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Editorial on the Research Topic


Agricultural sensors and systems for field detection


The extensive use of numerous agricultural sensors can facilitate meticulous supervision of agricultural activities. However, several obstacles are currently encountered while using these sensors in the agricultural field, such as external disturbances, model inconsistency, inefficient data transmission, and high expenses. These issues hinder their extensive use in challenging agricultural settings, such as fields and greenhouses, throughout the various production phases.

Once we find solutions to these critical technical difficulties, agricultural sensors can adjust to intricate agricultural conditions, deliver consistent and precise data, offer a more trustworthy foundation for agricultural decision-making and management, and enhance the intelligence of agricultural production cycles. Simultaneously, implementing agricultural sensors will encourage the advancement and evolution of associated technologies. This includes sensor networks, data transmission methodologies, and artificial intelligence algorithms, thereby fostering the enhancement of agricultural information technology.

In light of the context, as mentioned earlier, the articles included in this Research Topic addressed several key issues. Some studies explored the technique of harnessing multi-source and multi-scale data to obtain detailed crop information, focusing on precision perception technology. This involves developing methods to accurately sense crop features and conditions by amalgamating diverse data such as remote sensing data and ground observation sensor data. An article delved into advanced, non-invasive testing technologies with robust anti-interference capabilities and model adaptability. These technologies can precisely detect crop anomalies, such as pests, diseases, and nutritional deficiencies, while effectively resisting environmental, lighting, and weather-related disturbances. Other studies investigated efficient data processing and transmission technologies suitable for field or greenhouse conditions. This includes the development of effective data processing algorithms and transmission protocols to collect, analyze, and store vast quantities of agricultural data in real time, thereby enhancing data utilization efficiency and offering prompt and precise support for agricultural decision-making. Another study focused on developing inexpensive, specialized sensor chips and systems for field detection. This will enable agricultural workers to utilize sensor equipment that is cost-effective, easy to deploy, and use. It will enable real-time crop growth and environmental monitoring, facilitating more accurate decision-making. Finally, we also have studies (Mu et al., Zang et al., Huan et al.) that examined wearable, portable sensors for plants. In direct contact with plants, these sensors will monitor plant physiological indicators and environmental parameters in real time, providing detailed insights into the plant growth process and helping optimize agricultural management and breeding practices.

The primary goal of the aforementioned research and execution is to foster technological innovation in the agricultural sector. As sensor technologies such as terahertz and 3D time-of-flying cameras (Zhang et al.) evolve and the costs of deep learning (Yang et al., Sawyer et al., Wu et al., Wang et al.) software diminish, the widespread and large-scale implementation of agricultural sensors in challenging environments for all stages of the production cycle becomes more feasible. These agricultural sensors can offer extensive and accurate data support by facilitating real-time (Thilakarathne et al.) monitoring and precise detection of various environmental factors and crop growth conditions. Technological advancements will revolutionize traditional farming practices, steering the agricultural sector towards smart and information-driven methodologies. They will play a pivotal role in ensuring the sustainable development of the agriculture industry and securing food supply.
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To explore the use of information technology in detecting crop diseases, a method based on hyperspectra-terahertz for detecting cucumber powdery mildew is proposed. Specifically, a method of effective hyperspectrum establishment, a method of spectral preprocessing, a method of selecting the feature wavelength, and a method of establishing discriminant models are studied. Firstly, the effective spectral information under visible light and near infrared is preprocessed by Savitzky-Golay (SG) smoothing, discrete wavelet transform, and move sliding window, which determine the optimal preprocessing method to be wavelet transform. Then stepwise discriminant analysis is used to select the feature wavelengths in the visible and near-infrared bands, forming the feature space. According to the features, a linear discriminant model is established for the wave bands, and the average recognition rate of cucumber powdery mildew is 93% in the whole wave band. The preprocessing method of terahertz data, the screening method of terahertz effective spectrum, the selection method of feature wavelength and the establishment method of classification model are studied. Python 3.8 is used to preprocess the terahertz raw data and establish the terahertz effective spectral data set for subsequent processing. Through iterative variable subset optimization - iterative retaining informative variables (IVSO-IRIV), the terahertz effective spectrum is screened twice to form the terahertz feature space. After that, the optimal regularization parameter and regularization solution methods are selected, and a sparse representation classification model is established. The accuracy of cucumber powdery mildew identification under the terahertz scale is 87.78%. The extraction and analysis methods of terahertz and hyperspectral feature images are studied, and more details of lesion samples are restored. Hence, the use of hyperspectral and terahertz technology can realize the detection of cucumber powdery mildew, which provides a basis for research on the hyperspectral and terahertz technology in detection of crop diseases.
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Introduction

China has the largest greenhouse area in the world at present. Cucumber is an important cash crop, and it is widely planted all over the world (Mao et al., 2022). Cucumber, as a functional food, has many nutritional values, high antioxidant capacity and high mineral content. In the process of cucumber cultivation in greenhouse, the high temperature and humidity environment in greenhouse can easily lead to diseases (Wang et al., 2022). Diseases will alter the physiological state of crops and affect their internal cells, pigment concentrations, moisture and intercellular gaps. Severe diseases also will threaten the ecoenvironment and food safety in addition to a decline of crop yields. Traditional plant disease detection methods rely on artificial sensory judgment, which calls for rich experience and observation ability of relevant personnel and is time-consuming. With the advancement of information technology, disease diagnosis and identification in target crops can be effectively conducted through the collection of disease case information from target crops.

The existing technologies such as machine vision, spectral detection and machine learning have been extensively studied in crop disease detection. Nilsson applied near-infrared spectroscopy for detection of rape rot and found the near-infrared reflectance was significantly correlated with rape rot severity (Nilsson, 1977). Maroua Nouri et al. detected hyperspectral images of healthy or infected apple tree leaves, and located the lesions of fruit tree leaves after reflection calibration and registration of hyperspectral images (Nouri et al., 2018). Tarek H M et al. proposed an online agricultural medical expert system based on image recognition and determined the disease after processing the images captured by mobile or hand-held devices, thereby helping farmers to solve problems (Habib et al., 2020). Chia-Lin Chung et al. put forward a method based on machine vision for nondestructive detection of disease infected or healthy seedlings, and classified healthy or infected seedlings by using a scanner and quantifying the shape and color features and through a support vector machine (SVM) algorithm, so as to realize disease detection (Chung et al., 2016). Du Xiuyang used a terahertz time-domain spectral technique and the least squares SVM (LS-SVM) to detect crop quality (Du et al., 2022). In all, spectral detection techniques featured by super bands and high resolution (Nilsson, 1977; Chung et al., 2016; Nouri et al., 2018; Habib et al., 2020; Wang et al., 2022) can accurately acquire inner spectral information of crops, and are especially outstanding in deteecting the absorption spectra of inner components of crops. The terahertz time-domain spectroscopy (Liu et al., 2020; Du et al., 2022) with penetrability can reflect crop changes at the terahertz scale from the transmission level.

This technique is widely applied into disease identification of field crops, but rarely used into detection of greenhouse plant diseases or detection at different scales, especially in disease recognition. Cucumber is a common widely-planted crop in the facility environment and highly caters to customers. In this study, cucumber was selectively investigated and a hyperspectral - terahertz method for detection of cucumber powdery mildew was explored.



Materials and methods


Sample culture

Cucumber was cultivated and sampled in the Venlo greenhouse of College of Agricultural Engineering, Jiangsu University in Zhenjiang of Jiangsu Province. Cucumber of “Jinyou 1” (provided by the cucumber research institute in Tianjin Academy of Agricultural Sciences, Tianjin, China) was bred soil-less from April to July 2019 in perlite. The average greenhouse air temperature was 21.6 ℃ (the range was from 11.32 to 37.73 ℃). The relative humidity of the greenhouse was 84.3%RH. The nutritive medium was a standard Hoagland composition. Upon the onset of cucumber powdery mildew, the front and back of leaves either showed nearly-round or continuous white powdery spots, and in severe cases, leaves will scorch and crisp. Totally 140 samples were acquired mainly through artificial collection, including 70 healthy samples and 70 powdery mildew samples.



Data collection

A hyperspectral imaging system (Shanghai Wuling Photoelectric Technology Co., LTD) consisting of a visible light camera (VS, 390.8-1050.1 nm), a near-infrared camera (NIR, 871.6-1766.3 nm), an ImspectorN17E spectrometer, OLES30 lens, a direct- current adjustable light source, a glass fiber symmetrical line light source, a loading platform, a self-walking displacement platform, a stepping motor controller, a computer and a display was used here (Figure 1). Spectra of samples were recorded at the visible light band and the near-infrared band, and spectral data were stored in the three-dimensional form (x,y,λ) (Figure 1B). Presampling experiment was conducted prior to data acquisition. The hyperspectral imaging exposure time was 15 ms, the scanning rate was 1.32 mm/s, and the peak reflection intensity of leaf presampling images was 3000, which together ensured the clearness and non-distortion of images.




Figure 1 | Hyperspectral imaging system. (A) Visible-near infrared hyperspectral equipment. (B) Visible-near infrared hyperspectral data acquisition.



A TS7-400 Terahertz time-domain spectroscope (Advantest, Japan) was used here (Figure 2A). This instrument was customized and optimized in terms of crop bioinformatical detection, which improved the precision and enlarged the area of samples from 3 to 225 cm². Hence, this instrument satisfied the requirements for detecting most crop samples in the laboratory environment. The spectroscope can measure the absorption or transmission spectra at the frequency of 0-3.9 THz, and covered 1311 frequency ranges, with precision of 0.2 mm, signal-to-noise ratio of 5000 and spectral resolution of 3.8 GHz. The terahertz time-domain spectroscope consists of a terahertz measuring unit control system (keyboard, mouse, PC workstation) and a terahertz measuring unit (Figure 2).




Figure 2 | Terahertz time domain spectral system. (A) Terahertz experimental equipment. (B) Terahertz spectral data acquisition.



Spectra data and terahertz data were acquired from the ill samples and healthy samples collected from the greenhouse by using the hyperspectral imaging system (including near-infrared and visible light bands) and the terahertz time-domain spectroscope. Disease-related data were acquired from several lesion areas of each ill leaf and specifically, the average spectral value and average terahertz value were determined from 5×5 uniformly- distributed pixels. For the healthy samples, each healthy leaf was divided into three parts (upper, middle and lower), and then several areas (each 5×5 pixels) from each part were detected to get the average spectral value. Totally 140 cucumber samples were collected, including 70 samples with powdery mildew and 70 healthy samples.



Analysis of spectral data and modeling

The hyperspectral data of healthy or ill cucumber leaves were preprocessed by Savitzky-Golay (SG) smoothing, disperse wavelet transform, and move sliding window. The valid spectra screened out from the original spectra were compared to select the optimal preprocessing algorithm according to the preprocessed spectral curves and coefficient of determination (R2). The hyperspectral feature wavelengths were extracted and discriminated by using stepwise discriminant analysis (SDA). The feature images were processed analytically using gray extraction and pseudo-color rendering.

The terahertz data were first comprehensively extracted, and then a terahertz feature space was constructed by combining iteratively variable subset optimization (IVSO) and iteratively retaining informative variables (IRIV). A disease classification and identification model was built using a sparse representation classifier (SRC). The feature images were processed and analyzed by referring to the hyperspectral processing algorithm.

Data processing and classification modeling were accomplished on Matlab 2020a. Regression was conducted on SPSS. Feature image extraction and analysis were finished on the image processing software Python 3.8.




Results and discussion


Preprocessing of hyperspectral data and terahertz data

The spectral preprocessing algorithm can be selected according to the research target and spectrum type (Qin et al., 2020). Owing to spectral errors induced by the external environment or instruments, the collected data are often mixed with random noises, which decrease the data accuracy. Hence, spectra were preprocessed by SG smoothing, wavelet transform, or move sliding window. These three algorithms were compared by listing the processing results of a part of samples (Figure 3).




Figure 3 | Spectral tlas of some cucumber disease amples under different preprocessing methods of hyperspectral data. (A) Visible original spectrum, (B) Visible spectrum SG7 point smoothing, (C)Visible spectrum SG9 point smoothing, (D) Visible spectrum discrete wavelet transform, (E) Visible spectrum moving window sliding, (F) Near infrared original spectrum, (G) Near infrared spectrum SG7 point smoothing, (H) Near infrared spectrum SG9 point smoothing, (I) Near infrared spectrum discrete wavelet transform, (J) Near infrared spectrum moving window sliding.



On the spectral curves processed by SG 7-point smoothing or 9-point smoothing, the strikes and shapes were similar to the original images, but some parts were distorted after noise processing, indicating noises were introduced there. Though moving-window can filter a part of noises, the processed curves are less disperse than the curves processed by wavelet transform and become partially overlapped, even with sharp tips in some of the data. As for disperse wavelet transform, the processed spectra are smooth, showing evident peaks and valleys, and the samples are not overlapped or concentrated and reserve the original features and rules. Together with the fitting in Table 1, the R2 of disperse wavelet transform is the highest (0.9964 and 0.96882). In all, disperse wavelet transform showed the best preprocessing effect and hence was adopted before feature extraction to preprocess the data acquired from cucumbers.


Table 1 | Comparison of R-square (R2) after preprocessing.



Different from hyperspectral data, the terahertz time- domain spectra were stored in the form of comma separated texts for each dot and background in single documents. Hence, the data of single folders was comprehensively extracted. The terahertz data were synthesized by Pandas in Python 3.8, which supports big data operation, into single documents for subsequent processing.



Model building based on visible-near hyperspectral features

The key problem of hyperspectral imaging is to extract feature information from redundant spectral data and thereby to decrease the time and resource costs in subsequent processing. Hyperspectral data are located in a high-dimension space, and the data in each band can be considered as a feature. Hence, major subbands should be extracted from the spectral bands. In this study, n (n<491) subimage cubes were extracted from totally 491 valid bands covering visible light and near-infrared light and used as features.

SDA, a pattern recognition algorithm, is capable of extracting valid features from redundant spectral data (Chai et al., 2010). The cucumber leaf samples in the training set were processed by SDA in visible light (401.91 to 773.95 nm) and near-infrared light (1050 to 1703.40 nm). Finally, 9 visible light feature bands at 401.91, 403.14, 411.75, 429.01, 452.51, 549.19, 567.55, 645, and 669.31 nm were obtained, which were marked as R401.91, R403.14, R411.75, R429.01, R452.51, R549.19, R567.55, R645, and R669.31 respectively (Figure 4A). Two near-infrared feature bands at 1395.186 and 1626.012 nm were obtained, which were marked as R1395.186 and R1626.012 respectively (Figure 4B).




Figure 4 | Feature wavelength distribution. (A) Visible light. (B) Near infrared.



With the feature band spectral parameters, the powdery mildew samples and healthy samples were processed by distance discriminant analysis, which led to the discriminative models in Tables 2 and 3 respectively. Based on these linear discriminative models, the samples in the training set were discriminatively tested. The correct discriminating rates of cucumber powdery mildew were 100% and 98% respectively (Tables 4 and 5). However, since the discriminative models were based on the training set, the identification effect may be exaggerated. For model validation, 40 extra datasets of healthy or powdery mildew cucumber samples were used as testing sets, and the correct identification rates in model validation were 95% and 93% respectively (Tables 4 and 5).


Table 2 | Discriminant model of cucumber powdery mildew.




Table 3 | Recognition model of cucumber powdery mildew in near infrared band.




Table 4 | Recognition results of cucumber powdery mildew (visible light).




Table 5 | Recognition results of cucumber powdery mildew (near infrared).





Model building based on terahertz spectral features

Like hyperspectra, the terahertz time-domain spectra also contain feature bands that are highly correlated with crop healthy and ill states. Herein, IVSO was used to reduce the dimensions of the whole valid terahertz spectra, which resulted in lower-dimension terahertz data that were highly correlated with the healthy and ill statuses of cucumber crops. These data were used into identification model establishment.

Before disease identification modeling, IVSO was used to reduce the dimensions of the whole valid terahertz spectra, which resulted in lower-dimension terahertz data that were highly correlated with the healthy and ill statuses of cucumber crops. These data were used into identification model establishment. From the valid terahertz spectral datasets, IVSO was used for the first time to screen out feature bands that were highly correlated the healthy and ill states of cucumber (Yun et al., 2014). IVSO was run on Matlab. Before running, relevant parameters of IVSO were set. The WBMS sampling times were set as the number of valid terahertz wave bands (631), the cross-validation pattern was default (10-fold), and the number of potential subset variables was 10. Results of IVSO were shown in Figure 5.




Figure 5 | IVSO operation results. (A) RMSECV change curve in each iteration of cucumber sample. (B) THz band number change curve in each iteration of cucumber sample.



Figures 5A, B illustrates the root mean square error of cross-validation (RMSECV) of the partial least squares (PLS) model during the running of IVSO, and the curve of terahertz subband number changing with number of iterations, respectively. Clearly, RMSECV declined rapidly during the first 3 iterations, then minimized in the 8th iteration and gradually rose after that (Figure 5A). This was because IVSO during early iterations can remove abundant irrelevant variables and interfering variables. The decreased number of variables during late iterations mistakenly removed some useful variables, leading to the gradual rise of RMSECV during late iterations. The results of IVSO show the minimum RMSECV is 0.097, the optimal number of iterations is 8, and the number of feature bands is 108. The number of valid bands drops by 82.88% from the initial 631 valid bands, and at this moment, the number of feature dimensions is still large. Hence, IRIV was used to secondarily screen the terahertz feature bands. Relative to the single use of IRIV (Wang et al., 2015), the data at the terahertz feature bands screened out by IVSO, IRIV, or IVSO-IRIV were used as the training sets in PLS regression. The algorithm results of the feature bands as-selected were evaluated using the RMSECV and R2 of cross-validation. The number of feature bands in cucumber samples decreases to 28, RMSECV declines to 0.087, and R2 rises to 0.913 (Table 6), indicating modeling precision is improved and the number of irrelevant variables is decreased.


Table 6 | Comparison of model results for terahertz feature wavelength selection.



Based on the feature bands as-screened, the distributions of feature bands selected by IVSO, IRIV, and IVSO-IRIV were plotted (In Figure 6). Clearly, IVSO-IRIV effectively removed irrelevant variables and interfering variables. The terahertz bands selected by IVSO-IRIV are concentrated in 0.2-1.5 THz. After cucumber crops are infected by powdery mildew, the internal components (e.g. water, proteins, pigments) all will be altered to some extent. These components in this wave band are correlated with the penetrating ability of terahertz. Hence, from the feature bands selected by IVSO-IRIV, feature images were extracted, and a Terahertz-based disease identification model was built.




Figure 6 | Terahertz characteristic wavelength distribution.



After the modeling, the processed data were inputted into the sparsity and dictionary learning toolbox SPAMS of Maltab (Wang and Cheng, 2020). A healthy model (positive samples) and an ill model (negative samples) were built, forming two training sets. Two redundant dictionary sets of the two training sets were constructed. Then each type of samples in the training sets were used to build redundant sub-dictionaries, and thereby discriminative dictionaries were built. Appropriate regularization parameter was chosen to optimize the redundant dictionaries. Namely, the effects of the regularization parameter on the models were evaluated using the parameters of 10-fold cross- validation. The optimal regularization parameter was determined to be 0.1. The sparse algorithms included orthogonal matching pursuit (OMP) and accelerated proximal gradient (APG). As λ increased, the result of 10-fold cross-validation decreased (Figure 7). This was because as the regularization parameter increased, the dictionaries were more sparse, and the number of relevant features declined, leading to the drop of classification accuracy. For different regularization algorithms, the identification accuracy of SRC models is 88.89% and 87.78%.




Figure 7 | Influence of regularization parameters on recognition accuracy.





Analysis of hyperspectral and terahertz feature images

Due to the large number of feature bands, we selected visible light band 669.31 nm and near-infrared band 1395.186 nm as two examples to process and analyze cucumber powdery mildew. Figures 8A-C shows the gray feature images at 669.31 nm of powdery mildew samples and healthy samples extracted from the hyperspectral images. Ill areas can be identified from the gray images, but the details are still insufficient. Thus, the gray images can be reconstructed into pseudo-color images, which can better identify more other details. Upon the infection by crop diseases, the surface and interior of crops are damaged to different degrees, and the optical reflection on crop surface also differs. To more precisely extract the lesion areas, we reconstituted the gray images of spectra into pseudo-color images by using a density stratification method. Into the hyperspectral extraction system built by Python, a transform function was added, and the intervals were appointed as light intensity distribution within 0-4096. With this method, pseudo-color images containing more details were obtained. Finally, pseudo-color images at visible light bands corresponding to 669.31 nm were obtained after image transformation (Figures 8B-D). Based on analysis of distributive scales of light intensity, the light intensity of lesion areas is distributed from 1000 to 1500, and that of healthy areas is distributed near 500. Moreover, some tiny differences that cannot be distinguished by human eyes on gray images are evident on the pseudo-color images, so that the features in lesion areas can be interpreted and extracted.




Figure 8 | Characteristic images of visible light at 669.31nm: (A) Cucumber powdery mildew; pseudo-color images of (B) cucumber powdery mildew and (D) healthy cucumber samples; (C) Healthy samples of cucumbers.



In Figure 9, with the same method, the features at near-infrared band 1395.186 nm were extracted and reproduced into pseudo-color images. Then distributions of healthy areas and lesion areas at the same light intensity scales were plotted, which returned more obvious features compared with the gray images.




Figure 9 | NIR characteristic images at 1395.186nm. (A) cucumber powdery mildew; pseudo-colour images of (B) cucumber powdery mildew and (D) healthy cucumber samples; (C) Healthy samples of cucumbers.



Unlike the hyperspectral images, terahertz images have higher signal-to-noise ratio. Generally, frequency- domain amplitude imaging is adopted, and the signal value at a certain frequency selected from a frequency domain with large signal-to-noise ratio, and a frequency corresponding to the reference signal are chosen, and their ratio is regarded as a pixel value. In this way, the time-domain spectral data are converted by Fourier transform into frequency-domain data, which are used into imaging. Based on the designing clue of hyperspectral feature extraction, the terahertz feature images were extracted and plotted into images according to signal intensity. Finally, cucumber powdery mildew gray images at 1.05 THz were obtained (Figures 10A-C). The gray images demonstrate the outlines of ill samples, but cannot fully display the details. Therefore, given the advantages of false color images in displaying details, we obtained false color images by using frequency-domain intensity (Figures 10B-D). The gray images demonstrate the features of cucumber powdery mildew and tomato mosaic at the terahertz scale. However, the gray images are limited by low resolution and incomplete outlines and details. On the contrary, the false color images can recover the differences of crops in lesion areas and healthy areas according to the intensity of colors.




Figure 10 | Terahertz characteristic images of cucumber powdery mildew: Feature grayscale images of (A) Sample 1 and (C) Sample 2; pseudo-colour rendering of (B) Sample 1 and (D) Sample 2.






Conclusions

The cucumber powdery mildew detection method based on hyperspectra and terahertz spectra underlies the disease detection in other facility crops. Starting from visible light and near-infrared bands, firstly wavelet transform was selected to be the optimal preprocessing algorithm. Then SDA was chosen to screen out feature wavelengths and to build detection models. As a result, the feature wavelengths under whole bands were obtained to constitute a feature space, and thereby linear discriminative models were established. The linear discriminative models were validated using the testing sets, and the recognition rate of cucumber powdery mildew was 93%. Based on terahertz time-domain spectroscopy, terahertz data were comprehensively preprocessed on Python, which improved the efficiency of subsequent data analysis. The terahertz feature space construction by IVSO-IRIV was determined, and SRC was tested. Thereby, an SRC model of cucumber powdery mildew was set up. Then the optimal regularization parameter was selected, and the effects of two regularization algorithms (OMP and APG) on model performances were compared. According to the evaluation criteria of disaggregated models, the identification accuracy of cucumber powdery mildew at the terahertz scale was 87.78%. Based on feature bands, a simple feature extraction system was established and used to uncover more details from the hyperspectral and terahertz feature images. In the future, the sample space should be enlarged, and more-precise identification models and multi-information fusion algorithms should be studied.
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Accurate recognition method of pitaya in natural environment provides technical support for automatic picking. Aiming at the intricate spatial position relationship between pitaya fruits and branches, a pitaya recognition method based on improved YOLOv4 was proposed. GhostNet feature extraction network was used instead of CSPDarkNet53 as the backbone network of YOLOv4. A structure of generating a large number of feature maps through a small amount of calculation was used, and the redundant information in feature layer was obtained with lower computational cost, which can reduce the number of parameters and computation of the model. Coordinate attention was introduced to enhance the extraction of fine-grained feature of targets. An improved combinational convolution module was designed to save computing power and prevent the loss of effective features and improve the recognition accuracy. The Ghost Module was referenced in Yolo Head to improve computing speed and reduce delay. Precision, Recall, F1, AP, detection speed and weight size were selected as performance evaluation indexes of recognition model. 8800 images of pitaya fruit in different environments were used as the dataset, which were randomly divided into the training set, the validation set and the test set according to the ratio of 7:1:2. The research results show that the recognition accuracy of the improved YOLOv4 model for pitaya fruit is 99.23%. Recall, F1 and AP are 95.10%, 98% and 98.94%, respectively. The detection speed is 37.2 frames·s-1, and the weight size is 59.4MB. The improved YOLOv4 recognition algorithm can meet the requirements for the accuracy and the speed of pitaya fruit recognition in natural environment, which will ensure the rapid and accurate operation of the picking robot.




Keywords: improved YOLOv4, GhostNet, coordinate attention, improved combinational convolution module, target recognition



1 Introduction

Pitaya belongs to the cactus family, which has many branches and extends. The edges of the leaves are winged, wavy or crenellated, which make the harvesting process time-consuming and labor-intensive. Rapid and accurate recognition of pitaya fruit is a prerequisite for automatic picking by agricultural robots. Therefore, it has important research significance and application value to improve operation efficiency (Tang et al., 2020; Huang et al., 2021; Ye et al., 2021).

At present, scholars have carried out researches on the recognition of target fruits and vegetables based on traditional image processing technology (Zeng et al., 2021; Miao et al., 2021). Han et al. (2021) established an automatic quantification system based on HSV space model for the segmentation of amygdalus mira seeds, and the accuracy rate was 99.7%. Zhang et al. (2019) converted RGB image into a Lab space model, and used Hough circle transform to count the number of fruits, and the recognition accuracy was 94.01%. Zhang et al. (2020) proposed a pomegranate fruit recognition and classification method based on support vector machine and multi-feature fusion, and its classification accuracy was 75%. Liu et al. (2019) extracted the color and shape features of ripe apples to realize apple recognition, and Recall was 89.8%. Chu et al. (2019) proposed a method for identifying spherical fruits based on machine vision, and the recognition accuracy was over 95%. The above methods achieve fruits recognition by extracting the color, shape and texture features. However, those methods have problems such as long detection time, poor robustness, and low recognition accuracy, which are difficult to meet the recognition accuracy of target fruits in intricate environments (Liu et al., 2018; Tan et al., 2018; Xue et al., 2018; Zhao et al., 2020).

In recent years, the convolutional neural network (CNN) has been widely used in target recognition and detection (Lv et al., 2019; Cao et al., 2021; Zhang K. et al., 2021), which is mainly divided into two categories. One is the two-stage target detection method represented by region-CNN (RCNN) (Girshick et al., 2014), Fast RCNN (Girshick, 2015), Faster RCNN (Ren et al., 2015), etc., the steps for these methods are to obtain the target proposal box firstly, and then classified it in the proposal box. Zhu et al. (2020) proposed an improved Faster RCNN algorithm based on the botanical characteristics of lycium barbarum flowering period and fruit ripening period, and its average accuracy reached 74%. Yan et al. (2019) proposed an improved Faster RCNN algorithm to identify prickly pears, and its average recognition accuracy reached 92.01%. Zhang W. et al. (2021) proposed an improved Faster RCNN algorithm to identify tomatoes, and its average recognition accuracy reached 95.2%. Such algorithms have a long training time and slow detection speed. Another is the one-stage target detection method represented by SSD (Liu et al., 2016), YOLO (Redmon et al., 2016), etc., which completes the target proposal box and classification label in the same network. Yi et al. (2021) proposed a YOLOv4 model based on feature recursive fusion to identify citrus, and its detection accuracy reached 94.6%. Wang et al. (2021) proposed I-YOLOv4-Tiny target detection network, and introduced convolutional attention module to identify blueberry fruit in different environments, and its average accuracy reached 97.30%. Zhang F. et al. (2021) proposed an improved YOLOv4-LITE target detection algorithm to identify cherry tomatoes, and its average accuracy reached 99.15%. Li et al. (2021) used MobileNetV2 as YOLOv3 backbone network and introduced M-Res2Net module to identify grape fruit, and its average accuracy reached 81.2%. Xiong et al. (2020) proposed Des-YOLOv3 target detection network to identify ripe citrus at night, and its average accuracy reached 90.75%. Wu et al. proposed an improved YOLOv3 model based on clustering optimization and a new YOLOv5-B model to obtain target information and improve the accuracy and speed of small target detection (Wu et al., 2021; Wu et al., 2022). Tang et al. (2022) proposed a model method YOLO-Oleifera for Camellia oleifera fruit detection based on the YOLOv4-tiny model, which realize the learning of the characteristic information of Camellia oleifera fruit. Li et al. (2022) built a new type of agricultural machinery intelligent design system integrating image processing and knowledge reasoning, which provided a reference for intelligent design to guide actual production. In all, the above researches have problems such as complex calculation, large consumption, which are difficult to meet the rapid and accurate operation of picking robot on the target fruits in an intricate environment. Therefore, the recognition accuracy and speed need to be improved.

In order to solve the difficulty of identifying and picking pitaya fruit in natural environment, this paper proposed an improved YOLOv4 recognition algorithm that integrated coordinate attention and combinational convolution to improve the recognition speed and accuracy of pitaya fruit.



2 Test materials and methods


2.1 Test data acquisition

The pitaya fruit images were collected in the greenhouse of Taiwan Fuhao farm, Mengjin district, Luoyang city, Henan province, which were collected under natural light conditions on rainy and sunny days. The image acquisition device is Canon (Canon EOS 750D) single-lens reflex camera, the image resolution is 6000 × 4000 pixels, and the format is JPG. In order to simulate the recognition system of picking robot, we chose to shoot from five angles: front, left, right, up and down. A total of 1,280 original images of pitaya fruit were collected, and 1,100 images of pitaya fruit growing environment in various natural environment including smooth light, backlight, overlap, occlusion, and adhesion were selected, as shown in Figure 1. In this research, the red heart “soft branch big red” pitaya fruit was used, which is suitable for planting in areas with a minimum temperature above 0 degrees in January all year round. They need to be tied and pruned at appropriate times. When the seedlings grow to the square (circle) position, they can be allowed to droop for early flowering and fruiting.




Figure 1 | Some images of pitayas in greenhouse environment: (A) Mature pitayas in sunny days; (B) Mature pitayas in rainy days; (C) Occlusion of pitayas; (D) Adhesive pitayas; (E) Short distance pitayas; (F) Long distance pitayas.





2.2 Data augmentation

Training a deep learning model requires a large number of data, and too small dataset will lead to the overfitting of neural network. Therefore, the data augmentation method was used to expand the number of samples. In this paper, methods such as translation transformation, random rotation, mirror flip, horizontal flip, brightness adjustment, salt and pepper noise were used for data enhancement. A total of 8800 images were obtained as the dataset.



2.3 Dataset preparation

We transfer the LabelImg image annotation software in Python to manually mark the rectangular box of the pitaya fruit in the image. The completely naked pitaya fruit is marked on the inside of its rectangular box, occluded or conglutinated pitaya fruit only needs to mark the exposed part of the image, and the pitaya fruit that appears less than 10% in the image is not marked. We set the target category to “pitaya”, and save it as.xml file after labeling all pitaya fruits in the image.




3 Pitaya fruit recognition network


3.1 YOLOv4 network model

YOLO is a target recognition and localization algorithm based on deep neural network to achieve end-to-end prediction. YOLOv4 (Bochkovskiy et al., 2020) is an efficient and powerful target detection model combined with a large number of previous research techniques and combined innovation. YOLOv4 structure is shown in Figure 2.




Figure 2 | YOLOv4 network structure diagram. * means repeat the operation.



The loss function of YOLOv4 consists of positive sample coordinate loss, positive sample confidence loss, negative sample confidence loss and positive sample classification loss. This paper uses Complete Intersection over Union (CIoU, taking into account the distance, overlap, scale and penalty terms between the target and the box, making the tar-get box regression more stable) as the loss function. CIoU makes the prediction box more consistent with the real box, so that the target box can be positioned accurately. It can also avoid the problem that the Intersection over Union (IoU, used to measure the degree of overlap between the prediction box and the real box in target detection) of the loss function is 0 which because the prediction box does not intersect the real box. The expression of CIoU is:

 

Among them, ρ2(b,bgt) represents the Euclidean distance between the prediction box and the center point of the real box, c represents the diagonal distance which tangential to the rectangular box outside the prediction box and the real box, β is a measure of aspect ratio consistency parameter, v is the trade-off parameter. The YOLOv4 loss function expression is:

 

Among them, λcoord is the weight coefficient of positive samples,   represents traversing all prediction boxes,   and   represent whether they are positive samples. 1 for positive samples, while 0 for others. wi is the width of the center point of the prediction box, hi is the height of the center point of the prediction box,   is the sample value, Ci is the predicted value, λboobj is the weight coefficient of negative samples.



3.2 Improved YOLOv4 network model

YOLOv4 uses CSPDarkNet53 backbone network. Although it has a good effect on object feature extraction, its own network parameters are too large, resulting in a slow recognition speed of YOLOv4. In addition, its model calculation is complex and requires a large amount of memory space. Accordingly, a fast, accurate and lightweight recognition model was proposed in this paper. Based on the traditional YOLOv4, GhostNet was used as the backbone network for feature extraction to reduce the computational complexity of the model, generate more feature maps and achieve rapid recognition of targets. To save computing power, learn more features and process more data in a shorter time, an improved combinational convolution module was used to replace the traditional combinational convolution at feature fusion, and the coordinate attention (CA, an attention mechanism that embeds location information into channel attention) was introduced. In order to compress the model, improve computing speed and reduce delay, Ghost Module was referenced in Yolo Head.


3.2.1 GhostNet backbone network

GhostNet (Han et al., 2020) proposes a structure that generates a large number of feature maps only by a small amount of computation——Ghost Module. It generates feature maps through a series of linear operations. The feature maps generated by linear operations are called Ghost feature maps, and the operated feature maps are called intrinsic feature maps. The conventional convolution module is shown in Figure 3A, and the Ghost Mod-ule is shown in Figure 3B.




Figure 3 | Comparison diagram between the convolutional layer and the Ghost Module: (A) The convolutional layer; (B) The Ghost Module.



If the input feature map size is h1×w1×c, the output feature map size is h2×w2×n, the convolution kernel size is k×k, and the stride is s, then the conventional convolution and Ghost module FLOPs (measurable model complexity) are:

 

 

The ratio of the two is:

 

It can be seen that FLOPs of Ghost Module can be reduced to 1/s of the conventional convolution, which reduces the complexity of the model.



3.2.2 Improved combinational convolution-CA module

Five combinational convolution improvements were made at feature fusion to generate an improved combinational convolution module. In other words, a separable convolution and a residual edge structure were introduced. Among them, the separable convolution can reduce the computational complexity of the network and run faster. The residual edge can improve the learning effect of the model, prevent the loss of effective features, and effectively solve the problem of gradient disappearance. Based on this, two conventional convolutions of the traditional combinational convolution were replaced by separable convolutions. Moreover, the residual edge was added next to the former two convolutions to obtain an improved combinational convolution module. To help the model locate and identify object of interest more accurately, CA was introduced. As a result, an improved combinational convolution-CA module was obtained, as shown in Figure 4.




Figure 4 | Structure diagram of improved combinational convolution-CA. * means repeat the operation.



CA (Hou et al., 2021) embeds location information into channel attention, which can reduce the attention to secondary information and enhance the extraction of fine-grained feature of targets to improve model accuracy and generalization performance. CA includes coordinate information embedding and coordinate attention generation. The structure is shown in Figure 5.




Figure 5 | CA structure diagram.



The coordinate information embedding operation corresponds to X Avg Pool and Y Avg Pool in the figure. For the input X, it uses the pooling kernel of dimension (H, 1) and (1, W) to encode each channel along the horizontal and vertical coordinate directions, and the output expression of the cth channel with height h is:

 

Similarly, the output expression of the cth channel of width w is:

 

For CA generation operation, the two feature maps generated by the previous module are concatenated firstly, and then use a shared 1×1 convolution transformation F1 and the expression is:

 

The generated f∈RC/r×(H+W) is the intermediate feature map of spatial information in horizontal and vertical directions, and r represents the down-sampling ratio to control the block size. Slice f into two separate tensors fh∈RC/r×H and fw∈RC/r×W along the spatial dimension, and then use two 1×1 convolutions Fh and Fw to transform the feature map fh and fw to the same number of channels as the input X, and get the following result:

 

 

Expanding gh and gw as the weight of attention. CA expression is:

 

The calculation can capture the precise position relationship, and then locate the exact position of the object of interest more accurately, so as to help the model identify better.



3.2.3 Improved combinational convolution-CA module at feature fusion

The improved combinational convolution-CA module was applied to the feature fusion (a, b, c, d) section, and the improved combinational convolution-CA module was used at ac, bd, abcd respectively, replacing the original CBL module with the improved combinational convolution-CA module, as shown in Figure 6.




Figure 6 | Improved combinational convolution-CA module at fusion.






3.3 Model training and testing


3.3.1 Test platform

This study uses Pytorch to improve the YOLOv4. Graphics processor unit (GPU) is NVIDIA Quadro P2200 16 G, and the central processing unit (CPU) is Intel(R) Xeon(R) Silver 4210R. The training and improvement of YOLOv4 model are carried out on Windows 10 operating system. The momentum of the momentum optimizer in the network is set to 0.9, the initial learning rate of the weight is set to 0.001, the attenuation coefficient is set to 0.0005, and the number of training iterations is 100. The loss curves for training and test sets are shown in Figure 7.




Figure 7 | Loss value change curve of the training set and the test set.





3.3.2 Pitaya fruit recognition network training

The flow chart of target detection network is shown in Figure 8. The model effect is verified on the same verification set by comparing different improved models.




Figure 8 | Flow chart of pitaya targets detection network.





3.3.3 Model evaluation indicators

In this paper, Precision (P), Recall (R), F1, AP, detection speed and weight size are selected as model evaluation indexes. Since only the pitaya fruit in the image needs to be identified, the pitaya fruit is regarded as a positive sample. On the contrary, all other objects are regarded as negative sample.

 

 

 

 

Among them, the meaning of TP, FP and FN are as follows:

	TP: The number of positive samples correctly identified, which is the correct rate.

	FP: The number of positive samples incorrectly identified, which is the error rate.

	FN: The number of positive samples missed, which is the omission rate.







4 Results and analysis


4.1 Comparison of detection results of different backbone networks

In order to prove the superiority of the improved model under GhostNet framework, this paper conducted comparative experiments on the traditional YOLOv4 and different backbone networks. CSPDarkNet53, GhostNet, ShuffleNetV2, and EfficientNet were used as backbone networks to detect Precision, Recall, F1, AP, detection speed and weight size of pitaya fruit targets. The comparison results of the detection performance of different backbone networks are shown in Table 1. As can be seen from Table 1, although Precision, Recall, F1, and AP of the models with GhostNet, ShuffleNetV2, and EfficientNet as the backbone networks have been decreased, the detection speed has been improved, and the weight size has been reduced significantly. Among them, the weight size of the model with GhostNet and ShuffleNetV2 as the backbone network is similar, but in terms of detection speed, the model with GhostNet as the backbone network is the fastest and the comprehensive effect is the best.


Table 1 | Comparison results of detection performance of different backbone networks.





4.2 Analysis of pitaya fruit identification results

The network structure of this paper was based on YOLOv4, it used GhostNet as the feature extraction backbone network, applied the improved combinational convolution-CA module to the feature fusion, and referenced the Ghost Module in Yolo Head. In order to prove the superiority of the improved network based on YOLOv4, it was necessary to compare and analyze the performance of the detection network before and after the improvement. The pitaya fruit recognition experiment was performed on YOLOv4 and the improved YOLOv4 network under the pitaya fruit dataset. The specific improvements were as follows: ①Replacement of the backbone network. GhostNet was used as the backbone network. ②The improved combinational convolution-CA module was used at feature fusion ac. ③The improved combinational convolution-CA module was used at feature fusion bd. ④The improved combinational convolution-CA module was used at feature fusion abcd. ⑤Ghost Module was referenced in Yolo Head. Effects of five improved methods on recognition of pitaya fruit in different natural environment as shown in Figure 9. Comprehensive comparison showed that GhostNet was used as the backbone network, the improved combinational convolution-CA module was used at feature fusion ac, and the improved algorithm of Ghost Module was referenced in Yolo Head to detect pitaya fruit in rainy days, occlusion and backlight conditions. It had high recognition ac-curacy, while the other four target detection networks had missed detection and false detection, and the recognition accuracy was lower than that of the YOLOv4+①+②+⑤ net-work structure model. Therefore, the improved algorithm in this paper has strong robustness and can adapt to different situations in natural environment.




Figure 9 | Different recognition algorithms for pitayas in three scenes: (A) Rainy weather; (B) Occlusion; (C) Backlighting.



The comparison results of the detection performance of five different improved algorithms are shown in Table 2. It can be seen from Table 2 that Precision, Recall, F1, AP and detection speed of the YOLOv4+①+②+⑤ network structure model are higher than those of the other four target detection networks. When IoU is 0.50, these indexes were 99.23%, 95.10%, 98%, 98.94%, and 37.2 frames·s-1, and the weight size was the smallest, which was 59.4MB, which proved that the model was significantly better than the other four network structures. Compared with the results of traditional YOLOv4, when IoU is 0.50, Precision was increased by 6.8 percentage points, Recall was increased by 2.88 percentage points, F1 was increased by 6 percentage points, AP was increased by 4.6 percentage points, the detection speed was increased by 9.8 frames·s-1, and the weight size was reduced by 184.6MB.


Table 2 | Comparison results of detection performance of different improved networks.



Also, parameters, Flops, and MAC are frequently used when evaluating the size and computational complexity of deep learning models. Parameters represent the total number of parameters inside the model, which is used to measure the size of the model. Flops is the number of floating-point operations, which is used to measure the computational complexity of the model. MAC is the memory access cost, which is used to evaluate the memory usage of the model at runtime. The comparison results of traditional YOLOv4 and the above five different improved algorithms are shown in Table 3. It can be seen from Table 3 that the total parameters of the YOLOv4+①+②+⑤ network structure model are the smallest, the model computational complexity is the lowest, and the model running memory is the least.


Table 3 | Comparison results of different improved networks.



In conclusion, the improved YOLOv4 structure proposed in this paper is shown in Figure 10, which can effectively identify pitaya fruit in natural environment and meet the requirements of target recognition accuracy and speed, with the best overall performance.




Figure 10 | The improved YOLOv4 network structure diagram. * means repeat the operation.






5 Conclusions and discussion

This paper proposed an improved YOLOv4 target recognition algorithm. It used GhostNet as the backbone network, used the improved combinational convolution-CA module at feature fusion, and referenced the Ghost Module in Yolo Head. The algorithm was lighter than the traditional YOLOv4, with faster detection speed and higher recognition accuracy. The model had high recognition accuracy when detecting pitaya fruit in rainy days, occlusion and backlight conditions.

Compared with the results of traditional YOLOv4, when IoU is 0.50, the accuracy of the improved YOLOv4 target recognition algorithm proposed in this paper on the augmented dataset can reach 99.23%, and the weight size is about 1/4 of the traditional YOLOv4. The average accuracy is improved by nearly 5 percentage points, and the detection speed is improved by nearly 10 frames·s-1. Experiments prove that the YOLOv4 recognition algorithm proposed in this study that was combined CA with the improved combinational convolution has significant advantages.

The method is suitable for recognition of other fruits and even other kinds of objects. In future work, it is applied to the robot platform, and the corresponding robotic arm, manipulator, and binocular camera are equipped on its chassis to complete the entire picking process.
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 by Zhang F, Cao W, Wang S, Cui X, Yang N, Wang X, Zhang X and Fu S (2022) Front. Plant Sci. 13:1030021. doi: 10.3389/fpls.2022.1030021


In the published article, there was an error in Figure 2 as published. An error appears in the upper left corner of the figure. The corrected Figure 2 and its caption YOLOv4 network structure diagram. * means repeat the operation. appear below.




Figure 2 | YOLOv4 network structure diagram. * means repeat the operation.



In the published article, there was an error in Figure 6 as published. The left side of the figure is missing. The corrected Figure 6 and its caption Improved combinational convolution-CA module at fusion. appear below.




Figure 6 | Improved combinational convolution-CA module at fusion.



In the published article, there was an error in Figure 10 as published. An error appears in the upper left corner of the figure. The corrected Figure 10 and its caption The improved YOLOv4 network structure diagram. * means repeat the operation. appear below.




Figure 10 | The improved YOLOv4 network structure diagram. * means repeat the operation.
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Moldy peanut seeds are damaged by mold, which seriously affects the germination rate of peanut seeds. At the same time, the quality and variety purity of peanut seeds profoundly affect the final yield of peanuts and the economic benefits of farmers. In this study, hyperspectral imaging technology was used to achieve variety classification and mold detection of peanut seeds. In addition, this paper proposed to use median filtering (MF) to preprocess hyperspectral data, use four variable selection methods to obtain characteristic wavelengths, and ensemble learning models (SEL) as a stable classification model. This paper compared the model performance of SEL and extreme gradient boosting algorithm (XGBoost), light gradient boosting algorithm (LightGBM), and type boosting algorithm (CatBoost). The results showed that the MF-LightGBM-SEL model based on hyperspectral data achieves the best performance. Its prediction accuracy on the data training and data testing reach 98.63% and 98.03%, respectively, and the modeling time was only 0.37s, which proved that the potential of the model to be used in practice. The approach of SEL combined with hyperspectral imaging techniques facilitates the development of a real-time detection system. It could perform fast and non-destructive high-precision classification of peanut seed varieties and moldy peanuts, which was of great significance for improving crop yields.




Keywords: peanut seeds, variety classification, mildew detection, stacked ensemble learning model, nondestructive testing



1 Introduction

Peanuts are considered as important edible oil raw materials and national economic food crops (Wang et al., 2021a). In recent years, in order to meet the growing demands of agriculture and industry, seed hybridization technology has been widely used, so that the number of peanut seed varieties has increased significantly. However, there are many processes that can lead to varietal intermingling throughout growth and development, such as planting, harvesting, transport and storage. At the same time, different varieties of peanuts adapt to different soil types, climatic environments and cultivation methods. Therefore, it is particularly important to identify the purity of peanut seeds before sowing (Liu et al., 2022). In addition, moldy peanut seeds are severely damaged by mold, and the nutrients of the seeds are destroyed in a large amount, resulting in seed rot and weak seedlings, thereby reducing seed vigor and yield (Pasupuleti et al., 2016; Sharma et al., 2021). The purity of peanut seed varieties and the quality of peanuts have a profound impact on the final yield of peanuts and the economic benefits of farmers. Therefore, it is of great value to identify the variety and quality of peanut seeds before sowing.

Peanut seeds of different varieties have very similar appearance properties. The traditional identification method is to identify the shape, skin and color of peanuts manually, but this methods have the disadvantages of low analysis efficiency and time-consuming and labor-intensive (Yuan et al., 2020). At the same time, improper storage of peanuts is prone to produce aflatoxin, which will seriously affect the germination rate of peanut seeds (Sharma et al., 2021). Quantitative measurement methods such as thin-layer chromatography, gas chromatography, and high-performance liquid chromatography are widely used for the determination of aflatoxin content due to their high sensitivity (Wang et al., 2014). However, these ways are destructive, time-consuming, complex to operate, and difficult to implement online. In order to overcome the drawbacks brought by traditional detection methods, rapid and non-destructive detection techniques, such as Raman spectroscopy (Kopec and Abramczyk, 2022), machine vision (Mohi-Alden et al., 2022), and near-infrared spectroscopy (Jiang et al., 2022), have been applied to the classification of agricultural products. When detected by Raman spectroscopy, organic molecules can easily convert the absorbed photons into fluorescent molecules and produce fluorescence effects. Its intensity is much higher than that of the Raman spectral peak, and it can even completely cover the entire Raman spectrum. In this case, surface-enhanced Raman spectroscopy is required (Pang et al., 2020; Xu et al., 2020). Machine vision technology has been used for peanut loss detection. While machine vision technology is commonly used to evaluate the appearance attributes of peanuts, it cannot evaluate internal quality attributes. Near-infrared spectroscopy is a mature non-destructive testing technology that can be used for non-destructive testing of complex samples (Zhang et al., 2022). However, the composition of some samples (eg food) is often heterogeneous. If the spatial distribution of its components is not considered, a large amount of important information may be lost, affecting subsequent analysis results (Badaró et al., 2021).

Hyperspectral imaging (HSI) technology can simultaneously obtain spectral information and spatial position information of the sample (Liu et al., 2019; Su et al., 2021). It has been proven to be a fast, non-invasive and effective tool for food quality analysis (Cortés et al., 2019). Recently, HSI has been used for food classification, ingredient detection, agricultural product quality detection, and damage detection, etc (Xiang et al., 2022). HSI is characterized by multiple bands and high spectral resolution (Tan et al., 2018). (Jin et al., 2022) used the spatial spectral features of HSI to classify peanut seeds, and the classification accuracy reached 97.64%. (Qi et al., 2019) used HSI technology and joint sparse representation model to identify fungi contaminated peanuts. (Sun et al., 2020) used HSI technology combined with chemometrics to detect the fat content in peanut kernel. These studies reveal the potential of HSI in peanut detection, but further research is still necessary.

Classification using HSI is usually achieved by machine learning methods, such as traditional methods such as support vector machines and random forests. However, traditional machine learning has low computational efficiency and accuracy for HIS with large data volumes. SEL improves predictive potential and adjusts the bias-variance trade-off of machine learning submodels. The stacking strategy is an approach based on the “wisdom of the crowd”, which maximizes the generalization accuracy by employing the base learning model to form an ensemble model (Zandi et al., 2022). In theory, different base learners can give full play to the cooperative advantages of ensemble learning and achieve the effect of complementary integration (He et al., 2022). Stacked ensemble machine learning algorithms have been successfully used in various applications including wind power prediction (Dong et al., 2021), soil classification (Eyo and Abbey, 2022), species classification (Fu et al., 2022), etc. (Zhang et al., 2020) classifies vegetation based on medium resolution spectral imaging technology and SEL, and its accuracy is 5.1-5.2% higher than other single models. (Fu et al., 2022) constructed a model based on multispectral images and SEL, and found that the integrated learning algorithm produced better classification performance than the basic model, with an overall accuracy rate of 1.6-12.7% higher. There are relatively few studies using SEL for fine classification of peanut seed varieties and mildewed peanuts, and there is a lack of comparative research on the classification ability of the SEL algorithm for peanut seeds using the HSI.

In this study, a method of HIS combined with SEL was proposed, and the characteristic wavelength was used to realize the classification of peanut seeds and the identification of mildew in peanut seeds. This article aims to: 1) Develop a method based on HIS combined with SEL to realize variety classification and mildew detection of peanut seeds. 2) Explore the influence of the feature wavelengths selected by different variable selection methods on the classification model to determine the best features. 3) Establish a stacked ensemble model with high classification accuracy for peanut seed variety and peanut seed mildew. 4) Evaluate and compare the classification performance of the base model and the stacked ensemble model on samples.



2 Materials and methods


2.1 Sample preparation

This study involved four main peanut varieties in key cultivation areas in my country (Shandong, Henan, Jiangsu, etc.), including Dabaisha, Huayu, Xiaobaisha, and Luhua. All peanut seeds were sourced from a Chinese commercial seed company and picked at random. There were 400 grains of each peanut variety, all samples were normal, and the appearance was clean and complete. To obtain naturally moldy peanuts, the peanuts were placed in a constant temperature and humidity incubator. The optimum temperature and relative humidity for Aspergillus flavus growth and aflatoxin production are 37°C and 90%, and 28°C and 90%, respectively. (Lattab et al., 2012; Yuan et al., 2020).Therefore, the peanuts were placed in the incubator first at 37°C and 90% humidity for 10 days to facilitate the rapid development and reproduction of Aspergillus flavus. From the 11th day, the temperature of the constant temperature and humidity incubator was set to 28°C, and the relative humidity remained unchanged. Then, on the 20th and 30th days, some peanuts with the same degree of mildew were taken out as moldy peanut samples. In order to verify whether peanuts contain aflatoxin, after obtaining HSI, the AFB1 rapid detection card produced by Shenzhen Fender Technology Co., Ltd. was used to detect the residues of AFB1 in various varieties of peanuts. Peanut samples of each variety were tested, and 150 moldy peanut seed samples were selected for each variety from the peanut seeds detected as moldy.



2.2 Hyperspectral imaging system

The hyperspectral image acquisition system adopts the Image-λ “spectral image” series hyperspectral machine of Zhuolihanguang Company, and uses SpacVIEW software to operate it. The system consists of a computer, a transmission platform, a dot matrix camera and a halogen light source. As shown in Figure 1, the effective band range of its spectrum is 400-1000nm, the band resolution is 2.8nm, a total of 235 bands, and the pixel is 1344*1024. The measured display properties R, G and B of each group of samples were set to 638.7, 551.58 and 442.95 respectively, the time was set to 10s, the distance between the peanut sample and the camera lens was set to 165mm, and the moving speed of the sample was set to 4.7mm·s-1. The exposure time of the camera was 4ms, and the scanning area of the spectrum was 150mm. The hyperspectral camera and the sample peanut belong to the vertical scanning relationship. The sample is placed on the transmission platform, and the hyperspectral camera is perpendicular to the transport platform. The hyperspectral image is collected through the uniform movement of the transmission platform.




Figure 1 | Flowchart of the main steps in the detection of peanut seeds by hyperspectral imaging technology.





2.3 Hyperspectral image acquisition and correction

Image processing was first performed to identify regions of interest (ROI), each defined as the inner contour region of a peanut seed. During the acquisition process, due to the influence of noise caused by the surrounding environmental factors and the dark current of the instrument, it is necessary to collect the black frame and white frame of the image separately before collecting the sample. After the sample collection was completed, the black and white correction was performed in SpacVIEW according to the following formula (1.1), and the ENVI5.1 software was used to extract the area required for the experiment in the peanut hyperspectral image after black and white correction. Then, the average reflectance value of the spectral data on the extracted area was calculated as the characteristic reflectance spectral curve of different varieties of peanuts, as shown in Figure 2. When collecting the spectral data of the sample, the sample to be tested is affected by illumination, dark current, light scattering and human operation when taking pictures, resulting in noise and a large amount of interference information in the spectral data (Li et al., 2021). The raw visible-NIR spectra also require baseline correction and noise removal. Therefore, all these unwanted components must be removed to improve the signal-to-noise ratio and optimize model performance. In order to obtain more valuable spectral data, this paper used Median Filtering (MF) to preprocess the spectral data. MF has a good filtering effect on impulse noise, especially while filtering out noise, it can protect the edge of the signal so as not to be blurred, and obtain more valuable spectral data (Kumar et al., 2021).






Figure 2 | Hyperspectral imaging system.



In the formula, R0 is the initial hyperspectral image (RAW), R1 is the image after black and white correction, RB is the black frame of the image collected after closing the lens, and Rw is the white frame of the image collected after the acquisition and debugging are correct.



2.4 PCA spectral data visualization

Principal Component Analysis (PCA) was proposed by Pearson in 1901 and later popularized by Hotelling in 1933. The main idea of PCA is to map m-dimensional features to k-dimensions (k<m), and linearly combine many original feature factors with certain correlation into several new independent comprehensive factors. And, as much as possible to reflect the original information of these characteristic factors (Bianchi et al., 2015). A 3D scatter plot of the first three principal components was used to visualize the separation of peanut seed samples.



2.5 Feature wavelength selection

The raw spectral data collected by the hyperspectral system is affected by a large amount of redundant information, resulting in a decrease in classification accuracy (Zou et al., 2023). The raw spectral data collected by hyperspectral systems are composed of a large number of bands and have multicollinearity. It is advisable to select some important variables to develop more powerful and concise classification models. Characteristic wavelength modeling can effectively eliminate the redundancy of spectral data and improve the accuracy and efficiency of classification models. Therefore, it is necessary to extract the characteristic wavelengths with strong correlation to judge the type of samples from the original spectral data. The spectral data of peanut seed samples contains 235 characteristic bands. This paper adopted four effective wavelength extraction methods: XGBoost, LightGBM, GBDT, and CatBoost. The contribution rate of each wavelength was obtained through cross-validation, and the wavelength with high contribution rate was selected, thereby simplifying the establishment of subsequent models and reducing the amount of calculation.



2.6 Classification model

Based on the above-mentioned spectral preprocessing and effective feature wavelength selection methods, five machine learning algorithms, GBDT, XGBoost, CatBoost, LightGBM and SEL, were used to establish classification models. Determine the optimal model based on the prediction results. 70% of the spectral data was randomly selected as the training set, and the remaining 30% of the spectral data was used as the test set. The samples were divided into 5 categories, including Dabaisha, Huayu, Xiaobaisha, Luhua, and moldy peanut seeds.

XGBoost is an optimized distributed gradient boosting library designed to be efficient, flexible and portable (Li et al., 2022). First, it constructs an appropriate number of weak learners, mainly classification regression trees, to train weak learners. It also performs weighting calculations and summations after training to get the final classification model. XGBoost uses a second-order Taylor expansion for the loss function. At the same time, XGBoost also supports column sampling to avoid overfitting and reduce the computational workload. After each iteration, XGBoost assigns the learning rate to leaf nodes, reducing the weight of each tree and providing better space for subsequent learning (Liu et al., 2021b).

LightGBM was originally developed by researchers at Microsoft and Peking University to address the efficiency and scalability issues of GBDT and XGBoost when applied to high-dimensional input features and large data volumes (Wen et al., 2021). The core concepts of LightGBM are histogram algorithm, leaf growth strategy with depth limit, support category features, histogram feature optimization, multi-threading optimization and cache hit ratio optimization (Wang et al., 2021b). The algorithm bins the original continuous feature values and uses these bins to build a model. The histogram greatly reduces the time consumption of split point selection and improves the training and prediction efficiency of the model (Liu et al., 2021a).

CatBoost is a machine learning algorithm based on gradient boosting decision trees. Different from other gradient boosting algorithms, CatBoost uses a symmetric tree structure, which helps to avoid overfitting and improve reliability (Ding et al., 2021). During the construction of CatBoost trees, each tree is built based on the residuals of the previous tree. This iterative process makes the final prediction more accurate and the model more robust (Zou et al., 2021).

As an ensemble learning algorithm based on classification and regression tree, GBDT consists of Decision Tree and Gradient Boosting. GBDT contains multiple rounds of iterations. The basic classifier generated by each round of iteration is trained on the basis of the residual of the previous round of classifier (residual = true value - predicted value), and then continues to fit the residual of the previous round (Zhang and Jung, 2021).

The SEL framework generalizes the output values of multiple models to improve the overall classification performance by using the classification results of the base model as the input data of the meta-model (Fu et al., 2022). The SEL principle was shown in Figure 3A. This study stacks four base models (XGBoost, LightGBM, GBDT, CatBoost) to build an ensemble learning model. When using SEL, the original dataset is divided into sub-datasets, which are then used as input data for different base learners in the first layer. The predicted values from the first layer are used as input data for the second layer to train the base learner. The final predicted value comes from the model in the second layer.




Figure 3 | Schematic diagram of the SEL. (A) SEL schematic diagram. (B) SEL principle flow diagram.



As shown in Figure 3B. 1)Divide the data into training and test sets. Then divide the training set into five parts (train1, train2, train3, train4, train5). 2)Select the base model. Choose LightGBM, CatBoost and GBDT as base models. For the base model part: use 1 copy as the validation set in turn, and the remaining 4 copies as the training set, perform 5-fold cross-validation for model training, and then make predictions on the test set. This will get 5 predictions trained by the base model on the training set and 1 prediction B1 on the test set. Combine these five vertical overlaps to get A1. 3)After the three base models are trained, the predicted values of the three models on the training set are taken as three features (A1, A2, A3) respectively, and the XGBoost model is used for training to establish the XGBoost model. 4)Using the trained XGBoost model, make predictions on the values of the three features (B1, B2, B3) constructed from the predicted values on the test set before the three base models, and get the final predicted category.



2.7 Model evaluation

The hyperspectral data of 70% of the peanut seed samples were selected as training data by random sampling, and the remaining 30% of the data were used as the test set. The machine learning algorithm was used to build a discriminant model to verify the logical properties of the feature response of peanut seeds HSI. Using Modeling Average Time, Accuracy, Log Loss, and Hamming Loss to evaluate the effect of model training predictions (Leng et al., 2020; Huang et al., 2021; Wang et al., 2021c). Log Loss The negative logarithm of the probability that the true probability occurs for a given classifier, conditional on the prediction probability. The smaller the value, it is proved that the probability estimates more accurate, the ideal model. Hamming Loss is used to investigate the misclassification of samples on a single tag, that is, relevant tags do not appear in the predicted tag set or irrelevant tags appear in the predicted tag set. The smaller the index value, the better the model performance. The smaller the value, it is proved that the probability estimates more accurate, the ideal model. Hamming Loss is used to investigate the misclassification of samples on a single tag, that is, relevant tags do not appear in the predicted tag set or irrelevant tags appear in the predicted tag set. The smaller the index value, the better the model performance. The smaller the value, it is proved that the probability estimates more accurate, the ideal model. These evaluation parameters are calculated as follows:



In the formula, FP represents the correct sample in the wrong sample, TN represents the wrong sample in the real sample, TP represents the predicted correct sample in the real sample, and FN represents the wrong sample in the incorrect sample.



In the formula, N is the number of samples, M is the number of categories, when the ith sample belongs to category j, Yij is 1, otherwise it is 0; Pij is the probability that the ith sample is predicted to be the jth category.



In the formula, N represents the number of samples, L is the number of label samples, Yij is the actual value of the jth component in the ith predicted value, Pij is the predicted value of the jth component in the ith predicted value, XOR represents XOR operation.




3 Results and discussion


3.1 Spectral characteristics of peanut seeds

Black and white correction was performed on the hyperspectral data of the sample, which effectively eliminated the influence of external factors on the spectral data of the sample. Figures 4A, B show the raw spectra of peanut seeds and moldy peanut seed samples, and Figures 4C, D show the spectra of peanut seeds and moldy peanut seed samples after MF treatment. Compared with the original spectra, the MF-processed spectral data have similar trends to the original spectra. After preprocessing, the noise interference of hyperspectral data is reduced, and the spectral curve is smoother. Figures 4E–H show the spectral changes before and after mildewing of four kinds of peanut seeds. Studies have shown that there are obvious spectral differences in the visible light region of 400-450nm, which is related to the color change of peanut seeds after mold (Fernandez-Ibanez et al., 2009; Wang et al., 2015). The reflectance in the visible light region of 400-600nm is generally low, because the pigments such as anthocyanin and chlorophyll in the peanut skin strongly absorb light (He et al., 2021). In the 700 nm-1000 nm spectral band, there are obvious differences in spectral reflectance, mainly caused by the organic chemical bonds of peanut seeds (Kimuli et al., 2018). At small concentrations, its effect on the spectrum may be suppressed by more conspicuous kernel color, so more aflatoxin spectral information is expected in the NIR region between 700 and 1000 nm (Fernandez-Ibanez et al., 2009).




Figure 4 | Spectral curves of peanut seeds. (A) The original spectral curves of four varieties of peanut seeds; (B) the original spectral curves of mildewed peanut seeds; (C) the spectral curves after MF pretreatment; (D) spectral curves of moldy peanut seeds after MF pretreatment; (E–H) are the average spectral curves of four healthy peanut seeds and moldy peanut seeds, respectively.





3.2 Visualization of hyperspectral data

Using PCA algorithm, the first three principal components are selected as data representatives to intuitively reflect the differences between samples. The raw and MF preprocessed hyperspectral data are visualized through PCA algorithm, as shown in Figures 5A, B. PC1, PC2 and PC3 are the contribution rates of the first three principal components and also represent the variance of the data they carry. The contribution rate represents the sum of the eigenvalues of each principal component divided by the eigenvalues. In space, PCA can be understood as projecting the original data to a new coordinate system. PC1 respectively represents the change interval of the first new variable obtained by some transformation of multiple variables in the data; PC2 represents the change range of the second new variable obtained by some transformation of multiple variables in the original data; Similarly, PC3 can be obtained. In the raw and MF preprocessed spectral data, the cumulative weights of the first three principal components reached 98.03% and 98.21%, respectively, reflecting the main information of peanut seeds. The first three principal components were selected for principal component analysis of spectral data. Its purpose is to retain the main information of spectral data to the maximum extent, prevent data missing, reduce the redundancy of spectral data, and meet the requirement that the cumulative contribution rate of principal component analysis is greater than 80% (Lee and Jemain, 2021). Spectral data was visualized using PCA, presenting five peanut seed samples as “clusters”. When reduced to three dimensions, it can be seen from Figures 5A, B that MF-PCA can better display the five peanut seed samples as “clusters”. RAW-PCA has more intersections and shows poorer results. Each sample in MF-PCA has its own spatial distribution characteristics, which show the best results, which is consistent with the results obtained later with MF as model input. Therefore, by visualizing the preprocessed spectral data through the PCA algorithm, the spatial distribution of the preprocessed spectral data can be clearly seen from the visualized image. After PCA visualization, it can be seen intuitively that five peanut seed samples can be classified. This analysis provides the basis for the following classification model.




Figure 5 | PCA visualization of hyperspectral data of peanut seeds. (A) RAW-PCA; (B) MF-PCA.





3.3 Classification model using full spectral

The MF spectral preprocessing method combined with five classification models (XGBoost, LightGBM, CatBoost, GBDT, SEL) is used to construct classification models. MF effectively eliminates the noise impact of spectral data, and the classification accuracy has been significantly improved. MF has excellent performance on hyperspectral data. After MF pretreatment, the classification model can accurately identify peanut seed varieties and mildew. Figure 6 visually shows the accuracy of the test set and training set of each classification model. When using full spectral data as the model input, the accuracy of spectral data is significantly improved after MF preprocessing, among which, the accuracy growth rates of model training set and test set are 6.63-9.42% and 6.52-8.94%. The classification accuracy of MF-SEL is 98.57% and 97.27% on the training and test sets. Moreover, the Log Loss and Hamming Loss have the lowest values of 4906.57 and 0.027273, and the modeling time of MF-SEL is 1.2678s. Comparing the five classification models, the training set and test set accuracy of SEL are higher than the other four classification models. SEL makes the best of the synergistic advantages of different base learners to achieve the effect of complementary integration, thereby improving the accuracy of classification models (Zandi et al., 2022).




Figure 6 | The training set and test set accuracy of the original hyperspectral data and the MF preprocessed hyperspectral data as input for the five models.





3.4 Calibrate model using selected spectra


3.4.1 Feature wavelength selection

The original spectral data collected by the hyperspectral system consists of a large number of wavebands with multiple collinearity (Khan et al., 2022). XGBoost, LightGBM, CatBoost and GBDT rank the importance of 235 wavelength respectively, and the number of effective wavelengths they select is 61, 32, 46 and 66. Figure 7 intuitively shows the distribution of characteristic wavelengths selected by different feature selection methods, as well as the importance score of each wavelength. The characteristic wavelengths selected by the four feature selection methods are similar, mainly distributed in 400-450nm, 500-600nm, 790-830nm and 968-1000nm. This also means that there is more differential information near these bands. Selecting some important variables helps to develop a more powerful and concise classification model. Among them, there are obvious spectral differences in the visible light region of 400-450nm, which is related to the color change of peanut seeds after mold (Fernandez-Ibanez et al., 2009; Wang et al., 2015). The reflectance in the visible light region of 400-600nm is generally low, because the pigments such as anthocyanin and chlorophyll in the peanut skin strongly absorb light (He et al., 2021). 800nm is associated with third overtone N-H stretch and third overtone C-H, 968-1000nm is associated with second overtone O-H stretch and second overtone N-H stretch (Kimuli et al., 2018). The experimental results show that the four variable selection methods have similar general trends on the selected characteristic wavelengths. These characteristic wavelengths will be an important basis for finally distinguishing different peanut seed samples. Therefore, the wavelengths selected in the above process were used as input to the subsequent classification model.




Figure 7 | Characteristic wavelength distribution and contribution rate of characteristic wavelengths for four variable selection methods. (A) XGBoost; (B) LightGBM; (C) CatBoost; (D) GBDT.





3.4.2 Classification model using selected spectra

The hyperspectral data preprocessed by MF is used to construct classification models through four variable selection methods (XGBoost, LightGBM, CatBoost, GBDT) combined with five classification models (XGBoost, LightGBM, CatBoost, GBDT, SEL). The evaluation indicators of the classification results of each model are summarized in Table 1. From the classification results of all classification models in Table 1, all classification models can accurately identify the variety of peanut seeds and the mildewed peanut seeds. Figure 8 visually shows the accuracy of the test set and training set of each classification model. SEL also shows its excellence when using the characteristic wavelengths screened out by different variable selection methods as model inputs. Better classification results were obtained by using fewer wavelengths. Compared with the classification results in Table 2, when the characteristic wavelength selected by the variable selection method is used as the model input, the classification accuracy and modeling time are improved. Especially for Stack, the modeling time is improved by about 0.8s. This is due to the fact that the variable selection method selects the more recognizable characteristic wavelengths as the model input, which reduces the redundancy of the data (Chen et al., 2020). Experimental results show that MF-LightGBM-SEL achieves the best classification results. LightGBM selects 17 characteristic wavelengths as model input, and the accuracy rates of training set and test set reach 98.63% and 98.03%, respectively. Log Loss and Hamming Loss are 4733.88 and 0.019697 respectively, and the modeling time is 0.3701s.


Table 1 | Evaluation indicators for the classification results of peanut seed samples using four variable selection methods combined with five classification models.






Figure 8 | The training and test set accuracies of the feature wavelengths selected by the four variable selection methods as the model input.




Table 2 | Evaluation indicators of MF combined with five classification models for the classification results of peanut seed samples.






3.5 Classification performance analysis of stacked ensemble models

Figures 9A–F show confusion matrices derived from RAW, MF, and hyperspectral data selected by different variable selection methods as SEL input. Except for RAW-SEL, the other SELs achieved 97.79% recognition rate for moldy peanut seed samples. Compared with the RAW-SEL model test set, the accuracy rate is increased by 3.31%, which is due to the good data processing ability of MF that eliminates the noise effect of hyperspectral data. Compared with full-wavelength modeling, the characteristic wavelengths obtained by using the four variable selection methods are also greatly improved. Especially for the peanut seeds of Luhua, the classification accuracy rate reaches 100%. This is due to the use of characteristic wavelength modeling to reduce the problems of collinearity and redundancy in hyperspectral data. Preprocessing the original spectrum and using four variable selection methods to extract characteristic wavelength variables cannot help improve the accuracy and stability of the SEL, but improve the modeling time. To sum up, by comparing the classification results of SEL and the four basic models, SEL shows excellent classification performance. Compared with the basic classification model, it uses less hyperspectral data and obtains better classification results. These are consistent with the findings of several previous studies, e.g. (Zhang et al., 2020) classifies vegetation based on medium resolution spectral imaging technology and SEL, and its accuracy is 5.1-5.2% higher than other single models. (Fu et al., 2022) constructed a model based on multispectral images and SEL, and found that the integrated learning algorithm produced better classification performance than the basic model, with an overall accuracy rate of 1.6-12.7% higher. The results showed that the stacked ensemble model exhibits superior classification performance.




Figure 9 | Confusion matrix for the training set of SEL. (A) RAW-Stack; (B) MF-Stack (C) MF-XGBoost-SEL; (D) MF-LightGBM-SEL; (E) MF-CatBoost-SEL; (F) MF-GBDT-SEL.






4 Conclusion

In this paper, a fast and accurate nondestructive detection method using HSI technology combined with a stacked machine learning model was proposed to classify peanut seed varieties and moldy peanut seeds. The SEL was formed by stacking and integrating XGBoost, LightGBM, CatBoost, and GBDT algorithms. The MF spectral preprocessing method was used to calibrate the model, and it was found that MF preprocessing can reduce the influence of hyperspectral data noise and greatly improve the accuracy of the model. The accuracy rate of the training set increases by 6.53-8.95%. Among the four variable selection methods, LightGBM exhibits the best performance, which effectively eliminates the collinearity and redundancy problems of hyperspectral data. The characteristic wavelengths screened by the four variable selection methods are used as model input, and the growth rate of the training set accuracy is 0.15-0.91%. Compared with the basic model, the training set accuracy rate increases by 0.6%-3.48%. For the hyperspectral data of 17 characteristic wavelengths selected by MF-LightGBM-SEL, the training set and test set accuracy rate reached 98.63% and 98.03%, respectively, and the modeling time was 0.3701s. Log loss and Hamming Loss are namely 5321.04 and 0.045455. The stacking ensemble algorithm exhibits strong classification ability. Compared with the research of Jin et al. (Qi et al., 2019; Sun et al., 2020; Jin et al., 2022), first of all, this paper classifies peanut seed varieties and mildew, identifies two factors that affect peanut yield, and provides a broader reference for improving the quality of peanut seeds. Secondly, the experimental method studied in this paper adds time parameters, Hamming Loss Log Loss and other evaluation indicators, which makes the efficiency and performance of the model more intuitive. Finally, through the strategy of stacking machine learning models, this paper realizes the accurate identification of peanut seed varieties and mildew. The results show that HSI technology has satisfactory potential in identifying peanut seed varieties and discriminating mildewed peanut seeds. In addition, the method of stacking ensemble algorithm combined with HSI technology provides ideas for rapid identification of peanut seed varieties and mildew identification of peanut seeds.



Data availability statement

The original contributions presented in the study are publicly available. This data can be found here: https://github.com/wuqingsongwj/Peanut-seed.



Author contributions

Conceptualization, ZYZ and YCW. Data curation, QSW and QLW. Formal analysis, YPZ, JBZ and QFZ. Funding acquisition, LJX, ZYZ and MZ. Methodology, JW and QSW. Project administration, LJX, ZYZ and MZ. Writing—original draft, QSW. Writing—review and editing, ZYZ and QSW. All authors contributed to the article and approved the submitted version.



Funding

This study was funded by the Sichuan Science and Technology Program (Grant No. 2022NZZJ0034) and Agricultural University Program (Grant No. 2121997858; Grant No. 2221998028).



Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.



References

 Badaró, A. T., Amigo, J. M., Blasco, J., Aleixos, N., Ferreira, A. R., Clerici, M. T. P. S., et al. (2021). Near infrared hyperspectral imaging and spectral unmixing methods for evaluation of fiber distribution in enriched pasta. Food Chem. 343, 128517. doi: 10.1016/j.foodchem.2020.128517

 Bianchi, F. M., De Santis, E., Rizzi, A., and Sadeghian, A. (2015). Short-term electric load forecasting using echo state networks and PCA decomposition. IEEE Access 3, 1931–1943. doi: 10.1109/ACCESS.2015.2485943

 Chen, C., Zhang, Q., Yu, B., Yu, Z., Lawrence, P. J., Ma, Q., et al. (2020). Improving protein-protein interactions prediction accuracy using XGBoost feature selection and stacked ensemble classifier. Comput. Biol. Med. 123, 103899. doi: 10.1016/j.compbiomed.2020.103899

 Cortés, V., BLASCO, J., ALEIXOS, N., CUBERO, S., and TALENS, P. (2019). Monitoring strategies for quality control of agricultural products using visible and near-infrared spectroscopy: A review. Trends Food Sci. Technol. 85, 138–148. doi: 10.1016/j.tifs.2019.01.015

 Ding, Y., Chen, Z. Q., Lu, W. F., and Wang, X. Q. (2021). A CatBoost approach with wavelet decomposition to improve satellite-derived high-resolution PM2.5 estimates in Beijing-Tianjin-Hebei. Atmospheric Environ. 249:118212. doi: 10.1016/j.atmosenv.2021.118212

 Dong, Y., Zhang, H., Wang, C., and Zhou, X. (2021). Wind power forecasting based on stacking ensemble model, decomposition and intelligent optimization algorithm. Neurocomputing 462, 169–184. doi: 10.1016/j.neucom.2021.07.084

 Eyo, E., and Abbey, S. (2022). Multiclass stand-alone and ensemble machine learning algorithms utilised to classify soils based on their physico-chemical characteristics. J. Rock Mechanics Geotechnical Eng. 14, 603–615. doi: 10.1016/j.jrmge.2021.08.011

 Fernandez-Ibanez, V., Soldado, A., Martinez-Fernandez, A., and De La Roza-Delgado, B. (2009). Application of near infrared spectroscopy for rapid detection of aflatoxin B1 in maize and barley as analytical quality assessment. Food Chem. 113, 629–634. doi: 10.1016/j.foodchem.2008.07.049

 Fu, B., He, X., Yao, H., Liang, Y., Deng, T., He, H., et al. (2022). Comparison of RFE-DL and stacking ensemble learning algorithms for classifying mangrove species on UAV multispectral images. Int. J. Appl. Earth Observation Geoinformation 112, 102890. doi: 10.1016/j.jag.2022.102890

 He, Y., Xiao, J., An, X., Cao, C., and Xiao, J. (2022). Short-term power load probability density forecasting based on GLRQ-stacking ensemble learning method. Int. J. Electrical Power Energy Syst. 142, 108243. doi: 10.1016/j.ijepes.2022.108243

 He, X., Yan, C., Jiang, X., Shen, F., You, J., and Fang, Y. (2021). Classification of aflatoxin B1 naturally contaminated peanut using visible and near-infrared hyperspectral imaging by integrating spectral and texture features. Infrared Phys. Technol. 114, 103652. doi: 10.1016/j.infrared.2021.103652

 Huang, Y., Dong, W., Chen, Y., Wang, X., Zhan, B., Liu, X., et al. (2021). Online detection of soluble solids content and maturity of tomatoes using Vis/NIR full transmittance spectra. Chemometrics Intelligent Lab. Syst. 210. doi: 10.1016/j.chemolab.2021.104243

 Jiang, H., Liu, L., and Chen, Q. (2022). Rapid determination of acidity index of peanuts by near-infrared spectroscopy technology: Comparing the performance of different near-infrared spectral models. Infrared Phys. Technol. 125, 104308. doi: 10.1016/j.infrared.2022.104308

 Jin, S., Zhang, W., Yang, P., Zheng, Y., An, J., Zhang, Z., et al. (2022). Spatial-spectral feature extraction of hyperspectral images for wheat seed identification. Comput. Electrical Eng. 101, 108077. doi: 10.1016/j.compeleceng.2022.108077

 Khan, A., Vibhute, A. D., Mali, S., and Patil, C. H. (2022). A systematic review on hyperspectral imaging technology with a machine and deep learning methodology for agricultural applications. Ecol. Inf. 69, 101678. doi: 10.1016/j.ecoinf.2022.101678

 Kimuli, D., Wang, W., Lawrence, K. C., Yoon, S.-C., Ni, X., and Heitschmidt, G. W. (2018). Utilisation of visible/near-infrared hyperspectral images to classify aflatoxin B1 contaminated maize kernels. Biosyst. Eng. 166, 150–160. doi: 10.1016/j.biosystemseng.2017.11.018

 Kopec, M., and Abramczyk, H. (2022). Analysis of eggs depending on the hens' breeding systems by raman spectroscopy. Food Control 141, 109178. doi: 10.1016/j.foodcont.2022.109178

 Kumar, N. P., Sagar, K. K., Ramu, B., Y.T.R., P., Asapu, S., and Subramani, P. (2021). Design of exponentially weighted median filter cascaded with adaptive median filter. J. Physics: Conf. Ser. 1(2089):1742–6596. doi: 10.1088/1742-6596/2089/1/012020

 Lattab, N., Kalai, S., Bensoussan, M., and Dantigny, P. (2012). Effect of storage conditions (relative humidity, duration, and temperature) on the germination time of aspergillus carbonarius and penicillium chrysogenum. Int. J. Food Microbiol. 160, 80–84. doi: 10.1016/j.ijfoodmicro.2012.09.020

 Lee, L. C., and Jemain, A. A. (2021). On overview of PCA application strategy in processing high dimensionality forensic data. Microchemical J. 169, 106608. doi: 10.1016/j.microc.2021.106608

 Leng, T., Li, F., Xiong, L., Xiong, Q., Zhu, M., and Chen, Y. (2020). Quantitative detection of binary and ternary adulteration of minced beef meat with pork and duck meat by NIR combined with chemometrics. Food Control 113. doi: 10.1016/j.foodcont.2020.107203

 Li, J., An, X., Li, Q., Wang, C., Yu, H., Zhou, X., et al. (2022). Application of XGBoost algorithm in the optimization of pollutant concentration. Atmospheric Res. 276, 106238. doi: 10.1016/j.atmosres.2022.106238

 Li, X. L., Li, Z. X., Yang, X. F., and He, Y. (2021). Boosting the generalization ability of vis-NIR-spectroscopy-based regression models through dimension reduction and transfer learning. Comput. Electron. Agric. 186. doi: 10.1016/j.compag.2021.106157

 Liu, J., Gao, Y., and Hu, F. (2021a). A fast network intrusion detection system using adaptive synthetic oversampling and LightGBM. Comput. Secur. 106. doi: 10.1016/j.cose.2021.102289

 Liu, Y., Wang, H., Fei, Y., Liu, Y., Shen, L., Zhuang, Z., et al. (2021b). Research on the prediction of green plum acidity based on improved XGBoost. Sensors 21. doi: 10.3390/s21030930

 Liu, Q., Wang, Z., Long, Y., Zhang, C., Fan, S., and Huang, W. (2022). Variety classification of coated maize seeds based on raman hyperspectral imaging. Spectrochimica Acta Part A: Mol. Biomolecular Spectrosc. 270, 120772.

 Liu, H., Wang, Y. Q., Wang, X. M., An, D., Wei, Y. G., Luo, L. X., et al. (2019). Study on detection method of wheat unsound kernel based on near-infrared hyperspectral imaging technology. Spectrosc. Spectral Anal. 39, 223–229.

 Mohi-Alden, K., Omid, M., Soltani Firouz, M., and Nasiri, A. (2022). A machine vision-intelligent modelling based technique for in-line bell pepper sorting. Inf. Process. Agriculture 9(3):2214–3173. doi: 10.1016/j.inpa.2022.05.003

 Pang, J. F., Tang, C., Li, Y. K., Xu, C. R., and Bian, X. H. (2020). Identification of melamine in milk powder by mid-infrared spectroscopy combined with pattern recognition method. Spectrosc. Spectral Anal. 40, 3235–3240. doi: 10.3964/j.issn.1000-0593(2020)10-3235-06

 Pasupuleti, J., Pandey, M. K., Manohar, S. S., Variath, M. T., Nallathambi, P., Nadaf, H. L., et al. (2016). Foliar fungal disease-resistant introgression lines of groundnut (Arachis hypogaea l.) record higher pod and haulm yield in multilocation testing. Plant Breed. 135, 355–366. doi: 10.1111/pbr.12358

 Qi, X., Jiang, J., Cui, X., and Yuan, D. (2019). Identification of fungi-contaminated peanuts using hyperspectral imaging technology and joint sparse representation model. J. Food Sci. Technol. 56, 3195–3204. doi: 10.1007/s13197-019-03745-2

 Sharma, S., Choudhary, B., Yadav, S., Mishra, A., Mishra, V. K., Chand, R., et al. (2021). Metabolite profiling identified pipecolic acid as an important component of peanut seed resistance against aspergillus flavus infection. J. Hazardous Materials 404, 124155. doi: 10.1016/j.jhazmat.2020.124155

 Sun, J., Wang, G., Zhang, H., Xia, L., Zhao, W., Guo, Y., et al. (2020). Detection of fat content in peanut kernels based on chemometrics and hyperspectral imaging technology. Infrared Phys. Technol. 105, 103226. doi: 10.1016/j.infrared.2020.103226

 Su, Z., Zhang, C., Yan, T., Zhu, J., Zeng, Y., Lu, X., et al. (2021). Application of hyperspectral imaging for maturity and soluble solids content determination of strawberry with deep learning approaches. Front. Plant Sci. 12. doi: 10.3389/fpls.2021.736334

 Tan, C., Du, Y., Zhou, J., Wang, D., Luo, M., Zhang, Y., et al. (2018). Analysis of different hyperspectral variables for diagnosing leaf nitrogen accumulation in wheat. Front. Plant Sci. 9. doi: 10.3389/fpls.2018.00674

 Wang, W., Heitschmidt, G. W., Ni, X., Windham, W. R., Hawkins, S., and Chu, X. (2014). Identification of aflatoxin B1 on maize kernel surfaces using hyperspectral imaging. Food Control 42, 78–86. doi: 10.1016/j.foodcont.2014.01.038

 Wang, P., Liu, J., Xu, L., Huang, P., Luo, X., Hu, Y., et al. (2021c). Classification of amanita species based on bilinear networks with attention mechanism. Agriculture-Basel 11. doi: 10.3390/agriculture11050393

 Wang, W., Ni, X., Lawrence, K. C., Yoon, S.-C., Heitschmidt, G. W., and Feldner, P. (2015). Feasibility of detecting aflatoxin b-1 in single maize kernels using hyperspectral imaging. J. Food Eng. 166, 182–192. doi: 10.1016/j.jfoodeng.2015.06.009

 Wang, C., Wang, Z., Wei, Y., Tang, Y., Wang, F., Han, H., et al. (2021a). Effect of variety and seed dressing on emergence of high-oleic peanut under low temperature and high soil humidity conditions. Oil Crop Sci. 6, 164–168. doi: 10.1016/j.ocsci.2021.10.002

 Wang, N. N., Zhang, G. P., Ren, L. J., Pang, W. J., and Wang, Y. P. (2021b). Vision and sound fusion-based material removal rate monitoring for abrasive belt grinding using improved LightGBM algorithm. J. Manufacturing Processes 66, 281–292. doi: 10.1016/j.jmapro.2021.04.014

 Wen, X., Xie, Y. C., Wu, L. T., and Jiang, L. M. (2021). Quantifying and comparing the effects of key risk factors on various types of roadway segment crashes with LightGBM and SHAP. Accident Anal. Prev. 159. doi: 10.1016/j.aap.2021.106261

 Xiang, Y., Chen, Q., Su, Z., Zhang, L., Chen, Z., Zhou, G., et al. (2022). Deep learning and hyperspectral images based tomato soluble solids content and firmness estimation. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.860656

 Xu, Y., Zhong, P., Jiang, A., Shen, X., Li, X., Xu, Z., et al. (2020). Raman spectroscopy coupled with chemometrics for food authentication: A review. TrAC Trends Analytical Chem. 131, 116017. doi: 10.1016/j.trac.2020.116017

 Yuan, D., Jiang, J., Qi, X., Xie, Z., and Zhang, G. (2020). Selecting key wavelengths of hyperspectral imagine for nondestructive classification of moldy peanuts using ensemble classifier. Infrared Phys. Technol. 111, 103518. doi: 10.1016/j.infrared.2020.103518

 Zandi, O., Zahraie, B., Nasseri, M., and Behrangi, A. (2022). Stacking machine learning models versus a locally weighted linear model to generate high-resolution monthly precipitation over a topographically complex area. Atmospheric Res. 272, 106159. doi: 10.1016/j.atmosres.2022.106159

 Zhang, Z., and Jung, C. (2021). GBDT-MO: Gradient-boosted decision trees for multiple outputs. IEEE Trans. Neural Networks Learn. Syst. 32, 3156–3167. doi: 10.1109/TNNLS.2020.3009776

 Zhang, L., Wang, Y., Wei, Y., and An, D. (2022). Near-infrared hyperspectral imaging technology combined with deep convolutional generative adversarial network to predict oil content of single maize kernel. Food Chem. 370, 131047. doi: 10.1016/j.foodchem.2021.131047

 Zhang, M., Zhang, H. Q., Li, X. Y., Liu, Y., Cai, Y. T., and Lin, H. (2020). Classification of paddy rice using a stacked generalization approach and the spectral mixture method based on MODIS time series. IEEE J. Selected Topics Appl. Earth Observations Remote Sens. 13, 2264–2275. doi: 10.1109/JSTARS.2020.2994335

 Zou, Z. Y., Long, T., Chen, J., Wang, L., Wu, X. W., Zou, B., et al. (2021). Rapid identification of adulterated safflower seed oil by use of hyperspectral spectroscopy. Spectrosc. Lett. 54, 675–684. doi: 10.1080/00387010.2021.1986543

 Zou, Z., Wu, Q., Wang, J., Xu, L., Zhou, M., Lu, Z., et al. (2023). Research on non-destructive testing of hotpot oil quality by fluorescence hyperspectral technology combined with machine learning. Spectrochimica Acta Part A: Mol. Biomolecular Spectrosc. 284, 121785. doi: 10.1016/j.saa.2022.121785



Publisher’s note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Wu, Xu, Zou, Wang, Zeng, Wang, Zhen, Wang, Zhao and Zhou. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.




ORIGINAL RESEARCH

published: 25 November 2022

doi: 10.3389/fpls.2022.1074945

[image: image2]


Research on accurate perception and control system of fertilization amount for corn fertilization planter


Bo Wang 1, Yafei Wang 1, Hui Wang 2, Hanping Mao 1* and Liming Zhou 2*


1 College of Agricultural Engineering, Jiangsu University, Zhenjiang, China, 2 Chinese Academy of Agricultural Mechanization Sciences, Beijing, China




Edited by: 

Jianfeng Ping, Zhejiang University, China

Reviewed by: 

Jun Ni, Nanjing Agricultural University, China

Liqing Chen, Anhui Agricultural University, China

Shuqi Shang, Qingdao Agricultural University, China

*Correspondence: 

Hanping Mao
 maohpujs@163.com 

Liming Zhou
 haibo1129@163.com

Specialty section: 
 This article was submitted to Sustainable and Intelligent Phytoprotection, a section of the journal Frontiers in Plant Science


Received: 20 October 2022

Accepted: 14 November 2022

Published: 25 November 2022

Citation:
Wang B, Wang Y, Wang H, Mao H and Zhou L (2022) Research on accurate perception and control system of fertilization amount for corn fertilization planter. Front. Plant Sci. 13:1074945. doi: 10.3389/fpls.2022.1074945



At present, there are excessive fertilizer use and poor uniformity of fertilizer discharge in corn fertilizer planter. The key difficulty is that accurate perception and control of fertilizer amount has not been solved. Aiming at the above problems, a set of accurate perception and control system applied to corn fertilization planter was studied. According to the difference in dielectric properties between fertilizer and air, a sensor for online detection of fertilizer amount based on capacitance method was designed. And the relationship model of mass flow rate for N, P, K fertilizer and capacitance output was established. In order to reduce the influence of pulsation on fertilization flow, a high-precision fertilizer flow control system for fertilization planter based on the fertilizer flow feedback and PID control method was designed. The validated results showed that the maximum measurement error between the relationship model and capacitance output was 3.75%. As the temperature rises from room temperature to 55°C, the differential capacitance change rate of the sensor was less than 3%. The steady-state error of fertilizer discharge was less than 2%. The field experiment of the accurate perception and control system for corn fertilization amount show that the electric drive fertilization system has good consistency, the maximum and average variation coefficient of fertilization were 3.74%, 1.6%, respectively, and the variable control accuracy was greater than 97%. The control accuracy of the grain spacing control by electric drive seed metering was 98%. Therefore, the precision fertilization control system in this study can realize high-precision and on-demand fertilization. It is of great significance to realize the intelligence and precision for corn fertilization planter.
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1 Introduction

Corn is the main food crop in China, and it has basically realized mechanized planting, management and harvest (Darwin et al., 2021; Wang et al., 2021). However, there is still the problem of excessive application of chemical fertilizer when applying fertilizer to corn (Yang et al., 2016). Precise fertilization planter technology and equipment are the key support for solving the current over-application of agricultural production materials fertilizers in China (Zhao et al., 2010). At present, developed countries such as Europe and the United States have widely used precision sowing equipment. In order to improve the efficiency and quality of domestic corn fertilization and sowing, China urgently needs to research an independent precise fertilizer planter with intelligent decision-making and control technology suitable for national conditions (Yuan et al., 2018).

In the research of variable fertilization based on the working prescription map, the “SOILECTION” fertilization system produced by Open Ag-chen Instrument Equipment Co., Ltd. in the United States can be used for dry fertilization or liquid fertilization. It adjusts the application amounts of nitrogen fertilizer, phosphate fertilizer and potash fertilizer according to the fertilization prescription map (Poncet et al., 2018). Karayel et al. (Karayel and Özmerzi, 2002) used Ag-Chem’s commercialized product FALCON control system to carry out variable fertilization experiments of two liquid fertilizers on an 8-row fertilizer applicator, and carried out static calibration, dynamic response test and field test of the system, and obtained better test results. Trimble Company, John Deere Company and Case Company in the United States, AMAZONE Company in Germany and the All-Russian Institute of Agricultural Mechanization in Russia have respectively developed variable fertilizer applicators and variable fertilizer control systems, and the French AMASAT fertilizer spreading variable control system is also widely used in Various types of centrifugal fertilizer spreaders (Hakansson et al., 2011). Japan’s Kubota, Jingseki, Yanmar and other companies have carried out a lot of research work on rice lateral deep fertilization equipment, and have developed matching lateral deep fertilization equipment for their respective rice transplanters. Domestic units such as The Soil-Machine-Plant Key Laboratory of the Ministry of Agriculture of China (He et al., 2019), China Agricultural University (Cai et al., 2011), Inner Mongolia Agricultural University (Wen et al., 2014), Shanghai Jiao Tong University (Yuan et al., 2010) and Nanjing Agricultural University (Ding et al., 2021) have also carried out development and research of variable fertilizer applicators to support precision production are carried out. Nielsen et al. (Nielse et al., 2018) used the single-chip microcomputer to control the speed of the fertilizer shaft of the fertilizer applicator, and realized a variable fertilizer operation system with 2 rows and a continuously adjustable fertilizer rate of 200-500 kg/ha. Zhao etc. (Zhao et al., 2015) used 89C51 single-chip to control the electronically controlled hydraulic drive system, drive the fertilizer discharge device, and realize variable fertilization of the seeder. Closed-loop control was adopted in the system, which effectively improves the dynamic response characteristics and steady-state performance of the system. Further research showed that the system can comprehensively process information such as GPS, GIS, sensor information and decision-making data. When the working speed of the stepper motor is in the range of 33-91r/min, the average error of fertilizer discharge by the fertilizer applicator is 4.22% (Huang et al., 2015). Li etc. (Li et al., 2016) used AgGPSl70 and Mid-Tech TASC6100 variable operation controller, equipped with domestic tractors and fertilizer spreaders, and trial-produced a set of variable fertilizer operation system suitable for spreading fluidity and granular fertilizers. Fu etc. (Fu et al., 2018) designed a self-propelled variable fertilization machine with high ground clearance in paddy fields, which can fertilize at a variable speed according to the machine, and the error of fertilization amount is 5%.

Although the above methods can realize variable fertilization, it is limited by the fact that the real-time fertilizer flow rate is not obtained, so that the real-time fertilizer flow is not controlled. Moreover, the fertilizer discharge pulsation of the fertilizer discharge device is obvious, and the uniformity of fertilizer discharge is poor, thus affecting the fertilization accuracy. Fertilizer quantity detection is the key to implement automatic control of precise fertilization, and it is also the basis for judging the quality level of fertilization and sowing operation. At present, photoelectric detection sensors are widely used in fertilization detection parameters (Liu and Yi, 2019; Chen et al., 2022). However, there are problems such as environmental light, temperature interference and field dust influence, and there is still a lack of effective detection means of fertilizer application amount (Chen et al., 2022). Dielectric constant is used to describe the degree of electric field weakening caused by a dielectric, and it is the main macroscopic physical quantity that comprehensively reflects the internal polarization of a dielectric. In this study, according to the difference in dielectric properties between fertilizer and air, a sensor for online detection of fertilizer amount based on capacitance method was designed to reduce the influence of environment. In order to ensure the stability of fertilization and the accuracy of fertilization amount, the measured granular fertilizer flow value was used as the feedback value of the control system to adjust the fertilizer flow in real time. Based on PID control method, a high-precision fertilizer flow control system for fertilizer seeder was designed. It is of great significance for realizing the intelligence and precision of corn fertilization sowing.



2 Development of online detection sensor for fertilizer application based on capacitance method


2.1 Capacitance model and structure of online detection sensor for fertilization amount

When the fertilizer passes through the capacitor electrode, the equivalent dielectric constant of the medium between the capacitor electrode is Ɛ. There is:

 

Where, V1 is used to represent the volume occupied by fertilizer, and  , m3; m1 is used to represent the fertilizer quality in the sensor detection range, kg; ρ1 is used to represent the fertilizer density, kg/m3; V2 is used to represent the volume occupied by air, m3; V is used to represent the total volume of the detection range between the capacitor electrode for the capacitance sensor, and V=V1 + V2, m3; Ɛ1 is used to represent the dielectric constant of fertilizer, F/m; Ɛ2 is used to represent the dielectric constant of air, F/m.

When no fertilizer passes through, the sensor capacitance value is:

 

where, s is used to represent the capacitor electrode area, m2; d is used to represent the capacitor electrode spacing.

When the fertilizer passes through the capacitance sensor, the sensor capacitance value is:

 

Thus, when fertilizer passes through the capacitance sensor, the capacitance sensor value will change, and the change amount of capacitance value is:

 

where, C-C0is used to represent the change in capacitance of the fertilizer as it passes through the sensor, pF.

It can be known from formula (4) that when fertilizer passes through the sensor, the output capacitance of the sensor will change, and the amount of change is linearly related to the quality of fertilizer. When the fertilizer passes, the capacitance value returns to the initial state. Therefore, by collecting the output capacitance of the sensor in real time, the online detection of fertilizer mass flow can be realized through the dynamic change of the capacitance sensor.

In addition, when the fertilizer pipe is blocked, the fertilizer in the sensor detection range rapidly accumulates, the quality of the fertilizer increases significantly, and the output capacitance of the sensor also increases sharply, thus realizing the monitoring and alarming of the blockage fault for the fertilizer discharge pipe.

The capacitance fertilizer flow sensor (structure as shown in Figure 1) is mainly composed of fertilizer discharge pipe, detecting capacitance electrode, reference capacitance electrode, signal conditioning circuit, shielding shell and so on. The fertilizer discharge pipe was made of PVC pipe, and the detection capacitance electrode was pasted on the periphery of the PVC fertilizer discharge pipe with 302 glue. There was a metal shielding shell outside the fertilizer discharge pipe, and a reference capacitance electrode was attached to the inside of the shielding shell. The electrode was made of 0.05 mm thickness copper foil tape, forming the fertilizer discharge detection pipe with inner and outer ring structure. According to the principle of capacitance induction, the larger the size of the electrode, the larger the basic capacitance of the sensor, the larger the area of induction, and the enhanced sensitivity to the medium between the capacitance electrode. In this study, the length of capacitance electrode 1 and 2 were designed to be 90 mm, and the width of capacitance electrode 1 and 2 were designed to be 43 mm. Capacitance electrode 3 is the reference capacitor. The length of capacitor electrode 3 was designed to be 40 mm, and the width of capacitor electrode 3 was designed to be 20 mm. Capacitance electrode 1 and 2 constitute the detection capacitance sensor, and capacitance electrode 2 and 3 constitute the reference capacitance sensor, thus constituting the capacitance sensor with a differential input structure. In this study, the basic capacitance of the designed detection sensor and reference capacitor was 4.2 pF. At the same time, a metal shielding shell was designed outside the whole detection pipe to improve the anti-interference performance. The signal conditioning circuit was located in the shield shell to reduce the influence of parasitic capacitance, improve detection sensitivity and base capacitance stability.




Figure 1 | Structure of fertilization amount online sensor based on capacitance. 1. Fertilizer pipe; 2. Signal output connector; 3. Conditioning circuit board; 4. Detection capacitance electrode 1; 5. Shield shell; 6. Detection capacitance electrode 2; 7. Reference capacitance electrode.



Generally, the external environment temperature and measured object’s water content will affect the output of the capacitance sensor. The fertilizer planter uses granular compound fertilizer. Chinese national standard stipulates (GB/T15063-2009) that the moisture content of compound fertilizer should be less than or equal to 5%, and the fertilizer moisture absorption is small, the moisture content change is small when applying, so the influence of moisture can’t be considered.

In order to eliminate the influence of environmental temperature change on the measurement results as much as possible, the ceramic capacitance with the same value of the sensor detection capacitance was used as the reference capacitance. The difference between the detected capacitance of the sensor and the reference capacitance was taken as the calculation result, so as to eliminate the possible influence of environmental temperature on capacitance detection to the greatest extent. According to the differential capacitance structure in Figure 1, the differential capacitance can be obtained as follows:

 

where, Cd is used to represent the differential capacitance, pF; Cris used to represent the reference capacitance, pF.

Since the detection capacitance and the reference capacitance are in the same environment temperature, the influence caused by temperature variation can be eliminated theoretically through the differential capacitance calculation formula.


2.2
Relationship between fertilizer quality and capacitance sensor output

Based on the principle of capacitance sensing to realize the detection of fertilization flow, the sensor detection model of fertilization flow-capacitance information was studied. And the relationship model between the mass flow of nitrogen, phosphorus and potassium fertilizers and the capacitance response was established. The online detection sensor of fertilizer amount was installed at a proper position below the fertilizer outlet, and a material receiving box was placed at the fertilizer outlet of the online detection sensor, and the fertilizer application amount was measured by the mass method. The rotation speed of fertilizer discharge shaft was set as 20 r/min, and the change of fertilizer quality was realized by controlling the rotation time of fertilizer discharge shaft. After each fertilization, the electronic balance (SL4001, Shanghai Minqiao Electronic Instrument Factory, measuring range of 4 000 ± 0.1 g) was used to weigh the fertilizer quality in the receiving box, and the accumulated capacitance value of the difference between the capacitance sensor and the reference capacitance sensor was recorded at the same time. One calibration test was conducted for each fertilizer. Matlab R2016b was used to process the calibration test data, and the relationship model between the fertilizer mass flow and accumulated capacitance per unit time was obtained by linear fitting.

 

where, Q is used to represent the real-time fertilizer flow, g/s; a is used to represent the sensitivity of the relationship between capacitance value and fertilizer quality; b is used to represent the intercept of the relationship between capacitance value and fertilizer quality.

The linear fitting results are shown in Table 1. Due to the dielectric constant of different fertilizers being different, different fertilizers of the same quality have different capacitance output responses, so the scaling coefficients of the models are also different.


Table 1 | Mass flow and capacitance response models of three fertilizers.



In order to verify the accuracy of the response model, a verification test of the detection performance of the fertilization sensor was carried out. The system detection effect was tested when the rotation speed of the drainage shaft was 25r/min and 35r/min respectively. and the test results are shown in Table 2. The results shown that the detection accuracy of capacitance fertilizer sensor for different fertilizer quality was more than 96%.


Table 2 | Validation results of regression model.



The fertilizer flow sensor was placed in the electric heating drying oven, and the internal temperature of the drying oven was gradually adjusted from room temperature (20°C) to 55°C with a gradient of 5°C. After each adjustment, the detection capacitance value C, reference capacitance Cr and temperature T of the sensor were recorded after the display temperature was stable for 1min. When there was no fertilizer in the measuring device, the detection capacitance C of the sensor increases significantly with the increase of the environmental temperature. At 55°C, the capacitance value has changed by more than 7% compared with that at 20°C. After adopting the differential input structure, when there was no fertilizer in the sensor, the temperature rises, and the differential capacitance of the sensor was basically zero with no obvious fluctuation. After fertilizer sample was inserted into the sensor, the change rate of differential capacitance of the sensor remained within 3% as the temperature increased. It can be seen that the differential input structure can effectively weaken the interference of the environmental temperature change on the capacitance sensor.



3
Development of control system for corn fertilization planter

3.1
The unit composition of the corn fertilization planter detection and control system

The detection and control system for corn fertilization planter mainly consists of a vehicle terminal, a motor control unit, sowing and fertilizing drive motor unit, as shown in Figure 2.




Figure 2 | Fertilization measurement and control system of corn planter. 1.Energy accumulator 2. Electro-hydraulic regulating monomer 3. Fertilizer box 4. Hydraulic valve group.



Terminal application IPCA-7010 industrial vehicle computer integrates storage, communication, display, input and output modules, which has good compatibility and expansibility, is easy to operate and maintain, and can better meet the precision agricultural field operation process. The terminal integrates GPS positioning module, CAN bus module, DTU unit and so on.

The BG 45×15 SI integrated DC motor was used as the drive source of the seed metering shaft and the fertilizer discharging shaft. The motor has an integrated drive circuit inside to realize the dynamic adjustment of the motor speed with a flow analog voltage signal, and the signal range is 0-10V. The output power of the motor is 52.5W, the working voltage is DC12V, and the maximum speed is 3080 r/min. At the same time, it was also equipped with a PLG52 planetary reducer with a reduction ratio of 50. After the on-board terminal passes the decision, it sends the control command to the seeding drive motor and the fertilization drive motor through the CAN bus to drive the seed metering shaft and the fertilization axis to rotate.

The K8516 CAN bus analog output module was used as motor control unit, and its main technical parameters are as follows: 4 output signals, 12-bit DA resolution, output signal range 0-10V and power supply voltage DC9-24V. It communicates with the vehicle terminal through the CAN bus interface.


3.2
Design of corn precision fertilization control system

At present, the research of fertilization control system is mainly to accurately adjust the speed of fertilizer discharge motor according to the forward speed of the machine and the measured speed of the fertilizer discharge motor. However, since the outer groove wheel fertilizer discharge is mostly used in corn planters, its mechanical structure determines that it has pulsating characteristics during fertilizer discharge, and there is no linear relationship between the fertilizer discharge amount and the rotation speed (An et al., 2019). Therefore, based on the fertilizer discharge motor fertilizer quantity control with rotational speed feedback cannot achieve high-precision and precise fertilizer discharge. In order to solve this problem, the optimal design of corn precision fertilization control system was carried out. The capacitance fertilizer flow sensor was installed on the fertilizer discharge pipe to detect the real-time fertilizer discharge amount, and the speed of the fertilizer discharge motor was adjusted based on the real-time flow feedback, so as to realize the precise control of the fertilizer discharge amount.

3.2.1
Modeling of fertilizer flow control system

The capacitance fertilizer discharge flow sensor was installed on the fertilizer discharge pipe to detect the real-time fertilizer discharge. On the basis of obtaining the fertilizer flow, the fertilizer amount per unit area can be further obtained according to operating width and forward speed of the fertilizer machine, and the speed of the fertilizer discharge motor was adjusted based on the real-time flow feedback, so as to realize the precise control of the fertilizer discharge amount.

The control model of the fertilizer flow control system takes the real-time vehicle speed collected by the Hall speed sensor as the input. After calculation, the controller sends the electrical signal to the fertilization mechanism, which adjusts the speed to control the fertilizer flow. Finally, the output of the system was the fertilizer flow. As shown in Figure 3, the fertilizer flow was fed back to the controller through the fertilizer flow detection module, and the closed-loop negative feedback control was carried out through the controller.




Figure 3 | Block diagram of fertilizer flow control system.



According to the required amount of fertilizer applied per unit area, the fertilizer flow can be controlled in real time by the operating width and forward speed of the fertilizer machine.

 

where, Q(t) is used to represent the real-time controlled fertilizer flow, g/s; Af is used to represent the amount of fertilizer applied per unit area, kg/m2; W is used to represent the operating width of the fertilizer applicator, m; v(t) is used to represent the real-time forward speed of the machine, m/s.

As can be seen from Figure 3, the control system can feedback adjust the speed of the fertilizer motor on the basis of obtaining the fertilizer flow rate to realize the real-time control of the fertilizer flow rate.

The sensor is turned on and allowed to run without load for a period of time. The micro-controller STM32F 103C8T6 averages the 30 capacitance values collected by the capacitance digital conversion chip PCAP01 (ACAM company, Germany) and was recorded as the initial capacitance value C0. When fertilizer passes through the fertilizer guide pipe, the sensor capacitance value will change. STM32F 103C8T6 was used to record and calculate the accumulated difference between the real-time capacitance value and the initial capacitance value within 1s, and calculate the fertilizer quality passing through the fertilizer guide pipe within 1s according to the relationship between capacitance value and fertilizer quality (6), which was recorded as fertilizer flow. CAN information was sent by the built-in CAN bus controller of STM32F 103C8T6 through SN65HVD230 transceiver, so as to realize the collection of real-time flow value of fertilizer.

When the system was in working condition, the difference between the target fertilizer flow and the real-time fertilizer flow was used as the control deviation.

 

where, e is used to represent the control deviation, g/s; Qa is used to represent the target fertilizer flow, g/s.

The discrete PID control expression is:

 

where, u(t) is used to represent the control quantity; Kp,KI,KD were used to represent the proportional, integral and differential constants, respectively; e(t) is used to represent the control deviation value at time t.

The control system tuner in Simulink was used to optimize the controller parameters according to different error values. The specific process of PID controller parameter adjustment is to set a target fertilizer flow value in advance and record the deviation of fertilizer flow value. When the deviation of fertilizer flow is very small. PID control was used to take the value of KI larger and the value of Kp to the minimum. This can eliminate the static error in time and improve the control precision of the control system. When the deviation of fertilizer flow is small. PID control was used to take the value of KI smaller, take the value of Kp smaller. This can prevent system overshoot in time. When the deviation of fertilizer flow is large. PD control was used to set the value of KI to 0 and the value of Kp to the maximum. This prevents overshoot and allows the system to respond quickly to the target fertilizer flow rate. After optimization, Kp=1.474,KI=0.0606 and KD=1.317.


3.2.2
Design and testing of control system

Based on closed-loop control technology of fertilizer flow feedback, the capacitance fertilizer flow sensor was installed on the fertilizer discharge pipe to detect the fertilizer flow information in real-time, and it was used as a feedback input. The PID control algorithm was used to control the system based on the established fertilizer application rate, the information of fertilizer flow and forward speed detected in real-time. The motor speed was controlled, so as to realize the closed-loop control of the fertilization amount. The developed corn precision fertilization control system is mainly consists of on-board terminals, electric drive fertilization units, and fertilization flow sensors, as shown in Figure 4.




Figure 4 | Precision fertilization control system equipment with fertilization flow sensor. 1.Capacitive flow sensor 2. Fertilization motor 3. Controller 4. Control box.



The precision fertilization control system was tested and validated. Three different expected fertilization flow were set respectively, and the adjustment of fertilization amount under two different control modes of PID closed-loop control and speed adjustment was compared, as shown in Figure 5.




Figure 5 | Response curve of fertilization rate under different set fertilization flow rate. (A) Set the fertilizer flow rate to 23 g/s; (B) Set the fertilizer flow rate to 33 g/s; (C) Set the fertilizer flow rate to 44 g/s.



It can be seen from the Figure 5 that using the traditional speed adjustment method, the amount of fertilizer discharge will continue to fluctuate after reaching the set flow rate. The main reason is that the fertilizer distributor has a grooved wheel structure. The occurrence of pulsation leads to uneven fertilization, and the application of PID control can directly control the fertilization flow, which reduces the influence of pulsation on the fertilization flow. In addition, after using the PID control method of flow feedback, the steady-state error of fertilizer discharge can be controlled within 2%, while the steady-state error of the simple speed adjustment method was about 4%. Therefore, the use of the fertilization flow control method based on flow feedback can effectively improve the control precision of fertilization amount.

The vehicle terminal adopts IEI Ikarp type vehicle computer, adopts Labwindows CVI2012 software environment for vehicle terminal software development, and uses Windows 7 operating system as the system software running platform. The interface is as shown in Figure 6. The software adopts the principle of modular and structured design, which mainly including data acquisition module, data storage module, data display module and parameter configuration module. It mainly realizes the acquisition and display of seeder running state information, real-time acquisition of GPS positioning information and variable control of sowing and fertilization. And real-time storage and processing of system data.




Figure 6 | The main interface of the monitoring system.



Data acquisition and control is the key components of the variable measurement and control system software for corn planters. This part mainly completes the collection of various data information such as sowing quality, seed fertilizer box material level, GPS and other information. There are two communication modes between the external devices of the system and the interactive terminal: RS 232 serial communication and CAN bus communication. Among them, the sowing quality information and the vehicle speed information communicate with the interactive terminal through the CAN bus. The measurement and control system determines the expected speed of seeding and fertilization according to the loaded prescription information, the current GPS information of the vehicle, the parameters of the implement and so on. And sends it to the control unit through the CAN bus to control the fertilization and seeding motor to run at the desired speed.





4 Results of field test


4.1 Test conditions

In order to test the fertilization control performance of the control system at different operating speeds and compare it with the performance of traditional mechanical, a field test was conducted in Shengfa Agricultural Machinery Cooperative, Jiangjiazhuang Village, Jimo District, Qingdao City, Shandong Province in September 2019. This test field is 180 meters long and 30 meters wide. The soil condition is no-till land just after harvesting summer corn, and the stubble on the surface is clearly visible. The system in this study was based on the design of one row of seeding unit of Zhongnong Machinery 2BJ-470B 4-row corn no-tillage precision seeder. It has been installed and debugged, and the adjustment performance of one row of mechanical sowing units of the original planter has been compared.

According to the agronomic requirements of this area, before the test, the sowing fertilization depth of the two rows of sowing monomers under the two adjustment methods was adjusted to 50 mm through the sowing depth adjustment handle. The test plot was divided into 3 plots, and the tests were conducted at the speed of 4, 6, 8 and 10 km/h, respectively. The Beidou satellite speed measurement module was installed on the tractor. The speed of the test group was kept within the range of 3~5 km/h, 5~7 km/h, 7~9 km/h, and 9~11 km/h, respectively.

Before starting the tractor, adjust the working parameters of the mechanically adjustable sowing device according to the user manual.

The field test is shown in Figure 7. The monomers corresponding to Nos. 4 and 1 were the monomers used in the field test.




Figure 7 | Field test.





4.2 Consistency test of electric drive for fertilizer removal

Under the forward speeds of 4, 6, 8, and 10 km/h, respectively, the fertilizers discharged from the 4 fertilizer discharges were connected to the fertilizer receiving box. The fertilizer used in the experiment was “Dili Changxin” stabilized compound fertilizer. An electronic balance (SL-4001 electronic balance, indicating value accuracy ±0.1g) was used to weigh the amount of fertilizer applied in each row, and calculate the coefficient of variation of fertilization. The results are shown in Table 3.


Table 3 | Consistency test of electric drive for fertilizer removal.



It can be seen from Table 3 that the system electric drive fertilizer discharge consistency was good. The average standard deviation of fertilization was 2.7165. The maximum standard deviation of fertilization was 8.573. And the maximum and average variation coefficient of fertilization were 3.74%, 1.6%, respectively. China National standard stipulates (GB/T20865-2007) that the coefficient of variation of corn fertilization planter should be less than or equal to 7.8%. Therefore, the fertilizer discharge performance of the corn fertilization planter in this study can meet the actual production needs.


4.3
Performance test of electric drive fertilizer control system based on flow feedback

The performance test of the precision fertilization control system was further carried out. The fertilization rate were set at 30, 40, and 50 kg/mu, respectively. And the results of fertilization rate control were recorded, as shown in Table 4.


Table 4 | Test data of fertilization control.



It can be seen from Table 4 that the optimized precision fertilization control system can realize the on-demand use of the fertilization amount. And its variable control accuracy was more than 97%. When the fertilization rate were set at 30, 40, and 50 kg/mu, the standard deviation of fertilization control precision were 3.018, 3.456 and 1.083, respectively. Which can meet the actual production needs. The test of the roller hole fertilizer application between corn rows studied by Wan et al. (2020). showed that the deviation of fertilizer output was 11.2%. An et al. (2017) used electro-hydraulic proportional control technology to control the fertilizer discharge shaft of corn fertilizer planter, and the error of fertilizer was less than 3%. The fertilization control accuracy of this study is similar to or slightly better than those of related scholars. Therefore, the optimized precision fertilization control system in this study can meet the actual production needs.

Before the test, the sowing grain spacing were set to 20 cm, 25 cm, and 30 cm in the system interface, respectively. The tractor pulled the seeder forward 100 m, and the precision seeding controller was used to control the seed meter for sowing operations. In order to facilitate the measurement of the seed spacing, the covering soil was suppressed before the operation. The wheel was raised so that the seeds fall in the groove and are not covered. After the test, pinch the head to the tail, select the middle 50 m, manually measure the seed spacing and compare it with the set grain spacing. The results are shown in Table 5.


Table 5 | Test data of precision seeding control system.



It can be seen from Table 5 that the control accuracy of the grain spacing control by electric drive seed metering was 98%. When the sowing grain spacing were set to 20 cm, 25 cm, and 30 cm, the standard deviation of grain spacing control accuracy were 0.014, 0.007 and 0.014, respectively. The test of the corn high speed air suction seed metering device studied by Liu et al. (2022). showed that the grain distance qualification index was greater than 94.6%, which was higher than the national standard of China. Therefore, the grain spacing control accuracy of the electric drive seed metering control system in this study can meet the actual production needs.



5
Conclusion

(1) Aiming at the problems for excessive fertilizer use and poor uniformity of fertilizer discharge in corn fertilizer planter. A set of accurate perception and control system applied to corn fertilization planter was studied. By installing a capacitance fertilization flow sensor on the fertilization pipe, the fertilizer flow information is detected in real time and used as a feedback input. The control system controls the speed of the fertilizer discharge motor based on the PID control method according to the set fertilizer amount and the real-time detection of fertilizer flow and forward speed, so as to realize the closed-loop control of the fertilizer amount. As the temperature rises from room temperature to 55°C, the differential capacitance change rate of the sensor was less than 3%. The detection accuracy of the fertilization amount capacitance sensor for different fertilizer quality was greater than 96%. The steady-state error of fertilizer discharge was less than 2%.

(2) Design experiments to test the performance of the variable measurement and control system for corn sowing and fertilization. According to the experimental data, the electric drive fertilization system has good consistency, and the maximum and average variation coefficient of fertilization were 3.74%, 1.6%, respectively, The variable control accuracy was more than 97%. When the fertilization rate were set at 30, 40, and 50 kg/mu, the standard deviation of fertilization control precision were 3.018, 3.456 and 1.083, respectively. The grain distance control accuracy of the electric drive seed metering control system was 98%. When the sowing grain spacing were set to 20 cm, 25 cm, and 30 cm, the standard deviation of grain spacing control accuracy were 0.014, 0.007 and 0.014, respectively. And the comprehensive performance can meet the actual production needs.
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Introduction

In order to promote sugarcane pre-cut seed good seed and good method planting technology, we combine the development of sugarcane pre-cut seed intelligent 0p99oposeed cutting machine to realize the accurate and fast identification and cutting of sugarcane stem nodes.



Methods

In this paper, we proposed an algorithm to improve YOLOv4-Tiny for sugarcane stem node recognition. Based on the original YOLOv4-Tiny network, the three maximum pooling layers of the original YOLOv4-tiny network were replaced with SPP (Spatial Pyramid Pooling) modules, which fuse the local and global features of the images and enhance the accurate localization ability of the network. And a 1×1 convolution module was added to each feature layer to reduce the parameters of the network and improve the prediction speed of the network.



Results

On the sugarcane dataset, compared with the Faster-RCNN algorithm and YOLOv4 algorithm, the improved algorithm yielded an mean accuracy precision (MAP) of 99.11%, a detection accuracy of 97.07%, and a transmission frame per second (fps) of 30, which can quickly and accurately detect and identify sugarcane stem nodes.



Discussion

In this paper, the improved algorithm is deployed in the sugarcane stem node fast identification and dynamic cutting system to achieve accurate and fast sugarcane stem node identification and cutting in real time. It improves the seed cutting quality and cutting efficiency and reduces the labor intensity.





Keywords: sugarcane seed cutting, enhanced YOLOv4-Tiny, sugarcane stem node, identification system, cutting system



1 Introduction

Sugarcane is one of the important sources of sugar and production fuel (Zhenfeng et al, 2022), which is crucial to secure people’s livelihood. Most of the existing sugarcane seeders are real-time cane feeding type seeding, which requires pre-cutting of sugarcane stems and nodes. The existing manual seed cutting method not only has low seed cutting quality and high cane bud loss, but also has high labor intensity (Figure 1) and low production efficiency. Therefore, the development of intelligent sugarcane pre-cutting machinery and equipment is of great significance to improve the efficiency of sugarcane production.




Figure 1 | Domestic sugarcane cutting method.



The key to achieve automatic seed cutting of sugarcane is to identify the location of the stem nodes of sugarcane. In recent years, many scholars have explored the use of digital image processing techniques to identify the stem nodes of sugarcane. For example (Yiqi et al., 2017), in order to realize the automatic cutting of single bud segment of sugarcane, the average grayscale of sugarcane image is calculated on HSV color space for the mean filtered processed sugarcane image, and the position of the maximum grayscale value is considered as the stem node position. Zhang et al. extracted stem node features based on hyperspectral imaging and identified stem nodes, obtaining a high accuracy rate (Weizheng et al., 2017). However, this method requires expensive hyperspectral data acquisition equipment and is not suitable for field use. Shi et al. proposed a machine vision-based stem node recognition method to solve the problem of sugarcane species diversity (Changyou et al., 2019). This algorithm can accurately identify the stem nodes of diverse types of sugarcane under different background conditions. However, too complex sugarcane images can also reduce the stem node recognition rate. Yang Rui et al. proposed a method for simultaneous recognition of multiple stem nodes of sugarcane based on the characteristic of obvious color change of leaf marks above and below the stem nodes, which improved the detection efficiency. However, when the degree of color variation of wax powder at a certain place is similar to that of the stem epidermis, the wax powder will be mistaken for sugarcane nodes (Rui et al., 2020). In order to achieve damage-proof budding and automatic cutting of single bud segments of sugarcane, Yang Changhui et al. used leaf marker features to identify sugarcane nodes and constructed a feature vector describing the sugarcane image (Changhui et al. (2019). The locations of all stem nodes in the sugarcane image were searched by defining the values of vector elements at the sugarcane nodes and the distance between the sugarcane nodes. This machine vision-based sugarcane cutting system can achieve a recognition rate of 93% and the average recognition time is only 0.539 s. However, in reality, many black or white powders are attached to the surface of sugarcane, which can cause great interference to the processed images. Identification of sugarcane nodes using images may also suffer from limited speed, low recognition efficiency and high cost, making it difficult to be applied in a practical production environment.

With the rapid development of deep learning, many neural network algorithms are applied to the recognition of agricultural products with good results (Aichen et al., 2019; Shangping et al., 2019; Shiping et al., 2020; Xu et al., 2021; Arunabha M and Bhaduri, 2022; Masum et al., 2022). Neural network recognition algorithms use two-stage and one-stage strategies. To improve recognition accuracy, two-stage neural networks are usually used to recognize agricultural products (Aichen et al., 2020; Chen et al., 2020; Fangfang et al., 2020; Subramanian and Selvi, 2021; Shenglian et al., 2022). Jia et al. proposed a mask region convolutional neural network (Mask R-CNN) based picking robot vision detector model with an accuracy of 97.31% and a recall rate of 95.70% (Weikuan et al., 2020). To improve the speed of target recognition, researchers often use single-stage neural networks to identify agricultural products (Dihua et al., 2020; Xiaoyu et al., 2021; Xuelong et al., 2021). Shi et al. proposed a generalized attribute method for pruned detection networks that can be easily fine-tuned to accurately detect mangoes in real time (Rui et al., 2020), reducing the computational effort of pruning detection networks by 68.7% while improving accuracy by 0.4% compared to unpruned fine-tuned networks. With the refinement of deep learning methods, researchers began to apply them to sugarcane detection. Song et al. proposed a convolutional neural network for sugarcane bud classification that can classify buds into good and bad buds (Huaning et al., 2021). Chen et al. proposed a deep learning-based target detection algorithm to achieve accurate identification of sugarcane stem nodes under the data expansion and lighting condition in different time periods (Wen et al., 2021). These algorithms mentioned above are based on the conditions that the sugarcane stem nodes are normal and the light intensity is good at the time of recognition. The accuracy of the identification of sugarcane stem nodes will be affected when they are broken or covered with soil, as well as when the light is dim. Also, due to the limitation of equipment, these methods are difficult to be used for real-time detection in the field.

These methods mentioned above have improved the recognition accuracy of sugarcane stem node, but the following problems are still unsolved: (1) After the sugarcane is harvested, some of the stems and node are broken or covered with soil. How to recognize such stem node is still a difficult problem; (2) At present, in order to achieve high recognition rate of sugarcane stem node in the natural environment, the model occupies large memory and requires high computing power and memory of the device, which is not applicable to embedded devices; (3) The recognition efficiency is low and time-consuming. In order to achieve accurate and fast real-time recognition and cutting of sugarcane stem node, this paper designs a real-time sugarcane stem node detection and recognition system based on the enhanced YOLOv4-Tiny network model according to the sugarcane stem node feature information. The enhanced YOLOv4-Tiny network model structure is used to collect sugarcane stem node information. The detection and recognition system transmits the sugarcane information to the cutting system in real time to realize the fast cutting of sugarcane stem node.



2 Related work


2.1 Sugarcane object

In this paper, sugarcane was studied by stripping the sugarcane stem leaves leaving the sugarcane stem, which consists of the internode area and the stem node area, as shown in Figure 2. Sugarcane buds and leaf scars were found in the sugarcane stem node, and only one bud was found in a sugarcane stem node. The sugarcane buds were located on the upper side of the stem leaf scars near the tip of the sugarcane, and the sugarcane stem buds were not necessarily present when the sugarcane stem node information was collected using the monocular camera. The leaf scars surround the cane stem for one week, and the leaf scars show up more clearly in the image. The equipment designed in this paper can be used to cut the sugarcane stem node into segments, with only one stem node per segment and a 5-cm-long internode on each side of the stem node to provide nutrients to the sugarcane seed later.




Figure 2 | Description of sugarcane seed cutting requirements.





2.2 System overall scheme

To meet the seed cutting requirements, the design of the seed cutting device is outlined in Figure 3; Wang et al., 2022, which includes the cane stem node target detection system and the cane stem node cutting system; the cane stem node target detection system is mainly composed of monocular camera, Industrial Personal Computer(IPC), switching power supply, etc.; the cane stem node cutting system is mainly composed of self-tensioning conveying mechanism, reciprocating crank slider transfer mechanism and high-speed rotary cutting mechanism, which complete the processes of conveying and cutting of cane respectively.




Figure 3 | Design overview of seed cutting mechanism. (A) Sugarcane cutting device (B) Identification system (C) Cutting system.



The basic principle of the system can be described as follows: when the sugarcane section cutting system works, the seed cane is put into the feeding guide and pushed inward until it is bitten by the upper and lower rollers, at which time the STM32 microcontroller controls the stepper motor1 to drive the rollers to transport the seed cane inward. When the sugarcane stems reach the lower end of the monocular camera, the camera acquires the sugarcane stems and extracts the information of sugarcane stems after processing and matches the extracted stems with the sample training library and then carries out segment detection and calibration to generate the target detection frame, and then passes the distance information of the adjacent target detection frame to the STM32 microcontroller through CAN communication. The STM32 microcontroller converts the distance information into a certain number of pulses of stepper motor 1, stops when stepper motor 1 rotates the corresponding number of pulses, and controls stepper motor 2 to rotate once to drive the cutting mechanism to reciprocate once to complete the cutting action. In this process, the DC brushless motor always drives the circular saw blade to maintain a high-speed rotation. The cut sugarcane stem node slides down the discharge guide into the collection frame.



2.3 Image recognition system

On the sugarcane machine stand at Anhui Agricultural University’s Mechanical and Electrical Engineering Park, a monocular camera of type MV-SUA502C/M-T was used to acquire sugarcane stem node images of size 1280 × 960 with white as the background. The monocular camera has a lens focal length of 8mm, a maximum resolution of 2592×1944, and a lens-to-cane height distance of 500mm (Figure 4). PyCharm2020.3 was used for image processing, and black-skinned sugarcane was used as the test material. A total of 3000 images were collected from sugarcane under different conditions such as different light, with soil and stem node damage. The images captured by the monocular camera are uploaded to the target detection system, and the cutting information is transmitted to the cutting system after a series of operations such as calibration, identification, and detection. The model used in this study is based on an enhanced version of YOLOv4-Tiny, which can accurately and quickly identify and locate sugarcane stem nodes, ensuring the quality and efficiency of seed cutting.




Figure 4 | Schematic diagram of image acquisition.





2.4 Dataset production

In order to enrich the image dataset, better extract the sugarcane stem node features and improve the generalization ability of the model, OpenCV was used to augment the data of the original sugarcane dataset. The rotation angle is randomly taken as 45° and 135°, and the original image is randomly mirrored flipped, horizontally flipped and vertically flipped, cropped and scaled to extend the dataset. The data are enhanced by image processing techniques such as adjusting saturation and hue, histogram equalization, and median filtering. The final dataset has a total of 15,000 images. (Figure 5).




Figure 5 | Sugarcane samples. (A) Images captured with normal lighting (B) Images taken under dark light (C) Image of sugarcane with dirt (D) Image of stem node damage.



To ensure the correspondence between labels and data and the uniform distribution of the dataset, the enhanced dataset is randomly divided into a training set and a test set in the ratio of 9:1. The final data set was stored in the format of PASCAL VOC dataset, with 13499 samples in the training set and 1501 samples in the test set. The training set samples include 10,147 normal sugarcane stem node images, 1,552 broken sugarcane stem node images and 1,800 muddy sugarcane stem node images. The final dataset is shown in Table 1.


Table 1 | Sugarcane sample quantity.





2.5 Model improvements


2.5.1 Enhanced YOLOv4-Tiny model structure

In agriculture, since the target detection system is limited by the mobile platform, the size of the algorithm is usually limited and the detection speed is restricted in order to meet the real-time detection demand. To solve this problem, we found that YOLOv4-Tiny has only one-tenth of the training parameters of YOLOv4 and the model is loaded faster, while the measured speed is about 22fps, which is suitable for field detection. Of course fewer parameters and faster speed are traded for accuracy. In order to improve the accuracy, we improved the YOLOv4-Tiny model.

The new model uses the same data enhancement method as YOLOv4 on the input side, which increases the training data, improves the generalization ability of the model, and avoids model overfitting (Fu et al., 2021). The enhanced YOLOv4-Tiny uses the CSPDarknet53 (Figure 6) as the backbone feature extraction network. The feature extraction network consists of a CBM module, two CBL modules and three CSPn modules. The CBM module consists of convolution, batch normalization and the Mish activation function, where the Mish function has better prediction accuracy than the Leaky_ReLU function. The CBL module is the same as YOLOv4-Tiny, consisting of convolution, batch normalization and the Leaky_ ReLU function. The improved model uses the Mish activation function only in the first step of Backbone logic calculation, and the Leaky_ReLU activation function is still used later in the network, preserving the detection speed advantage of YOLOv4-Tiny and improving the detection accuracy. To obtain faster detection speed, the CSPn structure is added to the model. This structure is borrowed from the CSPNet structure and consists of an all-zero padding, three convolutional layers, and n Res unint modules Concat. It solves the problem of requiring a large number of inference calculations, reducing the computation by 20% and reducing the memory footprint while maintaining the same or even higher accuracy, allowing the model to be applied to embedded devices.




Figure 6 | Enhanced YOLOv4-Tiny network structure.



In the field of target detection, for better extraction of fusion features, usually in the Backbone and output layers, some layers are inserted, and this part is called Neck. It is equivalent to the neck of the target detection network and is also very critical. Different from the original FPN network of YOLOv4-Tiny, in the Neck part of this paper, the original PANet structure with the same number of channels is chosen to be used in order to optimize the memory access and usage, while the cat operation of the original network is reduced to an add operation. Also, a bottom-up spatial pyramid pooling (SPP) is added behind the FPN layer. SPP uses 1×1, 5×5, 9×9, and 13×13 maximum pooling for multi-scale fusion. It performs a direct fixed-size pooling of feature maps of arbitrary size to obtain a fixed number of features. Each pooled feature is then combined to obtain a fixed number of features of fixed length (the dimensionality of the feature map is fixed), which can then be fed into the fully connected layer for training the network. In this way, the FPN layer conveys strong semantic features (High-Level features) from the top down, while the feature pyramid conveys shallow features (Low-Level features) from the bottom up. The aggregation of parameters from different backbone layers to different detection layers further improves the feature extraction capability and improves the recognition of broken and mud-stained sugarcane stems and nodes.



2.5.2 Evaluation index

In order to accurately assess the performance of the model, Precision, Recall and Average Precision are used as the evaluation metrics for sugarcane stem node identification. Recall refers to the probability that the predicted outcome is also a positive sample (including the predicted negative sample, but the actual positive sample) among all the actual positive sample outcomes; Average Precision refers to the area of the P-R curve using different combinations of Precision and Recall values. The larger the MAP value is, the better the model effect is. the formula of Precision and Recall is:

 

 

 

Where TP is the number of positive samples detected, i.e., the number of stem node samples that were correctly detected; TN is the number of negative samples detected, i.e., the other parts of the cane that were not boxed; FN is the number of positive samples detected as negative samples, i.e., the number of stem nodes that were not detected; and FP is the number of negative samples detected as positive samples, i.e., the other areas of the cane that were detected as stem nodes. Recall and accuracy are based on a threshold of 0.5, and both AP and F1 scores can be used to evaluate the performance of the target detection model, with AP being the area under the PR curve.





3 Results and discussion


3.1 Model training

The loss value is one of the metrics to measure the effectiveness of model training. Theoretically, the smaller the loss value is, the better the training effect of the model is. Figure 7 shows the loss curves during the training period, where different colors represent different models. From Figure 7, it can be seen that the model learns more efficiently and the training curve converges faster in the initial stage of the training of the sugarcane stem node detection model. After 750 iterations, the model loss value of the enhanced YOLOv4-Tiny rapidly converges to below 5.5 and becomes stable after 40,500 iterations. With further training, the slope of the training curve gradually decreases. Throughout the training process, Faster-RCNN tested higher loss values than other models. The enhanced YOLOv4-Tiny loss curve is very close to YOLOv4, but the fluctuations are smaller than YOLOv4. enhanced YOLOv4-Tiny converges in a shorter time compared to YOLOv4. This is because YOLOv4 has more convolutional layers of the network and requires more time to learn. The enhanced YOLOv4-Tiny network model decreases the training set loss (total loss) and test loss (Val loss) as the number of iterations increases. Finally, when the number of training iterations reaches about 40500, the learning efficiency of the enhanced YOLOv4-Tiny model gradually reaches saturation, and the total loss and test loss values gradually converge, and the final loss value is stabilized at about 2, which proves that the training results are good.




Figure 7 | Model training loss value change trend diagram.





3.2 Model comparative analysis

To verify the effectiveness and advantage of the enhanced YOLOv4-Tiny sugarcane detection network proposed in this study for sugarcane target stem node recognition in complex situations, the current representative target detection networks Faster-RCNN and YOLO4 were trained with the same dataset and training parameters for the model and tested on the test set for comparison. Normal sugarcane, broken sugarcane and sugarcane with soil are selected in the test set for comparative recognition detection, and the results of the detection are compared as shown in Figure 8.




Figure 8 | Sugarcane target recognition under different models. (A) Faster RCNN (B) YOLOv4 (C) Enhanced YOLOv4-Tiny.



From Figure 8, it can be seen that for sugarcane under normal conditions, Faster-RCNN, YOLOv4 and the enhanced YOLOv4-Tiny model proposed in this paper can identify all six sugarcane stem node targets. Only Faster-RCNN could identify all the six stem node targets of sugarcane with soil, and both YOLOv4 and enhanced YOLOv4-Tiny had missed detection and did not identify the stem node target closest to the root. In identifying the fifth stem node from the left, the confidence level of the YOLOv4 model is only 0.52 and that of the enhanced YOLOv4-Tiny model is only 0.55, both very close to the threshold. The model Faster-RCNN, on the other hand, showed repeated marking in identifying the fourth stem node from the left, incorrectly marking leaf scars and wax powder as sugarcane stem node. In identifying the six stem node targets with broken sugarcane node, the enhanced YOLOv4-Tiny target detection network can identify all six stem node targets, and the Faster-RCNN detection network can identify four of the six sugarcane stem node targets. YOLOv4 performs the worst, identifying only two of the six targets. Due to the small feature area of the broken stem node, less information can be reflected in the fixed area, and much feature information of the stem node has been lost after multiple down sampling during feature extraction by the convolutional neural network, resulting in the missed detection of stem targets. The enhanced YOLOv4-Tiny also adds a bottom-up feature pyramid behind the FPN layer, which contains two PAN structures. This allows parameter aggregation of different detection layers from different backbone layers to further improve the feature extraction capability. Experiments show that the enhanced YOLOv4-Tiny performs better for the detection of broken sugarcane stem node.

In the actual sugarcane cutting environment, sugarcane stem node is often damaged and sticky due to the environment and harvesting method, which makes detection and identification difficult. The enhanced YOLOv4-Tiny target detection network proposed in this paper can correctly identify the stem node targets in the case of breakage with high recognition rate and can also achieve 84.4% recognition rate for the stem node targets with soil. In contrast, the Faster-RCNN and YOLOv4 detection networks have a lower recognition rate for broken sugarcane targets. The training results show that the enhanced YOLOv4-Tiny is more accurate than the other two models in detecting stem-node targets in different situations.

As can be seen in Figure 9, the enhanced YOLOv4-Tiny can achieve a detection speed of 4.60 fps with the same CPU computation, which is 13.5 times faster than Yolov4 and 115 times faster than Faster-RCNN. With the same GPU computing, the enhanced YOLOv4-Tiny can achieve a detection speed of 29.02 fps, which is nearly 2 times faster than YOLOv4’s detection speed and nearly 10 times faster than Faster-RCNN. The enhanced YOLOv4-Tiny has significantly improved detection speed compared to other models under CPU computing and GPU computing, respectively, and also ensures detection accuracy. The detection speed of the model is much higher than that of the CPU under GPU computing, where the detection speed of Faster-RCNN under GPU computing is nearly 75 times faster than that of the CPU, and the detection speed of YOLOv4 under GPU computing is 41 times faster than that of the CPU. The speed of YOLOv4-Tiny is 29.02 frames/s under GPU computing and 4.60 frames/s under CPU computing, a difference of six times. Since the size of the model proposed in this paper is only 48MB, the complexity of the model is greatly reduced while ensuring the detection accuracy, and the advantage of GPU computing is not obvious. However, the GPU was initially designed to handle the rendering of graphic images, using a large number of small cores to operate simultaneously to speed up the operation. For the same amount of time, the training error can be reduced to an acceptable value with the GPU, while the training error remains high with the CPU.




Figure 9 | Recognition speed of sugarcane targets in different models under CPU and GPU.



In this paper, the test results of the validation set were statistically analyzed using the formula in Section 2.5.2, and the results are shown in Table 2. The accuracy, detection speed and MAP of the improved model are improved to different degrees. The detection accuracy of the enhanced YOLOv4-Tiny model reaches 97.07%, which is 35.89% higher than Faster-RCNN and 8.94% higher than YOLOv4. In terms of processing accuracy, the dataset in this study is manually captured images. Therefore, the background information is relatively simple. Under slightly more complex background conditions, the accuracy may be reduced. Similarly, the enhanced YOLOv4-Tiny model has a higher MAP value of 99.11% than the Faster-RCNN model value of 95.19% and the YOLOv4 model value of 90.73%. Along with the increase in accuracy and MAP, the enhanced YOLOv4-Tiny model also improves the average arithmetic speed. The average arithmetic speed of the enhanced YOLOv4-Tiny is 30 frames/s, which is twice that of YOLOv4 and 10 times that of Faster-RCNN. This significantly improves the detection speed of the model, which can recognize more stem node images and detect more sugarcane the same time, greatly improving the work efficiency. The enhanced YOLO4-Tiny model achieves 97.07% detection accuracy and 98.46% recall, which is a very small compared with 98.85% of Faster-RCNN and 98.62% recall of YOLOv4. Based on the guaranteed accuracy, the complexity of the model is an important factor affecting the detection speed. The complexity of the enhanced YOLOv4-Tiny model is greatly reduced, and the size of the improved model is only 48MB, which is much smaller than the 265MB of Faster-RCNN and 245MB of YOLOv4, and it is a lightweight detection network, which is suitable for embedded development, and the model inference speed also ensures the feasibility of real-time detection and is suitable for agricultural platform. The results of the experiments show that the enhanced YOLOv4-Tiny network proposed in this paper with high accuracy and speed.


Table 2 | Comprehensive comparison of different detection networks for sugarcane stem node detection.



To clarify the predicted results of the 3 models for the sugarcane categories under different scenarios, the values of the indicators in the above table are represented using bar charts:

Combined analysis of the bar comparison graphs of the above three model evaluation metrics, for Figure 10, the green region True Positives refers to samples that are correctly detected by the model and predicted to be positive classes with the intersection ratio greater than the threshold; the red region False Positives refers to false detections, which are predicted to be positive by the model, but the intersection ratio is less than the threshold or incorrectly classified. The larger the green area is relative to the red area, the better the model detection is. Among the three models, for the same number of targets, the Faster-RCNN target detection network correctly detected the sugarcane target 8240 times and incorrectly detected 5229 times, with a ratio of 1.57; the YOLOv4 detection network correctly detected 8274 times and incorrectly detected 1170 times, with a ratio of 7.07; while the enhanced YOLOv4-Tiny model proposed in this paper can correctly detect the cane 8267 times correctly and 566 times incorrectly, with a ratio as high as 14.61, which is much higher than the other two detection models. The more correct detections and the fewer incorrect detections of the detection network, the higher the detection accuracy of the model, the lower the probability of wrong and missed detections, and the model is more suitable for practical applications.




Figure 10 | Identification and detection effect of sugarcane stem segment under different models.



Figure 11 shows the false detection rate of the three target detection networks for sugarcane stem node recognition, and this value is an important detection index for detecting the effectiveness of network determination, and the smaller the value is, the better the detection is. In the histogram of the three target detection networks, the false detection rate of the Faster-RCNN model and the YOLOv4 model is as high as 0.19, while the enhanced YOLOv4-Tiny model has a false detection rate of only 0.04, which is one order of magnitude better than the other two network models.




Figure 11 | False detection rate of sugarcane stem segment recognition under different models.



The experimental results showed that the overall detection of sugarcane stem node was better for the faster detection model Faster-RCNN, but its AP value of 90.73% was lower than that of 98.68% for Yolov4 and 99.19% for the enhanced YOLOv4-Tiny. This difference was mainly in the poorer detection of broken stem node, stem node under darker light and soil-stained stem node. This may be due to the fact that Faster-RCNN does not build an image feature pyramid, and the extracted feature MAPs are single-layered and have smaller resolutions regardless of whether VGGNet or ResNet is used. Therefore, the detection accuracy is lower for broken stem node, stem node under darker lighting and stem node stained with soil. Meanwhile, Faster-RCNN uses NMS (Non-Maximum Suppression) for post-processing when RPN generates Proposal in order to avoid overlapping candidate frames with classification scores. In fact, the method is unfriendly to obscure targets, especially sugarcane in harvesting, the stem node near the roots tend to sticky soil, i.e., Proposal with two possible targets is likely to be filtered out one, resulting in missed detection.

We strictly control the relevant parameters of the experiments, use a uniform image size (608 × 608) as input, and use a uniform training and test set for testing. The final results are shown in Table 2 and Figure 12. Figure 12 shows the PR curve for each model, which is a two-dimensional curve with precision and recall as vertical and horizontal coordinates. Intuitively, it can be seen that the curve area of the enhanced YOLOv4-Tiny model and the YOLOv4 model is larger than that of the Faster- RCNN target detection model, indicating that the enhanced YOLOv4-Tiny model has higher average precision. When the Recall values of the three models were less than 0.1, the Precision values were maintained around 1.0, and the differences were not significant. However, with the increase in Recall value, the advantages of YOLOv4 and enhanced YOLOv4-Tiny models are gradually obvious, and the Precision values are very stable and do not change much.




Figure 12 | Contrast experimental PR curve.





3.3 Analysis of test results

Five black-skinned sugarcane were randomly selected from each group, for a total of 10 groups. Among the selected experimental sugarcane samples, the tops of sugarcane that could not be used as seeds, some with clods of mud or stem node already bearing damage were removed. The experiment was conducted in a place with good light conditions to reduce the effect of light on the experiment (Figure 13). The experiment was conducted by recording the total number of stems and the number of finished stems (divided into normal, damaged and mud-blocked stems) in each group to obtain the actual cutting rate, and the experimental results are shown in Table 3.


Table 3 | Cutting accuracy.






Figure 13 | Sugarcane cutting test process. (A) Sugarcane conveying feed; (B) Sugarcane node calibration; (C) Sugarcane cutting.



As can be seen from Table 3, the accuracy of the 10 groups of experiments ranged from 96.25% to 100%, with an average accuracy of 98.64%. The enhanced model recognized 100% of normal sugarcane stem node and missed cutting for both broken sugarcane stem node and sugarcane stem node with mud lumps. The experiments showed that there were two major reasons for the occurrence of missed cuts.

	(1) Sugarcane stem nodes are badly broken and the target cannot be detected.

	(2) Soil obscuring sugarcane stem nodes, or misidentifying soil as stem nodes.






4 Conclusions and future research

In this study, an enhanced YOLOv4-Tiny model-based sugarcane stem node recognition system is designed based on the information of sugarcane stem node characteristics. The stem node target detection system realizes the acquisition and recognition of sugarcane stem node information by the device through the enhanced YOLOv4-Tiny model structure. In this paper, normal sugarcane stem nodes, broken sugarcane stem nodes and sugarcane stem nodes with soil image datasets were produced according to the actual operating environment in the field, and tested using Faster-RCNN, YOLOv4, and enhanced YOLOv4-Tiny models, respectively. The experimental results show that, compared with the Faster-RCNN algorithm and YOLOv4 algorithm, the enhanced YOLOv4-Tiny algorithm yielded an average mean accuracy (mAP) of 99.11%, a detection accuracy of 97.07%, and a transmission frame per second (fps) of 30, which can detect and identify sugarcane stem nodes quickly and accurately. After model training and experimental testing, the enhanced YOLOv4-Tiny detection model structure is better than Faster-RCNN and YOLOv4 deep learning models, and the results of this paper have important application value for advancing the development of sugarcane pre-cut seeds and promoting the development of sugarcane planting technology.

The model studied in this paper showed a missed detection of sugarcane stem nodes with soil, and future work is needed to improve the recognition accuracy of stem nodes with soil, especially those near the roots. There is a need to test the effect of lighting on the detection effect and to test the accuracy of the model for recognizing sugarcane stem nodes with different epidermal colors. In this paper, sugarcane stripped of its stems and leaves is used as the research object, which requires advance processing of sugarcane for de-stemming, and the processing is labor-intensive and inefficient. In future work, the sugarcane stem node recognition when the stems and leaves are retained can be studied.
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Agriculture is the primary and oldest industry in the world and has been transformed over the centuries from the prehistoric era to the technology-driven 21st century, where people are always solving complex problems with the aid of technology. With the power of Information and Communication Technologies (ICTs), the world has become a global village, where every digital object that prevails in the world is connected to each other with the Internet of Things (IoT). The fast proliferation of IoT-based technology has revolutionized practically every sector, including agriculture, shifting the industry from statistical to quantitative techniques. Such profound transformations are reshaping traditional agricultural practices and generating new possibilities in the face of various challenges. With the opportunities created, farmers are now able to monitor the condition of crops in real time. With the automated IoT solutions, farmers can automate tasks in the farmland, as these solutions are capable of making precise decisions based on underlying challenges and executing actions to overcome such difficulties, alerting farmers in real-time, eventually leading to increased productivity and higher harvest. In this context, we present a cloud-enabled low-cost sensorized IoT platform for real-time monitoring and automating tasks dealing with a tomato plantation in an indoor environment, highlighting the necessity of smart agriculture. We anticipate that the findings of this study will serve as vital guides in developing and promoting smart agriculture solutions aimed at improving productivity and quality while also enabling the transition to a sustainable environment.
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1 Introduction

At the beginning of the 21st century, we witnessed many technological revolutions, and all our lives have been changed to a greater extent with the absorption of these technologies in our daily tasks (Reddy et al., 2020). Owing to the contributions offered by these different technologies, many works that require a lot of human effort can now be carried out with less human intervention and supervision with greater flexibility and convenience (Reddy et al., 2020; Ahmed et al., 2022). Almost all domains, including healthcare, military, education, surveillance, and transportation, have absorbed these technologies and used them to offer convenient and flexible services to the people (Bates et al., 2021; Ahmed et al., 2022). Among these technologies, ICT plays a pivotal role in interconnecting digital devices as well as connecting these devices to the Internet (Reddy et al., 2020; Forcén-Muñoz et al., 2021; Ahmed et al., 2022; Smart agriculture, 2022). The exponential growth of ICT technologies has paved the way for a more advanced set of technologies, including the IoT, Cloud Computing, Fog Computing, Edge Computing, Artificial Intelligence (AI), Mobile Computing, Software Defined Networking (SDN), and fifth-generation broadband cellular networks (5G) (Bates et al., 2021; Forcén-Muñoz et al., 2021; Mohammed et al., 2021; Ahmed et al., 2022; GlobeNewswire, 2022; The digitization of the European Agricultural Sector, 2022; Theparod and Harnsoongnoen, 2022) which leverage almost all the technological infrastructure onto the next level, paving the way for a technological revolution of the century.

Among all these collations of fruitful technologies, the IoT is closer to our daily life by allowing ubiquitous connectivity of devices, connecting digital devices all around the world to the WWW through Machine to Machine (M2M) communication (Reddy et al., 2020; Ahmed et al., 2022). In general, IoT is a cutting-edge technology for monitoring and controlling devices from anywhere in the world (Forcén-Muñoz et al., 2021; Smart agriculture, 2022), and it is making a significant impact in different domains, including agriculture, transportation, military, smart cities, and healthcare domains, by facilitating automation of many processes (Ahmed et al., 2022), where the adoption of IoT has made man’s life easier and more pleasant.

As the world’s principal and primary industry, agriculture need to balance the food requirements of humankind as well as the production of essential raw materials for many industries (Walter et al., 2017; Theparod and Harnsoongnoen, 2022). It is the most important and basic vocation that many people all around the world are currently involved in (Reddy et al., 2020). Over the centuries, traditional agriculture has transformed in line with the social and cultural changes along with the technological revolutions, and as of now, many of the conventional agricultural methods are executed with the involvement of these technologies. Autonomous robotic vehicles have been developed for performing different agrarian tasks, including mechanical weeding, spraying fertilizer, and pesticides (Forcén-Muñoz et al., 2021; Mohammed et al., 2021; Ahmed et al., 2022; Smart agriculture, 2022). According to the latest reports offered by the World Bank and United Nations (Reddy et al., 2020), it is estimated that agricultural food production needs to increase by 50%-90% by 2050 to meet the future demand for food production and to feed the growing world population by mid-century (Smart agriculture, 2022). Undoubtedly, this is practically a challenging task owing to various challenges such as climate change and crop and pest diseases (Mohammed et al., 2021; Smart agriculture, 2022; The digitization of the European Agricultural Sector, 2022). However, the adoption of IoT and other related enabling technologies in smart agriculture provides a lot of avenues for overcoming such challenges posed by traditional agriculture. Collectively, the applications of IoT and other enabling technologies in agriculture are known as smart agriculture or interchangeably known as smart farming.

Smart agriculture offers the potential to automate many agricultural fieldworks with minimal human intervention requiring a minimum amount of input resources such as less amount of fertilizer, pesticides, and water supply as the resources can be managed effectively as opposed to traditional agriculture (Reddy et al., 2020). The backbone of smart agriculture constitutes mainly of IoT at its core but is supplemented by other related technologies, including cloud computing, AI, fog computing, edge computing, big data, SDN, and underlying communication technologies, such as 5G and Wi-Fi (Mohammed et al., 2021; Smart agriculture, 2022). Altogether these technologies constitute complex cyber-physical systems and digital twins for smart agricultural applications capable of superseding traditional agricultural methodologies (Reddy et al., 2020). These smart agriculture applications range from applications for overall farm management (Reddy et al., 2020), crop condition monitoring (Bates et al., 2021; Forcén-Muñoz et al., 2021; Smart agriculture, 2022), soil condition monitoring (Reddy et al., 2020), livestock monitoring (The digitization of the European Agricultural Sector, 2022; Mohammed et al.,2021; Theparod and Harnsoongnoen, 2022), pest and plant disease monitoring (Mohammed et al., 2021; GlobeNewswire, 2022; The digitization of the European Agricultural Sector, 2022; Theparod and Harnsoongnoen, 2022), fruit quality monitoring (Mohammed et al., 2021; GlobeNewswire, 2022; The digitization of the European Agricultural Sector, 2022), and bee colony management (Mohammed et al., 2021; GlobeNewswire, 2022). Overall, these applications enable farmers to remotely monitor, coordinate and control and make timely and precise decisions, maximizing food production while at the same time reducing food losses and expenses, which are essential in light of the rising global need for agricultural foods (GlobeNewswire, 2022; The digitization of the European Agricultural Sector, 2022). Hence, researchers and organizations have been working on creating innovative smart agricultural solutions that allow remote monitoring and controlling of farms to improve the productivity of global agricultural food production.

According to the latest statistics (GlobeNewswire, 2022; The digitization of the European Agricultural Sector, 2022), the global smart agriculture market is expected to reach 34.1 billion US dollars by 2026. The increasing world population, advancement of modern technologies, like IoT and AI, the popularity of large-scale farming, the acceptance of using modern technologies for livestock management, increased investments, and safety concerns caused by COVID-19 global pandemics are some of the key driving factors that help in boosting smart agricultural production. Figure 1 showcases smart agriculture’s application-wise estimated market size by 2025 (The digitization of the European Agricultural Sector, 2022). The rise of automated farming in controlled environments, sustainable green agriculture, and expectations towards quality and higher harvest, which require fewer resources, are expected to contribute a lot towards adopting smart agricultural practices over traditional farming practices.




Figure 1 | Estimated market size for smart agriculture by 2025 (The digitization of the European Agricultural Sector, 2022).



Despite the growth of the market, however, the adoption of smart agricultural solutions are currently still at a low rate, owing to a variety of reasons, including reluctance by some farmers to move with technologies and trend, higher initial investment, tendency to stick with traditional farming methods and reachability issues to reach out farmers in remote areas (Schwarz et al., 2014; Walter et al., 2017; Theparod and Harnsoongnoen, 2022). However, new research is always being carried out to overcome most of these issues (Schwarz et al., 2014; Walter et al., 2017; Mohammed et al., 2021).

As of now, many research studies in the field of smart agriculture have proposed different novel solutions and methodologies to address various research problems, including the prediction of daily climate for the next crop cycle and the amount of harvest in the next growth cycle (Chlingaryan et al., 2018; How to grow tomatoes indoors, 2022; Akhterand and Sofi,2021; Herman et al., 2019; Cordeiro et al., 2022). Various smart agriculture startup companies are established worldwide to reach out to more farmers and widen the market. As per the literature (Mehra et al., 2018; Herman et al., 2019; Junior et al., 2022), the key technical problems encountered in developing such solutions can be mainly apportioned into hardware, software, and networking and communication challenges. Hardware challenges include challenges related to the implementation of hardware, hardware capacity (e.g., size, memory, and performance), and challenges that may arise from the device’s operational environment, as often these devices need to be deployed under harsh environmental conditions (Bates et al., 2021; Ahmed et al., 2022). Software-level challenges may arise from software bugs, configuration issues, software vulnerabilities, and underlying software platform issues (Forcén-Muñoz et al., 2021; Smart agriculture, 2022). Lastly, networking and communication challenges include underlying networking infrastructure issues when reaching out to remote areas, communication protocol-level issues, and issues related to data transmission range (Mohammed et al., 2021; GlobeNewswire, 2022; The digitization of the European Agricultural Sector, 2022).

Taking all of these concerns into account, we aim to develop a novel real-time cloud-enabled low-cost IoT crop management platform for monitoring and automating indoor tomato plantations. This is done to promote a low-cost but reliable and convenient smart agricultural solution for indoor plantations. We relied on low-cost IoT sensors and open-source technologies for the platform’s design. Additionally, the developed platform should be convenient for farmers residing in urban areas who want to grow their own produce despite space restrictions. Even though previous researchers have used related technologies, they have concentrated on particular applications, their implementations, or technical elements, as opposed to our study. In contrast, in our work, we focus on configuring and deploying our platform with a real plantation to check the feasibility and reliability of the proposed platform. In this regard, the main contribution of the study is outlined below.

	Propose a cloud-enabled real-time monitoring platform for monitoring the environmental and soil condition of indoor tomato plantation along with automating irrigation and lighting conditions.

	Design and implement the platform with low-cost IoT sensors and actuators with open-source technologies.

	Provide our perspectives on how the platform can be extended towards indoor plant condition monitoring and urban farming where the resources are highly limited.

	Provide a comparative analysis of similar research work to differentiate our work from theirs.



The paper is organized in the following manner. Following the introduction, we highlight the necessity of smart agriculture along with enabling technologies. In the third section, the methodology of designing our platform is highlighted, followed by the results obtained after successful implementation with a brief discussion of the work. Section five compares similar research work related to smart agriculture to the proposed platform. The last section concludes the paper, highlighting future directions.



2 Why smart agriculture?

The agricultural sector has seen many revolutions over the years, beginning with the domestication of plants and animals thousands of years ago, progressing to the systematic use of machinery and instruments a few hundred years ago, and the use of man-made pesticides and fertilizers a few decades ago (Walter et al., 2017). At present, the agricultural sector is again undergoing another mega revolution triggered by the increased usage of ICT technologies, which started at the beginning of the 21st century. Autonomous agrarian equipment for farming tasks, including land preparation, sowing, weeding, fertilizer sprinkling, and fruit harvesting, have already been utilized to facilitate the agriculture processes (Reddy et al., 2020; Ahmed et al., 2022). Taken together, these technological advancements represent a technological revolution that will result in disruptive changes in the agricultural domain. This tendency applies to farming not just in developed nations but also in developing countries, where ICT deployments are accelerating and might become game changers in the future. This growth of ICT has fueled the flourishment of more advanced technologies, such as IoT. The rise of IoT, a key ICT breakthrough, has offered opportunities in enhancing practically every industry conceivable (Bates et al., 2021; Ahmed et al., 2022), not least the agricultural sector.

In agriculture, IoT is not only providing answers to frequently time-consuming and tiresome activities, but it has also completely transformed the way people think about agriculture. In this regard, this section is entirely devoted to highlighting the necessity of smart agriculture and offers a brief overview of enabling technologies of smart agriculture.


2.1 Smart agriculture cycle

According to references (Bates et al., 2021; Forcén-Muñoz et al., 2021; Mohammed et al., 2021; Ahmed et al., 2022; Smart agriculture, 2022; The digitization of the European Agricultural Sector, 2022; Theparod and Harnsoongnoen, 2022), smart agriculture refers to the management of farms via the utilization of an advanced set of technologies, including IoT, AI, cloud computing, and robotics, to improve quantity and quality of harvest whilst optimizing the utilization of resources, such as labor and raw materials. To optimize the agricultural processes, IoT devices are deployed on the farming land for continuous collection and analysis of environmental data, allowing farmers to respond rapidly and effectively to changes in ambient environments (Walter et al., 2017; Mohammed et al., 2021; The digitization of the European Agricultural Sector, 2022). In general, smart agriculture follows the following cycle (Walter et al., 2017; Mohammed et al., 2021; Theparod and Harnsoongnoen, 2022).

	Observation – IoT sensors deployed in the field record data from crops, soil, atmosphere, and livestock.

	Diagnostics –The sensor values collected from the observation phase are sent to remote data analytics servers or cloud-hosted platforms and compared with pre-determined business logic to ascertain the condition of the examined object and identify any deficiencies or needs.

	Decisions – In the event of anomaly detection, the IoT platform’s user and/or AI-driven components determine whether location-specific treatment is necessary.

	Action - After end-user evaluation and action, the cycle repeats itself.



A smart agriculture solution provides the agricultural sector with new levels of control and automated decision-making, allowing for a coherent ecosystem. With the current pace of development of smart agriculture, it is now feasible to construct a farm-wide sensor network (Chlingaryan et al., 2018; Herman et al., 2019; Akhter and Sofi, 2022; How to grow tomatoes indoors, 2022; Cordeiro et al., 2022) that allows for practically continuous round-the-clock monitoring of a farm. Consequently, theoretical and practical frameworks have been developed to link the state of crops, soil, and farm animals with production inputs, such as water, fertilizer, pesticides, and plant medications (Mehra et al., 2018; Kashyap et al., 2018; Herman et al., 2019; Parihar, 2019; Junior et al., 2022). Adoption of smart agriculture practices can make agriculture more profitable for farmers over traditional agriculture practices by optimizing most human efforts and input resources. Further, crop cultivation can be optimized using optimum, site-specific weather predictions (Bates et al., 2021; Forcén-Muñoz et al., 2021; Ahmed et al., 2022), yield estimates (Bates et al., 2021; Ahmed et al., 2022), and likelihood maps for illnesses and catastrophes based on meteorological and climate data (Badamasi, 2014; Arduino, 2015; Salim et al., 2015; Suryawinata et al., 2017; Kashyap et al., 2018). Site-specific smart information offers new insurance and economic possibilities for the whole value chain of agriculture, offering numerous benefits for farmers (Eller and Denoth, 1996; Cucus and Febrianti, 2017; Sunday et al., 2020; Saha et al., 2021). Naturally, collecting farming-related data via automated sensors reduces the time required for resource prioritization and administrative oversight (Latha et al., 2016; Banerjee et al., 2017; Gay, 2018; Abbas et al., 2020; Thinger.io, 2022). At the same time, smart agriculture also decreases the environmental impact of farming. Nonetheless, smart agriculture can potentially minimize site-specific use of inputs, including fertilizers and pesticides, which results in the reduction of greenhouse gas emissions, and this can also increase consumer acceptability (Max et al., 2009; Lee et al., 2014; Leyva et al., 2015; Shamshiri et al., 2018; Luis Bustamante et al., 2019).

Urbanization is inevitable as the world’s population continues to expand, leading to the loss of arable land and reduced water supplies. Limitations of these resources may lead to problems with food production in metropolitan areas (Mohammed et al., 2021). Thus, urban farming, which necessitates the use of smart agricultural solutions for the optimum utilization of scarce resources, has emerged as a unique solution to the challenges of land and water shortages caused by urbanization (Banerjee et al., 2017; Gay, 2018; Sunday et al., 2020; Abbas et al., 2020; Saha et al., 2021). Smart agricultural solutions focus on real-time monitoring and automation of necessary works, saving time, space, and cost, and offering higher conveniences to the stakeholders involved in urban farming.

IoT constitutes the core of a smart agriculture solution with collections of sensors, actuators, agriculture robots, and interconnected devices. Other enabling technologies that help strengthen and provide a stronger foundation for smart agriculture include big data from the collection of a vast amount of sensor data, AI for inferencing the meaning of the collected agricultural farming data, cloud computing for convenient and on-demand computing resources, mobile computing for allowing farmers to connect anytime with the smart agricultural solutions, and underlying communication technologies for data communication (Lee et al., 2014; Doshi et al., 2019; Ratnaparkhi et al., 2020). Even though these technologies contribute significantly to the creation of smart agricultural services and applications, without the participation of IoT, none of the services and applications would be useable since IoT is required for data collection. As such, it is evident that IoT plays an important role as the foundation of smart agriculture.

Thus, in the next sub-section, we plan to go further on the role of IoT in smart agriculture since neither the other supporting technologies in smart agriculture nor smart agriculture would exist without IoT.



2.2 IoT in smart agriculture

The IoT is known to be the present and future of everything and will continue to affect the lives of everyone in the world by bringing intelligence to everything (Bates et al., 2021). Its primary objective is to accomplish the creation of a vast network via the interconnection of a wide variety of sensing devices (Forcén-Muñoz et al., 2021). In simplest terms, IoT is a self-configuring network comprised of various inter-connected devices. Smart agriculture with IoT transforms traditional farming practices by making them more efficient and cost-effective for farmers while also lowering crop loss (Bates et al., 2021; Forcén-Muñoz et al., 2021). At present, most agricultural operations are often hindered by a variety of reasons, including global pandemics such as COVID-19, climate changes, lack of trained personnel, lack of faith in technology, and expensive capital costs (Mekala and Viswanathan, 2017; Sushanth and Sujatha, 2018; Ayaz et al., 2019; Thilakarathne et al., 2021; Growing tomatoes from seed, 2022), where IoT is recognized as a record-breaking technology that can offer solutions to most of such challenges.

In smart agriculture, IoT sensors deployed in the farming field and livestock first collect data from the environment in which they are deployed, and then the gathered data are sent to the cloud or data analytics servers through wireless and wired communication media (Schwarz et al., 2014; Walter et al., 2017), in accordance with the cycle of smart agriculture as explained in the previous subsection.

IoT is made up of several physical devices in the smart agricultural domain and has a four-layer architecture (Schwarz et al., 2014; Walter et al., 2017; Bates et al., 2021), as shown in Figure 2. The first layer is the application layer, which is used to provide end-user services and applications with which all stakeholders can interact (Stafford, 2015; Mohanraj et al., 2016; Hasanaj and Abuhemidan, 2019; Growing tomatoes from seed, 2022; Carbon Dioxide (CO2): Environmental Health in Minnesota, 2022; Quy et al., 2022). The stakeholders can connect with their mobile devices and web browsers to utilize the applications and services offered through the application layer. The second layer is the information management layer, which is responsible for data formation and categorization, creation, monitoring, and decision-making (Walter et al., 2017). The third layer is the network management layer, which includes technologies for communication such as GSM, Wi-Fi, 3G, UMTS, Bluetooth Low Energy, and ZigBee (Suanpang and Jamjuntr, 2019). Finally, the fourth layer is the information collection layer, which includes all sorts of physical IoT devices, such as sensors for sensing the environment and actuators for controlling and automating tasks (Sihombing et al., 2019; Montazeaud et al., 2021). We have noted that this architecture can be customized according to context and the needs of the solution, having more intermediate sublayers. Marcu et al. (2020) have introduced a SmartAgro telemetry system that can remotely monitor underlying crop conditions consisting of a local storage layer for processing the sensor data and an edge layer with decision-making capability for analyzing sensor data in real-time and filtering them without any latency.




Figure 2 | Layers of the IoT architecture in smart agriculture.



In a typical smart farming setting, many sensors may be put in the agricultural field to measure different parameters, including humidity, soil pH, temperature, and light intensity (Walter et al., 2017). Each network device on the agriculture network is normally allocated a unique and distinct IP address for identification purposes. The IoT devices could be smart sensors, actuators, or wearable sensing devices (Mohammed et al., 2021). Once the data is collected, the collected data is delivered to the cloud or data analytic servers through a network gateway linked to the Internet by Wi-Fi or another communication media (Mohammed et al., 2021). Finally, the data is transferred from the cloud or data analytic servers to the farmer’s smart mobile devices or handheld computing devices, where they make informed decisions by examining this analyzed data.

As farmers are unable to be physically present in the field 24 hours a day and due to a probable lack of skills in employing various technologies to assess the appropriate environmental conditions for their crops, smart agriculture offers them automated solutions that can run without human supervision and can assist the farmers in making proper decisions to cope with the various types of challenges they may encounter. Further smart agriculture can contact and alert the farmer even when the farmer is not in the field, allowing the farmer to manage more acreage and increase productivity. With the overwhelming benefits that the farmers can now gain with the adoption of smart agriculture, many seek to adapt the technology as a viable alternative to eliminate the massive burden associated with traditional farming practices. In recent years, there has been a clear growth of research activities in smart agriculture. Lee et al. (2014) stated that IoT is a critical technology that will lead us to a sustainable world. They believe that IoT-powered smart agricultural solutions will change the status of the agriculture industry and business models, and farmers can profit more by adopting smart agriculture. By building a crop condition monitoring platform, Doshi et al. (2019) underlined that smart agriculture advancements have made traditional agricultural practices more flexible, cost-effective, and less wasteful. Ratnaparkhi et al. (2020) presented a review of various types of IoT agricultural sensors, which have been used in agriculture, and compared them with the different commercially available IoT sensors. With the conclusion remarks they derived, they stated that with the current rate of development of smart agriculture, if they are correctly used in countries like China, India, and Africa, it can easily end world hunger. Mekala and Viswanathan (2017) surveyed IoT-powered smart agriculture monitoring applications backed by cloud computing and highlighted its key enabling technologies. In their study, they have highlighted the necessity of an optimum smart agricultural architecture that is inexpensive, has low power consumption, able to provide good decision-making, and simple to comprehend for farmers who may lack the technological aptitude. Further they emphasized it would be an ideal solution for reaching out for more farmers and promoting smart agriculture. (Ayaz et al. (2019) discussed enabling technologies and platforms used in smart agriculture together with challenges currently faced by the industry and future prospects. In their study, they have emphasized that to benefit from every inch of farmland and to have a higher harvest, the adoption of smart agricultural practices is a must.




3 System design and implementation

After thoroughly investigating the most suitable plant to be grown in indoor lab conditions, the tomato plant has been chosen, as indoor lab environmental conditions best match with optimal conditions that tomato plants need (Schwarz et al., 2014; How to grow tomatoes indoors, 2022). Tomato, scientifically known as Solanum Lycopersicum (Schwarz et al., 2014; Walter et al., 2017), is considered an important horticultural crop worldwide due to its ability to grow in domesticated environments and is frequently used as a model crop for studying the development of fruits as well as for numerous cellular, molecular, and genetic investigations (Schwarz et al., 2014; Walter et al., 2017). Tomatoes can be easily grown in a controlled environment, such as in growth chambers or greenhouses, and require a daily light length between 8 to 16 hours to allow the plant to grow well, flower, and develop quality fruits. However, depending on the growth stage, the requirement for light may vary. Tomatoes also need a temperature of 10–35°C, relative humidity of 30–90%, and CO2 concentration of around 200–1500 ppm (parts per million) in an outdoor environment (Schwarz et al., 2014). Daily light conditions, CO2 concentration, and temperature all impact photosynthesis and biomass output (Walter et al., 2017), whilst temperature also controls the rate of phenological development. Tomatoes can be grown in soil, on substrates, or aeroponically without a substrate. Root volume and water uptake requirements are predominately determined by the transpiration demands of the plants; hence a good amount of wind is an essential factor for plants to grow in optimal conditions (Schwarz et al., 2014; Walter et al., 2017). The above-mentioned traits of tomatoes were best matched with our indoor university lab environmental conditions; thus, tomatoes were chosen as the main plant species for planting inside our indoor lab.

Having provided an overview of why we have chosen tomatoes to grow inside our indoor lab, we discuss the system design further in the next section.


3.1 System design

Our platform’s main objectives are real-time monitoring of environmental and soil conditions and managing irrigation and lighting conditions for our indoor tomato plantations. The proposed platform consists of the following components.

	IoT sensing devices that collect relevant soil and environmental parameters.

	Arduino Uno and NodeMCU microcontrollers to gather data from the IoT sensing devices, process and showcase the results, and stream the data to the cloud for further processing and analytics.

	Thinger.io is an open-source cloud platform for further data visualization, analytics, and actuator control.

	Grow light kit for helping the tomato plants grow under indoor environmental conditions by providing light, and irrigation system comprising of three peristaltic water pumps which can be controlled through the cloud.



The key component of our platform is the central NodeMCU microcontroller that streams data to the cloud through Wi-Fi and retrieves other sensing data from the Arduino Uno microcontroller through serial communication. NodeMCU is an open-source firmware and development kit that helps prototype IoT products within a few lines of code. It has 128 KB of RAM and 4 MB of flash memory for data storage and execution of programs (Kashyap et al., 2018; Parihar, 2019). Further, it also integrates with an 802.11b/g/n Wi-Fi transceiver, enabling the device to connect to a Wi-Fi network (Parihar, 2019). On the other hand, it can also set up a network on its own as the main node of a Wireless Sensor Network (WSN), allowing other devices to connect directly to it (Kashyap et al., 2018). Figure 3A depicts the NodeMCU microcontroller. Apart from the NodeMCU microcontroller, we have also used an Arduino UNO microcontroller, as most of the sensors we have used were analog sensors, and NodeMCU only contains one analog pin. In contrast, UNO contains multiple analog pins to attach more than one analog sensor, and we have connected three analog sensors to the UNO microcontroller.




Figure 3 | (A) NodeMCU microcontroller, (B) Arduino U.N.O. microcontroller.



Arduino UNO is an open-source microcontroller board based on the microchip AT-mega328P (Arduino, 2015). The microcontroller board has analog and digital input/output (I/O) pins that may be interfaced with various expansion boards and other circuits. Altogether it has 14 digital input/output pins, 6 analog inputs, a 16 MHz ceramic resonator, a USB connection, a power jack, an ICSP header, and a reset button (Badamasi, 2014). It contains everything needed to support the microcontroller, and the device can be powered by a USB cable or an external 9-volt battery, though it accepts voltages between 7 and 20 volts (Badamasi, 2014; Arduino, 2015). Figure 3B depicts the Arduino U.N.O. microcontroller.

In terms of the IoT sensors, our platform accommodates eight sensors, a relay actuator, and three peristaltic pumps for the physical design of our platform. The sensors include a DHT-11 temperature and humidity sensor, H-101 analog pH sensor, capacitive soil moisture sensor, waterproof DS18B20 sensor, MQ135 CO2 sensor, and a light-dependent resistor (LDR), an ultrasonic sensor, and a DS1307 RTC (Real Time Clock) module. These sensors were chosen based on the parameters that needed to be measured whilst considering ease of use, economical value, and measurable parameters. Figure 4 and 5 depicts all the different components, including sensors and actuators, utilized in the platform.




Figure 4 | (A) DS1307 RTC module, (B) LDR, (C) H-101 analog pH sensor, (D) capacitive soil moisture sensor.






Figure 5 | (A) DS18B20 sensor, (B) Two channel DC 5V relay module, (C) DHT-11 temperature and humidity sensor, (D) peristaltic pump, (E) MQ135 CO2 sensor, (F) ultrasonic sensor.



Components in Figures 4 and 5 are explained in the following.

	Figure 4A shows the DS3231 RTC module, a real-time clock module that uses DS3231 IC as its backbone. It contains a backup battery mounted at the back of the module to keep track of time even in the absence of a main power source, with a chip capable of automatically switching between the main and backup power source as necessary (Suryawinata et al., 2017).

	Figure 4B shows an LDR sensor that works on the photoconductivity principle, with resistance varying according to light intensity. When the LDR connects with the 5V, it gives an analog voltage that varies depending on the input light intensity (Salim et al., 2015).

	Figure 4C depicts an industrial-grade analog pH sensor made from a sensitive glass membrane with low impedance. It can be used in pH measurements with fast response and excellent thermal stability, commonly used in aquaculture and water quality surveillance (Cucus and Febrianti, 2017).

	Figure 4D is a corrosion-resistant capacitive soil moisture sensor that outputs analog voltage based on capacitance changes (Eller and Denoth, 1996). As opposed to other resistive sensors, capacitive sensors do not require direct exposure to the metal electrodes, which can significantly reduce the erosion of the electrodes in the long run.

	Figure 5A shows the waterproof version of the DS18B20 temperature sensor that has an operating temperature range from −55 °C to +125 °C with a precision of ±0.5°C, and it operates within the range of 3.0V to 5.0V (Saha et al., 2021).

	Figure 5B shows the two-channel 5V relay module, which is used to control/switch high voltage (in our case, 12V) and current loads (Sunday et al., 2020).

	Figure 5C shows the DHT11 temperature and humidity sensor commonly used to monitor environmental temperature and relative humidity, and outputs the temperature and humidity values as serial data (Gay, 2018).

	Figure 5D shows the peristaltic pump, a positive displacement pump used for pumping various fluids. Three pumps have been used for the design of our automated irrigation system (Banerjee et al., 2017).

	Figure 5E showcases the MQ135 CO2 gas sensor, an air quality sensor for detecting a wide range of gases, including NH3, NOx, alcohol, benzene, smoke, and CO2 (Abbas et al., 2020). For our platform, we have used MQ135 to measure CO2 concentration in ppm.

	Figure 5F shows the ultrasonic sensor, which measures the distance to an object using ultrasonic sound waves with high reliability (Latha et al., 2016).



Table 1 summarizes the device specification of IoT sensing devices we have used along with their purpose.


Table 1 | Specifications and the purpose of IoT devices.



Having provided a brief technical overview of each of the physical components in the platform, the next steps involve designing the platform with correct wiring and connections. Figure 6 below shows the block diagram of our platform with all connections.




Figure 6 | Block diagram of our platform with all the connections.



The pH sensor, CO2 sensor, LDR sensor, LED indicators, and Ultrasonic sensor were attached to the Arduino UNO microcontroller, whilst the capacitive soil moisture sensor, DHT-11 sensor, DS1820 module, and RTC module were attached to the NodeMCU. A serial communication gateway between UNO and NodeMCU was also opened to allow the UNO to send sensor data to the NodeMCU for dispatch the data to the cloud via its Wi-Fi connection.

The two-channel direct current 5V relay module was used to control and automate the grow light kit and irrigation system, enabling control of them over the cloud. Three water pumps were parallelly connected, where one connection end was connected with the relay, whilst the other end of the relay was connected to the grow light kit. pH sensor, CO2 sensor, capacitive soil moisture sensor, and all remaining sensors were tested for their measuring accuracy. The ultrasonic sensor was attached to the top of a PVC pipe set up, as shown in Figure 7, and was used to measure the height of the plant as an indication of plant growth. Manual daily measurement of the plant was also performed as a supplement to automatic measurement using the ultrasonic sensor. A Wi-Fi connection was used to stream sensor data to the cloud every five seconds, as well as to receive data from the cloud. We have decided to use a time interval of five seconds in order to see the real-time variations of sensor data, as well as to facilitate the real-time control of actuators with a quick response time. Figure 8 showcases our platform’s physical design with all the wiring connections.




Figure 7 | Measure the plant height through ultrasonic sensor.






Figure 8 | The physical design of the platform.



Arduino Integrated Development Environment (IDE), written in Java programming language and C/C++ programming language, was used for programming the setup. Program sketches from the Arduino IDE were then compiled, debugged, and uploaded to both NodeMCU and UNO microcontrollers for real-time execution. Figure 9 shows the workflow of our platform step by step until streaming data to the loud.




Figure 9 | The workflow of our platform.





3.2 Configuring connections to the cloud

As illustrated in Figure 6, once the data are collected from both the UNO and NodeMCU microcontrollers, the NodeMCU is responsible for streaming the data to the cloud every five seconds. To fuse the heterogeneous data coming from a variety of IoT sensors and process them in the cloud in real-time, the Thinger.io platform, which is an open-source platform having the capabilities for collection, management, and analysis of vast amounts of heterogeneous IoT sensor data in the cloud (Luis Bustamante et al., 2019; Suciu et al., 2019; O’Grady et al., 2019; Trilles et al., 2020; Thinger.io, 2022), was used.

To offer a brief overview of Thinger.io, it provides a free and open-source cloud solution that allows the simple and easy implementation of data fusion IoT applications in the cloud (Luis Bustamante et al., 2019). Moreover, it offers a free tier service for connecting a limited number of IoT devices, thereby allowing remote sensing and actuation (Thinger.io, 2022). Thinger.io also facilitates the installation of the software outside the cloud for private and personal use, allowing users to create their customized platforms as opposed to other available solutions. Different Internet-enabled devices, including Arduino, Raspberry Pi, NodeMCU, and ARM devices, can be connected to the platform. It also provides a web-based dashboard for remote monitoring and management of all resources (Luis Bustamante et al, 2019; Thinger.io, 2022). Considering the feasibility, free tier services, and flexibility, Thinger.io has chosen for data visualization, analytics, and actuator control over the cloud. Figure 10 illustrates the cloud dashboard that has made on Thinger.io for visualization of our sensing data and actuator control , based on the received data to the cloud. For each sensing parameter, a separate display widget was created on the dashboard, and another widget was created to visualize the correct timestamp, as seen in Figure 10. Two ON/OFF control buttons were also added to automate grow light kit and the irrigation system.




Figure 10 | Cloud dashboard made for data visualization and actuator control in Thinger.io.






4 Experimental results and discussion

After the platform had been set up, tomato plants were grown inside the lab. The growing of tomato plants requires adequate ventilation and light. The lab was fully air-conditioned and did not have enough windows for proper ventilation. According to the stages of tomato plant growth; tomato plants grow in several stages: 1) the germination and early growth with initial leaves, which is between 25 and 35 days, 2) the vegetative period, which is between 20 to 25 days, 3) the flowering period, which is between 20 to 30 days, 4) an early fruiting period, which is between 20 to 30 days, and 5) mature fruiting stage which is between 15 to 20 days (Max et al., 2009; Leyva et al., 2015). However, according to the research (Max et al., 2009; Leyva et al., 2015; Shamshiri et al., 2018), it is evident that the exact date of each stage depends on varieties and other environmental factors, such as soil condition, air temperature, nutrients, and light.

The seeds were seeded in the planting trays and kept for the initial germination phase of around 15 days. Figure 11 shows the germination stage of our plants inside the lab environment step by step in sequential order.




Figure 11 | Germination stage of our tomato plants (1. 10th day 2. 11th day 3. 12th day 4. 13th day 5. 14th day).



After completion of the germination stage, the healthy grown plants were moved to three planting pots, where the platform with sensors was deployed to capture data on the underlying soil and environmental conditions, as shown in Figure 12. The central pot was the main tomato plant, whilst plants in the remaining pots were used as a replacement in case something went wrong with the main plant and as a validation setup for our experiment. Soil moisture, pH, soil temperature, and ultrasonic sensors were embedded in the central pot where we have our main plant, with the remaining sensors set up on the top of the planting rack. Calibration and initial testing were done on all the sensors prior to deployment.




Figure 12 | Growing tomato plants inside lab environment with sensors deployed in soil.



Figure 13 depicts the shareable real-time dashboard for visualizing real-time data streamed from the NodeMCU microcontroller. Separate widgets for displaying real-time sensor data: air temperature, air humidity, CO2 concentration, soil pH, soil moisture percentage, lux value, soil temperature, and plant height as well as stamped time from the RTC module, are made available on the dashboard. Using stamped time from the RTC module allows the real-time sensor values to be archived with the correct timestamp. An ON/OFF control button to control the grow light kit and the irrigation system was also added to the dashboard. Another tab had also been set up in the same dashboard for visualizing real-time and archived time series sensor data, as shown in Figure 14, to give more insights on the changes in sensor values.




Figure 13 | Real-time dashboard.






Figure 14 | Time series data.



For the data archiving, data bucket functionality in Thinger.io was used. The data bucket functionality allows virtual data storage of time series information, such as the sensor data gathered over time (Luis Bustamante et al., 2019), as shown in Figure 15. Once the data is archived through the data bucket, it can also be exported in CSV or JSON format for further analysis.




Figure 15 | Archived sensing data in a data bucket.



Table 2 shows the statistical summary of the gathered sensor data through our cloud platform, between 31st of July 2022 at 12.00 AM to 7th August 2022 at 12.00 AM, containing over 10000 data points.


Table 2 | Statistical summary of gathered data.



Figures 16A-G show air temperature, humidity, soil temperature, soil moisture, CO2, light intensity, and pH variations, respectively, during the observation period. Generally, temperature slightly increased over the period, reaching a top of nearly 26°C inside the lab environment, with rising and reduced temperature during the daytime and nighttime, respectively. It is noted that temperature remained within the optimal range (10–35°C) that plants require throughout the period, as seen in Figure 16A. Figure 16B shows the variation of relative humidity. As the relationship between temperature and humidity are inversely proportional to each other, temperature increases would correspond to a reduction in humidity, which can be verified from Figures 16A, B. Similar to temperature, humidity also remains within the optimum range of 30 to 90 during the period.




Figure 16 | Variation of environmental and soil parameters; (A) Variation of Air Temperature, (B) Variation of Air Humidity, (C) Variation of Soil Temperature, (D) Variation of soil moisture percentage, (E) Variation of Co2 value , (F) Variation of LUX value , (G) Variation of pH Value.



As can be seen from (Figures 16C and A), the soil temperature variation is much similar to the air temperature variation. Tomato plants generally prefer warmer weather if moved (transplanted) or planted outside. Hence the soil temperature at night should not reduce to below 13°C (Growing tomatoes from seed, 2022), such that plants would not experience too low of a temperature. A low-temperature environment would result in growth retardation, which would eventually lead to poor fruit production or even plant mortality. However, data from our platform indicate that soil temperature consistently stays above the minimum temperature requirement throughout the period.

The soil was watered before planting the tomato plant in the pots, and consequently, the soil moisture percentage gave a reading of more than 75. Afterward, as seen in Figure 16D, the soil moisture percentage has slightly reduced, and by physical observation and with the observed real-time data from our dashboard, we activated the irrigation pumps through the cloud platform for approximately 90 seconds which was predetermined while testing our irrigation system for how much duration we need to supply water. Afterward, as seen in Figure 16D, the value drastically increased, which can be seen as a sudden spike. Over the period, we have activated the pump six times by relying on our real-time data on the dashboard.

CO2 concentration inside the lab varied between 1470 to 2988 ppm during the observation period, as can be seen from Figure 16(e). A lab or room with a good air exchange should have CO2 concentration readings within the range of 350-1,000 ppm (Suanpang and Jamjuntr, 2019; Carbon Dioxide (CO2): Environmental Health in Minnesota, 2022), where inadequate ventilation may lead to the accumulation of many pollutants inside. In such case the indoor carbon dioxide (CO2) level can be used as a yardstick for a analyzing the room’s ventilation level. (Hasanaj and Abuhemidan, 2019; Carbon Dioxide (CO2): Environmental Health in Minnesota, 2022). It can be seen that the lab environment has slightly higher CO2 concentration readings as the lab does not have adequate ventilation. This is similar to references (Hasanaj and Abuhemidan, 2019) and (Aminulloh et al., 2019), whereby CO2 concentration readings of over 4000 ppm over three days in a room with no proper ventilation, and CO2 concentration readings of over 4000 ppm in a Greenhouse environment, respectively, had been observed. Over the observation period, it can be observed that CO2 concentration readings fluctuated between 1600 to 2400 ppm. The recommended CO2 concentration readings for tomatoes after transplanting are between 800 to 1000 ppm in a typical outdoor setting, and it can be clearly seen that CO2 concentration readings obtained slightly deviated from the recommended values despite the plants growing considerably well (Hasanaj and Abuhemidan, 2019). This can be mainly attributed to the inadequate ventilation in the room.

In Figure 16F, it can be seen that light intensity decreases during the nighttime whereas increasing during the daytime, with values ranging between 19 to 112 Lux. The activation of grow light kit doesn’t impact the light intensity we measured as we only activated the grow light during the daytime between 8.00 AM to 7.00 PM as a replacement for sunlight. Further, we have configured the LDR on the top of the planting rack, not near the plants, as we can measure how the light intensity varies inside the lab environment.

pH variation over the observation period is depicted in Figure 16G, which clearly shows a slight fluctuation of the pH in between the range of 5.6 to 5.8. According to the optimum pH range that tomato plants can bear, which is between 5.5 to 6.8, it is evident that tomatoes can tolerate slightly acidic soils down to a pH of 5.5, but for the best harvest, it should be between 6.0 to 6.5 pH. On the other hand, tomatoes are an acid-loving plant that is best grown in soils with a pH below 7.0 (Kagita et al., 2021; Quy et al., 2022; Thilakarathne et al., 2022), which we can clearly conclude soil pH conditions are optimum for our plants to grow well.



5 Discussion

Based on the analysis of the collected sensor data and visual observation of the plants from the biological perspective (e.g.: height of the plants and number of secondary leaves), it is evident that our tomato plants are growing well and healthy in the indoor lab environment, with the plant height increasing almost 2 cm during the period that the proposed platform was deployed. However, more tests are required to further determine the data validity and operability of the current system before the system can be scaled up and deployed on a real plantation. It is noted that the designed prototype platform offers greater benefits for farmers with a simple IoT setup and open-source technologies. Additionally, the platform has been built with cost-effective IoT devices, which cost less than 70 USD. Table 3 gives the costing of the proposed platform.


Table 3 | Amount spent on IoT devices and enabling technologies.



The platform has been designed as a low-cost smart agricultural solution, especially for indoor environments, with a special focus on urban farming by considering time saving, space, cost, and convenience, which are important considerations for urban agriculture. Overall, throughout the observation period, the platform has been demonstrated to be stable in terms of reliability and operability, with no malfunctioning of devices or loss of data. However, the prototype system does lack some capabilities and may require further upgrades and expansions, including the capability of visually monitoring the plants.



6 A comparison between some similar works

To better compare our work with similar research, in Table 4, we compare our work with theirs in terms of available features and components used.


Table 4 | Comparison between similar work.



Table 4 compares other works in the literature with our work in terms of smart agricultural platforms designed. The following characteristics have been offered to describe each one:

	Microcontroller – refers to the microcontrollers model that the research uses

	Connection- refers to the wireless or wired connection available.

	Platform – indicate whether the research uses a specific platform and its name.

	Realtime – shows whether the system works in real-time or not.

	Cloud-enabled – suggest that the research uses cloud computing services.

	Actuator control -indicates whether the devices in the system can be controlled depending on the situation.

	Data archival and download for further analytics – indicate whether the system facilitates to archival of the time series data and allows the users to refer to them at a later time.

	Allows crop management- indicate whether the system facilitates real-time monitoring and control.

	Development and implementation cost – describe whether the overall development and implementation cost is high, intermediate, or low.



Based on the above, it is evident that most works have used Arduino as the main microcontroller and depended on Wi-Fi for their communication needs, with a cloud platform mostly utilized to perform real-time monitoring and actuator control. In terms of the sensing devices, a total of nine sensors have been utilized in our research for sensing the ambient environment as opposed to other research, which only used a limited number of sensors. Despite this, the total costs of the proposed platform is almost similar to some of the works found in the literature. Further, with the results we obtained, it is noted that the system is able to provide accurate results in real-time, providing us the opportunity to monitor the underlying crop conditions in real-time and control certain parameters. Apart from the Co2 concentration, we have obtained all other parameters in a manual way, and it is noted that all the values are almost accurate. On the other hand, during the time that the system is active, no functional anomalies were detected which proved the reliability of the system.



7 Future work

The main intention of this section is to provide our readers with a brief understanding of how our proposed work can be extended toward indoor plant condition monitoring and urban farming. With the proposed work in the research, we have proved that our system can be built using low-cost IoT sensors and is capable of providing reliable service as long as the power and Internet connection are stable. Regarding indoor and urban farming, resources such as water and nutrient-rich soil are very limited, and the growers engaged in such farming have a limited time to spend. Such indoor and urban farming examples entail gardening, vertical farming, and soilless farming methods such as hydroponics, aeroponics, and aquaponics. According to the literature, it is evident that there is only less research work done pertaining to the use of smart agricultural solutions for indoor and urban soil-based farming (Khattab et al, 2016). On the other hand, we have noted with regard to using smart agricultural solutions towards indoor and urban farming, a lot of research on soilless farming (Patil et al., 2020 ; Charumathi et al., 2017 ; Kour et al., 2022).

Due to various factors such as inflation, supply chain interruptions, natural disasters, the COVID-19 pandemic, and environmental pollution dealing with agriculture and food insecurity concerns, many people living in urban areas are now keen on producing their own food at home. This has become a common trend, and progressively within time, by the next two decades urban and indoor farming would be much more popular in urban areas. We have developed our platform, having all these things kept in our mind, and our platform can be deployed in such a way, as to monitor the condition of a particular chosen plant in the plantation and, based on that, provide insights pertaining to the underlying plantations as it is not feasible to deploy such IoT solutions throughout the plantation. With a simple maneuver, by replacing only the necessary sensors pertaining to the monitoring parameters, our proposed platform can be used to monitor the conditions for soil less-farming such as with hydroponics, aeroponics, and aquaponics.

As per the next steps of our work, we have planned to integrate a real-time camera for real-time visualization of plants and integrate an intermediate Raspberry Pi device as an edge device for accumulating sensor data coming from NodeMCU to analyze our data in the edge of the network and provide real-time notifications/alerts based on the underlying conditions in near real-time for farmers. Further, with the introduction of this edge device and incorporating it with AI, we plan to provide total autonomy to our system as with the data analytics at the network edge, the system would be able to learn from the data and would be able to automate irrigation and lighting for plants with no sort of intervention from the cloud or farmers. Thus, this would be an ideal solution for indoor and urban farming for the optimum utilization of resources. In this work, we have used all low-cost sensors and open-source solutions, and we believe this would pave the way for the design of low-cost but effective and reliable smart agriculture solutions, which would become much more popular among farmers with low income.



8 Conclusions

The main objective of this research is to design and implement a flexible cloud-enabled low-cost sensorized IoT platform for real-time monitoring and automating tasks dealing with indoor plantation. In this regard, we have chosen tomatoes to be planted in the lab environment and to deploy our platform to check the functionalities and reliability of our platform with the crop we have chosen. Through the platform, we have visualized real-time data and offer the facility to control the conditions dealing with our plants irrespective of where you are located, as everything happens over the cloud. Nonetheless, to provide a better overview of our data, we have analyzed our gathered data to learn insights and check whether the optimal indoor conditions match our plants’ needs. Compared to similar works, our study focused on building an affordable IoT platform for smart agriculture that can be specially used for the indoor environment; highly useable for urban farming to save cost and time considering our platform’s affordability and real-time management facilities. We have tested and applied our platform for remote monitoring of plants, soil, and environmental conditions, and based on results from simulations and analyses of previously stored data; our platform could be used to generate important analytics of real-time monitoring, enabling choices and actions such as managing the irrigation system or creating alters, for example. Throughout our experiment, only a few limitations we have noted, such as keeping a constant power supply and keeping the wireless connection stable, as there is no way to communicate with the cloud if one such factor is missing.

Overall, our results indicated that our plants are growing well, and the system is reliable; however, more tests are required to further determine the validity of our system before deploying elsewhere, as site-specific calibration is needed for sensors before deploying. In addition, our prototype system can be further extended with more functionalities and can be upgraded and customized according to the context, such as monitoring and controlling conditions of soil-based and soil-less farming. Examples of this would be the requirement to provide adequate ventilation with automated ventilation fans that work based on the environmental conditions and monitor the visual feed of plants through our platform, which could be developed to a greater extent with real-time decision-making capabilities. For our experiment, we have used Arduino UNO and NodeMCU microcontrollers in conjunction, but our current system can be further upgraded and can connect with more sensors with low-cost microcontrollers like Arduino Mega, which has 16 analog signals as opposed to Arduino UNO. With the comparison of similar work, we elaborated that our work uses more sensors than any other work owing to the integration of two interconnected microcontrollers, which would be ideal for monitoring all sorts of conditions pertaining to the plantation. On the other hand, we also have the option of using the Raspberry Pi Model, which is compatible with the system that is already in place, as it delivers many features in terms of the speed of the CPU, memory, and networking, where it can also act as an edge gateway. Doing so would allow us to perform real-time analytics at the network edge with AI and subsequently execute actions on its own based on the analytics, such as by monitoring the real-time feed, identifying any pests or diseases, and alerting farmers, as we explained in the future work section. In summary, in our research, we have implemented an affordable crop management platform for managing crop conditions in indoor environments. We believe this would pave the way for the design of more smart agricultural solutions, especially for urban farming, to save precious time and cost.
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  The timely detection of information on crop nutrition is of great significance for improving the production efficiency of facility crops. In this study, the terahertz (THz) spectral information of tomato plant leaves with different nitrogen levels was obtained. The noise reduction of the THz spectral data was then carried out by using the Savitzky-Golay (S-G) smoothing algorithm. The sample sets were then analyzed by using Kennard-Stone (KS) and random sampling (RS) methods, respectively. The KS algorithm was optimized to divide the sample sets. The stability competitive adaptive reweighted sampling (SCARS), uninformative variable elimination (UVE), and interval partial least-squares (iPLS) algorithms were then used to screen the pre-processed THz spectral data. Based on the selected characteristic frequency bands, a model for the detection of the nitrogen content of tomato based on the THz spectrum was established by the radial basis function neural network (RBFNN) and backpropagation neural network (BPNN) algorithms, respectively. The results show that the root-mean-square error of correction (RMSEC) and root-mean-square error of prediction (RMSEP) of the BPNN model were respectively 0.1722% and 0.1843%, and the determination coefficients of the correction set (Rc 2) and prediction set (Rp 2) were respectively 0.8447 and 0.8375. The RMSEC and RMSEP values of the RBFNN model were respectively 0.1322% and 0.1855%, and the Rc 2 and Rp 2 values were respectively 0.8714 and 0.8463. Thus, the accuracy of the model established by the RBFNN algorithm was slightly higher. Therefore, the nitrogen content of tomato leaves can be detected by THz spectroscopy. The results of this study can provide a theoretical basis for the research and development of equipment for the detection of the nitrogen content of tomato leaves.



 Keywords: terahertz spectroscopy, tomato, N, characteristic band, nondestructive detection 

  1. Introduction.

China is the world’s largest tomato-planting country, accounting for about 1/3 of the global tomato-planting area (Wang et al., 2021). At present, the planted area of facility tomato in China is in a leading position globally, but there is a large gap between the per-mu yield of facility tomato in China and that in developed countries. The main reason for this is that China has some long-term problems growing crops. The misuse of fertilizer during production leads to soil pollution, and a lack of a timely understanding of the nutritional status of crops leads to shortages of nutrients and the water supply during the fertilizer season (Li et al., 2019; Hu and Cai, 2021). Therefore, to improve the production efficiency of facility crops and avoid environmental problems caused by the unreasonable application of chemical fertilizers, it is necessary to carry out scientific and theoretical research on the detection of information on crop nutrition. This is expected to greatly improve the production efficiency of facility crops and reduce pollution. Thus, technology for the non-destructive testing of crop nutrition is of great significance.

In the traditional facility nutrition management process, the judgment of the nutritional status of plants is mainly realized by expert experience and chemical determination, which are characterized by some problems. Expert experience is easily affected by subjective factors, and accurate judgment cannot be achieved (Fitzgerald et al., 2006; Huang et al., 2009; Zhang et al., 2018). Although chemical determination has high detection accuracy, it is difficult to realize the dynamic feedback control of crop nutrition information due to poor timeliness, and the sampling process causes certain damage to crops (Gao et al., 2012; Tian et al., 2016).

In recent years, non-destructive testing technology has been used to diagnose the nutritional elements of crops. This technology can quickly judge the nutritional status of crops without causing damage to them, and has gradually become a popular method for nutritional testing (Song et al., 2016; Yang et al., 2018). Some research has been conducted on the nutritional element diagnosis of crops both domestically and internationally, and some achievements have been made; however, there remain some shortcomings. For example, the method of crop information processing is relatively simple, and the model accuracy is not high (Yada et al., 2008; Hang et al., 2015). Moreover, related research is mainly focused on the analysis of the reflection intensity, texture, and other characteristics of the crop leaves, and biological macromolecules inside crops, such as nucleic acids and phospholipids, cannot be detected in detail (Breitenstein et al., 2012; Gente et al., 2013; Gente et al., 2015).

Terahertz (THz) detection technology an advanced technology known as “one of the ten technologies that will affect the future of mankind in the 21st century,” and has received increasing attention in the biological sciences field (Zhao et al., 2018; Zhang et al., 2021). THz waves refer to electromagnetic waves with a frequency between 0.1 and 10 THz and a position between microwave and infrared radiation. Under THz radiation, the chemical bonds of the molecules of various nutrients are broken and formed within picoseconds, resulting in the strong absorption of THz waves. Thus, THz spectroscopy can be used for the detection of the nitrogen content of crops. While THz spectroscopy has been widely used, due to the limitations of detection objects and technical means, its application in the field of agricultural engineering remains in its infancy. Some scholars have found that the spectral resolution of THz time-domain spectroscopy (THz-TDS) can be used to identify the composition of objects, and THz imaging technology can be used to identify nutrients such as chlorophyll, lutein, and the nitrogen-to-sugar ratio. Characteristic fingerprints lacking internal components and macromolecules can be used to diagnose the internal structure of crops with different nutrients (Liu et al., 2020; Zhang et al., 2022). For example, Liu et al. (Liu and Han, 2014) took advantage of the fact that the absorption of the THz spectra of proteins, amino acids, and other substances in biscuits is much less than that of water. They conducted respective model analyses on the frequency domain, refractive index, and absorption coefficient of THz spectral data, and obtained the best effect of the absorption coefficient model. Long et al. (2017) used a THz spectrometer to obtain the spectral data of leaves in vitro in a point-by-point scanning manner, and observed the differences of different water contents under image reconstruction. The regression prediction model was established according to the mean values in the time and frequency domains and the measured water content of the THz image of the leaf. These previous studies prove the feasibility of using THz spectroscopy to detect crop nutrition.

Therefore, in view of the current shortcomings, the advantages of THz imaging technology were used in this research for the identification of chlorophyll, lutein, the nitrogen-to-sugar ratio, and other nutritionally abundant internal components and characteristic fingerprints of macromolecules. The detection accuracy of the nitrogen content of tomato leaves is expected to be improved by using the algorithm to detect crop nutrition.


 2. Materials and methods.

 2.1. Sample cultivation.

The quality of the test sample cultivation has a direct impact on the test results. Therefore, in the process of sample cultivation, the influence of environmental factors should be minimized and the accuracy of the sample data should be improved. The experiment was carried out in a Venlo-type greenhouse (32.2°N, 119.5°E) at the Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Jiangsu University. The environmental temperature of the greenhouse was maintained at 10.7-29.4°C, and the relative humidity was 37.3%-87.9%. The test samples were 906 red tomatoes (Shanghai Changchong Tomato Seed Industry Co., Ltd.). Tomato seeds with large, plump grains and similar shapes were selected, and the selected seeds were placed in lightly salted water to screen out diseased seeds and sclerotia. Additionally, a 0.3 m × 0.6 m black plastic plug tray was selected as the seedling-raising device. The seedling base was composed of vermiculite, perlite, and peat at a ratio of 1:3:1. The screened seeds were evenly sown in the plastic plug tray. After the seedlings had three true leaves, they were transplanted into a plastic round pot with a radius of 10.5 cm and a height of 29 cm. To achieve the purpose of soilless cultivation, perlite with strong root fixation was selected as the matrix. Each sample was repeated 30 times. During the experiment, the cultured tomato plants were watered with the Japanese Yamazaki nutrient solution formula (Mao et al., 2022). Figure 1 displays the sample cultivation and transplanting site.

 

Figure 1 | The sample cultivation. (A) Before smoothing (B) After smoothing. 




 2.2. Equipment.

The TS7400 THz–TDS measurement system produced by Japan’s ADVAN Corporation was used to collect the THz information of the samples. The system is specially customized for the detection of agricultural biological information. It has an attenuated total reflection (ATR) module and can perceive high water contents for the detection of biological tissue and living samples. Figure 2 shows the structure of the TS7400 THz-TDS measurement system.

 

Figure 2 | The structure and working principle of the Advantest-TS7400 THz-TDS measurement system. 



1. Operating/analyzing computers; 2. Ethernet; 3. Optical fiber; 4. Analysis unit; 5. Measurement unit; 6. THz transmitter; 7. THz detector; 8. Sample stage; 9. Cryostat transfer module; 10. Removable stand.

The working principle of the TS7400 THz-TDS measurement system is as follows. The THz measurement unit, the THz transmitter, and the THz detector are connected by optical fiber without adjusting the external optical path. The THz transmitter emits laser pulses that are divided into two mutually perpendicular beams under the action of the beam splitter. One laser beam is a stronger pump light, and the other is a weaker probe light. The pump light is incident on the emitting crystal to generate a THz pulse that passes through the sample stage through the mirror. It is then transmitted to the THz detector through the detection crystal collinear with the probe light that has undergone multiple reflections. The value is transmitted to the control computer. After the control computer receives the signal, the analysis unit can directly calculate parameters such as the refractive index, absorption coefficient, and dielectric constant of the sample, and the time-domain THz spectrum and distribution information of the sample can be obtained. Compared with the traditional THz device, this device not only has higher accuracy, but the size of the detectable sample is also expanded from a maximum of 3 cm² to 225 cm², which can better meet the measurement needs of crop samples.


 2.3. Sample data collection and processing.

 2.3.1. Sample data collection.

Samples were collected from the tomato plants after 65 days of nitrogen stress treatment. During leaf collection, the healthy 7-leaf pinnate compound leaves of the tomato that best reflect the growth state were selected and cut off. They were immediately placed in a sealed bag to maintain freshness, which was placed in a portable refrigerated incubator (Ni et al., 2021) to prevent the external environment from affecting it. Twenty leaf samples were selected for each nitrogen stress gradient, and a total of 80 samples were collected from four gradients. The samples were then placed in the THz-TDS measurement system for sample scanning to obtain the spectral information. Before the experiment, a dehumidifier was turned on, and the relative humidity in the sample detection box was reduced to below 5% to eliminate the interference of water vapor on the THz spectrum. Ten sampling points were scanned for each sample to obtain the spectral information, and the average value was taken as the data collected for the sample.

The nitrogen content of the collected test samples was determined by the Nessler reagent colorimetric method, and the colorimetry was performed with a spectrophotometer at 420 nm. The actual measurement value of the nitrogen content of the sample was calculated by drawing the standard curve of the nitrogen content concentration and the photometric values, as presented in Figure 3.

 

Figure 3 | The standard curve of the nitrogen content. 




 2.3.2. Data smoothing.

The Savitzky-Golay (S-G) smoothing algorithm is a commonly used algorithm in data preprocessing due to its simple, fast, and easy-to-use process. The principle is to first take a window with an odd number of points in width, and to use the least-squares method for fitting via the translation of the window. The original value is then replaced with the fitted value of the midpoint of the window to achieve the smoothing of the data (Zhao et al., 2018). In this study, the S-G smoothing algorithm was used to preprocess the data, and the window width was 7 points/time. Taking the power spectrum data as an example, the comparison of the effect before and after the smoothing of the THz power spectrum is shown in Figure 4. The results demonstrate that the algorithm can effectively reduce the interference signal and improve the modeling efficiency and model accuracy.

 

Figure 4 | The comparison of the THz power spectrum before and after smoothing. (A) Before smoothing, (B) After smoothing. 




 2.3.3. Data set partitioning.

The division of the sample set is the key to the applicability of the model. If the selected calibration set has good representativeness, the predictive ability of the model can be enhanced.

The random sampling (RS) algorithm is a simple method of randomly extracting samples regularly or irregularly from the entire sample set. A portion of the samples can be randomly selected as the prediction set until the sampling is full, and the remaining portion is used as the calibration set. The Kennard-Stone (KS) method was jointly proposed by Kennard and Stone (He et al., 2018), and its sample screening process of the calibration set is as follows. By calculating the Euclidean distance between two samples, the two samples with the largest distance enter the calibration set. The distance between the two selected samples is selected, the shortest distance among them is selected, and the sample corresponding to the longest distance among these shortest distances is entered into the calibration set. This method can ensure that the calibration set samples are evenly distributed according to the spatial distance, and the Euclidean distance between the two vectors is calculated as follows:

 

where dx (p,q) is the Euclidean distance of the spectral reflectance between samples p and q, is the reflectance of sample p at the jth wavelength point, xq (j) is the reflectance of q at the jth wavelength the reflectivity of each wavelength point, and J is the number of wavelength points.

 Table 1 reports the results of the power spectrum and absorbance after sample division by the RS and KS algorithms.

 Table 1 | The results of sample division by the RS and KS algorithms. 



The data in the calibration set obtained by sample division by the KS algorithm had a higher determination coefficient and a lower root-mean-square error (RMSE) than the data obtained by the RS algorithm. The subsequent data analysis and processing were therefore carried out on the basis of the division of the sample data set by the KS algorithm.



 2.4. Model construction method.

 2.4.1. Uninformative variable elimination.

Uninformative variable elimination (UVE) (Jiang et al., 2019) can filter out spectral variables that contribute less to the modeling, which allows for the selection of representative spectral variables. The filtered variables are called uninformative variables, and by filtering them out, the complexity of the model and the number of variables required for subsequent modeling can be reduced. The UVE algorithm is based on the partial least-squares (PLS) algorithm. During variable screening, artificial noise variables equal to the original variables are added to the PLS model. The variables are randomly numbered, and one is left by crossover. This method is used to obtain regression coefficients of variables including artificial noise. In the analysis, the random change generated by artificial noise is used as a reference, and the reliability of each variable is measured by the threshold and the stability value. When the absolute value of the stability is less than the threshold, the variables in this part are regarded as non-informative variables. The stability value is defined as follows:

 

where i is the sample variable number, Si is the stability value of the variable numbered i, bi  is the regression coefficient of the variable numbered i, std(bi ) is the regression coefficient of bi , mean(bi ) is the mean value of bi , and m is the total number of variables.

The steps of using the UVE algorithm to filter the feature frequencies are as follows.

 	 (1) A λ×µ noise matrix is artificially generated, the spectral matrix is set as X, and the spectral matrix and noise matrix are spliced into a new matrix P of λ×2µ. 

	 (2) Using the cross leave-one-out method, a regression analysis is performed on the matrix P, and the regression coefficient matrix L (λ×2µ) is obtained. 

	 (3) The mean value mean(bi ) and the regression coefficient std(bi ) are respectively calculated, and the stability value matrix corresponding to each variable is obtained by Eq. (4). 

	 (4) In the range of the noise variable interval [µ+1, 2µ], the maximum and minimum values of the stability value matrix are obtained, and the characteristic variable is selected in the range of [1, µ]. 




 2.4.2. Stability competition adaptive reweighting sampling algorithm.

Stability competitive adaptive reweighted sampling (SCARS) (Liu et al., 2014) is a common algorithm used to screen the optimal feature combination. During calculation, the measured THz spectral data can be set as a matrix XN×P . The number of samples is N, P is the number of variables, and the specific operation steps of SCARS are as follows.

(1) The stability value cj  of each frequency-band variable is calculated as follows:

 

where cj  is the stability value of the jth variable during Monte Carlo (M) sampling, bj  is the value of the jth variable during M sampling, and s(bj) is the standard deviation of the jth variable during M sampling.

(2) The adaptive reweighted sampling method is combined with forced frequency band selection to screen groups with large stability values. They are combined into a subset of variables, and the ratio of variables to the whole frequency band is determined by the exponential decay function (EDF).

(3) These two steps are repeated in turn to obtain variable subset K. A PLS regression (PLSR) model is obtained, and the obtained variable subset is then evaluated through tenfold cross-validation. The K value is the number of operations in the SCARS algorithm, and the RMSE of cross-validation (RMSECV) value can be used as the judgment basis for whether the variable subset is a feature variable subset. The feature variable subset can be obtained at the smallest value of the RMSECV.


 2.4.3. Interval partial least-squares algorithm.

Interval PLS (iPLS) (De Lima et al., 2012) is a commonly used interval filtering algorithm for characteristic variables that was proposed by Norgaard at the beginning of the 20th century. Based on the PLSR model, the algorithm divides the overall intervals into equal intervals to be filtered. The PLSR model of each equally spaced interval n is respectively established. By comparing the model accuracy of each subinterval, the subinterval with the best accuracy is selected as the modeling candidate frequency interval.


 2.4.4. Radial basis function neural network.

Radial basis function neural networks (RBFNNs) are developed based on the multi-dimensional spatial interpolation of radial basis functions. They are feed-forward neural networks with good performance and can be understood as function approximation or curve fitting in high-dimensional space. The proposal of the RBFNN provided new ideas and methods for the application and research of neural networks in various fields. In practical applications, this neural network has the advantages of a fast learning speed, no local minimum problem, and the ability to establish a corresponding network topology according to different types of data (Gao et al., 2014).

The RBFNN is mainly composed of an input layer, a hidden layer, and an output layer. When using this neural network to establish the model, P can be set as the sample input matrix of the correction set, and T is the sample output matrix of the correction set. The calculation formula of hidden-layer neurons can be obtained as follows:

 

where Q is the number of calibration set samples, and C is the center of the radial basis function. The connection weight between the hidden layer and input layer is set as W. Moreover, b2  is the threshold value of N output layer neurons, and the following formula can be obtained.

 

By solving Eq. (5), the threshold value b2  and the connection weight value W between the output layer and the hidden layer can be obtained as follows.

 


 2.4.5. Backpropagation neural network.

Backpropagation neural networks (BPNNs) (Li et al., 2020; Liu et al., 2021) can achieve the goal of not solving the relevant mapping equation in advance by learning the relationship between the input and output. Because of its high fault tolerance and parallel processing ability, the BPNN has a wide range of applications in target classification, recognition, and optimization.

The BPNN algorithm is mainly composed of forward calculation and error-reverse calculation. The topology includes an input layer, a hidden layer, and an output layer. During forward calculation, when the signal received by the output layer is an unexpected output value, a reverse propagation error signal will be generated, and the propagation path is the initial connection path. Compared with the RBFNN, the BPNN has the following characteristics.

 	 (1) It has more hidden layers and hidden-layer nodes, and it can approximate any nonlinear mapping relationship. 

	 (2) BPNNs are global approximation algorithms, which improves their generalization ability at the cost of reducing model accuracy. 

	 (3) The ownership value must be updated during each sample learning. While this increases the robustness of the reverse neural network model, the update of the weight value slows down the convergence speed and the model easily falls into the local minimum. 






 3. Results and discussion.

To build the model for the prediction of the nitrogen content of tomato, all samples were divided into calibration and prediction sets. There were 80 samples to be tested, of which 60 were included in the calibration set and 20 were included in the prediction set. The RMSE was used to evaluate the fitting accuracy of the calibration set model, and the coefficient of determination (R2) was used to examine the degree of correlation. Their calculation formulas are as follows:





where y is the measured value of the ith sample in the calibration set, ŷ is the predicted value of the ith sample in the calibration set, and ȳ is the average value of the measured values of all samples in the calibration set.

 3.1. Extraction of THz spectral information from tomato leaves.

In the frequency-domain spectrum, with the change of the band, the samples have different absorptions of THz waves at different frequencies, as shown in Figure 5. The figure presents the THz frequency-domain spectral curves of four different nitrogen-stressed tomato leaf samples, from which it is evident that the trends of various spectral curves were roughly similar.

 

Figure 5 | The THz frequency-domain spectra of leaf samples with different nitrogen contents. 



By preprocessing the raw THz spectral data, the vast majority of invalid information and noise signals in the data were removed. It can also be seen from Figure 5 that there were obvious gradient differences in the THz power spectrum curves of the samples under different nitrogen stress gradients. In the power spectrum graph, the value of the power spectrum shows a trend of first increasing and then decreasing, and it reached a peak value of around 0.7 THz. At the peak value and its surrounding frequencies, the nitrogen stress gradient curves presented obvious stratification. However, when the frequency was too small or too large, the THz power spectrum of each stress gradient was too dense, and the discrimination was not obvious.

 3.1.1. Processing results of the uninformative variable removal algorithm.

 Figure 6 shows the results of the uninformative variable screening.

 

Figure 6 | The UVE feature frequency point screening results. 



In Figure 6, the left side is the THz spectrum variable, the right side is the artificially generated noise variable, and the abscissa and the ordinate are respectively the serial number and stability index corresponding to the variable. The larger the absolute value of the stability index corresponding to the variable, the greater the correlation with the model. The dotted line in the figure is the screening threshold set based on artificial noise. Based on this threshold, a total of 17 characteristic frequency bands were screened, as shown in Figures 7, 8.

 

Figure 7 | The characteristic bands selected based on the UVE algorithm. 



 

Figure 8 | THz images of leaves with different nitrogen levels in the characteristic frequency bands screened by the UVE algorithm. 




 3.1.2. Processing results for the stability competition adaptive reweighting sampling algorithm.

In this study, when using the SCARS algorithm for filtering, the number of cycle sampling instances was 50 and THz power spectrum data were taken as the object. After 50 rounds of sampling had been reached, each index value had reached a stable state. The processing result of the SCARS algorithm is shown in Figure 9.

 

Figure 9 | The running process of the SCARS algorithm. 



It can be seen from Figure 9 that with the increase of the number of iterations of the SCARS algorithm, the number of frequency bands retained generally decreased. However, the speed of reduction slowed down, indicating that the SCARS algorithm used coarse screening in the early stages of screening the characteristic frequency bands and fine screening in the later stages. It can be seen that with the gradual increase of the number of runs, the RMSECV value presented a decreasing trend. The RMSECV value was the minimum when the number of runs reached 43, which indicates that the frequency band with less correlation with the sample nitrogen content had been removed before. After 43 runs, the value had rebounded, and, combined with the change in the regression coefficient path, this indicates that the characteristic frequency bands related to the sample nitrogen content may have been removed by mistake. When the RMSECV value was the lowest, the subset of selected characteristic frequency bands was the best. Five characteristic frequencies were obtained, namely 0.574, 0.624, 0.642, 0.704, and 0.817 THz, and they were used as alternative characteristic frequency bands. The selected THz spectral bands are shown in Figures 10, 11.

 

Figure 10 | The characteristic bands selected based on the SCARS algorithm. 



 

Figure 11 | THz images of leaves with different nitrogen levels in the characteristic frequency bands screened by the SCARS algorithm. 




 3.1.3. Processing results for the interval partial least squares algorithm.

When using the iPLS algorithm to filter the optimal frequency band interval, the number of subintervals to be divided must first be determined. Too many or too few subintervals will affect the subsequent selection of the optimal frequency band interval. In this study, the pretreated THz spectral intervals were divided into 10-45 equidistant intervals. As shown in Figure 12, when the RMSECV value was the minimum, the overall THz spectral interval was divided into 22 equidistant subintervals.

 

Figure 12 | The results of the optimal number of isometric interval partitions. 



According to the number of subintervals shown in Figure 12, the THz spectral interval in the range of 0-1.4 THz was divided into 22 equal parts, and the PLS model index values in each subinterval were calculated. Table 2 reports the THz spectral frequency division range of each subinterval and the corresponding RMSECV value. Figures 13, 14 show the operation results of the iPLS algorithm.

 Table 2 | The index values of each subinterval model. 



 

Figure 13 | The results of running the iPLS algorithm. 



 

Figure 14 | THz images of leaves with different nitrogen levels in the characteristic frequency bands screened by the iPLS algorithm. 



It can be seen from Figure 13 that the index values of the PLS model established in each subinterval presented a trend of first decreasing and then increasing, and were closely related to the power spectrum curves of each stress gradient. When the power spectrum curve density was large, the corresponding modeling effect was poor; on the contrary, the modeling effect was better. Finally, the subinterval with the interval number of 12 was selected as the characteristic frequency subinterval, and there were 31 characteristic frequency points in total.



 3.2. Establishment and analysis of the model.

 3.2.1. Results for the radial basis function neural network.

An RBFNN with strict logic was established by using the function package in MATLAB software. The expansion speed is the key to determining the quality of the RBFNN, and the setting of this parameter depends on the target object. Figure 15 exhibits the change of the RMSE of correction (RMSEC) of the RBFNN, iPLS, UVE, and SCARS models with an expansion speed of 0.1-1 and an interval of 0.1.

 

Figure 15 | The influence of the diffusion velocity on the RBFNN model. 



It can be seen from Figure 15 that when the diffusion speed was 0.5 and 0.6, the RBFNN model had the best RMSEC value. The established neural network model was tested to verify the prediction set, and the prediction results are reported in Table 3.

 Table 3 | The prediction results of the RBFNN model based on the THz spectrum. 



According to the results reported in Table 3, when the RBFNN algorithm was combined with the characteristic bands screened by SCARS, the detection model had the best effect. The RMSEC and the RMSE of prediction (RMSEP) were respectively 0.1322% and 0.1855%, and the determination coefficients of the correction set (Rc2) and prediction set (Rp2) were respectively 0.8714 and 0.8463. The scatter plot of the optimal results of the model based on the RBFNN algorithm is presented in Figure 16.

 

Figure 16 | The scatter plot of the prediction results of the RBFNN model based on THz spectroscopy. 




 3.2.2. Results for the backpropagation neural network.

The sample data were trained using the scaled conjugate gradient function in the BPNN tool in MATLAB software. The specific training process included using the newff function to construct the basic structure of the BPNN. Moreover, the architecture based on the BPNN trained the model through the Trainlm function, and the Sim function output model was used to train the process. Taking the combination of characteristic bands screened by the iPLS algorithm as an example, the training process of its BPNN is shown in Figure 17.

 

Figure 17 | The training process of the BPNN model. 



It can be seen from Figure 17 that the number of network iterations epochs was 22. Moreover, the learning rate was set to 0.01, and the number of hidden-layer neurons was set to 6. The sample data filtered by other algorithms were input into the network after normalization, and the training results are reported in Table 4. By comparing the results in the table, it is evident that the modeling effect obtained by combining the SCARS filtering algorithm was the best.

 Table 4 | The prediction results of the BPNN model based on THz spectroscopy. 



According to the results reported in Table 4, when the BPNN algorithm was combined with the characteristic bands screened by SCARS, the RMSE values of the correction and prediction sets were respectively 0.1721% and 0.1843%, and the R2 values of the correction and prediction sets were respectively 0.8447 and 0.8375. The scatter plot of the optimal results of the BPNN model is shown in Figure 18.

 

Figure 18 | The scatter plot of the prediction results of the BPNN model based on THz spectroscopy. 



The analysis of the nitrogen detection model based on the THz spectrum shows that the models built by the two algorithms had good prediction effects. In terms of accuracy, the RBFNN model was slightly better than the BPNN model.




 4. Conclusion.

In this study, a method for the detection of the nitrogen content of tomato based on THz spectroscopy was investigated. The basic contents of the method include data preprocessing, sample set division, characteristic frequency band screening, and model establishment. The research conclusions are as follows.

 	 (1) In combination with the S-G smoothing algorithm, the original THz spectral data were denoised to remove invalid and interference information. The advantages and disadvantages of the KS and RS sample set partitioning algorithms were compared and analyzed. By analyzing the results of sample partitioning, it was concluded that the sample set divided by the KS algorithm could effectively cover the entire sample range, and the partitioning effect was the best. 

	 (2) After noise reduction, the THz spectral data still relied on more low-correlation information. To improve the accuracy and efficiency of the model, the candidate characteristic bands of the THz spectrum were screened by using the UVE, SCARS, and iPLS algorithms, respectively. 

	 (3) Based on the characteristic frequency bands screened by the iPLS, UVE, and SCARS algorithms, the RBFNN and BPNN algorithms were used to establish the models for the detection of the nitrogen content of tomatoes. The RMSEC and RMSEP values of the BPNN model were respectively 0.1722% and 0.1843%, and the determination Rc 2 and Rp 2 values were respectively 0.8447 and 0.8375. The RMSEC and RMSEP values of the RBFNN were respectively 0.1322% and 0.1855%, and its Rc 2 and Rp 2 values were respectively 0.8714 and 0.8463. Thus, the accuracy of the model established by the RBFNN algorithm was slightly higher. 
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Since the current clamp-type and push-out-type seedling picking method brought damage to seedlings, this study aimed to proposed an airflow ejection-wrapped clamping type seedling picking method, which used airflow to eject out seedling and the seedlings were wrapped clamped to reduce the damage of seedlings during seedling picking process. The parameter model was established through theoretical design, then the parameters were optimized through coupling simulation analysis, and the validity of these parameters was verified through experiments. We found that the diameter of the airflow nozzle was selected as 3.5 mm to match with the drainage outlet of the plug tray, and the airflow pressure which could eject out seedlings was calculated as 0.146 Mpa~0.315 Mpa on the basis of gas jet dynamic. The fluid-solid coupling simulation of airflow ejection in Comsol proposed that the seedlings could be ejected out under the airflow pressure was equal to or greater than 0.4 Mpa, and the airflow should be maintained for about 0.3 s to ensure the posture of the seedlings ejected out for better seedling clamping. The further fluid-discrete body simulation of airflow ejection by using Fluent-Edem coupling method indicated that the seedling was damaged under airflow pressure of 0.5 MPa, so the airflow pressure should be set as 0.4 MPa during seedling ejection process. Besides, a wrapped clamping type effector which clamped the seedlings from all sides in the form of flexible package was also designed to match with the airflow ejection method, and the RecurDyn-Edem coupling simulation showed that the end-effector could tightly clamp the seedling without damage when the angle between the clamping slices and the vertical direction was 8.5°. Finally, the airflow ejection-wrapped clamping type seedling picking device was manufactured, and the verification tests verified the simulation results. This research can provide some references for the automatic seedling picking technology.
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Introduction

China has the highest vegetable production and consumption in the world now, with the vegetable planting area of 20 million hectares and an annual output of more than 750 million tons (China National Bureau of Statistics, 2021). As a key link in the development of vegetable industry, seedling cultivation and transplanting can effectively improve the yield and quality of vegetables, which will bring great comprehensive benefits to the vegetable industry (Ma et al., 2020a). With the aging of the population and the increase of labor cost, many scholars designed semi-automatic transplanters to transplant vegetables (Kumar and Raheman, 2011), but these semi-automatic transplanters still require a lot of manual work to realize seedling picking and dropping, which will lead to low work efficiency during transplanting process (Zhang et al., 2011), thus it is necessary to develop automatic transplanters with high-speed to replace the manual work during transplanting.

As an important part to realize automatic transplanting, the pick-up device should ensure the success rate of seedling picking, with all the parts operating fast and accurately (Jin et al., 2018). The automatic pick-up device is actually composed of the end-effectors and other executive parts, as the core of the automatic pick-up device, the end-effectors must ensure the seedlings can be picked from the plug tray and dropped into the transplanting cup successfully (Ye et al., 2019). Many scholars had paid a lot of effort in exploring high-efficiency automatic seedling picking methods, which could realize automatic seedling picking instead of manual work (Han et al., 2019b). Different from the previous methods used by the semi-automatic transplanters, current automatic pick-up devices mainly adopted clamp-type seedling picking method or push-out-type seedling picking method (Wen et al., 2021).

Because of the high similarity with the manual seedling picking method, the research on the clamp-type seedling picking method was earlier, which had become a more widely used method to realize automatic seedling picking. The clamp-type seedling picking method always used the specially designed needles to insert into the seedling pot, and overcame the adhesion between the seedling pot and the plug tray in order to pick the seedlings out from the plug tray successfully (Han et al., 2015). As early as 1990, Ting designed an effector which used sliding needle to insert the seedling pot obliquely for seedling picking (Ting et al., 1990). Chio proposed an end-effector which was mainly composed of air cylinders and picking fingers with an optimal success rate of 97% (Choi et al., 2002). In order to adapt to the plug seedlings cultivated in China, Yu developed a rotary-type end-effector with two pins to pick the seedlings along the predetermined track (Yu et al., 2015), Ma proposed a pneumatic end-effector with four pins to insert and clamp the seedlings (Ma et al., 2020b). However, with the inserting of the picking pins into the seedling pot, the clamp-type seedling picking method might cause certain damage to the root system and seedling pot, and this kind of damage happened from the inside, which reduced the success rate of seedling picking. Once the plug seedlings became overgrown or the root system was weak, the root system could not wrap the substrate well, thus the damage was more serious (Mao et al., 2019). Instead of inserting into the seedling pot, Tong designed a spade end-effector with four shovel-type pins which could insert and clamp the substrate around the seedling pot and reduce the loss of substrate to some extent (Tong et al., 2019). However, the damage still existed because the pins should also overcome the adhesion between seedling pot and the plug tray during seedling picking process.

Compared with the clamp-type seedling picking method, the push-out-type seedling picking method could reduce the damage of the seedling pots in a certain extent. As a company widely used this method on seedling picking, Ferrari in Italy created a FUTURA automatic transplanter by using steel needle to push out the plug seedling (Ji et al., 2020), but this transplanter must use the special hard foam trays to cultivate the seedlings. In order to find the relationship between the steel needle and the seedling pot, Gao simulated and analyzed the working process of the steel needle pushing out the plug seedling by using EDEM software (Gao et al., 2017). However, the push-out-type seedling picking method also had high requirements for mechanical properties of plug seedlings, the seedling pots could be easily penetrated by the steel needle if the substrate was loosened. Besides, the drainage outlet size of some plastic plug trays in China was not uniform, so the steel needle might destroy the plug tray during the seedling push-out process.

In general, these two automatic seedling picking methods both used pure mechanical way to overcome the adhesion between the seedling pot and plug tray, which inevitably brought disturbance to the root system and the structure of the plug seedlings, and eventually led to the damage of the seedling pot during the picking process, thus affected the success rate of seedling picking. In addition, this phenomenon became more serious with the increasing of seedling picking frequency. In order to find a way to reduce the structural disturbance and the damage of the seedling pot, this paper proposed a new method which used airflow to eject the seedlings out from the plug tray. Since the seedling pot was in flexible contact with the airflow, the damage probability of seedlings could be reduced during the seedling picking process. Besides, the air nozzle device and the end-effector matched with the airflow ejection method were also designed according to the requirement, both the airflow and the end-effector parameters were optimized through simulations and experiments.



Materials and methods


Feasibility analysis of airflow ejection seedling picking method

The previous research proposed that clamp-type and push-out-type seedling picking methods had high requirements for plug seedlings, the seedlings were damaged in the process of seedling picking if the strength of seedling pot was not enough, especially the overgrown plug seedlings (Figure 1B). As shown in Figure 1A, the overgrown seedling pots were seriously damaged when directly pulled out by our hand and a large amount of substrate was left in the plug tray, since the root system was poor and the substrate was loosened in overgrown plug seedling.




Figure 1 | The extraction of the overgrown cucumber seedlings. (A) Seedlings seriously damaged after pulling out (B) Overgrown cucumber seedlings, these seedlings encountered continuous overcast and rainy days during cultivation, so the stem of these seedlings was long and thin, with a height of more than 200 mm. The roots of these seedlings were short and weak which could not effectively wind and wrap the substrate, so the substrate was loose and easily damaged, which led to a poor mechanical property of the seedling pots, and these seedlings could not be picked out by the conventional seedling picking methods (C) Seedlings remain complete after airflow ejection.



As shown in Figure 1B, a simple air gun was selected to use airflow to eject the overgrown seedlings through the drainage outlet in plug tray. As a preliminary attempt, the test result shown in Figure 1C was quite acceptable, the seedling was relatively complete after airflow ejection, even the overgrown seedlings with poor root systems and mechanical properties.

The internal structure of seedling pot was disturbed and the substrate was directly damaged when the clamping and push-out needles were in hard contact with seedling pot. This phenomenon was more serious if the root system of seedlings was weak, since the roots could not effectively wind and wrap the substrate to form a seedling pot with good rigidity. Besides, this type of seedling pot could not be picked out during the upward pulling process since there was a certain adhesive force between the substrate and the plug tray. Compared with the inevitable damage of needles to seedling pot, the gas, as a compressible flexible flow medium, could flexibly break through the adhesion between the seedling pot and the tray to eject the seedlings out from the tray, even the overgrown plug seedlings with poor roots and loose substrate, which reduced the disturbance to the internal structure of the seedling pot. The flow field distribution was relatively uniform when the seedlings were ejected by airflow, so the airflow pressure acted on the seedling pot was also relatively uniform, which could ensure the integrity of the seedling pot during seedling picking process. This seedling picking method had strong adaptability, which was easy to operate, and did not require high strength of the plug seedlings, so it was feasible to use airflow to eject the plug seedlings out of the plug tray.



Establishment of airflow nozzle

The airflow nozzle device was a key component to realize airflow ejection, so the operation form of airflow and the diameter of eject hole were key factors to determine whether the seedlings could be ejected out from the plug tray.


Determination of the diameter of eject hole

According to the investigation of most plastic trays on the market, the drainage outlets of most plastic trays were not in the center due to the problem of injection molding process. Since the installation position and size of the airflow nozzle were determined based on the size the drainage outlet, the plug seedlings could not be ejected by the airflow nozzle when the drainage outlet was not in the standard position, thus it was necessary to select a reasonable diameter of the airflow nozzle.

The 72-hole plastic plug tray (made by Qihang Co., Jiangsu, China) widely used in China was randomly selected for measurement, with the results showed that the error of drainage outlet’s diameter was small, and the diameter was about 7 mm. Besides, the length of m marked in Figure 2 was also measured by using simple random sampling method, and the diameter of airflow nozzle was calculated as:




Figure 2 | The determination of the diameter of airflow nozzle. (A) The standard position of the drainage outlet (B) The practical position of the eject hole (C) The possible positions of the drainage outlet (D) Inner diameter of the plug hole’s bottom.



 

Where Lw is the width of the plug hole’s bottom, mm; D is the diameter of the standard drainage outlet, mm; D0 is the diameter of the eject hole, mm; mi is the distance between the center of the standard and possible drainage outlets of the i-th tray hole, mm; max() is the maximum value function.

The measurement results showed that the maximum value of m was 1.73 mm, so the theoretically diameter D0 of airflow nozzle should be 3.54 mm according to the calculation result of equation 1, and the diameter of airflow nozzle was finally determined as 3.5 mm according to the standard of the airflow nozzle.



Determination of the operation form of airflow

Since the airflow ejection method used compressed air to eject the seedlings out of the tray, the air tightness between the airflow nozzle and the bottom of the tray was particularly important. The structure of airflow nozzle was shown in Figure 3A, in addition to the main components, a soft sucker was installed at the front of eject hole of airflow nozzle, and a retractable ejector rod with compressible spring was also installed in order to ensure the air tightness. By the way, the outer diameter of the soft sucker should be equivalent to the inner diameter of the plug hole’s bottom (marked in Figure 2D).




Figure 3 | Determination of the airflow nozzle device. (A) The structure of airflow nozzle (B) Design of the pneumatic ejector device.



Although the airflow nozzle needed to apply sufficient pressure to the bottom of the tray, this pressure should not exceed the ultimate pressure when the tray was about to be damaged. Therefore, we stuck the soft sucker to the bottom of the 25.4 mm cylindrical compression probe, then installed the probe on TA.XT plus texture analyzer (made by SMS Co., Godalming, Britain) to apply pressure to the bottom of the tray, so the ultimate pressure of the soft sucker to destroy the bottom of the tray was 36.15 N, so the pressure which the airflow nozzle applied to the bottom of the tray should be sufficient and should not exceed 36.15 N.

1. Soft sucker 2. Inner hole of airflow nozzle 3. Retractable ejector rod 4. Compressible spring 5. Mounting plate 6. Stop nut 7. Air inlet nozzle 8. Air tube

The pneumatic ejector device of airflow nozzle was shown in Figure 3B. In order to guarantee enough air tightness of the device, the cylinder should produce enough displacement to ensure that the soft sucker could attach to the bottom of plug tray, so the parameters marked in Figure 3 should meet the following equation:

 

Where h1 is the thickness of soft sucker after compression, mm; l is the distance between the upper surface of soft sucker and the bottom of plug tray, mm; y is the maximum stroke of ejecting cylinder, mm; ∆l is the maximum deformation of spring after being ejected, mm.

Besides, the pre-tightening force of the spring must be greater than the reaction force of the airflow on soft sucker when seedling ejection, as:

 

Where F is the pre-tightening force generated when the spring is compressed, N; k is the stiffness coefficient of spring, N/m; P is the downforce of airflow on soft sucker, Pa; Gd is the gravity of the device, N.

Based on the pressure required by the airflow to eject the plug seedlings calculated below and the stiffness coefficient of the selected spring (18 N/m), the spring compression to ensure the air tightness of the device was at least 10.8 mm according to equation 3. Therefore, the distance between the upper surface of soft sucker and the bottom of plug tray could be appropriately reduced less than 10.8 mm or a spring with a slightly larger stiffness coefficient could be selected to obtain sufficient pre-tightening force so as to ensure the air tightness of the device.




Feasibility analysis of airflow ejection seedling picking method

Since seedling picking was a process of overcoming the adhesion between the seedling pot and tray, the airflow pressure which acted on the bottom of seedling pot must be calculated accurately in order to ensure enough pressure to eject out seedlings.

As shown in Figure 4B, the airflow field of the airflow acting on the plug seedling was simplified according to the gas jet dynamics (Zhao and Jiang, 1998). Since ejecting out the plug seedlings required a certain pressure, but the pressure was not the higher, the better, so the pressure should be calculated as:




Figure 4 | Calculation of the airflow pressure (A) Analysis of airflow in airflow nozzle (B) Analysis of airflow jet structure.



 

Where FS is the force required to eject the seedling, N; G is the gravity of the seedling, N; FN is the adhesion between seedling pot and seedling, N; FB is the critical force for the destruction of seedling, N; P0 is the airflow pressure of airflow nozzle, MPa; S is the actual acting area of airflow jet, m2.

To ensure the stability and pressure demand of the system, 6 mm and 8 mm PVC air tubes were chose to connect the compressor and pneumatic components. Since the diameter of air tube was larger than the diameter of the airflow nozzle, it formed a shrink flow effect when the airflow passed through the nozzle (Han et al., 2004), and the airflow nozzle produced an effect as a throttle valve at this time (Figure 4A), so according to Bernoulli equation:

 

Where C is the flow resistance coefficient of airflow jet; P and P0 are the inlet and outlet pressure of nozzle respectively, Mpa; v and v0 are the inlet and outlet flow velocity of nozzle respectively, m/s; S0 is the surface area of airflow nozzle, m2; S1 is the surface area of the drainage outlet, m2; ρ is the density of airflow, kg/m3.

1. Airflow jet boundary layer (DEF) 2. Airflow transition surface (BO’E) 3. Airflow jet core area (AO’D) 4. The actual area of airflow jet acting on the bottom of seedling pot O. The pole of airflow jet

The airflow jet core area (AO’D) marked in Figure 4 was the main action area of airflow jet, and the airflow velocity in this area should be the same as v0 according to the gas jet dynamics, so we only needed to calculate the airflow pressure acted on the seedling. Besides, the actual area of the airflow jet acted on the bottom of seedling pot should be the red line marked 4 in Figure 4B since the tray had a certain thickness, so the actual acting area of airflow jet could be calculated as:

 

Where r is the radius of actual action area of airflow jet, mm; α is the turbulence coefficient of airflow.

Since the selected airflow nozzle was a cylindrical copper tube, so α was defined as 0.076. The number of 72-hole plastic plug tray and cucumber seedlings for measurement was 20 and 72 respectively, and all of them were selected by the random sampling method, so the average thickness of the tray was measured as 0.08 mm, and the average gravity of the seedling was measured as 0.21 N. Miao proposed that the maximum detaching force of the cucumber seedling which calculated in the 72-hole plug tray was 2.011 N (Miao et al., 2013), so FN could be taken as 2.011 N. Besides, Han proposed that the critical destructive force FB of the seedling pot was 3.08 ± 0.56 N through the puncture test. By substituting the above data into equation 4, 5 and 6 for calculation and analysis, the theoretically airflow jet pressure P0 for ejecting the seedling out from the tray was between 0.146 MPa and 0.315 MPa.

The airflow ejection of the seedling belonged to an instantaneous movement, and the overall action time of the airflow was extremely short. In order to ensure the stability of the seedling ejected out from the tray for a period of time so as to ensure the smooth clamping of the seedling, it was necessary to maintain the airflow for a short period of time after seedling ejection, so the time could be calculated as:

 

Where Q is the flow rate of airflow jet, m3/s; P1 is the difference between the inlet and outlet pressure, MPa; H is the height of single hole of plug tray, mm; t is the theoretically time of airflow jet, s.

The result showed that the total time required for airflow to eject the seedling was between 0.198 s and 0.291 s, so the maximum value was selected, and the airflow ejection time was approximately to 0.3 s in order to ensure the posture of the seedlings ejected out from the plug tray.

The airflow ejection of the seedling was analogous to the interaction between fluid and solid, while the distribution of flow field and the force acted on seedling pot were constantly changing during the process of seedling picking. Therefore, on the basis of previous calculation results, the dynamic grid module in Comsol software was selected to simulate and analyze the fluid-solid interaction of airflow ejection in order to preliminary optimize the airflow parameters. Since the damage of seedling pot was also an important factor in the process of airflow ejection, the discrete element model of seedling pot was established by Edem software, and the simulation method of Edem-Fluent fluid-discrete body interaction was established for further analysis of the effects of different airflow parameters on seedling pot particles. Finally, the prototype according to the parameters of airflow ejection seedling picking method was established, and the validation test was designed to determine the effectiveness of airflow parameters.



Feasibility analysis of airflow ejection seedling picking method

Since the airflow ejection seedling picking method could not match with the existing end-effectors, we considered to clamp the seedling pot from all sides in the form of flexible package, which could not only ensure the smooth ejecting out of seedling, but also avoid the disturbance of root system and the damage of seedling pot during seedling clamping process. The working principle of this end-effector could be described as shown in Figure 5.




Figure 5 | Working principle of the new end-effector (A) Seedling ejection by airflow (B) Seedling clamping (C) Seedling dropping.



Before the airflow ejected the seedling out, the clamping needles rotated outward, and the clamping slices opened to a certain distance; the airflow jet ejected the seedling out from the tray to the end-effector through the drainage outlet when the airflow nozzle got the signal, and the airflow jet kept for a period of time (Figure 5A); the clamping needles obtained the signal and rotate inward when the seedling was ejected to end-effector, and the clamping pieces closed for a certain distance to flexibly clamp the seedling (Figure 5B); finally, when the end-effector was drived to the seedling dropping position, the clamping needles rotated outward again, and the clamping pieces released the seedlings to the seedling divider (Figure 5C).

The preliminarily designed wrapped clamping type end-effector was shown in Figure 6A, which was mainly composed of four rotatable clamping needles, four flexible clamping slices and a pneumatic drive device, with a simple and reliable structure. As shown in Figure 6B, the wrapped clamping type end-effector was simplified for calculation, the distance between the mounting points of the rotary pair at the top of the two clamping needles could be expressed as:




Figure 6 | Calculation of the airflow pressure. (A) The new wrapped-type end-effector. (B) The structure diagram of end-effector.



 

Where L is the distance between the mounting points of the rotary pair at the top of the two clamping needles, mm; L2 and L3 are the tip distances when the clamping needles are opened and closed, respectively, mm; S is the length of single clamping needle, mm; α1 and α2 are the angle between the clamping needles and the vertical direction when the clamping needles are opened and closed, respectively, °.

1. Air cylinder 2. Mounting plate 3. Piston rod 4. Stop nut 5. Connector 6. Bracket 7. Fixture of clamping needle 8. Seedling pushing rod 9. Clamping needle 10. Dowel 11. Seedling pushing plate 12. Fixture of clamping slice 13. Clamping slice

Then the length of the seedling pushing rod could be expressed as:

 

Where L1 is the width of seedling pushing plate, mm; S1 and S2 are the distance between the needle tip and the sliding pair of the seedling pushing plate when the clamping needles are opened and closed, respectively, mm; H is the movement distance of the seedling pushing plate when the clamping needles are opened and closed, mm.

Taking 72-hole plastic plug tray parameters as an example, the upper a and lower b side length of the single hole of the tray was 40 mm and 20 mm respectively, the total height of the tray was 45 mm, and the included angle between the side of the tray and the vertical direction β was 22.5° (Ma et al., 2020a). In addition, the range of the height of the seedling in the suitable transplanting period should be 100 to 200 mm, and the biological yield point (maximum compression amount) of the seedling pot was 3.46 mm (Han et al., 2013). Therefore, the following constraints could be obtained:

 

Finally, combining equation 8, 9 and 10, it could be concluded that the key parameters of the wrapped clamping type end-effector were shown in Table 1.


Table 1 | Key parameters of the end-effector.



The optimized end-effector models were imported into the RecurDyn and Edem software respectively for RecurDyn-Edem coupling simulation in order to explore the interaction between the end-effector and the discrete element model of seedling pot in the process of seedling clamping, and finally the parameters of the end-effector were determined.




Results and discussion


Simulation analysis of airflow parameters


Fluid-solid interaction of airflow ejection

The fluid-solid interaction of airflow ejection by Comsol was shown in Supplementary Figure 1.

The seedling pot model was built by Solidworks, which was mainly composed of leaves, stem, seedling pot and plug tray (Supplementary Figure 1A), then imported into Comsol, and the parameters of seedling was defined in Table 2. Besides, in order to imitate the actual seedling picking state, the seedling was placed at 60° to the horizontal direction.


Table 2 | Model parameters definition of plug seedling.



The Physics-Controlled Mesh module was selected to grid the model, and the Moving Mesh module was used to accurately obtain the dynamic changes of seedling and airflow during the airflow ejection process. In addition, due to the transient characteristics of airflow ejection, Time Dependent method was used to divide the overall simulation process (0.3 s) into three transient calculation processes in order to improve the convergence of simulation: 0~0.1 s, because of the large calculation amount at the moment when the airflow just ejected, and the time step of this section was set as 0.001; 0.1~0.2s, the plug seedlings have been ejected out theoretically at the end of this time domain, and the time step was set as 0.01; 0.2~0.3 s, which belonged to the airflow holding phase, and the time step was also set as 0.01. After the settings were completed, the established simulation model was calculated, and the final effect of seeding ejecting under different airflow pressures was shown in Figure 7.




Figure 7 | Effect of seedling ejecting under different airflow pressures.



Since the maximum airflow pressure required for ejecting the seedling was about 0.315 MPa according to the calculation, considering the change and loss of airflow in the actual process, we preliminarily selected the airflow pressure of 0.3 MPa, 0.4 MPa and 0.5 MPa for the simulation test. The result showed that when the airflow pressure was 0.3 MPa, the airflow could overcome the adhesive force between the seedling pot and tray, but the seedling could not be ejected out and only moved up about 17 mm, since the airflow pressure was insufficient; however, the seedling could be ejected out when the airflow pressure increased to 0.4 MPa, since the ejection force of the airflow was large enough and the seedling could be ejected out of the tray about 2.5 mm; the seedling could also be ejected out of the tray when the airflow pressure continued to increase to 0.5 MPa, and the ejecting distance was more than 0.4 MPa, about 8 mm. The simulation showed that only when the airflow pressure was greater than or equal to 0.4 MPa, the seedling could be ejected out of the tray.

The distribution of flow field in the airflow ejection process was also important. Theoretically, the seedling kept moving upward in a straight line under the action of airflow if the flow field was evenly distributed and stable. For example, the variation distribution of the flow field when the airflow pressure was 0.4 MPa was shown in Figure 8. The result showed that in the early stage of airflow ejection, the instantaneous force of airflow acted on the plug seedlings was large, but the flow field was very uniform and showed a divergent trend around since the moving distance of the seedling was short, so the posture of the seedling was stable. However, when the seedling was close to being ejected out of the tray, the contact volume between the airflow and the outside area was further increased, so the flow field was more disordered and irregular at this time, which might lead to changes in the posture of seedling, and this phenomenon was more serious after the seedling was totally ejected out. Therefore, it was necessary to maintain the airflow for a period of time after the seedling was ejected out in order to ensure the stability of the flow field, so as to keep the posture of the seedling being ejected out.




Figure 8 | Distribution of flow field in different time periods when airflow pressure is 0.4 MPa.



The stress analysis of various components in seedling under different airflow pressures was shown in Figure 9. The Figure showed that under different airflow pressures conditions, the main force bearing parts of the seedling were concentrated at the bottom of the seedling pot, the stem and leaves, and the area where the stem connected with seedling pot, while the stress increased with the increase of airflow pressure. Since the airflow directly contacted the bottom of seedling pot through the drainage outlet, the bottom of the seedling pot first received a direct contact force. When the seedling was ejected out, the airflow upward contacted the stem and leaves, and the flow field distribution was relatively uniform, so the force on the stem and leaf was also relatively uniform. As the airflow contacted with the stem and leaves increased, the stem and leaves were deformed to a certain extent, and the deformation also became larger with the increase of the airflow pressure. Since the width of the leaves was wide, resulting in a large surface area, the airflow produced a certain degree of pulling force to the stem, and the deformation of the stem was greater than other parts under the dual action of the airflow and the leaves. At this time, the contact force between the stem and the seedling pot was also large.




Figure 9 | Stress analysis of seedling under different airflow pressures at 0.09s.



Therefore, it was important to ensure the straight growth of stem and the uniform distribution of leaves during seedling cultivation, to ensure the posture of seedling when airflow ejection.



Fluid-discrete body interaction of airflow ejection

On the basis of the Comsol simulation result, a discrete element model of seedling pot was established (Tong et al., 2019; Han et al, 2019a) to specifically analyze the effect of different air pressure on seedling pot particles. The Edem-Fluent fluid-discrete body interaction model was shown in Supplementary Figure 2, the total running time of the simulation was set as 0.3 s, and the time step was set as 0.01 s.

The effect of different airflow pressures on seedling pot particles was shown in Figure 10, consistent with the Comsol simulation results, only when the airflow pressure was 0.4 MPa or 0.5 MPa, the seedling could be ejected out of the tray. According to the statistics of the Edem post-processing module, the damage rate of bonding key in the discrete element model of seedling pot reached 43.61% and the particle loss rate reached 19.37% when the airflow pressure was 0.5 MPa.




Figure 10 | The results of fluid-discrete body interaction.



Although the seedlings could be ejected out, the seedling pot was seriously damaged at this time. The overall damage started from the particles at the bottom which first contacted with airflow, and the damage gradually spread upward with the increase of the airflow time. When the airflow pressure was 0.4 MPa, the particles at the bottom of seedling pot also had some deformation, but this deformation was very small which only occurred when the airflow started, and the deformation disappeared when seedling pot moved up to a certain distance, so the seedling pot could not be damaged under this pressure. Therefore, it was appropriate to choose an airflow pressure of 0.4 MPa, the seedling could be ejected out of the tray about 5 mm and maintain integrity, with a vertical posture into the effective clamping range of the wrapped clamping end-effector, to achieve perfect coordination with the end-effector.




Simulation analysis of wrapped-type end-effector

The schematic diagram of RecurDyn-Edem coupling simulation on wrapped-type end-effector was shown in Supplementary Figure 3.

The simulation results were shown in Figure 11, which proposed that the end-effector could effectively clamp the seedling pot at a certain clamping angle, with a better effect. As shown in Figure 11B, the clamping slice of the end-effector just contacted with the seedling pot particles, and the clamping slices only exerted a small force on seedling pot. When the clamping slices continued to close, the force of the clamping slices on seedling pot increased and the clamping effect was better. However, the force exerted by the clamping slices on seedling pot was also too large when the clamping slices closed too large, so the seedling pot was deformed, and a certain number of particles were lost (Figure 11C). If the clamping slices were completely closed, the seedling pot was completely damaged with the serious particle loss, and the number of bonding keys in the seedling pot model was reduced from 227969 to 104723 (Figure 11D). The change process of damage on the seedling pot under continuous compression was shown in Figure 11E. The simulation result showed that the end-effector could achieve optimal seedling clamping effect when the angle between the clamping slice and the vertical direction was 8.5°, and the clamping slice could clamp the seedling pot without deformation or damage, which was almost consistent with the previous calculation result.




Figure 11 | Simulation results of the wrapped-type end-effector. (A) Initial state (B) Standard clamping (C) Continue clamping (D) Excessive clamping (E) The process of seedling pot being clamped and destroyed.





Test verification of optimized parameters

As shown in Supplementary Figure 4, according to the design analysis and simulation results, a simple airflow ejection seedling picking device was produced which was mainly composed of an airflow nozzle, a wrapped clamping type end-effector and an air pressure system, and the i-speed high-speed camera (made by IX Cameras Co., Essex, Britain) was selected to monitor the movement of the seedling when the seedling ejected by the airflow under different airflow pressure. The 72-hole plastic plug trays with high quality were selected for seedling cultivation, and the cucumber plug seedlings (Jinyou 1) were cultivated for 23 days under the requirements. The airflow pressure was set as 0.3 MPa, 0.4 MPa and 0.5 MPa respectively during the test process, and 20 seedlings were selected for each airflow pressure. The solenoid valve was set to be closed 0.2 s later than the original 0.3 s airflow in order to ensure the posture of the seedlings ejected out from the tray. Besides, a 0.8 MPa air compressor was selected in the test to ensure sufficient airflow supply.

The airflow ejection result was shown in Figure 12, which showed that when the airflow pressure was 0.3 MPa, the seedling could not be ejected out of the tray, and the move up distance was only 12 mm; the seedling could be ejected out about 20 mm away from the upper surface of the tray when the airflow pressure increased to 0.4 MPa, and the posture of the seedling was also better in the process; however, when the airflow pressure continue to increase to 0.5 MPa, the seedling could also be ejected out of the plug, but the maximum distance between the seedling which was ejected out and the upper surface of the tray was more than 100 mm, with the relatively serious posture deformation of the seedling, and the seedling collided with the end-effector. Besides, the bottom of the seedling pot was damaged to a certain extent due to the excessive airflow pressure (Figure 12C), which was not conducive to subsequent seedling clamping. Therefore, the airflow pressure was set as 0.4 MPa, since the seedling could be completely ejected out of the tray about 20 mm away from the upper surface of the tray, without damage and with a good posture under this pressure.




Figure 12 | Simulation results of the wrapped-type end-effector. (A) Initial state (B) Seedling ejected out by airflow (C) Seedling dropping.



As shown in Figure 13, the test result was consistent with the simulation result. When the angle between the clamping slice and the vertical direction was 8.5° in the seedling clamping process, the seedling ejected out from the tray could be effectively clamped with a certain clamping force and without damage by the wrapped clamping end-effector. Thus, the new wrapped clamping end-effector could totally match with the airflow ejection method with a good effect of seedling clamping.




Figure 13 | The actual seedling clamping result of new end-effector.






Conclusions

Since the clamp-type seedling picking method and the push-out-type seedling picking method inevitably caused damage to the plug seedlings during the process of seedling picking, the airflow ejection-wrapped clamping type seedling picking method was proposed in order to ensure the integrity of the seedling and improve the success rate of seedling picking. The seedlings could be ejected out from the tray by the airflow and then be wrapped clamped by a new designed end-effector with low damage, which was contribute to subsequent seedling growth. Besides, both airflow ejection and end-effector parameters were optimized through simulations and experiments for a better work effect.

The operation form of airflow nozzle device was determined according to the parameters of the plug tray in order to ensure that the airflow nozzle could be tightly close to the bottom of the tray, and a soft sucker was installed in the top of airflow nozzle to guarantee the air tightness of the device. In order to eject the seedlings out from the plug tray successfully, the diameter of the airflow nozzle was calculated and finally selected as 3.5 mm, with the airflow pressure and airflow duration were calculated as 0.146 Mpa~0.315 Mpa and 0.3 s respectively according to the gas jet dynamics. Besides, the wrapped clamping type end-effector which clamped the seedlings from all sides in the form of flexible package was designed in detail according to the parameters of the plug seedlings, and the key parameters of the end-effector was optimized through mechanical design theory.

Since the airflow ejection of seedling was the interaction between the airflow and seedling, the fluid-solid coupling simulation of airflow ejection in Comsol was established to optimize the airflow parameters, and the result proposed that the seedlings could be ejected out from the tray when the airflow pressure was equal to or greater than 0.4 Mpa. Besides, if the airflow could be maintained for a period after the seedlings were ejected out from the tray, the posture of the seedlings ejected out from the tray was beneficial for seedling clamping. In order to investigate the damage of different airflow pressures on the seedling pot to further optimize the airflow parameters, a discrete element model of the seedling pot was built and the fluid-discrete body simulation of airflow ejection was established by Fluent-Edem coupling method. The results showed that the seedlings ejected out from the tray under airflow pressure of 0.4 MPa could maintain complete and the posture was good, but the seedling pot was damaged seriously when the airflow pressure was 0.5 MPa, which was not conducive to subsequent clamping. The discrete element model of the seedling pot was also used in the seedling clamping simulation by using RecurDyn-Edem coupling method, and the result showed that the seedling ejected out from the tray could be effectively clamped with a certain clamping force and without damage by the wrapped clamping end-effector when the angle between the clamping slices and the vertical direction was 8.5° in the seedling clamping process, so the new designed end-effector could match with the airflow ejection seedling picking method. The prototype of the airflow ejection-warped clamping type seedling picking device was manufactured, and the verification tests were also established, which verified the validity of theoretical calculation and simulation results. This study could provide certain guiding significance for the development of seeding picking technology.
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   Introduction

The purpose of this paper is to effectively and accurately identify weed species in crop fields in complex environments. There are many kinds of weeds in the detection area, which are densely distributed.


 Methods

The paper proposes the use of local variance pre-processing method for background segmentation and data enhancement, which effectively removes the complex background and redundant information from the data, and prevents the experiment from overfitting, which can improve the accuracy rate significantly. Then, based on the optimization improvement of DenseNet network, Efficient Channel Attention (ECA) mechanism is introduced after the convolutional layer to increase the weight of important features, strengthen the weed features and suppress the background features.


 Results

Using the processed images to train the model, the accuracy rate reaches 97.98%, which is a great improvement, and the comprehensive performance is higher than that of DenseNet, VGGNet-16, VGGNet-19, ResNet-50, DANet, DNANet, and U-Net models.


 Discussion

The experimental data show that the model and method we designed are well suited to solve the problem of accurate identification of crop and weed species in complex environments, laying a solid technical foundation for the development of intelligent weeding robots.




 Keywords: weed recognition, DenseNet, attention mechanism, image preprocessing, local variance 

  1. Introduction.

With the development of modern agricultural technology, China’s grain production has been increasing year by year, but there are still some problems that cannot be ignored. Among them, weeds are one of the main hazards that affect crop yield and quality (Li et al., 2013; Li et al., 2013). Weeds not only compete with crop seedlings for fertilizer, light, water, and growing space, causing crop failure, but also contribute to the occurrence and spread of pests and diseases that threaten crop survival (Nardecchia et al., 2021). At present, the main weeding method is manual operation, and farmers often use large-area random spraying of herbicides in the weeding process, which can cause great environmental pollution and chemical residues and also produce great harm to people’s health. Moreover, large-scale weeding operations are not targeted, weeding efficiency is often not high, and repeated weeding is required (Patches et al., 2017; Li, 2018; Duan et al., 2019). With the introduction of smart agriculture, the implementation of precision spraying can effectively control the growth of weeds in the field and maximize the utilization of pesticides and reduce drug residues. The accurate identification of weeds can lay the theoretical foundation and provide technical support for the implementation of precision spraying. In recent years, how to solve the problem of improving the efficiency of field operation and solving the shortage of agricultural labor and enhancing the accuracy of automatic weeding has become the main research content at present (Li, 2018; Duan et al., 2019), in which the automatic weed identification technology based on machine vision and image processing is the research hotspot (Yan, 2018; Yuan et al., 2020).

Traditional image processing methods usually use wavelet analysis, Bayesian discriminant models, and support vector machines (SVMs) to achieve crop and weed recognition based on features such as weed color, shape, texture, and spatial distribution and combinations of these features (Wang and Li, 2016; Zheng et al., 2017; Elstone et al., 2020; Hou et al., 2020). Although these methods are less difficult to detect, the environment of the general crop growing area is complex, and the robustness of the methods using weed-specific features for identification is poor and the accuracy of identification is not high (Jordan and Mitchell, 2015; Chen and Wang, 2017; Rojas et al., 2017; Bakhshipour et al., 2017).

With the development of computer technology, fast and accurate machine vision recognition technology is more and more widely used in weed recognition. Many scholars have carried out relevant research. In terms of weed identification, Dos et al. (2017) compared AlexNet with SVM and random forest model and concluded that AlexNet architecture can better identify soybean, soil, and broad-leaved weeds than other models. Potena et al. (2016) proposed a multistep vision system based on RGB+NIR (near infrared) images, using two different convolutional neural network (CNN) architectures to classify crops and weeds; Jiang et al. (2020) used the graph convolution neural network to identify three types of crops and weeds on the AlexNet, VGG-16, and ResNet-101 network models, and the average recognition accuracy of ResNet-101 reached 96.51%. Peng et al. (2020) took weeds in a rice field as the research object. During the training of the deep convolution neural network, the optimizer under a random gradient was used to optimize the parameters. Among them, the VGG-16-SGD model had the highest accuracy, and its average F (F-measure) value was 0.977. Deng et al. (2021) used the pretrained CNN model combined with the migration learning method to identify the weeds in the field of rice seedlings. Among them, the correct recognition rate of the VGG-16 model reached 97.8%. Zhang Xinming and others proposed a recognition method for corn and weeds based on the improved probabilistic neural network (PNN) and used the suboptimal search method to select the most effective features to construct the feature vector, which improved the recognition performance and speed. It can be seen from the above literature that the weed recognition method based on deep learning can well solve the problem of extracting specific features in traditional image processing, and the accuracy is also improved to a certain extent. However, there are still problems such as the following: 1) In the crop field under a complex environment, when the environment around weeds changes, the existing deep learning model has the problem of weak generalization ability for weed recognition. 2) In the process of feature extraction, the convolutional neural network extracts a large amount of invalid background information because of the diversity of background and the large proportion of image pixels, which affects the recognition results and cannot maintain a high recognition accuracy.

To address the above problems, this paper proposes a weed recognition model based on an improved dense convolutional network (DenseNet) (Huang et al., 2017) to improve the recognition accuracy and the generalization ability of the network by introducing an efficient channel attention (ECA) mechanism (Wang et al., 2020) and a local variance algorithm (Zhao et al., 2019) to suppress the extraction of invalid background features while enhancing weed feature extraction, thus improving the recognition accuracy and the generalization ability of the network to ensure efficient and accurate weed recognition in complex environments.

In this paper, weed identification in the field is performed by improving DenseNet. The steps are shown in  Figure 1 . First, we collected crop and weed images. The weed dataset is built by amplifying the data to ensure diversity of the data. Secondly, the training set is input to the weed recognition model, and then the trained weights were loaded into the model to get the prediction model. Finally, we input the test set to get the prediction results.

 

Figure 1 | The weed identification process. 




 2. Data processing.

 2.1. Dataset.

Due to the complex ground conditions in the field, we used the segmentation model from a published paper (Mu, 2022) to segment the captured field data into a single image of only one plant, and to show that our model can distinguish crops from weeds, we chose corn seedlings because they are more similar to weeds. Because we do not have enough data, we choose the public dataset to train the model. This dataset (Giselsson et al., 2017) mainly uses images of crops and weed seedlings provided by the Computer Vision and Signal Processing Group of the Department of Engineering, Aarhus University, Denmark. The dataset is divided into 12 categories with 5,539 images, mainly black-grass, charlock, cleavers, common chickweed, common wheat, fat hen, loose silky-bent, maize, scentless mayweed, shepherd purse, small-flowered cranesbill, and sugar beet. The selection of the dataset was convenient to demonstrate that our experiment can effectively distinguish between maize seedlings and weeds. In the actual training of the model, we chose to treat the original dataset as follows (considering the size and number of datasets):

1) In order to prevent overfitting due to the limited number of images, this paper uses data augmentation techniques in deep learning to geometrically transform the existing dataset, increase the diversity of data by expanding the number of corn and weed images, avoid the appearance of the network learning irrelevant features, and then learn more features related to the data to improve the recognition ability of the model. In this paper, the collected weed and corn images are expanded to twice the original dataset by using two data augmentation methods: adding noise and random directional flipping, resulting in a total of 11,078 images. Among them, 8,862 images are in the training set and 2,216 images in the test set.

2) To meet the input requirements of the network for image pixels, the image pixels are first adjusted to 256 × 256 during training and then cropped from the center to obtain a 224 × 224 pixel image, and the cropped part of the weed dataset image is shown in  Figure 2 .

 

Figure 2 | Partial dataset. (A) Black-glass (B) Charlock (C) Cleaver (D) Common Chickweed (E) Maize (F) Common wheat (G) Fat Hen (H) Loose Silky-bent (I) Scentless Mayweed (J) Shepherd Purse (K) Sugar beet (L) Small-flowered Cranesbill. 




 2.2. Data processing.

The main objects targeted in this paper are weed images with complex backgrounds taken in a natural lighting environment, where the light intensity and background of the images are different. Background segmentation of the original dataset is performed to improve the accuracy of the weed recognition model in complex natural backgrounds, to extract the weed parts of interest in the images, and to remove the background parts that are not useful for image recognition. Through the analysis of the dataset, it was found that the color characteristics of both weeds and seedling corn were green, which differed significantly from the color of the background such as soil. Therefore, in this paper, we choose the super green algorithm (2G-R-B) (Wang and Yang, 2018) by normalization, which can increase the weight of the green channel in the RGB image and thus suppress the non-green background part of the image. Using this feature can quickly and effectively separate the weedy regions in the natural background, and the specific procedure of the super green algorithm is as follows (Formulae 1, 2):

 

 

In the formula, R, G, and B are the pixel channel values in the RGB color space, and ExG is the super green image.

After obtaining the grayscale image by the above method, this paper chooses to perform a secondary processing of the resulting grayscale image by local variance preprocessing. The local variance can be used to measure the sharpness of grayscale variation in the volume region. For a pixel (x, y), f(x, y) is its gray value. Centered on this point, select 3 × 3 as the calculation neighborhood of local variance, and the local variance v(x, y) of this point is expressed as (Formula 3):

 

where f(x, y) is the grayscale value of pixel point (x, y), which is the mean value of the grayscale value of the 9 pixel points in the window, and its expression is shown in Formula 4.

 

Since both maize seedlings and weeds are green, selecting the g component for further image processing can try to maintain the information integrity of the image. In order to facilitate the function processing of image data, the image data are unified into double type, and the gray range of the image is [0,1]. Therefore, the variation range of F(x, y) is [0,1]. Substituting it into Formula (3), the difference between F(x, y) is compressed after square operation, resulting in the difference of variance data not obvious enough. Therefore, the calculated variance needs to be normalized. When lawn grass is sparse, the background gray value of lawn grass can be suppressed to a certain extent after linear normalized local variance operation. However, in some areas with dense turfgrass, the gray difference between turfgrass and weeds is still not significant after linear normalized local variance calculation, which cannot effectively distinguish the lawn background and weed prospect. So, we use non-linear normalization. In the places with sparse and dense grass leaves, the local variance can have a good inhibitory effect on the lawn background and retain the preliminary enhancement effect on weeds. The non-linear normalization formula adopted is shown in Formula 5, and its comparison output with linear normalization is shown in  Figure 3 .

 

Figure 3 | Comparison of two normalization functions. 



 

Where V(x, y) is the normalized variance and a, b are the non-linear normalization coefficients. In this study, a = 6 and b = 5 ( Figure 3 ).

 

Bring the normalized local variance into Formula 6 to obtain the preprocessed image g(x, y).

Where k and m are the optimization coefficients, and V 2(x, y) is the square of normalized local variance V(x, y) at pixel point (x, y). If k > 0 is satisfied, the greater the k is, the more obvious the gray suppression effect is at the place with small local variance in the preprocessed image. M satisfies 0 < m < 1 to adjust the gain effect at small variance. In this study, k = 50 and m = 0.99 are selected, and the output results of the preprocessing function are shown in  Figure 4 .

 

Figure 4 | Preprocessing function output. Note: . 



As can be seen from  Figure 4 , when the normalized local variance is less than 0.12, the gray value of the corresponding part is enhanced. When the normalized local variance is greater than 0.12, the output value decreases rapidly below 1.0, and the corresponding gray value is suppressed. The preprocessed image is shown in  Figure 4 . The average gray value of the visible background is greatly reduced, and the gray value of the foreground is more prominent. However, there are still a considerable number of strip or point areas in the background area, and the gray value is similar to the foreground, which has a certain impact on image segmentation. Therefore, it is necessary to introduce an enhancement algorithm to expand the gray difference between the foreground and the background and suppress the residual noise in the background area.

Finally, through the open and close operations of image morphology, the noise filtering and hole filling are realized. The image mask RGB original image and the processed binary image are used for the “and” operation, and the segmented image is shown in  Figure 5 .

 

Figure 5 | Image preprocessing. (A) Original image (B) Super green method (C) Image after preprocessing. 



Since the difference between the weed background in  Figure 6  and the weed itself is large, it does not well reflect the superiority of our designed image preprocessing method, so we demonstrate the superiority of our designed method by shooting part of the weed image. The weed background in the captured weed image is highly similar to the color of the weed itself, and the segmentation process is more complicated. However, we still choose the dataset of Giselsson et al. (2017) due to the small amount of data.

 

Figure 6 | Segmentation of the complex background image. (A) Original image (B) Super green method (C) Image after pre-processing. 





 3. Model building.

 3.1. Attention mechanism.

In the corn field under a complex environment, weeds and corn grow together, and the background is diverse. By adding attention mechanism, the weed features in the image are extracted. This paper adopts a lightweight attention module ECA net to improve the performance of the deep convolution neural network. By using an efficient attention module to combine the depth of the feature map with spatial information, focus on the extraction of important features, and inhibit the extraction of non-important features, we can effectively improve the recognition accuracy of field weeds in a complex environment.  Figure 7  shows the structure diagram of the ECA net. Firstly, the input characteristic map is globally averaged and pooled and a single value is used to represent the characteristic layer of each channel. Secondly, the one-dimensional convolution with the size of K is used to generate weights for each channel to obtain the interdependence between each channel. Sigmoid activation function is added for normalization. Finally, the weights of the generated channels are weighted to the input feature map by multiplication to strengthen the extraction of important features.

 

Figure 7 | The ECA module structure diagram. Note: C is the number of channels, H is the height of the input data, W is the width of the input data, and K is the convolution local interaction size. The global average pooling of gap, σ, activates the function for sigmoid. 



ECA uses one-dimensional convolution cross-channel interaction with size to replace the full connection layer, which can effectively reduce the amount of calculation and complexity of the full connection layer and then generate weights for each channel (Formula 7):

 

Where ω is the channel weight, δ is the sigmoid activation function, and CID is the one-dimensional convolution. The more channels of the input characteristic graph, the greater the value of the local interaction, so the value of K is directly proportional to the number of channels C. In this paper, the K value is adaptively determined by the function related to the channel dimension (Formula 8):

 

To sum up, it can be concluded that (Formula 9):

 


 3.2. Model improvement.

In the deep learning model in recent years, the CNN has always been absolutely dominant. ResNet, GoogLeNet, VGG, and other excellent networks are built based on the CNN. However, deep CNN has always had a problem: data are likely to gradually disappear after multilayer propagation. ResNet promotes the flow of data between layers to a certain extent through the “skip connection” structure. However, the network layer close to the output still does not fully obtain the characteristic diagram in front of the network.

In the CVPR2017 best paper densely connected revolutionary networks, the author proposes a new DenseNet network ( Figure 8 ). The starting point is to solve the redundancy problem of ResNet. Fewer parameters are used, which also alleviates the problem of gradient disappearance, and the network is easier to train. The difference between DenseNet and ResNet in mathematical expression is that the skip layer addition in ResNet is changed into concatenate connection operation. However, the color and appearance of weeds and maize seedlings are similar, so it is necessary to extract plant feature points more intensively. U-Net (Ronneberger et al., 2015) is a network structure with complete symmetry of convolutional coding and convolutional decoding. It can capture different levels of features and integrate them through feature superposition. Different levels of features, or receptive fields of different sizes, have different sensitivities to target objects of different sizes. Therefore, we choose to combine U-Net and DenseNet to form a new network structure.

 

Figure 8 | The DenseNet model diagram. 



  Figures 9 ,  10  show the overall structure of the model. The input is R, G, and B three-channel images. First, the image passes through a 7 × 7 convolution layer. A large convolution kernel adjusts the number of channels and extracts effective information, followed by a dropout regularization layer to simulate noise, prevent overfitting, and improve the generalization ability of the model. The size of dropout is 0.5. Secondly, the ECA DenseBlock is the core part of the model. As shown in the figure, the ECA attention mechanism is added after each dense connection to increase the weight of weed features and extract more important information. The network consists of four ECA DenseBlock blocks and one DenseBlock layer. The number of improved dense connections in the ECA DenseBlock layer is 6, 12, 24, and 16, respectively, and a transition layer is connected behind each ECA DenseBlock. Among them, 3 × 3 convolution and average pooling are used to adjust the number of channels to avoid the rapid growth of feature dimensions. Combined with the symmetrical structure of U-Net encoding decoding, two 3 × 3 deconvolutions are added to further refine the target feature points in the image. After extracting features from the dense connection structure with the attention mechanism, dropout regularization is added to prevent the problem of overfitting. Finally, the class output is obtained by using global average pooling and linear classifier.

 

Figure 9 | Model structure diagram. 



 

Figure 10 | The ECA DenseBlock structure diagram. 





 4. Experimental results and analysis.

 4.1. Experimental environment.

The training and testing of the weed recognition network model are completed based on Keras, a deep learning framework. The hardware environment adopts the IntelXeon E5-2680 V4 CPU, and the GPU adopts the NVIDIA Ti-TAN XP graphics card and 64-GB video memory. The operating system adopts Windows 10, and Python 3.0 is used in the integrated development tool Jupiter 8.0.


 4.2. Experimental results.

In order to train the best recognition model, a series of experiments are carried out on the dataset to determine the setting of super parameters. Firstly, the number of training samples in each batch and the learning rate of the model are determined; then, the other parameters in turn are adjusted. Each test runs for 40 rounds, and one epoch represents a complete training of the model using all the data of the training set. In the experiment, the batch size is usually set to 6, which is conducive to parallel calculation and processing. The number of samples in this test is set to 16, 32, 64, and 128, respectively. After comparison, it is found that if the number of samples is set too small, the convergence of the model will be slow and too large will lead to insufficient memory and weak generalization ability of the model. Finally, the number of samples is determined as 64. The learning rate controls the update speed of network weight. Setting a reasonable learning rate can make the objective function converge to the local minimum quickly. The test selected 0.1, 0.01, 0.001, and 0.0001. The effect of model training is the best at 0.0001 ( Table 1 ).

 Table 1 | Different learning rates. 



In this experiment, the Adam optimization algorithm with default parameter setting is used in model training. The algorithm is computationally efficient and requires less memory. It is suitable for solving the problems of large-scale data and parameter optimization. The experimental results are shown in  Figure 11 .

 

Figure 11 | Function diagram of experimental accuracy and experimental loss rate. (A) Image model accuracy (B) Model loss rate image. 




 4.3. Analysis of experimental results.

 4.3.1. Comparison of the different models.

In order to verify the validity of the model, we selected different identification models for the comparison tests under the same experimental conditions. Since VGG-16 (Simonyan and Zisserman, 2014), VGG-19 (Simonyan and Zisserman, 2014), ResNet-50 (He et al., 2016), DenseNet, DANet (Fu et al., 2020), DNANet (Ren et al., 2021), and U-Net, which are standard deep convolutional divine meridian models commonly used for image recognition in different domains, all have good recognition results, they are therefore chosen as the comparison models for this experiment.  Figure 12  shows the confusion matrix of our model.  Table 2  shows the experimental comparison results of each model. In order to more intuitively reflect the accuracy rate of our model compared with other models, the accuracy rate function diagram and loss rate function diagram of each model are shown in  Figure 13 .

 Table 2 | Experimental results for each model. 



 

Figure 12 | The confusion matrix of our model. 



 

Figure 13 | Loss rate and accuracy function images of each model. 



It can be seen from  Table 2  that the test accuracy of the VGG-16 model is 81.78%, which is not suitable for weed identification. The recognition accuracy of the VGG-19 model is higher than that of the VGG-16 model. This is because VGG-19 increases the performance of the model on the basis of VGG-16. The main reason is the three-layer convolution based on VGG-16. But it also increases the amount of computation and model memory. Compared with VGG, the ResNet-50 model based on different sparse structure design reduces a large number of model parameters and has a significant improvement in performance, and its test accuracy is over 90%. The U-Net model mainly strengthens the extraction of feature points because of its coding and decoding structure, so the accuracy also reaches more than 90%. The test accuracy of the DenseNet model is 93.43%, which is significantly better than that of the other models, and it has very little memory (5 MB). DANet is a dual-attention mechanism, so the extraction effect is more obvious, and its accuracy is above 90%, while DNANet is a small target extraction, which can extract the nuances of weeds, and the accuracy is also above 90%, but the memory of both models is too large and the number of parameters is more. The table also lists the detection time of this model and other depth network models for recognizing a single weed image. Each depth neural network model tests a single image for 10 times and finally takes the average test time as the test result. It can be seen from the test results that VGG-19 takes the longest time to detect a single picture, and the average detection time is 163.5 ms. The detection time of ResNet-50 and U-Net is 104.5 and 77.3 ms, respectively, while that of DANet and DNANet is 88 and 85 ms, respectively. The average time of single image detection of this model is only 68.4 ms, which is more suitable for the rapid detection of field weed images.

In this paper, the model combines DenseNet with U-Net for optimization and improvement, which effectively improves the accuracy of weed recognition. Weeds need to increase the depth of the model because they have similar feature points and similar color to corn seedlings, and need a large number of images for training the model and also bring a large amount of computation. DenseNet, through its own dense connections, reduces the memory of the model as much as possible on the basis of ensuring that the model can be trained in depth. Because the appearance similarity between weeds and corn seedlings is relatively high, we need to extract some subtle features of weeds and corn seedlings as finely as possible and use these features to classify corn seedlings and weeds. The U-Net network satisfies this requirement, and the U-shaped structure is used to encode and liberate the image, perform fine feature extraction on the enlarged image, and extract the features that cannot be recognized by the naked eye, so as to achieve the effect of the model for weed recognition.


 4.3.2. The effect of image preprocessing on the model.

Most of the weeds in the planted land are grassy herbs that are fine and dense. In contrast, weeds have wider leaves and sparse foliage. In the image of turfgrass containing weeds, weeds are used as foreground and turfgrass as background, and the grayscale varies widely among dense turfgrasses, while weeds have wider leaves and uniform grayscale variation. Therefore, this paper uses the method of preprocessing the image after local variance, and this method is consistent with the image obtained by directly passing the original image through high-pass filtering, and finally both of them get the high-frequency part of the image. This part can be enhanced appropriately, making the image to become clearer. At the same time, in order to prevent data overfitting, a data enhancement process is needed. In order to prove the effectiveness of the algorithm, the dataset is divided into four parts and input into the model we designed, and the experimental results are shown in  Table 3 . The experimental result is the average of the results of five experiments.

 Table 3 | Results of the four datasets run in our model. 



In  Table 3 , the weed identification network models were trained on four datasets using different ways of processing the datasets, and the accuracy of the obtained models was compared, as can be seen from  Table 4 : the accuracy of the dataset obtained by inputting the unprocessed dataset into the model is 61.69%, while the accuracy of data B and C is significantly higher than that of A ( Table 3 ), indicating that the performance of the model has been greatly improved. The accuracy of data D is the best among these cases, in which the accuracy of the un-data augmented datasets A and B is significantly different compared with that of data C and D ( Table 3 ), which indicates possible model overfitting when the model is trained on the un-data augmented dataset. It is also shown that the local variance algorithm splits weeds and corn seedlings clearly, so that the deep learning model can better extract finer features of weeds and corn seedlings, remove factors that may affect the experimental results, and finally achieve the goal of improving the accuracy. In order to verify the universality of the method, which can be used in other models in the future, we input the dataset into DenseNet, VGGNet-16, VGGNet-19, ResNet-50, and U-Net for experiments, and the experimental results are shown in  Table 5 . It is proved that the method can separate complex backgrounds and be used to extract target features centrally and is not only applicable to a single model ( Table 5 ).

 Table 4 | Data amplification. 



 Table 5 | Results of different data processing runs on each model. 




 4.3.3. Impact of ECA on model performance.

To verify the effect of adding the attentional mechanism ECA, the experiment was also divided into sections with and without the attentional mechanism ECA. As reflected in  Table 6 , the accuracy of the model was significantly improved after the addition of the attention mechanism ECA, which is due to the fact that the addition of the ECA attention mechanism in the feature extraction process can effectively enhance the extraction of weed features in complex backgrounds and further distinguish the difference between weeds and maize seedlings. Because the data are segmented by background, some redundant information is removed, so although the attention mechanism ECA is added, it does not concentrate too much on extracting other information to ensure the model’s accuracy. In addition, the attention mechanism ECA can prevent the overfitting phenomenon that the model has good recognition ability in the training phase and poor recognition ability in the testing phase, and ensure that the network learns the correct feature information and improves the accuracy of the dataset substantially. Therefore, combining the improved model with the attention mechanism ECA ensures the accuracy of the model for weed recognition and crop.

 Table 6 | Experimental results of our model with and without ECA. 






 5. Conclusion.

In order to solve the problems of low accuracy and weak generalization ability of weed species and crop identification in a crop field in a complex environment, a weed identification method based on improved DenseNet was proposed in this study. On the basis of the DenseNet network, the ECA mechanism is introduced to strengthen the extraction of weed features.

 	 1) The average recognition accuracy of the model proposed in this paper can reach 97.78%, higher than the DANet, DNANet, VGGNet-16, VGGNet-19, ResNet-50, U-Net, and DenseNet models without improvement. Compared with the improved model, it is improved by 7.2 percentage points, which verifies the effectiveness of this model in weed identification. 

	 2) The size of the improved DenseNet network model is 83.5 MB, and the time consumption of a single picture is 68.4 ms, which are better than the other networks and can be easily deployed to intelligent weeding equipment. 

	 3) Data enhancement and background segmentation of the data using local variance and the super green method can obtain higher recognition rate, which can remove complex background, enhance the generalization ability of the model, and improve the robustness of the model. 



The research results of this paper have implications for the identification of other crops with associated weeds, and by testing and improving existing algorithms, the generality of the model for weed identification and crop problems can be improved. In the future, models can be implanted into mobile devices for precise detection of farmland, leading to targeted weed control and improved crop production efficiency.
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  Aiming at the stability of hand-eye calibration in fruit picking scene, a simple hand-eye calibration method for picking robot based on optimization combined with TOF (Time of Flight) camera is proposed. This method needs to fix the TOF depth camera at actual and calculated coordinates of the peach the end of the robot, operate the robot to take pictures of the calibration board from different poses, and record the current photographing poses to ensure that each group of pictures is clear and complete, so as to use the TOF depth camera to image the calibration board. Obtain multiple sets of calibration board depth maps and corresponding point cloud data, that is, “eye” data. Through the circle center extraction and positioning algorithm, the circle center points on each group of calibration plates are extracted, and a circle center sorting method based on the vector angle and the center of mass coordinates is designed to solve the circle center caused by factors such as mirror distortion, uneven illumination and different photographing poses. And through the tool center point of the actuator, the coordinate value of the circle center point on the four corners of each group of calibration plates in the robot end coordinate system is located in turn, and the “hand” data is obtained. Combined with the SVD method, And according to the obtained point residuals, the weight coefficients of the marker points are redistributed, and the hand-eye parameters are iteratively optimized, which improves the accuracy and stability of the hand-eye calibration. the method proposed in this paper has a better ability to locate the gross error under the environment of large gross errors. In order to verify the feasibility of the hand-eye calibration method, the indoor picking experiment was simulated, and the peaches were identified and positioned by combining deep learning and 3D vision to verify the proposed hand-eye calibration method. The JAKA six-axis robot and TuYang depth camera are used to build the experimental platform. The experimental results show that the method is simple to operate, has good stability, and the calibration plate is easy to manufacture and low in cost. work accuracy requirements.



 Keywords: fruit picking, picking robot, hand-eye calibration, TOF camera, point cloud 

  1. Introduction.

In recent years, the output of agricultural products in my country has increased year by year. By 2022, China’s output of fruits and vegetables will rank first in the world. At present, fruit and vegetable picking is mainly based on manual picking. However, with the process of urbanization, the shortage of labor has been exacerbated, resulting in a substantial increase in the cost of fruit and vegetable picking. Therefore, the development of picking robots that can improve production efficiency and reduce picking costs is an inevitable trend in fruit and vegetable production.

Since the 1980s, various systematic theoretical researches on picking robots have been carried out at home and abroad (Willigenburg et al., 2004; Ji et al., 2011; Gan et al., 2018; Li and Tian, 2018; Tian et al., 2019). The working environment of picking robots is complex, there are many uncertain factors, and picking is difficult. An efficient, fast and stable fruit and vegetable picking robot system is urgently needed. And picking robotics robots are enabled by technologies not available in the earlier literature era, including huge advances in computing power and speed, advanced machine vision and imaging systems, image processing techniques, artificial intelligence techniques, and improved gripping and handling. As a result, in 2020-2021, picking robots will face a highly competitive market, and many large companies will introduce new reliable and efficient picking robots (Bogue, 2020). Studies have shown that the correlation and precise positioning of vision and robots, that is, hand-eye calibration, are the key technologies and prerequisites for realizing active vision and automatic picking of picking robots (Tian et al., 2019). The main purpose of hand-eye calibration is to obtain the conversion relationship from the camera to the end of the robot, which is convenient for controlling the robot’s arm to complete the corresponding task. Therefore, the research on hand-eye calibration is of great significance to the picking robot.

There are two ways to associate vision and robots: Eye-to-Hand and Eye-in-Hand. In the process of researching picking robots, it is found that active vision measurement has better advantages in outdoor picking, because compared with the situation where the camera is fixed in the Eye-to-Hand association method, the camera is bound to the end of the robotic arm. As the robotic arm changes the shooting pose, it can overcome the influence of uncertain factors such as uneven ground, wind disturbance, and illumination changes in the wild environment (Mo et al., 2017). The Hand-eye system is the main way for picking robots to achieve active vision (Xu et al., 2008).

As early as the 1980s, Tsai and Daniilidis et al. (Tsai and Lenz, 1989; Chen, 1991; Daniilidis, 1999; Malm and Heyden, 2000) proposed a classic hand-eye calibration method for the Eye-in-Hand vision and robot correlation method, which are mainly divided into “two-step method” and “one-step method”, and its mathematical model boils down to solving the AX=XB matrix equation. After that, various more efficient hand-eye calibration algorithms and mathematical models have been proposed one after another (Malti, 2013; Nobre and Heckman, 2019; Koide and Menegatti, 2019; Deng et al., 2021; Fei et al., 2021; Liu et al., 2021; Pedrosa et al., 2021; Wang and Min, 2021; Wu et al., 2021). In China, there have also been some researches on the hand-eye calibration method of picking robots. For example, Mo Yuda of South China Agricultural University (Mo et al., 2017) proposed a hand-eye calibration optimization method to solve the homogeneous transformation matrix equation and applied it to the litchi picking robot. “Two-step method” solves the problem of error transmission to optimize results; and Jin Yucheng (Jin et al., 2021) proposed a deep vision hand-eye coordination planning strategy to solve the problems of low picking accuracy and efficiency of existing picking robots. Abroad, University of Wageningen developed a new hand-eye sensing and servo control framework and applied it to picking robots in dense vegetation (Barth et al., 2016).

In recent years, with the development of depth cameras, depth cameras have been increasingly applied to the field of visual picking (Wang et al., 2018; Zhang et al., 2021; Pan and Ahamed, 2022), which has improved the recognition ability and efficiency of fruit and vegetable picking. In addition, depth cameras have also been applied. In hand-eye calibration (Ðurović et al., 2017; Du et al., 2018; Ge et al., 2022). TOF (Time of flight) depth camera is a camera with active vision measurement function. Its working principle is to continuously send light pulses to the target, and then use the sensor to receive the light returned from the object, by detecting the flight round-trip time of the light pulses Compared with other 3D cameras, it has the advantages of cheap price, small size, low power consumption, strong anti-light interference and fast calculation of depth information (Li et al., 2021), which is very suitable for the application of wild fruit picking.

This paper studies a hand-eye calibration method combined with a depth camera. It adopts the eye-in-hand correlation method, combines the TOF depth camera to take pictures of fixed feature points, and uses the TCP contact measurement method to obtain the hand-eye data, which is transformed into the solution of the equation AX=B, and then iteratively optimizes the hand-eye parameters by changing the weight coefficient of the marker points to obtain the final hand-eye calibration matrix, and the hand-eye calibration method is verified in the indoor simulated peach picking experiment. The main work is as follows:

 	 1) The traditional circular calibration plate used for picking is modified and designed to facilitate the contour extraction and center positioning of the circular target, as well as the tool center point (TCP) of the auxiliary robot end effector to accurately measure the center point base mark. 

	 2) A circle center sorting method based on the vector angle and the center of mass coordinates of the circular calibration plate is proposed, which can solve the problem of out-of-order extraction of circle centers and specify the sorting direction. 

	 3) Combined with the SVD algorithm, the hand-eye matrix is solved, the residuals of the points are estimated, the weight coefficients of the marker points are redistributed, and the hand-eye parameters are iteratively optimized, which improves the accuracy and stability of the hand-eye calibration of the picking robot. 

	 4) A method for peach identification and localization is designed, combined with the deep network model and TOF camera, to verify the reliability of the hand-eye calibration method. 




 2. Hand-eye calibration scheme of picking robot.

 2.1. Hand-eye calibration model.

This method mainly studies the hand-eye calibration model of the eye on the hand, that is, the camera is fixed at the end of the robotic arm. As shown in  Figure 1 , Obase  represents the base coordinate system of the robot, Oend  represents the execution end coordinate system of the robot, a camera is installed at the end of the robot, Ocam  is the camera coordinate system, and a calibration board is fixed in the robot’s field of view, and Oworld  is the world coordinate system. (Calibration board coordinate system), these four coordinate systems and their mutual conversion relationship constitute the mathematical model of the picking robot’s hand-eye vision system. The relationship between the calibration board and the robot base coordinates is fixed. Hand-eye calibration.

 

Figure 1 | Hand-eye calibration model of picking robot. 



The TOF camera can realize the conversion from the world coordinate system Oworld  to the camera coordinate system Ocam , and the conversion relationship is  ;  . Indicates the conversion from the world coordinate system Oworld  to the robot base coordinate system Obase , and the position of the calibration board in the base coordinate system can be obtained; the motion feedback data of the robot can obtain through the conversion relationship  from the robot base coordinate system Obase  to the execution end coordinate system Oend ;  represents the conversion relationship from the camera coordinate system Ocam to the execution end coordinate system Oend . The above four transformation relationship matrices are the key information to realize the positioning and guidance of the robot.


 2.2. Design of hand-eye calibration method.

First, TCP calibration is carried out for the robot, and the ‘Four point calibration method (Liu et al., 2012)’ is used to calibrate the position of TCP in the end coordinate system of the robot. Then, the end of the robot is operated to locate the fixed mark points on the calibration board by contact, and the TOF depth camera is used to take pictures of the calibration board from different poses. The calibration method is as follows:

 	 1) First, teach the robot’s pose to ensure that the camera can capture a complete and clear picture of the calibration board in each group of poses. Then, the host computer sends the “start calibration” command, and the robot takes pictures of the calibration board according to the taught pose, and can obtain m(m∈[5,10]) group depth pictures, point cloud information, and pose coordinates when the robot takes pictures. 

	 2) Control the end effector (needle tip) of the robot, in the fixed order of upper left, upper right, lower left and lower right, respectively contact the center points on the four corners of the calibration plate to obtain a set of homogeneous coordinates of the center points under the robot base coordinate system Obase ; 



 

 	 3) After processing the depth images of each calibration plate collected by the TOF camera,  :a set of three-dimensional center point homogeneous coordinates can be obtained by combining the point cloud coordinates and the index numbers of the circle center points on the four corners of the calibration plate through the circle center positioning algorithm, and get the pose parameters of the robot PT at this time from the robot controller, xT 、yT 、zT  is the position vector of the end of the robot tool end coordinate system in the robot base coordinate system, and R  x  T   、 R  y  T   、 R  z  T   is the Euler angle of each joint of the robot under the robot posture at this time; 



 

 	 4) Through each set of pose coordinates, obtain the three-dimensional homogeneous coordinates of the circle center point under the robot base coordinate system Obase  under the execution end coordinate system Oend , which is obtained by formula (1): 





Among this,  ,  ,decompose  into rotation part  (3x3) and translation part  (3x1),  can be got by formula (2):

 

in formula(2), Rx , Ry  and Rz  are respectively:

 

 

 

  is obtained by formula(3):

 

 	 5) Extract the homogeneous coordinates of the center of the point cloud corresponding to each set of calibration plates under the camera coordinate system Ocam : PCamAll , and the homogeneous coordinates of all circle centers under the end coordinate system Oend  obtained by formula(1): PEndAll , n=4*m, 



 

 

thus, the conversion relationship from the camera coordinate system Ocam  to the execution end coordinate system Oend : is obtained, then  can be decomposed into rotation matrix  (3x3) and translation vector  (3x1),as shown in formula(4):

 



 3. Hand-eye calibration algorithm and optimization.

 3.1. Calibration plate design.

Compared with the traditional round calibration board, the calibration board designed in this paper is simple to make and has lower cost. One A4 paper is enough, and it does not need to ensure high-precision size spacing. It can also assist TCP to locate the center of the circle and ensure the consistency of the order of extracting the center of the circle. The improvements are as follows:

 	 1) Ensure that the circular target in the upper left corner is significantly larger than other circular targets in any photographing posture, which is helpful for the subsequent sorting of marker points; 

	 2) The circular target is required to be separated from the background, and the colors should be very different, so that the outline of the circular target can be quickly extracted; 

	 3) The size of the calibration plate should be such that when the camera is shooting at close range, the camera field of view can cover the entire calibration plate; 

	 4) In the center of each circular target, draw a “ × “ symbol, which is helpful for the precise positioning of the contact center by the end of the execution. 



The designed calibration board is shown in  Figure 2 .

 

Figure 2 | Designed calibration board. 




 3.2. Algorithm for center positioning and sorting.

The circular calibration plate generally takes the center of the characteristic circle as the feature point, adopts the center detection and positioning algorithm, first preprocesses the image of the calibration plate, then performs Canny edge detection, and then sets the conditions such as roundness and area to screen the obtained contour, and finally Use least squares ellipse fitting to obtain the center of the circle. The method has low real-time performance, but has strong robustness and high precision to the influence of external factors, and can reach the sub-pixel level.

Aiming at the problem of out-of-order extraction of center points caused by factors such as mirror distortion, uneven illumination and different photographing poses, a center sorting method based on vector angles and centroid coordinates is adopted to make the center lattice sorting algorithm with rotation invariance. The coordinates of the center of the circle are extracted in the order of X direction and then Y direction. The schematic diagram of the sorting of circle points is shown in  Figure 3 . The method is as follows:

 

Figure 3 | Schematic diagram of center sorting. 



 	 1) Determine the initial point, according to the circular contour obtained by Canny edge detection and contour screening, search the contour with the most subpixel points on the contour, and then carry out least squares ellipse fitting to obtain the initial point Pstart ; 

	 2) Calculate the Euclidean distances from other circle centers to the initial point respectively, and sort them from small to large according to the Euclidean distance, and select the two nearest points, namely Px 0 and Py0 ; 

	 3) Find the centroid coordinates of all the circle centers Pcentroid , and get three direction vectors,  ,  ,and  , with the starting point is the Pstart . The formula (5) is introduced below to judge the positional relationship between the vectors: 



 

if  ,  is in the counterclockwise direction of  ; if  ,  is in the clockwise direction of  ; if  =0,  is collinear with  ; from this, it can be judged that the positional relationship of the three direction vectors  ,  ,and  . In this article, let  is in the counterclockwise direction of  , that is, represent the X direction;  is in the clockwise direction of  , that is, represent Y direction;

 	 4) Calculate the angle α between the vector from the center of the other circle to the starting point and the X direction, set the angle threshold, the reference point in the Y direction is the one that meets the conditions, and sort according to the Euclidean distance from the initial point from small to large, you can get and; 

	 5) Take the reference point in the Y direction as the reference point in turn, calculate the angle β between the vectors from the center of the other circles to the reference point and the Y direction, set the angle threshold, filter out the center of the circle that is collinear with the Xdirection, and follow the distance with the reference point. Euclidean distance is sorted from smallest to largest. The sequence diagram of the center of the circle after sorting is shown in  Figure 4 . 



 

Figure 4 | Schematic diagram after sorting the center. 



After the sorting is completed, a set of sub-pixel coordinates is obtained. It is necessary to precisely locate the three-dimensional coordinates of the marker point in the point cloud coordinate system. Assuming that the sub-pixel coordinates of the extracted marker point is P=(u,v), then the coordinates of the four surrounding integer pixels are P0 =(u0, v0 ), P1 =(u 0+1,v 0), P2 =(u 0,v 0+1), P3=(u0 +1, v0 +1), Then, a method proposed by Cheng Qi (Cheng et al., 2021) using the reciprocal of the subpixel area ratio as the weight of spatial point interpolation is used to accurately estimate the point cloud coordinates of the marker points.


 3.3 Solving the initial hand-eye calibration matrix

The hand-eye calibration method used in this paper is to convert the data under the camera coordinate system Ocam to the execution end coordinate system Oend . This process can be regarded as the rigid body transformation of the point cloud, which can be solved by the method of SVD and least squares. The calculation accuracy and efficiency is high, its mathematical model is:

 

in the formula, R is the rotation matrix, T is the translation matrix,wi  is the weight coefficient, and the initial value is set to 1; n is the number of marker points. By taking the partial derivative of formula (10), the minimum value can be obtained, which can be simplified and sorted as follows:

 

where  and  are respectively the centroid points of the set of points, defined as:

 

 

Substitute equation (7) into (6) and eliminate T, then can get

 

where P '   CamAlli   = P  CamAll  -  、 P '  EndAlli  = P  EndAll  -  , the optimization problem can be transformed into:

 (

convert equation (11) into:

 

Let  , and perform SVD decomposition on H:

 

Where U is a left singular matrix, V is a right singular matrix, and Λ is a diagonal matrix.

Finally get:

 

In the formula,U, V, Λ are all orthogonal matrices, at this time:

 

 


 3.4. Weighted iterative method to optimize hand-eye calibration parameters.

During the calibration process, the camera itself is easily affected by the environment (light, temperature, humidity, pressure, etc.), which affects the measurement accuracy; at the same time, some human factors will also cause large errors in the measurement, such as the end of the operation robot contacting and positioning the center of the circle. If it is large, a large gross error is introduced into the feature points. At this time, if the calculation method of equal weight is used for coordinate system transformation, the stability of the SVD algorithm will be reduced. Therefore, the allocation of weight coefficients needs to be considered during the execution of the algorithm.

The point residual for each marker point is:

 

At this time, the absolute mean value of the point residuals is:

 

The weight coefficients are redistributed according to the residual error of each marker point, so that the weight of the measurement point with larger error is reduced, thereby increasing the stability of the SVD algorithm. Here, take the weight function as the Danish (Wang, 2006) function:

 

In the formula, u  i =e  i /σ , σ is the error in the point position,  , k 0 is the harmonic coefficient of the weight function, usually 1.0~2.5, this paper takes k 0 = 2.5.The weight coefficient matrix corrected according to equation (19) is re-substituted into equation (6) for iterative solution. If the number of iterations or the error threshold is reached, the iteration is terminated.



 4. Experimental results and analysis.

 4.1. Experimental equipment.

The built experimental platform is shown in  Figure 5 . The image acquisition device is TuYang TM460-E2 TOF camera, the working distance is 0.1m-2.4m, the size is 87.4mm*51.5mm*38mm, the weight is 257g, and the depth image resolution is 640 *480, this depth camera is small in size and light in weight, which is very suitable for outdoor picking; the picking robot is JAKA Zu 5, the end load is 5kg, and the repeat positioning accuracy is ±0.02mm; the vision software is independently developed, and the development environment Visual Studio, The development language is C++.

 

Figure 5 | (A) Experimental equipment Experimental platform (B) End effector and camera. 




 4.2 Experiment results and analysis of hand-eye calibration

In order to test the effect and robustness of the weighted SVD method proposed in this paper, a comparison experiment will be carried out under two different conditions of no gross error and gross error. The comparison experiments include SVD algorithm, LM algorithm, Danish-DQ (Cheng et al., 2021),and the Danish-SVD proposed in this paper. In the case of no noise and no gross error, the average absolute error of the point is shown in  Table 1 :

 Table 1 |  of each weight function without gross error. 



It can be seen from  Table 1  that the LM algorithm, the Danish-DQ algorithm and the Danish-SVD algorithm proposed in this paper can improve the accuracy of hand-eye calibration, but compared to the algorithm proposed in this paper, the effect is better.

The Danish weight function used in this paper is to reduce the influence of gross error by re weighting the residual error. This paper will conduct comparative experiments with other common weight functions, such as Huber function, IGG I function, IGG III function, to verify the advantages of Danish weight function. The experimental results are shown in  Table 2 :

 Table 2 |  of each algorithm without gross error. 



As can be seen from  Table 2 , the Danish weight function used in this paper is better than other weight functions in terms of precision and iteration number. However, the overall average absolute error value is relatively large. The reason is analyzed from the absolute error of each marker point in the X, Y, and Z axis directions under the operation result of the Danish-SVD algorithm proposed in this paper.

As can be seen from  Figure 6  and  Table 3 , the absolute error of the marker point in the Z-axis direction is larger, and the accuracy of this TM460-E2 depth camera in the Z-direction is 5mm-20mm, combined with the working principle of the TOF camera, and after analyzing the data in  Table 4 , it is concluded that the higher the camera pose during hand-eye calibration, the greater the absolute error. Therefore, when teaching the camera pose, it is required that the camera can shoot a complete circular calibration plate. pose as low as possible. And the resolution of this TOF camera is only 640*480. The lower resolution is also the main reason for the large mean absolute error.

 

Figure 6 | The absolute error of the mark point in the X, Y, Z axis directions. 



 Table 3 | The maximum value, minimum value and average value of the absolute error of the mark point in the X, Y, Z axis directions. 



 Table 4 | The maximum value, minimum value and average value of the absolute error of the marker points in the Z-axis direction and the value of  at different heights. 



Considering the robustness requirements of outdoor picking for field hand-eye calibration, this paper adds (1, 0, 1), (-1, 0, 1),(0,-1,0), (1,-1,0), which the gross error in mm to the marker points in the order of contact and positioning marker points in the point set PBase , simulates the gross error introduced by human factors caused by the mis-operation of contact positioning, each algorithm has different numbers of gross error points The absolute error of the point below is shown in  Figure 7 . It can be seen that the LM algorithm, the Danish-DQ algorithm and the Danish-SVD algorithm proposed in this paper have better resistance to errors than the SVD method, but the performance of the method proposed in this paper is better than that of the SVD method.

 

Figure 7 | Each  of algorithm in the case of introducing gross error. 



In order to test the ability of the Danish-SVD method proposed in this paper to locate the gross error, the mark point with the serial number of 3 in the point set PBase  refers to (10, 10, 10), which the gross error in mm, and the mark points of the first four groups of calibration plates are taken. After analyzing the data, it can be seen from  Figure 8  that the absolute errors of the other three markers are closer to the SVD method under normal data and interference data, and can more effectively locate the position of gross errors, indicating that the Danish-SVD algorithm proposed in this paper is used. It can more effectively suppress the influence of a single interference data, and has a strong ability to identify gross errors.

 

Figure 8 | Performance comparison of SVD and Danish-SVD algorithms under the condition of introducing large gross errors. 




 4.3. Experiment results and analysis of peach picking.

The peach picking experiment is simulated in an indoor environment, and the reliability of the hand-eye calibration method proposed in this paper is verified according to the positioning accuracy of peach picking. The experimental design is as follows:

 	 1) Collect peach pictures, use the MVTEC DLT tool to label the pictures, call the HALCON deep network model to train the pictures, and obtain the training model; 

	 2) Perform hand-eye calibration on the robot to obtain the conversion relationship from the camera coordinate system Ocam  to the robot execution end coordinate system Oend ; 

	 3) Shoot the peaches to be picked (9.a, 9.b), perform correction and registration to obtain a color point cloud (9.c), call the training model to process the color image of the peaches, and identify and locate the peaches (9.d), map the positioning coordinates to the point cloud, and segment the peach point cloud (9.e); 

	 4) Using the hand-eye conversion relationship, convert the coordinates of the peach point cloud to the execution end coordinate system Oend , and obtain the coordinates of the center of mass, that is, the positioning and grasping coordinates of the peach, and obtain and analyze the positioning accuracy. 



Comparing the peach positioning result in  Figure 9  with the real value, the positioning accuracy error of peach is obtained. As shown in  Table 5 , it can be seen that the positioning error of peach is basically within 5mm, which can meet the accuracy requirements of peach picking operation.

 

Figure 9 | Peaches identification and localization (A) Peach color map (B) Peach depth map (C) Color point cloud image of peach (D) Identification map of peach (E) Peach point cloud segmentation map. 



 Table 5 | The actual and calculated coordinates of the peach and the positioning accuracy error (E). 





 5. Summary.

Aiming at the problem of great influence in the outdoor picking environment, this paper proposes a six-axis robot hand-eye calibration method based on TOF depth camera. The hand-eye data is obtained by shooting and extracting the fixed mark points on the calibration board and contact positioning, so as to obtain the hand-eye data. Find the hand-eye calibration matrix. The weighting idea is proposed to optimize the hand-eye parameters, and the experimental platform is used to carry out the hand-eye calibration experiment and the peach picking experiment. The experiments show that the method proposed in this paper has good stability, reliability and good calibration accuracy, which can meet the operation of peach picking require.
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The soluble solid content (SSC) is one of the important parameters depicting the quality, maturity and taste of fruits. This study explored hyperspectral imaging (HSI) and fluorescence spectral imaging (FSI) techniques, as well as suitable chemometric techniques to predict the SSC in kiwifruit. 90 kiwifruit samples were divided into 70 calibration sets and 20 prediction sets. The hyperspectral images of samples in the spectral range of 387 nm~1034 nm and the fluorescence spectral images in the spectral range of 400 nm~1000 nm were collected, and their regions of interest were extracted. Six spectral pre-processing techniques were used to pre-process the two spectral data, and the best pre-processing method was selected after comparing it with the predicted results. Then, five primary and three secondary feature extraction algorithms were used to extract feature variables from the pre-processed spectral data. Subsequently, three regression prediction models, i.e., the extreme learning machines (ELM), the partial least squares regression (PLSR) and the particle swarm optimization - least square support vector machine (PSO-LSSVM), were established. The prediction results were analyzed and compared further. MASS-Boss-ELM, based on fluorescence spectral imaging technique, exhibited the best prediction performance for the kiwifruit SSC, with the  ,   and RPD of 0.8894, 0.9429 and 2.88, respectively. MASS-Boss-PLSR based on the hyperspectral imaging technique showed a slightly lower prediction performance, with the  ,  , and RPD of 0.8717, 0.8747, and 2.89, respectively. The outcome presents that the two spectral imaging techniques are suitable for the non-destructive prediction of fruit quality. Among them, the FSI technology illustrates better prediction, providing technical support for the non-destructive detection of intrinsic fruit quality.




Keywords: hyperspectral, fluorescence spectral, non-destructive detection, kiwifruit, ssc



1 Introduction

People love kiwifruit for its sweet and sour taste and rich nutritional value. Sugar is important in judging kiwifruit’s quality, affecting its taste. About 81% of kiwifruit’s solid soluble content (SSC) is sugar, so SSC is usually used to evaluate its sugar content. The traditional SSC detection methods use refractometer and other instruments, which are cumbersome to operate and also destroy the physical integrity of the detected object, and cannot achieve rapid detection. Therefore, realizing the non-destructive detection of kiwifruit SSC is of great practical importance.

Hyperspectral imaging (HSI) and fluorescence spectral imaging (FSI) technologies combine image and spectral information, which can quickly detect the quality parameters of the measured object without damage. In recent years, HSI technology has developed rapidly in the non-destructive detection of the intrinsic parameters of fruits, such as SSC, pH, hardness, etc. Pham et al. (Pham and Liou, 2022) used HSI to achieve online detection of jujube surface defects. They used principal component analysis (PCA) to extract feature variables from hyperspectral data in a spectral range of 468~950 nm to establish ANN and SVM models, illustrating accuracy rates of 95% and 94.6%, respectively. Li et al. (Li et al., 2022) used short-wave infrared HSI technology to predict the SSC in dried Hami jujube and established the FS-CNN model, where   and RPD were 0.857 and 2.648, respectively. Gao et al. (Gao and Xu, 2022) predicted the SSC of red globe grape by combining HSI imaging technology with the PLSR model. They obtained the correlation coefficients of the calibration and prediction sets of 0.9775 and 0.9762, respectively.

FSI technology utilizes the fluorescence of different intensities emitted by excited molecules or atoms when certain substances are excited after being irradiated by light of specific wavelengths. Compared with HSI technology, FSI technology was applied later but achieved good progress in recent years. For example, Kim et al. (Kim et al., 2022) used FSI technology to detect aflatoxin in corn under 365 nm ultraviolet excitation rapidly, and the detection accuracy of the quadratic support vector machine (QSVM) reached 95.7%. Zhou et al. (Zhou et al., 2022) used FSI technology to detect the heavy metal lead in lettuce leaves, where a fluorescent filter of 475 nm was used to collect the fluorescence spectrum image in the spectral range of 480.46 nm~1001.61 nm, and  ,  and RPD of the best prediction method (i.e., WT-MS-SAE-SVR) were 0.9802, 0.9467, and 3.273, respectively. Kang et al. (Kang et al., 2022) used FSI technology to detect the dry matter content of mango, and  ,  , RMSEC and RMSEP of the best prediction method (i.e., CARS-RF-SPA-BPNN) were 0.9710, 0.9658, 0.1418 and 0.1526, respectively.

Although FSI technology has been widely used to detect agricultural products, most current studies are extended to detect mold, and less is applied to detect the intrinsic quality of agricultural products. In this study, the feasibility of FSI technology to predict kiwifruit SSC was examined, and the outcome was compared with HSI technology, where the feature extraction method was designed to establish a prediction model and the effects of two different imaging technologies on the performance of the prediction model were analyzed from the experimental results. Also, various regression prediction models were compared, and the performance differences between the two detection techniques led to the best method for detecting kiwifruit SSC.



2 Materials and methods


2.1 Materials

90 samples of “Hongyang” kiwifruit with intact skin were selected from a kiwifruit base in Ya’an City, Sichuan Province. After the sample’s surface was cleaned with water, they were sequentially numbered and left at room temperature (25 ± 1 °C) for 24 h, and their hyperspectral and fluorescence spectral images were collected. After collecting the two spectral images of the samples, their SSC physicochemical values were determined immediately. According to the SSC measurement method of “NY/T 2637-2014”, the samples were washed and peeled around their equators, then the pulp was removed, and the juice was pressed. The fruit juice was introduced into the detection tank of the handheld glucose salinity refractor (i.e., YSK-107) with a resolution of 0.1% Brix, and the data were recorded as the SSC physicochemical values after the display data were stable. In order to reduce the operation error, each sample was measured twice, and the average value was taken as the SSC physicochemical value of the sample, with the unit of “Brix”.



2.2 Acquisition equipment

Hyperspectral images of the kiwifruit samples were collected by Gaia sorter “Gaia” hyperspectral sorter in a spectral range of 387~1034 nm. The sorter mainly includes two groups of 4 LSTS-200 bromine tungsten lamps with a uniform light source, Image-Λ “spectral image” series CCD camera, an electronically controlled mobile platform and a computer with hyperspectral data acquisition software (SpaceView) powered by AC220V. The pixel and pixel size of the spectral camera are 1344 × 1024 and 6.45 × 6.45 μm, respectively. The overall structure of the Gaia sorter is shown in Figure 1A.




Figure 1 | The overall equipment structure: (A) Gaia hyperspectral sorter; (B) Gaia fluorescence spectral detection system.



The GaiaFluo series fluorescence spectral detection system was utilized to collect the fluorescence images of kiwifruit samples. In the system, the camera is Gaiafluo-VN-HR, the spectrometer is a transmission grating (PGP) structure, the spectral range and resolution are 400-1000 nm and 2.8 nm, respectively, and the detector is the SCMOS with a pixel size of 6.5 μm. The system also includes an 80 × 80 × 100 cm Obscura and a 30 × 30 × 40 cm platform. In addition, it contains four 50 W reflective light sources, a 150 W xenon lamp light source, various excitation filters, fluorescent filters, and a computer equipped with spectrum acquisition software (spaceview). The overall structure of the fluorescence spectral detection system is shown in Figure 1B.



2.3 Spectral image acquisition

The HSI system was first warmed up for more than 30 min before the hyperspectral images of the samples were acquired and corrected in black and white after stabilizing the voltage. During acquisition, the sample platform was 170 mm away from the lens, the exposure time of the spectroscopic camera was 13.5 ms, the advancing distance of the electronically controlled platform was 110 mm, and the advancing and retracting speeds were 4.6 mm/s and 50 mm/s, respectively. Similarly, the FSI system was prewarmed for about 30 min, and suitable excitation and fluorescence filters were selected after stabilizing the voltage. A xenon lamp was selected as the excitation light source.

After the combination of different filters was tested, the excitation filter with a central wavelength of 390 nm and a bandwidth of 40 nm and the fluorescence filter with a central wavelength of 495 nm were finally selected. The system parameters were set as follows: the camera moving speed was 0.13 mm/s, the exposure time was 800 ms, and the distance between the spectral camera lens and the measured object was about 70 cm.

The HSI and FSI spectral images of the samples and their region of interest (ROI) are shown in Figures 2A–D, respectively. During the acquisition process of hyperspectral images, SpecView software was employed to perform black-and-white calibration on the hyperspectral images to reduce the interference of environmental factors, and ENVI 5.3 software was utilized to extract the ROI. The average spectrum in the ROI was taken as the raw spectral value of the samples.




Figure 2 | Spectral image of a sample: (A) raw hyperspectral image; (B) raw fluorescence spectral image; (C) ROI of the raw hyperspectral image; (D) ROI of the raw fluorescence spectral image.





2.4 Methods


2.4.1 Spectral pre-processing methods

Collecting spectral image data is easily affected by the differences between samples, environmental noise, and baseline drift during detection. In order to reduce these interferences, selecting appropriate pre-processing methods for the raw spectral images is necessary. Among the common pre-processing methods, the standard normal variant transform (SNV) (Dong et al., 2022, Liu et al., 2022) eliminates the error caused by different scattering levels between samples. The detrend correction (DT) (Ai et al., 2022) reduces the influence of external noise on the spectral curve by subtracting the trend-fitting line of the noise. The Savitzky-Golay (SG) convolution smoothing (Ren et al., 2021) reduces the noise by smoothing the spectral data within the window. The Gaussian window smoothing (GWS), boxing smoothing (BS) and exponential smoothing (ES) methods can reduce the noise in different smoothing ways.



2.4.2 Feature extraction methods

The pre-processed spectral data exhibited a multicollinearity problem, so it was necessary to find the feature variables beneficial to the prediction results and eliminate the invalid variables. In this study, the Bootstrapping soft shrinkage (Boss) algorithm (Deng et al., 2016; Ouyang et al., 2021), the competitive adaptive reweighted sampling (CARS) algorithm (Zhang et al., 2019; Shicheng et al., 2021), the iteratively variable subset optimization (IVSO) algorithm (Sun et al., 2021), the Interval Variable Iterative Space Shrinkage Approach (IVISSA) (Cheng et al., 2020; Hao et al., 2022) and the Model adaptive space shrinkage (MASS) (Wen et al., 2016) methods were used to extract the spectral data.



2.4.3 The modeling methods

Extreme learning machines (ELM) is a single-hidden layer feedforward neural network with fast training speed and strong generalization ability. It is widely used in various classification and regression scenarios (Jiang et al., 2018; Cheng et al., 2022). The partial least squares regression (PLSR) model combines principal components analysis (PCA) with maximum correlation analysis to fit the distribution of random variables into linear equations. It is widely used in mathematics, statistics, and finance (Guo et al., 2021; Ma et al., 2021). Least square support vector machine (LSSVM) replaces the complex secondary optimization problem in the traditional SVM by solving primary linear equations, simplifying the model and improving its operation speed (Feng et al., 2018; Zhang et al., 2020).



2.4.4 The evaluation indicators

Five indicators, namely the coefficient of determination of the calibration set ( ), the root mean square error of the calibration set (RMSEC), the coefficient of determination of the prediction set ( ), the root mean square error of the prediction set (RMSEP), and the residual prediction deviation (RPD) were selected to evaluate the prediction capabilities of the developed models (Sharma et al., 2022). These evaluation indexes were calculated using the following Eqs. (1)-(3).

 

 

 

where R2 represents the correlation between the predicted and actual values, and the closer R2 is to 1, the better the predictive stability and the fit of the model. RMSE represents the difference between the predicted and actual values, and a smaller RMSE indicates better model prediction performance. RPD is the ratio of the sample’s standard deviation, and its root means square error (Saeys et al., 2005). RPD< 1.4 indicates a poor model prediction, 1.4 ≤ RPD ≤ 2 indicates an average model prediction and RPD ≥ 2 indicates a good model prediction.



2.4.5 The optimization method

The particle swarm optimization (PSO) algorithm was originally proposed by Eberhart and Kennedy in 1995 and used commonly to solve optimization problems (Bhandari et al., 2015; Bonah et al., 2020). Its principle indicates that the position of each particle corresponds to the optimal vector of the problem to be solved, and a population X of m particles in a D-dimensional space is set. The position Xi and the moving speed Vi of the ith particle in the population corresponds to (Xi1,Xi2,Xi3,…XiD) and (Vi1,Vi2,Vi3,…ViD) , respectively, and Pibest is (Pi1,Pi2,Pi3,…PiD)  , representing the optimal position sought by the individual particles. At this time, the global optimal position of the whole population is Gbest, which is (Pg1,Pg2,Pg3,…PgD) . Each particle continuously updates Pbest and Gbest through a given fitness function until the optimal solution is found or the number of iterations is reached. The velocity and position of the dth-dimension of the ith particle are updated as follows (Eqs (4) and (5)).



 

where c1 and c2 are learning factors which adjust the maximum step size of learning, r1 and r2 are random numbers in the range of 0~1, and w is the inertia weight that adjusts the searchability of the solution space. This study used the PSO algorithm to optimize the LSSVM model parameters.





3 Results and discussion


3.1 Original spectral data

The raw spectral curves of the 90 kiwifruit samples are shown in Figure 3. Figure 3A is the original hyperspectral data in a wavelength range of 387.15 nm~1034.99 nm with 256 spectral bands. Figure 3B is the original fluorescence spectral data in a wavelength range of 376.80 nm~1011.05 nm with 125 spectral bands.




Figure 3 | Spectral data of kiwifruit acquired by using (A) hyperspectral imaging and (B) fluorescence imaging.



It can be seen from Figure 3A that the bands at the beginning and the end of the original hyperspectral image data are significantly affected by noise. The spectral range of 420 nm~1000 nm was selected as the useful wavelength for the original hyperspectral image, with a total of 229 spectral bands. From Figure 3A, the troughs at 450 nm and 670 nm could be due to chlorophyll and other pigments in the cell wall. In comparison, the trough absorption peak at 980 nm is attributed to the tertiary and secondary frequencies of the C-H and O-H bonds in kiwifruit SSC (Chu, 2016). The first and last bands of the original fluorescence spectral images were also affected by noise, so the spectral range of 400~900 nm was selected as the effective wavelength of the original fluorescence spectral images, with a total of 102 spectral bands. From Figure 3B, after using the excitation filters with a central wavelength of 390 nm and 495 nm, obvious peaks appear near 510 nm, 690 nm, and 740 nm.



3.2 Sample division

Dividing samples are beneficial to the stability and accuracy of the model prediction. Kennard Stone (KS) (Wei et al., 2020; Huang et al., 2021) algorithm was applied to divide 90 samples into a training set of 60 samples and a prediction set of 30 samples in a ratio of 2:1. The SSC values were collected by a handheld YSK-107 Brix salinity refractometer. The statistical results of the training and prediction sets of HSI and FSI are listed in Table 1.


Table 1 | Statistical results of training and prediction data sets of SSC (unit:/Brix).



From Table 1, the ranges of each statistical parameter for the SSC values of the training set and prediction set samples corresponding to the HSI data are 6.50~14.9 and 8.70~15.35, respectively, and the standard deviations of the two samples are 1.79 and 1.44, respectively. Although the data range of the prediction set exceeds the training set, only occasional individual data at the front and back ends of the data exist. By comparing the standard deviations, the data of the prediction set are more concentrated, conforming to the principle of independent and identical distribution, indicating that the distribution of the two is relatively consistent. The statistical parameters of the SSC values of the training set and the prediction set corresponding to the FSI data ranged from 6.50 to 15.35 and 8.70 to 14.90, respectively. The above results illustrate that the sample division is reasonable and representative.



3.3 Spectral pre-processing

The raw effective spectral image data were pre-processed by the above six methods, and the prediction results of each pre-processing method were compared through the PLSR model, from which the optimal pre-processing method was selected. The prediction results of PLSR are listed in Table 2. The number of latent variables (lvs) in Table 2 was determined by the cross-sectional analysis. 1 to n potential variables were used to establish the model and the number of lvs with the best prediction was selected.


Table 2 | The prediction results of PLSR based on different pre-processing methods.



During pre-processing of the hyperspectral data, the RPD values of SG, GWS, BS and ES were above 2.1 (Table 2), among which BS-PLSR exhibited the best prediction performance. The  of BS-PLSR is 0.8416, which is not the optimal value, but its  and RPD are 0.7629 and 2.21, respectively, the best values observed among all the methods. Hence BS was selected as the pre-processing method for raw hyperspectral image data. During pre-processing of the fluorescence spectral data, the RPD values of SG, BS, and ES were higher than the original fluorescence spectral data, with a value of 1.41. Among them, SG-PLSR showed the best prediction performance, and its  were 0.9021, 0.6396, and 1.67, respectively. SG was selected as the pre-processing method for raw fluorescence spectral image data.



3.4 Extraction of spectral feature variable


3.4.1 Extraction based on boss feature variables

Boss used WBS technology to establish a sub-model to extract feature variables randomly from the pre-processed spectral data; thus, there was certain randomness. In the experiment, Boss was repeated several times to reduce the influence of randomness. During the extraction of hyperspectral data, the number of latent variables was set to 17 through cross-validation, the cross-folding was 5 layers, and the number of sampling was 1000. Meanwhile, 19 feature variables were extracted, accounting for 8.3% of the total hyperspectral variables. Similarly, the same extraction process was performed for the fluorescence spectrum data. The number of latent variables was set to 20, other parameters were the same as above, and 31 characteristic variables were finally extracted, accounting for 30.4% of the total fluorescence spectral variables. The distribution of the feature variables extracted by Boss is shown in Figure 4.




Figure 4 | Distribution of the feature variables extracted by Boss.



As shown in Figure 4, the number and distribution of feature variables extracted by the Boss for the two spectral data differ. For hyperspectral data, the distribution of feature variables was mainly concentrated in the intervals of 500~650 nm and 800~1000 nm. In contrast, the feature variables were mainly concentrated in the wave peaks and troughs for the fluorescence spectral data.



3.4.2 Extraction of feature variables based on CARS

CARS was used to extract the feature variables from the pre-processed spectral data. The same parameters were set for both spectral data: a maximum principal component of 18, the cross-validation of 5 times, and the Monte Carlo sampling 100 times. The extraction process of two feature variables from the spectral data by CARS is shown in Figures 5, 6, respectively.




Figure 5 | Extraction process of hyperspectral feature variables by CARS: (A) The number of feature variables reserved; (B) RMSECV; (C) The change of regression coefficient of each characteristic variable.






Figure 6 | Extraction process of fluorescence spectral feature variables by CARS: (A) The number of feature variables reserved; (B) RMSECV; (C) The change of regression coefficient of each characteristic variable.



As shown in Figures 5A, B, the number of retained feature variables showed a fast and then slow continuous decreasing trend with the increase of sampling times, while the RMSECV value showed a decreasing and then an increasing trend. This could be due to the elimination of many redundant variables at the initial extraction stage. However, the excessive deletion of variables at the later extraction stage led to a decline in the model’s prediction performance.

The curve in Figure 5C represents changes in the regression coefficient of each feature variable with the increase of the sampling times. The blue “*” indicates the Monte Carlo sampling times when RMSECV had a minimum value. The model prediction performance was optimal at this time, and the corresponding number of samples was 40. Also, the trend of Figure 6 is similar to Figure 5, and the corresponding number of samples was 36 when RMSECV had the minimum value. Finally, the numbers of feature variables of hyperspectral data and fluorescence spectral data extracted by CARS were 35 and 25, respectively, accounting for 15.3% and 24.5% of the total original spectral variables. The distribution of feature variables extracted by CARS is shown in Figure 7.




Figure 7 | Distribution of the feature variables extracted by CARS.



As shown in Figure 7, the hyperspectral feature variables extracted by CARS were mainly concentrated in two spectral ranges of 430~610 nm and 800~1000 nm. In comparison, the fluorescence spectral feature variables extracted by CARS were mainly concentrated in three spectral ranges of 400~500 nm, 600~680 nm, and 770~900 nm.



3.4.3 Extraction of feature variables based on IVSO

IVSO was used to extract feature variables from the pre-processed spectral data. During the extraction process of hyperspectral data and fluorescence spectral data, the maximum numbers of PC cross-validation were set to 14 and 16, the cross-validation numbers were set to 9 and 7, and the running number of WBMS was set to 1000.

In the extraction process of hyperspectral data, IVSO was iterated 9 times. At this time, RMSECV reached a minimum value of 0.807, and 44 feature variables were extracted at the third iteration. In the fluorescence spectral data extraction process, RMSECV reached a minimum value of 0.940, and 23 feature variables were extracted. The distribution of feature variables extracted by IVSO is shown in Figure 8, where the hyperspectral feature variables are mainly distributed around 520 nm and 820 nm. In contrast, the distribution of the fluorescence spectral characteristic variables is relatively uniform.




Figure 8 | Distribution of the feature variables extracted by IVSO.





3.4.4 Extraction of feature variables based on IVISSA

IVISSA was used to extract feature variables from the pre-processed spectral data. During the extraction processes of hyperspectral and fluorescence spectral data, the maximum number of latent variables was set to 19 and 17, respectively. Through cross-validation optimization, the number of cross-validation was 10, and the number of binary matrix sampling was 1000. In the extraction process of hyperspectral data, IVISSA iterated a total of 29 times, and RMSECV reached a minimum value of 0.7559. At this time, 70 feature variables were extracted, accounting for 30.6% of the total spectral variables. In the fluorescence spectral data extraction process, IVISSA iterated 19 times, and RMSECV reached a minimum value of 0.6923. 41 feature variables were extracted at that time, accounting for 40.2% of the total spectral variables. The distribution of feature variables extracted by IVISSA is shown in Figure 9.




Figure 9 | Distribution of feature variables extracted by IVISSA.



As shown in Figure 9, the numbers of two spectral feature variables extracted by the IVSO algorithm are relatively large, and the number of hyperspectral feature variables is much higher than the fluorescence spectral feature variables. Among them, the fluorescence spectral feature variables are distributed uniformly in the whole spectral range, while the hyperspectral feature variables are densely distributed at 450 nm, 540 nm, 620 nm, 810 nm, and 950 nm.



3.4.5 Extraction of feature variables based on MASS

MASS was used to extract feature variables from the pre-processed spectral data. During the extraction processes of hyperspectral and fluorescence spectral data, the maximum number of latent variables was set to 13 and 14, respectively. Through cross-validation optimization, the number of cross-validation was 5, and the number of binary matrix sampling was 1000. In the extraction process of hyperspectral data, MASS iterated 36 times, and 53 feature variables were extracted, accounting for 23.1% of the total hyperspectral variables. In the extraction process of fluorescence spectral data, MASS iterated 22 times, and 29 feature variables were extracted, accounting for 28.4% of the total fluorescence spectral variables. The distribution of feature variables extracted by MASS is shown in Figure 10.




Figure 10 | Spectral feature variable distribution map based on MASS.



From Figure 10, the number of feature variables extracted by MASS for the two types of spectral data are 23.10% and 28.4%, respectively. The extracted fluorescence spectral feature variables are distributed uniformly in the whole range, while the hyperspectral feature variables are concentrated in the former and latter two spectral ranges.



3.4.6 Secondary extraction of the feature variables

The first feature extraction could reduce some redundant and collinear variables in the original feature variables. However, the proportion of first-extracted feature variables is still high, with a few redundant variables. In order to further improve the prediction performance of the model, secondary feature extraction was adopted. Boss could greatly minimize the number of feature variables compared to the other four algorithms. Therefore, combining CARS, MASS, and IVISSA with the Boss algorithm for secondary feature extraction could combine the advantages of different feature extraction algorithms and further reduce the number of feature variables. The number of feature variables after the secondary extraction is listed in Table 3.


Table 3 | The results of secondary feature extraction.



The specific feature variables obtained by the above three secondary feature extraction methods are listed in Table 4.


Table 4 | Spectral variables obtained by different secondary feature extraction methods.





3.4.7 Results of feature variable extraction

The numbers of feature variables obtained by the above eight feature extraction methods are shown in Figure 11.




Figure 11 | The number of variables extracted by different feature extraction methods.



From Figure 11, for hyperspectral data, the number of extracted feature variables ranged from 17 to 70. Among them, the number of feature variables extracted by IVISSA-Boss is the least, and the number of feature variables extracted by IVISSA is the largest. For the fluorescence spectral data, the number of the extracted feature variables ranged from 20 to 41. Among them, the number of feature variables extracted by IVISSA-Boss is the least, and the number of feature variables extracted by IVISSA is the largest. In addition, the number of feature variables after secondary feature extraction decreased, indicating that secondary feature extraction could further remove the redundant variables.




3.5 Performance analysis of predictive models

The extreme learning machine (ELM), the partial least squares regression (PLSR), and the least squares support vector machine optimized by the particle swarm optimization (PSO-LSSVM) prediction models were established for the above-indicated 8 types of feature variables extracted. The differences in the prediction performance of the two spectral image data for the SSC value of kiwifruit were analyzed and compared.


3.5.1 ELM

The “sig” function was selected as the activation function, and the number of neurons in the hidden layer was set from 1 to 100. The prediction results of ELM based on hyperspectral and fluorescence spectral feature variables are listed in Tables 5, 6, respectively.


Table 5 | Prediction results of ELM based on hyperspectral data.




Table 6 | Prediction results of ELM based on fluorescence spectral data.



As shown in Table 5, the RPD value of ELM established by 8 types of hyperspectral feature variables ranged from 1.90 to 2.83, and its   and   were higher than 0.86, presenting that the overall prediction effect of ELM is stable. IVISSA-ELM exhibited the worst prediction effect due to more redundant variables in its retained feature variables. The prediction effect of ELM after secondary feature extraction was improved, among which MASS-Boss-ELM showed the best prediction effect with  ,   and RPD of 0.8671, 0.9000, and 2.83, respectively.

Table 6 illustrates that the RPD value of ELM established by 8 types of fluorescence spectral feature variables ranged from 2.24 to 2.88. Among them, the prediction performance of Boss-ELM is slightly worse, and its RPD is only 2.24. Compared with CARS-ELM, the RPD of CARS-Boss-ELM decreased slightly, and it was estimated that some effective feature variables were excluded in the secondary feature extraction process. The prediction performance of MASS-Boss-ELM was relatively optimal, with  ,  , RPD of 0.8894, 0.9429, and 2.88, respectively.

From Tables 5, 6, the ranges of  and   of the ELM established by 8 types of hyperspectral feature variables were 0.8064~0.8750 and 0.8641~0.9443, respectively. For the feature variables of fluorescence spectra, the ranges of   and   corresponding to ELM were 0.8329~0.8894 and 0.8805~0.9429, respectively. Therefore, the overall prediction performance of ELM based on fluorescence spectral data is superior. MASS-Boss-ELM was optimal for both hyperspectral and fluorescence spectral data, verifying that the method reveals the strongest generalization ability.



3.5.2 PLSR

The cross-validation method was used to determine the number of PLSR latent variables, and the optimal latent variables were selected as the final. The prediction results of PLSR based on hyperspectral and fluorescence spectral feature variables are listed in Tables 7, 8, respectively.


Table 7 | Prediction results of PLSR based on hyperspectral data.




Table 8 | Prediction results of PLSR based on fluorescence spectral data.



From Table 7, the PLSR established by 8 types of hyperspectral feature variables performed well in the prediction performance of kiwifruit SSC, and the RPD values exceeded 2.0; the highest RPD value reached 2.89. Compared with PLSR based on first feature extraction, the prediction performance of PLSR after secondary feature extraction was generally improved, indicating that secondary feature extraction could effectively filter out redundant variables. Among them, the prediction results of MASS-Boss-PLSR are relatively the best, with  ,   and RPD of 0.8717, 0.8747 and 2.89, respectively.

As shown in Table 8, while comparing with the PLSR after only SG pre-processing, the prediction performance of PLSR displays improvements in the range of 1.85 to 2.36 after both the first and secondary feature variable extraction, both of which are higher than 1.67 of the SG-PLSR without feature extraction (Table 2). Among them, the prediction result of MASS-Boss-PLSR is the worst as the secondary feature extraction algorithm eliminates part of the key feature variables. The prediction performance of CARS-PLSR is relatively optimal, with  ,  , and RPD of 0.8159, 0.8588, and 2.36, respectively.

By comparing Table 7, 8, the ranges of   and   of PLSR based on hyperspectral data are 0.7964~0.8784 and 0.8505~0.9179, respectively. The ranges of   and   of PLSR based on fluorescence data are 0.7467~0.8159 and 0.8017~0.9522, respectively. By combining Tables 4, 7, there is variability in the performance of the prediction models based on hyperspectral and fluorescence spectral data, in which MASS-Boss-ELM based on fluorescence spectral data is the optimal prediction method, and its    , and RPD are 0.8894, 0.9429 and 2.88, respectively.



3.5.3 PSO-LSSVM prediction model

The radial basis function (RBF) was selected as the kernel function of LSSVM, and the prediction performance of the model was easily affected by the regularization parameter γ and the kernel parameter σ2 of RBF. The two parameters were optimized by the particle swarm optimization (PSO) algorithm (Bhandari et al., 2015; Bonah et al., 2020). In the training process, the population number, the iteration number, and the initial value of the inertia factor were set to 20,100, and 0.90, respectively, and both the learning factors c1 and c2 were 2. PSO-LSSVM was tested, and its prediction results are listed in Tables 9, 10, respectively.


Table 9 | Prediction results of PSO-LSSVM based on hyperspectral data .




Table 10 | Prediction results of PSO-LSSVM based on fluorescence spectral data.



As exhibited in Table 9, the prediction effect of PSO-LSSVM based on 8 types of hyperspectral feature variables performed well, and the RPD and   are generally higher than 2.0 and 0.8, respectively, and   ranged from 0.74 to 0.85, indicating that PSO-LSSVM presents good prediction performance for the SSC of kiwifruit. Among them, MASS-Boss-PSO-LSSVM illustrates the relatively best prediction results, with  ,  , and RPD of 0.8169, 0.8265, and 2.28, respectively.

The prediction effect of PSO-LSSVM based on fluorescence spectral feature variables is significantly different, and the RPD values ranged from 1.47 to 2.29 (Table 10). Among them, IVISSA-PSO-LSSVM exhibits the relatively best prediction results, with the  ,  , and RPD of 0.7473, 0.9582 and 2.29, respectively. The prediction performance of PSO-LSSVM is reduced after IVISSA-Boss secondary extraction, indicating that the valid variables among them were over-screened. In addition, the   and   of all methods differed significantly, specifying that the stability of PSO-LSSVM needs further improvements.

Among these, the best optimization parameters of PSO in the superior predicted models for the two spectra data are listed in Table 11.


Table 11 | The best PSO optimization parameters.





3.5.4 Analysis and comparison of prediction results

The methods with relatively superior prediction results based on hyperspectral data and fluorescence spectral data were hyperspectral-BS-MASS-Boss-ELM, fluorescence spectral-SG-MASS-Boss-ELM, hyperspectral-BS-MASS-Boss-PLSR and fluorescence spectral-SG-CARS-PLSR, hyperspectral-BS-MASS-Boss-PSO-LSSVM, and fluorescence spectral-SG-IVISSA-PSO-LSSVM, respectively. The prediction results of the above six methods are shown in Figure 12 and are listed in Table 12.




Figure 12 | Prediction results of different optimal methods: (A) hyperspectral-MASS-Boss-ELM; (B) hyperspectral-MASS-Boss-PLSR; (C) hyperspectral-IVSO-PSO-LSSVM; (D) fluorescence-MASS-Boss-ELM; (E) fluorescence-CARS-PLSR; (F) fluorescence-IVISSA-PSO-LSSVM.




Table 12 | Comparison of optimal results based on different feature extraction methods and models.



Figure 12 shows the regression chart of the prediction results for the above six methods. Comparing the prediction results with the other five methods, the prediction results of IVISSA-PSO-LSSVM based on fluorescence spectral data are quite different, and the prediction results are the worst. This is due to the excessive PSO algorithm parameters and the small number of samples, leading to an overfitting tendency in the training set. Compared with MASS-Boss-PLSR based on hyperspectral data, MASS-Boss-ELM and IVSO-PSO-LSSVM based on hyperspectral data exhibited relatively poor prediction results on the test set. Among them, the predicted results of MASS-Boss-ELM based on fluorescence spectral data illustrated the best generalization ability.

Table 12 presents that among the prediction results based on hyperspectral data, both MASS-Boss-ELM and MASS-Boss-PLSR show superior prediction performance, indicating that the MASS-Boss secondary extraction method could effectively filter out the feature variables, which could well represent the spectral data. Among them, MASS-Boss-PLSR exhibited a slightly superior   RMSEP and RPD to MASS-Boss-ELM could be considered the most suitable prediction method for kiwifruit SSC based on hyperspectral data. The optimal prediction method for kiwifruit SSC based on fluorescence spectral data is MASS-Boss-ELM, whose prediction indicators far exceeded the IVISSA-PSO-LSSVM and CARS-PLSR.

The method followed in this study was compared with those reported in the literature, and the comparison results are listed in Table 13. It can be seen from Table 13 that Moen et al. (Moen et al., 2021) used different machine learning technologies to study the correlation between kiwifruit spectral information and its SSC, and found that the best prediction method was UVE-PLS, with the RMSEP of 1.047 and the   of 0.39. Benelli et al. (Benelli et al., 2022) used the PLS model based on hyperspectral imaging technology to evaluate the maturity of “Hayward” kiwifruit, with the   was in the range of 0.85~0.94, and RMSE was in the range of 1.10-0.73. The best prediction method in this study was MASS-Boss-ELM based on fluorescence spectral data, and its  , RMSEP and RPD were 0.8894, 0.4824 and 2.88, respectively. Compared with the previous studies, the   obtained in this study has not been improved significantly, but the RMSEP is the lowest, specifying that the MASS-Boss-ELM is superior.


Table 13 | Comparison of the prediction results with the other methods.







4 Conclusions

This study explored the efficient prediction of hyperspectral and fluorescence spectral data for nondestructive detection of kiwifruit SSC (soluble solid content). Combining the six pretreatment methods and the PLSR model, the best pre-processing methods for hyperspectral and fluorescence spectral data were BS (boxing smoothing) and SG (Savitzky-Golay), respectively. Then, five primary and three secondary feature extraction algorithms were used to reduce the pre-processed spectral data. Three prediction models have been established: ELM, PLSR, and PSO-LSSVM. The prediction results of PLSR and ELM based on the hyperspectral and fluorescence spectral datasets were better. The best prediction method corresponding to the hyperspectral dataset was MASS-Boss-PLSR, and its  ,   and RPD were 0.8717, 0.8747 and 2.89, respectively. The best prediction method corresponding to the fluorescence spectral dataset was MASS-Boss-ELM, and its  ,   and RPD were 0.8894, 0.9429 and 2.88, respectively. Whereas PSO-LSSVM displayed the worst prediction results. In conclusion, the MASS-Boss-ELM method based on the fluorescence spectral dataset was the best non-destructive prediction method for kiwifruit SSC.

The research methods followed in this study could be improved further. For example, the optimal pre-processing methods for the two types of spectral datasets are different, and the best prediction models for each kind of spectral dataset are also different, which is not conducive to the follow-up research and development of non-destructive testing devices for agricultural products. Therefore, more spectral feature extraction algorithms and different models need to be studied further to find the best prediction model suitable for the different spectral datasets and apply it to the non-destructive testing of other parameters, such as pH and the hardness of kiwifruit.
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China’s tomato cultivation area is nearly 15 thousand km2, and its annual tomato output is about 55 million tons, accounting for 7% of its total vegetable production. Because of the high drought sensitivity of tomatoes, water stress inhibits their nutrient uptake, leading to a decrease in tomato quality and yield. Therefore, the rapid, accurate and non-destructive detection of water status is important for scientifically and effectively managing tomato water and fertilizer, improving the efficiency of water resource utilization, and safeguarding tomato yield and quality. Because of the extreme sensitivity of terahertz spectroscopy to water, we proposed a tomato leaf moisture detection method based on terahertz spectroscopy and made a preliminary exploration of the relationship between tomato water stress and terahertz spectral data. Tomato plants were grown at four levels of water stress. Fresh tomato leaves were sampled at fruit set, moisture content was calculated, and spectral data were collected through a terahertz time-domain spectroscope. The raw spectral data were smoothed using the Savitzky–Golay algorithm to reduce interference and noise. Then the data were divided by the Kennard–Stone algorithm and the sample set was partitioned based on the joint X-Y distance (SPXY) algorithm into a calibration set and a prediction set at a ratio of 3:1. SPXY was found to be the better approach for sample division. On this basis, the stability competitive adaptive re-weighted sampling algorithm was used to extract the feature frequency bands of moisture content, and a multiple linear regression model of leaf moisture content was established under the single dimensions of power, absorbance and transmittance. The absorbance model was the best, with a prediction set correlation coefficient of 0.9145 and a root mean square error of 0.1199. To further improve the modeling accuracy, we used a support vector machine (SVM) to establish a tomato moisture fusion prediction model based on the fusion of three-dimensional terahertz feature frequency bands. As water stress intensified, the power and absorbance spectral values both declined, and both were significantly and negatively correlated with leaf moisture content. The transmittance spectral value increased gradually with the intensification of water stress, showing a significant positive correlation. The SVM-based three-dimensional fusion prediction model showed a prediction set correlation coefficient of 0.9792 and a root mean square error of 0.0531, indicating that it outperformed the three single-dimensional models. Hence, terahertz spectroscopy can be applied to the detection of tomato leaf moisture content and provides a reference for tomato moisture detection.
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1 Introduction

Water resources are the key to agricultural development, and China’s per capita water resource appropriation is extremely low: only one quarter of the global average. As a large agricultural country, agricultural water consumption accounts for 65% of total water consumption in China, but its effective utilization rate is only 45%, far lower than the levels of 70%–80% in advanced water-saving countries (Zhang et al., 2020). At the same time, the production approach of “big water and big fertilizer” also leads to a reduction in crop quality. Therefore, vigorously improving the efficiency of agricultural water use is an important strategic measure to ensure water security and improve crop quality in China.

As one of the main facility crops, tomatoes are planted throughout China. In 2017, China’s facility tomato planting area was nearly 15 thousand km2 (Wang et al., 2021), and its annual production accounted for nearly 1/3 of the global tomato output. Tomatoes require a long growth period and a large amount of water, and because of their extreme sensitivity to water, they have specific requirements for water at different growth stages. Insufficient water inhibits the absorption of nutrients by crops and slows the growth of leaf area, plant height and stem thickness, resulting in reduced crop quality and yield (Zhang et al., 2023). Therefore, the rapid, accurate and non-destructive detection of tomato water status is very important for scientifically and effectively managing tomato water and fertilizer use, improving water resource utilization efficiency, and ensuring tomato yield and quality in China.

Nondestructive detection of crop water stress has been studied extensively, and the most important methods include spectroscopy, the infrared canopy temperature method, and imaging. Fitzgerald et al. (2006) tested the ability of several multispectral indexes to estimate the nutrient status of the wheat canopy grown under different degrees of water stress and derived the canopy reflectance index that was closely related to these factors. Although moisture status was diagnosed, no quantitative moisture detection method was established. Huang et al. (2009) analyzed the factors that affected the accuracy of a near-infrared (NIR) spectral straw moisture model, introducing the LOCAL algorithm for nondestructive detection of straw moisture and establishing an NIR straw moisture prediction model. Nevertheless, the influence of environmental factors such as changes in natural light intensity was ignored, suggesting that the detection accuracy required further improvement. Zhang et al. (2018) used drones equipped with thermal infrared sensors for temperature detection in cotton fields and found that cotton canopy temperature characteristics were correlated with cotton moisture. However, the use of drones is greatly influenced by environmental uncertainties such as ground evaporation, environmental heat exchange, and airflow, and the stability and accuracy of the model are low. Tian et al. (2016) used NIR hyperspectral imaging to extract images of maize grain embryo structure and established a maize grain moisture content prediction model. Unfortunately, the sample processing and analysis process was relatively complicated, which is not conducive to rapid moisture detection. The studies above show that although NIR hyperspectral and thermal infrared data show good correlation with water stress, they are greatly influenced by field energy exchange, solar radiation, and other environmental changes because of the use of thermal radiation detection. These methods often cannot comprehensively describe the physical characteristics or internal tissue physiological and biochemical characteristics of leaves under water stress, which undoubtedly impacts the accuracy of the measurements.

Terahertz spectroscopy has been described as one of the ten technologies that will influence the future of mankind in the 21st century (Zhang et al., 2022). Terahertz waves are electromagnetic waves with the frequency between 0.1 and 10 THz and a wavelength range of 30 μm to 3 mm; they lie between microwave and infrared radiation on the electromagnetic spectrum (Luo et al., 2019). Terahertz radiation is penetrating, fingerprinting, and coherent, and it has the advantage of multi-dimensional fusion detection. Traditional spectroscopic and imaging methods typically obtain information about only the reflection characteristics of the detected object and its distribution (image) in different characteristic spectral bands. By comparison, terahertz time-domain spectroscopy is rich in information about the substance (Wang et al., 2017). Under terahertz radiation, polar molecules such as water undergo hydrogen bond breaking and formation on picosecond timescales, leading to intense absorption of terahertz waves (Yada et al., 2008; Yang et al., 2018). The terahertz technique can be used to detect the water status of crops based on this phenomenon.

Terahertz spectroscopy has been applied to nondestructive moisture detection. Because the absorption of terahertz spectra by proteins, amino acids, and other substances in biscuits is much lower than that of water, Liu et al. (Liu and Han, 2014) modeled the frequency domain, refractive index, and absorption coefficient of terahertz spectra by principal component analysis (PCA) and partial least squares separately, and the absorption coefficient was better than the other spectra. Breitenstein et al. (2011) examined water stress in coffee plants and demonstrated the great potential and reliability of terahertz spectroscopy for monitoring leaf moisture content in the field. Gente et al. (Gente et al., 2013; Gente et al., 2015) established a moisture prediction model for barley leaves by combining the transmission and absorption coefficients in the terahertz spectra, and its results were consistent with the true leaf moisture content. Long et al. (2017) scanned green herb leaves in vitro point-by-point at intervals using a terahertz spectrometer and reconstructed images to observe the differences in moisture content. They established a regression prediction model based on water content and the time-domain and frequency-domain mean values of the images, thereby demonstrating the applicability of terahertz technology to leaf moisture detection. Zhao et al. (2018) studied soybean canopy moisture content using terahertz spectroscopy by simulating drought stress. They used partial least squares and multiple linear regression to establish a correlation model of the time-domain spectra, absorption coefficient, and refractive index with leaf moisture content, providing a solution for rapid monitoring of soybean canopy water content. The studies above show the potential of terahertz spectroscopy for moisture content detection.

Nondestructive detection based on terahertz time-domain spectroscopy has the advantages of speed, convenience, and minimal disturbance compared with other detection methods. Existing studies reveal a significant correlation between terahertz spectroscopy data and crop moisture content, and the use of terahertz spectroscopy holds promise for water stress detection.

Leaf moisture content is an important indicator for diagnosing tomato water stress. In this study, we cultivated tomatoes at different levels of water stress and used terahertz spectroscopy to acquire time-domain terahertz spectra of tomato leaves, including the power spectrum, absorbance, and transmittance. A high-precision tomato leaf moisture content prediction model was established. This study provides a basis for scientific and appropriate precision management of water and fertilizer during tomato cultivation.



2 Materials and methods


2.1 Sample cultivation

The quality of the test sample cultivation has a direct impact on the test results. Therefore, in the process of sample cultivation, the influence of environmental factors should be minimized and the accuracy of the sample data should be improved. The experiment was carried out in a Venlo-type greenhouse (32.2°N, 119.5°E) at the Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Jiangsu University. The environmental temperature of the greenhouse was maintained at 10.7-29.4°C, and the relative humidity was 37.3%-87.9%. The test samples were 906 red tomatoes (Shanghai Changchong Tomato Seed Industry Co., Ltd.). Tomato seeds with large, plump grains and similar shapes were selected, and the selected seeds were placed in lightly salted water to screen out diseased seeds and sclerotia. The experimental samples were cultivated in a soilless pot with nutrient solution based on perlite.

In order to study the condition of tomatoes under different water stress and accurately control the water under the condition of ensuring the balance of nutrient elements, four water stress gradients were set according to 20%, 40%, 60% and 80% of the standard irrigation (600 mL, a mixture of water and nutrient solution) amount from the 5th day of planting, and 10 pots of tomato samples were cultivated in each gradient. During the experiment, the cultured tomato plants were watered with the Japanese Yamazaki nutrient solution formula.



2.2 Instruments and equipment

In this study, the TS7400 THz time-domain spectral measurement system produced by Edevan Company of Japan is used to collect the terahertz information of samples. This system is specially customized for agricultural biological information detection. It has an ART attenuated total reflection module that can detect biological tissues and living samples with high water content. Figure 1 shows the structure and working principle of the TS7400 THz time-domain spectral measurement system. When the measurement system is working, the laser light source emits laser pulses. Under the action of the beam splitter, it is divided into two mutually perpendicular lasers. One is a strong pump light, and the other is a weak probe light. The pump light passes through the terahertz transmitter and reflector, passes through the measured sample, and then, collinear with the multiple reflected probe light, passes through the probe crystal and is transmitted to the terahertz detector. The detector transmits the difference between the two laser beams to the A/D module, The time-domain terahertz spectrum and its distribution information of the samples are obtained by comparing their differences through data processing.




Figure 1 | The structure and working principle of the Advantest-TS7400 THz-TDS measurement system.



1. Operating/analyzing computers; 2. Ethernet; 3. Optical fiber; 4. Analysis unit; 5. Measurement unit; 6. THz transmitter; 7. THz detector; 8. Sample stage; 9. Cryostat transfer module; 10. Removable stand.

Compared with the traditional terahertz device, the device not only has higher accuracy, but also can detect samples with a scale of up to 3 cm² Expand to 225 cm², It can better meet the measurement needs of crop samples. The measurement frequency range of TS7400 THz time-domain spectrum measurement system is 0-4 Thz, the resolution is less than or equal to 5 Ghz, the sampling interval is 0.0038 Thz, and the maximum sample area is 150 * 150 mm2.

The quality of tomato leaf samples was weighed with a high-precision analytical balance with an accuracy of 0.1 mg.



2.3 Data collection

Tomato leaf samples were collected 65 days after water stress treatment: healthy leaves were cut from the pinnate leaves of tomato plants that were most representative of the growth state. The leaves were immediately placed in fresh sealed bags and stored in a portable refrigerated incubator to prevent evaporation. Twenty leaf samples were selected from each water stress treatment for a total of 80 samples across all treatments.

After collection, the fresh leaves were weighed in a laboratory environment and then placed in a THz time-domain spectroscopy system to scan the spectra. To eliminate the influence of water vapor in the air on the THz spectra, we turned on the dehumidifier in advance to regulate the relative humidity in the test chamber to less than 5%. Each sample was scanned at 10 sampling points, and the data were averaged. After scanning, the leaves were dried in a 70°C incubator for more than 24 h. When sample quality no longer changed, the dry leaves were weighed. The moisture content of the tomato leaves (w, %) was calculated as:

 

where m1 and m2 are the fresh and dry weight (g) of the sample, respectively.




3 Results and analysis


3.1 Terahertz spectrum analysis


3.1.1 Power

The power spectrum density function, or power, is defined as the signal power per unit frequency band. It represents the variation of signal power with frequency, i.e., the distribution of signal power in the frequency domain (Du et al., 2022). The power spectrum can be used to find the relationship between signal power and moisture content. Figure 2 shows the curves of mean power for different water levels in the frequency range of 0.5–1.5 THz.




Figure 2 | Curves of mean power measured for different water levels. Reference is the background data collected when no leaf samples were present.



As the leaf water level decreased, the mean curve of the power spectrum also decreased. The power spectra from leaves of different water contents clearly differed, and all were higher than the background data.



3.1.2 Absorbance

Absorbance reflects the degree of light absorption by a substance, and differences in moisture content among leaves cause differences in absorbance. Figure 3 shows the curves of mean absorbance for different leaf water levels in the frequency range of 0.5–1.5 THz.




Figure 3 | Curves of mean absorbance for different leaf water levels.



The water level of a sample was positively correlated with the absorbance and frequency of its terahertz spectrum. The higher the moisture content of the tomato leaf, the greater the absorbance, and absorbance clearly increased with increasing frequency. Clear differences were observed among different water levels, and there was a significant correlation.



3.1.3 Transmittance

Transmittance indicates the light transmission property of a sample. Because terahertz waves are sensitive to water, samples with different water levels differ significantly in transmittance. Figure 4 shows the curves of mean transmittance for different water levels in the frequency range of 0.5–1.5 THz.




Figure 4 | Curves of mean transmittance for leaves of different water levels.



In this frequency range, transmittance decreases with increasing frequency. The lower the leaf water level, the higher the transmittance, and vice versa. The main reason for this phenomenon is that multiple interactions between polar molecules (e.g., water) occur during irradiation by terahertz waves, resulting in strong absorption of the terahertz waves (Yang et al., 2014).




3.2 Spectral modeling


3.2.1 Data preprocessing

Terahertz time-domain spectral data will carry some noise during the acquisition process, and the raw data contain much redundant and invalid information and more interference noise. Hence, the data must be preprocessed to effectively reduce interference and improve the modeling efficiency and accuracy.

Here, the Savitzky–Golay (SG) smoothing algorithm was used to pre-process the data. The choice of window width and polynomial order are important when applying this algorithm; if the choice is inappropriate, the effect of filtering and the accuracy of the data will be affected.

Using power spectra as an example, Table 1 shows the Rc and RMSE of the power spectra for the regression model of measured moisture content in the same frequency band after SG smoothing using windows of different widths. Figure 5 shows a comparison of THz power data before and after smoothing.


Table 1 | Preprocessing results with different window widths.






Figure 5 | Comparison of data before and after smoothing.



During data preprocessing with the SG algorithm, the Rc of the model decreased and the RMSE increased as the window width increased beyond 5 (Table 1), seriously affecting the modeling accuracy.

After comparison of preprocessing results with different window widths, we selected a width of 5 points/time for data preprocessing.



3.2.2 Sample classification

To obtain better modeling results, we used both the Kennard–Stone (KS) algorithm and the joint X-Y distance (SPXY) algorithm to partition samples into the calibration set and the prediction set. The modeling effects obtained after classification with the two algorithms were compared, and the algorithm with a better effect was selected for use in subsequent processing. The division ratio between the calibration and prediction sets was 3:1, which meant that there were 60 samples and 20 samples in the two sets, respectively.

Table 2 shows the modeling results of power spectrum, absorbance, and transmittance after classification by the KS or SPXY algorithms. These results are not from the final model, so the evaluation indexes associated with the calibration set are used for comparison.


Table 2 | Modeling results after classification by the KS and SPXY algorithms.



The data in the calibration set obtained with the SPXY algorithm were more correlated and had a lower RMSEC than the data obtained with the KS algorithm (Table 2). The calibration set models for power spectrum had higher Rc, lower RMSEC, and higher model quality than the calibration set models for absorbance and transmittance. Subsequent data analysis and processing were based on the SPXY algorithm.



3.2.3 Feature band extraction

The extraction of the feature frequency band is a key aspect of THz time-domain spectral modeling. The full THz band typically contains many variables that have a low correlation with the target value, and there is also collinearity between similar variables. If irrelevant variables are not eliminated and the full frequency band is used for modeling, the model will be complex, and some of the irrelevant variables will lower the modeling accuracy (Liu et al., 2014).

Because too few variables lead to low model accuracy and too many variables result in excessive model complexity, we adopted the stability competitive adaptive re-weighted sampling (SCARS) algorithm to extract feature frequency bands, thereby simplifying the model and improving its efficiency and accuracy. SCARS uses the stability of the variable as a measure, and variables with greater stability are more likely to be selected. Moreover, the frequency band selected remains consistent for each iteration, ensuring that variable selection is stable and fast.

The optimal potential band variables are selected by Monte Carlo cross-validation, and the RMSEC is obtained after each cycle. Due to the large number of sampling times, the subset combination with the smallest RMSEC must be selected after several repeated tests for comparison in order to obtain a better combination of characteristic bands. Here, the number of sampling cycles was 50, and the operation results therefore tended to be stable. The results of SCARS are shown in Figure 6, using the power spectrum as an example.




Figure 6 | Results of the SCARS algorithm.



The RMSECV of the cross-validation model of the power spectrum reached a minimum of 0.2136 after 27 sampling runs and then gradually increased, indicating that SCARS began to eliminate feature variables that had a large impact on the algorithmic accuracy. Therefore, the subset of feature variables obtained in the 27th run was considered to be optimal, and a total of nine THz feature bands significantly correlated with moisture content were selected.

The absorbance and transmittance feature bands were extracted similarly (Table 3).


Table 3 | esults of feature frequency band extraction.



The extracted feature bands were concentrated around 0.54, 0.59, 1.28, 1.34 and 1.45 THz, which were correlated with peaks or troughs in the THz moisture content curves.



3.2.4 Model analysis

After the extraction of THz feature bands, multiple linear regression models were built by combining the optimized frequency bands of the three optical features with the measured moisture content of the corresponding samples. The modeling results for the single dimensions of power spectrum, absorbance, and transmittance are shown in Table 4.


Table 4 | Results of single-dimension models.



The model based on the dimension of absorbance showed the highest correlation between the calibration and prediction sets, reaching 0.9102 and 0.9145, respectively, and the RMSEs of the two sets were 0.1072 and 0.1199, respectively. The model built from the power spectrum dimension had the lowest correlation for the calibration set (0.8917) with an RMSE of 0.1044.

Comprehensive analysis of the single-dimension models showed that the calibration set and the prediction set produced unsatisfactory results: the accuracy and stability were low and could be further improved.




3.3 Fusion modeling


3.3.1 Normalization



3.3.2 PCA

After the fusion of spectral features from the three dimensions, the number of feature bands obtained was greatly increased and the data dimension was enhanced, making the model inconvenient. To reduce the model complexity, we used PCA to reduce the data dimensionality after feature fusion.

PCA is a multivariate statistical method that selects a small number of variables from a large number of variables, such that most of the information in the raw data can be replaced by a series of linear transformations (Wang et al., 2017).

The contribution rate and cumulative contribution rate of the principal components after performing data dimension reduction through PCA are shown in Table 5.


Table 5 | Results of PCA algorithm.



When the number of principal components was 7, the cumulative contribution reached 0.9519 (>95%), and most of the valid information from the feature fusion was retained. Hence, reducing the raw feature variables from 22 to 7 dimensions can avoid overfitting and reduce model complexity.



3.3.3 Support vector machine (SVM)

SVM based on statistical learning theory has strong learning ability for small samples, high model generalization performance, and the ability to handle high dimensional data, making it particularly suitable for dealing with small samples, nonlinearity, and high dimensional problems encountered in practical applications. Therefore, the dimensionality-reduced fused feature variables were used for regression modeling with SVM.

The regression model was built using the LibSVM package in Matlab and was developed and designed by Professor Lin Chih-Jen of National Taiwan University. This model is simple and easy to use, and it can solve problems of classification, regression, and distribution estimation. Among the many nuclear functions, the radial basis nuclear function (RBF) has low computational complexity and is a reasonable first choice (Wang et al, 2022).

The main parameters of an RBF model are the nuclear function of the Gamma function parameter g, the error penalty factor C, and the loss function p. Parameter settings can be adjusted based on the output results and the law of curve changes until prediction accuracy meets the requirements.

A cross-validation approach was used to select the best parameters, and the highest Rc was 0.9815 when g, C and p were 8.65, 2.41 and 0.01, respectively. The results of fusion modeling are shown in Figure 7.




Figure 7 | Scatter plot of SVM.



The scatterplot relationship analysis showed that the Rc and Rp were 0.9815 and 0.9792, respectively, higher than the highest values of 0.9102 and 0.9145 from the single-dimension models. The RMSRC and RMSRP were 0.0453 and 0.0531, respectively, lower than those of all the single-dimension models. Hence, the results of the fusion model created from different dimensions by SVM outperformed the results of all the single-dimensional models.





4 Conclusions

The relationships among the THz spectra in the power spectrum, absorbance, and transmittance were studied and modeled separately. Finally, a fusion model for tomato leaf moisture content prediction was developed by fusing the feature bands from the three dimensions using SVM. In the frequency range of 0.5–1.5 THz, leaf moisture content level was positively correlated with absorbance and negatively correlated with both transmittance and frequency. At the same frequency, as the water level decreased, the power spectrum and absorbance decreased with significant negative correlations, and transmittance increased with a significant positive correlation. The model based on absorbance feature frequency produced the best results, with a correlation coefficient of 0.9145 and a root mean squared error of 0.1199 for the prediction set.(1) The prediction set correlation coefficient of the fusion model was 0.9792, an improvement in accuracy of 7.1% compared with the absorbance model, and its root mean square error was 0.0531, indicating a better prediction effect.
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Tobacco is an important economic crop and the main raw material of cigarette products. Nowadays, with the increasing consumer demand for high-quality cigarettes, the requirements for their main raw materials are also varying. In general, tobacco quality is primarily determined by the exterior quality, inherent quality, chemical compositions, and physical properties. All these aspects are formed during the growing season and are vulnerable to many environmental factors, such as climate, geography, irrigation, fertilization, diseases and pests, etc. Therefore, there is a great demand for tobacco growth monitoring and near real-time quality evaluation. Herein, hyperspectral remote sensing (HRS) is increasingly being considered as a cost-effective alternative to traditional destructive field sampling methods and laboratory trials to determine various agronomic parameters of tobacco with the assistance of diverse hyperspectral vegetation indices and machine learning algorithms. In light of this, we conduct a comprehensive review of the HRS applications in tobacco production management. In this review, we briefly sketch the principles of HRS and commonly used data acquisition system platforms. We detail the specific applications and methodologies for tobacco quality estimation, yield prediction, and stress detection. Finally, we discuss the major challenges and future opportunities for potential application prospects. We hope that this review could provide interested researchers, practitioners, or readers with a basic understanding of current HRS applications in tobacco production management, and give some guidelines for practical works.
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1 Introduction

As the primary raw material for a variety of cigarette products, tobacco is one of the most important economic crops, both in China and around the world. China grows nearly one-third of the world’s tobacco crop (Hu et al., 2010). The relevant industries provide the governments with substantial fiscal revenue. The enormous economic benefits are inextricably linked to the meticulous field management of countless practitioners. However, in recent years, the tobacco industry begins to face bottlenecks in development. On the one hand, with the gradual increase in awareness of tobacco risks, people’s attitudes toward tobacco consumption have changed. Tobacco products are no longer seen as ordinary commodities, but as harmful ones. A number of consumers are seeking high-quality, less harmful products. On the other hand, as shown in Figure 1, from 2013 to 2019, the number of tobacco farmers declines from 1.84 million to 0.92 million, a reduction of nearly 50% 1, leading to unstable yields and unsustainable development (Jia Kang, 2020). The reasons are mainly due to the tobacco planting is a labor-intensive industry with high labor intensity and needs to purchase roasting facilities. The cost benefit ratio of tobacco is lower than other crops (e.g., soybean, corn, and peanuts). Moreover, current tobacco field management methods still largely rely on the experience of tobacco farmers. Take fertilization as an example: when to fertilize, which areas to fertilize, and how much to fertilize are all determined by farmers’ observation. The advantages of this empirical method are simple and fast. Because it doesn’t require any assistance from the instruments. However, it requires farmers or practitioners to be able to make a rapid and accurate diagnosis of tobacco growth and quality, which is not easy in practice. This qualitative approach not only doesn’t reduce the field management costs, but also affects the accurate assessment of tobacco growth status and quality. Besides the empirical method, laboratory testing is another commonly used tobacco quality diagnosis method (Deng et al., 2020). It can measure various agronomic parameters quantitatively such as leaf nitrogen, chlorophyll, water, and nicotine content. This approach can accurately obtain information of various components in tobacco leaves. However, it costs more detection time and expenses, requires considerable professional knowledge, which is rarely used in the actual production (Deng et al., 2020).




Figure 1 | Number of tobacco farmers in China during 2010-2019 (million).



In light of this, a concept of “precision tobacco agriculture (PTA)” was born. It inherited from the concept of precision agriculture (PA) or site-specific management (SSM) (Bachmaier and Gandorfer, 2009; Carrow et al., 2010). In our view, PTA is a cost-effective method to address above bottlenecks and to achieve sustainable development (Chang et al., 2014), and the specific applications of PTA should including growth and quality estimation, yield prediction, and stress detection (e.g., diseases, pests, or heavy metals). In China, the first work on tobacco management zones was carried out in 2009. And the results showed that soil nutrients were similar within the management zones, which provided an information basis for SSM in tobacco fields (Xin-Zhong et al., 2009). In this case, the field information acquisition was the first step in PTA applications. However, the traditional destructive field sampling methods and laboratory measurement are generally labor-intensive and time-consuming. Therefore, there is a great demand for a method that can accurately and quickly obtain the field information on tobacco growth and quality during the growing seasons.

Fortunately, HRS technology, with its contactless observation, high spectral resolution, and flexibility, is gradually becoming recognized as a suitable alternative to traditional field sampling methods to obtain crop information (Park and Lu, 2015; Ma et al., 2022). In the field of agricultural, the most important ability of HRS is that it can obtain sufficient hyperspectral reflectance data of crops with a non-destructive mean, and with the assistance of various regression modeling algorithms, the relationship between reflectance data and various crop agronomic traits (e.g., leaf nitrogen, chlorophyll, water content, etc.) can be inferred quantitatively (Weiss et al., 2020; Jiang et al., 2022). This process is known as “spectral inversion”. Furthermore, with the development of UAV system platforms and lightweight hyperspectral imaging sensors, the inversion missions of those large-scale or scattered farmlands will become easier and faster (Johansen et al., 2019; Liao et al., 2020). The UAV-borne HRS has demonstrated a bright application prospect (Aasen et al., 2015; Zhong et al., 2018). As for HRS applications for PTA applications, it has also made great improvements (Long et al., 2019; Zhu et al., 2020). According to our survey, studies on tobacco are increasing yearly. Figure 2 shows the number of related publications from 2010 to 2022. The data are from the “Web of Science” (https://www.webofscience.com) website with the topics “tobacco” and “hyperspectral”. We can find a gradual increase in the number of publications on tobacco. However, a large portion of them are patents. There are not many research articles. This is also one of the reasons why we drafted this review. We hope that interested researchers gain some insight into the latest advances in scientific research of HRS for PTA applications from our collection and summary.




Figure 2 | Search results with the topic of “tobacco” and “hyperspectral” in Web of Science from 2010 to 2022.



In this review, we comprehensively retrieved the research of HRS in PTA to provide readers or researchers with an enhanced perceptiveness. The cited references mainly come from the Web of Science, IEEE Xplore (https://ieeexplore.ieee.org), and Google Scholar (https://scholar.google.com) websites. A few form the CNKI 2 (https://www.cnki.net) website. The literature types include academic journals, international conferences, professional books, and dissertations. Retrieval keywords consist of “hyperspectral remote sensing”, “agricultural remote sensing”, “tobacco remote sensing”, “UAV hyperspectral & tobacco”, and the combinations of them. To ensure the timeliness of references, we tend to adopt literatures with relatively recent publication dates. Thus, references cited in this review were mainly published from 2010 to 2022. Furthermore, according to our retrieval results, the existing reviews related HRS and agriculture applications cover various aspects: UAV-borne HRS (Xiang et al., 2019), hyperspectral imaging technologies (Adão et al., 2017; Mahlein et al., 2018), precision agricultural applications (Bégué et al., 2018; Latif, 2018), leaf area index (LAI) (Ke et al., 2016), crop yield prediction and nitrogen status assessment (Chlingaryan et al., 2018; Fu et al., 2021), wheat grain protein (Ma et al., 2022), etc. The rest of this article is organized as follows: in section 2, we introduce the principles and workflow of HRS applications for PTA; in section 3, we compare three commonly used hyperspectral data acquisition system platforms; the details of specific applications and methodologies are presented in section 4; the discussion of issues and recommendations is arranged in section 5; the conclusion is in section 6. We hope that new readers and researchers will have a holistic view according to our presentation.




2 Principles and workflow of HRS for PTA

Minerals on earth usually have unique diagnostic spectrum reflectance signatures (Vane and Goetz, 1993). Green plants, or plant ecosystems, are composed of the same compounds, which also have numerous unique diagnostic absorption features in the solar reflected spectrum from 400 to 2500nm. To give readers a visualized understanding of this unique feature. Figure 3 shows a typical reflectance curve of tobacco leaves containing several absorption and reflection features (400-1000 nm) caused by various biological parameters such as chlorophyll, water, and protein. This characteristic allows us to determine the physical, chemical, and biological compositions of plants with the help of remote sensing technologies, which are built on spectral radiometry theory (Borengasser et al., 2007).




Figure 3 | Major absorption and reflection features and locations of tobacco leaves.



As the frontier technology of the current remote sensing field, hyperspectral imaging technologies can obtain sufficient spectra information of ground objects from each pixel in an image of a scene. Hyperspectral reflectance data also have been verified to be more efficient in crop phenotypic traits estimation (Wang et al., 2018; Angel and McCabe, 2022), as well as target classification and precision agriculture (Teke et al., 2013; Zhao et al., 2018). Compared to traditional multispectral remote sensing (MRS), the main differences between HRS and MRS include two aspects. The first is HRS imaging sensors can obtain image data in several hundred narrow and contiguous spectral bands, while the MRS sensors can only measure image data in a few wide and discrete spectral bands. As shown in Figure 4, the wavelength range is from 400 to 1000 nm. The MRS has four discrete bands, usually including red, green, blue, and near-infrared bands, whereas the HRS has 100 contiguous bands. The second is HRS data can be used to extract the spectral features of most natural materials, which MRS data cannot do. HRS images contain much more spectral information than MRS. So, HRS has a greater potential for detecting differences among materials on the earth’s 120 surface (Pu, 2017).




Figure 4 | Comparison of MRS (left) and HRS (right) data, x, y indicate the spatial domain, λ indicates the spectral domain.



Figure 5 shows the general workflow of HRS applications for tobacco quality estimation, yield prediction, and disaster level assessment. The first is UAV-borne hyperspectral image data acquisition. The complete improved image can be obtained by stitching and alignment the original images. Radiometric correction and geometric calibration are also necessary to reduce noise interference, improve reflectance precision and radiometric accuracy. These operations can convert the original images into the hyperspectral reflectance data of the whole tobacco fields. Radiometric correction is essential for correcting systematic error and radiation distortion (Watts et al., 2012). Considering the atmospheric gases and aerosols absorption during the image collection, methods based on the radiation transmission theory have been widely used for radiation correction, such as MODTRAN (Berk et al., 2014), 6S (Hu et al., 2013), and FLAASH (Vibhute et al., 2015). Moreover, due to the effects of hyperspectral sensors, system platforms, and terrains in data acquisition. The generated image pixels are squeezed, stretched, distorted, and offset with respect to the actual position of planting areas. Thus, geometric correction is necessary too. In practice, both radiometric and geometric corrections are well-established techniques that can be processed directly in professional software (e.g. ENVI, ERDAS, and IDRISI).




Figure 5 | The general workflow of UAV-borne HRS for PTA applications.



The obtained hyperspectral image contains sufficient spectra information of tobacco leaves from each pixel in an image of a scene. However, not all spectral bands are sensitive to the observed indicators. The sensitivity of different bands is varied. Besides, hyperspectral data also have a high dimensionality and high similarity of adjacent bands. So, it is necessary to perform dimensionality reduction and denoising. In order to select the most sensitive spectral bands, various data transformation or feature extraction algorithms are applied, such as the principal component analysis (PCA), the successive projection algorithm (SPA), the elastic net (EN) algorithm, and fuzzy clustering (Koonsanit et al., 2012; Cohen et al., 2013; Liu and Li, 2017; Zhang et al., 2017). The details of those commonly used data dimensionality reduction methods are described in the review Sun and Du (2019).

After performing hyperspectral dimensionality reduction, spectral inversion is conducted to extract information from hyperspectral images for various data mining tasks. Here, inversion modeling plays an important role in quantitative estimation. It bridges the gap between hyperspectral reflectance data and agronomic traits of tobacco. In general, most of the inversion methods can be divided into empirical models and mechanistic approaches, or a combination of them Weiss et al. (2020). The empirical models mainly rely on data collection and statistics, also known as “regressions”, such as partial least squares regression (PLSR) (Dong et al., 2015), support vector machine (SVM) (Mountrakis et al., 2011), random forest (RF) (Johansen et al., 2020), neural networks (Yuan et al., 2017), etc. Its main task is to fit the numerical relationship between the measured agronomy traits in practical and spectral features. As for the mechanistic methods, they are mainly based on assumptions and modeling. For example, radiative transfer model (RTM) (Erten et al., 2016), physically-based model (Verrelst et al., 2019), SVM (Rivera et al., 2015), and neural network (Ermida et al., 2017). Furthermore, the deep learning methods of convolutional neural networks (CNN) are very effective for extracting agronomic features from HRS images (Kattenborn et al., 2021). The existing studies demonstrate that CNN can be utilized in various specific problems, such as tree species classification (Sothe et al., 2020), palm tree detection (Freudenberg et al., 2019), mapping plant communities (Wagner et al., 2019), etc. It provides researchers with a more effective HRS image analysis method, and numerous works have demonstrated that CNN outperforms shallow machine learning methods.




3 Available HRS data acquisition systems

Data is the most important part of HRS for tobacco agronomic traits analysis. In general, there are two kinds of data that are necessary. One is the hyperspectral reflectance data of tobacco fields. Another is the corresponding agronomic parameter data. The former can be obtained by various hyperspectral data acquisition systems (e.g., handheld spectrometer, UAV-borne, and satellite). The latter is measured by specific instruments and laboratory analysis (e.g., LAI-2500, SPAD-502Plus, and AutoAnalyzer 3), which may take some time to get results. In this section, we have a brief comparison between the handheld spectrometer, UAV-borne, and satellite systems. An intuitive comparison can be found in Table 1.


Table 1 | A comparison between handheld spectrometer, UAV-borne, and satellite-borne HRS platforms.



The first is handheld spectrometers (e.g., ASD FieldSpec 4, Specim-IQ). They have a high resolution and signal-to-noise ratio, better intensity accuracy and wavelength accuracy, as well as strong resistance to external interference and excellent instrument stability. They also come with a collection of great calculation tools and can perform some complex calculations, such as derivation, deconvolution, etc. In the agricultural field, due to its small size, lightweight, and convenient carrying. Some field experiments can be carried out and the measurement results can be displayed within seconds, which greatly improves efficiency. Thus, they are widely adopted for crop agronomic traits monitoring (Jia et al., 2013b; Liang et al., 2018; Cao et al., 2021). The shortcoming is that they take a lot of time to collect data due to the small coverage, especially when dealing with large planting areas.

The second is the UAV-borne HRS system platforms (e.g., V185G, GaiaSky-mini3-VN). UAV platforms are more flexible, especially in terms of revisit frequency. They can perform observation tasks in a specific area at any time, as long as the meteorological conditions are favorable (e.g., low wind speed, clear sky, and cloudless), which increases the efficiency of hyperspectral image acquisition. The application of UAV platforms makes it possible to obtain and analyze tobacco plants quickly at the canopy level (Inoue et al., 2012; Zhu et al., 2020; Liu et al., 2021). In addition, with the improvement in load capacity and battery endurance, there is also significant performance in face of large-scale regional observation tasks (Li et al., 2022). Compared to handheld spectrometers, UAV platforms save a lot of manual work and time; and compared to satellite platforms, UAV platforms are relatively accurate and convenient observation tools. The working height of UAV-borne HRS is usually 100 m. Thus the spatial resolution of UAV imagery is higher than satellite but lower than handheld. There are also some limitations of the UAV itself, such as flight duration, flight stability, and the maximum load, all of which still need to be improved.

The third is satellite-based hyperspectral data observation system platforms (e.g., GF-5, EO-1 Hyperion, and MODIS3). All of them have a greater swath width and larger spatial coverage. It makes them have a significant performance in face of large-area observation tasks (Chaurasia et al., 2006; Wang et al., 2021). But their spatial and temporal resolutions are relatively low. The working height is usually several hundred kilometers and the revisiting cycle often takes a few days. Because of the huge launch and maintenance cost, most of the satellite system platforms are supported by governments or large business organizations (e.g., CNSA4, NASA5, and Space X). However, the public can access some satellite data for free or by paying some fees (e.g., Landsat, Sentinel, and Gaofen). It should be noted that the quality of satellite hyperspectral images is highly susceptible to environmental factors such as cloud cover, rainy weather, and clutter reflections (Mulla, 2013). So, It may be difficult for the public to collect high-quality satellite hyperspectral images focused on the specific area and timings (Zhong et al., 2018).




4 Applications and methods

In this section, the specific studies are introduced from three aspects: quality estimation, yield prediction, and stress detection.



4.1 Quality estimation

Tobacco quality is a holistic and dynamic concept, high-quality tobacco evolves over time, geography as well as consumers’ desires. In general, tobacco quality mainly includes four aspects:

	Exterior quality: quality indicators that can be judged by human senses, including leaf color, length & width, structure, chrominance, completeness, etc.

	Inherent quality: the aroma and eating flavor when smoking, completely dependent on human feelings.

	Chemical compositions: usually measured in the laboratory, mainly including total nitrogen, chlorophyll, total sugar, nicotine, protein, starch, etc.

	Physical properties: flammability, absorbent, weight per unit area, electrical conductivity, etc.



The existing researches on tobacco quality estimation are decentralized, and the studies mainly focus on chemical compositions and exterior quality, rarely involving inherent quality and physical properties (not the forte of HRS technology). However, the inherent quality can be inferred by chemical compositions (Shen et al., 2017).



4.1.1 Chemical compositions



4.1.1.1 Nitrogen

Nitrogen is the most important nutrient for tobacco growth. Over-and-under-application of nitrogen fertilizers not only limits tobacco productivity but also leads to a negative impact on quality. The tobacco plants absorb the most nitrogen after 40 days of transplanting. An excessive supply of nitrogen fertilizer will result in the leaves being larger than normal, delaying tobacco maturity. Insufficient nitrogen will also lead to a delay in ripening, leaves becoming brown, and declining quality (Li, 2006). Moreover, low leaf nitrogen content (LNC) makes it taste bland, and high LNC will lead to a pungent smell (Shen et al., 2017). Thus, an accurate estimation of nitrogen status is essential to determine the final quality and total yield, improve the use efficiency of nitrogen fertilizer, and reduce environmental pollution (Li et al., 2019).

Jia et al. (2013b) extracted the central band that is sensitive to tobacco LNC based on the coefficient of determination (R2) of the linear regression model using the specific ratio vegetation index (SR) and normalized difference vegetation index (NDVI) as independent variables. The optimum band combination was R590/R1980 for SR, and (R1970-R650)/(R1970+R650) for NDVI. They selected 20 SR and 20 NDVI band combinations with the higher R2 as the independent variables of stepwise multiple linear regression (SMLR) and error back propagation neural network (BPNN) models to inverse the tobacco LNC. The experiment results showed that the BPNN model achieved the best performance with R2 was 0.91 and the root mean square error (RMSE) was 0.09. The R2 and RMSE of the SMLR model were 0.86 and 0.60, respectively. Liang et al. (2014) investigated the relationship between spectral features of tobacco cultivars and their nitrogen use. A 15N tracer pot experiment was conducted with four tobacco cultivars under different nitrogen use efficiency. The authors configured two nitrogen levels, N1 (1.0 g/pot) and N2 (3.0 g/pot), and utilized three VIs (i.e., ratio vegetation index (RVI), difference vegetation index (DVI), and NDVI) to evaluate the nitrogen use efficiency.




4.1.1.2 Phosphorus

Phosphorus is an essential mineral element required for tobacco photosynthesis and respiration. Li et al. (2014) generated a visual reporting system to monitor the dynamic changes of phosphorus concentration by expressing a purple gene extracted from cauliflower. The authors selected wild-type and transgenic tobacco plants as the experiment targets and studied their correlation between leaf phosphorus concentration and the hyperspectral reflectance at 554 nm. The results showed that the R2 of transgenic tobacco leaves was 0.96, and the R2 of wild-type leaves was only 0.45.




4.1.1.3 Potassium

Potassium is also an essential mineral element that can increase the intensity of photosynthesis. In general, the higher content of potassium in tobacco leaves, the higher yields and quality will be. Li (2006) studied the quantitative relationship between the leaf potassium concentration and 19 spectral parameters of tobacco. The modeling method was exponential fit. According to the fitting results, there were three spectral parameters achieved better performance: pigment-specific simple ratio (PSSRa), optimized soil adjusted vegetation index (OSAVI), and NDVI (670, 780 nm), the corresponding R2 were 0.929, 0.928, and 0.927, respectively. Junying et al. (2020a) proposed a method to predict tobacco K2O content based on UAV-borne hyperspectral imaging. The model equation was:

 

where Y was the predicted value of tobacco K2O content, and R498.6 was the first derivative of the logarithm of original reflectivity at 498.6 nm. The results on test set showed that the RMSE of this model was 0.40, and the absolute value of the mean relative error was 8.04%.




4.1.1.4 Chlorophyll

Chlorophyll is an important indicator in the process of plant growth, including photosynthetic rate, nutritional status, and maturity (Peng and Gitelson, 2012). Especially for tobacco, a broad-leaf crop with leaves harvested, leaf chlorophyll content plays an important role in growth and quality. Guo et al. (2019) investigated the relationship between leaf chlorophyll content (LCC) and various tobacco canopy hyperspectral parameters, including 9 parameters based on red edge position, 3 parameters based on red edge area, and 6 parameters based on VIs. Among them, 7 parameters with high significant level were taken as the independent variables of six regression functions to build inversion models (i.e., linear, exponential, parabolic, power, logarithm, and cubic regression models). Thus, there were 42 inversion results in total. The combination of (SDr-SDy)/(SDr+SDy) 6 and linear regression obtained the best performance with R2 = 0.948, RMSE=0.127 mg/g, and relative error (RE)=9.31%. Jia et al. (2020) conducted an spectral inversion of tobacco chlorophyll-a content under different light qualities. The leaf spectral reflectance data was collected by an ASD field spectrometer. Linear regression and BPNN models were applied to predict leaf chlorophyll-a content. The results demonstrated that BPNN has the most reliable performance with R2 = 0.86 and RMSE=0.05. A similar study can also be found in Dongyun et al. (2015). Roughly the same parameters were used to estimate the LCC of tobacco leaves infected by the mosaic virus. The best correlation was achieved for the combination of (SDr-SDy)/(SDr+SDy) and SDr/SDb under the stepwise regression model (R2 = 0.885).




4.1.1.5 Total sugar

Total sugar is an important biochemical indicator reflecting the quality of tobacco leaves. It has a balanced effect on the taste of tobacco products. Junying et al. (2020b) proposed a method to predict the total sugar content based on UAV-borne hyperspectral imaging. The model was built by combining the spectral characteristics and the measured total sugar values. The function formula was:

 

where Y was the predicted content of total sugar, R863.59, R414.7, and R469.29 denoted the first derivative of the logarithm of the original spectral reflectance at 863.59, 414.7, and 469.29 nm, respectively. According to the sample test results, the RMSE of this model was 1.84, and the absolute value of the mean relative error was 8.82%. Soares et al. (2019) developed an inline simultaneous analytical method to quantify the leaf sugar content using near-infrared hyperspectral imaging. The inversion model was established offline using partial least square regression (PLSR). The R2 and RMSE were 0.778 and 2.28, respectively.




4.1.1.6 Alkaloid

Nicotine is the main alkaloid in tobacco and is the primary factor in the commercial value of tobacco Henry et al. (2019). Moreover, nicotine is also the foremost chemical that influences tobacco quality. The leaf nicotine content is a key indicator for estimating the quality of fresh tobacco leaves (Dou et al., 2016). In order to quantitatively determine the relationship between leaf nicotine content and spectral reflectance, Jia et al. (2013a) explored the specific bands that can be utilized to detect nicotine. The SMLR and BPNN were applied to establish the inversion model between hyperspectral reflectance and leaf nicotine content. The experiment results showed that BPNN had the most significant performance with R2 = 0.968 and RMSE=0.109. Soares et al. (2019) developed an inline simultaneous analytical method to quantify nicotine content using near-infrared hyperspectral imaging. They used PLSR and achieved a result of R2 = 0.798 and RMSE=0.447. Dou et al. (2016) evaluated the relationship between 11 spectral parameters and leaf nicotine content. The first-order derivative of reflectance data was calculated to perform a standardized analysis. Furthermore, five methods (e.g., linear, power, logarithmic, exponential, and negative exponential) were utilized to fit the values. The statistical analysis showed that the combination of power function and (SDr-SDy)/(SDr+SDy) obtained the best results with R2 = 0.8112, RMSE=0.2272, and relative error (RE)= 14.42%. Divyanth et al. (2022) applied hyperspectral and four machine learning algorithms to predict tobacco nicotine content. The average spectra of region of interest (ROI) were used to establish the inversion model based on PLSR, RF, support vector regression (SVR), and PLSRâ€”variable importance in projection (PLSRâ€”VIP). The models were evaluated using leave-one-out cross-validation and on 15% test set. The results showed that the PLSR (R2 = 0.93, RMSE=0.21%) outperformed SVR (R2 = 0.89, RMSE=0.36%), RF (R2 = 0.90, RMSE=0.35%), and PLSR-VIP (R2 = 0.91, RMSE=0.30%).




4.1.1.7 Moisture

Leaf moisture content is an important index for tobacco cultivation and precision field management. Sun et al. (2016) proposed a fast and non-destructive way to evaluate the leaf moisture content of tobacco leaves. Mahalanobis distance coupled with Monte Carlo cross-validation (MCCV) was applied to eliminate outlier samples. Savitzky-golay smoothing (SG), roughness penalty smoothing (RPS), kernel smoothing (KS), and median smoothing (MS) were applied to preprocess the raw data. Then SPA and MLR were used to select crucial bands and build the inversion model, respectively. The results showed that the best model was MD-MCCV-MS (R2 = 0.9132, RMSE=0.1162).





4.1.2 Exterior quality



4.1.2.1 Leaf area index

Leaf area index (LAI) is one of the most essential exterior parameters of tobacco. It reflects the tobacco canopy structure and growth status. Two external quality indicators, max leaf width & length, are necessary to determine LAI. So, we classified LAI into external quality. The relevant formula is:

 

where k is a constant with a value of 0.6345, ϱ is the planting density, Lij is the value of leaf length, Wij is the value leaf width, m is the number of measured plants, and n is the number of leaves of each plant, respectively.

Chaurasia et al. (2006) estimated the field-scale LAI of tobacco using MRS data from a satellite platform. The ground LAI data were measured by LAI-2000 (LICOR Inc., Nebraska) canopy analyzer. Two regression models (exponential and power functions) were conducted between the measured ground LAI and three vegetation indices (SR, NDVI, SAVI). The power model performed better than the exponential model for LAI estimation (NDVI: R2 = 0.62). This work demonstrated the feasibility of satellite MRS data for field-scale LAI estimation, although the correlation is not high. ZhengYang et al. (2011) assessed and compared the performance of some hyperspectral models in terms of their prediction capability of tobacco LAI. The hyperspectral data were collected in different water and nitrogen conditions by handheld spectrometer. Four vegetation indices, NDVI, RVI, modified soil-adjusted vegetation index (MSAVI), and modified second triangular vegetation index (MTVI2). The PCA method was applied for hyperspectral data dimensionality reduction, and BPNN was used for LAI inversion. The R2 and RMSE of the BPNN model were 0.889 and 0.195, respectively. Qiao et al. (2011) studied the relationship between NDVI and LAI. A linear regression model was built and the R2 was 0.568.




4.1.2.2 Tobacco classification

Tobacco classification is an important method for evaluating the grades of tobacco leaves. The determination of tobacco grades directly involves the purchase prices, which is important for farmers, enterprises, and other parties, so the relevant study is of great significance in practice. Current research advances in tobacco classification have focused on scoring tobacco leaves for size, color, structure, chrominance, or completeness using RGB images (Bose et al., 2016; Fan et al., 2018; Lin et al., 2022). Considering that the hyperspectral images contains more spectral features than RGB images. In this case, we can establish a relationship between the chemical compositions and exterior qualities according to the hyperspectral reflectance data (Liu and Shi, 2020). Thus, the classification accuracy can be greatly improved. And the feasibility has been proven in studies on 366 the classification of tobacco leaves health grades.

Zhu et al. (2017) used three machine learning algorithms to achieve early detection of tobacco mosaic virus via hyperspectral images. Herein, the SPA method was adopted to select the effective wavelengths to reduce the redundant spectral information. The RF, SVM, and BPNN were applied to guarantee the detection accuracy and obtain more valuable features. The experiment results showed that the overall accuracy of the train set and test set varied between 84.17-100.00% and 75.00-98.33%, respectively. The study in Gu et al. (2019) attested to the applicability of HRS imaging technology in the detection of tobacco tomato spotted wilt virus (TSWV) infection. The authors adopted three wavelengthÆ’ selection methods, SPA, boosted regression tree (BRT), and genetic algorithm (GA), and four machine learning algorithms, BRT, SVM, RF, and classification and regression tree (CART), to analyze the spectral characteristics of normal and diseased leaves in the range of 400-1000 nm. The results showed that the reflectance curve of healthy leaves was significantly higher than diseased leaves after 5 days of infection. The overall classification accuracy reached 95.8% under the SPA-BRT model. Sahu and Dante (2018) investigate the potential of HRS imaging for cured tobacco classification. A multivariate calibration model was developed using end-member extraction and linear discriminant analysis (LDA). Mahalanobis distance was used to show the differences between different tobacco grades. The classification accuracy can reach 93%.




4.1.2.3 3D modeling

Considering the complex geometry of plants and their interplay with the illumination scenario highly affects spectral information acquisition. Behmann et al. (2015) proposed a 3D modeling method combined hyperspectral images and 3D point clouds. The authors used tobacco leaves as an example and analyzed the effects of plant geometry on NDVI. The geometry sensor with different elevation angles resulted in different NDVI values. The low NDVI values on the horizontal parts were caused by the specular reflection, which was independent from leaf chlorophyll content.






4.2 Yield prediction

Tobacco yield predictions are important to stabilize tobacco prices in the marketplace and policy making. The producers need to monitor crop growth and development, an accurate early production forecast is as relevant for farmers as it is for the entire tobacco industry. Svotwa et al. (2013) reviewed the applications of remote sensing in crop area assessment and yield prediction, some recommendations were given for tobacco such as the Garvin model, feasible VIs, etc.

As soil nutrients and fertilizer application play a significant role in tobacco growth and yield. Chang et al. (2014) investigated the potential of NDVI for management zone delineation to build fertilizer applications in tobacco-planted fields. The yield mapping was built through SMLR analysis to find the key yield-limiting factors of soil components and NDVI. The value of NDVI was collected by the GreenSeeker handheld spectrometers. According to the results, the soil organic matter, active phosphorus, and available nitrogen were the main limiting factors for tobacco growth. The results also showed that the value of NDVI_60 (60 days after transplanting) had a relatively high correlation with yield. Falcioni et al. (2022) proposed a rapid quantification method to estimate biomass production using HRS with visible, near-infrared (NIR), and shortwave spectroscopy (SWIR). PCA and PLSR algorithms were used to extract the key wavelengths and built the prediction model of tobacco yield, respectively. The results showed that the most important wavelengths were well distributed into 400 (violet) 440 (blue), 550 (green), 670 (red), 700-750 (red edge), 1330 (NIR), 1450 (SWIR), 1940 (SWIR), and 2200 (SWIR) nm operating ranges of the spectrum. The established model also had an excellent prediction capacity for yield with R2 = 0.85 and RMSE=0.93.

Besides the soil nutrients and fertilizer application, photosynthetic capacity is also a major factor affecting crop yield. Increasing photosynthetic capacity remains probably the best strategy for improving crop yields (Ort et al., 2015). Herein, the maximum Rubisco carboxylation (Vc,max) and maximum electron transport rate (Jmax) are generally used as indicators to assess photosynthetic capacity. And hyperspectral techniques coupled with machine learning methods are effective in quantifying these parameters (Meacham-Hensold et al., 2019).

Three different methods used the PLSR model with inputs of hyperspectral reflectance (400-900 nm), VIs (SR, modified normalized difference index (mND), and structure insensitive pigment index (SIPI)), and RTM-derived (PROCOSINE model) crop traits, were synthesized and compared with their ability to reveal photosynthetic differences across tobacco species (Fu et al., 2020). The results showed that PLSR with inputs of hyperspectral reflectance and VIs achieved an R2 of ∼0.8 for predicting Vc,max and Jmax, higher than the R2 of ∼0.6 obtained by PLSR of PROCOSINE model. However, the performance of the PLSR model varies significantly across species, regions, and growth environments. To alleviate this bottleneck, Fu et al. (2019) developed a novel ensemble framework that stacked six machine learning algorithms (e.g., artificial neural network (ANN), least absolute shrinkage and selection operator (LASSO), Gaussian process (GP), SVM, RF, and PLSR) to estimate Vc,max and Jmax. The ensemble framework was established based on leaf reflectance spectra in the range of 400-2500 nm and six tobacco genotypes. According to the results, the mean R2 and RMSE of six regression algorithms for predicting Vc,max (Jmax) ranged from 0.60 (0.45) to 0.65 (0.56) and 47.1 (40.1) to 54.0 (44.7) μmol m-2s-1, respectively. And the stacking regression performed better than any of the individual models with increases in R2 of 0.1 (0.08) and decreases in RMSE by 4.1 (6.6) μmol m-2s-1.




4.3 Stress detection

Stress detection aims to assess various factors that are detrimental to the survival and growth of tobacco plants, usually caused by infection and competition, such as disease, pests, weeds, heavy metal damage, etc. All of these are the main limiting factors for the final yield and quality of tobacco.



4.3.1 Disease and pest

Hyperspectral imaging technology has been successfully applied for plant disease detection, modeling, and classification (Moghadam et al., 2017). Wang et al. (Wang et al., 2011; Wang et al., 2012) focused on tobacco plants and studied the feasibility of HRS technology to monitor disease and pest stress in natural conditions. The raw hyperspectral data were measured by ASD handheld spectrometers and transformed by the first differential coefficient. The results showed that the wavelengths of 631, 638, 696, 733, and 864 nm were sensitive to severity levels, which provided a theoretical foundation for the application of HRS technology to quantify disease and pest stress levels.

Yusuf and He (2011) investigated the effect of black-shank disease on the spectral characteristics and leaf water content of tobacco. The diseased tobacco plant samples were obtained via artificial inoculation. The corresponding reflectance data were collected by the hyperspectral imaging system in the laboratory. PCA and minimum noise fraction (MNF) methods were used to extract pivotal information and remove noise. Plant senescence reflectance index (PSRI) and water band index (WBI) were used to determine the disease level and leaf water content. The results demonstrated the wavelength of 730 and 790 nm were the most useful for discriminating black-shank disease severity levels, with an overall accuracy of 90 to 94%. Krezhova et al. (2014) applied HRS technology to detect TSWV infection at young tobacco plants. The hyperspectral reflectance data were obtained by a handheld spectrometer on the 14th and 20th days after the inoculation. The leaf viral concentration was determined by the serological method, i.e., double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA). According to the results, on the 14th day after inoculation, there are no visible changes but the mean spectral reflectance had significant differences between healthy and infected plants at four spectral ranges (green, red, red edge, and NIR regions). And on the 20th day, the infection was deepening and the position of red edge was shifted. The results were consistent with the serological analysis.

Hayes and Reed (2021) conducted a field study using UAV-borne hyperspectral imaging to detect tobacco black-shank disease. In this work, the authors proposed two hyperspectral indices (broad-band index and narrow-band index) to observe the differences in the mean spectral reflectance of symptomatic and asymptomatic tobacco plants. The subspace LDA algorithm was adopted to test the identification ability and obtained an overall accuracy of 85.7%. Hong-Bo et al. (2007) investigated the spectral features of tobacco leaves infected by aphids and had a comparison of different damage levels. The reflectance curve and its first-order derivative curve were selected as the observation indices. And the linear regression model was applied to analyze the leaf chlorophyll content under different aphid damage levels(healthy, light, middle, and severe). The results showed that the values of reflectance curves decreased with increasing damage levels. The descent rate was 12%, 27%, and 52%, respectively. As for the first-order derivative curve, the maximum values of spectral reflectance also decreased as the damage level increased. The maximum values of the derivative were 0.031, 0.022, 0.026, and 0.019, respectively.




4.3.2 Heavy metal

Excess heavy metals in crops will depress normal plant growth and the yield will be harmful if they are loaded into the food chain. Copper ion is an indispensable element for plant growth, but too large concentrations can also impair normal plant growth. Qu and Jiao (2018) investigated the copper ion content of tobacco leaves under copper-stressed conditions from hyperspectral data by inverting a modified RTM (PROSPECTcu). According to the experiment analysis, the copper ion content had a high sensitivity in the range of 1896-1973 nm. The results showed that the values of R2 and RMSE were 0.87 and 0.087, respectively. Yu et al. (2021) aimed to identify the tobacco canopy features that respond to leaves stressed by different concentrations of hydrargyrum (Hg). PCA and the competitive adaptive reweighted sampling (CARS) algorithm were used to reduce the hyperspectral data dimensionality and pick effective wavelengths. Partial least squares discriminant analysis and least-squares SVM (LS-SVM) algorithms were utilized to assess the stress levels of tobacco plants. As a result, the combination of CARS and LS-SVM methods achieved an accuracy of 100%.




4.3.3 Nutrition deficiency

Henry et al. (2023) investigated the spectral differences of tobacco leaves under macronutrient deficiencies. Information entropy and spectral derivatives methods were adopted to identify the efficient wavelengths. PCA and LDA algorithms were used to reduce data dimensionality and classify the symptoms. The results showed that the overall accuracy on young, intermediate, and mature plants was 92%, 82%, and 75%, respectively. The results also showed that the deficiencies of nitrogen, sulfur, and magnesium will affect the classification accuracy to a large extent, but phosphorus and potassium deficiencies had little effect on the results.






5 Issues and recommendations

HRS is a non-destructive information acquisition technology about objects from distance. This character is perfect for crop quality estimation, yield prediction, and stress detection. The existing researches show that HRS technology has enormous potential for various agricultural applications. In our view, HRS will be indispensable for digital agriculture and agricultural informatization in the future. Certainly, there are also some problems to be solved, whether the technology itself or the specific applications.



5.1 Issues

First of all, the cost of hyperspectral data acquisition is relatively high, no matter the financial or labor cost. Taking the example of a UAV-borne HRS system, the price of UAVs varies by type and function. It may take thousands to tens of thousands of RMB. The carried hyperspectral camera, the price is approximately half a million RMB or more (Feng et al., 2021). Ordinary farmers or research groups rarely have their own UAV-borne HRS devices due to lacking finance and technology support. They usually choose to rent a suite of equipment from the data service providers, and the price is about 50000 RMB per time. As for the ground-based handheld spectrometer, it can provide the highest accuracy of reflectance data with less interference, but it requires operators to traverse the entire field and select suitable samples to collect spectral data. This method is troublesome and time-consuming, especially facing a large-scale area. And its price is about 150000-300000 RMB. Thus, the popularization of agricultural UAV-borne HRS still faces obstacles.

Secondly, external factors will affect the image quality during data collection, such as measuring time, light intensity, solar altitude angle, etc. Due to the limitation of endurance capability, the UAV must complete the mission within a limited time (about 30 minutes). To guarantee image quality, the UAV should keep at a suitable height (about 50-100 m). The obtained hyperspectral images contain the spectral information of all ground objects in the lens, such as crops, soil, roads, and weeds, which may cause noise for targets to distinguish. How to balance the image quality with the flying height, time, spatial resolution, and coverage area still need further investigation.

Thirdly, the ripening and harvesting times of tobacco leaves in different positions are varied (usually 20 days apart). The order of harvesting is bottom, middle, and top, respectively. Some observation tools (e.g., UAVs) can only obtain the canopy reflectance data. Therefore, we can easily find that the canopy spectra are not fully representative of the bottom and middle. In practical research, this problem may lead to large differences between the results obtained by model prediction and the actual values. Besides, the growth status of tobacco seedlings in each period from transplanting to harvesting may also affect the final quality. However, many studies collected plant samples from one stage (e.g., returning seedling stage, root elongation stage, flourishing stage, or maturity stage). So, whether the canopy spectral data in one stage can predict the final tobacco quality is also a question that needs to be verified.

Fourthly, the relevant research about tobacco are decentralized, mainly focusing on one agronomic parameter, and establishing an inversion model based on the corresponding hyperspectral reflectance data. As for the deeper active mechanisms, there are few studies explored. According to the discovery of Li (2006), the potassium ion has significant effects on leaf nitrogen and chlorophyll content. So, the relationship between various biophysical indices is an important basis for spectral inversion. How to exploit these relationships to monitor agronomic parameters of tobacco that are not sensitive to the spectral response is also worth studying.

Finally, the localization and universality of various models. Due to the differences in species, regions, and growing environment, the established inversion models may have some unique geographical features. We named this phenomenon “model localization”. But some researchers prefer universal models. For example, (Feng et al., 2021) hope to construct a universal crop monitoring model based on UAV-borne HRS. The support of existing technologies such as ensemble learning (Fu et al., 2019) and transfer learning (Zhang et al., 2021; Wan et al., 2022) make it possible to build universal models.




5.2 Recommendations

The researches mentioned in this review illustrated that the HRS technology was effective for various precision tobacco agriculture scenarios (e.g., quality estimation, yield prediction, and stress detection). However, there are still many challenges to make these studies available to guide the practical production. Here are some recommendations for future studies.

The first is hyperspectral data collection. Recent researches have demonstrated that UAV-borne HRS is a game-changer in precision agriculture, which offers unprecedented spectral, spatial, and temporal resolution (Maes and Steppe, 2019). However, the accuracy of UAV-based data is relatively lower than handheld spectrometers. So, more works with near-ground HRS calibration were needed to strengthen UAV-borne HRS for precision tobacco agriculture applications. Meanwhile, low-cost and high-performance UAVs should be manufactured to make them affordable to more people and to improve the performance of UAV platforms in terms of flight stability, duration and load. In our view, data quality is important, and it relies on high performance sensors, and only a tool that is economical enough will be widely used.

The second is data processing and modeling. Hyperspectral sensors are very sensitive optical components that are highly susceptible to environmental interference. The quality of the obtained data has a significant impact on modeling. And considering the hyperspectral data coupled with field sampling data is indispensable in spectral inversion. Many studies lacked the detection of outliers in field samples. They usually employed one or more algorithms to build simple inversion models and selected the best one which has the highest R2 and lowest RMSE. The main work of researchers is to optimize the models and improve their accuracy. We think this is detrimental to the development of the remote sensing community. In future studies, more universal models should be introduced based on some novel technologies such as ensemble learning and transfer learning. Of course, methods to reduce the noise caused by environmental factors should also be proposed.

The third is to pay more attention to multi-parameter and multi-stage models for quality estimation, yield prediction, or stress detection. The existing literature mainly performs inversion or predictive modeling based on a single parameter or growth stage. It’s necessary to investigate the dynamic development of tobacco phenotypic traits at different growth stages. Furthermore, the canopy reflectance spectrum is a comprehensive indicator. It is the result of all factors (internal and external) reacting together. So, the inversion models based on multi-parameter are meaningful to improve the overall accuracy. It can be used as a new research direction in the future.

The fourth is the relationship between the inherent quality and chemical compositions of tobacco. Currently, the inherent quality estimation mainly depends on the feelings of people smoking. However, this method requires evaluators to smoke frequently, which is very harmful to their health. So, we have an idea that the first step is the quantitative inversion of chemical compositions using HRS, and the second step is to establish the quantitative or qualitative relationships between chemical compositions and inherent qualities. The objective is to find the optimal range of each chemical composition corresponding to high-quality tobacco that meets consumers’ demands.





6 Conclusions

In this paper, we focused on the application of HRS in precision tobacco agriculture and presented a comprehensive review of related applications and methodologies in terms of quality estimation, yield prediction, and stress detection. Compared to traditional destructive field sampling, laboratory testing, and MRS methods, HRS can provide unprecedented spectral, spatial, and temporal resolution. We compared three commonly used HRS system platforms: handheld, UAV, and satellite. Both of them have benefits, shortcomings, and suitable scenarios. We also depicted a detailed technology roadmap of UAV-borne HRS for precision tobacco agriculture. As for the specific applications, we summarized in three parts: quality estimation, yield prediction, and stress detection. The relevant modeling methods and their performances were also analyzed. In summary, the key issue is how to establish the quantitative inversion models between spectral features and the corresponding observation indices. The commonly used methods for hyperspectral data dimensionality reduction are PCA, SPA, GA, clustering analysis, etc. And inversion models are usually driven by PLSR, PCR, MLR, BPNN, SVM, RF, etc. Several studies used stacking regression. The independent variables of these algorithms are usually full-band spectrum, key-band spectrum, first-order derivative spectrum, and various VIs. Also, how to improve the accuracy and universality of the relevant models is still a challenge that needs to be solved.
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Footnotes

1Data source: The State Tobacco Monopoly Administration’s annual National Tobacco Work Report, evaluated based on the national total income of tobacco farmers and average income per household.

2China National Knowledge Infrastructure

3Moderate Resolution Imaging Spectroradiometer

4China National Space Administration

5National Aeronautics and Space Administration

6SDr(y)was the sum of the first-order derivatives inside red (yellow) edge.
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In recent years, research on the manipulation and control of microrobot has gradually matured. In order to improve the intelligence of microrobots, navigation study also becomes an important research topic. In practice, microrobots could be disturbed by the flowing liquid when it moves in a microfluidic environment. As a result, the actual trajectory of microrobots will deviate from the intended one. In this paper, firstly, different algorithms for the navigation of microrobots in a simulated plant leaf vein environment are investigated. According to the simulation results, RRT*-Connect is then selected as the path planning algorithm with a relatively better performance. Based on the pre-planned trajectory, a fuzzy PID controller is further designed for precise trajectory tracking, which can effectively eliminate the random disturbance caused by micro-fluid flow during the motion and make it quickly recover to a stable movement state.
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1 Introduction

Relative to the development of microrobotic-driven technology, a big number of researchers have investigated its application in biomedical therapies, including targeted drug delivery, vascular navigation, biomarkers, and cell delivery (Arcese et al., 2010; Ju et al., 2014; Kim and Ishiyama, 2014; Liu et al., 2017; Fan et al., 2018). Li et al. (2010) proposed a novel artificial hair receptor prototype for a hopping minirobot sensing system with a high aspect ratio of aligned polyvinylidine (PVDF) micro/nanofiber arrays. It also proves the feasibility of the thermal direct fiber stretching technology on PVDF materials and the application prospect of the produced fibers as a micro/micro-biological robot sensing system. The reliable response and the good sensitivity of micro/nano PVDF fibers to pressure changes and various flows were verified. It shows that artificial hair cell receptors are very promising for wind properties and environmental vibration detection, which are essential for jumping microrobot sensing systems. Chen et al. (2020) designed a magnetically driven thumb-shaped and disc-like bilayer (chitosan and calcium alginate hydrogel) drug-loaded mini-robot with high mobility and motion precision. It has advanced mobility, pH sensitivity, and sustained drug release capability. The results of this work pave the way for targeted therapy for intestinal cancer after oral drug administration.

The microfluidic environment in human or plants could be complex for the manipulation of microrobot. To achieve the autonomous navigation movement of microrobots, the manipulation process should be combined with rapid path planning algorithm. Meng et al. (2019) used width-first search and genetic algorithms to generate robotic navigation reference tracks and proposed a navigation controller combined with slide control, backward control, and perturbation compensation to realize the targeted transport of tumor drugs in mouse liver blood vessels. Liu et al. (2020) applied Informed-RRT* for path planning for the spiral micro-swimming robot in a chaotic environment. Kinematical and nonintegrity constraint of the spiral micro-swimming robot are proposed, which ensure the reliability of obstacle avoidance. However, in a complex and narrow environment, such as the veins of the eyeball or the brain or the complex vein environment of plant leaves, Informed-RRT* will fall into a local optimal state, which is not reliable for path searching. Therefore, a fast, effective, asymptotically optimal stochastic path planning algorithm should be introduced. As a high-configuration algorithm, the simple and effective RRT-Connect algorithm requires no adjustment for parameters, which has interactive performance for most situations and improves the speed of tree generation for RRT (Kuffner and LaValle, 2000). Moreover, improvement for the collision-free optimization is further studied. Klemm et al. (2015) combined the ability of RRT-Connect with the best solution of RRT* in order to quickly find a path even in complex environments, which is called the RRT*-Connect algorithm. This method was proven to be successfully faster than normal RRT* and also provided the best solution for convergence.

In addition to route navigation, accurate tracking of trajectory is also an important aspect for microrobot manipulation research (Huan et al., 2022). In order to conduct the application of microrobot to in vivo targeted therapy, the external contactless electromagnetically driven system requires a precise controller combined with appropriate control algorithm. Meanwhile, it should be ensured that the actual trajectory of microrobot is appropriate and less drift appeared during the process of movement in the microfluidic environment. Khalil et al. (2014) provided a stable magnetic field and disturbance observation with a double-loop controller, which realized the magnetic flow map construction and point-to-point orientation for the paramagnetic particles. Yang et al. (2018) combined the dynamic model of the microrobot with external perturbations. The motion state of the microrobot was estimated with an extended state observer. Generalized perturbations were compensated as well. Then, a linear trajectory tracking controller was designed based on the estimated motion state to realize the precise manipulation for the microrobot.

In this paper, RRT*-Connect algorithm is introduced for the navigation of a microrobot in a plant vein mimic environment. Based on the planned path, a fuzzy PID controller for trajectory tracking is proposed for precise manipulation in an actual microfluidic environment. Simulation for real-time path planning and trajectory tracking control were conducted in combination with the electromagnetically driven system. The results show that the proposed algorithm and controller can achieve accurate navigation and control for the microrobot manipulation in a branching microenvironment mimicking the plant vein.




2 Methods



2.1 Force analysis of magnetic drive microrobot

In our experiment, Fe3O4 magnetic beads coated with soluble gel were used as microrobots with a diameter of 20 μm. The kinetic analysis for the magnetic microrobot in a microfluidic environment is shown in Figure 1A. As soon as the magnetic coils are energized, a gradient magnetic field could be generated in the workspace (Liu et al., 2017; Fan et al., 2022). The induced magnetic force on the microrobot could be given as (1):




Figure 1 | Force analysis and motion trajectory of a microrobot in a microfluidic environment. (A) Force analysis of a microrobot. (B) Motion trajectory. (C) Diagram of RRT*-Connect algorithm. (D) Photo of a real plant vein. (E) Simulation environment distribution in two conditions. (F) Fuzzy PID control diagram.



 

 

 

where Fm is the magnetic force generated by the gradient magnetic field, M is the magnetic field strength, ∇B is the magnetic field gradient, and R is the radius of the microrobot. Fd is the viscous resistance of microfluid, η is the fluid viscosity coefficient, v is the motion velocity of the robot, and vr is the velocity of the microfluid. G is the robot’s own gravity, and Ff is the buoyancy of the microrobot.

In order to facilitate the control of the magnetic beads in the fluid environment, the density of the solution is adjusted to be the same as the microrobot. Thus, the gravity and the buoyancy of the microrobot could be ignored. Therefore, the dynamic model of the microrobot in the microfluidic environment is simplified as follows:

 

where Δ is the random perturbation in the microfluidic environment.




2.2 Navigation and control system design

The flow resistance in the microfluidic environment mainly depends on the radius of the channel and the viscosity coefficient of the fluid, which varies according to the distance to the wall of the micro-channel (Liang et al., 2011). As we can see, at the branch of the plant vein mimic map, the direction of the microfluid flow changes due to the reduction of the leaf vein caliber; therefore, the viscous resistance on the microrobot will also change accordingly. Perturbations could also be generated to enforce the microrobot deviating from the desired trajectory, as shown in Figure 1B.



2.2.1 Navigation of microrobot

It has been studied that RRT* algorithm is able to find an initial path quickly. It could be optimized continuously with increasing sampling point within the maximum number of cycles. However, the RRT* algorithm is asymptotically optimized. If a satisfactory path is expected, the time of RRT* algorithm needs to be further optimized. Informed-RRT* algorithm is a sampling optimization process based on the RRT* algorithm, utilizing elliptical sampling instead of global uniform sampling to significantly improve the path search speed. Nevertheless, Informed-RRT* algorithm is prone to fall into local optimum in a relatively narrow environment channel and fail to find a satisfied route. In contrast, RRT*-Connect is able to simultaneously grow two fast random trees for state space search which could improve the path search efficiency. As shown in Figure 1C, the start point in the figure is displayed in green, while the end point is displayed in red. During navigation simulation, RRT*-Connect algorithm generates two trees from both start point and end point. It connects the nearest nodes randomly picked from the environment map. For different complexities of various environments, the step size parameter of RRT*-Connect algorithm could be adjusted according to the obtained simulation results. If the time spent for the search process is too long, the step size needs to be increased. On the contrary, if the results are available immediately, the step size could be decreased to get a more optimized path. The maximum step for the search process is denoted by disTh in the RRT*-Connect algorithm. Moreover, the value of disTh could be set flexibly so that all the nodes whose distance is less than disTh are regarded as the same node.

Figure 1D shows a real photo of the plant vein which contains lots of branching structures. The simulated map was constructed accordingly. Since the characteristic for different parts of the plant vein mimic map varied, different areas of the map were chosen for the path planning simulation. One series is chosen to be short distance between the start point and end point in different locations (namely, A1, A2, and A3, respectively, for a short distance with a relatively wide, narrow, and narrowest channel) of the vein mimic channel. Another situation is chosen to be a larger distance between the start point and the end point with a different channel width for planning simulation (namely B1, B2, and B3, respectively, for a long distance with a relatively wide, narrow, and narrowest channel), as shown in Figure 1E. The width of the channel in the plant vein mimic map gets smaller from the beginning to the end. Afterwards, we compared the searching efficiency with four different algorithms—RRT*-Connect, RRT*, PRM, and Informed-RRT*—in different situations and analyzed the time required for the search process.




2.2.2 Design of fuzzy PID controller

PID is one of the most common algorithms in the field of robot control. The dynamic process could be set faster, smoother, and to be more accurate through the regulation of proportional (P), integral (I), and differential (D). The traditional PID controller is well adapted and has strong robustness. It is a simple algorithm whose control parameter is relatively independent from each other. However, during the trajectory tracking for microrobot manipulation, undesired overshoot could be generated due to the perturbations caused by a variety of microfluidic velocity. In addition, the parameters of the PID controller cannot be adjusted once they are determined. Fuzzy PID controller has been studied widely in the past few decades. It combines the characteristics of a flexible and adaptable fuzzy controller and a highly accurate PID controller. Therefore, this paper adopts a fuzzy PID controller for the manipulation of a microrobot in the plant vein mimic environment, which could make up for the lack of integration link in simple fuzzy controller and solve the problem of fixed parameters in the traditional PID control method.

According to the trajectory tracking model of microrobot manipulation, the proposed fuzzy controller has two inputs and three outputs. One of the inputs is the displacement error e between the actual output movement and the desired trajectory of the microrobot. The other input is the rate of displacement error, given as ec. The parameters for a PID controller could be adjusted promptly with a fuzzy controller, which makes the trajectory tracking of a microrobot more accurate. The diagram of the fuzzy PID controller is shown in Figure 1F.

 

 

 

 

where kp0, ki0, and kd0 are the initial values of the PID controller, y0 is the desired trajectory of the microrobot in the microenvironment, y1 is the actual output trajectory, e is the offset error of the robot trajectory, and ec is the variation rate of the displacement error. Δkp,Δki, and and Δkd are the adjustment parameters of the PID controller as well as the output variables of the fuzzy controller. Figure 2 illustrates the code architecture of the entire integrated navigation and control system. The desired trajectory could be generated with an optimized path planning algorithm. Then, the microrobot was manipulated under the proposed control strategy tracking the preplanned trajectory. During the manipulation, the real position of the microrobot could be detected through image processing. The current input of the experimental setup should be determined by the control system. Thus, a microrobot could be automatically driven to track the preplanned trajectory to the target position.




Figure 2 | Code architecture of the entire integrated navigation and control system.








3 Results and discussion



3.1 Navigation simulation

In this paper, a plant vein mimic map with a size of 662*612 pixels was constructed. The positions of the start points and the end points for two series of situations mentioned above were pre-set respectively, A1 [start point (345,491), end point (341,406)], A2 [start point (281, 448), end point (217, 381)], A3 [start point (384, 362), end point (419, 332)], B1 [start point (349, 451), end point (371, 224)], B2 [start point (299, 464), end point (183, 399)], and B3 [start point (351, 523), end point (480, 385)]. Each of the two series has a different width of channel for microrobot movement. The basic RRT* algorithm is random, whose search result could be different for the same situation. The average search time used for different algorithms was compared with each other.

As shown in Figure 3, the simulation results for the path planning process in the environment described in Figure 1D are proposed. The width of the channels gradually decreased as shown in both Figures 3A–C and Figures 3E–G. According to the simulation results, three kinds of algorithms could smoothly finish the path searching process, either in the relatively wide or narrow channels. As shown in Figures 3D, H, data on the time consumption of RRT*, PRM, and RRT*-Connect were collected and compared. It can be seen from the chart that the search speed of RRT*-Connect is relatively faster with a higher success rate compared with other algorithms. Meanwhile, the time consumption of RRT*-Connect is relatively stable in several simulation experiments, which is always the least among the proposed algorithms. This indicates that the RRT*-Connect algorithm could be able to plan a path in a complex environment, with stable probability and fast processing speed. The adaptation ability of the RRT* algorithm was proven to be strong in navigation research, but failure would also appear in some processes of the simulation experiments. PRM is based on the global sampling probability whose time consumption is relatively larger than the other two. Furthermore, when used in situation A3 with the narrowest passage as well as in situation B2 with a relatively narrower channel and a larger traveling distance, the time consumption and failure rate would increase. Informed-RRT* algorithm has also been utilized for navigation in the plant vein mimic map, which was used in our previous research (Huan et al., 2022). This algorithm shrinks the sampling space into an oval area based on a feasible path obtained by RRT*. However, as the microrobot moved into the narrow channel of the map, the Informed-RRT* algorithm would fall into a locally optimal solution. Thus, in most of the times in our simulation experiments, Informed-RRT* failed to find a suitable route in a limited time. By comparing the results of the simulation of the RRT*, PRM, and RRT*-Connect algorithms, it can be concluded that the RRT*-Connect algorithm is highly adaptable and the most stable among the proposed algorithms.




Figure 3 | Simulation of road strength planning in case 1: (A) A1 environment, (B) A2 environment, (C) A3 environment, (D) B1 environment, (E) B2 environment, and (F) B3 environment. (G) Time consumed by path search in case 1. (H) Time consumed by path search in case 2.






3.2 Trajectory tracking analysis

In practice, the movement of a microrobot would be affected by the disturbance of the microfluidic environment factor, which leads the actual trajectory to deviate from the desired trajectory. Therefore, a suitable controller should be introduced to adjust the actual error of the trajectory as close to the preplanned trajectory as possible in the plant vein mimic map. To make the process more reliable, the environment B2 with vein branches and a long distance between the start and end points was tested. Tracking simulation experiments were conducted both with and without step disturbances. Moreover, the trajectory tracking error was analyzed, as shown in Figure 4. The red line in the figure indicates the control curve of the fuzzy PID controller, while the blue line stands for the traditional PID controller with proper parameters. As illustrated in Figures 4A, B, the PID controller and the fuzzy PID controller have a similar capability to keep the desired trajectory for microrobot manipulation with a small tracking error. According to the tracking curve, the response speed of the PID controller and the fuzzy PID controller at a certain time could be different after a step signal disturbance was introduced. As proposed in Figure 4C, the control performance with step disturbance was analyzed. The peak value and overshoot of the fuzzy PID controller are a bit less than those of the traditional PID controller. Thus, the control effect of the fuzzy PID is relatively better than the PID controller.




Figure 4 | Trajectory tracking error of the PID controller (blue curve) and the fuzzy PID controller (red curve). (A) Tracking error without disturbance. (B) Tracking error with step signal disturbance. (C) Control performance analysis with step disturbance.



In the microfluidic environment, the movement microrobot is mainly influenced by the flow velocity. The viscous resistance increased as the microrobot moved closer to the channel wall. That is to say, flow velocity varied in different positions of the flow channel. Thus, step signal disturbance cannot simulate the real environment exactly. A sinusoidal periodic signal, as given in Eq. 9, was added to the system as the disturbance for further processing:

 

With the proposed sinusoidal periodic disturbance, the tracking error curves and the tracking performance of the PID controller and the fuzzy PID controller were performed, as shown in Figure 5. According to the tracking error curves in Figure 5A, both the PID controller and the fuzzy PID controller have a good anti-interference ability in the trajectory tracking process. However, the steady-state error of the fuzzy PID controller is less than that of the PID controller. As shown in Figure 5B, compared with the PID controller, the system overshoot of the fuzzy PID controller is also smaller than that of the PID controller, which indicates a better controller performance. The mean squared tracking errors for two series of situations are illustrated in Table 1 under the two different control methods. In conclusion, the proposed fuzzy PID controller can realize the secondary regulation for the system on the basis of improving the accuracy of the traditional PID controller. The disturbance caused by the microfluidics could be adjusted effectively.




Figure 5 | Analysis of the simulation results: (A) error curve and (B) performance analysis of tracking curve.




Table 1 | Mean square of the tracking errors.







4 Conclusion

In this paper, an integrated navigation and control system for a microrobot was proposed. A dynamic model of a microrobot was analyzed within the microfluidic environment. The desired trajectory of the microrobot was planned through the RRT*-Connect algorithm, which has a better performance than other similar algorithms. In order to further improve the driven accuracy for manipulating a microrobot to move along the desired trajectory, a fuzzy PID controller was introduced. Based on the online parameter adjustment of the PID controller with a fuzzy module, the trajectory tracking error for a microrobot could be reduced, and the actual movement is much closer to the desired trajectory. The simulation results show that the proposed integrated system can significantly improve the anti-interference ability and track the tracking accuracy of microrobots in a microfluidic environment mimicking the plant vein. It lays the foundation for further promoting the plant/organism application of microrobots. The microrobots manipulated in the plant vein could be used as microsensors to study the dynamics of plants under photosynthesis. In addition, the bio-microsensors could monitor the health of the plant in real time.
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Introduction

Grapevine leafroll-associated viruses (GLRaVs) and grapevine red blotch virus (GRBV) cause substantial economic losses and concern to North America’s grape and wine industries. Fast and accurate identification of these two groups of viruses is key to informing disease management strategies and limiting their spread by insect vectors in the vineyard. Hyperspectral imaging offers new opportunities for virus disease scouting.





Methods

Here we used two machine learning methods, i.e., Random Forest (RF) and 3D-Convolutional Neural Network (CNN), to identify and distinguish leaves from red blotch-infected vines, leafroll-infected vines, and vines co-infected with both viruses using spatiospectral information in the visible domain (510-710nm). We captured hyperspectral images of about 500 leaves from 250 vines at two sampling times during the growing season (a pre-symptomatic stage at veraison and a symptomatic stage at mid-ripening). Concurrently, viral infections were determined in leaf petioles by polymerase chain reaction (PCR) based assays using virus-specific primers and by visual assessment of disease symptoms.





Results

When binarily classifying infected vs. non-infected leaves, the CNN model reaches an overall maximum accuracy of 87% versus 82.8% for the RF model. Using the symptomatic dataset lowers the rate of false negatives. Based on a multiclass categorization of leaves, the CNN and RF models had a maximum accuracy of 77.7% and 76.9% (averaged across both healthy and infected leaf categories). Both CNN and RF outperformed visual assessment of symptoms by experts when using RGB segmented images. Interpretation of the RF data showed that the most important wavelengths were in the green, orange, and red subregions.





Discussion

While differentiation between plants co-infected with GLRaVs and GRBV proved to be relatively challenging, both models showed promising accuracies across infection categories.





Keywords: phenomics, spectroscopy, Vitis vinifera L., disease detection, deep-learning, convolutional neural network, random forest




1 Introduction

California vineyards are affected by two major viral diseases with similar symptoms and consequences on grape quality and quantity: leafroll and red blotch (Sudarshana et al., 2015). Six grapevine leafroll-associated viruses (GLRaVs) are associated with leafroll disease, among which GLRaV-3 is predominant (Naidu et al., 2015). These viruses affect fruit ripening, decrease grape quality, and reduce yield by up to 68% (Atallah et al., 2012). Grapevine red blotch virus (GRBV) causes red blotch disease (Yepes et al., 2018). This virus slows down and can stop the accumulation of sugars and phenolic compounds (Ricketts et al., 2017; Martínez-Lüscher et al., 2019). Both viral diseases show similar foliar symptoms of leaf reddening on red wine grape cultivars (Sudarshana et al., 2015). Without any control measures, both diseases can cause economic losses of up to $226,405/ha for leafroll (Ricketts et al., 2015) and up to $68,548/ha for red blotch (Ricketts et al., 2017) over the approximate 25-year lifetime of a vineyard.

To date, scouting and removing symptomatic vines and replanting them with healthy ones (i.e., roguing) is the principal strategy employed by growers to limit the secondary spread of both viruses by their insect vectors in diseased vineyards. Most GLRaVs are transmitted by mealybugs and soft-scale insects (Naidu et al., 2015), while GRBV is transmitted by the three-cornered alfalfa hopper (Flasco et al., 2021). Roguing infected vines is efficient against these diseases, but diagnosing infected plants based on visual symptoms is time-consuming. It is also impractical as symptoms are only expressed late in the season when growers are busy with harvest operations and have limited time for additional tasks. Moreover, expertise is required to precisely identify infected plants and avoid misdiagnosis, as both diseases can be confused with other pathological, nutritional, and physiological issues (Sudarshana et al., 2015). The use of molecular diagnostic methods is the golden standard for assessing viral infections in vines. Unfortunately, these assays are costly and time-consuming, so a census approach to testing vines is not feasible (testing each vine one-by-one). A more automated way to quickly detect and diagnose viral diseases would be undeniably beneficial to vineyard managers.

Spectroscopy is a set of powerful tools which can help identify plants infected with diseases that affect biochemical and biophysical plant properties, changing their optical signatures (Knipling, 1970; Croft and Chen, 2018). These sensing techniques can also be applied remotely, thus offering the ability for rapid-scale identification over large areas. Hyperspectral imaging spectrometry is a very effective remote sensing tool, as individual wavelength information can be obtained over large regions of the electromagnetic spectrum while maintaining spatial information. Consequently, there has been a rapid increase in research activity in this field in recent years (Terentev et al., 2022). In grapevine, several studies have used hyperspectral data to identify pests and diseases such as phylloxera (Vanegas et al., 2018), leaf stripe disease (Junges et al., 2018), flavescence dorée (AL-Saddik et al., 2017), leafroll (MacDonald et al., 2016; Sinha et al., 2019; Bendel et al., 2020; Gao et al., 2020) and red blotch (Mehrubeoglu et al., 2016). To our knowledge, no study on hyperspectral imaging methodologies has attempted to distinguish between the leafroll and red blotch virus infection.

Deep learning methods, such as the Convolutional Neural Network (CNN) (Lecun and Bengio, 1995), are particularly well-suited for disease detection on images, as they can detect underlying structures and spatial patterns (Lee et al., 2015; Grinblat et al., 2016; Kerkech et al., 2020). However, few studies on detecting grapevine diseases used deep learning models (Hruska et al., 2018; Nguyen et al., 2021). To the best of our knowledge, no prior studies have compared visual assessment to machine-learning detection of viral diseases in grapevines. Our study fills this gap by comparing two machine learning models, CNN and RF, to detect GLRaVs, GRBV, and mixed infections of GLRaVs and GRBV from hyperspectral imagery and by contrasting predictions to molecular and visual estimates. We worked with over 400 leaf images of healthy and infected grapevines captured within the visible range (from 510nm to 710nm) at different symptomatic stages (before and after symptoms were visible). Finally, we performed an explanatory analysis to identify the most essential wavelengths to predict virus-infected vines in the visible range.




2 Materials and methods

Figure 1 summarizes the workflow used in this study. The first step consisted of collecting leaves from selected grapevines in three vineyards and testing the petioles for viruses using molecular analyses to distinguish between healthy and diseased samples. The next step consisted of imaging the leaves in the visible domain with a hyperspectral camera in a dark cabinet under controlled lighting in the laboratory. Images were then pre-processed to segment the leaves from the background, and data were transformed into reflectance values. Random Forest and CNN models were then applied to the segmented images to classify their infection status and compare diagnostic predictions of the models with the molecular test results and with a visual assessment made by experts.




Figure 1 | Workflow of the different methodology steps used in this study. The acquisition was done in three vineyards in August and September 2019 and 2022. About 500 leaves were sampled for PCR analysis and imaged using a hyperspectral camera in a dark cabinet. The image pre-process consisted of segmenting the leaves to extract the pure leaf signal and converting the radiance to reflectance using a white standard. The predictions of the PCR results were done using random forest (RF) and convolutional neural network (CNN). A visual assessment by experts was also done. The results were evaluated using accuracy and confusion matrices and interpreted via variable importance rate.





2.1 Sampling and data collection



2.1.1 Grapevine leaf sampling, image acquisition, and pre-processing

In August and September 2019 and 2022, leaves were sampled from randomly selected vines in one Cabernet franc vineyard and in two Cabernet Sauvignon vineyards, located in North and Central California (Rutherford, Fresno, Madera). Vineyards were composed of adult plants at least 10-years old and grown according to common practices for the area. All vineyards were known to exhibit leafroll- and red blotch-like symptoms. We collected four leaves per plant on the lower portion of the canopy close to the trunk. Samples were temporarily stored in a cooler and later maintained at 4°C in the laboratory. Two of the four leaves collected per vine were randomly selected for imaging in a dark cabinet under a LED light. This light did not emit in the near-infrared (Fiber-Lite Mi-LED Illuminator, Dolan-Jenner Industries USA) to remove noise related to time differences between sampling and imaging. One mega-pixel image was acquired with a Senop HIS camera using a 200ms exposure time. Bands were acquired every ~5nm from 510nm to 710nm for a total of 40 bands. In all pictures, we included a white reflectance standard (Spectralon®, Labsphere, USA). We separated the leaf from the background in all images using an unsupervised segmentation approach based on k-means clustering (Dhanachandra et al., 2015).

Four different disease categories were identified in the image dataset: non-infected, infected with GRBV, infected with GLRaV, and co-infected with GRBV and GLRaV (Figure 2). Leaves from vines that tested negative for GLRaV and.or GRBV via PCR, although presenting reddening, were also included in the dataset (Supplementary Figure 1). They were classified as non-infected following PCR results.




Figure 2 | Examples of RGB segmented leaf images for each category using the reflectance at 525.3nm, 555.7nm, and 601.3nm.






2.1.2 Assessment of virus infection

Viral infection was assessed by PCR-based analysis on the petioles of the four-leaf set collected per plant. Petioles were sliced into small pieces with sterile razor blades and used for nucleic acid isolation using the MagMAX 96 AI/ND Isolation kit (Thermo Fisher Scientific) on a King Fisher instrument. GLRaV-1, -2, -3, and -4, and GRBV were detected by RT-PCR and PCR, respectively, as previously described (Osman et al., 2007; Krenz et al., 2014).





2.2 Classification process



2.2.1 Experts’ classification

Classification of the leaves into the four disease categories according to visual symptoms was performed on RGB segmented images by two experts in cooperation with each other and without previous information on the dataset (using 525.3nm, 555.7nm, and 601.3nm).




2.2.2 Machine learning models description

Two predictive machine learning models were used in this study: Random Forest (RF) (Breiman, 2001; Parmar et al., 2019; Shaik and Srinivasan, 2019), and Convolutional Neural Network (CNN) (LeCun et al., 2015; Lu et al., 2021).

The random forest algorithm is a commonly used model for remote sensing classification (Pal, 2005; Belgiu and Drăgut, 2016). This model has found multiple applications in viticulture, such as sensing soil water (Brillante et al., 2016a), or imaging grapevine water uptake (Brillante et al., 2016b). A random forest uses decision trees in an ensemble built through a modified bagging approach. Decision trees are a rule-based model where each rule splits the dataset into more homogeneous groups with respect to the response variable. Their structure greatly varies with minor changes in the data available for modeling and ensemble methods like bagging leverage this property. In bagging, multiple trees are built using different versions of the original data set obtained through resampling techniques. In this way, each tree has a different structure and learns other aspects of the dataset; the ensemble finally outperforms the individual learners. In random forest, the perturbation process is further enhanced by the fact that the trees use only a fraction of all available predictors at each split. In this work, we tuned the number of trees in the forest and the number of predictors available at each partition using a cross-validation routine, as previously reported (Brillante et al., 2015).

A neural network is a sequence of linear and nonlinear transformations that uses training data to learn the structure of the dataset and inform optimal classifications of test data. A CNN is a specific type of neural network which consists of convolutional, normalization, nonlinear, and fully connected layers. CNNs are especially useful in the case of machine learning problems using image data, as they can isolate smaller regions of the image to reduce the amount of data that must be processed at a given time (Albawi et al., 2017). Also, the depth of CNN models allows them to adapt well to highly nonlinear data, such as the dataset being explored in this study.

The 3D-CNN architecture used in this work is shown in Figure 3. To predict the virus status of a given leaf, the CNN first accepts as input a hyperspectral image, which contains matrices of data representing that same image captured from 40 different wavelengths. Each matrix is passed to one of the network’s 40 channels to be simultaneously considered in recognizing significant features of the image. There are then two consecutive sequences of convolution, normalization, and rectified linear unit (ReLU) pooling layers where the model can extract important features to learn the structure of the images supplied. These sequences filter through the image provided to each input channel and first filter out values that differ significantly from the surrounding region (convolutional layer), normalize values to reduce computational cost (batch normalization layer), enhance nonlinearity of the data (ReLU layer), and shrink each region to a single value to reduce the size and decrease the likelihood of overfitting (pooling layer). Next, the output of these layers is flattened into a one-dimensional array, and a fully connected layer tunes internal parameters to adapt to the nonlinearity in these data and make a classification. The final layer of the network, namely the activation function, interprets the classification made by the fully connected layer and assigns a predicted class label, acting as the output of the CNN.




Figure 3 | The convolutional neural network architecture used in this study for classification of grapevine disease. Input for the network consists of hyperspectral images of leaves, captured at 40 wavelengths. Data is then fed through two sequences of layers which are designed to extract significant features from each image (convolution), normalize values to minimize computational cost (batch normalization), adapt to nonlinearity of values (ReLU), and combine regional values to reduce the overall size of the dataset to be processed (pooling). A fully connected layer flattens data and updates network weights and parameters to improve prediction capability. A final activation function returns a class label which translates to the predicted virus classification (non-infected, leafroll, red blotch, and co-infected with both viruses).



Network parameters in the fully connected layer are selected using an iterative optimization technique known as Adaptive Moment Estimation (Adam). Adam is an adaptation of Stochastic Gradient Descent (SGD), an algorithm in which network parameter values are tuned to minimize model loss by using a gradient calculated using a random subset of points in the data set. A unique feature of the Adam algorithm lies in its ability to track previous gradients which guide model parameters towards optimal values much more quickly and efficiently than similar methods, making it an appropriate option for multilayer CNNs as are used for this classification problem (Kingma and Ba, 2015). A fixed learning rate of 0.001 is used for each iteration of the Adam algorithm.




2.2.3 Classification scheme

We classified the grapevine leaf samples into non-infected, leafroll-infected, red blotch-infected, and leafroll and red blotch co-infected categories according to the results from the PCR analyses and independently from the visual assessments of disease symptoms.

Due to the asymptomatic nature of the two diseases early in the growing season we considered three different datasets: one with the entire data, one with only pre-symptomatic leaves, and the last one with only symptomatic leaves (post-symptomatic). This allowed us to reliably assess the models’ ability to classify symptomatic, infected vines and compare them to the performance of asymptomatic classification.

A binary classification model was initially explored for which CNN and RF models were trained to distinguish between non-infected and infected plants. Later the models were trained in a multiclass classification scheme, for which each class was independently predicted (non-infected, infected by red blotch, infected by leafroll or co-infected by both).




2.2.4 Training/testing

The prediction skills of each model were assessed using a stratified 5-fold cross-validation (CV) scheme. A k-fold cross-validation technique shuffled the dataset before partitioning it into k non-overlapping folds. For each unique fold, data were held once for use as a test set, while all remaining k-1 folds were combined into a training set. A model was fit on the training set and evaluated using the test data, which were previously unseen by the model. Model parameters were then cleared, and evaluation scores were recorded and averaged across all folds. This technique is less computationally costly than alternative forms of cross-validation, and yields averaged measurements with a valuable estimate for the predictive power of the model on the full dataset (James et al., 2013). This work used stratified k-fold CV, wherein folds were selected to maintain the class distribution of the full dataset. This is especially useful for cases of class imbalance, as was seen in the dataset generated in this study, where the model performance tends to be more stable from fold to fold (López et al., 2014).

The training set for the CNN model was augmented to improve network performance by providing additional training images with less predictable features. Each training image was duplicated, and the copy underwent a random combination of horizontal and vertical flips, image shifts, scaling, and rotation (where each transformation has a probability of 0.5 of being applied to a given image). This expanded and introduced additional variability in the training dataset, preventing the model from becoming familiar with leaf shape and orientation. The average signal used in the RF model was invariant to most of these transformations. Therefore, augmentation was not done for this model.

Augmentation was performed using the Albumentations package in Python (Buslaev et al., 2020). Minibatch training was utilized to reduce the computational and memory strain on the GPUs when training the CNN model. Training data was broken down into batches of 50 images each, and the model continued the tuning parameters for 30 epochs or full iterations through the dataset. There was no need to use a similar technique for the RF model, as the input into the model is a significantly smaller dataset and did not pose any computation or storage complications.

The torch.nn.CrossEntropyLoss() function in PyTorch was used to evaluate model loss for the RF and CNN methods. All experiments were run on a 20-core machine with 2 GeForce RTX 2080Ti graphic processing units (GPUs). All machine learning models were developed and evaluated using Python version 3.7.10 and including tools from the Pytorch and Scikit-learn packages.




2.2.5 Performance metrics

Overall accuracy and confusion matrices were computed to measure the performance of each algorithm with respect to the dataset used. In Top-N accuracy, a “correct” prediction denotes a data point whose true class is one of the N most probable classes, as predicted by the classification model. For this work, Top-1 accuracy was used. A prediction was considered correct only if the most probable class of a data point matched the true class. For a given class k, performance was evaluated using the:

	

This evaluation helped identify the strengths of the models discussed, as well as certain classes in which the prediction capabilities of each model should be improved.

Results are presented through confusion matrices. A confusion matrix displays predicted class labels on the horizontal axis and true class labels on the vertical axis, so that the value in the ith column and the jth row represents the proportion of data points that belong to class j which the model predicted to belong to class i. For this reason, the main diagonal of a confusion matrix represents the proportion of each class that is correctly predicted, while every value which is not on the main diagonal represents a proportion of data points in each class that is misclassified by the respective model. For binary classification, the other values represent the false positives (data predicted infection while no infection is detected) and the false negatives (data predicted non-infection while infection is detected). In the multiclass classification, when looking at the non-infected row, the sum of all values that are not correctly predicted are false positives.

To understand how much the predictive power of the CNN and RF models was affected by variability in virus symptom expression at the leaf level, we calculated accuracy by imaging two leaves collected from the same vine and combining them in one single molecular test. When the model classified one leaf as not infected and the other leaf as infected, the “healthy” leaf was reclassified to match the category of the leaf predicted to be infected. Accuracy was then calculated in the same manner as previously done, with the adjusted array of category predictions. In this analysis, a positive difference indicates an increase in accuracy compared to the original accuracy figures. This work was conducted on the whole dataset (including vines sampled in early disease stages) to validate further the challenge posed to the models by the image dataset regarding more variable foliar virus symptoms earlier in the season.




2.2.6 Variable importance rate

For the random forest model, each fold of the cross-validation returned variable importance rankings. For each of the variables (in this case, the different bands of light whose images were used for classification purposes), a variable importance ranking assessed the level of contribution each respective attribute makes to the random forest model. These rankings assessed the strength of the relationships between light bands and prediction accuracy and helped investigate the relationships between each wavelength and the outcome used by the model for prediction (Kuhn & Johnson, 2016).






3 Results



3.1 Dataset and image segmentation

Leaf samples were collected around veraison (August) when most leafroll-infected and red blotch-infected vines were asymptomatic. Leaf samples were also collected in late September when disease symptoms were more apparent. In total we collected 496 images from 248 plants. From this dataset, two smaller datasets of 319 and 312 images were obtained by including only the pre-symptomatic leaves from August or exclusively the symptomatic leaves from September together with the images of the not-infected leaves. For all samples, the viral infection status was determined by PCR-based tests. Molecular assays revealed the predominance of GRBV and GLRaV-3 in the samples tested by PCR with a few petioles testing positive for GLRaV-1 and GLRaV-2, and many samples testing negative for red blotch and leafroll-associated viruses. For the purpose of this study, individual viruses associated with leafroll were not distinguished; instead, a sample was considered infected by leafroll if it tested positive for one of the four leafroll viruses assayed for in this study.

In all datasets, roughly 1/3 of the images were from leaves collected from non-infected vines and 2/3 were from images of leaves collected from infected vines. The dataset was divided into categories used in the machine-learning models (Table 1). Non-infected versus infected categories were used for the binary classification models, and classes 0-3 were used in the multiclassification models.


Table 1 | Number of images by category according to the dataset used.






3.2 Binary classification



3.2.1 Accuracy in binary classification

The overall accuracies of the RF and CNN binary models were calculated for the three datasets (Table 2). In all the cases, the CNN model performed better than the RF model (from 1.4 points to 4.6 points more than the RF). With the entire dataset, the overall accuracy was 79.5% for the RF model and 80.9% for the CNN model. Using only the pre-symptomatic dataset the overall accuracy increased to 82.8% for RF and 85.6% for the CNN model (Table 2). For the symptomatic dataset, the overall accuracy was 82.4% for the RF model and 87% for the CNN model. The highest accuracy was obtain using the CNN model with the symptomatic dataset.


Table 2 | Overall accuracy of binary classifications for each model and each dataset.



Confusion matrices for the three datasets were obtained with the RF and CNN models (Figure 4). For the entire dataset, errors were mostly related to false positives, where the CNN model (41% of the non-infected) did slightly worse than the RF model (38% of the non-infected). In contrast, the CNN model did better than the RF model on the false-negative rate (Figure 4).




Figure 4 | Confusion matrices of binary classification using the RF (top) and CNN (bottom) models with the entire dataset (left), the pre-symptomatic dataset (center) and the symptomatic dataset (right). The top left corner shows the percentage of non-infected vines that were well predicted as non-infected. The top right corner shows the percentage of non-infected vines that were wrongly predicted as infected (false positive). The bottom left corner shows the percentage of infected vines that were wrongly predicted as non-infected (false negative). The bottom right corner shows the percentage of infected vines that were well predicted as infected. Using the pre-symptomatic dataset shows fewer false positives and using the symptomatic dataset shows fewer false negatives and false positives.



With the pre-symptomatic dataset, the greatest improvements were for the false positives that decreased to more than half in both the RF (38% to 12% of the non-infected) and CNN (41% to 15% of the non-infected) models, resulting in an improved ability to accurately predict non-infected cases from 62% to 88% for the RF model and from 59% to 85% for the CNN model. The false negative rate slightly increased from 14% to 21% for the RF model and from 11% to 14% with the CNN model (Figure 4).

For the symptomatic dataset, both the false negative and false positive rates tended to decrease, although the improvement in the false positive was less striking than with the pre-symptomatic dataset (Figure 4). The CNN model shows fewer false negatives (7%), improving the prediction accuracy of the infected class to 93%.




3.2.2 Effect of variability in symptom expression at leaf level

The binary accuracies of the original models used to predict infection of each leaf separately and the new accuracies computed combining the prediction of both leaves of the same vine was compared (Table 3). When the model classified one leaf as not infected and the other leaf as infected, both leaves were considered as infected, and consequently the whole plant was considered as infected. For both models, the overall accuracy remained almost the same while the accuracy of the infected class improved by 5 points and that of the non-infected decreased by 8 to 11 points. The decrease in non-infected class accuracy can be due to the impact of false positives within the dataset. If the vine was not infected, the two leaves classified as infected corresponded to false positives, and this adjustment reduced the number of correctly predicted non-infected leaves.


Table 3 | Accuracy comparison of the binary classification models with two-leaf adjusted model prediction scheme on the full dataset. Results are shown in % points.






3.3 Performance evaluation and exploration of the four-category classification


3.3.1 Accuracy in multiclassification models

Multiclassification models were used to predict infection status in four categories, i.e., non-infected, infected with leafroll only, infected with red blotch only, and co-infected with both viruses, to determine the accuracy for each category with the RF and CNN models using the entire dataset, the pre-symptomatic dataset, or the symptomatic dataset (Table 4).


Table 4 | Accuracy of the RF and CNN models for each dataset and category.



The overall accuracy of the RF model was 62.2% for the entire dataset, and 67% for the CNN model. This accuracy for the pre-symptomatic dataset increased to 77.7% for the RF model and 76.9% for the CNN model. Symptomatic overall accuracy was lower with 65.7% for the RF model and 73.2% for the CNN model. The highest overall accuracy was observed for the CNN model with a difference of 0.8 to 7.5% according to the dataset used (Table 4).

Considering performances on predicting individual categories, the results were closer between the two models when using the entire dataset but differences in accuracy increased for the symptomatic dataset (Table 4). On this dataset, the largest improvement in accuracy was obtained with the CNN model with respect to the RF model in the red blotch category (+49%), and both virus category (+15%). However, this increase was obtained at the expense of longer training times. Besides training time, there were no significant differences in the prediction time of new samples’ infection status (in the model application).

Confusion matrices for each dataset with the RF and CNN models were used for prediction of each category (Figure 5). Two categories, non-infected and leafroll, were best predicted by both types of models. Leafroll was the best predicted class with a maximum of 9% of false negatives using the RF model.




Figure 5 | Confusion matrices averaged across the five CV folds for data with the entire dataset (left), the pre-symptomatic dataset (center), and the symptomatic dataset (right) using the RF (top) and CNN (bottom) models. The diagonal represents the percentage for each category that was well predicted. The three percentages below the top left corner represent the false negatives for each infected category. Two categories, non-infected and leafroll, were best predicted by both types of models. Leafroll was the best-predicted class with a maximum of 9% of false negatives using the RF model for the symptomatic dataset.



With the full dataset, some GRBV-infected leaves were predicted as non-infected (50% with the RF model and 41% with the CNN model), and one third of the leaves infected with both viruses were predicted as leafroll infected (28% with the RF model and 33% with the CNN model).

Using the pre-symptomatic dataset, GRBV-infected leaves were wrongly predicted as non-infected for 42% by RF and 34% by CNN. Leaves infected with both viruses were well predicted for 97% by RF and 98% by CNN.

For the symptomatic dataset, GRBV-infected leaves were also wrongly predicted as non-infected (51% with the RF model and 43% with the CNN model). The CNN model correctly classified 57% of GRBV-infected leaves, while the RF model mostly predicted them as non-infected (51%) or leafroll infected (33%). Leaves infected by both viruses were mainly predicted as leafroll infected (73% with the RF model and 63% with the CNN model).



3.3.2 Effect of variability in symptom expression at the leaf level

Multiclass accuracies of the original models used to predict infection of each leaf separately and the new accuracies computed using the combined prediction of both leaves of the same vine were compared (Table 5). The impact of the two-leaf adjustment method on model performances surpassed what was observed in the binary classification models (Table 3). Accuracy improved in the red blotch and both-viruses categories for the CNN and RF models. The largest impact was in the prediction of red blotch-infected samples, with a 14.1% increase in accuracy with the RF model and 10.3 with the CNN model. The CNN model agreed with itself in predicting leaves of the same vine 70% of the time, in contrast to 55% of the time for the RF model. The accuracy of the non-infected category decreased for both models, which is likely due to the impact of false positives within the dataset, as also observed when applied to the binary classification scheme (Table 3).


Table 5 | Accuracy comparison of the multiclassification scheme with two-leaf adjusted model prediction scheme on the full dataset.





3.3.3 Variable importance rate of RF

The relative importance of each band in terms of contribution to the RF model was analyzed for all the different datasets with binary and multiclass classifications (Figure 6). In all cases, a larger number of wavelengths was relatively more important for multiclass classifications than for binary classifications. More wavelengths were also highlighted for the classifications with the symptomatic dataset compared with the pre-symptomatic dataset. For the pre-symptomatic dataset with both binary and multiclass classifications, two wavelengths appeared to be dominant at 586 nm and 596 nm in the yellow region. Concerning the symptomatic dataset, the important wavelengths belong to the green (~530 nm), orange (~600 nm), red (650 nm), and the beginning of the red-edge regions (~700 nm).




Figure 6 | Variable importance (VI) of RF model. The higher the importance of the band, the higher the contribution of the reflectance of this band to the model. The first line represents the VI using the entire dataset, the second line is for the pre-symptomatic dataset and the third line is for the symptomatic dataset. The first column represents the VI for the binary classifications. The second column represents the VI for the multiclass classifications.






3.4 Visual assessment

The difficulty in visually assessing virus infections on our datasets was confirmed by the performance of expert predictions using RGB segmented images (Table 6). The binary classification accuracy was about 50% independent of the dataset. Accuracy improved in the four-category classification to 40% overall (selecting the right category by chance would be 25%).


Table 6 | Overall accuracy of human prediction for binary and multi-category classification with full or reduced dataset.






4 Discussion


4.1 Model performances and comparison



4.1.1 Comparing the accuracy of random forest with convolutional neural networks

This study tested two machine learning algorithms, a tree-based ensemble learning method (RF) and a deep neural network method (CNN). The CNN model outperformed the RF model in most of the cases by up to 7.5 points with regards to the overall accuracy for the four-category classification (Table 4, Figure 5) and up to 4.6 points with regards to the binary classification (Table 2). This is in accordance with previous studies comparing the CNN with RF models for land classification (Jozdani et al., 2019; Yoo et al., 2019) and recently for plant disease detection (Hatuwal et al., 2020; Musci et al., 2020).

For the binary classifications, the false negative rate decreased with the use of the CNN compared to the RF model. This can be explained by the fact that we had to train the RF algorithm on the average spectral signal and the CNN model on the whole hypercube.




4.1.2 Comparison of model performances with the literature

The non-infected and leafroll-infected grapevine leaves were the best predicted categories (up to 86% for leafroll prediction with the CNN model using the entire dataset and up to 92% with the pre-symptomatic dataset). These categories were also the ones with the largest number of samples in most of the cases, which may affect the model performances. Similarly, Naidu et al. (2009) obtained 81% accuracy using spectral indices computed with data from a visible-near (350-2500nm) portable spectrometer to classify leafroll-infected vs. non-infected leaves with both symptomatic and non-symptomatic data. In our study, the capability of a hyperspectral camera was leveraged, thus maintaining the spatial information used in the CNN model, but the spectral region was limited to the visible. This was to avoid possible changes in the spectrum in the near infrared region due to changes in water content with leaf storage, for example, that could have affected the results. Other studies used all the spectral information contained in hyperspectral images from 500 to 2500nm to predict leafroll infection and obtained a classification accuracy exceeding 90%, mostly using leaves or plants with fully expressed symptoms (MacDonald et al., 2016; Sinha et al., 2019; Bendel et al., 2020). However, these studies used a binary classification where plants infected with a single virus (mostly leafroll) were differentiated from non-infected vines but did not attempt a multiclass approach, neither included multiple virus symptoms for a binary classification. In our study, binary classification reached greater accuracy (87% overall accuracy of the CNN model with the symptomatic dataset), despite the complexity related to the presence of multiple viruses. In California, there may not be the need to differentiate between leafroll and red blotch viruses in a vineyard context, as the final decision (i.e., removing infected vines) would be the same, regardless of the virus, and a binary classification offering higher accuracy and lower false negatives would be appropriate. In other regions, where GRBV vector is absent, a binary model for the detection of GLRaV is sufficient.




4.1.3 Comparison with visual assessment

As highlighted by Cruz et al. (2019), few studies on disease detection using artificial intelligence compare their performance with visual assessment, albeit being important to discuss the potential of machine learning algorithms. Here we did not accomplish a rigorous assessment and do not wish to claim the superiority of hyperspectral imaging over visual identification. Our intent was to characterize how challenging it was to predict this dataset (because oftentimes symptoms were not visible in infected vines) and we used visual assessment as the reference. In our example, accurately differentiating leafroll or red blotch-infected leaves was very challenging using RGB segmented images for our two experts (Table 6). With an overall accuracy of up to 87% with a binary classification, machine learning models could help identify vines and increase screening speed. Although comparative performance analyses with visual observation should be performed in the vineyard on full grapevine with more experts, as high accuracy rates can be achieved in-situ by experienced personnel (Bell et al., 2017).





4.2 Effect of different parameters on model performances



4.2.1 Effect of symptom variability

Grapevine virus disease symptoms vary during the growing season (Poojari et al., 2017; Rumbaugh et al., 2021). As our field campaign took place during several plant development stages, infected vines did not show the same severity of foliar symptoms. For the binary classification, the false negative rate was lower using the symptomatic dataset compared with the pre-symptomatic dataset. This can be explained by the absence or low level of symptoms of infected vines from the earlier dataset despite some wavelengths in the yellow domain seeming to be informative (Figure 6).

According to the confusion matrices computed for the RF and CNN models, leaves infected with GRBV were predicted as non-infected (from 34% to 51%). This might be explained by the symptom expression level of red blotch leaves used in this study. Indeed, the red blotch symptoms were observed to be overall milder than leafroll symptoms. Symptoms on leaves infected only by GRBV were often confused with healthy leaves, and leaves infected with both viruses showed typical leafroll symptoms and were sometimes predicted to be infected with only leafroll viruses. The only study using hyperspectral imaging to detect GRBV demonstrated the possibility of separating the parts of the leaves with or without symptoms using a Support Vector Machine (SVM) classifier (Mehrubeoglu et al., 2016). As this virus has been less investigated because of its more recent discovery (Sudarshana et al., 2015), further studies are needed to evaluate the potential of hyperspectral images to detect it. To our knowledge, our study is the first to identify leaves affected by this virus within a dataset obtained with healthy and leafroll-infected leaves.

The effect of the variability in disease symptom expression on model performances was enhanced when working on a single leaf rather than two leaves per plant as the basis for model development. Combining the prediction on two leaves from the same plant substantially increased the accuracy of the red-blotch category. This is because when symptoms are variable or not strongly expressed, the rate of false negatives is greater than the rate of false positives. Therefore, even though our strategy increased the number of false positive classifications in most cases, there was a reduction of false negatives. This improvement is beneficial in a vineyard setting where false negatives represent infected plants that are not detected, and thus may contribute to virus spread by insect vectors to healthy plants until correctly detected and eliminated. As described by AL-Saddik et al. (2017) and Boulent et al. (2020), an incorrect negative prediction that keeps an infected plant in place is far more costly than a false positive prediction, leading to the removal of a healthy plant.




4.2.2 Effect of the number of samples

We noticed that the overall accuracies using the symptomatic dataset are lower than using the pre-symptomatic dataset in most of the cases (-0.2 to –12 points), except for the binary classification using the CNN (+1.4 points). This may mostly be due to the poor accuracy of the red blotch-infected category for which the number of samples is considerably lower for the symptomatic dataset (22 samples) than for the pre-symptomatic dataset (86 samples). This observation is even more noticeable for the multiclass classification using the RF model. In this case, efforts to balance the dataset by lowering the number of non-infected and leafroll categories, the accuracy of the red blotch category reached 27% (4% with the original dataset), but the accuracy of the two other classes decreased (Supplementary Figure 2). In our dataset, two different wine grape cultivars were mixed with the intent of training a model that could learn general features of virus symptoms and eventually generalize infection. A sideback benefit of this approach is that the difference between cultivars could be an additional piece of information for the model (Gutiérrez et al., 2018). Future developments of this work should focus on increasing the number of leaves imaged and trying to have a well-balanced dataset for each category. This might prove challenging because the composition of the dataset for each category can only be ascertained after the images are taken and the virus diagnostic tests are complete.





4.3 Spectral domains used

This study was performed using wavelengths from 510 nm to 710nm. These wavelengths belong to the visible domain that enables the assessment of pigment content (Hodáňová, 1985; Carter and Knapp, 2001). The variable importance rate computed with the RF model highlighted the most important bands, which were mainly located in the yellow region for the pre-symptomatic dataset and in the green, orange, and red sub-regions for the symptomatic dataset. This can be explained by the color change caused by both diseases after veraison: symptomatic leaves turn from green to red in red-berried wine grape cultivars such as Cabernet franc and Cabernet Sauvignon. The green color is due to the chlorophyll content (Main et al., 2011; Behmann et al., 2014; Matese and Di Gennaro, 2015), while the red is due to the increase of anthocyanins in leaves (Gamon and Surfus, 1999), as a response to pathogen attack (Himeno et al., 2014).

As demonstrated by Martínez-Lüscher et al. (2019), GRBV causes a reduction in photosynthesis which may have an impact on chlorophyll and carotenoid concentration. The same observation was made for GLRaV (Endeshaw et al., 2014). Such findings are consistent with the wavelengths identified as most important for the RF model with the symptomatic dataset (Figure 6). These wavelengths are close to the regions of maximum absorption of chlorophyll a and b, 642 nm and 626 nm, respectively. The visible domain is of interest to assess pigment concentration, and the accuracy obtained in this study is promising to identify healthy and leafroll-infected plants. Further investigations could focus on the use of more spectral domains in the near-infrared and shortwave infrared spectral regions for the detection of asymptomatic, virus-infected grapevines (Nguyen et al., 2021). Indeed, these domains can reflect the cellular structure or leaf water content which can be affected by diseases (Junges et al., 2020). In that case, it will be important to work with images of whole canopies instead of detached leaves.





5 Conclusion

Grapevine leafroll-associated viruses and grapevine red blotch virus negatively impact vineyard health and wine quality. There is no cure for these two viruses in the vineyard. The only way to limit their secondary spread is to identify infected plants, remove them, and replace them with clean plants. Identifying virus symptoms in the vineyard for removal (aka roguing) is time-consuming and costly. A rapid decision tool would be beneficial to the grape and wine industries to deal with this challenge. In this study, hyperspectral images were used for the identification of both groups of viruses using two different machine learning models (CNN and RF) on pre- and symptomatic datasets. The best results were obtained using a CNN model with a dataset where samples from infected vines were acquired at the time when symptoms were more apparent (87% overall accuracy with a binary classification on a symptomatic dataset) or when the model used two leaves rather than a single leaf per vine. Therefore, working with a larger number of leaves per plant and utilizing the most balanced dataset possible (number of samples per category) is recommended when assessing virus infection from hyperspectral images in the laboratory.

This study investigated for the first time a multiclassification distinguishing non-infected grapevine leaves, leaves infected with GRLaV, leaves infected with GRBV, or those co-infected with both viruses. This was challenging both from machine learning and from visual assessment standpoints, though our preliminary results are promising. Further investigations are needed to increase prediction performances, especially for the detection of GRBV-infected plants with an extended number of samples. This work focused on the visible region of the light spectrum. Within this range, the most informative wavelengths to predict virus presence were in the red and orange regions (anthocyanins) or associated with chlorophyll and carotenoid absorption. Extending to a larger region of the electromagnetic spectrum will be important when assessing difficult to classify vines. Finally, a scale change, i.e., leaf versus canopy, can significantly improve developing an operational tool to detect diseases in grapevines. Further work will be need to treat images acquired over whole vines from the ground or the air as a basis for future studies of virus detection in vineyards using hyperspectral imaging.
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1 Introduction

Chrysanthemums, which originated from China, have an economic value in flower as well as a high value in both edibility and health care in the form of food and tea (Li et al., 2019). With the improved living standards of people, chrysanthemum tea has become a popular drinking target, due to its inherent advantages: 1) it improves the body’s anti-ageing, anti-hypertensive, anti-bacterial, and anti-viral abilities; 2) it regulate the body’s immunity by anti-inflammatory, antipyretic, sedative, and anti-arthritic abilities (Han et al., 2019; Yuan et al., 2019). Hence, the planting area of tea chrysanthemums in China is increasing every year. According to the recent survey (Yang et al., 2018), the planting area in Hangbaiju in Tongxiang City, Zhejiang Province, increased to nearly 4000 hm2 with an output of about 12000 kg/hm2. Due to its best medicinal properties associated with a specific flowering stage, the harvesting period is very narrow and usually lasts 25 days (Yang et al., 2018). In this regard, there is an urgent need for many farmers to harvest a good quality and quantity of tea chrysanthemums. However, it is difficult to recruit many well-trained farmers in a short time.

During tea chrysanthemums harvesting, the harvesters judge whether to pick or not after observing the state of the tea chrysanthemums flowers. Similarly, the harvestable flowers can be detected by image processing technology, then the picking operation can be completed by the corresponding machines, such as a fruit-picking robot. However, there are many challenges to accurately identifying chrysanthemums in the field due to complex external environmental factors (light, shade, wind, and photo distance, etc.) as well as differences in maturity, colour, and the direction of chrysanthemums’ flower heads. Many researchers have identified chrysanthemums by overcoming some of the above (Yang et al., 2018; Yuan et al., 2018; Liu et al., 2019; Yang et al., 2019; Liu et al., 2020; Qi et al., 2021; Qi et al., 2022a; Qi et al., 2022b), and these studies indicate that:

	1) Chrysanthemum flower detection can be realized by machine learning models, which are highly dependent on the quantity and quality of image datasets;

	2) The accuracy of flower detection based on RGB images is high, and most of the detection is tested in an ideal environment.



Due to a large number of varieties of tea chrysanthemums, high planting density, and different field conditions, it is difficult to meet the photo quality requirements using the same collection parameters in a complex outdoor environment. In addition, the quality of the images collected is significantly affected by outdoor conditions; hence, the following four factors need to be considered simultaneously when taking photos of tea chrysanthemums (as illustrated in Figure 1, the serial number of the images in the dataset is provided),




Figure 1 | The category to which the sample images belong and their number in the related chrysanthemum dataset: (A) Jinsihuangju-01314, (B) Hangbaiju-00063, (C) Bo-chrysanthemum-11093, (D) Wuyuanhuangju-03285, (E) Gongju-00002, and (F) Chuju-00110.



	(1) Variety: Different varieties of tea chrysanthemums varies greatly in size, especially the size difference between the Jinsihuangju (Figure 1A) and Hangbaiju (Figure 1B). If the images are collected by the camera at the same distance, the number of flowers contained in one image will exhibit considerable diversity, further leading to unbalanced data which will affect the precision of the training models. Therefore, the distance to the flower should be adjusted between 30cm to 50cm according to the variety.

	(2) Planting density: As the planting density of tea chrysanthemums is relatively high, which generally results in significant overlap (The cyan circle in Figure 1) and occlusion between flowers (The blue circle in Figure 1), can occur when the images are collected in the fixed angle, which can reduce the precision of detection models. To avoid these problems, three camera views, including ∼0°, ∼45°, and ∼90° , are chosen for image collection in the field.

	(3) Field conditions: Tea chrysanthemums are planted in different regions under diverse field conditions. For Jinsihuangju, Wuyuanhuangju, and Gongju, a set of ropes and bamboo poles are used on both sides of tea chrysanthemums plants to avoid lodging. However, both bamboo poles (Figure 1A) and ropes (Figure 1D) in the images will influence the detection precision, which can also be solved by taking photos in the above three views.

	(4) Photographing conditions: A large number of occlusions, overlap, direct light (The green circle in Figure 1), shadow (the red circle in Figure 1), and backlight (The orange circle in Figure 1) images are collected under the photographing conditions, such as wind and the light intensity changes. To reduce these external factor influences on image quality, a large number of images are necessary to detection models (Qi et al., 2022b).



There is currently no publicly available tea chrysanthemum dataset to the authors’ knowledge. Consequently, we provide an image dataset for six varieties of tea chrysanthemums in three camera view angles obtained under complex outdoor scenes, and this open-source image dataset can greatly promote the development of tea chrysanthemums detection methodology.




2 Value of the data

	(1) RGB-based images of tea chrysanthemums in three view angles can provide sufficient flower features for detection models. This will further increase the detection precision while facing the overlap, occlusion, and shadow in complex outdoor scenes.

	(2) Collecting large quantities of tea chrysanthemums images according to five different outdoor conditions, including occlusion, overlap, direct light, backlight, and shadow in complex outdoor scenes, are of great benefit for extending the applicability and enabling better precision of detection models.






3 Materials and methods



3.1 Collection and construction of the dataset



3.1.1 Image acquisition

With the continuous development of imaging technology, smartphones have become important media equipment for common image and video acquisition and their usage has higher flexibility. In this work, as illustrated in Figure 2B, the Mi 10 phone (Manufacturer: Xiaomi Corporation) is used for acquiring both images and videos, and more images can be extracted from the videos to enrich the image dataset. The videos are also included in the image dataset.




Figure 2 | (A) TES-1333R Solar Power Meter, (B) Mi 10 phone, and (C) Image acquisition scene, (D) Schematic diagram of the camera angles.






3.1.2 Collection method

In Figure 2, the author took Jinsihuangju images at 4:00 p.m. in Xitou Village, She County, Huangshan City, Anhui Province, China. The TES-1333R Solar Power Meter (Figure 2A) in average mode was used to measure the average radiant illuminance before photography, describing the effect of lighting conditions on the photography, with the Solar Power Meter showing an average outdoor radiant illuminance of 47.1W/m2 at that time. Firstly, the Mi10 phone (Figure 2B) was held in the left hand and moved along the tea chrysanthemum (in the direction of the orange arrow in Figure 2C). Secondly, an angle of ∼0°, was selected for photography in Figure 2C, with a distance of 40cm between plane one, where the phone camera is located, and plane two, where the top canopy of the tea chrysanthemums is located. Since tea chrysanthemums heads are positioned differently, we used different angles for shooting that is better than a fixed angle. This will further acquire a large number of tea chrysanthemums images in different directions and reduce the noise from occlusion and overlap.

Therefore, to better display the complexity of the actual outdoor scenes, we used the following three angles, and the angles are not strictly fixed to fit the different orientations of photography.

	•∼0°: The plane one, where the Mi 10 phone is located, is parallel to plane two, where the top canopy of the tea chrysanthemums is located, with an angle of ∼0° above the horizontal of the tea chrysanthemum.

	•∼45°: The plane one, where the Mi 10 phone is located, is parallel to plane two, where the oblique side canopy of the tea chrysanthemums is located, with an angle of ∼45° above the horizontal of the tea chrysanthemum.

	•∼90°: The plane one, where the Mi 10 phone is located, is parallel to plane two, where the lateral canopy of the tea chrysanthemums is located, with an angle of ∼90° above the horizontal of the tea chrysanthemum.



In addition, depending on whether the tea chrysanthemum planting density is high, it is necessary to choose another angle and shoot again for the same plants.





3.2 Image annotation and dataset production

As depicted in Table 1, the data on six varieties of tea chrysanthemums are collected in the form of images and videos, better displaying the complexity of the outdoor scenes. Taking the Bo-chrysanthemum as an example, the 221 images and videos with a total duration of 67 min were collected at Yaowang Village on 24 September 2022. Then FFmpeg (Get URL: https://ffmpeg.org/) was used to capture an image every 20 frames of the above video, and the resolution of all the captured images and the 221 images were adjusted into 1080x1920, all of which were stored in JPG format. Finally, the above-processed images were selected manually to delete the obscure images, leaving 11592 Bo-chrysanthemum images in the dataset, of which 221 images were reserved after the above processing step.


Table 1 | Collection details about tea chrysanthemum dataset. 0.7.



Qi et al. (2022b) showed that up to 3000 images are sufficient to train and achieve better detection precision in the TC-YOLO model. Thus, in the dataset, the number of labelled images for each type of tea chrysanthemum was limited to 3000. The labelling software used was LabelImg (Get URL: https://github.com/heartexlabs/labelImg), which was used to annotate six tea chrysanthemums, labelling 18,000 images in total and saving the result of each image as an XML file.

In summary, we present an image dataset of six types of tea chrysanthemums (Bo-chrysanthemum, Hangbaiju, Jinsihuangju, Wuyuanhuangju, Gongju, and Chuju), a total of 81,276 images (1080×1920 pixels), captured using Mi10 phone. The image dataset was collected under five difficult-to-identify complex outdoor conditions: (1) direct light, (2) backlight, (3) shadow, (4) occlusion, and (5) overlap. Besides, this dataset also provides 453 original images (5760×3240 pixels) and videos (1080P and 60FPS) of tea chrysanthemums, which enables other researchers to use these datasets for further image analyses.





4 Direct link to deposited data and information to users

Publicly available datasets were contributed in this study. This data can be found at: https://dx.doi.org/10.21227/vc18-rv06.
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Precisely discerning disease types and vulnerable areas is crucial in implementing effective monitoring of crop production. This forms the basis for generating targeted plant protection recommendations and automatic, precise applications. In this study, we constructed a dataset comprising six types of field maize leaf images and developed a framework for classifying and localizing maize leaf diseases. Our approach involved integrating lightweight convolutional neural networks with interpretable AI algorithms, which resulted in high classification accuracy and fast detection speeds. To evaluate the performance of our framework, we tested the mean Intersection over Union (mIoU) of localized disease spot coverage and actual disease spot coverage when relying solely on image-level annotations. The results showed that our framework achieved a mIoU of up to 55.302%, indicating the feasibility of using weakly supervised semantic segmentation based on class activation mapping techniques for identifying disease spots in crop disease detection. This approach, which combines deep learning models with visualization techniques, improves the interpretability of the deep learning models and achieves successful localization of infected areas of maize leaves through weakly supervised learning. The framework allows for smart monitoring of crop diseases and plant protection operations using mobile phones, smart farm machines, and other devices. Furthermore, it offers a reference for deep learning research on crop diseases.
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1 Introduction

Maize, a crucial food and industrial crop, is vulnerable to various diseases, including corn brown spot, corn southern leaf blight and common rust. These diseases can have a significant impact on the quality and yield of maize during its growth (Rosenzweig et al., 2001). Crop production monitoring involves the identification of disease types and the localization of susceptible areas. This is essential in creating plant protection prescriptions and ensuring automatic and precise applications. Currently, the detection and identification of maize diseases through artificial intelligence techniques is a hot topic of research. The use of this technology can play a significant role in accurately identifying disease types and their location, therefore improving crop production monitoring.

Automated disease identification, made possible by a computerized control system, allows for early detection and monitoring of diseases. This system provides a reference for agricultural workers, which helps to manage and mitigate the damage caused by these diseases in a timely manner (Singh et al., 2020). Initially, researchers commonly employed machine learning (ML) models, specifically support vector machines (SVM) (Elangovan and Nalini, 2017), decision trees (DT) (Rokach and Maimon, 2005), random forests (RF) (Ramesh et al., 2018), and k-nearest neighbors (KNN) (Liao and Vemuri, 2002), to detect and classify crop diseases. However, the increasing prevalence of deep learning (DL) technology (Shivam and Kumar ,; Kohli et al., 2022) contributed to its utilization within the field of agriculture. DL has proven to be highly versatile and has been adeptly utilized to achieve significant breakthroughs in the realm of agriculture.

Among the deep learning tools, the most commonly used is the convolutional neural network (CNN) (Verma et al., 2021), which requires fewer artificial neurons than traditional feed-forward neural networks, has good performance in classification and recognition, and is widely used in disease identification. For example, Singh et al (Singh et al., 2015) demonstrated the application of an SVM classifier to differentiate between healthy and diseased rice plants, achieving an accuracy of 82%. However, ML-based crop disease identification systems have limitations despite their ability to classify with small amounts of training data. This is because these systems depend heavily on pre-processing and feature selection methods that rely heavily on the agricultural knowledge of experts. Furthermore, selecting a large number of features leads to computational difficulties, while a smaller feature set results in suboptimal classification. Thus, the performance of ML-based crop disease identification systems is inherently limited. Dwivedi et al. introduced a framework, region-based CNN (RCNN), for locating and classifying grapevine plant diseases. Initially, ResNet18 was used to compute depth features that were later classified by the RCNN classifier and produced an improved result of 99.93% for classifying several diseases of grapevine plants, with the disadvantage of poor performance in the real world (Dwivedi et al., 2021). Akshai et al. introduced several DL-based frameworks, namely VGG, ResNet, and DenseNet methods, for computing deep features and classifying plant diseases from the input samples. The method obtained the best performance of the DenseNet framework with 98.27% accuracy, but at the cost of increased computational complexity (Akshai and Anitha, 2021). Batool et al. proposed a method to locate several tomato leaf-influenced regions. The AlexNet model was applied to compute the depth features from the input image for training the KNN classifier. The results proved that this method had an accuracy of 76.1%. However, the KNN method is a tedious and time-consuming algorithm (Batool et al., 2020). Although good progress has been made in all of the above studies, in practical applications, given the equipment and time constraints, on top of first ensuring the generalization robustness and recognition accuracy of the disease classifier. We need efficient models with less computational effort and faster inference (Yang et al., 2023). To our knowledge, few studies have explored the applicability of state-of-the-art lightweight deep-learning classification models in the field of maize leaf disease identification.

In terms of data acquisition, most of the images used in current studies are captured in a controlled environment (Subramanian et al., 2022), with monotonous backgrounds and images acquired in a destructive manner. For example, when Mohanty et al. applied a model trained using the PlantVillage database to images from an online resource, the accuracy rate quickly dropped to below 50% (Mohanty et al., 2016). Thus, when DL classifiers are used in natural environments, there are many uncontrollable factors that affect them. The potential use of these studies is limited by the environment in which they are taken, which is why most results in many of the relevant studies show high accuracy, while recognition accuracy decreases when faced with truly complex natural environments. Existing open source disease datasets, such as PlantVillage and CVPR 2020-FGVC7, are not appropriate for real field environments. Thus, there is a need to create a dataset for detecting maize leaf disease in a natural field setting.

Benefiting from the advanced CNN architecture, fully supervised semantic segmentation methods have achieved remarkable performance (Gao et al., 2019). However, these segmentation methods rely heavily on large-scale training samples with pixel-level annotations. Building pixel-level accurate segmentation datasets is very expensive (Jiang et al., 2021a). On the other hand, deep learning classifiers lack interpretability, giving good results but without any explanation or details about the classification mechanism. Especially for crop disease classification, the user also needs to know how these classification results are achieved and what symptoms the disease has. The use of visualization techniques to explore the working mechanisms of deep learning has become a hot topic of research in recent years. Due to the accessibility of image-level labels and the desire to save time and manpower, weakly supervised learning is utilized to achieve semantic segmentation. By employing weakly supervised learning algorithms, classifier designers can enhance their classifiers’ performance. Meanwhile, visualization algorithms can aid users in identifying symptoms and infected areas to achieve a better comprehension of plant diseases. DeChant et al. developed a novel approach for quantifying the likelihood of specific disease types in plants, which involved utilizing various combinations of convolutional neural networks (CNNs) and generating heatmaps as input to images of diseased plants. This methodology offers a valuable tool for non-specialist farmers who can learn about plant diseases via deep learning classifier visualizations. Additionally, classifier designers and agricultural experts can study the behavior of classifiers through visualizations generated by the CNNs (Dechant et al., 2017). Brahimi et al. developed a saliency map to visualize plant disease symptoms and identified 13 types of plant diseases. They used multiple filters to pinpoint the location of disease spots (Brahimi et al., 2018). Lu et al. employed a CNN to detect disease spots on rice plants by generating feature maps (Lu et al., 2017). Mohanty et al. compared the performance of AlexNet and GoogleNet by using the publicly available PlantVillage dataset and evaluating performance metrics in 3 scenes (color, greyscale, and segmented) and using visual activation to display disease patches (Mohanty et al., 2016). Therefore, how to make use of the rich semantic information contained in the image-level annotated data and to achieve a weakly supervised semantic segmentation that is close to the semantic segmentation effect by relying only on image-level annotation is a hot topic of research in recent years in the direction related to semantic segmentation, and there are few studies to quantitatively evaluate the applicability of weakly supervised learning in the field of crop disease detection.

To address the issues arising from the above study, we constructed a dataset of field images of maize leaf spot disease for use in natural environments. The deep learning classification models trained on this dataset are more suitable for the identification and detection of maize leaf spot disease in the field. A combination of four lightweight networks and four advanced CAM methods were selected to test the performance of the networks and CAM on the validation set. Also, migration learning was employed to enhance the learning ability of the models during their training. The main contributions of this study can be summarized as follows:

	We constructed a maize leaf spot field image dataset by combining a smartphone captured maize leaf spot image dataset from maize growing areas in Dezhou City, Shandong Province, and Hebi City, Henan Province, and some open source maize leaf part image datasets. A total of 9401 images were included, and with the help of experts in related fields, image-level annotation was applied to these images, which included five types of maize leaf spot disease (large spot, small spot, curvular leaf spot, brown spot and rust) and one healthy type.

	We investigated the applicability of four state-of-the-art lightweight networks in the field of crop disease detection and proposed a method combining a disease classifier with CAM visualization for localizing infected areas on maize leaves relying only on image-level annotation. A comprehensive evaluation of the ability of four advanced CAM methods (LayerCAM, XGradCAM, AblationCAM, ScoreCAM) to localize infected areas of disease spots is also presented.

	We investigated whether class activation mapping maps can be used for disease localization in the field of plant pests and diseases. Analysis of the mIoU of different classification models under different conditions (different combinations of CAM methods and different operational thresholds for generating image boundaries from the score map). our study shows the feasibility of coarse localization of infected areas in maize leaves by means of a combination of lightweight classification models and CAM.



The remainder of the paper is organized as follows: in Section 2, the process of data collection and enhancement is described. Section 3 describes the methods used to classify and localize maize leaf spot disease and the performance evaluation metrics. Experimental details and results are given in section 4. Section 5 presents the conclusions drawn from this study.




2 Dataset



2.1 A dataset of maize foliar diseases collected from the field’s natural environment

Data for this experiment were collected in a non-destructive manner via iPhone 12 and Samsung Galaxy S21 at experimental fields in Hebi, Henan Province, and Dezhou, Shandong Province. The collection time was mid to late September 2022 and in addition, these maize diseases were all naturally occurring. When photographing, different angles and distances are used, and it is important to ensure that the images cover as many complex backgrounds as possible, such as sky, soil, and weeds. Healthy maize leaves were obtained from the publicly available maize dataset on the Kaggle website and the maize maculates dataset was provided by T Wiesner-Hanks (Wiesner-Hanks et al., 2018), both of which were screened and collated to form the maize leaf disease dataset to be used in this study. Figure 1 displays six types: 1474 corn brown spot, 1242 corn southern leaf blight, 2407 maize curvularia leaf spot, 615 common rust, 1253 corn northern leaf blight, and 2410 healthy types.




Figure 1 | Data set of maize foliar diseases: (A) corn brown spot, (B) maize curvularia leaf spot, (C) corn southern leaf blight, (D) corn northern leaf blight, (E) common rust, (F) healthy.






2.2 Image pre-processing

Deep learning often relies on large datasets, but in the real world, it is very difficult to collect training data and requires experts in the field to perform the labeling task. In addition, class imbalance and insufficient amount of data are key factors that lead to poor recognition (Öztürk et al., 2021). To address this issue, in this study we use traditional data augmentation to expand the number of samples. The data augmentation mainly involves flipping, color changing, panning, rotating, and resampling the training samples, which is done to enhance the generalization ability of the model and prevent overfitting. First we divide the data into a training set and a validation set in the ratio of 7:3, and then augmented the training set with data. The details are shown in Table 1.


Table 1 | Enhanced dataset.







3 Methods



3.1 Classification model of maize leaf disease

The well-established CNN architectures in computer vision, such as AlexNet, GoogleNet, VGGNet, and ResNet, are the most popular deep-learning models in image recognition. And they are widely used in the field of plant disease classification. Although they have a good performance in image classification, they also generally have the problem of high memory requirements and high computing power. This makes them almost unusable in some remote areas where internet speeds are very slow. There is therefore a need for lightweight and relatively high-accuracy networks that can be deployed to run on mobile and embedded devices to identify maize leaf spots. In CNN models, there is a trade-off between classification accuracy and model size, and the advent of lightweight networks has greatly improved the efficiency and accuracy of the models. In this study, we selected four advanced lightweight CNNs for this study, and provide a description of each one below.



3.1.1 MobileNetV3

MobileNetV3 was issued in 2019 and proposed by the Google team (Howard et al., 2019), with excellent performance and speed thanks to the accumulation of the first two generations of V1 and V2. MobileNetV1 consists of a stack of depth-separable convolution modules, which is a decomposition of the standard convolution into a depthwise convolution and a 1×1 pointwise convolution, greatly reducing the computational effort of the network (Howard et al., 2017). MobileNetV2 introduces a linear bottleneck and reverse residual structure (shown in Figure 2) in order to produce a more efficient layer structure by exploiting the low-rank nature of the problem (Sandler et al., 2018). When the inputs and outputs have the same number of channels, the inputs and outputs are connected to the residual connections. This structure is extended internally to higher dimensional feature spaces to increase the expressiveness of the non-linear multi-channel transform. The main improvements of MobileNetV3 are as follows: 1) inherited the deeply separable convolution of V1. 2) inherited the residual structure with linear bottlenecks of V2. 3) introduced the SE channel attention structure. 4) used the NetAdapt algorithm to obtain the optimal number of convolution kernels and channels. 5) used a new activation function Hard-Swish instead of ReLu6. In summary, MobileNetV3 incorporates the structures of the previous two and uses NAS (Neural Architecture Search) to search for the configuration and parameters of the network. Two versions are available, which can be defined as MobileNetV3_small and MobileNetV3_large, with different architectural complexity, depending on the demand for resources. Figure 3 shows the network structure of MobileNetV3_small.




Figure 2 | Inverted Residual Linear Bottleneck.






Figure 3 | Network structure diagram of MobileNetV3_small. NSE and SE indicate the presence of squeeze and excite layers in the block, HS indicates that the activation function is Hard-Swish, RE indicates that the activation function is ReLU, s indicates the step size, k indicates the convolutional kernel size, and NBN indicates that there is no BN layer.






3.1.2 ShuffleNetV2

ShuffleNetV2 is a new lightweight neural network proposed in 2018 (Ma et al., 2018), which is an upgraded version of ShuffleNetV1 based on channel shuffling and four efficient network design criteria (G1. Same channel width minimizes MAC. G2. Too much group convolution increases MAC. G3. Internal network fragmentation operations reduce parallelism. G4. Element-wise operations cannot be ignored). Accuracy outperforms other lightweight models at the same complexity. As shown in Figure 4, ShuffleNetV2 divides the inputs of the feature channels into two branches, one of which reduces network fragmentation and increases parallel efficiency. The other branch consists of three convolutions with the same input and output channels. It allows each convolutional kernel to run only on the corresponding channel grouping, which minimizes memory access cost (MAC). The advantages of ShuffleNetV2 are: 1) it is efficient in each building block, thus utilizing more feature maps and a larger network capacity. 2) feature reuse, because of channel splitting, so that half of the features are passed directly to the next module. The feature reuse information decays exponentially with the distance between the two modules. That is, the number of feature maps in layer   containing layer   feature maps is  , where   is the number of feature maps in layer   and   is the parameter of channel splitting. ShuffleNetV2 can set the channel of each basic unit, e.g. 0.5×, 1×, 1.5×, and thus adjust the complexity of the model. For this study, a version of ShuffleNetV2 with 1.0× output channels was chosen.




Figure 4 | Building blocks of ShuffleNetV2. (A): basic cells; (B): cells used for spatial downsampling; (C): network structure diagram of ShuffleNetV2_1.0×. DWConv, depthwise convolution.






3.1.3 EfficientNet

EfficientNet is a lightweight convolutional neural network architecture and scaling method proposed by Google in 2020 that uniformly scales all dimensions of depth/width/resolution using a compound coefficient (Tan and Le, 2019). Unlike the traditional approach of scaling these factors arbitrarily, the EfficientNet scaling method uses a set of fixed scaling factors to uniformly scale the network width, depth, and separation rate. If the input image is larger, then the network needs more layers to increase the field of perception and more channels to capture finer-grained patterns on a larger image. The underlying network architecture of the model is designed using neural architecture search and the user can scale the model to suit their hardware resources. The core structure of EfficientNet is the mobile inverted bottleneck convolution (MBConv), which is obtained by searching through the neural network architecture, first convolving the input 1×1 point by point and varying the output channel dimension according to the expansion ratio. The depthwise convolution of   is then performed. influenced by the Squeeze-and-Excitation Network (SENet) (Hu et al., 2018), a compression and excitation operation is performed after the depth convolution, followed by a 1×1 point-by-point convolution ending reverting to the original channel dimension and performing a drop connect and an input skip connection, to improve the representational power of the network by making it possible to perform dynamic channel feature recalibration. Among other things, the MBConv module weighs network depth, width, and input image resolution by using simple and efficient composite coefficients. It allows the model to have a random depth, cutting short the time spent on training and inference. Figure 5 shows the Building blocks of EfficientNet_b0.




Figure 5 | Building blocks of EfficientNet_b0. (A):MBConv structure; (B) EfficientNet_b0 structure. swish indicates that the swish activation function is used, SE indicates that the Squeeze-and-Excitation module is added, and N indicates the multiplicity factor (i.e. The first convolutional layer in MBConv expands the channels of the input feature matrix by a factor of N), and BN denotes Batch Normalization.






3.1.4 DenseNet

DenseNet is a convolutional neural network that exploits the potential of the network through feature reuse to produce condensed models that are easy to train and parameter efficient (Huang et al., 2017). Compared to ResNet, DenseNet proposes a more radical dense connectivity mechanism, where dense connectivity between layers is exploited through dense blocks to connect the feature maps learned by different layers, increasing the variability of inputs from subsequent layers and improving efficiency. For DenseNet, each layer is concatenated with all previous layers in the channel dimension and used as input to the next layer. CNNs generally go through Pooling or stride>1 convolution to reduce the size of the feature map, whereas the densely connected approach of DenseNet requires the feature map size to be consistent. To solve this problem, DenseNet uses the structure of DenseBlock+Transition, as shown in Figure 6, where DenseBlock is a module containing many Dense layers, each layer has the same feature map size, and the layers are densely connected. The advantages of DenseNet are: (1) Due to the dense connection, DenseNet improves the backpropagation of the gradient, making the network easier to train. Since each layer can go straight to the final error signal, implicit deep supervision is achieved; (2) the parameters are small and computationally efficient, and feature reuse is achieved since DenseNet is short-circuited by fusing features to achieve short-circuited connections. In this study, DenseNet121 was chosen for training and testing.




Figure 6 | Structure of the DenseNet 121 model.







3.2 CAM-based method for locating maize leaf spots

Class Activation Mapping (CAM) is a class response map generated from a classification network. It can roughly localize to discriminative object regions in an image based on image-level annotation information (Zhang et al., 2022). It reveals the distribution of the CNN’s contribution to the prediction output, with higher scores indicating a higher response and greater contribution to the network from the corresponding region of the original image. It has the following 3 advantages: (1) it helps to understand and analyze how neural networks work and the decision-making process, which in turn helps us to better select and design the network, for example, for classification networks, we need high prediction accuracy on the one hand, and on the other hand, we also need the network to extract the features we want to obtain; (2) using the visualization of the network response can guide the network to learn better, for example, we can use the information reflected by CAM to enhance the data by cropping, etc.; (3) using CAM as a basis for weakly supervised semantic segmentation or weakly supervised localization. Because CAM can cover the target object, it is possible to use only classification annotation to complete the semantic segmentation or target detection task, which greatly reduces the workload of annotation, but this is more demanding on CAM. In general, the classification network will only extract the most discriminative features.

On the other hand, the CAM method can project the features extracted by the network onto the input image, so the image can be examined to see how the classifier is behaving. If the classifier behaves correctly, these features may represent the location of the crop disease, however, if the classifier is extracting features that are not related to the disease, then problems with the classifier can be identified in time. This type of approach is important from a practical point of view as it projects the features extracted from the network onto the input image and therefore allows the way in which the classifier behaves to be understood by examining the image. If the classifier behaves correctly, then these parts may be representative of symptoms or features of the disease. This is the case if the classifier uses the background or another feature that is not related to the plant disease as the basis for classification. The extraction of CAM generally occurs at the convolutional layer, and in particular at the last layer of convolution. Figure 7 illustrates the general process of these methods. It is generated by the interaction between the convolutional layer, the global average pooling layer, and the CNN classification layer (Jiang et al., 2021b). The CAM for a given category   is defined as  , and each spatial element can be represented by equation (1).




Figure 7 | The process of class activation mapping methods.



 

where   denotes the activation of unit   in the final convolution layer at spatial location   of a given feature map, and   denotes the weight of the unit   associated with class  . Thus,   activation at spatial position   plays a key role, which in turn classifies the image into class  , and by simply upsampling the CAM to the same size as the input image, the image regions most relevant to a particular category can be identified.

Similar to anchor-base and anchor-free in the field of target detection, CAM is also divided into gradient-based and gradient-free, both of which extract target feature layers and perform weighted fusion to obtain CAM. The difference lies in the selection of the fusion weights between the feature layers, with gradient-based using gradients to obtain the weights, while gradient-free does not require gradient information. This section presents state-of-the-art CAM methods based on both types.



3.2.1 LayerCAM

Traditional CAM methods, such as GradCAM (Selvaraju et al., 2017) and GradCAM++, can only generate class activation maps from deep layers of the convolutional neural network. Due to the small spatial resolution of the final convolutional layer, the class activation mapping map can usually only locate a coarse region of the target. LayerCAM (Jiang et al., 2021b), on the other hand, can generate reliable class activation mapping maps for different convolutional layers of a CNN by generating individual weights for each spatial location in the feature map using backward class-specific gradients. The strengths of the class activation mapping maps of the different convolutional layers are complemented to generate more accurate and complete class-specific target regions. Furthermore, LayerCAM can be applied directly to CNN-based deep learning image classifiers without the need to modify the network architecture and back-propagation methods. The class activation mapping   generated by LayerCAM is shown in Equations (2), and (3).

 

 

Where   is the target category,   denotes the image classifier,   denotes the parameters of the classifier, and   denotes the input image.   denotes the prediction score for obtaining the target category  ,   is the output feature map of the final convolutional layer in the CNN, and   denotes the value of the spatial location ( ) in the first   feature map in  .




3.2.2 ScoreCAM

ScoreCAM is a new CAM-based gradient-free visual interpretation method (Wang et al., 2020). Unlike previous CAM-based methods, ScoreCAM obtains the weights of each activation mapping by its positive transfer score on the target class, thus getting rid of the dependence on gradients, and the final result is obtained by a linear combination of weights and activation mappings. It bridges the gap between perturbation-based and CAM-based methods and dictates the weights of the activation maps in an intuitive and understandable way. Using the notation in Section 3.2.1, the class activation mapping map   generated by Score-CAM can be defined according to Equation (4), assuming a convolutional layer   in the image classifier  , given an interest class  , as

 

where   denotes the Channel-wise Increase of Confidence(CIC) score of the class activation graph  .




3.2.3 AblationCAM

AblationCAM is a gradient-free visual interpretation method for deep convolutional neural networks that avoids the use of gradients while producing high-quality class-distinct localization maps (Ramaswamy, 2020). AblationCAM can be a good solution to the problem of not providing convincing interpretations and highlighting relatively small incomplete regions of objects in an image due to gradient saturation. The class activation mapping map   generated by AblationCAM is shown in equation (5):

 

Where   is the class activation score obtained by the model through forward pass,   is the score of class   obtained after the kth channel of the feature map is all set to 0.




3.2.4 XGradCAM

How weights are determined has always been a key issue in CAM visualization, and different definitions of weights produce different CAM methods. In order to provide a basis for the solution of the weights, XGradCAM (Fu et al., 2020) introduces two axioms in the derivation process: Sensitivity and Conservation; the role of Sensitivity is that when a feature mapping is set to zero, the more significant the decrease in a score, the more important the feature mapping should be. Conservation was introduced to ensure that the category scores are dominated by feature mapping and not by some other uncontrollable factor. The equations for the   of the class activation mapping generated by XGrad-CAM are shown in (6), and (7).

 

 

Where   denotes the xth row and yth column response of the kth feature mapping in the lth layer of the network and   is the c class score predicted by the CNN. A ReLU correction to   is also required in order to highlight those regions that play a positive role in the classification results. In addition, the corrected class activation mappings need to be upsampled to the size of the input image as the deeper feature mapping size is usually smaller than the size of the input image.

In summary, this study will compare the effectiveness of each of the above four CAM methods in locating areas infected with maize leaf spots. The differences between the different methods are shown in Table 2.


Table 2 | 4 state-of-the-art CAM methods.







3.3 Performance evaluation indicators

In order to present statistics on accurate and incorrect image recognition, this study uses F1 scores, FLOPs (floating-point operations), and FPS (frames per second) as evaluation metrics, with F1 scores representing the summed average of Precision and Recall (Barstugan et al., 2020). The F1 score represents the summed average of Precision and Recall, where Precision represents the percentage of predicted positive values that are actually positive, and Recall represents the percentage of predicted positive values that are actually positive. FLOPs represent the amount of computation used to measure the complexity of the model, and FPS represents how many frames per second the network can process. The equations for calculating the metrics are shown in (8), (9), and (10).

 

 

 

Where TP(True Positive) indicates the number of positive instances predicted correctly, FN(False Negative) is the number of positive instances classified incorrectly; FP(False Positive) is the number of negative instances classified as a positive category and TN(True Negative) is the number of negative instances that have been accurately classified.

In evaluating the performance of the CAM algorithm for locating the location of image spots, we first perform class prediction on the disease image, then generate a class activation mapping map as shown in Figure 8 and convert the generated heat map to a grey-scale map. Here we design a gradient experiment to convert the greyscale map into a binary map by setting the operational thresholds used to generate image boundaries from the score map to 50%, 60%, and 70% of the maximum pixel value in the greyscale map, respectively, and keeping the pixels with values above the threshold according to the thresholds we set. The aim was to extract closer to the actual contours and locations of the lesions from the class activation mapping map. At the same time, we manually labeled the real contours of the lesions and calculated the IoU (Intersection over Union) of the two, with the equation shown in (11).




Figure 8 | Image processing process: (A) Heat map, (B) Grayscale map, (C) Binary map.



 




3.4 Transfer learning

Transfer learning is a machine learning method (Tan et al., 2018) that works by taking knowledge from one domain (the source domain) and transferring it to the target domain, enabling the target domain to achieve better learning results (Özkaya et al., 2020). Usually, when the source domain has an adequate amount of data and the target domain has a small amount of data, this situation lends itself to the use of migration learning. By using migration learning, the model can have better initialization performance and accelerate the learning and optimization of the network during the training process. ImageNet is a large visualization database for visual object recognition software research (Krizhevsky et al., 2017), which contains about 1.2 million images and 1000 categories. Many researchers have used this dataset as a source domain for migration learning (Diaz-Romero et al., 2021; Relekar and Shanmugam, 2021; Chen et al., 2022). This migration learning strategy is a frequent training method when training CNNs using image data. The migration learning approach requires only exponentially fewer data to learn specific features of a custom class. The reduced amount of data required significantly reduces training time and data collection, making CNNs easier to use for everyday tasks.





4 Experimental analysis and discussion

All processes used in this study were based on Python 3.7 under Linux and the PyTorch deep learning framework. The server CPU was an Intel(R) Xeon(R) CPU E5-2678 v3, 64 GB of RAM, and included two Nvidia RTX 2080 graphics processing units (GPUs). This experiment is divided into 2 parts: (1) the basic models of maize leaf spot classification were obtained by training MobileNetV3_small, ShuffleNetV2, EfficientNet_b0, and DenseNet121 networks with enhanced training sets; (2) the above 4 networks were combined with LayerCAM. ScoreCAM, AblationCAM, and XGradCAM, respectively, to obtain the best-performing maize leaf spot classifier. Among them, Score-CAM and Ablation-CAM need a large number of forward passes, and we set the batch size of forward pass to 128. The network parameters of the classification models are shown in Table 3. In addition, all models were trained on a data-enhanced training set, and the weights of the models were pre-trained on ImageNet. Table 4 shows the hyperparameters of the training process.


Table 3 | Network parameters of the classification model.




Table 4 | Hyperparameters in the training process.





4.1 Performance comparison of various lightweight network classifications

As shown in Figure 9, the losses of the 4 networks were recorded after each training period, and after 300 iterative training cycles, the training loss values of all networks stabilized, indicating that all 4 models had converged. After the training was completed, we used 5-fold cross-validation to evaluate the classification effectiveness of the 4 networks. Table 5 shows that there is no direct relationship between the model parameters, computational effort, and the final classification performance, with the F1 score of EfficientNet_b0 being higher than that of the other three models. In terms of recognition speed, MobileNetV3 is the fastest of the four lightweight networks.




Figure 9 | Loss curves for each network during training.




Table 5 | Performance evaluation of different network architectures.



As shown in Figure 10, the four networks identified the different types of maize leaf spots, with all four models achieving good F1 scores for all types of maize leaf spots. Figure 11 shows the confusion matrix of the predicted results for each model. There were instances where each model confused MCLS with CBS, as the two diseases were extremely similar in appearance, with only minor differences in some locations. There was also a misclassification of healthy classes into CNLB, possibly because some healthy classes had tiny spots on the leaves, but not enough to be considered non-healthy. On the other hand, complex field backgrounds and different light intensities can also affect feature extraction from disease images, leading to incorrect individual classification.




Figure 10 | F1 scores for each type of disease for different networks.






Figure 11 | Confusion matrix for the predicted results of each model.






4.2 Comparison of the effectiveness of CAM-based localization of infected areas

To further understand the details about the deep learning classification mechanism and whether the network extracted the features we wanted to obtain, we also wanted to know the deviation of the disease spot locations extracted by CAM from the actual spot locations. We extracted the disease features we wanted to obtain in four lightweight networks using the 2 CAM methods mentioned in 3.2 and evaluated the effect of class activation mapping. As each layer in the model extracts different features, in general, deeper representations in the CNN capture the higher-level visual structure and the convolutional features retain spatial information, but this information is lost in the fully connected layers. As shown in Figure 12, we used the example of GradCAM extracting features from CBS, and the deep learning classifier did not extract the features we wanted when using the network layer before the 16th Bottleneck residual block as the target layer. So in this study, we randomly selected 453 disease images from the validation set for testing the localization of infected areas in maize leaves. These included 88 CBS, 83 CNLB, 96 CR, 95 CSLB, and 76 MCLS. we selected the last convolutional layer of each network as the target layer for class activation mapping and evaluated it, and then set the boundary thresholds to 50%,60%, and 70% of the maximum pixel value in the grey-scale map according to Section 3.3, respectively, to analyze the performance of these CAM methods were analyzed for their effectiveness in locating infected areas of maize leaf diseases under different thresholds. We manually annotated the images in the test set and evaluated the localization effect by calculating the boundary contours of the class activation mapping map and the IoU of the manually annotated contours.




Figure 12 | Presentation of class activation mapping based on MobileNetV2 per layer extraction.



As shown in Figure 13, the localization results were generally lower than 60% and 70% when the threshold value was set to 50%. When the threshold value was set to 50%, the combination of EfficientNet_b0+LayerCAM could achieve the highest mIoU of 55.302% for the infected area of maize leaves. When the threshold was set to 70%, the combination of ShuffleNetV2+ScoreCAM was the least effective, and ScoreCAM was the least effective of the four CAM methods in locating infected areas. Table 6 compares the best spot localization accuracy that each CAM method can achieve, from which it can be seen that the combination of EfficientNet_b0 and LayerCAM, AblationCAM, and XGradCAM all achieve a mIoU of more than 54% when relying only on image-level annotation. On the other hand, the four networks were generally better at locating CBS and CSLB than the other three infestations. The localization effect on the infected zone of CNLB was the worst among the five diseases. On the other hand, ScoreCAM and AblationCAM took relatively longer because AblationCAM had to traverse each feature map to ablate it and check for changes in the class activation scores and check for decreases in the corresponding class activation scores. So it takes longer to map the activation of the features. And DenseNet121 is more computationally intensive than the other 3 networks, so it takes longer to generate the class activation mapping maps. layerCAM and XGradCAM require a single backpropagation to generate the class activation mapping maps, which can be significantly reduced if they are properly multi-processed.




Figure 13 | Effectiveness of each CAM method in localizing the infected area.




Table 6 | Optimal mIoU achieved by different CAM methods.



Figure 14 shows a visual sample of the combination of the four CAM methods with the best localization performance. It can be seen that ScoreCAM localizes a much larger range, including areas unrelated to the lesion, which is responsible for ScoreCAM’s poorer localization performance than the other three CAMs. As the weights are derived from the CIC scores corresponding to the target class activation maps, ScoreCAM is free from the dependence on gradients. Since the weight of each activation map is represented by its score for the target class, each target object predicted by the model with a high confidence score can be highlighted independently. Thus, all evidence associated with the target class can be responded to and assembled by linear combination. On the other hand, the four methods have relatively low localization refinement for CNLB, which may be due to the fact that the CNLB images in the dataset are not as rich, thus leading to the weakly supervised semantic segmentation based on the CAM method not being able to generalize the learned features well. In summary, it is feasible to achieve localization of maize leaf spots by CAM-based weakly supervised semantic segmentation.




Figure 14 | Class activation mapping.



In comparison to the currently available research results, Md. Ashraful Haque et al. achieved an overall classification accuracy of 95.99% and an average recall of 95.96% on a dataset of 4 types and 5939 maize disease images through the Inception-v3 network framework (Haque et al., 2022). Although this study also achieved good performance, it was unable to localize infected areas and the model was not very interpretable. 91.83% accuracy was achieved by Sun et al. using a CNN model for the identification of maize maculate spots, but the drawback of this was the small variety and number of samples and the reliance on more detailed annotation information (Sun et al., 2020).





5 Conclusion

Based on the constructed dataset of maize leaf spot disease in the field environment, this study proposes a maize leaf spot disease recognition model that combines lightweight deep learning classifiers with visualization techniques for the identification and localization of leaf spot disease in maize in the field. We selected four lightweight networks as backbone networks, used pre-trained models on the ImageNet dataset to initialize the weights of deep learning classifiers, and combined them with four state-of-the-art interpretable AI algorithms based on CAM to evaluate the effectiveness of weakly-supervised learning for locating infected zones. The experimental results demonstrate that a lightweight CNN architecture based on weakly supervised learning is able to learn and predict the location of infected zones in maize leaf disease images, despite being trained from complex field scenes with only image-level annotations. While the approximate location of disease spots can be predicted fairly reliably by weakly supervised learning, the accuracy of the predictions is not good enough, due to the network’s tendency to focus on unique regions. We believe that weakly supervised learning has greater potential for exploitation in the plant pest and disease domain, as it effectively addresses the over-reliance on manual labeling in previous related studies. In contrast to traditional fully supervised learning methods, weakly supervised learning requires the manipulation of training data with weak labels to learn the target model, thus alleviating the cost of annotating training samples. It can also facilitate the learning process when the fine-grained annotation is very time-consuming.

On the other hand, although the approximate location of the disease can be located by CAM methods, it cannot achieve the same accuracy as in the target detection task. In classification tasks, the model tends to base its judgment on the most salient and discriminative regions of the object, so during training, the classification model will increasingly favor these regions, so that the classification score of proposals containing these local regions will be higher and higher, and therefore the classification score of proposals covering only these local regions will naturally be the highest. So this is why weakly supervised semantic segmentation often does not cover the entirety of the target object, as it only shows the local optimal solution. Also for some users, it is necessary to quantify the severity of the disease in the maize leaves. Whether this information can be extracted from the heat map remains to be investigated.
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Water plays a very important role in the growth of tomato (Solanum lycopersicum L.), and how to detect the water status of tomato is the key to precise irrigation. The objective of this study is to detect the water status of tomato by fusing RGB, NIR and depth image information through deep learning. Five irrigation levels were set to cultivate tomatoes in different water states, with irrigation amounts of 150%, 125%, 100%, 75%, and 50% of reference evapotranspiration calculated by a modified Penman-Monteith equation, respectively. The water status of tomatoes was divided into five categories: severely irrigated deficit, slightly irrigated deficit, moderately irrigated, slightly over-irrigated, and severely over-irrigated. RGB images, depth images and NIR images of the upper part of the tomato plant were taken as data sets. The data sets were used to train and test the tomato water status detection models built with single-mode and multimodal deep learning networks, respectively. In the single-mode deep learning network, two CNNs, VGG-16 and Resnet-50, were trained on a single RGB image, a depth image, or a NIR image for a total of six cases. In the multimodal deep learning network, two or more of the RGB images, depth images and NIR images were trained with VGG-16 or Resnet-50, respectively, for a total of 20 combinations. Results showed that the accuracy of tomato water status detection based on single-mode deep learning ranged from 88.97% to 93.09%, while the accuracy of tomato water status detection based on multimodal deep learning ranged from 93.09% to 99.18%. The multimodal deep learning significantly outperformed the single-modal deep learning. The tomato water status detection model built using a multimodal deep learning network with ResNet-50 for RGB images and VGG-16 for depth and NIR images was optimal. This study provides a novel method for non-destructive detection of water status of tomato and gives a reference for precise irrigation management.




Keywords: multimodal deep learning, water status, tomato, depth images, nondestructive detection




1 Introduction

The global tomato (Solanum lycopersicum L.) harvest areas reached approximate 5.052 million hectares in 2020 (FAO, 2021). Irrigation management affects the growth and development of tomatoes (Ma et al., 2022; Zhao et al., 2022). Both excessive or deficient water supply have influence on the yield and quality of tomatoes. Deficient water supply may lead to water stress, and excessive water can affect root respiration (Liu et al., 2019) which results in the waste of water resources. Water status of tomatoes can provide guidance for irrigation management (Scalisi et al., 2019; Li et al., 2021). It has a key role in future irrigation management, therefore, research on water status detection in tomato is urgent.

At present, research on crop water status detection have received increasing attentions from scholars. The leaves of plants are sensitive to water change, and the drying method can measure the water content of leaves or the whole plant, which can obtain the accurate water content. Leaf water potential measured by the pressure chamber method, or the small liquid flow method is also an indicator to reflect the water status of plants. However, the pressure chamber method and the small liquid flow method involve taking samples from crops, which is not only time-consuming and labor-intensive, may causes some damage to the crops and cannot be applied to real-time irrigation. To avoid damage to the crops, many researchers have been dedicated to the real-time nondestructive detection of the water status of the crops. It mainly includes judgments based on RGB images (Li et al., 2020), terahertz spectra (Li et al., 2020), NIR hyperspectral (Duarte-Carvajalino et al., 2021), infrared thermography (Khorsandi et al., 2018), 3-D images (Zhao et al., 2012) and the variation of stem diameter (Meng et al., 2017). Currently, RGB images used for crop water status detection commonly apply deep learning networks to classify the collected RGB images for detection, and deep learning networks usually utilize CNNs. However, RGB images are easily affected by light and background (Hu et al., 2019). The waveband of terahertz spectroscopy has sensitive absorption of moisture, and researchers have studied the variation of terahertz parameters of crops with different water status and constructed a detection model of crop water status, which has high detection accuracy in the laboratory; however, terahertz spectroscopy cannot be environmentally controlled in actual detection as in the laboratory, and water in the environment can also interfere with the detection (Wu et al., 2022). Hyperspectral images are rich in information and can predict the moisture content of crops based on NIR hyperspectral images. Infrared thermography detects the temperature information of the crop and thus determines the water status of the crop. NIR spectroscopy and infrared thermography for crop moisture detection are based on the principle of thermal radiation, which is influenced by environmental changes (Zhang X. et al., 2021). It is possible to determine the water status of a crop based on its 3-D morphology, but it is difficult and complicated to obtain 3-D images and process them (Zhao et al., 2016). The change of stalk diameter is closely related to the crop water status, which is an effective indicator to detect the crop water status, but the stalk will harden when the crop grows and gradually stops changing, and the position of the measuring instrument needs to be changed regularly (Namba et al., 2018). Besides, the stem thickness measurement sensors are more expensive (Wakamori et al., 2020).

In recent years, great progress has been made in the field of artificial intelligence (Baltrusaitis et al., 2019). With the proposal of precision agriculture, artificial intelligence has been used in agriculture in many applications. In comparison with the traditional methods, the method using deep learning can get more accurate detection results(Garillos-Manliguez & Chiang, 2021). Multiple modal data can be obtained for the same object, and the data of different modalities can be complemented with each other to make the data more comprehensive and help improve the accuracy by fusing the data of different modalities (Garillos-Manliguez & Chiang, 2021).

The objective of this research is to detect the water status of tomatoes by fusing RGB, NIR and depth image information through deep learning. It will provide a novel method for non-destructive detection of water status of tomatoes and give a reference for irrigation management.




2 Materials and methods



2.1 Experimental design

The water status of the test samples was controlled according to the Penman-Monteith equation for irrigation at different percentages to cultivate tomatoes with different moisture contents. The data collection section introduced the instrumentation, collection methods and the processing of the data set. The tomato water status detection network construction section investigated the performance of different combinations of neural networks, and the idea of tomato water status detection model construction is shown in Figure 1:

	To determine the parts of tomatoes that first exhibited water deficiency symptoms during water deficiency so that images of the appropriate parts can be acquired later. To cultivate tomatoes with different water status, RGB images, depth images and NIR images of the upper leaves of tomatoes were captured using a RealSense camera (it can capture RGB images, depth images and NIR images) as shown in Figure 2. The captured images were made into a dataset and divided into a training set, a validation set and a test set.

	In order to obtain the most suitable detection model for the water status of tomatoes, the detection model constructed using one kind of image was first trained, then the detection model constructed using two kinds of images was trained, and finally the detection network constructed using three kinds of images was trained.

	The three types of trained multiple detection models were tested on the test set, and each detection model was compared and analyzed to select the appropriate detection model.






Figure 1 | Flow chart of tomato water status detection model.






Figure 2 | Schematic diagram of taking tomato images. (1) Camera tripod. (2) RealSense camera. (3) Tomato plant. (4) Black cardboard. (5) Flowerpot. (6) Motorized turntable.






2.2 Cultivation of the experimental samples

The experiments were conducted in the Venlo continuous glass greenhouse at Jiangsu University from June 2021 to January 2022, and the tomato variety used was “Pink Crown F1” (Shouhe). The substrate used was perlite and the nutrient solution formulation was “Yamazaki Nutrient Solution Formula” (Zhang X. et al., 2021). Five irrigation levels were set, with five tomato plants at each irrigation level, irrigated at 50%, 75%, 100%, 125%, and 150% of the reference evapotranspiration of tomatoes, corresponding to the water status of tomatoes as severely irrigated deficit, slightly irrigated deficit, moderately irrigated, slightly over-irrigated, and severely over-irrigated. The reference evapotranspiration of tomato was calculated by the modified Penman-Monteith equation. According to Xu et al. (2020), the reference evapotranspiration of tomato is defined as Eq.(1).



where ETr is the reference evapotranspiration (mm/d), Δ is the slope of saturated water vapor pressure versus temperature curve, Rn is the net radiation (MJ/m2d), G is the soil heat flux (MJ/m2d), γ  is the psychrometer constant (kPa/°C), ea is the average saturated water vapor pressure (kPa), ed is the actual water vapor pressure (kPa), T is the average daily air temperature (°C), and Kc is the crop coefficient of tomato at different growth stages (0.75 at seedling stage, 1.05 at flowering stage and 0.8 at fruiting stage).

Every morning, about one hour after sunrise time, the amount of irrigation for the day was calculated according to Eq.(1) and then irrigated into the tomato cultivation flowerpot at once.




2.3 Tomato image acquisition and dataset production



2.3.1 Instrumentation

The D435i RealSense camera (Intel, USA) is a viable tool for outdoor, close-range agricultural phenotyping tasks (Vit and Shani, 2018). The camera was therefore selected to capture RGB images, NIR images and depth images of the tomato canopy, with resolutions up to 1920×1080 for RGB images and 1280×720 for depth images, and a depth measurement range of 0.2m-10m, which can be modified within the range according to actual needs. To avoid the camera’s IR projector interfering with the NIR image, the IR projector is turned off before the NIR image is acquired.

The test platform was Dell Precision 7920 workstation with Intel Xeon 4110 processor, NVIDIA Quadro P4000 graphics card, 8GB of graphics memory, 64GB of computer memory, and Windows 10 Professional Workstation Edition operating system. The deep learning network was written in Python, Python version was 3.7. The deep learning framework was PyTorch, version 1.7.1 accelerated with CUDA 11.0 and cuDNN8.0.5.




2.3.2 Determination of shooting position

To determine the shooting position of tomatoes, the position where tomatoes first showed water deficit symptoms were explored. Eight tomato plants were cultivated individually, four of which were irrigated normally and the other four were subjected to water stress treatment with suspension of irrigation, while all other managements were the same. After the start of the experimental treatment, images were taken every hour at three different positions, including the upper, middle and lower parts of the tomato plants.

The upper leaves of the water stress treated tomato plants showed wilting first, while the middle and lower leaves were in better condition than the upper leaves, as shown in Figure 3. Figure 4 shows an image of a control tomato plant for the same period, where no water stress symptoms were observed throughout the plant. When tomato was subjected to water stress, the upper leaves were the first to show water stress symptoms. The images of the upper leaves of tomato plants were selected to better detect the water status of the plants earlier. Therefore, it was determined that the upper part of the tomato plant was the target region for water status detection.




Figure 3 | An image of a tomato plant treated by water stress.






Figure 4 | An image of a control tomato plant.






2.3.3 Image acquisition and dataset creation

The image acquisition test scenario is shown in Figure 5. The RealSense camera was fixed by a camera tripod, the distance was about 30 cm from the foremost part of the tomato and aimed at the upper leaves of the tomato. The RealSense camera was connected to the computer via a data cable with a Type-C interface on the RealSense camera side and a USB 3.0 interface on the computer side. The tomatoes were placed on a motorized turntable, which was stopped for 3 seconds every 1/96th of a revolution, and photographed using the RealSense camera. This was done to obtain more images on the one hand and to ensure that images from different angles of the tomatoes were captured on the other hand. A piece of black cardboard was placed behind the tomato plant to reduce the interference of the background. Before training, 10% of the image edge was cut to avoid the edge exceeding the black background plate, adjust the size of the clipped RGB image and near-infrared image to 640×480, adjust the size of the depth image to 424×240, and remove image noise using Gaussian filter (Li et al., 2019).




Figure 5 | Experiment Scene of image acquisition. (1) Camera tripod. (2) RealSense camera. (3) Black cardboard. (4) Tomato plant. (5) Data cable. (6) Flowerpot. (7) Motorized turntable.



Image acquisition was performed after 7 days of water treatment. A total of 21,600 sets of images were acquired as a data set for the experiment, and a set of images contained RGB images, depth images, and NIR images, and the images acquired for each moisture state were 4320 sets. As shown in Figure 6, (A) is the RGB image, (B) is the visualized depth image, and (C) is the NIR image. The training set accounted for 70% of the data set, the validation set accounted for 10% of the data set, and the test set accounted for 20% of the data set. The images in the training set and the test set are from different tomato plants.




Figure 6 | Acquired images. (A) RGB image. (B) Depth image. (C) NIR image.







2.4 Construction of the water status detection

Multimodal data fusion can be mainly divided into three main types: early fusion, late fusion and hybrid fusion (Bayoudh et al., 2021; Joshi et al., 2021; Zhang Y. et al., 2021). Early fusion involves the fusion of the features extracted from the data collected by the sensors and then the detection model is used for classification, which is also known as feature fusion. Late fusion refers to processing the data of each modality individually, training them independently, and then calculating the result according to the weight of each network calculation. It is also called decision layer fusion, which will ignore the relevant features between modalities and have a large information loss (Choi and Lee, 2019). Some studies have shown that early fusion is superior than late fusion. Hybrid fusion combines early fusion and late fusion, while different data have different dimensions and scales, making fusion more difficult.

In this study, early fusion was used and CNNs was applied to extract data features. The extracted image features were then fused and classified by a classifier to construct a deep learning network for tomato water status detection. Image features were extracted using VGG-16 and ResNet-50, and the main reasons for using these two CNNs were: VGG-16 and ResNet-50 had good performances in multiple datasets (Gao et al., 2019). It had been widely used in recent years and had also achieved great performance. To perform feature fusion, the fully connected layers of VGG-16 and ResNet-50 were used for fusion, VGG-16 and ResNet-50 with the fully connected layer with the output of detection results removed were used. the features in the fully connected layer were rich in semantic features, and these semantic features had a significant role in image classification (Gao et al., 2019). The feature size shape extracted by VGG-16 was 1×1×4096 and the feature size extracted by ResNet-50 was 1×1×2048. The extracted features were stitched together using data that had gone through the pooling layer. The constructed deep learning network was trained and the optimal combination was selected according to the detection effect. The structure of the constructed deep learning network for water status detection is shown in Figure 7.




Figure 7 | Diagram of the deep learning network structure of detection of crop water status.







3 Results



3.1 Experimental evaluation indicators

To be able to evaluate the detection performance of each combination network and then select the optimal combination, recognition accuracy was used as an evaluation index in this study. Accuracy recognition is the most intuitive way to understand the performance of the detection network and is an extremely important evaluation index, which can be calculated by Eq.(2).



where Pc is the number of correctly classified and PALL is the number of total samples.




3.2 Single-modal deep learning network

The VGG-16 and ResNet-50 networks were trained using RGB images, depth images and NIR images, respectively. Hyperparameter settings: initial learning rate were set to 0.001, and mini-batch size was set to 32. Cross-entropy loss function was used to represent the loss function and Adam optimizer was adopted as the optimizer. To ensure the effect of feature extraction and speed up the training of the network, the weights of the main part of the feature extraction network of the network model were first frozen and trained using the official model pre-training weights. After 50 iterations, they were unfrozen and the training was ended with 30 more iterations. The accuracy of RGB images and NIR images on VGG-16 and ResNet-50 on the corresponding test sets are shown in Table 1. Figure 8 shows the detection results of the tomato water status detection model constructed using one kind of image.


Table 1 | Accuracy of detection model of tomato water status based on single-modal deep learning.






Figure 8 | Detection results of single-modal deep learning model. (A) VGG-16(RGB images). (B) VGG-16(Depth images). (C) VGG-16(NIR images). (D) ResNet-50 (RGB images). (E) ResNet-50 (Depth images). (F) ResNet-50 (NIR images). Classes 1, 2, 3, 4 and 5 represent severely irrigated deficit, slightly irrigated deficit, moderately irrigated, slightly over-irrigated, and severely over-irrigated of tomato water status, respectively.



It can be seen from Table 1 that among the two models, the training using ResNet-50 had a higher accuracy, the major reason was that the ResNet-50 network had more layers compared to the VGG-16 network and used residual blocks without gradient disappearance or gradient explosion. In the same deep learning network, the NIR images had the highest accuracy in detecting the water status of tomatoes and the depth images had the lowest. The NIR images were more sensitive to water changes in the crops (Peng et al., 2005); the RGB images were mainly based on tomato plant texture and color, so the leaf texture and color would only change significantly when the crop experienced severe water shortage. In comparison with the NIR images and RGB images, the depth images contained more complex information but the CNNs was slightly less effective in extracting features from the depth images, so the accuracy of the model was lower compared to the results obtained by using RGB images and NIR images. The RGB images of tomato leaves were first segmented by using Mask R-CNN for instance segmentation, and then separately classified using VGG-16 with an accuracy of 89.09%, which was slightly lower than that of this paper(2020). It might be illustrated by that the overfitting occurred in Qihui Zhao’s study (Zhao et al., 2012), while the amount of data in this paper was relatively large and no overfitting occurred.




3.3 Multimodal deep learning network

The initial learning rate of the tomato water status detection network was set to 0.001 and the mini-batch size was set to 32. To ensure the effectiveness of the model in extracting features and speed up the training, the training was first conducted using the official pre-trained weights, and the weight parameters of its backbone feature extraction part were frozen, and after 50 iterations, the weight parameters of the backbone feature extraction part were unfrozen to continue the training, and the training was stopped after 30 iterations. When the training was completed, the accuracy of each model was obtained by experimenting with the test set.

The combined 20 tomato water status detection networks were trained, and the trained weights were tested on the test set after the training was completed, the accuracy of each detection network is shown in Table 2 and the detection results are shown in Figure 9. Among the deep learning models built using two types of images, the highest accuracy was achieved by the combination of RGB images and NIR images extracted by ResNet-50, and the highest accuracy was achieved by the detection network built using three types of images extracted by ResNet-50 for RGB images and VGG-16 for depth and NIR images.


Table 2 | Accuracy of detection model of tomato water status based on multimodal deep learning.






Figure 9 | Detection results of multimodal deep learning models. (A) VGG16(RGB images) and VGG16(Depth images). (B) VGG16(RGB images) and ResNet50(Depth images). (C) VGG16(RGB images) and VGG16((NIR images). (D) VGG16(RGB images) and ResNet50((NIR images). (E) ResNet50(RGB images) and VGG16(Depth images). (F) ResNet50(RGB images) and ResNet50(Depth images). (G) ResNet50(RGB images) and VGG16((NIR images). (H) ResNet50(RGB images) and ResNet50((NIR images). (I) VGG16(Depth images) and VGG16((NIR images). (J) VGG16(Depth images) and ResNet50((NIR images). (K) ResNet50(Depth images) and VGG16((NIR images). (L) ResNet50(Depth images) and ResNet50((NIR images). (M) VGG16(RGB images), VGG16((NIR images) and VGG16((NIR images). (N) VGG16(RGB images), ResNet50((NIR images) and ResNet50((NIR images). (O) VGG16(RGB images), VGG16((NIR images) and VGG16((NIR images). (P) VGG16(RGB images), ResNet50((NIR images) and ResNet50((NIR images). (Q) ResNet50(RGB images), VGG16((NIR images) and VGG16((NIR images). (R) ResNet50(RGB images), ResNet50((NIR images) and ResNet50((NIR images). (S) ResNet50(RGB images), VGG16((NIR images) and VGG16((NIR images). (T) ResNet50(RGB images), ResNet50((NIR images) and ResNet50((NIR images). Classes 1, 2, 3, 4 and 5 represent severely irrigated deficit, slightly irrigated deficit, moderately irrigated, slightly over-irrigated, and severely over-irrigated of tomato water status, respectively.



Results given in Tables 1 and 2 disclosed that the tomato water status detection model using three kinds of images constituted the highest accuracy. The depth of each model using the three images had a large difference, but the difference in accuracy was not very large. This phenomenon may be resulted from that a high accuracy could be achieved by using a shallow depth VGG-16 to classify the features extracted from the three images after fusion, and even if a deeper depth ResNet-50 network was used, the accuracy would not be further improved.





4 Discussions

In this work, three kinds of image features were fused for deep learning, and the accuracy of the tomato water detection models built by the multimodal deep learning network was significantly improved compared to the single-modal deep learning network.

The accuracy of the deep learning model built with two images was about 5% higher than that of the single-modal model, and the accuracy of the deep learning model built with three images was about 5% higher than that of the deep learning model built with two kinds of images. A single RGB image, NIR image or depth image has its own limitations in characterizing plant water status information. For example, RGB images are mainly applied to extract color and texture information, but are easily affected by light and background; NIR images are sensitive to moisture changes but are susceptible to the influence of the environment; and the depth images are used to extract morphological information but are more complex. The use of multiple images can reflect the water status of the plant at more levels, so the accuracy of water status detection can be improved.

The accuracy of training with ResNet-50 was higher than that of training with VGG-16 under the same combination of images. The confusion matrix shown in Figures 8, 9 indicated that the single-modal water detection network produced the most errors in classifying two categories of severely irrigated deficit and slightly irrigated deficit and two categories of slightly over-irrigated and severely over-irrigated, which mainly attributed to the insignificant differences in crop color and morphology, so the detection accuracy of RGB images and depth images was lower. The fusion of three image features obtained by Gené-Mola et al. (2019) adapted a Faster R-CNN including five channels of images of color, depth and signal intensity for the recognition of apples and improved the composite metric over the Faster R-CNN containing only color, which also supported the above mentioned views.




5 Conclusions

This study introduced and compared single- modal and multimodal deep learning network to detect the water status of tomatoes. by fusing RGB, NIR and depth images. The experimental results showed that the accuracy of tomato water status detection based on single-mode deep learning ranged from 88.97% to 93.09%, while the accuracy of tomato water status detection based on multimode deep learning ranged from 93.09% to 99.18%. The multimodal deep learning significantly outperformed the single-modal deep learning. The optimal multimodal deep learning network combination for tomato water status detection was determined to use ResNet-50 to extract features from RGB images and VGG-16 to extract features from depth images and NIR images.
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The amount of chemical fertilizer for vegetables is on the high level in China. The use of organic fertilizers to meet the nutrient requirement of crops will be an inevitable practice in sustainable agriculture. In this study, we compared the effects of pig manure fertilizer, rabbit manure fertilizer and chemical fertilizer on yield, quality of Brassica rapa var. Chinensis, soil physico-chemical properties and microbial community by using two consecutive seasons of three fertilizers in a pot experiment. The results were as follows: (1) In the first season, the fresh yield of Brassica rapa var. Chinensis applying chemical fertilizer was significantly (p ≤ 5%) higher than those of applying the pig manure and rabbit manure fertilizer, and the results were the opposite in the second season. The total soluble sugar concentration of fresh Brassica rapa var. Chinensis applying rabbit manure fertilizer was significantly (p ≤ 5%) higher than those of applying pig manure fertilizer and chemical fertilizer in the first season, and the NO3-N content of fresh Brassica rapa var. Chinensis on the contrary. (2) The organic fertilizer increased the concentration of total nitrogen, total phosphorus and organic carbon in soil in both two seasons. Rabbit manure fertilizer increased the soil pH and EC and significantly (p ≤ 5%) reduced the soil NO3-N content. (3) The pig manure and rabbit manure fertilizer significantly (p ≤ 5%) increased the diversity and abundance of soil bacterial of Brassica rapa var. Chinensis, but had no significant effect on soil fungi. Pearson correlation analysis showed that soil TN, TP, organic carbon content and EC were significantly correlated with soil bacterial α - diversity. There were significant differences (p ≤ 5%) in the bacterial community structures between three treatments in two seasons, and significant differences (p ≤ 5%) in the fungal community structures between fertilizer treatments while not between two seasons. Pig manure and rabbit manure fertilizer decreased the relative abundance of soil Acidobacteria and Crenarchaeota, rabbit manure fertilizer significantly increased the abundance of Actinobacteria in the second season. Distance-based redundancy analysis (dbRDA) showed that soil EC, TN, and organic carbon content were key physico-chemical factors in determining bacterial community structure in Brassica rapa var. Chinensis soil, and soil NO3-N, EC, SOC concentration and soil pH in the fungal community structure.
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 Brassica rapa var. Chinensis, organic fertilizer, yield and quality, soil property, microbial community


Introduction

Vegetables are important agricultural products that are essential to the livelihoods of urban and rural residents. China is the world’s largest producer and consumer of vegetables, accounting for more than 40% of the world’s sown area and production(Huang et al., 2017). China’s total fertilizer dose is at a high level, much higher than the United States, the European Union and other developed countries. In particular, the amount of fertilizer applied to vegetables is high, with the average amount of fertilizer applied to vegetables being 445.5 kg/hm2 higher than the United States, and 471 kg/hm2 higher than the EU (China, T. M. O. A. A. R. A. O. T. P. S. R. O, 2017). According to statistics, the input of N, P2O5 and K2O in the greenhouse vegetables in China is 1.9, 5.4, 1.6 times of the recommended amount respectively, and the amount of chemical fertilizer nutrients was as high as 1,354.5 kg/hm2, which is 4.1 times the average amount of the national crop (Huang et al., 2017). In vegetable production, especially in protected vegetable production, the excessive and irrational use of chemical fertilizers not only leads to low fertilizer use and production efficiency, but also causes to a series of serious problems, such as the reduction of soil organic matter content, massive enrichment of available nutrients (nitrogen, phosphorus, etc.), secondary salinization, accumulation of heavy metals, edible parts of vegetables and excessive nitrate in groundwater, which seriously limits the sustainable development of China’s vegetable industry (He et al., 2016; Yang et al., 2016; Wang et al., 2018).

The application of organic fertilizer, which has long been proposed globally, helps to reduce agricultural dependence on chemical fertilizers, in order to prevent soil degradation (Jude and Vidah, 2008; Sun et al., 2019). Organic fertilizers can not only effectively promote the reduction and efficiency of chemical fertilizers (Wang et al., 2020b), and improve crop yield and quality (Zhang et al., 2019; Serri et al., 2021), but also enhance soil microbial diversity, biomass and activity (Gu et al., 2017; Huang et al., 2020), which can subsequently improve soil quality, and contribute to climate protection by increasing carbon sequestration in agricultural ecosystems (Burger and Jackson, 2003; Birkhofer et al., 2008; Zhang et al., 2016). Studies have shown that soil microorganisms are important components of soil ecosystems, and the community composition and diversity of soil microorganisms are important indicators of the ecological function of soil microbial communities (Dong et al., 2014). Organic fertilizers provide a variety of C compounds with different chemical compositions, ranging from readily degradable to stable, which can be utilized by soil microorganisms during mineralization to increase their growth rates and biomass (Lazcano et al., 2021). Thus, organic fertilizers have strong, short- and long-term effects on the soil microbiome and are the basis for supporting soil health by increasing microbial activity, microbial interactions and nutrient cycling (Lazcano et al., 2013; Ling et al., 2016).

With the rapid intensive and large-scale development of livestock production in China, the amount of manure is large and concentrated. According to statistics, the annual production of livestock and poultry manure in China is about 3.8 × 109 t in China (China, M. O. E. A. E. O. T. P. S. R. O., N. B. O. Statistics & M. O. A. A. R. A. O. T. P. S. R. O. China, 2010). By the end of 2019, the comprehensive utilization rate of national livestock and poultry manure reached 75% (China, T. M. O. A. A. R. A. O. T. P. S. R. O, 2017). Thus, the Chinese government attaches great importance to the resource utilization of livestock and poultry manure and encourages the use of organic fertilizers (Dong et al., 2019). Conventional organic fertilizer in China is mainly pig manure and poultry manure. Rabbit farming with regional characteristics is more common only in certain regions. Rabbits are herbivores animals and the crude fiber content of their feed is high. The crude fiber content of domestic rabbit feed is about 13%, and the crude cellulose content of fattening pig feed does not exceed 5%. Compared with pig manure, rabbit manure has a high crude fiber content and can be easily heated up and fermented during composting, and the pH value of both fresh rabbit manure and rabbit manure compost is relatively high. Previous research has shown that the long-term application of chemical fertilizers causes soil acidification and that organic fertilizers can increase soil pH and soil organic carbon and reduce soil acidification (Wang et al., 2019; Liu et al., 2021). Compared to chemical fertilizers, organic fertilizers can substantially increase the organic carbon content of the soil, thus promoting the diversity of soil microorganisms (Wang et al., 2019). In particular, farmers prefer to apply rabbit manure organic fertilizer on acidic soils to improve fruit yield and quality. However, the differences in the effects of chemical fertilizer, rabbit manure and pig manure organic fertilizer on the yield and quality of leafy green vegetables, the physico-chemical properties of the soil, and the microbial community within the soil are not clear.

We hypothesized that chemical fertilizer, rabbit manure organic fertilizer and pig manure organic fertilizer have different effects on soil physico-chemical properties and microbial community, and affect soil microbial community composition through higher pH and higher organic carbon content of organic fertilizer. In this study, we compared the effects of pig manure organic fertilizer, rabbit manure organic fertilizer and inorganic compound fertilizer on yield, quality of Brassica rapa var. Chinensis and soil physico-chemical properties by using two consecutive seasons of organic fertilizer application in a pot experiment. We also study the effect of different fertilizers on Brassica rapa var. Chinensis soil microbial community and ecosystem function, investigate soil micro-ecological mechanisms of different fertilizers to improve yield and quality of Brassica rapa var. Chinensis, to provide a theoretical basis for high-yield vegetable production and resource use of rabbit and pig manure, and to provide basic data support for the application of agricultural information technology between fertilizer, crop and soil interactions.



Materials and methods


Site description

The experimental site for this study was located in the greenhouse of the Jiangsu Academy of Agricultural Sciences in Nanjing, China (32°02′N latitude, 118°52′E longitude). The temperature ranged from 6°C to 28°C from 17 March to 16 April, 2020, and from 11°C to 34°C from 18 April to 19 May 2020 in the greenhouse. The experimental soil was Magan soil which was collected from the experimental field around the greenhouse and the previous crop was wheat. The physical and chemical characteristics properties of the soil are shown in Table 1.



TABLE 1 The physical and chemical properties of experimental soil, the pig manure, and the rabbit manure used in the experiment (dry basis).
[image: Table1]



Materials

The variety of Brassica rapa var. Chinensis is heat resistant “605,” which was purchased from the seed store (Nangjing lvlingseeds, Nanjing, China). The two types of organic fertilizers were pig fermentation bed maturing bedding (pig manure fertilizer) and rabbit manure compost (rabbit manure fertilizer), the physical and chemical properties of which are shown in Table 1. The pig manure fertilizer, which was collected from the pig fermentation bed farm of the Luhe Animal Science Base, Jiangsu Academy of Agricultural Sciences, and which was the fermentation product of pig feces and urine, spent mushroom substrate and rice husk, on which pigs had been reared for 1 year. The rabbit dung fertilizer was produced at the organic fertilizer farm of the Luhe Animal Science Base, Jiangsu Academy of Agricultural Sciences, and which was the product of high temperature fermentation of mixed materials mainly consisting mainly of rabbit dung, Chinese medicine residues and cassava residues. The fresh rabbit dung was collected from the experimental rabbit farm of the Luhe Animal Science Base, Jiangsu Academy of Agricultural Sciences. The chemical fertilizer used in the experiment was the complex fertilizer with the ratio of nitrogen, phosphorus pentoxide and potassium oxide of 15–15-15 (Stanley, Linyi, China).



Experimental design and sample collection

There were three treatments in the pot experiment (1) NPK chemical fertilizer, with an application rate of 300 kg N/hm2 (14.12 g/pot, including 2.12 g N/pot, 2.12 g P2O5/pot and 2.12 g K2O/pot), (2) pig manure organic fertilizer, (3) rabbit manure organic fertilizer, with an application rate of 600 kg N/hm2 for both pig manure (273 g/pot, including 4.24 g N/pot, 7.14 g P2O5/pot and 5.50 g K2O/pot) and rabbit manure (313 g/pot, including 4.24 g N/pot, 5.79 g P2O5/pot and 5.00 g K2O/pot) to account for differences in nutrient release and soil uptake during crop growth. Four pots were used for each treatment, for a total of 12 pots. The pot used was 40 cm high and 30 cm in diameter at the top. The experimental soil was mixed and sampled and then filled into the pots. All fertilizers were applied once before sowing 10 cm below the soil surface in two seasons. The first Brassica rapa var. Chinensis crop was sown on 17 March and harvested on 16 April 2020, the second Brassica rapa var. Chinensis crop was sown on 18 April and harvested on 19 May 2020. After emergence, 20 seedlings were planted per pot. The experimental samples from all 20 Brassica rapa var. Chinensis seedlings were collected at the same time as the Brassica rapa var. Chinensis crop was harvested. After harvesting of Brassica rapa var. Chinensis crop, 15 cm of soil was removed from the upper pot, mixed well and some of the soil was used for the post-harvest soil samples for each pot.

At harvest, the plants were cut at the soil surface and their fresh weight was determined using a digital balance. After washing the plants with distilled water, each Brassica rapa var. Chinensis sample was divided into three parts, snap frozen in liquid nitrogen and stored at −18°C for analysis of sugar content, Vc content and NO3-N content, respectively. After sieving (< 5 mm) and thorough mixing, each soil sample was divided into two parts: one part was stored at −18°C for the analysis of basic soil properties (pH, EC, NO3-N) and for DNA extraction, and the second part was air-dried at room temperature for the measurement of nutrients including nitrogen, phosphorus and organic carbon.



Fresh Brassica rapa var. Chinensis quality analysis


Total soluble sugar

The total soluble sugar concentration of fresh Brassica rapa var. Chinensis samples was determined by the anthrone method(Sinay and Karuwal, 2014). Briefly, 0.5–1.0 g of fresh tissue from each Brassica rapa var. Chinensis sample and 15 mL of distilled water were placed in a stoppered test tube and incubated in a boiling water for 20 min, and then the test tube was cooled at room temperature. The extract solution was filtered into a 50 mL volumetric flask through double circle quantitative filter paper (Grade 2, Ge biotechnology Co., Ltd., Hangzhou, China) (extract twice). The residue of each sample was rinsed with distilled water into the volumetric flask with distilled water and then the volume was fixed on the scale. The diluted sample extract was pipetted 1.0 mL into a 20 mL graduated test tube. 5 mL of anthranilone concentrated sulfuric acid reagent was added one at a time to the test tube and shaken thoroughly, the test tube was immediately placed in a boiling water bath and each tube was kept warm for 10 min. Finally, the absorbance was read (l = 620 nm) in an ultra microplate spectrophotometer (BioTek epoch., Agilent Technologies, Inc., Vermont, USA). The amount of sugar in the extract was calculated using the standard linear equation for glucose and the total sugar content of the test samples was calculated.



NO3–N in plant

The NO3–N concentration was measured using a rapid colourimetric salicylic acid nitration assay (Cataldo et al., 1975). 2.0 g fresh Brassica raps var. Chinensis samples, which were cut into pieces and mixed evenly, were added to 10 mL of deionized water in a 20 mL glass test tube. The tube was then placed in a boiling water bath for 30 min, removed and cooled with tap water.

The extract solution was filtered through quantitative filter paper (BioTek epoch, Agilent Technologies, Inc., Vermont, USA) into a 25 mL volumetric flask and the volume was fixed on the balance. Two portions of 0.1 mL of extract were transferred to two test tubes, 0.4 mL of salicylic acid was added to each test tube, mixed well and left at room temperature for 20 min. 9.5 mL of 8% NaOH was added to the test tube, the test tube was shaken well and then cooled to room temperature. Finally, the absorbance (l = 410 nm) was read in an ultra-micro microplate spectrophotometer (BioTek epoch., Agilent Technologies, Inc., Vermont, USA). The amount of NO3-N in the extract was calculated from the standard linear equation for KNO3 and the plant NO3-N content in the test samples was calculated.




Soil physical and chemical analysis

Total nitrogen (TN) was determined by the Kjeldahl method using a Kjeldahl Nitrogen Detector (Kjeltec 8,400, FOSS Ltd., Denmark). Total phosphorus (TP) was determined using the method for the determination of total phosphorus in soil (GB9837-88). Total organic carbon (TOC) was determined using a TOC analyzer (Multi N/C 3100, Elementar Analysensysteme GmbH, Germany). Soil pH was determined using the potentiometric method (water: soil = 2.5: 1) with a pH meter (FiveEasy Plus pH/mV, Mettler-Toledo (Schweiz) GmbH, Switzerland). Soil EC (soil electrical conductivity, water: soil = 10: 1) was measured with a conductivity meter (EC215 Conductivity Meter, Hanna Instruments, Italy).

NO3–N in soil is determined by dual-wavelength ultraviolet spectrophotometry (Norman et al., 1985). Briefly, 10 g of the soil samples, which were frozen at – 18°C, 100 mL of 2 M KCL (1:5 soil to solution ratio) and 1 g of non-phosphate activated carbon powder were added to an Erlenmeyer flask, and shaken in a constant temperature (refrigerated) oscillator (Taicang Huamei instrument factory, Taicang, China) for 1 h. The extract solution was filtered through quantitative filter paper (BioTek epoch, Agilent Technologies, Inc., Vermont, USA) into a 50 mL plastic reagent bottle. And then the soil NO3–N concentration was measured by ultraviolet spectrophotometry using an ultra micro microplate spectrophotometer (BioTek epoch., Agilent Technologies, Inc., Vermont, USA) (GB/T32737-2016).

Differences in yield, Brassica rapa var. Chinensis quality and soil physicochemical characteristics between fertilizer treatments were determined using one-way analysis of variance (ANOVA). The Pearson’s coefficients were used to correlate yield, Brassica rapa var. Chinensis quality and soil physicochemical characteristics.



16S rRNA and ITS1-5f sequencing of the soil

Total genomic DNA was extracted from 200 mg soil samples using the CTAB method. The concentration and purity of the extracted DNA was monitored on 1% agarose gels. The DNA was then stored at – 80°C until further processing. The v4 region of the bacterial 16S rRNA gene was amplified using the common primer pair F (5′-CCTAYGGGRBGCASCAG-3′) and R (5′-GGACTACNNGGGTATCTAAT - 3′) with the barcode. The ITS1 - 5f of the fungal gene was amplified with the common primer pair F (G5’ - GGAAGTAAAAGTCGTAACAAGG - 3’) and R (5′-GCTGCGTTCTTCATCGATGC-3′) with the barcode. PCR reactions were performed using 15 μl Phusion® High-Fidelity PCR Master Mix (New England Biolabs); 0.2 μM forward and reverse primers and approximately 10 ng template DNA. Thermal cycling conditions were as follows: an initial denaturation at 98°C for 1 min, followed by 30 cycles at 98°C for 10 s, 50°C for 30 s and 72°C for 30 s, with a final extension at 72°C for 5 min. Finally, an equal volume of 1X loading buffer (containing SYB green) was mixed with all PCR products and electrophoresed on a 2% agarose gel for detection. PCR products were mixed at equidensity. The mixed PCR products were then purified using Qiagen Gel Extraction Kit (Qiagen, Germany). Sequencing libraries were generated using a TruSeq DNA PCR-Free Sample Preparation Kit (Illumina, USA) according to the manufacturer’s recommendations and index codes were added. Library quality was assessed using the Qubit@ 2.0 Fluorometer (Thermo Scientific) and the Agilent Bioanalyzer 2,100 system. Finally, the library was sequenced on an Illumina NovaSeq platform and 250 bp paired-end reads were generated.



Data analysis 16S rRNA and ITS1-5f sequencing of the soil samples

Mitochondria and chloroplast sequences were removed prior to analysis. Paired-end reads were assigned to samples based on their unique barcode and truncated by cutting off the barcode and primer sequence. Paired-end reads were merged using FLASH (Magoč and Salzberg, 2011). Quality filtering of the raw tags was performed under specific filtering conditions (Q score for quality trimming = 19, minimum length = 3) to obtain the high-quality clean tags (Bokulich et al., 2013) according to the quality controlled process of Quantitative Insights Into Microbial Ecology (QIIME) (Caporaso et al., 2010). The tags were compared with the reference database (Silva database, https://www.arb-silva.de/) using the UCHIME algorithm (Edgar et al., 2011) to detect chimera sequences, and then the chimera sequences were removed (Haas et al., 2011). Finally, the effective Tags were obtained.

Sequence analysis was performed using Uparse software (Edgar, 2013) and sequences with ≥97% similarity were assigned to the same OTUs with the most abundant selected as the representative sequence for further annotation. For each representative sequence, the Silva database (Quast et al., 2012) was used based on the Mothur algorithm to annotate taxonomic information based on naive Bayesian classification for bacteria and Blast for fungi. Multiple sequence alignments were performed using the MUSCLE software (Edgar, 2004). OTU abundance information was normalized using a standard of sequence number corresponding to the sample with the fewest sequences, which was 55,582 for bacteria and 29,042 for fungi.

Alpha diversity is used to analyze the complexity of species diversity for a sample through 3 indices, including observed-species, Chao1, and Shannon. The Tukey test was used to analyze the differences between groups of the alpha diversity index. All these indices in our samples were calculated by QIIME (version 1.7.0) and displayed by R software (version 2.15.3). Beta diversity NMDS (Bray-Curits distance) was calculated by QIIME software (version 1.9.1) to evaluate the changes in microbial community structure. Based on the Unifrac distance, the amova function of the Mothur algorithm was used to analyze the differences between fertilizer treatment groups. In order to better reflect the non-linear structure of the ecological data, we performed the Non-Metric Multi-Dimensional Scaling (NMDS) of the nonlinear model based on Bray-Curtis distance. Pearson correlation approaches were used to correlate alpha-diversity with physicochemical characteristics of soils. Distance-based redundancy analysis (db-RDA) was then performed to further investigate the influence of soil physiochemical properties on bacteria and fungi according to relative phylum abundance R (version 3.2.2).




Results


Effects of different fertilizers on yield and quality of Brassica rapa var. Chinensis

Table 2 shows the effect of different fertilizers on the yield and quality of Brassica rapa var. Chinensis. The fresh yield of Brassica rapa var. Chinensis in the first season were lower than that in the second season. In the first season, the fresh yield of Brassica rapa var. Chinensis (222.7 g/pot) with chemical fertilizer was significantly (p ≤ 5%) higher than that with pig manure and rabbit manure fertilizer, which were 202.3 g/pot and 136.7 g/pot, respectively. And the fresh yield of Brassica rapa var. Chinensis (638.7 g/pot) with pig manure fertilizer was significantly (p ≤ 5%) higher than that with rabbit manure and chemical fertilizer, which were 560.8 g/pot and 537.0 g/pot respectively, in the second season.



TABLE 2 Effect of different fertilizers on the yield and the quality of Brassica rapa var. Chinensis.
[image: Table2]

The total soluble sugar concentration of Brassica rapa var. Chinensis in the first season, which ranged from 10.97 mg/g to 21.07 mg/g, was higher significantly than that in the second season, which ranged from 5.48 mg/g to 6.27 mg/g. The total soluble sugar concentration of fresh Brassica rapa var. Chinensis using rabbit manure fertilizer (21.07 mg/g) was significantly higher (p ≤ 5%) than those using pig manure fertilizer and chemical fertilizer, which were 14.16 mg/g and 10.97 mg/g, respectively, in the first season, but there was no significant difference in the second season.

The NO3-N content of fresh Brassica rapa var. Chinensis in the second season was significantly higher than those in the first season (Table 2). The NO3-N content of fresh Brassica rapa var. Chinensis fertilized with chemical fertilizer (530.4 mg/kg) was significantly higher (p ≤ 5%) than those fertilized with pig manure and rabbit manure which were 372.1 mg/kg and 86.5 mg/kg, respectively, in the first season, that fertilized with pig manure fertilizer (811.7 mg/kg) was significantly higher (p ≤ 5%) than those fertilized with chemical fertilizer and rabbit manure fertilizer which were 645.4 mg/kg and 451.8 mg/kg, respectively, in the second season.



Effects of different fertilizers on soil nutrients, pH, and EC

Table 3 shows the effect of the different fertilizers on the physical and chemical properties of the soil. Total nitrogen, total phosphorus and organic carbon in the soil were higher in the second season than in the first. In two seasons, soils treated with pig and rabbit manure fertilizers had significantly higher concentrations of total nitrogen, total phosphorus and organic carbon than those treated with chemical fertilizer. However, in the same season, there was no significant difference in total nitrogen, total phosphorus and organic carbon content in the soil after application of pig and rabbit manure fertilizer.



TABLE 3 Effect of different fertilizers on soil nutrients, pH, and EC after crop harvest.
[image: Table3]

The rabbit and pig manure fertilizer increased the soil pH value from 6.60 and 6.41 at the end of the first season to 6.65 and 6.62 at the end of the second season, while the chemical fertilizer reduced the soil pH value from 6.63 at the end of the first season to 6.44 at the end of the second season. However, compared to the initial soil pH of 6.98 (Table 1), all fertilization treatments reduced the soil pH.

The soil ECs in the second season were significantly higher (p ≤ 5%) than those in the first season, and the order of the soil ECs order of the three fertilizers was: rabbit manure fertilizer (511 and 749 μs/cm) > chemical fertilizer (436 and 691 μs/cm) > pig manure fertilizer (423 and 625 μs/cm).

The soil NO3-N content in the second season, which ranged from 28.74 to 66.01 mg/kg, was significantly (p ≤ 5%) higher than that in the first season, which ranged from 65.18 to 146.06 mg/kg. Pig manure fertilizer and chemical fertilizer significantly increased soil NO3-N content compared to rabbit manure fertilizer. The C/N ratio in soil using pig manure and rabbit manure fertilizer, which increased over time, was significantly higher than that with chemical fertilizer, which decreased over time.

Table 4 shows that, there was a significant positive correlation between Brassica rapa var. Chinensis yield and soil EC, TN, TP, and nitrate, a significant negative correlation between Brassica rapa var. Chinensis total soluble sugar and soil EC and nitrate content, and a significant positive correlation between Brassica rapa var. Chinensis nitrate content and soil nitrate content.



TABLE 4 Pearson’s correlation between yield and quality of Brassica rapa var. Chinensis and soil physico-chemical properties.
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Sequence data and richness and α-diversity of bacterial and fungal community

After the quality control, 1,477,222 and 1,556,272 valid tags were obtained from 16S rRNA and ITS rRNA gene sequencing. After 97% OTU clustering, 10,613 bacterial OTUs and 4,928 fungal OTUs were retained. Rarefaction curves showed that the sequencing effort was sufficient to describe the majority of the diversity in Brassica rapa var. Chinensis soil samples (Figure 1).

[image: Figure 1]

FIGURE 1
 The rarefaction curves of bacterial and fungal rRNA sequencing depth and number of species number in Brassica rapa var. Chinensis soil.


The observed OTUs, Chao1 and Shannon indices (Table 5) were evaluated to estimate the alpha diversity of bacterial and fungal communities in Brassica rapa var. Chinensis soils under different fertilized treatments. According to Table 5, we found that the soil sample of each fertilizer treatment in the second season had the higher observed OTUs, Chao1 index and Shannon index of bacterial community than that in the first season, and there are significant difference between treatments. The observed OTUs, Chao1 index and Shannon index of pig and rabbit manure treatments were significantly higher than that of chemical fertilization treatment in the same season. These results indicated that the soil samples of pig manure and rabbit manure fertilizer had the higher level of bacterial diversity than that of chemical fertilizer in both two seasons. We found that the Observed OTUs, Chao1 index and Shannon index of fungal community of the soil sample of three fertilizer treatments in two seasons had no significant difference due to the large variance within treatments, but the Chao1 of organic fertilization treatment, especially rabbit manure fertilization treatment, was higher than that of chemical fertilizer treatment.



TABLE 5 The Chao1 index and Shannon index of bacterial and fungal community.
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β-Diversity of bacteria and fungi under three fertilization treatments

Analysis of molecular variance (AMOVA) showed that the differences in beta diversity were significant (bacteria: Fs = 6.76, p ≤ 0.001*; fungi: Fs = 2.40, p ≤ 0.001*) between the fertilizer treatment groups. The beta diversity (NMDS) of soil microbial communities of Brassica rapa var. Chinensis under fertilizer treatments was further investigated. The non-metric multi-dimensional scaling (NMDS) plot (Figure 2I) of the bacterial communities showed a clear separation among the soil bacterial of Brassica rapa var. Chinensis under two seasons and three fertilizer treatments, the bacterial communities were distinguished along MDS1 in two seasons and along MDS2 for different fertilizer treatments. These results indicated that there were significant differences (p ≤ 5%) in the bacterial community structure between three treatments in two seasons. And the distance between the three fertilizations in the second season was relatively close, indicating that the bacterial community of the three fertilizations in the second season was relatively similar. Thus, pig and rabbit manure fertilization had altered the structure of the soil bacterial community, and the difference in bacterial community structure between the three fertilizer treatments in the first season was significant compared to that in the second season. From the NMDS plot of fungal communities (Figure 2II), there was also a clear distinction between MDS1 and MDS2 of six groups of three fertilizer treatments in two seasons, the fungal communities were distinguished along MDS2 for three fertilizer treatments and not along MDS1 in two seasons. This result was consistent with the Amova analysis which showed that beta diversity was a significant difference in fungal community structure between fertilizer treatments.

[image: Figure 2]

FIGURE 2
 NMDS (Bray–Curits distance) of bacterial and fungal communities under three fertilization treatments in two seasons.




Relative phylum and genus abundance of soil microbial communities


Relative phylum and genus abundance of soil bacterial communities

All bacterial OTUs were classified into 904 genera, 534 families and 78 phyla. The dominant phyla (relative sequence abundance ≥1%) across all samples were Proteobacteria (29.99%), Bacteroidota (11.25%), and Firmicutes (7.55%), Unidentified_Bacteria (14.86%), Acidobacteriota (7.55%), Actinobacteria (7.88%), Myxococcota (2.73%), Verrucomicrobiota (1.36%), Verrucomicrobia (3.00%) and Gemmatimonadetes (1.57%), representing 86.37% of the bacterial sequences (Figure 3I). The abundance of Acidobacteriota and Unidentified_Bacteria in the soil of the second season was significantly higher than that of the first season, the abundance of Bacteroidota and Crenarchaeota of the second season was significantly lower than that of the first season. Organic fertilization significantly decreased the abundance of soil Acidobacteriota and Crenarchaeota, increased the abundance of soil Unidentified Bacteria, Myxococcota and Gemmatimonadetes, and rabbit manure fertilization significantly increased the abundance of soil Actinobacteria (Figure 3III).
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FIGURE 3
 The relative abundance of phylum and genus of soil bacterial communities. Values are the mean of the three or four replicates of each treatment. Vertical bars represent the standard error, and bars with different letters within the same treatment indicate that there are significant differences between treatments at p ≤ 0.05. NS, not significant.


Four dominant genera (relative sequence abundance ≥1%) in all samples were Salinimicrobium (3.96%) and Sphingomonas (2.57%), which belong to Proteobacteria, and RB41 (2.22%) belongs to Acidobacteriota, Bacillus (3.38%) belong to Firmicutes, accounting for 12.12% of the bacterial sequences (Figure 3II). Among the top 10 dominant genura, the abundance of Dyella and Rhodanobacter in the soil of the second season was significantly higher than that of the first season, the abundance of Salinimicrobium and Sphingomonas in the second season was significantly lower than that of the first season. Pig and rabbit manure fertilizer significantly increased the abundance of Sphingomonas, Actinomadura and Glycomyces and decreased the abundance of Salinimicrobium, RB41, Dyella, Rhodanobacter and Halomonas (Figure 3IV).



Relative phylum and genus abundance of soil fungal communities

All fungal OTUs were classified into 743 genera, 743 families and 18 phyla. The dominant phyla (relative sequence abundance ≥1%) in all samples were Ascomycota (64.95%), Olpidiomycota (7.90%), Basidiomycota (5.66%), Rozellomycota (5.27%), Chytridiomycota (2.47%), accounting for 85.96% of the fungal sequences (Figure 4I). The abundance of Ascomycota in the soil of the chemical and pig manure fertilization treatments was significantly higher than that of the rabbit manure fertilization treatment in both two seasons. The abundance of Olpidiomycota in the soil of rabbit manure fertilization treatments was significantly higher than that of the chemical and pig manure fertilization treatments in both two seasons. The abundance of Rozellomycota in the soil of the rabbit manure fertilization treatment was significantly higher than that of the other treatments in the second season.
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FIGURE 4
 The relative abundance of the phylum and genus of the soil fungal communities. Values are the mean of the three or four replicates of each treatment. Vertical bars represent the standard error, and bars with different letters within the same treatment indicate that there are significant differences between treatments at p ≤ 0.05. NS, not significant.


Chemical fertilizer increased the abundance of soil Basidiomycota in the soil, and the abundance of Chytridiomycota was higher in the first season than in the second season (Figures 4III,IV).

The six dominant genera (relative sequence abundance ≥1%) in all samples were Humicola (27.74%), Olpidium (7.89%), Fusarium (7.27%), unidentified Rozellomycota sp. (5.20%), Aspergillus (4.49%), Russula (3.08%), Trichurus (2.47%), Chaetomium (2.04%), Cladosporium (1.82%) and Monilia (1.58%), accounting for 63.57% of the fungal sequences (Figure 4II). Among the top 10 dominant genera, rabbit manure fertilizer significantly reduced the abundance of Humicola, and increased the abundance of Olpidium and Trichurus. Pig manure fertilizer significantly increased the abundance of Aspergillus. Pig and rabbit manure fertilizer reduced the abundance of Fusarium (Figure 4V).




Soil microbial community structures and their relationships with soil properties


Pearson’s correlation between soil physico-chemical properties and microbial community alpha diversity

We estimated the Pearson correlation between soil physicochemical properties and microbial community alpha diversity measures (Table 6). We found that EC, TN, TP and SOC were significantly positively correlated (p ≤ 1%) with bacterial Chao 1, and negatively correlated with Goods coverage. TN, TP, and SOC concentrations were a significantly positively correlated (p ≤ 1%) with Shannon of the bacterial communities. Therefore, the EC, TN, TP and SOC concentrations were significantly correlated with alpha diversity in soil bacterial communities under three fertilizer treatments. However, the results showed that pH, EC, TN, TP, SOC, NO3-N and C/N had no significant correlations with the observed OTUs, Shannon, chao1, of the fungal communities.



TABLE 6 Pearson’s correlation between soil physicochemical properties and alpha-diversity of soil microbial communities of Brassica rapa var. Chinensis.
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Distance-based redundancy analysis (dbRDA) of soil physico-chemical properties and microbial community

To investigate the effect of the three fertilizer treatments on the composition of the bacterial and fungal communities and environmental factors, and to further reveal the relationship between soil physicochemical properties and microbial community structures, a distance-based redundancy analysis (db-RDA) of soil physicochemical properties and the relative abundance of OTUs of the microbial community was performed (Figure 5). The dbRDA1 and dbRDA2 explained 70.57% of the diversity of the bacterial community and 60.04% of the diversity of the fungal community. The bacterial community was clearly separated among the three fertilizer treatments in two seasons, and the fungal community was not clearly separated (Figure 5). The db-RDA plot (Figure 5I) clearly showed that soil EC, TN, and SOC concentrations were the three longest vectors, and they could be key physicochemical factors to assemble the bacterial community structure in the experimental soil. In the second season, the soil bacterial community of pig manure fertilization treatment was positively correlated with soil EC, that of rabbit manure fertilization treatment was positively correlated with soil TN content, and that of the chemical fertilization treatment was positively correlated with soil NO3−N content. The db-RDA plot (Figure 5II) clearly showed that soil NO3-N, EC, SOC concentration and pH were the four longest vectors. The soil fungal community of pig manure and chemical fertilization treatment was positively correlated with soil NO3-N in both two seasons, and the fungal community of rabbit manure fertilization treatment was positively correlated with soil EC, SOC, TP concentration and soil pH in the second season.
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FIGURE 5
 db-RDA plot of microbial communities under three fertilization treatments.





Discussion


Effect of organic fertilizer on yield, quality of Brassica rapa var. Chinensis and soil physico-chemical properties

The aim of this study was to investigate the effect of organic manure on Brassica rapa var. Chinensis yield and quality, soil physicochemical properties, and soil microbial community composition. For sustainable agriculture, organic fertilization is inevitable in the future as it improves soil properties, increases crop productivity and maintains crop quality (Adekiya et al., 2020). In our study, chemical fertilization significantly increased the yield of Brassica rapa var. Chinensis in the first season compared to organic fertilization (Table 2), when the total nitrogen content of organic fertilization is twice that of chemical fertilization, which means that the mineralization rate of organic fertilization is slow, and the nutrients in the soil cannot meet the needs of Brassica rapa var. Chinensis. This is because the nitrate and ammonium roots of compound fertilizers can be directly absorbed by the plants after fertilization, whereas organic fertilizers must first be mineralized into inorganic nutrients by soil microbiota before being absorbed and assimilated by plants (Alizadeh et al., 2012). The supply of nitrogen from organic fertilizers depends on their rate of mineralization, but in the first season, soil temperatures are relatively low and the rate of mineralization of organic fertilizers is also low, resulting in inadequate nutrient supply (Geisseler et al., 2021; Cannavo et al., 2022). Although the yield of Brassica rapa var. Chinensis in the chemical fertilizer treatment was significantly lower than those of organic fertilizer treatments in the second season (Table 2), this is because the fertilizer is reapplied on the basis of the first season, which increases the total nutrient content in the soil, at the same time, the rate of soil mineralization increases with the increase in temperature and the nutrients in the soil applied with organic fertilizer can continuously meet the needs of the crop in the second season(Kelderer et al., 2008; Bebber and Richards, 2022; Cannavo et al., 2022). And that the application of organic fertilizers increased the input of organic carbon and nitrogen, replenished the carbon source, promoted the reproduction of soil microorganisms, and also improved the mineralization of organic fertilizers and increased the nutrients available in the soil to meet the needs of crops (Birkhofer et al., 2008; Anggraheni et al., 2019; Wang et al., 2020a).

Organic fertilizers (pig manure and rabbit manure fertilizer) significantly increased the soluble sugar content of Brassica rapa var. Chinensis, especially in the first season, and significantly decreased the nitrate nitrogen content of Brassica rapa var. Chinensis (Table 2), and these results were consistent with the results of previous studies (Xu et al., 2002; Li et al., 2017; Youssef and Eissa, 2017; Serri et al., 2021). Consistent with the results of our study (Table 3), previous research also found that organic fertilization significantly increased soil organic carbon, total nitrogen, total phosphorus and pH (Li X. et al., 2021), and chemical fertilization decreased soil pH (Li et al., 2019), but rabbit manure fertilizer increased soil EC compared to chemical fertilization (El-Mogy et al., 2020). Rabbit manure fertilizer decreased the nitrate content of Brassica rapa var. Chinensis (Table 3). The low nitrate content was caused by the lower nitrate content of rabbit manure fertilizer in soil (Li et al., 2017) and the correlation between soil nitrate content and Brassica rapa var. Chinensis nitrate content was significant and positive (p = 0.876). However, the nitrate content of vegetables and soil after application of pig manure was opposite to that of rabbit manure.



Effects of three fertilizers on diversity and abundance of the soil microbial community

Using high-throughput sequencing, three fertilization treatments were compared in two seasons of Brassica rapa var. Chinensis soil. Fertilization with organic and chemical fertilizers profoundly affected the diversity, richness, structure and activity of soil microbial communities (Lazcano et al., 2013; Francioli et al., 2016; Gu et al., 2017). Previous studies suggested that organic fertilizer increased bacterial species’ richness and diversity (Lazcano et al., 2013) and significantly increased α-diversity, such as Chao1 and Shannon index of soil bacteria (Xue et al., 2018), and our results were consistent with these findings (Table 5). This is because organic fertilizer provides sufficient substrate for soil bacteria (Li et al., 2022) and a large number of soil microorganisms (Watts et al., 2010), leading to an increase in microbial diversity. On the other hand, organic fertilizer had no significant effect on fungal species’ richness and diversity (Francioli et al., 2016; Lin et al., 2019; Qi et al., 2022), and we have similar results (Table 5). This may be due to nutrient enrichment caused by fertilization (Jiang et al., 2021), for example, fertilizer increases fungal size, which reduces fungal biodiversity and changes community composition (Zhou et al., 2016). Based on the NMDS analysis, it was found that differences in bacterial community structure were highlighted among the three fertilization treatments in two seasons (Figure 2), this result is consistent with previous study (Gu et al., 2017; Wu et al., 2020). This may be because organic fertilizer provides a greater diversity of potential substrates for bacterial growth and reproduction, and at the same time bacteria in organic fertilizer could also increase soil enhance microbial biomass (Dong et al., 2014). Previous research on the sensitivity of fungi to fertilizer has been inconsistent. Studies suggested that fungi were not significantly affected by different fertilization treatments, and possibly because conventional tillage or invasive land management (e.g., fertilization) increased bacterial activity and reduced fungal activity, whereas fungi dominated under no-tillage or less invasive land management (de Vries et al., 2006). However, other studies have suggested that fungal communities are more resilient to environmental change than bacterial communities, and that bacterial communities have broader adaptive options (Lin et al., 2019). While our study results showed that differences in fungal community structure were highlighted between the three fertilizer treatments and not between the two seasons (Figure 2), this suggests that fungal community structure is strongly influenced by fertilizer type and is not affected by time (two seasons).



Effects of three fertilizers on the composition of the soil microbial community

In this study, the abundance of unidentified bacteria and Acidobacteriota was significantly higher in the second season than in the first season, while the abundance of Bacteroidota and Crenarchaeota was lower than in the first season (Figure 3), indicating that bacteria are more sensitive to the environment (Lin et al., 2019). Proteobacteria are the most abundant bacteria in the soil in our experiment. Proteobacteria predominate in different soil environments and are mostly Gram-negative (Liang et al., 2018), which was expected to enhance the biological cycling of essential micro- or macro- nutrients and improve soil fertility and plant growth efficiency (Lesaulnier et al., 2008). In our study, Proteobacteria had an absolute advantages in different treatment groups, their abundance ranged from 23 to 37%, and 6 of the top 10 bacterial genera belonged to Proteobacteria. Previous research suggested that the relative abundance of Acidobacteria was negatively correlated with soil pH (Jones et al., 2009). In our study, pig manure and rabbit manure fertilizer increased soil pH and decreased the relative abundance of soil Acidobacteria, compared to chemical fertilizer in the second season (Figure 3III), which was consistent with previous study results (Ma et al., 2021). Compost application has been reported to decrease the relative abundance of Actinobacteria (Liang et al., 2018; Ma et al., 2021), but, our study showed that rabbit manure fertilizer significantly increased the abundance of Actinobacteria in the second season.

Our study results showed that organic fertilizer, especially rabbit manure, reduced the relative abundance of Ascomycota compared to chemical fertilizer (Figure 4), this trend may be due to the more stable form of organic substances after a fermentation process during the maturation of manure (Hannula et al., 2021). Similar results were found in previous studies which showed that mineral N fertilizer promoted fungal growth and organic fertilizer reduced fungal growth (Wang et al., 2017; Hannula et al., 2021). Basidiomycota are widely regarded as lignin decomposers and are therefore important for soil carbon cycling (Hanson et al., 2008). Our results showed that organic fertilizer reduced the abundance of soil Basidiomycota, as the beneficial function of Basidiomycota could be affected by high soil N level (Paungfoo-Lonhienne et al., 2015) and perhaps also by the inhibition of rabbit manure fertilizer.



Relationships between microbial communities and soil properties

According to Xue et al. (2018), soil properties, including nutrients (e.g., total C, total N, P,EC), are more correlated with the absolute abundance of microbes, and EC, clay content and pH accounted of the variation in soil microbial structure in southeast Australia. It has been reported that organic fertilizers can influence the structure of bacterial communities by altering soil properties in a soil type (Li P. et al., 2021; Iqbal et al., 2022). Wu et al. reported that the bacterial community was influenced by soil EC and soil carbon, while the fungal community was more influenced by alkaline nitrogen (Wu et al., 2020). Our study also found that pig manure fertilizer and rabbit manure fertilizer altered soil physicochemical properties (Table 3). Distance-based redundancy analysis (dbRDA) according to the relative abundance of OTUs further showed that, overall, soil EC, TN, and SOC concentration were the most important physicochemical factors to assemble the bacterial community structure in Brassica rapa var. Chinensis soil, and we also found that in the second season, soil EC and NO3-N content had the great effect on the soil bacterial community structure of pig manure fertilizer application and soil TN of rabbit manure fertilizer application (Figure 5I). dbRDA results showed that soil NO3-N, EC, SOC concentration and soil pH were fungal community structure in Brassica rapa var. Chinensis soil, and we also found that soil EC, SOC, pH had the great effect on the soil fungal community structure of rabbit manure fertilizer application and soil NO3-N of chemical fertilizer and pig manure fertilizer treatment soil (Figure 5II).




Conclusion

(1) With the increase of time, the advantage of using organic fertilizer to increase the yield of Brassica rapa var. Chinensis in the second season gradually emerged. The rabbit manure fertilizer significantly (p ≤ 5%) reduced the NO3-N content of fresh Brassica rapa var. Chinensis.

(2) The organic fertilizer increased the concentration of total nitrogen, total phosphorus and organic carbon in soil and the rabbit manure fertilizer increased soil pH and EC and significantly (p ≤ 5%) reduced soil NO3-N content.

(3) Organic fertilizer significantly (p ≤ 5%) improved the diversity and richness of soil bacteria in Brassica rapa var. Chinensis soil, but had no significant effect on soil fungi. There were significant differences (p ≤ 5%) in the bacterial community structures between different treatments in two seasons, and significant differences (p ≤ 5%) in the fungal community structures between fertilizer treatments, but not between two seasons.

(4) Soil EC, TN and organic carbon content were the most important physicochemical factors in determining the bacterial community structure in Brassica rapa var. Chinensis soils, and soil NO3-N, EC, SOC concentration and soil pH in the fungal community structure.
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Parameters

Materials Elastic modulus Density Poisson
(MPa) (kg/m®) ratio

Seedling 75 243 05

pot

Stem 34.92 660 0.41

Leaves 0.241 780 0.33
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Set the amount of fertilizer Test serial number Converted discharge (g) Actual amount of fertilizer (g) Control precision (%)
(kg/mu)

30 1 2462 2475 99.47
2 2462 2326 94.46
3 2462 2460 99.88
40 1 3283 3532 92.96
2 3283 3159 96.22
3 3283 3279 99.87
50 1 4104 4178 98.21
2 4104 4271 96.07
3 4104 3975 96.85

Average value 97.11
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Fertilizer Fit relation Decisive factor

Nitrogen fertilizer (Urea) Q=103.39 £Cy4 + 36.983 0.9898
Phosphate fertilizer (Super Phosphate) Q=80.41 £C, + 54.616 0.9889
Potash fertilizer (Potassium Chloride) Q=34.46 £Cy4 - 11.909 0.9933
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Fertilizer Test serial number Actual mass (g) Measurement result (g) Error(%)

Nitrogen fertilizer 1 207.3 212.746 263
2 305.2 295458 -3.19
Phosphate fertilizer 1 319.6 311918 -2.40
2 405.7 416.447 2.65
Potash fertilizer 1 135.2 132.816 -1.76

2 267.5 277.541 375
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Number Forward Sowing unit 1 Sowing unit 2 Sowing unit 3 Sowing unit 4 Average Standard  Variation
speed fertilizer rate  fertilizer rate fertilizer rate fertilizer rate  amount of deviation Coefficient of

(km/h) (g) (g) (g) (g fertilizer(g) Fertilization

%)
1 4 98.2 96.4 96.4 101.4 98.1 2.357 2.4
2 4 90.9 90.9 913 925 914 0.757 0.83
3 4 91.6 91.6 90.4 90.6 91.05 0.64 0.7
4 6 136.5 1375 1366 1385 137.275 0.932 0.68
5 6 140.4 140.2 1358 136.5 138.225 2.414 175
6 6 134.5 135.8 140.2 140.2 137.675 2.964 215
7 8 183.6 182 181 183 1824 1.143 0.63
8 8 185.0 180.6 181.6 186.3 183.375 2.711 1.48
9 8 180.5 180.0 1853 177.5 180.825 3.259 18
10 10 229 227 225 230 227.75 2.217 0.97
11 10 2285 235.6 2283 2245 229225 4.631 202

12 10 225.6 240.6 220.5 230.6 229.325 8.573 3.74
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Backbonenetworks  IoU Precision/ Recall/ F1 score/ Average precision/ Detection speed/ Weight size/

score % % % % frames-s™” MB

CSPDarkNet53 0.50 9243 92.22 92 9434 274 244
075 62.16 59.67 61 5476

GhostNet 0.50 91.32 87.30 88 92.10 326 152
0.75 60.47 59.03 58 5205

ShuffleNetV2 0.50 9138 87.50 89 9216 302 151
0.75 60.85 59.07 59 52.11

EfficientNet 0.50 9086 8691 86 9172 298 163

0.75 60.03 58.40 57 51.78
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Algorithms IoU score Precision/ Recall/ F1 score/ Average precision/ Detection Weight

% % % % speed/frames-s™ size/MB

YOLOv4+®+® 0.50 97.15 92.86 95 97.38 36.4 60.7
0.75 79.47 76.18 77 74.50

YOLOv4+®+® 0.50 96.40 89.72 93 96.88 35.9 81.1
0.75 80.01 75.51 77 72.64

YOLOv4+®0+@® 0.50 96.35 89.75 93 96.86 35.7 99.4
0.75 78.50 74.81 76 72.58

YOLOv4+®O+@+® 0.50 99.23 95.10 98 98.94 372 594
0.75 80.00 76.19 78 74.62

YOLOv4+®0+®+6 0.50 97.17 92.48 95 97.39 36.8 79.9

0:75 7951 76.53 78 74.56
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Algorithms Parameters Flops/G MAC/MB

YOLOv4 64040001 29.95 606.54
YOLOV4+®D+@ 15839686 13.88 578.49
YOLOV4+®+® 21204446 13.88 582.72
YOLOV4+D+® 25976382 20.7 600.26
YOLOV4+D+@+® 15503686 13.61 578.49

YOLOV4+D+@+® 20868446 13.61 582.72
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Number Contribution (%) Cumulative contribution (%)

1 0.3332 0.3332
2 0.2452 0.5784
3 0.1631 0.7415
4 0.1085 0.8500
5 0.0574 0.9074
6 0.0256 0.9330
7 0.0189 0.9519
8 0.0092 0.9611
22 0.0008 1.0000
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Index Power Absorbance Transmittance

R. 0.8917 0.9102 0.9039
RMSEC 0.1044 0.1072 0.1061
R, 0.8996 0.9145 0.8979
RMSEP 0.1482 0.1199 0.1132
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LayerCAM EfficientNet 60% ‘ 61.68% 39.7% 54.81% ‘ 63.38% 56.94% 55.302% 01:12
ScoreCAM DenseNet 70% ‘ 54.54% 28.69% 44.88% ‘ 49.07% 49.82% 45.4% 41:04
AblationCAM EfficientNet 60% ‘ 61.81% 38.69% 55.86% ‘ 62.56% 54.04% 54.592% 26:22

‘ ‘ 63% 54.71% 54.796% 01:12

XGradCAM EfficientNet 60% 62.13% 38.6% 55.54%
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Frequency

Times Select minRMSECV :
point/THz
0.53, 0.60, 0.76, 0.81,
Power 27 9 0.2136 1.08, 1.14, 1.26, 1.35,
1.45
0.54, 0.59, 1.19, 1.28,
Absorbance 29 6 0.2081 1.34, 145
Transmittance 35 7 0.1963 051, 1065, 055, {25
1.28, 1.30, 1.46
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Networks FLOPs otal params R B F1 Score

DenseNet 5.794G 7.979M 95.80% 96.33% 95.983% 62.89
EfficientNet 830.290M 5.289M 95.58% 96.49% 96.049% 132,65
MobileNetV3 124.956M 2.543M 94.97% 95.33% 95.072% 207.41

ShuffleNetV2 305.418M 2.279M 95.56% 95.57% 95.579% 183.57
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Methods

KS 0.8849 0.1601
Power
SPXY 0.8969 0.1530
KS 0.8404 0.1893
Absorbance
SPXY 0.8792 0.1702
KS 0.8805 0.1640
Transmittance
SPXY 0.8908 0.1586
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300

Batch size 32
Optimizer SGD
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Rc 0.8804 0.8605 0.8452 0.8097

RMSE 0.1432 0.1692 0.1908 0.2094
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Network pa DenseNet EfficientNet MobileNetV3 ShuffleNetV2
Total params 7,978,856 5,288,548 2,542,856 2,278,604
Forward/backward pass size(MB) 172.18 173.65 34.61 47.94

‘ Params size(MB) 30.44 20.17 9.70 8.69

Estimated Total Size(MB) 203.19 194.40 44.88 57.20
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Type Method Advantages

gradient-based LayerCAM Using element-level weights to generate higher-quality class activation maps
gradient-free ScoreCAM Infiltrate the image by scaling activation and measure how the output drops
gradient-free AblationCAM Zeroing out the activation and measuring the drop in output

gradient-based XGradCAM Scaling gradients by normalizing activation
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Disease category

Train

Corn Brown Spot 1474 1032 2064
‘ Corn Southern Leaf Blight 1242 870 2040 372

Maize Curvularia Leaf Spot 2407 1685 2066 722
!

Common Rust 615 431 2155 184
|

Corn Northern Leaf Blight 1253 878 1998 375
|

Healthy 2410 1687 2097 723
‘ Total 9401 6583 12420 2818
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Evaluation indicatol

EX

3 E,

Y
‘maximum/mm 4.02153 4.73257 ‘ 7.45387
‘ minimum/mm 0.015798 0.0118846 ‘ 0.0323323
1.365 14276 ‘ 2.67459

‘ average/mm
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EC ™ TP soc NOs-N in soil C/N
yield 0176 0812%% 0.600%% 0.473% 0421% 0.731%% 0.065

Soluble sugar ~o0117 ~0.610%% ~0.298 ~0.179 ~0.151 ~0.679%% 0129

Nitrate of Brassica Chinensis 0358 0.180 0.188 0.063 0.876+% ~0.114

*and ** indicate significance (p <0.05) and high significance (p <0.01).
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Evaluation indicators = Dani Huber IGGI IGG Il

e/mm 3.89256 ‘ 397189 | 3.92653 | 391756

‘ Iterations 7 ‘ 10 8 9
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er Rabbit manure fe

Planting seasons  Chemical fertilizer ~ Pig manure fert

‘The first season 109:0.16¢ 1.91:0.08b 1902029
TN (g/kg)

‘The second season 175019 2672053 2712035

‘The first season 39420194 7.60+0.30c 6952077
TP (g/kg)

‘The second season 3780300 121143140 9724055

“The first season 6.2620.56c 163240910 15624120
SOC (g/kg)

‘The second season 565+0.40c 2222014 2312101

‘The first season 6:6340.052b 6.4120.06¢ 6.60+0.06ab
pH

‘The second season 6442003 6.62£0.062b 6652008

“The first season 4364384 4232574 SE63c
EC (ps/em)

‘The second season 6913 625233 7492192

“The first season 660121527 6438225.63¢ 28742538
NON in soil (mg/kg)

‘The second season 10756433 14606221500 65,182 13.47¢

‘The first season 58821240 856£072 8355122
oN

‘The second season 3380.26c 906184 9.042091a

TN: total nitrogen, TP: total phosphorus, SOC: soil organic carbon. Significant differences at the 5% level are indicated by different smallletters in each row.
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Evaluation indi- SVD LM Danish- Danish-
cators DQ SVD

4.18036 = 4.00379 4.00294 3.89256
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Chemical fertilizer ~ Pig manure fertilizer ~ Rabbit manure fertilizer

“The first season 227225¢ 20232196 136.7419.3d
Fresh yield (g/pot)

‘The second season 53702528 638724350 560.8: 14.0b

“The first season. 10.97£3.11b 14.16+3.24b 21.07 £ 1.66a
“Total soluble sugar (mg/g)

“The second season 5.48+041c 6.2740.57¢ 5.6310.17¢

“The first season 53042 107.5¢ 372.12618¢ 86544994
NON in plant (mg/kg)

“The second season 641.4+146.3b. 811.7£98.9a 451.8+36.8¢

ifferent lower case letters in each row indicate a significant difference at the 5% level.
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Organic carbon (g/kg) N (g/kg) Os (g/kg) (g/kg) EC (ms/cm|
Soil 1460 506 141 050 1446 698 0.056
Pig manure fertilizer 1850 179.80 19.07 1427 171 703 244

Rabbit manure fertilizer 50.04 25197 27.06 1645 3193 9.28 398
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UAV 80m 10.6kg Centimeter-level 04-lum

Satellite 705km 250kg Meter-level 0.4-14.4um

The above parameters are referenced to ASD FieldSpec 4, DJ M600-borne GaiaSky-mini3-VN, and MODIS, respectively.
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Binary ulticlass

Dataset with early symptoms 50.23 39.77

Dataset without early symptoms 50.80 41.93

Results are shown in %.
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RF CNN
Original Two-leaf adjusted predic- = Difference  Original single leaf =~ Two-leaf adjusted predic- = Difference
single leaf tion accuracy accuracy tion accuracy
accuracy
Overall 62.6 62.8 +02 67 66 -1 ‘
Non- 67 55.6 -114 60 519 8.1
infected
Leafroll 74 737 0.3 86 814 -4.6 ‘
Red 35 49.1 +14.1 49 59.3 +10.3
blotch
Both 67 69.1 +21 66 67 +1 ‘

Results are shown in % points.
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Dataset Non-infected Red blotch
RF
Entire dataset 622 67 74 35 67
Pre-symptomatic 77.7 90 81 46 97
Symptomatic 65.7 73 84 8 22
CNN
Entire dataset 67 60 86 49 66
Pre-symptomatic 76.9 79 92 53, 98
Symptomatic 732 84 80 57 37

Results are shown in % points and best results are highlighted in italics-bold.
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Overall accuracy CNN model model
Entire dataset 80.9 79.5
Pre-symptomatic dataset ' 85.6 ‘ 82.8
Symptomatic dataset ' 87 ‘ 82.4

Results are expressed in % points.
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Category Descripti dataset Symptoma
0 Non-infected 135 135 135
1 Leafroll 156 50 106
2 Red blotch 108 86 22
3 Leafroll and red blotch 97 48 49
Non-infected 135 135 135
Infected 361 184 177
Total 496 319 312
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Model type Data processing No data processing

available
VGG-16 83.45 62.67
VGG-19 85.34 65.22
ResNet-50 90.33 81.43
| DenseNet 91.34 85.32
DANet 93.30 87.34
DNANet 92.32 89.24
U-Net 93.23 86.95
Our model 97.78 93.46
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Weed species Raw data Extended data
Black-glass 309 618
Charlock 452 904
Cleavers 335 670
Common chickweed 713 1,426
Common wheat 253 506
Fat hen 538 1,076
Loose silky-bent 762 1,524
Maize 257 514
| Scentless mayweed 607 1,214
Shepherd purse 274 548
Small-flowered cranesbill 576 1,152
Sugar beet 463 926
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Model type Model size (MB) aining accuracy (%) Testing accu le image recogniti

VGG-16 800.33 83.45 81.78 1533
VGG-19 832.45 85.34 87.23 163.1
ResNet-50 95.23 90.33 91.54 104.5
DenseNet 93.43 91.34 90.78 98.8
DANet 611.1 93.30 93.29 85.3
DNANet 169.2 92.32 92.20 88.0
U-Net 90.42 93.23 93.76 77.3
Our model 83.50 99.97 97.78 68.4
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Actual number of Number of node

node/pcs cut/pcs
Mool oma  Damaged VBRI oma  pumga  Vimd  Reecluode
1 78 1 1 78 1 1 98.75
2 81 0 0 81 0 0 100
3 77 0 1 77 0 0 9871
4 84 1 0 84 0 0 98.82
5 83 1 2 83 1 1 98.83
6 76 2 2 76 0 1 96.52
7 80 1 0 80 0 0 98.76
8 79 0 0 79 0 0 100
9 82 0 2 82 0 1 98.80
10 77 1 1 77 0 0 97.46
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Network Model Precision/% Recall/% Mean operation Rate/% Model size/MB MAP/%

Faster-RCNN 61.18 98.85 3 265 90.73
YOLOv4 88.13 98.62 15 245 95.19
Enhanced YOLOv4-Tiny 97.07 98.46 30 48 99.11
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Dataset Normal sugarcane Damaged sugarcane Sugarcane with mud

Training set 10147 1552 1800
Test set 1128 173 200
Total number 11275 1725 2000
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Feature extraction method Number of feature variables = Number of potential variables RE RMSEC Rf, RMSEP  RPD

Boss 31 17 0.8687 0.6612 0.7577 0.6458 225
CARS 25 15 0.8588 0.6262 0.8159 0.7237 2.36
vsO 23 14 0.8068 0.7344 0.7625 0.8171 2.05
IVISSA 41 30 0.9522 0.3851 0.7467 0.7089 2.20
MASS 29 16 0.8530 0.6164 0.8123 0.7743 2.30
CARS-Boss 21 16 0.8376 0.6715 0.7718 0.8058 2.01
MASS-Boss 21 14 0.8017 0.7880 0.7655 0.7024 1.85
IVISSA-Boss 20 16 0.8438 ‘ 0.6697 0.7999 0.7293 223

‘The bold values represent the best performer in cach table.
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Feature extraction method =~ Number of feature variables Number of latent variables (lvs) Rf RMSEC Rf, RMSEP  RPD

Boss 19 17 0.8964 0.5214 0.8191 0.7540 233
CARS 35 13 09179 0.5036 0.7964 0.7013 224
vso 44 12 0.8709 0.5408 0.8087 0.8598 2.01
IVISSA ‘ 70 12 0.8718 0.5698 08313 0.7504 2.07
MASS 53 11 0.8505 0.6547 0.8136 0.7041 215
CARS-Boss 27 16 0.9081 0.4529 0.8784 0.6762 2.50
MASS-Boss 21 17 0.8747 0.6079 0.8717 0.5661 2.89
IVISSA-Boss 17 12 0.8727 0.5784 0.8684 0.6433 2.55

‘The bold values represent the best performer in cach table.
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Feature extraction method =~ Number of feature variables =~ Number of hidden neurons

2 RMSEC Ré RMSEP  RPD

Boss 31 42 0.8805 0.6347 0.8329 0.5434 224
CARS 25 50 0.9034 0.5181 0.8784 0.5881 273
VsO 23 47 0.8809 05768 0.8530 0.6427 2.45
IVISSA 41 44 0.9004 0.5556 0.8598 0.5275 252
MASS 29 55 0.9219 0.4493 0.8889 0.5957 2.88
CARS-Boss 21 54 0.8839 0.5679 0.8689 0.6107 2.62
MASS-Boss 21 59 0.9429 0.4229 0.8894 0.4824 2.88
IVISSA-Boss 20 65 0.9331 0.4542 0.8755 0.5802 2,67

‘The bold values represent the best performer in cach table.
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Feature extraction method =~ Number of feature variables umber of hidden neurons

;  RMSEC R  RMSEP  RPD

Boss 19 24 0.8641 0.5973 0.8372 0.7152 2.48
CARS 35 38 0.9244 0.4747 0.8641 0.5730 242
vso 44 37 09103 04507 0.8250 0.8223 228
IVISSA 70 36 09153 04633 0.8064 0.8040 1.90
MASS 53 46 0.9443 0.3795 0.8677 0.6500 2.60
CARS-Boss 27 39 0.9214 0.4188 0.8750 0.6856 2.51
MASS-Boss 21 38 0.9000 0.5433 0.8671 0.5761 2.83
IVISSA-Boss 17 35 0.9186 0.4626 0.8602 0.6631 2.72

‘The bold values represent the best performer in cach table.
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eature extraction method

MASS-Boss

CARS-Boss

IVISSA-Boss

bles

Hyperspectral feature vai escence spectral feature variables
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1,2,11,19445,52,67,82,139,143,148,153,155,
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217,218,219,227

3,5,6,10,16,17,22,23,27,29,46,
47,51,53,54,55,73,76,79,84,99

1,2,45,52,89,97,147,155,165,166,201,
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Secondary feature extraction

Hyperspectral

Number of

et S Percentage of total bands

Number of
feature variables

Fluorescence
Spectral

Percentage of total bands

CARS-Boss 27 121 21 20.2
MASS-Boss 21 94 21 20.2
IVISSA-Boss 17 7.59 20 19.6
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lvs RMSEC R; RMSEP

H-Raw data 10 08095 07739 06795 07994
o 14 09489 03610 04710 12047 110
DT 14 09315 04269 06719 1.0052 119
Hyperspectral G 12 0.8207 07507 07439 07146 210
Gws 13 0.8520 0.6820 07334 07291 210
BS 13 0.8416 0.7055 0.7629 0.6876 221
ES 13 0.8481 0.6909 07490 07075 214
F-Raw data 15 0.8689 06436 06143 0.8894 141
SNV 12 07454 0.8894 0.4248 L1170 103
DT 12 07829 0.8367 04350 10423 0.99
:;"e:::l(e"ce G 16 0.9021 0.5562 0.6396 0.8598 1.67
Gws 19 0.8764 06188 05977 09401 145
BS 17 0.8889 05926 06030 09023 160
ES 19 08618 0,607 0.6267 08750 1.53

‘The bold values represent the best performer in each table.
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RMSEP

Literature i
Moen, Nilsen, et al., 2021 UVE-PLS 0.3900 1.0470 =
Benelli, Cevoli, et al., 2022 PLS 0.8500~0.9400 1.1000~0.7300 -
This study MASS-Boss-ELM 0.8894 0.4824 2.88

“-” indicates that RPD was not used in the literature.
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Spectra Prediction Method R? RMSEC RMSEP
MASS-Boss-ELM 0.9000 05433 0.8671 05761
Hyperspectral data MASS-Boss-PLSR 0.8747 0.6079 0.8717 0.5661 2.89
IVSO-PSO-LSSVM 0.8231 0.7456 0.8532 05411 254
MASS-Boss-ELM 09429 04229 0.8894 04824 2.88
Fluorescence spectral data CARS-PLSR 0.8588 0.6262 0.8159 07237 2.36
IVISSA-PSO-LSSVM 0.9582 03634 0.7473 07199 229

‘The bold values represent the best performer in each table.
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Spectral Type eature extraction mef o2 Y

Hyperspectral 50 ‘ 23021 ‘ 3.5083¢+06

Fluorescence spectral IVISSA ‘ 3.1623e+08 ‘ 1.0236e+06
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Feature extraction method ber of feature variables R? MSEC R RMSEP

'p
Boss 31 0.8987 0.5659 0.6119 0.8922 1.47
CARS 25 0.8739 0.6312 0.7099 07713 1.98
VsO 23 0.8523 0.6832 05851 09225 1.50
IVISSA 41 0.9582 ‘ 03634 07473 07199 229
MASS 29 0.8677 0.6467 0.7650 0.6942 2.19
CARS-Boss 21 0.8547 0.6777 0.6372 0.8626 1.65
MASS-Boss 21 0.8050 0.7850 0.7206 0.7569 161
IVISSA-Boss 20 0.8359 ‘ 0.7201 0.7691 0.6881 1.97

‘The bold values represent the best performer in each table.





OPS/images/fpls.2022.1093671/crossmark.jpg
©

2

i

|





OPS/images/fpls.2022.1099033/im31.jpg
4





OPS/images/fpls.2022.1075929/table1.jpg
Sample set

Maximum
value

Average
value

Standard
deviation

Hyperspectral sample set division

Fluorescence spectral sample set
division

Training set
Prediction set
Training set

Prediction set

Number of samples Mt
value
60 650
30 870
60 6.50
30 870
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1535

1535
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1141
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Reference  Microcontroller ~ Connection Platform Real- Cloud-  Actuator Data Allows crop Development Sensors Phenomenon

time enabled  control archival management  and implemen-
and tation cost
download
for further
analytics
(Bates etal, A LoRaWAN- LoRaWAN FarmDecision TECH v/ v x x v High Temperature,  The researchers
2021) enabled node Salinity have designed an
aquaculture-based
environmental
‘monitoring
network consisting
of LoRaWAN-
enabled

atmospheric and
‘marine sensors
attached to buoys
on Clyde River,
Australia, to make
precise and rapid
decisions for oyster
farmers operating
in the river to
notify them against

adverse
environmental
threats.
(Forcen- Wireless data logger ~ Wi-Fi Irriman v 4 = x x High Drill and The authors
Mufioz et al, Drop, Water  describe a cloud-
2021) potential based platform
sensor, Flow  capable of
meter acquiring data

from a wide range
of agronomic
sensors for crop
‘monitoring and
irrigation
‘management to
assist agronomists
in optimizing
irrigation
procedures via a
usable web-based
tool that allows
them to elaborate

irrigation plans
and evaluate their
effectiveness over

crops.

(Mohammed  NodeMCU WicFi Thing-Speak v v v x x Intermediate Temperature,  The authors have

etal, 2021) humidity, designed a fully
Flow meter,  automated

Anemometer,  controlled
Soil moisture subsurface
irrigation system
to control a
‘modern subsurface
tion system
for improving
irrigation
‘management of
date palms in arid

irri

regions.

(Herman NodeMCU Wi-Fi ThingSpeak v x v x v Low PH sensor, The researchers

et al,2019) Total demonstrated a
Dissolved smart agriculture
Solids (TDS) system that
sensor measures pH,

TDS, and nutrient
temperature values
in the nutrient film
technique (NFT)
technique using
10T sensors to
predict the
nutrient conditions
where they used
the predicted
results to provide
commands to
‘microcontrollers
for switching the

state of the
nutrient controller.

(Mehraetal,  Arduino UNO. WiFi = x x v x v Intermediate Temperature,  The authors

2018) Raspberry Pi3 Humidity, created an IoT-
Water level  based hydroponic
sensor, Photo  system that uses
resistor, PH  Deep Neural
sensor Networks to give

the necessary
control action for
the hydroponic
environment based
on several input

factors.
(Mohanraj  Arduino UN.O. Cable Internet ~ Blynk v v x x x Low Temperature,  The authors
etal.2016) Humidity proposed an e-
sensor, Soil  Agriculture
moisture application with
sensor, the intention of
Magnetic designing a
float sensor,  knowledge
BH1750 ‘management
Module platform for
farmers.
(Suciu Raspberry Pi Grafana v v x x x Intermediate - ‘The authors have
et al.2019) demonstrated how
agriculture big
data and
decentralized cloud
operations are
happening; by
designing a secure
cloud monitoring
framework for
smart agriculture.
(Trilles Linkit One GPRS SEnviro v x x x v Intermediate Temperature  The authors
etal,2020) and created an IoT’
Humidity, platform capable
Rainfall of monitoring
sensor weather events to

predict diseases
and alert farmers
ina vineyard.

(Aminalloh  NodeMCU. - x x x v x Intermediate Temperature  The authors have

et al,2019) and designed an offline
Humidity, 10T platform for
TSL2591, feature extraction
cesssl and to monitor the
sensor development of

tomato plantations
in a greenhouse

environment.
Our work NodeMCU. WiEi ‘Thingerio v v v v v Low Temperature,  Created a real-
Arduino UN.O. Humidity, time, low-cost crop.
PHsensor,  management
Ultrasonic platform for the
sensor, RTC  management of
module, Soil  indoor plantations;
moisture especially for
sensor, LDR,  urban farming
DS18B20, (eg, vertical

MQ135Co2  farming)
sensor
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IoT devices/enabling technologies used

NodeMCU microcontroller
Arduino UNO microcontroller
DS1307 RTC module

LDR sensor

H-101 analog PH sensor
Capacitive soil moisture sensor
DS18B20 sensor

Two-channel DC 5V relay module
DHT-11 temperature and humidity sensor
Three peristaltic pumps

MQ135 CO2 sensor

Ultrasonic sensor

Cloud for data visualization/archival and actuator
control

Total cost incurred

Spend cost in
USD

2
35
0.5

0.05
40

0.5

15
17
10
15
15

Free

63.75
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84.00

Air tempera-
ture

2243

0.66

20.80

2540

Co2value

2278.80

440.24

1470.00

2998.00

Lux
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51.49

34.51
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Soil moisture percent-

71.35
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loT sensor

DS1307 RTC module (Suryawinata et al,2017)

LDR sensor (Salim et al.,2015)

H-101 analog PH sensor (Cucus and
Febrianti,2017)

Capacitive soil moisture sensor (Eller and
Denoth,1996)

DS18B20 sensor (Saha et al.,2021)

Two-channel DC 5V relay module (Sunday
et al.,.2020)

DHT-11 temperature and humidity sensor
(Sunday et al,2020)

Peristaltic pump (Banerjee et al.,2017)

MQI135 CO2 sensor (Abbas et al.,2020)

Ultrasonic sensor (Latha et al.,2016)

«Operating voltage: 3.3V - 5V
+Battery type: LIR2032 rechargeable lithium battery

«The real-time clock provides hours, minutes, seconds,

and AM/PM.

«Operating voltage: 3.3V or 5V
«Operating current: 15ma

«Operating voltage: 5.00V
«Measuring range: 0-14 PH.
«Measuring temperature: 0-60 °C
«Accuracy: + 0.1pH (25 °C)
«Response Time: < Imin

«Operating voltage: 3.3 V to 55 V
«Operating current: 5mA.
+Analog output.

«Weight (gm): 15

+Usable temperature range: -55 to 125°C
« + 0.5°C accuracy from -10°C to +85°C
«Usable with 3.0V to 5.5V

«Voltage to operate: 5V
«Load: 10A, AC 250V/15A, 125V

«Operating voltage: 3.5V to 5.5V

«Operating current: 0.3mA (measuring) 60uA
(standby)

«Temperature Range: 0°C to 50°C

«Humidity Range: 20% to 90%

eAccuracy: + 1°C and +1%

«Working Temperature: 0°C - 40 °C
«Motor voltage: 12V.

«Motor current: 200-300mA.

«Flow rate: up to 100 mL/min.

«Operating voltage: 5V

«Detects NH3, NOx, alcohol, Benzene, smoke, CO2,
etc.

+Analog output voltage: 0V to 5V

«Preheat duration: 20 seconds

«Operating voltage: 3.3V - 5V.
«Operating Current: 8mA.

«Working Frequency: 40Hz.

«Ranging Distance: 3cm — 350cm/3.5m.
«Measuring Angle: 15 degrees.

Pur

To maintain timely information when streaming
data to the cloud

To get the amount of light falling on a surface

To Measure the Soil PH.

To measure the soil moisture percentage

To measure the soil temperature

To control our irrigation water pumps and grow
light

To get the environmental temperature and relative
humidity

Provide water to the plants

To measure the CO2 concertation in an indoor
environment

To measure the height of the plants
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(0 Date

26/07/2022, 04:21:36
26/07/2022, 04:20:36
26/07/2022, 04:19:35
26/07/2022, 0418:36
26/07/2022, 04:17:35
26/07/2022, 04:16:37
26/07/2022, 04:15:38

Airhumidity

e 8 8 8 8 8 8

Airtemperature

22.200000762939453
22.200000762939453
22.200000762939453
22.200000762939453
22.200000762939453
22.200000762939453
22.200000762939453

Codwvalue
3639.080810546875
3162.114013671575
3442.51904296875
3539.822021484375
3442.51904296875
3347.15087890625
3442.51904296875

Luxvalue
29
25
29
25
29

28

oo R R R

Soilmoistureprecentage

SoiltemperatureCelsius
26.5625

26.5625

26.5

26.5625

26.5625

26.5625

26.5

SoiltemperatureFahrenheit
79.8125

79.8125
79.69999694524219
79.8125

79.8125

79.8125
79.69999694524219

height
11
11
11
11
11
11
11

pHvalue
£.229245046875
6.2235517501831055
6.229245046875
£.229245046875
6.2320966720551055
£.234943359592578
6.2235517501831055

realtime
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26/7/2022 41517
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5 0.2544-0.3180 0.7851 16 0.9540-1.0176 0.5312
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Feature extraction method Number of feature variables A RMSEC RMSEP

Boss 19 0.8403 07085 0.8056 06227

CARS 35 08126 07676 07710 06758 2.03
VSO 44 0.8231 0.7456 0.8532 0.5411 2.54
IVISSA 70 0.8964 0.5710 0.7576 0.6953 1.94
MASS 53 0.8817 0.6098 0.7698 0.6775 1.93
CARS-Boss 27 0.8273 0.7367 0.7805 06616 2.10
MASS-Boss 21 0.8265 07385 0.8169 0.6042 228
IVISSA-Boss 17 0.8651 06512 0.7435 07152 2,01

‘The bold values represent the best performer in cach table.
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