Piven, 2013). Specifically, a overgrowth
of WM and GM before 2 years of age followed by a growth
rate reduction that lead to brain volumes similar to typical
children by approximately the school-age period was frequently
reported (Lenroot and Yeung, 2013). In addition, by focusing on
preschoolers only, we captured the pattern of brain alterations
taking place near the clinical onset of the disorder and
therefore we minimized the influence of different post-natal
variables (e.g., environmental factors, psychiatric comorbidities,
rehabilitative intervention) on brain structure. In other words,
it is possible that a common altered brain presentation is more
frequent in the early stage of the ASD disorder and that inter-
subject variability in ASD populations progressively increases
with age.

The present work is a proof of concept that the OCC
framework can be applied to neuroimaging data to investigate if
consistent patterns of alterations do exist even in heterogeneous
populations such as ASD. Despite the results we found need to be
confirmed against a larger population, the approach we present
here is a preliminary step aiming to set up a strategy to identify
common altered features in specific disorders.

Analogously, a common brain endophenotype in ASD
individuals was detected with different methods of data
acquisition, including electroencephalogram (EEG) spectral
coherence (Duffy and Als, 2012), voxel based morphometry
(Uddin et al., 2011), functional MRI (White et al., 2014),
functional connectivity (Murdaugh et al., 2012), and diffusion
tensor imaging (Ingalhalikar et al., 2011). These findings did not
support the extreme variability of cerebral structure and function
in ASD patients, as suggested by other investigations (Alexander
et al., 2007; Nordahl et al., 2012; Hahamy et al., 2015).

Frontiers in Neuroscience | www.frontiersin.org 9 June 2016 | Volume 10 | Article 306 | 100

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Retico et al. ASD Structural Alterations with OCC-SVM

TABLE 3 | Relevant brain regions and features for the male group (p < 0.05).

Male subset Feature

Hemisphere Region Area Mean curvature Thickness Thickness standard deviation Volume

lh Medial orbitofrontal cortex

Middle temporal gyrus

Pars triangularis

Posterior cingulate cortex

Transverse temporal gyrus

rh Insula

Medial orbitofrontal cortex

Pars opercularis

Arrows pointing up/down indicate the features significantly contributing to the OCC boundary definition, whose individual trend is toward increased/decreased values in the group of

male subjects with ASD with respect to matched controls.

TABLE 4 | Relevant brain regions and features for the female group (p < 0.05).

Female subset Feature

Hemisphere Region Area Mean curvature Thickness Thickness standard deviation Volume

lh Caudal anterior cingulate cortex

Cuneus

Enthorinal cortex

Inferior temporal lobe

Lateral orbitofrontal cortex

Pars opercularis

Posterior cingulate

Precuneus

Rostral anterior cingulate cortex

Transverse temporal gyrus

rh Caudal middle frontal gyrus

Cuneus

Enthorinal cortex

Pars opercularis

Pars triangularis

Postcentral gyrus

Precuneus

Rostral anterior cingulate cortex

Superior parietal cortex

Superior temporal gyrus

Arrows pointing up/down indicate the features significantly contributing to the OCC boundary definition, whose individual trend is toward increased/decreased values in the group of

female subjects with ASD with respect to matched controls.

Since we found the rather limited maximum AUC value of
0.74 for the male subset, it is important to highlight that among
control subjects we included patients with DD that from a clinical
point of view can frequently be considered in the ASD differential
diagnosis. Therefore, it is possible that not only at the behavioral
level, but also at the neuroanatomical level individuals with
ASD and individuals with DD share some features that make
the brain-based distinction between each other more difficult.
This interpretation of our results is further supported by the

fact that the AUC values reported on the subgroups of subjects
with high NVIQ values are systematically higher than those
obtained on the subgroups with low NVIQ values (see Table 2),
whereas the performances obtained on the entire samples are
positioned in between, as expected. It happens in the analysis of
themale and the female subsamples and of the entire data sample.
According to this view, the capability to differentiate participants
into patient and control groups improved when we restricted
the analysis to ASD patients with NVIQ ≥ 70 and therefore we
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FIGURE 2 | Brain regions most contributing to the definition of the OCC boundary for the male group.

included among control subjects only individuals without DD
(AUC = 0.81 and AUC = 0.72 for female and male subsamples,
respectively).

The features which had the highest discriminative ability
between the cases (both males and females) and the controls
belong to four cerebral regions -posterior cingulate cortex
(PCC), pars opercularis, and pars triangularis of inferior
frontal gyrus, transverse temporal gyrus- all of which would
represent a neuroanatomical signature of pre-schoolers with
ASD. Specifically, we detected increased left PCC volume

in ASD patients. Notably, this region has been included in
the default mode network as one of the highest baseline
energy consuming regions (Raichle et al., 2001) and has
been implicated in arousal and awareness (Vogt and Laureys,
2005), autobiographical memory retrieval (Maddock et al.,
2001), as well as in cognitive flexibility and in the ability to
regulate the breadth of attention (Leech and Sharp, 2014),
functions frequently impaired in patients with ASD (Bruck et al.,
2007; Leung and Zakzanis, 2014; Orekhova and Stroganova,
2014).
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FIGURE 3 | Brain regions most contributing to the definition of the OCC boundary for the female group.

In addition, we identified a significant alteration of pars
opercularis and pars triangularis in patients with ASD. These
inferior frontal regions together comprise Broca’s area, which is
primarily involved in higher-order abilities such as expressive
language, action imitation, attribution of mental states, and
empathy (Iacoboni and Dapretto, 2006). Disruption of this area
may therefore lead to core ASD symptoms (Dapretto et al.,
2006). In particular, our finding of reduced cortical thickness
(CT) in the pars opercularis is in line with results of Zielinski
et al. (2014) in children and adolescents with ASD and of

Hadjikhani et al. (2006), who reported a local decreases of
CT in the pars opercularis of 14 high-functioning adults with
ASD compared with matched control subjects. Also, decreased
CT in the pars triangularis is in concordance with a previous
study demonstrating focal patterns of cortical dysmaturation
in children with ASD (Jiao et al., 2010). At the volumetric
level, an increase in pars opercularis and pars triangularis was
identified in children with ASD compared to controls (Knaus
et al., 2009) while an opposite finding characterized adults with
high-functioning ASD (Yamasaki et al., 2010), supporting an
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altered trajectory of neurodevelopment in the autistic disorder.
Interestingly, a highly localized structural alteration consisting in
a significant reduction of the sulcus maximum depth was recently
detected in the Broca’s area of young children with ASD (Brun
et al., 2016), suggesting its possible role in facilitating early ASD
identification.

Our individuals with ASD showed increased volumes
(females) and area (males) of the left transverse temporal
(Heschl’s) gyrus relative to controls. The transverse gyrus of
Heschl includes the primary auditory cortex and is critically
implicated in early auditory processing (Galaburda and Sanides,
1980). Several ASD symptoms, including altered auditory
responsiveness (O’Connor, 2012), language perception and
acquisition, are strictly related to this cerebral region. Previous
cross-sectional investigations on older patients with ASD failed
to observe any volumetric alteration inHeschl’s gyrus (Gage et al.,
2009; Knaus et al., 2009): it is possible that neuroanatomical
differences in this area are age-related, and therefore detectable in
our sample of ASD preschoolers, but not more during childhood
and adolescence.

Crucially, a longitudinal investigation reported a reduced
growth of Heschl’s gyrus white matter in the left hemisphere
as well as in the right Heschl’s gyrus gray matter of
children with ASD (Prigge et al., 2013), supporting an
abnormality in the trajectory of cerebral development in the ASD
group.

It is worth mentioning that the most discriminative brain
features that characterize young children with ASD in the current
investigation are largely overlapping with those identified in a
resting-state connectivity analysis of brain lateralization in 447
high-functioning individuals with ASD (Nielsen et al., 2014).
Therefore, a consistent finding was detected in these two studies,
despite they do present substantial differences not only as to
the numerosity, IQ sample and imaging modalities, but also
as to the age of participants (preschoolers in our study vs.
individuals across a wide range of ages starting from 6 years in
the paper by Nielsen and colleagues), and sites ofMRI acquisition
(single site in our study vs. multiple sites in Nielsen’s report).
Hence, this replicated result would open the door to speculation
that, irrespective of demographic and clinical features, selective
alteration in language and default mode areas is a universal
cerebral endophenotype of ASD.

In conclusion, results from the present study suggest that
a distinctive neuroanatomical profile could be identified in
preschoolers with ASD, independently of their gender, age, and
NVIQ. In fact, beside the well-known heterogeneity of the ASD
condition, patients seem to share common neuroanatomical
substrates that appear to comprise language and default mode
regions and could represent the core brain alterations of the
disorder in the preschool age.

Several limitations of the current work and directions for
future studies should be highlighted. First, the classification
performances obtained are quite modest and, in some specific

cases, the performances of the OCC classifiers are not
significantly different from the chance level, as it happens for
example on the sub group of male subjects with low NVIQ values
(see Table 2). More populated data samples would be necessary

to understand whether with improved statistical sensitivity the
two overlapping classes can be effectively disentangled. Second,
the relatively limited sample size prevented us from reliably
subgrouping ASD patients on the basis of gender and NVIQ for
investigating possible brain correlates of phenotypic differences.
Third, we did not implement in our classification model any
feature selection technique. Due to the large number of features
(314) with respect to the data sample size we are working with
a high risk of overfitting the models. As we are interested most
in the discrimination maps generated by the OCC than in the
classification performance by itself, the overfitting problem does
not seem a major issue. However, to investigate in depth the
separability of the ASD and control samples, and to understand
whether the modest AUC values we obtained on cross validation
are due to the lack of generalization abilities due to model
overfitting, a feature selection technique should be implemented.
Finally, since patients with ASDwere recruited from anASDUnit
in a large tertiary hospital and research university that evaluates
patients under 18 years of age from all over Italy, we may not
have been fully able to capture children at the less severe end of
the spectrum.

Future investigations will involve: (i) analyzing whether a
distinct clinical symptoms or behavior profile characterized the
outliers within the ASD cohort; (ii) evaluating whether the
brain ASD endophenotype detected in the first years of life
remains stable over time, or vice-versa developmental changes
in ASD symptom profiles impact also on brain structure; (iii)
including analysis of patients with other neurodevelopmental
disorders which display overlapping clinical features with ASD
[e.g., language disorder, social (pragmatic) communication
disorder, attention-deficit/hyperactivity disorder, stereotypic
movement disorder] in order to verify the specificity of
the discriminative brain pattern here identified in ASD
patients.
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Autism postmortem studies have shown various cytoarchitectural anomalies in cortical

and limbic areas including increased cell packing density, laminar disorganization,

and narrowed minicolumns. However, there is little evidence on dendritic and axonal

organization in ASD. Recent imaging techniques have the potential for non-invasive, in

vivo studies of small-scale structure in the human brain, including gray matter. Here,

Restriction Spectrum Imaging (RSI), a multi-shell diffusion-weighted imaging technique,

was used to examine graymatter microstructure in 24 children with ASD (5 female) and 20

matched typically developing (TD) participants (2 female), ages 7–17 years. RSI extends

the spherical deconvolution model to multiple length scales to characterize neurite

density (ND) and organization. Measures were examined in 48 cortical regions of interest

per hemisphere. To our knowledge, this is the first time that a multi-compartmental

diffusion model has been applied to cortical gray matter in ASD. The ND measure

detected robust age effects showing a significant positive relationship to age in all lobes

except left temporal when groups were combined. Results were also suggestive of group

differences (ASD<TD) in anterior cingulate, right superior temporal lobe and much of the

parietal lobes, but these fell short of statistical significance. For MD, significant group

differences (ASD>TD) in bilateral parietal regions as well as widespread age effects were

detected. Our findings support the value of multi-shell diffusion imaging for assays of

cortical gray matter. This approach has the potential to add to postmortem literature,

examining intracortical organization, intracortical axonal content, myelination, or caliber.

Robust age effects further support the validity of the ND metric for in vivo examination

of gray matter microstructure in ASD and across development. While diffusion MRI

does not approach the precision of histological studies, in vivo imaging measures of

microstructure can complement postmortem studies, by allowing access to large sample

sizes, a whole-brain field of view, longitudinal designs, and combination with behavioral

and functional assays. This makes multi-shell diffusion imaging a promising technique for

understanding the underlying cytoarchitecture of the disorder.
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INTRODUCTION

By general consensus, autism spectrum disorder (ASD) is a
neurobiological disorder, likely of complex genetic, epigenetic,
and possibly environmental origin, with brain development
deviating from the typical path beginning in the prenatal period
(Bailey et al., 1998; Palmen et al., 2004; Bauman and Kemper,
2005; Hutsler and and Casanova, 2016). Post-mortem studies
are indispensible to our understanding of the underlying cellular
anomalies. A reduction in the number of cerebellar Purkinje
cells was among the earliest histologic reports (Bauman and
Kemper, 1985), and a report of patchy neocortical thickening
and laminar disorganization followed (Bailey et al., 1998).
Increased cell packing density has been found in anterior
cingulate, hippocampus and amygdala (Kemper and Bauman,
1998; Schumann and Amaral, 2006), and in prefrontal cortex by
some (Bailey et al., 1998; Courchesne et al., 2011), but not all
(Bauman and Kemper, 2005) research groups, while decreased
density was found in fusiform gyrus (van Kooten et al., 2008).
Increases in cortical cell packing density may relate to narrowed
mini-columns in dorsolateral prefrontal cortex and superior
temporal gyrus (Casanova et al., 2002, 2006; Buxhoeveden et al.,
2006), suggesting a reduction in the amount of neuropil space
surrounding neurons, which may reflect a decrease in inhibitory
neurites in the affected regions. Ectopias (Bailey et al., 1998;
Wegiel et al., 2010) and increased dendritic spine densities
(Hutsler and Zhang, 2010) have also been reported. These
neurostructural findings suggest altered rates of neurogenesis,
delayed or reduced apoptosis or pruning or local failures of
migration.

The postmortem literature is also quite variable, however, due
to limitations which may be addressed through MRI and other
in vivo imaging techniques. Some postmortem neuropathology is
described as “patchy” at the individual case level (Bailey et al.,
1998; Hutsler et al., 2007), and some findings are inconsistent
across research groups or methods (Bailey et al., 1998; Bauman
and Kemper, 2005; Hutsler et al., 2007). Furthermore, it is quite
likely that histological differences that can be detected vary with
the age of the case, particularly over the course of childhood, as
indicated by in vivoMRI studies (Courchesne et al., 2001; Carper

et al., 2002; Schumann et al., 2010; Hazlett et al., 2011). Such
variability is difficult to overcome in postmortem studies, which
are usually limited to small samples (averaging about 5 cases
per study; Schumann and Nordahl, 2011) across wide age spans,
with most cases in the adolescent or adult range. In addition,
since histologic studies are extremely time consuming, studies are
often limited to samples of only a few anatomical regions rather
than whole-brain surveys. Longitudinal studies are furthermore
impossible, limiting any developmental interpretations of post-
mortem findings. In vivo imaging techniques may overcome
many of these issues, allowing large sample sizes, whole-brain
assessment, and longitudinal studies. However, examination of
sub-voxel features such as dendritic or axonal organization and
cortical cytoarchitecture has remained beyond the reach of in vivo
imaging studies on ASD published to date.

The ability to describe cytoarchitecture and neuronal
connectivity at the sub-millimeter level in living subjects would

be a tremendous boon to research of neurodevelopmental and
other neurologic disorders. Continuing improvements in system
hardware and advances in acquisition techniques and sequence
programming continue to push back the limits on spatial
resolution. At the same time, newmodels for analysis of diffusion
MRI allow examination of separate compartments within a single
voxel. The combination of multi-shell diffusion acquisitions
and multi-compartmental analysis approaches permits estimates
of neurite (both axon and dendrite) content and organization
within clinically manageable acquisition times (Jensen et al.,
2005; Lu et al., 2006; Zhang et al., 2012; White et al., 2013).Multi-
shell diffusion imaging (i.e., acquisition at multiple b-values and
multiple diffusion directions), allows classification of diffusion at
multiple length scales, disambiguating restricted (slow) diffusion
from hindered (fast) diffusion. Inclusion of high b-values allows
insight into micro-scale structures such as the organization and
density of dendritic and axonal processes (neurites; Barazany
et al., 2009; Raffelt et al., 2012; Assaf et al., 2013; Dell’Acqua
et al., 2013). Here we used Restriction Spectrum Imaging (RSI,
White et al., 2013), one such analysis approach, for in vivo
examination of neurite organization within cerebral cortex in an
ASD population.

RSI extends the spherical deconvolution model (Tournier
et al., 2004) across these multiple length scales to characterize
neurite density and organization at each imaged voxel. Analogous
models have been used to examine white matter in one study of
young adults with ASD (Lazar et al., 2014) but, to our knowledge,
this is the first time that a multi-compartmental model has been
applied to cortical gray matter in this population and the first
time this age group has been addressed. We examined 48 cortical
regions of interest per hemisphere in a population of 24 ASD and
20 TD children and adolescents.

MATERIALS AND METHODS

Participants
Participants ranged between 7 and 17 years of age and included
both males and females. All potential ASD participants were
administered the Autism Diagnostic Observation Schedule

(ADOS, Lord et al., 2001), and their parents completed the
Autism Diagnostic Interview-Revised (ADI-R, Rutter et al.,
1995). Final diagnosis of Autism Spectrum Disorder was
determined by a trained clinical psychologist according to DSM-
V criteria (American Psychiatric Association, 2013) and with
reference to ADOS and ADI-R scores. Children with known
history of neurological disorders other than ASD (e.g., Fragile X
syndrome, epilepsy) were excluded. Typically developing (TD)
participants were recruited from the community, excluding
anyone with a personal or family history of autism or a personal
history of other neurologic or psychiatric conditions. Participants
were also administered the Wechsler Abbreviated Scale of
Intelligence (WASI, Wechsler, 1999), the Social Responsiveness
Scale (SRS, Constantino and Gruber, 2005), and the Edinburgh
Handedness Inventory (Oldfield, 1971). The study was approved
by the University of California, San Diego, and San Diego
State University Institutional Review Boards, with written
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informed consent and assent provided by all participants and
caregivers.

MRI Data Acquisition and Preprocessing
MRI data were collected on a GE Discovery MR 750 3.0T
system using an 8-channel head coil. Diffusion was measured
with a multi-shell EPI sequence encoded for 45 non-collinear
diffusion directions, (15 unique directions at each of 3 b-values:
500, 1500, and 4000 s/mm2) and 2 at b = 0 s/mm2 (in-plane
resolution=1.875 × 1.875mm, thickness = 2.5 mm, TR = 7 s,
TE = 87.4 ms, flip = 90◦). An anatomical T1-weighted fast
spoiled gradient echo (FSPGR) scan (1mm3, TR= 8.108 s, TE=

3.172ms, flip= 8◦) was also acquired. Preprocessing of diffusion
data was performed using in-house software and included eddy
current correction (Zhuang et al., 2006), rigid body correction
for motion with corresponding adjustments to the vector matrix,
correction of susceptibility-induced field distortions (Holland
et al., 2010), and correction for gradient non-linearities (Jovicich
et al., 2006).

Quality Assessment and Motion
Quantification
Multi-shell diffusion images were initially collected from 33 ASD
and 24 TD children and adolescents. Average translation and
rotation between acquisitions was calculated for each participant
and considered for group matching. All image data, including
each diffusion direction and b-value, were also visually inspected
for motion-related signal dropout and other artifacts. The high
b-value shell is particularly sensitive to motion-related dropout
leading to a high exclusion rate. Seven subjects were excluded
for excessive dropout (5 ASD, 2 TD) and an additional six
for translation >1 mm or rotation >.01 radians (0.6 degrees,
4 ASD, 2 TD). Participants who were excluded did not differ
significantly from those who were included with regard to age,
IQ, or symptom severity (ADOS, ADI, SRS), for either subject
group.

Restriction Spectrum Imaging
The RSI model is based on the compartmentalization of water
in brain tissue. Diffusion of water molecules within brain tissue
is constrained by cell membranes and other structures and thus
ranges from restricted diffusion, as in intra-cellular spaces where
water is (on time scales examined here) unable to diffuse beyond
the cellular or axonal membrane, to free diffusion, found in fluid
spaces where diffusion is unencumbered by barriers such as
membranes or large proteins (Le Bihan, 2012). Between these
extremes, diffusion is hindered, e.g., in extracellular spaces where
water must follow a tortuous path to pass around cell membranes
or other obstacles, but is not enclosed by such barriers (Assaf
and Basser, 2005). RSI applies a mathematical model (White
et al., 2013, 2014) to determine the proportion of a voxel (volume
fraction) and signal (signal fraction) stemming from hindered,
restricted, or free water compartments and the geometry of
diffusion within each of these compartments (isotropic or
anisotropic). The algorithm is described in detail in the original
validation study (White et al., 2013) and represents an extension
of the linear spherical deconvolution model (Tournier et al.,

2004; Dell’Acqua et al., 2007; Jian and Vemuri, 2007; Kaden
et al., 2007) to multiple diffusion length scales. In the current
application we used five diffusion length scales. The volume
fraction of anisotropic restricted diffusion (the shortest length
scale examined) is believed to reflect the relative density of
neuronal processes (neurite density, ND; White et al., 2013). ND
was calculated for each voxel, as were the fractional anisotropy
(FA) and mean diffusivity (MD) derived from the diffusion
tensor. The ND volume fraction was standardized to a 1–1000
range; FA ranged 0–1.

Analysis of Anatomical Images and
Extraction of ROIs
Preprocessing of anatomical T1 scans included correction
for gradient non-linearities (Jovicich et al., 2006) and brain
extraction (Smith, 2002). A gray matter mask was derived
for each subject (Avants et al., 2011b) and affine registration
was used to align each participant’s T1 to the corresponding
RSI image and to a sample-specific template in MNI space
which had been derived using Advanced Normalization Tools
(ANTS, Avants et al., 2010, 2011a). This allowed backward
transformation of the Harvard-Oxford cortical atlas (http://
fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases) from MNI space to each
individual’s native diffusion space, providing 48 gyral-level ROIs
for each hemisphere. Average ND, FA, and MD within gray
matter were calculated for each of these ROIs and for the overall
cerebral lobes (see Supplementary Table 1 for ROIs and their
lobar designations).

RESULTS

The final sample included 24 ASD participants (5 female) aged
7–17 years, and 20 TD participants (2 female) aged 8–17 years.
Groups were well matched for age, non-verbal IQ, and motion
measures with all p > 0.5 (Table 1). The ASD group had lower
verbal IQ as is frequently found in this socio-communicative
disorder.

Linear regressions were performed on ND, FA, and MD
measures separately for each lobe and hemisphere with age,
group, group-by-age interaction, and a constant included in
each model. The false discovery rate (FDR, Benjamini and
Hochberg, 1995) was used to correct for multiple comparisons.
All regressions performed on a single dependent variable (ND,
FA, or MD) were included within a statistical family with the
significance of each overall F-test included in that correction.
Coefficients were corrected in a similar fashion.

Lobar Effects
Regressions were significant for ND in all lobes in the right
hemisphere and for frontal, parietal, and occipital lobes in the
left hemisphere (Table 2). The effects of age were significant
and positive (increasing with age) in all of these. Rates ranged
from 1.38 per year (left occipital lobe) to 4.11 per year (right
frontal lobe) with the volume fraction standardized to a 1–
1000 scale (Figures 1A,B). Group differences showed reduced
ND in left parietal and left occipital lobes in ASD compared to
TD participants (Figure 2) with moderate effect sizes ranging
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TABLE 1 | Demographics.

ASD (n = 24) TD (n = 20) p-value

mean ± SD mean ± SD

[range] [range]

Age (years) 13.41 ± 3.30 13.72 ± 2.91 0.693

[7.43–17.98] [8.19–17.69]

WASI_VIQ 91.83 ± 17.25 104.45 ± 10.28 0.005

[56–118] [73–126]

WASI_NVIQ 98.54 ± 19.33 101.65 ± 15.06 0.552

[53–140] [62–123]

Avg. Translation 0.61 ± 0.11 0.62 ± 0.12 0.791

[0.41–0.86] [0.33–0.85]

Avg. Rotation 0.003 ± 0.0021 0.0029 ± 0.0025 0.893

[0.0012–0.0081] [0.0011–0.0098]

SRS Total 84.13 ± 8.53 43.15 ± 5.61 <0.001

[62–100] [35–52]

ADOS-2 SA 12.26 ± 3.86

[6–20]

ADOS-2 RRB 3.44 ± 2.33

[1–12]

ADOS-2 Severity 8.32 ± 1.70

[4–10]

ADI Soc 18.50 ± 4.08

[13–28]

ADI Comm 13.25 ± 4.40

[6–24]

ADI Rep 5.96 ± 2.48

[1–12]

Female n = 5 n = 2

Left Handed n = 5 n = 2

ASD, Autism Spectrum Disorder; TD, Typically Developing; WASI, Wechsler Abbreviated

Scales of Intelligence; VIQ, Verbal IQ; NVIQ, Non-verbal IQ; SRS, Social Responsiveness

Scale; ADOS-2, Autism Diagnostic Observation Schedule-2nd edition; SA, Social Affect;

RRB, Restricted and Repetitive Behavior; ADI-R, Autism Diagnostic Interview, Revised;

Soc, Social interaction subscale; Comm, Communication subscale; Rep, Restricted and

Repetitive Behaviors subscale.

from 0.37 to 0.75, but these did not survive correction for
multiple comparisons. Interactions between group and age were
not significant.

On the MD measure, regressions were significant bilaterally
in frontal, parietal and occipital lobes, but not temporal lobes.
All of these showed significant negative effects of age (decreasing
with age) with rates ranging from −2.445 × 10−6 mm2/s per
year (left frontal lobe) to −3.875 × 10−6 mm2/s per year (left
parietal lobe). MDwas higher in ASD in the parietal and occipital

TABLE 2 | Linear regression results (p-values) for neurite density,

fractional anisotropy, and mean diffusivity by lobe.

Lobe Group Age Age X Group Overall F-test

ND Left Frontal 0.290 0.003* 0.425 0.011*

Parietal 0.018 0.002* 0.471 0.001*

Temporal 0.215 0.197 0.622 0.270

Occipital 0.043 <0.001* 0.657 <0.001*

Right Frontal 0.237 <0.001* 0.281 <0.001*

Parietal 0.051 0.015* 0.397 0.011*

Temporal 0.106 0.005* 0.995 0.013*

Occipital 0.121 0.003* 0.269 0.004*

FA Left Frontal 0.678 0.807 0.275 0.709

Parietal 0.751 0.418 0.045 0.147

Temporal 0.393 0.748 0.159 0.470

Occipital 0.312 0.659 0.663 0.726

Right Frontal 0.984 0.090 0.417 0.284

Parietal 0.640 0.083 0.035 0.037

Temporal 0.656 0.147 0.698 0.438

Occipital 0.368 0.561 0.453 0.664

MD Left Frontal 0.091 0.001* 0.788 0.002*

Parietal 0.011 <0.001* 0.760 <0.001*

Temporal 0.115 0.091 0.665 0.137

Occipital 0.027 <0.001* 0.840 <0.001*

Right Frontal 0.080 <0.001* 0.547 <0.001*

Parietal 0.020 <0.001* 0.864 <0.001*

Temporal 0.088 0.025* 0.509 0.044

Occipital 0.041 <0.001* 0.601 <0.001*

Uncorrected p-values of each coefficient shown. *Significant following FDR correction for

multiple comparisons. Tests of each coefficient and dependent variable (ND, FA, MD)

treated as a statistical family for FDR.

lobes bilaterally (Figure 2) again with medium effect sizes (0.49
to 0.67). However, these did not survive correction for multiple
comparisons. There were no significant interactions. By contrast,
similar linear regression analyses for FA values did not reach
significance after correction for multiple comparisons.

Localized Effects
Individual ROIs were also examined for a more localized
understanding of effects in MD and ND (see Supplementary
Table 1 for list of ROIs examined), using similar linear regression
models. For each dependent variable, all regions were included
bilaterally to correct each coefficient for multiple comparisons
(48 regions x 2 hemispheres).

Regressions on ND were significant for all regions on the
dorsolateral aspect of the right frontal lobe as well as the
right anterior cingulate, paracingulate, operculum and insula
(Supplementary Table 2, Figures 1C,D). Left frontal effects were
restricted to anterior cingulate, paracingulate, central operculum,
and posterior portions of the dorsal surface. Regressions were
also significant for all subregions of parietal lobes (except bilateral
superior parietal lobule, right precuneus, and right postcentral),
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FIGURE 1 | Effects of age on neurite density. Mean ND is shown as a function of subject age for: (A) left parietal lobe, (B) left occipital lobe, (C) left postcentral

gyrus, (D) posterior division of left supramarginal gyrus. ASD indicated in red, TD indicated in blue. Neurite density standardized to a 0–1000 range. *p < 0.05, **p <

0.005.

FIGURE 2 | Group differences in ND, MD, and FA. Group differences and 95% confidence intervals are shown for each cortical lobe. Positive values indicate

ASD >TD. Neurite density standardized to a 0–1000 range.
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a few bilateral temporal regions including posterolateral regions,
planum temporale, Heschl’s gyrus, and right temporal occipital
fusiform gyrus, and portions of occipital lobe including bilateral
posterior cingulate. All of these except left Heschl’s gyrus
exhibited significantly greater ND with increasing age.

Group effects (see Supplementary Figure 1 for group
differences and confidence intervals) suggested that ND was
reduced in ASD in a number of regions (e.g., anterior cingulate,
precentral and supramarginal gyri bilaterally, parts of superior
temporal gyrus, fusiform, and planum temporale on the right),
but only left temporal occipital fusiform cortex survived
correction for multiple comparisons (and overall regression was
not significant). The only significant group-by-age interaction
was in right anterior cingulate with ND increasing more rapidly
with age in ASD.

With only one exception (right temporal occipital fusiform),
all regions that showed significant positive age effects on ND
also showed significant negative effects on the MD measure
(Supplementary Figure 2, Supplementary Table 3). In addition,
left superior parietal lobule was affected, and more of left frontal
lobes (left middle frontal, subcallosal gyri), and occipital lobes
(bilateral intracalcarine cortex and pole, right lateral occipital
gyrus, left supracalcarine, cuneal, and lingual regions) showed
age effects.

Group differences on MD did not survive correction, but the
tendency was toward higher MD in ASD than TD particularly
in parietal regions and in several frontal and occipital regions
(see Supplementary Figure 2 for group differences and confidence
intervals). Interactions were not significant.

DISCUSSION

The present study is—to our knowledge—the first to apply a
multi-compartmental diffusion model using multishell MRI to
the study of cortical gray matter microstructure in ASD. We
found robust age effects for both ND (increasing) and MD
(decreasing), but not FA, a measure more suited to tissues with
well-aligned microstructure such as in the deep white matter.
Trends toward decreased ND and increased MD in ASD did not
survive correction for multiple comparisons when examined at
the lobar level. More localized examination again showed robust
age effects in the ND and MD measures, and a significant group
difference was found on ND (ASD<TD) in the left temporal
occipital fusiform gyrus. While other ND differences did not
survive correction for multiple comparisons, examination of
confidence intervals (Supplementary Figures 1, 2) suggests that
larger sample sizes or improvements in signal-to-noise and
motion control (see Limitations) may support such differences.

Our findings indicate that multi-shell, multi-compartmental
approaches may provide a valuable addition to our ability to
examine gray matter microstructure in ASD and other disorders.
While the RSI derived NDmeasure may not be as sensitive as the
tensor-derived MD measure, it offers greater interpretability and
specificity as discussed below.

Neurite Density and Mean Diffusivity
The ND measure is likely driven primarily by axons, and
particularly myelinated axons, rather than dendrites within

cerebral cortex. At the diffusion time-scales examined here,
unmyelinated neurites allow some amount of water exchange
across the cellular membrane. Since the ND measure is derived
from elements with cylindrical symmetry, wherein diffusion is
restricted in the direction transverse to the cylinder, but relatively
unencumbered along the long axis, unmyelinated elements will
contribute less overall signal to the neurite water compartment
due to greater water exchange. Hence, lower ND such as that
seen in younger participants likely reflects: (1) lower density of
myelinated axons, (2) thinner myelin (allowing greater average
water exchange), or possibly (3) smaller average caliber of
myelinated axons which would be associated with less water in
the restricted cylindrical pool.

Cortical MD may be driven by the same factors (but in the
opposite direction) since ND and MD measures will tend to
correlate inversely with each other. MD is highest where diffusion
is free and lowest where it is restricted (e.g., areas of high
ND). However, MD is derived from a tensor model and does
not distinguish intracellular from extracellular compartments as
do RSI derived measures. Other possible causes of MD effects
therefore cannot be excluded in regions where ND effects were
not detected. Inflammatory responses also lead to increased MD
due to increased tissue water (Alexander et al., 2007) but would
not be expected to alter intracellular measures such as ND. Signs
of inflammation have been reported in ASD (Vargas et al., 2005;
Zimmerman et al., 2005; Morgan et al., 2010; Suzuki et al., 2013)
so this potential contributor must be considered. Alternatively,
MD may simply be a more robust measure than ND when
examining gray matter. With only about 25% of the cortical
diffusion volume fraction being restricted, ND signal-to-noise
will be lower than in the composite MD measure. The relative
simplicity of the tensor model may also make measures such as
MD more robust than those derived from the more complex RSI
model. However, since effect sizes for ND ranged from medium
to large (0.37 to 0.75) the lack of more significant findings may
have been due to limited sample size, accompanied by expected
variability due to the known etiological heterogeneity in ASD
(Geschwind and State, 2015).

Age Effects
The validity of the ND metric was supported by robust
maturational effects detected in our study. ND increased
significantly with age in all lobes except left temporal
when groups were combined, showing clear sensitivity to
developmental change. At first glance, the direction of change
may appear unexpected: The number of cortical synapses, and
presumably the complexity of dendritic branches, begins to
decrease prior to age 8 years (Huttenlocher and Dabholkar,
1997), while cortical gray matter volume stabilizes (Courchesne
et al., 2000), so that a measure of “neurite density” might be
expected to decline during this period. However, as described
above, the ND measure is probably particularly sensitive to
the degree of axonal myelination, which continues well into
adulthood. This is supported by multi-shell diffusion studies
on neurotypical white matter development that also found
age related increases in intraneurite compartments using
compartmental diffusion models other than RSI. In a recent
abstract, Chang et al. (2015) reported increasing intra-axonal
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volume fractions across childhood and adolescence using
neurite orientation dispersion and density imaging (NODDI).
Significant age related increases were also reported by Jelescu
et al. (2015) in infants and toddlers, and by Billiet et al.
(2015) in adults, with both of these using both NODDI and
diffusion kurtosis imaging. These latter studies concluded that
the age effects must be at least partially reflective of ongoing
myelination, rather than strictly of intra-axonal volume fractions.
Indeed, the same NODDI measure was found to correlate with
direct staining of myelin in a rat model (Jespersen et al.,
2007).

Localization of Group Trends
While group differences on ND were only marginal,—surviving
correction for multiple comparisons in only a single region—
and therefore must be viewed with substantial caution, the
localization of these results deserves some consideration in
context of the postmortem literature. ND tended to be lower
in ASD than TD in bilateral anterior cingulate gyri, for which
increased cell packing density has been reported in several
ASD post-mortem cases (Kemper and Bauman, 1998; Schumann
and Amaral, 2006). This region also showed the only group-
by-age interaction surviving correction, with the ASD group
showing a greater increase in ND with age than TD. One of
these postmortem studies also examined axons just beneath
the cortex (Zikopoulos and Barbas, 2010). In that study, axons
were sampled from white matter beneath four areas of frontal
lobe in five adult ASD postmortem cases, finding a relative
shift from larger to smaller caliber axons exiting the anterior
cingulate cortex. As discussed above, smaller myelinated axons
are one potential source of ND reductions, which would be
consistent with our findings. Zikopoulos and Barbas (2010)
also found decreased myelin thickness in axons exiting orbital
frontal cortex compared to controls. But, while myelin thickness
is another potential source of ND changes, we found little
evidence of a group difference in orbital cortex. Other areas
where shifts in cell packing density have been reported in
ASD include the hippocampus and amygdala, which were not
examined here, the prefrontal cortex (though not consistently),
and potentially the superior temporal gyrus given findings of
narrowed minicolumns. In our sample, ND did tend to be lower
in the ASD group in the superior temporal gyrus and its superior
aspect (Heschl’s gyrus, planum temporale) primarily in the right
hemisphere.We found no evidence of prefrontal differences. One
group has reported decreased cell density in fusiform cortex,
whereas we found lower ND that was limited to the posterior
aspect of the gyrus.

LIMITATIONS

The absence of significant group differences in RSI may
partly reflect the inter-case variability of cytoarchitectonic
abnormalities in ASD, commonly found in the literature (Bailey
et al., 1998; Hutsler et al., 2007; Wegiel et al., 2010). Additionally,
some neuropathologies may not affect the same regions of
cortex across all ASD cases, such as laminar differences that

have been described as “patchy” (Hutsler et al., 2007). Group-
wise analyses such as those used here would not be sensitive
to such subject-specific anomalies. Notably, one recent study
demonstrated the utility of a multi-compartment diffusion
approach for identification of focal cortical dysplasias, not unlike
those reported in ASD cases, on a case-wise basis (Winston
et al., 2014). Intracellular volume fraction, their marker of
neurite density, highlighted focal dysplasias more prominently
than traditional diffusion or structural imaging. With a large
normative sample, it might be possible to detect focal dysplasias
in vivo on a case-wise basis in ASD and other disorders using RSI
or other compartmental diffusion models.

As with all MRI methodologies, subject motion during
scanning can be an issue, particularly when comparing groups
that may differ in their likelihood of motion. We thoroughly
screened all scans for subject motion resulting in well-matched
subject groups. However, better protection of multi-shell
diffusion sequences from motion may be possible. Our highest
b-value shell (b = 4000 s/mm2) was particularly susceptible to
motion-related slice dropout, forcing us to exclude c. 27% of
ASD participants. This could be improved either by reducing
the maximum gradient strength while losing sensitivity to the
shortest diffusion distances or, more simply, by repeating the
acquisition of this highest shell to allow signal averaging.

Although RSI provides insight to subvoxel neural content in
the form of separate intra and extracellular compartments, partial
volume effects are still relevant. Voxel size was large (8.8 mm3)
leading to inclusion of both gray and white matter within voxels
and averaging across lamina. Higher resolutions may be possible
with accelerated imaging techniques, but are unlikely to reach
sublaminar resolution in the near future.

RSI is not sensitive to all types of cytoarchitectonic anomalies
reported in the ASD literature, such as dysmorphology of specific
cell types, ectopias, and abnormal dendritic spine density.

The sample examined here spanned a broad and
developmentally complex age range, from 7 to 17 years.
After controlling for subject motion, sample sizes of 24 and
20 participants per group were somewhat limited for such
a broad range. We were also limited to participants who
were relatively high functioning in order to maximize subject
cooperation during scanning. Results derived here may not,
therefore, generalize to lower-functioning ASD populations or to
populations outside of the examined age range.

CONCLUSION

DWI methods are typically restricted to examination of
white matter. However, RSI shows substantial promise for
microstructural examination of gray matter in ASD. The method
is sensitive to effects of age, suggests that group differences
may be detected with larger sample sizes, and offers greater
interpretability than the traditional diffusion tensor measures
FA and MD. The robust age effects that were found for
ND support the validity and sensitivity of multi-shell, multi-
compartment DWI for in vivo examination of gray matter in
developmental populations. While RSI is not sensitive to all types
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of cytoarchitectonic anomalies reported in the ASD literature,
measures are likely to reflect intracortical axonal content,
myelination, and caliber, which have received limited attention in
postmortem studies and can thus complement these in important
ways. In the context of fundamental advantages of in vivo studies,
which can be combined with functional (functional imaging or
behavioral) assays, provide a whole brain field of view, and can be
administered in longitudinal designs, the first findings reported
here suggest thatmultishell diffusion imagingmay be a promising
complement to postmortem neurohistology in ASD.
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A commentary on

Semi-Metric Topology of the Human Connectome: Sensitivity and Specificity to Autism and

Major Depressive Disorder

by Simas, T., Chattopadhyay, S., Hagan, C., Kundu, P., Patel, A., Holt, R., et al. (2015). PLoS ONE
10:e0136388. doi: 10.1371/journal.pone.0136388

Functional Magnetic Resonance Imaging (fMRI) records the blood oxygenation level dependent
(BOLD) endogenous contrast, a physiological surrogate for brain activity. Experimental and
analytic procedures for fMRI remained largely unchanged in the decade following discovery
of BOLD contrast, detecting localized magnitude changes in response to external stimuli.
Observations of persistent patterns of activation present under a wide variety of cognitive
conditions, now known as the default mode network (Raichle et al., 2001), led to significant changes
in data acquisition and analysis; that is, fMRI data began to be acquired in task-absent states (so-
called “rest”) and the analysis proceeded by generation of the functional connectome (Bullmore and
Sporns, 2009) that putatively supported the distributed exchange of information, and supplanted
localized activity as the basic unit of interpretation.

The functional connectome is constructed from nodes (brain regions) connected by edges
with associated strengths (edge weights) that represent functional proximity, often inter-regional
synchronicity measured by Pearson’s correlation of BOLD time-series. Other strengths can be
estimated; for example, coherence, cross-correlation (Salvador et al., 2005) or spectral mutual
information (Granger and Hatanaka, 1964; Granger and Lin, 1994; Simas et al., 2015) which may
capture alternative properties of the connectome. With this approach, a large-scale functional
organization of the brain has been proposed (Bota et al., 2015) and many common mental health
disorders linked to the vulnerability of particular topological elements of the connectome (Crossley
et al., 2014).

Through whatever means these graphical networks are generated, complex network analysis can
be applied to characterize the topography and thus the presumed flow or exchange of information
that the network represents (Watts and Strogatz, 1998; Barabási and Albert, 1999; Barrat et al.,
2008). Examples are replete in natural and man-made systems: computer networks, transport
infrastructure, social and ecological relationships, and microstructures of the central nervous
system. Up to now, complex analysis of the functional connectome has been dominated by
characterization with parameters derived from a graphical network that is sparse and frequently
binary (Cao et al., 2014). These networks are mostly simply created by a threshold on the edge
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weights, focusing then on the clique of edges with high values.
Properties like small-worldness (Watts and Strogatz, 1998;
Achard et al., 2006; Bassett and Bullmore, 2006; Simas, 2012;
Suckling et al., 2015) can be estimated, implicitly assuming that
information flows preferentially and most efficiently along paths
with the fewest edges.

The role of “weak” edges has arguably been underrepresented
in the complex analysis of the functional connectome (Suckling
et al., 2015), although sociological theory has long recognized
their central role in the distribution of information through
friendship networks (Granovetter, 1973, 1983). Moreover, the
complete transfer of information via shortest paths, i.e., the
fewest edges between two nodes, is only possible if there is
available a map of the connectome available to plan the most
efficient routes, in the same way as a traveler has a map of the
metro to efficiently navigate a city. It seems unlikely that the

FIGURE 1 | Semi-metric analysis Algorithm on rs-fMRI with Pearson’s correlation.

brain has to hand a representation of its own connectome, even
more so given the connectome is time varying (Hutchison et al.,
2013) (what is often measured by the functional connectome is
a time average). More likely is that information is transferred
across the entire, fully-connected network taking advantage of
the proletariat of weak edges, with broadcast dynamics a potential
strategy for dissemination. Nevertheless, the shortest path is a
good starting point for a more expansive conceptualization.

Networks that are not transitive with edge weights
representing proximities have homologs in the isomorphic
distance space that are semi-metric (Klir and Bo, 1995; Simas
and Rocha, 2015) (Figure 1). In other words, there are edges
in the distance space that violate the triangle inequality when
enforced by distance closure . Thus, it is possible to distinguish
a metric edge from a semi-metric edge by determining whether
the shortest path is the direct path between nodes, or if it is via
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a circuitous route (and there may be more than one) involving
additional nodes. This is a common phenomenon; for example,
although it might be difficult to communicate directly with
someone with whom you have no direct relationship, it is
possible to transfer messages through intermediaries with whom
you are mutually acquainted.

A semi-metric path in the functional connectome with edge
weights estimated by Pearson’s correlation between regional
BOLD time-series, may be interpreted as the two regions
synchronously co-activating along with all other regions involved
the circuitous paths (Simas et al., 2015) (Figure 1). That is,
there is a dispersion of communicability across the regions.
Complementarily, metric connections do not have the significant
involvement of other regions, and information exchange is
constrained to the two regions. All non-trivially organized
networks have some degree of semi-metricity, and in the healthy
human functional connectome derived with Pearson’s correlation
they form around 80% of all the edges (Simas et al., 2015). There
is also evidence that the degree of semi-metricity (i.e., transitivity)
in anatomical networks predicts functional connectivity (Goñi
et al., 2014).

Semi-metric analysis of the functional connectome (Figure 1)
is sensitive and specific to psychopathologies (Peeters et al., 2015;
Simas and Rocha, 2015; Simas et al., 2015; Suckling et al., 2015).
Both positive and negative deviations in the global proportion of
semi-metric edges, relative to neurotypical individuals, have been
observed in Autism and Major Depressive Disorder respectively
(Simas et al., 2015), occuring consistently across individuals in
similar functional connections. Psychosis was also exclusively
associated with only positive changes to semi-metricity, the
severity of symptoms related to the magnitude of change (Peeters
et al., 2015). However in Alzheimer’s disease, both directions of

effect were observed, with highly idiosyncratic patterns of change

(Suckling et al., 2015). Together, these studies suggest that there
exists an optimum value of semi-metricity both globally and
locally that is associated with healthy brain function, and that
disorders have their own particular pattern of change relative to
control samples.

The human brain is the most complex system known.
The evidence and analytic models to measure and predict its
form and function have evolved toward an understanding
of brain as a network of unceasing communication. Current
tomographic technologies, like fMRI, limit the detectable time
resolution and we are therefore only beginning to understand
the topology of the connectome and how it might form the
substrate for cognition and psychopathologies. Semi-metricity,
and more generally the inclusion of all the brain’s connections,
is a next step toward a richer description of the functional
topology and, subsequently, simulation and measurement
of its complex dynamics and inter-regional information
transmission.
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From the time of birth, a newborn is continuously exposed and naturally attracted to

human voices, and as he grows, he becomes increasingly responsive to these speech

stimuli, which are strong drivers for his language development and knowledge acquisition

about the world. In contrast, young children with autism spectrum disorder (ASD) are

often insensitive to human voices, failing to orient and respond to them. Failure to attend

to speech in turn results in altered development of language and social-communication

skills. Here, we review the critical role of orienting to speech in ASD, as well as the

neural substrates of human voice processing. Recent functional neuroimaging and

electroencephalography studies demonstrate that aberrant voice processing could be a

promising marker to identify ASD very early on. With the advent of refined brain imaging

methods, coupled with the possibility of screening infants and toddlers, predictive brain

function biomarkers are actively being examined and are starting to emerge. Their timely

identification might not only help to differentiate between phenotypes, but also guide

the clinicians in setting up appropriate therapies, and better predicting or quantifying

long-term outcome.

Keywords: ASD, MRI, EEG, language development, voice, auditory processing, toddler, infant

INTRODUCTION

Autism, a term initially introduced by Kanner (1943) and almost at the same period by Asperger
(1944), is a pervasive disorder of neurodevelopment with an early onset. According to the most
recent census, autism affects up to 1 in 68 children (1.5%) in the United States (Baio, 2014).
ASD is characterized by impairments in core areas of cognitive and adaptive function, social
interactions, and communication (American Psychiatric Association and American Psychiatric
Association. Dsm-5 Task Force, 2013). Individuals with ASD show a reduced interest in socially
relevant stimuli (McPartland et al., 2011; Pelphrey et al., 2011; Chevallier et al., 2012; Kohls et al.,
2012), tend to avoid eye-contact with their immediate surrounding (Senju and Johnson, 2009;
Elsabbagh et al., 2012; Jones and Klin, 2013), and show repetitive behaviors and restricted interests
(Turner, 1999; Watt et al., 2008; Arnott et al., 2010). Moreover, affected children often present
language delay, with deficits in expressive and receptive language skills (Hudry et al., 2010; Eigsti
et al., 2011; Mody et al., 2013; Simms and Jin, 2015). Multiple causes are implicated in autism
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and recent accounts indicate the presence of abnormal
development occurring at the cellular and molecular levels
during prenatal life (Stoner et al., 2014; Baron-Cohen et al., 2015),
with a clear impact of genetic, neurobiological, environmental
factors, and combinations thereof (Geschwind and Levitt, 2007;
Abrahams and Geschwind, 2010; Betancur, 2011; Zhubi et al.,
2014; Robinson et al., 2015). One of the core domains that is
particularly impaired and that constitutes a hallmark feature in
autism is language. Behaviorally, children with autism do not
orient naturally to vocal stimuli as typically developing (TD)
children do (Dawson et al., 2004; Kuhl et al., 2005). They often
show a reduced sensitivity to human voices, but are responsive
to other non-vocal stimuli (Klin, 1991, 1992). This would suggest
that the neural mechanisms underlying the orientation to voices
and their processing might not develop in the same way as in TD
individuals. Currently, the exact time when the developmental
trajectory of the brain systems implicated in human voice
processing starts to deviate from a normal path is unknown,
but recent neuroimaging results that we discuss below suggest
the presence of differences already from the age of 2 years (e.g.,
Lombardo et al., 2015).

Neuroimaging provides an excellent window to better
understand the neural bases of speech and language
abnormalities in young children with ASD. Differences in
brain anatomy have been investigated using structural magnetic
resonance imaging (MRI); patterns of changes to structural
connectivity have been examined using diffusion tensor imaging
(DTI); changes in cortical activity measured using functional
MRI (fMRI); and altered spatio-temporal brain dynamics
quantified using high-density electroencephalography (EEG).
Despite the fact that all these techniques are non-invasive, their
use in children involves numerous challenges (de Bie et al.,
2010; Raschle et al., 2012). Perhaps the most noteworthy of
these challenges is the requirement for the child to remain still
for extended periods of time, otherwise creating difficulties
for placing the electrode caps on a young child’s head in
EEG experiments, or leading to movement artifacts in MRI
acquisitions. Nonetheless, recent years have seen practical and
methodological advancements, which tremendously improved
the feasibility of neuroimaging research studies in young
children (in particular in the MRI field). For example, mock MRI
scanning facilities are increasingly used to prepare preschoolers
and school-aged children for a successful real MRI acquisition
(Cantlon et al., 2006; Epstein et al., 2007; de Bie et al., 2010;
Nordahl et al., 2016). Although initial studies of infants and
toddlers used anesthesia or mild sedation (e.g., Boddaert et al.,
2004a; Fransson et al., 2007), protocols for obtaining MRI
acquisitions during natural sleep have been proposed for young
children with ASD (e.g., Nordahl et al., 2008; Ortiz-Mantilla
et al., 2010; Eyler et al., 2012; Shen et al., 2013; Lombardo
et al., 2015). Scanning during natural sleep allows to study
at the functional and structural levels how the brain systems
implicated in human speech and language processing are
developing in very young infants and toddlers and to detect
early biomarkers for ASD. We will discuss how these recent
neuroimaging studies performed in very young children with
ASD or at risk have begun to reveal impairments at multiple

levels in the brain systems implicated in speech and language
processing.

In EEG, the experiments are generally performed during
wakefulness (see Figure 1; e.g., Boersma et al., 2013; Kuhl et al.,
2013; Seery et al., 2013, 2014). The EEG field has also seen
recent methodological advancement. Modern electrical source
estimations of high density EEG now reach an approximation in
the whole brain of the 3-D distribution of the neuronal activity
at each moment in time (Michel et al., 2004; Brunet et al., 2011;
Michel and Murray, 2012; Custo et al., 2014) and have been
shown to represent stable and reliable estimates when compared
with intracranial recordings, lesions and animal studies and other
neuroimaging methods (Pittau et al., 2014 for review). For this
reason, EEG studies of infants at risk and toddlers with ASD
should provide source estimations when possible as they may
add valuable information regarding how they differ in their
early brain development compared to their TD peers. Improving
the precision of source localization by using individual MRI
scans of infants/toddlers or age-appropriate template MRIs is
also possible. Their estimation in normally and abnormally
developing infants/toddlers (or those at risk) can subsequently
be compared with results from available fMRI experiments. This
is important as most fMRI experiments are currently being
performed in a sleep state while EEG experiments are mostly
being conducted in awake participants. Finally, compared to the
EEG experiments using a traditional voltage waveform analysis
approach and that will be reviewed here, electrical neuroimaging
methods are reference-independent and take into account the
additional information of multichannel electrodes recordings.
As such, they avoid the traditional statistical pitfalls inherent
to traditional voltage waveform analysis (see Murray et al.,
2008 for discussion). So-called “microstate” analyses are also
available, allowing to identify dominant state topographies in
spontaneous EEG recordings acquired in young infants and
toddlers with ASD (Koenig et al., 2002; Lehmann and Michel,
2011). These methods have been successfully applied on EEG

FIGURE 1 | Example of an EEG set-up with a young child. A video is

displayed on a standard screen, and the child is wearing a 129 electrodes cap.

Sounds are displayed via external speakers.
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data acquired in clinical population of children and young
adolescents (Rihs et al., 2013; Berchio et al., 2014; Tomescu
et al., 2014) and could be used to examine the developmental
trajectories of infants/toddlers with ASD and infants at risk for
autism.

While other reviews of auditory and speech processing
impairments have been published focusing on older children and
adults (e.g., Haesen et al., 2011; Kujala et al., 2013), here, we
provide an overview of some of the most recent neuroimaging
experiments (primarily fMRI and EEG) of very young children
(before 4 years of age) with ASD investigating impairments
in the brain systems implicated in human vocalizations and
henceforth speech and language processing (e.g., Kuhl et al.,
2013; Lombardo et al., 2015) and in at-risk populations (before
the age of 2) to identify early endophenotypes (Seery et al.,
2013, 2014; Blasi et al., 2015). We will principally review recent
experiments that have used voice related auditory stimuli (e.g.,
sentences, words, syllables). After a brief description of the
language development in the typically developing individual
during the first year, we will summarize part of the clinical
body of evidence pointing to altered speech and language
development in very young children with ASD and in infants at
high-risk for ASD. Afterwards, we describe the neural systems
within the superior temporal cortical regions implicated in
human voice processing and their development in the TD
brain and present functional evidence in adults and young
adolescents indicating the presence of an aberrant form of voice
processing. Next we focus on the cross-sectional studies using
fMRI and EEG which were conducted at specific time points
during infancy/toddlerhood. They address group differences
in early speech and language-related processing within these
voice areas within superior temporal cortical regions along
other language related brain neural systems. The results thereof
indicate the presence of structural, functional, and connectivity
group differences being already present in infancy and/or
toddlerhood. We finally highlight recent results from the few
existing prospective fMRI and EEG studies which employed a
longitudinal design and demonstrated by using voice related
auditory stimuli that aberrant voice processing is not only a
feature present in older children and adults with ASD but also
a promising candidate to identify ASD very early on during the
development.

LANGUAGE DEVELOPMENT IN TYPICALLY
DEVELOPING INDIVIDUALS

The different steps involved in early speech perception and
production have been extensively examined (see Figure 2; Kuhl,
2004, 2010 for reviews). TD newborns are rapidly attracted by
human voices within the first days of life (Cheng et al., 2012).
At 1 month of age, they are already responsive to speech sounds
(Eimas et al., 1971). Language-related brain areas are activated
in response to human speech sounds to some extent in 3 month
old infants, well before the onset of speech production (Dehaene-
Lambertz et al., 2002, 2006), while cerebral specialization for the
human voice over other sounds emerges over the first 6 months

of life (Minagawa-Kawai et al., 2011; Lloyd-Fox et al., 2012). By
4 months, infants know that speech conveys information that
relate words to physical objects (Marno et al., 2015). Around
5 months, they can recognize the sound patterns of their own
name, and between 6 and 9 months they are capable of correctly
directing their gaze to named pictures suggesting the presence
of some form of word comprehension (Mandel et al., 1995;
Tincoff and Jusczyk, 1999, 2012; Bergelson and Swingley, 2012).
With respect to pre-linguistic production skills, between 0 and
2 months, newborns first produce vegetative vocalizations (non-
speech sounds such as burps, coughs, and cries). At 3 months,
infants start to produce vowel-like sounds followed by the onset
around 6 months of a babbling phase that becomes robust by
10 months of age. Canonical babbling is a precursor to the
emergence of the first words production, which are generally
produced by the end of the first year. During the first year of the
infant’s development and the following years into toddlerhood,
the human voice is a natural driver for the infant’s language skills
development.

LANGUAGE DEVELOPMENT IN TODDLERS
WITH ASD AND INFANTS AT RISK

In individuals with autism, the degree of impairment and
delay in language greatly varies from one person to another,
with a tremendous heterogeneity in early language development
and later clinical outcomes (Mitchell et al., 2006; Geurts and
Embrechts, 2008; Luyster et al., 2008; Tager-Flusberg et al.,
2009; Lenroot and Yeung, 2013; Lord et al., 2015). Some
toddlers present substantial delay or deficits while others have
a typical early language development or mild delay and catch
up. The former are children that often show the most severe
and pertaining symptoms in the long term, compared to those
with relatively preserved language abilities (Fein et al., 2013;
Kasari et al., 2013; Tager-Flusberg and Kasari, 2013). Converging
clinical estimates indicate that more than half of the children
with ASD will have persisting language impairments throughout
their lifespan (e.g., Anderson et al., 2007; Pickles et al., 2014).
So far, the heterogeneity of early language development and the
neurodevelopmental basis for this variability in clinical outcomes
are not fully understood. In this review, we also discuss how
neuroimaging studies examining the neural bases of early human
speech and language impairments in autism have started to be
used to predict outcome in affected children.

In toddlers with ASD, language difficulties are often present
both when they are spoken to (i.e., receptive language) and
when they express themselves (i.e., expressive language; Hudry
et al., 2010; Simms and Jin, 2015). Indeed, parents of children
diagnosed with ASD often sought medical advice because of
strong concerns related to language development (Dahlgren and
Gillberg, 1989; De Giacomo and Fombonne, 1998; Wetherby
et al., 2004; Herlihy et al., 2015). Retrospective interviews
with the families, analysis of retrospective video birthday tapes
recorded at 12 months of age of children diagnosed with
ASD, as well as prospective accounts of infants at risk often
report an unresponsiveness to name and a general lack of
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FIGURE 2 | Illustration of the changes occurring in speech perception and production in typically developing human infants during their first year of

life (adapted from Kuhl, 2004). Red dashed rectangles indicate early expressive and receptive language delays/impairments (that is, unresponsiveness to name,

delayed canonical babbling, increased non-speech productions, decreased speech-like vocalization, delayed occurrence of the first words) known to be sensitive

indicators of an increased risk for later being diagnosed with ASD

orientation to human voices (Osterling and Dawson, 1994;
Baranek, 1999; Yirmiya et al., 2006; Nadig et al., 2007; Oner
et al., 2014; Stenberg et al., 2014). In sum, a large body of
clinical studies to date point to expressive and receptive language
deficits already in the first year of life for young children
who will subsequently develop ASD during toddlerhood,
suggesting that the neural systems responsible for orienting
to and processing human vocalizations are altered very early
on.

Infants at risk for autism are increasingly studied
prospectively, to measure whether the abilities to understand
language described above are already altered in infants who
will develop autism later on. Siblings of a child with ASD
have a very high risk to develop ASD, ∼20 times higher
compared to infants with no family history of ASD (Rogers,
2009; Ozonoff et al., 2011). In a context where early intensive
non-pharmacological interventions are critical to improve the
long term outcome of affected individuals (Dawson, 2008;
Dawson et al., 2010; Klintwall et al., 2013), it is instrumental
to detect ASD as early as possible, (see also Schaer et al.,
2014 for a review). As such, studies of high-risk infants allow
to map the early developmental trajectories of infants who
will develop ASD, and to highlight endophenotypes of ASD

(Viding and Blakemore, 2007). Numerous studies of high-risk
infants focused on early language development as delays in
communication and language development become apparent
early in life, even before the first year or shortly thereafter.
Differences in vocal production (such as consonant inventory,
presence of canonical syllables, and non-speech vocalizations),
between low-risk and high-risk infants between 9 and 12
months has been associated with later outcomes at 24 months
(Paul et al., 2011; Jones et al., 2014 for review). Another
prospective study of infants at risk tested at target ages 6, 14,
and 24 months and who were followed up and diagnosed with
ASD at 24 months indicates that language delays or deficits
are already observable at around 14 months of age (Landa
and Garrett-Mayer, 2006). A recent retrospective study of
toddlers with ASD reported low rates of canonical babbling and
vocalization frequency between 9 and 12 months and 15–18
month compared to age-matched TD peers, several months
before a diagnosis of ASD was made (Patten et al., 2014). As
a result, a delay or deficit in language development very early
on has become integral part of the red flags indicating a greater
susceptibility for developing autism (Barbaro and Dissanayake,
2009; Zwaigenbaum et al., 2013; see Figure 2, red dashed
rectangles).
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THE VOICE AS A UNIQUE AUDITORY
STIMULUS IN THE TYPICALLY
DEVELOPING BRAIN

The human voice is clearly one of the most salient and important
auditory stimuli in our acoustic environment. It conveys both
linguistic and extra-linguistic information. It delivers speech
information permitting us as individuals to recognize the others
and to attribute emotional states to them (Belin et al., 2000;
Ethofer et al., 2009). While language is generally thought to
be processed in specialized brain areas such as the inferior
frontal gyrus (IFG; also known as Broca’s area), the superior and
middle temporal gyruses (STG, MTG, also termed Wernicke’s
area) and angular gyrus, voice selective areas have been located
bilaterally in the upper bank of the middle superior temporal
sulcus (STS) over the temporal poles (see Figure 3A). Their
existence has particularly been highlighted by fMRI experiments
in the adult brain by comparing the cortical activation patterns
induced by vocal vs. non-vocal sounds (Belin et al., 2000,
2004; Kriegstein and Giraud, 2004; Belin, 2006, for review;
Latinus and Belin, 2011; Deen et al., 2015; Pernet et al., 2015).
When a voice is perceived, the brain begins by a low-level
analysis of the acoustic features involving sub-cortical nuclei
and primary auditory cortical regions. Subsequently, the voice
is processed during a voice-specific stage where its structure is
encoded. Three types of vocal information are then extracted
and further processed in partially separable but functionally
interacting pathways: the speech content, the affective content
and the vocal identity (see Figure 3B). Early studies of very
young infants have shown that voice sensitive cortices within
the temporal areas develop as a voice selective brain system
between 4 and 7 months of age in the typically developing
brain and to become responsive to the quality of the voice
during speech (emotional voice prosody) by the age of 7 months
with a right hemispheric dominance (Belin and Grosbras, 2010;
Grossmann et al., 2010; Blasi et al., 2011; Lloyd-Fox et al., 2012).
A recent study of typically developing preschoolers (mean age
= 5.8 years) compared voice-specific vs. speech-sound specific
functional brain activity and demonstrated that the right STS
already works as a specialized temporal voice system (Raschle
et al., 2014), similarly to what has been reported in the adult brain
(Belin et al., 2002; Belin and Zatorre, 2003; von Kriegstein et al.,
2003).

ABERRANT VOICE PROCESSING IN
OLDER CHILDREN AND ADULTS WITH
ASD

Difficulties to speak and to interact socially in an appropriate
manner are central traits of autism and have been linked to
abnormal processing of social information in both the visual
and auditory modalities (e.g., Dawson et al., 1998, 2004; Klin
et al., 2009; Chevallier et al., 2012 for review). Children and
adults with ASD often tend to ignore human vocalizations
in their surrounding but are responsive to other non-vocal
stimuli indicating a detachment from their social environment

FIGURE 3 | (A) Temporal voice areas (TVA). The TVA (represented here by the

red dots) are mostly located along the middle and anterior parts of the superior

temporal sulcus (STS) bilaterally over the temporal plan (represented here in

green). (B) A model of voice perception. After a stage of voice structural

encoding constrained to vocal sounds, three partially dissociable functional

pathways process the three main types of vocal information: speech, identity,

and affect (adapted from Belin et al., 2004).

(Klin, 1991, 1992; Kuhl et al., 2005). Early acquisition of
language capacities is closely intertwined to social function in
typically developing children and children on the spectrum (e.g.,
Goldstein et al., 2003; Kuhl et al., 2003; Norbury et al., 2010).
Although, it is still not established why many individuals with
ASD are often insensitive to human vocalizations, anomalies
within voice selective areas have been highlighted in older
children and adults with ASD. Using fMRI, Gervais and
colleagues showed in a seminal study that adults on the
spectrum (mean age = 25 years) failed to activate voice selective
regions of the STS but showed similar activation patterns
to the comparison group in response to non-vocal sounds
(Gervais et al., 2004). This finding suggested an aberrant form
of processing with respect to auditory information having
a social content such as a voice does. This would suggest
that a sound with a social content might not be adequately
processed, most likely due to the abnormal development
of cerebral regions implicated in the analysis of the social
content of auditory stimuli (Gervais et al., 2004). Decreased
gray matter volume in the bilateral voice specific STS have
been observed in 10 year old children with ASD (Boddaert
et al., 2004b). Abrams and colleagues hypothesized that this
may be the consequence of individuals with ASD having
impaired function of emotional and reward systems which in
turn prevents them from engaging with acoustic information
with a high social content such as speech stimuli (Abrams
et al., 2013). In order to test their hypothesis, Abrams and
colleagues scanned and compared 20 young children with
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ASD to age- and intelligence quotient-matched TD controls
(mean age = 9.8 years) using a resting-state fMRI protocol.
By looking at the intrinsic functional connectivity in the
voice-selective posterior STS (pSTS) bilaterally, they found
the presence of underconnectivity between the left-hemisphere
pSTS and the bilateral ventral tegmental areas in children
with ASD. This was also the case for other regions such as
the nucleus accumbens, left-hemisphere insula, orbitofrontal,
and ventromedial prefrontal cortices. Moreover, diminished
connectivity was evident between right-hemisphere pSTS and the
orbitofrontal cortex and amygdala.

An important aspect of the study by Abrams and colleagues
was that the degree of underconnectivity between voice-selective
cortex and reward pathways predicted symptom severity for
communication deficits in children with ASD, thus providing
a connectivity biomarker for this specific group of patients.
The study of the connectivity profile using a resting-state
fMRI protocol during infancy and toddlerhood is now needed
to further our understanding regarding how the functional
connectivity between reward pathways and voice- and speech-
related brain areas develops. Several neuroimaging studies
performed in high-functioning older children and adults with
ASD point to the presence of impairments in the neural
basis of language processing in general (e.g., Gaffrey et al.,
2007; Knaus et al., 2008; Herringshaw et al., 2016 for recent
review). These experiments often including an overt task have
revealed the existence of abnormal frontal and/or temporal
responses during language processing tasks compared to TD
individuals and reversed or reduced laterality within fronto-
temporal language regions (e.g., Boddaert et al., 2003; Flagg
et al., 2005; Kleinhans et al., 2008; Knaus et al., 2010;
Lindell and Hudry, 2013; Herringshaw et al., 2016). In sum,
experiments that used language tasks or rest scanning in
the awake state indicate the presence of aberrant processing
of human vocalizations in older children and adults with
ASD.

In the following sections, we summarize the experiments
investigating the neuronal underpinnings of human speech and
language abnormalities during early periods of development:
infancy and toddlerhood. These recent experiments have mostly
used auditory speech stimuli which implicitly require analysis
of the human voice. Importantly, several studies have included
low-functioning toddlers with ASD or studied infants at high-
risk for ASD. In contrast to experiments performed with
older high-functioning children and adults with ASD and that
include a task, scanning of very young infants is performed
during natural sleep, at rest in the absence of an overt
task or by passively presenting speech-stimuli (e.g., sentences,
words, syllables). Overall, findings from these studies indicate
that the brain systems implicated in human speech and
language processing follow a different developmental pathway
in individuals with ASD when compared to TD individuals
very early on in the development already. We begin by a
summary of the structural and functional differences that
have been found in young toddlers with ASD and infants at
risk.

STRUCTURAL DIFFERENCES IN
TODDLERS WITH ASD AND INFANTS AT
RISK

Several studies suggested brain overgrowth during the first year
of life in toddlers with ASD (e.g., Courchesne et al., 2001,
2003, 2011; Redcay and Courchesne, 2005; Hazlett et al., 2011;
Nordahl et al., 2011; Shen et al., 2013). For example, Sparks and
colleagues measured an increased brain volume in toddlers with
ASD (aged 3–4 years) compared to aged-matched TD controls
and developmentally delayed (DD) children (Sparks et al., 2002).
Longitudinal measurements indicate the presence of gray and
white matter cerebral overgrowth in toddlers at 2 years (Hazlett
et al., 2005). In a longitudinal study, Schumann and colleagues
followed up toddlers and school aged children with ASD (1.5
years up to 5 years of age). They found both gray and white
matter enlargements by 2.5 years of age in fronto-temporal
regions along with cingulate cortices, regions related but not
limited to language development (Schumann et al., 2010). A
global increase in gray matter volumes in toddlers with ASD aged
between 2 and 3 years compared to DD toddlers has recently
been reported (Xiao et al., 2014). The locus of this difference
manifested regionally in the right STG, a cortical region known
to be involved in spoken language comprehension (Lattner et al.,
2005). In older children with ASD, this locus has been shown
to be enlarged to aged match controls (mean age = 13.5 years;
Jou et al., 2010) and to exhibit a different pattern of activation
during speech processing compared to TD adolescents (mean age
= 12 years; Lai et al., 2011). Other studies indicate the presence of
structural anomalies within language-related brain areas in older
children and adults (e.g., Prigge et al., 2013; Itahashi et al., 2015;
Lai et al., 2015). It is hypothesized that this early brain overgrowth
during infancy and toddlerhood in ASD is followed by a period
of decline in brain size from childhood to adulthood (Courchesne
et al., 2011; Lange et al., 2015).

Diffusion imaging studies have also revealed the presence
of widespread disruption of white matter integrity in long-
range and short-range connections in toddlers, older children
and adults with ASD (see Hoppenbrouwers et al., 2014; Conti
et al., 2015 for reviews). For example, accelerated white matter
maturation has been reported in a small sample of seven
participants aged between 1.8 and 3.3 years (Ben Bashat et al.,
2007). Altered white matter integrity has also been found in
toddlers with ASD (mean age= 3.2 years; Weinstein et al., 2011).
Xiao et al. (2014) showed altered structural brain connectivity
in multiple regions that have been related but not limited
to language functions such as the posterior cingulate cortex,
subregions of the limbic lobes as well as the corpus callosum
in toddlers with ASD aged between 2 and 3 years (Xiao et al.,
2014). It even appears that white matter anomalies might develop
before the first year in infants who are later diagnosed with ASD.
Wolff and collegues observed abnormalities in white matter fiber
tracts in infants at risk (at 6 months) and who were diagnosed
at 24 months (Wolff et al., 2012). In a recent study of infants
at high-risk for ASD and diagnosed at 24 months, white matter
connectivity abnormalities were present specifically over Broca’s
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area in the frontal lobes, and more generally in the temporal,
parietal, occipital lobes as compared to both low-and high-risk
infants not classified as ASD (Lewis et al., 2014).

Anatomical data indicate a period of early brain overgrowth
(between 1 and 5 years) followed by normalization during
adolescence. Structural connectivity experiments also report a
developmental shift from greater structural connectivity in very
young children with ASD to lower connectivity in older children
(see Hoppenbrouwers et al., 2014; Conti et al., 2015 for recent
discussions). These alterations impinge on acquiring normal
language functions and lead to other higher-order cognitive,
social, and communicative functions deficits. However, it is still
unclear how those differences relate and can yet reflect the early
language development heterogeneity inherent to autism. The
field is also currently hampered by the widespread methodology
differences in terms of subject inclusion criteria (high vs.
low functioning autism), control groups, size of cohorts, age
range, neuroimaging methods and parameters. Future cross-
sectional and longitudinal experiments spanning early childhood
to adulthood are necessary including larger sample size. Only
then it will be possible to get a clearer picture within this complex
and increasingly expanding field of research.

FUNCTIONAL STUDIES IN TODDLERS
WITH ASD USING VOICE-RELATED
AUDITORY STIMULI

Brain abnormalities underlying human voice processing during
toddlerhood have also been found. A seminal EEG experiment
performed by Kuhl et al. (2005) indicated the presence of
different event-related potential (ERP) response pattern to speech
stimuli in toddlers with ASD compared to TD (mean age =

3.5 years). In this experiment, toddlers were passively presented
with standard and deviant phonemes. In individuals with typical
development, contrasting the brain responses that are produced
by the deviant sound with the ones produced by the standard
sound causes a mismatch negativity (MMN). The MMN is
a robust index of automatic sound discrimination (MMN,
Näätänen, 1995, 2003 for reviews). In toddlers with ASD, there
was no evidence for an MMN, whereas in TD the MMN
was present. Using an auditory preference test, the group of
toddlers with ASD was subdivided between those who preferred
human vocalization (i.e., motherese speech sounds) and those
who preferred non-speech analogs. An MMN appeared in the
group that preferred motherese sounds similarly to what was
found in TD toddlers while toddlers with ASD who preferred
the non-speech sounds still did not exhibit an MMN. These
findings are important as they reveal a link between early social
preferences and early language processing skills in toddlers
with ASD.

A functional study by Redcay and Courchesne (2008) found
that the brain systems of speech perception were responding
differently to speech stimuli in toddlers with ASD compared
to TD toddlers. In a cross-sectional experiment with a small
sample size, the authors scanned toddlers aged between 2
and 3 years using a natural sleep fMRI experimental design.

They recorded brain activity when toddlers were asleep and
listened to normal speech of a human voice (forward and
backward speech stimuli), and the ones from toddlers with
ASD. Results indicated the recruitment of different regions and
with a different laterality dominance. Specifically, toddlers with
ASD exhibited hypoactivation of many regions traditionally
recruited during early language acquisition in comparison to
those with TD, suggesting that at that age toddlers with ASD
are already on a deviant developmental trajectory characterized
by a greater recruitment of right hemispheric regions during
speech perception (Redcay and Courchesne, 2008). The same
research group then performed an fMRI experiment where they
increased their sample size and included even younger children
(aged between 12 and 48 months; Eyler et al., 2012). Using a
prospective, cross-sectional design this time, 80 toddlers listened
to a bedtime story during their sleep (speech sound stimuli
from a human voice). Toddlers were also followed up to get
record of their evolution and to ensure confirmation of later
ASD diagnosis. A different brain pattern of brain activation was
found between toddlers who were at risk and who were later
diagnosed with ASD and the toddlers who followed a normal
development path. Specifically, toddlers with ASD had deficient
left hemisphere responses to speech sounds with an abnormal
right-lateralized temporal cortical response to language; this
deficit worsened during growth to become most severe by the
age of four. Contrarily, TD toddlers had a reversed pattern
of brain activity and lateralization with the presence of more
temporal cortical responses and a left lateralized pattern of
brain activation that became stronger with development. Two
important observations can be made. Firstly, lateralization in
response to auditory speech sounds differs between groups.
Abnormal lateralization in response to language has also been
reported in experiments performed in older children and adults
with ASD (e.g., Kleinhans et al., 2008; Minagawa-Kawai et al.,
2009). Secondly, weaker brain responses to speech sounds over
the temporal pole were present in the ASD group, suggesting the
presence of an early specific and abnormal brain response pattern
to speech sounds in toddlers with ASD (Eyler et al., 2012).

FUNCTIONAL STUDIES IN INFANTS AT
RISK USING VOICE-RELATED AUDITORY
STIMULI

In a recent study, Seery et al. (2013) suggested that this atypical
lateralization is an ASD endophenotype already observable
during the first year of life. Comparing infants at risk for ASD
with low-risk infants aged between 6 and 12 months, the authors
reported significant group differences in the development of
lateralized ERP responses to speech (using consonant-vowel
auditory stimuli). More specifically, the low-risk group displayed
a lateralized response to the speech sounds whereas the high-
risk group did not (Seery et al., 2013). In a subsequent study,
the same research group found atypical ERPs to repeated
speech sounds in 9 month old infants at risk (Seery et al.,
2014). Atypical lateralization of the ERP to words at 2 years
of age has also been observed in ASD toddlers with poor
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social skills (Kuhl et al., 2013). In a very recent sleep fMRI
study that also included behavioral assessment of parent-infant
interactions, Blasi et al. (2015) compared cortical responses
between emotional voices and environmental sound stimuli.
They found that high-risk infants for ASD (aged between 4
and 7 months) did not show this early specialization suggesting
the presence very early on of atypical neural responses to
human voice with and without emotional valence in at-
risk populations, at least (Blasi et al., 2015). Taken together,
these results indicate that during early development, speech,
and language-critical areas over the temporal poles do not
show the same brain responses to voice related stimuli as
observed in TD young individuals. An absence or atypical
lateralization of brain responses and functional hypoactivation
in response to speech related content were already reported in
infants at risk and toddlers with ASD. Moreover, voice-selective
cortices in populations show lesser degree of specialization
already in infants at risk. In sum, similarly to the experiments
performed in high-functioning older children and despite
the use of different experimental conditions, abnormalities in
lateralization and aberrant functional activation during voice
processing are already found very early on, during infancy and
toddlerhood.

DYSFUNCTIONAL CONNECTIVITY IN
TODDLERS WITH ASD AND INFANTS AT
RISK USING VOICE-RELATED AUDITORY
STIMULI

Aside from the differences in functional activation described
in the previous section, extant functional connectivity studies
using fMRI or EEG with voice-related stimuli have shown
altered connectivity between brain regions involved in language
processing in young children with autism. Using fMRI, Dinstein
and colleagues demonstrated reduced inter-hemispheric
synchrony across language brain areas in young toddlers
with ASD (Dinstein et al., 2011). They recorded spontaneous
brain activity in three groups of toddlers during natural sleep
(TD, ASD, and language delay). Seventy-two participants
aged between 12 and 46 months (mean age = 29 months
for the toddlers with ASD) were presented with auditory
stimulation containing words, pseudo words, sentences, tones,
or environmental sounds. The aim was to test for differences in
synchronization between various brain regions between the three
groups and explore a possible relation with the development of
early autistic behavioral symptoms within the group of toddlers
with ASD. Stimulus-evoked responses were regressed out so as
to only keep spontaneous fMRI fluctuations in the data. In doing
so, the authors controlled that any differences in synchronization
between the groups were not due to differences in auditory-
evoked responses between participants. Results indicated the
presence of weaker interhemispheric synchronization between
the IFG and the STG, two brain areas mediating speech and
language processing in the ASD toddler group as compared to
the two other groups. Moreover, analyses within the group of
toddlers with ASD revealed that the synchronization strength

was highest in those with overall good verbal capacities and was
weakest in those with impaired verbal capacities. This indicates
that, the functional connectivity between regions implicated in
language processing has a different pattern compared to TD
peers in toddlerhood already (Dinstein et al., 2011).

Using EEG, aberrant reduced functional connectivity has
even been reported before the onset of any ASD symptoms,
in infants at risk for ASD (Righi et al., 2014). They presented
speech sounds (syllables) in the awake state, while EEG was
concomitantly acquired in infants at high-risk and infants at
low-risk for ASD. Acquisitions were performed at 6 and at
12 months of age. The participants were followed up at 36
months in order to identify which ones would develop ASD
or not. By computing the intra-hemispheric linear coherence
in the gamma frequency band, (that is, an estimation of
synchronization across brain regions) between electrodes of
interest located over the frontal and temporo-parietal regions
in the left and right hemispheres, the authors found that at 6
months, linear coherence values were similar across groups. At
12 months however, infants at high-risk and later diagnosed
with ASD showed reduced functional connectivity (that is,
lower linear coherence, and thus less integration) compared to
both infants at low-risk and those at high-risk who were not
later diagnosed with ASD. In addition, significant differences
in functional connectivity between the low-risk and high-risk
infants who did not become autistic were found, with lower
coherence values in the high-risk infant group. In contrast
to what has been previously reported in fMRI with toddlers
(Redcay and Courchesne, 2008; Eyler et al., 2012) or with EEG
in infants at-risk for ASD (Seery et al., 2013), the study did not
reveal any early group differences in hemispheric lateralization.
However, as discussed by the authors, the estimation of the
linear coherence is an approach less sensitive to stimulus-locked
activity whereas fMRI and ERPs are. As such Righi’s approach
might not have captured existing hemispheric differences. Taken
together, published functional connectivity studies examining the
early development of language related brain areas demonstrate
aberrant brain connectivity patterns in both toddlers with ASD
(Dinstein et al., 2011), and in 12 month old infants at risk
who later develop autism (Righi et al., 2014). This suggests that
aberrant wiring of the cerebral regions responsible for language
processing precede the onset of the typical autism phenotype,
and might be responsible for the early signs clinically observed in
infants who will develop ASD, such as unresponsiveness to name,
lack of orientation to human voices and delay in the development
of receptive and expressive language skills.

LANGUAGE HETEROGENEITY IN
TODDLERS WITH ASD: INSIGHTS FROM
EARLY BRAIN BIOMARKERS

Findings reviewed so far indicate early functional differences
in speech-related processing within superior temporal cortical
regions and other language-critical brain areas. The anatomical
and connectivity differences reported above in toddlers with
ASD and infants at risk for ASD mostly correspond to
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group differences. While these results are informative, they
do not permit to fully address the critical question of the
heterogeneity of early language development in ASD and its
relation to later outcome. To successfully tackle the question
of heterogeneity, research groups have started using prospective
and longitudinal designs with larger sample sizes to examine
the hypothesis that different subgroups of individuals with
ASD have different phenotypes and developmental pathways
(Kuhl et al., 2013; Lombardo et al., 2015). These studies open
avenues to better understand predictor of outcomes, as predictive
brain biomarkers that can differentiate between these subtle
phenotypes emerge (Bölte et al., 2013; Lenroot and Yeung, 2013;
Ecker et al., 2015). For instance, in a recent developmental
study, Lombardo et al. (2015) searched for early functional
neuroimaging biomarkers that would reflect the heterogeneity
observed in early language development in ASD. The authors
measured early cortical responses to speech using a prospective
sleep fMRI paradigm (participants aged between 12 and 48
months). The experiment included four different groups with TD
infants, infants with a language/developmental delay (LD/DD),
infants with ASD having a good language outcome at 4 years
of age (“ASD good”) or a bad language development outcome
(“ASD Poor”; that is, they measured developmental trajectories
of language growth over the first 4 years of life). Pre-diagnosis
fMRI brain data in response to three types of speech stimuli
(complex forward speech, simple forward speech, and backward
speech) were acquired in each participants. The aim was to
test whether early functional measures could have a predictive
value when combined with clinical-behavioral information. First,
they found that in response to speech stimuli, “ASD good”
toddlers recruited language-sensitive superior temporal cortices
in a very similar way to the control groups (that is, the non-
ASD language/developmentally delayed individuals). However,
in the “ASD poor” group, language-sensitive superior temporal
cortices were found to be hypoactive in response to the same
speech stimuli. The multivoxel activation pattern was different
to the one observed in the three other control groups indicating
a lack of functional differentiation to these speech stimuli in
the ASD poor group. Another important finding by Lombardo
et al. (2015) was that the brain response patterns to general
auditory processing was preserved in the “ASD poor” group (that
is, similar to the other control groups), whereas the brain activity
specifically related to language and speech was weaker and less
specific. For example no engagement of the left hemisphere
was found as this was the case in the three other groups. This
would suggest on the one hand a general preservation of the
neural systems devoted to general auditory processing during
infancy and on the other, the presence of a dysfunction of the
neural systems at a higher level of processing and implicated
in voice-related content leading to the aberrant processing
of auditory stimuli containing speech and language related
information. Interestingly, the connectivity between primary
auditory cortex and the reward and affective brain circuitry seems
to be preserved in high-functioning older children with ASD,
whereas connectivity between the voice structural module (see
Figure 3B) described in Belin’s model above and the reward
system is impaired, preventing the normal processing of speech

related content but allowing low-level sensory processing to
occur (Abrams et al., 2013).

The results provided by the study by Lombardo et al. are
important for several reasons. First, they indicate the presence
during toddlerhood already of brain related differences in the
neural underpinnings implicated in the processing of early voice
related auditory information and this between different subtypes
of ASD (that is, differences between ASD poor and ASD good).
Second, longitudinal measurements of pre-diagnostic clinical
behavioral information and early fMRI language and speech-
related brain responses and combination thereof was found to
have a strong predictive value in terms of determining later ASD
subgroup prognosis.

Other experiments also point to the presence of early brain
biomarkers in EEG. Kuhl et al. (2013) found that the response
pattern of ERPs to words at the age of 2 year was predictive of later
receptive language capacities at ages 4 and 6 years (Kuhl et al.,
2013). In comparison to the Lombardo et al. (2015) study where
clinical groups were subdivided based on their language skills,
Kuhl and colleagues compared the ERPs in response to words in
2 year old children that were subdivided as a function of social
symptoms, into “ASD high” (sever social symptoms) and “ASD
low” less social symptoms. Results showed only a left lateralized
brain response similar to the TD group in the “ASD low”
group. Only the single electrode where the time locked response
manifested was different between those two groups (T3 for TD
and P3 for “ASD low”). For the “ASD high” group on the other
hand, the ERP was more diffuse and right lateralized. Then, in a
second phase of the study, the authors looked at the predictive
power of their P3 effect found in the first phase for all ASD
toddlers on linguistic, cognitive, and adaptive functions at ages
4 and 6 years. For the ASD toddlers who had strong negativity
in the ERP to known words at P3 measured at enrollment, a
better outcome was observed at 6 years of age. In stark contrast,
toddlers with ASDwho did not show this ERP sensitivity at intake
had worse outcomes (that is, they showed less improvement).
Interestingly, the ERP measures to words furthermore exceeded
the predictive value of cognitive measures performed at intake.
Another important finding by this study was that the predictive
aspect of the brain response to words at age 2 years of age did
not modulate depending on the type of intensive treatments the
toddlers received. Adding another control condition with no
treatments may perhaps have added valuable information with
respect to the effectiveness of the treatments as recent evidences
indicate that early behavioral intervention is associated with
normalized patterns of EEG brain activity in the visual modality
at least (Dawson et al., 2012). Unfortunately and as mentioned
by the authors, the source localization of those differences could
not be performed. As already discussed, methods for estimating
inverse solutions are now available and it will be important in
further studies to include those when possible.

PERSPECTIVE AND FUTURE DIRECTIONS

Neuroimaging studies using exciting new approaches that
combine early brain measurements with early behavioral data
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are starting to highlight important differences in the functional
and structural wiring of the young autistic brain compared to
the TD one using auditory speech and language related stimuli.
With time, the field will hopefully see the appearance of other
experiments with larger sample sizes combined with longitudinal
measurements to subtype ASD infants according to the core
impaired dimension of early language development that was the
main focus of the present review, and of social interaction and
communication deficits that are both central hallmarks of autism.
This will help to explore the efficiency of early intervention
in correcting the developmental trajectories on the one hand,
and to tackle the question of heterogeneity inherent to autism
on the other. Ultimately this will lead to the possibility of
improving, developing and modifying therapeutic interventions
and adapting them depending to the infant’s specific needs.
Moreover, because autism cannot always be diagnosed with high
certainty before the age of 2–3 years (Zwaigenbaum et al., 2009;
Jones et al., 2014), additional prospective longitudinal studies
of high-risk populations are necessary to provide understanding
about how, when and where developmental trajectories that
result in ASD deviate from the TD young brain. These later will
in turn aid to understand the general heterogeneity observed
in early language development in autism as well as allow
early identification of toddlers who should receive intensive
therapeutic intervention. The few experiments of infants at risk
reported here indicate that brain differences in response to
human voice and its speech and language related content are
already present before the end of the first year in some cases
suggesting that aberrant voice processing could be a promising
marker to identify ASD very early on.

Achieving a better understanding regarding which neural
systems implicated in speech and language-critical processing are
impaired very early on is difficult to highlight and this for several
reasons. First, scanning individuals aged between 6 months and 3
year implies using scanning conditions with passive presentation
of stimuli most of the time. Implementing tasks that need an
engagement of the participant at such a young age is difficult
to achieve. For example asking what is voice specific vs. speech
specific has only been addressed by one study so far, which used
a behavioral task in preschool TD children aged around 6 years
(Raschle et al., 2014). In the studies discussed in this review, based
in infants and toddlers (i.e., before 4 years), the vast majority
of experiments used contrast between speech stimuli and rest,
reversed speech or other auditory stimuli (words, sentences, and
syllables). Yet, contrasting speech stimuli vs. rest activation does
not allow to determine what is specifically related to the voice
and what is related to the speech content. The question remains
open as to whether a voice specific impairment is present in
the brain of young children with ASD. Thus, future experiments
should include contrasts between voice specific vs. speech specific
brain related activity. This would allow to test whether aberrant
voice processing that has been reported in older children and
young adults is indeed a hallmark in autism very early on leading
to impairments in the social-communication language brain.
Currently there is only one experiment to our knowledge where
the brain responses to human vocalizations alone were contrasted
with non-vocal sounds in infants at risk for autism (Blasi et al.,

2015). However, the authors reported that their sample had not
been assessed for ASD at the age of 3 years yet. Further work is
thus needed to resolve this issue.

Some authors have also recently hypothesized that it is not
human speech per se that is an issue in autism but rather the
mode of communication of speech that might be challenging for
individuals with ASD. For example, recent results suggest that
the mode of presentation of human speech sounds might play
a role in speech perception in older children and young adults
with autism. In an fMRI experiments, Lai et al. (2012) passively
presented familiar human speech stimuli (spoken sentences by
parents) or song stimuli containing vocals to children with ASD
(including low functioning ones) and aged matched controls.
While brain activations were found to be different between
the children with ASD and TD during the spoken condition,
they turned out to be comparable when speech was delivered
in a sung format (Lai et al., 2012). Another study found
comparable brain activation patterns and preserved fronto-
temporal connections between children with ASD and aged
matched controls during perception of sung but not spoken
words (Sharda et al., 2015). Most of the experiments reviewed
here have shown abnormalities in lateralization and aberrant
functional activation during speech processing during infancy
and toddlerhood similarly to what has been reported in older
children and adults. However, none of them varied the mode of
presentation of the speech sounds that were always presented
in a spoken format. Interestingly, one experiment found that
toddlers with ASD (aged 2 years) who preferred motherese
speech signals (that is, a pattern of speech characterized by high-
pitch intonations) exhibit similar ERP responses compared to
aged match TD controls in a passive syllable discrimination
task (Kuhl et al., 2005). In this later, toddlers with ASD who
didn’t preferred an analog speech signal had different ERP
responses compared to TD toddlers. It will be instrumental
to detect how early the mode of communication impacts
human speech processing in infants and toddlers with ASD
and in at risk population as preliminary results now suggest
that sung over spoken speech might effectively improve socio-
communicative behaviors in toddlers with ASD at least (Paul
et al., 2015).

Another final important aspect that has to be considered
besides the various impairments in the development of
speech processing highlighted by the relevant neuroimaging
literature we reviewed here, is that functional and structural
anomalies have also been reported at earlier stages of the
auditory processing system in autism. Some studies highlight
functional abnormalities within low level primary sensory
auditory pathways in adults with ASD (Dinstein et al., 2012;
Haigh et al., 2015). A recent experiment points toward the
presence of maturational differences in the development of
primary/secondary auditory areas in children with ASD aged
between 6 and 14 years (Edgar et al., 2015). The presence
of abnormal auditory brainstem response in newborns/infants
(tested between 0 and 3 months) and toddlers (tested between
1.5 and 3.5 years) later diagnosed with ASD has also been
demonstrated (Miron et al., 2015). Further work is thus required
to understand how these impairments in the early stages of the
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auditory processing system might impinge on the development
of speech and language processing in autism.
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Clinical and research evidence supports the efficacy of rehabilitative intervention for

improving targeted skills or global outcomes in individuals with autism spectrum disorder

(ASD). However, putative mechanisms of structural and functional brain changes are

poorly understood. This review aims to investigate the research literature on the

neural circuit modifications after non-pharmacological intervention. For this purpose,

longitudinal studies that used magnetic resonance imaging (MRI)-based techniques

at the start and at the end of the trial to evaluate the neural effects of rehabilitative

treatment in subjects with ASD were identified. The six included studies involved a

limited number of patients in the active group (from 2 to 16), and differed by acquisition

method (task-related and resting-state functional MRI) as well as by functional MRI tasks.

Overall, the results produced by the selected investigations demonstrated brain plasticity

during the treatment interval that results in an activation/functional connectivity more

similar to those of subjects with typical development (TD). Repeated MRI evaluation may

represent a promising tool for the detection of neural changes in response to treatment in

patients with ASD. However, large-scale randomized controlled trials after standardized

rehabilitative intervention are required before translating these preliminary results into

clinical use.

Keywords: autism spectrum disorder, brain plasticity, magnetic resonance imaging, treatment effects, outcome

INTRODUCTION

Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental conditions
characterized by persistent deficits in social communication and interaction across multiple
contexts, in addition to restricted, repetitive patterns of behavior, interests, or activities, all of which
significantly impact on adaptive functioning (American Psychiatric Association, 2013). Although
the exact etiology of ASD remains elusive, a combination of genetic and environmental factors
during critical periods of development has been implicated (Hallmayer et al., 2011), possibly leading
to altered brain architecture beginning early in life (Wolff and Piven, 2013; Conti et al., 2015),
or even in prenatal developmental stages (Stoner et al., 2014). Specifically, brain underpinnings
revealed by magnetic resonance imaging (MRI) include an early altered developmental trajectory
of global and regional brain structures (see Chen et al., 2011 and Bellani et al., 2013 for reviews
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of structural MRI studies in ASD), with an atypical growing
of white matter tracts (see Ameis and Catani, 2015 for a
review of diffusion tensor imaging -DTI- studies in ASD),
altered task-dependent cerebral response (see Dickstein et al.,
2013 for a review of functional MRI -fMRI- studies in
ASD), and abnormal neuronal activity in the absence of
stimulation (see Uddin et al., 2013 for a review of resting-
state fMRI -rs-fMRI- studies in ASD). Notably, abnormalities
in brain correlates of ASD are likely to be influenced by
study design characteristics and a wide range of clinical and
demographic features (Lenroot and Yeung, 2013). In particular,
an age-dependency of brain volume differences between ASD
patients and controls with typical development (TD) has been
repeatedly detected: in fact, while an increased total brain
volume is noted in infants and toddlers with ASD compared
to TD, an absence of group differences later in childhood is
frequently reported (Courchesne et al., 2007; Amaral et al.,
2008). The deviation from the normal brain growth trajectory
described in young subjects with ASD can lead to atypical
organization of structural and functional cerebral connectivity
(Lewis and Elman, 2008).Indeed, an excess of short-distance
with diminished long-range connectivity has been proposed (Just
et al., 2007), producing a brain profile ineffective for processing
and integrating “higher-order” information that ultimately leads
to several of the most common ASD neuropsychological
characteristics (Wass, 2011; Narzisi et al., 2013). In this
framework, a rehabilitative intervention for patients with ASD is
considered a treatment able to enhance neuroplasticity (Dawson,
2008), i.e., the capacity of cerebral neurons and neural circuits
to structurally and functionally change in response to external
stimuli, environmental modifications, or injuries (Pascual-Leone
et al., 2005). However, neural substrates underlying observed
clinical improvement after early interventions are not yet fully
elucidate (Sullivan et al., 2014). In this view, the introduction
of advanced MRI techniques, such as fMRI, rs-fMRI, and
DTI, have been recently used to investigate brain plasticity by
monitoring the effects of rehabilitative therapy in ASD patients.
Specifically, longitudinal studies that include pre- and post-
treatment MRI acquisition have provided new insights on the
neural mechanisms targeted in rehabilitative therapy and, in
addition, an objective measure of response to treatment.

Therefore, the goal of the current review is to summarize
the existing MRI-based evidences of functional and structural
plasticity induced by rehabilitation therapy in patients with ASD.
To this aim, longitudinal studies that use MRI-based techniques
pre- and post- rehabilitative intervention to explore the impact of
treatment on neural substrates in ASD patients were analyzed. To
our knowledge, no review article exists addressing the question
of whether and how non-psychopharmacological interventions
shape the brain of patients with ASD.

METHODS

Studies in which functional or structural MRI was used to
evaluate rehabilitative treatment response in patients with ASD
were eligible for inclusion. Relevant articles were identified from

searches in two electronic databases (Pubmed and Scopus).
Search terms included the following: “autis∗,” “neuroimaging,”
“MRI,” “magnetic resonance,” “fMRI,” “rs-fMRI,” “DTI,”
“diffusion tensor,” “training,” “treatment,” and “rehabilitation”
both in isolation and in combination. We further limited the
results to “English” and “Humans.” No article type limitations
or time period restrictions were applied, and the latest search
was undertaken in September 2015. We identified longitudinal
studies that examined MRI-based differences in brain structure
and function between pre- and post- rehabilitative treatment in
individuals with ASD. This paper reports a selective narrative
description of the identified investigations.

RESULTS

We found six studies published between 2006 and 2015 that
investigated whether rehabilitation strategies enhance brain
plasticity, as evaluated by either rs-fMRI (n = 1) (Murdaugh
et al., 2015), or task-related fMRI (n = 5; Bölte et al., 2006, 2015;
Voos et al., 2013; Ventola et al., 2015; Murdaugh et al., 2016).
A list of these studies and their characteristics are detailed in
Table 1.

The first attempt to demonstrate the presence of brain
plasticity in ASD following a specific rehabilitation treatment
was performed by Bölte et al. (2006) who selected (with
randomization) 10 adult patients. Of them, five received a 5-
weeks computer-based facial affect training program (2-h per
week), while the remaining five ASD patients did not undergo
any special training. The effects of training program have been
demonstrated on both behavioral and neurobiological level.

However, an atypical pattern of increased activation in the
right superior parietal lobule post-training in ASD subjects,
rather than the activation of the fusiform face area usually found
in participants with TD, was detected. Therefore, the authors
concluded that the intervention group learned to recognize
emotions by using compensatory mechanisms involving the
recruitment of different brain regions.

More recently, a similar study was conducted by the same
group (Bölte et al., 2015) to explore the neural effects of the
same computer based training (1 h/week for 8 weeks) aimed at
improving facial affect recognition. The investigation focused on
32 adolescent with high-functioning ASD: half of them received
the specific training plus standard care, whereas the other half
received standard care only. Each ASD group was scanned twice,
pre and post-training, using task-related fMRI consisting of facial
affect recognition. A control group of 25 subjects with TD was
also enrolled to compare the behavioral assessment and the brain
activations to that of patients with ASD at baseline. As expected,
reduced ability to recognize facial expressions coupled with
reduced social brain activity was found in individuals with ASD.
After training was completed, a relevant improvement in facial
recognition characterized the active group and was associated
with an increased activity in the social brain areas.

To investigate the possibility that early rehabilitative
treatment induces activation changes of brain regions involved
in social perception in young children with ASD, Voos et al.
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TABLE 1 | Summary of studies utilizing MRI pre- and post-rehabilitative treatment of ASD patients.

Bölte et al., 2006 Voos et al., 2013 Ventola et al., 2015 Murdaugh et al.,

2015

Bölte et al., 2015 Murdaugh et al., 2016

Study type Randomized

cross-over trial

Case series Uncontrolled

pre-post trial

Randomized

cross-over trial

Non-randomized

parallel group trial

Randomized cross-over

trial

Center Frankfurt University,

Germany

Yale University, USA Yale University, USA University of Alabama

at Birmingham, USA

Frankfurt University,

Germany

University of Alabama at

Birmingham, USA

Number of ASD

patients in the

active group

5 males 2 (1 male and 1

female)

10 (8 males) 16 (12 males) 16 males 13 (11 males)

Controls 5 ASD males No 5 TD (2 males) 15 ASD (12 males)

and 22 TD (16 males)

16 ASD (14 males)

and 25 TD (21 males)

13 ASD (10 males) and

19 TD (14 males)

Mean age of ASD

patients

29.4 years ∼5 years ∼5 years 10.3 years 19.3 years 10.9 years

ID in ASD patients No No No No No No

MRI technique fMRI (facial affect

recognition task)

fMRI (social

perception task)

fMRI (social

perception task)

rs-fMRI fMRI (facial affect

recognition task)

fMRI (sentence

comprehension task)

and rs-fMRI

Type of treatment Computer-based

facial affect

recognition training

PRT PRT Reading intervention Computer-based

facial affect

recognition training

Reading intervention

Duration of

treatment

2 h per week for 5

weeks

8–10 h per week for 4

months

7 h per week for 16

weeks

20 h per week for 10

weeks

1 h per week for 8

weeks

20 h per week for 10

weeks

Clinical

outcome(s) in the

active group

Improvements in

facial affect

recognition

Improvement on

ADOS, CELF-4, and

Vineland-II scores

Improvement on

SRS-2 and ADOS

scores

Improvement in

reading

comprehension, as

measured by the

GORT-4

Comprehension

subtest

Improvements in facial

affect recognition

Improvement in reading

comprehension, as

measured by the

GORT-4

Comprehension subtest

MRI outcome(s) in

the active group

Increased activation

in the R superior

parietal lobule and

maintained

activation in the R

medial occipital

gyrus

Different increased

activation in the two

patients: L

dorsolateral prefrontal

cortex and L fusiform

gyrus in one subject,

R posterior superior

temporal sulcus, L

ventrolateral prefrontal

cortex and bilateral

fusiform gyri in the

other patient

5 ASD patients

showed significant

increased activation

in R posterior

superior temporal

sulcus, ventral

striatum, and

putamen; 5 ASD

patients showed

significant

decreased

activation in R

posterior superior

temporal sulcus,

thalamus,

amygdala, and

hippocampus

Enhanced connectivity

of Broca’s area with R

middle frontal gyrus, R

superior temporal

gyrus, L

supramarginal gyrus,

and R caudate;

reduced connectivity

of Broca’s area with R

middle occipital gyrus

and R posterior

cingulate cortex

Increased activation in

amygdala, fusiform

gyrus, and temporal

pole bilaterally, medial

prefrontal cortex, and

L posterior superior

temporal sulcus

Increased activation in

brain regions underlying

language and

visuospatial processing,

bilateral insula, R

postcentral gyrus, and

compensatory

recruitment of

R-hemisphere and

subcortical regions

Increased functional

connectivity between L

middle temporal gyrus

and L frontal regions

Enhanced connectivity

of Wernicke’s area

with R anterior

cingulate, L middle

orbital gyrus, bilateral

inferior frontal gyrus, R

middle frontal gyrus, R

middle cingulate, R

precentral gyrus

Follow-up period No No No No No No

ASD, Autism Spectrum Disorders; MRI, Magnetic Resonance Imaging; DTI, Diffusion Tensor Imaging; fMRI, functional Magnetic Resonance Imaging; rs-fMRI, resting-state functional

Magnetic Resonance Imaging; ID, intellectual disability; TD, controls with typical developing; PRT, Pivotal Response Treatment; CELF-4, Clinical Evaluation of Language Fundamentals—

Fourth Edition; ADOS, Autism Diagnostic Observation Schedule; SRS-2, Social Responsiveness Scale-Second Edition; GORT-4, Gray Oral Reading Tests-4th Edition; R, right;

L, left.
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(2013) included two ASD preschoolers to receive 8–10 h per week
for 4months of Pivotal Response Treatment (PRT), a well-known
empirically validated behavioral treatment for children with ASD
(Koegel et al., 1987). After rehabilitation, significant behavioral
improvements in core ASD deficits, adaptive skills, and language
were signaled and, at the neural level, a modification in the
processing of biological motion. Interestingly, the effects of
the same treatment on brain activation are different in the two
children, in line with the heterogeneity of the response to therapy
in the ASD condition (Kim et al., 2015).

The same group performed a subsequent work based on
an enlarged sample size of 10 preschoolers with ASD (Ventola
et al., 2015). Before treatment, two groups of ASD children
could be distinguished based on their activation profiles–
reduced or increased- in posterior superior temporal sulcus
(pSTS) in comparison with TD controls. Following a 16-week
PRT treatment (7-h per week) a significant improvement of
clinical ASD manifestations emerged, coupled with an activation
in pSTS more similar to that of TD children. Therefore,
treatment modifications are reached through two different neural
modalities: a decrease in activation following treatment for ASD
subjects who exhibited hyper-activation in the pSTS at baseline
and vice-versa.

A randomized clinical trial (Murdaugh et al., 2015) was
designed to explore modifications in functional connectivity after
the intensive reading intervention “Visualizing and Verbalizing
for Language Comprehension and Thinking” (Lindamood and
Bell, 1997) in children with ASD. A total of 31 ASD patients
were randomized either to a 10-week reading intervention
(active group) or to receive the same intervention after the two
imaging sessions were completed (wait-list control group). An
additional control group of TD children served as a baseline
comparison for brain activation and did not participate in the
intervention protocol. Rs-fMRI revealed that after the training
the active group had an increased connectivity using Broca’s
and Wernicke’s area as seeding points. In order to verify
whether functional connectivity changes in the active group
were specifically related to the targeted training, a comparison
between post-intervention connectivity in active and control
ASD participants was conducted. After rehabilitation, increased
rs-fMRI within the reading network was found in the active
group, as well as an additional recruitment of frontal regions (left
superior frontal gyrus and middle frontal gyrus), interpreted as
compensatory mechanisms for language comprehension.

Some subjects originally enrolled in this latter study also
underwent fMRI (Murdaugh et al., 2016), in order to investigate
changes in brain activation following the reading intervention
(Lindamood and Bell, 1997). Pre- and post-training task-related
fMRI (sentence comprehension) revealed increased activation
in visual and posterior language regions, bilateral insula and
right postcentral gyrus, with an additional recruitment of right-
hemisphere and subcortical regions as possible compensatory
mechanisms for language comprehension. Moreover, an
increased functional connectivity between left middle temporal
gyrus and left frontal regions has been found after training in
the active group. Intriguingly, the intervention-induced brain
modifications positively correlated with the improvements in

individual reading comprehension. Compared to ASD wait-list
control group at the second imaging session, patients in the
active group showed an increased activation in some areas of
frontal, parietal, and temporal cortices.

DISCUSSION

Designing studies able to measure neural change in response to
therapy is thought to be an important goal for autism research
(McPartland and Pelphrey, 2012). According to this view, the
current review investigated studies that applied MRI-based
neuroimaging techniques pre- and post-rehabilitative treatment
in ASD. Results from the six included investigations (Bölte et al.,
2006, 2015; Voos et al., 2013; Murdaugh et al., 2015, 2016;
Ventola et al., 2015) suggested that training-induced behavioral
changes were accompanied by significant modifications in neural
activity and/or functional connectivity that varied as a function of
the specific training intervention. Preliminary evidence suggests
that early intervention can mitigate the severity of core and
associated features of autism (Warren et al., 2011), improve
the long-term outcome of treated patients (Estes et al., 2015),
and even reverse some of the ASD symptoms (Rogers et al.,
2014). These behavioral improvements are supposed to result
from changes in brain structure and function that are particularly
achievable in critical period plasticity in early life. At these
specific time windows, environmental stimuli most potently
shape cortical brain circuitries responsible for the acquisition of
different types of skills and abilities (Bardin, 2012). However,
results from the studies included in this review reflect that
brain plasticity, also in ASD patients, is not limited to early
developmental stage (Voos et al., 2013; Ventola et al., 2015), but
includes also the school-age period (Murdaugh et al., 2015, 2016),
and adulthood (Bölte et al., 2006, 2015).

Notably, the six included studies pertained to three research
group, each of whom performed two investigations to
evaluate the effects of a specific rehabilitative treatment. In
this context, rehabilitation treatments received by patients
with ASD are highly heterogeneous in terms of targeted
impairments. In particular, the group coordinated by Ventola
focused on the neural effects of a comprehensive intervention
program specifically developed to target the core social and
communication deficits of children with ASD (Voos et al.,
2013; Ventola et al., 2015); Bölte and colleagues utilized a
computer-based program to target specific impairment in facial
affect recognition (Bölte et al., 2006, 2015), while Murdaugh et al.
administered a protocol to improve reading comprehension,
an ancillary deficit in ASD individuals (Murdaugh et al., 2015,
2016).

In spite of the encouraging results on behavioral and brain
plasticity, the studies examined in this review suffer from several
drawbacks. In fact, reports generally comprised of a limited
number of subjects (ranging from 2 to 16 ASD individuals in
the active group), and the relatively small sample size makes
it difficult to homogeneously subgroup ASD patients based on
their clinical profile (e.g., level of intelligence quotient and
language, core ASD symptom severity, adaptive functioning,
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psychiatric comorbidities). Therefore, it is difficult to identify
baseline clinical characteristics that influence behavioral and
brain outcome of examined patients. Moreover, the lack of
MRI follow-up data after the second scan hampered testing for
stability of brain modifications obtained following rehabilitative
treatment. In fact, it remains to investigate whether such
improvements in brain functions are sustained without further
intervention or whether maintenance training is necessary.

In addition, the studies included in the current review had
different design. Two investigations (Voos et al., 2013; Ventola
et al., 2015) lacked of a non-active control group of ASD subjects,
whereas the others included as control group subjects in the
waitlist (Bölte et al., 2006; Murdaugh et al., 2015, 2016), or
patients receiving standard care only (Bölte et al., 2015). The
presence of a non-active control group of ASD individuals is
essential to discern whether an hypothesized biomarker for the
prediction of treatment response is really predictive of response
to a specific intervention, or rather is predictive of prognosis,
independent from the type of rehabilitative treatment or even
in the absence of it. Four studies included TD controls who
underwent one MRI session (Bölte et al., 2015; Murdaugh et al.,
2015, 2016; Ventola et al., 2015) in order to compare brain
profiles of ASD patients and controls at baseline. Unfortunately,
no study included MRI measures of TD subjects after the
treatment under investigation: the lack of these data do not allow
to provide evidence that neural changes are ascribable to effects
of treatment rather than to normal brain maturation.

Despite their heterogeneity, all the six included studies
reported significant modifications in task-related brain
activation or in functional connectivity following rehabilitative
intervention: crucially, the absence of negative or inconclusive
results suggests the risk of publication bias. Instead, it could
be useful the clinical and neural characterization of “non-
responders” to a specific rehabilitative treatment in order to
redirect these patients toward different intervention strategies.

Of particular interest, participants in these studies are
generally highly selected individuals (e.g., exclusion of younger
patients, and/or subjects with intellectual disability), who differ
from patients seen in the clinical practice. Even if this choice
is surely motivated by the necessity of patient compliance with
the MRI examination (capacity of lying still in a confined space
for a long time, as well as of tolerating the acoustic noise
and of understanding task instructions), it limited information
about brain plasticity in the full range of the autistic spectrum.
Future naturalistic studies in larger samples could contribute
to identifying biomarkers sensitive to rehabilitative treatment in
the conventional clinical population. In this context, the use of
sleep MRI (Pierce, 2011), and of task-free MRI techniques (DTI,
rs-fMRI) would aid inclusion of non-collaborative ASD patients.

Future Directions
Prognostic factors of effective rehabilitative intervention in
ASD are to date poorly clarified and generally based on
patient’s clinical characteristics and family profile only (Vivanti
et al., 2014). The inclusion of MRI-based measures pre- and
post-treatment will be crucial for understanding the neural
mechanisms underlying different patient outcome. In other

words, specific brain regions/network as putative biomarkers
for treatment response would be identified, contributing to the
knowledge on “what works for whom and why,” and thus paving
the way for the individualization of treatment in ASD. In order to
overcome this limitation, future randomized control trials should
incorporate pre and post-treatment neuroimaging protocols and
compare the effects of distinct therapeutic treatments on patient’s
baseline neural biomarker.

Future investigations would also benefit from machine
learning classification techniques to predict response to
rehabilitative treatment at an individual level. In these studies,
subjects are split into responders and non-responders after
treatment, and machine-learning techniques are used to allocate
patients to either category based on their pretreatment brain
profile. However, the accuracy of these methods is currently not
sufficiently satisfactory to suggest their use in clinical practice
(Retico et al., 2014; Wolfers et al., 2015).

Finally, it will be crucial the use of multimodal neuroimaging
techniques for detecting brain change between baseline and post-
training in ASD. In this perspective, some recent studies have
investigated connectivity in ASD using simultaneous structural
-DTI- and functional -fcMRI- methods (Kana et al., 2012;
Delmonte et al., 2013; Deshpande et al., 2013; Mueller et al.,
2013; Nair et al., 2013): the integration of these data with
neurophysiological approaches (electroencephalography–EEG-
andmagnetoencephalography–MEG-)may significantly enhance
their temporal resolution. Moreover, the combination of both
structural (MRI/DTI) and functional (fMRI/EEG) neuroimaging
techniques could provide new insights on the timecourse by
which the neural changes occur after rehabilitation: preliminary
results on healthy older adults suggest that functional change
may precede structural and cognitive change (Lampit et al.,
2015), but the temporal dynamics of training-induced neural
modifications have not been investigated yet in ASD subjects.
In this perspective, the detection of functional changes could
suggest that the rehabilitative intervention is effective, even
if clinical modifications are not yet perceptible in the ASD
patient. Thus, it would be possible to prevent dropout from a
potentially beneficial intervention and consequently to reduce
waste of resources as well as of valuable time for improving ASD
prognosis.
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