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Editorial on the Research Topic

Machine learning in data analysis for stroke/endovascular therapy

Introduction

Despite current methods of treatment and prevention, ischemic stroke causes more

than 7 million deaths each year worldwide (1). Because of its prevalence, stroke research

necessitates large data sets with numerous variables. Analysis of massive multivariable

datasets has historically been unfeasible. Machine learning (ML) offers a paradigm-shifting

opportunity to integrate several modes of data from larger cohorts, driving stroke research

forward through its capacity to unravel complex relationships within intricate datasets.

In this Research Topic of Frontiers in Neurology, we called for original work on the

theme of ML in endovascular therapy and stroke to collect novel approaches that may

yield discovery.

Residual disability after stroke significantly diminishes stroke survivor quality of life, so

novel and innovative technologies may be able to improve care. A pilot study by Weisinger

et al. found that frequency-tuned electromagnetic field therapy can improve stroke motor

function. These field therapies might be the basis of future products available in the clinic or

new avenues of research to better understand the relationship between post-ischemia injury

and functional connectivity.

The articles featured in this issue demonstrate the transformative potential of ML

through a consistent approach: training ML models on a subset of retrospective clinical data

and harnessing their predictive power. Li F. et al., for example, trained five algorithms to

predict cerebral hemorrhage. The algorithm with the best performance revealed LDL, HDL,

CRP, and Hgb as the strongest predictors. Wang et al.’s study trained six different MLmodels

on a subset of data from patients hospitalized with acute ischemic stroke. Each algorithm

identified significant predictors of death at 1-year post-stroke. Themost successful algorithm

was then used to build anML network calculator—essentially a smart calculator—to identify

high-risk patients. Models like these are life-saving alternatives to calculators like the NIH

stroke scale or CHA2DS2–VASc scores.
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Advanced clinical decision-making tools can be valuable in

managing rare stroke subtypes, such as corpus callosum (CC)

infarction. ML thrives on extracting patterns and insights from

limited datasets, rendering its application even more significant

given the inherent data scarcity in such cases. Xu et al.’s prospective

analysis of CC infarction does exactly that. Even from a small cohort

(N = 213) of CC infarctions, they were able to identify a logistic

regression model that predicted subjective cognitive decline.

Predicting cognitive decline may be useful in both prognostication

and the development of specific rehabilitation paradigms. Li Q.

et al.’s article, also featured in this issue, similarly uses ML as

an assessment tool for post-stroke patients. Their meta-analysis

included over 70,000 patients and demonstrated the ability of ML

models to predict poor motor function after stroke.

Ye et al.’s article goes beyond these “smart calculators” by

integrating clinical data with radiomic features. Their innovative

approach improved prognosis prediction over models with only

clinical or radiologic data. Approaches that integrate automated

image analysis with clinical data have the potential to facilitate

clinical decision-making about complex, high-risk stroke patients.

Beyond ML analysis of retrospective datasets to isolate

predictors of stroke outcome, this issue also exemplifies the

potential for image-based research, particularly advanced imaging

modalities such as CT and MR. This approach, demonstrated by

Kis et al.’s work, extends to studies by Werdiger et al. and Tetteh

et al.’s, and can uncover insights into stroke therapy that cannot

be seen without ML. Werdiger et al.’s study trained ML models

on CT perfusion images to identify areas of ischemia. Clinically

available software that identifies ischemic tissue relies on only

one input, whereas here, multiple inputs led to higher accuracy.

Tetteh et al.’s study—which also trained ML models on perfusion

studies—used MR perfusion data, instead of CT. Their approach

performed comparably to expert graders at identifying the quality

of collateral circulation during stroke. Li Y. et al.’s work included a

similar structure, except this time in the form of serial fMRI scans.

Images were introduced to a support vector machine, somewhat

of a supervised ML model, and researchers were able to compare

outputs from stroke patients, healthy patients, and their respective

follow-ups. Their analysis allowed them to “see” improvements in

functional neural homotopy.

In addition to original research on stroke, this Research Topic

also called for projects that leveraged ML techniques to investigate

endovascular therapies. Risk reduction in endovascular surgery

is particularly ripe for discovery by ML models. Endovascular

thrombectomy (EVT), commonly performed to treat ischemic

stroke, carries a significant risk of bleeding and thrombosis, making

selection criteria paramount to risk mitigation. Kis et al., whose

study is featured in this issue, combined automated analysis of

pre-EVT CT images with clinical data to predict outcomes and

improve prognostication after EVT. These findings demonstrate

the need to integrate software-based analysis with clinical data

when determining the futility of high-risk procedures like EVT.

As the landscape of stroke care continues to evolve, capturing

intraoperative data becomes imperative to the modernization

process. This primarily involves capturing the data in the form of

surgical video and the application of computer vision techniques to

analyze it. Computer vision, a type of task ML algorithms can be

trained to complete, can analyze video-guided surgical procedures

to reveal patterns and make nuanced predictions. Although

endovascular therapy is not guided by high-resolution cameras,

surgeons heavily rely on fluoroscopy. Other fields—laparoscopy

and endoscopy—have already begun to capture, transmit, and

analyze surgical video datasets using ML. Endovascular surgery

lags behind.

Visual datasets—regardless of surgical field—are ripe for

clinical discovery and generally under-exploited. Fluoroscopic

runs are typically used for medical/diagnostic purposes. We

(two practicing neurosurgeons, one of whom is a dual-trained

cerebrovascular expert, and a medical student) have performed

hundreds of angiograms; rarely do neurointerventionalists

store angiographic data for systematic or quantitative analysis.

Fluoroscopic images from endovascular procedures remain an

untapped area of analysis. Existing research on barium swallow

has demonstrated ML’s ability to extract valuable information from

videofluoroscopic datasets (2). ML analysis of fluoroscopic video

from endovascular procedures is feasible, but to analyze the data

we must first hit record.

In this editorial, we argue for the potential applications of

computer vision in cerebrovascular care. In doing so, we described

the current state of ML in stroke care, as well as its shortcomings.

Using current examples of computer vision in surgical analysis,

we will argue for the storage and analysis of fluoroscopic videos

and images.

Areas with potential

The first area with potential for application of ML is skill

assessment. After fellowship, neurointerventional surgeons are

expected to self-regulate their improvement from advanced to

master. After fellowship, however, their overseers are no longer

present to provide consistent, constructive feedback. Attending

surgeons have little to base their performance on. Comparing

complication or reoperation rates with national averages are the

extent of their limited options for self-assessment.

ML models have begun to perform accurate surgical skill

assessments in fields like urology and skull base surgery. A model

trained on videos of radical prostatectomy was able to accurately

assess a surgeon’s ability to perform a specific step within the

procedure (3). In this study, measurements were verified by

corroborating them with expert grading of the same videos. The

model was even able to mitigate bias created by small differences in

video quality between institutions included in the study.

ML models have also correctly predicted a surgeon’s ability to

control blood loss during a lifelike surgical hemorrhage simulator

(4). After being shown a brief video clip of the surgeons operating

to stop bleeding, these models were better able to predict a

surgeon’s performance than expert reviewers. Imagine this same

study structure, but replace the endoscopic video with recorded

fluoroscopic runs of thrombectomies. Perhaps an ML system

could view a proceduralist’s ability to perform the beginning of a

procedure and predict whether they would accomplish successful

revascularization. Alternatively, an ML system might understand

a local practitioner’s prior skillset and be able to better predict

whether they should first attempt a blood vessel-opening procedure
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in their local setting, perhaps with a tele-coach, or transfer the

patient to a center of excellence.

Video data analysis can simplify complex surgical decision-

making. Internal carotid artery stenosis, estimated to cause almost

10% of all ischemic strokes, can be treated with a multitude

of procedures including endarterectomy, transfemoral carotid

artery stenting (TF-CAS), or emerging, perhaps safer, technologies

like transcarotid artery revascularization (TCAR) (5). At present,

treatment allocation depends upon the judgment of the practitioner

with few guidelines and highly variable utilization practices. AI

models trained on clinical variables and fluoroscopic video might

help surgeons to make informed decisions.

Call to action: building video data
repository for stroke and
cerebrovascular care

The quantity of periprocedural cerebrovascular data left on

the table is staggering. Consider the aforementioned removal

of stroke-inducing plaques from the carotid artery, whether

by surgical endarterectomy or percutaneous angioplasty and

stenting, performed more than 100,000 times each year (6). Those

procedures generate petabytes of angiographic and intraoperative

visual data. Other fields that rely heavily on high-resolution

cameras to guide procedures are already creating large, publicly

available surgical video repositories for research and innovation.

A large multimodal data repository that includes pre-, intra-,

and post-procedural images as well as labeled clinical data

could shed new light on the challenges of cerebrovascular and

stroke care.
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motor network in subcortical
ischemic stroke patients with
motor impairment: A
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Jiaxu Chen1

1School of Traditional Chinese Medicine, Formula-Pattern Research Center, Jinan University,
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Purpose: The purpose of the present study was to explore the longitudinal

changes in functional homotopy in the default mode network (DMN) and

motor network and its relationships with clinical characteristics in patients

with stroke.

Methods: Resting-state functional magnetic resonance imaging was

performed in stroke patients with subcortical ischemic lesions and healthy

controls. The voxel-mirrored homotopic connectivity (VMHC) method was

used to examine the di�erences in functional homotopy in patients with stroke

between the two time points. Support vector machine (SVM) and correlation

analyses were also applied to investigate whether the detected significant

changes in VMHC were the specific feature in patients with stroke.

Results: The patients with stroke had significantly lower VMHC in the DMN

and motor-related regions than the controls, including in the precuneus,

parahippocampus, precentral gyrus, supplementary motor area, and middle

frontal gyrus. Longitudinal analysis revealed that the impaired VMHC of the

superior precuneus showed a significant increase at the second time point,

which was no longer significantly di�erent from the controls. Between the two

time points, the changes in VMHC in the superior precuneus were significantly

correlated with the changes in clinical scores. SVM analysis revealed that

the VMHC of the superior precuneus could be used to correctly identify the

patients with stroke from the controls with a statistically significant accuracy

of 81.25% (P ≤ 0.003).

Conclusions: Our findings indicated that the increased VMHC in the

superior precuneus could be regarded as the neuroimaging manifestation of
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functional recovery. The significant correlation and the discriminative power

in classification results might provide novel evidence to understand the neural

mechanisms responsible for brain reorganization after stroke.

KEYWORDS

subcortical stroke, resting-state functional magnetic resonance imaging, functional

homotopy, superior precuneus, machine learning

Introduction

Subcortical ischemic stroke is a common acute

cerebrovascular disease, with approximately half of the

patients exhibiting residual disabilities (1). Because of cerebral

thrombosis or cerebral embolism in the brain, brain dysfunction

always occurs within the default mode network (DMN) and

motor-related areas, such as the precuneus, parahippocampus,

supplementary motor area (SMA), primary motor cortex (M1),

and premotor cortex (2–6). The DMN is one of the most

widely studied functional brain networks that support aspects

of cognition. Patients’ cognitive recovery after stroke has been

reported to be associated with functional connectivity (FC)

impairments within the DMN (4, 7). The precuneus is a key

region of the DMN. Recently, several studies have reported that

patients with ischemic stroke exhibited decreased connectivity

in the precuneus (8–10). Because of the important role of the

precuneus in a wide spectrum of higher-order brain functions,

such as motor function, decreased connectivity of the precuneus

could inhibit the activity in the motor cortex and impact

patients’ motor function. It was reported that ∼50% of patients

with strokes showed impaired hand motor function in the

chronic phase, which always caused negative effects on the

quality of life (11). Additionally, brain function recovery after

stroke is always difficult to evaluate (12). Mounting evidence

has suggested that the recovery of impaired behavioral function

is accompanied by brain reorganization after effective treatment

(13–17). Identifying stroke recovery processes by neuroimaging

will benefit the selection of suitable treatments for stroke.

Neuroimaging has become the most useful tool available

to detect the functional and structural organization of the

human brain. Previous neuroimaging studies have extensively

explored the changes in the DMN and motor-related networks

after stroke (4, 18–21). These studies have shown system-

wide network disturbances and brain functional reorganization

in patients with stroke. Additionally, analyses of functional

and structural connectivity were also used to investigate

the effects of interventions on the brain network following

stroke (13, 15, 22). For example, a previous study found

that patients with stroke showed a significant decrease in

FC between the bilateral M1 after stroke, and the disrupted

FC was restored with antiplatelet therapy (22). Patients with

chronic stroke completed a rehabilitation protocol and showed

significantly enhanced FC between the posterior cingulate cortex

(PCC)/precuneus and M1 in contrast to the prerehabilitation

condition (16). The long-term training effect following robot-

hand training was also detected in patients after stroke (23).

A recent study on patients with stroke found that brain-

computer interface technology could significantly improve

interhemispheric FC in the motor network and motor outcomes

poststroke (24). These previous studies implied that brain

function recovery in patients with stroke is attributed to brain

reorganization (25).

A model called functional homotopy was developed based

on resting-state functional magnetic resonance imaging (MRI)

to directly quantify interhemispheric functional reciprocities

(19, 26). In this model, the brain shows a high degree of

synchrony in patterns of spontaneous activity between

homotopic interhemispheric counterparts (geometrically

corresponding). Voxel-mirrored homotopic connectivity

(VMHC) is a validated method that can be used to quantify

functional homotopy between two hemispheres (27). VMHC is

one of the most noticeable characteristics of the brain’s essential

functional architecture, which has an important influence on

cognition and behavior by interhemispheric communication.

Recently, as a conspicuous indicator of disturbed functional

specialization of the brain, VMHC has been chosen in some

diseases to explore the alterations of functional homotopy due

to intervention or recovery (28–31). This method has also been

used in stroke studies to investigate the changes in functional

connections between cerebral hemispheres (10, 17, 28, 31).

After receiving scalp acupuncture, patients with acute ischemic

stroke showed a significant increase in VMHC values in the

bilateral BA6 and BA8 (17). Scalp acupuncture can specifically

strengthen the functional activities of the brain regions related

to motor coordination in stroke. A recent study revealed that

synchrony between the DMN and the sensorimotor network

can facilitate motor recovery after stroke rehabilitation (16).

Although the connectivity between the DMN and motor-related

regions has been investigated in the above previous stroke

studies, the longitudinal changes of the interhemispheric

connection have neither been considered in stroke studies nor

have the relevance between the changes in interhemispheric

connection in these networks and the changes in clinical scores.

Frontiers inNeurology 02 frontiersin.org

89

https://doi.org/10.3389/fneur.2022.996621
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Li et al. 10.3389/fneur.2022.996621

Thus, the purpose of the present study was to elucidate the

neurological mechanism of the DMN and the motor network

organization process in stroke, which has attracted intense

attention from clinical and basic researchers. The VMHC

method can be used to quantify interhemispheric connectivity.

The longitudinal changes in functional homotopy in these

networks provide some insights into the mechanism underlying

recovery processing in patients with stroke. In order to achieve

these purposes, we detected the VMHC changes in patients

with subcortical ischemic stroke with motor impairment,

hypothesizing that patients with ischemic stroke would show

reduced interhemispheric functional reciprocities. Given the

evidence for interhemispheric functional and structural pathway

dysfunction in patients with stroke (17, 32–35), we expected

the DMN and motor-related areas to be particularly affected. In

patients with stroke, the abnormal VMHC partially recovered

after treatment, and the affected VMHC between the bilateral

hemispheres may be related to behavioral performance.

Furthermore, we used a machine learning approach to assess

whether these group differences could be used to accurately

distinguish patients with stroke from healthy controls.

Methods and materials

Participants

Nineteen first-ever patients with stroke (eight women;

mean age ± SD: 64.7 ± 12.4 years; range from 37 to 81

years old) with unimanual motion defects due to subcortical

ischemic lesions were recruited from the Department of

Neurology of the First Affiliated Hospital of the Chengdu

University of Traditional Chinese Medicine, China. Most of

the lesions were located in the basal ganglia and nearby

regions. The demographic data and clinical characteristics of

patients with stroke are provided in Table 1. The inclusion

criteria for patients were as follows: (1) pure unilateral motor

hemiparesis at least 20 days after the first onset ischemic

stroke incident (confirmation and location of stroke by MRI);

(2) no other white matter pathology as proven by structural

MRI; (3) absence of additional psychiatric or neurologic

disorders; (4) no neglect, aphasia or dementia; and (5) no

other previous experimental therapy before participating in

this research. Thirteen age-matched healthy subjects (eight

females; mean age ± SD: 62.1 ± 10.8 years) served as

controls. Control subjects did not exhibit any history of

medical disorders and were not taking regular medication. All

participants gave written informed consent before the study.

This study was approved by the Ethics Committee of Chengdu

University of Traditional Chinese Medicine (no. 2011KL-002),

and this method was carried out in consideration of the

approved guidelines.

Treatment and behavioral evaluation of
recovery

Antiplatelet therapy was administered to all patients with

stroke (10mg Erigeron breviscapus injection, 75mg clopidogrel

once each day taken orally). Then, citicoline (0.5 g, daily)

was injected intravenously to improve the clinical effects.

Drug therapy was conducted for 1 month (30 days) for

each patient. The functional MRI data of each patient were

collected before and after the treatment at ∼1-month intervals.

The clinical evaluations of recovery, such as the Fugl-Meyer

Assessment (FMA) and the Neurological Deficit Scores (NDS),

were carried out on the same days when we collected the

functional MRI scans of the patients. The FMA is one of

the most established and commonly used motor outcome

measures in stroke rehabilitative trials (36). This scale includes

a total of 50 items, such as assessments of the tendon reflex;

joint movement of the flexor and extensor of the shoulder;

elbow, wrist, knee, and hip joints; the movement of small

joints with the stability of the wrist and the ankle; and

coordination ability and speed. The highest total score is

100 points, and the higher the scores are, the milder the

impairments in motor function. As a trial outcome measure in

patients with stroke, the NDS was performed to the severity

of neurological functional deficits and to assess the severity

of strokes.

Data acquisition

All fMRI data were acquired with a 3-T Siemens scanner

(MAGNETOM Trio Tim, Siemens, Erlangen, Germany) at the

West China Hospital MRI Center. We used a gradient echo

planar imaging sequence to acquire fMRI data: 30 interleaved

axial slices, slice thickness = 5mm, repetition time (TR) =

2,000ms, echo time (TE) = 30ms, flip angle = 90◦, field

of view = 240mm × 240mm, matrix = 64 × 64, and 180

volumes. The three-dimensional T1-weighted structural MRI

was collected using a spin-echo planar image sequence with the

following parameters: slices = 176; TR/TE = 1,900 /2.26ms,

flip angle = 9◦; field of view = 256 × 256mm; voxel size

= 1 × 1 × 1 mm3. During the scanning, the head of

each participant was fixed using foam cushions to limit head

movement. All participants were instructed to remain awake,

relax with their eyes closed, remain motionless, and try not to

think about anything.

The lesions were manually segmented using MRIcron

software on the T1-weightedMRI images. We generated a lesion

mask for each patient and normalized the results to theMontreal

Neurologic Institute (MNI) space. The lesion overlay map is

displayed in Figure 1. The lesions of the patients were mainly

located in the left basal ganglia.
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TABLE 1 Demographical and clinical data.

Patient number Sex Age

(years)

Affected hand Pathogeny Lesion duration

(days)

FMA pre FMA post NDS pre NDS post

1 F 69 Right Left pons-centrum semiovale 135 90 96 13 5

2 M 73 Right Left basal ganglia and centrum semiovale 132 80 84 26 23

3 F 43 Right Left caudate nucleus and periventricular 25 92 96 15 6

4 F 71 Left Right basal ganglia 32 88 95 21 10

5 F 75 Right Left occipital gyrus and thalamus 22 74 90 32 17

6 M 73 Right Left basal ganglia-centrum semiovale 26 84 91 24 18

7 M 81 Right Left basal ganglia-internal capsule 22 83 92 23 12

8 M 49 Right Left basal ganglia and centrum semiovale 56 85 93 24 16

9 M 67 Right Left basal ganglia and periventricular 33 80 93 26 12

10 M 78 Right Left basal ganglia-posterior horn of lateral ventricle 21 84 95 19 9

11 F 70 Right Left centrum semiovale-periventricular 23 85 90 24 2

12 F 74 Right Left periventricular 148 90 96 20 12

13 M 37 Right Left thalamus-lenticular nucleus 148 88 94 24 14

14 M 79 Left Right basal ganglia 50 85 92 26 15

15 F 60 Right Left basal ganglia and radial area 23 80 85 28 20

16 M 73 Right Left capsula externa-periventricular 56 77 90 31 20

17 F 54 Right Left basal ganglia 45 80 85 26 23

18 F 54 Right Left basal ganglia 23 86 92 22 14

19 M 63 Right Left thalamus 21 82 85 25 18

F, female; FMA, Fugl-Meyer Motor Assessment; L, left; M, male; MBI, Modified Barthel Index; R, right.
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FIGURE 1

Lesion overlay map displaying regions of lesion overlap between participants. The n-value denotes the number of patients with a lesion in each

voxel. L, left.

Imaging processing and statistical
analysis

Behavioral data analysis

A paired t-test was conducted to examine whether the

patients with stroke had actually improved based on the clinical

scores from pretreatment to posttreatment.

Resting state functional connectivity

Data processing was conducted using the statistical

parametric mapping (SPM12, London, UK, http://www.fil.

ion.ucl.ac.uk/spm) package. The first 10 volumes of each

subject were discarded in consideration of magnetization

equilibrium effects and the adaptation of the subjects to

the circumstances. Preprocessing comprised the following

steps: (1) slice time correction; (2) head motion correction;

(3) coregistration of the individual T1-weighted images to

functional images; (4) segmentation of the T1-weighted

images (gray matter, white matter, and cerebrospinal fluid)

and spatial normalization to the MNI space by using a

12-parameter nonlinear transformation; (5) application of

the transformation parameters to the functional images; (6)

resampling to a voxel size of 3 × 3 × 3 mm3; (7) smoothing

(full width at half maximum =6mm); (8) temporal bandpass

filtering (0.01–0.08Hz); (9) linear and quadratic detrending;

(10) regression of several nuisance covariates (white matter,

cerebrospinal fluid, global signal, and the Friston 24 head

motion parameters).

In the present study, we mainly focused on the DMN

and motor network, which is remote from the primary

lesion. We selected a user-defined mask including the DMN

and motor network for the following analysis. This mask

was produced from the cortical parcellation maps of the

Yeo2011 resting state network (https://surfer.nmr.mgh.harvard.

edu/fswiki/CorticalParcellation_Yeo2011). The components of

the DMN and motor network in this template were extracted

and combined to produce the user-defined mask. Then, this

mask was averaged with its left-right mirrored version to

generate a symmetrical mask for the following VMHC analysis

(refer to Supplementary Figure 1 for the symmetrical mask).

Voxel-mirrored homotopic connectivity

The VMHC was calculated using the DPARSF (http://

resting-fmri.sourceforge.net) toolbox (37). For each subject, the

Pearson correlation between each pair of mirrored voxel time

series was computed to regard homotopic connectivity (27).

Fisher z-transformation was then performed on the correlation

values to improve normality and generate VMHC maps. Two-

sample t- test analysis was performed to compare the VMHC

map differences between the patients and the controls in

the mask. Paired t-test analysis was performed to assess the

longitudinal changes in patients between the two time points.

The threshold of the resulting statistical map was a combination

of p< 0.005 for a single voxel and a minimum cluster size of 297

mm3, which corresponds to a corrected threshold of p < 0.05

(AlphaSim correction). During the statistical analyses, age and

sex were modeled as covariates. Finally, the regions that showed

significant differences between groups were selected as our

regions of interest, and the mean VMHC values were extracted

from these regions for the following analyses. Treatment effects

on the VMHC of these interesting regions were calculated

among these groups.

Correlation between the neuroimaging
index and clinical scores

To assess the clinical relevance of altered homotopic FC,

partial correlations were calculated between the change in

VMHC and the change in each clinical score between the two

time points in patients with stroke. The FMA and NDS scores

were included as analyzed clinical variables. The threshold was

set at p< 0.05. The correlation results were also corrected by the

Bonferroni method based on the number of regions selected as

regions of interest. During the partial correlations, analyses were

controlled for age, sex, disease duration, and lesion sizes.

Support vector machine analysis

To detect the above group differences specific to the patient

group, a support vector machine analysis (SVM) was performed
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FIGURE 2

Regions showing significant changes in voxel-mirrored homotopic connectivity (VMHC) between each pair of the three groups. The threshold

of the resulting statistical map was a combination of p < 0.005 for a single voxel and a minimum cluster size of 297 mm3.

on neuroimaging data to extract patterns and clarify the patterns

in patients with stroke and healthy controls (38, 39). The

SVM was implemented using the Pattern Recognition for

Neuroimaging Toolbox (PRoNTo) software (http://www.mlnl.

cs.ucl.ac.uk/pronto). Individual resting-state fMRI data were

treated as points located in a high dimensional space defined

by the VMHC values in the preprocessed images. The regions

showing significant correlation were selected as masks. The

mask was applied to each image to identify the VMHC values

as a feature in the model. A binary SVM machine was used

as the classifier in the present study (i.e., patients with stroke

(pretreatment) vs. healthy controls). Due to our limited number

of samples, a “leave-one-out” method was used during the cross-

validation step (38). Much of machine learning theory rests on

the assumption that the data are independently and identically

distributed. For functional neuroimaging, the data are within-

run correlations and hemodynamic effects, which often do not

meet the above assumption. To apply machine learning theory

to functional neuroimaging data, permutation testing is needed,

which enables us to obtain p-values for the performance metrics.

When the SVM algorithm was established, permutation tests

(repeated 1,000 times) were used to evaluate the performance

of the SVM model. Finally, we obtained the corresponding

accuracy, sensitivity, specificity, and area under the receiver

operating characteristic curve.

Results

Behavioral data

No significant differences were observed in sex (χ2 = 1.17, p

= 0.28) or age (t = 0.24, p = 0.81) between the patients and the

healthy controls. With a 1-month interval, the FMA score was

significantly increased (pair T: t = −10.077, p < 0.001) from

84.3 ± 4.1 (first time point) to 91.5 ± 4.1 (second time point).

The NDS scores also showed a significant decrease (pair T: t =

13.0, p < 0.001) from 23.3 ± 4.3 (first time point) to 14.2 ± 5.2

(second time point).

VMHC: Group di�erences

The patients with stroke at the first timepoint showed a

significantly lower VMHC in some regions than the healthy

controls, such as in the parahippocampus, precuneus, precentral

gyrus, and paracentral lobule/SMA (refer to Figure 2 left panel

and Table 2). No areas showed a significant increase in VMHC

in patients with stroke at the first time point.

The patients with stroke at the second time point still showed

a significantly lower VMHC in some regions than the healthy

controls, such as the precuneus, precentral gyrus, middle frontal

gyrus (MFG), and parahippocampus (refer to Figure 2 middle

panel and Table 2). No areas exhibited a significant increase in

VMHC in patients with stroke at the second time point.

In patients with stroke, a paired t-test to assess the difference

between the two time points revealed that the VMHC values in

the SMA and MFG significantly increased from the first to the

second time point (refer to Figure 2 right panel and Table 2). No

areas showed a significant decrease in VMHC in patients with

stroke from the first to the second time point.

In the present study, we focused on the regions belonging to

the DMN and motor network. Thus, the significant results from

the above t-test, including the results regarding the bilateral

precuneus, parahippocampus,MFG, SMA, and precentral gyrus,
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TABLE 2 Significant group di�erences in VMHC.

Cluster location Statistical values Peak (MNI)

Cluster size t-value x y z

Control > Patient_pre

Hippocampus/Fusiform 25 4.52 ±45 −27 −18

Parahippocampus 21 4.44 ±27 −30 −15

Middle temporal gyrus 43 3.75 ±57 −51 −6

Middle temporal gyrus 58 4.47 ±51 −66 12

Precentral gyrus 124 4.36 ±60 3 24

Postcentral gyrus 4.07 ±51 −9 27

Precuneus 30 3.92 ±12 −51 12

Postcentral gyrus 27 3.40 ±42 −21 48

Superior parietal lobe 36 6.58 ±51 −33 60

Paracentral lobule/SMA 11 3.86 ±12 −12 78

Superior precuneus 18 5.30 ±12 −66 42

Control > Patient_post

Parahippocampus/Fusiform 20 4.01 ±33 −54 −18

Precuneus 64 4.17 ±12 −63 24

Inferior frontal gyrus 55 4.46 ±57 21 12

Middle frontal gyrus 37 4.65 ±42 48 24

Inferior parietal lobe 32 3.84 ±66 −27 30

Superior parietal lobe 208 5.37 ±51 −33 60

Postcentral gyrus 4.46 ±39 −24 51

Precentral gyrus 4.46 ±30 −15 60

Precentral gyrus 13 3.55 ±48 −6 42

Patient_pre < Patient_post

SMA 14 5.51 ±12 −9 78

Middle frontal gyrus 15 5.48 ±23 37 −4

The MNI coordinates and t-values for the local maxima of the centers of the voxel clusters. The threshold for significant clusters reported here was set at p < 0.005 and a cluster size of

297 mm3 .

VMHC, voxel-mirrored homotopic connectivity; MNI, Montreal Neurological Institute, SMA, supplementary motor area.

were selected as regions of interest in the following analyses.

If the above regions of interest were identified in at least two

comparison results, we selected the overlap regions as our areas

of interest. The mean VMHC values were extracted from each

region of interest. Although the disrupted interhemispheric

communication measured by VMHC in patients was increased

in these interesting regions from the first to the second

timepoint, the VMHC in these regions except for the superior

precuneus of the patients after treatment, was still significantly

lower than that of the controls (Figure 3). Regarding the

interesting regions of the superior precuneus, a significant

increase in VMHC values was observed in patients with stroke

from the first to the second time point. The mean VMHC values

in the superior precuneus of the patients at the second time point

showed no significant difference from the values in the controls.

This result is consistent with the VMHC changes in voxels, as

listed in Table 2. The superior precuneus no longer showed a

significant difference between the controls and the patients at

the second time point. By combining the data regarding the

consistent changes in the superior precuneus shown in Table 2

and Figure 3, we selected this region as the key region in the

following correlation analysis and SVM analysis.

Brain–behavior relationships:
Correlations between VMHC and FMA or
MBI

To assess whether the VMHC values in the superior

precuneus could reflect themotor ability and neurological deficit

of patients with stroke, we further explored the relationship

between the change in the behavioral scale and the change in

the mean VMHC in this region from the first to the second time

point. The same correlation processes were performed on the

other interesting regions, including the parahippocampus,MFG,
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FIGURE 3

The comparisons of VMHC between the three groups in the DMN and motor-related regions of interest. Bars represent the mean and error bars

represent the standard deviations. SMA, supplementary motor area; MFG, middle frontal gyrus. Patients_pre = the patient group in the

pretreatment stage. Patients_post = the patient group in the posttreatment stage. *, p < 0.05; **, p < 0.01; ***, p < 0.001.

precuneus, precentral gyrus, and SMA. The same correlation

process was performed six times (six interesting regions) for

each behavioral score. The corrected p-value of Bonferroni

correction on the correlation result was set at 0.0083 (0.05/6).

A partial correlation between the changes in VMHC values in

the superior precuneus and the change in FMA scores showed a

significant correlation in the patient group (r = 0.55, p = 0.03,

refer to Figure 4A). Moreover, the changes in VMHC values in

the superior precuneus showed a significant partial correlation

with the change in NDS scores (r = 0.72, p = 0.002, refer

to Figure 4B). The changes in VMHC values in the SMA also

showed a significant partial correlation with the change of NDS

scores (r = −0.53, p = 0.04, refer to Figure 4C). Analyses were

controlled for age, sex, disease duration, and lesion sizes. No

other significant correlations were detected in the present study.

Only the correlation between the change in VMHC values in

the superior precuneus and the change in NDS scores could

withstand the Bonferroni correction (p < 0.0083).

SVM classification

The result of the SVM classification between 19 patients

with stroke and 13 healthy controls based on the feature of

VMHC in the superior precuneus derived from resting-state

fMRI can be seen in Figure 5. This SVM classifier achieved

an accuracy of 81.25% (p < 0.003). The model exhibited

a sensitivity of 84.21% and specificity of 76.92%. The area

under the receiver operating characteristic curve (AUC) value

was 0.84. We also used the binary SVM machine based on

the VMHC features in the superior precuneus to classify

patients with stroke (posttreatment) and healthy controls.

The analysis of SVM classification achieved an accuracy of

31.25%, which was statistically significant at p < 0.953 (refer to

Supplementary Figure 2).

Discussion

The present study investigated the longitudinal changes in

VMHC in the DMN and motor-related regions of patients

with subcortical stroke between two time points with a 1-

month interval. Patients with stroke showed a significantly

lower VMHC in the precuneus, parahippocampus, MFG, SMA,

and precentral gyrus than the healthy controls. Although the

impaired VMHC in these regions was enhanced after 1 month

of treatment, the VMHC values in all but the superior precuneus

were still significantly lower than those in the healthy controls.

The decreased VMHC values in the superior precuneus of the

patients were enhanced significantly at the second time point

and showed no significant difference from those in the healthy

controls. Furthermore, between the two time points, the changes

in VMHC in the superior precuneus region were significantly

related to the changes in clinical scores in patients with stroke.
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FIGURE 4

The correlations between the changes in VMHC and the changes in clinical variables from the first timepoint and the second timepoint in the

superior precuneus of stroke patients. (A) The correlation (r = 0.55, p = 0.03) between the changes of VMHC in superior precuneus and the

changes of FMA. (B) The correlation (r = 0.72, p = 0.002) between the changes of VMHC in superior precuneus and the changes of NDS. (C) The

correlation (r = −0.53, p = 0.04) between the changes of VMHC in SMA and the changes of NDS.

FIGURE 5

Classification plot (A) and receiver operating characteristic (ROC) curve (B) for the comparison between groups. Voxel-mirrored homotopic

connectivity maps of 19 patients with stroke (pretreatment) and 13 healthy controls were used for classification, which yielded an accuracy of

81.25% (84.21% sensitivity, 76.92% specificity), which was statistically significant at p < 0.003.

The SVM analysis results demonstrated that the VMHC values

in the superior precuneus exhibited discriminative power in

the classification of patients with stroke from healthy controls.

The recovery of functional homotopy and the discriminative

power in the classification of the superior precuneus belonging

to the DMN may provide novel evidence for understanding

the neural mechanisms responsible for brain reorganization

in stroke.

Significant changes in VMHC in patients
with stroke

In the present study, patients with stroke showed

a significant decrease in VMHC in the precuneus,

parahippocampus, and MFG, which are part of the DMN.

The DMN is one of the most widely studied functional brain

networks at rest (40). This network shows reduced activity

Frontiers inNeurology 09 frontiersin.org

1516

https://doi.org/10.3389/fneur.2022.996621
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Li et al. 10.3389/fneur.2022.996621

during tasks and presents higher levels of activity than other

networks during rest periods. The DMN plays an important

role in “resting” brain activity, which is involved in emotional

control, self-consciousness, and sustaining attention (41).

Previous resting-state functional studies in stroke showed

that DMN disruption is a common observation (20, 42, 43).

Patients with stroke showed lower activity in the DMN and

lower functional connectivity between the precuneus and other

regions than healthy controls (7, 9, 44). The present study

found decreased functional homotopy in the DMN in patients

with stroke, which is similar to these previous fMRI studies.

Reductions in DMN activity and connectivity can disrupt

the cognitive processes mediated by the associated network.

A previous study showed that the coordination between two

hemispheres plays a significant role in human behavior (45).

The decreased VMHC in the DMN that was observed in

the present study indicated that disrupted interhemispheric

connectivity may have some correlations with the occurrence of

cognitive impairment in patients with stroke. The precuneus is

the posterior region of the superior parietal lobe. This region

plays an important role in the implementation of higher-order

brain functions. Disruption of the precuneus can be considered

an early sign of cognitive impairment (8). The precuneus has

also been proposed as a structural and functional hub in the

brain connectome. A previous study also used the VMHC

method in patients with stroke and observed that patients

showed significantly decreased VMHC values in the bilateral

precuneus and precentral gyrus (10). Thus, the decreased

functional homotopy between the bilateral precuneus observed

in the present study was consistent with the results of a previous

study, and this result can be regarded as the neuroimaging

manifestation of cognitive disturbance in stroke.

Numerous studies on stroke have also reported disruptions

in FC in the cortical motor-related network after stroke. For

instance, previous studies have demonstrated that stroke can

cause significant disturbances in the effective connectivity of

motor areas (5, 14, 18). FC between the bilateral primary

sensorimotor cortex was significantly decreased in patients with

stroke (17, 46). Using diffusion tensor imaging (DTI), patients

with stroke also demonstrated a decrease in the interhemispheric

fiber connections between the left and rightmotor cortex (33, 47,

48). The DTI findings reflect anatomical disconnection, which

may underlie the impaired interhemispheric resting-state FC.

In the present study, patients with stroke showed significantly

lower VMHC in the SMA and precentral gyrus than healthy

controls. This result is consistent with previous neuroimaging

studies on stroke showing that cortical motor connectivity can

reflect poststroke sensorimotor signal processing (5, 49, 50).

The SMA has strong anatomical connections with the areas

of the central nervous system, including the thalamus, spinal

cord, dorsal premotor cortex, and contralateral hemisphere

regions (51, 52). In stroke patients with subcortical injuries,

the functional ability of the brain enabled by exchanges and

cooperation between the two sides of the hemisphere is affected,

and motor function is also influenced (49). Thus, it is easy to

understand the result that the intrinsic neural interhemispheric

coupling of bilateral SMAs was significantly reduced in the

patient group. The precentral gyrus and anterior paracentral

lobules together form the first somatic movement area, which

is the main functional area governing the contralateral somatic

movement. A previous DTI study tracing the fibers originating

from the precentral gyrus in chronic stroke found that the

integrity of all motor tracts showed a descending trend in

patients (53). The motor tract damage from the precentral gyrus

of patients with stroke can explain the significant decrease of

VMHC in the precentral gyrus. Additionally, a consistent result

of previous VMHC studies on stroke is that patients with stroke

showed a significant decrease in VMHC values between the

bilateral precentral gyrus (10, 28, 31). This result observed in

the present study is consistent with those of these previous

studies. However, the precentral gyrus is the main functional

area of contralateral limb movement. The somatomotor center

is located in the precentral gyrus, which is the higher center that

controls the movement of the body. This region is responsible

for regulating and connecting the lower motor center located

in the brainstem and spinal cord. Therefore, limb movement

disorders after stroke may result from disrupted connectivity of

the precentral gyrus.

Longitudinal changes in VMHC between
two time points with a 1-month interval

The most substantial discovery observed in the present

research was the longitudinal changes in VMHC in the

DMN and motor-related regions of patients with stroke. The

functional couplings between the bilateral DMN and motor-

related regions were improved. These results are consistent

with previous studies showing that the intervention effects of

brain networks in patients with stroke were mainly expressed

as restorations in the connectivity pattern of interhemispheric

interactions and the recovery of cognitive functions (13, 18,

23, 54). Stroke has been reported to be associated with FC

impairment within DMN. Significant decreases in FC among

the medial frontal cortex, PCC, and precuneus were found

in patients with stroke (9, 42). A previous study showed

that significantly reduced FC could be detected in the left

precuneus, right SMA, and right superior frontal gyrus in

patients with basal ganglia stroke (6). In the present study,

most patients with stroke had a lesion in the basal ganglia.

Thus, aberrant VMHC between the bilateral hubs within the

DMN observed in our results can provide information for

imaging diagnosis and early intervention. Additionally, the

decreased VMHC in the regions of the DMN was enhanced

significantly in all patients with stroke after 1 month of
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treatment. The explanation of this result should combine

the functional role of these regions of the DMN in stroke.

The precuneus is the intermediate connector between the

two hemispheres. Previous studies have revealed that the

FC of the PCC/precuneus was increased significantly after a

period of rehabilitation treatments or acupuncture treatment

(16, 55). Thus, the increased VMHC between the bilateral

hemisphere regions within the DMN observed in our study

could be interpreted as the effects of the enhancement of brain

function recovery.

In addition to the DMN, the VMHC in the SMA and

precentral gyrus showed an increase after treatment. All of

these regions are involved in motor function. A previous study

reported an increase in coupling between the SMA, primary

motor cortex, and premotor cortex following rehabilitation

(56). These regions may play a critical role in motor recovery.

In a resting-state fMRI study of patients with stroke with 3

weeks of upper limb rehabilitation therapy, Jame (57) found

a stronger influence of the ipsilesional dorsal premotor cortex

on its contralesional homolog. A previous study found that

patients with stroke showed a significant increase in VMHC

values between the bilateral premotor area and SMA after

scalp acupuncture treatment (17). Enhanced interhemispheric

communication was associated with improvements in motor

performance. One of our previous multimodal neuroimaging

studies also revealed that the impaired interhemisphere FC

was restored after treatment (5). Patients with stroke also

exhibited recovery of the impaired structural connectivity of

the corpus callosum following the treatment intervention. In

the present study, all patients were treated with 1-month

antiplatelet therapy. Patients’ clinical scores of FMA and

NDS were changed significantly after treatment. The present

neuroimaging findings were inline with the behavioral results.

Enhanced interhemispheric communication of the SMA and

precentral gyrus after treatment in patients with stroke may be

the neuroimaging expression of their motor function recovery.

Such increased interhemispheric coupling in patients with

stroke might be induced by growth-related neurobiological

processes enabling the formation of new synapses (58).

Based on these results, we can see that the recovery of

motor function may depend on reorganization processes

within both hemispheres leading to enhanced interhemispheric

connectivity (25).

Although the levels of VMHC in the DMN and motor-

related regions were increased after antiplatelet therapy in

patients with stroke, they were still significantly lower than

those in healthy controls. A previous study with a longitudinal

design revealed that the neural activity and FC of motor-related

areas in patients with stroke returned to normal levels over 1

year after stroke onset (3). The recovery process of the inter-

region coupling in patients with subcortical stroke demonstrated

a dynamic change following long-term observation (46). The

restored VMHC results observed in the present study implied

that antiplatelet therapy is efficient in the rehabilitation process

of patients with stroke. However, the treatment cycle of 1

month is too short to achieve full recovery of functional

connections between the bilateral hemispheres in patients

with stroke. Regarding the superior precuneus, this region

has reciprocal cortico-cortical connections with the adjacent

areas of the posteromedial cortex. This interconnection is

bilateral and bridges the homologous components of the

two hemispheres (59). Because this region plays a central

role in a wide spectrum of higher-order brain functions,

increased activation of the precuneus could stimulate the

motor cortex, boosting neuroplasticity for motor functional

recovery. As a result, motor function in patients with stroke

was enhanced and the severity of neurological functional deficits

was decreased after 1 month of treatment in the present

study. The superior precuneus may be more sensitive to the

recovery of brain functions in patients with stroke. Thus,

the VMHC in this region was enhanced significantly after

treatment and showed no significant difference from that in

the healthy controls. The synchrony of spontaneous activity

in the bilateral superior precuneus may reflect the treatment

effect. Future studies should be designed with multiple time

points to determine whether the impaired brain functional

connectivity after stroke can be restored to the normal level with

treatment intervention.

Correlations between VMHC and clinical
scores after treatment

The primary motor impairments after stroke are spasticity

and spastic paresis, which impose substantial challenges to

treatment and patient care (60). Manual function dexterity can

be described as the ability to perform precise and coordinated

hand and finger movements. Accurate evaluation of clinical

manual motor function is, therefore, essential for assessing

the recovery of motor ability in patients with stroke after

treatment. As commonly used clinical recovery assessment

scales, the FMA and NDS enable a good overall assessment

of arm motor function, the ability to perform simple grasping

tasks, and the severity of neurological functional deficits. In

the present study, the patients with high changes in FMA

or NDS scores between the two time points exhibited motor

ability and hand control function that were well-preserved.

The severity of stroke damage was reduced after 1 month

of treatment. The neurological functional deficits showed

recovery. Correspondingly, the patients with high increases in

VMHC values in the superior precuneus exhibited enhanced

interhemispheric connectivity. The disrupted interhemispheric

coupling of the DMN was restored. The precuneus has

been suggested to be associated with cognitive impairment

in stroke. Significantly enhanced neural interhemispheric
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coupling in the superior precuneus may indicate that the

cognitive impairment of patients was reduced at the second

time point. These findings are in accordance with the results

of previous studies showing that activation in the precuneus

can reflect an increase in functional coupling between

bilateral somatosensory areas in patients with stroke (61).

The significantly decreased FC in the PCC/precuneus was

related to the Montreal Cognitive Assessment scores 10

days after the stroke (8). Spontaneous activity and FC of

the PCC/precuneus were correlated with cognitive decline

in patients with stroke (16, 42). Precuneus interhemispheric

white matter integrity had a positive correlation with haptic

performance in normal control participants (62). Combined

with these previous studies, the significant correlation

results observed in the present study confirmed that the

level of coupling between the bilateral superior precuneus

can be regarded as a neuroimaging biomarker to reflect

the level of recovery of brain function in stroke patients

with intervention.

Functional homotopy in the superior
precuneus for the classification

The machine learning results also confirmed that the

functional homotopy of the superior precuneus plays an

important role in the discrimination of patients with stroke

from healthy controls. This finding is important because

it demonstrates the specific VMHC changes that occur in

patients with stroke. Significantly decreased VMHC values in

the important hub of the DMN are generally regarded as a

reflection of injury to the brain functional network. A previous

study on unilateral ischemic stroke demonstrated that the

interhemispheric balance returned to healthy control levels in

stroke patients with the successful recovery of dexterous hand

function (63). The patient with poor recovery exhibited cerebral

blood flow that was lateralized to the contralesional hemisphere,

including the regions of SMA, paralimbic anterior cingulate

cortex, and superior precuneus. The role of the precuneus cortex

in sensorimotor transformations may have some association

with goal-directed movements. Another previous study found

that precuneus interhemispheric tract integrity can be regarded

as a strong predictor of haptic performance (62). Precuneus

interhemispheric tracts can be regarded as an appropriate

target for piloting rehabilitation to improve poststroke haptic

performance. During sensory discrimination, patients with

stroke exhibited significantly different cortical activation than

controls only in the precuneus (61). The activation in the

precuneus may reflect an increase in functional coupling of

bilateral somatosensory areas. In the present study, using

functional homotopy values in the superior precuneus as

a feature achieved high accuracy in the discrimination of

stroke participants from healthy controls. Additionally, the

correlation results revealed there was a significant relationship

between the changes in behavioral performance and the

VMHC values in the superior precuneus. Consistent with

previous reports and our correlation results, this machine

learning result again confirmed the important role of the

precuneus in the regulation of brain function in patients

with stroke. The VMHC values in superior precuneus can

also be considered neuroimaging-based biomarkers for cortical

organization in stroke.

The current study has some potential limitations. First,

the number of subjects was small, and it is necessary to

investigate this topic in a larger sample size. In the present

study, we attempted to reduce the effect of a simple size on

the results by controlling for the lesion location. This attempt

can partially mitigate the influence of sample size. Second, the

medication was taken by patients with stroke without placebo

control, which may affect the credibility of the present results.

Future studies should consider this factor and improve the

experimental design.

Conclusion

In conclusion, the results of the current study demonstrated

that restored VMHC of the superior precuneus in patients

with stroke can be detected following 1 month of antiplatelet

therapy. Importantly, the significant correlations between

the VMHC values and the clinical scores in patients with

stroke showed that functional homotopy in the superior

precuneus can reflect the recovery level of stroke patients’

brain function with intervention. The present results

have the potential to elucidate the recovery mechanisms

of stroke.
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SUPPLEMENTARY FIGURE 1

The symmetrical mask of the default mode network (DMN) and motor

network for the voxel-mirrored homotopic connectivity (VMHC)

analysis.

SUPPLEMENTARY FIGURE 2

Classification plot (A) and receiver operating characteristic (ROC) curve

(B) for the comparison between 19 patients with stroke (posttreatment)

and 13 healthy controls. The analysis of SVM classification based on the

feature of VMHC in the superior precuneus achieved an accuracy of

31.25% (42.86% sensitivity, 9.09% specificity), statistically significant at p

< 0.953.
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Frequency-tuned
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improves post-stroke motor
function: A pilot randomized
controlled trial
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Arielle Hochberg1, Adina Bitton1, Glen M. Doniger1,

Assaf Lifshitz1, Ofir Vardi1, Esther Shohami1,4, Yaron Segal 1,

Shira Reznik Balter1, Yael Djemal Kay1, Ariela Alter1,

Atul Prasad5 and Natan M. Bornstein6*

1BrainQ Technologies, Ltd., Jerusalem, Israel, 2Manipal Hospital Physiotherapy and Rehabilitation,

New Delhi, India, 3Department of Neurology, UCLA Comprehensive Stroke and Vascular Neurology

Program, David Ge�en School of Medicine, University of California, Los Angeles, Los Angeles, CA,

United States, 4Hebrew University of Jerusalem, Jerusalem, Israel, 5Department of Neurology, B. L.

Kapur Super Specialty Hospital (BLK), National Capital Territory of Delhi, New Delhi, India, 6Brain

Division, Shaare Zedek Medical Center, Jerusalem, Israel

Background and purpose: Impaired upper extremity (UE) motor function is a

common disability after ischemic stroke. Exposure to extremely low frequency

and low intensity electromagnetic fields (ELF-EMF) in a frequency-specific

manner (Electromagnetic Network Targeting Field therapy; ENTF therapy) is

a non-invasive method available to a wide range of patients that may enhance

neuroplasticity, potentially facilitating motor recovery. This study seeks to

quantify the benefit of the ENTF therapy on UE motor function in a subacute

ischemic stroke population.

Methods: In a randomized, sham-controlled, double-blind trial, ischemic

stroke patients in the subacute phase with moderately to severely impaired UE

function were randomly allocated to active or sham treatment with a novel,

non-invasive, brain computer interface-based, extremely low frequency and

low intensity ENTF therapy (1–100Hz, <1G). Participants received 40min of

active ENTF or sham treatment 5 days/week for 8 weeks;∼three out of the five

treatments were accompanied by 10min of concurrent physical/occupational

therapy. Primary e�cacy outcome was improvement on the Fugl-Meyer

Assessment – Upper Extremity (FMA-UE) from baseline to end of treatment

(8 weeks).

Results: In the per protocol set (13 ENTF and 8 sham participants), mean age

was 54.7 years (±15.0), 19% were female, baseline FMA-UE score was 23.7

(±11.0), and median time from stroke onset to first stimulation was 11 days

(interquartile range (IQR) 8–15). Greater improvement on the FMA-UE from

baseline to week 4 was seen with ENTF compared to sham stimulation, 23.2

± 14.1 vs. 9.6 ± 9.0, p = 0.007; baseline to week 8 improvement was 31.5 ±

10.7 vs. 23.1± 14.1. Similar favorable e�ects at week 8 were observed for other

UE and global disability assessments, including the Action Research Arm Test
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(Pinch, 13.4 ± 5.6 vs. 5.3 ± 6.5, p = 0.008), Box and Blocks Test (a�ected hand,

22.5± 12.4 vs. 8.5± 8.6, p < 0.0001), andmodified Rankin Scale (−2.5± 0.7 vs.

−1.3 ± 0.7, p = 0.0005). No treatment-related adverse events were reported.

Conclusions: ENTF stimulation in subacute ischemic stroke patients was

associatedwith improvedUEmotor function and reduced overall disability, and

results support its safe use in the indicated population. These results should be

confirmed in larger multicenter studies.

Clinical trial registration: https://clinicaltrials.gov/ct2/show/NCT04039178,

identifier: NCT04039178.

KEYWORDS

ischemic stroke, ELF-EMF, ENTF, neurostimulation, NIBS, magnetic field therapy,

upper extremity motor function, neurorecovery

Introduction

Stroke is a leading cause of adult disability worldwide (1–

3). While early reperfusion interventions improve outcomes (4),

they are delivered to a small proportion of patients, leaving

many stroke survivors with residual disabilities, impairments

and dependency on others. This is accompanied by a large

economic burden on both a personal and societal level, as a

result of direct medical cost, as well as indirect costs due to

underemployment and premature death (5).

Beyond the acute phase, standard of care focuses on

rehabilitation through a coordinated effort of medical, social,

educational, and vocational approaches to retrain an individual

with newly acquired disabilities (6). Effective rehabilitation

programs employ highly intensive and repetitive physical

therapy to enhance neurologic recovery (7), possibly via

direct influence on functional reorganization in the brain (i.e.,

plasticity). However, there is considerable variability among

facilities in the implementation of therapeutic approaches that

maximize functional recovery (8–11). Further, despite receiving

standard rehabilitation care, many patients are left with lifelong

disabilities and impairments, never returning to their pre-stroke

ability level. For such people, one of the most common and

persistent disabling symptoms is hemiparesis and upper limb

motor impairment (12–14).

In the subacute post-stroke phase, and in response

to both the initial, primary injury and the ensuing

secondary injury cascade, the central nervous system (CNS)

attempts to repair and reorganize itself via the secretion

of survival-promoting agents (such as growth factors and

anti-inflammatory cytokines), recovering damaged networks,

and sprouting collateral synaptic connections to restore

motor and cognitive functions (15–18). In preclinical models,

neuroplasticity can be altered by external factors, including

pharmacologic agents, electrical stimulation, and environmental

stimulation (18).

Non-invasive brain stimulation (NIBS) techniques have

demonstrated the capacity to enhance neuroplasticity in

preclinical models, and have shown evidence suggestive of

recovery in clinical trials (19–21). NIBS methods include

repetitive transcranial magnetic stimulation (rTMS; (22)),

transcranial direct current stimulation (tDCS; (23)), vagal nerve

stimulation (24), and extremely low frequency, low intensity

electromagnetic fields (ELF-EMF). While many such methods

have been used with relative success, the limited applicability

and strict usability requirements are such that none have yet to

qualify as a standard of care treatment. ELF-EMF is a promising

noninvasive therapeutic technique for post-stroke care, shown

in preclinical studies to exert a beneficial effect on many

of the cellular processes that modulate damage and recovery

post-stroke, including calcium signaling, oxidative stress, and

inflammatory response (25, 26). In a randomized clinical trial,

ELF-EMF in the subacute post-stroke period was associated

with increased enzymatic antioxidant activity, reduced oxidative

stress, and improved performance on standardized assessments

of activities of daily living, cognition, and mood (27, 28).

Accordingly, and due to its relative safety and wide range of

applicability, ELF-EMF treatment in the subacute phase may be

a viable post-stroke therapy.

A novel ELF-EMF technique is a non-invasive, brain

computer interface-based (BCI-based), low frequency, low

intensity, frequency-tuned EMF therapy (Electromagnetic

Network Targeting Field therapy; ENTF therapy), designed

to expose impaired neuronal networks to oscillating fields

similar to those of the CNS, in an effort to promote network

reorganization post-injury. The human brain is organized into

complex functional networks (29); healthy activity in the CNS

results from the synchronization of thousands of individual

neurons in the form of sophisticated and organized oscillations.

These synchronous global oscillations within specific frequency

bands represent functionally connected neural networks, which

generate electrical activity measurable with electrophysiological
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techniques, and are a fundamental part of the functionality

of the brain (30, 31). These oscillatory patterns are correlated

with cognitive states, motor functions, and electrophysiological

activity both within and beyond the CNS. Changes in these

patterns have been observed following ischemic stroke, and after

other nervous system disorders like traumatic brain injury (31–

33).

Neural network dynamics are sensitive to endogenous

(34, 35) and exogenous electric and magnetic fields at

specific frequencies (35–37), and oscillating ELF-EMF fields

are hypothesized to promote the return of synchronization

and network reorganization within the targeted networks.

The motivation behind the present study (BQ3) is the

possibility that ELF-EMF exposures can specifically target

these impaired networks by exposing such networks to

oscillating fields similar to those that characterize a healthy

CNS, in order to promote network reorganization post-

injury. The treatment protocol is based upon the most

prominent frequencies of these motor-related oscillations,

extracted using advanced machine learning algorithms from

electrophysiological recordings of large populations of healthy

and impaired individuals performing motor tasks (35).

In a preclinical rodent stroke model, oscillating ELF-EMF

stimulation was associated with decreased edema, increased

white matter integrity, and evidence of neural regeneration (38).

Additionally, initial data from ongoing preclinical collaborative

studies (unpublished) using this technique indicate changes

in measures of oxidative stress, inflammation, and cell death.

Overall, data suggest that such treatment targets cellular

pathways comprising functional neural networks, promotes

neural plasticity, and modulates the secondary injury cascade,

all of which aid clinical recovery.

Accordingly, a pilot randomized, double-blind, sham-

controlled trial of a BCI-based, low frequency, low intensity,

frequency-tuned ENTF therapy to improve upper extremity

motor function and reduce disability in subacute post-stroke

patients was designed and executed. Greater improvement in

upper extremity motor function is expected in individuals who

receive ENTF treatment, as compared to those in the sham

control group.

Materials and methods

Study design and participants

This study, the BQ3 trial (NCT04039178), was a prospective,

randomized, double-blind, sham-controlled study. See

Supplementary Table S1 for full study entry criteria.

The trial was conducted at the BLK Super Specialty Hospital,

New Delhi, India, a multi-specialty private hospital accredited

by the Joint Commission International. Study operations were

overseen by JSS Medical Research, an international, full-service

contract research organization. The hospital institutional review

board provided ethics approval, and written informed consent

was obtained from all participants.

The main inclusion criteria for this study were: patients 4–

21 days post-ischemic stroke with first stroke or no prior upper

extremity impairment, right hand dominant, with a Fugl-Meyer

Assessment – Upper Extremity (FMA-UE) score between 10 and

45. Patients were also screened for their ability to participate

in the treatment procedures based on their ability to be seated

for 70 consecutive minutes, and follow a three-step command.

Patients who were not medically stable, with a physiological,

neurological, or psychiatric history that might confound study

measures, or contraindications for MRI scanning were not

considered for this study.

Randomization and blinding

The study was planned for 50 participants, the first four of

whom would be assigned directly to the treatment group (run-

in phase). The remaining 46 participants were to be randomly

assigned to active ENTF or sham stimulation (randomized

phase) in a 1:1 ratio (block randomization; SAS-generated), by

an individual not otherwise associated with the study. After

determining group allocation, the individual keyed in group

assignment to the device (required only once per participant).

Participants and study staff were not aware of group assignment.

The device does not produce any perceptible light, sound,

or sensation during the ELF-EMF activity; sham stimulation

consists of the same general treatment flow, but with the

wave generator inactive during the session, and as governed

by the group assignment saved for each participant within the

device. Thus, experience with the BQ device during sessions

was the same irrespective of group assignment, allowing for

proper blinding.

Materials

Treatment was administered with a proprietary BCI-

based stimulation device (BQ 1.0; BrainQ Technologies Ltd.,

Jerusalem, Israel; product manual available upon request),

exposing the entire brain and the cervical and upper thoracic

portion of the spinal cord to the ENTF. The device technology

uses machine learning algorithms (Python, 3.6) to identify high

resolution spectral patterns that characterize motor functions

within EEG measurements recorded during functional motor

tasks. For this custom-made algorithm, EEG data from healthy

and unhealthy individuals was collected while executing discreet

motor tasks. A novel normalization technique was used to

reduce inter-subject variability. Machine learning models were

used to differentiate between healthy and unhealthy data traces.

The explanatory features used by these models to generate
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their decisions were then used to inform a non-invasive and

frequency-specific, extremely low frequency (1–100Hz), low

intensity (<1 Gauss) electromagnetic field treatment applied to

a participant’s CNS, delivered via a magnetic coil. The device

emitted ELF-EMF only for participants in the ENTF group but

not for those in the sham group.

Procedure

ENTF or sham therapy was provided 5 days a week

for ∼8 weeks, for a total of 40 treatment sessions. During

each treatment session, participants received 40minutes of

treatment with the BQ device (active or sham). During ∼3

weekly sessions, concurrent with the ENTF or sham therapy,

participants performed 10minutes of upper extremity physical

therapy/occupational therapy-based exercises (e.g., gripping a

ball, reaching) with the guidance of a therapist. Separate

from the treatment sessions, participants also received ∼1 h of

physical therapy per day throughout their participation as part

of the hospital’s standard clinical regimen.

Outcome measures

The primary clinical efficacy outcome was change in upper

extremity motor function from baseline to end of treatment

(week 8), measured with the FMA-UE, a performance-based

impairment index designed to assess motor function, balance,

sensation and joint function in patients with post-stroke

hemiparesis (39, 40). FMA-UE was assessed throughout the

course of treatment at baseline, week 4, week 8 and week 12.

However, due to early trial closure because of the COVID-19

pandemic, follow-up assessments at week 12 were not completed

for many participants (available data for <80%), so analyses

included only changes at week 4 and week 8.

Secondary clinical efficacy outcomes were: Action Research

Arm Test [ARAT, coordination, dexterity, and function (41)];

Box & Blocks Test [BBT, gross manual dexterity (42)];

Fugl-Meyer Assessment – Lower Extremity (FMA-LE) (39,

40); modified Rankin Scale (mRS) of global disability (43);

National Institutes of Health Stroke Scale [NIHSS, stroke-

related neurological deficit (44)]; Patient-Reported Outcome

Measurement Information System Global 10 [PROMIS-10,

patient-reported assessment of global health and quality of

life (45)]. Notably, some prespecified outcome measures

were not analyzed due to <80% valid data. These include:

cognitive measures [Trail Making Test (46); Montreal Cognitive

Assessment (47)], as they were administered in English, which

was not most participants’ primary language; imaging (MRI),

because of variability in scan parameters due to use of multiple

scanners; and blood biomarkers, as some growth factors were

out of the detection range for many subjects (28, 48). EEG

was collected as an additional, exploratory endpoint, and was

analyzed separately from the clinical results; these results are

reported elsewhere (49).

The primary safety outcome was adverse events during the

trial period.

Statistical analyses

Statistical analyses were conducted with SAS V9.4 (SAS

Institute, Cary NC, USA). For behavioral outcomes, continuous

variables were generally summarized by mean and standard

deviation (SD), and categorical variables by percentage. Changes

from baseline in continuous outcomes were analyzed by analysis

of variance (ANOVA) or repeated measures ANOVA (SAS

PROC MIXED), with each outcome modeled as a function of

treatment group; if >1 post-baseline visit, each outcome was

also modeled as a function of visit, as well as the treatment

group∗visit interaction. Baseline value for the respective

outcome was entered as a covariate to adjust for variation in

baseline score between the groups. LSmeans (model estimated

means) per group and the differences between the groups

were estimated from the models, along with respective levels

of significance. If >1 post-baseline visit, then the treatment

group∗visit interaction term was the parameter of interest, and

the LSmeans per group, as well as the differences between the

groups at each visit, were estimated from the models, along

with respective levels of significance. Continuous demographic

and baseline data were compared between the groups with a

Wilcoxon two-sample test. Categorical variables were compared

using Fisher’s exact test when the response was binary, and with

a Cochran Armitage trend test when the response was ranked

(e.g., mRS). Nominal two-sided p values are presented without

post-hoc testing to correct for multiple comparisons given that

this was a pilot study.

As a pilot study, sample size justification was formulated

based on the literature regarding the study’s primary outcome,

as well as the treatment characteristics of the target population

(50). The sample size calculation assumed 80% power, a 5-

point difference between groups on the FMA-UE, and a SD

of 6, resulting in a study with 46 participants. The study was

designed to include 46 randomized participants, preceded by 4

treatment-only run-in participants, for a total sample size of 50.

The prespecified primary analysis set for efficacy evaluation

was the per protocol (PP) set, defined as all participants who

were randomized and participated in 80% of the treatment

visits, were not absent for more than 5 consecutive visits, and

completed the week 8 outcome evaluation; the PP set consisted

of 8 participants allocated to sham stimulation, and 13 to ENTF

stimulation. Participant characteristics were evaluated in the

intention to treat (ITT) analysis set, defined as all randomized

participants who completed at least one treatment session (sham

or active); the ITT set consisted of 9 sham and 15 ENTF

Frontiers inNeurology 04 frontiersin.org

2526

https://doi.org/10.3389/fneur.2022.1004677
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Weisinger et al. 10.3389/fneur.2022.1004677

FIGURE 1

Participant study flow diagram.

participants. The as treated (AT) safety set, defined as all

participants (including the n=4 treatment-only run-ins) who

received at least one treatment session, consisted of 9 sham and

19 ENTF participants.

Results

The study was conducted between first enrollment on

December 11, 2018 and final study visit on March 21, 2020. As

emergence of the COVID-19 pandemic precluded continuation

of study operations, the study was discontinued early, and data

was analyzed after enrollment of 4 run-in and 24 randomized

participants. Participant study flow diagram is shown in

Figure 1.

Participant baseline characteristics in the PP set are shown in

Table 1. Participant characteristics were generally well balanced

across the treatment groups. Participant baseline characteristics

in the ITT and the AT safety sets were similar to the PP set

(Supplementary Tables S2, S3).

E�cacy outcomes

For FMA-UE (primary clinical efficacy outcome measure),

performance score improvements were greater in the ENTF

compared to the sham group throughout treatment, both

at week 4 (p = 0.007) and week 8 (Table 2; Figure 2).

In terms of absolute numerical values, a ceiling effect was

noted at week 8. In the active stimulation group, 77%

of participants attained scores in the top 10% of the

scale, including 46% receiving the highest score (66/66).

By comparison, only 38% of the sham group attained

scores in the top 10% and no participants attained the

highest score.
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TABLE 1 Participant demographics*.

Sham Group (n = 8) ENTF Group (n = 13) Total (n = 21)

Age, yrs, mean (±SD) 55.3 (±10.1) 54.3 (±17.8) 54.7 (±15.0)

Sex, female (%) 25% 15% 19%

Race-Ethnicity, South-Asian (%) 100% 100% 100%

Hand dominance, right (%) 100% 100% 100%

Affected hand, right (%) 63% 38% 48%

Time from stroke onset to first treatment,

days, median (IQR)

14.0 (10.8–16.0) 9.0 (7.0–14.0) 11.0 (8.0–15.0)

FMA-UE Baseline, mean (±SD) 18.8 (±8.7) 26.8 (±11.5) 23.7 (±11.0)

mRS Baseline, mean (±SD) 3.4 (±0.7) 3.6 (±0.5) 3.5 (±0.6)

*No significant differences were noted between groups at baseline.

Score changes for secondary efficacy outcomes related

to motor function generally reflect greater improvement

for ENTF compared with sham control, with limited

exception (Table 2). Specifically, greater improvement for

ENTF was found for the ARAT total score (Figure 3A) and

three out of four of the ARAT subscales, most notably,

the Pinch subscale (p = 0.008, Figure 3B). Significantly

greater improvement was also seen on the BBT in the

affected hand (week 6: p = 0.02; week 8: p < 0.0001,

Figure 3C); the non-affected hand also showed greater

improvement in the ENTF group. Significantly greater

improvement was also seen in the FMA-LE scores changes

(Table 2).

In addition, both mRS and NIHSS scores showed greater

improvement for the ENTF group. On the mRS, the ENTF

group showed significantly greater reduction in degree of

disability between baseline and week 8; −2.5 ± 0.7 vs. −1.3

± 0.5, p = 0.0005. Notably, 92% of participants in the

ENTF group improved by at least two points compared to

only 25% in the sham group (Figure 4A). By week 8, 77%

of participants in the ENTF group vs. 25% in the sham

group had an mRS score of 1 or 0, indicative of little

to no residual disability (Figure 4B). In contrast, patient-

reported efficacy outcomes related to generic health-related

quality of life (PROMIS-10) did not show a difference

in degree of improvement between treatment groups. A

descriptive table of raw scores for each of the analyzed clinical

outcome measures at all assessment time points is included in

Supplementary Table S4.

Safety outcomes

Two adverse events (AEs) were reported, neither related to

the ENTF treatment. There were no device-related infections

or unexpected device-related adverse events. Additionally, there

were no complaints of discomfort during ENTF treatment.

Discussion

In this double-blind, randomized, sham-controlled trial,

frequency-tuned ELF-EMF stimulation with the BQ device,

or ENTF therapy, was associated with enhanced recovery of

upper extremity function when initiated in the subacute period

and continued for 2 months as compared to sham control.

Beneficial results were evident not only for the primary outcome

measure (FMA-UE), but also for several other measures of upper

extremity function, including the BBT (manual dexterity) and

the ARAT (coordination, dexterity, and function). Moreover,

ELF-EMF treatment was associated with a greater reduction of

global disability in daily activities (mRS). In addition, there was

no evidence of safety concerns, and there were no participant

complaints of discomfort during treatment.

There was an indication of beneficial effect on lower

extremity function in addition to upper extremity function,

suggesting a general enhancement of motor function beyond

the upper extremity. In contrast, ENTF stimulation was not

associated with benefit on a generic measure of mental

and physical health-related quality of life. Indeed as the

intervention in this study was specifically designed to target

motor impairment, it cannot be assumed that generic physical

and mental health measures would show differential benefits

between the two groups. Still, it should be noted that these were

subjective patient-reported ratings.

The magnitude of benefit of ENTF treatment was robust and

clinically meaningful across multiple metrics of upper extremity

motor function, and especially the FMA-UE (51, 52). Further,

the reduction of global disability as assessed by themRS supports

a strong positive effect on overall functioning. The substantial

difference in outcomes between active and sham-treated groups

was not related to unusually poor performance in the control

arm. The degree of improvement on the FMA-UE in the control

group was typical of those in prior natural history studies (51,

52). Similarly, in terms of overall stroke disability, the degree

of improvement on the mRS in the control group was similar
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TABLE 2 E�cacy outcome measures*.

Sham group (n = 8) ENTF group (n = 13) Significance**

Primary outcome measure

FMA-UEWeek 4 9.6± 9.0 23.2± 14.1 0.007

FMA-UEWeek 8 23.1± 14.1 31.5± 10.7 0.06

Secondary outcome measures

mRSWeek 8 −1.3± 0.5 −2.5± 0.7 0.0005

ARAT Grasp, Week 8 8.1± 7.6 9.1± 6.8 0.15

ARAT Grip, Week 8 5.4± 4.1 6.8± 3.7 0.13

ARAT Pinch, Week 8 5.3± 6.5 13.4± 5.6 0.008

ARAT gross movement, Week 8 3.8± 2.1 2.8± 1.9 0.50

ARAT total score, Week 8 22.5± 17.1 32.1± 14.2 0.09

BBT (Affected hand), Week 2 0.5± 0.8 1.3± 1.7 0.07

BBT (Affected hand), Week 4 1.4± 1.5 6.8± 5.5 0.08

BBT (Affected hand), Week 6 3.3± 3.6 10.9± 7.1 0.02

BBT (Affected hand), Week 8 8.5± 8.6 22.5± 12.4 <0.0001

BBT (Non-affected hand), Week 2 2.9± 0.6 1.8± 2.0 0.04

BBT (Non-affected hand), Week 4 4.4± 2.1 9.0± 5.0 0.08

BBT (Non-affected hand), Week 6 7.8± 2.1 12.4± 5.4 0.08

BBT (Non-affected hand), Week 8 9.4± 3.9 18.4± 7.4 0.0003

FMA-LE, Week 8 9.9± 6.5 13.8± 7.8 0.03

NIHSS, Week 8 −4.8± 3.2 −6.6± 3.4 0.03

PROMIS-10

global physical health, Week 8

9.0± 5.2 11.0± 6.8 0.33

PROMIS-10

global mental health, Week 8

13.0± 7.2 14.7± 6.1 0.48

*All values represent change from baseline (mean±SD).

**From LSmean adjusted means.

to that in control groups in prior large trials and observational

studies (53–57).

EEG recordings (exploratory) of study participants reflected

a pattern of brain activity indicative of recovery exclusively

in the ENTF group (49). More specifically, the EEG results

are consistent with improvement in movement inhibition or

motor learning (58) as well as increased signal complexity, a

characteristic of healthy brain activity (59). In effect, the EEG

data provide evidence for a biomarker of recovery putatively

linked to plasticity (59) in the ENTF group but not in the

sham group.

At the neuronal level, given the continued degradation of

neurons in the days and weeks following a stroke, as well

as the secondary injury cascade whereby cells adjacent to

the site of injury continue to degrade (60), a non-invasive

treatment that targets affected cells and networks during this

critical time period and prevents further degradation has great

clinical utility, addressing a gap in subacute care options.

The most challenging question regarding the effect of ELF-

EMF on (neuronal) tissue is in identifying the transduction

mechanism by which the applied field and the biological

medium interact, achieving such effects. Although the exact

mechanism remains unknown, two different steps have to

be taken into account when contemplating the mechanism

of action of ELF-EMF: 1) the initial interaction between the

external magnetic field (MF) and the biological system and 2)

the cascade of biological events leading to the physiological/

behavioral effect seen in this as well as other studies, both human

and animal (61, 62).

Regarding the initial interaction step, there are two plausible

transduction mechanisms: electric currents inducing minor

changes in the conductive tissues (unlikely for intensities <1G

such as used in this study), and possible direct action of the MF

on endogenous magnetoreception (63). As for the cascade of

biological events that follow, it has been shown that ELF-EMF

effects are likely to involve a number of cellular targets such

as changes in intracellular Ca2+ signaling (64–69), elements

of the oxidative stress cascade (70, 71), nitric oxide (72, 73),

G-protein receptor coupling (74, 75), and the inflammatory

response (76, 77), to name a few. Some of these cellular targets

have been identified and described in the studies conducted

previously by members of this group, as well as by others in
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FIGURE 2

Fugl-Meyer Assessment – Upper Extremity (FMA-UE) score

changes from baseline to week 4 and week 8 (range: 0-66; 66 is

greatest mobility/optimal recovery). FMA-UE absolute score

change from baseline to week 4 (sample mean, error bars

correspond to SD; significance based on di�erence in LSmeans)

was significantly greater for the ENTF group than sham group

(23.2 ± 14.1 vs. 9.6 ± 9.0; p = 0.007; ** < 0.01). Absolute score

change from baseline to week 8 was also greater, though not

significantly so, for the ENTF group than sham group (31.5 ±

10.7 vs. 23.1 ± 14.1; p = 0.06).

the field, revealing a candidate for the cascade of events that

may ultimately give rise to the observed effects on the cellular,

network and behavioral levels.

For example, in human neuroblastoma and rat pituitary

cells, ELF-EMF exposure increases proliferation and inhibits

programmed cell death by up-regulating the expression of

voltage-gated Ca2+ (Cav) channels [5–1,000µT and frequencies

of 1–100Hz, (65)]. Additionally, it has been shown that ELF-

EMF increases generation and metabolism of nitric oxide (NO)

in poststroke patients, promoting cellular processes that support

neuroplasticity, and thusmay enhance post-stroke rehabilitation

(27). Furthermore, ELF-EMF exposure (50Hz, 1 mT, 1 to 7

h/day for 7 days) significantly enhanced neurogenesis in the

dentate gyrus (DG) of adult mice, as demonstrated by increased

numbers of cells double-labeled for BrdU and doublecortin (78).

Converging evidence has been obtained from within our

own rodent stroke study. While no adverse effects (e.g.,

abnormal changes in body weight) were observed, results

indicate that daily exposure to ENTF treatment (7.86Hz,

1G) over 8 weeks post-injury significantly improved the

Neurological Severity Score (NSS) in the treatment group.

Importantly, a significant increase in the number of BrdU

positive cells was found in the dentate gyrus, in addition to the

restoration of biomarkers indicative of healthy cortical tissue

in the injured parietal cortex of ENTF-treated mice. These

results further support the hypothesis that ENTF treatment

may promote neurogenesis (38). Additionally, in rats with

spinal cord injury, diffusion tensor imaging (DTI) revealed that

FIGURE 3

Evolution of upper extremity function secondary e�cacy

outcomes (sample mean; error bars correspond to SD;

significance based on di�erence in LSmeans). (A) Action

Research Arm Test (ARAT) total score from baseline to week 8

(absolute score change: ENTF group 32.1 ± 14.2 vs. sham group

22.5 ± 17.1, p = 0.09). (B) ARAT Pinch subscale score from

baseline to week 8 (absolute score change: ENTF 13.4 ± 5.6 vs.

sham 5.3 ± 6.5, p = 0.008; ** p < 0.01). (C) Box and Blocks Test

(BBT) a�ected hand scores from baseline through weeks 2, 4, 6

(absolute change score: ENTF 10.9 ± 7.1 vs. sham 3.3 ± 3.6, p =

0.02; *p < 0.05) and 8 (absolute change score: 22.5 ± 12.4 vs.

8.5 ± 8.6, p < 0.0001; ****p < 0.0001).

those receiving ENTF treatment showed evidence of structural

neuroplasticity, compared to the spinal cord degradation

observed in non-treated rats (61).

The substantial number of published studies clearly

demonstrate effects from cellular to physiological, and

consequently behavioral, suggesting a robust mechanism

of action mediating the effect of ELF-EMF on the brain.

The present results extend these findings to a clinical post-

stroke population, and demonstrate the effectiveness of

ENTF treatment in accelerating recovery in the subacute

phase post-stroke.

Importantly, the present results provide useful data on the

safety and feasibility of ENTF treatment as there were no
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FIGURE 4

Change in modified Rankin Scale (mRS) from baseline to week 8. (A) Individual participant trajectories from baseline to week 8, yielding greater

group reduction in disability severity in the ENTF compared to sham group, −2.5 ± 0.7 vs. −1.3 ± 0.5, p = 0.0005. (B) Distribution of final mRS

scores at week 8, with more favorable outcomes evident in ENTF vs. sham group.

safety concerns or complaints about comfort. Indeed, a non-

invasive, user-friendly device with a favorable safety profile may

be ideally suited for use after a patient returns home. Further,

in the wake of the COVID-19 pandemic, efficacious treatment

options that minimize in-hospital exposure are valuable for an

older, vulnerable, post-stroke population. The ability to integrate

such treatment into a care plan that is patient-centered and

addresses the normally fragmented treatment pathway remains

an important target of future studies.

This study has several limitations. First, though results

are robust across multiple metrics, sample size was small. In

addition, there were limited long-term follow-up evaluations

to assess the continued effects of the treatment on recovery.

COVID-19 restrictions forced a reduction of the planned sample

size and follow-up duration, thus studies with larger samples

and longer-term follow-up are needed. Second, the FMA-

UE and ARAT measures appeared suboptimal for moderately

impaired participants due to reasonable likelihood of reaching

the maximum score (79). Indeed, the trend towards meaningful

improvement of the FMA-UE (p = 0.06) coupled with an

overwhelming majority of treated participants in the top 10%

of the metric at end of treatment, it is likely that the benefit

to the treatment group was not fully captured in this score. In

comparison, there was continued improvement on BBT which

has a greater responsive range. Third, the study was conducted

at a single site in participants of one ethnicity. Multicenter trials

in larger, more diverse populations are desirable.

In conclusion, this study demonstrates efficacy of extremely

low frequency, low intensity frequency-tuned ENTF exposure

in improving upper extremity motor function and reducing

disability during the subacute phase in post-ischemic stroke

patients. There was clinically meaningful improvement in

upper extremity motor function and overall disability reduction

as measured by multiple metrics, including FMA-UE, mRS,

ARAT, BBT, and NIHSS. Given the high stroke prevalence

and limited treatment options beyond the acute phase, these

results represent a promising avenue for alternative treatment

that non-invasively targets and rehabilitates compromised brain

processes, and is applicable to a wide swath of post-stroke

patients. The current findings should be extended by examining

ENTF treatment in a larger sample with longer follow-up, as

well as examining direct indices of plasticity and feasibility of

continuing treatment at home. Additionally, future work may

explore the generalizability of this approach to other functional

domains (e.g., cognitive function), as well as other neurological

and neurodegenerative disorders.
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1National Institute of Mental Health, Neurology, and Neurosurgery (NIMNN), Budapest, Hungary,
2Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom, 3Radcli�e Department

of Medicine, University of Oxford, Oxford, United Kingdom, 4Brainomix Ltd., Oxford,

United Kingdom, 5Centre for Statistics in Medicine, Nu�eld Department of Orthopedics,

Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom,
6Faculty of Medicine, Semmelweis University, Budapest, Hungary

Background: Short- and long-term outcomes from endovascular

thrombectomy (EVT) for large vessel occlusion stroke remain variable.

Numerous relevant predictors have been identified, including severity of

neurological deficits, age, and imaging features. The latter is typically defined

as acute changes (most commonly Alberta Stroke Programme Early CT Score,

ASPECTS, at presentation), but there is little information on the impact of

imaging assessment of premorbid brain health as a determinant of outcome.

Aims: To examine the impact of automated measures of stroke severity and

underlying brain frailty on short- and long-term outcomes in acute stroke

treated with EVT.

Methods: In 215 patients with anterior circulation stroke, who subsequently

underwent EVT, automated analysis of presenting non-contrast CT scans was

used to determine acute ischemic volume (AIV) and e-ASPECTS as markers

of stroke severity, and cerebral atrophy as a marker of brain frailty. Univariate

and multivariate logistic regression were used to identify significant predictors

of NIHSS improvement, modified Rankin scale (mRS) at 90 and 30 days,

mortality at 90 days and symptomatic intracranial hemorrhage (sICH) following

successful EVT.

Results: For long-term outcome, atrophy and presenting NIHSS were

significant predictors of mRS 0–2 and death at 90 days, whereas age

did not reach significance in multivariate analysis. Conversely, for short-

term NIHSS improvement, AIV and age were significant predictors,

unlike presenting NIHSS. The interaction between age and NIHSS was

similar to the interaction of AIV and atrophy for mRS 0–2 at 90 days.

Frontiers inNeurology 01 frontiersin.org

3435

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2022.1056532
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2022.1056532&domain=pdf&date_stamp=2022-12-15
mailto:blazsejdoktor@gmail.com
https://doi.org/10.3389/fneur.2022.1056532
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fneur.2022.1056532/full
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Kis et al. 10.3389/fneur.2022.1056532

Conclusion: Combinations of automated software-based imaging analysis

and clinical data can be useful for predicting short-term neurological outcome

and may improve long-term prognostication in EVT. These results provide

a basis for future development of predictive tools built into decision-aiding

software in stroke.

KEYWORDS

stroke, endovascular thrombectomy, thrombolysis, neuroimaging, neuroradiology,

artificial intelligence, machine learning

Introduction

Outcomes in endovascular thrombectomy (EVT) for

emergent large vessel occlusion (ELVO) stroke remain

variable: only 46% of patients treated with EVT in early

time-window trials achieved functional independence

(modified Rankin scale, mRS 0–2) (1). In real-world

registry studies, the overall functional independence has

been reported to be as low as 23% after EVT (2). As

such, improved patient selection criteria are required to

maximize cost-effectiveness while minimizing unnecessary

procedure-related risks.

Currently, identifying suitable candidates relies on clinical

features (presenting severity on the National Institutes of

Health Stroke Scale, NIHSS; baseline mRS), time from stroke

onset (3) and imaging findings, including infarct volume (4),

Alberta Stroke Programme Early CT Score (ASPECTS) (5)

and volume of ischemic tissue relative to infarct (6). However,

these radiological features all represent acute changes. There

is increasing evidence that imaging biomarkers unrelated to

the index stroke, including atrophy as an indicator of brain

frailty, have a significant impact on clinical outcome (7,

8). However, there is no consensus on the best integrative

approach to use these factors for long-term prognosis and

poor understanding of how they interact. Furthermore, manual

quantification of atrophy using visual analog scales can be

subjective (9) while automated quantification usually requires

separate software, which would complicate reporting workflow

in the acute setting.

In this study, we sought to use machine learning based

automated image analysis of routine non-contrast CT

(NCCT) brain imaging, in conjunction with clinical variables,

to improve prognostication for short-term neurological

improvement (changes in NIHSS), long-term functional

outcomes (mRS at 30 and 90 days), mortality and symptomatic

intracranial hemorrhage. Our hypothesis was that automated

image analysis of routine NCCT imaging markers of

both stroke severity and brain frailty would be significant

predictors of short- and long-term outcome alone following

successful EVT.

Methods

Study design

This retrospective study was performed at the National

Institute of Mental Health, Neurology and Neurosurgery

(NIMNN) in Budapest, Hungary. From 1 January 2017 to 31

December 2019, we included patients receiving endovascular

thrombectomy for acute ischemic stroke. All treatment decisions

were made based on clinical criteria, as indicated according

to first line international (3) and local guidelines. Further

inclusion criteria included: age ≥18, causative middle cerebral

artery M1 segment occlusion, onset to groin puncture ≤6 h,

NIHSS score ≥ 6 at presentation, premorbid mRS state

≤1, ASPECTS ≥ 6, and successful recanalization (TICI

≥ 2b).

Since more than 90% of the patients are transferred from

primary stroke centers to NIMNN for EVT, an NCCT scan

was repeated on arrival for final decision-making regarding

EVT. These preprocedural scans were defined as baseline

imaging and processed using e-Stroke software (version 10;

Brainomix, UK), a machine learning based decision aid tool

for acute ischemic stroke, which has been validated against

manual analysis by neuroradiologists in previous studies (10,

11). e-Stroke was used to estimate acute ischemic volume

(AIV), automated e-ASPECTS, and atrophy (defined based

on CSF volume in the lateral ventricles and surrounding

brain parenchyma, relative to parenchymal volume). Patients

with missing or inadequate baseline imaging were excluded

from analyses.

We further collected patient demographics, baseline imaging

features (including radiologist ASPECTS scores), treatment

times (onset to groin, groin to recanalization, NIHSS, whether

the patient received intravenous thrombolysis, TICI scores,

short-term neurological outcome (NIHSS improvement at

discharge or 7 days), longer term functional outcome (mRS at

30 and 90 days) and whether the patient suffered symptomatic

intracranial hemorrhage [defined as European Cooperative

Acute Stroke Study (ECASS) parenchymal hematoma 1 and

2 categories].
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TABLE 1 Demographic details of the study cohort.

Age (years) 67.6 (SD 14.1)

Female 128 (59.5%)

Presenting features

Left-sided occlusion 103 (47.9%)

NIHSS on admission 15 (IQR 12–19)

Manual ASPECTS on admission 8 (IQR 7–8)

e-ASPECTS on admission 8 (IQR 8–9)

NCCT infarct volume on admission (mL) 17.5 (SD 15.6)

Atrophy on admission (% brain volume) 11.48 (SD 4.64)

Comorbidities

Atrial fibrillation 91 (42.3%)

Hypertension 163 (75.8%)

Diabetes mellitus 48 (22.3%)

Ischaemic heart disease 34 (15.8%)

Peripheral arterial disease 27 (12.6%)

Prior stroke 26 (12.1%)

Procedural features

Onset to recanalization (min) 287.2 (SD 68.3)

Onset to groin (min) 251 (SD 65.1)

Door to groin (min) 49.8 (SD 26.4)

Groin to recanalization (min) 36.7 (SD 22.2)

TICI 2B 71 (33.0%)

TICI 2C 32 (14.9%)

TICI 3 112 (52.1%)

First pass recanalization 122 (56.7%)

IV thrombolysis 130 (60.5%)

Data analysis

Data were collected into a database as part of clinical

care and therefore unblinded. Patients were invited for

follow-up clinic appointments where mRS was determined

by the reviewing physician; for patients who did not attend

appointments, trained abstractors collected mRS over the

phone. Statistical analyses were performed in R version 4.1.1

(12). Primary outcomes were considered as early, defined as

dichotomized NIHSS improvement at discharge (reduction of

NIHSS of ≥4 points in patients with a presenting NIHSS

≥4), and late, defined as dichotomized functional outcome

at 90 days (with mRS 0–2 considered as good outcome).

Secondary outcomes included mRS 0–2 at 30 days, intracranial

hemorrhage, and mortality at 90 days. Univariate logistic

regression was performed for manually selected variables.

Multivariate logistic regression was performed with our four

primary predictors of interest (presenting NIHSS and AIV as

clinical and radiological indicators of acute severity, and age and

atrophy as clinical and radiological indicators of brain frailty),

alongside variables that were significant in univariate analyses

(p < 0.05). As AIV and e-ASPECTS were highly collinear,

TABLE 2 Univariate and multivariate predictors of mRS 0–2 at 90 days.

mRS 0-2 at 90 days

Predictors Odds Ratios CI p

Univariate

(Intercept) 13.92 3.38–63.91 <0.001

Age 0.96 0.94–0.98 <0.001

NIHSS at admission 0.89 0.84–0.94 <0.001

AIV 0.98 0.96–0.99 0.017

Atrophy 0.88 0.82–0.94 <0.001

TICI 2C/3 2.05 1.15–3.70 0.016

e-ASPECTS 1.26 1.04–1.56 0.021

IV thrombolysis 1.28 0.74–2.21 0.385

Onset to recanalisation 1 0.99–1.00 0.066

Multivariate

(Intercept) 44.54 7.78–299.35 <0.001

Age 0.98 0.95–1.01 0.113

NIHSS at admission 0.9 0.84–0.95 0.001

AIV 0.98 0.96–1.00 0.127

Atrophy 0.91 0.83–0.99 0.038

TICI 2C/3 3 1.55–5.99 0.001

The bold values indicate the statistical significance of p < 0.05.

the latter was not included in multivariate models even if

significant in univariate analysis. Cases with missing outcome

data were excluded from analysis for that model. Descriptive

analysis was undertaken to explore the interaction between

stroke severity and brain frailty on outcome, using both clinical

and imaging biomarkers.

Results

The study population included 215 patients; demographic

details and procedural characteristics are displayed in Table 1.

Overall, 104 patients (48.4%) achieved mRS 0–2 at 90

days. The significant univariate and multivariate predictors

of achieving mRS 0–2 are summarized in Table 2. Briefly,

univariate analyses showed that likelihood of good outcome was

significantly associated with age, NIHSS on admission, NCCT

AIV, e-ASPECTS, atrophy and TICI status. When adjusted

in multivariate regression, however, only atrophy, NIHSS on

admission and TICI 2C/3 retained statistical significance. The

cumulative effect of age and NIHSS, and separately infarct

volume, and atrophy on functional outcome are shown in

Figure 1. The pattern of interaction between stroke severity and

surrogates of baseline frailty showed a similar relationship when

assessed using both clinical and imaging characteristics.

Using the same approach, we then looked at early

neurological outcomes following thrombectomy. NIHSS

improvement data were available in 203 patients, with six
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FIGURE 1

Interactions between age and NIHSS (left), and infarct volume and atrophy (right) in predicting mRS 0–2 at 90 days.

patients excluded due to missing follow up NIHSS and six

patients excluded due to baseline severity of NIHSS < 4. NIHSS

improvement was achieved by 162 patients (79.8%), albeit with

a wide range of absolute NIHSS values at discharge (range

0–30, IQR 2–11). The univariate and multivariate predictors for

NIHSS improvement are summarized in Table 3. In univariate

analyses, only AIV and onset to recanalization time were

associated with NIHSS improvement. After adjustment in

multivariate analysis, age, AIV and onset to recanalization

demonstrated statistical significance.

We performed the same analyses for mRS 0–2 at 30 days,

achieved by 90 patients (41.9%). Univariate and multivariate

predictors are displayed in Supplementary Table 1. In univariate

analysis, age, AIV, NIHSS, atrophy and TICI 2C/3 status were all

associated with functional independence at 30 days, similarly to

the 90-daymRS; in the adjusted analysis, only age, AIV and TICI

retained significance. At 90 days, 65 patients (30.2%) had died.

The univariate and multivariate analyses for mortality are in

Supplementary Table 2; age, admission NIHSS and atrophy were

associated with death in univariate analysis, while only NIHSS

and atrophy demonstrated statistical significance in multivariate

analysis. We also attempted to examine post-procedural sICH,

but this was limited by sample size as only 12 patients developed

parenchymal hemorrhage type 1 or 2. NIHSS on admission was

the only variable to show significant association to sICH in both

univariate and multivariate analysis (Supplementary Table 3).

Discussion

Imaging biomarkers automatically derived fromCT imaging

routinely acquired at presentation provided information on

both the acute injury sustained (acute infarct volume) and

on the premorbid condition of the brain (brain atrophy).

Both clinical and imaging markers of stroke severity,

i.e., presenting NIHSS and acute infarct volume, offer

potentially useful information when predicting neurological

improvement. Furthermore, there is additional information

to be gained from both clinical and imaging markers of brain

frailty when predicting early outcomes. The interactions

between markers of stroke severity and surrogates of frailty

appear similar whether clinical or radiological variables

are used.

Atrophy was more strongly associated with long-term

outcome compared to age. Compared to age, atrophy likely

provides a better estimate of brain frailty, a key determinant
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TABLE 3 Univariate and multivariate predictors of NIHSS

improvement.

NIHSS improvement

Predictors Odds Ratios CI p

Univariate

Age 0.98 0.95–1.01 0.141

NIHSS at admission 1.02 0.95–1.09 0.637

AIV 0.97 0.94–0.99 0.001

Atrophy 1.01 0.94–1.10 0.792

TICI 2C/3 1.97 0.97–3.99 0.059

e-ASPECTS 1.20 0.95–1.50 0.116

IV thrombolysis 1.43 0.71–2.86 0.311

Onset to recanalisation 0.99 0.98–1.00 0.001

Multivariate

(Intercept) 3983.64 140.65–178884.09 <0.001

Age 0.94 0.90–0.98 0.004

NIHSS at admission 1.08 1.00–1.18 0.061

AIV 0.95 0.92–0.97 <0.001

Atrophy 1.12 0.99–1.28 0.082

Onset to recanalisation 0.99 0.98–0.99 <0.001

The bold values indicate the statistical significance of p < 0.05.

of vulnerability to injury (13). Metrics capturing biological age,

as opposed to calendar age, might also better inform of the

capacity of an individual to recover following stroke as they may

better represent the brain neurological reserve and the ability to

compensate for an infarct of given volume following stroke.

While long term outcome is influenced by multiple factors,

such as post EVT care, rehabilitation, and comorbid factors,

the early neurological outcome might be argued to be more

sensitive to the impact of factors related to the index stroke

severity and degree of procedural success. It is unclear why

age rather than atrophy demonstrated this association in

these results; hypothetically, non-neurological factors such as

musculoskeletal comorbidity may contribute to the potential

for early neurological compensation which is more likely to be

captured by age than a neurologically specific biomarker such

as atrophy.

The influence of the individual biomarkers used in this

study is broadly consistent with previous observations. e-

ASPECTS, which is derived from the automated AIV, has been

demonstrated to predict mRS at 90 days in other cohorts (14).

Similarly, automated atrophy quantification strongly predicts

mRS, with an odds ratio of 0.65 per 5% increase in intracranial

cerebrospinal fluid volume (15). A previous machine learning

study of NCCT and CTA features using e-Stroke found that age,

baseline NIHSS, occlusion side, atrophy and e-ASPECTS were

the best predictors formRS at 90 days, in keeping with the results

shown here (16). The clinical variables used in this study—

age and presenting NIHSS—have previously been used as a

prognostic score, which was also an independent predictor of

outcome in EVT (17). Other studies have also found significant

predictive effects from age and NIHSS at presentation (18), and

there is a combined effect between NIHSS and age in agreement

with the data presented here (19). Procedurally, there is a strong

correlation between treatment times and outcome, particularly

in the early window (2). Excellent reperfusion (TICI 2C/3) is

also highly predictive or mRS at 3 months, especially when this

is achieved during the first pass (20).

There is comparatively less data on predictors of early

neurological improvement which is more directly linked to

the immediate impact of an intervention, and most of these

focus on the earliest time windows. One study identified age,

blood glucose, TICI, baseline ASPECTS and the presence of

sICH as predictors for early neurological recovery (21). Others

have looked at predictive factors for failure to neurologically

improve, and identified variables including premorbid mRS,

hyperglycemia, longer treatment times, lack of tPA bridging, and

involvement of motor cortex and internal capsule in the infarct

(22). Separately, there is considerable literature suggesting the

utility of early neurological improvement itself as a long-term

prognostic factor. In a large cohort study, absolute NIHSS

at 24 h was the best predictor of mRS at 90 days, although

NIHSS improvement was also strongly correlated with long-

term outcome (23). Notably, in our cohort AIV was a better

predictor of early neurological improvement than atrophy,

illustrating the differential impact of acute and chronic brain

changes to short- and long-term recovery.

Our study has limitations. First, although the group sizes

of those achieving mRS 0–2 and 3–6 were similar, the overall

sample size was relatively small at 215 patients. In addition, the

intracerebral hemorrhage analyses were underpowered as there

were only 12 cases in the cohort. Second, this was a single-center

retrospective cohort study. Validation in prospective cohorts is

required. Third, our hypotheses and choices of variables were

clinically driven, and we cannot exclude that there are other

imaging parameters that may further improve performance but

were not captured in this dataset.

Overall, these data support the use of automated imaging

analysis for improving the prediction of neurological recovery

following EVT and demonstrate the additional information that

can be captured from simple NCCT imaging. The results show

the interaction between markers of stroke severity and the brain

frailty of the individual and suggest an opportunity to refine

estimates of an individual’s capacity to recover beyond that of

their chronological age. If validated in prospective cohorts, this

may provide a useful adjunct tool for prognostication in large

vessel occlusion ischemic stroke.
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Collateral circulation results from specialized anastomotic channels which are

capable of providing oxygenated blood to regions with compromised blood

flow caused by arterial obstruction. The quality of collateral circulation has been

established as a key factor in determining the likelihood of a favorable clinical

outcome and goes a long way to determining the choice of a stroke care model.

Though many imaging and grading methods exist for quantifying collateral blood

flow, the actual grading is mostly done through manual inspection. This approach

is associated with a number of challenges. First, it is time-consuming. Second,

there is a high tendency for bias and inconsistency in the final grade assigned

to a patient depending on the experience level of the clinician. We present a

multi-stage deep learning approach to predict collateral flow grading in stroke

patients based on radiomic features extracted from MR perfusion data. First, we

formulate a region of interest detection task as a reinforcement learning problem

and train a deep learning network to automatically detect the occluded region

within the 3D MR perfusion volumes. Second, we extract radiomic features from

the obtained region of interest through local image descriptors and denoising

auto-encoders. Finally, we apply a convolutional neural network and other

machine learning classifiers to the extracted radiomic features to automatically

predict the collateral flow grading of the given patient volume as one of three

severity classes - no flow (0), moderate flow (1), and good flow (2). Results from

our experiments show an overall accuracy of 72% in the three-class prediction

task. With an inter-observer agreement of 16% and a maximum intra-observer

agreement of 74% in a similar experiment, our automated deep learning approach

demonstrates a performance comparable to expert grading, is faster than visual

inspection, and eliminates the problem of grading bias.

KEYWORDS

collateral flow, radiomics, perfusion, reinforcement learning, image descriptors,

angiography, auto-encoder, deep learning

1. Introduction

Collateral circulation results from specialized anastomotic channels which are present

in most tissues and capable of providing nutrient perfusion to regions with compromised

blood flow due to ischemic injuries caused by ischemic stroke, coronary atherosclerosis,

peripheral artery disease, and similar conditions or diseases (1). Collateral circulation
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helps to sustain blood flow in the ischaemic areas in acute,

subacute, or chronic phases after an ischaemic stroke or transient

ischaemic attack (2). The quality of collateral circulation has

been convincingly established as a key factor in determining the

likelihood of successful reperfusion and favorable clinical outcome

(3). It is also seen as one of themajor determinants of infarct growth

in the early time windows which is likely to have an impact on the

chosen stroke care model that is the decision to transport or treat

eligible patients immediately.

A high number of imaging methods exist to assess the structure

of the cerebral collateral circulation and several grading criteria

have been proposed to quantify the characteristics of collateral

blood flow. However, this grading is mostly done through visual

inspection of the acquired images which introduces two main

challenges.

First, there are biases and inconsistencies in the current grading

approaches: There is a high tendency of introducing bias in the final

grade assigned to a patient depending on the experience level of the

clinician. There are inconsistencies also in the grade assigned by a

particular clinician at different times for the same patient. These

inconsistencies are quantified at 16% interobserver agreement and

a maximum intraobserver agreement of 74% respectively in a

similar study by Ben Hassen et al. (4).

Second, grading is time-consuming and tedious: Aside the

problem of bias prediction, it also takes the clinician several

minutes to go through the patient images to first select the correct

image sequence, detect the region of collateral flow and then to be

able to assign a grading a period of time which otherwise could have

been invested in the treatment of the patient.

In this work, we analyze several machine learning and deep

learning strategies that aim toward automating the process of

collateral circulation grading.We present a set of solutions focusing

on two main aspects of the task at hand.

First, the region of interest needs to be identified. We automate

the extraction of the region of interest (ROI) from the patient

images using deep reinforcement learning (RL). This is necessary

for achieving a fully automated system that will require no human

interaction and save the clinician the time spent on performing

this task.

Finally, the region of interest needs to be processed and

classified. We consider various feature extraction schemes and

classifiers suitable for the task described above. This helps to

extract useful image features, both learned and hand-crafted,

which are relevant to the classification task. We predict digitally

subtracted angiography (DSA) based collateral flow grading from

MR perfusion images in this task. This saves the time required in

choosing the right DSA sequence from the multiple DSA sequences

acquired and helps achieve a fully automated system.

1.1. Prior work and open challenges

1.1.1. Imaging criteria for cerebral collateral
circulation

Imaging methods for assessing cerebral collateral flow can

be grouped under two main classification schemes, invasive vs.

non-invasive and structural vs. functional imaging. Structural

imaging methods provide information about the underlying

structure of the cerebral collateral circulation network. Some of

the commonly used structural imaging modalities are traditional

single-phase computed tomography angiography (CTA), time-of-

flight magnetic resonance angiography (TOF-MRA), and digitally

subtracted angiography (DSA), among others. Other imaging

modalities have been used in clinical practice and relevant research

areas in accessing the structure of the cerebral collateral circulation

are discussed in Liu et al. (2), McVerry et al. (5), Martinon et al.

(6). DSA is the gold standard for assessing the collateral flow,

however, due to the associated high cost and invasive nature, other

non-invasive methods like CTA and MRA are commonly used (2).

Functional imaging methods are used to assess the function

of the underlying cerebral collateral circulation. Single-photon

emission CT (SPECT), MR perfusion, and positron emission

tomography (PET) are examples of imaging methods that provide

functional information about the cerebral collateral flow. MR

perfusion imaging is often followed by a post-processing step

to extract parametric information. Very common parametric

information includes the time-to-peak (Tmax) time taken for the

blood flow to reach its peak (max) at a given region in the brain,

relative blood flow (rBF) volume of blood flowing through a given

brain tissue per unit of time, and relative blood volume (rBV)

volume of blood in a given brain tissue relative to an internal

control (e.g. normal white matter or an arterial input function).

Functional imaging is sometimes combinedwith structural imaging

either in a single scanning procedure or separate procedures and

can serve as complementing information in the decision making

process. Here, structural imaging is oftentimes used to map the

anatomy and probe tissue microstructure.

MRI perfusion and diffusion have evolved as key biomarkers

in determining collateralization of stroke patients, and a patient

stratification based on these markers has been proposed repeatedly

(7). At the same time, a qualitative CTA and DSA based grading

are the most common approaches for evaluating collateralization

(8–10).

1.1.2. Cerebral collateral flow grading
Cerebral collateral circulation plays an important role in

stabilizing cerebral blood flow when the normal blood circulation

system is compromised in cases of acute, subacute, or chronic

ischaemic stroke. The quality of the cerebral collateral circulation

system is one of the factors that determine the speed of infarct

growth and the outcome of stroke treatment and reperfusion

therapies. A poor collateral flow is associated with worse outcomes

and faster growth of infarcts while a good collateral flow is

associated with good outcomes and slower growth of infarcts in

acute stroke treatment (11). Due to the important role played

by cerebral collateral blood flow, various grading scales and their

association with risk factors and treatment outcomes have been

discussed extensively in literature.

Several grading systems have been proposed for assessing

the quality of the collateral circulation network. Among these

grading systems, the DSA based system proposed by the American

Society of Interventional and Therapeutic Neuroradiology/Society

of Interventional Radiology (ASITN/SIR) is the most widely
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accepted scheme. This grading system describes the collateral flow

as one of five levels of flow which are; absence of collaterals (0),

slow collaterals (1), rapid collaterals (2), partial collaterals (3),

and complete collaterals (4) to the periphery of the ischaemic site

(2, 12). In most studies that use the ASITN/SIR scheme, the grading

scale is merged into three levels—grades 0–1 (poor), 2 (moderate)

and 3–4 (good collateral) flow. CTA based systems also have several

grading schemes ranging from two (good, bad) to five (absent,

diminished >50%, <50%, equal, more) labels (12).

The relationship between pretreatment collateral grade and

vascular recanalization has been assessed for patients who received

endovascular therapy for acute cerebral ischemia from two

distinct study populations by Bang et al. (13). The study showed

that 14.1, 25.2, and 41.5% of patients with poor, good, and

excellent pretreatment collaterals respectively achieved complete

revascularization. Another study by Bang et al. (14) on the

relationship between MRI diffusion and perfusion lesion indices,

angiographic collateral grade, and infarct growth showed that

the greatest infarct growth occurred in patients with both

non-recanalization and poor collaterals. Mansour (15) assessed

collateral pathways in acute ischemic stroke using a new grading

scale (Mansour Scale) and correlated the findings with different

risk factors, clinical outcomes, and recanalization rates with

endovascular management. More research (13–17) has been

conducted into the relationship between the cerebral collateral

circulation, its grading, and the clinical outcome of the choice of

treatment of acute ischemic stroke, and they all confirm a positive

association between collateral flow and the success of the outcome.

Due to the crucial role played by collateral circulation, it is

a common practice in most clinical procedures to determine the

quality of a patient’s collateral as first-hand information toward

the choice of the treatment or care model. This grading is done

manually by inspecting patient scans which is time-consuming

and also introduces some level of bias in the final grade assigned

to a patient. Ben Hassen et al. (4) evaluated the inter-and

intraobserver agreement in angiographic leptomeningeal collateral

flow assessment on the ASITN/SIR scale and found an overall

interobserver agreement κ = 0.16 ± 6.5 × 10−3 among 19

observers with grades 0 and 1 being associated with the best results

of κ = 0.52 ± 0.001 and κ = 0.43 ± 0.004 respectively.

By merging the scales into two classes, poor collaterals (grade 0,

1, or 2), versus good collaterals (grade 3 or 4), the interobserver

agreement increased to κ = 0.27 ± 0.014. The same study

recorded maximum intraobserver agreements of κ = 0.74 ± 0.1

and κ = 0.79 ± 0.11 for the ASITN/SIR and dichotomized

scales respectively. McHugh (18) presented a study on interrater

reliability and the kappa statistic as a measure of agreement and

recommended a moderate interobserver agreement of 0.60 ≤ κ ≤

0.79 as a minimum requirement for medical data and study. These

results are evidence of the need to automate the collateral grading

process to achieve speed and consistency in the assigned grading.

Methods for automating the grading of collateral flow have

not yet been properly explored in literature. Kersten-Oertel et al.

(19) presented an automated technique to compute a collateral

circulation score based on differences seen in mean intensities

between left and right cerebral hemispheres in 4D angiography

images and found a good correlation between the computed

score and radiologist score (r2 = 0.71) and good separation

between good and intermediate/poor groups. Grunwald et al. (20)

used a machine learning approach to categorize the degree of

collateral flow in 98 patients who were eligible for mechanical

thrombectomy and generated an e-CTA collateral score (CTA-

CS) for each patient. The experiments showed that the e-CTA

generated improved the intraclass correlation coefficient between

three experienced neuroradiologists from 0.58 (0.46–0.67) to 0.77

(0.66–0.85, p = 0.003).

1.1.3. Reinforcement learning for medical imaging
Defining the region of interest (ROI) is often the first step in

most image-based radiomics pipelines. This is the case because

full patient scans often include artifacts and other information

which are irrelevant and can affect the final outcome of the study.

Therefore, most pipelines propose a manual localization of a ROI

as a preprocessing step. However, it is crucial to define the ROI

in an automated and reproducible fashion in other to achieve a

fully automated pipeline. We propose a reinforcement learning

approach for the localization of the region of interest due to

increased speed and lower training data requirements compared to

other supervised learning approaches.

Reinforcement learning (RL) has become one of the most active

research areas in machine learning and involves the training of

a machine learning agent to make a sequence of reward-based

decisions toward the achievement of a goal through interaction

with the environment. The idea of RL has been long applied

in the field of robotics for robot vision and navigation (21–23)

before the topic became very popular in the image processing

society. RL has been used in the general field of computer vision

mainly for object detection (24–26), image segmentation (27, 28),

and image enhancement (29–31). However, in medical imaging

RL is still in the research phase with very high potential. Netto

et al. (32) presented an overview of medical imaging applications

applying reinforcement learning with a detailed illustration of a use

case involving lung nodules classification which showed promising

results. Sahba et al. (27) implemented an RL based thresholding for

segmenting prostate in ultrasound images with results that showed

high potential for applying RL in medical image segmentation.

Alansary et al. (33) evaluated reinforcement learning agents for

anatomical landmark detection by comparing fixed and multi-scale

search strategies with hierarchical action steps in a coarse-to-fine

manner and achieved a performance better than state-of-the-art

supervised learning methods.

1.2. Main contributions

In this study, we employ parametric information (Tmax, rBF,

rBV) from MR perfusion images of patients with acute ischaemic

stroke and predict the three-level DSA based grading of these

patients based on this functional information. We hypothesize that

the rich information on blood flow visible from MRI perfusion

can be used to predict collateral flow in a similar manner to DSA.

Moreover, we argue that this approach, using 3D information, may

even offer a more reliable biomarker than the interpretation of

DSA images. As collateralization patterns are often unstable and
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may undergo significant changes in the course of minutes, a second

estimate of the activation of collateral flow using MRI—in addition

to the subsequent DSA—will offer better diagnostic information.

We explore machine learning and deep learning methods in

collateral flow grading. We apply deep reinforcement learning,

a variant of RL which combines the power of deep learning

and reinforcement learning, to detect a rigid-sized cube around

the occluded region in an acute ischemic stroke patient scan as

an initial step toward the prediction of cerebral collateral flow

grading. This step is necessary to automate the detection of the

occluded region which improves the accuracy of the prediction.

Reducing the time spent on this task and ensuring that the proposed

methodology is fully automated.

We provide experiments on different feature extraction

strategies including denoising autoencoder (DAE), histogram of

oriented gradient (HOG), and local binary pattern (LBP). The

extracted features are further utilized in a random forest (RF),

K-nearest neighbor (KNN), support vector machine (SVM), and

convolutional neural network (CNN) classifiers for the prediction

of the collateral flow grading. We provide detailed experimental

setup and results which will serve as a guide for further research

in this direction.

2. Methodology

In this section, we will discuss the details of the steps we

employed in predicting the collateral flow grading from MR

perfusion data. Figure 1 shows an overview of the main steps

involved in the classification process. The first step is the detection

of the region of interest (ROI) using reinforcement learning. This

step helps to narrow down the classification task to only the area

which has been occluded from normal blood flow. The second step

deals with extracting features from the ROI. Finally, we feed the

extracted features to a set of classifiers to obtain the collateral flow

grading for the given patient data.

2.1. Deep reinforcement learning for region
of interest detection

The idea of reinforcement learning includes an artificial agent

which is trained to interact with an environment through a

sequence of reward-based decisions toward a specific goal. At

every time step t, the agent takes into account its current state

s and performs an action a in a set of actions A and receives a

reward r which is a measure of how good or bad the action a

is toward the achievement of the set goal. The aim of the agent,

which is to find an optimal policy (set of states, actions, and

rewards) that maximizes the future reward, can be formulated as a

Markov Decision Process. Since Markov Decision Process involves

a large number of possible decision points which are normally not

fully observable, RL approximates the optimal decision function

by iteratively sampling from the set of policies through a process

known as Q-learning.

2.1.1. Q-learning
At time point t and state s, let π = ai

t+T
i=t be a policy that is a

sequence of actions needed by the agent to move from the current

state s to the target. Let Qt be a future discounted reward function

such that

Qt(s,π) =

t+T∑

i=t

γ i−trπ i, (1)

where rπ i is the reward associated with the action ai of policy π at

time t = i, γ ∈ [0, 1] is the future reward discounting factor, and

T is the number of steps needed to reach the target by the chosen

policy π . At any time step t the optimal policy π∗ is the policy that

maximizes the expected value of Qt . This can be represented by an

action-value function Q∗
t (s) defined by

π∗
= Q∗

t (s) = max
π

E[Qt(s,π)] (2)

The optimal value function Q∗
t (s) obeys the Bellman equation,

stating that if the optimal value Q∗
t+1(s) of the next state is known

for all possible policies π , then the optimal behavior is to select the

policy π∗ that maximizes the expected value of rπ t + Qt+1(s,π)

[which follows from setting i = t in Equation (1)]. The action-value

function can therefore be estimated recursively as

Q∗
t (s) = max

π
E[rπ t + Qt+1(s,π)] (3)

If the problem space is small enough then the set of policies

and state can be fully observed and Equation (3) can be used to

determine the optimal policy toward the target. However, in most

cases, the problem space is too complex to explore, and hence

evaluating the future reward for all possible policies is not feasible.

Q∗
t (s) is therefore approximated by a non-linear deep network

Q∗(s, θ) with a set of parameters θ resulting in what is known as

deep Q-learning (34).

2.1.2. Agent state, action definition, and reward
function

Given a 3-D scan as the agent’s environment, a state s is

represented by (sx, sy, sz) which is the top-left corner of a (64 ×

64×64) cube contained in the 3-D scan. We adopt an agent history

approach which involves feeding the last four states visited by the

agent to the network to prevent the agent from getting stuck in a

loop. Since we have a fixed-sized cube as a state our agent’s set of six

actions {mu,md,ml,mr ,mf ,mb} is made up of only movements up,

down, left, right, forward, and backward respectively which enables

the agent to visit all possible locations within the volume. The

agent’s reward for taking an action a is a function of the intersection

over union (IoU) of the target state s∗ and the state before (sab), and

after (saa) taking the action. This is given by

Ra(saa, sab) = sign[IoU(saa, s
∗)− IoU(sab, s

∗)] (4)

where sign is the sign function that returns −1 for all values less

than 0 and 1 otherwise. This leads to a binary reward (r ∈ {−1, 1})

scheme which represents good and bad decisions respectively.

During the training stage, the agent search sequence is terminated

when the IoU of the current agent’s state and the target state is
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FIGURE 1

An overview of the steps involved in predicting collateral flow grading from MR perfusion parametric data. The first step involves a region of interest

detection using reinforcement learning, followed by histogram of gradient (HOG), local binary pattern (LBP), and denoising autoencoder (DEA)

feature extraction schemes and then the classification step which uses random forest (RF), K-nearest neighbor (KNN), support vector machine (SVM),

and convolutional neural network (CNN) classifiers.

greater than or equal to a predefined threshold τ . At test time

the agent is terminated when a sequence of decisions leads to an

oscillation [as proposed by Alansary et al. (33)], that is when the

agent visits one state back and forth for a period of time.

Experiments by Alansary et al. (33) and Navarro et al. (35)

show that deep reinforcement learning has superior performance

in object detection as compared to classical supervised learning,

especially in images with a noisy background. RL agents also

require lesser training data as compared to other supervised

learning methods like CNN. These proven advantages make deep

reinforcement learning the right choice for our limited and

noisy data.

2.2. Feature extraction and classification

Feature extraction methods are used in many machine learning

tasks to either reduce the dimension of the problem or to extract

information from the raw input which would otherwise not be

easily extracted by the underlying classifier. In this work, we

extract two main classes of features—learned features through a

denoising auto-encoder (DAE), and local image descriptors made

up of histogram of oriented gradients (HOG) and local binary

pattern (LBP).

2.2.1. Denoising auto-encoder
An auto-encoder is an unsupervised deep learningmethod used

for dimension reduction, feature extraction, image reconstruction

or denoising and is sometimes also used as a pre-training strategy

in supervised learning networks. An auto-encoder is made up of

two parts: an encoder 8 :X → F which maps an image x ∈ X to

fx ∈ F in the features domain and a decoder 9 :F → X which

maps a feature set f ∈ F to xf ∈ X. The full auto-encoder is

therefore a composite function of the form 9 ◦ 8 :X → X . Let

ŷ = 9(8(x)) for a given input image x ∈ X , then the learning

process of auto-encoder involves finding a pair of {8,9} such that

ŷi = xi for all xi ∈ X . The encoder 8 then becomes the feature

extractor which is used for extracting the needed features.

If the function 8 is invertible, then the learning process can

lead to a trivial solution by just choosing 9 to be the inverse of

8, and 9 ◦ 8 becomes an identity function leading to what is

known as identity-function risk. To prevent this, the input image

x is first corrupted by adding noise before feeding it to 8 leading to

a denoising auto-encoder. We therefore have

ŷ = 9(8(x̃)), x̃ = ϒ(x) (5)

where ϒ is the random image corruption function. We

approximate the encoder and decoder by deep CNNs E(x, θe)

and D(f , θd) parameterized by θe and θd; respectively. Training is

done through back-propagating the Mean Squared Error (MSE) of

the original image x and the reconstructed image ŷ given by

L =
1

N

N∑

i=1

(̂yi − xi)
2 (6)

where N is the number of images in the training set or

training batch. We adopt the V-Net architecture proposed by

Milletari et al. (36) and simplify it by removing the fine-grained

feature forwarding, and reducing the depth of the network due

to limitations on the amount of training data available. The

downsampling layers of the VNET architecture represent the

encoding part [E(x, θe)] of the DAE and the upsampling layers

represent the decoding part [D(f , θd)] of the DAE. Figure 2 shows

an overview of the simplified architecture used for extracting the

DAE features.

Frontiers inNeurology 05 frontiersin.org4546

https://doi.org/10.3389/fneur.2023.1039693
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Tetteh et al. 10.3389/fneur.2023.1039693

FIGURE 2

The network architecture used for extracting the DAE features. The downsampling layer is a convolution with a stride of (2× 2× 2) which

downsamples the input volume to half of the size on every axes. The upsampling layer is a transposed convolution with a stride of (2× 2× 2) which

doubles the size of the input on every axes.

2.2.2. Local image descriptors and classifiers
We consider two types of local image descriptors - histograms

of oriented gradients (HOG) and a local binary pattern (LBP).

Given a volume X, we extract the LBP encoding of each voxel by

thresholding its 3×3×3 neighborhood by the intensity value p∗ of

the center voxel which results in 26 long bits b0, b1, b2, ..., b25 where

bi = {1, if pi ≥ p∗, 0 otherwise} and pi is the intensity value of the

ith neighbor. We then concatenate the binary encoding to a single

binary number b0b1b2...b25 and then into a decimal value which

results in 225 possible binary codes. Details of the implementation

until this point can be found in Heikklä and Pietikäinen (37). We

group the codes into two main classes—uniform codes which have

at most two binary transitions and non-uniform codes which have

more than two binary transitions. A binary transition is a switch

from 0 to 1 or vice versa. For example the codes 0000, 000111,

011100, and 110110 have zero, one, two, and three transitions

respectively. To handle noisy data and to reduce the feature space,

we group all the non-uniform codes into one class and add it to the

uniform codes resulting in 927 codes instead of 225 . Finally, the

histogram distribution of the individual codes is extracted as the

LBP feature representation for the volume X.

We also explore the HOG feature extractor based on the

method proposed in Klas̈er et al. (38). Given a volume X, we

quantize gradient orientations over an icosahedron and merge

opposite directions in one bin resulting in 10 gradient orientations.

The gradient for each voxel xi ∈ X is obtained by convolving the

5×5×5 neighborhood of the voxel by gradient filters kx , ky , and kz
of the same size, giving us a gradient vector−→x i ∈ R

3. The gradient

filters are zero everywhere except for the center columns along the

respective axes kx(i, 3, 3) = ky(3, i, 3) = kz(3, 3, i) = [1, 0,−2, 0, 1]

for i ∈ {1, 2, ..., 5}. The gradient vectors −→x i are then projected

to the gradient orientations and a histogram representation of

these orientations are obtained and used as the HOG feature

representation of the volume X.

We run experiments with four machine learning classifiers

on each of the features extracted. We implement Convolutional

Neural Network (CNN), Random Forest (RF), Support Vector

Machine (SVM), and K-Nearest Neighbor (KNN) classifiers. Our

CNN classifier in Figure 3 has four convolutional layers, aimed at

extracting local image features, followed by two fully connected

layers and a sigmoid layer for classification. Each layer is followed

by a non-linear hyperbolic tangent (tanh) activation function. For

classification based on theHOG, LBP, andDEA features, we remove

the convolutional layers and feed the features directly to the fully

connected layers and then the sigmoid layer for the classification.

For the RF, SVM, and KNN classifiers we use the implementation

of these classifiers from the Scikit-Learn library (39) in python.

3. Experiments and results

3.1. Patient population and image data

We test our proposed methods on parametric volumes

extracted from MR perfusion data from 183 patients with acute

ischemic stroke. Details of the image acquisition and preparation

are already published by Pinto et al. (40). Our dataset is made up

of three parametric information—Tmax volumes which refer to the

time taken for the blood flow to reach its peak, relative blood flow

(rBF) volumes which refer to the volume of blood passing through a

given brain tissue per unit of time, and relative blood volume (rBV)

defined as the volume of blood in a given brain tissue relative to

an internal control (e.g., normal white matter or an arterial input

function). Each volume has a resolution of (0.9, 0.9, and 6.5 mm)
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FIGURE 3

The CNN architecture used in the classification task. Convolutional layers are made up of (5× 5× 5) kernels with a stride of (2× 2× 2) which reduces

the volume by half of the input size on each layer. The first two layers extract 2 feature cubes and the last two layers extract 4 feature cubes each.

The fully connected layers have 64 and 32 hidden nodes respectively and the convolutional and fully connected layers are followed by a non-linear

hyperbolic tangent (tanh) activation function.

and a dimension of (256, 256, and 19) voxels on the sagittal, coronal

and axial planes respectively. Ground truth labels are obtained from

a trained neuroradiologist, with over ten years of experience, who

manually investigates the DSA slides of the associated patient and

assigns one of three labels (0-poor, 1-medium, 2-good) to this

patient. We use these labels for a 3-class prediction experiment

and we also experiment on a risk-stratified nested test where we

first predict good - (2) against not good (0, 1) collaterals and then

separate the not good class into poor (0) andmedium (1) collaterals

in a cascaded approach.

3.2. Preprocessing

Our image preprocessing involves two main tasks. First, we

make our datasets isotropic by applying a B-spline interpolation to

the axial axis since the other two axes have the same spacing leading

to volume with a resolution of 0.9 mm on each plane and a new

dimension of (256, 256, and 127). This is followed by an extraction

of the brain region from the skull using the brain extraction tool

(BET) from the ANTS library. The brain extraction is carried out

on the Tmax volumes and the resulting mask is then applied to the

rBF and rBV volumes.

3.3. Region of interest localization

After the preprocessing step we extract the occluded regions

as the region of interest (ROI) using the reinforcement learning

architecture described in Section 2.1. We adopt the network

architecture from Alansary et al. (33) with modifications proposed

in Navarro et al. (35). A stopping criterion of τ = 0.85 is used

during training—that is, an intersection over union (IoU) value

greater than or equal to 0.85 implies that the region of interest is

detected. We perform the ROI detection task on the Tmax volumes

since the occluded regions are easier to detect in these volumes. The

TABLE 1 Quantitative results from the region of interest detection task.

Type Class Mean Std Max Min

IoU 0 0.49 0.22 0.79 0.08

1 0.52 0.14 0.81 0.09

2 0.42 0.21 0.81 0.04

Center points

displacement (in

voxels)

0 20 13 51 5

1 17 9 52 4

2 23 14 63 5

IoU refers to the intersection over union ratio between the prediction and the ground truth.

Center point displacement is the euclidean distance between the predicted center point and

the ground truth center point.

resulting cube region is then applied on the rBF and rBV volumes

to extract the corresponding cubes in these volumes as well. For

each volume, we select 20 starting cubes of size (64 × 64 × 64)

at random and run the agent till the stopping criterion is reached.

We then aggregate the results from the 20 different runs to get the

prediction of the final ROI. After getting the region we extract the

mirror of the ROI (ROI+M) by reflecting the ROI on the opposite

side of the brain and using it as an additional feature. This results

in 6 cubes per patient (i.e., two volumes each from Tmax , rBF, and

rBV volumes). Qualitative and quantitative results from the region

of interest extraction can be found in Table 1 and Figures 4, 5. From

the box plots in Figure 5, it is evident that the region of interest

detection was more successful in the poor collateral flow classes

(class 0 and 1) than in the good collateral flow class. This can be

explained by the fact that in cases of good collateral flow, there is a

uniform distribution of the Tmax value within the occluded region

and its neighborhood making it hard for the RL agent to detect

the ROI. From Figure 4 we observe that in most cases the ground

truth does not cover the total occluded region [e.g., column (b)] and

hence the predicted ROI, though does not completely overlap the

ground truth, still contains other parts of the occluded region which
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FIGURE 4

Qualitative results from the ROI detection task. The top row is the axial view of the ground truth (in red) and the prediction (in green). The bottom

row is a 3-D visualization of the ground truth cube (in red), the predicted cube (in green), and the intersection between the two (in blue). Column (A)

corresponds to the worst prediction in our test set while column (C) refers to the best result in terms of IoU. In column (B), we can observe that

though the overlap is not perfect the prediction still contains some part of the occluded region which is not in the ground truth. This implies that

though we have poor scores we still have good ROI detection which can be used for the classification task.

FIGURE 5

Box plots of results from ROI detection task. Left is the intersection over union (IoU) ratio between the prediction and the ground truth over the three

classes. Right is the euclidean distance between the predicted center point and the ground truth center point. From the distributions, it is clear that it

is easy to detect the ROI in the poor collateral flow class (class 0) compared to the good collateral flow class (class 2). This can be explained by the

fact that in good collateral flow cases Tmax shows uniform values in the whole volume.
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FIGURE 6

Sample of extracted features using Local Binary Pattern (LBP) on the left and Histogram of Oriented Gradients (HOG) on the right. Bar heights from

LBP features represent the frequency of a given pattern and the position on the x-axis is the decimal representation of the binary pattern. Arrow

directions in HOG features are the gradient vectors and the length of the arrows represents the frequency of the given gradient. The LBP features

show a uniform distribution of the extracted patterns with no dominant pattern. The HOG features on the other hand show evidence of high

gradients in the extracted region of interest.

TABLE 2 Results from preliminary experiments on collateral flow grading.

Type Method RAW ROI ROI+M DAE HOG LBP

Three classes CNN+MLP 0.51(±0.04) 0.63(±0.06) 0.65(±0.03) 0.50(±0.07) 0.38(±0.13) 0.25(±0.14)

RF 0.51(±0.02) 0.65(±0.04) 0.67(±0.05) 0.66(±0.04) 0.69(±0.02) 0.60(±0.05)

KNN 0.48(±0.10) 0.54(±0.02) 0.58(±0.05) 0.55(±0.06) 0.59(±0.02) 0.43(±0.04)

SVM 0.56(±0.04) 0.66(±0.05) 0.70(± 0.03) 0.70(±0.04) 0.53(±0.02) 0.25(±0.15)

Cascaded (two

step)

CNN+MLP 0.55(±0.01) 0.72(± 0.05) 0.70(±0.04) 0.66(±0.05) 0.54(±0.02) 0.21(±0.13)

RF 0.47(±0.07) 0.67(±0.03) 0.64(±0.03) 0.65(±0.04) 0.70(±0.03) 0.56(±0.07)

KNN 0.44(±0.04) 0.55(±0.06) 0.56(±0.07) 0.52(±0.08) 0.60(±0.05) 0.48(±0.08)

SVM 0.38(±0.02) 0.51(±0.04) 0.46(±0.04) 0.51(±0.04) 0.46(±0.04) 0.10(±0.00)

RAW features refer to the full-sized three parametric volumes (Tmax , rBF, and rBV) after skullstripping. ROI refers to the corresponding cubes extracted from the parametric volumes based on

the manually annotated ROI and ROI+M is the ROI combined with its mirror cube on the opposite side of the brain. Other features (DEA, HOG, and LBP) are all extracted from the ROI cubes.

Scores represent mean accuracy over the 5-fold cross-validation experiments with their corresponding standard deviation in parenthesis.

Values in bold refer to the feature-classifier combination with the highest accuracy under each experiment type.

is not captured in the ground truth and it is therefore sufficiently

accurate for the classification task.

3.4. Classification

3.4.1. Feature representations
In total three sets of features (DAE, HOG, and LBP) are

extracted in addition to the actual extracted cube (ROI) and its

mirror cube (ROI+M). We learn features automatically through

an unsupervised denoising auto-encoder. The network takes the

extracted ROI cubes from the Tmax, rBV, and rBF volumes as three

input channels and produces a single channel feature set of size

(8 × 8 × 8). We normalize the cubes individually into the range

[0, 1] before feeding them to the network.

For HOG features we extract 10 features each for the three

parametric volumes and concatenate them into a vector of length 30

for the classification task. Figure 6 shows a sample of the extracted

HOG features for a patient for the three input channels. Finally,

LBP features are extracted using the method described in Section

2.2. Here we combine all the three channels and run the histogram

over the three channels which results in a 927 feature vector as

explained in Section 2.2. Figure 6 shows a sample of the extracted

LBP features from our dataset.

3.4.2. Classifier training
We handle the collateral flow classification through two main

approaches—a three-class multi-label classification task where we

predict three labels in one step, and a two-step cascaded approach

where we predict a binary label of classes (0, 1) against 2 in the

first step and separate the class 0 from 1 in the second step.

We implement our CNN architecture using the Keras library

(41) in python with TensorFlow as the backend. Random forest,

support vector machine, and K-nearest neighbor classifiers were
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implemented using the scikit-learn library (39) in python. We set

up our experiments as follows:

CNN classifier: For the CNN classifier, we use a weighted

categorical cross-entropy with a weight of 1
|k|

for each class k in

the training set. A stochastic gradient descent optimizer with a

learning rate of 0.001, decay of 1e−6, and momentum of 0.9 is used

to fine-tune the network parameters at 20 epochs.

K-Nearest neighbor classifier: We conduct preliminary a

experiment with a grid search to know which parameters will work

best. For our final experiment, we use k = 3 neighbors with

uniform weights, a leaf size of 30, and the Minkowski metric.

Random forest classifier: After the initial grid search

experiment, we implement the classifier with 200 estimators, and

the Gini impurity function is used to measure the quality of a split.

Support vector machine classifier: We use a regularization

parameter C = 10, a third-degree polynomial kernel, a balanced

class weight, and a tolerance of 1e−3 for the stopping criterion.

3.4.3. Classification results
We test different combinations of the feature sets extracted in

the previous experiments and classifiers discussed in a preliminary

experiment and present the results in Table 2. Due to limitations in

the size of the dataset, we adopt a 5-fold cross-validation approach

in a preliminary experiment instead of a training-validation-test

splitting approach and report the average scores over the accuracy

in the individual validations. In the preliminary experiments

(results in Table 2), we use the manually annotated ROI and not

the ROI predicted from the proposed reinforcement learning. We

later, in a follow-up experiment, compare the performance of the

proposed CNN on manually annotated ROI and the predicted ROI

(results in Table 3).

The results in Table 2 show that the region of interest extraction

step helps improve the results in all classification methods. This

can be verified by comparing the performance from the full image

(RAW column) with the performance of the region of interest (ROI

column) in Table 2. Also by adding the mirror of the occluded

region to the extracted ROI (ROI+M) we achieve improved results

in most of the classifiers with performance falling in classifiers

like KNN and SVM due to the increase in the dimension of data

introduced by the mirror of the ROI. The cascaded method shows

higher accuracy in almost all the classifier-feature combinations

when compared to the direct three-class prediction. This can be

explained by the distribution of classes in the dataset. That is,

for the cascaded approach we have fairly balanced data when we

combine poor andmoderate flow against good collateral flowwhich

is not the case with the direct three-class multi-label prediction

approach. It, therefore, suggests that in cases where we have highly

imbalanced class distributions a multi-label classification might

perform poorly. The overall performance of CNN is better than

the other machine learning classifiers and can be explained by

the fact that the convolutional layers of the CNN architecture

extract features while paying attention to the class of the input

data. This makes the feature extraction process more efficient than

the other feature extraction schemes which have no knowledge of

the underlying label of the input data at the time of extracting the

features. Again CNN with only ROI data performs slightly better

TABLE 3 Results from the experiment on collateral flow grading using

only ROI data on our proposed cascaded CNN.

Input data Binary Three classes

Manual ROI 0.84 0.74

Automated ROI 0.80 0.72

Manual ROI refers to the ground truth ROI and automated ROI refers to the predicted ROI

from our proposed Reinforcement Learning approach. Binary refers to the result from the first

binary classification (i.e., {0,1} vs. 2) and three classes is the three-class classification based on

the cascaded networks.

than with the mirror of the ROI (72 vs. 70% in Table 2) and this can

also be explained by the fact that the CNN used in our experiments

is fairly shallow and hence could not handle the additional feature

dimensions introduced by the mirrored images.

Based on the results of the preliminary experiment, we further

probe into the training of the proposed CNN classifier with the

ROI data. In this experiment, we split the data into training and

testing sets. The test set is made up of 50 volumes randomly selected

with reference to the ratio of class count in the entire dataset. We

make use of both the manually annotated ROI and the automated

ROI from our proposed Reinforcement Learning approach during

training. We finally evaluate the trained models on the automated

ROI and compare it with the same network trained and evaluated

solely on the manually annotated ROI data. Table 3 shows the result

of this experiment.

The results in Table 3 from our follow-up experiment show that

the automated ROI from the proposed Reinforcement Learning

approach is comparable to the manually detected ROI in terms of

predicting collateral flow (2% drop in accuracy which represents

one out of the 50 patients in the test set). This is crucial in

automating the whole collateral flow prediction workflow in a

clinical setting.

4. Summary and conclusion

In this work, we present a deep learning approach toward

grading collateral flow in ischemic stroke patients based on

parametric information extracted from MR perfusion data. We

start by extracting regions of interest using deep reinforcement

learning. We then learn denoising auto-encoder features and

modern implementation of 3-D HOG and LBP features. We

proceed to the actual classification task using a combination of the

extracted features and CNN, random forest, K-nearest neighbor,

and support vector machine classifiers.

Our experiments show that the rich information on blood

flow visible from MRI perfusion can be used to predict collateral

flow in a similar manner to DSA images which are invasive in

nature. Region of interest detection with reinforcement learning

is successful to an acceptable level and can be used as a guide to

estimate the region in the brain which requires more attention.

It is evident that high class imbalance can be a major challenge

in the collateral flow grading task and many similar works. We

however show that for datasets with high class imbalance, a two-

step cascaded classification approach performs better than a one-

time multi-label classification method. It is also evident from our

results that a direct CNN classifier is able to extract relevant features
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from the region of interest and has an advantage over classical

machine learning classifiers like RF, KNN, and SVM that depend

on handcrafted features like HOG and LBP.

Collateral flow grading is an essential clinical procedure in

the treatment of ischemic stroke patients. We have presented

a framework for automating the process in clinical setup and

have achieved promising results given our limited dataset. For

the proposed framework to be clinically useful there is the need

for further tests with possibly more data from multiple stroke

centers. The grading can also be customized for specific patient

groups for example providing information about age group,

gender, and other biographical and historical information of

patients as an additional feature can help improve the result of

the framework.
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Introduction: Computed tomography perfusion (CTP) imaging is widely used in

cases of suspected acute ischemic stroke to positively identify ischemia and assess

suitability for treatment through identification of reversible and irreversible tissue

injury. Traditionally, this has been done via setting single perfusion thresholds

on two or four CTP parameter maps. We present an alternative model for the

estimation of tissue fate using multiple perfusion measures simultaneously.

Methods: We used machine learning (ML) models based on four di�erent

algorithms, combining four CTP measures (cerebral blood flow, cerebral blood

volume, mean transit time and delay time) plus 3D-neighborhood (patch) analysis

to predict the acute ischemic core and perfusion lesion volumes. The model was

developed using 86 patient images, and then tested further on 22 images.

Results: XGBoost was the highest-performing algorithm. With standard

threshold-based core and penumbra measures as the reference, the model

demonstrated moderate agreement in segmenting core and penumbra on test

images. Dice similarity coe�cients for core and penumbra were 0.38 ± 0.26 and

0.50± 0.21, respectively, demonstratingmoderate agreement. Skull-related image

artefacts contributed to lower accuracy.

Discussion: Further development may enable us to move beyond the current

overly simplistic core and penumbra definitions using single thresholds where a

single error or artefact may lead to substantial error.

KEYWORDS

acute ischemic stroke, CT perfusion imaging, machine learning, ischemic core, penumbra

1. Introduction

Rapid diagnosis of acute ischemic stroke is of vital importance and is confirmed by

computed tomography (CT) or magnetic resonance (MR) imaging. Historically improved

patient outcomes were obtained by early reperfusion treatment, with significant effort

and resources being provided to improve both stroke detection and clinical workflows to

facilitate faster treatment (1–3). Recently, clinical trials have demonstrated that patients

with a favorable perfusion imaging profile benefit from treatment up to 9 h from symptom

onset/mid-point of wake-up with thrombolysis and up to 24 h with thrombectomy (4–7).

Perfusion imaging allows estimation of salvageable brain tissue (penumbra) and tissue
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already infarcted or destined for infarction irrespective of

reperfusion (ischemic core) (4, 7–11). Patient outcomes have been

shown to be strongly related to the estimated volume of ischemic

core at baseline (12, 13). As a result, CT perfusion (CTP) is

increasingly being used in clinical practice around the world,

with several software providing automated estimates of salvageable

and ischemic core derived through various mathematical models

(hemodynamic maps) (14, 15).

The hemodynamic maps generated by CTP are obtained by

tracking a contrast medium as it flows into and out of the brain.

The data is then processed using one of several different algorithms

(14, 15). The estimation of salvageable tissue and ischemic core

is then performed by applying a single threshold to one or two

maps (9, 16, 17). However, there is significant variation between

algorithms used when estimating tissue perfusion, and single-value

thresholds have been shown to both under and overestimate the size

of the infarct core and penumbra (18, 19). This may be partly due

to the misclassification of image voxels as core or penumbra that

results from single-value thresholding of core and penumbra. More

sophisticated methods of processing CTP maps are required that

can, for example, delineate artifactual signals from those caused by

perfusion deficit.

The currently used perfusion thresholds have been validated

to some degree and have shown success in selecting patients for

treatment through clinical trials (6). However, a predictive model

that uses all available perfusion data and spatial context of voxels

may provide amore nuanced representation of the pathophysiology

of evolving ischemic stroke, improving the accuracy of the images

and the robustness of the output. Furthermore, shifting from a rigid

single threshold model to a trained Machine Learning (ML) model

is highly advantageous as the ML model may continue to improve

performance with the addition of data.

There are many studies that develop and test ML and Deep

Learning (DL) models for lesion segmentation and there have

been great advances in developing applications of ML and DL to

healthcare in general [e.g., (20, 21)]. However, there are challenges

in widespread deployment such as lack of standardized methods

to evaluate performance. Furthermore, the inner mathematical

processes of ML and DL are often difficult to understand, and

their outputs difficult to interpret. These issues of “explainability”

and “interpretability” lead to ML being approached as a “black

box” problem, without understanding of internal mechanisms.

This has hampered implementation into medical practice. It is

therefore essential to integrate ML in small, explainable steps

rather than large, black-box overhauls that will result in issues

of reliability (22). In this study we investigate if single-value

thresholds for measurement of ischemic core and penumbra can

be replaced with a ML-based method. We also outline challenges

that must be addressed for successful integration into acute stroke

assessment protocols.

2. Materials and methods

We developed an early ML model that is trained to delineate

both ischemic core and penumbra from surrounding tissue using

acute CTP data. We used retrospective data from an acute

ischemic stroke patient cohort to develop models based on four

ML algorithms (Logistic regression, Random Forest, XGBoost and

Support Vector Machine). We tested performance of the model on

an additional set of new, unseen patient data.

2.1. Data acquisition

We analyzed CTP images from the International Stroke

Perfusion Imaging Registry (INSPIRE), which is a database of

acute stroke perfusion imaging and associated clinical information.

For this study we used consecutive patients presenting with acute

ischemic stroke who had whole brain CTP and who were recruited

into INSPIRE between 2010 and 2017 at the John Hunter Hospital,

Newcastle, Australia. For standardization, only one site was used at

this stage. As is routine in INSPIRE, patients all underwent baseline

multimodal CT imaging with non-contrast CT, CTA, and CTP.

Written informed consent was obtained from all participants, and

the INSPIRE study was approved by the site’s ethics committee (23).

To obtain the perfusion images, a total of 19 acquisitions

occurred over 60 s. The CTP data were processed by commercial

software MIStar (Apollo Medical Imaging Technology, Melbourne,

VIC, Australia). CTP parameters were generated by applying the

mathematical algorithm of singular value decomposition with

delay and dispersion correction (24). The following four CTP

parameters were generated: cerebral blood flow (CBF), cerebral

blood volume (CBV), mean transit time (MTT), and delay time

(DT). The penumbra and core volumes were defined with dual

thresholds: DT at the threshold of 3 s for total ischemic lesion

volume and CBF at the threshold setting of 30% for acute core

volume (8, 16, 25). After single-value thresholding, core/penumbra

areas were limited to a single lesion and artifactual or erroneous

regions were removed. The resulting map was used as the ground

truth (GT). Core/penumbra were reviewed by experts to ensure

they were accurate.

To develop the model, we used 86 acute ischemic stroke

patients with a large vessel occlusion (LVO): M1 segment of the

middle cerebral artery (MCA) or internal carotid artery (ICA). To

provide additional testing and external validation, 25 patients were

used, with both LVO and non-LVO occlusions. This was done to

observe whether a model trained only on lesions resulting from

an occlusion of large vessel will perform as well when testing on

a variety of occlusion sites. Each patient in the test set underwent

follow-up MR diffusion-weighted imaging (DWI) between 24 and

72 h after onset. The volume (mL) of the infarct core, as estimated

by MR-DWI, was recorded and used for external validation. On

follow-up imaging, all patients had a thrombolysis in cerebral

infarction (TICI) score of at least 2b, indicating relatively complete

reperfusion of initially hypoperfused regions. In these cases, the

volume of the acute CTP core should more closely match that of

the follow-up infarct core and could therefore be used to validate

the predictions.

2.2. Creating labeled data

2.2.1. Class labels
The four hemodynamic maps (hereafter referred to as features)

and core-penumbra segmentation maps (hereafter referred to as

lesion map) were used in the development of the algorithm. The
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FIGURE 1

Feature maps and lesion map corresponding to the M1 test image. A single axial slice is shown with corresponding perfusion data for delay time (DT),

cerebral blood flow (CBF), mean transit time (MTT) and cerebral blood volume (CBV). The corresponding class labels which make up the lesion map,

used as ground truth (GT) in the algorithm, is shown on the far right.

FIGURE 2

Construction of training matrix through sampling and patch

extraction. For a given randomly selected sample (shown in dark

blue), its corresponding perfusion map value/s and the values

corresponding to its 26 immediate neighbors are collapsed into a

1-dimensional array, with the corresponding class label (yellow)

added at the furthermost right position. If multiple perfusion maps

are used, the 27 values from each map are recursively added to

extend the 1-D array to the left of the class label. The 1-D array for

each label are stacked to form a 2-D training matrix.

lesion map, together with the spatial coordinates of the mean

baseline image from the CTP acquisition, was used to create a 3-D

array of tissue class labels, where each voxel was one of four values:

0—background; 1—non-ischemic brain tissue; 2—penumbra; 3—

core). Figure 1 shows the features alongside their class label array

for a single patient.

2.2.2. Under-sampling
For this early model, we avoided the issue of class imbalance by

sampling the same number of voxels from each class in each image.

We processed all lesion maps in the training data, counting the

number of voxels belonging to each class. The smallest core volume

contained 708 voxels and the smallest penumbra volume contained

8,436 voxels, and two images in the group had a penumbra but

no core. We then randomly sampled 300 voxels from each class

in each image. For the two images with no core, 300 extra healthy

tissue samples were randomly taken from the image, ensuring 1,200

voxels were sampled from each feature channel.

2.2.3. Patch analysis
To predict the tissue status of a single sample (i.e., voxel

of interest), we included the feature values associated with the

coordinates of that voxel as well as the values associated with

every direct neighboring voxel (26 in total), creating a patch-

wise analysis. This was done to include spatial context in the

determination of sample tissue status. Zero padding was used

for samples that lay around the edges of the image. Figure 2

demonstrates this process for a single voxel of interest, where a 1-D

array is created from the sample and its neighbors. Each sample

resides in a single row of the training matrix, alongside its class

label. All feature channels are concatenated along the same row.

2.3. Machine learning models

The sampled training data was further split into training (60%)

and validation (40%) cohorts. Optimization and training were

performed on the training data and evaluation was performed on

the validation data. All data was standardized to [−1, 1] using the

Standard Scalar function in Scikit-Learn in Python (v 0.0) (26).

We used Scikit-learn to optimize four models, based on

logistic regression (LR), random forest (RF), XGBoost (XGB) and

support vector machine (SVM), respectively. Except for SVM, a

randomized search was initially performed, to estimate the best

hyperparameters for each algorithm, after which a grid search

was performed to narrow down the best hyperparameters. The

chosen range for each hyperparameter was determined based on

recommendations in Scikit-learn documentation. For each unique

parameter combination, three-fold cross validation was performed.

2.4. Impact of added features

For this early model, we wished to determine whether

performance was enhanced by including all four CTPmaps vs. CBF

and Delay Time alone. In particular, we wish to learn whether using

four maps reduced the presence of artifactual perfusion lesions.

Therefore, each model was trained twice; first with data only from
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CBF andDelay Time and then on data fromCBF, Delay Time,MTT

and CBV.

2.5. Performance evaluation

All the data used to train and optimize the model comprised

random samples from images. However, the model will ultimately

be used to process whole patient images and provide a prediction

that can be displayed as an image. Therefore, we used an

additional 25 whole brain patient images to further test the model’s

performance as it would be applied in a clinical scenario, and

to provide a visualization of the model’s accuracy. The images

were processed as follows: from each voxel in the image, a 3D

neighborhood patch was extracted and added to a matrix as in

Figure 2. Each 3D patch from the image was forwarded through

the model, and the resulting predictions were accumulated in a

common space, preserving their spatial location and allowing the

image to be reconstructed.

2.5.1. Quantitative performance evaluation
The predictive model was trained using random samples,

evenly distributed among the classes. For the test images,

however, classes were severely imbalanced. Using receiver-

operating characteristics (ROC) or average accuracy would favor

the majority class and it is the minority classes that are of interest

in this case. Furthermore, the area under the ROC curve (AUC)

metric rewards positively predicted background pixels. Therefore,

it is not a fair representation of the accuracy of a brain lesion

segmentation, whereby background pixels constitute much of the

image. For this reason, it was more appropriate to choose a metric

more in line with perceptual quality, which reflects both size and

localization agreement.

The Dice similarity coefficient (DSC) is a measure of spatial

overlap for two regions (A, B), and is given by DSC (A, B) =

2 (A ∩ B) /(A+ B), where ∩ is the intersection. It can be seen as

the percentage overlap between A and B. A perfect intersection

between A and B will give a DSC of 1, and if there is no intersection

between the two regions, the score is 0. DSC is sensitive to both

size and location differences and is a highly intuitive manner of

expressing similarity between two regions. We calculated the DSC

between the ground truth and predicted images for the core and

penumbra regions separately. After (27), DSC can be separated

in a similar manner to the Kappa coefficient for agreement, into

the following six categories (28, 29): 0, “No Agreement”, 0–0.2,

“Slight agreement”; 0.2–0.4, “Fair agreement”; 0.4–0.6, “Moderate

agreement”; 0.6–0.8; “Substantial agreement”; “0.8–1”; “Almost

perfect agreement”.

The Jaccard Index (JI), also known as the Intersection of Union

(IoU), like the DSC, ranges from 0 (no agreement) to 1 (perfect

agreement). The JI is mathematically represented by IoU(A, B) =

A ∩ B / A ∪ B, where ∪ is the union. The relationship between JI

and DSC can therefore be described as JI = DSC /(2− DSC ). The

DSC tends to be higher as it counts the true positive classifications

twice in both the numerator and denominator of its equation, while

the JI gives a greater penalty for bad classifications. Therefore,

providing an average score over a set of classification will lead the

average DSC and average JI to diverge from one another. The two

metrics will always be positively correlated, however, we found it

worthwhile to analyse the distinction as both are used throughout

literature to evaluate segmentation tasks. The DSC and JI values for

each the core and penumbra were calculated for all 25 images, and

the differences between them were evaluated using paired t-tests.

Finally, lesion volume, one of the most important predictors

of outcome after ischemic stroke, was calculated for the additional

test images. The volumes of the core and penumbra were

calculated for each of the ground truth and the predicted lesion

by counting the number of voxels assigned to each area (30).

Using pixel information encoded in the image, the absolute volume

in milliliters could be calculated. As an external validation, the

predicted core volume was compared with the follow-up (24–72h)

infarct core derived from MR-DWI imaging and reviewed by the

expert stroke neurologist (MP).

2.5.2. Qualitative performance evaluation
We identified eleven images within the cohort affected by

artifacts relating to the skull. In brain CT imaging, beam hardening

from the dense skull region or, to a lesser degree, contrast-enhanced

arteries, may result in a characteristic “streaking” artifact (31).

When the skull, a highly attenuating region is adjacent to less

attenuating tissue, such as soft tissue, and there is limited CT

resolution, partial volume averaging may also occur. Here, the

image intensity of affected voxels is a mixture, or an average,

or the intensity of both these regions (32). Figure 3 shows an

example of the partial volume artifact in Subject 3. Upon CTP

processing, such voxels near the edge of the brain shows increased

Delay Time. However, these artifacts are common and, if the

image is otherwise of good quality, artifactual perfusion lesions

are easy to identify to the trained eye. Therefore, we did not

exclude these cases from the study and instead prefer to investigate

the impact of artifact on model performance. We qualitatively

compared the ability of the algorithms to make a correct prediction

around those areas, based on both the inclusion of all four CTP

maps and the additional spatial information provided by the

3D patches.

3. Results

For the training set, 55 patients had an occlusion of the

M1 segment of the middle cerebral artery (MCA), and 31 had

an occlusion of the internal carotid artery (ICA). Forty-three

patients were female (50%), and the median onset age was 74

(IQR 63–82). The median baseline NIHSS (National Institutes of

Health Stroke Scale) was 17 (IQR 14–20). Of these, 70 patients

had a known time of onset; the median time between onset

and CT imaging was 121min (IQR 95–157). One patient had

a wake-up stroke, and 15 patients had an unknown time of

onset. Seventy-six patients received intravenous (IV) thrombolysis,

one received intraarterial (IA) thrombectomy, two received both,

five received no treatment and two patients did not have any

treatment documented.
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FIGURE 3

Skull artifacts. For subject 3, skull artifacts can be seen in their (A) Delay time and (B) CBF maps near the top of the skull.

TABLE 1 Class representations across the training and validation cohorts.

Background Non-
ischemic
brain

Core Penumbra

Train 15,485 15,870 15,141 15,424

Validation 10,315 10,530 10,059 10,376

Total 25,800 26,400 25,200 25,800

Samples were split into these categories using Scikit-Learn (26).

This was done to ensure the model did not bias any class.

Three patients were discarded from the test set due to

considerable infarct growth. For the remaining patients in the test

set, 16 patients had an M2-MCA occlusion, four had an M3-MCA

occlusion, and one each with an occlusion of the anterior cerebral

artery (ACA) and ICA. Thirteen patients (59%) were female, and

the median onset age was 79 (IQR 74–83). The median baseline

NIHSS was 11 (IQR 6–16). In total, 20 patients had a known

time of onset; the median time between onset and CT imaging for

these patients was 110min (IQR 96–168). The remaining patients

had an unknown time of onset. Of all the patients in the test

set, 20 received IV treatment, one received IA treatment and

one received no treatment. Sixteen were given a TICI 3 score,

and 6 were given a TICI 2b score. The median day of DWI

image after stroke onset was 1 (IQR 1–2, min-max 0–12). The

median size of the follow-up DWI core was as 10mL (IQR 6–

33). A Pearson correlation test shown a strong correlation (p <

0.005, two tailed) between the data used for the ground truth core

measurement and the expert assessed MR-DWI measurements for

core volume.

For model development, a total of 103,200 patch samples was

used. Table 1 shows the class instances for the train and validation

groups used to develop the model.

Table 2 shows details of optimizing each model. Each model

was trained using six computer processing units (CPU) in parallel.

For SVM, only a random search for the two-map model was

carried due to the excessive training times (>22 h), and only

polynomial and linear kernels were tested, with the polynomial

kernel outperforming the linear kernel. Table 3 shows results

for each model on the under-sampled data. XGBoost was the

highest performing algorithm, and there was an improvement in

performance when all four CTP maps were included.

The performance of the best performing model (shown in bold

in Table 3) was tested on the remaining 22 images in the test

set. The results are shown in Supplementary Table A1. Figure 4

shows axial slices of lesion predictions (overlayed on non-contrast

CT image slices) using the model based on all four CTP maps

for a selection of datasets (subjects 7, 8, and 1 with reference to

Supplementary Table A1).

For all 22 patients, the meanDSC values for core and penumbra

were 0.39 (SD 0.26) and 0.50 (SD 0.22), respectively, and the mean

JI values for core and penumbra were 0.28 (SD 0.23) and 0.36 (SD

0.20), respectively. For both core and penumbra, JI and DSC were

significantly different across the dataset (core: paired t-test, p <

0.0001; penumbra: paired t-test, p < 0.0001).

To explore the difference between performance on core and

penumbra, a volume analysis was performed. Each similarity

measured varied significantly with volume: A Pearson’s correlation

for DSC variation with volume showed (r = 0.56, p = 0.0065) for

penumbra and (r = 0.71, p = 0.0002) for core. For JI a Pearson’s

correlation calculation showed (r= 0.61, p= 0.0028) for penumbra

and (r= 0.72, p < 0.0002) for core.

Out of the 22 testing images, 16 lesions were due to an occlusion

of the M2 segment of the MCA. The DSC scores for core and

penumbra averaged to 0.34 (SD 0.23) and 0.50± 0.20, respectively.

The mean volume of core and penumbra for M2 lesions was

9.89mL (SD 8.17) and 38.34mL (SD 22.5), respectively, lower as

compared with the entire testing set.

There was no significant correlation between the XGB-

predicted core and the 24 h DWI infarct core (Pearson’s r; r =

0.18, p= 0.41). However, visual inspection confirmed that artifacts

due to the skull were present in half the cases (n = 11) and

led to overestimation of perfusion regions. When considering the

test cases with no obvious skull artifacts, there was a significant

correlation between the predicted core and the follow-up DWI
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TABLE 2 Details of model training.

Algorithm #Parameters
optimized

#Candidates in
random search

Time taken (2 map,
4 map)

#Candidates in
grid search

Time taken (2
map, 4 map)

LR 6 28 5min, 33min 3 20min, 53 min

RF 7 80 1 h 53min, 3 h 1min 81 4 h 26min, 6 58 min

XGB 5 10 30min, 57min 27 1 h 38min, 2 h 53 min

SVM 3 30 22 h 33min, N/A N/A N/A

Four different algorithms were used to train models: Logistic Regression (LR), Random Forest (RF), XGBoost (XGB) and Support Vector Machine (SVM). Each algorithm has different

hyperparameters, and the number of different hyperparameters that were optimized here is shown (“#Parameters optimized”). Except for SVM, the parameters were optimized by first running a

random search, training and testing models with a number of different random hyperparameter models (“#Candidates in random search”). The best performing combination was used to create

the range for a more refined grid search. The number of candidates tested in the grid search was determined by the number of parameters that were optimized and the possible values for each

parameter (e.g., whether values were discrete or continuous). The time that was taken to run all the different combinations is included. Six CPUs were used in parallel.

TABLE 3 Results of models on validation data.

ROC-AUC DSC (core) DSC (pen) JI (core) JI (pen)

LR 0.9757 0.8438 0.7874 0.7298 0.6494

0.9776 0.848 0.7907 0.736 0.6538

RF 0.9825 0.8553 0.8172 0.7471 0.6908

0.9841 0.8611 0.8269 0.7561 0.7048

XGB 0.983 0.8552 0.8185 0.7470 0.6927

0.9844 0.8610 0.8275 0.7559 0.7057

SVM 0.9799 0.8467 0.8081 0.7341 0.678

Eight models in total were optimized. Three algorithms (Logistic Regression/LR, Random Forest/RF, XGBoost/XGB) were trained twice, one on Cerebral Blood Flow (CBF) and Delay Time

(DT) data (top), and once on data from CBF, DT, Cerebral Blood Flow andMean Transit Time (bottom). Support Vector Machine (SVM) was only trained for twomaps due to excessive training

times. Results on the validation data are shown for each model. The highest performance across all categories was obtained for XBG, trained on all four CTP maps.

FIGURE 4

Test image results. A single axial slice, selected to clearly display the

lesion, is shown from each image. The results of processing test

images through the XGBoost model to make a prediction on the

class label is shown at top. Standard lesion maps are shown at

bottom. The predictions for core (red) and penumbra (green) are

shown on top of a single axial slice of the brain, obtain with

non-contrast CT. Dice similarity score are shown on the image, in

corresponding colors.

core (Pearson’s r; r = 0.82, p = 0.0018). Figure 5 shows a

comparison of results from each algorithm for the subject shown

in Figure 3. This subject had significant CTP artifacts due to

the skull. While LR could not distinguish actual from artifactual

perfusion lesions, in this case all the other algorithms were

able to.

4. Discussion

This study proposes a machine learning algorithm using the

entire perfusion map datasets as an alternative to measuring

the penumbra and ischemic core using binary thresholds with

CTP data, Models based on four different well-known ML

algorithms were tested. Accuracy was tested both quantitatively,

using similarity measurements, and qualitatively, by using visual

inspected to determine which algorithm was better at prediction on

artifactual CTP hyperintensities. Simple neighborhood analysis was

used to make a prediction on a single voxel; all surrounding voxels

were considered. Our model may easily be expanded to include

additional input channels, such as non-contrast CT, or relevant

clinical information such as time-from-onset, blood pressure,

clinical severity measurements and age.

Out of the four algorithms tested, XGBoost performed best in

the quantitatively analysis, achieving good accuracy in mimicking

the CTP perfusion lesions derived by the clinically used software

MIStar. There was an improvement in performance when all four

CTP maps were used compared to only CBF and DT for this early

model. Future versions of the model will continue to use all four

CTP maps to make a prediction.

Ideally, an automated CTP algorithm should differentiate

between genuine and artifactual hypoperfusion patterns, just as an
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FIGURE 5

Qualitative results on skull artifact. Predictions made on subject 3 (shown in Figure 3) for each algorithm. Linear regression performed the poorest in

terms of identifying artifact as areas of perfusion, as demonstration by subject 3 axial slices.

experienced stroke physician should be able to determine whether

the pattern is topographically consistent with stroke phenotype

(33, 34). For the qualitative study, SVM, XGB and RF improved on

the ability of the LR algorithm to distinguish real from artifactual

CTP hyperintensities. This is because LR is the only algorithm

based on linear first-order interactions between variables, whereas

the other three are more sophisticated, and able to model non-

linear and higher interactions. This is shown clearly in Figure 5,

although in other cases the ML model still derived artifact in

making a prediction, leading to an overall worse correlation with

the DWI infarct core for images with obvious artifact. As CT

artifacts are difficult to avoid altogether in a clinical setting, this is

a useful insight. Further development is required to ensure future

versions of this model to not derive artifactual perfusion lesions.

For the testing images, DSC and JI scores were shown to vary

significantly even though they are both commonly used similarity

metrics. In addition, both metrics varied significantly with volume.

Therefore, the DSC or JI score for a large lesion may not represent

the same accuracy as for a small lesion, even though (27) has

proposed otherwise (35, 36). For example, the large core in Figure 4

(ID = 12, M1) receives an almost perfect DSC value, while the

smaller cores received lower DSC scores; these differencesmay have

resulted merely from size differences. The same behavior was seen

with JI. An average DSC or JI score that is a result of the summing

over results from lesions of different sizes will not be an accurate

representation of the overall performance of a model. We propose

a weighted mean DSC/JI to account for size variation before these

scores can be fully interpretable. Further studies will explore the

application of a weighted mean. In lieu of a robust and subjective

model performance metric, benchmark data [ISLES 2018 (37)] will

be used in future studies to report performance.

The most significant limitation to this study is that, as a first

step, we have used the CTP core and penumbra estimations derived

byMIStar as the ground truth, even though these only approximate

the ground truth. The gold standard in the determination of

acute ischemic tissue is an expertly segmented MR-DWI lesion,

either with (core) or without reperfusion (penumbra) (9, 38).

Without a perfect ground truth, it remains difficult to interpret

model performance in an objective fashion. For example, as

MIStar maps are based on a simple thresholding method, a

meaningful comparison of this ML method to a thresholding

method against MIStar maps is challenging. Although MIStar

and other software (39) CTP core estimates have been shown

to be a fair approximation of DWI lesions previously, there are

certainly ongoing issues (18), one of which is that the reference

standard for core is imperfect (16). Nonetheless, future studies

will adopt manually segmented DWI images as ground truth a

therefore be able provide performance metrics that are more robust

and interpretable. In addition, this model uses derived perfusion

parameters rather than raw CTP time series images, risking a

loss of valuable information contained in the raw images which

may be lost in the derivation process. The model uses a simple

approach over more advanced approaches that have been tested

in the literature, such as those based on Deep Learning. With DL,

features may be automatically extracted from images, both locally

and globally, to make predictions with efficiency (40, 41). Future

models will adopt DL, however, the current analysis using more

explainable algorithms, was a necessary first step.
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With this study we have shown that a Machine Learning

method is capable of mimicking common use perfusion lesion

measurements to a high accuracy. With the increasing prevalence

of CTP assessments for treatment selection of ischemic stroke

patients, particularly in the extended time window, it is vital

that the measurements be accurate and representative of the

underlying pathophysiology. There is significant scope for the

current single threshold methods to overestimate the ischemic

perfusion lesion and either under- or over-call the ischemic

core depending on onset to reperfusion speed, and other

factors. The proposed model may prove more accurate with

further development than the currently used single threshold

maps and can consider physiologically relevant information

such as blood pressure, cardiac output and fluid status which

would influence contrast flow and hence perfusion measures on

the CTP. Imaging metadata such as time may also influence

accuracy, as “ghost cores” have been noted in the hyperacute

phase (42).

While the model is simple in its current form, we were able

to demonstrate salient points about CTP-based predictions of

stroke infarct. We have demonstrated that similarity indices such

as DSC and JI have some difficulty in interpretations and further

development of performance metrics is required. We have also

demonstrated that non-linear algorithms are more adept at making

predictions on common CT artifacts that linear model such as

logistic regression. Further studies will use manually segmented

DWI volumes as ground truth, as well as digest raw CTP data rather

than post-processed CTP maps for Deep Learning predictions.

Benchmark datasets will be used to measure performance. In

addition, the role of clinical data and imaging metadata will be

explored in making predictions.

5. Conclusion

We have described a Machine Learning model for the

delineation of ischemic tissue from CTP data which is based on

the XGBoost algorithm combined with 3D neighborhood analysis.

The model is trained on lesion segmentations derived by clinically

used software and can derive perfusion lesions to high accuracy.

The model improves on clinically available software in that is it

able to use multiple input channels but is currently limited by

the lack of validation against gold standard lesion segmentations.

Nonetheless, the model allowed us to demonstrate useful insight

into CTP-based prediction of stroke infarct which will be used to

make future developments.
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and Xiu’e Wei1,2*

1Department of Neurology, The Second A�liated Hospital of Xuzhou Medical University, Xuzhou,

Jiangsu, China, 2Key Laboratory of Neurological Diseases, The Second A�liated Hospital of Xuzhou

Medical University, Xuzhou, Jiangsu, China, 3Department of Neurosurgery, The A�liated Hospital of
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Objective: To explore the predictors of death in acute ischemic stroke (AIS)

patients within 1 year based on machine learning (ML) algorithms.

Methods: This study retrospectively analyzed the clinical data of patients

hospitalized and diagnosed with AIS in the Second A�liated Hospital of Xuzhou

Medical University between August 2017 and July 2019. The patients were

randomly divided into training and validation sets at a ratio of 7:3, and the

clinical characteristic variables of the patients were screened using univariate and

multivariate logistics regression. Six ML algorithms, including logistic regression

(LR), gradient boosting machine (GBM), extreme gradient boosting (XGB), random

forest (RF), decision tree (DT), and naive Bayes classifier (NBC), were applied to

develop models to predict death in AIS patients within 1 year. During training, a

10-fold cross-validation approach was used to validate the training set internally,

and themodels were interpreted using important ranking and the SHapley Additive

exPlanations (SHAP) principle. The validation set was used to externally validate

the models. Ultimately, the highest-performing model was selected to build a

web-based calculator.

Results: Multivariate logistic regression analysis revealed that C-reactive protein

(CRP), homocysteine (HCY) levels, stroke severity (SS), and the number of

stroke lesions (NOS) were independent risk factors for death within 1 year

in patients with AIS. The area under the curve value of the XGB model was

0.846, which was the highest among the six ML algorithms. Therefore, we

built an ML network calculator (https://mlmedicine-de-stroke-de-stroke-m5pijk.

streamlitapp.com/) based on XGB to predict death in AIS patients within 1 year.

Conclusions: The network calculator based on the XGB model developed in this

study can help clinicians make more personalized and rational clinical decisions.
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ischemic stroke, biomarkers, machine learning, prediction model, web calculator
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1. Introduction

Acute ischemic stroke (AIS) is a disease caused by the occlusion

of cerebral arteries, accompanied by brain tissue infarction and

neuronal cell damage, causing severe trauma to the body. AIS is

the leading cause of disability in adults and the primary cause

of human death worldwide (1, 2). In 2019, there were 7,630,800

cases of AIS globally, an 87.55% increase compared to the previous

30 years. The high morbidity, mortality, and disability rates

associated with AIS impose a severe economic burden on society

and families (3). Several factors may have a significant impact on

the pathogenesis and prognosis of patients with AIS, including

the immune inflammatory response during AIS development, with

the involvement of different pathways and sources of activated

inflammatory factors, and is an important regulator of stroke

progression, post-stroke damage, cerebral function repair and

death (4–6). Approximately 10% of AIS patients, representing a

type of morbidity, experience a fatal event within 1 year (7). There

is an urgent need to identify the early and effective predictors

of death 1 year after the onset of AIS. The construction of a

model of death prediction in stroke patients within 1 year could

provide clinicians with a reliable tool to assess the condition of their

patients. However, there are few reports in this area.

ML-assisted clinical decision-making and analysis have been

widely used in clinical settings (8–11), especially in the screening

phase of big data feature variables (12, 13). The superior

performance demonstrated by ML algorithms in medical big data

makes it possible to obtain better predictive tools than traditional

statistical models under certain conditions. However, few studies

have been conducted to screen the risk factors of death in AIS

patients within 1 year using ML algorithms.

Therefore, this study aimed to develop and validate an

interpretable ML model that used clinically relevant variables to

predict death within 1 year in AIS patients and construct an easy-

to-use web calculator as a convenient and practical protective

tool for clinical practitioners to provide valid information for

AIS patients.

2. Materials and methods

2.1. Subjects

Patients who were hospitalized in the Department of Neurology

of the Second Affiliated Hospital of Xuzhou Medical University

and diagnosed with AIS between August 2017 and July 2019 were

retrospectively analyzed. A total of 677 patients with AIS were

included in this study, 32 of whom died after admission and

during follow-up. The study was approved by the Ethics Committee

of the Second Affiliated Hospital of Xuzhou Medical University

[ethics number: [2020] 081603], and all patients provided written

informed consent.

2.2. Inclusion and exclusion criteria

The inclusion criteria were a diagnosis of AIS in accordance

with the World Health Organization criteria, and the time between

onset and hospital admission did not exceed 24 h. The exclusion

criteria were: (1) incomplete clinical data, (2) those with severely

abnormal organ function, (3) inadequate ancillary investigations,

(4) follow-up of <1 year, and (5) Patients who discontinued

treatment for various reasons according to their relatives.

2.3. Methods

2.3.1. Observational variables
In this study, clinical data were collected from the enrolled

patients, including demographics (age and sex); vascular risk

factors (hypertension, diabetes mellitus, and ischemic heart

disease); baseline blood pressure [systolic blood pressure (SBP) and

diastolic blood pressure (DBP)]; Trial of Org 10 172 in Acute Stroke

Treatment (TOAST) [large-artery atherosclerosis, cardioembolism,

small-vessel occlusion, acute stroke of other determined etiology,

stroke of undetermined etiology]; stroke severity (SS) [defined

as mild stroke according to the National Institutes of Health

Stroke Scale (NIHSS) scores of ≤8, moderate-to-severe stroke

according to NIHSS scores of ≥9; all assessments completed on

admission]; magnetic resonance imaging (MRI) features [stroke

distribution (SD; anterior circulation, posterior circulation, and

anterior/posterior circulation), side of hemisphere (SOH; left, right,

and bilateral), number of stroke lesions (NOSs; single and multiple

stroke lesions), site of stroke lesions (SOSs; cortical, cortico-

subcortical, subcortical, brainstem, and cerebellum)]; laboratory

tests [total cholesterol, triglycerides, low-density lipoprotein (LDL),

fasting blood glucose (FBG), homocysteine (HCY), uric acid

(UA), fibrinogen (FIB), myoglobin (MB), C-reactive protein

(CRP), D-dimer brain natriuretic peptide (BNP), HBALC, neuron-

specific enolase (NSE), and S-100β levels], treatment regimen

[intravenous thrombolysis, arterial thrombolysis, antiplatelet,

anticoagulation, statin, and proton pump inhibitor therapy

(PPI)]; and stroke comorbidities [dysphagia and stroke-associated

pneumonia (SAP)].

2.3.2. Statistical methods
This study used R version 4.0.5 software for data processing

and statistical analyses. Continuous variables are expressed as the

median or interquartile range (IQR) while categorical variables

are presented as frequencies (percentage, %). The continuous

variables were compared by independent samples t-tests and the

categorical variables were compared using χ2-tests. Understanding

the relationship between the independent and dependent variables

was clinically meaningful and P-values of < 0.05 were considered

statistically significant (two-sided).

2.3.3. Modeling of machine learning algorithms
Univariate and multivariate logistic regression analyses were

used to assess the risk factors of death within 1 year in the training

group study population. The odds ratio (OR) and 95% confidence

interval (CI) were calculated, with an OR of > 1 indicating that

the variable was a risk factor, and P < 0.05 considered to indicate

a statistically significant difference. Then, the factors that were

significant in both univariate and multivariate logistic regression
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TABLE 1 Baseline table of whether stroke patients died within 1 year.

Characteristics Overall (N =
677)

No (N = 645) Yes (N = 32) P-value

Age, n (%) ≤60 383 (56.6) 362 (56.1) 21 (65.6) 0.381

>60 294 (43.4) 283 (43.9) 11 (34.4)

Gender, n (%) Female 279 (41.2) 263 (40.8) 16 (50.0) 0.395

Male 398 (58.8) 382 (59.2) 16 (50.0)

SD, n (%) Anterior circulation 270 (39.9) 258 (40.0) 12 (37.5) 0.082

Posterior circulation 252 (37.2) 235 (36.4) 17 (53.1)

Anterior/posterior circulation 155 (22.9) 152 (23.6) 3 (9.4)

SOH, n (%) Left 283 (41.8) 271 (42.0) 12 (37.5) 0.87

Right 270 (39.9) 256 (39.7) 14 (43.8)

Bilateral 124 (18.3) 118 (18.3) 6 (18.8)

SOS, n (%) Cortex 155 (22.9) 149 (23.1) 6 (18.8) 0.95

Cortex-subcortex 155 (22.9) 147 (22.8) 8 (25.0)

Subcortex 186 (27.5) 176 (27.3) 10 (31.2)

Brainstem 104 (15.4) 100 (15.5) 4 (12.5)

Cerebellum 77 (11.4) 73 (11.3) 4 (12.5)

NOS, n (%) Single stroke lesion 470 (69.4) 453 (70.2) 17 (53.1) 0.064

Multiple stroke lesions 207 (30.6) 192 (29.8) 15 (46.9)

Thrombolysis, n (%) No 473 (69.9) 448 (69.5) 25 (78.1) 0.398

Yes 204 (30.1) 197 (30.5) 7 (21.9)

Thrombectomy, n (%) No 644 (95.1) 614 (95.2) 30 (93.8) 0.665

Yes 33 (4.9) 31 (4.8) 2 (6.2)

Antiplatelet, n (%) No 122 (18.0) 117 (18.1) 5 (15.6) 0.9

Yes 555 (82.0) 528 (81.9) 27 (84.4)

Anticoagulation, n (%) No 576 (85.1) 553 (85.7) 23 (71.9) 0.041

Yes 101 (14.9) 92 (14.3) 9 (28.1)

Statin, n (%) No 103 (15.2) 98 (15.2) 5 (15.6) 1

Yes 574 (84.8) 547 (84.8) 27 (84.4)

PPI, n (%) No 535 (79.0) 519 (80.5) 16 (50.0) <0.001

Yes 142 (21.0) 126 (19.5) 16 (50.0)

SS, n (%) No 385 (56.9) 380 (58.9) 5 (15.6) <0.001

Yes 292 (43.1) 265 (41.1) 27 (84.4)

SAP, n (%) No 512 (75.6) 494 (76.6) 18 (56.2) 0.016

Yes 165 (24.4) 151 (23.4) 14 (43.8)

SBP, median [Q1, Q3] 143.0 [132.0, 156.0] 143.0 [132.0, 156.0] 144.0 [134.8, 156.2] 0.678

DBP, median [Q1, Q3] 87.0 [74.0, 97.0] 87.0 [74.0, 97.0] 87.0 [74.0, 98.2] 0.492

Cholesterol, median [Q1, Q3] 5.3 [4.4, 6.2] 5.3 [4.4, 6.2] 5.4 [4.7, 6.0] 0.815

Triglyceride, median [Q1, Q3] 2.2 [1.9, 2.4] 2.2 [1.9, 2.4] 2.1 [1.9, 2.4] 0.801

LDL, median [Q1, Q3] 4.8 [4.3, 4.9] 4.8 [4.3, 4.9] 4.7 [4.5, 4.8] 0.69

FBG, median [Q1, Q3] 5.3 [4.6, 5.8] 5.2 [4.6, 5.8] 5.7 [5.2, 6.2] 0.003

HBALC, median [Q1, Q3] 5.6 [5.3, 5.9] 5.6 [5.3, 5.9] 5.8 [5.5, 6.1] 0.023

HCY, median [Q1, Q3] 15.8 [12.7, 19.4] 15.5 [12.6, 19.1] 20.4 [17.8, 22.7] <0.001

UA, median [Q1, Q3] 349.8 [309.8, 408.1] 350.1 [310.8, 407.6] 335.5 [290.7, 435.4] 0.573

(Continued)
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TABLE 1 (Continued)

Characteristics Overall (N =
677)

No (N = 645) Yes (N = 32) P-value

MB, median [Q1, Q3] 97.7 [75.1, 147.8] 97.0 [74.9, 144.7] 106.6 [78.9, 236.5] 0.078

CRP, median [Q1, Q3] 12.6 [7.7, 17.6] 11.9 [7.5, 17.1] 20.5 [17.3, 25.0] <0.001

FIB, median [Q1, Q3] 4.3 [4.0, 4.8] 4.4 [4.0, 4.8] 4.2 [3.8, 4.6] 0.134

D-dimer, median [Q1, Q3] 174.0 [133.0, 221.0] 174.0 [133.0, 221.0] 171.5 [132.0, 216.5] 0.844

BNP, median [Q1, Q3] 93.0 [73.0, 162.0] 93.0 [73.0, 162.0] 121.5 [77.0, 177.2] 0.25

NSE, median [Q1, Q3] 16.2 [12.7, 18.6] 16.2 [12.7, 18.6] 17.6 [12.5, 19.4] 0.197

S100β, median [Q1, Q3] 275.0 [224.0, 290.0] 275.0 [223.0, 289.0] 278.0 [248.2, 311.2] 0.111

Overall: All patients, No, Patients who did not die, Yes, Patients who died.

SD, stroke distribution; SOH, side of hemisphere; NOS, number of stroke lesions; SOS, site of stroke lesions; LDL, low-density lipoprotein; FBG, fasting blood glucose; HCY, homocysteine;

UA, uric acid; FIB, fibrinogen; MB, myoglobin; CRP, C-reactive protein; BNP, brain natriuretic peptide; NSE, neuron-specific enolase; PPI, proton pump inhibitor therapy; SAP,

stroke-associated pneumonia.

were included and subjected to stepwise regression analysis. The

factors selected by stepwise regression were used as input variables

to construct ML models.

The ML algorithm process was based on Python (V3.7)

software and the scikit-learn (version 0.24) library. First, the

original dataset was randomly divided into training and test sets

at a ratio of 7:3. Then, six machine algorithms [logistic regression

(LR), gradient boostingmachine (GBM), extreme gradient boosting

(XGB), random forest (RF), decision tree (DT), and naive Bayes

classifier (NBC)] were used to analyze the data and construct the

model. To validate the predictive power of the model, the 10-fold

cross-validationmethod was used for internal validation against the

training group. The random search method was used to adjust the

hyperparameters of the models.

In the test group, the area under the receiver operating

characteristic curve (ROC-AUC), classification accuracy, recall,

specificity, and F1 score were used to evaluate the prediction

models. We also plotted the prediction recall curve (PRC) as a

complementary metric to evaluate the model performance.

2.3.4. Interpretation of the model and importance
of features

To illustrate the risk factors of death within 1 year in AIS

patients, Shapley Additive explanation (SHAP) analysis was used

to interpret the predictive models ranked in terms of feature

importance. SHAP analysis is a tool proposed by Lloyd Shapley

in game theory to explain the output of machine learning models.

The core idea is to calculate the marginal contribution of a

variable feature when it is added to the model, and then to

interpret the global and local levels of the “black box model”

in an additive explanatory model (14, 15). That is, it can assign

predictive values to each feature and evaluate and visualize the

contribution of each feature to the outcome of the machine

learning model (16). Ultimately, a web-based calculator based on

the best-performing model was created for inputting patient data

to facilitate the clinicians’ assessment of death within 1 year in

AIS patients.

3. Results

3.1. Baseline patient data characteristics

In this study, clinical information was collected on 677 AIS

patients, of whom 645 survived and 32 died of AIS (Table 1). In

the observed population, 383 patients (56.6%) were aged < 60

years and 294 patients (43.4%) were aged ≥ 60 years, 398 (58.8%)

were male and 279 (41.2%) were female. AIS lesions occurred

in 270 (39.9%) patients in the anterior circulation, 252 (37.2%)

in the posterior circulation, and 155 (22.9%) in both anterior

and posterior circulations. The distribution of lesions in the left

and right hemispheres was approximately equal, with 283 (41.8%)

in the left and 270 (39.9%) in the right, and a relatively small

number [124 (18.3%)] in the bilateral cerebral hemispheres. The

location of the lesions was mainly subcortical in 186 patients

(27.5%), cortical and cortico-subcortical in 155 patients (22.9%),

the brainstem in 104 patients (15.4%), and the cerebellum in 77

patients (11.4%). Four hundred and seventy patients (69.4%) had

a single AIS lesion, while multiple lesions were found in only 207

patients (30.6%). Two hundred and four patients (30.1%) received

intravenous thrombolytic therapy, and 473 (69.9%) did not. Six

hundred and forty-four patients (95.1%) did not receive arterial

thrombolytic therapy, and 33 (4.9%) did. Five hundred and fifty-

five patients (82.0%) received antiplatelet therapy, and 122 (18.0%)

did not. Five hundred and seventy-six patients (85.1%) did not

receive anticoagulation therapy, and 101 (14.9%) did. The majority

of the patients (574, 84.8%) received statin therapy and 103 (15.2%)

did not.

The median systolic and diastolic blood pressure was 143

mmHg (IQR 132.0,156.0) and 87 mmHg (IQR 74.0, 97.0),

respectively. Total cholesterol, triglycerides, HDL, blood HCY,

blood UA, and median FIB, MB, ultrasensitive CRP, D-dimer BNP,

atrial natriuretic peptide, NSE, and S-100β were 5.3 mmol/L [4.4,

6.2], 2.2mmol/L [1.9, 2.4], 4.8mmol/L [4.3, 4.9], 15.7µmol/L [12.4,

19.1], 349.8 µmol/L [309.8, 408.1], 4. 3 g/L [4.0, 4.8], 97. 7 ng/mL

[75.1, 147.8], 12. 2 mg/L [7.2, 18.1], 174.0 ng/mL [133.0, 221.0],

93.0 ng/mL [73.0, 162.0], 16.2 ng/mL [12.7, 18.6], and 275.0 ng/mL

[224.0, 290.0], respectively.
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TABLE 2 Univariate and multivariate logistic regression analysis of 1-year death in AIS patients.

Characteristics Univariate logistic analysis Multivariate logistic analysis

OR 95% CI P-value OR 95% CI P-value

Age:

≤60 Ref. Ref. Ref.

>60 0.67 (0.31–1.40) 0.297

Gender:

Female Ref. Ref.

Male 0.69 (0.33–1.42) 0.309

SD:

Anterior circulation Ref. Ref. Ref.

Posterior circulation 1.55 (0.72–3.41) 0.26

Anterior/posterir circulation 0.44 (0.09–1.44) 0.186

SOH:

Left Ref. Ref.

Right 1.23 (0.55–2.78) 0.607

Bilateral 1.16 (0.39–3.11) 0.774

SOS:

Cortex Ref. Ref.

Cortex-subcortex 1.34 (0.45–4.26) 0.599

Subcortex 1.4 (0.50–4.27) 0.53

Brainstem 1.01 (0.24–3.72) 0.993

Cerebellum 1.38 (0.33–5.11) 0.642

NOS:

Single stroke lesion Ref. Ref. Ref. Ref. Ref. Ref.

Multiple stroke lesions 2.08 (1.00–4.28) 0.049 3.44 (1.41–8.36) 0.007

Thrombolysis:

No Ref. Ref. Ref.

Yes 0.65 (0.25–1.45) 0.305

Thrombectomy:

No Ref. Ref. Ref.

Yes 1.41 (0.20–5.00) 0.671

Antiplatelet:

No Ref. Ref. Ref.

Yes 1.17 (0.47–3.56) 0.755

Anticoagulation:

No Ref. Ref. Ref. Ref. Ref. Ref.

Yes 2.37 (1.00–5.16) 0.049 0.97 (0.35–2.67) 0.951

Statin:

No Ref. Ref.

Yes 0.94 (0.38–2.89) 0.91

PPI:

No Ref. Ref. Ref. Ref. Ref. Ref.

Yes 4.11 (1.98–8.54) <0.001 1.65 (0.62–4.38) 0.317

(Continued)
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TABLE 2 (Continued)

Characteristics Univariate logistic analysis Multivariate logistic analysis

OR 95% CI P-value OR 95% CI P-value

SS:

No Ref. Ref. Ref. Ref. Ref. Ref.

Yes 7.53 (3.09–22.8) <0.001 3.12 (1.03–9.83) 0.046

SAP:

No Ref. Ref. Ref. Ref. Ref. Ref.

Yes 2.55 (1.21–5.25) 0.015 0.98 (0.36–2.68) 0.971

SBP 1.01 (0.99–1.03) 0.242

DBP 1.01 (0.99–1.04) 0.303

Cholesterol 1 (0.75–1.32) 0.988

Triglyceride 0.77 (0.27–2.16) 0.616

LDL 1.08 (0.66–1.77) 0.769

FBG 1.53 (1.09–2.14) 0.015 2.15 (0.89–5.21) 0.088

HBALC 2.34 (1.01–5.43) 0.048 0.56 (0.07–4.54) 0.59

HCY 1.32 (1.20–1.45) <0.001 1.29 (1.16–1.45) <0.001

UA 1 (0.99–1.00) 0.732

MB 1.01 (1.00–1.01) 0.003 1 (0.99–1) 0.746

CRP 1.17 (1.11–1.22) <0.001 1.15 (1.07–1.23) <0.001

FIB 0.62 (0.35–1.10) 0.106

D-dimer 1 (0.99–1.01) 0.761

BNP 1 (1.00–1.01) 0.157

NSE 1.06 (0.96–1.17) 0.214

S100β 1.01 (1.00–1.02) 0.082

3.2. Univariate and multivariate regression
analysis of death within 1 year in AIS
patients

In the univariate regression analysis of death within 1 year in

AIS patients (Table 2), there was a statistically significant difference

(P < 0.05) in the overall population for death within 1 year

according to NOS, FBG, HBALC, MB, and CRP levels, as well as

anticoagulation therapy, PPI treatment, and SS.

All parameters that were statistically different in the univariate

analysis above were included in the multivariate logistic regression

analysis. The results suggested that NOS (OR= 3.44, 95%CI: 1.41 –

8.36, P= 0.007), HCY (OR= 1.29, 95% CI: 1.16 – 1.45, P < 0.001),

CRP (OR = 1.15, 95% CI: 1.07 – 1.23, P < 0.001), and SS (OR =

3.12, 95% CI: 1.03 – 9.83, P = 0.046) were independent predictors

of death within 1 year in AIS patients.

3.3. Machine learning model building and
validation

To compare the predictive performance of the sixML algorithm

models, this study performed 10-fold cross-validation within the

training group. The results are shown in Figure 1. Figure 2 shows

the ROC curves of the predictive performance differences of the

six ML algorithm models after external validation, and Figure 3

shows the result of radar plot analysis, which is a blanket,

clear, intuitive, and easy-to-judge analysis and is suitable for

comprehensive evaluation as it can show the AUC value, accuracy,

recall, and F1 value of the models in multiple dimensions (Figure 3,

Table 3) to more clearly reflect the performance of the models.

The PRC curves of the mortality prediction model are shown in

Supplementary Figure 1.

The results suggest that the XGB model performed best in

predicting death within 1 year in AIS patients after a comprehensive

evaluation. The remainingmodels were ranked in descending order

according to their predictive performance.

In summary, we finally adopted the XGBmodel as the preferred

predictive model.

3.4. Relative importance of variables in ML
algorithms

A SHAP interpretability study was used to analyze the results of

the ML models. Generally, the higher the SHAP value of a feature,
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FIGURE 1

Ten-fold cross validation test. LR, logistic regression; NBC, Naive

Bayesian classification; DT, Decision Tree; RF, Random Forest; GBM,

gradient boosting machine; XGB, extreme gradient boosting.

FIGURE 2

ROC curves for six ML algorithms.

the higher the probability of the occurrence of the target event. In

SHAP analysis, red represents the eigenvalues with positive impact

on the model and blue represents the eigenvalues with negative

impact on the model (17). The results of the study suggest that SS

was the most important variable, followed by CRP, HCY, and NOS

in descending order of importance, as shown in Figure 4.

3.5. The web calculator

Aweb-based calculator based on the XGBmodel was developed

in this study. By entering the clinical characteristic variables of

a patient with AIS, clinicians could predict their risk of death

FIGURE 3

Radar graph showing the comprehensive prediction performance of

six ML algorithms.

TABLE 3 The result of specific performance of six ML algorithmmodels.

Scoring LR NBC DT RF GBM XGB

Auc 0.797 0.726 0.680 0.794 0.779 0.846

Accuracy 0.789 0.721 0.853 0.863 0.833 0.926

Sensitivity (recall) 0.801 0.730 0.867 0.883 0.852 0.949

Specificity 0.500 0.500 0.500 0.375 0.375 0.375

F1 0.157 0.123 0.211 0.176 0.150 0.286

within 1 year (https://mlmedicine-de-stroke-de-stroke-m5pijk.

streamlitapp.com/; Figure 5).

4. Discussion

In this study, we retrospectively analyzed the clinical data of AIS

patients and developed a web-based calculator with ML algorithms

to predict the risk of death within 1 year. The accuracy and

rationality of the model were validated by 10-fold cross-validation,

allowing the model to be used for clinical practice to help clinicians

make more rational treatment decisions.

ML is an emerging field of medicine that has demonstrated an

extraordinary ability to handle large, complicated, and disparate

data, and is the future of biomedical research, personalized

medicine, and computer-aided diagnosis. It holds the promise

of significantly advancing global healthcare (18, 19). Unlike

traditional predictive models, ML is very good at discovering

complex structures in selected variables in high-dimensional data

and can easily combine a large number of variables (20, 21). ML

has been reported to improve the predictive accuracy of long-term

prognoses for AIS patients (8, 10).
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FIGURE 4

Patient clinical feature importance of XGB.

In this study, six ML methods were used to analyze and

construct a model of death prediction within 1 year in AIS patients,

and the performance of the six ML algorithms was compared to

each other. The XGB algorithm performed best (Figure 1), with

a better AUC value than the other five algorithmic models, and

the highest accuracy, sensitivity, and F1 score. Therefore, the XGB

algorithm model was finally chosen.

ML models are often considered to be a black box where is

difficult to explain the predictive performance, and it becomes

extremely important to study the interpretability of machine

learning models. Therefore, this study attempted to introduce

SHAP analysis, a new method for interpreting various black-box

ML models that have been previously validated based on their

interpretability performance. It can achieve both local and global

interpretability and has a solid theoretical foundation compared

to other methods (22). The SHAP analysis used in this study

could interpret the model prediction results well, and its intuitive

visualization is more easily accepted. This study further built a web-

based calculator to estimate the probability of death within 1 year

in AIS patients to make better use of the model.

AIS is characterized by a high morbidity rate, which increases

the economic burden on society and families (23). It is significant

to explore the factors influencing the risk of death within 1 year

for patients. In this study, the mortality rate of AIS patients

within 1 year was only 4.7% (32/677), which was significantly

lower than the 10% reported in previous studies (7), probably

because of the exclusion of those whose families discontinued

treatment for various reasons. Previously, an 8-point scoring

system was constructed to predict the risk of death within 7 days

of hospitalization (24). Factors influencing death within 6 months

of stroke onset were also reported, with variables such as the Barthel

index and platelet/lymphocyte ratio screened by LASSO regression

and multiple logistic regression (25). A 30-year stroke burden

predictive model was established (26). In contrast, unlike many

previous studies, this study innovatively used machine learning

algorithms to screen variables and, to our knowledge, was the first

to develop a predictive model using machine learning algorithms to

assess the probability of death within 1 year in patients with AIS.

FIGURE 5

The web-based calculator for predicting 1-year death in AIS

patients.

There is a growing body of research on the relationship between

serum inflammatory biomarkers and AIS. A number of studies

showed that AIS could induce an inflammatory response, which

plays a major role in late ischemic damage to the brain parenchyma,

and that inflammatory responses caused by various clinical factors

could lead to an increase in inflammatory factors (27, 28). It is also

an inflammatory factor that can indirectly indicate the presence

of pathogenic microorganisms in patients when it is upraised,

which can help the physician in the diagnosis and treatment. In

this study, we concluded that CRP levels were the most important

predictor of death within 1 year in AIS patients. Elevated CRP levels

were previously reported to reflect the severity of AIS, correlate

with stroke subtype and risk stratification (27, 28), and be an

independent predictor of long-term mortality after ischemic stroke

(29). Elevated CRP levels can lead to increased mortality after

stroke, which may be related to inflammation-induced endothelial

cell dysfunction and platelet activation (30). HCY is a sulfur-

containing non-essential amino acid produced by metabolism

in vivo as a derivative of methionine cycle demethylation. It is
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also an inflammatory substance that induces the activation of

nuclear factor (NF)-kB, which is a transcription factor common

to inflammation and the immune response. Elevated levels of

HCY are associated with a variety of diseases, which may lead

to endothelial dysfunction, neurotoxicity, and the upregulation of

thrombogenic factors. At the same time, monitoring HCY levels

may provide a good indication of the development of related

diseases (31). Previous studies also showed that elevated HCY levels

were associated with AIS dysfunction and recurrent stroke (32). A

multicenter study suggested that high levels of serum HCY were

an independent predictor of early neurological deterioration in AIS

patients (33). This study concluded that HCY levels significantly

influenced the risk of death within 1 year in AIS patients. The risk

of death in patients with high HCY having 1.29 times (95% CI 1.16

– 1.45) compared to ones with normal HCY.

The NIHSS is a common scale used in neurology as a

quantitative indicator of disease severity (34). The present study

classified SS with the help of the NIHSS scale, and an NIHSS score

of ≥9 was defined as moderate-to-severe stroke. Fischer et al. (35)

suggested that patients with low NIHSS scores tended to have a

better prognosis, which is consistent with the current study. The

present study concluded that SS had a significant influence on death

within 1 year in AIS patients. The risk of death in patients with

moderate to severe stroke having 3.12 times (95% CI 1.03 – 9.83)

higher than those with mild stroke.

Neurological deficits have been associated with lesions in

different brain regions (36, 37), but the relationship between the

number of lesions and AIS has rarely been reported. In this study,

the number of lesions was innovatively included in the analysis, and

the results suggested that the number of lesions was a significant

factor in death within 1 year in AIS patients. The risk of death in

patients with multiple lesions was 3.44 times (95% CI: 1.41 – 8.36)

higher than patients with a single lesion.

There were several limitations to this study. First, the

retrospective study design may have introduced selection bias,

while the data imbalance that emerged from real-world studies

resulted in PRC effects without the AUC number. Secondly,

although our model showed good performance, its data source was

limited to one medical center, which may limit its generalizability,

and we will follow up with an additional multicenter study.

Thirdly, further independent external validation is needed to

confirm these findings. Finally, we collected AIS-related variables

as comprehensively as possible, but there were still some important

variables that were not available in a timely manner, whichmay also

limit the generalizability of the study. Future research is needed to

examine this issue further.

5. Conclusion

The results of this study suggest that serum inflammatory

markers (CRP and HCY), SS, and NOS are independent risk

factors of death within 1 year in AIS patients. The XGB algorithm

showed good performance as a tool to predict death within 1 year

in AIS patients. Using this web-based calculator can effectively

prevent death, reduce mortality, and assist physicians in making

treatment decisions.
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Informatics, Università della Svizzera italiana, Lugano, Ticino, Switzerland, 6Department of Nephrology,

A�liated Hospital of Xuzhou Medical University, Xuzhou, China

Background: Intracerebral hemorrhage (ICH) is one of the most serious

complications in patients with chronic kidney disease undergoing long-term

hemodialysis. It has high mortality and disability rates and imposes a serious

economic burden on the patient’s family and society. An early prediction of ICH

is essential for timely intervention and improving prognosis. This study aims to

build an interpretable machine learning-based model to predict the risk of ICH in

patients undergoing hemodialysis.

Methods: The clinical data of 393 patients with end-stage kidney disease

undergoing hemodialysis at three di�erent centers between August 2014 and

August 2022 were retrospectively analyzed. A total of 70% of the samples were

randomly selected as the training set, and the remaining 30% were used as the

validation set. Five machine learning (ML) algorithms, namely, support vector

machine (SVM), extreme gradient boosting (XGB), complement Naïve Bayes (CNB),

K-nearest neighbor (KNN), and logistic regression (LR), were used to develop a

model to predict the risk of ICH in patients with uremia undergoing long-term

hemodialysis. In addition, the area under the curve (AUC) values were evaluated

to compare the performance of each algorithmic model. Global and individual

interpretive analyses of the model were performed using importance ranking and

Shapley additive explanations (SHAP) in the training set.

Results: A total of 73 patients undergoing hemodialysis developed spontaneous

ICH among the 393 patients included in the study. The AUC of SVM, CNB, KNN,

LR, and XGB models in the validation dataset were 0.725 (95% CI: 0.610 ∼ 0.841),

0.797 (95% CI: 0.690 ∼ 0.905), 0.675 (95% CI: 0.560 ∼ 0.789), 0.922 (95% CI:

0.862 ∼ 0.981), and 0.979 (95% CI: 0.953 ∼ 1.000), respectively. Therefore, the

XGBoost model had the best performance among the five algorithms. SHAP

analysis revealed that the levels of LDL, HDL, CRP, and HGB and pre-hemodialysis

blood pressure were the most important factors.

Conclusion: The XGB model developed in this study can e�ciently predict the

risk of a cerebral hemorrhage in patients with uremia undergoing long-term

hemodialysis and can help clinicians to make more individualized and rational

clinical decisions. ICH events in patients undergoing maintenance hemodialysis

(MHD) are associated with serum LDL, HDL, CRP, HGB, and pre-hemodialysis

SBP levels.

KEYWORDS

hemodialysis, uremia, intracerebral hemorrhage, machine learning, predictive models,

Shapley additive explanations
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1. Introduction

Maintenance hemodialysis (MHD) is the primary renal

replacement therapy for patients with uremia (1). Intracerebral

hemorrhage (ICH), defined as non-traumatic hemorrhage in the

brain parenchyma with or without ventricles, accounts for 10–

15% of all stroke cases and is an important cause of disability and

death globally (2). ICH is one of the most serious complications

among patients undergoing MHD. Various factors have an

important impact on the occurrence and development of ICH.

Recent studies have attempted to identify relevant risk factors,

and lipid metabolism and inflammatory responses have been

reported as important factors regulating the progression of ICH

and subsequent brain injury and brain function repair. Despite

the continuous development of hemodialysis technology and the

gradual improvement of nursing levels, the risk of a cerebral

hemorrhage in patients undergoing MHD is approximately six

times higher than that in healthy individuals (3), and the mortality

rate is as high as 41–47% (4). Most patients require admission to

the intensive care unit (ICU) for monitoring and treatment, which

imposes a serious economic burden on the family and society.

ICH often has no identifiable warning signs or symptoms.

Although optimal strategies for the medical and surgical

management of ICH have been investigated, survival and

functional outcomes have not been significantly improved

(5). Therefore, establishing risk prediction models to identify

high-risk patients undergoing MHD is important for the early

implementation of targeted interventions. To date, only a few

studies have attempted to develop such models.

Machine learning (ML), an artificial intelligence method,

uses computers to statistically learn from datasets and build

corresponding models to identify relationships between various

factors. In the field of medicine, ML is increasingly used through

statistical learning methods to overcome possible obstacles in

clinical practice (6, 7). In recent years, although ML has been

used to analyze clinical data to predict the complications and

adverse outcomes of critical illnesses (8–10), few efforts have

been made to develop strategies for predicting the prognosis of

patients with uremia undergoing dialysis, especially for predicting

the risk of cerebral hemorrhage, a serious complication of

dialysis. ML has shown good performance in previous studies;

however, because of its “black box” nature, the effects of each

feature on the final results remain unknown, and it is difficult

to explain the factors that lead to a given prediction. This

lack of interpretability limits the widespread application of ML

methods in medical research (11, 12). Shapley additive explanation

(SHAP) is a method inspired by the classical game theory that

assigns a predicted value to each feature and evaluates the

contribution of each feature to the results of ML models to

achieve a balance between the accuracy and interpretability of the

model (13).

To analyze complex variables that may be related to a

cerebral hemorrhage after regular hemodialysis, we integrated the

demographic data, laboratory test results, hemodialysis indicators,

and other information of patients to construct a model for

predicting the risk of a cerebral hemorrhage. To make the model

more applicable for the diagnosis of chronic kidney disease with

intracerebral hemorrhage, overcome the “black box” nature of ML,

TABLE 1 Baseline features of patients.

Variables Non-ICH
(n = 320)

ICH
(n = 73)

P-value

Age (years) 57.000 (46.000,

66.000)

54.000 (48.000,

63.000)

0.384

Sex (%) 0.697

Female 108 (33.7) 27 (37.0)

Male 212 (66.3) 46 (63.0)

Hypertension

(%)

<0.001

No 141 (44.1) 13 (17.8)

Yes 179 (55.9) 60 (82.2)

Diabetes

mellitus (%)

0.001

No 196 (61.2) 60 (82.2)

Yes 124 (38.8) 13 (17.8)

Polycystic

kidney (%)

0.001

No 311 (97.2) 64 (87.7)

Yes 9 (2.8) 9 (12.3)

Duration of

dialysis

(months)

41.84 (19.27,

67.99)

34.17 (18.67,

43.97)

0.014

WBCs (109/L) 5.60 (4.58,

6.82)

6.60 (4.91, 8.85) <0.001

PLTs (109/L) 165.00 (131.75,

204.25)

145.00 (117.00,

180.00)

0.009

HGB (g/L) 106.55 (16.77) 92.43 (13.26) <0.001

NE (109/L) 3.82 (3.02,

4.91)

5.16 (3.51, 7.47) <0.001

LY (109/L) 1.00 (0.80,

1.30)

0.82 (0.60, 1.10) <0.001

HCT (%) 33.27 (5.71) 31.87 (6.07) 0.061

CRP (mg/L) 5.16 (3.16,

7.20)

12.00 (4.79, 31.48) <0.001

NLR 3.74 (2.775,

5.185)

5.40 (3.27, 12.26) <0.001

PLR 165.79

(129.983,

214.580)

188.89 (117.00,

250.00)

0.156

ALT (U/L) 9.00 (6.00,

14.00)

10.00 (7.00, 15.00) 0.136

AST (U/L) 12.00 (9.00,

15.00)

13.00 (10.00,

17.00)

0.069

TP (g/L) 66.60 (62.80,

70.53)

70.30 (64.10,

74.60)

<0.001

ALB (g/L) 40.20 (37.58,

42.70)

41.00 (37.50,

43.80)

0.329

BUN

(mmol/L)

23.54 (18.07,

29.03)

20.12 (14.87,

26.48)

0.003

Scr (umol/L) 787.15 (650.45,

1,010.25)

746.00 (587.00,

905.00)

0.071

CysC mg/L) 5.29 (4.58,

5.91)

4.76 (3.78, 5.38) <0.001

(Continued)
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TABLE 1 (Continued)

Variables Non-ICH
(n = 320)

ICH
(n = 73)

P-value

UA (umol/L) 368.00 (296.50,

431.75)

365.00 (325.70,

409.00)

0.817

TG (mmol/L) 1.29 (0.91,

2.00)

1.53 (1.14, 2.49) <0.001

TC (mmol/L) 3.67 (3.07,

4.25)

3.55 (3.31, 4.04) 0.933

LDL (mmol/L) 1.77 (1.51,

1.89)

1.31 (1.21, 1.44) <0.001

HDL

(mmol/L)

1.78 (1.25,

2.38)

1.09 (0.86, 1.47) <0.001

K (mmol/L) 4.80 (4.26,

5.37)

4.77 (4.24, 5.25) 0.971

NA (mmol/L) 137.60 (135.40,

140.00)

136.70 (134.90,

138.30)

0.053

Ca (mmol/L) 2.155 (2.01,

2.27)

2.180 (2.00, 2.43) 0.288

P (mmol/L) 1.775 (1.41,

2.13)

1.650 (1.32, 2.16) 0.503

Calcium–

phosphorus

product

(mg/dL)

46.90 (36.45,

57.742)

44.02 (33.97,

63.88)

0.498

eGFR

(mL/min)

5.60 (4.42,

7.36)

6.10 (4.84, 8.33) 0.095

Hemodialysis

vascular access

(%)

0.302

Arteriovenous

fistula

256 (80.00) 62 (84.93)

Artificial blood

vessel

9 (2.81) 0 (0.00)

Central venous

catheter

55 (17.19) 11 (15.07)

Total

anticoagulant

(IU)

4,500.00

(4,000.00,

5,000.00)

4,500.00

(4,000.00,

5,000.00)

0.421

Blood flow rate

(ml/min)

240.00 (220.00,

250.00)

250.00 (230.00,

260.00)

<0.001

Pre-

hemodialysis

SBP (mmHg)

142.00 (130.00,

155.00)

160.00 (148.00,

173.00)

<0.001

Pre-

hemodialysis

DBP (mmHg)

80.00 (75.00,

88.00)

82.00 (77.00,

89.00)

0.237

Post-

hemodialysis

SBP (mmHg)

139.52± 18.03 151.41± 20.82 <0.001

Post-

hemodialysis

DBP (mmHg)

80.29± 8.72 78.44± 9.51 0.108

WBCs, white blood cells; PLTs, platelets; HGB, hemoglobin; Ne, neutrophil; Ly, lymphocyte;

HCT, hematocrit; CRP, C-reactive protein; NLR, neutrophil-to-lymphocyte ratio; PLR,

platelet-to-lymphocyte ratio; ALT, alanine aminotransferase; AST, aspartate aminotransferase;

TP, serum total protein; ALB, serum albumin; BUN, blood urea nitrogen; Scr, serum

creatinine; CysC, cystatin C; eGFR, estimated glomerular filtration rate; UA, uric acid;

TG, triglyceride; TC, total cholesterol; LDL, low-density lipoprotein; HDL, high-density

lipoprotein; K, blood potassium; Na, blood sodium; Ca, blood calcium; P, blood phosphorus.

and explore the relationship between each feature and its clinical

significance, we used the extreme gradient boosting (XGBoost)

algorithm to develop the model (14). SHAP was used to provide

a more intuitive global and local explanation of the model to

understand the prediction of the model and improve the clinical

understanding of the risk of a cerebral hemorrhage in patients

with hemodialysis.

2. Materials and methods

2.1. Study population and data source

Patients with end-stage kidney disease undergoing

hemodialysis from August 2014 to August 2022 at the Affiliated

Hospital of Xuzhou Medical University, Xuzhou Central Hospital,

and the Second Affiliated Hospital of Xuzhou Medical University

were recruited for the study. According to the occurrence of ICH,

the patients were divided into ICH and non-ICH groups.

2.2. Data collection

The inclusion criteria were as follows: (a) patients diagnosed

with uremia according to chronic kidney disease (CKD) staging

and recommendations or the Kidney Disease Outcomes Quality

Initiative (KDOQI) guidelines formulated by the American Kidney

Foundation, that is, patients with estimated glomerular filtration

rate (eGFR) of <15 ml/(min·1.73 m2) diagnosed with CKD stage 5,

which is the uremia stage (15); (b) patients receiving hemodialysis

regularly, those aged ≥18 years, those with dialysis age of ≥3

months, and dialysis frequency of three times per week and

4 h per dialysis; and (c) patients with ICH confirmed via a CT

examination of the head. The exclusion criteria were as follows: (a)

patients with severe failure of the heart, lung, and other organs,

blood system diseases, autoimmune diseases, and malignant

tumors; (b) patients with primary subarachnoid hemorrhage,

secondary cerebral hemorrhage, such as trauma, intracranial

tumors, ICH caused by hemorrhage after an ischemic stroke,

and severe coagulation dysfunction; (c) patients on antiplatelet

drugs, hormones, immunosuppressants, and antibacterial agents

in the past 1 month; and (d) patients with missing clinical data.

Based on the diagnosis and inclusion and exclusion criteria, 393

patients with end-stage kidney disease complicated with cerebral

hemorrhage owing to long-term hemodialysis were included.

Of these 393 patients, 73 patients were included in the ICH

group, whereas 320 patients were included in the non-ICH

group. Because this study had a retrospective design, there

was no security-related risk. The present study was approved

by the Ethics Committee of the Affiliated Hospital of Xuzhou

Medical University.

2.3. Inclusion of observed variables

The clinical data of patients were collected with reference to

clinical experience, reported literature, and medical records in

the electronic medical record systems of the three centers. Data
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regarding the following five aspects were collected: (1) demographic

data (sex and age); (2) vascular risk factors (hypertension,

diabetes, polycystic kidney disease, and duration of dialysis);

(3) baseline blood pressure (systolic blood pressure [SBP] and

diastolic blood pressure [DBP] before and after dialysis); (4)

treatment during hemodialysis (including anticoagulant dosage,

dialysis access, and blood flow velocity); and (5) laboratory

tests (white blood cells [WBCs], platelets [PLTs], hemoglobin

[HGB], neutrophils [Nes], lymphocytes [Lys], hematocrit [HCT],

C-reactive protein [CRP], neutrophil-to-lymphocyte ratio [NLR],

platelet-to-lymphocyte ratio [PLR], alanine aminotransferase

[ALT], aspartate aminotransferase [AST], serum total protein

[TP], serum albumin [ALB], blood urea nitrogen [BUN], serum

creatinine [Scr], cystatin C [CysC], eGFR, uric acid [UA],

triglyceride [TG], total cholesterol [TC], low-density lipoprotein

[LDL], high-density lipoprotein [HDL], blood potassium [K],

FIGURE 1

Heat map of the correlation of patient’s clinical features.

TABLE 2 Comparison of the predictive performance of five machine learning algorithms in the validation set.

Di�erent algorithms Accuracy
(95%CI)

Precision
(95%CI)

Sensitivity
(95%CI)

Specificity
(95%CI)

F1–score
(95%CI)

SVM 0.631 (0.546–0.715) 0.309 (0.272–0.345) 0.753 (0.603–0.902) 0.645 (0.485–0.806) 0.422 (0.377–0.466)

CNB 0.784 (0.741–0.827) 0.457 (0.399–0.514) 0.733 (0.652–0.815) 0.786 (0.716–0.857) 0.556 (0.502–0.610)

KNN 0.785 (0.766–0.803) 0.342 (0.248–0.437) 0.652 (0.599–0.706) 0.695 (0.657–0.733) 0.427 (0.336–0.518)

LR 0.835 (0.813–0.857) 0.539 (0.509–0.568) 0.861 (0.807–0.916) 0.853 (0.799–0.907) 0.659 (0.637–0.682)

XGboost 0.939 (0.926–0.952) 0.949 (0.910–0.988) 0.932 (0.913–0.951) 0.952 (0.930–0.973) 0.938 (0.921–0.956)

SVM, support vector machine; CNB, complement naive Bayes; KNN, k nearest neighbors; LR, logistic regression; XGBoost, extreme gradient boost.
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blood sodium [Na], blood calcium [Ca], calcium–phosphorus

product, and blood phosphorus [P]).

2.4. Selection of machine learning models

Before constructing ML models, the original clinical data were

normalized. Normalization can improve the speed of gradient

descent to find the optimal solution, and the algorithm for

Euclidean distance can effectively improve the accuracy. In this

study, the min–max normalization method was used to normalize

the characteristic values of clinical data to the range of (0,1).

Approximately 70% of the samples in the dataset were

randomly selected as the training set, whereas the remaining

30% of the samples were used as the validation set. The dataset

is represented as D = {(xi, yi), i = 1, 2, . . . ,N}, where

xi is [xi1, xi2, xi3, . . . , xip], which is a row vector with input

variables (or features) of real value as its elements, and yi ∈ {0, 1}

is a scalar with the output of an integer value as its element.

The task in hand was a binary classification problem, that is, the

generation of a model (y = f [x]) in the training set. The model was

subsequently verified in the validation set to predict ŷk = f (xk).

The predicted output ŷk should be similar to the actual output. All

models were tested using Python.

We applied five ML algorithms to model the data: logistic

regression (LR), support vector machine (SVM), K-nearest

neighbor (KNN), complement Naive Bayes (CNB), and XGBoost.

To be able to ensure that the training samples selected for multiple-

model training were consistent, we generalized the performance

of each model over multiple training sessions using a resampling

training/validation mechanism. The XGBoost (version 1.2.1),

lightGBM (version 3.2.1), and sklearn (version 0.22.1) packages

were used for developing the ML models. For the RF algorithm,

“ntree” was set to 100, and “mtree” was set to 3. To avoid overfitting

and enhance interpretability, the maximum tree depth was set to

eight nodes in the XGBoost algorithm. In addition, to evaluate

the predictive accuracy of various ML models, accuracy, precision,

sensitivity, specificity, F1 score, and the area under the receiver

operating characteristic curve (ROC) were evaluated.

SHAP is a “model interpretation” package developed based on

Python. To understand the results of the model output, the SHAP

package was used to interpret and sort the features of the trained

model and examine the contribution of each element in the features

to the model.

2.5. Statistical analysis

The R software (version 4.02) was used for data processing and

statistical analysis. Categorical variables were expressed in terms of

quantity and percentage and were compared using Fisher’s exact

test or the chi-square test. For continuous variables, the Shapiro–

Wilk test was initially used to determine whether the variables

conformed to a normal distribution, and the independent sample

t-test (conforming to a normal distribution) was subsequently

used for comparing the data, which were expressed as mean

± standard deviation. The Mann–Whitney U-test was used to

FIGURE 2

ROC curve demonstrating the performance of ML models in

predicting ICH in patients undergoing MHD.

compare data with non-normal distribution, which were expressed

as the median (first and third quartiles). A P <0.05 was considered

statistically significant.

3. Results

3.1. Baseline patient characteristics

A total of 393 patients were included in this study, and the

baseline characteristics of the ICH and non-ICH groups are shown

in Table 1. In terms of demographic characteristics, no significant

differences were observed in the sex and age of patients between the

two groups. The history of diabetes and polycystic kidney disease

was a significant variable in terms of underlying diseases. The

blood flow rate and SBP before and after dialysis were important

variables in terms of dialysis indicators. Laboratory indices, such

as the levels of CRP, LDL, and HDL, were significantly different

between the two groups. We further constructed a heat map

demonstrating Spearman correlation coefficients to visualize the

correlation between variables with differences (Figure 1).

3.2. Comparison of the predictive
performance of all models

Five ML algorithms were used to construct predictive

models. The training set was used to create and train the

models. All ML models were tested in the test set, and their

accuracy, precision, sensitivity, specificity, and F1 score were

compared. The XGBoost model had the highest accuracy,

precision, sensitivity, specificity, and F1 score (0.939, 0.949,
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FIGURE 3

Characteristic ranking of important variables in the model.

0.932, 0.952, and 0.938, respectively) (Table 2). Figure 2 shows

a ROC curve demonstrating the predictive performance

of all models. The XGBoost model (AUC = 0.979; 95%

CI, 0.953–1.000) demonstrated optimal performance in the

validation set. Therefore, the XGBoost model can be considered

an ideal model for predicting the risk of ICH in patients

undergoing MHD.

3.3. Explainable analysis of overall features

XGboost was used to rank the importance of features.

Figure 3 shows the ranking of the most important

variables in the model. The top five variables were

LDL, HDL, CRP, pre-dialysis SBP, and HGB. The

interpretation of the impact of these features is roughly

consistent with that reported in previous studies and

clinician perception.

Figure 4 shows a characteristic density scatter plot, which

demonstrates the effects of the main features in the dataset on

the predictive performance of the model. The abscissa represents

the SHAP value, which represents the contribution of a feature in

the model to the overall output. SHAP values <0, equal to 0, and

>0 represent negative, no, and positive contributions, respectively.

The left ordinate represents the features sorted by importance. The

color of the right ordinate, from blue to red, represents the feature

values from low to high. Lower LDL levels, higher CRP levels, lower

HDL levels, lower HGB levels, and higher pre-dialysis SBP have

higher SHAP values, indicating a higher likelihood of developing

ICH.
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FIGURE 4

SHAP summary plot of the XGBoost model demonstrates the relationship between each feature in the optimal model (XGboost) and SHAP values.

The higher the SHAP value of each feature, the higher the risk of ICH in patients undergoing MHD.

3.4. Explainable analysis of individual
features

As shown in Figure 5, the SHAP dependence plot demonstrates

the effects of a single feature on the final output of the XGboost

model and can be used to select the most significant features of the

model. CRP levels and pre-dialysis SBP were positively correlated

with SHAP values, that is, the larger the values, the higher the

risk of bleeding. However, the levels of LDL, HDL, and HGB

were negatively correlated with SHAP values, indicating that the

smaller the values, the higher the risk of bleeding (Figure 5A). We

selected LDL as a feature to determine the effects of HDL. The

red and blue dots represent high and low HDL levels, respectively.

After the data were normalized, it was found that when LDL was

less than the critical value of 0.3, regardless of HDL levels, the

SHAP value of LDL was always greater than zero. In addition,

when HDL was greater than the critical value, the SHAP value

of HDL was always less than zero (Figure 5B). The cutoff level of

LDL is 1.572 mmol/L in actual clinical practice. If this threshold

is exceeded, the possibility of ICH decreases. However, if this

threshold is not exceeded, the possibility of ICH increases. In

addition, the values of all main features are distributed differently

in different ranges and vary greatly in some regions. It remains

unclear whether these conditions have some specific significance,

which may have important implications for clinical outcomes. The

feature dependence plot provides information within a given range,

showing the trend of possible results. However, it is noteworthy

that the plot suggests correlation and not causality. Therefore, it

is necessary to integrate the results with clinical experience and

specific conditions to determine whether they can be used to

develop adjunctive intervention strategies.

In addition, SHAP can be used to analyze the influencing

factors of a cerebral hemorrhage in each patient. Figure 6 shows

the interpretation of the XGBoost model for the prediction of two

cases. Specifically, the arrows show the effects of each factor on

prediction. Features that increase the risk of developing ICH are

shown in red, and those that reduce the risk are shown in blue. The

stripe length of each feature indicates the importance of the feature

when making predictions. The longer the stripes, the greater the

contribution of the feature to the prediction. After combining the

influence of all factors, the corresponding prediction score of each

factor was calculated. Figure 6A demonstrates the contribution of

different features to prediction in a patient correctly predicted to

have ICH. CRP, LDL, and HGB had the largest contribution (red),

indicating that they were themain causes of cerebral hemorrhage in

the patient. The second patient was accurately predicted to have no

ICH (Figure 6B), with LDL, CRP, and pre-dialysis SBP identified

as protective factors. Although there were some risk factors, the

patient had no cerebral hemorrhage.

4. Discussion

Intracerebral hemorrhage is characterized by a high rate of

disability and death, which greatly increases the economic burden

on families and society, so it is essential to investigate the

factors influencing the complications of ICH events in MHD

patients. Many scholars have identified the risk factors of ICH and

hematoma expansion in patients undergoing MHD and screened

variables, such as serum calcium, serum creatinine, and serum

antiplatelet agents, via multivariate logistic regression (16, 17).

Unlike many previous studies, the present study innovatively

Frontiers inNeurology 07 frontiersin.org7879

https://doi.org/10.3389/fneur.2023.1139096
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Li et al. 10.3389/fneur.2023.1139096

FIGURE 5

SHAP dependence plot of main indicators. (A) The SHAP dependence plot demonstrates the e�ects of a single feature on the final output of the

XGboost model. (B) The SHAP dependence plot selects LDL as a feature to determine the e�ects of HDL.

used ML algorithms to screen for variables, and to the best of

our knowledge, this is the first study to report the development

of an ML-based predictive model to evaluate the probability of

concurrent ICH events in patients undergoing MHD. In addition,

we also applied four mainstreammachine learning models, namely,

LR, SVM, KNN, and CNB, to compare the predictive performance

of the XGBoost algorithm with these machine learning methods.

XGBoost is a lifting algorithm based on tree models. Since

its establishment in 2016, it has been used to deal with non-

linear relationships and complex interactions between variables

owing to its higher prediction accuracy and faster operation

speed (14). The XGBoost algorithm has been widely used

in the medical field, especially for the prediction of critical

illnesses. Po-Yu Tseng et al. used the combination of RF and

XGboost to predict the risk of acute kidney injury after cardiac

surgery, and the final AUC value was 0.843 (8). Pan et al.

used XGBoost to predict the mortality of critically ill patients

with COVID-19 admitted to the ICU. The AUC values of the

training and validation sets were 0.86 and 0.92, respectively (18).

The findings of the present study suggest that XGBoost can

effectively improve the prediction of ICH in patients undergoing

MHD. In this study, the predictors considered to be related

to ICH in actual clinical practice and literature were included;

patient information was collected as comprehensively as possible;

abnormal indicators of various metabolic disorders were refined;

ML algorithms were used to analyze variables; and finally, the

ROC-AUC value of the optimal model (XGBoost) was as high

as 0.979 (Figure 2), with the highest prediction accuracy and

significantly better performance than other mainstream machine

learning models.
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FIGURE 6

Interpretation of the SHAP model for the prediction of two cases. The red stripe feature is conducive to the prediction of a cerebral hemorrhage in

patients undergoing dialysis, whereas the blue stripe feature is conducive to the prediction of no cerebral hemorrhage. (A) The contribution of

di�erent features to prediction in a patient correctly predicted to have ICH. (B) The contribution of di�erent features to prediction in a patient

correctly predicted to have no ICH.

In addition, in this study, we used SHAP to interpret the

results of ML models. Emphasis is placed on features that have

the greatest impact on outcome measures, thus helping clinicians

to realize the rationale behind predicted outcomes early enough to

initiate prompt intervention. The results showed that changes in

LDL, HDL, CRP, SBP, and HGB levels were the main predictors

of ICH in patients undergoing MHD, which was consistent with

clinical studies.

Lipid is an indispensable neutral fat in the human body. To

date, numerous studies have investigated the relationship between

lipid metabolism and ICH. Lipid metabolism disorders in patients

undergoing long-term hemodialysis are closely related to the

occurrence of a cerebral hemorrhage (19, 20), which is consistent

with the results of this study. The Genetic and Environmental

Risk Factors for Hemorrhagic Stroke (GERFHS) reported a 33%

reduction in the risk of a cerebral hemorrhage in patients with

higher cholesterol levels, and a retrospective study (21) reported

a significantly increased risk of hemorrhagic stroke in patients

with lower HDL levels. The mechanism may be explored because

lower LDL-C levels are closely associated with an increased number

of cerebral microbleeds (CMBs) (22). Lobar CMBs are mainly

associated with cerebral amyloid angiopathy (CAA) (23). The ε

4 allele variation of apolipoprotein E (APOE) is a known genetic

risk factor for CAA. Genetic studies have shown a higher rate of

reduction in LDL-C concentrations with the APOE ε 4 genotype

vector (24). Recent studies have also shown that higher LDL-

C genetic risk scores are associated with a higher prevalence of

multiple lobar microbleeds (25). CMBs are independent risk factors

for ICH and strong predictors of future cerebral hemorrhage

(26). In addition, cholesterol is related to physiological processes

such as vascular wall construction. Extremely low cholesterol

levels may destroy the integrity of intracranial vascular endothelial

cells, aggravate vascular endothelial damage, and increase the

risk of cerebral hemorrhage (27). HDL is considered a protective

factor for atherosclerosis (28), and low HDL levels can aggravate

the progression of atherosclerosis, thus increasing the risk of a

cerebral hemorrhage.

CRP is an important part of the immune system and one

of the signs of acute inflammation (29). In this study, CRP

levels were significantly different between the ICH and non-

ICH groups, and CRP was highly correlated with ICH, which is

consistent with the findings of previous studies (30–32). Patients

undergoing MHD often have comorbid inflammation, which may

lead to endothelial damage and atherosclerosis (33, 34), thereby

increasing the morbidity and mortality of cerebrovascular diseases

(35). Genetic studies have shown that the significantly reduced

expression of haplotype H5 in the CRP genotype is closely

associated with hemorrhagic stroke (36). CRP induces endothelial

dysfunction by directly destroying the blood–brain barrier (BBB)

and induces monocytes to release proinflammatory cytokines,

leading to increased vascular permeability and cerebral hemorrhage

(37, 38).

According to the model results of this study, the SBP

before daily hemodialysis in the cerebral hemorrhage group was

higher than that in the control group, which is consistent with

the conclusion that hypertension is a risk factor for cerebral

hemorrhage in MHD patients as reported in previous studies.

Hypertension is a known traditional risk factor for ICH (39). In

patients with chronic kidney disease, renal function and excretion

are impaired, blood volume is increased, renin–angiotensin–

aldosterone system is activated in a feedback manner, and water

and sodium retention is aggravated. In this study, the higher

SBP before dialysis in patients with ICH may be related to

inadequate dialysis. In addition, during hemodialysis, the greater

hemodynamic changes and the excretion of antihypertensive drugs

will aggravate hypertension, resulting in increased pressure on

cerebral arteries. When the pressure on the vascular wall exceeds

the pressure, the cerebral vessels rupture and bleed, causing

cerebral hemorrhage.

Patients undergoing MHD are predisposed to anemia owing

to factors such as reduced erythropoietin synthesis (40). HGB is

the main indicator reflecting the anemic status of humans. Recent

studies have reported that the HGB level of patients with MHD

is negatively correlated with the risk of a cerebral hemorrhage

(41–43), which is consistent with the results of this study. The

underlying mechanisms may include vasoconstriction (44), platelet

aggregation (45, 46), and cytotoxic reaction caused by chronic

hypoxia (44), leading to brain dysfunction or damage.
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This study has some limitations. First, although this study had

a multicenter design, it only includes patients from three hospitals

in Xuzhou, China. In future studies, we will include datasets from

different regions and hospitals for external testing to improve the

generalization ability of the model. Second, the number of patients

with and without ICH was not well-balanced, which may have led

to impaired prediction. Considering that deep learning has been

widely used in the medical community in recent years, we will use

deep learning models to incorporate a wider range of data in future

studies. Overall, compared with traditional models, the prediction

model developed in this study contains more information and

has better predictive accuracy. In addition, the visualization of

results based on SHAP can, to a great extent, alleviate the “black

box” problem.

5. Conclusion

A predictive ML model was developed based on XGBoost, and

SHAP was used to explain the clinical significance of each risk

factor in predicting the occurrence of ICH in patients undergoing

MHD. ICH events in patients undergoing MHD are associated

with serum LDL, HDL, CRP, HGB, and pre-hemodialysis SBP

levels. The combination of the XGBoost algorithm and SHAP can

provide a clear explanation for risk prediction, which has great

application value in future clinical research. This combination can

help clinicians to implement early clinical interventions, provide

more comprehensive information for the long-term management

of patients undergoing MHD, and prevent and reduce the risk

of ICH.
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Background and purpose: Corpus callosum (CC) infarction is an extremely 
rare subtype of cerebral ischemic stroke, however, the symptoms of cognitive 
impairment often fail to attract early attention of patients, which seriously affects 
the long-term prognosis, such as high mortality, personality changes, mood 
disorders, psychotic reactions, financial burden and so on. This study seeks to 
develop and validate models for early predicting the risk of subjective cognitive 
decline (SCD) after CC infarction by machine learning (ML) algorithms.

Methods: This is a prospective study that enrolled 213 (only 3.7%) CC infarction 
patients from a nine-year cohort comprising 8,555 patients with acute ischemic 
stroke. Telephone follow-up surveys were carried out for the patients with definite 
diagnosis of CC infarction one-year after disease onset, and SCD was identified 
by Behavioral Risk Factor Surveillance System (BRFSS) questionnaire. Based on the 
significant features selected by the least absolute shrinkage and selection operator 
(LASSO), seven ML models including Extreme Gradient Boosting (XGBoost), 
Logistic Regression (LR), Light Gradient Boosting Machine (LightGBM), Adaptive 
Boosting (AdaBoost), Gaussian Naïve Bayes (GNB), Complement Naïve Bayes 
(CNB), and Support vector machine (SVM) were established and their predictive 
performances were compared by different metrics. Importantly, the SHapley 
Additive exPlanations (SHAP) was also utilized to examine internal behavior of the 
highest-performance ML classifier.

Results: The Logistic Regression (LR)-model performed better than other six 
ML-models in SCD predictability after the CC infarction, with the area under the 
receiver characteristic operator curve (AUC) of 77.1% in the validation set. Using 
LASSO and SHAP analysis, we found that infarction subregions of CC infarction, 
female, 3-month modified Rankin Scale (mRS) score, age, homocysteine, 
location of angiostenosis, neutrophil to lymphocyte ratio, pure CC infarction, and 
number of angiostenosis were the top-nine significant predictors in the order of 
importance for the output of LR-model. Meanwhile, we identified that infarction 
subregion of CC, female, 3-month mRS score and pure CC infarction were the 
factors which independently associated with the cognitive outcome.

Conclusion: Our study firstly demonstrated that the LR-model with 9 common 
variables has the best-performance to predict the risk of post-stroke SCD due 
to CC infarcton. Particularly, the combination of LR-model and SHAP-explainer 
could aid in achieving personalized risk prediction and be served as a decision-
making tool for early intervention since its poor long-term outcome.
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1. Introduction

The corpus callosum (CC) is the largest commissural bridge of 
white-matter fibers between bilateral hemispheres (1), accompanied 
by a unique anterior and posterior double circulation system and 
abundant collateral arteries (2). Because of the sufficient blood supply, 
CC infarction is extremely rare and accounts for barely 2.3–8.0% of 
cerebral ischemic stroke (3–5). Because of its unique physiological 
structure and function, the manifestations of CC infarction are 
variable and lacking of specificity. Due to these special and complex 
characteristics, misdiagnosis and delayed treatment are not 
uncommon for CC infarction (6). Interestingly, we previously found 
that, compared to general basal ganglia infarction, patients with CC 
infarction had lower National Institutes of Health Stroke Scale scores 
and better recovery at the time of discharge, while the one-year 
mortality is higher with poorer long-term prognosis (5). Cognitive 
impairment is one of the main causes of poor long-term prognosis in 
patients with CC cerebral infarction. Unfortunately, due to it’s occult 
exacerbation process, patients often do not pay enough attention to it 
in the early stage, and miss the optimal intervention period, resulting 
in irreversible cognitive impairment.

Subjective cognitive decline (SCD) is an individual’s self-report of 
cognitive decline and is nowadays thought to be a precursor to various 
common cognitive disorders in clinic, such as mild cognitive 
impairment (MCI) (7) and Alzheimer’s disease (AD) (8). Recent 
researches have revealed that compared with age-matched healthy 
controls, patients with SCD suffer a 4.5–6 times higher risk of 
developing into MCI or AD (9, 10). Compared to universally-known 
post-stroke cognitive impairment (PSCI), SCD places more emphasis 
on the patient’s subjective perceptions and timely feedback from 
caregivers, making it easier to identify and intervene early. Meanwhile, 
our, as well as others’ previous studies have proved that, white matter 
lesions (WMLs) are important pathological mechanisms for cognitive 
dysfunctions (5, 11–14). As an extremely rare subtype of stroke with 
prominent WMLs, CC infarction is likely to become a potential driver 
of SCD and other symptomatic cognitive decline. Therefore, aiming 
to restore brain health and cognitive abilities as long as possible, this 
at-risk group is recognized as an eligible target population for early 
intervention strategies (15, 16).

The role of physicians has always been to synthesize the data 
available to them to identify prognosis patterns that guide early 
intervention. Machine learning (ML) is a new rising technical 
foundation of artificial intelligence, which enables the computer to 
learn the rules hidden in the data automatically (17). Several studies 
have revealed that ML-based models are promising in predicting the 
diagnosis, prognosis or recurrence of ischemic stroke, what’s more, 
those models are also widely used in the field of psychology, 
biomechanics and so on (18–23). Nevertheless, it still lacks of 
ML-based evidence on SCD prediction after cerebral infarction. 
What’s more, the “black-box” character of ML-technique hinders 

clinicians to have a good understand of the predictive decision, 
namely failure in accountability (24). To this end, we proposed an 
interpretable strategy combining ML algorithm with SHapley Additive 
exPlanations (SHAP) to provide consistent and locally accurate 
attribution values for each feature within each prediction model. It’s 
calculated by comparing the predicting discrepancy in all possible 
combinations containing and withholding each feature and provide a 
unique report individually (25).

Here, with the largest sample of CC infarction to date, this is an 
exploratory study that for the first time emphasizes the clinical 
feasibility to individually predict the occurrence of one-year SCD 
after CC infarction by using ML methods. We also attempt to apply 
SHAP-value for explaining the importance and influence of each 
predictor contributing to the optimal model’s outcome. We expect 
this ML-derived early warning system and SHAP-based framework 
of interpretation could help clinicians to better counsel patients, 
conduct targeted follow-up and determine personalized 
interventional measures.

2. Methods

2.1. Participants

The design of this study is presented in Figure 1. A total of 8,555 
ischemic stroke patients were collected from Shanghai Changhai 
Hospital between July 2012 and June 2021. Among them, 314 (3.7%) 
patients with acute CC infarction were enrolled. The exclusion criteria 
were as follows: (i) age under 30 or above 80 years old, (ii) cognitive 
impairment precedes CC infarction, (iii) follow-up period was less 
than 1 year, or loss to follow-up, (iv) serious medical complications, 
(v) incomplete neuroimaging materials, (vi) acceptance of 
thrombolytic therapy or interventional therapy, and (vii) failure to 
sign written informed consent. Ultimately, 213 patients with acute CC 
infarction were included for final analysis. This study was approved by 
the Changhai Hospital Ethics Committee (NO. CHEC2021-1021).

2.2. Clinical and imaging assessment

Basic clinical and imaging information of enrolled patients were 
obtained from Electronic Medical Record (EMR) management 
system. A list of these variables was shown in Supplementary Table S1, 
including: demographic characteristics (age, sex, body mass 
index[BMI]), vascular risk factors (hypertension, diabetes mellitus, 
prior stroke or transient ischemic attack, heart diseases, smoking, 
alcoholism), stroke severity on admission (time from onset to hospital, 
NIH stroke scale [NIHSS] scores), laboratory tests (alanine 
transaminase [ALT], low-density lipoprotein [LDL], high-density 
lipoprotein [HDL], cholestenone, triglyceride, creatine, urea, uric acid, 
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Glucose [Glu]), (thyroid-stimulating hormone [TSH], 
triiodothyronine [T3], thyroxine [T4], erythrocyte, leukocyte, 
neutrophil to lymphocyte ratio [NLR], hemoglobin, thrombocyte, 
erythrocyte sedimentation rate [ESR], C-reactive protein [CRP], 
homocysteine [Hcy], glycosylated hemoglobin [HbA1c], fibrinogen 
[FIB], D-dimer), imaging examination assessment (pure CC 
infarction, infarction subregion of CC, other infarction areas, location 
of angiostenosis, number of angiostenosis, extracranial carotid plague, 
TOAST subtype (26)), functional status (Modified Rankin scale 
[mRS] at 3-month), secondary prevention and recurrence 
(rehabilitation treatment, regular secondary prevention and 
recurrent stroke).

In detail, rehabilitation here referred to a series of standardized 
rehabilitation therapy obtained in rehabilitation hospitals, which 
mainly focuses on the motor and language function. Moreover, it also 
included lifestyle modification and taking medication exactly as 
prescribed at Discharge Notes, as well as additional carotid surgery 
or stenting, repairment for closure of patent foramen ovale, and 
surgery for intracranial or vertebral stenosis if necessary (27).

Additionally, the corresponding neuroimaging evidences were 
collected from both (i) MRI (Magneton Impact 3.0 T, Siemens, Berlin, 
Germany), including T1-imaging, T2-imaging and diffusion-
weighted imaging (DWI), and (ii) MR-angiography (MAGNETOM 
Skyra 3.0 T, Siemens) or CT-angiography (Aquillion One, Toshiba, 
Tokyo, Japan). As shown in Figure 2, the patients could be divided 
into 2 groups according to DWI patterns: pure callosal infarcts and 
complex callosal infarcts. The former was further subdivided into 
following subgroups: (i) Pure genu infarction of the corpus callosum, 
(ii) Pure body infarction of the corpus callosum, and (iii) Pure 

splenium infarction of the corpus callosum according to the 
subregions of CC.

2.3. Cognitive dysfunction definition

Telephone follow-up surveys were carried out for the patients with 
definite diagnosis of CC infarction one-year after onset. According to 
the cognitive decline module of the Behavioral Risk Factor 
Surveillance System (BRFSS), which is the largest ongonging health 
survey system in the world (28). SCD was identified by the question 
of BRFSS, “During the past 12 months, have you  experienced 
confusion or memory loss that is happening more often or is getting 
worse?” (29–31). If respondents had a clear cognitive complaint 
compared with the self-perception before stroke, they were classified 
as suffering from post-stroke SCD, otherwise they were distinguished 
as non-SCD. Additionally, there were five detailed questions of 
aggravating confusion or memory decline mentioned in the BRFSS 
questionnaire, including: (1) the frequency of giving up daily 
household activities or common chores, (2) the frequency of 
requirement of assistance with these daily activities, (3) the frequency 
of getting help, just as you  wanted, (4) the frequency of work, 
volunteer, or social activities disturbed by the confusion or memory 
disorder, and (5) whether having sought medical attention for this (29, 
31). These SCD-related outcomes evaluated by a five-point scale 
(Always, usually, sometimes, rarely, never) were dichotomized to 
determine if these outcomes were challenge (assigned as 1) vs.if they 
rarely or never happened (assigned as 0) (28). Consequently, the 
patients would better realize whether they had problems with 

FIGURE 1

Schematic representation of the study design and modeling workflow.
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post-stroke SCD and SCD related functional impairment through our 
telephone survey.

2.4. Machine learning

2.4.1. Features selection
Least absolute shrinkage and selection operator (LASSO) was 

used to select variables among high-dimensional data based on the 
penalty method. The originally small coefficients were compressed to 
0 after compressing (32). Thereafter, regarded as non-significant 
variables, the corresponding variables of these coefficients were 
directly discarded (33). LASSO regression is also usually characterized 
by variable selection and complexity adjustment for construction of 
ML models while avoiding overfitting. However, the most ML 
methods could not process data with missing values, so we imputed 
the dataset by KNN before LASSO regression. In our study, this binary 

logistic regression (LASSO) model is helpful to screen out significant 
predictors of SCD after acute CC infarction.

2.4.2. Machine learning models
Then, the dataset was randomly divided into training set and 

validation set. As in most cases, the training set accounted for 70% and 
the validation set accounted for 30% (34). Seven comprehensive and 
up-to-date ML algorithms were thereafter used to develop the 
predictive models, including Extreme Gradient Boosting (XGBoost), 
Logistic Regression (LR), Light Gradient Boosting Machine 
(LightGBM), Adaptive Boosting (AdaBoost), Gaussian Naïve Bayes 
(GNB), Complement Naïve Bayes (CNB), and Support vector machine 
(SVM). For each ML-based model, five-fold cross-validation was 
performed to evaluate the generalization ability (35), and the optimal 
hyperparameters were selected subsequently. Additionally, the 
following indicators are calculated to comprehensively evaluate the 
performance of different models: area under the curve (AUC)-value, 

FIGURE 2

Representative images of pure and complex callosal infarction. (A) Complex callosal infarction. (B) Pure genu infarction of the corpus callosum. 
(C) Pure body infarction of the corpus callosum. (D) Pure splenium infarction of the corpus callosum.
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accuracy, sensitivity, specificity, positive predictive value (PPV), 
negative predictive value (NPV), and F1 scores.

2.4.3. Personalized interpretation
Specifically, we further utilized a novel approach to explain the 

output of the highest-performing ML model, namely Shapley Additive 
explanation (SHAP), rooted in Shapley value. Calculated the marginal 
contribution of a feature when it is added to the “black-box” model, 
then the SHAP value takes the average value considering the different 
marginal contribution of the feature in all permutations of individuals 
(36). A feature with a positive SHAP value improves the output value, 
and those larger numerical values make greater contributions (37). In 
our study, the SHAP summary plot, the importance ranking, and the 
SHAP dependence plot of the relevant covariates were used to improve 
the interpretability. SHAP explainer was suitable to visualize the 
black-box ML algorithms on the basis of the cooperative game theory 
(36). The advantage of SHAP method is be able to explain how much 
and in which direction each predictor influences the optimal 
ML-model’s output. It concluded that, the core idea of SHAP-explainer 
is to calculate the marginal contribution of features to model output, 
and then to explain the “black-box” model from global and local 
levels (38).

2.5. Data preprocessing

Firstly, indicators including ESR, CRP, TSH, T3, T4 were excluded 
because of the high missing ratio (over 30% (39), respectively). 
Secondly, categorical variables were encoded into dummy variables, 
and the details were as follows: (i) TOAST subtypes were converted 
into range 1–5 (LAA = 1, CE = 2, SAO = 3, ODC = 4, UND = 5), (ii) 
Infarction region of CC were divided into range 1–5 (rostrum = 1, 
genu = 2, body = 3, splenium = 4, at least two of rostrum, genu, body 
and splenium = 5), and (iii) Other infarction areas were turned into 
range 0–5 (none = 0, frontal lobe = 1, parietal lobe = 2, temporal 
lobe = 3, occipital lobe = 4, others = 5), (iv) Location of angiostenosis 
were encoded into range 0–4 (none = 0, ICA = 1, VBA = 2, both of ICA 
and VBA = 3), etc. After that, remaining indicators were processed by 
K-nearest-neighbor (KNN) analysis to impute their missing values 
(40). In the end, the Borderline-1 SMOTE (BLSMOTE) algorithm was 
also adopted to balance the samples between the SCD group and 
non-SCD group in an absolute fairness (for 50%, respectively), which 
would improve the reliability or classifying performance of the 
ML-models (41).

2.6. Statistical analysis

Continuous data were uniformly described as mean (SD) or 
median (IQR), while categorical data were presented as n (%). Baseline 
characteristics were compared between the SCD group and non-SCD 
group after CC infarction by Chi-square test (categorical variables), 
two-sample t-test (continuous variables with symmetric distribution), 
Mann–Whitney U test (continuous variables with asymmetric 
distribution), or Welch’s t-test (continuous variables with heterogeneity 
of variance), as appropriate. Then, variables with a relatively 
remarkable (p < 0.1) association with cognitive outcome in univariable 
analysis were further analyzed by multivariable analysis with a 
traditional forward stepwise selection. All statistical analyzes were 

performed using programming language R package (version 3.6.3, 
https://cran.r-project.org/bin/windows/base/) and all ML-relevant 
workflows were performed using python (version 3.7, https://www.
python.org/getit/); p < 0.05 indicates statistical significance.

3. Results

3.1. Demographics

The baseline demographical, clinical, biochemical and 
neuroimaging characteristics of 213 patients (75 female) with acute 
CC infarction were summarized in Supplementary Table S1. The 
average age at baseline was 63 [55, 69] years. After 1 year follow-up 
period, 110 subjects developed into post-stroke SCD, while the 
remaining were no-complaint (NC) patients. Compared to NC 
participants, SCD patients tended to be slightly older (63 [58, 71] vs. 
61 [51, 68] years, p = 0.012), had a higher percentage of female (45.4% 
vs. 24.2%, p = 0.001), and higher mRS scores at 3 month (1 [1–3] vs. 1 
[0–2], p <0.001). Pure CC infarction seems to be more likely to cause 
post-stroke SCD (p = 0.030). Meanwhile, the group with more than 
two subregions involvement of CC infarction were especially 
vulnerable to post-stroke SCD (p = 0.001). Furthermore, patients with 
post-stroke SCD were prone to have multiple angiostenosis with both 
of internal carotid artery (ICA) and vertebral basilar artery (VBA) 
involved (p = 0.009).

3.2. Multivariable analysis of risk factors

According to traditional forward selection, we found that female 
(OR: 3.344; 95% CI: 1.656–6.998; p = 0.001), 3-month mRS scores 
(OR: 1.380; 95% CI: 1.109–1.736; p = 0.005), pure CC infarction (OR: 
4.823; 95% CI: 1.531–17.919; p = 0.011) were the eligible independent 
risk factors for SCD after acute CC infarction (Table 1). Compared 
with the patients with acute infarction of the genu, patients with 
infarction of the splenium but not rostrum or body were more likely 
to have cognitive deterioration during follow-up (OR: 3.058; 95% CI: 
1.221–8.183; p = 0.020). Furthermore, the patients with at least two 
subregions of CC infarction were more susceptible to post-stroke SCD 
than those only with lesions in the genu (OR: 7.370; 95% CI: 2.649–
22.124; p < 0.001).

3.3. Performance of machine learning 
models

Based on the predictors selected by LASSO in the supplementary 
materials (Supplementary Figure S1), different artificial intelligence 
(AI) -derived models were constructed (Table 2). According to the 
metrics, the AUC and accuracy of the LR model were obviously better 
than those of the other six models, respectively. Therefore, the logistic 
model was selected as the most prominent one for predicting SCD 
after acute CC infarction, which achieved an AUC of 0.771 (±0.042) 
and accuracy of 0.703 (±0.050) in the validation set. The ROC-curves 
and Forest map of AUC values for the LR and the other models were 
shown in Figure 3.

Moreover, we calculated the contribution of each predictor to LR 
model by SHAP algorithm, which can simultaneously reveal the 
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power and direction of these factors. Thereafter, features were ranked 
on the basis of the absolute SHAP values over all samples (Figure 4A). 
As is depicted in Figure 4B, high values of infarction subregions of CC, 
female, 3-month mRS score and pure CC infarction have positive 
impact on the output of LR model, indicating the acceleration of 
cognitive deficit after acute CC infarction. Importantly also, age, HCY, 
NLR, location and number of angiostenosis were the other top-9 
predictors for post-stroke SCD based on Shapely value.

SHAP model is a relatively all-powerful ML-model interpretation 
method, which can also be used for personalized interpretation. That 
means, individual patient predictions can be extracted to visualize 
which features played a role in their cognitive decline and what their 
feature values were. For instance, Figure 4C exhibits a subject with a 
predicted possibility of 74% for SCD after CC infarction by LR-model. 
The plot explains that location of angiostenosis = 3.0 (both of ICA and 
VBA), infarction subregion of CC = 5.0 (at least two of rostrum, genu, 
body, and splenium) and female = 1 (female) are the most remarkable 
values contributing to the increased chance of cognitive disorder, 

while 3-month mRS score = 0 is just the opposite. Ultimately, the result 
indicated a high-risk of post-stroke SCD for this subject, and the 
follow-up result confirmed cognitive impairment outcome, which 
means true positive. Similarly, Figure  4D exhibits a case with a 
predicted possibility of 37% for post-stroke SCD, in other words, that 
means a possibility of 63% for non-SCD after CC infarction. The most 
essential positive contributors towards adverse cognitive outcome are 
NLR = 1.9 and HCY = 12.3. Inversely, the negative contributors involve 
location of angiostenosis = 0.0 (none) and age = 62.0. Therefore, the 
LR-based algorithm’s result was low-risk of SCD after CC infarction 
for this subject, and the actual outcome was identified as non-cognitive 
impairment (true negative).

4. Discussion

The presence of SCD is known to be associated with a high risk 
for objective cognitive decline and even clinical progression to 
symptomatic disease stages (42, 43). Effective intervention to delay 
or prevent pathologic cognitive decline may best to targeted at the 
earliest symptomatice disease stage, such as SCD, in which cognitive 
function is still relatively preserved (44). This is an exploratory study 
that for the first time focuses on post-stroke SCD of rare CC 
infarction via an interpretable machine learning-derived early 
warning strategy.

After multivariate adjustment for potential confonders, we found 
that female, 3-month mRS scores, pure CC infarction and infarction 
subregion of CC independently correlated with the incidence of 
SCD. Interestingly, our previous study has reported that males had a 
higher incidence of CC infarction (5), while in the current cohort, 
we found females were more susceptible to SCD after this specific 
infarction. Reasons for this phenomenon may include: (1) females in 
the present study had an older onset-age of CC infarction than males 
(64 [58,71] vs. 62 [55,69]), (2) women are usually considered to have 
a lager corpus callosum volume (45–47), indicating that callosum may 
play a more important role in maintaining brain function of females, 
(3) women tend to have higher cortisol but lower estradiol levels in 
menopausal period (48). Indeed, scholars have well-clarified that 
higher serum cortisol is correlated with more severe microstructural 
WMLs, particularly in CC, while estrogen are thought to promote the 
remyelination, and the latter in turn is strongly associated with general 
cognitive capacity (49–51). Meanwhile, a strong interaction between 
serum cortisol and cerebral atrophy among females, but not males was 
also identified (52). Richa et al. (53) once reported that the MoCA 
scores (between 4–8 weeks post-infarct) were obviously correlated to 

TABLE 2  Comparison of predictive effects of different machine learning algorithms.

Models AUC Accuracy Sensitivity Specificity PPV NPV F1 score

XGBoost 0.722 (0.035) 0.618 (0.024) 0.722 (0.100) 0.717 (0.120) 0.704 (0.068) 0.578 (0.022) 0.705 (0.045)

LR 0.771 (0.042) 0.703 (0.050) 0.763 (0.094) 0.730 (0.108) 0.661 (0.077) 0.765 (0.044) 0.703 (0.064)

LightGBM 0.655 (0.066) 0.615 (0.093) 0.757 (0.145) 0.559 (0.230) 0.644 (0.104) 0.604 (0.105) 0.676 (0.042)

AdaBoost 0.691 (0.059) 0.648 (0.053) 0.669 (0.070) 0.688 (0.095) 0.628 (0.087) 0.668 (0.090) 0.642 (0.051)

GNB 0.752 (0.047) 0.700 (0.045) 0.701 (0.085) 0.768 (0.087) 0.722 (0.062) 0.683 (0.062) 0.709 (0.062)

CNB 0.668 (0.044) 0.573 (0.051) 0.711 (0.185) 0.627 (0.187) 0.616 (0.051) 0.562 (0.072) 0.641 (0.079)

SVM 0.647 (0.042) 0.594 (0.026) 0.774 (0.175) 0.496 (0.204) 0.588 (0.048) 0.609 (0.069) 0.660 (0.094)

TABLE 1  Multivariate logistic regression for the risk factors of post-stroke 
SCD after callosal infarction.

Variables Odds ratio 
(95% CI)

p value

Age, year 1.024 (0.995–1.055) 0.114

Female (yes vs. no) 3.344 (1.656–6.998) 0.001

Uric acid, umol/L 0.999 (0.997–1.001) 0.497

Hypertension (yes vs. no) 1.266 (0.615–2.619) 0.522

3-month mRS scores 1.380 (1.109–1.736) 0.005

Pure CC infarction (yes vs. no) 4.823 (1.531–17.919) 0.011

Number of angiostenosis

none 1 (ref)

Seldom 0.537 (0.169–1.662) 0.284

Multiple 1.711 (0.723–4.141) 0.225

Infarction subregion of CC

Genu 1 (ref)

Body 3.347 (0.747–15.754) 0.116

Splenium 3.058 (1.221–8.183) 0.020

At least two of above subregions 7.370 (2.649–22.124) <0.001

mRS, Modified Rankin scale; CC, Corpus callosum. In this table, the term of Multiple means 
the number of narrowed or occluded vessels is greater than two, and the term of Seldom 
means the level was between none and multiple.
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mRS scores (at the same follow-up points) among the stroke patients. 
Then, our results showed that 3-month mRS scores were related to 
longer-time cognitive outcome due to CC infarction.

The structure of CC can be divided into four classical parts in the 
order from front to back: rostrum, genu, body and splenium (54). 
Consistent with previous reports (5), we found that the incidence of 
‘pure’ CC infarction was rare, while the mental disturbance and 
cognitive dysfunction were more prominent than ‘complex’ CC 
infarction. The mechanisms of the discrepancy are still unclear, 
perhaps the atypical symptoms and insufficient distinguishment of 
MRI scan made it difficult to draw sufficient attention and appropriate 
prevention of ‘pure’ CC infarction. Meanwhile, we reported for the 
first time that acute infarction in the splenium had a higher tendency 
of cognitive decline than that in the genu. As the most vulnerable area 
of the CC infarction, the splenium is more vulnerable to insufficient 
blood supply, and the splenium lesions were known to be related with 
cognitive disorder, aphasia, homonymous hemianopsia, alien hand 
syndrome and so on (54). Therefore, we believe that the splenium 
plays an important role in the high incidence of SCD caused by CC 
infarction to some extent. What’s more, patients with at least two 
subregions of CC infarction were more susceptible to SCD than those 
only had lesions in the genu. This result is well understood given that 
the more structural damage CC is, the more disrupted the fiber 
connections and information transmission between the bilateral 
hemispheres. Besides, evidence showing that the infarction in body 
or splenium of CC could lead to disturbed executive capacity, 
attention and calculation (55), which may provide a side note for 
our viewpoint.

Besides multivariable analysis, LASSO analysis was also adopted 
to select potential risk predictors by eliminating irrelevant features. It 
is universally accepted that age was a risk factor of cognition damage 
after various types of ischemic stroke (56). Except of age, evidence 
linking high HCY(HHCY) and cognitive decline is profuse (57). It is 
known that, HHCY is not only associated with WMLs, but also the 
progression of WMLs (58). In the meantime, extensive intracranial 
vascular stenosis is another promotor for SCD after CC infarction. 

Cerebral angiostenosis/occlusion has already been proved to induce 
hypoperfusion and impaired executive dysfunctions, such as working 
memory, attention, cognitive flexibility, planning, thought 
organization and implementation (59). This phenomenon indicates 
that appropriate increase of cerebral blood flow may help prevent 
post-stroke SCD. Interestingly, NLR is often known as a risk factor for 
PSCI (60). However, we found that NLR is negatively associated with 
self-report cognitive decline, indicating that NLR is likely to act as a 
compensatory neuroprotective response in the early stage of CC 
infarction. Biological mechanisms between NLR and risk of post-
stroke SCD have not been explored before and warrants further 
clarifications, especially in the condition of CC infarction.

In our study, the combination of LASSO regression and ML-based 
models was beneficial to identify the optimal configuration to predict 
whether it is vulnerable to develop SCD after CC infarction or not. 
Then, the seven ML algorithms were assessed by several metrics, 
comprising AUC-value, accuracy, sensitivity, specificity, positive 
predictive value (PPV), negative predictive value (NPV), as well as F1 
scores. Apart from global explanation, the well-accepted local 
explanation, SHAP was also implemented to interpret how a complex 
black-box ML model makes a prediction (61). By incorporating the 
individualized patient profile, the level of contribution and 
directionality of specific input features were visualized (62). As shown 
in the Table 1, the LR model seemed to be  the best-performance 
classifier with the highest scores of AUC- value (77.1%), accuracy 
(70.3%), sensitivity (76.3%) and NPV (76.5%). In addition, acceptable 
values of specificity, PPV and F1 score (all above 65.0%) were achieved 
in the validation set. Taken together, we selected the LR model as the 
optimal algorithm with the best generalization ability. At the same 
time, we suggested that we should treat this problem dialectically and 
choose appropriate predictive classifier according to different 
clinical needs.

The strength of our research is that the cohort has the largest 
sample of CC infarction in the world, and the datasets are 
non-synthetic, which is more likely to be objective and effective as a 
screening tool. Unlike studies focused on each risk factor individually 

FIGURE 3

The ROC-curves and Forest map of AUC values for seven models. (A) The ROC curves for the different machine learning algorithms, and LR model 
yielded the greatest AUC among all the models. (B) The Forest map of AUC values of the seven models. The dots mean the AUC-value of each model, 
and the confidence intervals are depicted by the vertical lines.
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FIGURE 4

Matrix plots of the top nine important features and the SHAP plots for two selected patients. (A) The SHAP summary plot of LR model. Each dot 
represents a SHAP-value for a feature. The red color means high value, while the blue means low. The positive SHAP-value represents an increased risk 
of post-stroke SCD for the output of LR model, and vice versa. (B) The histogram of mean absolute SHAp values of top-nine important features of LR 
model. The longer the bar, the larger impact the feature has on the output. (C,D) SHAP force plots for two selected patients. Feature values colored red 
are pushing the predictive outcome towards cognitive impairment, while feature values colored blue are just the opposite. The associated Shapley 
value of each feature is visualized by the length of an arrow, and the longer of the arrow, the more significant the feature value is.
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or its pathophysiological interpretation (63, 64), we  aimed to 
encompass a large combination of variables from real-world clinical 
situations once. The variables we  used, including demographics, 
laboratory and radiological findings were all easily accessible for 
clinicians, which could assist with the early prediction and prevention 
for suspected post-stroke SCD. Additionally, an interpretable and 
explainable ML model was created with the help of SHAP-explainer, 
promoting to make individualized clinical decisions.

There are some limitations that still needed to be ironed out in our 
study. Firstly, although this investigation had the maximal population 
of patients with acute CC infarction, the sample size was still needed 
to be  added. Secondly, we  did not exploit the different cognitive 
abilities separately, such as orientation, calculation, executive abilities, 
long-term and short-term memory and attention, etc. Thirdly, the 
follow-up period is not long enough to verify the proportion of 
patients with SCD who eventually converted to PSCI. Therefore, muti-
center prospective cohorts with detailed cognitive domains 
impairment are needed in the future.

5. Conclusion

In conclusion, the present study screened out 9 key features 
associated with post-SCD and developed a LR-model which can 
improve the prediction accuracy of one-year SCD after CC infarction. 
What’s more, the individual report generated by SHAP facilitate the 
early implementation of primary prevention measures. Based on these 
techniques, we are even expected to continue to individually predict 
the long-term effects of different clinical drugs on cognitive 
impairment to shape a brighter future for patients with CC infarction.
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Background: Recent studies have reported that machine learning (ML), with

a relatively strong capacity for processing non-linear data and adaptive

ability, could improve the accuracy and e�ciency of prediction. The article

summarizes the published studies on ML models that predict motor function 3–6

months post-stroke.

Methods: A systematic literature search was conducted in PubMed, Embase,

Cochorane and Web of Science as of April 3, 2023 for studies on ML prediction

of motor function in stroke patients. The quality of the literature was assessed

using the Prediction model Risk Of Bias Assessment Tool (PROBAST). A random-

e�ectsmodelwas preferred formeta-analysis using R4.2.0 because of the di�erent

variables and parameters.

Results: A total of 44 studies were included in this meta-analysis, involving 72,368

patients and 136 models. Models were categorized into subgroups according to

the predicted outcome Modified Rankin Scale cut-o� value and whether they

were constructed based on radiomics. C-statistics, sensitivity, and specificity were

calculated. The random-e�ects model showed that the C-statistics of all models

were 0.81 (95% CI: 0.79; 0.83) in the training set and 0.82 (95% CI: 0.80; 0.85)

in the validation set. According to di�erent Modified Rankin Scale cut-o� values,

C-statistics of ML models predicting Modified Rankin Scale>2(used most widely)

in stroke patients were 0.81 (95% CI: 0.78; 0.84) in the training set, and 0.84 (95%

CI: 0.81; 0.87) in the validation set. C-statistics of radiomics-based ML models in

the training set and validation set were 0.81 (95% CI: 0.78; 0.84) and 0.87 (95% CI:

0.83; 0.90), respectively.

Conclusion: ML can be used as an assessment tool for predicting the motor

function in patients with 3–6 months of post-stroke. Additionally, the study found

that ML models with radiomics as a predictive variable were also demonstrated

to have good predictive capabilities. This systematic review provides valuable

guidance for the future optimization of ML prediction systems that predict poor

motor outcomes in stroke patients.

Systematic review registration: https://www.crd.york.ac.uk/prospero/display_

record.php?ID=CRD42022335260, identifier: CRD42022335260.
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1. Introduction

Stroke is an acute cerebrovascular disease caused by sudden

rupture of intracranial vessels or vascular obstruction preventing

blood from flowing into the brain and thereby leading to brain

tissue damage. Based on its pathological pattern, stroke can be

classified into ischemic stroke (IS) and hemorrhagic stroke (HS).

The Global Burden of Diseases, Injuries, and Risk Factors Study

2017 (GBD 2017) reported that stroke resulted in 6.17 million

deaths and is the second leading cause of death and disability

worldwide (1). According to the 2021 Guideline for the Prevention

of Stroke in Patients With Stroke and Transient Ischemic Attack

From the American Stroke Association (ASA), high blood pressure,

diet, abdominal obesity, physical inactivity and smoking represent

82% (2) of the population-attributable risk (PAR) in patients with

IS and HS. Although most IS patients have received effective

treatments, many of them still suffer certain functional impairment

after treatment. Motor function outcome in stroke survivors, as a

primary determinant of the burden of stroke, directly determines

their quality of life. Furthermore, physical disability is a key

factor for the occurrence of mental disorders, such as depression,

which occurs in 33% of stroke survivors (3). Therefore, the motor

function-related outcome is one of the greatest concerns for stroke

patients and their families. Clinically, it is extremely significant

for clinicians to judge the prognosis of stroke patients and make

a long-term treatment plan for those with a poor motor function

outcome (4).

With rapid advances in medical and health informatization,

medical data in a larger scale can be divided into more types,

and the health care field has also entered a new era of big

data. Due to the large scale, diversified types and high hidden

value of medical data, ML algorithms have been widely used

in the medical field (5–8). ML can be defined as a subfield

of artificial intelligence (AI) that uses computerized algorithms

to automatically improve performance through an iterative

learning process or experience (i.e., data collection) (9). Different

from traditional prediction models that use selected variables

for calculation, ML techniques can easily incorporate a large

number of variables to describe the complex and unpredictable

nature of human physiology in a clearer way. Therefore,

ML may be helpful for clinical prediction and identification

of new prognostic markers (10). In recent years, many ML

methods have been applied to the diagnosis and assessment

of stroke (11, 12), including the evaluation of stroke severity

(13), analysis of cerebral edema (14), prediction of hematoma

expansion (15), and incidence prediction (16). Therefore, ML

model predictions not only aid in disease analysis, prevention,

diagnosis, and patient monitoring, but also help clinicians handle

massive amounts of data in a more accurate and efficient

manner (17).

In the literature, the published systematic reviews lack

ML model prediction analysis of motor function 3–6 months

post-stroke, especially regarding model predictive capabilities in

different outcome cut-off values to accurately determine efficacy of

ML predictions. Additionally, individual original studies may not

be able to statistically assess the robustness of prediction results.

Therefore, this systematic review and meta-analysis was conducted

to assess the performance of current MLmodels as clinical tools for

predicting medium- and long-term recovery of motor function in

stroke patients.

2. Methods

This systematic review and meta-analysis was performed in

accordance with the Preferred Reporting Items for Systematic

Reviews and Meta-Analyses 2020 (PRISMA 2020), and

prospectively registered in PROSPERO (CRD42022335260).

2.1. Search strategy

A comprehensive and systematic search was conducted in

PubMed, Embase, Cochorane, and Web of Science databases.

The retrieval was as of April 3, 2023. A researcher (Xiaoning Li)

designed the keywords and search strategy of this systematic

review, and both subject headings and free words were

searched. The complete search strategy can be found in the

Supplementary Table S1.

2.2. Inclusion and exclusion criteria

2.2.1. Inclusion criteria
(1) Patients were diagnosed with IS or HS on CT or MRI. IS

included large vessel occlusion, anterior circulation infarction and

posterior circulation infarction. (2) ML was used to predict motor

function in patients 3–6 months post-stroke.

(3) The Modified Rankin Scale was used as the outcome

measure. (4) Aged 18 and older. (5) Articles written in English or

translated into English. (6) Randomized controlled trials, cohort

studies, case-control studies.

2.2.2. Exclusion criteria
(1) Patients were clumsy in physical activities or unable to

function independently before stroke (Premorbid Modified Rankin

Scale ≥ 2). (2) Cerebral hemorrhage resulted from secondary

causes, such as cerebral trauma and subarachnoid hemorrhage.

(3) Prediction models applied clinical scoring rather than ML. (4)

Case reports, protocols, editorials, and perspectives that have no

original data.

2.3. Literature screening and data
extraction

All of the retrieved studies were imported into Endnote for

management. After automatic and manual removal of duplicates,

two researchers (Weiying Zhao and Xue Zheng) independently

assessed remaining articles. Titles and abstracts were preliminarily

screened before the full texts were downloaded. Then we read the

full texts to select eligible studies that meet the inclusion criteria.

If there was any dissent on a study, a third researcher (Lei Chi)

was consulted to assist in determining whether to include it. Before

data extraction, a sheet of standard data extraction was prepared,
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including data source, Modified Rankin Scale cut-off value that was

defined as a poor outcome, outcome prediction time, missing data

processingmethods, sample sizes of the training and validation sets,

validation set confirmation way, internal and external validation

information, predictors and their number, as well as ML model

types. Data of the accuracy metrics were also collected, including

sensitivity, specificity, receiver operator characteristic (ROC), area

under the curve (AUC) and other.

2.4. Quality analysis

The ROB of included studies was assessed using PROBAST

(18). It involves four major domains: participants, predictors,

outcomes and statistic analysis, and reflects the overall ROB

and applicability. The four domains include two, three, six and

nine signaling questions, respectively. Signaling questions are

answered as yes/probable yes (Y/PY), no/probably no (N/PN), or

no information (NI). If a domain is answered with at least a N/PN,

it is considered at high ROB. When all of the four domains were

rated as low ROB, the overall ROB is deemed to be low. Two

researchers (CJ and KZ) independently carried out ROB assessment

in accordance with PROBAST. Then their assessment results were

cross checked. Any dissent was consulted to a third researcher (LW)

for final determination.

2.5. Data analysis

We performed a meta-analysis of the metrics (C-statistics and

accuracy) for evaluating ML models. If C-statistic lacked 95%

confidence interval (CI) and standard error (SE), we referred to

the study by Debray TP et al. (19) to estimate its standard error. In

case of inaccurate original data, we calculated based on sensitivity

and specificity in combination with the sample size of each

molecular subtype and model. Given the difference in variables and

parameters in ML models, a random-effects model was preferred

to perform the meta-analysis. This meta-analysis was conducted

using R4.2.0 (R development Core Team, Vienna, http://www.R-

project.org). A subgroup analysis by ML models and Modified

Rankin Scale threshold was performed in our systematic review and

meta-analysis. Heterogeneity was quantified by calculating I2 as a

percentage. A low level of heterogeneity was present when I2 was

25%, a moderate level when I2 was 50% and a high level when I2

was 75% (20). Publication bias was examined by creating a funnel

plot and Begg’s bias test.

3. Results

3.1. Literature search

A total of 23,594 articles were initially searched from PubMed,

Embase, Cochorane and Web of Science. In the screening

process, not Modified Rankin Scale outcome, Modified Rankin

Scale outcome time <90 days, not clearly identify prediction

standard all exclusion conditions. After screening, a total of 44

papers were eligible (21–64). The selection process is shown

in Figure 1.

3.2. Characteristics of included studies

A total of 44 eligible studies were included in this systematic

review, involving 72,368 patients and 136 prediction models. All

prediction models were internally validated, and 26 of them were

externally validated. Additionally, among the 28 eligible studies,

15 studies were multi-centered (27–29, 39, 45, 47, 52, 55, 58–64);

five studies extracted their original data from databases (24, 25, 32,

37, 57); and the remaining 24 studies were single-centered. Most

eligible studies focused on IS and 7 studies (23, 32, 39, 40, 48, 60, 63)

on HS. A study (32) used the same four models to predict the motor

function in patients with IS and HS respectively. The primary

outcome wasModified Rankin Scale at 3 to 6months after the onset

of stroke. Due to distinct purposes, these included studies defined

poor motor function in a different manner. Specifically, it was

defined as Modified Rankin Scale >1 in 4 studies (26, 31, 45, 58),

Modified Rankin Scale >3 in 4 (39, 53, 60, 63) studies, Modified

Rankin Scale>4 in two (25, 42) studies, andModified Rankin Scale

>2 in other 34 studies. In this study, a total of 13 primary studies

using radiomics as predictive factors were identified (27, 30, 36, 37,

49, 51, 52, 54–57, 61, 62), from which 33 prediction models were

extracted. Among them, 20 models primarily used MRI images as

predictive factors.

In the training set, models of LR (Logistic Regression),

RF (Random Forest), SVM (Support Vector Machine), XGB

(Extreme Gradient Boosting), ANN (Artificial Neural Networks),

DT (Decision Tree), GBM (Gradient Boosting Machine), DNN

(Deep Neural Network), ADB (Adaptive Boosting), KNN (K-

nearest Neighbors), CNN (Convolutional Neural Network) were

applied. C-statistic was used for analysis. Meanwhile, the sensitivity

and specificity of LR, RF, SVM, XGB, ANN, DT, ADB, CNN, Naive

Bayes were calculated. In contrast, the validation set applied LR,

ANN, RF, SVM, XGB, DT, GBM, KNN and GLM and used C-

statistics to evaluate these models. The sensitivity and specificity

of LR, RF, SVM, XGB, ANN, DT, and KNN were also calculated.

Furthermore, these included studies were published from 2017 to

2023, which generally shows an increasing trend year by year. This

reflects the rising popularity of ML prediction. Characteristics of

included studies are presented in the Supplementary Tables S2–S4.

3.3. Quality assessment

In terms of the evaluation of case source, 99 of 136models came

from retrospective case-control studies, which was rated as high

ROB. The high bias of data in retrospective studies caused limited

accuracy of models in prediction. Thus these models were at high

ROB. The other 37 models extracted clinical data from prospective

cohort studies or registration data platforms, thereby rated at low

ROB. Regarding the assessment of predictors, 67 models were rated

at high ROB. Since researchers knew both predictors and data

results in retrospective studies, there was a high ROB in such

studies. For the outcome, 109 models were rated at low ROB,
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FIGURE 1

PRISMA flow diagram of study selection.

and 22 models were at unclear ROB for failing to report whether

the predictor information was unclear at the time of outcome

determination. Lastly, as for the analysis, 88 models were at high

ROB, among them 60 models were rated at high ROB because of

sample size <100 or events per variable(EPV) <10, and 43 models

at unclear ROB due to a failure to elucidate the processing method

of missing data, data complexity and optimal fitting method. The

ROB evaluation is presented in Figure 2.

3.4. Variable ordering

The present study summarized and ordered the predictors

in included models. All predictors were divided into five

categories, which comprehensively covered all-round information

of stroke patients. This was helpful for clinicians to provide

targeted secondary prevention and health guidance for

corresponding patients in the future. Among all predictors,

age (patient demographics) was used most frequently in

prediction models, followed by initial NIHSS (clinical variables),

glucose level (laboratory values), initial Modified Rankin Scale

(clinical variables). In terms of the medication history, the

frequency of thrombolysis treatment was high (shown in

Figure 3).

3.5. Machine learning outcomes

Firstly, a random-effects model was used to combine the C-

statistics in ML models. The overall C-statistic for the 96 models

in the training set was 0.81 (95% CI: 0.79; 0.83). The 96 models

can be classified into 12 types, which were ordered according to

their frequency of application to prediction. Among the 12 model

types, the LR model was used 29 times in all eligible studies to

predict post-stroke motor function, and the C-statistic was 0.81

(95% CI: 0.78; 0.85). ANN had the best performance in prediction

with a C-statistic of 0.91 (95% CI: 0.86; 0.95). The overall C-statistic

for 71 models in the validation set was 0.82 (95% CI: 0.80; 0.85).

The 71 models were divided into 10 types, which were also ranked

according to their application frequency in prediction. Among the

nine model types, LR models were used most frequently, namely 20

times, to predict post-stroke motor function, with a C-statistic of

0.82 (95% CI: 0.78; 0.87). The performance of each model can be

seen in Table 1 and Figure 4.

To minimize the heterogeneity of data sources, the present

study also performed C-statistic pooling based on different

Modified Rankin Scale cutoff thresholds. Among the training set

models with Modified Rankin Scale >2, there were 85 in total with

a C-statistic of 0.81 (95% CI: 0.78; 0.84), and among the validation

set models, there were 48 in total with a C-statistic of 0.84 (95% CI:
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FIGURE 2

ROB evaluation.

FIGURE 3

TOP 15 predictors 136 prognostic models for long-term post-stroke

ML models. SBP, systolic blood pressure; DBP, diastolic blood

pressure; GCS, Glasgow Coma Scale.

0.81; 0.87). In both the prediction model of training and validation

sets, the ANN prediction performed the best with C-statistics of

0.91 (95% CI: 0.86; 0.95) and 0.89 (95% CI: 0.83; 0.96), respectively,

as shown in Figure 5. For models with Modified Rankin Scale >

1, there were 6 training set models, with an overall C-statistic of

0.78 (95% CI: 0.77; 0.80). There were 14 validation set models, with

an overall C-statistic of 0.79 (95% CI: 0.77; 0.82). For models with

Modified Rankin Scale >3, there were 5 training set models, with

an overall C-statistic of 0.83 (95% CI: 0.78; 0.88). There were 4

validation set models, all of which were LR models, with an overall

C-statistic of 0.87 (95% CI: 0.82; 0.92). There were no training set

models withModified Rankin Scale> 4, but there were 5 validation

set models, with an overall C-statistic of 0.79 (95% CI: 0.78; 0.81).

The performance of each model within the subgroups can be seen

in Table 2.

Additionally, the C-statistics were also combined for

radiomics-based machine learning prediction models. The

training set included a total of 20 prediction models from 8

categories. The overall C-statistic was 0.81 (95% CI: 0.78; 0.84).

The most numerous type was the LR model, which also had the

best predictive performance with a C-statistic of 0.86 (95% CI:

0.82; 0.91). There were 13 validation set models, with an overall

C-statistic of 0.87 (95% CI: 0.83; 0.90). Similarly, the LR model had

the best predictive performance with a C-statistic of 0.91 (95% CI:

0.88; 0.95). The performance of the remaining models is provided

in Table 3 and Figure 6.

3.6. Sensitivity and specificity

In order to avoid data imbalance, the sensitivity and specificity

of models in prediction were analyzed. The training set included

39 models in total with the overall sensitivity of 0.72 (95% CI: 0.70;

0.75). LR were used 15 times, with a sensitivity of 0.74 (95% CI:

0.67; 0.79). Additionally, the overall specificity was 0.77 (95% CI:

0.74; 0.80). The validation set included 40 models, and the overall

sensitivity and specificity were 0.74 (95%CI: 0.69; 0.79) and 0.72

(95%CI: 0.66; 0.77), respectively. Sensitivity and specificity analyses

were also conducted for subgroups with different Modified Rankin
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TABLE 1 Overall C-statistics of machine learning models.

Model Training Validation

Number of
models

Sample size C-statistics
(95%CI)

Number of
models

Sample size C-statistics
(95%CI)

LR 29 17,459 0.81 [0.78; 0.85] 20 5,819 0.82 [0.78; 0.87]

RF 17 53,869 0.80 [0.73; 0.86] 9 43,629 0.85 [0.79; 0.91]

SVM 10 49,840 0.84 [0.78; 0.90] 8 43,466 0.85 [0.78; 0.92]

XGB 9 10,150 0.85 [0.82; 0.87] 7 3,138 0.81[0.78; 0.84]

ANN 9 86,701 0.91 [0.86; 0.95] 12 83,384 0.84 [0.78; 0.91]

DT 7 3,136 0.69 [0.57; 0.83] 6 3,342 0.73 [0.66; 0.80]

Other 5 2,972 0.72[0.59; 0.86] 5 1,115 0.80 [0.72; 0.89]

GBM 3 1,778 0.79 [0.69; 0.92] 2 326 0.88 [0.84; 0.92]

DNN 3 5,516 0.85 [0.79; 0.92] NA NA NA

ADB 2 1,113 0.77 [0.60; 0.98] NA NA NA

KNN 1 293 0.74 1 297 0.82

CNN 1 322 0.83 NA NA NA

GLM NA NA NA 1 251 0.83

Overall 96 23,3149 0.81 [0.79; 0.83] 71 18,4767 0.82 [0.80; 0.85]

FIGURE 4

Forest plot of the overall C-statistics predicting 3–6m Modified Rankin Scale outcomes in stroke patients.
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FIGURE 5

Forest plot of the C-statistics predicting 3–6m Modified Rankin Scale >2 outcomes in stroke patients.

Scale thresholds. The sensitivity and specificity of ML models and

subgroups were presented in Table 4 and Figure 7.

3.7. Publication bias

In the meta-analysis of C-statistic, no publication bias was

found in the funnel plots for both the training set and validation

set of ML models for predicting motor function 3–6 months after

stroke. The results of Begg test showed that P = 0.473 in the

training set, P = 0.909 in the verification set. The funnel plots are

shown in Figures 8, 9. In the meta-analysis of the diagnostic 4-fold

table, there was publication bias in the training set of ML models

for predicting motor function 3–6 months after stroke, while no

publication bias was found in the validation set. The Beg test results

showed that P = 0.01 in the training set, P = 0.31 in the validation

set. The funnel plots are shown in Figures 10, 11.

4. Discussion

The study reviews the performance of ML models in the

prediction of motor function recovery in patients 3–6 months post-

stroke. In the case of Modified Rankin Scale >1, >2, >3, >4, the

model’s predictive performance was favorable. The C-statistics for

models with predictive factors based on radiomics were 0.81 (95%

CI: 0.78; 0.84) in the training set and 0.87 (95% CI: 0.83; 0.90) in the

validation set. The overall sensitivity and specificity of the models

were both over 0.70 and relatively balanced. The study makes up

the gap and deficiency in current researches on the prediction of

motor function recovery in stroke patients, which has significant

instruction for clinical practice. In the quality assessment part,

the ROB of original studies was analyzed in accordance with

the PROBAST standard. This provides detailed suggestions for

researchers to design model prediction tests in the future, which

is conducive to standardization and unification.

According to this analysis of predictors, age and initial NIHSS,

are the most critical predictors for the prognosis of motor function

in patients with stroke for 90 to 180 days, followed by glucose level,

initial Modified Rankin Scale. This is consistent with the results

of previous studies (2, 65, 66) on prediction models and meta-

analysis of predictors. A large number of studies show that aged

patients with acute IS have higher mortality and poorer quality

of life than their young counterparts. For instance, both cerebral

infarction complicated with pulmonary infection and hemorrhagic

transformation after cerebral infarction are more likely to cause

relatively poor outcomes in aged patients (67, 68). NIHSS score has

been widely recognized as a key determinant of the prognosis in

patients with acute IS in China and abroad (69). Furthermore, a

previous study (70) on motor function outcome in stroke patients
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TABLE 2 C-statistics of subgroups machine learning models (according to threshold of Modified Rankin Scale).

Subgroup Training Validation

Number of
models

Sample size C-statistics
(95%CI)

Number of
models

Sample size C-statistics
(95%CI)

Modified Rankin Scale >1

LR 2 2,012 0.76 [0.74; 0.79] 3 1,148 0.82 [0.76; 0.88]

XGB 1 1,524 0.81 2 678 0.78 [0.72; 0.84]

RF 1 1,524 0.78 2 678 0.79 [0.73; 0.86]

DNN 1 1,524 0.78 NA NA NA

SVM 1 1,524 0.77 2 678 0.81 [0.73; 0.90]

KNN NA NA NA 1 297 0.82

ANN NA NA NA 3 443 0.66 [0.53; 0.82]

Other NA NA NA 1 31 0.75

Overall 6 8,108 0.78 [0.77; 0.80] 14 3,953 0.79 [0.77; 0.82]

Modified Rankin Scale >2

LR 24 13,742 0.81 [0.76; 0.86] 12 2,578 0.81 [0.74; 0.89]

RF 15 52,067 0.79 [0.72; 0.87] 6 41,425 0.87 [0.80; 0.96]

SVM 9 48,316 0.85 [0.78; 0.92] 5 41,262 0.88 [0.79; 0.98]

ANN 9 86,701 0.91 [0.86; 0.95] 8 81,415 0.89 [0.83; 0.96]

XGB 8 8,626 0.85 [0.82; 0.88] 4 934 0.84 [0.82; 0.87]

DT 6 2,858 0.68 [0.54; 0.85] 6 3,342 0.73 [0.66; 0.80]

Other 5 2,972 0.72 [0.59; 0.86] 4 1,084 0.81 [0.71; 0.92]

GBM 3 1,778 0.79 [0.69; 0.92] 2 326 0.88 [0.84; 0.92]

DNN 2 3,992 0.88 [0.87; 0.90] NA NA NA

ADB 2 1,113 0.77 [0.60; 0.98] NA NA NA

CNN 1 322 0.83 NA NA NA

KNN 1 293 0.74 NA NA NA

GLM NA NA NA 1 251 0.83

Overall 85 222,780 0.81 [0.78; 0.84] 48 172,617 0.84 [0.81; 0.87]

Modified Rankin Scale >3

LR 3 1,705 0.86 [0.84; 0.89] 4 567 0.87 [0.82; 0.92]

RF 1 278 0.82 NA NA NA

DT 1 278 0.75 NA NA NA

Overall 5 2,261 0.83 [0.78; 0.88] 4 567 0.87 [0.82; 0.92]

Modified Rankin Scale >4

ANN NA NA NA 1 1,526 0.81

LR NA NA NA 1 1,526 0.80

RF NA NA NA 1 1,526 0.80

XGB NA NA NA 1 1,526 0.78

SVM NA NA NA 1 1,526 0.77

Overall NA NA NA 5 7,630 0.79 [0.78; 0.81]

show that initial measures were found to be the most significant

predictors of upper limb recovery; odds ratio 14.84 (95% CI 9.08–

24.25) and 38.62 (95% CI 8.40–177.53) respectively.

AI has been widely applied in the diagnosis, classification,

and prediction of stroke. One of its biggest advantages is that it

can process data endlessly and can perform faster than traditional
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TABLE 3 C-statistics of radiomics-based predictors machine learning models.

Model Training Validation

Number of
models

Sample size C-statistics
(95%CI)

Number of
models

Sample size C-statistics
(95%CI)

LR 8 4,055 0.86 [0.82; 0.91] 4 350 0.91 [0.88; 0.95]

RF 3 4,595 0.77 [0.72; 0.82] 1 163 0.90

XGB 3 4,725 0.81 [0.79; 0.81] 2 456 0.84 [0.80; 0.87]

ANN 2 3,251 0.81 [0.78; 0.84] 1 74 0.73

CNN 1 322 0.83 NA NA NA

SVM 1 3,001 0.79 NA NA NA

KNN 1 293 0.74 NA NA NA

GBM 1 293 0.68 2 326 0.88 [0.84; 0.92]

DT NA NA NA 1 163 0.86

Other NA NA NA 2 326 0.87 [0.83; 0.91]

Overall 20 20,535 0.81 [0.78; 0.84] 13 1858 0.87 [0.83; 0.90]

FIGURE 6

Forest plot of the C-statistics predicting 3–6m Modified Rankin Scale outcomes in stroke patients (radiomics-based predictors).

computer-aided detection and diagnosis (CAD) (71). Although

there are more and more studies on post-stroke motor function

prognosis, there is still a lack of prediction and guidance for

neurological motor function, especially for model evaluation after

stratifying prediction outcomes. A previous systematic review

(72) collected and summarized clinical prognosis trials for

patients with large vessel occlusion undergoing thrombectomy,

and predicted 90-day Modified Rankin Scale for 802 patients.
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TABLE 4 Sensitivity and specificity of overall and subgroup machine learning models.

Subgroup Training Validation

Number of models Sample size Sen (95%CI) Spe (95%CI) Number of models Sample size Sen (95%CI) Spe (95%CI)

Model type

LR 15 10,637 0.74 [0.67;0.79] 0.77 [0.73;0.82] 11 4,204 0.75 [0.69;0.80] 0.72 [0.63;0.80]

RF 6 2,598 0.71 [0.68; 0.74] 0.78 [0.64; 0.88] 5 3,058 0.73 [0.61; 0.83] 0.73 [0.59; 0.83]

SVM 4 4,592 0.70 [0.63;0.76] 0.77 [0.65;0.86] 6 3,189 0.72 [0.59;0.81] 0.76 [0.65;0.85]

Other 3 387 0.75 [0.67;0.81] 0.78 [0.71;0.83] 2 538 0.67 [0.64;0.71] 0.71 [0.68;0.74]

XGB 3 5,022 0.73 [0.70;0.75] 0.77 [0.70;0.83] 5 2,682 0.69 [0.54; 0.80] 0.78 [0.62; 0.88]

ANN 3 3,513 0.76 [0.73; 0.79] 0.81 [0.78; 0.84] 8 2,720 0.72 [0.59; 0.82] 0.72 [0.59; 0.83]

DT 2 724 0.80 [0.65; 0.90] 0.82 [0.67; 0.91] 2 1,014 0.77 [0.74; 0.79] 0.59 [0.57; 0.61]

ADB 1 614 0.73 0.60 NA NA NA NA

CNN 1 322 0.67 0.87 NA NA NA NA

NB 1 150 0.75 0.68 NA NA NA NA

KNN 0 NA NA NA 1 297 1.00 0.10

Modified Rankin Scale

>1 0 NA NA NA 13 3,483 0.85 [0.76;0.91] 0.57 [0.46;0.68]

>2 38 27,724 0.72 [0.69;0.75] 0.77 [0.74;0.80] 20 6,302 0.68 [0.62;0.72] 0.79 [0.72;0.84]

>3 1 835 0.75 0.70 2 287 0.84 [0.75;0.90] 0.68 [0.63;0.72]

>4 0 NA NA NA 5 7,630 0.65 [0.56;0.73] 0.80 [0.72;0.86]

Overall 39 28,559 0.72 [0.70;0.75] 0.77 [0.74;0.80] 40 17,702 0.74 [0.69;0.79] 0.72 [0.66;0.77]
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FIGURE 7

Forest plot of the sensitivity and specificity predicting 3–6m Modified Rankin Scale outcomes in stroke patients.

The random-effects model showed an AUC of 0.846 (95% CI

0.686–0.902), indicating good predictive performance. However,

as most of the limited number of included studies used SVM,

a comprehensive comparison of the predictive performance of

various models to determine the best model was not possible.

Similarly, earlier research (73) in rehabilitation medicine on

the prediction of post-stroke function recovery confirmed the

application of ML prediction ability in clinical settings but did not

provide specific C-statistic values, making it difficult to accurately

assess predictive performance. Therefore, conducting a meta-

analysis of ML motor function prediction models classified by

prognosis outcome and predictive factors is both necessary and

valuable, as it deepens the understanding of earlier research and

further clarifies the ideal application value of ML in predicting

post-stroke outcomes.

For stroke prediction, most existing ML algorithms use binary

classification to evaluate the outcome indicator. Conventionally,

when Modified Rankin Scale are 0–2, functional outcomes are

usually defined as “good”; when Modified Rankin Scale 3–

6, functional outcomes are typically defined as “poor.” Studies

usually measure Modified Rankin Scale at 90 days post-stroke

(38, 74, 75). However, with different patient situations in clinical

settings and various research objectives, studies have started using

Modified Rankin Scale threshold values such as 0–1 VS 2–6, 0–

3 VS 4–6, and conducting later follow-ups. New ML algorithms

that incorporate these results will provide greater assistance

to clinicians.

The advancement of machine learning has made it possible to

transform subjective visual interpretation into objective evaluation

driven by image data. Radiomics has emerged in this context.
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FIGURE 8

Funnel plot for publication bias of C-statistics in the training set.

FIGURE 9

Funnel plot for publication bias of C-statistics in the validation set.

Radiomics is a computer-aided process that can extract a large

number of quantitative features from biomedical images in an

objective, repeatable, and high-throughput manner (76, 77). These

features can be combined with other medical information such as

demographics, clinical, histological, or genomic data to improve

clinical treatment decision-making and accelerate the progress

of precision medicine. A systematic review (78) reveals that the

artificial intelligence coupling CNN with image feature has greater

sensitivity, up to 83%. ML not only offers promising applications

in medical imaging by learning information features and patterns

from structured input data, but also promotes the emergence of

deep learning (DL) and demonstrates its excellent performance

in medical image processing (79, 80). XinruiWang’s latest study

(81) analyzed ML models to predict the volume of core infarct

tissue in AIS patients based on basic CT or MRI imaging at

admission. DL models outperformed traditional ML classifiers,

with the best performance observed in DL algorithms combined

with CT data. Currently, the pooled dice similarity coefficient score

of the included MLmodels for final infarct prediction based on ML

was 0.50 (95% CI 0.39–0.61).

In theory, different imaging modalities and parameters

provide different diagnostic and prognostic information that can

complement each other. Therefore, adjusting and optimizing

parameters for multimodal imaging data in radiomics can improve

the overall predictive performance. In addition, the study combined

clinical data such as clinical symptom assessment, medical history,
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FIGURE 10

Funnel plot for publication bias of diagnostic 4-fold table in the training set.

FIGURE 11

Funnel plot for publication bias of diagnostic 4-fold table in the validation set.

and laboratory examinations (82, 83). Multidimensional input

information consisting of both imaging and clinical data has the

potential to establish better prediction models, which is a direction

for future research.

4.1. Limitation

However, there are some limitations to the present study that

need to be considered. First, due to the different types of algorithms

Frontiers inNeurology 13 frontiersin.org106107

https://doi.org/10.3389/fneur.2023.1039794
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Li et al. 10.3389/fneur.2023.1039794

and parameter adjustments, there is inevitably a high degree of

heterogeneity between studies. To minimize the heterogeneity,

we conducted subgroup analysis according to different Modified

Rankin Scale cut-off values and analyzed the performance of

predictive factors based on different categories. Moreover, from the

summary plot of variables, it can be observed that the predictive

factors in each study are similar to some degree and selected from

five dimensions. Second, although ML has enormous potential in

the computing function of huge data, its “black box” characteristic

restricts clinicians from trusting the ML prediction. Meanwhile,

due to the instability of association between impact factors, ML

model requires plenty of samples to improve its accuracy (84, 85).

Third, while using the Modified Rankin Scale as a functional

outcome measure can directly elucidate the functional levels, it

fails to express the details of various post-stroke neurological

symptoms, such as dysarthria and pure sensory stroke. At last,

from the literature quality assessment summary table, retrospective

case studies are in the majority, leading to a high ROB and poor

performance of prediction models. Therefore, in order to avoid

high ROB, future clinical studies on ML prediction should collect

data from clinical registration platforms or prospective clinical

studies. Additionally, the design of clinical protocol should meet

the requirement of EPV ≥20 to ensure the reliability of the results

of the prediction model.

5. Conclusion

In this study, we conducted a systematic review and meta-

analysis of the current research using ML algorithms to predict

post-stroke motor function 3–6 months. Due to its good predictive

performance, sensitivity, and specificity, ML can be used as

an evaluation tool for predicting motor function after stroke.

Additionally, the study found that ML models with radiomics as

predictive variables also demonstrated good predictive capabilities.

The multidimensional input information consisting of both

imaging and clinical data has the potential to establish better

prediction models that can guide clinical work.
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Background: Early stroke prognosis assessments are critical for decision-

making regarding therapeutic intervention. We introduced the concepts of data

combination, method integration, and algorithm parallelization, aiming to build an

integrated deep learning model based on a combination of clinical and radiomics

features and analyze its application value in prognosis prediction.

Methods: The research steps in this study include data source and feature

extraction, data processing and feature fusion, model building and optimization,

model training, and so on. Using data from 441 stroke patients, clinical

and radiomics features were extracted, and feature selection was performed.

Clinical, radiomics, and combined features were included to construct predictive

models. We applied the concept of deep integration to the joint analysis of

multiple deep learning methods, used a metaheuristic algorithm to improve the

parameter search e�ciency, and finally, developed an acute ischemic stroke (AIS)

prognosis prediction method, namely, the optimized ensemble of deep learning

(OEDL) method.

Results: Among the clinical features, 17 features passed the correlation check.

Among the radiomics features, 19 features were selected. In the comparison of

the prediction performance of each method, the OEDL method based on the

concept of ensemble optimization had the best classification performance. In the

comparison to the predictive performance of each feature, the inclusion of the

combined features resulted in better classification performance than that of the

clinical and radiomics features. In the comparison to the prediction performance

of each balanced method, SMOTEENN, which is based on a hybrid sampling

method, achieved the best classification performance than that of the unbalanced,

oversampled, and undersampled methods. The OEDL method with combined

features and mixed sampling achieved the best classification performance, with

97.89, 95.74, 94.75, 94.03, and 94.35% for Macro-AUC, ACC, Macro-R, Macro-P,

and Macro-F1, respectively, and achieved advanced performance in comparison

with that of methods in previous studies.

Conclusion: The OEDL approach proposed herein could e�ectively achieve

improved stroke prognosis prediction performance, the e�ect of using

combined data modeling was significantly better than that of single clinical
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or radiomics feature models, and the proposed method had a better intervention

guidance value. Our approach is beneficial for optimizing the early clinical

intervention process and providing the necessary clinical decision support for

personalized treatment.

KEYWORDS

MRI, radiomics, deep learning, ensemble learning, metaheuristic algorithms, ischemic

stroke

Introduction

In recent years, with the increasingly serious aging

phenomenon globally, the incidence of major chronic diseases

represented by ischemic strokes has also increased (1). Stroke is

still the second leading cause of death in the world and the number

one cause of acquired long-term disability, especially in China,

which is the greatest challenge of stroke in the world, ranking

third among the leading causes of death in China, second only

to malignant tumors and heart disease (2). Acute ischemic stroke

(AIS) is associated with high morbidity, high mortality, and poor

prognoses. They have become a major public health problem

that cannot be ignored and have brought a great burden to the

economy and society. In the context of limited medical resources,

it is necessary to prioritize the implementation of nursing care for

patients with poor prognoses, thereby reducing the incidence of

disability (3). In the era of precise diagnosis and individualized

treatment, prognostic classification has become an important

strategy for stroke management (4, 5). The early prediction of

prognoses is of great significance for improving the efficiency of

stroke disease diagnosis and treatment and improving the levels of

disease prevention and control (6).

In the past, prognosis evaluations in clinical practice mostly

relied on the manual judgments of physicians, which required

high-end medical technology and much physician experience, and

the prediction effect of this approach was unstable, which limited

its clinical promotion (7, 8). As a new non-invasive technique,

radiomics can extract high-throughput quantitative information

from traditional medical images, enabling the assessment of

internal tumor textures that cannot be captured by visual

assessments (9, 10). Radiomics aims to extract quantitative

and high-dimensional data from digital biomedical images to

facilitate the comprehensive exploration of disease information and

progression, and it has been widely used in a variety of clinical fields

(11, 12). However, previous studies of this kind were mostly limited

to radiomics alone and failed to comprehensively predict disease

prognoses with clinical and radiomics features (13–17). At present,

there is still a lack of relevant research focusing on the predictive

value of combined features for stroke prognosis, which has broad

research prospects.

Compared with traditional prediction models, deep learning-

based prediction models, represented by deep neural networks

(DNNs), long short-term memory recurrent neural networks

(LSTM-RNNs), and deep belief networks (DBNs), can automate

and accurately analyze a large number of features and are suitable

for various medical fields (18–21). Ensemble learning has the

advantages of fast operation and high accuracy and has been widely

used in numerous fields, such as medical treatment, healthcare,

and information technology (22). Single machine learning and

deep learning have the problems of limited convergence effect

and difficulty in optimizing hyperparameters, which affects the

improvement of prediction efficiency. Deep ensemble learning is

expected to solve these problems and improve the accuracy of the

model. Compared with shallow learning models and individual

learning models, ensemble deep learning models can perform

better on multiple learning tasks. They can also extract deeper

essential features during the learning process, which can effectively

improve the accuracy of the model prediction results (23).

In previous radiomics studies, the applications of deep

ensemble models were relatively lacking (24–26). If the selected

network structure and parameter settings are not appropriate, this

may increase the complexity of the model and reduce its overall

operating efficiency (27). Hence, the parameter optimization

and layer number setting steps of deep ensemble models are

still key issues that need to be solved (28). To improve the

optimization accuracy of thesemodels and reduce the time required

for the optimization process, such research usually requires

the use of metaheuristic algorithms as optimization strategies

(29, 30). However, traditional algorithms often have problems

such as slow convergence speeds and ease of falling into local

optima (31, 32). Research on optimization algorithms with novel

optimization mechanisms, accurate solution methods, and robust

computing power is still an important direction for feature and

parameter selection.

This study aims to build a stroke prognosis prediction model

in a deeply integrated way to provide a reference for the diagnosis

and prevention of stroke. We adopt an ensemble concept involving

data, methods, and algorithms and achieve excellent classification

performance. Our contributions and the innovations of this study

can be summarized as follows.

(1) In terms of data fusion, we innovatively extract, select,

and fuse clinical features and imaging features. The combined

data are beneficial to fully extract information and provide

early warning for the prognosis of stroke more comprehensively

and effectively.

(2) In terms of the categorical outcome, multicategorical

outcome variables (normal group, mild group, and moderate-

severe group) are used in this study. Compared with that of

two-classification approaches, the multi-classification method is

conducive to improving the pertinence of the classification,

which is conducive to accurate prognosis judgment and

intervention guidance.
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(3) In terms of model construction, we innovatively construct

the optimized ensemble of deep learning (OEDL) method. We

comprehensively selected and integrated multiple deep learning

methods to maximize the advantages of each method and verified

the performance of the model for classification prediction. Our

proposed model increases the diversity of prognosis prediction

methods, enriches the methodological content of deep ensemble

learning, provides new methods and ideas in its research field and

clinical decision support for personalized intervention.

(4) For model optimization, we design a new Big Bang

optimization algorithm (BBOA), which aims to implement

the optimization process efficiently and accurately and then

improve the efficiency of the feature selection and parameter

search processes.

Materials and methods

The data that support the findings of this study are available

from the corresponding author upon reasonable request. This study

includes the following steps. (1) Data source and feature extraction:

The clinical features and radiomics features are extracted in turn.

(2) Data processing and feature fusion: The data filling, data noise

reduction, data standardization, data screening, data splicing, data

balancing, and related steps are performed. (3) Model construction:

Clinical features, imaging features, and combined features from

the data are included in turn. In this method, the concept of deep

integration is used for modeling, and the base learner and the

integration mode are selected in turn. (4) Model optimization: The

proposed improved metaheuristic algorithm is used to improve the

efficiency of the parameter search. Our technical route is shown in

Figure 1.

Data source and feature extraction

This retrospective study was approved by the ethics committee

of the Taizhou Municipal Hospital, and the requirement to obtain

informed consent was waived. A total of 477 acute ischemic stroke

(AIS) patients admitted to the Department of Neurology, Taizhou

Municipal Hospital, Zhejiang Province, from January 2020 to April

2021 were recruited. The inclusion criteria were as follows: those

who met the AIS diagnostic criteria, had complete clinical data, age

more than 18 years. The patient had the first episode, and the MRI

images were clear and without artifacts. Severe liver and kidney

dysfunction, blood system diseases, malignant tumors, immune

system diseases and other diseases, other serious nervous system

diseases, and failure to cooperate with clinical treatment or follow-

up as required by law were exclusion criteria. A total of 441 cases

were eventually included. To ensure that the sample size met the

needs of deep learning, we implemented balancing processing for

the study data.

The prognosis groupings were based on the National Institute

of Health Stroke Scale (NIHSS) at the time of discharge and could

be divided into three groups (33, 34): a normal group (<1 point)

with 106 cases; a mild group (1–4 points) with 289 cases; and a

moderate-severe group (≥ 5 points) with 46 cases. In the following

text, we refer to the normal, mild, and model severe groups as

groups A, B, and C, respectively. The NIHSS scores could reflect

the degrees of neurological deficit in patients and were used as

prognostic indicators in this study.

The clinical data included NIHSS score at admission, disease

type, OCSP classification, sex, age, body mass index (BMI),

systolic blood pressure (SBP), left ventricular hypertrophy (LVH),

homocysteinemia, history of hypertension, history of diabetes,

history of coronary heart disease (CHD), history of atrial

fibrillation, history of drinking, history of smoking, serum

total cholesterol (TC), and low-density lipoprotein (LDL). The

distribution of baseline data of each group is shown in Section

Results of clinical feature selection of the results. Because of the

first onset, relevant characteristics such as “stroke history” were not

included in this article.

The image data were obtained from cranial MR images, and a

Philips Achieve 1.5T scanner was used to obtain these data. The

axial DWI sequence was acquired from all patients. To obtain DW

images, the following parameters were used: the echo time was

101ms, the repetition time was 3,211ms, the number of excitations

was 1, the slice thickness was 5mm, the slice spacing was 1mm, the

acquisition matrix was 230× 230, and the field of vision was 23 cm
∗ 23 cm.

Each patient’s first MR image was collected after admission.

Two attending physicians independently segmented the regions

of interest (ROIs) from the lesions, and ITK-SNAP 3.6.0 software

was used for segmentation to obtain the 3D structural data

of the lesions. The radiomics features of each annotated lesion

were then obtained by using a radiomics analysis tool (the

Pyradiomics package). The 2D mask labeling process for each

patient is shown in Figure 2. The radiomics features included

shape features (14 features), first-order statistics (162 features),

gray-level dependence matrix features (GLDM features, 126

features), gray-level cooccurrence matrix features (GLCM features,

216 features), gray-level run length matrix features (GLRLM

features, 144 features), gray-level size zonematrix features (GLSZM

features, 144 features), and neighboring gray-tone difference

matrix features (NGTDM features, 45 features). Finally, 17 clinical

features and 851 radiomics features were initially included in

this study.

Data processing and feature fusion

After feature extraction, data preprocessing was performed,

including data filling, data noise reduction, data standardization,

data screening, data splicing, data balancing, and other steps, as

shown in Figure 3.

First, in data imputation, we usedmultiple imputationmethods

(35). Multiple imputation is a commonly used method to deal with

missing values in data. Its basic principle is to generate multiple

complete data sets through simulation, and each data set uses

different methods to impute missing values. In this study, we use

a multiple imputation method based on the multiple Monte Carlo

Method to imputation the samples to reduce the impact of missing

data on model construction. The multiple Monte Carlo method is a

statistical method that uses multiple independent random samples

to estimate the expected value. Suppose the expected value E[f (x)]
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FIGURE 1

Whole pipeline of the proposed method. The data source and feature extraction, data processing and feature fusion, model construction, model

optimization, and other processes are included. Each step is represented by a dotted box.

of some function f (x), where x ∈ Rd is a vector of dimension d. The

formula for the multiple Monte Carlo method is as follows:

f̄n =
1

N

N∑

i=1

f (xn, i) (1)

f̄m =
1

M

M∑

i=1

fn(j) (2)

where f̄n is the sample mean value of f (x) obtained from the n-

th sampling, xn, i is the i-th sample point obtained from the n-th

sampling, and N is the number of samples for each sampling; f̄m
is the multiple Monte Carlo estimator obtained by averaging f̄n
obtained from n samples for m times, where n(j) is the sample set

used for the j-th sample.

Second, for high-dimensional imaging features, a large number

of useless noise features will affect the screening of meaningful

features and increase the difficulty of model construction (36). In

data denoising, we chose the variance selection filtering method to

perform variance-based feature screening (37) and then filtered out

features with small differences. The variance of each feature was

calculated, and features with variances greater than the threshold

were selected. If the variance is small, it means that there is a small

difference between these samples with respect to the feature, and

this feature is not conducive to sample discrimination. We filtered

features with zero or less variance to preferentially exclude features

with lower contributions.

Third, the data were standardized by distinguishing clinical

features from radiologic features. (A) Clinical characteristics were

assigned to a range between 0 and 1 by one-hot encoding because

one-hot encoding can extend the values of discrete features to

a Euclidean geometry space and thus fuse standardized imaging

features (38, 39). The mathematical formula for one-hot encoding

is as follows. Let the value of a discrete feature x with n different

values be {x1, x2, ..., xn}; then, the one-hot encoding of this feature

is an n-dimensional vector v, where if and only if the value of x is

xi, v[i] = 1; if x is not xi, v[i] = 0. (B) For radiomics features, we

selected a normalization method for feature processing, aiming to

eliminate dimensional differences between different features, avoid

possible deviation in the model training, improve the convenience

of data processing, and speed up the model convergence (40, 41).

Normalization helps to ensure dimensional unity between different

features, thus improving the robustness and generalizability of

the model (42, 43). Normalization refers to scaling the data so

that it falls within a specific interval. Standardization (Sz) is the
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FIGURE 2

2D mask labeling process for patients.

transformation of data into a normal distribution with a mean

of 0 and a standard deviation of 1 (44). Suppose that there are

N samples, each sample has n features, and the value of the i-th

feature of all N samples is xi1, xi2, ..., xin. Then, the standardized

mathematical formula of the feature is as follows:

Sz =
xij − µi

σi
(3)

where µi denotes the mean of the i-th feature over all N

samples and σi denotes the standard deviation of the i-th feature

over all N samples. For the i-th feature in each sample, a

new value can be obtained from this formula, representing the

relative size and distribution of the feature across the entire

data set.

Fourth, we use the embedded method to filter and reduce the

dimensions of the data. The LightGBM and XGBoost algorithms

are selected to perform feature importance scoring and selection,

the top 50 most important features in terms of weight are screened

out, and the features appearing in both methods and the top 10

features in terms of weight in each method are sorted out. (A)

LightGBM is a gradient-boosting framework based on a decision

tree (DT). It uses a node segmentation strategy based on leaves,

seeks the leaf with the largest gain among all the current leaves, and

finally generates a boosted tree (45, 46). The LightGBM algorithm

is based on the selection of partition points based on the histogram

algorithm and reduces the number of samples and features required

in the training and learning processes through two methods,

namely, gradient-based one-side sampling (GOSS) and exclusive

feature bundling (EFB), tomaintain high learning performance and

reduce the resource occupation in terms of time and space in the

training process (47, 48). Let Xs be the input space, s be the feature

dimension, and Y be the output space. The given training dataset

is {(x1, y1), (x2, y2), ..., (xn, yn)}, where Exi = (Ex
(1)
i , Ex

(2)
i , ..., Ex

(s)
i ), i =

1, 2, ..., n represents the input instance and {g1, g2, ..., gn} represents

the negative gradient direction of the loss function relative to the

model output at each enhancement iteration. Let n represent the

number of samples, and let O be the training set of the DT on a

node. Then, the information gain Vj|o (d) (49) of feature j at node d

can be defined as

Vj|o (d) =
1

n0
(
(
∑

xi∈o : xij≤dgi)
2

n
j

l|o
(d)

+
(
∑

xi∈o : xij>dgi)
2

n
j
r|o (d)

) (4)

where n0 =
∑

I(xi ∈ o), n
j
l|o =

∑
I[xi ∈ o] : xij ≤ d],

and n
j
r|o =

∑
I[xi ∈ o : xij > d]. (B) The XGBoost algorithm

can generate a second-order Taylor expansion of the utilized
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FIGURE 3

Feature fusion process.

FIGURE 4

SMOTEENN balancing algorithm.

loss function and obtain the optimal solution for the regular

term outside the loss function (50, 51). The larger the weight

of a feature and the more times it is selected by the boosted

tree, the more important the feature is considered to be (52,

53). Suppose that the model has t DTs, n represents the total

number of samples, ft represents the t-th regression tree, F

represents the collective space of all DTs, and ŷti represents the

total predicted value for the i-th sample after adding the outputs

of the t DTs. Then, the predicted value of XGBoost (54) can be

expressed as

ŷ(t)i =

t∑

k=1

fk(xi) = ŷ(t−1)

i + ft(xi), fk ∈ F, i ∈ n (5)

Its loss function is

L(t) =

n∑

i=1

l(yi, ŷ
(t)

i )+

t∑

k=1

�(fk) (6)

�(fk) = λT +
1

2
λ‖w‖2 (7)

where l represents the error between the predicted value

and the actual value, T and w represent the number and

weight of the leaf nodes, respectively, and γ and λ represent

regularization coefficients. The k-th tree is represented by k, and the

complexity of k trees is represented by
t∑

k=1

�(fk). (C) The Pearson
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FIGURE 5

Construction process of the deep integration learning method.

FIGURE 6

Schematic diagram of each base learner. (A) DNN, (B) LSTM-RNN, and (C) DBN.

correlation coefficient can measure the strength and direction

of the linear relationship between two variables, and different

correlation coefficients can be selected according to different data

characteristics (55). If two features have a high correlation, this

indicates that the information contained in the two features is

highly similar, and too much similar information can reduce the

performance of the chosen algorithm (56). Hence, only one feature

must be reserved for features whose correlations are higher than
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a certain threshold. To avoid the negative impact of collinearity

features on outcome variables, we randomly retained only one of

many features with Pearson correlation coefficients greater than

the threshold (0.9 in our study). (D) In this study, the SHAP

model interpreter tool is used to explain the operation mechanism

of the model. SHAP can construct a weighted explanatory model

to calculate the contribution of each feature to the results (57,

58). In the interpretation of radiomics and clinical features using

LightGBM and XGBoost, respectively, each sample can generate

a predictive value, and the SHAP value is expressed as f (x),

which can represent the numerical value assigned to each feature

in a sample. Red represents features that act positively, and blue

represents features that act negatively (5). After the screening

of clinical and radiomics features, the combined features were

constructed by stitching.

Fifth, there are three common approaches to dealing with class

imbalance: undersampling, oversampling, and hybrid sampling

techniques. Undersampling techniques include the random

undersampling technique, and oversampling techniques include

the random oversampling, SMOTE, adaptive synthetic (ADASYN),

and borderline-SMOTE techniques (59). SMOTEENN is a method

that combines oversampling and undersampling to handle both

sample imbalance and noisy data. The SMOTE method increases

the number of minority class samples by random oversampling,

while the ENN method reduces the number of majority class

samples by removing majority class samples. The combination

of these two methods can better balance the class distribution

in the dataset, thus improving the performance of the classifier

(60, 61). The balancing algorithm can balance the number of

samples for each classification, thus effectively improving the

prediction performance of the model with unbalanced datasets

(62, 63). Figure 4 shows the process of the SMOTEENN balancing

algorithm, which not only synthesizes new samples for minority

classes but also prunes duplicate samples to improve the difference

between groups.

Model construction and optimization

The content in this section can be divided into the selection

of the base learner, model construction, model optimization,

and other steps. The construction process combines the ideas of

ensemble learning and deep learning to construct an ensemble of

deep learning (EDL)model with amultilayer cascade structure. The

optimized ensemble of deep learning (OEDL) model is established

by adding an optimization algorithm. The model is built as shown

in Figure 5.

First, the selection of base learners is needed. DNN, LSTM-

RNN andDBN are used as base learners, and the schematic diagram

of each base learner is shown in Figure 6. (A) A deep neural

network (DNN) refers to a neural network with more than one

hidden layer [64]. The input layer and hidden layer, hidden layer

and hidden layer, and hidden layer and output layer all have linear

relationships, which can be expressed as

yi = σ (
∑

wn
i x

n
i + bi) (8)

where yi is the next neuron, xi is a feature or neuron connected to

yi, σ is an activation function in a layer, n is the number of neurons

or features connected to the neuron, wi is a weight coefficient

between a feature and a neuron or between neurons, and b is

a constant. (B) Long short-term memory (LSTM) is proposed to

solve the problem of vanishing or exploding gradients in recurrent

neural networks (64, 65). The unit structure records the patient

characteristic information of the current state by introducing a new

internal state and carries out internal information transmission.

First, an input gate it , a forget gate ft , and an output gate ot
are calculated by using the patient characteristic information xt
of the current state and the hidden state ht−1 of the last time.

Then, the input gate it and the forget gate ft are used to control

the retained historical characteristic information and the current

state characteristic information of the patient, respectively, to

obtain a new Ct . Finally, the input gate ot is used to transfer

the patient characteristic information of the internal state to the

hidden state ht . To achieve the classification effect, an RNN fully

connected layer is added behind the LSTM unit to construct an

LSTM-RNN to obtain a multi-classification result. (C) Deep belief

networks (DBNs) are probabilistic generative models consisting

of multiple layers of restricted Boltzmann machines. The main

structure combines several layers of RBM and one layer of a BP

network and outputs the results by the BP network. The specific

steps are as follows. First, the features are trained in each layer

of the RBM network separately in an unsupervised manner to

ensure that the feature information is reused and retained. Then,

the trained features enter the BP network to train the classifier

through supervision. Finally, a backpropagation network fine-tunes

the training error information direction of each RBM layer so that

optimization can be achieved throughout the whole network. The

parameters of the DBN are given by w (connection weights), b

(visible unit bias), and c (hidden unit bias). The probability of input

vector v and output vector h is given by

p(v, h) =
e−E(v,h)

Z
(9)

where−E(v, h) is the energy function

E(v, h) = −bTv− cTh− hTWv (10)

Z is the normalizing factor obtained by summing the

numerator over all possible statuses of h and v:

Z =
∑

v,h

−E(v, h) (11)

Second, after considering bagging, boosting, stacking, and

other methods (see the section Results), we chose the stacking

algorithm as the ensemble method in this study, and the model

constructed by it is named as the ensemble of deep learning (EDL).

Stacking is a method that combines the outputs of multiple base

learners according to a certain combination strategy (66, 67). We

chose classical and representative deep learning models such as

DNN, LSTM-RNN, and DBN as the base learner (68–70) and
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1: ----------------Step 1: Input

Dataset D ={(x 1(1),x2(1),...,y(1)), (x1(2),x2(2),...,y(2)), (x1(n),x2(n),...,y(n))};

Primary learning algorithm :

PLA ={DNN,LSTM-RNN,DBN};

Secondary learning algorithm:RandomForest(RF)

3: ---------------Step 2: Process

1: split D:Train _data,Testing_data

2: for t = 1, 2,..., T do

3: h(t) = Stratified Fold (Train _data);

4: end for

5:New _Train_data =Ø;

6: for i in PLA do

7: for t = 1, 2,..., T do

8: Zit =h(t)(PLA (i)
);

9: end for

10: New_Train_ data = Ø ∪ ((Zi1, Zi1, ..., Zi1), yi);

11: end for

12: New_Test_data = Ø;

13: for i in PLA do

14: for t = 1, 2,..., T do

15: Zit= h(t)(PLA (i)
);

16: end for

17: New_Test_data = Ø∪ ((Zi1,Zi1, ...,Zi1), yi);

18: end for

19: Training_RF = RF(New_Train_data)

3: --------------Step 3: Output

Testing_RF= Training_RF

(h(1)(New_Test_ data (1)), h(2)(New_Test_ data (1)), ...,

h(T)(New_Test_ data (1)))

Algorithm 1. Stacking pseudocode.

random forest (RF) as the meta-learner. After the training of

each base learner was completed, we used the stacking algorithm

for analysis; that is, the outputs of multiple base learners were

taken as a new dataset that was incorporated into the meta-

learner (random forest was selected in this study) for learning and

prediction. We integrated the results of the three neural networks

and formed probabilities for the three classifications to obtain the

final prediction for each sample. The deep learning system was

iterated 100 times, and finally, the optimal model was selected by

using a greedy strategy. The pseudocode for the stacking algorithm

is shown in Algorithm 1.

The innovations of the OEDL method proposed in this study

can be reflected in the following aspects. (A) When splitting the

training set and the test set, the random stratification method is

improved to the label percentage stratification approach to achieve

the effect of label balancing. (B) During data selection, we selected

clinical features and radiomics features in turn, analyzed clinical

features and high-dimensional, abstract radiomics information as

combined features, and finally built a combined feature model. (C)

We chose the method of deep integration and comprehensively

utilized the advantages of each deep learning model to improve

its effectiveness and generalization. (D) We innovatively used an

improved metaheuristic algorithm (see Section Model training for

details) for optimization purposes to ensure the excellence of the

classification results.

Third, we performed model optimization based on a newly

proposed optimization algorithm. The above EDL proposal

combines deep learning and ensemble learning ideas, but there

is still the problem of the slow hyperparameter search. To solve

this problem, we considered introducing ametaheuristic algorithm.

Based on the stacking idea and the framework of particle swarm

optimization, we proposed the big bang optimization algorithm

(BBOA), which aims to solve the parameter optimization problem

in deep networks and applied it to the OEDL method. During the

analysis, the algorithm draws on the particle swarm optimization

algorithm and the black hole theory of the Big Bang (71), as shown

in Figure 7. In the process of constructing the algorithm, we used

a sinusoidal chaotic map, an adaptive inertia weight, a greedy

strategy, and other optimization methods. The symbol descriptions

of the algorithm are shown in Table 1.

(A) The galaxy’s initial position can be expressed as

xj
H
= Ux +mij

H
∗ (Dx − Ux) (12)

xj
L
= Ux +mij

L
∗ (Dx − Ux) (13)

mij
H
= a(mi−1j

H)
2
sin(πmi−1j

H) (14)

mij
L
= a(mi−1j

L)
2
sin(πmi−1j

L) (15)

In the study, Formula (14) and Formula (15) add the sinusoidal

chaotic map, which acts as an initial randomization to make

the distribution range of the star group more dispersed (72). A

sinusoidal chaotic map is a non-linear map that can produce

chaotic phenomena (73), where a is any constant, and the initial

values mij
H and mij

L can be any number, but for the depth rule

suitable for the deep learning neural network, the initial value is a

random integer between 0 and 100, and the chaotic map is rounded

to indicate the number of neurons in the deep learning.

(B) The rates of expansion of the galaxies can be expressed as

Ei
H
= wwE1i

t−1
+ ef1 · r(yoi

t
− Hi

t)+ ef2 · r(yoi
t
− Hi

t) (16)

Ei
L
= wwE2i

t−1
+ ef1 · r(yoi

t
− Li

t)+ ef2 · r(yoi
t
− Li

t) (17)

ww = ws - (ws - we)
t

T
(18)

In the study, Formula (18) is the added adaptive inertia weight,

and its function is to regulate the initial expansion speed. Adaptive

inertia weights are a variant of inertia weights. Each galaxy should

constantly consider its historical and global best position when

updating its expansion speed. The adaptive inertia weight can

dynamically adjust the value of the inertia weight according to the

historical state of the galaxy so that the algorithm converges to the
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FIGURE 7

BBOA schematic diagram. To solve the parameter optimization problem faced by deep networks, we used the Big Bang optimization algorithm

(BBOA). (A) The concept of a cosmic explosion; (B) the BBOA pipeline (the PUOA algorithm procedure).

optimal solution faster. The function of the adaptive inertia weight

is to regulate the initial expansion speed.

(C) The transformation of the production expansion center of

galaxies affected by higher expansion velocities is expressed as

x(H)i = x(H)i + Ei
H (19)

x(L)i = x(L)i + Ei
L (20)

(D) The optimal solution is the velocity of the largest star in the

universe, which can be expressed as

Yo =

{
yo, if yo > Yo;

Yo, else.
(21)

In this study, to update the optimal solution, the greedy strategy

is used, which can be expressed as

yo = max(yo
t) (22)

BBOA was used in OEDL to optimize the number of

hidden layers and the number of neurons in each layer of

the DNN, LSTM-RNN, and DBN. The stacking integration

algorithm was used to integrate the three models after each model

was optimized.

Model training

This research was carried out on a Linux workstation equipped

with a GPU. The software platform was based on Python

3.7. The proposed algorithms were implemented based on the

TensorFlow 2.8 framework. The GPU was used to accelerate

the training process. Among the study population, 70% of

the data were randomly selected for the training set, and the

remaining 30% were used as the test set. Statistical analysis was

performed using Python 3.7.0, SPSS 26.0 (SPSS Inc., Chicago,

IL, USA).

For various algorithm models, the algorithm was implemented

using data split based on a ratio of 7:3 for training and testing.

The model was fitted with the training set, the hyperparameters

except for the number of hidden layers and the number of neurons

were determined by the grid search method, and the best parameter

model was selected after 50% cross-validation. Finally, the model

was tested with the test set to evaluate the generalizability of

each model. The hyperparameters determined by the grid search

method in this study were based on a learning rate of 10-4, a

batch size of 20, a momentum term of 0.9, and 1,000 epochs. In

addition, the imbalanced distribution of the sample size in each

category will lead to the prediction bias of the model. To eliminate

this effect, we used the SMOTEENN algorithm to enhance the

fused features.

In this study, the implementation of the deep learning

network was based on the Keras package in TensorFlow 2.8.

The Adam optimizer was used to optimize the gradient of

the deep learning model, and the cross-entropy loss function

was combined with the softmax activation function to obtain

better classification results. The neural network of the three base

learners was initially set as a double layer, and the number

of neurons in each layer was 10. The BBOA optimizes the

numbers of layers and neurons of each base learner to fix

the model.

The evaluation indicators in the classification model were

obtained based on a confusion matrix, and they include the
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TABLE 1 Algorithm process symbol description.

Notation Meaning

xj
H Initial position of the j-th galaxy (horizontal axis)

xj
L Initial position of the j-th galaxy (vertical axis)

mi j
H Initial position of the i-th star in the j-th galaxy (horizontal axis)

mi j
L Initial position (vertical axis) of the i-th star in the j-th galaxy

Ux Upper boundary of the galaxy (horizontal axis)

Dx Lower boundary of the galaxy (vertical axis)

ef1 The speed of the fastest star in the galaxy

ef2 The speed of the fastest star in the universe

r Random number between 0 and 1

Ej
H Galactic expansion speed (horizontal axis)

Ej
L Expansion speed of the galaxies (vertical axis)

Hi
t Time position of the largest star t in the galaxy (horizontal axis)

Li
t Time position of the largest star t in the galaxy (vertical axis)

yoi
t The speed of the fastest star in the galaxy

Yoi
t The speed of the fastest star in the universe

ws The initial inertia of stars in the galaxies

we The final inertia of stars in the galaxies

t Evolution time (number of iterations)

T Total evolution time (iterations)

ww Adaptive inertia weight

Yo Velocity of the largest star in the universe (optimal solution)

yo The velocity of the largest star in the galaxy

following four basic indicators: “true positive” (TP) means that the

prediction is true and the actual value is also true; “true negative”

(TN) means that the prediction is false and the actual value is also

false; “false positive” (FP) means that the prediction is true but the

actual value is false; “false negative” (FN) means that the prediction

is false but the actual value is true. Among multiple classes, each

class i has values TPi, TNi, FPi, and FNi. TiPi represents that the

true class i is correctly predicted as class i, and FjPi represents that

the true class j is incorrectly predicted to be class i.

In this study, the evaluation indices include Macro-AUC,

accuracy (ACC), macrosensitivity (Macro-R), macrospecificity

(Macro-P), and Macro-F1 score (Macro-F1) (74). The ROC curve

for each classification was plotted with the true positive rate of each

classification as the vertical axis and the false positive rate of each

classification as the horizontal axis. The area under the ROC curve

of each category is the AUC value of each category, andMacro-AUC

is the sum of all types of areas and the average. The value range is [0

∼ 1]. The greater the value is, the more accurate the classification.

The indicators can be expressed as follows:

ACC =

n=3∑
i=1

TPi

n=3∑
i=1

(TPi + FPi)

(23)

macro_PRE =
1

n

n=3∑

i=1

(
TPi

TPi + FPi
) (24)

macro_SEN =
1

n

n=3∑

i=1

(
TPi

TPi + FNi
) (25)

macro_F1score =
2 ·macro_PRE ·macro_SEN

macro_PRE + macro_SEN
(26)

Results

The results include the results of clinical feature selection,

imaging feature selection, comparison of the prediction

performance of each method, comparison of the prediction

performance of each feature, comparison of the prediction

performance of each balanced method, and comparison with

previous studies.

Results of clinical feature selection

In the clinical feature selection stage, 17 features were included

in the model, and all of these features passed the correlation test

(as shown in Figure 8). The clinical characteristics according to the

discharge NIHSS classification are presented in Table 2.

Results of radiomics feature selection

In radiomics feature selection, we first selected 328 features

from 851 features using variance selection (threshold 0.3), used

the LightGBM and XGBoost algorithms to screen out 81 more

important features with the top 50 weights, and sorted out 19

features that appeared in both methods and the top 10 features

in their respective methods. After the correlation test, 19 image

features were selected. A rose plot was drawn based on the 19

features and their importance weights to the model, as shown

in Figure 9.

To visualize the importance of the selected features, we used

SHAP to illustrate the degrees to which these features influenced

the prediction results, as shown in Figure 10. The SHAP value

represents the contribution of each feature to the final prediction

and can effectively explain the model prediction for each sample.

The feature ranking (y-axis) represents the importance of the

prediction model, and the corresponding SHAP value (x-axis)

represents the degree of feature influence.

Comparison of the prediction performance
of each method

Using the joint dataset as an example, the classification results

of these methods are compared. The results show that the

OEDL constructed based on the concept of ensemble optimization
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FIGURE 8

Correlation test of characteristics. (A) Correlation test of clinical characteristics and (B) correlation test of the iconographic features.

obtained the best classification performance, and its Macro-AUC,

ACC, Macro-R, Macro-P, and Macro-F1 reached 97.89, 95.74,

94.75, 94.03, and 94.35%, respectively, as shown in Table 3.

Comparison of the prediction performance
of each feature

The classification results of EDL and OEDL were compared.

The results show that compared with that using the clinical and

radiomics features, the method using the combined data had better

classification performance, and the EDLmethod achieved aMacro-

AUC of 96.68% and an ACC of 92.55%. The OEDL method

achieved a Macro-AUC of 97.89% and an ACC of 95.74%, as shown

in Table 4. We also visualized the classification results of the OEDL

method with the three features in the form of ROC curves, as shown

in Figure 11.

Comparison of the prediction performance
of each balanced method

The classification results of the combined features and the

OEDL method were compared. Compared with the unbalanced,

oversampled, and undersampled techniques, SMOTEENN based

on a mixed sampling method achieved the best classification

performance, and its Macro-AUC, ACC, Macro-R, Macro-P,

and Macro-F1 reached 97.89, 95.74, 94.75, 94.03, and 94.35%,

respectively, as shown in Table 5.

Comparison with previous studies

To demonstrate the advanced performance of the method

proposed in this study, we reviewed relevant research in the field

of AIS classification and prediction and compared the AUC and

ACC of each study. Although the datasets, classification numbers,

and other aspects of these studies differed, the differences in the

results have some implications for the excellence of the methods.

The comparison results show that the proposed method has

significantly better classification performance in terms of AUC,

ACC, and other aspects than that of previous studies, and it

has better classification advantages. For more information, see

Table 6.

Discussion

AIS is one of the many diseases that endangers the health of

Chinese residents. It is difficult and expensive to check, and it is

difficult to evaluate the early prognosis (75). We used joint features

to train the OEDLmodel to predict the prognosis of AIS, which is of

great significance to improve the diagnosis and prevention system

of AIS and promote the optimal allocation of medical resources.

In terms of data collection and processing, we used clinical

features and radiomics features creatively to build joint features,

and we built a complete and feasible data processing operation

process. Compared with the clinical and imaging feature models,

the method using the combined data had better classification

performance, and the EDL method achieved a Macro-AUC of

96.68% and an ACC of 92.55%. The OEDL method obtained

a Macro-AUC of 97.89% and an ACC of 95.74%. Joint-feature

modeling produces better results than single-feature modeling.

The reason for the analysis is that simple clinical feature model

information is easy to collect, but prediction efficiency is limited

due to clinical feature instability; radiomics features can be used

to achieve high prediction efficiency, but the inclusion of purely

influencing omics features is limited; joint feature modeling

can incorporate more comprehensive and objective information.

Feature selection is the process of finding the feature subset that
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TABLE 2 Clinical characteristics according to the discharge NIHSS category.

Number Clinical factors Group A
(n = 106)

Group B
(n = 289)

Group C
(n = 46)

a NIHSS on admission 0 (0, 1) 2 (1, 3) 7 (5, 9)

b Position Telencephalon 53 (50.00%) 122 (42.21%) 22 (47.83%)

Diencephalon 15 (14.15%) 91 (31.49%) 15 (32.61%)

Cerebellum 23 (21.70%) 5 (1.73%) 0 (0.00%)

Brain stem 15 (14.15%) 71 (24.57%) 9 (19.57%)

c OCSP typing TACI 0 (0.00%) 2 (0.69%) 9 (19.57%)

PACI 22 (20.75%) 116 (40.14%) 26 (56.52%)

LACI 44 (41.51%) 79 (27.34%) 10 (21.74%)

POCI 40 (37.74%) 92 (31.83%) 1 (2.17%)

d Age 67.17± 11.63 66.92± 12.09 65.63± 14.82

e Sex Male 66 (62.26%) 167 (57.79%) 24 (52.17%)

Female 40 (37.74%) 122 (42.21%) 22 (47.83%)

f BMI 24.29± 3.10 24.13± 3.94 25.29± 4.15

g SBP 160.79± 14.96 162.90± 13.97 161.85± 18.70

h TC 4.48± 1.05 4.60± 1.11 4.38± 1.14

i LDL 2.61± 0.92 2.70±1.01 2.64± 1.14

j LVH Yes 61 (57.55%) 161 (55.71%) 31 (67.39%)

No 45 (42.45%) 128 (44.29%) 15 (32.61%)

k HCY Yes 10 (9.43%) 30 (10.38%) 6 (13.04%)

No 96 (90.57%) 259 (89.62%) 40 (86.96%)

l AF Yes 9 (8.49%) 21 (7.27%) 10 (21.74%)

No 97 (91.51%) 268 (92.73%) 36 (78.26%)

m Hypertension Yes 93 (87.74%) 265 (91.70%) 43 (93.48%)

No 13 (12.26%) 24 (8.30%) 3 (6.52%)

n Diabetes Yes 35 (33.02%) 124 (42.91%) 23 (50.00%)

No 71 (66.98%) 165 (57.09%) 23 (50.00%)

o CHD Yes 6 (5.66%) 17 (5.88%) 6 (13.04%)

No 100 (94.34%) 272 (94.12%) 40 (86.96%)

p Smoking Yes 32 (30.19%) 62 (21.45%) 13 (28.26%)

No 74 (69.81%) 227 (78.55%) 33 (71.74%)

q Drinking Yes 25 (23.58%) 52 (17.99%) 8 (17.39%)

No 81 (76.42%) 237 (82.01%) 38 (82.61%)

Groups A, B, and C refer to the normal group, mild group, and moderate-severe group, respectively. SBP, systolic blood pressure; TC, total cholesterol; LDL, low-density lipoprotein; LVH,

left ventricular hypertrophy; HCY, homocysteinemia; AF, atrial fibrillation; CHD, coronary heart disease; TACI, OCSP classification, total anterior circulation infarcts; PACI, partial anterior

circulation infarcts; LACI, lacunar circulation infarcts; and POCI, posterior circulation infarcts.

yields the best model performance, which is conducive to removing

redundant features and avoiding the risk of overfitting. Our data

collection and processing techniques can be actively promoted in

future radiomics research.

Traditional methods for predicting AIS prognosis are shallow

and deep machine learning methods. Their ability to represent

complex problems is limited, as is their learning ability. To design

a new OEDL and apply it to the prediction of AIS prognosis,

we creatively combined the ideas of deep learning, integrated

learning, and metaheuristic optimization. A comparison of the

prediction performance of the various methods shows that the

best classification performance was obtained by OEDL based on

ensemble optimization, with Macro-AUC, ACC, Macro-R, Macro-

P, and Macro-F1 reaching 97.89, 95.74, 94.75, 94.03, and 94.35%,

respectively. The main reasons can be analyzed as follows. (1) In

complex problems, the deep learning model can outperform the

traditional shallow learning model in terms of feature learning

ability. Deep learning multilayer networks can effectively represent
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FIGURE 9

Rose plot of feature weights. The 19 extracted features are represented by A to P, and the feature weights are shown.

the complexity of prediction results and are adept at discovering

complex relationships between a large number of input features,

resulting in high prediction performance (76). (2) When compared

to a single learner, the advantage of integrated learning is that it

ensures classifier diversity and richness, as well as better prediction

effect and stability through stacking combination (77). (3) We

developed a new parameter optimization strategy based on the

traditional metaheuristic algorithm to address the problem of

superparameter optimization in machine learning algorithms. Our

optimization algorithm can effectively avoid the problem that

traditional optimization methods have of falling into a local

optimal solution, and it can also effectively improve the model

efficiency (78).

In deep learning, the quality and quantity of data have a crucial

impact on the training effect of the model. If the training data are

imbalanced, i.e., the number of samples in some classes is too small,

then the model will be biased toward those classes with a high

proportion during the training process and will perform poorly for

those classes with a low proportion. This results in poor model

performance with test data may lead to overfitting. Therefore, we

introduced a data balancing method to ensure the balance of the

training data. The classification results of various balance methods

were compared. Compared with the unbalanced, oversampled,

and undersampled techniques, SMOTEENN based on mixed

sampling can achieve the best classification performance. The

results suggest that SMOTEENN, which combines undersampling

and oversampling, is the most suitable balancing technique for

this study.

A comparison with actual scenarios can be described as follows.

Qiu (16) used a linear SVMmethod to analyze the optimal imaging

group thrombus characteristics of IV protease recanalization with

AIS patients on noncontrast CT (NCCT) and CT angiography

and obtained (0.85 ± 0.03) ACC in the comparison of actual

data. Multiple regression and machine learning models were used

by Alaka (17) to predict the related dysfunction of AIS patients

after intravascular therapy. Using an internal dataset, the model

had an AUC of 0.65–0.72, and using an external dataset, the

model had an AUC of 0.66–0.71. Hofmeister (26) investigated

the predictive value of radiomics features extracted from clots

on the first thrombosis recanalization using SVM, with an ACC

of 0.88. Wang (24) obtained an ACC of 0.73 by using the

modified Rankin scale (mRS) to predict the prognosis of AIS.

Traditional methods for complex problems have limited expression

and learning ability, so it is necessary to design a deep integration

model with a multilevel cascade structure to improve the model’s

learning ability in complex problems (35). When compared to

that of other single and integrated methods, OEDL can achieve

the best classification performance when compared to the control

method. The proposed method outperformed previous methods

in terms of classification performance (AUC, ACC, etc.) and

classification superiority. Furthermore, to address the problem of

poor interpretability that frequently exists in deep learning (79),

we used interpretable machine learning technology to understand

the model’s applicability to clinical prediction, with the goal of

revealing the reasons behind the prediction results.

In a clinical sense, the combined feature model we developed

can serve as a reliable clinical diagnostic tool for predicting

stroke prognoses. Our modeling method is more suitable for

the clinical model application scenario; it is convenient for

radiologists to understand the differences between clinical features,
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FIGURE 10

Visual interpretation of the importance of selected features. (A) Feature density scatterplot: each column represents a sample, and each row

represents a feature; the features are sorted by their average absolute SHAP values; red represents the positive direction, and blue represents the

negative direction. (B) Feature distribution heatmap: each point represents a sample, the samples are sorted by their SHAP values, and the absolute

SHAP value of a feature represents its contribution to the model. (C) Feature decision diagram: this figure represents the accumulation of all samples

and features as well as model’s decision-making process.
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FIGURE 11

Scatter plot display of the classification results of OEDL. (A) Clinical, (B) Radiomics, and (C) Joint.

morphological features, and high-dimensional omics features, as

well as diagnostic performance differences. In addition, when

building the training set, we also built a data validation set and

performed in-model validation at a single center. This study

confirmed the validity and scientific nature of the combined data,

provided an important reference for similar subsequent studies,

and facilitated further verification through the use of more external

multi-center data. Compared with traditional radiomics analysis,

our combined feature model could extract more statistical features,

thereby providing a comprehensive stroke description. In addition,

computerized tools overcome the instability of human empirical

judgments, allowing clinicians to quickly and accurately predict

long-term outcomes.

This study still has room for improvement. First, this study

is a single-center, retrospective study with a limited sample

size, and it is expected that a multi-center study with larger

samples will be implemented in future to further verify the

generalizability of the model. Second, lesion labeling comes

from manual delineation and may be affected by the subjective

judgment of investigators. Subsequent semiautomatic or fully

automatic labeling algorithms need to be further explored to

improve the stability and consistency of feature extraction.

Third, the radiomics features constructed in this study are

based on noncontrast-enhanced MR only, requiring further

advanced MR acquisitions such as contrast-enhanced DWI

to obtain a high level of evidence for clinical application.

Fourth, more efficient image preprocessing tools (80) need to

be incorporated to improve the robustness and versatility of

the method.

Conclusion

In conclusion, using a combination of clinical features and

radiomics, we developed and validated a set of methods for the

early prediction of stroke prognoses. We combined DNN ideas

with ensemble learning to use OEDL as an effective tool for

the early and non-invasive prediction of prognosis levels, thereby

optimizing the clinical decision-making process and improving

the efficiency of clinical intervention. The ideas in this study can

provide new research directions for the effective establishment of

stroke prevention and control mechanisms.
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TABLE 3 Comparison of the classification e�ects of di�erent methods (%).

Type Name Macro-AUC ACC Macro-R Macro-P Macro-F1

Machine learning DT 90.53 75.53 59.62 50.37 54.41

SVM 97.69 82.45 72.56 82.71 74.11

RF 95.90 87.77 79.67 85.28 81.14

Deep learning DNN 93.13 82.96 83.26 83.02 83.12

LSTM-RNN 94.56 84.81 84.81 84.66 84.63

DBN 94.39 83.70 83.70 83.61 83.61

Deep learning+ Ensemble learning Hard-voting 95.36 87.23 86.86 87.01 86.90

Soft-voting 93.45 87.23 86.86 87.10 86.92

EDL 96.68 92.55 92.10 91.42 91.72

OEDL OEDL 97.89 95.74 94.75 94.03 94.35

EDL represents a deep ensemble learning model based on DNN, LSTM-RNN, DBN, and stacking ensemble; OEDL is an optimization algorithm based on EDL and BBOA.

These bold characters represent the predictive performance of the optimal method.

TABLE 4 Comparison of classification performance of various feature combinations (%).

Feature Model Macro-AUC ACC Macro-R Macro-P Macro-F1

Clinical EDL 97.15 88.30 87.60 86.78 86.82

Radiomics EDL 90.79 90.74 74.10 80.28 75.82

Joint EDL 96.68 92.55 92.10 91.42 91.72

Clinical OEDL 96.13 90.43 90.57 89.29 89.35

Radiomics OEDL 90.50 93.21 82.19 86.27 83.87

Joint OEDL 97.89 95.74 94.75 94.03 94.35

EDL represents a deep ensemble learning model based on DNN, LSTM-RNN, DBN, and stacking ensemble; OEDL is an optimization algorithm based on EDL and BBOA.

These bold characters represent the predictive performance of the optimal method.

TABLE 5 Comparison of the classification performance of various balancing methods (%).

Method Type Macro-AUC ACC Macro-R Macro-P Macro-F1

Original None 92.60 81.16 85.01 74.62 78.75

Random Oversample Oversampling 91.84 80.37 80.37 81.14 80.49

Random

Undersample

Oversampling 82.78 73.81 71.82 74.52 72.47

SMOTE Undersampling 90.98 85.93 86.10 85.85 85.85

ADASYN Undersampling 95.74 84.84 85.05 85.35 84.28

Borderline-SMOTE Undersampling 96.10 87.04 87.12 87.68 86.75

SMOTEENN Mixed-sampling 97.89 95.74 94.75 94.03 94.35

TABLE 6 Comparison of classification performance with previous studies.

Authors Data Methods Number of categories AUC (%) ACC (%)

Qiu (16) Radiomics SVM 2 85 -

Alaka (17) Clinical LR+Machine Learning 2 66–71 -

Hofmeister (26) Clinical+ Radiomics SVM 2 88.1 -

Wang (24) Clinical+ Radiomics LR 2 73 -

Ours Clinical+ Radiomics OEDL 3 97.89 95.74

These bold characters represent the predictive performance of the optimal method.
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