Research Topic

Self-organization in the nervous system

About this Research Topic

This research topic seeks to review the state-of-the-art in defining biophysical roots of cognition, under the notion that cognitive capacities serve to optimize organism’s responses to varying external conditions. Response optimization is predicated on the ability to predict changes in the environment thus ...

This research topic seeks to review the state-of-the-art in defining biophysical roots of cognition, under the notion that cognitive capacities serve to optimize organism’s responses to varying external conditions. Response optimization is predicated on the ability to predict changes in the environment thus allowing the organism to initiate preparations to such changes before their onset. Biophysical mechanisms responsible for these cognitive capacities remain largely unknown although a number of hypotheses has been advanced in systems neuroscience, biophysics and other disciplines. These hypotheses appear to converge at the intersection of thermodynamic and information-theoretic formulations of self organization in the brain. The latter formulation took shape when Shannon’s theory of message transmission in communication systems was adopted to characterizing interaction between neurons. In its subsequent forms, the informational approach became integrated into the computational theory of the mind and the Bayesian brain framework. The thermodynamic formulation stems from viewing the brain as an aggregation of stochastic microprocessors (neurons), which suggested applying the ideas of statistical mechanics and thermodynamics to elucidate relationship between micro-scale parameters and those of the macro-scale aggregation (the brain). The thermodynamic approach defines brain as a dissipative system and seeks to represent the development and functioning of cognitive mechanisms as collective capacities emerging in the course of self-organization.

An example of the Bayesian brain hypothesis is the free energy principle that explains self-organizing activities in the brain by virtue of its predictive capabilities associated with selective sampling of sensory inputs directed towards minimizing variational free energy in the samples. Another approach traces brain self-organization to the second law of thermodynamics expressed as a principle of free energy consumption in the least time. Still another proposal associates self-organization with phase transition in the neuronal substrate resulting in the formation of neuronal assemblies and suggests that minimization of thermodynamic free energy in the phase-separation surface underlies minimization of variational free energy.

This research topic encourages analysis of self-organization processes in the brain, seeking a productive reconciliation between thermodynamic and informational definitions of the underlying biophysical mechanisms. The objective is to elucidate relations between predictive capabilities of the brain and b) self-organization processes in the substrate. Analysis of such relations will help identifying biophysical roots of intelligence and inform the design of artifacts capable of autonomous performance. The discussion includes but is not limited to the following issues:

1. Synthesis of thermodynamic and informational theories of self-organization processes in the brain.
2. Experimental assessment of self-organization processes in the brain.
3. Brain self-organization and predictive capabilities.


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Recent Articles

Loading..

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

Submission closed.

Participating Journals

Loading..

Topic Editors

Loading..

Submission Deadlines

Submission closed.

Participating Journals

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..

Comments

Loading..

Add a comment

Add comment
Back to top