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Editorial on the Research Topic
Recent advances in renewable energy automation and energy forecasting

Renewable energy sources like solar, wind, and hydroelectric power are gaining
popularity as we work towards a more sustainable future. However, their intermittent
and often unpredictable nature, creates challenges for the energy industry in terms of being
able to ensure continuous electric power generation over regular periods of time. Thus,
accurate forecasting of renewable energy output is crucial for their reliable integration into
the power grid. In this regard, automation and machine learning have made significant
improvements in energy forecasting by enabling more precise predictions of energy output.
Advanced algorithms and high-performance computing systems allow for better grid
management and increased power generation systems’ efficiency. Automation is also
being used for the operation and maintenance of renewable energy systems. Real-time
monitoring and control systems enable a rapid response to changes in weather conditions,
optimizing energy production. This editorial summarizes recent advancements in renewable
energy automation and energy forecasting, which are critical areas for achieving a sustainable
energy future. The Research Topic covers areas like machine learning-based energy
forecasting, control and optimization of renewable energy systems, and the integration
of renewable energy into microgrids as shown in Figure 1. Continued research and
development in renewable energy automation and energy forecasting are essential for
the transition towards a sustainable energy future.

The global energy crisis on one hand and the advancement of climate change threat on
the other have prompted countries worldwide to seek alternative energy solutions, such as
solar, wind, hydrogen, etc., accelerating the pace towards decarbonization of their energy
matrix. Thus, renewable power generation, and the advancement of sustainable energy are
becoming an important concern for many countries. With these important priorities, so
grows the need for advanced technologies that can support such transformation in the
countries’ power grid to transition towards renewable and sustainable energy future. These
technologies must be able to monitor systems continuously and safeguard their continuous
operation over regular periods of time so as to ensure the technical and economic feasibility
of such large-scale projects. However, the electrical power being produced at the generation
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plants is transmitted to the points of utilization, which is achieved by
means of the power grids (an interconnected network for electricity
transmission and distribution from producers to the consumers).
Hence, traditional power grids support a one-way flow of power
from centralized sources, such as gas, nuclear and hydroelectric to
points of consumption. Therefore, based on the devices used and
their functionality, the electric power grids are classified into two
categories:

• Conventional grid
• Smart grid

A smart grid is much different from the conventional power grid
in the sense that it provides more reliable and consistent electric
power supply, thanks to advanced power electronics, control and
communications systems. The smart grid is the electrical system
which is capable for monitoring the activities of the grid connected
system and provides the real-time information of all the events
occurring in the power system. Part of the technology that goes into
a smart grid are advanced sensors and real-time advanced data
processing systems, with machine learning capabilities incorporated
in such systems, which can ensure the continuous monitoring of all
of the systems that comprise the smart grid, thus safeguarding its
continuous operation. The emergence of improved sensors,
actuators, and automation technologies has consequently
improved the control, monitoring and communication techniques
within the energy sector, helping to advance the smart grid system.
Thus, with the support of aforementioned modern technologies, the
information flows in two-ways between the consumer and supplier.
This data communication helps the supplier in overcoming
challenges like integration of renewable technologies,
management of energy demand, load automation and control.
Renewable energy (RE) is intermittent in nature and therefore
difficult to predict. The accurate RE forecasting is very essential
to improve the power system operations. The forecasting models are
based on complex functions’ combination that include seasonality,
fluctuation, and dynamic nonlinearity. The advanced intelligent
computing algorithms for forecasting should consider the proper

parameter determinations for achieving optimization process. For
this we need, new generation research areas like Machine learning
(ML), and Artificial Intelligence (AI) to enable the efficient
integration of distributed and renewable generation at large scale
and at all voltage levels. The modern research in the above areas will
improve the efficiency, reliability and sustainability of the Smart
grid.

The energy grid is one of the most complex infrastructures and
requires quick decision-making in real-time, which big data and AI
algorithms enable for utilities. Beyond grid analytics and
management, AI’s applications in the renewable sector include
power consumption forecasting and predictive maintenance of
renewable energy sources. It further enables the internet of
energy applications that predict grid capacity levels and carry out
time-based autonomous trading and pricing. Future smart power
systems need the intelligent field devices to help in the
implementation of effective control mechanisms and protection
schemes. The researchers should focus on development of human
and machine interaction (HMI) system based on advanced AI and
ML techniques in plant control andmonitoring systems. An increase
in the application of advanced automation by RE based research
may lead to an eventual total shift from conventional energy sources
to RE.

This Research Topic is entitled “Recent advances in renewable
energy automation and energy forecasting.” It aims to bring out new
methods and models that can help improve the operations on RE,
improves grid security and can sustainable energy future. This
Research Topic calls for novel and innovative research
submissions that focus on application-oriented studies improving
RE automation and Energy forecasting models.

Specific Research Topic of interest include (but are not
limited to):

• Intelligent systems, solving methods, optimization, and
advanced heuristics for improving operation of renewable
integrated energy systems;

• Advanced control and operation methods to improve power
system flexibility;

FIGURE 1
Recent advances in Renewable Energy Automation and Energy Forecasting.
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• Artificial intelligence and its application in RE automation;
• Modelling of Intelligent Field Devices;
• Smart energy, IoT and modern power systems modelling of
RE operations;

• Energy-forecasting technologies;
• Deep learning and machine learning applications in smart
grids;

• Modelling of data analytics for smart grid operations;
• Business models for different electricity market players;

The Smart Grid concept has been defined as the integration of
the electrical generation, transmission and distribution networks
and the data communications networks. As such, Smart Grid
systems use digital and other advanced technologies to monitor
and manage the transport of electricity from all generation sources
to meet the varying electricity demands of end users. Reviewing the
literature, we find, for example, that Praveena et al. proposed a new
optimization method that combines Crow Search Algorithm and
Harris Hawks Optimization to improve power quality and reduce
harmonic distortion in microgrid systems with photovoltaic systems
and multi-level inverters. By optimizing the performance of a
recurrent neural network controller, the proposed approach
outperforms other methods in enhancing power quality and
reducing THD. The authors suggest its potential for application
in other microgrid systems with different configurations to enhance
renewable energy system performance.

Likewise, Kondaiah et al. projected a modified deep residual
network (MDRN) for short-term load forecasting (STLF) that
enhances accuracy and efficiency. Combining the residual
network and convolutional neural network, the MDRN
comprises four main components and outperforms other deep
learning models, including (Long-Short Term Memory) LSTM
model and (Contextual LSTM) CLSTM, an extension of the
recurrent neural network LSTM, in forecasting accuracy and
computational efficiency. The proposed MDRN can potentially
enhance energy management systems’ accuracy and efficiency
and may be useful in other time-series forecasting applications.

A major Research Topic within energy management systems,
especially in the context of renewables being incorporated to the
energy matrix and the enhancement of Smart Grid technologies, are
the strong non-linear and non-stationary characteristics of power
loads, wherein there is the need to develop short-term power load
forecasting methods based on bald eagle search (BES) optimization
variational mode decomposition (VMD), convolutional bi-
directional long short-term memory (CNN-Bi-LSTM) network
and considering error correction are developed to improve the
accuracy of such load forecasting. In this context Wang and Li
recommended a BES-VMD and CNN-Bi-LSTM method with an
error correction mechanism for short-term power load forecasting.
The method outperforms traditional methods, including ARIMA
and CNN-Bi-LSTM without error correction, in accuracy and
efficiency. The authors suggest its potential for other time-series
forecasting problems.

With regard to the Smart Grid and demand response
management ―a major Research Topic within the subject’s key
areas of research―most consumers of energy are familiar with the
grid and its hourly periods of high and low electricity rate of
consumption. Thus, demand response programs seek to give

consumers the opportunity to voluntarily reduce or shift their
electricity consumption during peak hours by incentivizing them
with lower rates or other forms of compensation. This way, demand
response programs are being used by utilities and operators to
balance supply and demand of electricity in an evolving market.
In this context, Puppala et al. proposed a demand response program
for a smart grid that incentivizes customers to reduce peak electricity
demand through rebates. The framework outperforms other
programs in reducing peak demand and improving customer
satisfaction. It can scale up to support energy sustainability and
grid stability. Along the same line, Vishnuvardhan et al. proposed a
review of technical advancements and stability analysis in wind-
penetrated power generation systems. The authors emphasize the
significance of integrating renewable energy into the power grid and
the challenges associated with high wind penetration. The review
discusses recent advancements in power electronic devices, grid-
forming inverters, and control strategies, as well as stability
challenges like frequency and voltage stability. The review
highlights the current state-of-the-art in wind-penetrated power
generation systems and identifies the need for further research. The
findings can inform policy and strategy for grid stability and wind
energy integration.

The growing need to diversify the energy matrix and the electric
power distribution sector has drawn electric utilities to pursue
renewable energy projects that can advance the green energy
agenda towards 2030 and beyond. In this context, Din et al.
examine the public perception and willingness to pay (WTP) for
renewable energy in Pakistan using the theory of planned behaviour
(TPB). The study employs a survey questionnaire to investigate
public attitudes, subjective norms, perceived behavioural control,
and WTP for renewable energy. The results reveal that public
attitudes and subjective norms have a significant influence on
WTP for renewable energy, while perceived behavioural control
has a weaker effect. The authors suggest that these findings can
inform policy and strategy development to encourage renewable
energy adoption in Pakistan and other developing countries.

An important Research Topic that is also at centre stage in the
Smart Grid discussion is the potential impact of electric vehicles
(EVs) on global energy systems. There is no doubt that the growing
trend in the electrification of private and public transport vehicles
accelerating at a somewhat rapid pace towards 2035, energy
producers and distributors need to take into account and plan
ahead for the potential impact of EVs on electricity demand.
Thus, Dharavat et al. emphasized a review on the impact of
plug-in electric vehicles (PEVs) on grid integration with
distributed energy resources (DERs). They discuss the challenges
and opportunities of PEV integration, such as the need for grid
infrastructure upgrades and the potential for PEVs to provide grid
services. The authors also explore strategies and technologies,
including vehicle-to-grid systems and smart charging, to manage
the impact of PEVs on the grid. The review provides an overview of
the current state-of-the-art in PEV grid integration and highlights
the need for further research.

High impedance faults (HIF) are abnormal conditions in power
distribution networks, that occur when an energized primary
conductor establishes an improper contact with a highly resistive
surface. Therefore, the need to prevent such occurrences are also a
major Research Topic of research. To accomplish this, HIF detection
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methods are employed considering the presence of non-linear loads
in the distribution network. Along this line, Gogula and Edward
recommended a new method for detecting high-impedance faults in
a distribution network, where they propose to use a combination of
discrete wavelet transform (DWT) and radial basis function (RBF)
neural network. The authors highlight the difficulties in detecting
such faults using traditional methods due to their low fault currents,
hence they may go generally undetected for extensive periods of
time, decreasing the distribution network’s reliability and
effectiveness. Moreover, energized conductor on the ground
present great risk of electric shock to anyone nearby. The
proposed method of the authors is evaluated using simulations
and outperforms traditional methods in accuracy. This study’s
findings can inform the development of more effective fault
detection methods for distribution networks, improving grid
reliability and reducing downtime.

Bishwal et al. have proposed a differential evolution (DE)
algorithm to optimize an IPIDF controller for frequency
management in a networked power system with superconducting
magnetic energy storage (SMES) and high-voltage direct current
(HVDC) links. The DE algorithm finds the optimal values of the
IPIDF controller’s parameters for stable frequency response in the
system. The study shows that the optimized IPIDF controller
provides better frequency response than traditional PI controllers,
particularly in scenarios with power system disturbances. The study
suggests that the DE-optimized IPIDF controller is a promising
approach for managing frequency in networked power systems with
SMES and HVDC links.

Research on methods and techniques to optimize the energy
efficiency in industrial processes, are also an important area of
development, seeking to optimize the use of energy and enhance
process optimization in various industrial sectors. In this vein,
Parekh et al. review different techno-managerial methods for
optimizing energy use in chemical process industries, such as
energy audits, pinch analysis, process integration, advanced
process control, and machine learning. The authors discuss the
benefits and limitations of each approach, and emphasize that
combining them can lead to substantial energy and cost savings,
stressing the importance of considering both technical and
managerial factors when implementing energy optimization
strategies.

Power systems expansion parallels the increase in load demand
both from residential and industrial users, especially now that large
influx of renewable energy is being incorporated into the power
systems almost everywhere, to satisfy the increasing load demand.
Regarding this, Chetan H. R. et al. explain that with its potential to

generate power and compensate for a large portion of the load
demand, wind generators make a major renewable power
contribution. Chetan H. R. et al. used an optimized PI controller
with a static synchronous series compensator (SSSC) to improve the
transient stability of a wind power conversion system. The
optimized PI controller enhanced damping and stability, making
it a promising approach for power system disturbances.

Finally, Ravinder and Kulkarni highlight the importance of
safeguarding smart meters’ integrity when they state that the
intrusion detection in network traffic for crucial smart metering
applications based on radio sensor networks is becoming very
important in the Smart Grid area. The network’s structure for
smart meters under investigation should consider important
security factors. Thus, they report on research using machine
learning to detect intrusions in smart meter data. Their results
show that three algorithms, including random forest, can effectively
detect intrusions. The study concludes that machine learning can
enhance smart grid security and privacy.
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A modified deep residual
network for short-term load
forecasting
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The electrical load has a prominent position and a very important role in

the day-to-day operations of the entire power system. Due to this, many

researchers proposed various models for forecasting load. However, these

models are having issues with over-fitting and the capability of generalization.

In this paper, by adopting state-of-the-art of deep learning, a modified deep

residual network (deep-ResNet) is proposed to improve the precision of short-

term load forecasting and overcome the above issues. In addition, the concept

of statistical correlational analysis is used to identify the appropriate input

features extraction ability and generalization capability in order to progress

the accuracy of the model. Two utility (ISO-NE and IESO-Canada) datasets

are considered for evaluating the proposed model performance. Finally, the

prediction results obtained from the proposed model are promising as well as

accurate when compared with the other existing models in the literature.

KEYWORDS

load forecasting, smart/ micro-grid, feature selection, ANN, artificial neural networks, short term

load forecasting, deep learning

1 Introduction

Estimating the electricity demand is vital to the growth and development of current
existing power systems. Making accurate projections of future loads over various time
horizons is essential to the steady and effective operation of decision makers, scheduling,
and allocating sources in power systems. Specifically, STLF is concerned with estimating
the subsequent future loads for a time-period ranging from a few minutes to a week
Kondaiah et al. (2022). In addition, a reliable and efficient STLF also assists utilities
and energy suppliers in meeting the difficulties posed by the increased penetration
of renewable energy sources and the progression of the electricity sector with more
complicated pricing techniques in future smart grids.

Researchers over the years have proposed various STLF methods. Some of the
models used for STLF include linear or nonparametric regression Ferraty et al. (2014),
support vector regression (SVR) Zhang and Guo (2020), autoregressive models
Taylor (2010), fuzzy logic approach Ali et al. (2021), etc. In addition, the references
Kondaiah et al. (2022); Kuster et al. (2017); Hippert et al. (2001) provide reviews and
assessments of the various available approaches. However, most of the suggested
models were over-parameterised, and the findings they offered were neither
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persuasive nor sufficient Hernández et al. (2014). Furthermore,
the construction of STLF systems via artificial neural networks
(ANN) has been one of the more conventional approaches to
tackling the forecasting challenge. In addition, increasing the
several input parameters, hidden nodes, or layers may increase
the size of ANN, but another critique is that networks are prone
to the issue of “overfitting” Velasco et al. (2018). Despite this,
other kinds and subcategories of ANN, such as radial basis
function (RBF) neural networks Cecati et al. (2015), wavelet-
based neural networks Liu et al. (2013), and extreme learning
machines (ELM) Li et al., 2016b, to mention a few, have been
suggested and used to STLF.

Moreover, Computer vision, natural language processing
(NLP), and speech recognition have been greatly influenced by
recent advances in neural networks (especially deep-ResNets)
Li et al. (2022). Mostly, Scientists are now incorporating
their knowledge of various applications into neural network
architectures instead of relying on pre-designed superficial
neural network configurations. The addition of other building
modules, such as convolutional neural networks (CNN)
Amarasinghe et al. (2017) and long short-termmemory (LSTM)
Wang et al. (2019), hasmade it possible for deep neural networks
to be very versatile and efficient. In addition, numerous training
methods have been suggested to train neural networks properly
with multiple layers without the gradients disappearing or
severe overfitting. Furthermore, the use of deep learning
models for STLF is a subject that has just recently gained
attention. For forecasting various loads, researchers have utilized
Restricted BoltzmannMachines (RBM) and feed-forward neural
networks with many layers Li C. et al. (2021); Rafi et al. (2021).
Nonetheless, as the number of layers rises, it becomes more
difficult to train thesemodels; hence, the number of hidden layers
is often somewhat limited, thereby limiting the performance of
the models. And also, numerous studies have indicated that
feature selection from input data impacting hourly load profile
might enhance prediction performance Zhang and Guo (2020);
Bento et al. (2019).

Furthermore, using a multi-sequence-LSTM-based network
architecture, Jiao et al. (2018), developed a framework for
commercial load forecasting. This approach accurately captures
the complex relationships among sequences. The contribution
of DNN in the actual load dataset was explored in reference
Chitalia et al. (2020), and it was shown that a wide variety of
activation functions could be employed to create reliable load
predictions. A model that is mainly focused on LSTM-RNN was
suggested in reference Kong et al. (2019) to forecast the short-
term residential load. This model is able to estimate the overall
load of a single home quite precisely. The residual network was
suggested in reference Kaiming et al. (2015). Applying DNNs
has become feasible according to this technique. A modified
residual network was presented by Chen et al. (2019). Here, the
network’s input would be the average value of the multi-layer
output rather than the output of the layer that came before it.

To avoid such complexity, a model for STLF is developed in this
paper with the assistance of the DNN. Also, we used a deep-
ResNet model to make our prediction and over-fitting methods
more reliable. The critical difference between the proposed and
other existing models is that in this approach, we don’t stack
several hidden layers over each other since this would lead to
severe over-fitting.

Consequently, in this proposed work, we have used the
state-of-the-art deep neural network (DNN) architectures and
implementation approaches to enhance the existing ANN
structures for STLF. A unique DNN model for estimating
the day-ahead (24-Hours) load has been suggested based
on the residual network (ResNet) topology introduced in
Chen et al. (2019); Kondaiah and Saravanan (2021) instead of
stacking numerous hidden layers. The most important vital
contributions of the work proposed in this paper are as follows.
First, an effective end-to-end model for STLF based on deep-
ResNets is proposed. The suggested model used an appropriate
feature extraction or selection method with adequate statistical
correlation analysis. The findings suggest that enhancing the
neural network topology may significantly improve predicting
performance. Second, the integration of the building blocks
with pre-existing methodologies for feature extraction and
selection is an essential process that has the potential to result
in significant improvements in accuracy. Furthermore, the
fundamental components of the model that has been described
are easily adaptable to other neural-network-based STLFmodels
already in existence. In addition, when compared to various
models, the suggested STLF model outperforms in terms of
precision and reliability. Concurrently, we utilised DNN to make
the prediction model more robust and to reduce over-fitting.
Typically, the output of an aggregated model of neural networks
is the combination of many individual models. One drawback
is that it takes a substantial amount of processing capacity to
execute. But, just a single training session is required for the
proposed approach in this paper.

According to the following outline, the rest of the paper is
organised as follows. First, the process of selecting appropriate
inputs from the dataset is described in Section 2. The details
of the proposed methodology are presented in Section 3. The
results of the proposed STLF model are described in Section 4.
Additionally, we compare the model performance with other
approaches. Finally, Section 5 concludes the paper with a
summary of the findings and suggestions.

2 Features selection for the model

Meteorological conditions or variables1 and the price
of electricity, as we all know, considerably influence

1 such as temperature, relative humidity, wind speed, and precipitation.
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TABLE 1 Pearson’s correlational coefficient variables.

Correlational coefficients

Range Relation

0.8 to 1.0 Extremely strong
0.6 to 0.8 Strong
0.4 to 0.6 Medium
0.2 to 0.4 Weak
0.0 to 0.2 Extremely weak
0.0 No relation
-0.0 to -1.0 Negative relation

electricity consumption Liu et al. (2018); Kwon et al. (2020);
Kim et al. (2020). However, because of the intricate relation
between those variables, it is difficult to characterise the
interactions between them. Therefore, there are additional
benefits to selecting several input parameters in general. On the
other hand, numerous variables might have certain drawbacks
Memarzadeh and Keynia (2021).

Consequently, Pearson’s correlation approach was used for
correlation analysis to find the association between input
parameters and the actual load. The relationship between the
various variables can be understood in detail based on the
correlation coefficients generated by this method Zhang and
Guo (2020). The following is the formula that is used while
calculating Pearson’s correlation:

Corr(xi,yj) =
n∑xiyj −∑xi∑yj

√n[x2i − (xi)
2][n∑y2j − (yj)

2]
(1)

Where Corr(xi,yj) denotes the relational degree between
input variables xi and actual load demand yj, and n represents
the total number of data points. The values of the reference
coefficients of the correlation (-1.0 to 1.0) are given in Table 1.

Correlation analysis was performed on the data from 1
January 2010, to 31 December 2014. This dataset consists of
different variables, such as, “the hourly temperature (Tem), wind
speed (WS), relative humidity (RH), precipitation (Pr) and solar
radiation (SR), air pressure (AP), and the actual load demand
(LD)”. There are several extremely interesting observations to be
made, as explained in Section 4.1.

3 Proposed methodology

Deep residual networks (deep-ResNet) are the foundation of
ourmodel for day-ahead load forecasting, which we presented in
this study. We begin by formulating the low-level fundamental
structure of the model, which consists of numerous layers
that are all completely related to one another, and process the
inputs of the model to create tentative predictions for the next
24 hours. After then, the preliminary projections are processed

by a comprehensive residual network. Following the presentation
of the topology of the ResNet, many adjustments are done in
order to further improve its capacity for learning.

3.1 Deep neural networks

Deep Neural Networks (DNNs) are ANNs with numerous
hidden layers between the input layer and the output layer
Ma (2021). The linear and non-linear associations between data
characteristics are modelled by using DNN. In modeled, the
propensity to overfit may be mitigated by using dropout, a
technique in which neurons are removed from the network in
either a random or a systematic manner Salinas et al. (2020).
Since their inception, DNNs havemade significant achievements
in a wide range of areas of study. According to Subbiah and
Chinnappan (2020), the field of deep learning exploded after
their original publication was released in 2006. Through the
use of the summation and product procedures, the non-linear
function that effectively represents the data is determined in
the neural networks. Figure 1 depicts an ANN-based DNN
structure. There are three layers in the DNN: an input layer,
a hidden layer, and an output layer. Each layer is made up of
neurons that do not communicate with each other. There are,
nevertheless, complete weighted connections between neurons
between layers. The fundamental formulae of DNN in classic
networks are as follows;

youtput = F(xinput) (2)

Where the input of the neuron is denoted by xinput and the
output of the neuron is denoted by youtput .

DNNs are able to extract highly abstracted characteristics
from training data because of their multiple hidden layers,
which provide this power. Since load profiles include nonlinear
features among the different components that determine the
morphologies of load patterns, it is possible to use DNN as
a prediction model under these circumstances. However, the
DNNs have two problems when they are being trained to do a
task: gradient explosion/vanish and network degeneration.

3.2 Deep residual networks

The aforementioned model is used in order to discover the
nonlinear connection that exists between the input data and the
output value. In general, the neural network’s learning capacity
improves as the model depth is increased. However, there is
a possibility that the performance of the deep learning model
would suffer in reality. The inherent quality of the data or the
challenging nature of the deep learning model might both be
to responsible for the deteriorating performance. For greater
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FIGURE 1
The structure of ANN-based DNN.

FIGURE 2
The basic structure of Residual Network (ResNet).

performance, Zhang et al. (2018) presented an approach that
used ResNet instead of stacking concealed layers. ResNet has a
unique structure in comparison to nested layers. It is essentially
the same as the framework suggested in Zhang et al. (2021),
which is often employed for the picture/image classification issue
but with a few key differences. In the ResNet building block, the
skip link/connection typically has input and output dimensions
that are the same, but in a residual block, the input (xinput) and
output (youtput) dimensions are different. A ResNet, as seen in
Figure 2, has two stacked levels and one skip link/connection.

Typically, a skip connection is an identical mapping when its
input and output are of the same dimension. For this case, the
output of the appropriate ResNet is as follows:

youtput = F(xinput) + xinput (3)

If the dimensions of the input and output are not the same,
then the skip connection act as a linear projection. In this case,
the associated ResNet produces an output with linear projection
(Lp) as follows:

youtput = F(xinput) + Lp ∗ xinput (4)

The skip connection signifies that the ResBlock/ResNet
learning ability is no weaker than that of the stacked layers when

both have the same number of hidden layers. The formula for
forward-propagation if n residual blocks are formed one after the
other is given as follows:

y (x) = xinitial +
n

∑
j=1

F(xj − 1) (5)

Where xinitial represents the very first input that the network
receives. In point of fact, the residual block builds an artificial
identity map by performing an addition that combines the input
and output of the neural unit in a straightforward manner.
Experiments have shown that the residual block is an effective
solution to the issue of deterioration that occurs in DNNs.
Sheng et al. (2021), explained the residual block, both from
the point of view of advancing propagation and backward
propagation [30].

3.3 A modified structure of deep residual
network

The proposed model is presented in this subsection; it is
based on the model structure shown in Figure 2. As a result
of its design, the proposed model can learn both deep and
superficial characteristics or features from the input data that
is fed into it. Furthermore, the ResBlocks structure enables that
the modified deep-ResNet learning capacity is equivalent to that
of a shallow ResNet. According to Zhang et al. (2018), there is
a way to expand the deep-ResNet by adding more shortcuts.
Although the formulations of the forward and backward
propagation of responses and gradients are somewhat different,
the network features are the same after adding the additional
shortcut links. In order to enhance ResNet learning capacity,
we make structural changes to the network. The convolutional
network designs suggested in Chen et al. (2019) and Kondaiah
and Saravanan (2021) served as inspiration for our proposal of
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FIGURE 3
The Proposed Structure of a modified deep-ResNet.

FIGURE 4
Time-Series load data from the two-utility dataset.

the modified deep-ResNet, the structure of which is seen in
Figure 3.

A sequence of ResNets is added to the model first (the
residual blocks on the right). The input of both side residual
blocks is the combination of load values regarding the calendar
variables with day type, and the temperature information,
respectively, unlike the implementation in Xu et al. (2020)
(except for the first side residual block, whose input is the input of
the network). This layer output is averaged across the outputs of
each of the primary residual blocks. Then the outputs are linked
to all of themajor remaining blocks in the following layers, much

FIGURE 5
Correlational Analysis between the input variables.

like the tightly connected network in Li Z. et al. (2021). After
averaging all connections from the blocks on the right and the
network output, the following major residual block is provided
as an input. As a result of the extra side residual blocks and
dense shortcut connections, it is anticipated that the network
representation capabilities and error back-propagation efficiency
would increase. In the next section of this study, we will evaluate
and contrast the performance of the proposed model.
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TABLE 2 Input Features for themodel.

Name of the input features Index of the variable(s)

Day_wise Week-Wise Month-Wise

Temperature (Tem) TemDay
h TemWeek

h TemMonth
h

Load Demand (LD) LDDay
h LDWeek

h LDMonth
h

Wind Speed (WS) WSDayh WSWeek
h WSMonth

h
Relative Humidity (RH) RHDay

h RHWeek
h RHMonth

h
Precipitation (Pr) PrDayh PrWeek

h PrMonth
h

TABLE 3 Additional input variables for the model.

Dummy Variables Code Indication Meaning

Seasonality (S) 1 spring
2 Summer
3 Antumn
4 Winter

Week-Index (WI) 0 Weekday
1 Weekend

Holiday-Index (HI) 0 Holiday
1 Non-Holiday

4 Results and discussion

The proposed model in this experiment is trained by the
Adam optimizer with default parameters, as mentioned in
Kondaiah and Saravanan (2021). The models are accomplished
by adopting Keras 2.2.4 with Tensorflow 1.11.0 as the backend
in the Python 3.6 environment. Note that adaptive adjustment of
the learning rate during the training process is used. The models
are trained on an Intel(R) Core(TM)- i5-3230M-powered Acer
laptop.Moreover, the generalizability of the developedmodelwas
investigated in two case studies with IESO-Canada and ISO-NE
datasets, respectively. Finally, the proposed model performance
was verified using real-time data. To train the model, 3 years of
data were used, which was taken around 1.5 h for 700 epochs.
When training all models, the total training duration is under
8 hours. “Mean absolute percentage error (MAPE), Root mean
square error (RMSE), and Mean absolute error (MAE)” are the
most significant indices when comparing the results of various
STLF models Li et al., 2016b. They are described as follows:

MAPE = 1
N

N

∑
n=1
(|

LoadActualn−LoadPredictedn
LoadActualn

| ∗ 100) (6)

RMSE = √ 1
N

N

∑
n=1
(LoadActualn − LoadPredictedn)

2 (7)

MAE = 1
N

N

∑
n=1
|LoadActualn − LoadPredictedn| (8)

Where N is the total number of input values,LoadActualn and
LoadPredictedn are the average values of the actual and predicted
load, respectively.

4.1 Analysis of input data

4.1.1 Data pre-processing
The gathered dataset(s) may have multiple anomalies,

including missing values, incomplete data, noises, and raw
format Shi et al. (2018).The unprocessed data contains flaws and
contradictions that might lead to misunderstanding and indicate
a lack of proper data analysis.Therefore, the pre-processing stage
that is part of the data refining process is particularly crucial
for real-world datasets since it ensures the performance and
reliability of the system to find information from real-world data.
In most cases, the pre-processing data stage consists of many
fundamental sub-steps or phases that are applied to raw data
before they are refined.These phases and sub-steps are as follows:
1) Data-Cleaning, 2) Data-Transformation, 3) Data-Reduction,
4) Data- Discretization, respectively. These stages are primarily
employed in the pre-processing step to improve and evaluate
data in order to efficiently and accurately anticipate. As a result,
a variety of sub-phases may be effectively used based on the
data format, strategy, and input requirements for the suggested
methodology.

4.1.2 Description of the data
Two different public data sets are utilized in this work,

both of which contain hourly load and weather related data.
The first dataset is New England’s independent system operator
(ISO-NE)2 dataset Chen et al. (2019). The time range of this
dataset is from March 2003 to December 2014. The second
dataset is Canada’s Independent Electricity System Operator
(IESO)3 dataset El-Hendawi and Wang (2020). The time scope

2 https://class.ee.washington.edu/555/el-sharkawi.

3 http://reports.ieso.ca.
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TABLE 4 Themonth-wise estimation results (%MAPE) of the proposedmodel with othermodel(s) on the ISO-NE dataset.

Name of the Month Forecasted Results (%MAPE)

Name of the Model(s) Proposed Model

SIWNN WT_ELM_PLSR WT_ELM_MABC ResNetPlus
[Chen et al. (2010)] [Li et al. (2016c)] Li et al. (2016b) [Chen et al. (2019)]

January 1.60 – 1.52 1.619 1.423
February 1.43 - 1.28 1.308 1.252
March 1.47 – 1.37 1.172 1.032
April 1.26 – 1.05 1.340 1.212
May 1.61 – 1.23 1.322 1.245
June 1.79 – 1.54 1.411 1.331
July 2.70 – 2.07 1.962 1.523
August 2.62 – 2.06 1.549 1.329
September 1.48 – 1.41 1.401 1.321
October 1.38 – 1.23 1.293 1.133
November 1.39 – 1.33 1.507 1.361
December 1.75 – 1.65 1.465 1.373
Average 1.75 1.489 1.48 1.447 1.294

TABLE 5 Year-Wise forecasted results (%MAPE) of the proposed
model with other model(s) on the ISO-NE dataset.

Year Name of the model(s) Forecasted results
(%MAPE)

2010 RBFN-ErrCorr [Yu et al. (2014)] 1.80
RBFN-ErrCorr [Cecati et al. (2015)] 1.75
WT-ELM-PLSR [Li et al. (2016c)] 1.50
ResNetPluse [Chen et al. (2019)] 1.50
Proposed 1.308

2011 RBFN-ErrCorr [Yu et al. (2014)] 2.02
RBFN-ErrCorr [Cecati et al. (2015)] 1.98
WT-ELM-PLSR [Li et al. (2016c)] 1.80
ResNetPluse [Chen et al. (2019)] 1.64
Proposed 1.423

TABLE 6 Day-wise forecasted results (%MAPE) of the model on the
ISO-NE dataset.

Day Index Year-wise forecasted MAPE (%)

2006 2010 2011

Weekdays 1.289 1.273 1.296
Weekends 1.296 1.387 1.279
Average 1.2925 1.3300 1.2875

of this dataset is from 1st January 2002 to 12th November 2021.
These datasets are time series, which are taken into account in
minutes, hours, or even days. Trend, cycle, seasonal variation,
and erratic fluctuations are the most common features of time
series data. In a time series context, a trend is an upward and
downward movement that depicts the long-term advancement
or deterioration. “Cycle” refers to the periodic oscillations that
take place around a trend level. In time series, seasonal variation

TABLE 7 Holiday(s)-wise forecasted results (%MAPE) of the model
on the ISO-NE dataset.

Name of the Holiday MAPEs (%)

2006 2010 2011

New Year 1.343 1.322 1.287
Martin Luther King 1.284 1.395 1.303
Jr.Day 1.333 1.364 1.329
Memorial Day 1.148 1.102 1.245
Independence Day 1.276 1.355 1.395
Labor Day 1.397 1.298 1.269
Veterans Day 1.265 1.226 1.313
Thanks Giving Day 1.309 1.361 1.268
Christmas Day 1.237 1.328 1.256
Pre-New year’s Day 1.348 1.332 1.301
Average 1.294 1.3083 1.2966

refers to the recurrence of time interval patterns that complete
themselves inside a year’s calendar and reoccur annually. Any
movement in a time series that does not follow the regular
pattern, known as an irregular variation, is unforeseen and
unexpected. For example, the data that we collected for the load
in the case study is presented as a time series that is denoted by
the hour, as depicted in Figure 4.

The 2-year load demand of both utilities is shown graphically
in Figure 4. As seen in Figure, the ISO-NE grid data shows a
repeating and cyclic load pattern. In addition to that, the seasonal
fluctuation may be noted as well. Nevertheless, the shape of
the curve remains the same throughout each year. Furthermore,
the IESO data also has the same repeating and cyclic load
pattern. This indicates that the load data are subject to annual
and seasonal changes. Additionally, the characteristics of load
data are as follows. From the hourly load demand as shown in
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TABLE 8 Themonth_wise estimation results (%MAPE) of the proposedmodel with othermodel(s) on the IESO-Canada dataset.

Name of the Month Forecasted Results (%MAPE) Proposed Model

Name of the Model(s)

WT-NN A novel WT_Ensemble
[El-Hendawi andWang (2020)] [Kondaiah and Saravanan (2022)]

January 1.504 1.354 1.254
February 1.618 1.266 1.218
March 1.888 1.339 1.252
april 1.763 1.634 1.229
May 1.406 1.354 1.255
June 1.961 1.799 1.233
July 1.638 1.323 1.232
August 1.627 1.512 1.232
September 1.508 1.236 1.216
October 1.434 1.273 1.223
November 1.757 1.554 1.238
December 2.024 1.692 1.227
Average 1.677333 1.444667 1.234083

Figure 4; observation reveals that the daily, weekly, and annual
patterns represent the most significant seasonal components of
load demand. Furthermore, daily load characteristics exhibit a
distinct seasonality pattern due to the same fluctuations in load
demand as the delayed load variables for seasonal components.
In terms of weekday consumption patterns, there is a lot of
overlap with weekend consumption patterns. In addition, the
workday has a more prominent peak demand than the weekend.
And also, the public holidays are characterised by a high
demand for electricity on weekends and special days. On the
other hand, the everyday power consumption is equivalent to
that of a special day. Due to various anthropogenic activities,
such as public sector celebrations and festivities, the demand
for power increases. There is a significant seasonal variation
in the amount of power used. Therefore, the observation
results reveal that the lagged load parameters exhibited a
substantial correlation and seasonal dependence on the actual
load.

4.1.3 Inputs selection for the model
As mentioned earlier the datasets consist of different

variables. The correlation analysis was performed on the
input data by using Eq. 1. As a result, there are several
extremely interesting observations to be made, as seen in
Figure 5.

Among the several climatic factors that affect electrical load,
the temperature is the one that has the most extraordinary
sensitivity. The warmer it is throughout the summer months
(June, July, and August), the greater the electrical grid demand is
expected. So, a positive relationship exists respectively between
the actual load and temperature. There is a negative correlation
between actual load and the relative humidity in the winter
months (December, January, February) and a positive correlation

FIGURE 6
The forecasted and actual load for 2nd August 2022.

in other months (June to September). This may be due to the
fact that the heating load is reduced in winter. At the same
time, the warming in summer increases load consumption for air
conditioners and other electrical-related machinery for cooling
purposes.Therewill be large increases in the power consumption
utilised for heating during the chilly winter with high relative
humidity; summer precipitation has a considerable negative
association with the actual load; because precipitation cools
the weather and reduces the need for refrigeration, this may
be the reason. In the winter and summer, wind speed has an
opposing influence on load; the temperature may have dropped
because of the strong wind. As heating loads rise in the winter,
air conditioners and fans must work harder, whereas cooling
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loads fall in the summer. In all seasonal months, solar radiation
and air pressure have negligible influence on load; several
research studies are confident that forecasting performance may
be enhanced by eliminating factors with marginal correlation
with load demand Zhang and Guo (2020). Because of the low
correlation between SR and AR, only the hourly-based (h)-Tem,
WS, RH, and Pr were selected as inputs for load forecasting in
this study. These are all listed in Table 2.

From the perspective of several research works, special
days4, seasonality, and normal working days have somewhat
distinct load series characteristics. For example, enhancing
predicting accuracy may be achieved by using separate systems
for special days and normal workdays Song et al., 2005; Fidalgo
and Peças Lopes, 2005[35,36]. For this consequence, dummy
variables were implemented (see Table 3) in order to partition
the data set into three distinct subgroups.

4.1.4 Performance analysis of the proposed
model
4.1.4.1 Case study 1: With ISO-NE dataset

The first case study uses the ISO-NE utility dataset. This
dataset from the New England utility contains previous load and
weather variables at a 1-h resolution. Also, it covers data between
1st March 2003 and 31st December 2014. Furthermore, this case
study is concerned with estimating the load for the year 2006.
Therefore, the complete details of the input, training, and test
data required for the proposed model are as follows to achieve
this objective.

The 2 years earlier to 31st December 2014, are utilised as
the test set and the training set. To be more explicit, there are
two beginning dates that are utilised for the training sets. These
starting dates are the first of March 2004 and the first of January
2010. We adjust the hyper-parameters by utilising the last ten
percent of the training set that contains this beginning date since
it is revealed in studies that are published in the literature. The
hyper-parameters are the same for the model that was trained
with 2 years of extra data.

ResNet is adopted for the proposed model, and then each
residual block is constructed with a hidden layer that has 20
nodes and typically uses an activation function as SELU5. The
block outputs have the same 24 elements size as their respective
inputs. Such a way that, the proposed network consisting of sixty
layers is created by stacking a total of thirty residual blocks. Five
different models are trained for each implementation with 600,
650, and 700 epochs respectively.

If we look at the contrast of the proposed model with others,
the day-based wavelet neural network (SIWNN) model shown

4 Saturday, Sunday, holidays.

5 Scaled exponential linear unit.

in reference Chen et al. (2010) is trained using data from 2003 to
2005, whereas themodels presented in references Li et al., 2016b,
Li et al. (2016a), and Chen et al. (2019) utilise data from March
2003 to December 2005 for their training. The month-wise
proposed model MAPE findings are shown in Table 4. There
is no specific reporting of the MAPEs for the whole year 2006
in reference number Li et al., 2016b. As is evident from the
information shown in the Table, the suggested model has the
lowest MAPE throughout the year 2006. Despite this, we are able
to draw the conclusion that the proposed model is capable of
high generalisation across a variety of datasets since the majority
of the hyper-parameters are not adjusted using the ISO-NE
dataset.

Using data from 2010 to 2011, we further evaluate the
proposed model generalisation capabilities. In this scenario, we
used the same model developed for the year 2006 and train it
using data collected between 2004 and 2009. The results of the
proposed model are summarized in Table 5 and compared with
the results of the othermodels discussed in Yu et al., 2014, Cecati
et al (2015), and Li et al (2016c), Chen et al (2019). According to
the obtained results, the suggested deep-ResNet model performs
better than the already available models in terms of the total
MAPE for both years It is significant to note that the proposed
model is implemented without even additional tuning, while all
previousmodels were tuned using the ISO-NE dataset during the
period of 2004–2009.

Furthermore, the proposedmodel generalization capabilities
were investigated on the load estimation in weekday/end(s)
and holiday(s) wise during the years 2006,2010, and 2011
respectively. For this case, we used the same model developed
for estimating the load of the year 2006. The suggested model
results are summarised in Table 6 and Tables 7. However, the
suggestedmodel has slightly differentMAPE values in the results
of the year 2010. The reason may be the model was confused
while at the training period due to the variance in the data.
From these results, the suggested model performs better in
estimation and has minimal MAPE. It is significant to note that
the proposed model is implemented without even additional
tuning.

4.1.4.2 Case study 2: With IESO-Canada dataset
The secondary intention of this research is to investigate

the generalizability of the developed model. For this purpose,
we train the prediction model with the IESO-Canada dataset
by adopting the significant number of the hyper-parameters of
deep-ResNet optimized for the New England utility dataset. Take
into consideration that the methodology utilized here is quite
similar to case Study 1. This case study’s primary goal is to
forecast 2006s load like the prior scenario. As a result, the training
set consists of data collected before 12 November 2021, while the
test set consists of data collected 2 years before that date.

In Table 8, we validated the performance of the proposed
model with that of the models presented in El-Hendawi and
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Wang (2020) and Kondaiah and Saravanan (2022). From the
information shown in the table, it can conclude that the suggested
model is more effective than the other prediction models. In
addition to being more efficient than competing models, the
presented model has less MAPE. If additional data is supplied
to the training set, the model test loss may be decreased even
more.

4.1.4.3 Case study 3: Testing of the proposedmodel using

real-time data
In this context, to verify the proposed model using real-time

data, we have forecasted the load for the next day from the IESO-
Canada utility dataset. For this purpose, the model was trained
and tested with the data taken from the same dataset as per
the procedure followed in the second case study. Furthermore,
a significant number of hyper-parameters were adopted by the
optimizedmodel in that same case study. As result, the forecasted
and actual load for 2nd August 2022 was shown in Figure 6, and
the (%) MAPE is only 1.19045.

5 Conclusion

A model for STLF based on a modified version of a DNN
was suggested in this paper. By utilizing a statistical correlation
approach, the appropriate inputs to the model were chosen. The
efficacy of the proposed model was evaluated with different test
scenarios on the ISO-NE and IESO-Canada utility datasets. The
suggested model has been proved to be better regarding the
accuracy of its forecasts based on comparisons with othermodels
already in existence.

The MAPE (%) using the modified deep-ResNet method
for ISO-NE data is 1.294, which is comparatively less to other
models available in the literature. Simillarly, the MAPE (%) for
IESO-Canada data is 1.234083, which is also less and the same
is represented in Table 8. These results shows the effectiveness of
the proposed model (deep-ResNet). Also, in case 3, the model
was tested with real-time data, and the error MAPE is 1.19045%

There is still a considerable amount of work to be done as
future work. We have considered the basis of the possibility of

DNNs here, but there are probably many different architectures
of these networks that could be combined with the model
to improve its performance. However, it is also possible to
explore further research on the technique of probabilistic load
forecasting with DNN. Additionally, the model accuracy can
be improved by considering a more significant number of
meteorological factors.
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Nomenclature

ANN Artificial Neural Network

CNN Convolutional Neural Network

deep−ResNet Deep Residual Network

DNN Deep Neural Network

ELM Extreme Learning Machine

IESO−Canada Independent Electricity System Operator-
Canada

ISO−NE Independent System Operator-New England

LSTM Long Short-Term Memory

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

NLP Natural Language Processing

RBF Radial Basis Function

RBM Restricted Boltzmann Machine

ResNet Residual Network

RMSE Root Mean Square Error

STLF Root Mean Square Error

SVR Support Vector Regression
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Grid-connected Photo Voltaic (PV) power systems are becoming increasingly

popular in several nations. The goal of achieving maximum power and

acceptable power quality in a grid-connected PV power system is considered

a major difficulty. Hence, this paper develops an artificial intelligence-based

optimization concept for PV system and novel cascaded Multi Level Inverter

(MLI) for the grid integration of PV system. The cascaded MLI was designed

with fewer power electronic switches and can function at asynchronous

voltage sources, making it the most suitable for PV systems. This novel

inverter minimizes the THD at the output with the help of enhancing the

output voltage level. It also improves the power quality of the system. The

micro grid integration of the introduced inverter is controlled by Optimized

Recurrent Neural Network (ORNN), where the hidden neurons are tuned by

novel hybrid meta heuristic algorithm by merging Crow Search Algorithm

(CSA) and Harris Hawks Optimization (HHO) leading to Crow Search-based

Harris Hawks Optimization (CS-HHO). The proposed model is designed at

several loading conditions and weather conditions. The simulation findings

proved the efficiency of the developed system.

KEYWORDS

multi level inverter, power quality enhancement, total harmonic distortion reduction, micro

grid integration, Optimized Recurrent Neural Network and Crow Search-based Harris Hawks

Optimization, photo voltaic system

1 Introduction

PV systems have evolved as a viable substitute for traditional power production
systems owing to their ease of upkeep, eco-friendliness, low noise, and widespread
availability (Liu et al., 2008). The arduous work involved with solar power generation is
collecting maximum power and reversing the PV system’s output electricity into useable
ac to feed the grid. MPP of the PV system must be tracked continually using a MPPT
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controller for extracting maximum solar power (Pai and
Chao, 2010). In recent years, small solar power producing units
installed on building rooftops have become popular, and they
may also serve as an alternate major source of energy for
home needs during a power outage. To supply the electric grid,
the PV array’s DC power must be reversed into AC power
(Killi and Samanta, 2015). A dc-dc power converter as well
as a MLI is usually included in the CC. To eliminate voltage
mismatch among the DC voltage bus and PV source, a dc-
dc converter is used, which boosts the low-level PV voltage
to the DC bus voltage level (Abdelsalam et al., 2011). Inverters
are then used to transform the increased DC solar power
into AC electricity. PV array as well as power CC efficiency
should be high to minimize power waste. Several researchers
have built MLI having higher voltage levels, greater conversion
ratio, lower harmonic content, and a minimal interface to
electromagnetic interface over the last few years (Bhukya
and Kota, 2018). Conventional MLI architectures, like flying
capacitor and diode-clamped topologies, use CCs to create
multiple voltage levels. The main disadvantage of these two
arrangements is that the voltage between the capacitors cannot be
regulated (Graditi et al., 2014). Furthermore, as the voltage level
is enhanced, conversion effectiveness falls. CHB converters are
well suited to producing many voltage levels using asymmetric
voltage technology, although they need additional switching
devices (Adinolfi et al., 2015).

Another development in the solitary MLI family is the
development of asymmetrical sources on the basis ofMLI, which
is gaining popularity (Motahhir et al., 2018). This is because,
when asymmetrical inputs are used in MLI topologies, they
yield amuch greater count as symmetrical-orientedMLI (Eltawil
and Zhao, 2013). THD is reduced in waveforms having a larger
count of levels. It is not necessary after a specific count of
levels because the THD is low enough to meet the IEEE 5l9
standard. The binary as well as trinary configurations (Macaulay
and Zhou, 2018) are two typical asymmetrical source selection
approaches. Non-universal sources selection schemes are also
implemented in some topologies. Because many contemporary
MLI aremodular, making them easily expandable, implementing
asymmetrical sources is significantly more beneficial (Yang and
Wen, 2018).

The modulation method is another important feature of an
inverter, and it is directly connected to THD and effectiveness
(Dileep and Singh, 2017). Implementing conventional PWM
at a greater level might be difficult because a larger count
of carriers is required. This raises the PWM’s intricacy and
necessitates more computing power. Low switching frequency
approaches, in which the needed switching angles are predicted
previously, can be, employed rather (Wang et al., 2017). They
want to produce a waveform that nearly mimics a pure sinusoid
by obtaining the most precise switching angles. Low switching
frequency modulation also aids in lowering total switching loss

(Haddadi et al., 2019). Nevertheless, because of the large low
order harmonic content, it may enhance THD. As a result,
functioning will mitigate the aforementioned issue (Moradi-
Shahrbabak et al., 2014).The aforesaid constraints of the present
method suggest that a new PV inverter architecture may be
developed. The paper contributions are.

• To develop an artificial intelligence-based optimization
concept for PV system and novel cascaded MLI for the grid
integration of PV system.
• To minimize the THD at the output with the help of
enhancing the output voltage level and also improving the
power quality of the system.
• To control the micro grid integration of the introduced
inverter byORNN,where the hiddenneurons are tunedwith
the consideration of THD minimization.
• To develop a novel form of optimization algorithm referred
as CS-HHO for fulfilling the THD minimization objective
and to prove the efficiency of the developed system by
comparing it with various existing methods in terms of
several analysis.

The paper organization is. Section 1 is the introduction of
PV system with MLI. Section 2 is literature survey. Section 3
is PV system. Section 4 is MLI. Section 5 is ORNN and
proposed CS-HHO. Section 6 is results. Section 7 is conclusion.
The description of symbols and abbreviations are listed in
Nomenclature.

2 Literature survey

2.1 Related works

Sonti et al. (2020) have introduced a novel three-phase three-
level CMLI on the basis of NPC DC decoupling approach. As a
result, a common zero state is detected in the entire three phases,
and the level of the common mode or terminal voltage is held
constant at its prior active state level utilizing clamping circuitry.
The simulation as well as experimental data reported in this
short also corroborates the provided analysis.This brief provides
comprehensive information on the planned CMLI’s functioning,
modeling, and experimental findings.

Bhukya et al. (2019) have proposed a new PV inverter
topology that includes a novel MPPT strategy on the basis of
shading pattern identification with an ANN, a SIMO converter,
and a MLI. Under partially shadowed conditions, the suggested
MPPT system’s performance is benchmarked. The PV voltage is
supplied into the SIMO converter, which generates four separate
voltages having varying magnitudes. TheMLI reduces harmonic
distortion by converting the SIMO converter’s dc output voltage
to ac to feed the utility. This MLI has eight switching devices and
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delivers 31. The suggested MPPT method harvests maximum
power, which is a key component of the introduced topology.
To validate the effectiveness of the suggested PV inverter
architecture, an operational prototype is modeled and produced.
TheFPGASpartan training kit was employed to programmed the
pulses necessary for the suggested topology’s converter andMLI.

Hamidi et al. (2021) for use in a 31-level asymmetrical
switch-diode-oriented MLDCL inverter, a POVR and a CC
circuit have been developed. This method is used to manage the
voltage as well as supply the maximum power at load condition.
The solo system provides 97.21 percent of the theoretical
maximum power under full load. In particular, when delivering
power to inductive loads, CC is used to reduce voltage spikes at
the output. It effectively removes spikes while also lowering THD
of output voltage and current as specified by IEEE 519.

Nazer et al. (2021) have presented the TFL scale to assess
alternative inverter topologies in terms of energy losses and
reliability. The TFL index takes into account the repair costs,
initial cost, financial losses owing to element and downtime
losses, as well as environmental factors. When the TFL is
reduced, the best inverter structure and switching frequency are
found utilizing this universal index. The actual failure rates of
susceptible parts like switches, capacitors, diodes, and the cooling
system are determined, given that the dependability of power
electronic equipment is greatly influenced by power losses and
ambient circumstances. The Markov approach is used to assess
the system reliability and the frequency of experiencing failure
situations. Therefore, among the regularly employed two-level
as well as three-level topologies, the best solar inverter for the
150 kW power range is chosen.

Hamidi et al. (2020) for PV renewable energy systems, a
novel theoretical foundation of asymmetrical MLI having
optimal amount of parts has been developed. In comparison
to prior configurations, the goal is to minimize the amount
of components necessary to generate a large count of output
levels. This approach is utilized rather than the traditional PWM
methodology. With respect to the amount of elements, the
suggested inverter is a better alternative than traditional MLI
topologies. It also maintains a reasonable balance among the
overall blocking voltage and the count of components. As a
result, its installation will take up less room and cost less money.
The suggested topology also has the advantage of producing
AC output having reduced THD and great effectiveness. The
suggested process was confirmed by experimental investigation.

Mahendiran (2020) has developed hybrid control
architecture for grid-connected hybrid systems using CMLI.
CHA and XGBOOST are combined in the suggested control
topology. The goal of the CMLI simulation was to obtain the
best control signal. The suggested CMLI was made up of a
smaller count of switches, diodes, and sources. The suggested
control approach aims to fulfill load power demand while
also maintaining power regulation or maximization of energy

conversion in solar and wind subsystems. The suggested
approach strongly precludes the presence of a difference at the
CMLI output voltage. In this case, CHA was used to determine
the ideal gain parameters in light of a wide range of source
currents compared to the normal value, and it may also be
used to generate an optimal control signal dataset offline. The
XGBOOST analyzes and forecasts the most optimum control
signals of the CMLI in an online manner based on the completed
dataset. The IGBT of CMLI were controlled using the resulting
control signals. Here, the developed model was adopted in the
MATLAB/Simulink working phase, with prior methodologies
taken into account. The effectiveness of different sources was
also examined utilizing suggested and current methods. The
suggested technology’s PV and wind effectiveness is 99.3975
percent and 91.2138 percent, respectively. Generally, the results
of the comparison suggest that the developed strategy was
superior and that it has the ability to address the problem.

Katir et al. (2020) have looked at the modeling framework
made up of boost converters, solar arrays, N-CHBMI, DC bus
capacitors, and an L-filter. This research aimed to achieve three
control goals. The attainment of these goals was made possible
by a multi-loop architecture regulator. Furthermore, every panel
was separately managed to extract maximum power, while two
cascaded loops strive to ensureDC-link voltagemanagement and
adequate power factor correction. The suggested regulator was
created by combining a nonlinear back stepping technique with
certain Lyapunov stability tools. The simulated results achieves
its goals and has intriguing tracking and control performance.

Fernão Pires et al. (2018) a multilevel three-phase VSI has
been suggested. Conventional multilevel PWM techniques could
be used to control the T3VSI. A control scheme was also
described, as well as a PDPWM suited for the multilevel T3VSI,
to assure the transmission of energy produced by PV generators
to the grid. Simulation as well as experimental findings would be
used to demonstrate the grid-connected PV multilevel T3VSI’s
performance. Numerous experimental findings corroborate the
multilayer T3VSI PV system’s predicted properties.

Janardhan et al. (2020) a revolutionary micro MLI-based
hold solar PV system has been proposed. A micro MLI was
a miniature inverter with a multilayer construction. On the
MATLAB platform, a solar PV system having a micro MLI is
formed and recreated; the impact has been probed, as well as
the main impact on the load. A five-level MLI was installed
underneath each of the two solar panels and a level shifting
sinusoidal PWM technology was used to regulate micro MLI
switching. The findings were achieved at different modulation
indexes, and an over modulation was selected to decrease
the switching losses and lower order harmonic content. The
overall harmonic distortion attained was extremely low, and
a laboratory model was being created to verify the simulated
results. The experimental and simulation findings were nearly
identical.
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Chandrasekaran et al. (2021) the speed of response as well
as harmonics have been studied, and the general efficiency of
the model has been improved. A FLC regulates the speed of the
motor.The PI controller’s output was compared to the FLC’s.The
present system was tested using an experimental setup, and the
new system was tested using MATLAB and Simulink, with the
findings being documented.

3 Photovoltaic system for the power
quality enhancement and THD
reduction

3.1 Mathematical description of PV
system

It is impossible to get consistent irradiance throughout the
systemowing to barriers like as building shadows, passing clouds,
dust deposits on panels, and bird faeces. As a result, the effective
irradiance (HF) of every PV module differs, and it may be
expressed as,

HF = (1−T)H (1)

H shows the irradiance on un-shaded portions, and T shows
the panel’s shading ratio.The shading ratio defines the proportion
of darkened area of a module to its entire area. The PV module’s
output current is specified as,

J = JPi − JE[exp
(r(WPV + JPVST)
(OTBCLU))

− 1]

−
(WPV + JPVSTOT)
(OT)STi

(2)

Here, JPi shows the photogenerated current (A), JE shows the
diode saturation current (A), WPV shows the panel voltage (V),
JPVshows the panel current (A), ST shows the series resistance
(Ω), OT shows the count of PV cells joined in series, B shows the
diode ideality factor, CL shows the Boltzmann constant, U shows
the temperature on the panel (°C), and STi shows the parallel
resistance (Ω).

Specifically, photo-generated current having shaded as well
as un-shaded cells may be represented as,

JPi(H1) = (JSD,Reg + LISD (U−UReg))
H1

HReg
(3)

JPi(H2) = (JSD,Reg + LISD (U−UReg))
H2

HReg
(4)

JPi(H3) = (JSD,Reg + LISD (U−UReg))
H3

HReg
(5)

JPi(H4) = (JSD,Reg + LISD (U−UReg))
H4

HReg
(6)

JPi(H1), JPi(H2), JPi(H3), and JPi(H4) are photo produced currents
in relation to the irradiance on the panel surface (A), LISD stands
for current coefficient, J(SD,Reg) stands for short circuit current at
STC (A), UReg stands for temperature at STC (°C), HReg stands
for irradiance at STC (W/m2), H1, H2, H3, and H4 stands for
individual panel irradiance (W/m2).

PV system output current as well as voltage for a 2S2P setup
beneath PSC are represented as,

JPV =Min(J1, J2, J3, J4) (7)

WPV =W1,W2,W3,W4 (8)

J1, J2, J3, and J4 represents panel currents computed by
inserting JPi(H1), JPi(H2), JPi(H3), and JPi(H4) in Eqs 3–6. The output
current as well as voltage beneath PSC may be represented as if
the PV system contains “o” count of modules linked in series. If
JPV > JPi(o−1), then

JPV = JPi (H0) − JE[exp(
rWPV + JPVST
OTBCLU

)− 1]

−
Wo + JPVSTOT

OTSSi
(9)

WPV =Wo (10)

If JPi(o−2) < JPV < JPi(o−1), then

JPV = JPi (H(0−1)) − JE[exp(
rW(0−1) + JPVST

OTBCLU
)− 1]

−
W(o−1) + JPVSTOT

OTSSi
(11)

WPV =Wo −W(o−1) (12)

Consequently, if JPV < JPi1

JPV = JPi (H(1)) − JE[exp(
rW1 + JPVST
OTBCLU

)− 1]

−
W1 + JPVSTOT

OTSSi
(13)

WPV =W1 +W2 +⋯+Wo (14)

The total power (QU) of a PV system is reduced when it is
partially shaded.

QU = Q1HF1 +Q2HF2 +⋯+QoHFo (15)

The efficient irradiances of the PV modules are F1,F2,…,Fo.
The PV system with MLI is shown in Figure 1.
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FIGURE 1
Pv system with MLI.

FIGURE 2
31-level proposed CMLI for the PV system.

3.2 MPPT objective (PV voltage regulator
design)

The characteristics of PV modules are affected by variations
in temperature, insolation, and load. As a result, using theMPPT
is required to keep the operating voltage in around MPP and to
achieve the necessary output voltage having the smallest amount
of solar panels feasible (Bhandari et al., 2014). The familiar PO
“Perturb and Observe algorithm” approach is utilized to attain
the following aims because it is easier and requires minimal
measurable parameters. The PV voltage as well as current
represents the PO block’s input signals, which result to a PV
reference voltage in the output.The boost regulator uses the latter
as a references Aourir et al. (2020) and Abouloifa et al. (2018).

The PV arrays are being used to supply DC voltages to the
technology being examined. The current control method’s goal
is to achieve a DC voltage across every solar array’s output that
is near to its MPPs, so that the settings of every DC/DC boost
converter may be controlled to enhance the PV level voltage that
will be utilized subsequently by the CHBMI. The back stepping
method describes a regulation approach that allows this goal to
be achieved. The back stepping technique is accomplished in
two phases to attain the control laws because the subsystems
beneath examination contain a comparative degree of two. The
recommended topology’s averaged paradigmmay be represented
as below:

Ddy1,l = Jp,vl − y2,l (16)
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FIGURE 3
PV power analysis.

Mdy2,l = sd,ly2,l + y1,l − (1− v1,l)y3,l (17)

Here, y(1,l) and y(2,l) signify the voltage throughout the
PV arrays as well as the boost converters’ input current,
correspondingly; and y(3,l) signifies the DC-link voltages. The
current of the PV arrays is shown by j(pv,l) respectively.

3.2.1 Step 1
Sub-system stabilization Eq. 17

f1,l = Dd(y1,l −
*
⏞y
1,l
) (18)

Time-derivation provides the below tracking error dynamics
utilizing Eq. 16 and Eq. 18:

f1,l = Jpv,l − y1,lDd

′
⏞y
1,l

(19)

We choose the below candidate Lyapunov function, keeping
in mind that the Lyapunov function must be positive and its
counterpart must be negative:

W1,l = 0.5f
2
1,l (20)

Its temporal derivative, in fact, corresponds to:

W1,l = f1,l f1,l = −df
2
1,l < 0 (21)

Here, d_1 shows a design parameter that is positive.
The lth stabilising function linked with the subsystems (9a)

is produced as below: Given y_2, l as the lth virtual control input
signal and the Lyapunov function Eq. 20 and its dynamic Eq. 21:

y*2,l = d1 f1,l + jpv,l −Dd

*
⏞y
1,l

(22)

Because y_(2, l) is not the real control rule, the second
tracking error is proceeded as follows:

f *2,l =Md(y2,l −
*
⏞y
2,l
) (23)

Utilizing Eqs 22, 23 and Eq. 21fd21 is changed to:

f1,l = −d1 f
2
1,l −

f2,l
Md

(24)

As a result, the Lyapunov function’s time-derivation updates
to:

W1,l = −d f 21,l −
f1,l f2,l
Md

(25)

3.2.2 Step 2
Sub-system stabilization Eq. (18): The error variables f1 and

f2must fade away in order to attain the control laws, which
attempt to regulate the voltages across the PV modules and
increase the input voltages. Time-derivation of the second
tracking error using equations Eqs 18, 19 yields:

f ′2,l = −sd,lyd,l + y1,l − (1− vd,l)y3,l −Md

*
⏞y
2,l

(26)

Assume the enhanced Lyapunov function with the below
parameters:

W2,l = 0.5f 2d,l +W1,l (27)

Eqs 26, 25 yield the following:

W1,l = −d1f 21,l + f2,l f
′
2,l −

f1,l f2,l
Md

(28)

The goal is to make W2,l negative by selecting the following
option:

f ′2,l −
f1,l
Md
= −d2 f2,l < 0 (29)

It is worth noting that d2 shows a positive regulator. The
control rules provided by the equation are obtained by combining
equations Eqs 26, 29.

vd,l = 1+
1
y3,l
[sd,ly2,l − d2 f2,l − y1,l +Md

′
⏞y
1,l
+
f1,l
Md
] (30)

The creation of O appropriate gate signals for the control of
the O boost DC-DC converters is accomplished by utilizing the
control principles given in Eq. 24 to PWM generators.

3.2.3 Proposition
The dynamic behaviour linked with the lth closed loop

system in the f1,l, f2,l coordinates may be stated as follows,
using the control rules Eq. 31 and the averaged computational
formalism provided by equations Eqs 16, 17.

(
f ′1,l
f ′2,l
) = (
−d1 −1/Md
1/Md −d2

)(
f1,l
f2,l
) (31)

Consequently, the error variables f1,l and f2,l monotonically
dissipate.
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FIGURE 4
Operation beneath full load operation.

FIGURE 5
Efficiency analysis.

4 Multi-level inverter for the power
quality enhancement and THD
reduction

4.1 Inverter topology with configuration

There are four steps to the recommended PV system’s total
setup. PV arrays are the initial stage, accompanied by boost
DC-DC converters, DC-AC inverters, and finally load. Via
voltage feedback control, the boost converters must deliver
the necessary voltage level to the inverter. In this study, the
suggestedMLI was employed as a DC-AC inverter.The inverter’s
output could then be utilized to power isolated AC loads.
The suggested 31-Level inverter architecture with asymmetrical

FIGURE 6
Statistical analysis.

sources was explained. The boost converter outputs were used
as DC sources in this study. Two unidirectional switches
TM/S,1 and TM/S,3 one bidirectional switch TM/S,2, and two
voltage sources WM/S,2 and WM/S,2 make up every basic unit.
Six unidirectional switches were included in the H-Bridge
component (TD,1,TD,2,TD,3,TD,4,TD,5,andTD,6).

The topology is able to construct 31 output levels by
employing asymmetrical DC sources whose values are picked
on the basis of geometric progression having a factor of two.
Based on the switching states, the levels were obtained by
adding the DC sources in sequence. The topology may operate
in either a binary or a trinary series of DC sources, however
the former could create the most output levels. Symmetrical
sources can also be configured at the expense of a smaller
count of output levels. The DC sources must be chosen in
the ratio WM,1:WM,2:WS,1:WS,2 =WDC:2WDC:4WDC:8WDC to
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FIGURE 7
Time domain parameter analysis.

perform the binary sequence. The suggested topology is not
limited to merely producing 31 levels. The setup can be cascaded
into as various stages as needed to create a greater degree of
output.The following formulas can be used to calculate the count
of switching devices (OSX), gate drivers (OH), DC sources (ODC),
output levels (OOM), and maximummagnitude of output voltage
(wmax):

OSX = 7k (32)

OH = 6k (33)

ODC = 2k (34)

OM = 0.5(4
k+1 − 2) (35)

Wmax =
∞

∑
o=1
[WLO,1 +WLO,2 +WRO,1 +WRO,2] (36)

Here, o shows the count of cascaded stages and k shows the
count of basic units. Only even numbers of fundamental units
are taken into account. Nevertheless, by deleting any one among
the units as well as TD,5 and TD,6, it is still feasible to provide an
odd count of fundamental units. The 31-level introduced CMLI
for the PV system is shown in Figure 2.

4.2 THD

Thesignal is warped and displays inmany shapes, like square,
triangular, and saw-tooth waves, underneath this circumstance
(Alhafadhi, 2016). Due to the obvious existence of odd as well as

even harmonics, the waveform is non sinusoidal, with the former
being more harmful than the latter. THD is represented as:

THD% = 100*√
Q2 +Q2 +Q3 +⋯+Qo

Q1
(37)

Qois the number of watts. THD is computed as below if the
measurement data is in volts:

THD% = 100*√
W2

2 +W
2
2 +W

2
3 +⋯+W

2
o

W2
1

(38)

Wo stands for rootmean square voltage.The harmonic count
o is represented in both equations. Apart from the numerous
benefits of PV solar energy, grid integration of PV systems creates
a number of operational issues. Changes in weather temperature
and solar irradiance generate oscillations in the PV system’s
output power, which are two of the major causes of harmonics.
Power electronic components utilized in power converters, in
contrast to solar irradiance, causes quality issues like harmonic
distortion. The performance of a PV system with respect to
power quality is solely dependent on the usage of inverters, solar
irradiation, and temperature, all of which can alter the generated
voltage, power, and current profiles. Harmonic distortion in
PV systems can be caused by both inherent and external
factors. Intrinsic harmonic distortions are caused by inverter
flaws like control loops and nonlinear component, measurement
errors, and low PWM precision (Du et al., 2018 and Sunny and
Anto, 2013).

Reactive power and current THD are both connected to
output active power levels, which change depending on solar
irradiation. The current THD value is risen dramatically all
through low irradiance levels (e.g., sunset, sunrise, and cloudy
days), but it is noticeably lowered and attains its nominal value.
The current distortion behaviour is described by the inherent
features of the nonlinear components and control circuit of the
PV inverter.

Voltage as well as frequency variations or sag/well patterns
in the grid are caused by different power resulting in substantial
harmonic distortion (Makbul et al., 2008). Various MPPT
algorithms and power electronic topologies have been utilised
to overcome these limitations and improve the maturity of
innovation in this sector. As a result, a newmethodologymust be
devised to address the aforementioned shortcomings of present
methods. Harmonics are problematic not just for the PVmodule,
but also for the overall power supply. THD inside the power
signal must be eliminated as much as possible to eradicate this
problem.
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5 Optimized Recurrent Neural
Network and proposed Crow
Search-Based Harris Hawks
Optimization for the power quality
enhancement and THD reduction

5.1 Optimized RNN

Here, the hidden neurons of RNN are tuned by CS-HHO
with the consideration of THD minimization thus referred as
ORNN.The RNNmay be characterised by the below state-space
equations when non-linear activation functions are employed for
the hidden units and linear activation functions are utilized for
the input units:

y (l) = g[(X1y (l− 1) + τ (l− 1)) +XJϕ (l− 1)] (39)

τ (l) = Xpy (l) (40)

d (l) = T1τ (l) +T2τ (l) (41)

XJ, XI, XP, T1, and T2 represents weight matrices, while ϕ(l),
y(l), d(l), and τ(l) represents the network’s input vectors, hidden
units’ outputs, context layer’s outputs, and network’s outputs,
accordingly. The following equations are obtained:

Assume q represent the count of input layer units, r represent
the count of hidden and context layer units, and s represent the
count of output layer units. After that, T1 and T2 are provided by:

T1 = αK (42)

T2 = γJ (43)

I shows the q identity matrix, and K shows a s×rmatrix
with complete members equal to 1. Eqs 32–43 when combined
produces:

d (l) = [αKX1XP + γJX1]d (l− 1)

+ [αKX1XP + γJX1]ϕ (l− 1) (44)

This is in the following format:

d (l) = L1d (l− 1) + L2ϕ (l− 1) (45)

L1 = [αKXIXP + γJXI] represents a r×rmatrix, while
L2 = [αKXPXJ + γJXJ] represents a r×q matrix. Eq. 10 clearly
shows the governing equations of a generic 0th-order system
with d as the state vector. During training, the components of L1
and L2 may be changed to fit any arbitrary 0th-order system.

5.2 Proposed CS-HHO

The proposed CS-HHO is used for the THD reduction
through the optimization of the hidden neurons of RNN.

Step 1: Start

Step 2: Population initialization

Step 3: Parameter initialization

Step 4: Fitness calculation

while iter<iter+1

if AP< 0.5,

y(j,itr+1) = y(j,itr) +sj −fm(j,itr)[(n(k,itr) −y(j,itr)]

else

iter=iter+1

Step 5: Stop

Algorithm 1. Proposed CS-HHO.

The cooperative behaviour and pursuit manner of Harris’
hawks in essence, known as surprise pounce, seems to be the
fundamental source for HHO (Heidari et al., 2019). The HHO
has various advantages such as finding excellent solutions,
superior outcomes, etc. It, however limits from binary as well as
the multi objective versions, cannot compete distinct constraint
solving strategies, etc. Thus, to overcome its limitations, CSA is
combined into it and the so formed algorithm is named as CS-
HHO. This HHO can handle various strategies as well as solves
the multi objective versions of optimization problems, etc. CSA
(Askarzadeh, 2016) is a demographically strategy that relies on
the premise that crows store their extra food in hiding places and
recover it when it is necessary. In CSA, the component of AP
is primarily responsible for intensification and diversification.
By lowering the AP number, CSA is more likely to focus its
search on a small area where a suitable answer is currently
available. As a consequence, employing low AP levels boosts
intensification. On the other extreme, when the AP value rises,
the likelihood of CSA searching in the region of already good
solutions drops, and the search space is explored on a global
scale (pseudo random). As a reason, using big AP values boosts
diversity.The proposed CS-HHO is developed on the basis of AP
concept. If AP≤ 0.5, then the update takes place byCSA as below.

y j,itr+1 = y j,itrsj × fm(
j,itr) × n(k,itr) − y( j,itr) (46)

fmj,itr signifies the flight length of crow j at iteration itrand
sj defines a random number with uniform distribution between
0 and 1. Otherwise, if AP > 0.5, then the update takes place by
exploration phase of HHO as in Eq. 47.

Y (itr+ 1) = { Yrd (itr) − s1|Yrd (itr) − 2s2Y (itr) |; r ≥ 0.5
Yrabbit (itr) −Yn (itr) − s3 (LB+ s4 (UB− LB)) ; r < 0.5

(47)

Here, Y(itr+ 1) represents the hawks’ position vector, Yrabbit
(itr) represents the position of rabbit, Y (itr) represents the
current hawks’ position vector, s1, s2, s3, s4, and r represents
random numbers, LB and UB represents the upper and lower
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TABLE 1 Simulation parameters.

Parameters Values

Network 210V/50 Hz
PWM Frequency 8 kHz
Cascaded Count 31
PC Voltage regulator 7,000, 14,000

bounds, Yrd (itr) represents a randomly selected hawk and the
average position of the current hawks population is shown by Yn.
The pseudocode of CS-HHO is in Algorithm 1.

6 Results

6.1 Experimental results

The researched system is built in MATLAB/SIMULINK/
SimPowerSystems environment to assess the performance and
show proof of the developed regulator. The simulation is run to
keep the study focused on cascadedH-bridge cells.The system as
well as the simulation parameter of the controller is displayed in
Table 1.

6.2 PV power analysis

In comparison to real available power and traditional
MPPT controller, Table 2 shows total power gathered by
the introduced CS-HHO-based MPPT scheme under variable
irradiance. Figure 3 shows PV analysis based on proposed
method.

6.3 Voltage and THD analysis

The harmonic spectrums of the output voltage and current
waveforms under testing conditions are shown in Figure 4. THD
is 2.86 percent for both voltage and current. This is significantly
below the IEEE 519 standard’s 5-percentage-point restriction.
The circuit is not activatedwhile employing a totally resistive load
since there exists no reactive power component and the power

factor is at unity. Excluding the amplitude, the waveforms of
voltage as well as current are quite identical. On both waveforms,
the 31-level output is readily visible.

6.4 Efficiency analysis

Table 3 shows the efficiency study of the suggested
asymmetrical 31-level inverter architecture utilizing the load.
Simply multiply the rms current, rms voltage, and power factor
yields the output power. The efficiency continues to be amazing.
96.81 percent is the value. The power distributed by the resistive
load is identical to the power distributed by the resistive load.
When compared to various DC sources, single DC source is
determined to be roughly 23 percent higher than the prior source
as shown in Figure 5. The power distribution is comparable to
what was found in the simulation research. Efficiency is defined
as the amount of energy produced divided by the amount
of energy input and expressed as a percentage. Ultimately,
diminishing harmonics and statistical measurements are used
to show that the established procedure is capable throughout
entire instances. Similarly, a well-proven approach optimally
manages DC connection voltages and collects grid currents.

6.5 Statistical analysis

Since the statistical measures are stochastic in nature, it
is required to perform the optimization a minimum of five
times in order to attain the best optimal solution. In Figure 6,
differentmeasures such asmean,median, and standard deviation
are considered. The considered measures clearly reveal the
betterment of the proposed method in terms of the considered
measures than the existing methods as listed in Table 4.

6.6 Time domain parameter analysis

The time domain parameter analysis in terms of various
measures such as settling time, peak time, rise time, and
steady state error with respect to methods like ANN, CNN,
RNN and introduced CS-HHO is shown in Figure 7. Table 5
clearly reveals that the time utilized is less with the proposed

TABLE 2 PV power analysis.

Irradiance Actual power MPPT Shimi et al. (2013) Proposed method

1000 W/m2 100 99 98
800 W/m2 78 77 78
600 W/m2 58 56 57
400 W/m2 40 37 38
200 W/m2 19 17 18
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TABLE 3 Efficiency comparison.

Analysis P&O Kumari et al. (2012) MPPT Shimi et al. (2013) Proposed scheme

Total Input Power 162.56 (W) 162.51 (W) 162.59 (W)
Output Power 156.73 (W) 155.71 (W) 157.12 (W)
Efficiency (%) 96.40% 95.21% 96.81%

TABLE 4 Statistical comparison.

Methods ANN Nambiar et al. (2015) CNN Ramasamy and Perumal (2021) CRNN Yildirim (2005) Proposed CS-HHO

Mean 1.5625 1.5342 1.9428 0.5136
Median 1.8500 1.4702 1.4138 0.2175
SD 0.9254 0.7152 0.8110 0.4102

TABLE 5 Time domain parameter analysis Comparison.

Methods Settling time (s) Peak time (s) Rise time (s) Steady-state error (RPM)

ANN Nambiar et al. (2015) 11.1 10.1 9.7 8.3
CNN Ramasamy and Perumal (2021) 10.9 6.2 7.9 6.3
RNN Yildirim (2005) 10.3 8.5 8.1 3.9
CS-HHO 9.6 0.1 6.2 1.1

CS-HHO than the other methods. Hence, it can be clearly stated
that the time domain parameter analysis is better with CS-
HHO than the other methods for the developed PV system with
MLI.

7 Conclusion

This paper proposed an artificial intelligence-based PV
system optimization concept as well as an unique cascaded MLI
for PV system grid integration. The cascaded MLI was the best
ideal for PV systems since it has fewer power electronic switches
and could operate at asynchronous voltage sources. By increasing
the output voltage level, this unique inverter reduced THD at
the output. It also enhanced the system’s power quality. ORNN
controlled the micro grid integration of the introduced inverter,
with hidden neurons tuned by a novel hybrid meta heuristic
algorithm that combined CSA and HHO, resulting in CS-HHO.
The suggested model was tested under a variety of loads and
weather situations. The simulation results validated the created
system’s efficiency.
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Nomenclature

PV photo voltaic

MPPT maximum power point tracking

MLI multi level inverter

THD total harmonic distortion

ORNN Optimized Recurrent Neural Network

CSA crow search algorithm

CC conversion circuit

ANN artificial neural network

CHB cascade h-bridge

HHO harris hawks optimization

PWM pulse width modulation

NPC neutral point clamped

P&O perturb and observe

CS-HHO Crow Search-based Harris Hawks Optimization

SIMO single-input and multi-output

CMLI cascaded multi-level inverter

MLDCL multi-level DC-link

TFL total financial losses

CHA color harmony algorithm

POVR P&O based voltage regulator

XGBOOST eXtreme Gradient BOOSTing

IGBT Insulated Gate Bi-polar swiTches

VSI voltage source inverter

PDPWM phase disposition pulse width modulation

FLC fuzzy logic controller

STC standard test conditions

PI proportional-integral

AP Awareness Probability

Frontiers in Energy Research 13 frontiersin.org

33

https://doi.org/10.3389/fenrg.2022.1038533
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Technical advances and stability
analysis in wind-penetrated
power generation systems—A
review
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School of Electrical Engineering, Vellore Institute of Technology, Vellore, India

Recently, wind power from renewable energy power generation has been

extended quickly to another level. To the grid, most renewable generators

synchronize through the power electronic converters controlled flexibly. The

high-level wind power penetration into the power generation system affects

the dynamic performance of the power system and presents substantial

uncertainties in system operation. This study mainly focuses on reviewing

the various types of stability analyses in high-level wind penetration of

power generation systems. It describes several challenges and simulation

analyses related to stability issues. A comparative analysis has also been

carried out for the various types of stability related to different research

studies. The data show that transient stability has been significantly focused

on in most of the studies.

KEYWORDS

stability analysis, wind turbine, power generation system, microgrid, transient stability

1 Introduction

Renewable energy resources increasingly penetrate modern power systems because of

energy shortage crisis and environmental pressure. Recently, wind power integration

projects have been launched in various countries. Wind power integration on a large scale

presents substantial economic and environmental benefits to the society. The system

exhibits several challenges in maintaining stability due to its stochastic nature and highly

intermittent state. The power system stability can be affected after the integration of wind

power into the utility grid due to several aspects, such as the replacement of the

synchronous generator can reduce the effective inertia of the system. Due to the

power electronics converter, the system alters its characteristics dynamically. The

synchronous generator dispatch changes fast through the transmission network,

power flow direction, and magnitude fluctuation (Xu et al., 2018). This proposed

study reviews several types of stability issues of wind power integration in power

systems and uncertainties present in the generation of wind power and satisfies the

requirement of transient stability with several practices aimed at optimizing the system’s

operating state.
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The doubly fed induction generator (DFIG) model analyzed

the stability in wind power systems. The DFIG consists of an

induction generator with a mechanically driven rotor through a

gearbox by a wind turbine and a rotor side convertor (RSC). It is

electrically excited through the grid and exhibits a power

electronic-based interface. The complex control system is

responsible for efficient wind energy conversion to power

electricity for proper electrical and mechanical dynamics

regulation. The small-signal stability region (SSSR) concept

extends to the robust small-signal stability region (RSSSR),

wherein the system maintains the stability even during

perturbations that occur due to renewable energy power

generation’s volatile nodal injections and uncertainties (Pan

et al., 2018).

Wind generators must provide ancillary services for systems

with high-level wind penetration. As wind generation facilities

increase worldwide, transmission system operators (TSOs) have

changed grid code criteria. Under particular grid regulations,

wind farms must provide inertial support, frequency regulation,

and damping control. Synchronous generators typically deliver

these services. However, due to the time-varying nature of such

resources and the inherent modeling uncertainties that come

along with their large-scale integration, this presents a formidable

challenge. As a result, a sufficiently deterministic model of wind-

dominated power systems is difficult to ensure. In the study by

Husham et al. (2022), a Koopman-based model predictive

controller (KMPC) was proposed to suppress the oscillations

due to wind speed variations with climatic conditions and

improve the control methodology for active and reactive

power injections to the respective converters. Rahman et al.

(2022) discussed clustering algorithms for large-scale wind

power farms to access power system stability. Clustering

algorithms are used to determine a probabilistic group of

clusters representing equivalent wind farms and would hold

true for most wind conditions throughout the year. The four

aggregated wind farmmodels are subjected to small disturbances,

frequency, and voltage stability analyses, also these wind farm

models are analyzed considering a single unit for a better

understanding.

A crucial sub-synchronous resonance (SSR) event in October

2009, persuaded by fixed series compensation, occurred in a wind

farm with DFIG in Texas, United States. The SSR effect could not

reflect critical factors like wind speed distribution, wind farms’

spatial distribution, wind turbine generators’ diversity, and

network topology (Liu et al., 2018a). The developing VSC-

MTDC grid shows some technological benefits concerning

economics, modularity, and controllability focused on

managing the frequency stability of traditional onshore AC

grids (Wen et al., 2018). This study analyzes the robustness in

the stability analysis of the wind power penetrated power system

through stochastic optimization, which is risk-based, and

estimates wind uncertainty. Furthermore, using devices such

as ESS will reduce the required energy storage services (ESS)

size by reactive power capabilities and wind farms. If the

preferred voltage stability margin (VSM) increases, then the

required ESS also increases as was shown by Jalali and Aldeen

(2019).

The main contribution of this study involves

• reviewing the various research studies related to wind-

penetrated power generation systems in terms of various

types of stability,

• observing and studying the different techniques involved

in improving the various types of stability issues and

comparing them, and

• pictorially representing the analysis here in this review.

1.1 Article organization

This article is organized as follows: Section 2 describes the

review of the stability analysis and the issues in wind-penetrated

power generation systems. Various types of stability, namely,

transient stability, dynamic stability, voltage stability, parametric

stability, frequency stability, and other types of stability in power

systems, are explained briefly, followed by a comparative analysis

discussed in Section 3. The evaluation of the stability analysis is

elaborated further. Finally, this article concludes in Section 4.

2 Types of stability in wind-
penetrated power systems

Various types of stabilities, namely, transient stability,

dynamic stability, voltage stability, parametric stability,

frequency stability, and other such types of stability in power

systems, are explained briefly in Figure 1.

2.1 Transient stability

Transient stability is “the ability of the system to remain in

synchronism when subjected to large disturbances.” Large

disturbances can cause a variety of issues, such as faults,

switching loads, and tripping. In most cases, the effects of

these disturbances can lead to a large deviation of the

generator rotor angles. It affects system synchronism to

maintain stability.

Xu et al. (2018) developed a robust dispatch approach for the

power system’s operation state optimization while sustaining

transient stability with stochastic wind power generation and

high variability. As an increased optimal power flow framework,

the system is designed with differential-algebraic equations and

uncertain variables. Based on the trajectory sensitivity analysis

and one-machine infinite-equivalence of bus, the approximately

equivalent algebraic equations are obtained by conversion using
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stability constraints. A small number of strategically represented

chosen testing states are due to the uncertainty in wind power

generation. This problem was solved iteratively by dividing the

actual model into master problems and a sequence of slave issues

based on the developed decomposition-based computation

approach. This proposed method of dispatch focuses on a

single period, i.e., 1 h. If we are to consider the dispatch of a

multi-period, then the wind farm power output’s temporal

dependency should be well designed.

Wang et al. (2018a) focused on the multi-machine power

system’s stability improvement, combined with a hybrid wind-

photovoltaic (PV) farm on a large scale using a supercapacitor

(SC)-based energy storage unit. A wind turbine generator (WTG)

of 300 MW simulated the hybrid and wind PV farm

characteristics. The proposed SC connected with a

proportional integral derivative supplementary damping

controller (PID-SDC) and rendered efficient the damping

characteristics that enhanced the transient performance of the

proposed system subjected to a fault in three phases and short-

circuited.

Ma et al. (2018a) explored the doubly fed induction generator

(DFIG) current source–based model to analyze stability in wind

power systems. Wind generator manufacturers developed this

model, and generic models have simplified it. Moreover, it uses

the current source–based model. Based on limited accurate

measurements and chosen simulation scenarios, the proposed

model was validated. The drawback was that the validity had not

undergone any theoretical and systematic analysis of the current

source model, and it may be considered unsuitable for

application in real engineering. Hence, this study presents the

current source model conditions for the analysis of stability in

power systems. Furthermore, it investigates the model under

asymmetrical and symmetrical fault conditions. This present

source-based DFIG model has been practiced for validation in

North China’s real wind farms.

Hui et al. (2019) proposed a robust feedback control method

on the basis of linear parameter varying (LPV) for interconnected

systems’ transient stability. This proposed method used

mechanical power and DC channel power control in an

interconnected system for the transient stability enhancement

of the wind farm interconnected system. As a variable parameter

linear model, the transient process has been designed mainly

focusing on the interconnected system’s robust nonlinear

characteristics and the transient process’s wind power

uncertainty output. Four equal-value grids evaluated the

proposed method in an interconnected system on a digital

simulation platform through AC and DC lines. The proposed

method exhibits better transient ability control impacts and

response characteristics for wind power interconnected

systems. Due to severe grid faults by loss of synchronization,

wind farm tripping occurs.

During severe faults in a grid, the system requires dynamic

properties with special requirements for maintaining the wind

farm synchronization with the power grid. The grid

synchronization by Ma et al. (2018b) is explained as

autonomous nonlinear differential equation motion with

particular initial states. However, synchronization stability

occurs due to deprived system dynamic properties and

unsuitable initial states. The proposed method satisfies the

requirements by adjusting the wind farm’s active and reactive

FIGURE 1
Different types of stabilities in power systems.
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output current during severe faults in a grid. The proposed

method was executed and analyzed on DFIG- and PMSG-

based wind farms. Figure 2 shows the schematic diagram of

transient stability control of the DFIG.

In the study by Yu et al. (2018), power system control

considers the post-contingency–based online identification of

transient stability as significant since it enables the grid operator

to decide and synchronize correction control actions during

system failure. Machine learning methods used with

synchrophasor measurements were used for evaluating

transient stability and received more attention in protection

and control systems. Based on a long short-term memory

(LSTM) network, this proposed study developed the transient

ability assessment system. This self-adaptive scenario balanced

the accuracy and response time after the assessment and

subsidized better accuracy. This proposed system exhibited a

fast-training process and lesser difficulty. The proposed

assessment system’s transient stability efficacy has been

validated further in this study. The study by Ortega and

Milano (2018) offers an in-depth stochastic analysis of the

ESS impact on the transmission grid’s transient stability. This

stated impact was verified by considering the mixed effects of

network topologies, fault-clearing times, and various ESS

technologies. In addition, the synchronous machines, storage

devices, and the fault’s relative position were also considered. The

stochastic time-domain simulations have also been considered

for the all-island, Irish transmission system, 1479-bus model,

resulting in nonintuitive endings.

Tang et al. (2018) developed a phase/magnitude dynamical

model with unnatural consideration of timescale controller on

rotor speed control for the theoretical evaluation of transient

stability of DFIG-based wind turbines. This current model

describes the unfair active power and active or reactive power

output relationships. The synchronous generator and DFIG-

based internal voltage vector show similarity but differ in the

transient phase. The DFIG-based wind turbine system’s transient

stability is analyzed in case of new instability, recognizing the

variation from the synchronization generator system.

Datta et al. (2019) examined the battery energy storage

system (BESS) performance and static compensator

(STATCOM) in improvising the tremendous power system

frequency stability and transient voltage, the additional

capacity of power export enhancing among two

interconnected power systems. A multi-machine power system

proposes a BESS controlled by PI lead and lead-lag to give

concurrent frequency regulation and voltage among the

defined battery charge range and the system performance

evaluated by the Finnish transmission grid. The proposed

method compares with conventional methods based on

several permanent and temporary fault conditions rendered by

the Australian electricity market grid requirements. BESS results

from improvements like power export show a 44% increase,

while failure cases are seen in STATCOM. Moreover, the BESS

lead-lag establishes better performance than PI lead–controlled

BESS under the permanent and temporary faults in divergent

events.

FIGURE 2
Transient stability control of the DFIG wind farm.

Frontiers in Energy Research frontiersin.org04

Yadav and Saravanan 10.3389/fenrg.2022.1091512

37

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1091512


In DFIG, the low-voltage ride through the LVRT

requirements changes the DFIG running state and brings

about the system’s transient stability secondary impact. The

DFIG output power mixes with the system’s mechanical

power. This study minimizes the mathematical relationship

and analyzes the superconducting magnetic energy storage

(SMES) relationship, improving transient stability and access

location (Jiang and Zhang, 2019). Dynamic characteristics of

wind farms connected with the grid improved and obtained more

extraordinary transient stability performance.

In the study by Pico and Johnson (2019), the transmission

defects due to recent the California wildfires stimulated utility-

scale disconnection conversion in PV plants. The investigations

described that the PLL and DC side dynamics caused tripping

commands that are typically un-modeled in a classical stability

analysis. Because of these authors introduce a positive-sequence

model for photovoltaic power plants that is derived on the

fundamental principles of physics and controls to predict

during the faults. For addressing the disadvantage, a sequence

of PV plant models was derived from physical principles. The

three-phase converter scale shows that the framework comprises

closed-loop controllers, DC side dynamics, and PLL.

The principal purpose of the study by Eshkaftaki et al. (2020)

was to improve the SG’s dynamic and transient performance

using wind turbines with local DFIGs. The DFIG block is

controlled by a designed transient controller (TC) and uses a

modified generator in a motor regime operation mode.

Furthermore, the electromagnetic torque band damping

controller (ETBDC) consisting of two damping controllers is

recommended to enhance the SG’s dynamic stability. There are

three types of feedback: DFIG electromagnetic torque, SG speed

modified torque, and SG electromagnetic torque in every

damping controller. The genetic algorithm adjusts these

controlled parameters. By comparing the transient indexes

system, namely, SG accelerating energy, with and without

using TC of DFIG inertia energy in two area network and

critical clearing time (CCT), the TC performance is evaluated.

Moreover, the dynamic performance indexes of the system like

settling time, SG’s damping torque, eigenvalue, and overshoot

have been related with and without using the two dynamic

controllers. Moreover, these observe the proposed controller’s

effectiveness in the study.

Liu et al. (2016) proposed a new strategy that was a

coordinated “switching power system stabilizer” (SPSS) to

enhance the multi-machine power system stability.

Simulations consist of 4 generators, 11-bus power systems,

and IEEE 68-bus with 16 generator power systems in which

SPSS assesses the damping ability in aspects of enhancements in

transient stability. Renedo et al. (2016) analyzed an active power

control strategy for a multi-terminal VSC-HVDC system that

enhances the transient stability of AC/DC hybrid grids—the

weighted-average frequency observed by the MTDC system’s

VSCs (WA-F). When compared to a strategy based on local

frequency (LF), the study by Yousefian et al. (2017) mainly

focused on an energy-based wide-area control on integrated

power grids with wind. They proposed an algorithm of a

nonlinear optimal control with “reinforcement learning (RL)

and neural networks (NNs),” which, in using “approximate

dynamic programming (ADP),” improves the wind-integrated

power grid closed-loop performance. We observed that the

suggested RL-based WAC enhanced system responses in

simulations using the modified IEEE 68-bus system.

2.2 Small-signal stability

The small-signal stability in a power system is “the ability of

the system to remain in synchronism when subjected to small

disturbances.” If power system oscillations are suppressed during

the disturbances, the system’s stability can be maintained over a

long period.

Pan et al. (2018) addressed the small-signal stability region

(SSSR) concept extension to the robust small-signal stability

region” (RSSSR). The structured perturbation theory was first

employed for the nodal injection perturbations in state-space

formulations. This study considers the locations and intensity of

the perturbations; RSSR in parameter subspace definition

influences the structured singular value theory and stability

radius theory. The “small-signal stability” of the power

system’s systematic analysis enables region-wise perturbations.

Furthermore, the system maintains stability even during

renewable generation’s volatile nodal injections and

uncertainty during perturbations. For the RSSSR boundaries,

it constructs a linear closed-form approximation by the

hyperplane approximation technique. Moreover, to make and

learn from the RSSR boundary predictions, machine learning

(ML) approaches have been employed.

The ML approaches’ learning ability speeds up the

computation on boundary significantly and simplifies the

robust stability analysis of vast and complex power systems.

Sadamoto et al. (2018) addressed the wind power integration

concerned with the various growth of stability and power system

dynamics retrofit control terms a new control design. Using

retrofit controller, the rotor voltages of the induction generators

that were doubly fed controlled for tie line power flow oscillations

suppressing initiated by the wind farm’s inside disturbance. The

major drawback considered was that closed-loop system stability

has not been assured theoretically. The requirement of an exact

wind farm model is necessary, and in future, the problem can be

resolved by designing the controller using robust control theory.

Huang et al. (2020) carried out a novel investigation where online

detection of wind farm generalized short-circuit ratio (gSCR) was

studied using current and voltage data from PMUs, which

enables convenient online stability monitoring of wind farms.

Ma et al. (2017a) found that on virtual inertia control, DFIG

impacts the “power system small-signal stability” by considering
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the “phase-locked loop” (PLL). For a DFIG interconnected with

conventional synchronous generators, it considers PLL and

virtual inertia. The system’s dynamic characteristics vary due

to the DFIG participating in electromechanical oscillations

controlled by varying the PI values in PLL and virtual inertia.

In the study by Ma et al. (2017b), the robust stochastic

“small-signal stability” of the DFIG was integrated into a

power system with virtual inertia, as mentioned earlier, and

the methodology used was the sensitivity analysis method,

which determined the connection between the state matrix

variables and stochastic parameters using analytic function

relationships. The stochastic power system stability issue turns

into a solution for the problem of feasibility. Wen et al. (2017)

proposed power electronics–based distributed power system

stability analysis using “active front end (AFE) converters,”

“voltage source inverters (VSIs),” and “grid-tied inverters

(GTIs)” to process power flow as an analysis of AC stability

and DQ frame impedance parameters. Liu et al. (2020a)

investigated grid-integrated DFIG wind farms’ PLL parameters

and power grid strength that impacts small-signal stability issues.

They focused on finding the PLL oscillation mechanism and its

influencing factors and developed a damping solution to that

oscillation mode. To abate the PLL oscillations, they designed a

different robust damping controller H2/H∞ for DFIG, which

reduces the oscillations and improves small-signal stability. The

structure of the robust damping controller is shown in Figure 3,

where “r(t)” is the input signal of the controller and “e” is the

error signal. “Kn(s)” and “Pn(s)” are controller gains; “Wt1(s),

Wt2(s), and Wt3(s)” are weighting functions, and “Z∞” is the

output channel associated with H∞ performance. “Z2” is the

output channel associated with H2 performance.

2.3 Stability of sub-synchronous
resonance

“Subsynchronous resonance is a phenomenon in which one

or more of the resonant frequencies of the turbine generator shaft

in thermal power units coincides through the generator with a

natural resonant frequency of the electrical system with a long

radial transmission network with series capacitors.”

In series, the compensated systems with several wind farms

have detected the sub-synchronous resonance (SSR) issue

elaborated by Liu et al. (2018a). The single-machine infinite

bus system design has been simplified and used for further

evaluation. It does not reflect the SSR effect, which is not

from critical factors like wind speed distribution. This article,

based on SSS, proposes a wind farm’s spatial distribution, wind

turbine generators diversity, network topology, and an INM-

impedance network model.

Moreover, with lumped independence, the INM was

combined. The SSR stability was quantified by new stability

criteria, which analyzed the features of impedance frequency.

Even for wind power systems on a large scale, this proposed

system has analyzed the SSR issue. For DFIG-based wind

turbines interconnected with compensated transmission

systems series, Karunanayake et al. (2020) specified the

nonlinear sliding mode control SMC based on the mitigation

method as a sub-synchronous resonance (SSR). This proposed

method controls the rotor side converter by assuring the reactive

power, and the decoupled torque of DFIG control ability sustains

to mitigate SSR. For validations, on the model of DFIG wind

turbines, the proposed method is executed on the Real Time

Digital Simulator (RTDS) platform. At damping SSR, the

controller shows positivity obtained from the results tested on

different wind speeds and compensation levels.

Ma et al. (2020) concentrated on sub-synchronous

oscillations of DFIG stability estimations based on energy

dissipation intensity analysis. According to the Lyapunov

stability theory, the model of DFIG consists of an internal

control and external network. Here, the proposed assessment

method is represented in a logical diagram as shown in Figure 4.

In this first step, collecting all the data of electrical variables at

DFIG terminals with the help of phasor measurement units

compares with steady-state values. Next, at the DFIG,

variations of transient energy are estimated and the oscillation

FIGURE 3
Robust mixed damping controller H2/H∞ block diagram.
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frequency and DFIG transient energy variation are obtained.

Then, the dissipation intensity η can be calculated. The system’s

stability can be judged by the value of η; when η > 0, the system is

stable, and a larger value of η indicates higher stability. Also,

when η = 0, the system is marginally stable, while η < 0 is negative

stability and SSR oscillations diverge.

2.4 Probabilistic stability of sub-
synchronous resonance

“In power system stability analysis, the system performance

is based on a predefined scenario and ignores uncertainties in the

system states and parameters. In modern power systems,

consider all the uncertainties in the probabilistic approach to

get accurate results.” The probabilistic approaches are highly

appropriate for random and uncertain system analysis, which are

the essential features of future power systems.

Chen et al. (2018) focused on assessing the probabilistic

stability of SSR by using the piecewise probabilistic collocation

method (PPCM), which concerns random wind speed. Because

of the switching among various operational modes of the DFIG,

the PPCM tackles the inherent nonlinearity. The lesser

computational difficulty and damping accuracy in the

probability density function (PDF) is achieved using the

proposed PPCM. Various existing methods are available to

describe the probabilistic distribution of wind speed: Rayleigh,

Weibull, and Lognormal distribution methods. Among these

methods, Weibull distribution ideally suits wind speed as a

frequency histogram. The Weibull probabilistic model has also

been designed in this study with two-year statistical wind speed

data. Compared with the Monte Carlo method, consistency is

obtained from using this proposed method. The SSR events field

data in real-world wind farms offer effectiveness validation of the

current model.

In their research work, Bian et al. (2016) carried out “power

system stabilizers” (PSS) and “static VAR compensator” (SVC)

damping controller coordination and optimizing these

parameters to improve the “probabilistic small-signal stability”

of the wind farm integrated power system. This novel algorithm

FIGURE 4
Logical representation of the assessment method.
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is known as the “modified fruit fly optimization algorithm”

(MFOA). With this, to coordinate and optimize the

parameters, the probabilistic eigenvalue method was used. The

proposed method improved the “parabolic small-signal stability”

of DFIG-based wind firms integrated with synchronous

generators.

2.5 Frequency stability

Frequency stability means “the ability of a power system to

maintain steady frequency following a severe disturbance

between generation and load.” Frequency stability depends on

the ability to restore equilibrium between load and system

generation. It can also lead to sustained frequency swings that

can cause the generating system or load tripping.

In the study by Wen et al. (2018), the onshore AC grid and

offshore multiterminal DC grid–based voltage source

convertor VSC-MTDC operation were examined to improve

the system’s frequency stability by the unit commitment (UC)

framework. Furthermore, it recognized three standard types of

outages like wind farm side VSC loss, synchronous unit loss,

and grid side VSC loss, which correspond to frequency

dynamic constraints. Based on these, it integrated the AC/

VSC MTDC system from the proposed frequency dynamics.

Moreover, it effectively stabilized two grids among the GVSCs

and WVSCs and examined the coordinated control approach.

In Figure 5, the configuration of the AC/VSC-based MTDC

system is shown. Here, the MTDC network is connected to

offshore wind farms through the wind farm side voltage source

converters (WVSC) and DC link capacitor. Similarly, the

onshore AC grid is connected to the offshore VSC-MTDC

grid through grid side voltage source converters (GVSC) and

submarine HVDC cables. All the converters communicate

with the energy management tool and track the voltages

and power with local frequency control to detect any

disturbance.

Renewable energy penetration has increased into the latest

power systems, getting new oscillatory stability focused on this.

Zhan et al. (2019) developed the analysis of the frequency-

domain modal technique. It evaluated the dominant

component’s participation, and several oscillatory modes were

concerned. The oscillatory modes by loop impedance matrix or

matrix of nodal admittance determinant’s zeroes located were

worked out by the target system represented with impedance

model network. The oscillation mode’s origin, respective

components, and oscillation path were understood by the loop

or nodal participation factors, component sensitivity, and branch

observability derivation. The above-stated experiment was

performed on a practical wind power system and a primary

passive circuit that practices real sub-synchronous resonance. In

addition, its effectiveness was evaluated by using electromagnetic

transient simulations and theoretical results. This study

evaluated the massive power systems with high penetration

renewables.

Han et al. (2022) discussed the frequency oscillation problem,

and a novel discrete-time domain modal analysis, proposing to

reduce the sub-synchronous oscillations of RES connected to the

power system. In this method, first, in the discrete-time domain,

the frequency and damping ratio were calculated, and the system

stability was evaluated from the calculated eigenvalues in

discrete-time. Furthermore, the origin location, contributive

components, and propagation paths of the oscillatory mode

were determined by calculating the participation factors,

component participation, branch current/node voltage

observability matrix, and distribution coefficient for all modes

based on matrix decomposition and node equations of the

system-level model.

FIGURE 5
AC-VSC-based MTDC system’s integrated configuration.
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A supplementary optimal frequency controller was designed

for variable speed wind turbines to be integrated into the power

system to improve system stability in a study by Toulabi et al.

(2018). The proposed controller regulates the frequency

variations in wind farms, and the controller design parameters

are designed using genetic algorithms.

Yang et al. (2022) described the power compensation control

for a weak grid-connected DFIG wind farm. The synchronization

of the wind farm to the weak grid during severe grid faults was

studied to improve the frequency stability. The analysis was

performed in a simulation and verified with experimental results.

In the study by Li et al. (2021), a SMES-based damping

controller was designed to reduce low-frequency oscillations for

enhancing the power system’s frequency stability. A finite

Markov decision process that utilizes a deep reinforcement

learning (DRL)–based agent was used to achieve the best

possible results in terms of parameter optimization.

2.6 Dynamic stability

“Dynamic stability is the ability of a power system to return

to a steady state of operation after significant disturbances (short

circuit, the shutdown of any element of the power system, etc.).”

Shi et al. (2019) investigated the wind power penetrated

power system’s robust stability analysis. The power system

analysis can be imposed on the (D-stability) issue by focusing

on the constraint of the damping ratio. The most familiar

mapping theorem det (I −M(s)Δ) was applied for robust

stability evaluation, and sufficient condition and multivariable

stability margin Km were provided. Uncertainty effects turn

transparent while analyzing these values. It was tested on

North China system’s machine and 11-bus test 4 generator

power system, and the structure of mapping theorems as

shown in Figure 6. “P (s, Q) = {p (s, λ) = det (I −M(s)Δ) | λ ∈
Q}” are multi-linear parameters. Here, U1–U8 are the “k vertices”

of the hypercube Q.

Li et al. (2019) concentrated on real-world wind farms where

the weak grid’s interconnection observed 4 and 30 Hz

oscillations. The delivery of wind power is limited by these

stability problems. This study proposes that the overall system

stability improvises the mechanism-based feedback control

approaches appropriate for voltage source converters that

were vector based and engaged in type-3 and type-4 wind

testbeds. The weak grid stability problem has to be

demonstrated by the simplified linear model, and the reason

was the power delivery coupling and voltage of the point of

common coupling (PCC). The PCC voltage reduces when the

power delivery increases, and hence the weak grid leads to

instability. The feedback control approaches modulate DC-

link voltage and power order through PCC voltage as input or

the d-axis current. Finally, we see the efficient capability of

stability improvement and wind power delivery further

enhanced.

When a harmonic grid with parallel compensation joins the

DFIG system, the harmonics and high-frequency resonance

(HFR) exhibiting the frequency range may show intersections.

Nian and Pang (2019) revealed that the coupling between the

harmonics suppression control and HFR damping control

provided by the harmonics suppressor and HFR damping led

to an unstable situation of the DFIG system. Extra detection time

of frequency of HFR results in HFR damping performance

deterioration. Moreover, it achieves the harmonic current

suppression and HFR damping control to further enhance

DFIG system power quality associated with parallel

compensation of the harmonic grid.

FIGURE 6
Structure of the mapping theorem.
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The IEEE 118-bus system uses a 12-bus system to evaluate the

performance and effectiveness of the current study. Xiong et al.

(2019) presented an optimal virtual inertia planning approach for

power system stability improvement with renewable resources of

large volumes penetrated by the DFIGs. The critical frequency

drops are also exhibited in this study, and the DFIG stability are

analyzed first. It calculates the local virtual inertia function form by

the stability margin defined by the DFIG’s two predefined

operation curves. Then, the planning strategy of virtual inertia

is proposed, and the non-convex optimization issue is followed

from the homogeneity of the stability margin. It uses the Lyapunov

function to resolve these issues. The general stability was

promoted, and the coherency level of the system stability

margin improved, resulting in the proposed method. In the

study by Liu et al. (2020b), with increased wind power

penetration, the stability problems of the poor AC grid

connection and DFIG-based wind turbines during low voltage

could not be neglected. The exploration of the instability process of

the DFIG system during the process of weak grid fault and amodel

based on the small-signal state are specified in this article. The

article’s outcome depicted that the work was impacted by the rotor

current control loop, phase-locked loop (PLL), and terminal

voltage during dominant factor processing.

The system impact factor evaluated comprehensively

indicated that the controller bandwidth in the expected

condition does not apply to the fault because of the

interaction between the grid and controller. It follows the

optimized proportion that could be improved significantly.

Experiments and simulations have evaluated the efficiency of

the suggested system. The permanent magnet synchronous

generator depends on wind turbines, and the virtual

synchronous machine (VSM) was proposed by Muftau et al.

(2020), and all operating modes allow continuous operation and

guarantee maximum power point tracking in grid connected

operations. In islanded operations, the power generation follows

a load. During faults, the lower voltage ride-through capability

exists. The optimal performance obtained by VSM stability in all

operating models examines large and small perturbations. The

linearized state-space model and participator factor analysis

perform the VSM’s small-signal stability analysis using

participator factor analysis and derived dominant mode

controller effects. The VSM’s nonlinear model, dynamic

performance, and transient stability analyzed. The VSM’s

design guidelines and operational limits were recognized. Li

et al. (2016) focused on multiple time delays of delay-

dependent stability control for the power system. They

designed a multiple time-delayed power system model

consisting of PSS with time delays. Two H∞ controls develop

schemes for time-varying multiple delayed systems by

considering the “Lyapunov stability theory” and “linear matrix

inequality” (LMI) method. The New England 10-machine, 39-

bus system and a 2-area 4-machine power system were employed

to demonstrate the effectiveness of the proposed methods.

Wang et al. (2017) proposed a novel framework consisting of

“stochastic differential equations” (SDE) to ease the “long-term

stability” analysis with spasmodic wind power generations. This

framework considers discrete dynamics, playing a significant role

in the “long-term stability” analysis. They developed a

“deterministic hybrid model (DHM)” for the “stochastic

hybrid model (SHM).” The computing burden of the

uncertainty of wind power was reduced, which improves the

dynamic stability under mild conditions.

2.7 Parametric stability

The parametric analysis was used to enhance the system

stability in wind-penetrated power systems. In parametric

analysis, more uncertain parameters were considered to

enhance the power system stability.

In wind power assimilated power systems, Shi et al. (2018)

focused on the analysis of parametric stability, and for that,

they developed the rational fractional representation

technique. It improves accuracy when using rational

fractional parameters in a fitted parametric state matrix

instead of conventional polynomials. For robust stability

analysis, the generalized linear fractional transformation

was used for standard linear M(s) − Δ system of feedback,

to formulate determinant of return difference matrix of value

set plots, to apply the mapping theorem, i.e., instead of

M(s) − Δ, 1 −M(s) − Δ is applied, and finally, to exhibit

rational fractional uncertainty from the power system’s

robust stability. At the same time, analyzing these values is

tested on the North China system’s 8647-bus model

547 machine and 11-bus test 4 generator power system,

only considering a single DFIG for analysis.

2.8 Voltage stability

Voltage stability means “the ability of a system to maintain

steady-state voltages at all the system buses when subjected to a

disturbance. If the disturbance is large, then it is called large-

disturbance voltage stability.”

Jalali and Aldeen (2019) considered the energy storage

devices (ESS), optimal placement, and sizing in wind-intensive

power distributed generation. The expected voltage stability

margin (VSM) should attain and require ESS size

minimization. This study also focuses on reducing the reactive

power import and reactive power loss from a network upstream

through stochastic optimization, which is risk based and

estimates the wind uncertainty. Furthermore, the ESS size

required is reduced by additional means such as ESS devices’

reactive power capabilities and wind farms. If the preferred VSM

increased, then the required ESS also increased asshown in the

results. Yet, this kind of increase shortens using active network
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management (ANM) tools and voltage stability constraints,

which are risk based. The traditional VAR compensation

devices have become old and show minor changes for short-

term voltage stability of high requirement satisfaction in power

systems penetrated with high-level wind power. Hence, Liu et al.

(2018b) proposed the STATCOMs technique for optimal

dynamic VAR devices and also the power system upgraded

with penetration of higher wind power and more excellent

retirement of equipment. Three objectives have to be

minimized, namely, proximity to steady-state index voltage

collapse, retirement costs and upgrades, and unaccepted

performance of the transient voltage index by the multi-

objective optimization technique. Indefinite dynamic load

models and several contingencies are considered in the real-

world operating situation simulation. Through wind farm

abilities, it designs low- and high-voltage rides. The New

England 39-bus system of testing evaluates the proposed method.

Kawabe et al. (2017) specified the photovoltaic (PV) system’s

novel dynamic voltage support capability to improve the short-

term voltage stability of the power system. The proposed DVS

capability injects both active and reactive power in an organized

manner. Souxes et al. (2020) focused on enhancing the power

system stability issues under unfavorable network conditions

with necessary support from wind farm power electronic

converters. Protection schemes proposed for a weak

transmission and network are integrated into wind farms to

enhance long-term voltage stability during reactive emergency

support. The schematic diagram of the full converter-based wind

turbine is shown in Figure 7.

Milano (2016) proposed power and current injections for

voltage and angle stability analysis, the comparison made with

two formulations of both current and voltage injections on a

dynamic 1479-bus model.

2.9 Small-signal angular stability

Small-signal angular stability means “the ability of

synchronous machines of an interconnected power system to

remain in synchronism after being subjected to a disturbance.”

Du et al. (2019) evaluated the power system’s small-signal

angular stability affected by the virtual synchronous generator

(VSG). Based on these two subsystems of the interconnected

model the small signal angular stability evaluated. The other

subsystem was the rest of the power system (ROPS). Based on

these two subsystems of the interconnected model, and

evaluated. When the VSG subsystem oscillation mode was

in nearness to ROPS subsystem’s electromechanical

oscillation mode, the damping torque analysis applied

indicated to VSG’s strong dynamic interactions for the

small-signal angular stability decrease in the power system.

Both subsystems’ modal proximity evaluates after setting the

VSG parameters and avoids VSG due to the harmful effect of

small-signal angular stability’s decrease in the power system.

However, the modal proximity is avoided by this proposed

article which assists in VSG design parameters. For wind

power generation, finally, it offers two example power

systems with several VSGs and transmission. Ma et al.

(2017c) elaborated the angle stability analysis with multiple

operating conditions by considering cascading failures of the

power system. Based on the flow transfer theory, the power

system divides into various operating conditions. The discrete

Markov model establishes to analyze the angle stability.

2.10 Rotor angle stability

Rotor angle stability means “the ability of the system to

remain in synchronism when subjected to a disturbance.” The

rotor angle depends on the balance between a generator’s

electromagnetic and mechanical torque to maintain stability.

To ensure grid security, Zhang et al. (2020) demonstrated

that the frequency stability of the current dynamic analysis

showed insufficiency because the virtual inertia control had

impacted the first swing’s rotor angle stability. The novel

virtual inertia control approach investigated in this study for

wind turbines enhances the rotor angle stability of the first

swing in the interconnected power grid. Here, the virtual

inertia’s virtual energy in wind turbines was investigated and

evaluated. The conversion of the transient energy system is

FIGURE 7
Wind turbine with full converter.
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grouped on the forward and backward directions of the

swings of the rotor angle, and their virtual energies effect

the two coherent generator groups. High wind penetration

with 35% in a two-area interconnected power system has been

provided in this study. Furthermore, it is comprised of two

DFIG-based wind farms and simulated four traditional power

plants. By regulating variable inertias and minimizing the

rotor angle difference among coherent generator groups,

wind turbines of virtual inertia support with more

reliability resulted.

2.11 Stability issues in microgrids

Majumder (2013) described different stability aspects in

microgrids and discussed various methods in improving

power system stability in DC microgrids. As illustrated in

Figure 8, a microgrid can be represented by various micro

sources and loads.

The research study by Bhosale and Agarwal (2019) used a

fuzzy logic-based novel scheme for power flow control from a

ultracapacitor in a battery. To regulate the DC bus voltage

firmly, a fuzzy logic controller determines the UC convertor

current reference. Low bandwidth controllers were developed

to enhance current drawing quality from the battery. The fuzzy

controller is simple to develop and does not require the

understanding of the mathematical model of the system.

Low complexity is assured during execution since it is a

controller of single input and single output. Wind-up

problems are not visible and faster controller is seen.

Compared with the traditional frequency-based control

approach, the proposed method shows better performance.

Wang et al. (2018b) described the stability analysis of a

microgrid system consisting of a “seashore wave farm” (SWF),

an “offshore wind farm” (OWF), and an “offshore tidal farm”

(OTF) fed to the onshore power grid through a high-voltage DC

(HVDC) link. They proposed VSC-based HVDC link with a PID

damping controller, which evaluates a systematic approach by

frequency domain analysis based on nonlinear simulations

during severe three-phase faults at the power grid side.

Puchalapalli et al. (2020) proposed a hybrid energy

generation-based microgrid. It designs a bidirectional buck-

boost DC-DC converter to improve the microgrid’s stability in

various wind and solar weather conditions.

Xia et al. (2022) discussed the large signal stability of the AC

microgrid, which is a single energy storage–based AC microgrid,

with the nonlinear reduced order model designed to determine

system stability during large disturbances.

Krismanto et al. (2021) studied the stability issues in grid-

connected microgrids during uncertain conditions in RES. In

order to confirm and characterize the modal interaction, three

analytical methods were proposed: eigen-trajectories, the cross-

participation factor, and the modal interaction index (MII).

Monte Carlo (MC) simulation was proposed to determine the

eigenvalues of the system and determine the small-signal stability

of the system.

FIGURE 8
Microgrid structure.
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TABLE 1 Comparison of types of stability with the various existing research studies.

S.
no

References Techniques Key findings Type of
stability

1 Xu et al. (2018) A robust dispatch approach was developed to optimize
the operation of a power system while sustaining its
transient stability

• A quantitative stability assessment for the original DAE
model is proposed

Transient
stability

• Translation of the stability constraints to equivalent
algebraic terms

• The model is also used to solve a large-scale system
problem

2 Wang et al. (2018a) Hybrid wind–photovoltaic PV farm in large scale
employing supercapacitor (SC) combined with the
designed PID-SDC

• The proposed SC is connected with a “proportional
integral derivative–supplementary damping controller”
(PID-SDC) designed to enhance a system’s transient
response subjected to a short circuit fault

Transient
stability

3 Ma et al. (2018a) The doubly fed induction generation (DFIG) model for
analysis of stability in wind power system

• The authors focused on the development and validation
of the DFIG model. The current source model conditions
for the analysis of stability in the power system was
presented

Transient
stability

4 Hui et al. (2019) A robust feedback control method was proposed based
on linear parameter varying LPV for the
interconnected system’s transient stability
improvement

• A novel transient stability control method was proposed
for solving the H∞ robust optimal control algorithm
based on point-linearization and transient
multiparameter

Transient
stability

5 Ma et al. (2018b) The proposedmethod satisfies the requirements, which
adjust the wind farm’s active and reactive output
current during the faults in the severe grid

• The proposed method shows better transient ability
control impacts and response characteristics for wind
power interconnected systems

Transient
stability

6 Yu et al. (2018) The transient ability assessment system was developed
based on the “long short-term memory” (LSTM)
network

• Machine learning methods with synchrophasor
measurements were used for evaluating transient stability
and got more attention in protection and control systems

Transient
stability

7 Ortega and Milano
(2018)

In-depth stochastic analysis of ESS impact on
transmission grid’s transient stability

• The stochastic time-domain simulations have also been
considered for the all-island, Irish transmission system,
1479-bus model, resulting in nonintuitive endings

Transient
stability

8 Tang et al. (2018) Phase/magnitude dynamical model unnatural
consideration of timescale controller on rotor speed
control for the theoretical evaluation of transient
stability of DFIG wind turbines

• The DFIG wind turbine system’s transient stability
analyzed in case of new instability problem. It shows
variation from unstable equilibrium point of traditional
synchronous generation system

Transient
stability

9 Datta et al. (2019) Battery energy storage system (BESS) performance and
also static compensator (STATCOM) in improvising
the power system frequency stability and transient
voltage

• BESS results in improvements such as the power export
shows 44% increase while failure cases are seen in
STATCOM. Moreover, the BESS lead-lag establishes
better performance than PI-lead BESS under the
permanent and temporary faults in divergent events

Transient
stability

10 Jiang and Zhang
(2019)

The DFIG output power mixes with systemmechanical
power and minimizes the mathematical relationship
and analyzes the superconducting magnetic energy
storage (SMES) relationship, which improves transient
stability and access location

• Dynamic characteristics of wind farms connected with
the grid are improved and obtain a greater transient
stability performance

Transient
stability

11 Pico and Johnson
(2019)

The proposed power plant model considers several
factors: PV side dynamics, a closed-loop controller,
and a PLL. It is compatible with bulk power system
models

• The three-phase converter scale shows that the
framework comprises closed-loop controllers, DC side
dynamics, and PLL

Transient
stability

12 Eshkaftaki et al.
(2020)

A designed transient controller (TC) controls the DFIG
block, which modifies the generator to the motor
regime operation mode

• Furthermore, to enhance SG’s dynamic stability, it
recommends the ETBDC-electromagnetic torque band
damping controller, which is also known as two damping
controllers

Transient
stability

13 Liu et al. (2016) It employs a locally installed SPSS, switching power
system stabilizers for coordination

• Installed SPPS can communicate with the different
generators to improve stability

Transient
stability

14 Renedo et al. (2016) • In maximum cases, results were very similar. There are
no relevant differences

Transient
stability

(Continued on following page)
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TABLE 1 (Continued) Comparison of types of stability with the various existing research studies.

S.
no

References Techniques Key findings Type of
stability

It develops a novel active power control strategy for the
VSC-HVDC MTDC system by utilizing weighted-
average frequency

15 Yousefian et al.
(2017)

Proposed WAC algorithm with “reinforcement
learning” (RL) and “neural networks” (NNS)

• By observing the results, WAC increases CCT and
stability margins fast

Transient
stability

16 Husham et al.
(2022)

Decentralized stability enhancement in DFIG • A data-centric model predictive control (MPC) is
proposed to supplementary controlling

Small-signal
stability

• Koopman-based model predictive controller (KMPC)
design used to design converter controlling technique

17 Pan et al. (2018) The small-signal stability (SSSR) region concept
extension to the robust small stability region (RSSSR)
wherein the system maintains the stability even during
perturbations

• Machine learning employs ML approaches to learn and
implement RSSR boundary predictions

Small-signal
stability

• The ML approaches learning ability speeds up the
computation on boundary significantly and simplifies the
robust stability analysis of vast and difficult power
systems

18 Sadamoto et al.
(2018)

Retrofit control • It designs the decentralized controllers for the DFIGs,
which improves the oscillation dampings in the wind-
penetrated power systems

Small-signal
stability

• The major drawback considered is closed-loop system
stability that has not been assured theoretically

19 Huang et al. (2020) Online identification of generalized short circuit ratio • Using PMU’s online stability monitoring is very
convenient

Small-signal
stability

20 Ma et al. (2017a) Virtual inertia control of DFIG by considering PLL • To extend this work for all large-scale interconnected
systems during different operating conditions with
mechanical inertia on system stability with all aspects

Small-signal
stability

21 Ma et al. (2017b) Robust stochastic stability • It presents stability improvement methods by
considering stochastic parameters with virtual inertia and
PLL of DFIG

Small-signal
stability

22 Wen et al. (2017) Decoupled DQ frame dynamics with generalized
Nyquist stability criterion (GNC)

• It demonstrates stability studies of various power-
electronics devices with characteristics of distributed
power systems with the new DQ framework

Small-signal
stability

23 Liu et al. (2020a) Damping solutions for PLL oscillations and their
influence factor

• A new mixed damping controller H2/H∞ was designed
for DFIG to minimize PLL oscillations

Small-signal
stability

24 Liu et al. (2018a) It uses the single machine infinite-bus system design • By new stability criteria, it quantifies SSR stability, which
analyzes the features of impedance frequency

Stability of SSR

• Even for wind power systems on a large scale, this
proposed system has analyzed the SSR issue

25 Karunanayake et al.
(2020)

Nonlinear sliding mode control SMC proposed based
on mitigation method as sub-synchronous
resonance (SSR)

• This proposed method controls the rotor side converter,
assuring the sustainability of reactive power and
decoupled torque of DFIG control ability to mitigate SSR

Stability of SSR

26 Ma et al. (2020) Lyapunov stability criteria • The DFIG dynamic energy was determined with negative
gradient intensity, comparing PLL parameters, line
resistance, and series compensations to enhance stability

Stability of SSR

27 Rahman et al.
(2022)

A probabilistic clustering approach is proposed • A probabilistic clustering framework that uses four
different clustering algorithms to represent the
aggregated wind farm model that occurs most frequently
over the course of an entire year

Probabilistic
stability

28 Chen et al. (2018) Assessing the probabilistic stability of SSR using
piecewise probabilistic collocation method (PPCM)
with respect to random wind speed

• Because of the switching among DFIG’s various
operational modes, the PPCM tackles the inherent
nonlinearity

Probabilistic
stability of SSR

(Continued on following page)
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TABLE 1 (Continued) Comparison of types of stability with the various existing research studies.

S.
no

References Techniques Key findings Type of
stability

29 Bian et al. (2016) “Modified fruit fly optimization algorithm (MFOA)
with a probabilistic approach”

• “Modified fruit fly optimization algorithm” (MFOA)
employed

Probabilistic
stability of SSR

• The best coordination between PSS and SVC damping
controllers, which improves the entire “probabilistic
small-signal stability” of grid integrated wind farms

30 Wen et al. (2018) AC/VSC-based MTDC system • It examines the onshore AC grid and offshore
multiterminal DC grid-based voltage source convertor
VSC-MTDC operation to improve its frequency stability

Frequency
stability

• Among the GVSCs and WVSCs, the coordinate control
approach is expected to be examined

31 Zhan et al. (2019) Analysis of frequency-domain modal technique • For finding electromagnetic oscillations, the frequency-
domain method is developed

Frequency
stability

• It is verified on two case studies and verified with EMT
simulations

32 Han et al. (2022) Discrete-time domain modal analysis • SSO issues are investigated using discrete-time domain
modal analysis

Frequency
stability

• The frequency and damping ratio in the discrete-time
domain calculated

• Eigenvalues calculated in depth by using participation
factors

33 Toulabi et al. (2018) Supplementary frequency optimal controller designed • A proportional-derivative frequency controller is
proposed and tested in a wind farm with several VSWTs

Frequency
stability

34 Yang et al. (2022) Power compensation control schemes proposed for
power converters

• In order to compensate for the power loss on the
network, the active power of WT is subject to control

Frequency
stability

35 Li et al. (2021) SMES-based damping controller is designed • In the article, a finite Markov decision process is utilized
and an agent that is based on deep reinforcement learning
(DRL) is selected in order to obtain the optimal
parameters

Frequency
stability

36 Shi et al. (2019) Wind power penetrated power system’s robust stability
analysis is investigated

• Dynamic stability (D-stability) issue analyzed by focusing
on the constraint of damping ratio for power system
analysis

Dynamic
stability

37 Li et al. (2019) Feedback control approaches were appropriate for
vector-based voltage source converters and engaged in
type-3 and type-4 wind testbeds

• The feedback control approaches modulate the order of
DC-link voltage and power order

Dynamic
stability

• Finally, the efficient capability of stability improvement is
seen with further enhancement in wind power delivery

38 Nian and Pang
(2019)

When a harmonic grid with parallel compensation
joins the DFIG system, the harmonics and high-
frequency resonance (HFR) exhibiting the frequency
range may show intersections

• Coupling among harmonics suppression control and
HFR damping control leads to an unstable situation of
the DFIG system

Dynamic
stability

39 Xiong et al. (2019) An optimal virtual inertia planning approach for
power system stability improvement

• The non-convex optimization issue followed from the
homogeneity of stability margin is solved by using the
Lyapunov function

Dynamic
stability

• To evaluate the performance and effectiveness of the
current study, it uses IEEE 118-bus system and a 12-bus
system

40 Liu et al. (2020b) DFIG-based wind turbines during low voltage • The instability process of the DFIG system during the
process of weak grid fault, a model based on the small-
signal state has been specified

Dynamic
stability

41 Muftau et al. (2020) For permanent magnet synchronous generator that
depends on wind turbines, the virtual synchronous

• It uses linear and nonlinear models Dynamic
stability

(Continued on following page)
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TABLE 1 (Continued) Comparison of types of stability with the various existing research studies.

S.
no

References Techniques Key findings Type of
stability

machine (VSM) is proposed in this article that allows
continuous operation in all operating modes

• It recognizes the VSM’s design guidelines and operational
limits

42 Li et al. (2016) “Lyapunov stability theory” and “linear matrix
inequality” (LMI) method

• By utilizing Lyapunov stability theory, it designs a new
H∞ controller

Dynamic
stability

43 Wang et al. (2017) Developed “deterministic hybrid model” (DHM) for
the “stochastic hybrid model” (SHM)

• By considering various uncertainties to extend this work
with this framework further to studying the stability
analysis of power systems

Dynamic
stability

44 Shi et al. (2018) Developed a rational fractional representation
technique

• Focused on the analysis of parametric stability Parametric
stability

• The power system’s robust stability

• Exhibits a rational fractional uncertainty

• It considers only a single DFIG for analysis

45 Jalali and Aldeen
(2019)

Energy storage services (ESS) in wind intensive power
distributed generation and voltage stability

• For ESS size minimization, the expected voltage stability
margin (VSM) should be attained

Voltage stability

• Active network management (ANM) tools and
constraints of voltage stability for minimization, which it
considers as risk-based

46 Liu et al. (2018b) Proposed STATCOMs techniques for the optimal
dynamic VAR devices with multi-objective
optimization techniques

• The power system upgraded with penetration of higher
wind power and greater retirement of equipment

Voltage stability

47 Kawabe et al.
(2017)

A novel dynamic voltage support (DVS) capability • It improves short-term voltage stability of PV farm with
novel DVS capability

Voltage stability

48 Souxes et al. (2020) Emergency maximum reactive • Long-term voltage stability of wind farms tested Voltage stability

Support control scheme

49 Milano (2016) Computational current and power injection models • The proposed formulation for current and power
injection methods for angle and voltage stability

Voltage stability

50 Du et al. (2019) The modal proximity avoided by this proposed article
which assisted VSG design parameters

• After setting the VSG parameters, it evaluates the two-
subsystem modal proximity and avoids VSG due to the
harmful effect of small-signal angular stability’s decrease
in the power system

Small-signal
angular stability

51 Ma et al. (2017c) Cascading failure • It proposes the discrete Markov power system model
considering cascading failure during different operating
conditions for determining angle stability of power
system

Small-signal
angular stability

52 Zhang et al. (2020) The novel virtual inertia control approach is
investigated in this study for wind turbines that
enhances the rotor angle stability of the first swing in
the interconnected power grid

• It simulates two DFIG-based wind farms and four
traditional power plants

Rotor angle
stability

53 Majumder (2013) Improvement of various types of stability issues in
microgrids

• It describes different types of microgrid stability studies
with enhanced methods

Microgrid
stability

54 Bhosale and
Agarwal, (2019)

For ultracapacitor, it proposes the fuzzy logic-based
novel scheme for power flow control

• It can enhance with AI and machine learning Microgrid
stability

55 Wang et al. (2018b) Designed a damper controller placed at the converter
station of the HVDC link

• A grid-connected microgrid structure consisting of a
large DFIG “offshore wind farm,” PMSG-based “offshore
tidal farm,” and DFIG-based “seashore wave farm,”
stability improvement, and power flow control methods
proposed

Microgrid
stability

56 Puchalapalli et al.
(2020)

“Rotor side VSC and bidirectional buck-boost
converter” proposed

• A microgrid is developed consisting of DFIG, DG, and
solar PV array with BES, and steady-state and dynamic
performance of the microgrid studied

Microgrid
stability

(Continued on following page)
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Mohamed et al. (2022) explored frequency stability

enhancement in an interconnected microgrid. This article uses

a fractional order load frequency controller with

superconducting magnetic energy storage (SMES) virtual

inertia system to assess and improve digital frequency relay

coordination. Optimized fractional order controller based on

slime mould optimization algorithm improves the coordination

method (SMA). In the study by Zhang et al. (2021), voltage-based

segment control was used to enhance the transient stability of the

DC microgrid. When the DC voltage deviation is within the

tolerant range, the VBS control allows SMES to function in the

energy storage mode. When the voltage is outside the normal

range because of transient power fluctuations, the SMES will

carry out transient power regulation.

Hence, the above stated references have been reviewed based

on types of stability, and the results of all the analyses are

validated using the simulation method, namely, MATLAB/

SIMULINK.

3 Comparison analysis

The following section describes the type of stability related to

wind power in the power system, comparatively analyzed further

and briefly tabulated below in Table 1.

Figure 9 depicts the type of stability used in every referenced

article and states that transient stability is analyzed primarily in

most research studies for other types of stability.

TABLE 1 (Continued) Comparison of types of stability with the various existing research studies.

S.
no

References Techniques Key findings Type of
stability

57 Xia et al. (2022) “Large-signal stability analysis and control in AC
microgrid”

• The nonlinear reduced-order model of small-scale
alternating current microgrids with a single storage is
established as valid

Microgrid
stability

58 Krismanto et al.
(2021)

Grid-connected microgrid stability in uncertain RES • Monte Carlo (MC) simulation is proposed to determine
the eigenvalues of the system

Microgrid
stability

59 Mohamed et al.
(2022)

“Enhancement the frequency stability and protection
of interconnected microgrid”

• A fractional order load frequency controller with
superconducting magnetic energy storage (SMES) virtual
inertia system is used to assess and improve digital
frequency relay coordination

Microgrid
stability

60 Zhang et al. (2021) “Voltage-based segmented control of superconducting
magnetic energy storage in DC microgrid”

• Voltage-based segment control is used to improve the
transient stability of DC microgrid when the DC voltage
deviation is within the tolerant range

Microgrid
stability

• VBS control allows SMES to function in the energy
storage mode

Hence, the table elaborates the comparative analysis of various references in terms of types of stability, and the data analysis is depicted in a diagrammatic form in Figure 9.

TABLE 2 Different controllers used to improve the various types of stability.

S. no Type of stability Type of controller

1 Transient stability P, PI, and PID-SDC fuzzy controllers

2 Small-signal stability P, PI, robust controller, H2 and H∞ controller

3 Stability of SSR PI and H∞ controller

4 Frequency stability PI, PID, and optimal frequency damping controller

5 Dynamic stability PI, high-frequency resonance damping control, and H∞ controller

6 Parametric stability PI, robust controller, fuzzy controller, and H2 and H∞ controller

7 Small-signal angular stability Fuzzy controller, PI, robust controller, and H2 and H∞ controller

8 Voltage stability PI, PID, and fuzzy controller

9 Probabilistic stability of SSR Optimal PI, PID, fuzzy controllers

10 Rotor angle stability Robust controller, fuzzy controller, and H2 and H∞ controller
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Table 2 represents the different controllers used to improve

the various types of stability.

4 Conclusion

This article gives a concise summary of power system stability

issues in large-scale wind-integrated power systems. The

increasing wind power penetration has shown several

challenges toward the stability types in power system

generation due to uncertainty of wind speed. The system

dynamic depicts variations in the performance of wind turbines

that was also seen in this proposed study. This proposed review

focused mainly on the types of stability toward the penetration in

wind power generation systems. In most research works, a

comparative analysis of sustainability has shown that transient

stability has been substantially analyzed and compared with other

types of stability like parametric stability, dynamic stability,

frequency stability, and others. In recent years, many

researchers have focused their studies on stability issues of

renewable energy sources–based microgrids. It is the new trend

in investigating the stability problems of microgrids. In the future,

several other types of stability and analyses of the respective

simulations and of their results should be studied in depth.
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DE optimized IPIDF controller for
management frequency in a
networked power system with
SMES and HVDC link
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A major concern is frequency change with load. So, Load Frequency Control (LFC)

of an interconnected power system is proposed in this research using a unique

integral plus proportional integral derivative controller with filter (IPIDF). The

Differential Evolution (DE) algorithm is used to optimize the integral plus

proportional integral derivative controller with filter controller parameters for a

two-area power system. By contrasting the results of the proposed method with

those of recently published optimization techniques for the same power system,

such as the Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Firefly

Algorithm (FA), andDifferential Evolution (DE) based Proportional integral derivative

(PID) and PIDF controllers, the superiority of the integral plus proportional integral

derivative controller with filter approach is made clear. It is possible to determine

the system performance index like integral timemultiplied the absolute error (ITAE)

and the settling time (Ts). The power system with superconducting magnetic

energy storage and an HVDC link is also included in the proposed work, and the

values of the suggested integral plus proportional integral derivative controller with

filter controllers are evaluated using the Differential Evolution method. By

comparing the outcomes with the Differential Evolution tuned PIDF controller

for the identical power systems, the suggested controller’s superiority is

demonstrated. To show the stability of the recommended Differential Evolution

algorithm tuned integral plus proportional integral derivative controller with filter

controller, the speed governor, turbine, synchronizing coefficient, and frequency

bias parameters’ time constants and operating load conditions are varied in the

range of +25 to −25% from their nominal values, along with the magnitude and

location of step load perturbation and pulse load perturbation, to perform

sensitivity analysis. According to research, proposed integral plus proportional

integral derivative controller with filter controllers offer greater dynamic

response by minimizing time required to settle and undershoots than

Proportional integral derivative controllers and PIDF controllers. MATLAB/

Simulink is used to run the simulations.

KEYWORDS

load frequency control (LFC), differential evolution (DE) algorithm, proportional
integral derivative (PID), integral plus proportional integral derivative controller
with filter (IPIDF), superconducting magnetic energy storage system (SMES)
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1 Introduction

Frequency drift with load is a major concern. Total

generation equals the sum of load power and losses under

steady state conditions. However, a user who is uninformed of

the creation alters the load at random. Any imbalance between

supply and demand has a direct impact on rotor speed,

and consequently, system frequency. A shift in frequency

and power flow in tie line results from the majority of

systems being interconnected. Since maintaining the

balance between supply and load is particularly challenging,

a good controlling mechanism is needed to maintain the

system frequency within the desired range. One such

control is load frequency control (LFC), which attempts to

reduce frequency deviation by reducing steady state error to

zero while regulating the producing units’ active power

(Elgerd, 2000; Ram Babu and Saikia, 2021; Soni et al., 2021;

Peng, 2022). For the purpose of lowering the frequency and

power of tie line fluctuation in the load frequency control

problem, the area control error is sent to the controller (Karn

et al., 2022; Yang et al., 2022).

The power system will be out of equilibrium as a result of

the continuous rise in load demand; as a result, the frequency of

the system continues to drop until it reaches its lowest allowable

value (Sun and Duan, 2022). Subsequently, a further rise in load

will cause more frequent drops, necessitating the use of load

shedding. If we employ an energy storage system or another

source of power supply in addition to the electricity generated

by the system, load shedding can be avoided. In a

superconducting magnetic energy storage system (SMES),

energy is retained in a superconducting coil by use of a

magnetic field (Padhan et al., 2014a). The direct current

(DC) passing through the coil is what generates the

magnetic field. In order to transport the current, the

conductor needs to be sufficiently cooled. At cryogenic

temperatures, where it is a superconductor and has almost

no resistive losses, the conductor generates the magnetic field.

Superconducting Magnetic Energy Storage (SMES), an active

power source with a quick response that can absorb frequency

fluctuations, is extremely successful at enhancing the power

system’s dynamic performance. The governor system’s slow

response prevents it from doing so (Luo et al., 2021). The

frequency regulation of a networked system with SMES has

been documented in the literature (Banerjee et al., 1990; Sudha

and Vijaya, 2012; Luo et al., 2021) for enhancing system

performance. There have been reports in the literature

(Dekaraja, Chandra Saikia; Wang et al., 2021) about the

effects of various FACTS controllers for AGC when used in

conjunction with SMES (Luo et al., 2021).

Researchers throughout the world suggest a number of

LFC solutions to keep the power flow in tie line and frequency

at their specified levels throughout normal operation and even

in the presence of minor fluctuations (Sahu et al., 2016).

Compares the performance of a number of classical

controller structures used in the AGC for multi-area

interconnected thermal systems, including the integral (I),

proportional integral (PI), integral derivative (ID), PID, and

integral double derivative (IDD) (Luo et al., 2021). Over the

past few decades, numerous scholars have suggested

various control strategies for LFC of power systems (Sahu

et al., 2016; Ahmed et al., 2022; El-Ela et al., 2022). Recently

Rabindra et al. (Sahu et al., 2016), proposed a TIDF controller

in a three unequal area interconnected power system and then

TCSC is installed in tie line and performance of the TIDF

controller is investigated with GA (Ali and Abd-Elazim,

2011), BFOA (Ali and Abd-Elazim, 2011), PSO (Panda

et al., 2013), FA-PID (Padhan et al., 2014b) and DE-PID

(Sahu et al., 2016).

Storm and Price first presented the population-based

stochastic search technique called Differential Evolution (DE)

in 1995 (Stron and Prince, 1995). With only a few, easily

selectable control parameters, this global optimization

technique can handle objective functions that are non-

differentiable, non-linear, and multimodal. The Greedy

selection process was employed in DE algorithm with

inherent elitist features. The literature review makes it

abundantly evident that the controller structure as well as the

artificial intelligence approaches used have an impact on the

system’s performance. In light of the aforementioned, an attempt

has been made to create the best DE-based IPIDF controller for

the LFC of a power system in this work.

In light of the foregoing survey:

(a) To study Load frequency control

(b) To successfully implement the DE algorithms in the

Simulink models.

(c) To develop a simple two area power system with a thermal

unit in each area utilizing a new IPIDF controller.

(d) To illustrate the benefits of the proposed IPIDF controller

over the PID controller.

(e) To perform a sensitivity study by altering the system’s

attributes from their actual range in order to examine the

suggested controller’s resilience.

(f) To conduct robustness analysis to examine the effectiveness

of the system by varying load pattern.

2 Materials and methods

2.1 Power system under investigation

In this paper, a commonly used non-reheat thermal

power plant connected by tie-line is considered for system

under study (Ali and Abd-Elazim, 2011; Panda et al., 2013;

Padhan et al., 2014b; Sahu et al., 2016). A speed-governing

system, a turbine, and a generator are present in each section
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of a power plant having two outputs and three

inputs. The inputs are the tie-line power error (ΔPTie), load

disturbance (ΔPD), and controller input (written as u). Area

Control Error and Generator Frequency (ΔF) are the outputs
(ACE). Each area has a rating of 2000 MW and a nominal load

of 1,000 MW. ACE1 and ACE2 are area control errors; B1 and

B2 are the frequency bias parameters; u1 and u2 are the

control outputs from the controller; R1 and R2 are the

governor speed regulation parameters in p.u. Hz; TG1 and

TG2 are the speed governor time constants in sec; TT1 and TT2

are the turbine time constant in sec; ΔPD1 and ΔPD2 are the

load demand changes; ΔPTie is the incremental change in tie

line power in p.u; KP1 and KP2 are the power system gains; TP1

and TP2 are the power system time constant in sec; T12 is the

synchronizing coefficient and ΔF1 and ΔF2 are the system

frequency deviations in Hz. The nominal parameters of the

system are given in Appendix.

2 2 The controller architecture and
purpose

The two-area power system has IPIDF controllers available in

each region to regulate the frequency. Standard PID controllers

with static values do not offer satisfactory accuracy across a wide

variety of operating situations (Sahu et al., 2016). IPIDF

controller design therefore enters the picture for the purpose

of enhancing system performance. The IPIDF controller

combines the PIDF controller and the traditional I controller.

Where KII is the I controller’s integral gain.

In contrast to PID controller, IPIDF controller is displayed in

Figure 1. It has a transient response to instruction intake ratio

that is good over a larger range of plant component fluctuation, is

simple to calibrate, and has more reliable regulation. In addition

to being simpler than PID, IPIDF designing and tuning is also

quicker. The transfer function of the IPIDF controller is shown in

Eq. 1.

TFI−PIDF � KII

s
+KP + KI

s
+ KD

NCs

s +NC
( ) (1)

In order to build controllers that use optimization

techniques and to fine-tune controller parameters in

accordance with performance indices, objective functions

are used. Control designs often employ one of four

basic types of objective functions (Shabani et al., 2013).
The target function ITAE is used in this paper because it

shortens peak overshoot and settling rate. It cannot be

done using IAE or ISE-based correction, though. The

mathematical formulas for the ITAE are shown in Eq. 2

(Sahu et al., 2016).

J � ITAE � ∫tsim

0
Δf1

∣∣∣∣ ∣∣∣∣ + Δf2

∣∣∣∣ ∣∣∣∣ + ΔPTie| |( ) · t · dt (2)

3 Differential evolution

The Differential Evolution (DE) algorithm, a

straightforward, effective, and dependable heuristic search

technique with minimal coding, was first introduced by Storn

FIGURE 1
Controller structure for IPIDF.
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and Price (Stron and Prince, 1995). The Genetic Algorithm (GA)

employs crossover operator for evolution based on the difference

of randomly picked pairs of solutions in the population, whereas

DE uses mutation operation, making it more favorable than GA.

The DE algorithm employs two Generation, one of which is the

old generation and the other is the new generation, both of which

have the same population size and are controlled by the

parameter Np, which is initialized at random (Pang et al.,

2022) within the parameter constraints. A D-dimensional

vector can serve as a representation for the D variables in an

FIGURE 2
Flow chart of DE optimization approach.
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optimization job. Three key procedures are used to carry out the

optimization process: mutation, crossover, and selection (Pant

et al., 2020).

The target vectors for the following generation are people

in the existing population (Sahu et al., 2016). Old and fresh

generations of the same population size are used in the

DE method. The present population’s individuals

become the target vectors for the following generation. By

adding the weighted difference between two randomly

selected vectors to a third vector, the mutation process

FIGURE 3
MATLAB/SIMULINK model interconnected power system.

TABLE 1 Optimized IPIDF gain parameters for two-area thermal power system.

Variables GA: PID Sahu et al.,
(2016)

PSO: PID Sahu et al.,
2016

FA: PID Sahu et al.,
(2016)

DE: PID Sahu et al.,
(2016)

DE:
PIDF

DE:
IPIDF

KII ------ ------ ------ ------ ------ 1.6965

KP .4005 1.5378 1.0556 1.2885 1.8044 1.9917

KI 1.6870 1.1341 1.0373 1.2861 1.9861 .8657

KD .8475 .7705 .9626 .9618 1.0300 1.0384

NC ------ ------ ------ ------ 165.3426 213.1675
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creates a mutant vector for each target vector. By combining

the properties of the mutant vector and those of the target

vector, the crossover procedure creates a trial vector. If the

trial vector achieves a higher fitness value than the

target vector, it replaces the target vector in the following

generation. The flow chart of the DE algorithm is shown in

Figure 2.

4 Findings and discussion

4.1 Execution of DE

The MATLAB/SIMULINK environment was used to create the

model of the system under study depicted in Figure 3 and a DE

program was constructed (. mfile). The present work

chooses −2.0 and 2.0 as the lowest and maximum values for

controller parameters. The objective function, which is computed

in the. m file, is used by the optimization process. In the current

study, the population size NP = 100, generation number G = 100,

step size F = .8, and crossover probability CR = .8 have all been used.

With a situation of a 10% shift in the burden inArea-1 only at t = 0 s,

the output/gain of the controller are optimized here by the DE

method, and their control parameters are displayed in Table 1. The

final value that is determined by repeating the optimization

procedure 50 times will be determined by the optimal value for

each parameter.

TABLE 2 Values of the Comparative Performance Index while region 1 is under 10% load.

Controller ITAE Peak undershoot x10−3 Settling time (sec)

ΔF1 ΔF2 ΔPtie ΔF1 ΔF2 ΔPtie

GA: PID Sahu et al., (2016) .4967 −8.74 −5.22 −2.01 6.93 6.74 4.87

PSO: PID Sahu et al., (2016) .4854 −8.58 −4.36 −1.57 5.30 6.41 5.03

FA: PID Sahu et al., (2016) .4714 −7.88 −4.28 −1.71 4.25 5.49 4.78

DE: PID Sahu et al., (2016) .3391 −7.80 −3.92 −1.53 3.58 4.85 4.20

DE: PIDF .1764 −7.48 −3.41 −1.24 2.47 3.70 3.21

DE: IPIDF .1238 −7.36 −3.30 −1.18 1.89 3.00 2.67

TABLE 3 Sensitive investigation using IPIDF controllers under various conditions of TG, TT, T12, and B.

Parameter variation %Change Peak undershoot (x 10−3) Settling time TS (sec) ITAE

ΔF1 ΔF2 ΔPtie ΔF1 ΔF2 ΔPtie

Nominal 0 −.0977 −.1535 −.0001 3.02 3.93 2.66 .2892

TG +25 −.1019 −.1641 −.0002 2.99 3.90 2.65 .2826

−25 −.0949 −.1420 −.0001 3.04 3.97 2.68 .2958

TT +25 −.1108 −.1714 −.0002 2.84 3.89 2.60 .2702

−25 −.0871 −.1333 −.0001 3.16 3.94 2.73 .3105

T12 +25 −.1028 −.1518 −.0002 2.95 3.78 2.57 .2861

−25 −.0917 −.1552 −.0001 3.13 4.13 2.82 .2957

B +25 −.0774 −.1351 −.0001 2.81 4.10 2.75 .2411

−25 −.1301 −.1798 −.0002 3.46 3.06 2.57 .3795

TABLE 4 Tuned IPIDF controller parameters with SMES and HVDC Link.

Parameters DE: PIDF DE: IPIDF

KII ------ 1.4192

KP 1.1636 1.9510

KI 1.9495 1.9927

KD 1.0593 1.1991

NC 93.6275 262.3740
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4.2 Analysis of results

Three examples can be taken into account in order to

examine the dynamic performance of the system under

examination. In the first scenario, Area-1 is the only one to

receive the 10% step load; in the second, Area -2 is the only one

to receive the 10% load disturbance; and, in the third scenario,

Area -1 and Area -2, respectively, are the recipients of 10% and

20% step load. The effectiveness indicator values are given in

Table 2 for the first case, where a 10% shift in the burden is

applied to Area -1 at time t = 0 s. Figure 4 displays the

associated frequency change in the area and Power

FIGURE 4
System dynamic responses for 10% shift in the burden in Area -1 only (A) frequency shift in Area 1 (B) frequency shift in Area 2 (C) power change
in tie-line.
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variations along the tie line. In contrast to GA PID (Sahu et al.,

2016), PSO PID (Sahu et al., 2016), FA PID (Sahu et al., 2016),

DE: PID (.3391) (Sahu et al., 2016), and DE: PIDF (.1764), the

IPIDF controller yields a reduced ITAE (.1238). When

compared to other controllers, the proposed IPIDF

controller reduces the ITAE value by 12.38%. The change

in error is then displayed in Figure 5 when a similar

operation is carried out with a 10% shift in the burden in

Area -2 only at t = 0 s. Finally, Area -1 and Area -2,

respectively, receive 10% and 20% step disruption. In

FIGURE 5
System dynamic responses for 10% shift in the burden in Area-2 only (A) frequency shift in Area 1 (B) frequency shift in Area 2 (C) power change
in tie-line.
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Figure 6, the dynamic reaction is displayed. The figure

clearly shows that the IPIDF controller functions more

effectively analyzing peak overshoot and undershoot, as

well as settling time. The yielded results of the IPIDF

controller are therefore evidently better than that of the

PIDF controller.

4.3 Sensitivity analysis

Changes to the system’s operating circumstances and system

parameters are made as part of the sensitivity study, which

examines the proposed system’s resilience (Ali and Abd-Elazim,

2011; Panda et al., 2013; Padhan et al., 2014b; Sahu et al., 2016).

FIGURE 6
System dynamic responses for 10% shift in the burden in Area-1 and 20% in Area 2 (A) frequency shift in Area 1 (B) frequency shift in Area 2 (C)
power change in tie-line.
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Here, the reliability of the system is evaluated by altering the value

of TG, TT, T12, and B in the range of ±25% for the same controller

value. Here, under changing load conditions, a sensitivity study is

conducted for 10% and 20% shift in burden in Area 1 and Area

2 respectively. Table 3’s listing of the system characteristics

demonstrates how the IPIDF controller is resistant to various

parameter variations.

5 Investigation with SMES and HVDC
link

5.1 Modelling of SMES

The SMES’s capacity to store electrical energy in the form

of magnetic energy and its ability to deliver enormous

amounts of power instantly are two of its key capabilities.

Because all of a SMES unit’s components are static, it is more

stable than other power storage devices. Pradhan et al.

(2016); model the SMES and connect in the power system

to investigate the system. The model for SMES is shown in

Figure 7. Two SMES units are set up in areas 1 and 2 in the

current study to stabilize frequency oscillations, as depicted

in Figure 9. The input signal of the SMES controller is p.u.

frequency deviation (ΔF) and the output is change in control

vector (ΔPSMES). The values of the time constant TSMES and

the controller gains KSMES are .03 s and .12, respectively.

5.2 Modelling of HVDC

A HVDC link is taken into consideration in parallel with the

HVAC system in order to enhance the dynamic performance of

the power system. Figure 8 depicts the single line diagram of a

two-area power system with parallel HVAC/HVDC linkages.

The HVDC link’s control system responds promptly to a step

load disruption by suppressing the peak value of the transient

frequency deviation. The governors then eliminate the steady

state inaccuracies of the frequency deviation. The dynamics of

the governors in both areas can be ignored for the purpose of

simplicity in the control design of the HVDC link. The change in

output in area-1 of an HVDC link can be expressed as follows for

a sudden step load perturbation:

ΔPDC � KDC

1 + STDC
ΔF1

Where KDC is gain of a HVDC link and TDC is time constant of

HVDC link in seconds.

FIGURE 8
Two-area interconnected power system with HVDC.

TABLE 5 Performance index values with SMES and HVDC Link.

Controller ITAE Peak undershoot Settling time (S)

ΔF1 ΔF2 ΔPtie ΔF1 ΔF2 ΔPtie

DE: PIDF .3279 −.0603 −.0168 −.0121 3.13 5.52 3.58

DE: IPIDF .1330 −.0555 −.0141 −.0089 1.88 3.84 2.64

FIGURE 7
Structure of SMES.
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FIGURE 9
Thermal power system with SMES and HVDC Link MATLAB/SIMULINK model.

TABLE 6 Sensitive analysis with IPIDF controllers when TG, TT, T12 and B are varied.

Parameter variation % Change Peak undershoot (x 10−3) Settling time Ts (sec) ITAE

ΔF1 ΔF2 ΔPtie ΔF1 ΔF2 ΔPtie

Nominal 0 −.0555 −.0141 −.0089 1.88 3.84 2.64 .1330

TG +25 −.0587 −.0150 −.0090 1.87 3.81 2.63 .1329

−25 −.0520 −.0138 −.0088 1.90 3.86 2.66 .1332

TT +25 −.0599 −.0156 −.0092 1.84 3.75 2.59 .1351

−25 −.0501 −.0135 −.0086 1.94 3.92 2.70 .1327

T12 +25 −.0550 −.0164 −.0096 1.96 3.66 2.48 .1243

−25 −.0562 −.0126 −.0080 1.87 4.13 2.87 .1527

B +25 −.0510 −.0118 −.0085 1.71 3.61 2.70 .1138

−25 −.0614 −.0186 −.0093 2.36 4.22 2.58 .1857
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FIGURE 10
System dynamic responses for 10% shift in the burden in Area -1 only (A) frequency shift in Area 1 (B) frequency shift in Area 2 (C) power change
in tie-line.

Frontiers in Energy Research frontiersin.org12

Biswal et al. 10.3389/fenrg.2022.1102898

65

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1102898


5.3 Two area units non-reheat thermal
power system with SMES and HVDC link

To demonstrate the efficacy of the suggested

IPIDF controller, the study is further extended with SMES

and HVDC link (Pradhan et al., 2016; Dekaraja et al., 2022;

Ramoji, 2022; Sivadanam et al., 2022) as shown in Figure 9. The

MATLAB/SIMULINK environment was used to create

the model of the system under study depicted in Figure 9,

and a DE program was constructed (. mfile). The present

FIGURE 11
System dynamic responses for 10% shift in the burden in Area -2 only (A) frequency shift in Area 1 (B) frequency shift in Area 2 (C) power change
in tie-line.
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work chooses −2.0 and 2.0 as the lowest and maximum values for

controller parameter for KII, KP, KI, and KD. The lowest and

maximum value for the filer (NC) is taken 1 and 300 respectively.

With a situation of a 10% shift in the burden in Area -1 only at t =

0 s, the output/gain of the controller are optimized here by

the DE method. The same DE method, where the

50 best final solutions from the 50 optimization runs

were utilized to establish the controller’s settings. The

top 50 concluding responses from the 50 runs are shown in

Table 4.

FIGURE 12
System dynamic responses for 10% shift in the burden in Area -1 and 20% in Area 2 (A) frequency shift in Area 1 (B) frequency shift in Area 2 (C)
power change in tie-line.
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FIGURE 13
System dynamic responses for 10% shift in the burden in Area -1 and 20% in Area 2 (A) frequency shift in Area 1 (B) frequency shift in Area 2 (C)
power change in tie-line.
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5.4 Analysis of the findings

Table 5 shows the outcome of the system DE-optimized IPIDF

controller for the fast scenario,whereArea -1 is subjected to a burdenof

10% load at time t = 0 s. Performance of the proposed IPIDF controller

is compared to that of PIDF. Table 5 makes it very evident that the

IPIDF controller produces a lower ITAE value than the PIDF (ITAE =

.3279 vs. .1330). Area -2 is the only location in the second scenario to

have a burden of 10%. Finally, to investigate the dynamic performance

of system 10% and 20% shift in burden is given to Area -1 and Area

FIGURE 14
Area-1 frequency variation with .1 p.u. of load with variation of (A) TG (B) TT (C) T12 (D) B.
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-2 accordingly. The dynamic reaction is seen in Figure 10–12. It is

obvious that, in terms of output performance, the IPIDF controller

surpasses the PIDF controller (minimal Peak undershoot, frequency

settling durations, and power variations in tie-line).

Individual system performance of the system with just SMES

and only HVDC connection is compared to the system with both

SMES and HVDC link in order to demonstrate the effectiveness of

adding both SMES and HVDC link to the systems. The change in

errors for the 10% and 20% loads to Areas 1 and 2 is presented in

Figure 13. From Figure 13, it is evident that the system clearly

performs better when SMES and HVDC links are included in the

system.

5.5 Sensitivity analysis

The reliability of the system (Figure 9) is evaluated by altering

the value of TG, TT, T12, and B in the range of ±25% for the same

controller value. Here, under changing load conditions, a

sensitivity study is conducted for 10% shift in burden in Area

1 only. Table 6’s listing of the system characteristics demonstrates

how the IPIDF controller is resistant to various parameter

variations. Table 6 makes it evident that the performance

index values fluctuate within allowable limits and are typically

identical to the standard value. Dynamic nature of the system for

different parameter variation is shown in Figure 14.

5.6 Assessment of the effectiveness under
various load disturbance scenarios

A performance analysis of the suggested system is also

done for several load perturbations, such as step load and

pulse load to Area 1 (Sahu et al., 2016). Figure 15A depicts the

application of a step load to region 1 that has a period of 140 s

and a breadth of 10 s (Sahu et al., 2016). Figure 15B depicts the

corresponding tie-line power exchange. Area 1 is then put

under a pulse (Sahu et al., 2016) change with an initial

magnitude of 10% P.U and a frequency of .025 Hz shown

in Figure 16A. Figure 16B depicts the change in tie-line power.

We can infer from all of the findings that the IPIDF controller

reduces oscillation.

FIGURE 15
(A) Random step load (B) tie-line power deviation between area 1 and area 2.
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6 Conclusion

This work has addressed the Load Frequency Control (LFC)

of a two-area linked system using a special IPIDF controller. The

Differential Evolution approach was employed to improve the

IPIDF controller’s settings with an ITAE-based fitness function.

By comparing the outcomes with those of other recently

published optimization approaches, such as Particle Swarm

Optimization (PSO), Firefly Algorithm (FA), and Differential

Evolution (DE) algorithm based PID and PIDF controllers, the

supremacy of the IPIDF controller is shown. A two-area system

that takes into consideration both a HVDC connection and a

superconducting magnetic energy storage device is added to

the recommended method. There have been reports of

considerable improvements in dynamic responsiveness when

the IPIDF controller is used in conjunction with

superconducting magnetic energy storage and an HVDC link.

Additionally, a sensitivity study of the operational state and

system parameters in the range of +25 to -25% from their

nominal values is conducted to evaluate the system’s

resilience. Next, the efficacy of the presented method is

reviewed under several load perturbations, such as step load

and pulse load. The results demonstrate that the created

controller is trustworthy and perform admirably under a

variety of operating circumstances, system characteristics, and

load patterns.
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Nomenclature

f nominal system frequency (Hz)

ΔPTie tie-line power error

u controller Output

ACE Area Control Error

B frequency bias parameter

TT turbine time constant in sec

TP power system time constant in sec

tsim time range of simulation

KSMES gain of the SMES

KDC gain of a HVDC link

i subscript referred to area i (1–2)

ΔPD load disturbance in p.u

ΔF frequency deviations in Hz

R governor speed regulation parameters in p.u. Hz

TG speed governor time constants in sec

KP power system gain

T12 synchronizing coefficient

ΔPSMES output signal of SMES

TSMES time constant of the SMES

TDC time constant of HVDC link in sec
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Appendix

The system being studied has the following nominal

parameters: (Padhan et al., 2014a; Sahu et al., 2016; Luo et al.,

2021).

PR1 � PR2 � 2000 MW (rating), PL1 � PL2 � 1,000 MW

(nominal loading), f = 60 Hz, B1 � B2 � .045 p.u. MW/Hz, R1 �
R2 � 2.4 Hz/p.u., TG1 � TG2 � .08 s, TT1 � TT2 � .03 s, KPS1 �
KPS2 � 120 Hz/p.u. MW, TPS1 � TPS2 � 20 s, T12 � .545 p.u.,

a12 �-1, KSMES � .12, TSMES � .03 s, KDC � 1.0, TDC � 0.2 s.
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demand response program

Rajendhar Puppala1, Belwin Edward Jeyaraj2*,
Jacob Raglend Isaac2 and Hussaian Basha CH3

1Electrical Engineering Department, Smt.Indira Gandhi College of Engineering, Navi Mumbai, India,
2School of Electrical Engineering, Vellore Institute of Technology, Vellore, Tamilnadu, India,
3Department of Electrical and Electronics Engineering, Nitte Meenakshi Institute of Technology,
Bangalore, India

The smart grid model is developed with some changes to help in implementing

a demand response program which was initially developed for a Pecan Street

project. Correspondingly, the real-time solar and load data are collected from

the data port for the city of Austin. A single day is selected for our analysis of all

four seasons of the year. The flat rate, and real-time and day-ahead pricing

information are collected from ComEd. The key challenge for addressing

business problems is the flexibility of consumption. However, without

considering the properties of loss aversion, the system would not be a

practical solution. So, in this article, a dynamic demand response program

based on price elasticity that integrates loss aversion characteristics is

proposed. The proposed system is compared for all pricing schemes and all

seasons. Four scenarios are created for peak time rebate with different

combinations of loss aversion factor values and all the possible

combinations of rebates. This article directs how these combinations could

change the demand curve and how the utility can make a decision about the

specific importance of the criteria, such as the total demand carrying capacity,

peak demand reduction, and in obtaining optimum profit for utility and the

consumer.

KEYWORDS

demand response (DR), electricity market, loss aversion, price elasticity of demand,
peak time rebate (PTR), smart grid

Introduction

Motivation

In most countries, on one hand, the growing population of the world and on the other

hand, the rise in electricity consumption per capita have contributed to the management

of the demand side being more significant. DR is regarded as one of the most impressive

methods of demand-side management, where the peak of consumers will be shifted from
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high-price hours to low-price hours (Abapour et al., 2020). For

implementing innovative DR programs, tariffs for electricity

purchases must be designed to maximize the economic

interest and to alter the pattern of consumption. This can be

achieved by introducing incentive mechanisms. The first one is to

decrease the customer demand by attempting to offer rewards to

the customer during peak hours. The second means is to avoid

the occurrence of supply–demand imbalance as far as possible

(Ajoulabadi et al., 2020).

The DR programs are classified based on the control

mechanism, offered motivations, and decision variable which

was clearly described by Rajendhar and Belwin Edward (2019).

The programs discussed here like the flat rate(FR), real-time

pricing (RTP), day-ahead pricing (DAP), and peak time rebate

(PTR) programs fall under time-based DR programs. The earlier

studies explored the elasticity of residential loads, that is, the

potential elasticity of demand and reduction of demand with

regard to various prices (H. A. Aalami et al., 2019). Furthermore,

there are some major variables that have not been completely

discussed. To be addressed: most of the previous market elasticity

studies are focused on price-based DR, such as the possible

reduction in demand with a dynamic pricing scheme

(Hosseini et al., 2019; Monfared, Ghasemi et al., 2019). There

is, however, little work performed to target incentive-based DR′s
(IBDR) elasticity, namely, the relationship between the reduction

of overall peak demand and financial incentives.

Literature survey

Based on the DR, Jiang et al. (2019) proposed an efficient

real-time pricing model. In order to express the relationship

between price and energy consumption dynamics, price elasticity

is used. RTP can offer many advantages as a measure of demand-

side management, such as peak shaving, generation deferral, and

network investment, promoting the introduction of renewable

energy. The authors introduced a new model in Sharifi et al.

(2018) for DR programs for economic models, based on the

methodology of time-of-use. The essential advantages of the

model were demonstrated based on price-elasticity. In a smart

grid system, the real-time electricity pricing mechanism is

applied compared to the flat rate pricing mechanism. It

results in monetary savings due to the reduction of electricity

bills and to involve the consumer directly in the reduction of peak

loads by reducing the grid burden and encouraging the

interaction of renewable sources with the grid (Dhundia, 2016).

Lu and Hong (2019) proposed a new real-time incentive-

based demand response algorithm for reinforcement learning

and deep neural network smart grid systems. It intended to help

the service provider to buy energy resources from its subscribing

customers to manage energy volatility and strengthen the grid. In

particular, deep neural networks are used to forecast

unpredictable prices and demands for energy in order to solve

the potential uncertainties. Reinforcement learning is then

implemented to achieve the optimum reward rates for various

clients, taking into account the income of both service providers

and clients. Chai et al. (2019) suggested an incentive-based

demand response model to optimize the benefits of electricity

retailers. The breakthrough is that, given their diverse activities

during both peak and valley times, the models provide utility and

elasticity of different customers. The optimum reduction of clients

with a certain reward price can be achieved by solving the customer

benefit optimization model at peak times. The variance of customers

can be measured with a certain reward price, according to the

elasticity during the valley times. Then, the optimum incentive

price can be found based on the suggested DR model by

evaluating the sensitivity of incentive prices to retailer benefits.

From utility‘s viewpoint, IBDR has significant prospects for

power system peak demand control. Shi et al. (2020)

incorporated a systematic approach by integrating the

technological model and the social–behavioral survey to

determine IBDR ability. The outcome validates the strategy

suggested and acts as guidance for IBDR initiatives for utilities.

The Pecan Street research network, which was established in

2009, is the world’s only real power, gas, and water test bed. More

than 1,000 houses, 250 solar homes, and 65 electric vehicle users

have contributed data to it. Every home’s energy production and

consumption are tracked continuously, 24/7/365, and can be

dissected down to the circuit level. These high-resolution data

shed light on the production, usage, and storage of energy

(Residential data page of Pecan street data port, 2022).

Exelon Corporation (NASDAQ: EXC), a Fortune

100 energy corporation with around 10 million customers

for electricity and natural gas, is based in Chicago and owns

ComEd. More than 4 million customers, or 70% of the state’s

population, in northern Illinois rely on ComEd for power. The

service area of ComEd is essentially bordered to the south by

Iroquois County (about Interstate 80), to the north by

Wisconsin, to the west by Iowa, and to the east by Indiana

(ComEd’s Hourly Pricing, 2011).

Objectives and novelty

The objectives of the article are as follows:

1. To develop a smart grid simulation setup to implement a

dynamic DR program with real-time data on load, generation,

pricing signals, and seasons;

2. To test the system for different pricing signals and different

scenarios of loss aversion, rebates, and elasticity constants.

The novelties of the article are as follows:

1. To propose a dynamic DR program based on price elasticity

that integrates with the loss aversion characteristics;
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2. To see how a demand price characteristic would be effected

and to suggest the best ways based on the priorities of the

parameters such as the peak demand, load demand, and

overall cost for the given conditions, combinations, and

seasons.

Modeling and data fetching for a
smart grid system to incorporate a DR
program

The flow diagram of the article is depicted in Figure 1. The

simulation model of the proposed system is depicted in Figure 2.

The model for the smart grid is based on the model developed by

the Centre of Electromechanics, University of Texas (Austin), for

the Pecan Street Project including some modifications

(University of Texas, 2011; Dhundia, 2016). A substation is

represented by a three-phase source with a Ph–Ph voltage of

13.8 kV, which is connected to a static load that is represented by

a three-phase series RLC load through a cable. A three-winding

residential transformer is tapped from the output of the cable.

It is of 50 KVA power rating with a voltage ratio of

13.8 kV/120V–120 V. The secondary voltages of the

transformer are as follows: Line 1 to Neutral= 120 V ∠ 0°,

Line 2 to Neutral= 120 V ∠ 180°, Line1 to Line 2 = 240 V ∠ 0°,

and neighborhoods 1 and 2 are connected to the output of the

transformer. Each neighborhood is connected with five

homes. Homes with data ids 7951, 8386, 661, 3039, and

3538 of the Pecan Street Project are connected to

Neighborhood 1. Homes with data ids 8565, 9922, 4031,

6139, and 9278 are connected to Neighborhood 2. Out of

those previously mentioned, homes with data ids 661, 3039,

3538, 4031, 6139, and 9278 are having PV connections. The

loading scenario and PV generation data on all houses are

obtained from the Pecan Street project dataport that is used to

get the grid power (“Residential data page of Pecan street data

port,” n. d.).

PGrid � Pused − PPV, (1)

where PPV is the power generated by PV arrays for a given

temperature and irradiance. This PGrid is the power used to

calculate the electricity charges incurred by the user. The PV

profile, grid profile, and load profile of all the seasons are shown

in Figure 3.

The Pecan Street dataport continuously monitors each

home’s energy use and production at intervals of 1 s to 1 min

and beyond. The time slots are on the horizontal axes. Here,

15 min is referred to as a single time slot. The analysis is

conducted throughout each of the four seasons for an entire

day. Even though we can collect data for 24 h by using a 60-min

time slot, a 15-min time slot provides higher resolution data for

outcome analysis. This high-resolution data shed light on the

production, usage, and storage of energy.

The total power distributed among the legs is as

follows: PTotal � PGrid;

The total power consumed by the split phase load is as

follows:

PTotal � P1 + P2 + P3, (2)

where P1 � Power to Leg 1 at 120V; P2 � Power to Leg 2 at 120V;

and P3 � Power to Leg 3 at 240V. Since only PTotal is known, we

randomly distribute the total power to each leg as follows.
Choosing

P3 � PTotalp a randomdistribution number between 0 and 1( ),
(3)

Premaining � PTotal − P3 (4)
Then,

P1 � 0.75pPremaining; P2 � 0.25pPremaining (5)

Each leg current phasor is calculated from the basic power

equation

P � 1
2

VpkI
p
pk( ) (6)

Then,

Ipk � 2p
P

Vpk
( )

p

(7)

where [p] = complex conjugate,Vpk = voltage phasor (peak), and

Ipk = current phasor (peak). Once the current for each phase is

computed, it is used to drive to consumer power from the grid.

I=P/V.

FIGURE 1
Flow diagram of the article.
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The energy supply charges (ESCs) can be calculated for

different pricing schemes as follows:

For the flat-rate mechanism,

ESC � ∑Total kWhdrawnfrom the grid
pFlat rate($/kWh) (8)

where the flat rate value is calculated as an average of the RTP

pricing of the day.

For the RTP mechanism,

ESC � ∑Hourly kWhdrawnfrom the grid

pHourly RTP($/kWh) (9)
For the DAP mechanism,

ESC � ∑Hourly kWhdrawnfrom the grid

pHourly prices that are informed a day before (10)

FIGURE 2
Schematic representation of a data-driven smart grid system for incorporating a DR program.

FIGURE 3
Power profile of all seasons.
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For PTR pricing,

ESC � Total kWhdrawnfrom the gridpFlat rate
$

kWh
( )( )

− Total kWhdrawnfrom the grid during peak hours(
pReward) (11)

The standard seasonal information on Austin is categorized as

summer, fall, winter, and spring. During the year of case study

conduction, 20 June to 22 September is summer, 22 September to

21December is fall, 21December to 20March iswinter, and 20March

to 20 June is spring. A single day from each season has been

considered for our analysis, that is, February 5, May 5, August 5,

and November 5. The days of February and November are on the

weekend. The days of May and August are on a weekday. So, the

seasonal behavioral analysis can also be performed with these data. As

mentioned previously, PPV, PUsed, and PGrid information on all those

days are obtained from the Pecan Street Project dataport. The price

information is obtained from the CommonWealth Edison company

dataport (“ComEd’sHourly Pricing,” 2011). The price information on

all the seasons for the flat rate, RTP, and DAP is shown in Figure 4.

Proposed price elasticity-based
demand response program

Loss aversion

Risk aversion is the behavior of human beings (in particular,

investors and consumers) in finance and economics, who strive

to minimize uncertainty, if they are subjected to uncertainty. It is

the reluctance of a person to participate in an unpredictable

payoff scenario rather than a more predictable payoff but maybe

a lower expected payoff scenario. (For example, a risk-averse

investor may prefer to invest their money in a lower but

guaranteed bank rate instead of a stock that may have a high

return rate, which also involves an opportunity to lose value)

(Mohajeryami, Schwarz, & Baboli, 2015).

The fact that losses and disadvantages have a greater effect on

perceptions than benefits and advantages is a well-established

behavioral fact. This results in a feature of utility that is steeper

for losses than for gains. A traditional presumption that assumes

a symmetry between the gain and loss value simplifies the

study of an individual decision. However, it is not practical. It

can, therefore, lead to over- or under-estimated assumptions. In

Figure 5, a clear illustration of a value function, that can describe

a broad range of outcomes, is shown. In riskless and risky

situations, loss aversion is distinct. In risky situations, the

value function of loss aversion is clearly steeper. The riskless

scenarios include both real-time pricing and peak time discounts.

During peak hours, the utilities charge more in real-time

pricing (RTP), so any load that can be shifted to peak hours

appears to the consumer as a loss relative to the price of off-peak

times. On the other hand, based on their load reduction, the peak

time rebate (PTR) relies on rewarding the clients at the peak time.

Any load that can be shifted to off-peak times is also equivalent to a

gain. Their perceived value, therefore, belongs to the two opposite

sides of the value function, although they are the same method,

namely, shifting the flexible loads from peak to off-peak times.

Price elasticity-based demand response
program:

The price-elasticity curve is shown in Figure 6. When the

price decreases, the demand for almost all goods and services

increases. This demand shift is not linear. The non-linear

FIGURE 4
Price profile of all the seasons and schemes.
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demand curve can be linearized around the particular time to

quantify this effect. It is regarded as the demand elasticity of the

price. In other words, market elasticity is a standardized indicator

of the shift in demand because price increases.

E � P0

d0
.
zd

zp
(12)

Here, E = demand elasticity; d = the value of demand; P = the

price of electricity; and P0 and d0 are the initial price of electricity

and the demand value, respectively. If electricity prices differ over

different periods, the following reactions to demand are

(i) Some of the loads (e.g., illuminating loads) are not capable

of moving from one time to the next and can only be on/off.

Thus, these loads have just a single period of sensitivity and it is

called “self-elasticity,” and it often has a negative value:

Exx � Δdx

Δpx
≤ 0. (13)

(ii) Such periods of consumption can be changed from high to

off-peak or low periods. Such behavior is referred to as

sensitivity for several periods, and “cross-elasticity” is

measured. This value is positive at all times.

Exy � Δdx

Δpy
≥ 0, (14)

whereΔdx is the change in demand in period ‘x’; Δpx is the change

in price in period ‘x’; and Δpy is the variation in price in period ‘y’.

In this article, we will model the DR program depending on

price elasticity and articulate how RTP, DAP, and PTR programs

affect the prices and demands of electricity and how these

programs can achieve the maximum customer benefit.

Modeling for a single period

Assume that

d(i) is the consumer’s demand; p(i) is the electricity spot

price; I(i) is the incentive ($/kWh); and R (d(i)) is the revenue of

the consumer. Also suppose that, depending on the price chosen

for the incentive I(i)), the consumer changes his/her own

demand from d0(i) (original value) to d(i). Thus, due to

running PTR, P ($) would be as P (Δd(i)) = I(i).Δd(i) (H.

Aalami et al., 2008).

Assume that the consumer’s benefit for the ith period is as

shown in

B d i( )( ) � R d i( )( ) − d i( ).p i( ) + P Δd i( )( ) $( ), (15)
P Δd i( )( ) � λ.IB i( ).Δd i( ), (16)

where IB(i) is an incentive bonus, and in this scenario, this is a

reward paid on every peak decrease in kWh. λ, It is a coefficient

that represents the actual value of the incentive or reward’s

nominal payment. It is believed that each person is trying to

maximize their benefit. So,

zB d i( )( )
zd i( ) � zR d i( )( )

zd i( ) − p i( ) + zP Δd i( )( )
zd i( ) � 0. (17)

Consequently,

zR d i( )( )
zd i( ) � p i( ) + λ.IB i( ). (18)

Marginal utility is equivalent to the energy price at the optimum

value. According to H. Aalami et al. (2008), for quadratic

customer revenue function, the Taylor series expansion is

used. So,

FIGURE 5
Value function.

FIGURE 6
Price demand curve.
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R d i( )( ) � R d0 i( )( ) + zR d0 i( )( )
zd i( ) ×Δd i( )

+ 1
2
×
z2R d0 i( )( )
zd2 i( ) × Δd i( )( )2, (19)

where d(i) represents a change from d0(i) (optimal point) in client

demand. The following relation must be maintained if the initial

demand is optimum prior to the introduction of the DR program.

zB0

zd i( ) �
zR d0 i( )( )
zd i( ) − p0 � 0, (20)

zR d0 i( )( )
zd i( ) � p0. (21)

Using (18) and the concept of demand price elasticity (12),

z2R d i( )( )
zd2 i( ) � zp

zd
� 1
E
×
p0

d0
. (22)

Plugging (21) and (22) into the extension to the Taylor series gives

R d i( )( ) � R d0 i( )( ) + p0.Δd i( ) + 1
2
.
1

E i( ).
p0

d0
. Δd i( )( )2. (23)

It is easy to rewrite Eq. 23 as follows:

R d i( )( ) � R d0 i( )( ) + p0.Δd i( ) 1 + Δd i( )
2 × E i( ) × d0

[ ] (24)

Expanding d(i) = d(i)-d0(i) and afterward relating (24) to

(18) offer

p i( ) + λ.IB i( ) � p0 i( ) × 1 + d i( ) − d0 i( )
E i( ) × d0 i( )[ ], (25)

p i( ) + λ.IB i( ) � p0 i( ) + p0 i( ) × d i( ) − d0 i( )
E i( ) × d0 i( ). (26)

So, the consumption of the consumer can also be evaluated as

follows:

d i( ) � d0 i( ) × 1 + Ei × p i( ) − p0 i( ) + λ.IBi)
p0 i( )[ ]. (27)

When I(i) is zero (i.e., no incentive award) in the aforementioned

equation, d(i) would be equal to d0(i). Consequently, the price of

energy would not change and the elasticity of the price will be

equal to 0.

Modeling for the multi-period

The cross-elasticity between the periods i and j is described as

follows:

E i, j( ) � P0 j( )
d0 i( ) ×

zd i( )
zp j( ), i ≠ j, (28)

E i, j( )≤ 0, if i � j,
E i, j( )≥ 0, if i ≠ j.

{

In (28), we conclude that zd(i)
zρ(j) is constant. The demand

response to price variance could, therefore, be characterized as

a linear function. Here, 15 min is known as a one-time slot. The

demand response model for 24 (96-time slots) hours a day can be

obtained by incorporating self- and cross-elasticity of demand as

follows:

d i( ) � d0 i( ) + Ei ×
d0 i( )
p0 i( ) × p i( ) − p0 i( ) + λ.IB i( )

+∑96
j�1
j ≠ i

E i, j( ) × d0 i( )
p0 j( ) × p j( ) − p0 j( ) + λ.IB j( )( ),

i � 1, 2 . . . 96. (29)

The aforementioned equation shows how high the

customer’s consumption should be in order to reach

maximum profits in 24 h. The change in demand in Eq. 29

comes from two sources. The source is self-elasticity, expressed in

the first term, and cross-elasticity, expressed in the second term,

is the other source. Both price- and reward-sensitive demands are

expressed in the model. In order to achieve the maximum profit

in 24 h, the aforementioned equation indicates how high the

consumption of the consumer should be. In the following section,

we will illustrate how incentives could change the demand curve

through executing FR, RTP, DAP, and PTR programs in the

numerical results segment. Load profiles of the consumers are

now pre-classified as low consumption, off peak and peak

TABLE 1 Categorization of the load profile.

February 5 May 5 August 5 November 5

Load profile Interval Load profile Interval Load profile Interval Load profile Interval

Low consumption 0–4 kW 14–28 0–5 kW 1–24 (-50) to 5 kW 26–66 (-5) to 8 kW 39–63

48–64 32–43

Off-peak 4–8 kW 1–13, 35–47, and 65–88 5–10 kW 25–31 5–20 kW 1–25 9–20 kW 1–38 and
64–67

44–66 67–72

Peak 8–16 kW 29–34 >10 kW 67–96 20–36 kW 73–96 20–30 kW 68–96

89–96
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categories based on the different bands of power consumption

and the time duration where it was obtained. The categorization

of load profile is shown in Table 1. The self and cross elasticity

values are fixed based on the literature and by examining with

various set of values to obtain the desired outcomes. The pre-

fixed self and cross elasticity values are shown in Table 2.

Analysis and discussion of results

The flat rate is assumed as the average electricity price of

dynamic RTP. Real-time pricing (RTP) is a service that

specifically provides consumers with real-time hourly rates.

In day-ahead pricing (DAP), a consumer will be told a day in

advance of the price of electricity. A peak time rebate (PTR) is

a program in which clients earn discounts during peak hours.

Loss aversion is not considered (λ = 1) in the PTR1 program.

Loss aversion is considered in the PTR2 program (λ = 0.5).

Any dollar lost is considered to be twice the worth of any

dollar gained. The PTR3 program is the same as PTR2, except

for the doubling of the cross-elasticity constants. In PTR1,2,3

programs, the reward awarded to a client is assumed to be

2.6 times the flat rate value during peak hours. PTR4 is the

same as PTR1, except that the reward being awarded is

doubled, that is, 5.2 times the flat rate value.

A peak price only applies during the designated summer days,

that is, June–September. Also, a very low night-time rate that applies

during the five windiest months, that is, March–May and

November–December (e.g., 5 August, 0.0583$, 5 May, 0.03$, and

5 November, 0.0307$). The experimental rate will be the same as the

normal Austin energy rate (e.g., 5 February 0.0564$) for the

remaining 3 months of January, February, and October

(“ComEd’s Hourly Pricing,” 2011; McCracken and George, 2014).

Scenario 1: Impact of pricing systems on
all season parameters and to illustrate the
numerical results of how incentives could
alter the demand curve

The impact of the pricing scheme on the total cost, total

demand, and peak demand for all seasons has been clearly

analyzed here. Initially, the analysis has been done for 5th of

February. Corresponding results are tabulated in Table 3. In

contrast to flat-rate pricing, the RTP scheme does not show any

effect on parameters such as overall cost, total demand, and peak

demand here. However, with a loss of utility income of –30%

without any impact on the total demand and peak demand, the

DAP schemewill have a negative impact. Compared to other pricing

schemes, peak demand was reduced in the case of PTR1,2,3
(–13.06 percent to –26.13 percent). A fair amount of peak

demand is reduced in PTR1, that is., -26 percent with a loss of

-15 percent in utility profits. The potential to minimize the peak

demand to half (-26.13 percent to -13.06 percent) and half of the

utility income (15.26 percent to -7.63 percent) can be saved relative

to PTR1 by considering the loss aversion (λ = 0.5) in PTR2. In

conclusion, PTR2 has a moderate impact as opposed to PTR1, both

in terms of peak reduction and total cost. The doubling of the cross-

elasticity values in PTR3 as opposed to PTR2 indicates no effect in

terms of peak reduction. However, it shows a good impact in

maintaining utility in profits (-7.63% to -1.2%) and also by

improving the overall carrying capacity of the demand

(2.53 percent to 8.96 percent).

In the case of PTR4, the peak demand was drastically

reduced, that is, -50 percent with a huge compromise of

-64.6 percent in the total utility income, which is an adverse

effect and not advisable. Of all PTR conditions, PTR3 is the best

solution for peak reduction (-13 percent) without

compromising on utility revenue (-1.2 percent) with load

TABLE 2 Self and cross elasticities.

Peak Off-peak Low

Peak -0.10 0.005 0.005

Off-peak 0.005 -0.10 0.003

Low 0.003 0.005 -0.10

TABLE 3 Results of February 05.

Pricing scheme Price in $/kWh Reward in $/kWh Total cost in $ Total demand in kWh Peak demand in kWh

Flat rate 0.0564 24.83 440.08 130.99

RTP Dynamic 23.57 (-5.08%) 433.82 (-1.42%) 132.72 (+1.31%)

DAP 0.0392, Dyn 17.23 (-30.6%) 436.82 (-0.74%) 130.83 (-0.12%)

PTR1 0.0564 0.1475 21.04 (-15.26%) 462.4 (+5.07%) 96.75 (-26.13%)

PTR2 0.0564 0.1475 22.93 (-7.63%) 451.24 (+2.53%) 113.87 (-13.06%)

PTR3 0.0564 0.1475 24.53 (-1.2%) 479.52 (+8.96%) 113.87 (-13.06%)

PTR4 0.0564 0.282 8.77 (-64.64%) 482.75 (+9.69%) 65.53 (-49.97%)
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capacity improvement (9 percent) as a result of the shifting load

to non-peak hours and low-price hours. Figure 7 shows the

demand curve of all pricing schemes for the month of February.

Figures 8, 9 shows the bar chart of all parameters and all pricing

schemes for the month of February and May respectively.

Figure 8 shows the bar chart of all parameters and all

pricing schemes for the month of February.

Then, the analysis has been done for 5th of May, August

and November. Corresponding results are tabulated in

Tables 4–6 respectively. If utility income is only the

criterion, DAP is considered the best in May. According to

the Pecan Street report (Rate Structure Information for Time-

of-Use Pricing, 2011; McCracken and George, 2014), the

explanation for low income in May is due to the very low

night-time rate that applies during the five windiest months

(March–May and November–December). When the key

concern is peak demand reduction, then PTR1 is the best

option. However, because of the compromise in utility

revenue (36.2 percent), it is not advisable. As far as all

parameters are concerned, then PTR3 is the best choice for

May with all the parameters in a moderate range. In PTR3,

with a compromise of 9.5% utility revenue, 13.09% peak

demand can be reduced with increased loading capability

by 9.7%. In August and November, the trend of all the

parameters remains the same. PTR3 is the optimal solution

by keeping all parameters in concern.

FIGURE 7
Demand curve of all pricing schemes for February 05.

FIGURE 8
Bar chart of all parameters and all pricing schemes for February 05.
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TABLE 4 Results of May 05.

Pricing scheme Price in $/kWh Reward in $/kWh Total cost in $ Total demand in kWh Peak demand in kWh

Flat rate 0.03 18.13 605.25 341.11

RTP Dynamic 16.98 (-6.34%) 579.45 (-4.2%) 313.49 (-8.1%)

DAP 0.0389, Dyn 23.43 (+29.2%) 604.6 (-0.1%) 341.19 (0.02%)

PTR1 0.03 0.07845 11.55 (-36.2%) 619.68 (+2.3%) 251.79 (-26.18%)

PTR2 0.03 0.07845 14.84 (-18.1%) 612.47 (+1.19%) 296.45 (-13.09%)

PTR3 0.03 0.07845 16.4 (-9.5%) 664.34 (+9.7%) 296.45 (-13.09%)

TABLE 5 Results of August 05.

Pricing scheme Price in $/kWh Reward in $/kWh Total cost in $ Total demand in kWh Peak demand in kWh

Flat rate 0.0583 62.78 1,076.6 596.43

RTP Dynamic 60.47 (-3.6%) 1,068.37 (-0.7%) 562.59 (-5.6%)

DAP 0.0460,Dyn 50.1 (-20.1%) 1,102.34 (+2.39%) 596.75 (+0.05%)

PTR1 0.058315 0.1524 38.71 (-38.3%) 1,071.31 (-0.49%) 440.56 (-26.1%)

PTR2 0.058315 0.1524 50.75 (-19.1%) 1,073.95 (-0.24%) 518.5 (-13%)

PTR3 0.058315 0.1524 55.14 (-12.1%) 1,149.24 (+6.74%) 518.5 (-13%)

FIGURE 9
Bar chart of all parameters and all pricing schemes for the month of May.

TABLE 6 Results of November 05.

Pricing scheme Price in $/kWh Reward in $/kWh Total cost in $ Total demand in kWh Peak demand in kWh

Flat rate 0.03067 33.64 1,097 648.7

RTP Dynamic 33.68 (0.09%) 1,099 (0.18%) 646.6 (-0.325%)

DAP 0.0275, Dyn 30.14 (-10.41%) 1,098.1 (0.09%) 644.6 (-0.638%)

PTR1 0.307 0.0803 20.01 (-40.5%) 1,097.4 (0.03%) 478.9 (-26.18%)

PTR2 0.307 0.0803 26.83 (-20.25%) 1,097.2 (0.015%) 563.8 (-13.09%)

PTR3 0.307 0.0803 29.44 (-12.49%) 1,182.3 (+7.77%) 563.8 (-13.09%)
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Scenario 2: Impact of pricing schemes for
all seasons on all parameters and contrast
between seasons

The percentage change in total cost, total demand, and

peak demand is shown in bar charts for all pricing schemes in

Figures 10–12, respectively. Percentage change in total cost:

utility revenue has dropped in the range of 3% to 6 percent for

RTP pricing in all seasons, and PTR1 for utility revenue or

total cost of all seasons has dropped in the range of 15% to

40 percent. Due to λ ′s variation from 1 to 0, the total cost of

PTR2 is half of PTR1. A range of 1 percent decreased to

12 percent for PTR3. Percentage change in total demand:

the total demand reduction is in the range of 1 to 4 percent

for RTP pricing in all seasons. The percent increase in the total

demand range is 0 to +5 percent in PTR1. In PTR2, the

percentage increase in the total demand range is 0 to +2%,

that is, the exact half of PTR1. Percentage change in peak

demand: the percentage peak decrease range for RTP is 0 to

–8 percent. The percentage peak reduction range for PTR1 is

26 percent. The percentage peak reduction range for PTR2 is

exactly half of PTR1 at –13 percent. The percentage peak

reduction range for PTR3 is exactly the same as PTR2 at

13 percent.

PTR1 has a positive effect on the reduction of peak demand

(-26%) and the rise in total demand (0–5%). However, the reduction

in utility income also had a major effect (15 to 40 percent). The

credit for PTR2,3 is half the credit for PTR1 in all seasons. The cause

is that λ = 0.5 is taken into account in PTR2,3, and in the demand

response equation, reward 0 is replaced by 0.5*reward0. The value of

λ is also expressed in the value of the credit. At the λ = 1 condition,

peak demand is drastically reduced in all the seasons. Peak demand

FIGURE 10
Percentage change in the total cost for all seasons and all pricing schemes.

FIGURE 11
Percentage change in total demand for all seasons and all pricing schemes.
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is decreased and halved at λ = 0.5 compared to λ = 1; peak demand

comparison at different conditions of λ = 0(FR), 0.5(PTR2), and

1(PTR1) is shown in Figure 13.

The total demand for February and May is between

440 and 660 units. Also, the total cost is between $11 and

$24 with average flat rate values of 0.0564 and 0.03. The total

demand surged by almost 80% in August and November, that

is, in the range of 1,050 to 1180 kwh, and cost ranges from 33

$to 50$.With the same range of the total demand, the total

cost of November is almost half of that of August because the

RTP price signal variation is based on the season and nature

of the day. For the total demand range of ≈440units in

February and ≈1,097 units in November, it charges almost

in the same range of ≈24 to 30 $.

Scenario 3: Rebate or reward that has
given during peak hours is 2.6 times of the
flat rate (PTR4). If it is doubled, that is, the
reward is equal to 5.2 times the flat rate,
what will be the response?

The FEB is reviewing this situation. The corresponding

changes in parameters due to doubling of rebate are tabulated

in Table 7. The flat rate is 0.0564 for the FEB. The incentive is

now boosted to 0.2820 (i.e., 5.2 times the flat rate) during

peak hours. Peak demand is decreased by 49 percent relative

to the flat rate. Also, the total demand is raised by 9%, and the

utility’s total revenue is decreased by 64%. Compared to

PTR1, just by changing the rebate value, much change has

FIGURE 12
Percentage change in peak demand for all seasons and all pricing schemes.

FIGURE 13
Percentage change in peak demand for all seasons and all values of loss aversion.

Frontiers in Energy Research frontiersin.org12

Puppala et al. 10.3389/fenrg.2022.1079695

86

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1079695


been observed in the percentage change in peak demand and

total cost. However, it is not at all suggested as it is happening at

the loss of utility revenue.

Scenario 4: Equal loss scenario and peak
reduction scenario (for any season)

The equal loss scenario criterion is the one that evaluates how

much peak reduction can be accomplished with the same amount

of economic loss. In the peak reduction scenario, utilities are

interested in peak reduction, regardless of the cost. The month of

May is considered for analyzing these scenarios. For equal loss

scenario, total demand and peak demand responses are shown in

Figure 14. The implications of equal loss scenario and peak

reduction scenario on the parameters are listed out in Tables 8, 9

respectively.

To retain equivalent financial loss, i.e., –6.34 percent, the PTR1

rebate is reduced to 0.0343 from $0.07845 per kWh. PTR1 can

achieve a –11.4 percent peak reduction in PTR1 without taking into

account the loss aversion scenario (i.e., λ = 1), compared to a

–8.1 percent peak reduction in RTP. In the same way, a

–7.91 percent reduction compared to RTP is accomplished by

considering loss aversion in PTR2. In terms of peak reduction,

PTR3 shows the same effect as PTR1, i.e., –11.51 percent. The added

advantage with PTR3 is the improvement in total demand serving

capability of 8.5% and peak reduction of –11.4% is attained by

considering loss aversion and doubling the cross elasticity constants.

Compared to RTP, the corresponding peak reduction of

8.11 percent in PTR is achieved at λ = 0.31. RTP is

responsible for utility loss of 6.34 percent for the same peak

load reduction, while 11.24 percent in PTR1. Compared to RTP

(4.26 percent), the total demand serving capacity is better in

PTR1 (+0.7 percent). The selection of either RTP or PTR1 is solely

TABLE 7 Doubling of the rebate scenario.

Pricing scheme Reward in $/kWh Total cost in $ Total demand in kWh Peak demand in kWh

FR 24.83 440.08 130.9

PTR1 2.6*0.0564 21.04 462.4 96.75

PTR4 5.2*0.0564 8.77 482.7 65.53

FIGURE 14
Total demand and peak demand for the equal loss scenario.

TABLE 8 Equal loss scenario.

Pricing scheme Price in $/kWh Reward in $/kWh Total cost in $ Total demand in kWh Peak demand in kWh

FR 0.03 18.13 605.25 341.1

RTP Dynamic 16.98 (-6.34%) 579.45 (-4.26%) 313.4 (-8.09%)

PTR1 0.03 0.0343 16.98 (-6.34%) 611.56 (+1.04%) 302.0 (-11.44%)

PTR2 0.03 0.0474 16.98 (-6.33%) 609.61 (+0.72%) 314.12 (-7.91%)

PTR3 0.03 0.069 16.98 (-6.36%) 657.23 (+8.58%) 301.83 (-11.51%)
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dependent on the priority of the cost, else load demand serving

capacity for the same peak reduction.

Scenario 5: For the same value of rebate, if
λ is changed from 0 (FR), 0.5 (PTR2), and 1
(PTR1), then what will happen?

For the same value of rebate, change in loss aversion value effects

the parameters that are shown in Table 10. For the same reward

value, a decrease in peak demand is caused by λ approaching from

0 to 1. The value range is from 313.4 to 251.4 for May and 562.5 to

440.5 for August. At the same time, this allows the total demand to

rise. For May, its value ranges from 579.4 to 619.6 and for August, it

ranges from 1,068.3 to 1,071.3. In conclusion, the pattern of a

significant reduction in peak demand and a rise in total demand is

observed as λ approaches 0 to 1.

Scenario 6: For the same value of reward
and λ values, are elasticity constants
doubled?

For the same value of reward and λ values, but elasticity

constants are doubled. Then the corresponding implications

on the parameters are shown in Table 11. The total demand is

significantly increased through the doubling of cross

elasticity values. Their values change from 612 to 664 for

May. The range is 1,073–1,149 for August. The peak demand

remains unchanged for May (296–296) and August

(518–518). Therefore, the peak demand has been shown to

remain unaltered, and overall demand has risen by

7–8.4 percent.

Conclusion

The potential of demand response initiatives has offered

new perspectives for the electricity market to participate in

the process of making decisions by the clients. Time-based

DR programs help enhance the indices of service and

reliability. Choosing the right one among them depends on

financial and technical aspects. These aspects should be

integrated into the utility function of the customer. The

influence of loss aversion is studied on the PTR program

with different scenarios in this paper. Of all PTR conditions,

without sacrificing on utility revenue with load capacity

increase, PTR3 is the best option for peak reduction. There

are also season-based conclusions, such as a drastic change in

some parameters for a specific season or between different

TABLE 9 Peak reduction scenario.

Pricing scheme Price in $/kWh Reward in $/kWh Total cost in $ Total demand in kWh Peak demand in kWh

FR 0.03 18.13 605.25 341.11

RTP Dynamic 16.98 (-6.34%) 579.45 (-4.26%) 313.49 (-8.09%)

PTR1 0.03 0.07845 16.09 (-11.24%) 609.73 (+0.73%) 313.42 (-8.11%)

TABLE 10 For different values of loss aversion.

Season May August

Pricing scheme λ Reward Total demand Peak demand λ Reward Total demand Peak demand

FR

RTP 0 579.4 313.4 0 1,068.3 562.5

PTR2 0.5 0.07845 612.4 296.4 0.5 0.1524 1,073.9 518.5

PTR1 1 0.07845 619.6 251.8 1 0.1524 1,071.3 440.5

TABLE 11 Doubling of the elasticity constant case.

May August

λ Reward Elasticity
constant

Total
demand

Peak
demand

λ Reward Elasticity
constant

Total
demand

Peak
demand

PTR2 0.5 0.07845 0.005 and 0.003 612.4 296.4 0.5 0.0583 0.005 and 0.003 1,073.9 518.5

PTR3 0.5 0.07845 0.01 and 0.006 664.3 (+7%) 296.4 0.5 0.0583 0.01 and 0.006 1,149.2 (+8.4%) 518.5
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seasons in relation to other parameters. It also discusses the

situations that make the system financially and technically

unviable. The best outcomes of the peak load reduction

scenario and equal loss scenario are well-explored. In

conclusion, as λ approaches 0 to 1, the trend of a sharp

reduction in the peak demand and an increase in the total

demand is observed. The peak demand has been shown to

remain constant, and the total demand has increased by

doubling the cross-elasticity values.
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Nomenclature

Acronyms

DR demand response

FR flat rate

RTP real-time pricing

DAP day-ahead pricing

PTR peak time rebate

IBDR incentive-based demand response

ESC energy supply charge

Variables

PGrid power drawn from the grid

PUsed power consumed by the loads

PPV PV power generated

PTotal total power distributed among the legs

P1,2,3 power to legs 1, 2, and 3, respectively

Vpk voltage phasor (peak)

Ipk current phasor (peak)

E demand elasticity

d value of demand

p price of electricity

Δd change in demand

Δp change in price

I(i) incentive($/kWh)

R(d(i)) revenue
IB(i) incentive bonus

λ coefficient that represents the actual value of the incentive or

reward’s payment

Indices

i,j time periods
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Short term power load forecasting
based on BES-VMD and
CNN-Bi-LSTM method with error
correction

Nier Wang and Zhanming Li*

College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou, China

Aiming at the strong non-linear and non-stationary characteristics of power load, a
short-term power load forecasting method based on bald eagle search (BES)
optimization variational mode decomposition (VMD), convolutional bi-directional
long short-term memory (CNN-Bi-LSTM) network and considering error correction
is studied to improve the accuracy of load forecasting. Firstly, a decomposition loss
evaluation criterion is established, and the VMD optimal decomposition parameters
under the evaluation criterion are determined based on BES to improve the
decomposition quality of the signal. Then, the original load sequence is
decomposed into different modal components, and the corresponding CNN-Bi-
LSTM network prediction models are established for each modal component. In
addition, considering the influence of various modal components, holiday and
meteorological factors on the error, an error correction model considering short-
term factors is established to mine the hidden information contained in the error to
reduce the inherent error of the model. Finally, the proposed method is applied to a
public dataset provided by a public utility in the United States. The results show that
this method can better track the changes of load and effectively improve the
accuracy of short-term power load forecasting.

KEYWORDS

short term load forecasting, BES, variational modal decomposition, CNN-Bi-LSTM, error
correction

1 Introduction

With the implementation of renewable energy policy, renewable energy has gradually
replaced fossil fuels and been rapidly applied to the power system. However, the large-scale
renewable energies are connected to the power grid, which could affect customers’ electricity
consumption behavior and load forecasting (Yang D. et al., 2023). Accurate power demand
forecasting is the basis for realizing safe and economic operation of power system and scientific
management of power grid, it helps to estimate future loads from recent loads using various
techniques in efforts to save energy, reduce costs, perform power management, and implement
economic dispatch plans (Talaat et al., 2020). The research shows that if the prediction error is
reduced by 1%, a 10 GW power station may save $1.6 million per year (Hobbs et al., 1999).
Therefore, establishing an accurate short-term power load forecasting model for a power system
is both required and beneficial.

The factors that affect the short-term power load mainly include meteorological, holidays,
user habits, etc. These factors are working together to make the power load sequence show
obvious volatility and nonlinearity characteristics, which undoubtedly increases the difficulty of
accurate prediction (Zhao et al., 2022). Therefore, it is necessary to study more accurate short-

OPEN ACCESS

EDITED BY

Sarat Kumar Sahoo,
Parala Maharaja Engineering College
(P.M.E.C), India

REVIEWED BY

Ashwin Sahoo,
C. V. Raman College of Engineering, India
Prabhakar Karthikeyan Shanmugam,
VIT University, India
Sachidananda Prasad,
National Institute of Science and
Technology, India
Razia Sultana Wahab,
VIT University, India

*CORRESPONDENCE

Zhanming Li,
lizm@lut.edu.cn

SPECIALTY SECTION

This article was submitted
to Smart Grids,
a section of the journal
Frontiers in Energy Research

RECEIVED 21 October 2022
ACCEPTED 19 December 2022
PUBLISHED 06 January 2023

CITATION

Wang N and Li Z (2023), Short term power
load forecasting based on BES-VMD and
CNN-Bi-LSTM method with
error correction.
Front. Energy Res. 10:1076529.
doi: 10.3389/fenrg.2022.1076529

COPYRIGHT

© 2023 Wang and Li. This is an open-
access article distributed under the terms
of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Energy Research frontiersin.org01

TYPE Original Research
PUBLISHED 06 January 2023
DOI 10.3389/fenrg.2022.1076529

92

https://www.frontiersin.org/articles/10.3389/fenrg.2022.1076529/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.1076529/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.1076529/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.1076529/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2022.1076529&domain=pdf&date_stamp=2023-01-06
mailto:lizm@lut.edu.cn
mailto:lizm@lut.edu.cn
https://doi.org/10.3389/fenrg.2022.1076529
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2022.1076529


term power load forecasting methods. For the short-term power load
forecasting model, the research mainly includes statistical methods
and machine learning methods. Among them, the statistical methods
mainly include autoregressive integrated moving average model (Lee
and Ko, 2011), Kalman filter (Zhao et al., 2016), etc. The principle and
modeling of such methods are simple, and the statistical method can
fully reflect the temporal relationship between power load data, but its
nonlinear characteristics are not fully considered. Machine learning
algorithms can effectively deal with nonlinear problems. The
traditional machine learning methods mainly include: artificial
neural network (ANN) (Garcia-Ascanio and Mate, 2009), support
vector machine (SVM) (Jiang et al., 2018), random forest (RF) (Wu
et al., 2015), etc. ANN has self-learning ability and can effectively solve
the nonlinear problems in load data, but it is difficult to determine the
network structure scientifically, and has some defects such as local
minimum, large generalization error, the prediction accuracy is
usually difficult to meet the requirements. The SVM method solves
the local minimum question and has stronger generalization ability,
but the disadvantage of SVM is that it is sensitive to parameter
adjustment and kernel function selection. The RF algorithm is
applied to short-term power load forecasting, which has the
advantages of higher prediction accuracy and controllable
generalization error, but when the load fluctuation is large, the
prediction accuracy is not high. Although the above machine
learning methods can better reflect the nonlinear relationship
between data, the common problem of these methods lies in the
lack of consideration of the temporal correlation of time series data
(Rodrigues and Pereira, 2020).

With the development of deep learning, different types of neural
networks have been proposed one after another, which provides
different solutions to the problem that the timing and nonlinearity
of data cannot be considered at the same time in power load
forecasting. Such as long short-term memory network (LSTM),
convolutional neural network (CNN) and deep belief network
(DBN) (Chen et al., 2021). Among them, LSTM network has the
characteristics of preserving the timing and nonlinearity of data at the
same time, so its application in power load forecasting, renewable
energy output power forecasting and other fields is increasing. As an
optimization of LSTM network, gated recurrent unit (GRU) not only
achieves its approximate accuracy, but also has the advantages of less
training parameters and fast speed. In addition, bi-directional long
short-term memory (Bi-LSTM) network is used for load forecasting,
which has better expression ability for continuous time series, and the
reuse of weight parameters makes it have lower requirements for data
(Kwon et al., 2020; Zang et al., 2021).

However, although GRU and other models can fully respond to
the long-term historical process in the input time series data, the
effective information between discontinuous data cannot be extracted,
and thus the potential relationship between data cannot be deeply
mined. With the diversification of training data types and the increase
of power grid demand for load forecasting accuracy, the combined
forecasting model came into being to further improve the accuracy of
load forecasting (Muhammed et al., 2021). Lu et al. (2019) proposed a
short-term load forecasting model combining CNN with LSTM
network. CNN is used to extract the potential relationship between
continuous data and discontinuous data in the feature map and form
the feature vector. Then, the feature vector is used as the input of
LSTM for load forecasting. Lee and Cho, (2022) determined the most
accurate peak load-forecasting model by comparing the performance

of time series (Seasonal autoregressive integrated moving average with
exogenous variables, SARIMAX), machine learning (Support vector
regression, SVR, etc.) and hybrid models (SARIMAX-ANN, etc.). The
results indicate that the hybrid models exhibit significant prediction
performance.

With the continuous development of data decomposition
algorithm, in order to reduce the impact of volatility and
nonlinearity in power load series and further improve the accuracy
of short-term load forecasting, the hybrid forecasting method
combining data decomposition algorithm with existing forecasting
models has been widely used in power load forecasting (Zhang et al.,
2022). Empirical mode decomposition (EMD) is an adaptive signal
decomposition method based on local characteristics of signals. This
method overcomes the difficulty of selecting wavelet basis and
determining decomposition scale in wavelet transform (WT), so it
is more suitable for nonlinear and non-stationary signal analysis
(Zhang et al., 2021). Meng et al. (2021) proposed a short-term load
forecasting approach integrating EMD, bi-directional long short-term
memory and attention mechanism. EMD decomposes the load series
into a finite number of components or modes [called intrinsic mode
functions (IMFs)] with different characteristic scales, and decomposes
the fluctuations or trends of different scales that actually exist in the
signal step by step, then a Bi-LSTM neural network based on attention
mechanism is applied on each of the extracted IMFs to predict the
tendencies of these IMFs, finally, the prediction results of each
component are superposed to obtain the load prediction value.
Compared with the original load data series, the decomposed series
has stronger regularity and can improve the prediction accuracy.
Kassa et al. (2019) proposed a short-term load forecasting model of
microgrid by combining empirical mode decomposition, particle
swarm optimization (PSO) and adaptive neural fuzzy inference
system (ANFIS). The complex load sequence is decomposed into a
set of modal functions and a residual by EMD, and then the ANFIS
model of each modal function component and residual are optimized
by PSO algorithm, each modal function component and residual are
predicted separately to improve the prediction accuracy. However,
EMD needs to solve the problems of modal mixing, end effect and over
envelope. Liang et al. (2018) decomposed the original sequence of
power load into multiple modal functions with different
characteristics by VMD, and the prediction model is established
through DBN optimized by PSO algorithm, to improve the
prediction accuracy; Ye et al. (2022) proposed a load forecasting
method based on VMD and multi-model fusion to solve the
problem of strong volatility and randomness of multi load in user
level integrated energy system and the difficulty of accurate
forecasting; Yang Y. et al. (2023) used VMD to decompose the
original data into several sub-sequences, which enables it to extract
the implied features to separately predict each sub-sequence to
improve the prediction accuracy of the short-term load forecasting.
Compared with WT and EMD, VMD is widely used in the fields of
power load forecasting and renewable energy power signal
decomposition due to its strong self-adaptability and ability to
overcome modal mixing (Zhou et al., 2021). However, the
following problems still exist:

(1) In VMD process, there is no evaluation standard to guide
parameter setting, and parameters are often given by
experience, which leads to unsatisfactory decomposition effect.
Yuan and Che, (2022), Dou et al. (2018).
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(2) VMD uses a quadratic penalty factor in the construction of the
variational problem, which over punishes the internal jump of the
signal, which is easy to generate prediction errors, and the
previous research did not make full use of the implicit
information in the error. Yan and Tian, (2019).

According to the literatures above, to solve the above problems,
meet the challenges of short-term power load forecasting brought by
the obvious volatility and nonlinear characteristics of power load due
to its vulnerability to various factors, and further improve the accuracy
of short-term power load forecasting, a combined short-term power
load forecasting method based on BES-VMD-CNN-Bi-LSTM-EC
model is proposed in this paper. The forecasting process is divided
into two stages: In the first stage, the VMD method optimized by BES
algorithm is used to decompose the complex power load data into
different subsequence components and then the CNN-Bi-LSTM
forecasting model of each load component is established,
subsequently, the independent prediction results of each
component are reconstructed to obtain the predicted load
sequence. In the second stage, an error correction model based on
CNN-Bi-LSTM network is established to obtain the predicted error
sequence to correct the predicted load sequence before. At last, the
final load forecasting results are obtained and further improve the
short-term load forecasting effect.

The main contributions of this paper are as follows: 1) The VMD
method optimized by bald eagle search (BES) decomposes the non-
stationary and nonlinear power load series into components with
different frequencies, which effectively reduces the complexity of the
load series. 2) The CNN-Bi-LSTM prediction model of each load

subsequence is established to improve the feature extraction and
dimension reduction ability of the model to the original data. 3)
An error correction model considering short-term factors, such as
holiday and meteorological factors on the error is established, which
reduces the inherent error of the prediction model by mining the
effective information hidden in the error. 4) The method proposed in
this paper is applied to the actual load verification of the data set
published in the 2012 global energy forecasting competition, and the
experimental results show its effectiveness in short-term power load
forecasting.

The rest of this paper is organized as follows: Section 2 provides
the methodology of VMD. Section 3 analyzes the superiority of BES
optimization algorithm by simulation experiments. Section 4
introduces the proposed hybrid prediction method in detail. A case
study is given to verify the effectiveness of the proposed model in
Section 5. Finally, the conclusion is presented in Section 6.

2 Methodology of VMD

VMD is an adaptive signal decomposition method, which can
effectively deal with non-stationary and nonlinear signals. By
iteratively searching the variational mode, the original time series
f(t) is decomposed into different components uk(t) with limited
bandwidth, and its corresponding center frequency is ωk. Taking
the decomposition of power load signal as an example, the steps of
constructing the variational problem are as follows:

(1) For each load component uk(t), Hilbert transform is used to
calculate and analyze the signal, and its one-sided spectrum is
obtained as follows:

δ t( ) + j
πt

( )*uk t( ) (1)

(2) For each uk(t), the spectrum of each component is modulated to
the corresponding fundamental frequency band by mixing an
exponential term of its corresponding center frequency, as follows:

δ t( ) + j
πt

( )*uk t( )[ ]e−jωkt (2)

(3) The Gaussian smoothing method of demodulated signal is used to
estimate the signal bandwidth of each subsequence, and the
variational problem with constraints is solved. The objective
function is:

min
uk{ }, ωk{ }

∑K
k�1

zt δ t( ) + j
πt

( )*uk t( )[ ]e−jωkt

�������
�������
2

2

⎧⎨⎩ ⎫⎬⎭

s.t.∑K
k�1

uk � f t( )

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(3)

where, {uk} = {u1,u2···uK} is the k modal components obtained after
decomposition. {ωk} = {ω1,ω2···ωK} is the center frequency
corresponding to each modal component. zt means partial
derivative. δ(t) represents the impulse function. * represents a
convolution operation.

By introducing Lagrange multiplication operator λ and the
quadratic penalty factor α, the above constrained extreme value

FIGURE 1
Flow chart of VMD.
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problem is transformed into an unconstrained problem for solution, as
shown in the following formula:

L uk{ }, ωk{ }, λ( ) � α∑K
k�1

zt δ t( ) + j

πt
( )*uk t( )( )e−jωkt

�������
�������
2

2

+ f t( ) −∑K
k�1

uk t( )
���������

���������
2

2

+ 〈λt, f t( ) −∑K
k�1

uk t( )〉
(4)

The alternating direction multiplier method is used for ωk and uk
is optimized as follows:

ωn+1
k �

∫∞

0
ω ûn+1

k ω( )∣∣∣∣ ∣∣∣∣2dω
∫∞

0
ûn+1
k ω( )∣∣∣∣ ∣∣∣∣2dω

ûn+1
k ω( ) �

λ̂
n
ω( )
2

+ f̂ ω( ) −∑k
i�1
ûn+1
i ω( ) − ∑K

i�k+1
un
i ω( )

1 + 2α ω − ωn
k( )2

(5)

Where, ωn+1
k is the center of gravity of the power spectrum of the

current modal function. ûn+1k is the wiener filtering of the current
signal.^ is Fourier transform. n is the number of iterations.

Carry out cyclic iterative solution according to (5), update uk and
ωk, and bring in (6) for update λ:

λ̂
n+1

ω( ) � λ̂
n
ω( ) + τ f̂ ω( ) −∑K

k�1
ûn+1
k ω( )⎡⎣ ⎤⎦ (6)

where τ is the renewal coefficient of λ. For discrimination accuracy ξ >
0, iteration stop condition exists:

∑K
k�1

ûn+1
k ω( ) − ûn

k ω( )���� ����22
ûn
k ω( )���� ����22

< ξ (7)

If ξmeets the iteration stop condition, the iteration cycle ends and
the adaptive decomposition of the input signal is realized. if not, brings
uk and ωk in (5) again and starts a new round of iteration until the
condition is met.

The flow chart of VMD is shown in Figure 1.

3 BES optimization algorithm

3.1 Bald eagle search

BES is a novel metaheuristic algorithm, which has strong global
search ability and can effectively solve various complex numerical
optimization problems (Ahmed et al., 2022). The selection of VMD
parameters can be regarded as an optimization problem. Therefore,
this paper decides to use BES algorithm to optimize VMD
parameters. BES algorithm simulates the predator-prey
mechanism of bald eagle. The core optimization part of each
iteration mainly includes three stages: selection space, search
space and swooping phase.

(1) Selection space: bald eagles recognize and choose the best space,
this selected space should be rich in prey, this can be implemented
by the following equation:

Pi,new � Pbest + α × γ × Pmean − Pi( ) (8)
where, Pbest is the search area selected using the best position
identified in the previous search. α is a controlling parameter that
adapts the positions’ changes. γ is a random number in range of
[0,1]. Pmean is the mean position. Pi is the current position of ith
bald eagle.

(2) Search space: the bald eagle accelerates the search in a spiral shape
to determine the best capture position. The position is updated as
follows:

Pi,new � Pi + x i( ) × Pi − Pmean( ) + y i( ) × Pi − Pi+1( ) (9)

FIGURE 2
Function space.

FIGURE 3
Optimization process of multi optimization algorithms.
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x i( ) � xr i( )
max xr| |( );xr i( ) � r i( ) × sin θ i( )[ ]

y i( ) � yr i( )
max yr

∣∣∣∣ ∣∣∣∣( );yr i( ) � r i( ) × cos θ i( )[ ]

r i( ) � θ i( ) + R × rand

θ i( ) � a × π × rand

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

where, x(i) and y(i) are the position coordinates of ith bald eagle. r(i) is the
polar radius of the equation. θ(i) is the polar angle of the direction. a
determines the angle between the search point and the central point, it is
assigned in range of [5,10]. R is a parameter that determines the search
cycles’ number, it is assigned in range of [0.5, 2]. rand is a random number.

(3) Swooping phase: the bald eagle quickly pounced on the prey
according to the best position obtained in the previous stage and
told other bald eagles to start swooping. Its position was updated
as follows:

Pi,new � r and × Pbest + x1 i( ) × Pi − c1 × Pmean( )
+ y1 i( ) × Pi − c2 × Pbest( ) (11)

x1 i( ) � xr i( )
max xr| |( );xr i( ) � r i( ) × sinh θ i( )[ ]

y1 i( ) � yr i( )
max yr

∣∣∣∣ ∣∣∣∣( );yr i( ) � r i( ) × cosh θ i( )[ ]

θ i( ) � a × π × rand

r i( ) � θ i( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

where, x1(i) and y1(i) denote the position coordinates of the target
prey. c1 and c2 are the parameters used to control the exercise intensity,
and the values are [1,2].

3.2 Simulation experiment and analysis

In order to discuss the significance of the BES algorithm, the
optimization comparison experiment of the two-dimensional
simulation function in (13) is carried out.

f � x2 + 10 × cos 2πx( ) + y2 + 10 × cos 2πy( ) + 20 (13)
Whale optimization algorithm (WOA) (Mirjalili and Lewis, 2016),

particle swarm optimization (PSO) algorithm (Massaoudi et al., 2021),

FIGURE 4
CNN-Bi-LSTM hybrid model.

FIGURE 5
Short term load forecasting model via BES-VMD-CNN-Bi-LSTM-EC.
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grey wolf optimizer (GWO) algorithm (Mirjalili et al., 2014), moth-
flame optimization (MFO) algorithm (Mirjalili, 2015) and BES
algorithm are used respectively to find the minimum value of this
function. In order to maintain the rationality of the experimental
results and the consistency of the parameters of various algorithms,
the population size is set to 30 and the maximum iterations is set to
100. The function space is shown in Figure 2.

The optimization process of each optimization algorithm is shown
in Figure 3.

As can be seen from Figure 3, in terms of optimization speed,
WOA finds the minimum value after the 41st iteration, which is
0.49778. PSO finds the minimum value after the 92nd iteration,
which is 0.49753. GWO finds the minimum value after the 98th
iteration, which is 0.4975. MFO finds the minimum value after the
43rd iteration, which is 0.49748. BES finds the minimum value after
the 36th iteration, which is 0.4974797. In terms of optimization
accuracy, the accuracy of BES reaches 7 digits after the decimal
point, which is closer to the global minimum value. WOA, PSO,
GWO, MFO meta heuristic optimization algorithms have certain
advantages in optimization, BES optimization is a new meta
heuristic optimization algorithm, which has strong global search
ability and can effectively solve various complex numerical
optimization problems. Based on the above analysis, for VMD
parameter selection, it can be regarded as an optimization problem.
Compared with WOA, PSO, GWO and MFO, BES optimization
algorithm shows certain advantages among them, so this paper uses
BES algorithm to optimize VMD parameters.

4Hybridmodels and predictionmethods

4.1 CNN-Bi-LSTM hybrid model

CNN model can obtain effective representation directly from the
original signal through the alternate use of convolutional layer and
pooling layer through local connection and weight sharing, and
automatically extract the local features of the data, so as to
establish a dense and complete feature vector. So, this paper selects
CNN model to extract load data features.

For Bi-LSTM, the input of the model is output after passing
through the LSTM network in sequential and reverse directions
respectively (Tang et al., 2019; Tian et al., 2021). The output of the
model contains the information of the input sequence in forward

direction and backward direction at the same time, and the weight
reuse further improves the expression ability of the network, while the
total amount of data demand remains unchanged, so the risk of under
fitting is reduced. Therefore, considering the fluctuation and
uncertainty of input data in power load forecasting, CNN is fused
on deep Bi-LSTM network to improve the ability of feature extraction
and dimension reduction of the model on the original data.

According to the existing experience, there are various factors
that affect power load, mainly include: historical load,
meteorological factors, date type, etc. Yang J. et al. (2021).
Among them, due to the time series characteristics of load, the
prediction model can learn the recent change rule of load according
to the load daily data that is close to the date to be predicted, which
can enrich the prior information of the prediction model. Based on
this, this paper selects the historical load data 1 day before the
forecast date as one of the characteristics that affect short-term load
forecasting; Meteorological factors have a crucial impact on short-
term load forecasting. Among them, the common influencing
factors are temperature, followed by humidity, wind speed,
precipitation, air pressure, etc. Due to the limitations of the
experimental data in this paper, only considers temperature as
one of the characteristics that affect short-term load forecasting;
Date type is another important factor affecting short-term forecast.
At present, urban power load is still dominated by industrial power,
and the power load on non-working days (Saturday, Sunday,
holidays) is significantly less than that on working days
(Monday to Friday). Therefore, this paper lists the date type
(weather it is Saturday or Sunday, whether it is a legal holiday)
as characteristics that affect the load forecasting results.

Based on the above analysis, in this paper, the input X includes
the following 8 characteristics: historical load, temperature, data (x
year, x month, x day), time (x hour), whether it is Saturday or
Sunday, whether it is a legal holiday, expressed as X = [x1, x2, x3, x4,
x5, x6, x7, x8]. And the other prediction models maintain the same
input characteristics. The structure of CNN-Bi-LSTM hybrid
model proposed in this paper is shown in Figure 4.

TABLE 1 Center frequency of different K.

K 3 4 5 6 7 8

u1 0.7854 0.6283 0.5236 0.4488 0.3927 0.3491

u2 1.5708 1.2566 1.0472 0.8976 0.7854 0.6981

u3 2.3562 1.8277 1.5708 1.3464 1.1781 1.0472

u4 2.5133 2.0808 1.8296 1.5708 1.3077

u5 2.6180 2.0914 1.8306 1.8298

u6 2.6156 2.3551 2.0908

u7 2.6196 2.3566

u8 2.8729

FIGURE 6
Real load sequence and O-VMD results.
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As show in Figure 4, CNN is used to extract the effective feature
vector, and the feature vector is constructed in the form of time
series and used as the input data of Bi-LSTM network. The depth of
the prediction model can be increased by adding Bi-LSTM network
units to improve the prediction effect of the network. In order to
facilitate the subsequent comparison, the sliding window width is
24 records; Step size is 1. The hyperparameters of each CNN-Bi-

LSTM model are obtained by grid search method. Dropout
technology is used between Bi-LSTM layers to prevent model
over fitting. Finally, vectors in the specified format are output
through dense.

4.2 BES-VMD-CNN-Bi-LSTM-EC hybrid
model

For the data-driven prediction model, it is necessary to determine
its input sequence and output sequence. Since the load at the time of
the day to be predicted has a strong correlation with the load of the
previous day, the 24-h characteristic data of the previous day is
selected as the input, and the output is the load value of each hour
of the day to be predicted. The short-term power load forecasting
model based on BES-VMD-CNN-Bi-LSTM-EC in this paper is shown
in Figure 5.

The whole forecasting process is divided into two stages:

(1) In the first stage, several component prediction models based on
BES-VMD-CNN-Bi-LSTM hybrid network are constructed.
Firstly, a decomposition loss function (Loss) is defined as the
evaluation criteria, and the optimal number of components K and
the penalty factor α are found through the BES algorithm under
this evaluation criteria. Then, the real load sequence is
decomposed into K modal components by VMD, which are
recorded as IMF1, IMF2, . . ., IMFK and the corresponding
CNN-Bi-LSTM hybrid network models are established. Finally,
the independent prediction results of each sub series are
reconstructed to obtain the predicted load sequence.

(2) In the second stage, an error correctionmodel considering short-term
factors is proposed. Considering that the influence of nonlinear and
short-term fluctuation factors of the sequence itself, various modal
components, holiday (whether it is Saturday or Sunday and whether
it is a legal holiday) andmeteorological factors (ambient temperature)
are selected as the input of the error correction model. The error
sequence obtained by subtracting the reconstructed load sequence
from the real load sequence is used as the output. Subsequently, an
error correction model based on CNN-Bi-LSTM network is
established to obtain the predicted error sequence to correct the
predicted load sequence before. At last, the final load forecasting
results are obtained and further improve the short-term load
forecasting effect.

FIGURE 7
VMD parameters optimized by BES algorithm.

FIGURE 8
Optimization process of multi optimization algorithms.
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4.3 Evaluation indices

To verify the effectiveness of the proposed model, mean absolute
percentage error (MAPE) and root mean square error (RMSE) are
used to evaluate the forecasting results, and their specific expressions
are as follows:

MAPE � 1
n
∑n
i�1

yact i( ) − ypred i( )
yact i( )

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ × 100%

RMSE �
��������������������∑n

i�1 yact i( ) − ypred i( )( )2
n

√ (14)

where, n represents the total number of samples. yact(i) and ypred(i) are
the real and predicted load values at time i, respectively.

5 Case study

The experimental computer is configured as: Windows 10 64-bit
operating system; Intel(R) Core (TM)i7-8700 CPU; 32GB memory;
NVIDIA GeForce RTX 2070 graphics card, which is based on Python
3.6 and tensorflow1.12 operating environment.

5.1 Dataset collection

The experimental data comes from the 2012 global energy
forecasting competition published data set, including the hourly
load data, the corresponding temperature dataset and holiday
information of 20 areas (Hong et al., 2014). The case takes the
load data of area 6 from 29 November 2006 to 29 June 2008 as the
original data, and divides it into training set, verification set and test
set according to the ratio of 8:1:1. The sampling interval is 1 h and
24 points are collected in 1 day. The input includes 8 characteristics:
historical load, temperature, year, month, day, hour, whether it is
Saturday or Sunday and whether it is a legal holiday. RF, SVM, LSTM,
GRU, Bi-LSTM, CNN-LSTM, CNN-GRU, CNN-Bi-LSTM, O-VMD-
CNN-LSTM, O-VMD-CNN-GRU, O-VMD-CNN-Bi-LSTM and
BES-VMD-CNN-Bi-LSTM are selected as comparison models to
verify the feasibility and effectiveness of the proposed model BES-
VMD-CNN-Bi-LSTM-EC.

After determining the input characteristics, it is necessary to
normalize them to improve the convergence speed of the model. In
this paper, the max-min normalization method is used to normalize
the characteristic series such as historical load, temperature, year,
month, day and hour to the range of [0,1]. The dummy variable is used
to represent the weekend and legal holiday characteristics, where logic
not represented by 0 and logic yes is represented by 1.

5.2 VMD parameter optimization

5.2.1 Central frequency method
The selection of the number of modal components K directly

affects the results of VMD. If K is too large, it will lead to modal

FIGURE 9
Real load sequence and BES-VMD results.

FIGURE 10
(A) Load forecasting results for a continuous week. (B) Load forecasting results of 1 day.
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repetition or additional noise; if K is too small, the modal under
decomposition will occur, resulting in the decline of the accuracy of
the subsequent prediction model. Generally, the range of K is set to
[3, 8], and the center frequencies corresponding to different
components are different (Yang L. et al., 2021). Therefore, set
K = 3, 4, . . ., 8 to conduct experiments respectively, and obtain
the center frequencies of each component corresponding to different
K values. When the K with similar center frequency appears for the
first time, it is marked, and determine K-1 as the number of modal
components to decompose the original load sequence. In this paper,
the method of determining VMD parameter by central frequency

method is expressed as O-VMD. 1000 time series load samples with
non-linear and non-stationary are randomly selected and
decomposed by VMD to obtain different components. Table 1
shows the center frequencies of various component corresponding
to different K values.

It can be seen from Table 1 that when K is 6, the center frequencies
of modal components u4 and u5 are 1.8296 and 2.0914 respectively.
The center frequencies of the two components are approximate and it
is over decomposed at this time. When K = 8, the center frequencies of
u5 and u6 are approximate, so the number of components K is
determined to be 5. Based on this, the above 1000 time series load
samples and their O-VMD decomposition results are shown in
Figure 6. It can be seen from Figure 6 that the average amplitude
of IMF3, IMF4 and IMF5 is small, with large fluctuations and poor
regularity; For mode function IMF2, the regularity is relatively good
and the periodicity is relatively obvious; the average amplitude of the
modal function IMF1 is large, the change is gentle, and the regularity is
easiest to grasp. Later, these five modal functions will be modeled
separately for short-term load forecasting of O-VMD combined
method.

5.2.2 VMD parameters optimized by BES
In addition to the selection of the value of K, the penalty factor α

affects the reconstruction accuracy of VMD signal. Considering the
influence of decomposition loss on forecasting accuracy, an evaluation
criterion suitable for load forecasting is selected to determine VMD
parameters. The evaluation criterion is defined as follows:

Loss � ∑T
t�1 f t( ) − f* t( )∣∣∣∣ ∣∣∣∣

T
(15)

TABLE 2 Statistical results of load forecasting of multi models for a week.

Data Evaluation
indices

LSTM GRU Bi-
LSTM

CNN-
LSTM

CNN-
GRU

CNN-Bi-
LSTM

O-VMD-
CNN-LSTM

O-VMD-
CNN-GRU

O-VMD-CNN-
Bi-LSTM

5.28 MAPE/% 2.239 2.168 2.884 2.372 2.368 2.026 1.779 1.700 1.969

RMSE/W 4279.803 4268.401 5582.589 5099.821 5084.939 4084.497 4286.851 3643.955 3994.475

5.29 MAPE/% 4.185 4.614 3.984 3.467 3.997 3.370 2.956 3.021 1.861

RMSE/W 8026.197 8786.023 7128.647 6231.173 7056.000 5852.356 5464.282 5474.566 3603.659

5.30 MAPE/% 4.671 4.241 3.384 2.898 3.505 2.762 2.405 2.536 1.672

RMSE/W 10412.717 10680.822 7999.168 5289.279 6846.205 5580.044 4522.963 5379.496 3434.211

5.31 MAPE/% 3.716 4.525 2.965 2.138 2.609 2.204 1.522 1.410 1.628

RMSE/W 6881.564 7956.794 5155.348 3971.573 5705.526 4618.904 3516.774 2874.201 3737.865

6.1 MAPE/% 4.736 4.956 3.816 4.323 3.170 4.058 2.166 2.690 1.733

RMSE/W 9953.686 10662.705 6840.285 7843.259 5594.357 8415.958 4175.499 4779.977 3057.508

6.2 MAPE/% 2.052 2.211 1.896 1.779 1.999 1.512 1.729 1.571 1.476

RMSE/W 4466.192 5536.210 4112.376 4076.161 4032.588 3168.142 3151.935 3330.703 3244.042

6.3 MAPE/% 3.546 3.770 2.823 2.157 3.090 1.582 1.189 2.013 1.641

RMSE/W 8630.803 9190.872 6940.003 4832.514 6498.362 3480.811 2675.668 4500.534 3577.321

Mean MAPE/% 3.592 3.784 3.107 2.734 2.962 2.502 1.964 2.134 1.711

RMSE/W 7856.123 8465.215 6374.189 5478.145 5914.324 5296.709 4063.585 4385.787 3533.048

FIGURE 11
Load forecasting results of different models.

Frontiers in Energy Research frontiersin.org09

Wang and Li 10.3389/fenrg.2022.1076529

100

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1076529


where, f(t) is the original load sequence, f*(t) is the reconstructed
sequence, T is the length of time.

Loss is the average absolute error between the original load sequence
and the reconstructed sequence. The smaller Loss is, the smaller the signal
decomposition loss is and the more accurate the prediction model is.
Therefore, the parameter selection problem of VMD is expressed as a
constrained optimization problem, as follows:

min
K,α

∑T
t�1 f t( ) − f* t( )∣∣∣∣ ∣∣∣∣

T
(16)

where, K∈[3,10], α∈[100,10000].
The flow chart of VMD parameters optimized by BES algorithm is

shown in Figure 7.WOA, PSO, GWO,MFO and BES algorithms are used
to optimize the parameters of the VMD respectively. In order to maintain
the consistency of the parameters of various algorithms, the population
size is set to 20 and the maximum iterations is set to 100. Figure 8 shows
the optimization process of the decomposition loss of different algorithms.

It can be seen from Figure 8 that when the MFO algorithm is used
to determine the decomposition parameters, the decomposition loss is
high and after the 7th iteration, the minimum decomposition loss is
124.1831. PSO, GWO and WOA algorithms achieve the minimum
decomposition loss after the 14th, 9th and 5th iterations respectively.
For BES algorithm, the minimum decomposition loss is 104.1395 after
the 4th iteration, the optimization speed is the fastest, at this time, the
K is 6 and α is 100. Thus, BES-VMD algorithm can adaptively
determine the optimal decomposition parameters to improve the
decomposition effect of VMD. The original load sequence and
their BES-VMD decomposition results are shown in Figure 9. It
can be seen from Figure 9 that the average amplitude of IMF4,
IMF5 and IMF6 is small, with large fluctuations and poor
regularity; For mode function IMF2, IMF3, the regularity is
relatively good and the periodicity is relatively obvious; the average
amplitude of the modal function IMF1 is large, the change is gentle,
and the regularity is easiest to grasp. Later, these six modal functions

TABLE 3 Statistical results of load forecasting of different models on a certain day.

Time Real
value(W)

Bi-LSTM RF SVM O-VMD-CNN-Bi-LSTM

Forecasting
value(W)

RMSE/
%

Forecasting
value(W)

RMSE/
%

Forecasting
value(W)

RMSE/
%

Forecasting
value(W)

RMSE/
%

1 130614 129512.86 0.84 132388.69 1.36 129047.94 1.20 130377.37 0.18

2 123397 124323.71 0.75 125145.89 1.42 120801.18 2.10 121825.66 1.27

3 119533 121094.10 1.31 122059.56 2.11 118050.89 1.24 118645.14 0.74

4 118602 121383.05 2.35 118700.41 0.08 117672.35 0.78 119880.66 1.08

5 121868 125849.23 3.27 118977.05 2.37 119324.85 2.09 120348.36 1.25

6 132794 136656.45 2.91 125492.11 5.50 125401.02 5.57 130332.52 1.85

7 151069 151507.06 0.29 144555.89 4.31 142868.50 5.43 142957.33 5.37

8 163931 163753.02 0.11 163603.09 0.20 166685.13 1.68 158739.33 3.17

9 169347 172556.62 1.90 168686.86 0.39 176466.46 4.20 167796.38 0.92

10 173614 178512.38 2.82 170748.00 1.65 176589.88 1.71 174767.69 0.67

11 179066 182815.70 2.09 177240.68 1.02 178650.46 0.23 177099.28 1.10

12 181716 186098.44 2.41 181787.26 0.04 183342.50 0.90 180187.19 0.84

13 185300 187316.34 1.09 184251.57 0.57 183753.65 0.84 182638.75 1.44

14 188863 187857.31 0.53 187338.82 0.81 185012.15 2.04 186455.77 1.28

15 192985 188689.06 2.23 190846.28 1.11 189061.08 2.03 189907.83 1.60

16 193328 190072.86 1.68 195505.85 1.13 194253.84 0.48 193711.31 0.20

17 200931 191464.84 4.71 194401.10 3.25 193330.75 3.78 196395.72 2.26

18 203717 194998.72 4.28 203406.80 0.15 201557.61 1.06 199421.53 2.11

19 204498 196853.17 3.74 202139.56 1.15 201938.72 1.25 199636.78 2.38

20 198605 197631.62 0.49 201826.73 1.62 202803.61 2.11 198720.61 0.06

21 195325 196109.64 0.40 196579.47 0.64 193182.28 1.10 195166.17 0.08

22 190719 185620.56 2.67 186628.00 2.15 183333.71 3.87 184283.45 3.37

23 169934 168566.16 0.81 177329.80 4.35 176176.66 3.67 169751.48 0.11

24 149126 151858.47 1.83 154795.98 3.80 153921.44 3.22 152277.05 2.11

Mean 1.90 1.72 2.19 1.48
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will be modeled separately for the short-term load forecasting of BES-
VMD combined method.

5.3 Analysis of prediction results

5.3.1 Results analysis of CNN feature extraction and
O-VMD

To verify the effectiveness of CNN feature extraction and the
effectiveness of VMD decomposition in the load forecasting model,
9 different models are used to conduct short-term load forecasting on
the load data of a continuous week (from 28 May to 3 June 2008).

Figure 10A shows the load forecasting results for a continuous week;
Figure 10B shows the load forecast results of 1 day (June 2). The
statistical description of specific prediction results is shown in Table 2.

About the effectiveness of CNN feature extraction prediction
model, it can be seen from Figure 10 and Table 2 that,
compared with single prediction models like LSTM, GRU and Bi-
LSTM, the prediction accuracy of the corresponding CNN-LSTM,
CNN-GRU and CNN-Bi-LSTM hybrid models established by CNN
feature extraction has been improved to varying degrees. Among
them, MAPE decreased by 0.858%, 0.822% and 0.605%
respectively. RMSE decreased by 2377.978W, 2550.891W and
1077.48W respectively. Compared with CNN-LSTM and CNN-
GRU, the load forecasting accuracy based on CNN-Bi-LSTM
model is higher.

About the effectiveness of the VMD (take O-VMD as an example)
signal decomposition load forecasting model, According to Figure 10
and Table 2, the outputs of each load forecasting model are compared
and analyzed from the perspective of the average value of its evaluation
indices. Compared with CNN-LSTM, CNN-GRU and CNN-Bi-LSTM
models before VMD, the prediction performance of the corresponding
hybrid prediction models O-VMD-CNN-LSTM, O-VMD-CNN-GRU
and O-VMD-CNN-Bi-LSTM established after VMD of the original
load series has been improved. Among them, MAPE decreased by
0.770%, 0.828% and 0.791% respectively. RMSE decreased by
1414.560W, 1528.537W and 1763.661W respectively. Compared
with O-VMD-CNN-LSTM and O-VMD-CNN-GRU models, the
MAPE of O-VMD-CNN-Bi-LSTM model decreased by 0.253% and
0.423% respectively. RMSE decreased by 530.537W and 852.739W
respectively.

In conclusion, the effectiveness of VMD and CNN feature
extraction are verified. Among them, the MAPE and RMSE of
O-VMD-CNN-Bi-LSTM model is the smallest. Besides, although

TABLE 4 Comparison of statistical results of load forecasting errors for a week.

Data Evaluation indices O-VMD-CNN-Bi-LSTM BES-VMD-CNN-Bi-LSTM BES-VMD-CNN-Bi-LSTM-EC

5.28 MAPE/% 1.969 1.155 1.266

RMSE/W 3994.475 2281.845 2929.620

5.29 MAPE/% 1.861 1.397 1.155

RMSE/W 3603.659 2942.044 2665.914

5.30 MAPE/% 1.672 1.077 0.905

RMSE/W 3434.211 2727.750 2469.104

5.31 MAPE/% 1.628 1.587 1.401

RMSE/W 3737.865 4066.452 3152.410

6.1 MAPE/% 1.733 1.653 1.413

RMSE/W 3057.508 3449.741 2731.502

6.2 MAPE/% 1.476 1.775 1.060

RMSE/W 3244.042 4294.555 2533.319

6.3 MAPE/% 1.641 1.091 0.801

RMSE/W 3577.321 2286.436 1722.205

Mean MAPE/% 1.711 1.391 1.143

RMSE/W 3533.048 3238.403 2634.082

FIGURE 12
Load forecasting results for a week.
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the hybrid prediction model based on Bi-LSTM takes a relatively long
time, it obtains the highest prediction accuracy and meets the
requirements of engineering applications.

In order to further verify the effectiveness of the proposed
O-VMD-CNN-Bi-LSTM model, Bi-LSTM, RF and SVM are used
as comparison models to predict the load at 24 h (2 June). The load
forecasting results of different models are shown in Figure 11, and the
statistical description results are shown in Table 3.

As shown in Figure 11, each model can better predict the change
trend of load. Combined with Table 3, compared with Bi-LSTM, RF
and SVM prediction methods, the mean RMSE of O-VMD-CNN-Bi-
LSTM model at 24 h decreased by 0.42%, 0.24% and 0.71%
respectively. Thus, the effectiveness of the prediction method based
on O-VMD-CNN-Bi-LSTM is further verified.

5.3.2 Results analysis of BES-VMD and error
correction

First, according to the above analysis, the prediction error of
O-VMD-CNN-Bi-LSTM model is the smallest, so the comparison
experiment is carried out based on this model to analyse the
effectiveness of the power load prediction model of BES-VMD-
CNN-Bi-LSTM.

Secondly, the prediction error correction experiment is carried out
based on BES-VMD-CNN-Bi-LSTM (the prediction model before error
correction). Taking various modal components, holidays (whether
Saturday or Sunday, and whether it is a legal holiday) and
meteorological factors (ambient temperature) as the input of the error
correction model, the load prediction model after error correction is
established (the proposed method, BES-VMD-CNN-Bi-LSTM-EC).

Table 4 shows the statistical results of load forecasting errors for a
week (from 5.28 to 6.3) based on O-VMD-CNN-Bi-LSTM, BES-
VMD-CNN-Bi-LSTM and BES-VMD-CNN-Bi-LSTM models.

According to Table 4, compared with O-VMD-CNN-Bi-LSTM
method, the weekly mean MAPE and RMSE of BES-VMD-CNN-Bi-
LSTM method are reduced by 0.320% and 294.645W respectively,
indicating that the overall prediction accuracy and model performance
of this method are greatly improved. Thus, the effectiveness of
BES optimization algorithm in power load forecasting is further verified.

It can be seen from Table 4 that compared with BES-VMD-CNN-
Bi-LSTM method, the weekly mean MAPE and RMSE of BES-VMD-
CNN-Bi-LSTM-EC method are reduced by 0.248% and 604.321W
respectively, which verifies the effectiveness of the error correction
method. Figure 12 shows the prediction results of the proposed
method with O-VMD-CNN-Bi-LSTM method.

More intuitively, it can be seen from Figure 12 that the proposed
method can better fit the actual load change trend, especially near the
peak point, and the prediction accuracy is higher, which further
verifies that the BES-VMD-CNN-Bi-LSTM-EC method can
effectively reduce the prediction error of short-term power load
with excellent prediction performance.

6 Conclusion

Aiming at the characteristics that short-term power load
forecasting is easily affected by many factors, in order to improve
the accuracy of short-term load forecasting, a short-term load
combination forecasting method based on BES-VMD-CNN-Bi-
LSTM-EC is proposed in this paper. The conclusions are as follows:

(1) As the current forecasting methods based on traditional statistical
analysis and machine learning are difficult to consider both the
temporal and nonlinear characteristics of load data, Bi-LSTM
model can better fit the temporal and complex nonlinear
relationship of load data, it can learn the information of the
load sequence in the forward direction and the backward direction
at the same time to improve the expression ability of the network,
so it is applied to the forecasting model in this paper.

(2) This paper gives full play to the potential feature extraction
advantages of CNN model and provides a large amount of
effective input data for Bi-LSTM model. It overcomes the
defect that a single Bi-LSTM model cannot effectively mine the
hidden information between discontinuous data. The simulation
results show that compared with the model without CNN feature
extraction, which effectively improves the prediction accuracy.

(3) In order to reduce the complexity of load series and further
improve the accuracy of short-term load forecasting, this paper
uses the advantages of VMD in processing non-stationary and
nonlinear signals, and uses BES algorithm to optimize VMD
parameters. The load series is decomposed into components
with different frequencies, and a CNN-Bi-LSTM forecasting
model is established for each component. The simulation
results show that compared with the model without signal
decomposition, which effectively improves the forecasting
accuracy.

(4) An error correction model considering short-term factors is
established, which reduces the inherent error of the prediction
model by mining the effective information hidden in the error.
The simulation results show that compared with the forecasting
method without error correction, the VMD-CNN-Bi-LSTM-EC
combined forecasting model can further improve the accuracy of
short-term load forecasting. The proposed method has better
forecasting ability and stability and several application values
as follows: 1) It can provide theoretical guidance for power
production departments and management departments to
formulate production plans and development plans, and
determine the power supply quantity and production plans of
each power supply area. 2) It can improve the accuracy of power
system short-term load forecasting, and further improve the
security and economy of power system operation.

The load forecasting feature set established in the proposed
method does not considering the diversified load types, and does
not include electricity price factors, other meteorological factors, etc.
Therefore, in the future work, this paper will further study the impact
of load characteristic classification on load forecasting, build a richer
feature set including electricity price factors and other meteorological
factors such as humidity, wind speed, precipitation, air pressure, etc.,
explore the internal relationship of input characteristics, and further
improve the accuracy of short-term load forecasting. At the same time,
the forecasting model needs to be optimized to shorten the prediction
time and improve the real-time performance.
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The chemical process industries, being energy intensive in nature, still struggle to
strategically and sustainably consider energy management issues. Energy
sustainability depends on a sustainable energy supply, consumption, and waste
disposal. This paper analyses current energy management and optimization in
industries and also attempts to identify the significance of incorporating energy
management into the strategic perspectives of industry through an exhaustive
literature review. To ensure the optimization of energy, the paper illustrates the
importance of adopting a techno-managerial approach that integrates the technical
aspects of energy conservation with relevant management tactics. This is also a
preliminary study for proposing a framework for Indian chemical process SMEs to
systematically overcome various challenges and seize the opportunity to ensure
optimized energy utilization, thereby highlighting the framework’s long- and short-
term benefits. The suggestions in the paper would help these industries and local-
and national-level policymakers to improve their energy footprint and make the
world more energy sustainable.

KEYWORDS

energy, energy management, energy conservation, sustainability, energy sustainability,
energy optimization

1 Introduction

Energy sustainability depends on a sustainable energy supply, sustainable energy
consumption, and sustainable waste disposal. Energy has been considered a support
function in industry, with no to low priority in terms of conservation since the main focus
of industry is to enhance productivity (Schulze et al. 2016). Chemical process industries, being
energy intensive in nature, still struggle to strategically and sustainably consider energy
management issues. This situation is changing rapidly due to a decreasing availability in
crude oil, gas, and coal, rising energy prices, increasing awareness about their environmental
effects, and a concern to alleviate climate change. Chavan and Jain (2014) proposed that energy
management and energy efficiency are separate but interconnected concepts. Energy efficiency
is vital part of energy management and is attained when energy intensity (energy required per
unit of product) in a specific product, process, or area of production or consumption is lowered
without affecting production output or consumption. This paper analyses the current energy
management and optimization scenario in industry and also attempts to identify the
importance of incorporating energy management into the strategic perspectives of these
industries through an exhaustive literature review.
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2 Methodology

Kannan & Boie (2003) define “energy management” as “. . .the
judicial and effective use of energy, to maximise profits and to enrich
[the] company’s competitive positions, through organisational
measures and optimising energy efficiency in the [sic.]
operations,”—thus combining the skills of engineering and
management. Energy management, if carried out properly,
decreases energy demand, the operational cost of production, and
negative environmental and social impacts. This elevates a company’s
position in the carbon market, customers’ willingness to pay, and
shareholders’ willingness to invest. To utilize available energy
effectively and make industrial systems sustainable, industries must
optimize energy through energy management and efficient solutions
and tools.

According to Schulze et al. (2016), industries have to realize that
energy management can be an effective lever for enhancing their
production systems and operations toward improved energy efficiency
and hence reduce energy use and related energy costs. This is true for
process industries as they are major consumers of energy (electricity,
oil, gas, and coal) and emitters of greenhouse gases and carbon.

Several factors must be integrated for successful energy
optimization; these are investigated in the academic literature
through research into topics such as energy management, energy
efficiency, the challenges to and drivers of energy management
practices, energy efficient methods, energy conservation techniques,
and the development of key performance indicators. This paper builds
on this previous research by systematically reviewing the literature, as
originally outlined by Tranfield et al. (2003) and applied in the area of
energy management by Schulze et al. (2016).

Considering advances in technology, the period from 2000 to
2022 has been chosen since many articles, reports, and case studies
have been published on energy management practices, energy
efficiency, energy management systems, energy efficient
technologies, energy performance indicators, and energy
performance measurement. The focus when selecting articles was
on the following: the time and type of publication; the availability
of full-text articles; the sectors considered; the type of studies
undertaken (case study, survey, and literature review); and the
content of articles, including energy management practices and/or
energy efficient methods or technology (Parekh et. al., 2019; Schulze
et al., 2016).

The selected articles include peer-reviewed journal articles, and
white papers and reports by national agencies to account for
continuous improvement and technology diffusion by industries or
national agencies. The contents of articles vary, from an emphasis on
energy-efficient technology, its application, its analysis, the
importance of energy management, case studies of success, benefits
of energy management, reports on energy scenarios across the world,
energy management practices, and articles that describe successful
energy management systems and energy indicators.

Based on the aforementioned criteria, 95 articles, including 81 peer
reviewed articles and 14 reports, were studied to discover the best
practices available across the world, and their application to chemical
process industries. There are 44 articles that showcase the energy-
saving opportunities in manufacturing sectors, followed by 26 articles
on the chemical process sector, including chemical manufacturing, the
petroleum, pharmaceutical, iron and steel, and paper and pulp
industries, cement manufacturing, and water treatment plants.

After identifying the relevant articles, the data were categorised
based on their orientation: energy management perspective, energy
efficient technology perspective, and positive and negative influencing
factors.

3 Categorization of reviewed articles

Many articles are published on energy management practices, but
they are fragmented in terms of concepts, industry, country, and
policies. Learning from these will help cultivate further research,
developments, and innovation unique to relevant sectors, industry
types, and countries.

This section analyses and categorises the literature on three major
categories: management, technology, and influencing factors. The
articles analysed were broadly categorised by their focus of study,
highlighting the perspectives of energy management, technology,
influencing factors, and energy efficiency (Figure 1).

3.1 Energy management perspective

“Energy management” is planned, monitored, controlled, and
executed actions to ensure maximum energy output using
minimum energy resources for a predetermined performance by an
organization to gain competitive advantage, serve national interests,
and adhere to stringent environment standards. Energy management
is thus the strategic approach of a company toward its energy usage.
The academic literature indicates that energy-intensive organizations
that adopt a strategic approach to energy management may reduce
energy usage as much as 40%. According to Sivill et al. (2013) and
Mulder and Hagens (2008), energy management is below raw
materials optimization and production commitment as a priority in
energy-intensive industries. Cooremans and Schönenberger (2019)
and Schulze et al. (2016) confirm this and argue that considering
energy in strategic planning, implementation, and the control,
organization, and culture of an organization can exploit a
company’s energy efficiency potential. Without long-term strategy
and the allocation of energy costs, companies will not realise the
benefits of energy management. Thollander and Ottosson (2010)

FIGURE 1
Analysis of selected articles.
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suggest senior management be involved in developing their company’s
energy policy, in managing energy-saving projects, and in creating an
environment that thus motivates and trains their employees. Schulze
et. al. (2016) demonstrated a comprehensive framework for
incorporating strategic planning, implementation, control of energy
use, reorganizing the organization structure, and modifying an
organization’s culture to effectively tap its energy efficiency
potential. Gopalakrishnan et al. (2014) also suggested a framework
of energy management to effectively implement ISO 50001 to reduce
the energy costs and losses from minimizing greenhouse gas
emissions.

Some 21 articles investigated planning, implementation, and
innovation through qualitative and quantitative studies, or a
combination of both. Three studies elaborated the process,
requirements, and benefits of energy audits and certifications. As
illustrated in Figure 2, only three studies investigated the importance
of using energy management as a strategic objective; just one article
examined the impact of policies on energy management.

Planning and implementation are core to energy management and
require a gradual and structured approach that starts from the unit
process to the factory facility and multi-facility units, incorporating
entire supply chain in the process if possible (Duflou et al. 2012).
Alternately, Sivill et al. (2013) focused on incorporating proper change
management tools and rewards to make energy management
successful. There are many ways to effectively implement energy
management in an organization which may differ based on
geographic locations, sectors, or the scale of operations. Backlund
et al. (2012), using the multiple case study model for Sweden, found
energy-intensive firms to be more enthusiastic and successful in
adopting energy management.

3.2 Technology perspective

Energy optimization can be achieved through the appropriate
channelling of technological interventions and processes by
upgrading existing systems or replacing existing systems to
achieve energy-efficient systems, depending on the situation.
The chemical process industry has a natural scope of energy
optimization as it can consume and create energy through
various means or can integrate the available energy to achieve

higher potential or reduce energy consumption. Lipiäinen et al.
(2022) suggest use of bio-alternatives to replace fossil fuels, thus
decreasing the carbon intensity of processes.

Exothermic processes release energy into the environment; this can be
efficiently trapped for useful energy on-site. Pinch technology and heat
exchanger networks (HENs) to integrate process streams are used
frequently. Geldermann et al. (2006) took the automobile industry as a
case study to demonstrate that blending process integration engineering
with operations research can provide economic and environmentally
friendly solutions. Waste heat recovery is a big challenge for process
industries as it entirely depends on amount, quality, and source of waste
heat. Many studies exploit this challenging area of design for recovering
low-grade waste heat in the process industry; Law et al. (2016)
demonstrated this through a case study, using knowledge-based
programs and available plant data. The case study of Oluleye et al.
(2016) also investigates different models of on-site waste heat
utilization by recording the temperature and duties at the heat source.
In a literature review, Chan et al. (2013) illustrated the possibility of
recovering low-grade heat using technologies like “Chemical heat pumps,
organic Rankine cycles, [and] thermal energy storage. . .”. Ammar et al.
(2012) evaluated the technical and economic feasibility of extracting low-
grade thermal energy using CFD (computational fluid dynamics) for
process industries in the United Kingdom, provided that strong
government regulations and policies are in place; similar approaches
may be applied in other countries.

Even some economical modifications to existing equipment or
replacing the energy-intensive with energy-efficient parts can help
reduce the energy requirement of the plant. Enhancing awareness and
identifying action areas to improve the energy use of processes can be
effective if energy analysis is conducted at manufacturing level (Andrei
et al.,2022). Saidur et al. (2010) reviewed and further identified energy-
saving techniques—such as variable speed drives, energy efficient
motors, recovery of waste heat, leakage avoidance, and pressure-
drop reduction—for energy-intensive motor-driven process
industry equipment. The speed and scale at which technology
develops and diffuses across industries, the cost of technology,
energy prices, the intensity of chemical industrial activities, and
national and international policies will determine the potential
effects of mitigation on climate change (Worrell et al., 2009).
Xuezhi et al. (2011) emphasised the need for energy saving as a
low-cost option with a high potential to benefit the present scenario.
Outsourcing energy optimization activities to energy service
companies (ESCOs), with the latest know-how required for energy
efficiency, and funds to operationalise it, is seen as the latest trend by
Benedetti et al. (2015).

According to Lindberg et al. (2015), key performance indicators,
used for monitoring operations in industries, need to be benchmarked
to similar processes or equipment to classify areas of improvement and
necessary actions to be developed and implemented to bridge gaps.
Worrell et al. (2003) illustrated the importance of incorporating the
productivity benefits associated with energy efficient technologies in
terms of cost savings related to conserved energy.

3.3 Influencing factor perspective

Drivers of energy management, as defined by Cagno and
Trianni (2013), are “. . .factors facilitating the adoption of both
energy-efficient technologies and practices, thus going beyond the

FIGURE 2
Classification of articles with a management perspective.
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view of investments and including the promotion of an energy-
efficient culture and awareness.” Stringent environment
requirement, government regulations, incentives, and awareness
have driven Sweden’s iron and steel industries to adopting energy
management (Brunke et al.,2014). Trianni et al. (2016) and Singh
et al. (2008) listed organizations’ policies, long-term strategies, top
management commitment, and realizing low-energy benefits as
positive influencers for SMEs in the manufacturing industry.
Rudberg et al. (2013) described the recognition of non-energy
benefits for process industries.

Sorrell et al. (2011) defined a barrier to energy efficiency as a
hypothesised mechanism that deters an energy-efficient and cost-
effective decision or behaviour. They also suggested that barriers to
energy efficiency are multidimensional, varied, and diverse, and are
specific to the industry type and the technologies they used. Smith
et al. (2022) and Lee KH (2015), emphasised that understanding the
barriers and drivers to energy conservation and optimization from
frontline workers is also important. As found by Singh et al. (2008)
for Indian SMEs, the challenge lies in cost, quality, deliverables, and
human resources development. Minciuc et al. (2017) considered limited
access to capital and knowledge about energy-efficient technologies
alongside poor awareness amongst employees and top management as
essential barriers for energy conservation and optimization. These are
internal factors within organizations that prevent them shifting toward
energy-efficientmanagement. Variousmyths that are negative influencers
were identified by Ammar et al. (2012) and Thollander and Ottosson
(2010): perceptions that energy-efficient technologies require higher
investment and have a negative impact on production. Factors outside
the organization can also hinder their effective energy management, such
as support from financial institutions for promoting energy-efficient
technologies (Worrell et al.,2009), absence of incentives, limited
availability of public information, and lower energy prices in
developing countries (Bhattacharya and Cropper, 2010; Alcorta
et al.,2014). It is imperative to weaken the barriers to and strengthen
the drivers for successfully implementing energy management and
mitigate climate change. Parekh et al. (2022) categorize drivers and
barriers to energy optimization in the Indian context, using literature
and a preliminary survey, into internal and external factors and further
analysed them using PESTEL analysis for external factors and SWOT
analysis for internal factors. The conclusion from the analysis is the
importance to designing energy optimum solutions of evaluating internal
and external factors based on the situation and industry type.

4 Discussion and conclusion

Energy optimization is the pressing need to mitigate the impact of
energy use on climate change on a macro scale. The extensive use of fossil
fuels in industrial operations, rising fuel prices, and its fluctuating
availability is driving the global movement to conserve energy,
increase energy efficiency, and manage operations with minimal
energy resources. The literature focuses on improving energy
efficiency, the means to conserving energy, and the importance of
managing these within organizations. It also focuses on the barriers to
and drivers of energy management practices in industry. We have
identified three essential gaps in the available sample of the literature:
a lack of integration of management and technology perspectives, lack of
policy intervention and implementation, and failure by organizations to
consider energy as a strategic objective on par with productivity.

The aforementioned review reveals that the integration of
technology and management approaches to energy optimization is
still nascent. Such an integrated approach may be termed a “techno
managerial approach” which combines the benefits of managerial and
technological perspectives, detailed analysis of positive and negative
influencing factors, and the local and national energy policies; such an
approach would serve as a useful tool for industry.

This review further identifies a gap in the studies related to energy
management policy implementation in various industrial sectors
across different locations. Energy efficiency policies and initiatives
devised by governments do exist, but research shows they are rarely
implemented by industry.

Energy cost is normally second to raw material costs in the energy-
intensive chemical process industry, thereby making considerable
attention on energy conservation and optimization there imperative.
To effectively achieve this ambition, energy must be adopted as a
strategic objective by business. The strategic importance of optimising
energy use percolates from top to bottom in an organization’s
management, necessitating responsibility and accountability for the
wastage of energy resources. Very few articles have considered giving
strategic importance, to energy consumption and utilization in chemical
process industries. This also helps determine the non-energy benefits of
energy-efficient systems and energy management practices, including
possibility of generating alternate revenue (Rudberg et al., 2013).

The findings of this paper suggest the relevance and timing of
studies which combine energy efficiency and energy management
perspectives, thus developing appropriate frameworks for industries is
necessary. Ambitious energy efficiency improvement targets need to
be set by governments with strategies for implementing them on the
ground. The future scope is enormous in the area of energy
optimization and realising the revenue benefits of making energy a
strategic agenda, which can motivate the industries, academics, and
policymakers in a positive direction for future research.
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The rise of electric vehicles (EVs) has amassive impact on the electricity grid due

to the electrification of vehicles in the transportation sector. As a result, various

techniques are needed to minimize the effects of charging on the grid. One of

these techniques is having intelligent coordination between the various

components of the EV charging network. This ensures that the network has

enough electricity to support the charging needs of the vehicles. This article

provides an overview of the many aspects of the EV industry and its charging

infrastructure. It also provides a step-by-step approach for implementing the

Vehicle to Grid (V2G) deployment, the utilization of recordings from the data by

the EV battery through Artificial Intelligence and the cost-benefit analysis from

effective utilization of the V2G method. The paper also explores the various

aspects of the EV market and the role of aggregators and consumers. Finally, it

assesses the possibility of expansion of the EV charging and grid integration

system and outlines its challenges and solutions.
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Introduction

Due to the rising concerns about the environment and the

scarcity of fossil fuels, the electrification of the transportation

sector has attracted wide attention. However, the rapid growth of

these vehicles has been hampered by the lack of charging

facilities. Various policies and guidelines have been established

to encourage the development of EVs on a global scale Nallusamy

et al. (2016). By 2030, the world’s population is expected to reach

approximately 130 million. Due to the rapid growth of EVs, the

existing power grid infrastructure is expected to face significant

challenges in handling the penetration of these vehicles’ loads

IEA (2022). The grid’s components might break down, and the

transformer can become overloaded as a result of the successive

increase in its dependence. Although renewable energy sources

are considered an ideal solution for addressing the issue of fossil

fuel shortages, their intermittent nature could make their

operation challenging to manage. Dharavat et al. (2022), PEVs

(plug-in electrical vehicles) also have challenges such as restricted

range, a shortage of charging stations, less power, high cost (due

to expensive batteries), expensive insurance, high maintenance,

and pollution (due to battery toxicity) as well as the fact that not

all energy is generated from renewable sources. PEVs have

difficulties in India owing to poor market penetration, high

manufacturing costs owing to the drop in the value of the

rupee, an inadequate infrastructure, and the need to import

lithium batteries from other nations.

High-capacity energy storage devices are required to support

the expansion of the EV network. These systems can be

integrated into the grid and provide additional storage

capacity. The charging infrastructure connects the transport

network and distribution system. It’s crucial to study charging

loads and predict their needs while designing electric vehicle

charging stations (EVCS). Installing EVCS will raise distribution

system demand, which will affect their performance. Integrating

local renewable power into the grid may reduce the adverse

effects of charging load and reduce greenhouse gas emissions.

The increased demand, however, may not be able to be met at

certain times of the day due to the stochiastic nature of renewable

energy sources like solar, wind, etc. Cleary and Palmer, (2020).

The stability of the power grid will be more affected by the

intermittent nature of RES and the lack of coordination among

EVs. On the other side, the energy storage capacity of EVs may be

used to stabilize the power grid, particularly when collaborating

with RES to mitigate power transitions, therefore lowering both

energy costs and carbon dioxide emissions. Increasing the

percentage of RES integrated into the grid is possible in a

variety of ways, but the best one, in terms of both cost and

complexity, is to store electricity generated by electric vehicles. By

mitigating the negative effects of unplanned EV charging on the

grid and enhancing the unpredictability of RES, benefits Reddy

and Vijayakumar, (2019). To assist distribution operators in their

decision-making processes in the event of system violations, it is

crucial to study the consequences of quick charging for EVs. The

use of charging stations that are integrated into the smart grid can

help to minimize air pollution and provide better energy

management.

Smart grid operators must determine an ideal power pricing

by examining EV charging behaviour with the enormous

quantity of electric energy required by EVs. Regular and

irregular EV users may be distinguished from one another

from the standpoint of charging behaviour Chung et al.

(2018). There is some consistency in how common users

charge. The quantity of each charge is constant, and it occurs

at a specific time each day. Unusual users do not charge in a

predictive manner. V2G technology can also help to reduce the

impact of additional load demand on the grid. This mode of

operation allows the grid to receive and utilize the collected

energy from the vehicles. Due to their environmental benefits,

energy storage is becoming an integral part of the electric vehicle

industry. Its continuous use enables the grid to monitor and

control the distributed generation network. Although the grid

operation can be beneficial for consumers, there’s a chance that

EV batteries could get damaged due to the discharge conditions.

To encourage the use of EVs, India is offering subsidies to its

buyers. But as the number of EVs on the road increases, so does

the need for lithium-ion batteries (LIBs), and therefore measures

must be made to guarantee safe battery disposal. This effort

contributes to India’s larger goal of making the country’s future

pollution-free EVreporter (2022) and the same given in Table 1.

Integrating EVs and the grid can be considered an efficient

energy management method. Doing so involves establishing a

smart contact connection between the grids and the vehicles.

This can help inminimizing the effects of varying load conditions

and improve the efficiency of the entire system.

The conventional power infrastructure cannot provide the

rising demand for energy needed to enable industrial innovation

and the rise in human living standards due to the ongoing

TABLE 1 Penetration of four wheeler EVs in 2022 EVreporter, (2022).

OEMs August September October

Tata Maotors 3845 3655 4277

Mg Motor India 316 286 450

Mahindra and Mahindra 17 112 15

Hyundai Motor India 73 75 82

BYD India 45 65 36

BMW India 25 28 6

Audi Ag 14 10 0

Kia Motors — 0 33

Mercedes Benz — 3 23

Others 4 28 13
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changes in the climate across the world. By integrating smart

communication, artificial intelligence, sensor and automated

control technologies with electricity infrastructures, the smart

grid is developing as the next-generation electrical grid to solve

these issues Sun et al. (2020). In contrast to traditional

optimization approaches, using Machine Learning to

coordinate EVs is more superficial and takes less time and

computational resources Shibl et al., (2020). The machine

learning algorithms can forecast the amount of electricity

EVCS will consume. Machine learning has been used because

of its capacity to use previous information to learn and recognize

patterns to make future predictions with minimum input from

the user. The use of these technologies for improving future

forecasts has yet to be realized and shown, despite the fact that

the majority of studies and implementations of ML/CI

techniques focus on energy use and associated costs, Shibl

et al., (2020). There is a need to emphasize and look forward

to the future mobility transition while deploying charging

infrastructure. They also believe that developing intelligent

charging technologies and measures to reduce range anxiety

are crucial components of the EV market strategy, as they

would promote the widespread use of EVs.

Non-etheless, EV drivers face range anxiety since charging

takes longer than filling a non-EV with petrol at a petrol station.

This delays the widespread adoption of EVs and directly results

from battery chemistry, charger limitations, and power

consumption requirements Wu, (2021). As a result, the BSS

model of battery exchange has been presented. Battery swapping

has been introduced at commercial and private stations by BSS

service providers, prompting academics to study the BSS

methodology and propose different operating systems and

optimization approaches.

Literature review

There was a period of phenomenal development for the EV

industry throughout the last decade. After the previous

COP26 summit, India pledged to bring its carbon emissions

to zero by 2070. India plans to have a 30% share of the private car

industry, a 70% share of the commercial vehicle market, and an

80% share of the two- and three-wheeler market in 2030,

originating through sales of EVs. The rising expense of fossil

fuels and increased environmental concerns, EVs have attracted

the public’s attention. EV owners may swiftly charge their

vehicles at home with the aid of charging stations. However,

these stations can also overload the grid due to their presence

(Bossche, 2010). An intelligent charging system should be

implemented to avoid this issue. It should use a strategy that

considers the varying factors that affect the charging process and

provide a reliable and cost-efficient method of operation.

N. Uddin and Islam, (2019) provide a fuzzy logic-based

intelligent power management controller that blends wind,

solar, and grid power with backup batteries. To assess the

suggested method, the smart energy management system uses

optimal fuzzy logic and is thus more economical than other

conventional methods.

Zahedmanesh et al., (2019), Proposed a model of VPP, which

includes parking spots for EVs, connected to the grid through

photovoltaic panels. A CEM-based strategy is explored in order

to assign a systematic and cost-effective energy management for

the VPP and to control the electric constraints for the power

systems. For both energy management and the delivery of

auxiliary services, the suggested CEM technique makes use of

hierarchies. To meet the needs of the commercial entities in the

neighborhood, meet the charging needs of the parking lot, and

optimize the VPP controller’s profit, the CEM’s structure

employs a daily scheduling strategy. The second-tier aids in

satisfying the technical needs of the power system via the

VPP’s provision of reactive power compensation (RPC).

Das et al. (2020) explores a multi-objective optimization

problem to establish the simultaneous placement and size of

DGs and FCSs, with limitations on the number of EVs in each

zone and the maximum number of FCSs achievable based on the

road and electrical network in the proposed system. In order to

reduce the cost of developing FCS, optimise power loss, and

enhance the voltage profile of the electrical distribution system,

the challenge is framed as a MINLP.

Gampa et al. (2020), For distribution systems, this work

proposes a two-stage GOA based Fuzzy multi-objective approach

to the size and location of DGs, Shunt Capacitors (SCs), and

EVCS. By addressing the voltage and current limits of the

distribution system and limiting the actual power losses to a

specific value, the fuzzy-based GOA algorithm determines the

optimal size and location of EV charging stations.

Zeb et al. (2020) explore the inclusion of all three categories

electric vehicle chargers, which are optimized to achieve the best

results by Controlling the electric vehicle load efficiently while

reducing installation costs, losses, and distribution transformer

loading. Probability has a role in the EV load due to the

unpredictable nature of vehicle users. The constrained non-

linear stochastic issue is solved using PSO. The model is

simulated using MATLAB and OpenDSS.

Dogan, (2021), This paper proposes a weighted sum of

Evolutionary-based multi-objective optimization technique for

substantially decreasing power loss, improving voltage level, and

enhancing the DG, EVCS, and ESS integration capacities. Also

presented a hSLC-PS optimization technique to improve the

optimization performance.

The overall load demand, the generating profiles of solar and

wind energy systems’ uncertainties and the DSTATCOM

operation capabilities of photovoltaic and wind generating

units are taken into account in this research. The potential EV

needs are also considered, the time of arrival and departure, the

battery’s original and current SoC configurations, the charging

methods used, and whether the battery was charged in a
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regulated or unregulated manner. To handle this complicated

planning model, an efficient and accurate bi-level Multiobjective

Ant Lion Optimizer (MOALO) solution for the planning model.

The MOALO solver has a bi-level structure, with upper-level

optimization aimed at maximizing the efficiency of renewable

energy sources and lower-level optimization aimed at

maximizing the efficiency of personal electric vehicles. The bi-

level MOALO solution takes into account sub objectives such as

reducing energy losses and maximizing energy from the main

grid Ali et al. (2022).

A micro-grid with a fleet of EVs and a confined vehicle-to-

grid application is the focus of this research. Chtioui and

Boukettaya (2020). The discharging mode is only used when

there is a high-demand situation with a long response time.

The micro-construction grid’s blocks are described and

modelled, as well as a simulation of their operation. The

research explores the charging and discharging scenarios

and the management strategies employed to govern the

power in this simulation.

Javed et al. (2020), present the configuration of V2G and the

fundamental concerns related to V2G, which are profoundly

analyzed in terms of Battery deterioration, Bi-directional

chargers, and charging stations using centralized control and

management of the battery system. In addition, the economic

cost and income from both the EV owner and the power grid are

explored, as well as the problems, benefits, and technologies

associated with V2G. The influence of V2G on power systems is

investigated in this study using typical test networks.

Based on the value-based pricing strategy, this research

proposes a unique methodology of placing DGs and V2G

parking lots in the most efficient locations at the same time

Mousavi-Khademi et al. (2020). The paper’s essential

contribution is the inclusion of pricing the DGs and V2Gs

using a value-based approach for the best position, as well as

the suggested optimal search algorithm. The network’s technical

issues, include improving the voltage profile and lowering the

losses, are addressed in this way by identifying and establishing

the best capacity of distributed production resources and electric

car parking spaces using value-based pricing to attract network

investment.

The article’s objective is to reduce power loss in the distribution

system when DG is present along with more strategic planning of

G2V and V2G operating modes of EVs. Velamuri et al. (2022). To

identify the optimal size of the DGs to be placed in the system, the

suggested method includes a smart charging mechanism, a voltage

stability index, and an EGOA. The electric vehicles are simulated by

taking into account the most important aspects, such as the EV SoC,

journey circumstances, EV battery capacity, and charging/

discharging levels.

The work presented here is the size and positioning of DGs in

the distribution system, with battery storage installed after the

DGs to sustain the grid Chellappan et al. (2022). The genetic

algorithm is utilized by radial node distribution systems, IEEE-

33, IEEE-69, and IEEE-118, to install the battery energy storage

system. At the same time, the heuristic technique PSO is

employed for the sizing and positioning of DGs.

Ravi and Aziz (2022), provides a summary of the current

V2G technology scenario and some potential ancillary services,

such as frequency regulation, voltage regulation, peak shaving,

load levelling, spinning reserve, congestion mitigation, renewable

energy storage, reduction of intermittentness, and curtailment,

that could be offered with an infrastructure that supports vehicle

grid integration.

Electric vehicle charging station
infrastructure

The global transportation industry is transitioning from cars

powered by traditional fossil fuels to vehicles with zero or ultra-low

exhaust emissions. We need a well-developed network of charging

stations (CSs), data analytics, intelligent decentralized power

generation units, and supportive policy initiatives to facilitate this

shift. It is crucial to design and locate a charging station to encourage

the widespread usage of electric cars and maximize the benefits of

cost-efficient, clean electricity from the grid and renewable energy

sources. The transportation industry is undergoing these three

transformations in terms of autonomous driving, shared mobility,

and electrification Ghosh. (2020). As a result, it is vital to consider

the interactions and synergies that may arise between these three

impending revolutions while designing the infrastructure for EV

charging. A new, considerable electrical demand is being added to

the power grid as EV usage rises, forcing infrastructure

improvements. Only the distribution grid transfers electrical

energy, restricting the amount of energy that may travel via the

transmission lines Zhang et al., 2011). The electrical grid must be

extensively rebuilt to accommodate the EV’s charging requirements.

Figure 1 represents approaches to the conceptualization of the

problem regarding the optimal location of EVCS and Figure 2

represents EV Charging Infrastructure.

Optimal allocation and size of charging stations is a

fundamental planning challenge for the electric vehicle (EV)

industry, with considerations including cost, distribution

network operational characteristics, and the needs of EV

drivers. For EVs to be extensively employed, a well-thought-

out charging infrastructure must be in operation. Figure 1 depicts

the many steps involved in designing a charging infrastructure.

The forecasting of pricing service demand at various times and

places throughout the day is to be measured precisely. Its

utilization must be known to determine how often a charger

has been used and how many charging cycles it has been

supported. Scheduling charging entails scheduling various

charging operations with the grid’s capacity and the projected

charging demand Brenna et al. (2020). Figure 3 represents

strategic charging network design: an overview and Figure 4

represents EV charging management structure.
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Management, development, and
optimization of charging infrastructure

Location and sizing considerations are vital in optimizing

charging infrastructure facilities. Large charging stations are

able to handle a greater number of EVs since they have the

capacity to house more chargers, but at increased electricity

consumption and building expense Iqbal et al. (2021). EV

battery capacity and power rates determine future charging

infrastructure requirements. The profitability and performance

of EVCS are directly correlated to the level of planning and

management that goes into the operations of the charging

FIGURE 1
Approaches to the conceptualization of the problem regarding the optimal location of EVCS.

FIGURE 2
EV charging infrastructure.

FIGURE 3
Strategic charging network design: An overview.
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stations. The first step in planning an EVCS is to engage in

creative thinking and decision-making at different levels. The

charging intensity, the expected number of charges, the

necessary storage area, the charging infrastructure, and the

planned energy storage system are all the factors to be

considered. Scheduling charging to support grid functioning,

reducing EV charging wait times, and providing a seamless

charging experience are all part of a well-managed charging

station network. Bhattacharjee et al., (2020). The infrastructure

for EVCS, including the distribution system, may be planned,

designed, simulated, and optimized using software like

MATLAB, HOMER, PVsyst, EVLibSim, etc. Together, EVLib

and EVLibSim offer a robust infrastructure for managing EV

charging operations at the station level via simulation Rigas

et al. (2018).

EV charging time reduction with fast,
ultra-fast, and battery swapping stations

The pace of EV adoption is crucial to the implementation and

profitability of fast and ultra-fast charging stations. Considering

that many would-be plug-in electric vehicle (PEV) buyers want

public charging times that are on par with traditional refuelling,

researchers and policymakers have concentrated on developing

rapid charging technologies that can handle larger power loads

Sadeghi-Barzani et al. (2014). The public’s adoption of EVs may

be significantly aided by the widespread availability of fast and

ultra-fast charging stations that reduce the charging time to an

acceptable level. However, there will be consequences for grid

stability, robustness, and efficiency if these technologies are

widely used Amiri et al., (2018). Another novel solution to the

issue of EVs taking extended periods to charge is the battery

swapping station (BSS), which allows drivers to change their

discharged battery for a fully charged one. In Iannuzzi and

Franzese (2021), a plan is presented for developing ultra-fast

EV charging infrastructure. It has a super-fast charging station

for EVs powered by a DC microgrid and uses batteries to store

energy. In addition to effectively supporting 800 V DC charging,

the system allows rapid EV charging in under 10 min. The

developed control system uses load-level managing electricity

use in order to ease the load on the AC power grid during high

demand. According to the system analysis, the ESS’s charging

power surpasses the grid in the case of a high arrival rate, making

it hard to lower the system loss rate successfully. For this reason,

to increase profit, the ESS configuration must be adjusted

according to the charging load. Optimization often entails

formalizing the issue in mathematics and then solving it using

an appropriate method. The EVFCS-RP problem is an

illustration of an evolutionary computation challenge, since it

involves maximizing both profitability and the prospect of

satisfying EV consumers. In this research, a multiobjective

EVFCS-RP mathematical model is developed to facilitate the

attainment of a satisfactory solution Shi and Lee (2015).

Intelligent scheduling of charging the
electric vehicles

The widespread adoption of EVs is often viewed as a key

component in developing intelligent transportation applications.

However, the widespread installation of EVCS presents a number

of issues with the electrical grid and other forms of public

infrastructure. The straightforward solution of installing

FIGURE 4
EV charging management structure.

Frontiers in Energy Research frontiersin.org06

Dharavat et al. 10.3389/fenrg.2022.1099890

116

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1099890


additional charging stations to boost overall charging capacity

does not work to mitigate the issue of protracted charging times

because of the strain that this would place on existing power grids

and the constraints imposed by the availability of physical space

Shahriar et al. (2020).

With more recent times, there has been a rising demand in

using data-driven methods for simulating electric vehicle

charging. As a consequence of this, methods are able to

recognize patterns in customer charging behavior in the order

to gain insights and the potential to do predictive analytics. As a

result, academics have emphasized creating modeling and

optimization-based intelligent scheduling methods to reduce

the need for public charging. Incorporating network for data

exchange, an optimization unit to cut down on wait times at

charging stations, and a prediction unit to help the optimization

unit will make the most informed decisions possible about

charging station placement choice feasible, are the three major

impediments to creating an efficient charging infrastructure

Sheik Mohammed et al. (2022).

Strategy-based charging station queue
management

It is of the utmost importance to manage and effectively plan to

charge the electric car at the nearest available charging station to

prevent situations in which there is a high demand for charging at

one charging station, while there is less demand at other

neighbouring stations. This will assist in the strategic management

of the queues of vehicles at EVCS. The delays at the charging stations

might be more efficiently managed and monitored with an efficient

communication network. A negotiating strategy based on agents was

developed to schedule charging at an available charging station and

allocate EVs to those stations. This system might be used to manage

the wait time at the charging station. To facilitate energy trading

between individuals and the supply of ancillary services to the grid,

Seitaridis et al. (2020) presented an algorithm for bidirectional smart

charging of EVs linked to the grid using bidirectional converters. A

combination of soft restrictions and optimization variables allows the

EV user’s preferences to be accounted for in the scheduling model.

Mathematical analyses show that taking into account user

preferences improved the overall income earned by the EV

scheduling scheme. In addition, the established user-centric model

increased the number of peer-to-peer energy transactions between

the EVs by nearly 90% and the number of ancillary services provided

to the grid by about 11% Seitaridis et al. (2020).

Infrastructure management
communication system

An optimal EV charging communication protocol is required

to provide the following functions when technological

innovations like “smart grid” and “V2G” are introduced

Dhianeshwar et al., (2017).

• Identifying the vehicle and simplifying the procedure of

paying the customer.

• Cost-effective optimization of the charging process is

achieved by determining the optimal charging slot and

settling on the most economical charging rates.

• Management of charger power rating to grid demand,

resulting from loading optimization.

• Vehicle-to-grid (V2G) technology assists the grid during

peak demand.

• The ability to charge users and compensate them for their

time and energy spent using V2G services.

Several parties, including utilities and vehicle manufacturers,

are involved in developing this communication protocol. A joint

working group made up of representatives from IEC TC69, ISO

TC22 SC3, and TC22 SC21 is addressing the standardization of a

communication protocol.

Artificial intelligence-based methods for
load forecasting

The operational conditions and equipment capabilities of

distribution networks are established based on the predicted

loads of EV charging. Therefore, it is crucial to strengthen the

distribution system’s consistence and efficiency by improving the

accuracy of load forecasts. Traditional, non-artificial intelligence

approaches, machine learning methods, and artificial intelligence

methods are the broad categories that may categorize the many

available techniques for load forecasting. The temporal features

of the load needs are often the foundation for non-AI

approaches. After then, long-term load demand forecasting is

usually achieved via statistical approaches Yang (2015). Also, the

non-linear properties, fluctuating power demands and their

time-dependent, unpredictable nature are becoming

increasingly apparent as EVs and renewable power production

equipment are integrated on a massive scale on the load side. Due

to the lack of consistency and precision in conventional

forecasting approaches, it is challenging to develop an

appropriate mathematical model that can represent the

correlations between predicting outcomes and influencing

factors.

Artificial intelligence algorithms that are data-driven rather

than model-based have shown promising growth in electricity

forecasting in recent years. A wide variety of approaches have

been used by researchers in power forecasting, including random

forests Huang et al., (2016); Lahouar and Ben Hadj Slama (2015),

BP neural networks, support vector machines, extended short-

term memory networks and convolutional neural networks

Choi et al., (2020). FTS and CNN are combined to provide a
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short-term load forecasting approach. On the other hand,

conventional CNN requires a lot of time to train and fails to

adequately capture the temporal information included in the

time series. An approach to load forecasting using a genetic

algorithm and an extended short-term memory network is

presented in Santra et al. (2019). The load curve is the final

product after carefully considering the input data as load-

demanding elements.

In contrast, the LSTM network augments each hidden-layer

neural unit with sophisticated gate components. Therefore, LSTM

training efficiency may be poor. The SVM technique suggested in

Barman andNalin Behari, (2020) for load demand forecasting uses

grey wolf optimization. SVM approach, on the other hand, when

the amount of training data is too large, its classification

performance may suffer from a lack of precision due to the

continuous nature of the data samples.

Automated charging scheduling using
machine learning

To prevent abrupt spikes in peak load demand, it is essential

that charging activity at charging stations be managed. V2G

technology and scheduled EVCS were the primary emphasis of

Dang et al., (2019), which also used reinforcement learning to

assess the operational benefit of EVs, also models the scheduling

of EV charging and discharging as a constrained Markov

Decision Process (CMDP). The constraint is to reduce the

cost of charging the EV while still ensuring it can be

completely charged, hence a limited charging/discharging

scheduling technique is being sought. Model-free safe deep

reinforcement learning (SDRL) is offered as a means to

resolve the CMDP. With the suggested method, familiarity

with randomization is not necessary. It uses a DNN for the

constrained optimum charging and discharging schedules

directly. The authors of Li et al., (2020) present a method

based on reinforcement learning to schedule constrained EV

charging times. The authors of Cong Zhang et al. (2021) posed

the issue of charging schedule creation as an NP-hard one and

then used reinforcement learning to solve it. It was recommended

that an intelligent pricing strategy be used at charging stations,

and an ANN was presented as a remedy for the issue with

charging patterns. Using the Q-learning technique, the authors of

Dang et al., (2020) determined that charging electric vehicles at a

fast-charging station connected to an intelligent grid was

optimum. The attractive feature is the intelligent charging

scheduling system, which considers in the state of charge, the

distance travelled, the proximity to charging stations, the number

of scheduled events, and the average speed. The scenario

simulator that creates the labelled datasets needed to train the

Machine Learning/Reinforcement Learning algorithms is a

unique part of the proposed approach as well, given the

scarcity of such datasets Viziteu et al. (2022).

The fields of machine learning and artificial intelligence

include the subfield of supervised learning, commonly known

as supervised machine learning. It is characterised by training

algorithms that properly categorise data or predict outcomes

using labelled datasets. Cross-validation is the iterative process of

adjusting a model’s weights when new data is added until the

model is well suited to the data. Predictions based on labelled

data may be made more accurately and save time with the help of

supervised learning models.

Unsupervised learning makes use of data that has not been

labelled. Patterns useful for handling cluster or association

difficulties are uncovered within the information. This is

especially helpful when domain experts lack knowledge of the

similarities present in a dataset. In popular use, methods like the

hierarchical, k-means, and Gaussian mixture models cluster data.

Machine learning includes the discipline of reinforcement

learning. It involves appropriately increasing rewards in a

certain circumstance. To determine the optimal course of

action to pursue in each circumstance, it is used by different

software and robots. The process of reinforcement learning relies

heavily on sequential decision-making. To put it another way, the

state of one input determines the value of the next input, and the

value of the next input determines the value of the preceding

output. Figure 5 represents the types of ML Rajbanshi Sabita,

(2021).

Coordinated decision making for
integrated multiple BSS and BCS

The exponential growth of EV production on the road has

shifted the focus of urban planners, utilities, and business owners

towards the BSS and BCS initiation. Models of BCS and BSS are

included in cutting-edge research on EV charging to provide

additional energy sources for EVs. During the BCS mode, EV

drivers connect their vehicles to the charging connector and let

the batteries recharge over a long time. While in BSS mode,

electric vehicle drivers will discharge the spent, then swap it out

with one that has been fully charged, which will take less time

Wu, (2022). Figure 6 represents battery swaping system.

Charging management of BSS and BCS

Compared to the BCS model, the only direction in which

the duration of battery charge is transitioning from the EV to

the BSS. In other circumstances, even after switching the

batteries, the BSS must spend a significant amount of time

for recharging them. The BSS operator may decide on the most

effective battery and EV charging schedule based on the battery

condition and swapping/charging demand, that supports the

station to increase operational profit and reduce power

expenses. As a result, the BSS’s Quality of Service and
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service capacity may be enhanced. An ideal charging schedule

can also assist the BSS with gratifying more EV swapping and

charging demands Wang and Pedram (2019). The following are

some of the reasons why charging management is so important

while operating in BSS mode:

• If an ideal charging schedule is achieved, then modifying

the charging rate at the recharging centre may be used to

control the BSS’s service availability, which corresponds to

the batch of completely recharged batteries.

• The BSS operator is responsible for managing the charging

process while considering many factors, such as the needs

of EV drivers to swap out their batteries, the limits of the

power grid, and the cost to operate (which includes the cost

to buy batteries and electricity).

• As the lithium-ion battery’s charging power exhibits non-

linear features, determining the precise time required to

charge one is challenging entirely. To simulate the constant

current constant-voltage features Wu et al., (2020), several

researchers have developed non-linear mathematical

models that can approximate the quantity of power used

throughout each period and the time necessary to charge

various chargers fully.

EV distribution, road transportation, traffic patterns, and

business and residential zones should all be considered when

examining the need for charging and switching utilities from an

urban planning standpoint Pardo-Bosch et al. (2021). Then, by

providing charging facilities, a new charging station may be built,

or an existing one can be improved. Additionally, new BSSs

FIGURE 5
Types of machine learning Rajbanshi Sabita (2021).

FIGURE 6
Battery swaping system.
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might be designed in a given area to serve commercial EVs, with

significant energy demands and the need for quick charging. The

charging and switching stations function as high-energy units

that impact voltage stability from the standpoint of the power

system. Therefore, the power grid’s limitations should be

considered when choosing BSS or BCS centres. In addition,

the BSS/BCS imports supply of electricity from the mains,

utilizes it to charge EVs and batteries and then starts selling it

to drivers for a profit. As a result, the station manager and the

power grid may agree on an electrical strategy. With the aid of

V2G and B2G technologies, the BCS/BSS may potentially be able

to sell power to the grid., which allow them to benefit from price

fluctuations and aid the system in maintaining voltage stability.

Providing EV owners with access to battery switching and

charging stations is an opportunity for BSS/BCS providers to

generate revenue. The operators’ primary objective during the

planning phase is to choose an area with high swapping/charging

demand to optimize their operational profit. On the contrary,

intelligent optimization decision models may be used to reduce

the cost of their operations, which include things like the BSS’s

initial stock of batteries, charging infrastructure, and station

development. Increasing assessing demand and reducing

planning expenses is preferable to optimize the station’s

operational profit.

If an EV driver wants to switch, the control centre needs to

know how far away they are from the BSS and how long it will

take them to get there. Due to traffic and travel patterns, it is

important to include the unpredictability of appointment

information as input to the decision-making model Bonsall,

(2004). As a result of needing to travel to their destination

BSSs without running out of power, EVs’ remaining SoCs are

associated with the distance to those BSSs. Because of this, as a

constraint in the dispatching and routing problem, the remaining

SoC in the EV and the distance to each BSS must be taken into

account. In contrast to the single BSS mode, the multiple BSS

mode requires the control centre to improve the quality of the

choice by synchronizing the needs of EV drivers with the battery

status of the dispersed BSSs. To validate their choice, EV drivers

will get a response from the control centre. They could negotiate

new arrival times or switch to a different BSS if they decided not

to accept the assignment. On the BSS side, the control centre

should check each BSS’s power reserves and make charging

adjustments in real time as necessary. Coordination amongst

decision makers is, thus, essential in an intelligent BSS system for

achieving the best possible outcome.

Models of decentralized decision-making

Decentralized decision-making models that support

swapping and charging orders might be used to describe the

combined BSS and BCS modes. Due to the integrated nature of

these models, they can perform both of these functions. An EV

operator may choose battery exchange or recharge when making

a service request Sun et al., (2018). Two independent decision

models have been established to manage to swap and charge

requests from the viewpoint of the control centre. Based on the

volatile demands placed on the BSS and BCS, these models

determine whether to accept or not to provide access for the

request.

Models of centralized decision-making

A centralised decision model might be used to describe the

combined BSS and BCS station., in contrast to the decentralized

approach, where the BSS and BCS are complimentary while

taking into account the order needs from EV drivers and the state

of each station. This centralized approach has two operational

techniques.

• The control centre makes the assignment without

charging or swapping the desired signal from an EV

driver. The control centre thus mainly concentrates on

the changing battery count at the BSS and BCS, allowing

for optimal decision-making given the system’s overall

state of health.

• If the BSS is overloaded (because of a lack of completely

charged batteries), some batteries might be brought to the

BSS after being recharged in EVs at the BCS. Once the

parking duration of the EVs at the BCS and the switching

load at the BSS are known, the interaction may be

maximized.

The BSS and BCS models are combined, and the benefits of

doing so are addressed. First, the control centre handles the

switching and charging requests simultaneously, improving

the level of service for EV users. Secondly, by allocating the

swapping and charging operations, the choice is optimized,

and the overall optimization outcome may be reached. Third,

depending on demand and station state, In both the BSS and

BCS, the control schedule for the recharging process has been

optimised. Fourth, the control centre may ask EV drivers to

designate their preferred method, such as swap or charge,

since it is believed that they would use a system of distributed

decision-making for handling incoming requests Cui et al.,

(2022). Finally, by synchronising the BCS with the BSS

infrastructure, the service capacity may be increased,

resulting in enhanced QoS on a Global Scale in BSS and

BCS modes due to the adoption of centralized methods.

Possible future scope of this work

The research can be further progressed on the following

cases.
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• A comparison in the effectiveness of planning issues for

charging infrastructure using machine learning

approaches, heuristics, and metaheuristics techniques.

• The implementation of various pricing levels for energy

based on the intermittent EV load demand, where the price

of electricity in EVCS varies and will be calculated based on

the overall power use in the region as well as the demand

on the power system.

• It is possible to look at leveraging automation and IoT

architecture to operate EVCS. As a consequence, EV

charging and discharging may be automated based on

energy use.

• For EVs to be more sustainable, recycling rates must

increase so that valuable metals used in battery

production may be reused. The energy density and

charging velocity of solid-state batteries are enhanced by

the use of ceramic or other solid electrolytes.

Conclusion

This article provides a comprehensive review of studies

examining the use of machine learning in various contexts and

forecasting of EV charging behaviour. Standard ML algorithms for

predicting EV charging behaviourwere defined, including supervised

and unsupervised methods. Using EV and load volatility, a

comparison of different EV modes of operation is accomplished.

One might deduce that better EV and DG scheduling contributes to

enhanced DS performance. It is also clear that if EV owners can plan

their vehicles according to the system consumption pattern, they

may generate income using V2G mode.

The article also summarizes various EVs, storage facilities,

charging EVs using DGs integrated with EVCS, and a variety

of other socio-technical difficulties related to EVs. The

adoption rate, as well as the current situation of EVs all

around the world, have been emphasized. The increased

weight of EVs owing to the inclusion of battery storage

mitigates the benefits of EVs’ reduced particulate matter

production, but only to a limited extent. Electric cars have

fundamental problems, such as the absence of high-

performance rapid charging infrastructure and the inability

to compete in terms of mileage with conventional fuel-based

vehicles due to inefficiencies in energy storage and battery

management. Government policies that provide attractive

incentives and advantages are crucial to boost EV adoption.

Willingness to spend and socioeconomic status are two factors

influencing consumers’ decisions to purchase EVs. The

production of EV sales should focus on the variety and

design of a model that will appeal to a wide range of

buyers. Monadi et al. (2022).
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Transient stability enhancement
using optimized PI tuning of static
synchronous series compensator
in wind power conversion system
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Power systems are expanding comprehensively with the increase in load demand
from both residential and industrial usage. Renewable energy is penetrating the
power system to satisfy the power needs of the load demand. With its potential to
generate power and compensate for a large portion of the load demand, wind
generators make a major renewable power contribution. Power oscillations
inherent in wind generator integration with the grid are a power quality issue to
be addressed. Oscillation damping using flexible AC transmission system (FACTS)
devices is a relevant solution for the power quality issue. There are multiple reasons
for power oscillation. Mainly, power systems encounter fault conditions. The faults
can be cleared, and the power system tries to retain stability. Sometimes, the system
fails due to a longer settling time. A series-connected FACTS device utilized as a
series compensator is referred to as a static synchronous series compensator
(SSSC). Controlling the flow of electricity over a transmission line using this
method is incredibly efficient. The capacity to switch between a capacitive and
an inductive reactance characteristic is necessary. The SSSC regulates the flow of
power in transmission lines to which it is linked by adjusting both the magnitude of
the injected voltage and the phase angle of the injected voltage in series with the
transmission line. This allows the SSSC to manage the power flow in the
transmission lines. It does it by inserting a voltage that can be controlled into a
transmission line in series with the fundamental frequency. This paper develops the
optimally tuned SSSC in the wind-integrated grid system to dampen the oscillation.
Teacher–learner-based optimization (TLBO) and gray wolf optimization (GWO)
algorithms are used to tune the PI controller to improve the damping response. The
obtained results show that the damping performance of the proposed controller is
better than that of the other traditional controllers.

KEYWORDS

wind integration, static synchronous series compensator, parameter optimized PI tuning,
oscillation damping, teacher and learner algorithm (TLBO) and gray wolf optimization
(GWO) I

Introduction

The generation of electricity has been almost entirely dependent on fossil fuels, which are a
contributing factor to climate change. Many attempts are being made to incorporate renewable
energy sources (RES) into the power system to supplant the traditional fuels that are currently
used for generation of electricity (Poultangari et al., 2012). One of these renewable energy sources
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is wind energy, which, compared to fossil fuels, is both abundant and
affordable (Osman et al., 2015). Controlling the pitch angle is one of the
control strategies used in wind turbines. It is utilized to achieve the goals
of controlling the output power and lowering the loading on the wind
turbine components. The PI controller, hydraulic or servo motor, and
rate limiter comprise the bulk of its constituent parts. Recent years have
seen the implementation of several controllers, including the fuzzy logic
controller (FLC), the programmable logic controller (PLC), the
maximum point power tracker (MPPT), and the adaptive controller
(Burakov and Shishlakov, 2017; Yang et al., 2017). In contrast to the PI
controllers, however, these controllers are not only difficult to use but
are also expensive. Consequently, PI controllers continue to have a
variety of uses in the wind power industry. Finding the gains that are
best suited for the PI controller is a challenge. In Civelek et al. (2016), an
improved genetic algorithm (IGA) was used to fine-tune the gains of a
proportional integral derivative (PID) controller. Compared to the
Zeigler and GA tuning methods, the outcome produced by the IGA
tuning method is superior.

The gains of the PID controller in the blade pitch angle control
were optimized with the help of the PSO algorithm, which increased
the amount of power that the variable speed wind turbine was able to
produce. Consequently, a larger quantity of power was produced. A
considerable performance improvement was observed by switching
from the GA tuning strategy to the PSO tuning method. Due to the
low efficiency and also the challenges in managing the generator
speed of the fixed-speed wind turbines, the variable-speed wind
turbines were studied as an alternative to the fixed-speed wind
turbines. Regulation of the pitch angle fuzzy is explained in Civelek
(2019). Employing PSO to achieve better pitch control is reported in
Zahra et al. (2017). The optimization of the PMSG wind turbine grid
control is accomplished with the assistance of gray wolf optimizers
(Qais et al., 2018) and whale optimization described in Mohamed A
and Haridy (2019). Soued et al. (2017) discussed many different
metaheuristic optimizers.

Variable-speed wind turbines are more durable, straightforward
in construction, and have lower maintenance costs. The PSO tuning
approach offers the benefit of rapid convergence, but the GA tuning
method is well-accepted due to its high level of accuracy.
Nevertheless, the PSO has the potential to converge on a local
optimum solution. Additionally, the tuning of the GA can converge
too soon, leading to local optimality.

The following is a brief overview of some of the most recent
papers written about wind turbines. Choi et al. (2016) made a few
suggestions for hybrid power generation. The technical document
is beneficial in gaining a grasp of the operation of the wind turbine
(Wwd- and Wwd, 2019). A review of hybrid wind–solar energy
systems is presented in Sinha and Chandel (2015), which makes
use of several optimization strategies. Syahputra et al. (2014)
suggested the idea of harnessing wind energy for power
generation on the distribution side of the system. A discussion
of the Simulink model can be found in Costea et al. (2015). Naik
and Gupta (2016) and Ou et al. (2017) provided additional
information about the fluctuation of power and the transient
study analysis. Bektache and Boukhezzar (2018) discussed
optimal power capture, and Naresh and Tripathi (2018)
discussed optimal power capture as a hardware solution that
uses FPGA. A Java algorithm is utilized in Annamraju and
Nandiraju (2019), a fuzzy logic controller is utilized in Duong

et al. (2015), an electro-search optimizer is utilized in Dahab et al.
(2020), a social search algorithm is utilized in Mohapatra et al.
(2019), whale optimization is utilized in Khadanga et al. (2019),
gray wolf optimization is utilized in Padhy and Panda (2021), and
TLBO is utilized in Pahadasingh (2021) to study stability.
However, these algorithms are not widely used in the
generation of wind power utilizing doubly fed induction
generators (DFIGs) and for power oscillation damping, which is
the most important issue.

The integration of wind power generation into the electricity system
is done to enhance the power available on the distribution side of the
system. The power is disrupted due to wind turbulence. One of the
effective series flexible AC transmission systems (FACTS) for increasing
the stability of the power system is the static synchronous compensator
(SSSC).Whenmanaging the injected voltage, the SSSCmakes use of the
PI controller. Due to the size of the system, PI controller tuning is not a
task that can be performed by SSSC controllers. Therefore, the meta-
heuristic approach is utilized to modify the PI controller. In this present
study, the tuning of the PI controller, which is intended to increase the
response, uses the teacher and learner (TLBO) and gray wolf
optimization (GWO) algorithms.

Methodology

Figure 1 depicts the planned organizational structure of the
proposed system in terms of blocks. In this configuration, the step-
up transformer is connected to the DFIG wind generator and the point
of common connection (PCC), which is then coupled to the PCC. Then
it is wired to the grid using two transmission lines. DFIG causes more
oscillations because of the fault in the transmission line system, and
eventually, it settles down. The proposed SSSC and associated control
will need to dampen these oscillations to be effective.

SSSC modeling

The components of the series injected voltage for the aforementioned
two components are expressed by the following equations:

Vdse � ncKinvVdcsssc cos αse, (1)
Vqse � ncKinvVdcsssc sin αse, (2)

where
nc—ratio of the coupling transformer
Vdcsssc—Dclink voltage
αse—Series-injected phase angle
Kinv—Is a constant to convert the DC to AC using an inverter.
The real (P) and reactive (Q) flows are given as follows:

P � VsVr

XL
sin δs − δr( ) � V2

XL
sin δ, (3)

Q � VsVr

XL
1 − cos δs − δr( )( ) � V2

XL
sin δ, (4)

where VS and Vr are the magnitudes, and δs and δr are the phase
angles of the voltage sources VS and Vr, respectively. For simplicity,
the voltage magnitudes are chosen such that Vs � Vr � V, and the
difference between the phase angle is δs � δr � δ.
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Pq � V2

Xeff
sin δ � V2

Xl 1 − Xq

Xl
( ) sin δ. (5)

Q � V2

Xeff
1 − cos δ( )( ) � V2

Xl 1 − Xq

Xl
( )

⎧⎪⎪⎨⎪⎪⎩
⎫⎪⎪⎬⎪⎪⎭ sin δ. (6)

Figure 2 shows the details of the SSSC system. It has capacitors as
a storage element, and a converter used is the inverter. The
transformer is connected in series. The DC link is connected to
the converter, and the three-phase end of the converter is connected
to the transformer end. The S1 to S6 switches in the converter are
controlled as shown in Figure 3.

Figure 3 shows the control system of the SSSC. The minimum
voltage requirement at the DC link (Vdcmin) is compared to the DC

voltage (Vdc) that is measured. This error generated is connected to
the PI controller. The PI controller is tuned with TLBO/GWO. This
PI controller output is connected to another comparator. Then, the
output is compared with the reference voltage (Vref). This output is

FIGURE 1
Block diagram of the proposed system.

FIGURE 2
Detailed system model of an SSSC without a control.

FIGURE 3
Detailed SSSC control system.

FIGURE 4
Operational diagram for tuning the controller.
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again connected to another comparator. The point of common
coupling voltage (Vpcc)magnitude is compared with this error, and
the desired converter alpha angle is determined. This alpha angle is
sent to the pulse width modulation (PWM) system. S1 to S6 are the
PWM signals, which are connected to the SSSC block as shown in
Figure 2.

Objective function

As shown in Figure 3, the PI controller must be tuned using an
objective function. This objective function (Figure 4) must be
minimized by selecting optimal kp and ki parameters. Eq. 7 is
the objective function. Eqs 8, 9 are constraints.

Minimizing voltage settling time

∑n

i�1Ts. (7)
With respect to constraints

Kpmin ≤Kp ≤Kpmax . (8)
Kimin ≤Ki ≤Kimax . (9)

where Ts—settling time,

FIGURE 5
Proposed TLBO-based tuning procedure.

FIGURE 6
Proposed GWO-based tuning procedure flow chart.
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Kpmin—minimum proportional gain
Kpmax—maximum proportional gain
Kimin—minimum integral gain
Kimax—maximum integral gain
The values are obtained by experience while using the PI

controller. The problem is formulated using the aforementioned
objectives and constraints.

Teacher-learner-based optimization (TLBO)
The optimization techniques used in the present research work

are based on the TLBO algorithm, and the steps are presented along
with the flow chart (Figure 5).

Step 1: The TLBO algorithm is initialized with the random
values of the initial group of Kp and Ki values

Step 2: The Kp and Ki from Step 1 are used in the simulation,
and the fitness function is identified.

Step 3: In the group of Kp and Ki values, the values that give
lesser fitness are selected.

Step 4: The new Kp and Ki values are calculated using the
formula given in the TLBO algorithm, and the fitness is found for
new Kp and Ki values.

Step 5: If the new Kp and Ki values give lesser fitness, then
replace the best values with the new Kp and Ki values.

Step 6: Else, reject the new Kp and Ki values, go to Step 2, and
repeat till the end of the final iteration.

The TLBO algorithm is inspired by the process of teaching
and learning in a classroom. The algorithm outlines the two
fundamental ways that learning might occur: Through
instruction from an instructor, which is called the teaching

phase, and through collaboration with other students, which
is called learning. The procedure and the flow chart are
explained previously.

Gray wolf optimization (GWO)
The second optimization technique used is GWO. The steps

involved in the implementation are shown as a flowchart (Figure 6)
with a brief description in this section. Here, the wolf is the
Kp and Ki values. “Position” means in which the position of
the array vector within the group of wolves the Kp and Ki
values are placed.

Step 1: Randomly initialize the gray wolf Kp and Ki values for N
wolves Yi (i = 1, 2, . . ., n)

Step 2: Find the fit value to reduce the settling time for each
individual.

Sort the wolves based on fitness. The three best solutions are
named alpha_wolf, beta_wolf, and gamma_wolf.

Alpha_wolf—least fit wolf.
Beta_wolf—second least fit wolf.
Gamma_wolf—third least fit wolf.
Step 3: Do for maximum iteration:
Find the wolf constant “a:”

a � 2 p 1 − Iter

maxiter
( ).

Do for each wolf till N:

ACalculate the wolf constants Aa1, Aa2, Aa3, Bb1, Bb2, and Bb3,
such that

FIGURE 7
PI controller results after connecting the SSSC.
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Aa1 = a*(2*r1 − 1).
Aa2 = a*(2*r2 − 1).
Aa3 = a*(2*r3 − 1).
Bb1 = 2*r1.

Bb2 = 2*r2.
Bb3 = 2*r.

BCalculate Xx1, Xx2, and Xx3, such that

FIGURE 8
TLBO-PI controller results after connecting the SSSC.

FIGURE 9
GWO-PI controller results after connecting the SSSC.
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Xx1 = Aa1*abs (Bb1* position of alpha_wolf—ith position of
wolf).

Xx2 = Aa2*abs (Bb2*position of beta_wolf—ith position of
wolf).

Xx3 = Aa3*abs (C3*position of gamma_wolf—ith wolf
position).

CCompute a new solution and its fitness:

Xnew = (Xx1 + Xx2 + Xx3)/3
Fitnew = fitness (Xnew).

D Update the ith wolf greedily:

if the fitnew is less than the ith fitness,

ith wolf position = Xxnew
ith wolf fitness = fitnew
End-for
Find the new values of alpha_wolf, beta_wolf, and gamma_wolf.
Based on the fit value, sort the wolves.
Update with the new value.
Alpha_wolf—least fit wolf.
Beta_wolf—second least fit wolf.
Gamma_wolf—third least fit wolf.
End the for loop.
Step 4: Send the final best wolf.

Results and discussion

The SSSC is connected according to the proposed block diagram
shown in Figure 1. The fault is created at the time 1.5 s and released
at 1.6 s. The SSSC is connected in the circuit at 0.3 s.

Here, three cases are studied.

Case 1: With the PI controller

Case 2: With TLBO-PI

Case 3: With GWO-PI
Case 1 uses the PI controller in place of the SSSC control. The

Case 2 Kp and Ki parameters are tuned using the TLBO algorithm.
Then in Case 3, the GWO algorithm is used to tune the PI controller.

The setup and the system are common for all three cases. The
results of voltage injection from SSSC (Vinj), the current through the
SSSC (Iabc), the reference voltage of SSSC (Vref) and the injected
voltage (Mag_inj), the DC voltage measured at the DC link (Vdc),
the real power flow and reactive power flow of the power (P
L1 L2 L3 and Q L1 L2 L3) are depicted as results for each case.
Vinj is the voltage that must be injected when the SSSC is connected
at 0.3 s. The current through the SSSC has a phase variation from the
voltage of the power system. The magnitude of the Vinj is measured
separately and shown as Mag_inj. Then, the SSSC has the DC link as

FIGURE 10
Comparison of the measured voltage amplitude of the SSSC injected voltage.

TABLE 1 Kp and Ki values.

Parameter PI TLBO-PI GWO-PI

Kp value 0.77619 0.44402 0.41577

Ki value 2.4481 2.402 2.4843

The bold value shows better results.

TABLE 2 Comparative study of waveform properties while using PI, TLBO-PI,
and GWO-PI.

Parameter PI TLBO-PI GWO-PI

Rise time (s) 0.77619 0.44402 0.41577

Settling time (s) 2.4481 2.402 2.4843

Settling min 0.022728 0.031118 0.008088

Settling max 0.09319 0.098543 0.066098

Overshoot % 89.511 94.518 30.597

Peak 0.09319 0.098543 0.66098

Peak time (s) 0.86569 1.5184 1.5359

The bold value shows better results.
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the capacitor voltage. This voltage should be maintained to get
compensation from the SSSC. There are three lines of real and
reactive power available in the system labeled P_L1 and Q_L1, P_
L2 and Q_L2, and P_L3 and Q_L1.

The SSSC is designed for 10% of injection voltage. The set point
of the voltage of SSSC of 0.05 pu is set as the DC link voltage
reference. Figure 7 shows the results of PI, Figure 8 shows the results
of TLBO-PI, and Figure 9 shows the results of GWO-PI. It can be
seen that the Mag_inj takes a very long time to respond, and the
oscillations are more in the waveform. This oscillation is also
reflected in the other waveforms.

All three methods follow the reference voltage set. However, PI
is more oscillatory than TLBO-PI and GWO-PI. The final results
show that the settling time is better when using TLBO and GWO
than when using PI, while the overshoot is less in GWO than in
TLBO. The improvements result in faster stability in the power
system, as shown in Figure 10.

Table 1 shows the Kp and Ki values. Here, Table 2 shows the rise
time, settling time, minimum and maximum values of settling time,
percentage of overshoot, peak value, and the time taken to reach the
peak values. The settling time shows that TLBO-PI has a smaller
value of 2.402 s, while the PI and GWO-PI take longer to settle. The
overshoot value shows 30.597%, which is less than PI and GWO-PI.
The peak value of the error is smaller in the PI controller, where the
TLBO-PI is slightly higher than the PI and very high in GWO-PI.
The research objective is to minimize the settling time, which
improves the stability of the system considered. The settling time
is less when using the TLBO-PI controller than in other cases. The
tendency to reach a peak value is also smaller. However, the
percentage of overshoot is less in GWO-PI. Therefore, the
TLBO-PI performs better in this study. In addition, the
oscillations are smaller, as depicted in Figure 10.

Conclusion

To increase power on the system’s distribution side, wind power
generation is connected to the power grid. The power is disrupted by
this wind’s increased disruptions. One of the successful series

FACTS for enhancing power system stability is the static
synchronous compensator (SSSC). The injected voltage is
controlled by the SSSC using a PI controller. Due to the size of
the system, SSSC controllers cannot handle this PI controller setting.
Therefore, the PI controller is tuned using a meta-heuristic method.
This study uses the TLBO and GWO algorithms to tune the PI
controller. Improved PI-controller tuning results are shown with the
TLBO and GWO. TLBO reduces the settling time by 1.88%, along
with a reduction in the peak value of voltage set by the SSSC. The
validity of tuning the PI controller and the oscillations is established.
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Intrusion detection in smart
meters data using machine
learning algorithms: A research
report

M. Ravinder and Vikram Kulkarni*

Department of Information Technology, SVKM’s NMIMS Mukesh Patel School of Technology
Management and Engineering, SVKM’s NMIMS University, Mumbai, India

The intrusion detection in network traffic for crucial smart metering applications
based on radio sensor networks is becoming very important in the Smart Grid area.
The network’s structure for smart meters under investigation should consider
important security factors. The potential of both passive and active cyber-attacks
affecting the functioning of advanced metering infrastructure is studied and a
novel method is proposed in this article. The proposed method for anomaly
identification is efficient and rapid. In the beginning, Cook’s distance was
employed to recognize and eliminate outlier observations. After observations
are made three statistical models Brown’s, Holt’s, and winter’s models were used
for exponential smoothing and were estimated using the provided data. Bollinger
Bands with the appropriate parameters were employed to estimate potential
changes in the forecasts produced by the models that were put into operation.
The estimated trafficmodel’s statistical relationships with its actual variations were
then investigated to spot any unusual behaviour that would point to a cyber-attack
effort. Additionally, a method for updating common models in the event of
substantial fluctuations in real network traffic was suggested. The findings
confirmed the effectiveness of the proposed method and the precision of the
selection of the appropriate statistical model for the under-study time series. The
outcomes validated the effectiveness of the proposed approach and the precision
in choosing a suitable statistical model for the time series under investigation.

KEYWORDS

smart meter, WSN, AMI, machine learning, intrusion detection, smart grid

1 Introduction

The most essential components of the Smart Grid System are the Smart Metering
Communications Networks (SMCN). The reading process can be carried out at an
exceptionally high frequency, such as once every 1 s to 15 min for each meter based on
the requirement. The Smart Metering Communications Network is made up of three
different types of networks: the backbone network, access networks, and last-mile
networks (Gao et al., 2022). There are potentially a lot of other creative alternatives,
such as meters that are detailed in (Liu et al., 2021). Networks for last-mile smart meters
may employ RF, Power Line Communications (PLC), or a combination of the two
technologies, which is designed exclusively for the automatic reading of electricity
meters (Ravinder and Kulkarni, 2021).
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Considering that smart metering systems are a component of the
Smart Grid, it is essential to consider the performance of individual
infrastructure, they are required to satisfy stringent security
requirements. The identification of anomalies in last-mile
networks is one such issue (Ji et al., 2015). There are
approximately 250 smart metres inside one last-mile network,
and it takes a few seconds to read energy consumption data for
every 15 min (usually from 1 to 4 s). The aforementioned
consumption data, from smart meter will reach a local data-
concentrator where the anomaly detection can be done using
machine learning algorithms (Wang and Yi, 2011). The data
concentrator is mostly constructed using single-board computers,
which have a speedy processor, lots of RAM, and ROM memory.
Both access and last-mile networks are connected to the data traffic
concentrator.

The technique that was described before utilised a way of
detecting anomalies that consisted of two stages. The first part of
it was primarily concerned with locating and eliminating any
abnormalities in the advanced metering infrastructure (AMI) in
(Xie et al., 2011) traffic characteristics. This stage was based on
Cook’s distance, which is an approach that is both straightforward
and effective.

A wireless sensor network is used to actualize an AMI
network, which is what makes up a last-mile network (WSN)
(Liu et al., 2015). Wireless sensors that function in the industrial,
scientific, and medical (ISM) frequency bands are included with
power meters (Finster and Baumgart, 2015). Lines implemented
by technologies such IP networks, General Packet Radio Service
(GPRS), or Long-Term Evolution (LTE), receives the traffic from
the power meter in (Garcia-Font et al., 2016), which stands in for
a link that is realised by a packet communication network
(Andrysiak et al., 2017).

In this research, we implement statistical methods for
smoothing the data and three machine learning algorithms for
detecting abnormal daily power consumption. Based on
consumption patterns, which are relatively consistent for a
consumer, such as on weekdays or weekends, anomalies in power
consumption pattern are detected. To directly identify
abnormalities, the proposed methodology may be connected with
smart meters. We make the following contributions to this article.

• We create a model to detect anomalies.
• Microservice that receives, processes, stores and exposes
meter data.

• Display meter data and anomalies.
• Three machine learning algorithms are implemented for
Clustering approach and detecting anomalies based on the
means and standard of the readings during the day.

• The proposed system is considered using a cluster
environment based on realistic data set. The Monte Carlo
model shows the high efficiency for outlier’s detection.

The following describes how the article is structured: Section 2
follows the introduction and explains the final mile test-bed
network’s communication protocol. Section 3 discusses the
proposed model. Section 4 presented the Result discussion and
Section 5 presented the conclusion of this article followed by
references.

2 Literature review

Wireless networking options like ZigBee are cited by
Visvakumar et al. in (Aravinthan et al., 2011) as the ideal
medium for Smart meter communication. Omid Ardakanian
et al. (2014), provide a straightforward, understandable, and
useful paradigm for residential consumer profiling that takes
temperature and time of day fluctuations into consideration.

In, Robin Berthier et al. (2015) investigated four different
strategies for balancing the dual objectives of confidentiality and
monitoring by examining their usefulness on a set of real-world
packet-level traces obtained at an operational AMI network
incongruous with the purpose of intrusion detection systems
(IDSes).

Bilal Erman Bilgin et al. (2016) In, developed a plan that makes
use of automotive adhoc networks to gather data from smart metres.
They are considers average end-end latency and delivery ratio using
NS-2 and several routing protocols.

A machine learning-based anomaly detection (MLAD)
approach is created by Mingjian Cui et al. (2019) in to efficiently
and precisely identify these assaults. Giuseppe Fenza et al. (2019) in,
concentrated on the requirement to create anomaly detection
methods capable of dealing with idea drift, such as changes in
family structure, the conversion of a home into a second dwelling,
and other examples. Real power flow on the chosen line in a
transmission network is monitored and communicated through a
SCADA network to the system operator, according to a suggested
method by Annarita Garcia et al. (2015).

The Distributed Denial of Services (DDoS) attack is a possible
cyber threat in AMI communication networks, according to Yonghe
Guo et al. (2015) in. When using the Markovian decision process
framework to examine probable anomalies of malware foot printing,
Yonghe Guo et al. (2016) offer an ideal frequency of on-site inquiry
and the number of monitoring verification. The greedy quasi-
flooding protocol is a novel communication protocol presented
by Piotr Kiedrowski et al. (2011).

The smart grid’s privacy and cyber security risks are described in
general by Jing Liu et al. (2012) in. In (Marnerides et al., 2015),
Angelos K, Marne rides, et al. address the problem of finding and
attributing anomalies that appear in the sub-meter power
consumption data of a smart grid and may be indicative of
malicious behavior. A generative model for anomaly detection
that takes into consideration the network’s hierarchical structure
and the information gathered from the SMs was proposed by Ramin
Moghaddass et al. in (Moghaddass and Wang, 2018). Amir-Hamed
et al. In (Mohsenian-Rad and Leon-Garcia, 2011), list some real-
world loads that might be subject to load-altering assaults over the
internet. With the help of identity-based signature and encryption
schemes, Jia-lun Tsai et al. in (Tsai and Lo, 2016) developed a novel
anonymous key distribution system for smart grid scenarios.

3 Proposed model

This proposedmodel contains Exploratory Data Analysis (EDA)
for training the data. Based on the above trained data anomaly
detection is estimated using three Machine learning (ML)
algorithms discussed in detail in this section below. The dataset
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consists of time-series forecasting from a single smart meter that is
based on the following two models proposed this research.

1. Based on the mean and standard deviation of the day’s
measurements, a clustering approach for identifying abnormal
days has been used.

2. Monte Carlo Algorithm (MCA) for detecting single-meter
anomalous readings.

The proposed model is based on, user behavior, mistakes
made by humans, poor equipment, energy consumption in
buildings and industries that is frequently wasted. In this
situation, recognizing anomalous power consumption patterns
can be a key step in reducing peak energy use and altering
undesired user behavior. Due to the widespread adoption of
smart meters, it is now possible to recognize, or flag, anomalous
usage by gradually learning what constitutes typical operational
consumption. With the use of such information, users may be
alerted when their equipment is not functioning as it should,
which may modify their behavior. It may even be possible to
identify the problematic appliances and make long-term
modifications to their behavior. The architecture of proposed
system in this paper is shown in Figure 1. The raw data r(k) is
given as input to the control model and u(k) is trained data
obtained based on EDA. The past data (reference data) d(k) and
trained data u(k) are given as input to the MCA the output y(k) is
given as input to the Event detection module where the anomaly
detection A is identified.

The main purpose of EDA is to analyze the data before making
any assumptions. EDA also heps in.

i. Identifying noticeable errors,
ii. Understanding patterns within the data,
iii. Detecting outliers or anomalous events,
iv. Find interesting relations among the variables.

Specific statistical functions and techniques along with EDA
tools including clustering and dimension reduction techniques,
helps to create graphical displays of high-dimensional data
containing many variables.

The algorithm, Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) Algorithm (DBSCAN) is utilized to
differentiate between clusters with high and low density.
DBSCAN performs an excellent job of identifying regions of the
data that are highly dense with observations compared to those that
are not. DBSCAN also has the capability to group data into clusters
of various shapes, which is a significant advantage.

The unsupervised learning method Means shift clustering is non-
parametric and does not call for a predetermined shape of the clusters in
the feature space, it is frequently utilized in real-world data analysis.

Monte Carlo simulations (MCA) help to clarify how risk and
uncertainty impact forecasting and prediction models. An unknown
variable must be provided with multiple values in a Monte Carlo
simulation to obtain a range of results that must then be averaged to
produce an estimate.

3.1 Anomaly detector model

Utilities must identify customers with highly variable
consumption and provide them with incentives to smooth out
their demand in order to ensure the readiness of the electrical
infrastructure for peak demand. An hourly consumption
histogram is generated from the algorithms proposed in this
research paper, to analyze the data before applying the model to
better comprehend its variability.

Next, create a new data frame aggregated from the data
generated during weekdays on hourly basis, it is observed that
the readings are around 2.75 KWh during weekends with a pick
around 5:15 a.m. as shown in Figure 2 in the results section. This
might indicate that something is being turned-on automatically at

FIGURE 1
Architecture of the proposed system.
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FIGURE 2
Energy consumption in KWh during weekends.

FIGURE 3
Detected outliers.
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this time. Lastly, find anomalous days that aggregate the readings for
each day in the mean and standard values. The plot below as shown
in Figure 3 each day represents with blue standing for Monday to
Friday and Green for Saturday to Sunday. As can be seen, there are
two big clusters (Blue and Green). However, some blue points fall
into the green cluster, and the guess is that these are the non-
working Monday to Fridays. To find anomalies, cluster algorithms
like DBSCAN, Mean shift and Monte Carlo algorithms are used in
this paper.

To find abnormalities, our algorithm includes statistical models
and expert knowledge. Furthermore, anomalies should be labelled
based on a predefined set of attributes to help us determine whether
our model has generated relevant outputs. To locate unique patterns
that are difficult to identify by static rules and may not be simple for
specialists to quantify, the proposed ML-based models are adapted.

3.2 Density-based spatial clustering of
applications with noise (DBSCAN) algorithm

Every data point is encircled by an epsilon (eps) radius circle in
DBSCAN before being divided into three categories: Core point,
Border point, and Noise. A data point is considered for a core point
if a minimum number of points (‘min-Points’) are present in the
circle around it. It is categorized as a Border point if there are less
than “minPoints”, and as Noise, if there are no other data points
within an epsilon radius of any data point.

The values of eps and “minPoints” have a significant impact on
DBSCAN. Because of this, it’s crucial to know how to choose the
values for eps and “minPoints.” The DBSCAN algorithm’s output
can be considerably altered by even a little modification in these
numbers. Eq. 1 provides the “min Point” value,

minPoint> � Dimensions + 1 (1)
Considering “minPoints” as “1”would result in each point

becoming its own cluster, which is incorrect. Therefore, it must
be at least “3”. However, its effectiveness is also determined by
domain knowledge. The K-distance graph may be used to determine
the value of eps. The graph’s elbow, or point of greatest curvature,
provides information on the magnitude of eps. More clusters will
form and more data points will be viewed as Noise if the value of the
specified eps is too small. The details will be lost if the size is too large
since several little clusters will combine into one large cluster.

1 DBSCAN (dataset, eps, MinPts){

2 # cluster index

3 C = 1

4 for each unvisited point p in dataset {

5 mark p as visited

6 # find neighbors

7 Neighbors N = find the neighboring points of p

8 if |N|>=MinPts:
9 N = N U N′
10 if p’ is not a member of any cluster:

11 add p’ to cluster C

12 }

Algorithm 1: DBSCAN Algorithm

TheDBSCANpseudo codementioned above is explained as follows,
Finding every neighbor point within an eps and identifying the focal
areas or locations that have received visits from neighbors whose number
is more thanMinPts constitutes step one. For each essential element that
hasn’t been allocated to a cluster yet in step 2, a new cluster must be
created. Recursively finding all of its density-connected points and
clustering them with the core point is required in the third stage. A
point pair is said to be density connectedwhen “a” and “c”has a sufficient
number of points in its neighbors and both “a” and “b” are situated
within the eps distance it involves chaining. In consideration of the above,
it can be concluded that statement holds true if “b” is a neighbor of “c”,
“c” is a neighbor of “d”, “d” is a neighbor of “e”. The fourth step includes
repeatedly iterating over the unexplored spots in the dataset. Noise is
defined as the points that cannot be grouped into a cluster.

3.3 Mean shift algorithm

The “mean point” of the EDA dataset can be obtained by
calculating the mean of feature_1 and the mean of feature_2. To
note, the “mean point” here is defined by the arithmetic mean of
feature_1 and that of feature_2, respectively, because it is calculated
based on the equal weights of all points.

MA � 1
n
∑n
i�1
xi (2)

Where M represents the mean, n is the sample size, and x_i is one
feature (feature_1 or feature_2) of the data points.

The most widely used weight function in the mean shift
algorithm is a flat one,

w d( ) � 1, if d≤R
0, if d>R

{ (3)

Where d is the distance between any data point to the currently
investigated one, and R is the radius of the circle centered at the
investigated point. It’s kind of like that we are standing on one local
point (center point O) and cannot see the entire picture but are
restricted to a local area to calculate the mean. The weighted mean of
the investigated area found tends to locate in a region with a high
density of points.

1 Initialize k means with random values

2 -->For a given number of iterations:

3 -->Iterate through items:

4 -->Find the mean closest to the item by

calculating The Euclidean distance of the

item with each of the means.

5 -->Assign item to mean

6 -->Update mean by shifting it to the average of

the items in that cluster

Algorithm 2: Mean Shift Algorithm

3.4 Monte Carlo model

Monte Carlo Simulation, is a multiple probability simulation,
which is used to estimate the possible outcomes of an uncertain
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event. Monte Carlo Algorithm (MCA) based classification is used to
estimate every smart meter reading, we calculate the frequency of
specific readings in the past and write to the ‘freq’ column of the data
frame. For missing readings, we define the frequency to be −1. A
reading is declared anomalous if its frequency is below a set
threshold. The threshold value can also be used for estimating
the severity of the anomaly.

The Monte Carlo model approach is.

• Easy and Fast
• Tunable
• Adaptive: if the user behavior changes, the algorithm
eventually adapts to the new behavior.

This can also be achieved by resetting the clock, i.e., resetting the
application dictionary and the count variable after the count reaches
a certain threshold, or by setting time-to-live for each reading in
the past.

4 Results discussion

The research proposed in this article is implemented on Google
Co-lab. The workstation used for the research runs on Intel(R)
Core(TM) i3-4005U CPU @ 1.70GHz, 64-bit operating system, the
x64-based processor with 8.00 GB RAM. For evaluating algorithms
and statistical models proposed in this paper considers open-source
data from (kaggle, 2023). Table 1 illustrates the sensitivity of
DBSCAN, Mean shift, and Monte Carlo algorithms on anomaly
detection. Based on the observation from Table 1 the Monte-Carlo
algorithm outperforms the DBSCAN and Mean shift algorithms.

Figure 2 shows the readings of the electrical energy consumption
of an office building. The power consumption on weekend (Saturday
and Sunday) is observed to be around 2.75 KWh with a pick at 5:
15 a.m. This reading during weekend days is observed to be
suspicious.

The location of the detected anomaly is shown in Figure 3. The
outliers that were discovered are shown by the red spots on this
graph, and the degree of the abnormality is indicated by how
transparent the spots are. Brighter red denotes greater severity.
This can also be done by setting time-to-live for each reading in
the past or by restarting the clock, which involves restarting the
application dictionary and the count variable after count reaches a
particular threshold.

The observation regarding EDA, DBSCAN, Mean Shift, and
Monte Carlo algorithms can be made from the results.

• Observation 1: Implemented three machine learning
algorithms to find abnormalities and allow access to a

micro-service that collects, modifies, saves, and displays
meter data.

• Observation 2: Every data point is encircled by an epsilon-
radius circle in DBSCAN before being divided into three
categories: Core point, Border point, and Noise. The
K-distance graph may be used to determine epsilon’s value.
The DBSCAN algorithm is a clustering algorithm.

• Observation 3: Mean shift is an unsupervised learning
approach that outperforms the DBSCAN algorithm and is
mostly used for clustering.

• Observation 4: Monte Carlo classification focuses on
individual smart meter measurements. The Monte Carlo
model technique is simple, quick, tunable, and adaptable,
and it improves results by 15% compared to similar work
(Andrysiak et al., 2017).

5 Conclusion

In this paper, a new data-driven approach to identify
distribution system abnormalities using time series analysis is
proposed. With a high degree of confidence, the developed
anomaly detector identified every pre-designed abnormality. The
proposed anomaly detector operates unsupervised, which
overcomes the issue of data imbalance brought on by a lack of
anomalous data. A realistic distribution grid has been successfully
used to test the results that correspond to the proposed framework.
In the future, this research can analyse and forecast multivariate data
from smart grid using a machine learning algorithm.
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TABLE 1 Comparison of DBSCAN, mean shift and Monte Carlo algorithms.

S.NO Performance in % DBSCAN algorithm (%) Mean shift algorithm (%) Monte Carlo algorithm (%)

1 90 87 87 87

2 95 88 88 88

3 100 90 92 96
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Fault detection in a distribution
network using a combination of a
discrete wavelet transform and a
neural Network’s radial basis
function algorithm to detect
high-impedance faults

Vyshnavi Gogula and Belwin Edward*

Department of Electrical Engineering, Vellore Institute of Technology, Vellore, India

High Impedance Fault detection in a solar photovoltaic (PV) and wind generator
integrated power system is described in this paper using discrete wavelet
transform and a neural network with radial basis function (NNRBF). For this
paper, the integration of solar photovoltaic and wind systems was modelled in
a MATLAB/Simulink environment to create an IEEE 13-bus system. Microgrids
(MG’s) are mostly powered by renewable energy. Uncertainty about renewables
has shifted attention to ensuring a steady supply and long-term viability. It has
been addressed in the paper whether or not a small-scale distant end source
connection may be made at the terminal of a radial distribution feeder. Some
typical power system problems compromise the reliability of the grid’s power
supply. To solve this problem, this study suggests a criterion algorithm based on
the neural network with radial basis function (NNRBF), and a defect detection
method based on the discrete wavelet transform (DWT). The MATLAB/Simulink
model of the system is then used to produce fault and travelling wave signals. The
db4 wavelet is used to deconstruct the travelling wave signals into detail and
approximate signals, which are then combined with the data from the two-
terminal travelling wave localization approach for fault detection. After that, the
optimal maximum coefficients of the wavelets are extracted and fed into the
proposed radial basis function neural network (NNRBF). The results show that both
the criterion algorithm and the fault detection algorithm are reliable in their
assessments of whether or not faults exist in the power system, and that
neither algorithm is particularly sensitive to variations in fault type, fault
detection, fault initial angle, or transition resistance. After that, the optimal
maximum coefficients of the wavelets are extracted and fed into the proposed
radial basis function neural network (NNRBF). Overhead distribution system faults
are simulated inMatlab/Simulink, and the technique is rigorously validated across a
wide range of system situations. It has been shown through simulations that the
proposedmethod can be relied upon to successfully and dependably protect high
impedance fault (Hi-Z).
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solar photovoltaic, wind, microgrid, high impedance fault, distribution network, neural
network with radial basis function, nonlinear load switching

OPEN ACCESS

EDITED BY

Sarat Kumar Sahoo,
Parala Maharaja Engineering College
(P.M.E.C), India

REVIEWED BY

Mohammad Amir,
Jamia Millia Islamia, India
S. Padmini,
SRM University, India

*CORRESPONDENCE

Belwin Edward,
belwinedward@vit.ac.in

SPECIALTY SECTION

This article was submitted to Smart Grids,
a section of the journal
Frontiers in Energy Research

RECEIVED 17 November 2022
ACCEPTED 07 February 2023
PUBLISHED 22 February 2023

CITATION

Gogula V and Edward B (2023), Fault
detection in a distribution network using
a combination of a discrete wavelet
transform and a neural Network’s radial
basis function algorithm to detect high-
impedance faults.
Front. Energy Res. 11:1101049.
doi: 10.3389/fenrg.2023.1101049

COPYRIGHT

© 2023 Gogula and Edward. This is an
open-access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Energy Research frontiersin.org01

TYPE Original Research
PUBLISHED 22 February 2023
DOI 10.3389/fenrg.2023.1101049

140

https://www.frontiersin.org/articles/10.3389/fenrg.2023.1101049/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1101049/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1101049/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1101049/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1101049/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1101049/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2023.1101049&domain=pdf&date_stamp=2023-02-22
mailto:belwinedward@vit.ac.in
mailto:belwinedward@vit.ac.in
https://doi.org/10.3389/fenrg.2023.1101049
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2023.1101049


1 Introduction

The widespread recognition of the negative effects of fossil fuel
consumption on the environment is a primary cause of this issue.
Use of sustainable materials. Hydroelectric power, PV power, wind
power, and micro-turbines are all examples of renewable energy
sources that can help meet the growing demand for electricity
without increasing pollution. Although wind and PV energy
show the most promise, their utilization is limited by the fact
that they are unpredictable and intermittent, which results in
unreliable economic dispatch (Kroposki et al., 2017; Qazi et al.,
2019). MG’s in remote places that run on renewable energy sources
like wind and solar PV are becoming more reliable thanks to the
installation of energy storage (Billinton and Karki, 2001; Kroposki
et al., 2017). The complementary nature of solar photovoltaics and
wind power is an inherent benefit (Al-Masri and Ehsani, 2015).
Maximum power point (MPP) extraction is used to get the most
efficient amount of energy from the wind and sun. Maximum power
point for solar is found using the incremental conductance (De Brito
et al., 2012) scheme, whereas for wind it is found using the
estimation based perturb and observe (EP&O) (Xiao et al., 2011)
scheme. Traditional P&O, MPP schemes perform poorly under
conditions of rapid change in the surrounding environment,
which can cause tracking to lag or even fail (Ahmed and Salam,
2018). Since the control parameter is an incremental step, it struggles
to deliver sufficient dynamic performance. Finding the sweet spot
for parameter size can be tricky. The inverter output fluctuates
because of the dominating oscillation close to the MPP. EPO offers a
more in-depth evaluation of the MPP than what is available through
the standard P&O technique. Due to the extremely non-linear
nature of the wind, the MPP can only be attained by a
combination of the perturb procedure’s exhaustive search of the
search zone and the estimate procedure’s compensation for the
perturb procedure’s inefficiencies as the wind speed varies.
Therefore, PV and wind power together can help with the issue
of long-term intermittency. This makes it all the more important to
design a solid protection architecture capable of detecting and
categorising system failures in order to ensure MG’s safe and
reliable functioning. Numerous studies were conducted to
identify faults, categorize them, and isolate them to lessen the
frequency and duration of outages in the transmission and
distribution networks. HIF is an annoying system anomaly. A
HIF is formed whenever an electrical conductor comes into
contact with a high-resistance item, such as a branch, sand, or
asphalt. In a grounded system, its fault current is typically between
0 and 75 A, displaying asymmetrical, intermittent, and non-linear
arcing behavior (Costa et al., 2015; Wang et al., 2016). Due to the
lower current magnitude, the over current relay often fails to detect
the HIF in the system, leading to a cascading failure of the system
and putting people and their belongings in danger (Sedighi et al.,
2005a). Furthermore, the spread of HIF to otherwise functional
areas of the grid might cause a domino effect of failure throughout
the entire system (Kavi et al., 2018; Santos et al., 2017). To
investigate the impact of HIF on distribution networks, a
mathematical model is proposed in (Yu et al., 2008) in the form
of a non-linear partial differential equation.

According to Figure 1, the most common causes of failures in an
urban distribution system are external variables, natural factors, and

improper maintenance and operation. The presence of a path to
ground is not required for a Hi-Z fault to occur, and the presence of
such a path has no bearing on the detection of a Hi-Z fault. Current
paper, however, employs a DWT and NNRBF for a distribution
network to detect HIF in wind and solar PV power networks.
Overhead power lines are the typical method of delivering
electricity to homes and businesses. Due to exposure to varying
climatic conditions, these are more likely to have power outages. It
may be possible to readily detect and localize a subset of these
malfunctions. However, there are not many malfunctions that
cannot be spotted by standard safety measures (AsghariGovar
et al., 2018). Equipment attached to the supply line can be
harmed if the distribution system is allowed to run for hours or
days with unidentified HIF. Furthermore, the analysis reveals that
electric arcs emit a random, unpredictable, and unbalanced current
that is then followed by HIF (Chen et al., 2016). Because distribution
infrastructure is often located near densely inhabited regions, deaths
from electrical arcs are all too often. Despite the fact that the
detection of HIFs has been a topic of study since the early 1970s,
more work remains to be done to shed light on the process. Using
the ratio of harmonics at lower orders, as described in (Emanuel
et al., 1990). One problem of this type of method is that it requires
setting a number of threshold values, which might negatively impact
the detection method’s efficiency. Methods based on time-frequency
analysis have shown promising results in the identification
procedure (Samantaray et al., 2008; Ghaderi et al., 2014).
However, the rate of erroneous detection is demonstrated to be a
significant barrier to real-world implementations. Faults can be
identified by comparing the current or voltage signal before and
after the fault occurred, using techniques that operate in the time
domain. There are minimal problems associated with an unbalanced
network when using the mathematical morphology-based time
domain methods presented in (Gautam and Brahma, 2012; Sekar
andMohanty, 2017). Since the DWT can identify both the frequency
component and its temporal position, it has found widespread
application in signal processing. There has been more than a
decade of experience protecting electrical grids with these
techniques. Although DWT based techniques are providing a
good detection rate with linear loads (Sarlak and Shahrtash,
2011), there is no evidence of non-linear loads inclusion with the

FIGURE 1
Causes of HIF.
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systems while detecting HIFs except in (Chen et al., 2016). All the
way through the power distribution networks, the number of non-
linear loads (NLLs) has been steadily rising in recent years. While
NLLs are a key part of the puzzle when it comes to modelling and
building viable HIF detection algorithms, a large proportion of
currently available methods ignore them. Similarities between
NLL and HIF features will reduce the efficacy of current
approaches. The majority of current proposals for defect
diagnosis can be broken down into two groups: frequency
domain feature identification methods and adaptive detection
techniques. Three of the most common methods for finding
features in the frequency domain are the Fourier transform, the
wavelet transform, and the Hilbert-Huang transform. These days,
adaptive detection strategies typically use either expert systems or
neural networks. These theoretical studies have produced useful
insights, but they are not without their faults. While the single-ended
travelling wave fault location approach is commonly used, detecting
the wave head is difficult, and placement accuracy is low (Santos
et al., 2016). Empirical mode decomposition (EMD) was optimized
using integrated EMD (see (Mahari and Seyedi, 2015)). While this
approach did not suffer from modal aliasing, it did introduce fake
components, which led to poor placement precision. An approach to
fault phase selection is proposed in (Sedighi et al., 2005b) that makes
use of the high-order multi-resolution singular entropy of active
fault components. Though this method works regardless of fault
type, fault detection, or transition resistance, finding the right cutoff
value can be challenging. When compared to the Fourier transform,
the wavelet transform is a marked improvement. Since the Fourier
transform is unable to fully express the time-frequency localization
property of non-stationary signals, the wavelet transform is used
instead. In addition to its strength as a general tool for waveform
analysis, the Wavelet Transform excels at analyzing waveforms at
the time-frequency level. As a result, it can quickly and accurately
identify the signal’s focal point, analyze its degree of distortion, and
extract precise information from the time and frequency domains
(Bakar et al., 2014; He et al., 2014). Fault detection in the fars power
distribution system was given a boost in accuracy and efficiency
thanks to wavelet transform’s application in (Soualhi et al., 2015).
When conducting signal analysis using a wavelet transform,
extracting both approximation and detailed features is a crucial
step. Find the best decomposition level, partition features as finely as
feasible, and keep errors isolated from features. Both feature
component extraction and fault detection accuracy suffer from

the current approaches’ reliance on either manually set threshold
control or testing with retrieved trend via wavelet transform. With
the neural network serving as a model for the neuron network in the
human brain, the values of the input layer neurons are mapped to
the values of the output layer neurons, establishing an implicit
function relationship between the input and the output. An
asymmetrical fault line searching and locating scheme is
developed using the fault direction distinguishing method and its
associated communication system. A more up-to-date method for
locating faults in a distribution network that includes DG units is the
multi-layer perceptron neural network (MLPNN) (Jiang et al., 2003;
Gafoor et al., 2014). As a result of the MLPNN’s structure and
training algorithm, however, its speed is not ideal for applications
requiring rapid and precise fault finding (Kordestani et al., 2016;
Bayrak, 2018). Non-linear, prior-data-driven processing is
employed by the network. Compared to traditional methods of
diagnosis, it gives room for more imaginative data manipulation. In
contrast, the neural network can learn quickly and tolerates errors
better during diagnosis. However, it is not without its flaws. When it
comes to power system failure diagnosis, gathering enough data to
train a neural network is difficult. It was easy for the neural network
to get mired in a cycle of local minima. This study suggests a fault
detection system based on wavelet transform and the chaotic neural
network as a solution to these problems. The chaotic neural network
avoids the drawback of getting stuck at the local optimum. It also has
excellent error-handling and associative memory features. With the
advent of the internet of things and the cloud-edge-collaboration
framework, the authors of (Tonelli-Neto et al., 2017) introduce a
DWT and NNRBF for detecting HIF by fusing together information
from different distribution networks. To identify HIF in an IEEE 13-
bus distribution network, the authors (Rezaei and Haghifam, 2008)
opted on a fault-based strategy.

The following outlines the primary inspiration and contribution
of this work.

• Electrical Distribution to Rural Areas: Using RESs with energy
storage makes it economically feasible to bring electricity to
rural areas. Solar PV array, wind turbine, and battery all work
together to minimize maintenance costs and maximize clean
energy production. When the sun, the wind, the batteries, and

FIGURE 3
PV system configuration using MPPT and DC–DC boost
converter (Yahya and Yahya, 2023).

FIGURE 2
PV cell circuit model (Chatrenour et al., 2017).
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FIGURE 4
WECS configuration (Vas, 1999).

FIGURE 5
Electrical circuit schematic that depicts the PMSG, rectifier, and boost converter (Mishra and Panigrahi, 2019).

FIGURE 6
MPPT P&O flowchart.
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the load all align, the adopted control will carry out the
specified action.

• One MG based on VSI control is created. In addition, a diode
rectifier is used to change the AC current produced by
PMBLDCG’s wind turbines into DC current. Therefore, the
overall system cost has decreased thanks to this topology.

• The PMBLDCG saves money by not requiring expensive
sensors for MPPT control (like speed/position/wind speed
sensors). As the MPP and power converter control become
independent, the large operating range and control
dependability of a second stage solar design are worth the
additional components.

FIGURE 7
IEEE-13 Bus system with the solar PV system & WECS (Mishra and Yadav, 2019).
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• Renewable energy source used are maintenance free and
having high efficiency.

• A neural network called NNRBF is proposed as the basis for an
algorithm to select fault phases. An NNRBF neural network is
trained on fault features extracted using wavelets, and its
output is correlated with inputs to determine the fault type.
When it comes to fault and transition resistance, the algorithm
is stable.

• There is a proposal for a wavelet-transform-based fault
detection algorithm with two terminals. The db4 wavelet is
used to detect the travelling wave head to diagnose the issue.
This algorithm’s fault-detection accuracy is excellent, and it is
robust against variations in fault type and transition resistance.

2 Solar PV energy: A brief description

Non-linearity in the I-V curve is a feature of PV cells, and it
changes as the cells are exposed to more or less sunlight and are
heated or cooled. An ideal solar cell is a circuit that includes a diode
and a parallel current source. Yet, we model the losses caused by
these cells using the series resistance (Rse) and the parallel resistance
(Rsh). This is why the PV cell’s orbital model under real-world
conditions is shown in Figure 2. RSH has a much higher market
value than RS does. Similarly, the Iph source current is zero in total
darkness (Zayandehroodi et al., 2010a; Zayandehroodi et al., 2010b).

2.1 The PV module

In a cell, losses are proportional to the resistance in the
corresponding circuit. Losses in a cell occur due to multiple
processes, including the reflection of incident light at the cell
surface, the absorption of photons without electrons and free
holes, and the redistribution of electrons and voids. The
following equation expresses the solar cell’s distinctive behavior
as shown in Figure 2 (Chatrenour et al., 2017).

Ipv � Iph − ID − ISH (1)

Where current PV (Ipv), diode current (ID), and diode voltage
(Vd). ISH = Vpv + Ipv, where Ipv is the output current, Vpv is the
input voltage, RS and RSH are the solar cell’s corresponding series
and parallel resistance, and RS/RSH is the leakage current.
Shockley diodes have a voltage-current characteristic, and that
characteristic can be written as a formula for the diode
current, ID.

ID � IO e
vD
aVt − 1( ) (2)

Here, Io is the reverse saturation current; VD = Vpv + IpvRS is the
diode voltage; a is the diode ideal constant;

Vt � Ns ·kb
e T T is the operating temperature of the solar cell; Ns is

the number of series cells; kb is the Boltzmann constant; e is the
electron charge; and T is the diode’s thermal voltage. Adding Eq. 2 to
the first equation yields the solar panel’s defining equation, which is
as follows:

IPV � Iph − Io e
VPV + IPVRS

aVt
− 1( ) − VPV + IPVRS

RSH
(3)

The value of the photovoltaic current Ipv is related to the
variations in light intensity and temperature as shown in Eq. 3.

2.2 DC to DC boost converter configuration

In order to maintain a constant load voltage between the PV
array and inverter, a DC-DC boost converter is employed
(Necaibia et al., 2017). As the voltage produced by PV systems
is typically insufficient to power loads directly, this is an essential
component of PV applications. In this study, a novel ANN
control based MPPT approach was implemented to maximize
power output from a DC-DC boost converter before feeding it
into the input of an RS MLI. By calculating the duty cycle for the
converter switch and running at a high switching frequency,
Maximum Power Point Tracking (MPPT) is a technique for
getting the most power out of PV panels. If the converter is in
continuous conduction mode, the current through the inductor is

FIGURE 8
(A) Characteristics of the current-voltage curve of a PV array, (B) power-voltage characteristics of PV array.
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always present (Abdullah et al., 2012). We provide duty cycle,
inductor (L), and capacitor (C) formulas below.

Vout

Vin
� 1
1 −D

(4)

inductor L( ) � Vin × D × T

ΔiL
(5)

Capacitor C( ) � Vout × D

R ×ΔVout × f
(6)

Vin and V0 are the boost converter’s input and output voltages;
D is the duty cycle. D > 1 means output voltage > input voltage.
Figure 3 depicts a DC-DC boost converter with PV integration and
the ANN control based MPPT approach for maximizing PV duty
cycle.

When a boost converter is used in conjunction with a PV array,
it is discovered that the average current from the PV array increases
as the duty cycle rises, resulting in a decrease in the voltage from the
PV array as a whole. In order to raise the PV array’s break-even
point, D modifies its V-I characteristic. When D is decreased, the
average current from a PV array drops while the voltage is raised. If

the PV array’s operating point moves to the right, it means the
array’s output has been modified. In order to keep the DC voltage
output at the VSC terminal constant, the DC-DC converter’s value
of D is automatically adjusted using the perturb and absorb MPPT
approach.

In (Yahya and Yahya, 2023), DC-DC boost converter
technology to track the maximum power of a photovoltaic (PV)
system using a maximum power point tracking (MPPT) controller
based on a modified version of particle swarm optimization
(MPSO). A DC-DC boost converter was utilized to increase the
input DC voltage of the PV module. The boost converter supplied
power for the DC-AC multilevel PWM inverter, which supplied
the output AC voltage to a single inductive load. It is common
practise to employ cascaded multilayer inverters to condition
power in renewable energy applications due to its simplicity
and low cost. Modulations in the DC link capacitor voltage
result in low order harmonics and inter harmonics at the
output of the multilevel inverter. The lowest number of
harmonics is achieved using phase disposition pulse width
modulation (PDPWM). Energy from the inverter cells.

FIGURE 9
(A) HIF model (James et al., 2017) (B) Typical HIF voltage-current features.
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2.3 Description of wind source

Solar and wind power dominate the renewable energy market due
to their low environmental impact and high irradiation and kinetic
energy output, respectively. Figure 4 depicted wind energy conversion
system (WECS), purpose of WECS is to exploit the kinetic energy of
wind for use in mechanical power generation. Low efficiency, non-
linearity and unpredictability in wind speed, and high construction cost
are all factors that prevent widespread adoption of wind energy
(Manwell et al., 2010). Therefore, a control algorithm is necessary to
optimize performance and cut expenses. Using a wind turbine, one can
convert wind energy into electricity DWT. DWT are made up of blades
and amotorized device. AnAC-DC andDC-DC converter are required
on the control side. In this study, a horizontal wind turbinewith variable
speed was used. Since variable speed turbines can generate electricity at
varying wind speeds, they have a higher efficiency rating than fixed
speed turbines (Nurzaman et al., 2017). In this study, a permanent-
magnet synchronous generator is used (PMSG). PMSG’s high efficiency
at low speeds has made it a popular choice for use in small-scale wind
turbines. On the control side, an ANN control based MPPT algorithm
locates andmaintains the turbine’s maximumpower point, maximizing
its efficiency. Here, we present a DC-DC boost converter that is
managed by a ANN control based MPPT algorithm and integrated

into a wind power generation setup. In this paper, we’ll go over the
results of a simulation test of ANN control based MPPT controllers for
a residential wind turbine run through the Simulink MATLAB
modelling environment.

Wind turbines’ peak mechanical power, stated as (Abdullah
et al., 2011)

Pmax � 1
2
ρCpAV

3
w (7)

Where ρ is the density of the air (in kg/m3), A is the swept area of the
rotor blades (in m2), and Vw is the speed of the wind (in metres per
second). Cp is the power coefficient, is written as (Gite and Pawar,
2017).

cp � c1
C2

λi
− C3β − C4( )e5−Cλi + C6λ (8)

1
λi
� 1
λ + 0.08β

− 0.035

β3 + 1
(9)

λ � ωm*
R

Vw
(10)

C1 to C6 are rotor-specific. In this paper, C1 = 20, C2 = 140,
C3 = 0.4, C4 = 28, C5 = 21, and C6 = 0.068.

FIGURE 10
Schematic representation of the fault tolerant classification.
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2.4 Combined boost converter, rectifier, and
PMSG in series

Figure 5 is an electrical circuit schematic that depicts the PMSG,
rectifier, and boost converter all in one convenient location. This
model’s goal is to find the relationship between DC grid load current
and turbine.

The current in dq reference frame represented as

d

dt
isd
isq

[ ] � −
Rs

Lsd
−Lsd

Lsq
ωe

Lsd

Lsq
ωe

Rs

Lsq

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

isd
isq

[ ] +
1
Lsd

0

0
1
Lsq

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

vsd
vsq

[ ] (11)

Thus, the expression for the mechanical equivalent torque of an
electromagnetic force and the mechanical torque of a machine can
be written as

Te � N Ψf + Lsd − Lsq( )isd{ }isq (12)

Tm � P

ωm
� 1
2
ρπR2CP

V3
w

ωm
(13)

Hence the rotor speed can be calculated

dω

dt
� Te − Tm − Bωm

jt + jp
(14)

2.5 MPPT

A MPPT algorithm known as P&O is utilized to improve
performance is shown in Figure 6. The turbine will be operating
at its maximum possible efficiency with the help of MPPT. P&O
algorithms function by modifying a control parameter and
observing the resulting change in output (Kavaskar and
Mohanty, 2019). This algorithm is simple, effective, and does not
call for any additional hardware or sensors.

ΔP � P k( ) − P k − 1( ) (15)
Delta D rises when P is positive and Vs. is negative. If P and the

voltage change are positive, delta D will fall. Delta D decreases for a
positive voltage change and negative P. If both P and the voltage
change are negative, then delta D is too (Alsafasfeh et al., 2012).

3 Systematic illustration of the IEEE-
13 bus

The proposed NNRBF classification performance was measured
using an IEEE 13-bus network model with high impedance fault,
symmetrical and unsymmetrical faults, switching events (heavy load
and capacitor bank), and transformer current. The MATLAB/
Simulink software environment was used to design the system,

FIGURE 11
DWT decomposition of signal (Daubecheis, 1992).
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which includes a 300 kW solar PV unit (operating under STC) and
several load facilities. In this study, an IEEE 13-bus network model
was used to evaluate DWT and NNRBF classifiers under high-
impedance, symmetrical, and asymmetrical failure conditions.
MATLAB/Simulink was used to generate the IEEE 13 bus
network model in Figure 7. The test system is connected to the
grid with a 200 kVA, 4.16 kV/25 kV transformer (100 MVA, 25 kV,
50 Hz). For the purpose of validating the proposed RNN based
classifier’s ability to recognize HIF, it was subjected to a battery of
tests across a wide range of operating conditions, including normal
operation, switching events (capacitor bank and heavy load),
transformer inrush current, and abnormal operation
(symmetrical and unsymmetrical faults: single line ground,
double line, double line to ground, and three-phase fault). The
300 kWp of solar PV comes from three 100 kW PV modules. Each
solar cell in the PV array and its specific configuration are described.
(Samet et al., 2017). Provides details on modelling transmission line
parameters and load. Both normal and unusual circumstances were
used to test the classifier’s capacity to identify HIF (symmetrical and
unsymmetrical faults: single line ground, double line, double line to
ground and three-phase fault).

3.1 The characteristics curve of the PV
module

Both the input voltage and output current of the PV array play a
role in the I-V and P-V curves that define the PV module.
Insulation-voltage and potential-voltage plots. This graphic
depicts as MPP at a given temperature and radiation level (where
25°C is assumed for the temperature and 100 W/m2 is assumed for
the radiation level). This is the sweet spot for maximizing both
power output and efficiency from a PV module. In this case, the
MPP is the general maximum, which is another name for the MPP.

Solar cell current (a) and power output (voltage) (b) are shown
as a function of solar irradiance (W/m2) in Figure 8. The two most
important parts of a PV system are the DC-DC boost converter and

the DC-AC VSI. As a result of the boost converter, the 280 V DC
maximum power point of the PV unit is increased to 480 V (to
500 V). To achieve maximum power tracking, the MPPT
controller’s incremental conductance approach was used to vary
the DC-DC boost converter’s duty cycle in response to changes in
solar irradiance. We analyzed a three-level IGBT bridge circuit for a
PV inverter (VSI) using pulse width modulation (switching
frequency of 1980 Hz). The inverter uses synchronous reference
frame theory and two-control to regulate the AC voltage at the
output. The inverter’s 260 V AC output is increased to 4.16 kV so
that it can be connected to the IEEE-13 bus power system network.

4 High impedance fault model

Based on the Emanuel model (Gomes et al., 2018), (James
et al., 2017) and illustrated in Figure 9, an anti-parallel diode
model is used to simulate the waveform features of the HIF
current. The ideal HIF V-I characteristics are achieved by
adjusting the HIF model parameters Vp, Vn, Rp, and Rn from
550 to 7500 V, 1,100–9000 V, 110 to 4,000, and 120 to 4,000,
respectively. HIF’s current and voltage waveforms when sampling
at 600V, 1100V, and 120R are depicted in Figure 9A and
Figure 9B, respectively. Current waveform is found to be non-
linear, asymmetrical, and contain harmonics when HIF model is
taken into account. In addition, FFT examination revealed that
there was a 3.94% and 11.7% content of second- and third-order
harmonics, respectively.

4.1 Methodology proposed for the detection
of HIF

Using a Figure 10 diagram of the MV distribution power
system’s solar PV and wind integrated power network, this part
discusses the identification of HIF using intelligent classifiers
following the below 4steps.

FIGURE 12
A generic architecture of the NNRBF.
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• Create disturbances in MATLAB/Simulink to obtain faulty
existing data.

• To train the classifiers, we have taken samples of the current
indicative of a fault using the mother wavelet daubechies4 and
then use those samples’ standard deviation (SD) values as the
features.

• Data gathered from the discrete wavelet transform (DDWT)
during various power system disturbances was used to train
artificial intelligence-based classifiers.

• To ensure the classifiers can distinguish the HIF from other
power system disturbances including three-phase faults, line-
to-ground faults, line-to-line faults, and double line-to-ground
faults, they are put through their paces with a variety of test
cases. In order to ensure the system’s continued security and
dependability, this procedure is repeated during each cycle of
operation. Furthermore, as the protective relay is insensitive to
fluctuations, the system continued to function normally when
the irradiance of the solar and the speed of the wind both
fluctuated without triggering any abnormalities.

4.2 The DWT analysis for data collection

The DWT is a powerful method for separating a transient signal
into its constituent parts, which it then displays in the domain of
time-frequency instead of the conventional time domain (Elkalashy
et al., 2008). The basic concept is to analyze the signal by expanding
and contracting it. A continuous signal f (t) is defined in both
CDWT and DWT, with the definition provided by Eq. 16.

CWT a, b( ) � 1��
a

√ ∫
∞

−∞
f t( )*h t − b

a
( )dt

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (16)

The mother wavelet is the initial point from which a wavelet
feature is formed. CDWT is an alternate method for avoiding the
same resolution issue that plagues STFT. In contrast to the DWT
technique, however, this one has low redundancy during signal
reconstruction. The DWT is an effective data technique for signal
analysis because it permits the signal to be sampled with distinct
peaks. For decades, this sophisticated and powerful instrument has

FIGURE 13
Implementation procedures in the training of the NNRBF.
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been employed to regulate the safety switches. There are other ways
to compute time and frequency information, such as with a fast
Fourier transform (FFT), a short-time Fourier transform (STFT), or
a continuous- (CDWT), but DWT has been utilized because of its
quick computing speed and precision (Chen et al., 2016). Since this
is the case, we can express DWT as Eq. 17.

DWT m, k( ) � 1���
am0

√ ∑
n

f n( )*h k − nam0
am0

( )⎡⎣ ⎤⎦ (17)

Algorithm

Below (Chen et al., 2016) we display the various decomposition
levels of the signal X(n). Here are the procedures for signal
decomposition:

First, through a denoising process, the original X(n) is
decomposed into a series of levels.

Choosing a subset of levels from which to reconstruct the signal
is the second stage.

Third, re-create the signal using the values you’ve chosen.
In Step 4, you’ll choose the sampling rate, window size,

decomposition levels, and mother wavelet.
Where n and m are integers, h is the wavelet function, am0 and

nam0 are sizing and interpretation constants, respectively. By using
DWT, one can separate a signal into its low-frequency g(n) and
high-frequency h(n) approximation and detailed coefficients,
respectively as shown in Figure 11. This process of successive
approximation is repeated until the signal has been decomposed
into a large number of low-resolution sub-signals. In comparison to
the Haar wavelet, the Daubechies 4 (db4) is a more effective
frequency extractor, it was chosen as the mother wavelet for fault
detection in this work. And unlike Coiflet and Meyer wavelets, it
reduces signal redundancy and satisfies Parsevall’s theorem
(Daubecheis, 1992). The condition shown in Eq. 18 represents
the optimal decomposition of L-levels

N � 2L (18)
Where N is the level, and L is the length.

B � F

2L+1
(19)

From Eqs. 19, B is the level-to-level bandwidth in hertz, and F is
the sample rate in hertz. In order to divide the signal into its
component parts, a sampling rate of 20 kHz is being considered,
with each phase of the current signal receiving 800 samples over a
length of 5,000 points. Using Eq. 18, we can determine the different
band frequencies that were captured at each level, and they are as
follows: Approximation is made using the detailed coefficient d4,
which represents frequencies from 5 to 2.5 kHz, 2.5 to 1.25 kHz,
1.25 to 0.625 kHz, and 0.625 to 0.3125 kHz, respectively. In the
proposed study, the mother wavelet of db4 is used with detailed
coefficients on 5 levels for varied fault current signals captured
throughout each cycle.

4.3 The effectiveness of NNRBF for fault
detection in a DG-enabled distribution
network

NNRBFs are trained with data sets generated from short circuit
simulations at all line sections accounting for four different types of
failures, and then applied to the problem of fault detection in a
simulated DG-based distribution system. By analyzing the three-
phase currents coming from the main source at the feeding
substation, it is possible to identify a single-phase-to-ground
fault, a phase-to-phase fault, a two-phase-to-ground fault, or a
three-phase fault. In order to standardize the fault currents in the
three-phase output at the main source or feeder substation, the
maximum fault currents for each fault type are calculated. This
equation is used to standardize currents (Yu et al., 2008):

FIGURE 14
The three-phase current waveform observed for the period of
0.25–0.5 s in case of HIF fault and single line to ground (LG). (A) HIF
Voltage (B) HIF Current (C) HIF voltage magnitude (D) HIF current
magnitude (E) HIF occurred in phase-a 0.25 sec to 0.5 sec (F) LG
fault occurred in phase-a from 0.25 sec to 0.5.
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Inormal � I

I max
(20)

The maximum fault current, or Imax, is the product of the fault
current and the fault type, and it varies depending on the nature of
the defect. The normalized three-phase fault currents are used to
classify various fault types. With k input neurons and m hidden
neurons, the NNRBF is a three-layer feed-forward neural network.
The input layer feeds data into the hidden layer, while the hidden
layer is made up of neurons with radial basis activation functions. In
Figure 12 we see a typical NNRBF, and in Figure 12 we see an
NNRBF used for training.

There are several calculations taken into account during NNRBF
training. Input k-dimensional vector X is used to calculate a scalar
value by the network, which is then output.

Y � f X( ) � w0 +∑m
i�1
wiϕ Di( ) (21)

Where (Di) is the RBF and (w0) is the bias, (wi) is the weight parameter,
(m) is the number of hidden-layer nodes, and (m) is the bias.

The Gaussian function is used as the RBF in this investigation,
and it is given by.

∅ Di( ) exp −D2
i

σ2
( ) (22)

Di �
������������
∑k
j�1

Xj − Cji( )2
√√

(23)

Di is the distance between the input vector X and each data
centre, where is the radius of the cluster represented by the centre
node. Di, the distance between two points, is typically calculated
using the Euclidean norm and is presented as a cypher layer in (Yu
et al., 2008). Figure 13 depicts the training procedures for the
RBFNN and how they are implemented.

The RBFNNs were implemented in the MATLAB software for the
fault detection technique, and training data was generated in the Dig
SILENT Power Factory 14.0.523 software by simulating various faults
created at the 5th BUS of each line.We can extract the fault distance from
each source and the number of defective lines from the RBFNNs’ target
vector by running simulations. Here, we break down the inputs and
outputs of the training data that was used to hone the generatedRBFNNs.

4.3.1 A. First RBFNN
Nine neurons are used as input, and these are the short circuit

currents in each source’s three phases (5th BUS). Three neurons are
used as output, and these are the fault detection in the main source
and two DG units (DS).

4.3.2 Second RBFNN
In this case, there are three input neurons representing the

distances to the three potential sources of the fault, and one output
neuron representing the actual number of faulty wires. There are
about 138 training and testing data sets available, with 80% used for
training the RBFNNs and the remaining 20% used for testing their
efficacy. Mean square error (MSE) is used in neural networks as a
measure of performance. The maximum epoch for training any of
the RBFNNs is set to 100, and the mean square error is kept below
0.0002. The trained RBFNNs are then put through their paces after
fault classification.

5 Results and discussions

Data is gathered for analysis and classifier training/testing after
faults are applied to a number of buses across the 13-bus system.When
doing this research, we used eighty percent of the data for training our
classifiers and twenty percent for testing. Initial network simulations
were performed inMATLAB/Simulink, yielding results for steady-state,

TABLE 1 Ground resistance 20 Ω detection at 5th bus.

S.No Types
of fault

Max.
Coefficient of

phase A
current

Max
coefficient of

phase B
current

Max
coefficient of

phase C
current

Max
coefficient of

ground
current

NNRBF
output
for

phase A

NNRBF
output
for

phase B

NNRBF
output
for

phase C

NNRBF
output for
ground
current

1 ABC-G 4.6350 29.6395 4.6556 15.6281 1.0000 1.0000 1.0000 1.0000

2 ABC 4.6328 29.6454 4.6534 0.1136 1.0000 1.0000 1.0000 −0.000

3 AB-G 4.1035 30.2836 0.2000 16.5877 1.0000 1.0000 −0.000 1.0000

4 BC-G 0.1914 30.2978 4.1178 16.9470 −0.000 1.0000 1.0000 1.0000

5 AC-G 5.6985 0.3533 5.7190 11.9947 1.0000 −0.000 1.0000 1.0000

6 A-G 5.1419 0.1690 0.1835 5.5964 1.0000 −0.000 −0.000 1.0000

7 B-G 0.3738 30.8997 0.3867 32.5315 −0.000 1.0000 −0.000 1.0000

8 C-G 0.1527 0.1699 5.1566 5.5770 −0.000 −0.000 1.0000 1.0000

9 AB 6.9556 22.3087 0.0324 0.0087 1.0000 1.0000 −0.000 −0.000

10 BC 0.0254 22.1506 6.9803 0.0204 −0.000 1.0000 1.0000 −0.000

11 AC 6.9596 0.8563 6.9853 0.0100 1.0000 −0.000 1.0000 −0.000

12 No fault 0.0254 0.0236 0.0324 1.3901e-32 −0.000 −0.000 −0.000 −0.000
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transient and conventional faults (LG, LL, LLG, and LLLG incidence),
as well as HIF.MaximumHIF occurs when the load current exceeds the
fault current. During this instance, theHIFmodel observed a non-linear
connection between voltage and current, which is seen in Figure 14.

5.1 Distinguish between normal fault and no
fault conditions

Table 1 describes that comparison between coefficients of
phase a, b, c currents and NNRBF output of phase a, b, c and

ground resistance of 20 Ω at bus 5. Conventional fault types
like LG, LL, LLG, and both LLLG and HIF occurrence are
used here.

Table 2 describes that comparison between coefficients of
phase a, b, c currents and NNRBF output of phase a, b, c
and ground resistance of 10 Ω at bus 5. Conventional fault
types like LG, LL, LLG, and both LLLG and HIF occurrence
are used here. In no fault case ground current value is
high at 20 Ω when compared to 10 Ω it means when
resistance is high ground current value will be very low and
vice versa.

TABLE 3 Comparison on various methods.

References Classification method Type of fault considered %
accuracy

LG LL LLG LLG LLLG HIF Fault resistance
Rf Ω)

Alsafasfeh et al. (2012) Principal component analysis √ √ √ √ X X 5–100 94.54

Mishra and Yadav
(2019)

DFT + fuzzy (series compensated line √ √ √ √ √ X 0.001–100 99.678

Samet et al. (2017) Improved alienation coefficients method √ √ √ √ √ X 0–70 92.88

Tonelli-Neto et al.
(2017)

WT + fuzzy-ARTMAP X X X X X √ X 97.69

Santos et al. (2017) Energy spectrum of DWT (Considering DG
placement)

X X X X X √ X 70

Gomes et al. (2018) DWT + boosted decision tree X X X X X √ X 98.06

Kavi et al. (2018) Morphological fault detector algorithm X X X X X √ X 100

AsghariGovar et al.
(2018)

Adaptive CWT and extreme learning machine
(considering CT saturation)

X X X X X √ X 100

Proposed method (DWT + NNRBF) — — — — — — (0–100) 100

TABLE 2 Ground resistance 10 Ω location at 5th bus.

S.No Types
of fault

Max.
Coefficient of

phase A
current

Max
coefficient of

phase B
current

Max
coefficient of

phase C
current

Max
coefficient of

ground
current

NNRBF
output
for

phase A

NNRBF
output
for

phase B

NNRBF
output
for

phase C

NNRBF
output for
ground
current

1 ABC-G 7.1967 50.2064 7.2319 8.1605 1.0000 1.0000 1.0000 1.0000

2 ABC 7.7044 29.1686 5.0160 3.8938 1.0000 1.0000 1.0000 −0.0000

3 AB-G 5.8851 51.9080 0.3487 29.3847 1.0000 1.0000 −0.000 1.0000

4 BC-G 0.3433 51.9446 5.9073 30.0053 −0.000 1.0000 1.0000 1.0000

5 AC-G 9.8223 0.6148 9.8575 20.7549 1.0000 −0.000 1.0000 1.0000

6 A-G 8.3985 0.2833 0.2978 9.1754 1.0000 −0.000 −0.000 1.0000

7 B-G 0.6513 53.4671 0.6642 56.3076 −0.000 1.0000 −0.000 1.0000

8 C-G 0.2659 0.2801 8.4224 9.1621 −0.000 −0.000 1.0000 1.0000

9 AB 10.8054 37.7852 0.0324 0.0987 1.0000 1.0000 −0.000 −0.0000

10 BC 0.0254 37.5244 10.8374 0.0504 −0.000 1.0000 1.0000 −0.0000

11 AC 10.8034 0.9405 10.8324 0.0700 1.0000 −0.000 1.0000 −0.0000

12 No fault 0.0254 0.0236 0.0324 4.6118e-32 −0.000 −0.000 −0.000 −0.0000
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5.2 HIF voltage and current waveforms

Here, we present the simulation results for the IEEE 13-bus
power network that included both PV and Wind. We simulated
the PV and Wind method we intend to use to detect and identify
HIF in the MV distribution network. To test the viability of the
strategy, we run a MATLAB/Simulink simulation of the
distribution model shown in Figure 7. In Figure 14A, we can
see the time-varying current signal during the typical feeder state,
which lasts for 0.25s. The HIF analysis was run alongside
simulations of various power system failures to prove the
viability of the proposed method. The three-phase current
waveform during this time period is shown in Figure 14B in
the event of an HIF fault and a single line to ground (LG). As can
be seen in Figures 14C, D, the magnitude of the fault current and
voltage in the case of an HIF fault in phase C of a three-phase
system are small. It is shown in Figures 14E, F that if an LG fails in
phase A of a three-phase system, the amplitude of the current
signal is quite large, making it challenging to detect HIF in power
systems. To address these issues in real time, we extracted the
features using a DWT analysis, which decomposes the signal
across the temporal and frequency domains. Every cycle, DWT is
applied to 800 samples of the phase current signal at four different
levels of decomposition. There is a different spectrum of
frequencies represented by each tier; Table 1 displays the
calculated SD values for each of the detailed coefficient levels
and the final decomposed level (d4) (d1, d2, d3, and d4). In this
paper, we present a DWT analysis of the A, B, and C stages of the
system under normal conditions. Table 2 summarizes the results
of the DWT analysis performed on faults with different fault
resistance, such as LL, LLG, and three-phase faults, and the SD
characteristics derived from these faults that were used to train
classifiers to identify HIF in the system. There were 13 buses in
the system, and each one had a fault applied to it so that the DWT
data could be collected and used to train and test the classifiers. In
this research, we used eighty percent of the data for training our
classifiers and twenty percent for testing. The current setup
consists of three input neurons (representing the various
potential root causes of the issue) and a single output neuron
(the precise count of faulty lines). Mean square error (MSE) is a
common metric used to evaluate the efficacy of neural networks.
All RBFNNs are considered well-trained if their MSE is less than
0.0002 and they have undergone no more than 38 training epochs.
After faults are categorized, RBFNNs are put through their
paces. Initial network simulation and data collection were
performed in MATLAB/Simulink, covering both steady-state
and transient conditions as well as the occurrence of common
faults like LG, LL, LLG, and LLLG, and even HIF. As shown in
Figures 14A–F, the normal operation of the power grid results in
an asymmetrical current waveform due to the distribution of
electrical demand.

Table 3 describes the comparison on various classification
methods and % accuracy ‘X’ represents the fault type/parameter

which is not considered for classification, and ‘/’ represents the
occurrence of fault.

6 Conclusion

The detection of the HIF procedure is dependent on a number of
factors, some of which are unique to the characteristics of a given
network. This work considers a more practical PV-integrated IEEE 13-
bus system to analyze HIF using the proposed RNN-based network.
Initially, a MATLAB/Simulink model of a 13-bus distribution network
was built to introduce different types of events (normal operation,
inrush current from a transformer, load switching, and capacitor
switching, and HIF, LG, LL, LLG, and LLLG, all of which represent
malfunctions in the system). Under these conditions, DWTanalysis was
applied to the three-phase current signal using the db4 mother wavelet.
Energy value features for different phases were extracted using the
obtained wavelet coefficients (d1, d2, d3, d4, d5, and a5) to train and test
classifiers.
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With growing urbanization and increasing world population, energy demand also
increases. A significant portion of the world’s energy comes from fossil fuels, and
these sources of energy are declining rapidly at the current consumption rate.
There are also growing environmental concerns on the use of fossil fuels
increasing greenhouse gas emissions. In this regard, renewable energy (RE)
shows promising solutions which are both sustainable and environmentally
friendly. Developed countries and leading organizations are investing heavily in
the RE sector. However, the developing world has anxieties over social
acceptability and people’s willingness to pay for renewable energy. This study
is conducted in Pakistan to understand the public perception and willingness to
pay. The Theory of Planned Behavior (TPB) was utilized with background factors
such as awareness, perceived advantages, perceived challenges, and moral
obligations to examine its influence on people’s willingness to pay. In addition
to this, the study also assessed the indirect effects of background factors
(awareness, perceived advantages, and perceived challenges) on willingness to
pay through public attitude. Furthermore, the indirect relationship between
background factors (awareness and moral obligation) and willingness to pay
through subjective norms was also examined. A total of 512 samples were
gathered from participants and were analyzed through partial least
square–structural equation modeling (PLS-SEM) and SPSS. The study findings
are very interesting and back up our hypotheses that the background factors
(awareness, perceived advantages, and perceived challenges) are positively
associated with public attitude and have an indirect effect on willingness to
pay through public attitude. Similarly, variables such as awareness and moral
obligation are negatively and positively associated with subjective norms,
respectively. However, the variables, awareness and moral obligation, have no
indirect relationship with willingness to pay through subjective norms.
Additionally, the study reveals that the components (attitude and perceived
behavior control) of TPB have a significantly positive effect on willingness to
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pay. The study also concludes that the participants having formal education and
knowledge about climate change and renewable energy are inclined toward green
energy and are willing to pay, and they are hardly influenced by others’ opinions.
Furthermore, the study also provides insights for policymakers, suggestions, and
recommendations for the future.

KEYWORDS

renewable energy, public perception, willingness to pay, theory of planned behavior,
PLS-SEM

1 Introduction

Environmental quality and accessibility to natural resources
have a direct impact on life. The fundamental requirement for
sustaining life is to maintain the ecosystem in equilibrium. The
Earth’s atmosphere is a very precious resource, but it is fragile too
and has to be protected. Contrarily, the unwanted influxes into the
environment by human activities can disturb this equilibrium and
also have negative effects on lives (Mariani et al., 2010). Human
interventions intensify day by day due to large-scale manufacturing,
agriculture, and urbanization, which lead to more demands for fossil
fuels and a high consumption of transportation and energy (Van
Gent and Rietveld, 1993; Lam et al., 2011; Ockenden et al., 2014). As
reported by the International Energy Agency (IEA), the world’s
primary energy consumption has increased 2.5 times from
1971–2014, from 5.5 GTOE to 13.7 GTOE (International Energy
Agency I, 2017). A 150% increase in the total primary consumption.
Similarly, during the same time, CO2 emission has also increased
twofold (Bell et al., 2011).

Climate change poses very serious threats, such as
environmental, social, and economic threats. Global warming is
directly linked to increases in carbon emissions associated with
human intervention. During the past century, CO2 emission has
increased significantly in comparison to the pre-industrial level
(Canadell et al., 2007). One of the major contributors of CO2

emission is fossil fuels. Burning fossil fuels around the world
adds 5 × 109 tons of CO2 to the atmosphere annually, a
significant portion of which remains in the atmosphere (Dyson,
1977). Similarly, the continuous increase in population,
urbanization, growing energy consumption, and economic
activities are also among the major contributors to global
warming. Recent studies have shown that the world average
temperature is in excess of 2°C (IPCC, 2014). Although it has
been consented in the Paris Agreement that the world’s major
countries would keep the world’s average temperature below
1.5°C by 2050 (Bach, 1979), it is estimated that the average global
temperature may exceed 3°C by 2050.

The growing energy demands are increasing the burden on the
environment, thus attracting the attention of academia and
researchers in the field of energy management and RE. In the
developed countries, a significant transition has occurred toward
green energy due to their commitment to the Kyoto Protocol and
Paris Agreement, as a result of public access to information relevant
to the environment and RE (Vasseur and Kemp, 2015; The Paris
Agreement, 2018). In order to meet the goals of the Paris Agreement
of limiting the average temperature increase to 1.5°C, large-scale RE
adoption is required. In recent years, green investment in RE has

greatly increased to achieve sustainable growth. However, most
developing countries still use fossil fuels for energy generation.
Fossil fuels can no longer be used as the primary energy source
due to their high price and potential environmental threat. Fossil
fuels’ unsustainability and potential environmental threat led
governments and policymakers to shift to green energy and
minimize fossil fuel usage. However, the investment ratio is
meager due to their poor infrastructure, poor economies, and
related social and cultural issues.

The social acceptability of green energy (renewable energy
sources and renewable energy technologies) is to monitor at both
the national and international levels. It has also been observed that
public attitude varies not only between countries but also between
different regions within the same country (Eiser et al., 2010; Walter,
2014; Gallup, 2015). Active ecological awareness has been observed
in South Korea, where the majority of South Koreans support
policies that promote renewable energy sources (most of them
are state owned) (Mroczek and Donata, 2014). The US
government is also motivating and encouraging US citizens to
use renewable energy resources such as solar energy systems by
giving them incentives (Kowalczyk-Juśko and Bogdan, 2015).
Similarly, Portugal has a favorable attitude toward investing in
renewable energy sources, especially hydropower and solar
energy (Dmochowska-Dudek and Bednarek-Szczepańska, 2018).
Germany, Italy, the United States, China, Japan, Spain, France,
Bulgaria, Australia, and the Czech Republic are countries with
the most installed photovoltaic-rated power. Most of these
countries’ energy policies are on generated kilowatt-hour, low-
interest loans, national renewable energy sources, solar
development goals, and lower taxations, which attract the masses
toward RE (Borges Neto et al., 2010). The local authorities and
volunteers have played a very important role and made
advancements in technology and large-scale applicability of
photovoltaics (Bajpai and Vaishalee, 2012).

Contrarily, the major impediments to the wider adoption of
renewable energy sources and renewable energy technologies, except
costly infrastructure, are of not sharing relevant information with
the public and the behavior of the public against advancements in
renewable energy sources and renewable energy technologies (Kaya
et al., 2019), where the latter has been more pronounced and
observed in developing countries, while the former is in the
context of people living in the rural, suburban, and urban regions
of China. (Rahman et al., 2014). Another study was conducted in
Malaysia (Muhammad-Sukki et al., 2011) about the public views and
perceptions on solar energy and photovoltaic installation, which
concluded that Malaysians have been very hesitant to invest in
photovoltaics since they hardly comprehend the incentives and
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significant socioeconomic benefits. Furthermore, there has been
social opposition to renewable energy sources and renewable
energy technologies in the Middle East and North Africa
(Florkowski et al., 2018). A study on the societal acceptance of
small hydropower plants (SHPs) in India has found that these
projects are difficult to implement in certain regions (Florkowski
et al., 2018).

Apart from the social acceptance of, behavior toward, and
perception of renewable energy sources and renewable energy
technologies, studies have also focused on the economics aspect
where the public readiness to pay for expensive renewable energy in
their locality and the place of residency, also known as the “willingness
to pay” (WTP), was studied (Klepacka et al., 2018). WTP was further
investigated by arranged discussions with the public through a
questionnaire to record their preferences (Devine-Wright, 2008). A
positive relationship has always been noted among WTP, income, and
the level of public information (Ekins, 2004; Wüstenhagen et al., 2007).
A study on attitude toward renewable energy sources and renewable
energy technologies has observed that tourists fromAustralia are willing
to pay more (about 1%–5%) for existing renewable energy sources and
renewable energy technologies in accommodation sites (Miranda et al.,
2011). In the case of Sweden, it has been reported that renewable energy
source acceptance increases with the level of environmental awareness
(Wooldridge, 2015). A Chinese study had examined that household
income, knowledge about RE, renewable energy technologies (RET),
and education were positively associated with WTP, whereas variables
like age and neighborhood were negatively associated with WTP
(Eurobarometer, 2014).

Pakistan is a developing country, the fifth most populous
country with a population of 224.78 million (Pakistan Economic
Survey, 2022). Like other developing countries, Pakistan is also
facing huge challenges in achieving sustainable green development.
The rapid increase in population and urbanization have increased
the country’s energy demand. In the past 15 years, the total energy
consumption has increased by 53.61% (887.4 GWh to 1,363.2 GWh)
(Pakistan Economic Survey, 2022). A significant portion of this
energy comes from fossil fuels (non-renewable fuels such as oil, gas,
and coal). According to the Pakistan Economic Survey 2021–2022
(Pakistan Economic Survey, 2022), a significant portion of the total
energy comes from fossil fuels. However, the share of renewable
energy sources (other than hydropower) amounts to only 3%
(Pakistan Economic Survey, 2022). The country has developed an
Alternative and Renewable Energy Policy in 2019, which includes
some ambitious goals such as to increase the portion of renewable
energy sources (other than hydropower) by 20% by 2025 and 30% by
2030 in the total energy mix (Ministry of Energy, 2019). However,
social acceptance is the key factor which will play a key role in
achieving this ambitious goal. Social acceptance is the willingness of
people to accept renewable energy investment in their communities
and countries at large (Liu et al., 2013; Caporale and de Lucia, 2015).
According to Rosso-Cerón and Kafarov (2015), social acceptance
defines people’s positive and negative attitudes toward various green
energy resources and technologies. In Pakistan, various studies have
been conducted on renewable energy sources and renewable energy
technologies (Bhutto et al., 2011; Bhutto et al., 2013; Kamran, 2018;
Zafar et al., 2018; Ali et al., 2019; Kashif et al., 2020; Bhutto et al.,
2021; Uddin et al., 2021), but no study has been reported on public
perception about RE sources, technology, and WTP.

The scope of this article is to investigate the public perception
about the environment, climate change, and renewable energy
technology, as well as their awareness and willingness to pay for
renewable energy. This study also investigates how various variables
such as perceived advantages, perceived challenges, and moral
obligations effect their willingness to pay for renewable energy.
To study all these parameters, the Theory of Planned Behavior
(TPB) is utilized. This study provides researchers and policy makers
with an understanding of the public perception about renewable
energy and factors those affect their attitudes toward renewable
energy, as well as their willingness to pay for it and aid in improving
their existing models or policies.

2 Literature review

2.1 Theoretical background

Earlier studies have shown that customers’ decision-making
process is dynamic. Researchers have used models such as self-
efficacy, reasoned action theory, and TPB to examine purchasers’
purchase intentions. The TPB states that behavioral intentions
control behavior. People consider the consequences before doing,
which leads to their intended result. Individuals’ attitudes are shaped
by their strong beliefs and predictions of behavior results (Ajzen,
1991). The TPB offers a framework for looking at the factors those
influence behaviors. The TPB contends that individual conduct is
the result of behavioral intentions, where intentions are a result of
one’s attitude toward the action, i.e., one’s perception of behavioral
control and one’s subjective norm. In essence, the TPB states that the
greater one’s behavioral intentions are, the greater will be one’s
likelihood of carrying out that behavior. Intentions are further
explained by variables like attitude (AT), subjective norms (SNs),
and perceived behavior control (PBC) (Ajzen, 2012). The TPB has
played an important role in various research areas. Various studies
have utilized the TPB for ascertaining consumption and willingness
to pay (Al Mamun et al., 2018; Sreen et al., 2018; Kaffashi and
Shamsudin, 2019; Bhutto et al., 2021; Masrahi et al., 2021; Nazir and
Tian, 2022). Apart from significant support, the TPB also faces
criticism. A major criticism is the need to add some additional
variables that would improve its predictive and explanatory power.
Ajzen (1991); Ajzen (2020) acknowledges that the TPB allows
additional variables if it adds significance to the model’s
predictive and explanatory power. Thus, several researchers have
suggested the addition of new variables to the TPB to enhance its
predictive and explanatory power. This study expands the TPB by
adding variables such as awareness, perceived advantages, perceived
challenges, and moral obligations to improve the model’s predictive
power for assessing public perception and willingness to pay for
renewable energy. The study conceptualizes and validates the model
in the context of Pakistan.

2.2 Hypotheses

2.2.1 Awareness
Environmental awareness has a direct impact on customers’

attitudes and their willingness to pay for goods, and this is related to
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buying behavior both directly and indirectly. Eco-label awareness
has been found to have a good link with both product knowledge
and consumers’ propensity to buy environmentally friendly
products in studies (Devi et al., 2012). Similarly, increasing
people’s environmental awareness and encouraging them to buy
green or ecologically friendly products might help them make better
decisions (Laroche et al., 1996). Customers who are eco-literate are
more likely to make rational, rather than irrational, purchases
because they understand the problems regarding environmental
concerns. The increased ecoliteracy will generally lead to stronger
purchasing intentions for green energy, because it suggests a better
awareness of environmental symbols, concepts, benefits, and
consequences. As a result, attitude’s explanatory ability will be
improved. However, the explanatory value of attitude is
diminished when consumers lack eco-literacy and instead rely on
subjective feelings while making purchases. So overall, eco-literacy
plays a key role in consumers’ attitude and their willingness to pay
for renewable energy and technologies.

Hypothesis 1a: Public awareness will have a positive impact on
their attitude toward renewable energy.

Hypothesis 1b: Public awareness will also have a positive and
indirect effect on their willingness to pay for renewable energy
through AT.

2.2.2 Attitude
The term “attitude” refers to a person’s mental state of

preparedness, which they can develop and plan as a result of
their experiences with things, people, and scenarios to which they
can connect (Ivancevich et al., 2008). According to the TPB model, a
person’s behavioral attitude relates to the degree to which they see
the activity—positively or negatively (Fishbein and Ajzen, 1975).
According to Ajzen (1991), people are more likely to engage in
action if they have a good attitude toward it. Positive or negative
attitudes toward ecologically friendly items have been documented
in the literature with regard to supporting the environment,
according to Wang et al. (2016). There is no need for intentions
to impact green purchasing and recycling practices according to the
findings of Gadenne et al. (2011). Consumers’ everyday energy-
saving habits may be influenced by their views toward energy
conservation, which in turn can help them become more
involved in the cause for energy conservation and in using green
energy (Egmond et al., 2005; Lopes et al., 2019).

Hypothesis 2: Public attitude positively affects their willingness to
pay for renewable energy.

2.2.3 Advantages
Emotional rewards that might result from pure altruistic activity,

such as giving to others, are described by economists in the warm-
glow hypothesis (Andreoni, 1989; Andreoni, 1990). A “helper’s
high” is conceptually connected to a warm-glow effect (James
Baraz, 2010). Furthermore, a previous study has revealed that
consumers may experience a feeling of personal pleasure when
they devote themselves not just to charitable acts but also to
environmental awareness (Ritov and Kahneman, 1997). Altruism
in the context of sustainability has been examined in a number of

research studies. It has been shown that those motivated by a strong
feeling of dedication and generosity are more likely to utilize
environmentally friendly goods and services than those who do
not feel the same way (Sánchez-Fernández et al., 2009). Research has
revealed that consumers’ willingness to pay a higher price for green
energy is influenced much more by the expectation of warm-glow
advantages than by the perceived decrease in environmental impact
(Wüstenhagen and Bilharz, 2006). According to Andreoni (1990),
“pure altruism,” i.e., an intrinsic purpose without reciprocal
expectations, produces a pleasant glow that is idealistic. “Impure
altruism,” i.e., an extrinsic drive with reciprocal expectations, is the
most common source of the warm-glow feeling (Gneezy and
Rustichini, 2000). However, a previous study has shown that
both altruism and warm-glow effects have considerable influence
on customer sentiments toward green energy products (Hartmann
and Apaolaza-Ibáñez, 2012; D’Amato et al., 2014; Carrington et al.,
2010). In other words, attitudes are influenced by perceptions of
warm-glow advantages. Thus,

Hypothesis 3a: The perceived advantages will also have a positive
impact on public attitude toward renewable energy.

Hypothesis 3b: The perceived advantage will also have a positive
and indirect effect on public willingness to pay for renewable energy
through AT.

2.2.4 Perceived challenges and risks
Risk perception is the term used to describe an individual’s

capacity to evaluate the level of risk that is connected with a certain
behavior or activity (Ajzen, 2002). In the context of renewable
energy, this means a person’s assessment of how they feel about the
risks of using renewable energy technologies. This introduces a
new concept: risk tolerance. An individual’s perception of danger,
as well as his or her risk tolerance level, plays a key role in accepting
a particular technology. If a person thinks that using renewable
energy is less dangerous than using other sources of energy, he or
she is more likely to use renewable energy (Aman et al., 2012).
Trust is when a person or group is willing to be open to the actions
of another person or group in the hope that the other person or
group will act in the best interests of the trusting person or group
(Zainudin et al., 2014). In the context of renewable energy,
confidence in renewable energy refers to an individual’s
anticipation that employing renewable energy resources will
result in acceptable favorable outcomes in terms of benefits
(Nguyen, 2018). Trust is a crucial factor in determining the
current scenario, which includes the hazards involved and
vulnerability of the trusted person. Trust has been viewed as a
motivator in adopting new technology and completing
transactions involving the provision of services in the hopes of
a beneficial exchange relationship between the parties
concerned. Thus

Hypothesis 4a: The perceived challenges and risks will negatively
affect public attitude toward renewable energy.

Hypothesis 4b: The perceived challenges and risks will also have a
negative and indirect effect on public willingness to pay for
renewable energy.
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2.2.5 Awareness and subjective norms
Subjective norms are determined by a set of cultural beliefs that

represent the perceived social pressures that an individual feels to
engage in specific types of conduct (Minton et al., 2017). Individuals
in modern civilization are inextricably linked to society, and this
influences their pro-environmental conduct (Zhang et al., 2019). The
majority culture in Pakistan is collectivist, and social results have a part
in consumers’ purchase decisions (Zhang et al., 2019). Environmentally
conscious and literate consumers are more inclined tomake purchasing
decisions on their own rather than seek recommendations from friends,
family, co-workers, and other reference groups. As a result, we believe
that growing consumer awareness will lower the explanatory power of
subjective norms. Due to their lack of confidence, consumers with less
eco-knowledge (eco-literacy) are more likely to rely on social input
when making decisions. As a result, we believe that a low level of
customer knowledge will boost the strength of subjective standards to
explain purchase intent.

Hypothesis 5a: Awareness will have a negative impact on the
subjective norm.

Hypothesis 5b: Public awareness will also have a positive and
indirect effect on their willingness to pay for renewable energy
through SN.

2.2.6 Moral obligations
The term “moral duty” refers to a person’s sentiments of

accountability, which leads them to perform or avoid certain actions
(Beck and Ajzen, 1991). Having moral duties shows that the person has
accepted a commitment to perform actions in an environmentally
conscientious way (Stern, 2000; Bamberg et al., 2007). Empirical data
have substantially supported the positive association between moral
duty and environment-friendly intentions in prior investigations (Stern,
2000;Onwezen et al., 2013; Hwang and Lee, 2017). The desire to acquire
RE might be sparked by a person’s moral duty to preserve natural
resources and enhance the environment. In many cases, people who
have a strong sense of moral obligation to act in a way that is beneficial
to the environment will act in accordance with an internal normative
standard that they have established for themselves (Bamberg et al., 2007;
Hwang, 2016). Previous research have experimentally examined the
link between moral responsibilities and subjective standards (Mamun
et al., 2018; Al Mamun et al., 2019; Fatoki, 2020). The relationship
between moral duty and the subjective norm was largely neglected by
academics in impoverished nations like Pakistan. Consequently, our
research implies that moral duty might have a favorable impact on
subjective standards for adopting RE. Because of this, this research
suggests

Hypothesis 6a: Moral obligations will have a positive effect on
subjective norms.

Hypothesis 6b: Moral obligations will also have a positive and
indirect effect on public willingness to pay for renewable energy
through SN.

2.2.7 Subjective norms
Subjective norms refer to how much people, society, or others

approve or disapprove of a specific behavior (Sultan et al., 2020). As

defined by the TPB framework, a subjective norm relates to the
extent to which people feel that the other person should do (Finlay
et al., 1999). It relates to the “social pressure” that people feel and
how they interpret the actions of others in their social circles, such as
family, friends, or co-workers, which are both parts of the concept.
Consumers’ ideas of what is and is not acceptable are shaped by
these many facets of perception. In the present sustainability
movement, behaviors such as adopting new energy sources and
using eco-friendly products may be viewed more favorably.

This psychological process has been extensively studied in the
context of energy-saving behavior. In the words of Black et al.
(1985), customers’ ideas about the advantages of energy savings may
encourage them to save energy. A similar finding was reported in
studies conducted in South Korea and China (Zhao et al., 2014; Ha and
Janda, 2017). Subjective norms were demonstrated to have a beneficial
influence on Korean customers’ purchase intentions for energy-efficient
appliances in a recent study performed in South Korea (Park andKwon,
2017). Energy-efficient appliance purchase intentions were shown to be
negatively affected (Wang et al., 2019). Additional research in Asia has
bolstered these results (Ajzen, 1991; Zainudin et al., 2014; Tan et al.,
2017). However, in a study on Pakistani consumers, subjective
standards and energy-saving objectives were not linked (Ali et al.,
2019). In addition, Tan et al. (2017) observed that energy-efficient
appliance purchase intention did not have a substantially positive
association with SNs, which shows that customers may not be
readily affected by other people’s views. By contrast, Wang et al.
(2019) found a stronger influence of social norms on intentions to
buy in South Asian collectivistic societies. Thus,

Hypothesis 7: Subjective norms will positively affect public
intention to pay for renewable energy.

2.2.8 Perceived behavior control
Perceived behavior control is a measure of how much control a

person believes they have over their behavior (Ajzen, 1991). PBC has
been studied as a key factor in determining behavioral intentions in
the context of green consumption and willingness to pay for
renewable energy (Chen and Tung, 2014; Wu and Chen, 2014).
Consumers are more likely to engage in the desired activity if they
have more control over their actions (Ajzen, 1991). Perceived
difficulty or ease of executing a given conduct has also been
classified as PBC in the pro-environmental literature (Bamberg,
2003).

Wang et al. (2019) hypothesized that behavioral control has a
detrimental effect on customers’ willingness to pay for renewable
energy, which is counterintuitive. The justification for this is that it is
challenging for consumers to obtain relevant energy consumption
information or to fully understand energy-efficient rating
information when purchasing energy-saving products, which in
turn hinders their ability to make educated decisions and feel
secure when purchasing renewable energy or green energy
products. On the contrary, the results did not back up this
theory, but instead indicated that PBC had a significant impact
on whether people planned to pay for renewable energy even when
controlling for factors like informational details. Thus,

Hypothesis 8: Perceived behavior control positively affects the
willingness to pay for renewable energy.
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3 Materials and methods

3.1 Participants and sampling procedure

This study utilized a quantitative method to analyze the
suggested model. The data were acquired through questionnaires
distributed among the inhabitants of four provinces in Pakistan:
Baluchistan, Khyber Pakhtunkhwa, Punjab, and Sindh. The
questionnaires were distributed among the participants from July
to September 2021 at times when there was a smart lockdown
imposed in several cities. All the participants were briefed before
filling out this questionnaire and signed a written consent. An
instruction document was also provided to inform the
participants of the aim of the study to avoid any biases. Due to
COVID-19, a smart lockdown was imposed in various cities and
provinces, so an online sampling technique was applied to reach the
maximum number of participants in the study. To ensure a non-
biased sample and strictly follow the standard operating procedure
(SOPs) during the pandemic, questionnaires were spread with the
aid of different social media platforms, such as WhatsApp, WeChat,
and QQ through Google Forms (online data collection software),
where every respondent had the opportunity of being selected. The
target provinces and regions completed a total of 512 usable
questionnaires where the participation of each respondent was
voluntary.

The demographic information of the participants in the study is
given in Table 1. All the respondents belonged to the four different
abovementioned provinces in Pakistan. According to the survey’s
gender breakdown, 56.45% and 43.55% of the respondents were
male and female, respectively. In total, 36.52, 53.52, 6.84, and 3.13%

of the respondents were from the age groups of under-25, 25–35,
36–45, and 45-plus years, respectively. Based on the qualification of
the respondents, 16.21% were undergraduates, 52.73% were Master/
MS/MPhils, 21.29% were PhDs, and 9.77% were others (which
included post-doctorate or any other level of qualification).
Furthermore, among the respondents, 24.02, 28.32, 25.59, and
22.07% belonged to the province of Baluchistan, Khyber
Pakhtunkhwa (KPK), Punjab, and Sindh, respectively.

3.2 Measures

The measures of the TPB construct utilized in the present study
are those used by prior researchers in various settings, which is
consistent with the TPB questionnaire’s criteria and structure.
Figure 1 shows all the TPB model components and background
components that are considered latent variables. The data collection
questionnaire comprised two parts. The participant’s demographic
data were included in the first section, while the second section
included questions related to the public perception andWTP for RE,
which was measured on the basis of TPB.

The perceived advantages of renewable energy (AD), perceived
challenges of renewable energy (CH), and willingness to pay (WTP)
were measured by seven, six, and two items, respectively, as
proposed by Ntanos et al. (2018) and Buchmayr et al. (2021),
whereas the subjective norm (SN), moral obligation (MO), and
perceived behavior control (PBC) were measured by two items each
proposed by Bhutto et al. (2021). The items reflecting awareness
(AW) were adapted from the study by Djurisic et al. (2020);
similarly, the items reflecting attitude (AT) were adapted from
the studies of Ntanos et al. (2018); Kaya et al. (2019). A Likert
scale with a maximum of five points, from “strongly disagree” (1) to
“strongly agree” (5), was used to measure the aforementioned items.
The questionnaire structure and the proposed model reliability were
tested by a pilot test with 50 respondents.

3.3 Common method variance

The data of both the dependent and independent variables in
this study were recorded and obtained from the same participants.
So, there is a possibility of method bias. The possible method bias
was reduced by properly guiding and briefing the participants before
attempting the questionnaire (an instruction document containing
the aims of the study was also provided with the questionnaire),
which helped the participants to better understand the questionnaire
before attempting it. To check for any bias in the study, the variance
inflation factor (VIF) and tolerance (TOL) tests were used (the most
commonly used test for checking biases). Table 2 shows that there is
no collinearity problem with the research since all TOL values are
larger than 0.1 and all VIF values are less than 10.

3.4 Model assessment

The current study’s research model was transformed into
structural equation modeling (SEM) for additional investigation
(such as outer and inner models). For PLS-SEM, the PLS

TABLE 1 Demographic information of the participants (n = 512).

Components Categorization Enumeration

Frequency %

Gender Male 289 56.45

Female 223 43.55

Transgender — —

Age Under 25 187 36.52

25–35 274 53.52

36–45 35 6.84

45+ 16 3.13

Province Baluchistan 123 24.02

Khyber Pakhtunkhwa 145 28.32

Punjab 131 25.59

Sindh 113 22.07

Qualification Undergraduate 83 16.21

Master/MS/MPhil 270 52.73

PhD 109 21.29

Others 50 9.77
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3.0 software was used. The study utilized PLS-SEM, which is
normally used to analyze complicated models and comprehend
their multidimensional relationships. In the realm of
management, PLS-SEM is considered a helpful multivariate
analytical approach. Furthermore, the model’s adaptability and
suitability for analyzing numerous interactions between variables
have been acknowledged in prior studies (Sarstedt et al., 2014).

4 Results

4.1 Partial least square–structural equation
modeling

To evaluate the model, the study utilized a two-step approach:
first, the validity and reliability of the scale employed and
customized for the study were evaluated using an outer model or
a measurement model; second, the model’s efficacy and the
proposed relationship between the proposed variables were tested

using an inner model or a structural model; the (PLS-SEM) PLS-3
was utilized to assess both the inner and outer models.

4.2 Measurement model

The convergent and discriminant validity analyses were
conducted for evaluating the reflective model; the results are
given in Tables 3, 4. The convergent validity assessment
presumes a high degree of correlation between items
measuring the same construct (Hair et al., 2019) and this can
be assessed from factor loading (CL), composite reliability (CR),
and average variance extracted (AVE). Where the values of CL
fall in the range of 0.761–0.951, the value of CL >0.5 is considered
satisfactory and to fall in the acceptable range. Similarly, the
values of CR that fall between 0.906 and 0.951 are considered
acceptable if the values are >0.7, representing good internal
consistency. After examining both CL and CR, the AVE values
are also calculated. The results show that all the constructs have

FIGURE 1
Hypothesized model.

TABLE 2 Collinearity assessment.

IVs Tolerance VIF

AW 0.218 4.596

AD 0.163 6.14

CH 0.211 4.731

AT 0.108 9.238

MO 0.491 2.035

SN 0.477 2.098

PBC 0.784 1.276

IVs, independent variables; AT, attitude; SN, subjective norm; PBC, perceived behavior control; AW, awareness; AD, perceived advantages; CH, perceived challenges; MO, moral obligation;

VIF, variance inflation factor (Latan and Noonan, 2017).
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TABLE 3 Constructs validity evaluation (n = 512).

Constructs and statements Items (CL) (CR) (AVE) (Cα)

Awareness

I am fully aware of climate change. AW1 0.915 0.917 0.786 0.863

I am fully aware of environmental problems. AW2 0.892

I know what is RE. AW3 0.850

Perceived advantages

RE improves life quality. AD1 0.910 0.956 0.758 0.947

RE can protect the environment. AD2 0.873

RE is a source of green development. AD3 0.869

RE is a source of economic development. AD4 0.846

RE will reduce fossil fuel dependency. AD5 0.840

RE will create new job opportunities. AD6 0.857

RE will give energy independence. AD7 0.897

Perceived challenges

RE has a high installation cost. CH1 0.854 0.924 0.670 0.901

RE has low reliability. CH2 0.769

RE technologies have complex installation. CH3 0.809

RE systems are hazardous. CH4 0.761

RE systems have high maintenance costs. CH5 0.845

I do not have enough information about RE challenges. CH6 0.866

Attitude

I am concerned about climate change. AT1 0.900 0.940 0.758 0.920

I like to try new technologies. AT2 0.839

Energy-saving/conservation is important. AT3 0.896

The govt should set targets for increasing RE. AT4 0.833

I will cooperate with the govt for public awareness in my
community.

AT5 0.883

Moral obligations

I feel it is our moral obligation to save our environment. MO1 0.938 0.930 0.870 0.851

I feel it is our moral obligation to use clean energy. MO2 0.928

Subjective norms

Most of the people important to me buy and use green energy. SN1 0.913 0.908 0.832 0.798

Most of the people whose opinion I respect would buy green
energy.

SN2 0.911

Perceived behavior control

I am confident that I would buy RE instead of conventional energy. PBC1 0.951 0.950 0.904 0.894

I have the tools, skills, and knowledge to use RE. PBC2 0.950

Willingness to pay

I would like to buy RE. WP1 0.947 0.946 0.898 0.886

(Continued on following page)
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an average value between 0.670 and 0.904, which means that all
the constructs’ values are above 0.5, which represents that all the
items in the construct have a variation of more than 50% (Hair
et al., 2017). Additionally, Cronbach’s alpha (Cα) was calculated
to examine internal reliability. The Cα values fall between
0.798 and 0.947, surpassing the minimum threshold value of
0.70, which validates the data reliability (Table 3).

Furthermore, the discriminant validity of the construct was
examined through the heterotrait–monotrait (HTMT) ratio
(Henseler et al., 2015), as given in Table 4. According to Henseler
et al. (2015), the resulting values are <0.85, representing good
discriminant validity of all the constructs of the proposed model.

4.3 Structural model assessment

The structural model assessment was performed after
confirming that the structural model had no collinearity issues.
The model collinearity assessment was performed by assessing the
VIF and TOL values. Table 2 shows the results representing both
VIF and TOL in the acceptable range (VIF values <10 and TOL
values >0.1), confirming that the model had no collinearity issue and
was ready for the structural model assessment.

To evaluate the suggested structural model, a comparison of the
path coefficient dimensions and values with other relevant R2 in t
statistics calculation is considered important. The path coefficient and
relevant importance of the proposed model are measured by utilizing
the bootstrapping technique (to 5,000 resamples). The effect size f2

measurement is also taken into account for the proposed study (Hair
et al., 2017). Furthermore, Stone–Geisser’s Q2 was also considered in
the study to measure the model’s predictive ability.

Table 5 illustrates the bootstrapping results of the β-coefficient,
t-statistics, and f2 values for all the proposed structural paths. Except
for one proposed structural path or relationship, all others were
deemed to be significant (with a 99% confidence level). Factors
affecting attitude, such as awareness (AW-AT, β = 0.36, t = 3.643,
LL = 0.196, UL = 0.52, p ≤ 0.01), perceived advantages (AD-AT, β =
0.37, t = 2.771, LL = 0.182, UL = 0.617, p ≤ 0.01), and perceived
challenges (CH-AT, β = 0.28, t = 2.794, LL = 0.103, UL = 0.437, p ≤
0.01), had a substantial favorable effect on attitude. In the case of
subjective norms, both awareness (AW-SN, β = 0.13, t = 1.865, LL =
-0.244, UL = −0.016, p ≤ 0.01) and moral obligations (MO-SN, β =
0.69, t = 12.474, LL = 0.593, UL = 0.773, p ≤ 0.01) had a substantial
favorable effect on subjective norms. Regarding the components of
TPB, and based on the data set findings, this study found that the
attitude (AT-WTP, β = 0.52, t = 5.778, LL = 0.367, UL = 0.661, p ≤
0.01) and perceived behavior control (PBC-WTP, β = 0.18, t = 1.956,
LL = 0.035, UL = 0.333, p ≤ 0.01) had a substantial favorable effect on
the willingness to pay, however subjective norm (SN-WTP, β = 0.10,
t = 1.544, LL = −0.22, UL = 0.005, p ≤ 0.01) had no significant effect
onWTP for RE. So, overall, the hypotheses H1a, H2, H3a, H4a, H5a,
H6, and H8 were accepted, while H7 was rejected. The path
coefficient and degree of influence of the proposed model are
shown in Figure 2.

To measure the effect size (f2), the Cohen (1970) criteria were
adopted, such as 0.02 for small-, 0.35 for medium-, and ≥0.8 for
large-sized effects. All variables, except for one, were greater than the
minimal threshold criterion of (0.02), demonstrating that they had
an impact on the dependent variable, as shown in Table 5. SN
showed no noticeable impact on the WTP for RE.

Additionally, the study also determined the coefficient of
determination (R2) and predictive relevance (Q2) of variables

TABLE 3 (Continued) Constructs validity evaluation (n = 512).

Constructs and statements Items (CL) (CR) (AVE) (Cα)

Awareness

I would like to pay more for RE. WP2 0.948

CL, cross-loadings; CR, composite reliability; AVE, average variance extracted; Cα, Cronbach’s alpha; AW, awareness; AD, perceived advantages; CH, perceived advantages; AT, attitude; MO,

moral obligation; SN, subjective norm; PBC, perceived behavior control; WTP, willingness to pay for renewable energy.

TABLE 4 Discriminant validity evaluation (n = 512).

Heterotrait–monotrait ratio (HTMT)

AD

AT 0.780

AW 0.824 0.832

CH 0.830 0.810 0.820

MO 0.103 0.064 0.102 0.094

PBC 0.409 0.417 0.380 0.455 0.209

SN 0.246 0.158 0.229 0.259 0.846 0.087

WTP 0.700 0.666 0.662 0.671 0.055 0.415 0.197

The heterotrait–monotrait (HTMT) criterion was used to estimate the results (Al Mamun et al., 2019).
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(independent with respect to dependent). The computed R2 value for
the dependent variable WTP is 0.39, which indicates that the study’s
overall independent variables, AT, SN, and PBC, collectively account
for 39% of the variance in the dependent variable. The R2 for the
dependent variable AT and SN is 0.88 and 0.50, respectively. It is an
indication that variables such as AW, AD, and perceived challenges
(CH) explain a variance of 88% in the dependent variable AT,
similarly variables such as AW and MO explain a variance of 50% in
the dependent variable SN.

Furthermore, the study also performed PLS prediction by
adopting the Shmueli et al. (2019) procedures. The predictive
validity was evaluated using cross-validation with holdout
sampling, and the overall findings are shown in Table 6. During
the assessment, first the Q2 values were measured and the
corresponding values for AT, SN, and WTP were 0.870, 0.481,
and 0.404, respectively, representing the promising predictive

performance of the suggested model. In addition to this, the
linear regression (LM) model was also used for the prediction
assessment (Shmueli et al., 2019). The results of both LM and
PLS were compared, which showed that the LM had a lower
mean absolute (MAE) and mean square error (RMSE) than did
the PLS, indicating a significant predictive ability of the proposed
model.

4.4 Mediation effect of TPB components
among background factors of behavioral
intention

The proposed model presumed that TPB components will
mediate the existing factors (such as AW, AD, CH, and MO) and
people’s WTP for RE. The mediation effect of the proposed

TABLE 5 Structural paths evaluation (hypothesis testing).

Structural paths β-Value t-Value f2 LL UL Results

AD—AT 0.37 2.771 0.251 0.182 0.617 Accepted

AT-WTP 0.52 5.778 0.373 0.367 0.661 Accepted

AW-AT 0.36 3.643 0.363 0.196 0.52 Accepted

AW-SN 0.13 1.865 0.034 −0.244 −0.016 Accepted

CH-AT 0.28 2.794 0.184 0.103 0.437 Accepted

MO-SN 0.69 12.474 0.946 0.593 0.773 Accepted

PBC-WTP 0.18 1.956 0.044 0.035 0.333 Accepted

SN-WTP 0.10 1.544 0.018 −0.22 0.005 Rejected

**Significance at p ≤ 0.01. AT, attitude; AD, perceived advantages; AW, awareness; CH, perceived challenges; SN, subjective norm;MO,moral obligation; PBC, perceived behavior control;WTP,

willingness to pay for renewable energy; LL, lower limit; UL, upper limit at 99% confidence interval.

FIGURE 2
Structural equation modeling (SEM) results of complete data (n = 512), PBC, and perceived behavior control. * represents p-values < 0.01, and effect
sizes (f 2) are shown in parentheses next to the path coefficient (β).
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model was assessed by the bootstrapping technique as mentioned
in Section 4.3. The results of the mediation effect such as the
specific indirect effect and significance values (p-values) with
95% confidence level (bias-corrected) are given in Table 7. The
results reveal that the indirect effect of awareness, perceived
challenges, and perceived advantages on people’s willingness
to pay for renewable energy through the mediation effect AT
was significant (β = 0.186, LL = 0.093, UL = 0.284, p ≤ 0.001; β =
0.146, LL = 0.048, UL = 0.246, p ≤ 0.007; and β = 0.190, LL =
0.087, UL = 0.341, p ≤ 0.007, respectively). Nevertheless, the
indirect effect of awareness and moral obligation on people’s
willingness to pay for renewable energy through SN turned out to
be insignificant (β = 0.013, LL = −0.002, UL = 0.037, p ≤ 0.136 and
β = 0.073, LL = -0.151, UL = 0.003, p ≤ 0.061, respectively). Based
on the above results, we conclude that the effect of awareness,
perceived advantages, and perceived challenges on WTP is

mediated by AT, whereas SN does not mediate the
relationship. So overall, Hypothesis 1b, Hypothesis 3b, and
Hypothesis 4b are supported, whereas Hypothesis 5b and
Hypothesis 6b are not supported.

5 Discussion

Growing energy demand and global warming concerns have
changed the priorities of governments and regions, particularly in
countries that are facing serious climate change problems. Countries
around the globe, especially the developed countries, are continuously
taking seriousmeasures to avoid the negative impacts of climate change
and continue to invest in green energy. They also discourage the use of
energy from non-renewable sources. Developed countries can afford
investing in renewable energy sources, and the people there are capable

TABLE 6 PLS prediction evaluation.

Summary

AT 0.870

SN 0.481

WTP 0.404

PLS prediction summary

PLS LM PLS-LM

RMSE MAE Q2 Predict RMSE MAE Q2 Predict RMSE MAE Q2 Predict

AT1 0.724 0.585 0.709 0.828 0.665 0.620 −0.104 −0.080 0.089

AT2 0.803 0.670 0.629 0.886 0.713 0.549 −0.083 −0.043 0.080

AT3 0.773 0.651 0.644 0.850 0.680 0.569 −0.077 −0.029 0.075

AT4 0.756 0.591 0.598 0.862 0.653 0.477 −0.106 −0.062 0.121

AT5 0.836 0.682 0.696 0.903 0.711 0.645 −0.067 −0.029 0.051

SN1 1.019 0.827 0.387 1.152 0.908 0.217 −0.133 −0.081 0.170

SN2 0.942 0.741 0.408 1.072 0.836 0.234 −0.130 −0.095 0.174

WTP1 1.023 0.770 0.359 1.135 0.870 0.210 −0.112 −0.100 0.149

WTP2 1.042 0.816 0.368 1.128 0.867 0.259 −0.086 −0.051 0.109

AT, attitude; SN, subjective norm; WTP, willingness to pay for renewable energy; LM, linear regression model; RMSE, root mean square error; MAE, mean absolute error.

TABLE 7 Mediation effect.

Structural paths β-value t-value p-values LL UL Results

AW-AT-WTP 0.186 3.204 0.001 0.093 0.284 Supported

CH-AT-WTP 0.146 2.439 0.007 0.048 0.246 Supported

MO-SN-WTP 0.073 1.543 0.061 −0.151 0.003 Not-supported

AD-AT-WTP 0.190 2.472 0.007 0.087 0.341 Supported

AW-SN-WTP 0.013 1.118 0.136 −0.002 0.037 Not-supported

**Significance at p ≤ 0.01. AT, attitude; SN, subjective norm; PBC, perceived behavior control; WTP, willingness to pay for renewable energy; AW, awareness; MO, moral obligation; LL, lower

limit; UL, upper limit at 99% confidence interval.
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of buying energy even by paying relatively high amounts. On the
contrary, third-world countries (the developing countries) such as
Pakistan have serious energy crises (where the governments are
trying to meet the energy demand by any means); apart from this,
poor infrastructure and economic restrictions do not provide any
provision to invest in renewable energy. Also, due to inherited social
and cultural issues along with financial limitations, people are reluctant
to switch to renewable energy. Several studies have been conducted to
check public perception, awareness, attitude, and willingness to pay for
RE across the world but not in Pakistan. This study is conducted to
investigate these aspects within the context of Pakistan. A highly
significant social theoretical framework, TPB, along with factors
such as awareness, perceived challenges, perceived advantages, and
willingness to pay, was investigated.

The results show that the TPB has a significant explanatory power
and is a useful framework for comprehending the intended
investigational behavior. To be precise, the relationship between
AT, PBC, and WTP are found to be significant and hence
supports our proposed Hypothesis 2 and Hypothesis 8. Similar
results have been noticed in studies relevant to environmentally
friendly purchasing (Roe et al., 2000; Zarnikau, 2003). However,
there is no significant relationship between SN and WTP for RE
and hence Hypothesis 7is rejected. First, by directly examining the
relationship between the TPB components, it is noted that people’s
attitude toward WTP for RE predicts intention and indirect behavior.
Furthermore, this study presumes that people who have positive
opinions and attitudes toward renewable energy are more inclined
to use renewable energy and are willing to pay for it. As reported by
Ajzen (2020), people are more inclined to act if they have a positive
attitude toward it. The results also reflect that eco-literate people are
hardly influenced by others’ opinions or views. The study found pro-
environmental behavior that might be due to people’s level of
understanding and information about environmental issues,
climate change, and renewable energy sources. Variables such as
perceived advantages, challenges, and awareness about renewable
energy resources have a substantial positive effect on their attitude
toward renewable energy and hence support our proposedHypothesis
3a, Hypothesis 4a, andHypothesis 1a. The abovementioned results are
in line with those of previous studies (Nazir and Tian, 2022), and we
conclude that all these variables shape people’s opinion and attitude.
In order to promote renewable energy, the positive aspects should be
highlighted further. To effectively inform consumers about
environmental challenges and renewable energy technologies, more
information is needed. Second, the findings show that awareness
(AW) is negatively associated with subjective norms (SNs) and hence
support our proposed Hypothesis 5a. Furthermore, this study shows
that SNs have no significant impact on public WTP for RE and hence
reject Hypothesis 7. It is presumed that those who have proper
education and knowledge about climate change and RE will hardly
be influenced by others as they have their own say. A similar
conclusion is also drawn in a study relevant to check consumers’
buying intentions (Zhang et al., 2019). However, moral obligation has
been positively associated with the subjective norm and hence
supports our proposed Hypothesis H6a. We presume those who
are educated and have knowledge about their responsibilities have
a sense of moral obligations and act as responsible citizens.
Furthermore, the study found that AT is a mediation effect
between the variables (AW, AD, and CH) and WTP for RE, hence

validating our proposed Hypothesis 1b, Hypothesis 3b, and
Hypothesis 4b. The same conclusion had also been drawn in
previous studies (Hartmann and Apaolaza-Ibáñez, 2012; Allison
et al., 2013; Ntanos et al., 2018). We presume that awareness,
perceived challenges, and perceived advantages can affect people’s
attitudes and behavior toward their willingness to pay. The more they
learn about environmental issues and renewable technologies, as well
as their benefits, the more likely they are to purchase renewable
energy. It indicates that people are willing to pay more for green
energy. On the contrary, awareness and moral obligation have no
significant indirect effect on willingness to pay for renewable energy
through SN and hence Hypothesis 5b and Hypothesis 6b are rejected.
This means that those who have knowledge about climate change and
renewable energy are hardly influenced by society, and they have their
own opinion based on their understanding. Similar results have also
been noticed in a study based on consumers’ intention to buy energy-
efficient appliances (Bhutto et al., 2021).

It is concluded that the relationship between AT, PBC, andWTP
was significant. However, the relationship between SN and WTP
was found to be insignificant. Similarly, the results indicate that the
relationship between all the variables except for one was significant.
This is a positive indication that those who have a formal education
(also a relatively young population of the country) have a clear
understanding of the environmental challenges, climate change, and
renewable energy technologies, resulting in favor of renewable
energy resources. This means that education and the right
information about new technologies and their advantages are the
key factors that intensify public intention toward their willingness to
pay for renewable energy. Educating the masses with the right
information and promoting the advantages of green energy/
renewable energy will positively affect public perception toward
RE. Additionally, RE plays a vital role in supporting energy security
by safeguarding continuous energy provisions without interruption.
The possible source of disruption can be natural (flood, heavy
rainfall, etc.), technological, human interventions, cyber attitudes,
and geopolitics. The International Energy Agency (IEA) defines
energy security as continuous supply at affordable prices. The US
Department of Energy defines it as access to various energy sources,
routes, and supplies. Energy supply is essential for industries (almost
all modern industries), such as food, healthcare, telecommunication,
water, and sanitation. As mentioned in previous sections, Pakistan
primarily depends on imported fossil fuels for energy generation.
This high dependency on imported fossil fuels puts energy security
at risk and puts pressure on the country’s poor economy in the form
of large import bills. The country has abundant RE sources such as
solar, wind, biomass, geothermal, and hydro energy. The country
has plenty of RE sources, which when tapped effectively can satisfy
the its energy needs. By shifting to RE, the country can reduce high
import bills and get energy independence and clean energy.
Furthermore, it can help avoid climate change and consequences
like global warming, floods (which destroy all the infrastructure),
etc. So, a policy shift is required in this regard.

6 Policy implications

The findings of the study have significant implications for
policymakers and relevant organizations. The study’s findings
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suggest that awareness and information about renewable energy play
an essential role in consumers’ purchase intentions. The
policymakers and energy sector should formulate such policies
that increase public awareness and educate the public about
environmental issues, climate change, and renewable energy.
Similarly, the energy sector and relevant organizations should
educate the masses, provide relevant information about
renewable energy technologies, and highlight the potential
benefits of RE on print, electronic, and social media. This will
increase customers’ understanding of environmental challenges
and renewable energy technologies. Giving more information
about renewable energy sources and technologies will reduce the
mass skepticism toward it. This will further lead consumers to
purchase renewable energy (environmentally friendly and
sustainable energy sources).

This study proposed that perceived challenges and advantages
affect public attitude toward renewable energy. The perceived
challenges and associated risks negatively affect public attitude
toward renewable energy, reducing people’s intentions to
purchase it. Policymakers have to formulate relevant policies to
facilitate energy sectors (such as waiving tax on importing relevant
technologies and attracting multinational companies to invest) and
give incentives to end consumption. This will encourage investors to
invest in the energy sector and help reduce renewable energy costs,
hence more people will purchase renewable energy. Also, the
relevant companies and organizations should focus on reducing
the challenges to a minimum (by improving the technology),
making the installation simple and reducing installation and
maintenance costs. An effective advertisement is required to
attract the public to purchase renewable energy.

Similarly, the perceived advantages and warm-glow benefits
positively affect public attitude and increase purchase intentions
and renewable energy adoption. Policymakers should formulate
policies that indicate renewable energy’s importance and
implement renewable energy advantages. Similarly, marketing
organizations should promote the benefits of using renewable
energy such as improving the quality of life, creating job
opportunities, reducing fossil fuel consumption, promoting energy
independence, and most importantly, protecting the environment by
reducing the carbon footprints and adverse effects of climate change.
This study gives new insights into public perception andwillingness to
pay for RE in developing countries like Pakistan. It will not only help
the local policymaker and energy sectors but also aid the international
market in understanding local consumers and the potential of the
green energy market in the country. Further results will also help the
policymaker and energy sector understand the factors that shape
public perception and willingness to pay for RE.

7 Conclusion, limitations, and
recommendations

Global energy demand is increasing tremendously and is mainly
dependent on fossil fuels, which are exhausted rapidly and pose
environmental concerns. These unsustainability and environmental
concerns have changed regions’ and countries’ priorities from fossil
fuels to green energy. This transition from non-renewable to
renewable energy is more prominent in developed countries.

However, developing countries face challenges, and their pace is
relatively slow. The study is conducted in Pakistan to understand
public perception and willingness to pay for RE. The results of the
study are pretty interesting. The study reveals that public attitude and
perceived behavior control are positively associated with the public’s
willingness to purchase renewable energy.

Additionally, the study also finds that a change to
background factors such as awareness, perceived challenges,
and perceived advantages has a significant positive effect on
public attitude and willingness to pay for RE through the
mediation effect of attitude. This means that the public will
be more inclined and attracted toward renewable energy when
they are aware and have the information about the environment,
climate change, and renewable energy. Furthermore, the warm-
glow benefits will also positively affect the public’s purchase
intentions. So, it is suggested that the public be educated to
minimize their concerns and advertise the warm-glow benefits of
renewable energy to attract the public in utilizing RE.
Furthermore, the study reveals that subjective norms have no
significant effect on willingness to pay for RE, and the
background factors (awareness and moral obligations) have
no significance on willingness to pay through subjective
norms. This indicates that society, friends, and colleagues
hardly influence eco-literate people who have their own
opinions. So, it is necessary to attract people by equipping
them with pertinent information. It will increase public
understanding of renewable energy and motivate them to
purchase it.

The following are some limitations of this study and
recommendations for future research. First, this study only
considers the four provinces of Pakistan and does not account
for other regions such as Gilgit Baltistan, Azad Kashmir, and Ex-
FATA (federally administered tribal areas). So, it is
recommended that the study be extended throughout the
country to investigate better and more accurate public
perception. Second, due to time and resource constraints, the
study’s sample size was small and may not reflect the entire
population. So, it is recommended that in future studies, the
sample size should be increased to get a true representation.
Third, this study was only based on a questionnaire survey. It is
highly recommended that interviews be conducted with the
participants. Fourth, the study only represented the educated
section of the society (having formal education), which may not
represent the complete spectrum of the public. It is
recommended to spread out future studies to cover different
segments of the society. Fifth, the study does not take subcultural
factors into account, so it is highly recommended that future
studies should incorporate them into their model to see how it
affects public perception and purchase intentions. Finally, this
study was conducted in the context of Pakistan only, so in the
future, it can be extended to other regions and countries for
comparative analysis.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

Frontiers in Energy Research frontiersin.org13

Ud Din et al. 10.3389/fenrg.2023.1088297

169

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1088297


Author contributions

SD: Conceptualization, Formal analysis, Software,
Writing—original draft; RW, ME, XL: Supervision, Writing—review,
and editing; FN, DG, ZM, and MA: Writing, review, and editing; TA:
Funding, Writing—review, and editing. All the authors discussed the
results and contributed to the final manuscript.

Funding

Open access funding provided by UiT—The Arctic University of
Norway.

Acknowledgments

This study had the support of national funds through Fundação
para a Ciência e Tecnologia, I. P (FCT), under the projects UIDB/

04292/2020, UIDP/04292/2020, granted to MARE, and LA/P/0069/
2020, granted to the Associate Laboratory ARNET.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, editors, and reviewers.
Any product that may be evaluated in this article, or claim that
may be made by its manufacturer, is not guaranteed or endorsed by
the publisher.

References

Ajzen, I. (2002). Constructing a TPB questionnaire: Conceptual and methodological
considerations.

Ajzen, I. (1991). The theory of planned behavior. Theory Plan. Behav. 50, 179–211.
doi:10.1016/0749-5978(91)90020-t

Ajzen, I. (2012). The theory of planned behavior. Handb. Theor. Soc. Psychol. 1.

Ajzen, I. (2020). The theory of planned behavior: Frequently asked questions. Hum
Behav Emerg Tech 2, 314–324. doi:10.1002/hbe2.195

Al Mamun, A., Masud, M. M., Fazal, S. A., and Muniady, R. (2019). Green vehicle
adoption behavior among low-income households: Evidence from coastal Malaysia.
Environ. Sci. Pollut. Res. 26, 27305–27318.

Al Mamun, A., Mohamad, M. R., Yaacob, M. R. B., and Mohiuddin, M. (2018).
Intention and behavior towards green consumption among low-income households.
J. Environ. Manage 227, 73–86. doi:10.1016/j.jenvman.2018.08.061

Ali, S., Ullah, H., Akbar, M., Akhtar, W., and Zahid, H. (2019). Determinants of
consumer intentions to purchase energy-saving household products in Pakistan.
Sustainability 11, 1462. doi:10.3390/su11051462

Allison, T. H., McKenny, A. F., and Short, J. C. (2013). The effect of entrepreneurial
rhetoric on microlending investment: An examination of the warm-glow effect. J. Bus.
Ventur 28, 690–707. doi:10.1016/j.jbusvent.2013.01.003

Aman, A. L., Harun, A., and Hussein, Z. (2012). The influence of environmental
knowledge and concern on green purchase intention the role of attitude as a mediating
variable. Br. J. Arts Soc. Sci. 7, 145–167.

Andreoni, J. (1989). Giving with impure altruism: Applications to charity and
ricardian equivalence. J. Polit. Econ. 97, 1447–1458. doi:10.1086/261662

Andreoni, J. (1990). Impure altruism and donations to public goods: A theory of
warm-glow giving. Econ. J. 100, 464–477. doi:10.2307/2234133

Bach, W. (1979). Impact of increasing atmospheric CO 2 concentrations on global
climate: Potential consequences and corrective measures. Environ. Int. 2, 215–228.
doi:10.1016/0160-4120(79)90004-7

Bajpai, P., and Vaishalee, D. (2012). Hybrid renewable energy systems for power
generation in stand-alone applications: A review. Renew. Sustain. Energy Rev. 16,
2926–2939. doi:10.1016/j.rser.2012.02.009

Bamberg, S. (2003). How does environmental concern influence specific
environmentally related behaviors? A new answer to an old question. J. Environ.
Psychol. 23, 21–32. doi:10.1016/s0272-4944(02)00078-6

Bamberg, S., Hunecke, M., and Blöbaum, A. (2007). Social context, personal norms
and the use of public transportation: Two field studies. J. Environ. Psychol. 27, 190–203.
doi:10.1016/j.jenvp.2007.04.001

Beck, L., and Ajzen, I. (1991). Predicting dishonest actions using the theory of planned
behavior. J. Res. Personal. 25, 285–301. doi:10.1016/0092-6566(91)90021-h

Bell, A. R., Cook, B. I., Anchukaitis, K. J., Buckley, B. M., and Cook, E. R. (2011).
Repurposing climate reconstructions for drought prediction in Southeast Asia. Clim.
Change 106, 691–698. doi:10.1007/s10584-011-0064-2

Bhutto, A. W., Bazmi, A. A., and Zahedi, G. (2011). Greener energy: Issues and
challenges for Pakistan - biomass energy prospective. Renew. Sustain. Energy Rev. 15,
3207–3219. doi:10.1016/j.rser.2011.04.015

Bhutto, A. W., Bazmi, A. A., and Zahedi, G. (2013). Greener energy: Issues and
challenges for Pakistan - wind power prospective. Renew. Sustain. Energy Rev. 20,
519–538. doi:10.1016/j.rser.2012.12.010

Bhutto, M. Y., Liu, X., Soomro, Y. A., Ertz, M., and Baeshen, Y. (2021). Adoption of
energy-efficient home appliances: Extending the theory of planned behavior. Sustain.
Switz. 13, 250. doi:10.3390/su13010250

Black, J., Stern, P., and Elworth, J. (1985). Personal and contextual influences on
househould energy adaptations. J. Appl. Psychol. 70, 3–21. doi:10.1037/0021-9010.
70.1.3

Borges Neto, M. R., Carvalho, P. C. M., Carioca, J. O. B., and Canafístula, F. J. F.
(2010). Biogas/photovoltaic hybrid power system for decentralized energy supply of
rural areas. Energy Policy 38, 4497–4506. doi:10.1016/j.enpol.2010.04.004

Buchmayr, A., van Ootegem, L., Dewulf, J., and Verhofstadt, E. (2021).
Understanding attitudes towards renewable energy technologies and the effect of
local experiences. Energies (Basel) 14, 7596. doi:10.3390/en14227596

Canadell, J. G., Kirschbaum, M. U. F., Kurz, W. A., Sanz, M. J., Schlamadinger, B., and
Yamagata, Y. (2007). Factoring out natural and indirect human effects on terrestrial carbon
sources and sinks. Environ. Sci. Policy 10, 370–384. doi:10.1016/j.envsci.2007.01.009

Caporale, D., and de Lucia, C. (2015). Social acceptance of on-shore wind energy in
apulia region (southern Italy). Renew. Sustain. Energy Rev. 52, 1378–1390. doi:10.1016/j.
rser.2015.07.183

Carrington, M. J., Neville, B. A., and Whitwell, G. J. (2010). Why ethical consumers
don’t walk their talk: Towards a framework for understanding the gap between the
ethical purchase intentions and actual buying behaviour of ethically minded consumers.
J. Bus. Ethics 97, 139–158. doi:10.1007/s10551-010-0501-6

Chen, M-F., and Tung, P-J. (2014). Developing an extended Theory of Planned
Behavior model to predict consumers’ intention to visit green hotels. Int.
J. Hosp. Manag. 36, 221–230. doi:10.1016/j.ijhm.2013.09.006

Cohen, J. (1970). Significant measures: Statistical power Analysis for the behavioral
Sciences. Jacob cohen. Academic press, New York, 1969. Xvi + 416 pp. $13.50. Science
169, 167–168. doi:10.1126/science.169.3941.167

D’Amato, A., Susanna, M., and Mariangela, Z. (2014). “Two Shades of (Warm) Glow:
multidimensional intrinsic motivation, waste reduction and recycling”. SEEDSWorking
Papers 2114, SEEDS, Sustainability Environmental Economics and Dynamics Studies.

Devi, J., Pudaruth, S., and Noyaux, M. (2012). Analysing the impact of green
marketing strategies on consumer purchasing patterns in Mauritius. World
J. Entrep. Manag. Sustain Dev. 8, 36–59. doi:10.1108/20425961211221615

Devine-Wright, P. (2008). “Reconsidering public acceptance of renewable
energy technologies: A critical review,” in Delivering a low carbon electricity
system: Technologies, economics and policy (Cambridge: Cambridge University
Press).

Frontiers in Energy Research frontiersin.org14

Ud Din et al. 10.3389/fenrg.2023.1088297

170

https://doi.org/10.1016/0749-5978(91)90020-t
https://doi.org/10.1002/hbe2.195
https://doi.org/10.1016/j.jenvman.2018.08.061
https://doi.org/10.3390/su11051462
https://doi.org/10.1016/j.jbusvent.2013.01.003
https://doi.org/10.1086/261662
https://doi.org/10.2307/2234133
https://doi.org/10.1016/0160-4120(79)90004-7
https://doi.org/10.1016/j.rser.2012.02.009
https://doi.org/10.1016/s0272-4944(02)00078-6
https://doi.org/10.1016/j.jenvp.2007.04.001
https://doi.org/10.1016/0092-6566(91)90021-h
https://doi.org/10.1007/s10584-011-0064-2
https://doi.org/10.1016/j.rser.2011.04.015
https://doi.org/10.1016/j.rser.2012.12.010
https://doi.org/10.3390/su13010250
https://doi.org/10.1037/0021-9010.70.1.3
https://doi.org/10.1037/0021-9010.70.1.3
https://doi.org/10.1016/j.enpol.2010.04.004
https://doi.org/10.3390/en14227596
https://doi.org/10.1016/j.envsci.2007.01.009
https://doi.org/10.1016/j.rser.2015.07.183
https://doi.org/10.1016/j.rser.2015.07.183
https://doi.org/10.1007/s10551-010-0501-6
https://doi.org/10.1016/j.ijhm.2013.09.006
https://doi.org/10.1126/science.169.3941.167
https://doi.org/10.1108/20425961211221615
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1088297


Djurisic, V., Smolovic, J. C., Misnic, N., and Rogic, S. (2020). Analysis of public
attitudes and perceptions towards renewable energy sources in Montenegro. Energy
Rep. 6, 395–403. doi:10.1016/j.egyr.2020.08.059

Dmochowska-Dudek, K., and Bednarek-Szczepańska, M. (2018). A profile of the
Polish rural NIMBYist. J. Rural. Stud. 58, 52–66. doi:10.1016/j.jrurstud.2017.12.025

Dyson, F. J. (1977). Voi 2. Pergamon Pres, 217–291.

Egmond, C., Jonkers, R., and Kok, G. (2005). A strategy to encourage housing
associations to invest in energy conservation. Energy Policy 33, 2374–2384. doi:10.1016/
j.enpol.2004.05.007

Eiser, J. R., Aluchna, K., and Christopher, R. J. (2010). Local wind or Russian gas?
Contextual influences on polish attitudes to wind energy development. Environ. Plan. C
28, 590–608.

Ekins, P. (2004). Step changes for decarbonising the energy system: Research needs
for renewables, energy efficiency and nuclear power. Energy Policy 32, 1891–1904.
doi:10.1016/j.enpol.2004.03.009

Eurobarometer (2014). Climate change, special eurobarometer 409. Brussels, Belgium:
European Commission.

Fatoki, O. (2020). Factors influencing the purchase of energy-efficient appliances by
young consumers in South Africa. Found.Manag. 12, 151–166. doi:10.2478/fman-2020-
0012

Finlay, K. A., Trafimow, D., and Moroi, E. (1999). The importance of subjective
norms on intentions to perform Health behaviors. J. Appl. Soc. Psychol. 29, 2381–2393.
doi:10.1111/j.1559-1816.1999.tb00116.x

Fishbein, M., and Ajzen, I. (1975). Belief, attitude, intention and behaviour: An
introduction to theory and research, 27. Boston, MA, USA.

Florkowski, W. J., Us, A., and Anna, K. M. (2018). Food waste in rural households
support for local biogas production in Lubelskie Voivodship (Poland). Resour. Conserv.
Recycl 136, 46–52. doi:10.1016/j.resconrec.2018.03.022

Gadenne, D., Sharma, B., Kerr, D., and Smith, T. (2011). The influence of consumers’
environmental beliefs and attitudes on energy saving behaviours. Energy Policy 39,
7684–7694. doi:10.1016/j.enpol.2011.09.002

Gallup (2015). Gallup: Energy, survey on topics related to energy.

Gneezy, U., and Rustichini, A. (2000). Pay enough or don’t pay at all. Q. J. Econ. 115,
791–810. doi:10.1162/003355300554917

Ha, H-Y., and Janda, S. (2017). “Predicting consumer intentions to purchase energy-
efficient products,” in The customer is NOT always right? Marketing orientationsin a
dynamic business world (Cham, Switzerland: Springer International Publishing), 897.

Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., and Thiele, K. O. (2017). Mirror,
mirror on the wall: A comparative evaluation of composite-based structural equation
modeling methods. J. Acad. Mark. Sci. 45, 616–632. doi:10.1007/s11747-017-0517-x

Hair, J. F., Risher, J. J., Sarstedt, M., and Ringle, C. M. (2019). When to use and how to
report the results of PLS-SEM. Eur. Bus. Rev. 31, 2–24. doi:10.1108/EBR-11-2018-0203

Hartmann, P., and Apaolaza-Ibáñez, V. (2012). Consumer attitude and purchase
intention toward green energy brands: The roles of psychological benefits and
environmental concern. J. Bus. Res. 65, 1254–1263. doi:10.1016/j.jbusres.2011.11.001

Henseler, J., Ringle, C. M., and Sarstedt, M. (2015). A new criterion for assessing
discriminant validity in variance-based structural equationmodeling. J. Acad. Mark. Sci.
43, 115–135. doi:10.1007/s11747-014-0403-8

Hwang, J., and Lee, S. (2017). Cognitive, affective, normative, and moral triggers of
sustainable intentions among convention-goers. J. Environ. Psychol. 51, 1–13. doi:10.
1016/j.jenvp.2017.03.003

Hwang, J. (2016). What motivates delegates’ conservation behaviors while attending a
convention? J. Travel Tour. Mark. 34, 82–98. doi:10.1080/10548408.2015.1130111

International Energy Agency I (2017). CO2 emissions from fuel combustion 2017 -
highlights.

IPCC (2014). IPCC. Climate change 2014: Synthesis report. Contribution of working
groups I, II and III to the fifth assessment report of the intergovernmental panel on climate
change.

Ivancevich, J. M., Konopaske, R., and Matteson, M. T. (2008). Organizational
behavior and management. 10th ed. New York, NY, USA: McGraw-Hill Education.

James Baraz, S. A. (2010). The helper’s high. Berkeley: The Greater Good Science
Center at the University of California.

Kaffashi, S., and Shamsudin, M. N. (2019). Transforming to a low carbon society; an
extended theory of planned behaviour of Malaysian citizens. J. Clean. Prod. 235,
1255–1264. doi:10.1016/j.jclepro.2019.07.047

Kamran, M. (2018). Current status and future success of renewable energy in
Pakistan. Renew. Sustain. Energy Rev. 82, 609–617. doi:10.1016/j.rser.2017.09.049

Kashif, M., Awan, M. B., Nawaz, S., Amjad, M., Talib, B., Farooq, M., et al. (2020).
Untapped renewable energy potential of crop residues in Pakistan: Challenges and
future directions. J. Environ. Manage 256, 109924. doi:10.1016/j.jenvman.2019.
109924

Kaya, O., Florkowski, W., Us, A., and Klepacka, A. (2019). Renewable energy
perception by rural residents of a peripheral EU region. Sustainability 11, 2075.
doi:10.3390/su11072075

Klepacka, A. M., Florkowski;, W. J., and Meng, T. (2018). Clean, accessible, and cost-
saving: Reasons for rural household investment in solar panels in Poland. Resour.
Conserv. Recycl 139, 338–350. doi:10.1016/j.resconrec.2018.09.004

Kowalczyk-Juśko, A., and Bogdan, K. (2015). Assessment of the ecological and energy
awareness of the citizens in rural communes. Barom. Reg. 13, 161–168. doi:10.56583/
br.746

Lam, C. W., Lim, S. R., and Schoenung, J. M. (2011). Environmental and risk
screening for prioritizing pollution prevention opportunities in the U.S. printed wiring
board manufacturing industry. J. Hazard Mater 189, 315–322. doi:10.1016/j.jhazmat.
2011.02.044

Laroche, M., Toffoli, R., Kim, C., and Muller, T. E. (1996). The influence of culture on
pro-environmental knowledge, attitudes, and behavior: A Canadian perspective. Adv.
Consum. Res. 23, 196–202.

Latan, H., and Noonan, R. (2017). Partial least squares path modeling: Basic concepts,
methodological issues and applications. Springer International Publishing. doi:10.1007/
978-3-319-64069-3

Liu, W., Wang, C., and Mol, A. P. J. (2013). Rural public acceptance of renewable
energy deployment: The case of Shandong in China. Appl. Energy 102, 1187–1196.
doi:10.1016/j.apenergy.2012.06.057

Lopes, J. R. N., Kalid, R. D. A., Rodríguez, J. L. M., and Ávila Filho, S. (2019). A new
model for assessing industrial worker behavior regarding energy saving considering the
theory of planned behavior, norm activation model and human reliability. Resour.
Conserv. Recycl 145, 268–278. doi:10.1016/j.resconrec.2019.02.042

Mamun, A., Mohiuddin, M., Ahmad, G., Ramayah, T., and Fazal, S. (2018). Recycling
intention and behavior among low-income households. Sustainability 10, 2407. doi:10.
3390/su10072407

Mariani, F., Pérez-Barahona, A., and Raffin, N. (2010). Life expectancy and the
environment. J. Econ. Dyn. Control 34, 798–815. doi:10.1016/j.jedc.2009.11.007

Masrahi, A., Wang, J. H., and Abudiyah, A. K. (2021). Factors influencing consumers’
behavioral intentions to use renewable energy in the United States residential sector.
Energy Rep. 7, 7333–7344. doi:10.1016/j.egyr.2021.10.077

Ministry of Energy (2019). Alternative & renewable energy policy 2019 (ARE policy
2019).

Minton, E., Spielmann, N., Kahle, L., and Kim, C. H. (2017). The subjective norms of
sustainable consumption: A cross-cultural exploration. J. Bus. Res. 82, 400–408. doi:10.
1016/j.jbusres.2016.12.031

Miranda, G., Eberts, R. W., González, E., Foo, V., and Kulawczuk, P. (2011). Climate
change, employment and local development in Poland. doi:10.1787/5kg0nvfvwjd0-en

Mroczek, B., and Donata, K. (2014). Social attitudes towards wind farms and other
renewable energy sources in Poland. Medycyna´Srodowiskowa-Environ Med. 4,
19–28.

Muhammad-Sukki, F., Ramirez-Iniguez, R., Abu-Bakar, S. H., McMeekin, S. G., and
Stewart, B. G. (2011). An evaluation of the installation of solar photovoltaic in
residential houses in Malaysia: Past, present, and future. Energy Policy 39,
7975–7987. doi:10.1016/j.enpol.2011.09.052

Nazir, M., and Tian, J. (2022). The influence of consumers’ purchase intention factors
on willingness to pay for renewable energy; mediating effect of attitude. Front. Energy
Res. 10. doi:10.3389/fenrg.2022.837007

Nguyen, T. N. (2018). Determinants which influence purchase behaviour of energy
efficient household appliances in emerging markets. Goals Sustain Dev. Responsib. Gov.,
97–110.

Ntanos, S., Kyriakopoulos, G., Chalikias, M., Arabatzis, G., and Skordoulis, M. (2018).
Public perceptions and willingness to pay for renewable energy: A case study from
Greece. Sustain. Switz. 10, 687. doi:10.3390/su10030687

Ockenden, M. C., Deasy, C., Quinton, J. N., Surridge, B., and Stoate, C. (2014).
Keeping agricultural soil out of rivers: Evidence of sediment and nutrient accumulation
within field wetlands in the UK. J. Environ. Manage 135, 54–62. doi:10.1016/j.jenvman.
2014.01.015

Onwezen, M., Antonides, G., and Bartels, J. (2013). The norm activation model: An
exploration of the functions of anticipated pride and guilt in pro-environmental
behaviour. J. Econ. Psychol. 39, 141–153. doi:10.1016/j.joep.2013.07.005

Pakistan Economic Survey (2022). “Pakistan economic survey 2021-22,” in Energy,
climate change, population, labor force and employment.

Park, E., and Kwon, S. J. (2017). What motivations drive sustainable energy-saving
behavior?: An examination in South Korea. Renew. Sustain Energy Rev. 79, 494–502.
doi:10.1016/j.rser.2017.05.150

Rahman, M., Mahmodul Hasan, M., Paatero, J. V., and Lahdelma, R. (2014). Hybrid
application of biogas and solar resources to fulfill household energy needs: A potentially
viable option in rural areas of developing countries. Renew. Energy 68, 35–45. doi:10.
1016/j.renene.2014.01.030

Frontiers in Energy Research frontiersin.org15

Ud Din et al. 10.3389/fenrg.2023.1088297

171

https://doi.org/10.1016/j.egyr.2020.08.059
https://doi.org/10.1016/j.jrurstud.2017.12.025
https://doi.org/10.1016/j.enpol.2004.05.007
https://doi.org/10.1016/j.enpol.2004.05.007
https://doi.org/10.1016/j.enpol.2004.03.009
https://doi.org/10.2478/fman-2020-0012
https://doi.org/10.2478/fman-2020-0012
https://doi.org/10.1111/j.1559-1816.1999.tb00116.x
https://doi.org/10.1016/j.resconrec.2018.03.022
https://doi.org/10.1016/j.enpol.2011.09.002
https://doi.org/10.1162/003355300554917
https://doi.org/10.1007/s11747-017-0517-x
https://doi.org/10.1108/EBR-11-2018-0203
https://doi.org/10.1016/j.jbusres.2011.11.001
https://doi.org/10.1007/s11747-014-0403-8
https://doi.org/10.1016/j.jenvp.2017.03.003
https://doi.org/10.1016/j.jenvp.2017.03.003
https://doi.org/10.1080/10548408.2015.1130111
https://doi.org/10.1016/j.jclepro.2019.07.047
https://doi.org/10.1016/j.rser.2017.09.049
https://doi.org/10.1016/j.jenvman.2019.109924
https://doi.org/10.1016/j.jenvman.2019.109924
https://doi.org/10.3390/su11072075
https://doi.org/10.1016/j.resconrec.2018.09.004
https://doi.org/10.56583/br.746
https://doi.org/10.56583/br.746
https://doi.org/10.1016/j.jhazmat.2011.02.044
https://doi.org/10.1016/j.jhazmat.2011.02.044
https://doi.org/10.1007/978-3-319-64069-3
https://doi.org/10.1007/978-3-319-64069-3
https://doi.org/10.1016/j.apenergy.2012.06.057
https://doi.org/10.1016/j.resconrec.2019.02.042
https://doi.org/10.3390/su10072407
https://doi.org/10.3390/su10072407
https://doi.org/10.1016/j.jedc.2009.11.007
https://doi.org/10.1016/j.egyr.2021.10.077
https://doi.org/10.1016/j.jbusres.2016.12.031
https://doi.org/10.1016/j.jbusres.2016.12.031
https://doi.org/10.1787/5kg0nvfvwjd0-en
https://doi.org/10.1016/j.enpol.2011.09.052
https://doi.org/10.3389/fenrg.2022.837007
https://doi.org/10.3390/su10030687
https://doi.org/10.1016/j.jenvman.2014.01.015
https://doi.org/10.1016/j.jenvman.2014.01.015
https://doi.org/10.1016/j.joep.2013.07.005
https://doi.org/10.1016/j.rser.2017.05.150
https://doi.org/10.1016/j.renene.2014.01.030
https://doi.org/10.1016/j.renene.2014.01.030
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1088297


Ritov, I., and Kahneman, D. (1997). “How people value the environment: Attitudes
versus economic values,” in Environment, ethics, and behavior: The psychology of
environmental valuation and degradation (Francisco: New Lexington Press), 33–51.

Roe, B., Teisl, M. F., Levy, A., and Russell, M. (2000). US consumers’ willingness to pay
for green electricity.

Rosso-Cerón, A. M., and Kafarov, V. (2015). Barriers to social acceptance of
renewable energy systems in Colombia. Curr. Opin. Chem. Eng. 10, 103–110. doi:10.
1016/j.coche.2015.08.003

Sánchez-Fernández, R., Iniesta-Bonillo, M. Á., and Holbrook, M. B. (2009). The
conceptualisation and measurement of consumer value in services. Int. J. Mark. Res. 51,
1–17. doi:10.1177/147078530905100108

Sarstedt, M., Ringle, C. M., and Hair, J. F. (2014). PLS-SEM: Looking back andmoving
forward. Long. Range Plann 47, 132–137. doi:10.1016/j.lrp.2014.02.008

Shmueli, G., Sarstedt, M., Hair, J. F., Cheah, J. H., Ting, H., Vaithilingam, S., et al.
(2019). Predictive model assessment in PLS-SEM: Guidelines for using PLSpredict. Eur.
J. Mark. 53, 2322–2347. doi:10.1108/EJM-02-2019-0189

Sreen, N., Purbey, S., and Sadarangani, P. (2018). Impact of culture, behavior and
gender on green purchase intention. J. Retail. Consumer Serv. 41, 177–189. doi:10.1016/
j.jretconser.2017.12.002

Stern, P. (2000). New environmental theories: Toward a coherent theory of
environmentally significant behavior. J. Soc. Issues 56, 407–424. doi:10.1111/0022-4537.00175

Sultan, P., Tarafder, T., Pearson, D., and Henryks, J. (2020). Intention-behaviour
gap and perceived behavioural control-behaviour gap in theory of planned
behaviour: Moderating roles of communication, satisfaction and trust in organic
food consumption. Food Qual. Prefer 81, 103838. doi:10.1016/j.foodqual.2019.
103838

Tan, C-S., Ooi, H-Y., and Goh, Y-N. (2017). A moral extension of the theory of planned
behavior to predict consumers’ purchase intention for energy-efficient household
appliances in Malaysia. Energy Policy 107, 459–471. doi:10.1016/j.enpol.2017.05.027

The Paris Agreement (2018). Work programme under the Paris agreement.

Uddin, R., Shaikh, A. J., Khan, H. R., Shirazi, M. A., Rashid, A., and Qazi, S. A. (2021).
Renewable energy perspectives of Pakistan and Turkey: Current analysis and policy
recommendations. Sustain. Switz. 13, 3349. doi:10.3390/su13063349

Van Gent, H. A., and Rietveld, P. (1993). Road transport and the environment in
Europe. Sci. Total Environ. 129, 205–218. doi:10.1016/0048-9697(93)90171-2

Vasseur, V., and Kemp, R. (2015). The adoption of PV in The Netherlands: A
statistical analysis of adoption factors. Renew. Sustain. Energy Rev. 41, 483–494. doi:10.
1016/j.rser.2014.08.020

Walter, G. (2014). Determining the local acceptance of wind energy projects in
Switzerland: The importance of general attitudes and project characteristics. Energy Res.
Soc. Sci. 4, 78–88. doi:10.1016/j.erss.2014.09.003

Wang, S., Fan, J., Zhao, D., Yang, S., and Fu, Y. (2016). Predicting consumers’
intention to adopt hybrid electric vehicles: Using an extended version of the theory
of planned behavior model. Transportation 43, 123–143. doi:10.1007/s11116-014-
9567-9

Wang, Z., Sun, Q., Wang, B., and Zhang, B. (2019). Purchasing intentions of Chinese
consumers on energy-efficient appliances: Is the energy efficiency label effective?
J. Clean. Prod. 238, 117896. doi:10.1016/j.jclepro.2019.117896

Wooldridge, J. M. (2015). Introductory econometrics: A modern approach. 6th ed.
Boston: Cengae Learning.

Wu, S-I., and Chen, J-Y. (2014). A model of green consumption behavior
constructed by the theory of planned behavior. Int. J. Mark. Stud. 6, 119. doi:10.
5539/ijms.v6n5p119

Wüstenhagen, R., and Bilharz, M. (2006). Green energy market development in
Germany: Effective public policy and emerging customer demand. Energy Policy 34,
1681–1696. doi:10.1016/j.enpol.2004.07.013

Wüstenhagen, R., Wolsink, M., and Burer, M. J. (2007). Social acceptance of
renewable energy innovation: An introduction to the concept. Energy Policy 35,
2683–2691. doi:10.1016/j.enpol.2006.12.001

Zafar, U., Ur Rashid, T., Khosa, A. A., Khalil, M. S., and Rahid, M. (2018). An
overview of implemented renewable energy policy of Pakistan. Renew. Sustain. Energy
Rev. 82, 654–665. doi:10.1016/j.rser.2017.09.034

Zainudin, N., Siwar, C., Choy, E. A., and Chamhuri, N. (2014). Evaluating the role of
energy efficiency label on consumers’ purchasing behaviour. Apcbee Procedia 10,
326–330. doi:10.1016/j.apcbee.2014.10.061

Zarnikau, J. (2003). Consumer demand for “green power” and energy efficiency.
Energy Policy 31, 1661–1672. doi:10.1016/S0301-4215(02)00232-X

Zhang, L., Fan, Y., Zhang, W., and Zhang, S. (2019). Extending the theory of planned
behavior to explain the effects of cognitive factors across different kinds of green
products. Sustain. Switz. 11, 4222. doi:10.3390/su11154222

Zhao, H., Gao, Q., Wu, Y., Wang, Y., and Zhu, X. (2014). What affects green
consumer behavior in China? A case study from qingdao. J. Clean. Prod. 63, 143–151.
doi:10.1016/j.jclepro.2013.05.021

Frontiers in Energy Research frontiersin.org16

Ud Din et al. 10.3389/fenrg.2023.1088297

172

https://doi.org/10.1016/j.coche.2015.08.003
https://doi.org/10.1016/j.coche.2015.08.003
https://doi.org/10.1177/147078530905100108
https://doi.org/10.1016/j.lrp.2014.02.008
https://doi.org/10.1108/EJM-02-2019-0189
https://doi.org/10.1016/j.jretconser.2017.12.002
https://doi.org/10.1016/j.jretconser.2017.12.002
https://doi.org/10.1111/0022-4537.00175
https://doi.org/10.1016/j.foodqual.2019.103838
https://doi.org/10.1016/j.foodqual.2019.103838
https://doi.org/10.1016/j.enpol.2017.05.027
https://doi.org/10.3390/su13063349
https://doi.org/10.1016/0048-9697(93)90171-2
https://doi.org/10.1016/j.rser.2014.08.020
https://doi.org/10.1016/j.rser.2014.08.020
https://doi.org/10.1016/j.erss.2014.09.003
https://doi.org/10.1007/s11116-014-9567-9
https://doi.org/10.1007/s11116-014-9567-9
https://doi.org/10.1016/j.jclepro.2019.117896
https://doi.org/10.5539/ijms.v6n5p119
https://doi.org/10.5539/ijms.v6n5p119
https://doi.org/10.1016/j.enpol.2004.07.013
https://doi.org/10.1016/j.enpol.2006.12.001
https://doi.org/10.1016/j.rser.2017.09.034
https://doi.org/10.1016/j.apcbee.2014.10.061
https://doi.org/10.1016/S0301-4215(02)00232-X
https://doi.org/10.3390/su11154222
https://doi.org/10.1016/j.jclepro.2013.05.021
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1088297


Energy homeostasis model for
electrical and thermal systems
integration in residential buildings:
a means to sustain distributed
generation systems integration

Fernando Yanine1*, Sarat Kumar Sahoo2,
Antonio Sanchez-Squella3, Aldo Barrueto3 and
Challa Krishna Rao4,5

1Universidad Finis Terrae, Santiago, Chile, 2Parala Maharaja Engineering College, Berhampur, India,
3Federico Santa María Technical University, Santiago, Chile, 4Department of Electrical and Electronics
Engineering, Aditya Institute of Technology and Management, Tekkali, Andhra Pradesh, India,
5Department of Electrical Engineering, Parala Maharaja Engineering College, Affiliated to Biju Patnaik
University of Technology, Rourkela, Odisha, India

Introduction: Integrating renewables in the distribution sector is a rapidly growing
reality in many countries, amongst which Chile’s stands out with an increasingly
diversifiable electricity matrix. However, incorporating RES into the electricity
distribution sector is altogether a steep climb at present, and seen by some as a
formidable challenge for utilities. Likewise, the introduction of the Smart Grid
agenda in Chile is imposing new challenges to electric utilities, mainly from a
regulatory and technical viewpoint. In spite of this, big players like ENEL are
moving forward decisively tomeet this challenge, together with academia experts.

Methods:Wemodel a sustainable energy system in the form of a smart microgrid
operated by ENEL Chile comprising a hypothetical community we term a
Sustainable Block™ representing an average residential building in Santiago.
We then run simulations under different operating scenarios. The model takes
into account the most recent innovation in the legal regulatory framework that
governs the energy market in Chile ―Law 20,571―which allows for benefits to
those that generate and consume part or all of their energy needs while
connected to the grid. Thus, the community considers the option of
consuming green energy from the microgrid with an energy storage unit to
supply electricity to the 60-apartment complex of various sizes. Under this
scenario, a set of energy homeostasis strategies that comprise the homeostatic
control and energy management systems help balance the electricity supply
versus demand.

Results: The model proposed comprises a set of energy homeostasis
management strategies that have been designed in the power control and
energy management system to balance supply and demand while optimizing
the availability and use of green energy. Thus, the energy homeostasis model
optimizes the microgrid supply while injecting excess power to the grid. In this
context, the community residents exhibit different consumption profiles,
therefore they may willingly participate of the sustainable energy strategy as
prosumers, displaying a thriftier consumption, and enjoying a lower electric bill
while using more renewable energy. Themodel’s energy homeostasis control and
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energy management system, especially designed for electric power systems, seeks
to maintain a dynamic balance between supply and demand and is being currently
discussed with ENEL Chile as part of the intelligent control options for the
introduction of distributed generation systems tied to the grid, in order to
complement their electric power distribution services.

Discussion: The model being proposed comprises a community of residents that
we term a sustainable block™ representing an average residential building in
Santiago, Chile, which aims to take advantage of Law 20,571 in Chile that allows
independent electric power generators to benefit by selling electricity to the grid
and also allows independent consumers (mostly residential) to generate part or all
of their energy needs while connected to the grid. The community may consume
electricity from the microgrid with energy storage, operated by the local electric
company, supplying electricity to the 60-apartment complex of various sizes. In his
regard, just like in the human body where the brain, particularly the hypothalamus,
is primarily responsible for the regulation of energy homeostasis, by monitoring
changes in the body’s energy state through various mechanisms, the role of energy
storage as well as the role of prosumers are the key enabling factors of energy
homeostasis and their interaction are highlighted in the overall analysis.

KEYWORDS

energy homeostasis, electric utility, distributed energy resources, smart grid
transformation, electric tariff, sustainable block™

1 Introduction

“Investment in clean energy technologies is significantly outpacing
spending on fossil fuels as affordability and security concerns triggered
by the global energy crisis strengthen the momentum behind more
sustainable options”, according to the International Energy Agency
(IEA) World Energy Investment 2023 report (International Energy
Agency, 2023a). Soaring electricity prices, particularly in Europe, amidst
the dire energy shortage situation is afflicting the population in various
countries (Lan et al., 2022). Thus, leveraging distributed energy
resources (DER) by means of solar, energy storage, flexible loads
along with community energy integration and power sharing might
well be a potential solution to the current crisis from the electric power
distribution side. This is not only important and sensible, but also
urgent, especially in today’s world where electric tariffs are increasing as
never before, and harsh, extreme weather conditions are being felt
everywhere. According Fatih Birol, executive director of the
International Energy Agency, upon presenting the World Energy
Outlook 2022 at the Senate in Rome, stated: “Development of
renewables - the key to achieving energy independence”
(International Energy Agency, 2023b). His speech focused
specifically on the need to increase the use of renewables amidst the
current energy crisis that is whiplashing Europe and how it is causing
the huge surge in the cost of electrical and thermal energy. On the other
hand, Francesco Starace, ENEL’s CEO, predicted that the real boom in
the worldwide adoption of renewables will happen in the next few years,
which seems perfectly feasible and likely given the need to transform the
energy matrix, in line with a more sustainable outlook (Paris, 2022).
This coincides with the Italian government seeking to provide a legal
framework―similar to Law 20,571 inChile―to incentivize the creation
of renewable energy communities (Chamorro et al., 2021; Trevisan
et al., 2023).

We are undergoing a profound technological change, where the
internet is taking over in every major industry―electricity

distribution included―through the incorporation of IOT and the
widespread use of 5G networks (De Lotto et al., 2022). Such a change
is transforming economies, markets, and industry structures
everywhere, wherein products and services are changing rapidly
and will change even more in the years to come as the world rides on
the digital transformation rollercoaster impacting every aspect of
our lives. Consumer behavior, jobs, labor markets and living
standards will all change with the rapid pace of the digital
transformation, but the impact may be even greater than
expected on our society as these new sets of standards set in and
people become ever more dependent on electricity and high-speed
communication networks (Kimani et al., 2019; Chen et al., 2021).
This will no doubt further stretch the need for electric utilities to find
new, more sustainable, flexible and resilient energy solutions, that
can not only sustain but also foster such societal transformation to a
greener, more sustainable energy matrix, with far-reaching
implications from there onward (Birol, 2020). Such energy
solutions must be incorporated not only to the generation sector
but also must extend to the distribution sector. A foreseeable change
indeed, that we will expect to witness in the very near future,
concomitantly with the advances of IOT and its far-reaching role
in this massive networking transformation wave that is set to
revolutionize our society as a whole.

1.1 Distributed generation systems (DGS)
and the smart grid concept reshaping the
electric power distribution industry

Looking at the near future, we can certainly foresee an upsurge
in DGS, along with the convergence of AI (artificial intelligence) and
systems communication through electric power cables in real time
everywhere transforming the electric power industry, in the context
of smart grid. These technologies are already changing the electric
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power distribution landscape and, along with internet of things
(IOT), are expected to redefine the way industries, businesses and
countries’ economy function. AI needs data in real time and very
large processing capacity, which modern computers provide. Thus,
AI enabled IoT creates intelligent machines that simulate smart
behavior and provide support in decision making with little or no
human interference. Looking at microgrids being enabled by AI and
IOT applications, we may see that an IoT-based microgrid can
provide the community of consumers―whether residential or
commercial/industrial―the opportunity to enjoy independent,
much more reliable and cost-effective electricity which will
empower such communities and allow them to thrive, especially
in areas that are rich in renewables. Hence, with the installation of an
IoT-based microgrid that also has IOT applications encompassing
each and every load and also the grid, owners will be able to improve
the efficiency of their energy consumption substantially, which will
be a key attractiveness factor for its commercialization. AI also will
help to forecast energy supply and demand variations better and
faster across a microgrid. With AI, a microgrid can successfully
manage a large and complex energy structure, for example, a large
power plant (involving several microgrids with large scale energy
storage units) that provides power to a large community of
residential and commercial loads in an urban area. Intelligent
control systems will thus be able to monitor and adjust in real
time every system variable, including new variables such as different
renewable power generation units or rapidly changing energy prices
when there is more power available in storage and/or the grid
electric tariff is cheaper. IoT-based technology can also improve
the efficiency and reliability of wind energy microgrids in those areas
where there is excellent wind speed (Li et al., 2023), like in the south
of Chile, especially in all of the Magallanes region. Real-time
monitoring and control of the microgrid can help to minimize
downtime and optimize the use of available resources, reducing
operating costs and maintenance requirements (Li et al., 2023).

1.2 The role of electric utilities like ENEL
Chile in the transformation of the electricity
distribution sector

The role of electric utilities like ENEL Chile is of paramount
importance when we realize that electric power distribution industry
is a natural monopoly firmly regulated by government agencies.
Hence, if we ever expect to see an overhaul of this industry towards
energy sustainability, we must work with local electric companies to
advance this agenda. In order to use sustainable energy systems
(SES) in the form of distributed generation solutions like the
microgrid, we must address the methods of harnessing the
available energy resources in the most economically efficient
manner. We must also ensure that renewable and alternative
energy sources be utilized in conjunction with the grid, as two
complex systems coupled together and assisting each other, whereby
both systems interact and support each other operationally as is the
case with the grid-tied microgrid (Chamorro et al., 2021; Chen et al.,
2021; De Lotto et al., 2022; Paris, 2022; Trevisan et al., 2023).

Nowadays, electric power lines can also transmit communication
using existing electrical wiring, whether in a building or through the
electric utility grid’s network cables. Hence, data signals can be sent

through the wiring. An example of narrowband application of this
technology is automatic meter reading currently being used by many
electric utility companies (Qiao et al., 2023). With the possibility of
transmitting not only electricity but also data, voice and images
through their networks, the electricity distribution industry sector is
to become amajor player onmany fronts in the immediate future if not
sooner (Ghelani, 2022). Thus, in order to overcome the challenges of
the near future―particularly in regards to climate change perils and
the need to further energy sustainability―one of the main concerns of
electric utilities must be to ensure a reliable, flexible and resilient
distribution of electricity and heat to the diversity of energy consumers
in today’s society, a strong focus on research and development on new
and existing technologies for electricity distribution transformation
will be necessary. Hence, as the complexity of the electric power grids
increases, along with the growing demand, so will the requirements for
greater stability, reliability, security and efficiency, together with
environmental and energy sustainability concerns (Lan et al., 2022;
Paris, 2022; International Energy Agency, 2023b; International Energy
Agency, 2023a).

Public utilities in general, and especially electric utilities
have―for the most part― understood the magnitude of this
change and its implications, as well as the reasons why such a
change is necessary and imminent. Hence, public and private
investment and cooperation in the industry, along with
incentives to be more sustainable on the electricity consumption
side are encouraged so as to further the industry transformation
(Jain et al., 2017; Tiep et al., 2021). This is just what electric utilities
like ENEL are doing in Chile and elsewhere, while bringing about a
true revolution in energy generation and management (Paris, 2022;
International Energy Agency, 2023b). Part of the response to the
challenges of said transformation is the concept of smart microgrid
and the sustainable block™ (Yanine et al., 2018a) and how these two
interact with the grid. Microgrids are independent small-scale
distributed generation systems, usually situated close the loads
and operating connected to the grid. They can be personalized
for different energy consumers and climate conditions and can be
integrated in urban or rural environments, being capable of
autonomously generating and storing energy for the distribution
of electricity and heat to consumers (Driesen and Katiraei, 2008;
Kroposki et al., 2008; Series, 2009; Rao et al., 2022). Hundreds of
microgrid projects have been developed worldwide thus far in
different parts of the world, adding up to a total capacity
exceeding 1.7 GW (Tiep et al., 2021). The need to attenuate or
ameliorate peak demand hurdles and to react swiftly and effectively
to unforeseeable events that can affect frequency and voltage levels
such as threats emanating from environmental threats are also a
major concern of electric companies (Cordova and Yanine, 2012).
The need to secure a steady flow and to smooth out abrupt changes
in their energy supply in order to respond more effectively and
proactively to changing energy needs, variations in the grid’s power
supply and to environmental disruptions are critical (Yanine et al.,
2019; Yanine et al., 2022).

Considering the projected growth rates in electricity
consumption, and the cost-effectiveness and the far-reaching
implications of distributed generation systems like the microgrid
(Adefarati and Bansal, 2019; Wolsink, 2020; Bogdanov et al., 2021),
it is time to consider a more active participation of these systems in
the distribution sector, with a realistic vision of future energy needs
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rather than treating the solution just as an oddity in the energy
matrix (Jiayi et al., 2008; ENEL, 2014; Adefarati and Bansal, 2019; Li
et al., 2019). This will require incorporating traditional power
system elements of analysis such as: stability analysis of
microgrids in steady and dynamic states of operation, frequency
control, protection coordination issues, and energy quality (Jiayi
et al., 2008; ENEL, 2014; Adefarati and Bansal, 2019; Li et al., 2019).
The role of the electricity users and their willingness to becomemore
sustainable and mindful in their electricity consumption needs is
also of great relevance. These new energy players, called
“prosumers” by some authors (Hambridge et al., 2017) due to
the nature of their role (producers and consumers), play a key
role in the possibility of making DGS in the distribution sector a
reality. These new customers require clear signals from the electric
tariff viewpoint, so that their electricity consumption behavior is
aligned with the electrical energy system’s proper functioning and
supportive of the sustainable green energy consumption of the
community where the DGS is to be installed. We have termed
this community of energy prosumers a sustainable block™ so as to
act as proactive consumers that aim to benefit the whole while, at the
same time, benefiting themselves (Hambridge et al., 2017).

1.3 Distributed generation systems (DGS) as
key enabling technologies for advancing
energy sustainability

Distributed Generation (DG) is defined as “an electric power
source connected directly to the distribution network or on the
consumer side of the meter” (Jiayi et al., 2008). Likewise, the IEEE
Institute defines DG as the generation of electricity from
installations that are sufficiently smaller than the centralized
generation units (Bhadoria et al., 2013), something which clearly
encompasses an ample range of electric power generation solutions
that can interconnect with the grid at any point near the load in a
power system. The means and conditions of such interconnection
are subject to strict local regulatory operation frame and―unless it is
in an isolated area, where there is no distribution grid―the local
electric utility operating in the area must be involved. DGS can be of
two types: the isolated type, supplying the local consumption on a
discrete basis, usually in the case of small communities (Paris, 2022)
or else, operating connected to the power grid, supplying electrical
energy to the community of users and also to rest of the power
system if there is excess generation, after the batteries are fully
charged. There are many technical and economic advantages related
to the implementation of distributed generation in distribution
sector that have been widely researched, such as the reduction of
active and reactive energy losses, improvement in reliability,
reduction of a blackout probability and peak hours’ demand
reduction; nevertheless, the regulatory aspects have not been
covered in depth (Jiayi et al., 2008; ENEL, 2014). However, there
is little research related to the social impact regarding the benefits of
new policies and regulations that can foster and advance DG in the
electric power distribution sector, along with specific urban
challenges or local governance factors are likewise not widely
analyzed (Gottwalt et al., 2011; Bhavsar et al., 2015; Jain et al., 2017).

An important area of research for distributed generation has
been energy management and differential pricing strategies

(Gottwalt et al., 2011; Palensky and Dietrich, 2011; Bhavsar et al.,
2015; Cheng et al., 2019), some authors have proposed the
establishment of a demand side management (DSM) systems
based on an hourly price variation price-structure, as a means to
further energy sustainability policies based on energy efficiency and
off-peak consumption practices (Wolsink, 2020; Yanine et al., 2022).
However, electricity demand peaks are not always of regular
occurrence but rather sporadic, and may occur at unforeseen
times, usually due to abrupt changes in weather patterns, as well
as other environmental or social phenomena, causing a severe strain
on the electric power supply services for utilities. One way to
minimize such occurrence is by curtailing demand and
promoting a more sustainable use of electricity when renewables
are present in DGS connected to the grid. Electric utilities may offer
alternative tariff structures like, for example, Multi-Time-Of-Use
(Multi-TOU) and Multi-Critical-Peak-Pricing (Multi-CPP) (ENEL,
2011; Wolsink, 2012; ENEL, 2017) both of which offer economic
incentives to those that willingly accept to use them.

Likewise, in electrical distribution systems, distributed
generation (DG) can be beneficial for consumers as well as for
electric utilities for a number of reasons, many of which have already
been cited in this paper. This is specially so in places where the
electric supply from centralized power generation plants is
impractical/unfeasible due to technical and/or economic reasons
or when―as in Chile’s case for the most part―the electricity
distribution networks’ infrastructure is frail, vulnerable and
without the appropriate backup systems should natural disasters
or environmental threats strike all of a sudden. The epitome of
distributed generation systems (DGS) is no doubt the microgrid,
employing renewable and non-renewable energy sources. The main
generation resources that comprise a microgrid are wind and solar
energy, along with rapid dispatch energy sources like small gas
turbines, microturbines, and fuel cells, and sometimes small
hydroelectric power plant.

In Chile, in particular, the ENEL Group is actively developing
renewable energy generation and advancing its Smart Grid
transformation agenda. A good example of this is its Ollagüe
project in Chile (ENEL, 2017). The Ollagüe plant is a successful
project that combines innovation, taking advantage of the natural
sources available in the territory, public-private alliances and the
participation of the local community, creating an electrification
model that can be replicated in other isolated communities. It is
an isolated microgrid capable of providing 24 h of continuous
energy to the neighboring Ollagüe village of Chile situated in the
far northern region of the country (ENEL, 2017). It is the first hybrid
plant in the world that combines solar, wind and cogeneration
energy with electrical energy storage in molten salt batteries,
providing energy to homes at high altitudes and in extreme
climatic conditions, with temperatures between −20°C and +20°C.
Ollagüe is a small town located on the border between Chile and
Bolivia, at more than 3,500 m above sea level, and at a distance of
160 km from Calama. Less than a hundred families from the
Quechua community live there, whose main activity is sheep
farming. Since December 2014, part of the reality of these
families has changed, since an innovative and sustainable idea
was implemented in the place, which allowed the community to
have sustainable electricity since then, 24 h a day. Enel Green Power
(EGP) built a state-of-the-art renewable energy plant, which uses the
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resources of the Sun, wind and storage, configuring an off-grid
system, which has allowed the community constant access to
electricity.

Another important development in the electric power
distribution industry towards the Smart Grid transformation is
ENEL’s Isernia Project (ENEL, 2011). Isernia is a town and
commune in the southern Italian region of Molise, and the
capital of the province of Isernia. The Isernia Project, where
ENEL is developing its first smart grid in Italy (ENEL, 2011),
provides a new approach for distributed generation by
connecting and managing a renewable energy generation,
distribution network and storage systems using lithium-ion
batteries, as well as by encouraging distributors and customers to
play a new, more active role as ‘prosumers’ who can produce and
consume energy at the same time (Jiayi et al., 2008). On the other
hand, policymakers are increasingly focusing on strategies to
decentralize the electricity distribution sector, and also seeking to
advance in a more flexible and nimble electric power distribution
operation and the advancement of renewables (Lan et al., 2022;
International Energy Agency, 2023a).

An incentive for advancing renewable energy generation and
consumption is the current law 20/25 in Chile for reconverting the
energy matrix to achieve a larger percentage of renewables in the
generation sector (Nasirov et al., 2015). In October of 2013, the
Chilean government enacted Law 20/25 and announced entry into
force of the Concessions Law. Initiative doubled the commitment to
clean energy from 10%, established in the previous regulations for
the year 2024, to 20% for the year 2025 meaning that 20% of all the
energy sold must come from non-conventional renewable energy
sources, thus doubling the goal set forth by Law 20,257. Thus, the
energy sustainability road map of Chile is set on solar energy as the
most abundant and least expensive means of electricity generation,
even more so than hydroelectricity generation as of today. This
explains itself in part by the stark drop in solar photovoltaic (PV)
generation costs, while the technology has attained greater efficiency
levels, and also by the many environmental, social and legal
hindrances that new hydroelectricity projects have faced over the
last 15 years, most of them never seeing the light and therefore,
making it very difficult for investors to dare venturing on new such
projects which have high infrastructure and civil engineering costs
coupled with an uncertain destiny down the road (Nasirov et al.,
2015; Silva and Nasirov, 2017).

The path towards energy sustainability is a difficult one, and it
must also be walked gradually since, aside from major investments
on the part of electric utilities, it requires complex legal and social
adjustments, as well as greater societal awareness of its need no
matter what. It is a necessity which presupposes the incremental
adoption of new and available technologies, many of which are
changing drastically with new advances in electronics and
communications technologies. A shift in industry practices and
policies is indispensable, coupled with the proper economic
incentives to take such a big leap if we are serious about
advancing towards a more sustainable and secure electric power
supply (Moslehi and Kumar, 2010; Basak et al., 2012).

The article comprises five distinct sections, beginning in section
one with the introduction to the subject and a preamble addressing the
electric power distribution industry’s changes and technological
transformation of the distribution sector, especially with regard to

the Smart Grid agenda that is being led by major electric utilities
like ENEL worldwide. Themethodology comes in section two and right
after, we present the energy homeostasis system model and its unique
characteristics and operation for smart microgrid systems tied to the
grid. Section three explains the control and energy management of the
model and its approach to controlling electric supply based on the
demand characteristics of the consumers within a sustainable block―a
60-story residential building in Santiago de Chile. Section four presents
the simulation results and discusses their significance and implications
in terms of implementing sustainable energy consumption strategies in
electricity distribution sector. Conclusions come afterward.

2 Methods

We model a sustainable energy system in the form of a smart
microgrid operated by ENEL Chile comprising a hypothetical
community we term a Sustainable Block™ representing an average
residential building in Santiago. We then run simulations under
different operating scenarios. The model takes into account the most
recent innovation in the legal regulatory framework that governs the
energy market in Chile ―Law 20,571―which allows for benefits to
those that generate and consume part or all of their energy needs while
connected to the grid. Thus, the community considers the option of
consuming green energy from themicrogridwith an energy storage unit
to supply electricity to the 60-apartment complex of various sizes.
Under this scenario, a set of energy homeostasis strategies that comprise
the homeostatic control and energy management systems help balance
the electricity supply versus demand. Results are assessed and analyzed
thereafter. The overall objective is to maximize green power supply
capacity, wherein the different energy users and their energy
consumption profiles play a crucial role as “active loads”, being able
to respond and adapt to the needs of the grid-tied microgrid while
enjoying economic benefits.

2.1 The energy homeostasis system’s model
and its implications for energy sustainability

Here we explore the role of energy homeostasis in regards to
electricity tariffs and energy use by consumers. Energy homeostasis
is that property of energy systems by which they can reach and
maintain a dynamic balance between supply and demand at all times
just like a governor would in traditional electric power plants, albeit
somewhat differently. Here, the energy system is able to respond to
perturbations stemming from technical issues, environmental
challenges and fluctuations in demand very rapidly and
effectively so as to attain optimal equilibrium between the
amount of power available for supplying the loads and the
demand for energy coming from the loads (Cordova and Yanine,
2012; Caballero et al., 2013; Yanine and Sauma, 2013; Yanine et al.,
2014a; Yanine et al., 2017; Yanine et al., 2018a; Yanine et al., 2018b;
Yanine et al., 2019; Yanine et al., 2022). This is essential in order to
preserve systems stability and continuity of operations in electric
power systems’ operation. Here both reactive and predictive
homeostasis play a key role in sustaining the energy system’s
functional integrity. Both reactive and predictive homeostatic
control have the same purpose: to maintain the current state of
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the energy system within an operationally appropriate range
(homeostasis) so as to be able to respond to the energy demand
from the loads. Reactive homeostatic control does this by counter-
regulatory reactions via a feedback mechanism to deviations of
system-critical variables from their operational range. Predictive
homeostatic control is distinguished from reactive homeostasis in
the sense that the regulatory mechanisms do not operate after the
facts (reactive) but before, anticipating (predicting) the occurrence
of a given scenario and thus adjusting the energy system accordingly.
These system-critical variables are part of the control system’s model
(Cordova and Yanine, 2012; Caballero et al., 2013; Yanine and
Sauma, 2013; Yanine et al., 2014a; Yanine et al., 2017; Yanine et al.,
2018b; Yanine et al., 2019; Yanine et al., 2022). The control system’s
model also measures performance in terms of customer satisfaction
when he or she obtains the benefits set forth by the tariff structure
and the microgrid takes advantage of Chilean law that regulates self-
generation (Yanine et al., 2019; Yanine et al., 2022). The system
seeks to offer economic incentives for customers who consumemore
thriftly and sustainably and also generates economic benefits the
electric utility (ENEL, 2014). Predictive homeostasis in energy
systems, on the other hand, has to do with the energy system’s
capability to foresee very near future scenarios, monitor in real time
key variables (defined in the control system) of the electric power
grid, the loads, along with the weather, and environmental
indicators such as heat, wind speed, solar irradiance and also to
be able to anticipate events and prepare itself in order to procure the
necessary resources, make the necessary adjustments and
communicate them to the consumers and to the system’s
operator (ENEL, 2014; Hambridge et al., 2017).

Our homeostatic control model proposes a hybrid tariff which
mixes an hourly rate based on time-of-use (TOU) with a rate based on
the deviation of the system’s frequency—something which may affect
voltage levels—and whose value represents the imbalance between
generation and consumption. This hybrid rate, which can be
calculated every minute, allows for secondary frequency regulation
and becomes an economic incentive for those that exhibit a sustainable
and responsible electricity consumption. The homeostatic control
model has been tested successfully in our microgrid lab and proof
of concept has been discussedwith ENEL for the purpose of assessing its
potential implementation in the electricity distribution sector in Chile
and other parts of the world.

2.2 The difference between a sustainable
block™ and the single customer scheme

Customers must have intelligent metering installed by the electric
company in order to use this grid-connected microgrid control model
that also encompasses communication system between the microgrid
operator (the local electric company) and the community residents. The
model has been proposed to ENEL, considering the incorporation of a
distributed generation (DG) plant like a smart microgrid discussed here,
based on solar PV energy with energy storage capability. Customers can
evaluate the pros and cons of the contract and choose willinglywhether to
be part of the energy sharing from the microgrid or not. Those that
choose not to be part may continue to use grid supply only just like they
regularly do. Those that do agree to be part of the sustainable block™ will
be able to access electric power supply atmore convenient rates as a whole

but abiding by the standards and constraints imposed by the DG plant
generating renewable energy.

The above model results in significant economic benefits for the
entire community and for the electric utility as well. It is important
to note here that difference between the sustainable block™ scheme,
as opposed to the usual single load figure, is the fact that a
sustainable block™ encompasses not only the electric utility’s
customers but also the grid-tied microgrid, including the energy
storage unit (Cordova and Yanine, 2012; Yanine et al., 2018a; Yanine
et al., 2019; Rao et al., 2022; Yanine et al., 2022). The algorithms
presented here as part of the control model are based on the energy
homeostasis model derived from previous work by the
corresponding author, which was done on homeostatic control of
sustainable energy systems (SES). The research initiative was born in
2010 upon initiating his doctoral program and continued after that
with his postdoctoral fellowship successfully realized with the
support and collaboration of ENEL Chile.

2.3 The renewables outlook in the expansion
of DGS and how it could change the
distribution sector: The case of ENEL in Chile

Unlike the far north and many regions of the south of Chile,
where wind is quite abundant and stable thus ensuring a regular
wind supply, unlike the central region where solar photovoltaic (PV)
is the norm. Currently there are 20 wind power generation projects
underway in various regions of northern and southern Chile, and
more are expected in the years to come but clearly Chile renewables’
investment is much more geared towards solar because of its unique
abundance and superior solar irradiance being one of the best in the
world (Londono, 2017). Renewable energy projects are large and
very complex engineering projects that demand sizeable investments
and are required by law to submit several feasibility studies,
including an environmental impact assessment, before any work
can begin. In the case of wind power plants this is much more so but
nevertheless wind generation power plants are not new in Chile, and
have been around for some time now and are expected to grow in
numbers towards the year 2025 like some of the large projects of
wind farms built in northern and southern Chile (Morgan et al.,
2014). However, all of these large projects entail significant
infrastructure investment and engineering costs plus a good
negotiation with the local communities, most of which are
reluctant to see their landscapes invaded by such monstrous
towers or by large surfaces covered by solar panels. Small
hydroelectric plants are also disliked and regarded as invasive
(Yanine et al., 2014b; Leal-Arcas et al., 2023). Such endeavors
can only be offset by a good size project that fully complies with
the local environmental and regulatory legislation, and that can
render the expected benefits that such projects yield for investors.

2.4 The residential building case study and
the sustainable block™ concept in action

The residential community, as already explained, is termed a
sustainable block™. The term comprises the synergistic and positive
interaction and emergent behavior supportive of sustainable energy
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systems’ operation that complex systems interaction of this nature
can be expected to exhibit (Caballero et al., 2013; Yanine and
Cordova, 2013; Yanine and Sauma, 2013; Yanine et al., 2014a;
Yanine et al., 2014b; Yanine et al., 2014c; Yanine et al., 2015;
Yanine et al., 2017; Yanine et al., 2018b). The characteristics of
the residential community are shown in Table 1 below.

As mentioned before, the scenario under study is comprised of a
solar PV system, a group of residential customers, the electric
distribution grid and an energy storage unit (battery bank). The
microgrid is operated by ENEL Chile and residents can get electricity
from the microgrid and from the local grid, albeit with different
tariffs, as an incentive to those residents that choose to abide by the
sustainable energy system’s arrangement of green energy sharing.
The microgrid’s excess energy generation, after the batteries are fully
charged, is to be injected to the grid, as it is not being used by the
residential community, thus considering the incentive that the
current Net Billing law (law 20,571 in Chile) offers (Energypedia,
2015) and this is reflected in the simulation results.

The model’s energy homeostasis control and energy
management are shown in Figure 1. It especially designed for
electric power systems, seeks to maintain a dynamic balance
between supply and demand and is being currently discussed
with ENEL Chile as part of the intelligent control options for the
introduction of distributed generation systems tied to the grid, in
order to complement their electric power distribution services.

2.5 Redefining energy sustainability: How
the homeostatic control system works and
how the benefits are attained

The control system monitors in real time the available capacity
and the power demand from the loads, considering demand side
projection, in order to decide whether to use from the microgrid
only, including the energy storage unit or to also draw power from
the grid, and this goes on throughout the day. In addition, the
storage status of the batteries is continually monitored, looking
always to minimize operating costs. The energy storage unit
managed by the homeostatic control system decides when and
how much energy to charge or discharge, drawing energy from
the energy storage unit when the electric tariff is more expensive.
The system keeps track of each resident’s electricity consumption
through the smart meter. Those residents who exhibit a sustainable
electricity consumption that falls within the consumption ranges
that the energy pool can support considering tariffs structure and the
microgrid’s energy supply for the different hourly blocks, get to
enjoy a lower electric bill. On the other hand, those who choose to
consume more power in said hourly blocks, falling, outside the
sustainable range, foregoing the needs of the rest of the community
(thriftless consumption) will be notified through an interface and/or
alarm and will be disconnected by smart switches (smart plug),
leaving them with the grid-only option.

The billing process is calculated by the electric company with
data from the smart meter processed by the billing procedure in the
microgrid. The system is responsible for prorating payments
between users according to their monthly electric consumption.
Those customers who choose to align with the energy
sustainability strategy of the community, preferring to consume

less energy and to move their power-intensive consumption (e.g.,
dishwasher, washing machine, vacuum cleaner, electric heater) to
hours of less demand receive economic compensation (reward)
with a lower electric bill.

2.6 The energy homeostasis equations
behind the power control and energy
management systems of the microgrid

Below are the equations that express the energy homeostasis
(dynamic balance) model that is the basis of the homeostatic
control system operating in the microgrid the energy
homeostasis regulation mechanisms are discussed in length in
these articles (Caballero et al., 2013; Yanine and Sauma, 2013;
Yanine et al., 2014a; Yanine et al., 2017; Yanine et al., 2018a;
Yanine et al., 2018b):

Eequilb � Psupply x( )PH u( )RH v( )S α( )
� Econsump u, v, α( ) + d

dt
Econsump u, v, α( )

where Psupply � Real Power + Reactive Power � (P + Q) − Losses

Emanagement � Psupply x( ) − Pdemand subject to PH u( )RH v( )S α( )
The power supply is a function of the internal state of the

energy systems at time t0 represented by variable x and also
conditioned by predictive and reactive homeostasis functions
PH(u)RH(v) (Yanine et al., 2017). Variables u and v represent
the specific predictive and reactive homeostasis functions
respectively. In addition, the conditioning function we term
S(α) is a function that represents the overall (operational)
sustainability state of the system. Thus, S(α) is in essence a
systemic function that conditions the system’s output. In order
to use a helpful analogy to illustrate and better clarify the role of
S(α) let us think of the heart’s pumping blood and oxygen in the
human body; where cardiac output is the product of stroke volume
and heart rate. Both are under the control of the sympathetic
nervous system (the controller). Stroke volume is also affected by
changes in preload, contractility and afterload, and their
interaction. Very similar conditions are present in the
sustainable energy system (SES) (Yanine et al., 2017), where we
have the interaction of predictive and reactive homeostasis
functions with the systemic function S(α). Hence, all three are
responsible for the dynamic energy balance that is expected to be
maintained at all times within the system and that we term energy
equilibrium, Eequilb (Yanine et al., 2017). Likewise, the Energy
management Emanagement is equal to the power supply minus the
power demand subject to predictive and reactive homeostasis
functions and the systemic function S(α).

TABLE 1 Building description.

Location Santiago, Chile

Stories 15

Dimensions 30 x 20 x 50 m

Apartments 60
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S(α) is a systemic function responsible for assessing the overall
system’s functionalities so as to safeguard the system’s sustainability and
is dependent upon several functional factors operating adequately in the
grid-tied microgrid (Yanine et al., 2017). Sustainable energy systems are
composed of subsystems, and each one of them serves its own purpose
but also interacts with other systems in ways that help the larger system,
that is the grid-tied microgrid connected to the loads, to function as
intended. The subsystems that comprise the whole must work well both
independently and together for the system to function as intended.

The Emanagement function takes into account the projected power
supply minus the projected power demand subject to the predictive
and reactive homeostasis functions PH(u)RH(v) but S(α) also
plays an important role in terms of assessing the overall system
state (Yanine et al., 2017).

The demand response paradigm is an interesting option that
makes sense when you are sharing a limited supply of green energy
and are seeking economic compensation for keeping a lower, more
thrifty and sustainable energy consumption. The benefits to
consumers, such as those considered in the example analyzed in
this paper, in the form of an economic compensation or reward for

their thrifty and efficient electricity consumption particularly during
certain times of the day and/or exhibit a willingness to be flexible in
the timing of their electricity consumption needs. Hence, one of the
emerging trends in this area is the enactment of laws and regulations
such as the Net Billing law in Chile (Energypedia, 2015) that
incentivizes or encourages the use of distributed generation of
electricity by means of renewables (Yanine and Cordova, 2013;
Energypedia, 2015).

For this project we used commercial solar panels readily
available in the local market, whose characteristics are the
following, in standard test conditions (STC) (i.e., irradiance of
1000W/m2, spectral value of 1.5 a.m. and temperature of 25°C).
These are presented below in Table 2. (Yanine et al., 2020). The
resulting installed power capacity of the DG plant is 41.58 kW
(Yanine et al., 2020).

To obtain the generation profiles of the photovoltaic plant, in the
time scale required (15-min time intervals), a simplified model is
adopted according to (Van Aubel and Poll, 2019). The power output
of the plant will be given by the relation (1).

Pg t( ) � n · Ap · Ii t( ) · 1 − 0.0042
Ii
18

+ Ti − 20( )[ ]η0ηinv (1)

Pg: Generated power in time period t by the PV plant in kw
n: Number of photovoltaic (PV) panels, n � 154
Ap: Panel area, Ap � 1.64m2

Ii(t): Horizontal plane radiation in time period t for Santiago,
Chile.
Ti(t): Temperature in time period t for Santiago, Chile.
η0: Efficiency of the solar module under STC conditions, η0 �
0.166.
ηinv: Inverter efficiency, ηinv � 0.98.

Solar irradiation and temperature data are both pieces of
information that can be readily obtained from the Department

TABLE 2 PV panels’ characteristics (Yanine et al., 2020).

Type of module YL270P-96

Maximum power Pmax 270 W

Open circuit Voltage VOC 37.9 V

Short circuit current ISC 9.27 A

Maximum power voltage Vmpp 30.7 V

Maximum power current Impp 8.6 A

Module efficiency 16.6%

Dimension 1640 x 990 x 35 mm

FIGURE 1
Above is the energy homeostasismodel for the sustainable block™. Both the energymanagement system (EMS) and the powermanagement system
(PMS) comprise the microgrid’s homeostatic control, inspired by energy homeostasis principles (Yanine et al., 2020).
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of Geophysics of the University of Chile [http://www.dgf.uchile.
cl]. To validate the model, the annual energy generated was
contrasted with the results obtained and properly adjusted
afterwards using a proprietary software especially developed
by the research team for this testing. Below are shown the
electric power generated per hour on average for the different
months of the year in Figure 2A, and the energy generated by
the photovoltaic plant per month throughout the whole year in
Figure 2B.

Figure 2A depicts the electric power generated per hour on
average for the different months of the year, while Figure 2B
shows the energy generated by the photovoltaic plant per
month.

2.7 The role of smart metering and why
should electricity users care to use them

Smart meters are essential for electric companies to keep track of the
billing and also of the overall state of the electric supply networks, helping
optimize the grid services. A smart meter is an electronic device that
records energy consumption of the electric company’s customers and
exchanges consumption data with energy suppliers, which is used for
monitoring and billing. In addition to storing energy consumption data,
smart meters also allow real time information on the status of the
electricity grid to be collected by the system’s operator, including
making it possible to identify supply interruptions, inefficient voltages
and incorrect connections. The smart meter considered in this study

FIGURE 2
Generation of the PV plant. (A) depicts the electric power generated per hour on average for the different months of the year, while (B) shows the
energy generated by the photovoltaic plant per month.

FIGURE 3
Above are curves of aggregate demand and monthly consmption of the community’s residents of the 60 apartments in a residential building in
Santiago, Chile which, along with the microgrid and the grid comprise a sustainable block™ (Yanine et al., 2020).
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(model CERN 1 offered by ENEL Smart Metering Division), measures
electrical variables of customers, stores it every 15min and then sends the
data via the power line (known as PLC for power line communications)
to where it will be processed. This information reaches a data
concentrator, installed close to the distribution transformer, which in
turn transfers the information to the electric company via the internet.
The smart meter allows the electric company to monitor and process
electricity consumption, monitor failures and bill the customers much
more accurately than human reading. The energy supplier needs the
relevant meter readings, which in many occasions it cannot read directly
from the meter (Zheng et al., 2013; Van Aubel and Poll, 2019).

2.7.1 Demand side evolution and its role in the
energy homeostasis model

The demand evolution being considered in the model is obtained
from a pilot plan supported by ENEL which consists on the installation
of 100 residential smart meters in Huechuraba, a suburb of the city of
Santiago, Chile which presents large and growing residential and
commercial urban communities since 2018.

Figure 3 below illustrates the demand curves and the monthly
consumption of the sustainable block™, corresponding to 60
residential customers. In (a) we have the aggregate demand curve
throughout the day and in (b) we have the monthly energy
consumption throughout the year.

2.8 The role of energy storage systems (ESS)
and its relation with energy sustainability in
the context of the energy homeostasis
model

The role of the energy storage system is of great imperative in
order to achieve the energy sustainability objectives of the system.
Energy storage is essentially a buffer that acts as an energy

homeostasis enabler (Caballero et al., 2013; Yanine and Sauma,
2013; Yanine et al., 2014a; Yanine et al., 2017; Yanine et al., 2018a;
Yanine et al., 2018b; Yanine et al., 2020). Energy storage can provide
electricity in response to sudden changes or drops in electricity,
provide electricity frequency and voltage regulation, and defer or
avoid the need for costly investments in transmission and
distribution to reduce congestion and also allows the residents to
consume cheaper energy during peak hourly demand, especially
when the electric tariff is higher during winter months than in spring
and summer months. Energy storage also allows for peak shaving to
occur, as shown in Figure 4, making possible for the community
residents to reduce their power consumption (“load shedding”)
quickly and for a short period of time to avoid a spike in
consumption and higher costs. This is made possible in part by
the on-site power generation system, namely the microgrid, but also,
and more importantly, by relying on the energy storage system.

Energy storage also provides flexibility to the system and is a key
supporting tool for renewable energy integration in the electric
power distribution sector (Tejada-Arango et al., 2019; Zsiborács
et al., 2019). It can balance centralized and distributed electricity
generation, while also contributing to energy security. Energy
storage can also provide a complement to grid supply, supporting
the integration of higher shares of variable renewable energy in
electric transportation services such as buses and subway, buildings
or industry (Tejada-Arango et al., 2019; Zsiborács et al., 2019).

Lithium-ion batteries provide 100% of their rated capacity,
regardless of the rate of discharge. Lead-acid batteries, on the
other hand, are less efficient but cheaper, and typically provide
less usable energy with higher rates of discharge. They are usually
limited to 50% of the rated capacity to prevent diminished lifespan
(Tejada-Arango et al., 2019; Zsiborács et al., 2019). Below in Table 3
there is a comparison between the two types. Notice the difference of
cycle life between the two. While the lead-acid battery can reach a
maximum of 1,200 cycles at 50% DOD, the lithium-ion battery can
reach 1900 cycles at 80% depth of discharge (DOD).

2.9 Electric tariffs’ considerations when
implementing DGS in the residential sector

An important element to consider in homeostasis-based
supervisory control is the rate or tariff regulation being applied by
the electric company operating the distribution of electricity, which
normally takes into account the fact that the energy demand is
differentiated per hour. Therefore, ‘peak hours’ of electricity demand
are considered between 6 p.m. and 11 p.m. from the first of April to the
30th of September, as defined in the Chilean regulation law. The
BT2 and AT2 tariffs are purchased power, on the other hand,
BT3 and AT3 rates are maximum demand registered. In our model
we applied the above rates considering electric consumption during off-
peak and on peak hours and according to the following criteria.

a) When the purchased power or the maximum energy demand
registered is being used during peak hours, regardless whether
said power or energy is or is not used in other hours of the
year, the consumption will be qualified as “present on peak” and
the corresponding unit price will be applied. It is understood that the
purchased power or the maximum energy demand registered is

TABLE 3 Comparison table between lead-acid vs. lithium-ion batteries.

Lead acid Lithium-ion

Energy Density (Wh/L) 100 250

Specific Energy (Wh/kg) 40 150

Initial Cost ($/kWh) 120 600

Cycle life 1,200 at 50% DOD 1,900 at 80% DOD

Typical SOC window 50% 80%

Duration 20 years 20 years

Voltage increment 2 3.7 V

TABLE 4 Electricity tariffs according to Chilean electricity law and their
characteristics. Source: https://www.cne.cl/tarificacion/electrica/.

BT4.1 AT4.1 BT4.2 AT4.2 BT4.3 AT4.3

Energy Measure Measure Measure

Power at Peak Hours contracted Measure Measure

Power at off-Peak Hours contracted contracted Measure

Frontiers in Energy Efficiency frontiersin.org10

Yanine et al. 10.3389/fenef.2023.1258384

182

https://www.cne.cl/tarificacion/electrica/
https://www.frontiersin.org/journals/energy-efficiency
https://www.frontiersin.org
https://doi.org/10.3389/fenef.2023.1258384


being used during peak hours, when the quotient between the
average demand of the customer in peak hours and its purchased
power (for BT2 and AT2), or its maximum registered demand (for
BT3 and AT3), is greater or equal to 0.5 (ENEL Distribucion, 2023).

b) When the purchased power or the maximum registered energy
demand is being used partially during peak hours, regardless of
whether power or energy is or is not used during other hours of the
year, the consumption will be considered as “partially present in
peak”, and hence the corresponding price will be applied. It is
understood that the purchased power or the maximum registered
demand is being used partially during peak hours, when the
quotient between the average demand of the customer during
those hours and the purchased power (in case of BT2 and AT2),
or its maximum registered demand (in case of BT3 and AT3), is less
than 0.5. This allows the system to distinguish one particular
consumption behavior from another and reflect the pricing and
incentives accordingly as discussed in sections 2.5 and 2.6 (ENEL
Distribucion, 2023).

However, should it occur that in the period of 60 consecutive
minutes during peak hours, the quotient between the average power
used by the customer and its purchased power (in case of BT2 and
AT2), or its maximum registered demand (in case of BT3 and AT3),
exceeds 0.85 and this fact is not an isolated event but occurs
frequently, electric consumption will be classified as “present in
peak”. Hence, monthly charges for maximum demand purchased
during peak hours and maximum demand purchased of the
BT4.1 tariff, as well as the monthly charge for the maximum
purchased demand from tariff BT4.2 will be charged even if the
power consumption is zero. They will be obtained by multiplying the
kW reading of purchased power by the corresponding unit price
(ENEL Distribucion, 2023).

The monthly charges for the maximum power demand
registered by the system during peak hours with tariffs
BT4.2 and BT4.3 will be charged as follows.

○ During the months where peak hourly demand is registered (on-
peak hours), it will be applied to the maximum power demand
effectively registered during peak hours in each month at the
price set by the electric tariff.

○ During the months which do not register peak hours, it will be
applied the corresponding unit price to the average of the two
highest peak demands during peak hours for the peak period
months.

Below in Table 4 we have electricity tariffs according to the
Chilean electricity law and their characteristics. The monthly
charge for maximum power demand supplied from the
BT4.3 tariff will be charged to customers, and this charge will
be calculated taking the average reading of the two highest
maximum power consumption registered during the last 12-
month period, including the month when the billing was
issued, with the corresponding unit price. Details of different
charges and their corresponding prices according to the supply
rate electric can be found in (ENEL Distribucion, 2023). For the
operation conditions exposed in this work and since it seeks to
modify the consumption pattern towards a more efficient use of
energy, and thereby receive economic benefits, the chosen tariff
to be used in the microgrid is an Hourly dependent. These types
of electric tariffs are the ones with the lowest price for energy and
provide the necessary flexibility towards an economically
efficient operation yielding maximum profit, while the control
model ensures stability and service quality as required by the
electric company’s legal regulatory framework. Thus, the chosen
hourly rate will be option 3 (AT-4.3 or BT-4.3) (ENEL
Distribucion, 2023).

The above table, taken from the National Energy
Commission website (Comision Nacional de Energia) of Chile
shows the three possible tariff alternatives for electric company
customers. The difference between the BT and AT rates is in the
voltage supply. The AT4.3 and BT4.3 tariffs are usually used by

FIGURE 4
The graph depicts the so-called peak shaving, where energy storage helps flatten the demand curve, discharging during peak hourly demand and
charging during off-peak hours.
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customers who have the possibility of reducing their demanded
power during peak hours, hence are more flexible.

3 The system’s logical architecture for
the grid-tied microgrid

Below on Figure 5 is the logical architecture of the microgrid
system developed to operate connected to grid with energy storage,
to supply a community of 60 apartments, aiming to reduce the
electric supply costs while providing incentives for customers willing
to shift habits towards a more efficient, more sustainable energy
consumption while enjoying green electricity supply from
distributed generation from the electric company.

In the diagram above in Figure 5 depicts the power in the
batteries PBatt and Pbt which are modeled to represent the efficiency
of the batteries upon charging ηc and discharging ηd cycles, and the
corresponding charging and discharging processes of the batteries
operate as shown in (2).

PBatt �
Pbt

ηd
Pbt < 0;Discharge

Pbt ηcPbt > 0; ;Charge

⎧⎪⎪⎨⎪⎪⎩ (2)

Likewise, each of the component’s specifications utilized in the
microgrid is summarized below in Table 5.

3.1 The energy homeostasis model behind
the control strategy

The energy homeostasis model is what inspired the control
strategy applied in this case model. Unlike common control
methods, this model encompasses both the grid and the energy
consumers as key pillars of the sustainable block™ where each
resident can act as a prosumer, not just as a regular, passive
consumer of electricity. This behavior can lead to mutual
economic benefits for the consumers as well as for the electric
utility and is what in previous work has been characterized as
sustainable loads (Yanine et al., 2019; Yanine et al., 2020), or
active loads, as opposed to passive loads that have no interaction
with the network (Yanine et al., 2020). The aim behind this strategy
is for the system to be able to self-regulate and adjust to a more
sustainable energy consumption habit as a whole community,
whenever distributed generation systems, operated by the local
electric company and supplying limited renewable generation are
present.

The diagram in Figure 6 represents the model’s homeostatic
control strategy. The control algorithm begins by measuring of the
photovoltaic (PV) power generated and the energy demand of each
apartment. Then, calculates the total power demanded by the
community Dt and also sets the demand limits for the
community Xupper, so as to keep consumption within the
sustainable range considering the renewable generation and
supply limitations of the system. The limits will also depend on
the hour of the day (low or high demand). The first condition to be
evaluated is given by (3) (Yanine et al., 2018a).

FIGURE 5
The microgrid’s logical architecture diagram.

TABLE 5 Components’ specification for the microgrid.

Component Specification

Solar photovoltaic array 41.6 kWp

Inverter DC/AC 42 kW

Batteries 0–50–100–150 kWh
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Dt ≤X uppert (3)
As depicted above, if the total electric power demand is less than

the demand limit set for the community of residents with the
distributed generation supply, all of the photovoltaic (PV) energy
generated by the microgrid will be assigned to charge the batteries.

The battery charge algorithm depicted in Figure 7 below takes
into account the battery’s technical constraints, such as maximum
current or the state-of-charge (SOC).

The photovoltaic energy that is not being able to be absorbed by
the batteries because they are fully charged, is readily consumed by
the residents and the surplus (if there is any) is injected into the grid,
taking advantage of the existing Net Billing law (Energypedia, 2015).
On the other hand, if condition (3) is not met, the control system
proceeds to evaluate condition (4), and if this condition is met,
battery is charged by the remaining power (Yanine et al., 2018a).

Dt − PPVt ≤Xuppert (4)

Otherwise, if condition set by (4) is not met, the battery will be
discharged in order to satisfy the restriction of maintaining the
demand of the community in the limit Xuppert. Before discharging
the battery, the algorithm makes sure that all customers are

FIGURE 6
Homeostatic control strategy diagram depicting electric power supply to the building’s residents considering an hourly tariff (Yanine et al., 2018a).

FIGURE 7
The battery charge module algorithm.
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demanding less than or equal to the maximum allowable demand
per customer. In case this condition is not satisfied, alarms will be
generated and the controllable loads of the customer who is not
complying will be disconnected, leaving him/her with the grid-only
option (Yanine et al., 2019; Yanine et al., 2020).

Dt − PPVt − P̂batt * ηd ≤Xuppert (5)

The expression in (5) has total (aggregate) demand of the
community minus the power generated by the solar photovoltaic
array minus the product of the power stored in the batteries
multiplied by the discharging efficiency coefficient ηd check if
discharging the battery to the maximum allowed capacity by the
controller is sufficient to maintain the Xuppert demand limit. If true,
the power to be extracted from the battery is given by,

Pbt � Xuppert + PPVt −Dt (6)

During this period, the power demand from the network Pgridt will
be equal to Xuppert. Should the power available to the community’s
aggregate (total) demand Dt not be enough while operating within the
boundaries set by the control system in order tomaintain power limit of
the community, the controller should generate alarms and disconnect
specific loads from the residents, starting with non-critical ones. For
each load that is disconnected, the expression in (4) is evaluated and the
process is repeated over again until the maximum power set by the
controller is achieved. Therefore, by changing the parameters of its
internal structure (battery discharge and demand), the algorithm is able
to control the energy flow and reach an efficient and sustainable
operating point where all system limits are satisfied, as part of the
reactive homeostasis (RH) component of the energy homeostasis
control model (Yanine et al., 2019; Yanine et al., 2020).

In order to bound the power to its established limit point and
thus avoid disconnections, the battery must be charged at its
maximum capacity before entering peak hours. This procedure is
hard to achieve since the energy provided by the PV plant depends
directly on weather conditions. An alternative strategy is to

introduce an Artificial Neural Networks algorithm that can
predict the energy generated by the photovoltaic plant from a
given moment until before entering peak hours (Yanine et al.,
2019; Yanine et al., 2020). Above in Figure 7, the algorithm
diagram shows the logic behind the operation of the battery
charge module of the homeostatic control system.

Ebat t( ) + EPVpred
t: tfinNP( )≤EbatMax (7)

On the other hand, if condition (7) is true, the battery will be
fully charged. If otherwise, energy is absorbed from the network to
satisfy the limit imposed by the controller (Yanine et al., 2019;
Yanine et al., 2020). Renewable energy is produced in limited
quantities and its production is affected by intermittence; thus,
certain conditions should be imposed to provide cheap energy to
consumers while supporting the grid, with a consequent reduction
of their electricity bills and carbon footprint (Yanine et al., 2019;
Yanine et al., 2020). Figure 8 depicts the transaction module which is
in charge for assigning the energy quota for each customer based on
the available supply in the system and calculate the energy flow
among customers and the grid. In order to accomplish the above
mention procedure, criteria A and B could be chosen (Yanine et al.,
2019; Yanine et al., 2020).

Criterion A: Customers share the Nth part of generated
renewable energy, where each customer owns one Nth part of
the renewable energy produced by the microgrid (Yanine et al.,
2019; Yanine et al., 2020).

The transaction module begins by discriminating between s with
energy in excess or the deficit in energy in the system, by using
condition (8) (Yanine et al., 2019; Yanine et al., 2020). Figure 8 below
depicts renewable energy supply and consumption management
under equitable criteria.

FIGURE 8
Flow diagram depicting renewable energy supply and
consumption management under equitable criteria.

FIGURE 9
Flow diagram depicting renewable energy supply to customers
inspired by an energy sustainability strategy based on energy
homeostasis.
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dit ≤
PPVt − Pbt

N
(8)

The customer i that satisfies condition 8) has excess energy,
expressed by (9), and can make it available to customers with energy
deficit or sell it directly to the network, as convenient (Yanine et al.,
2019; Yanine et al., 2020).

PSellit ≤
PPVt − Pbt

N
− dit (9)

All of the excess energy available in the system, PSelli, is given by
(10). Part of this excess energy that is available will be used tomeet the
requirements of those residents that show an energy deficit, and this
portion of available energy to meet other residents’ needs is
represented by PPoolt on Eq. (12), whereas the rest will be injected
into the grid, as denoted byPinGridt. The energymade available by each
customer, as prosumers by means of an efficient and sustainable
energy consumption will be identified defining a factor αit according
to Eq. (11) (Yanine et al., 2019; Yanine et al., 2020).

αit � PSellit

PSellt

(11)

Then the energy supplied to customers with energy deficit and
injected into the grid by the customers with excess i will be given by
(12) and (13), respectively (Yanine et al., 2019; Yanine et al., 2020).

PPoolt � PSellt − PinGridt (12)
PPoolit � αit · PPoolt (13)

PinGridit � αit · PinGridt (14)
If the condition in (8) is not met, this means that there is a

resident with energy deficit. Hence, this resident must use energy
from the grid Pgridt and/or from the excess energy made available by
other residents from the pool of renewable energy PPoolt. The
procedure that describes the energy flow under this condition, is
depicted in the flow diagram of Figure 8 to supply renewable energy
under an equitable criterion (Yanine et al., 2019; Yanine et al., 2020).

Criterion B: There is substantial renewable energy supply
available, based on customer merit.

The flow diagram shown in Figure 9 represents the logic behind
the energy sustainability strategy based on energy homeostasis. The
strategy calls for community residents to maintain an efficient,
sustainable electricity consumption so as to make the renewable
energy supply from the microgrid plentiful. This strategy requires
residents to be willing to change such power consuming tasks as
laundry, dishwashing machines, vacuum cleaner, etc., To those
hourly periods when there is more energy available in the system
and electric tariff is on off-peak hours.

The condition in (15) checks for available energy in the system
considering the power generation from themicrogrid and the energy
that is available in the energy storage unit (batteries). If condition in
(15) is satisfied, all residents may receive the energy supply available
in the system from the microgrid and the batteries so as to meet their
consumption. The surplus energy generated by the system is injected
to the grid and customers will receive an equal economic benefit
(prorated) for that contribution (Yanine et al., 2020).

PPVt + Pbt ≥Dt (15)

If condition (15) is not met, this means that the energy available in
the system is not enough to satisfy the residents’ aggregate demand. In
this case, those that consume less or whose demand is low compared
to others whose demand is higher, may benefit as explained earlier, by
allowing their unused energy quota to be available to those in need of
more energy and thus be rewarded for it. This is especially relevant for
those residents that exhibit a low energy consumption during peak
hours (Yanine et al., 2019; Yanine et al., 2020).

The algorithm’s control module managing peak hours’ demand
is in charge of discerning about each resident’s consumption profile,
thus identifying those that exhibit a thrifty consumption or simply
consume less from those that consume more energy and exhibit a
higher need for power. It does this by discriminating according to
their energy consumption from lowest to highest. The first m
customers will have the right to receive energy from the
microgrid in proportion to their consumption behavior, as
indicated in (16) (Yanine et al., 2019; Yanine et al., 2020).

Pgridit � dit − dit

Sum
· PPVt + Pbt( ) (16)

In expression (16) the grid power supply is equal to the demand of
each resident dit minus the same demand divided by the value of Sum
which corresponds to the sum of the consumptions of the first m
customers. This expression depicts the prioritization that those
residents with a thriftier consumption have over those residents
that consume more or are more intensive in power demand,
especially during peak hourly periods. As seen in (16) the available
energy is represented by PPVt + Pbt The remainingN −m customers
must satisfy 100% of their energy consumption from the grid.
Customers who are allowed to receive energy from the microgrid
at peak hours will increase an index termed "homeostatic index (Hi)"
(Yanine et al., 2018a). This index will be used to distribute the
renewable energy available during non-peak hours the next day. In
addition, customers will be ranked from higher to lower according to
the homeostatic index’s valueHi, so the firstm customers with higher
Hi will obtain energy from the microgrid (Yanine et al., 2018a; Yanine
et al., 2019; Yanine et al., 2020).

Due to the high cost of electricity during peak hours demand, the
control system strategy seeks to encourage residents to consume
more during off-peak hours, especially by transferring their power
consumption needs to off peak hours. In order achieve this, the cost
of the electricity supply is transferred to the residents by means of an
internal rate that is applied upon differentiating between those
residents whose demand is low from those whose demand is
high. Figure 10 bellow illustrate the application of this internal
tariff, which will be based on the monomic energy price which
consists of a single equivalent price per kWh consumed. The
monomic price that considers charging the customer per both,
the energy and the power consumption (Yanine et al., 2019;
Yanine et al., 2020).

Cmp monthp( ) �
∑
t∈hp

Pgridt · Δt · Ce +MDhp · Cp

∑
t∈hp

Pgridt · Δt
(17)

Cmop monthp( ) �
∑

t∈hop
Pgridt · Δt · Ce + Pmaxt · Cop

∑
t∈hop

Pgridt · Δt
(18)
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Cmop � Cmp monthop( )
�

∑
t∈month

Pgridt · Δt · Ce + Pmaxt · Cop + Pmaxpt · Cp

∑
t∈month

Pgridt · Δt
(19)

The monomic price, which is depicted in expressions (17), (18) and
(19) is to be used to compute electric consumption billing during peak
hours and off-peak hours, respectively. The monomic price for peak
hours (Cmp) is calculated on the basis of the energy consumed and the
maximum demand registered per resident, both during peak hours. On
the other hand, the monomic price during off peak hours is computed in
similar way, but consideringmonomic prices that are calculatedmonthly,
together with the billing cycle. During the months that do not contain
peakhours (October toMarch), themonomic cost for peak andnon-peak
periods are the same and the billing calculation is done according to
Equation 19 (Yanine et al., 2019; Yanine et al., 2020).

After 1 year of evaluation (t � 35040,Δt � 15min), the monthly
and annual costs are calculated for each resident and for the entire
community as a whole, according to the equations shown in (20)
through (24) (prices are shown in (Yanine et al., 2019)).

CSBmonthop
� ∑

t∈Month

Pgridt · Δt · Ce + Pmaxm

m ∈ monthp
· Cp + Pmax t · Cop

+ Cfix

(20)
CSBmonthop

� ∑
t∈Month

Pgridt · Δt · Ce + Pmax Pt · Cp + Pmax t · Cop + Cfix

(21)

CBSyear � ∑12
Month�1

CSBMonth
(22)

CiMonth
� ∑

t∈Month

PGridit · Cmt + PPoolit · CPool − PinGridit · CinGrid

⎧⎨⎩ ⎫⎬⎭ · Δt

+ Cfix

(23)

Ciyear � ∑12
Month�1

CiMonth
(24)

We ran the simulation for up to 20 years’ time which
corresponds to the photovoltaic panels’ lifetime, wherein a
loss of efficiency per year is expected in the photovoltaic
panels as established by the original equipment manufacturer
(OEM) that is equal to 0.6% which goes along with a linear
reduction of battery capacity, which is also considered, so that the
final battery capacity is 80%. The depth of discharge of the battery
is adjusted so that no intermediate replacements occur (Yanine
et al., 2020).

3.2 Simulation results: The separate
customers’ case

Customers are free to choose between different electric rates
in the corresponding voltage level. Among the rates offered by the
local electricity company, described in a previous section, only
BT-1 tariffs and THR are competitive for levels and consumption
characteristics of individual customers. In this scenario the
option of incorporating a microgrid with a photovoltaic array
upon the roof of the building with an energy storage system is a
good option in terms of distributed generation alternative due to
its reliability and cost effectiveness. As illustrated in Figure 11,
the smart meter of each resident will register the apartment’s
electricity consumption but it will not discriminate whether the
electricity is supplied by the grid or by the microgrid, unless the
proposed energy homeostasis-based control system of the
microgrid in the work presented here is implemented through
an interface connection operated by the electric company so as to
enable the smart meter to differentiate one type of supply from
the other (Yanine et al., 2020).

4 Overall simulation results and
discussion

Upon confirming the simulation results, we are able to
effectively validate the homeostatic control model, and upon
looking at the graphs we can ascertain that the energy

FIGURE 10
Internal rate for the community of 60 residents. The red square block shows the hourly block between 18:00 h (6 p.m.) and 23:00 h (11 p.m.) during
which peak hourly demand occurs.
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homeostasis strategy utilized to manage the available energy supply
for the community of residents yields the expected benefits, as
opposed to not having the distributed generation alternative but
just the grid-only option (Yanine et al., 2020).

Figure 12 below shows the power flow of the microgrid simulated
without the energy storage option so as to corroborate the distinct
benefits of having this resource available. In this case, what the
microgrid cannot supply is supplied by the grid and therefore, the
grid is modeled here as an infinite bus. As we can see from the
figure’s interpretation, the key period, where much of the demand
takes place is between 9 a.m. and 4 PM. The period between 10 a.m.
and 2 p.m. is where the energy storage should operate at full
capacity, supplying its stored energy, but in this case, it is absent, so
the yellow line is flat. In the same period, we can also see that the
photovoltaic (PV) power generation is at its maximum, and the
hump reaches its peak between 12 p.m. and 1 PM. Therefore,
during this period of time the grid is absorbing whatever excess
power being produced by the grid-tied microgrid. However, later
in the day, at around 6 p.m., the power demand intensifies

significantly, with the maximum demand period being between
7 p.m. and 10 p.m., and begins to gradually decrease from there
onward. During that period the microgrid’s production without
energy storage is simply not enough to account for the full demand,
so the grid comes in to assist and it supplies the rest. Likewise, the
aggregate demand (red line) rises between 8 a.m. and 6 p.m. as
expected, and this can be seen represented by the yellow straight
line that represents the period.

Figure 13, on the other hand, depicts the power flow with the
energy storage system operating as part of the microgrid. The
homeostatic control system is always prioritizing to charge the
batteries (the energy storage system) and, upon reaching the
maximum power demand limit in peak hours, the batteries may
discharge if required, a process known as load shedding or peak
shaving. The controller adjusts the demand limit at peak hours
considering the capacity and maximum power delivered by the
battery bank. The batteries are also expected be charged (if so
needed) by the grid supply when the electric tariff is low (Yanine
et al., 2020).

FIGURE 11
Energy flow and smart metering for separate customers.

FIGURE 12
the power flow of the microgrid simulated without the energy storage option and depicting the hourly tariff.
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The practice of load shedding or peak shaving is a strategy very
commonly used for avoiding peak demand charges during those
hourly periods when electricity tariff is higher accounting for high or
peak demand from the electrical grid supply, as is the case illustrated
here, and very especially during winter season due to electric heating
and hot water pumps operation. This is done by quickly reducing
power consumption during intervals of high demand. Energy
storage such as on-site energy storage systems depicted here is
especially helpful and cost-effective during higher demand periods
so as to reduce overall cost associated with residential and
commercial electricity consumption.

Again, we see here that the high demand period between 8 a.m.
and 10 a.m., we have the batteries operating and supplying power as

needed, while the microgrids’ full production is on. Grid power
reaches a peak in demand right around 9 a.m., and then starts
decreasing since the microgrid with energy storage is operating at
maximum capacity. The batteries are usually being charged
during 2 p.m. and 5 p.m. which is a period of low electricity
demand for the community. However, at 6 p.m. demand starts
rising and the high demand period is between 7 p.m. and 10 PM.
The red line represents the aggregate demand, and we can see that
between 12 p.m. and 2 p.m. is a period where we see power being
absorbed by the grid, which means that there is excess power being
produced so it can be injected to the grid. Like in Figure 12, during
the period when the microgrid’s production with energy storage is
not enough to account for the full electric power demand
(between 7 p.m. and 10 p.m.), the grid comes in to assist and
supply the rest.

The batteries’ state of health depends heavily on the operating
conditions, provided that the installation was done properly.
Overload, temperature range, intensity and charging cycling are
all aspects to be considered. Batteries are used essentially for peak
shaving and a solar power plant, as is the case of our grid-tied
microgrid. It is highly beneficial to install both, an adequate solar PV
capacity and on-site energy storage to ensure that the community
can enjoy the highest utility bill savings possible. Thus, during the
day, the homeostatic control system charges the on-site batteries
with solar energy from the PV panels and batteries may also be
charged by the grid supply when electric tariff is low (off-peak
hours). Hence, we are still technically saving money, and when we
need to power the community, we can use whichever electricity
source is cheapest at that precise moment in time–whether it is from
the photovoltaic (PV) panels’ supply during the day or from the
stored solar power (in the batteries) in the evening or during “peak”
hours, which in this case is between 7 p.m. and 10 p.m. The only time
that the microgrid needs to draw electricity directly from the grid is
when PV panels are not operating because of the absence of sunlight
and when the batteries are completely empty.

FIGURE 13
the power flow with the energy storage present as part of the microgrid and hourly tariff depiction.

FIGURE 14
First year’smonthly depth of discharge (DOD) of the battery bank,
showing the months of higher electricity consumption during winter
season (April through the end of August).
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One of the main factors to consider in order to extend the
lifetime of the batteries is the Depth of Discharge (DOD) result of
the operation cycles. The depth of discharge complements the state
of charge (SoC) in the sense that as the depth of discharge increases,
the State of Charge decreases. There is a direct relation between the
depth of discharge and the cycle life of the batteries (Tejada-Arango
et al., 2019; Zsiborács et al., 2019). As shown in Figure 14, batteries
are only discharged to do peak shaving, as explained before, when
the demand for power is high, during peak months (April through
the end of August in Chile); out of this period, the battery bank is in
floating state and ready for backup whenever the (grid) main
network is not available for whatever reason.

Finally, as a side note, two types of batteries were evaluated for
simulation purposes, the traditional Acid-Lead batteries and the
Lithium-ion battery. In both cases, technical operating limitations
were considered. Keeping the batteries between 40% and 80%
ensures that they have a longer lifespan. Particularly in the case of
lithium-ion batteries they are stressed the most during the top and
bottom 20% of their charging range; and the closer to 100% or to 0%we
get, the greater the stress on the batteries. That is why keeping charging
up to 80% maximum is much healthier, and never letting it drop
(discharge) below 20%. The control systemwill stop charging at around
80%, more or less, and start recharging at around 20%, so as to keep
batteries from aging age rapidly, and last longer, compared to routine
full charges (Tejada-Arango et al., 2019; Zsiborács et al., 2019). Hence,
we can see in Figure 14 that in the months of June and July, is when the
greater use of the batteries is required, as in 75% of the cases the DODs
are lower than 40%. This strategy is used to extend the lifetime of the
storage devices as much as possible.

5 Conclusion

Urban energy system modeling is an important area of research
towards advancing distributed generation and energy sustainability. In
this paper we have proposed an energy homeostasis model to ENEL
Chile as a proof of concept for a real scale prototype that is to be
implemented hopefully in 2024 with ENEL’s collaboration. The model
envisions a smart microgrid tied to ENEL’s distribution grid and
operating on a residential building as part of distributed generation
agenda being considered moving forward. As shown in this example,
for off-peak demand in the spring and summer months, a flat tariff is
applied where the price for energy is constant throughout the day.
Because of the fact that the payment should be amortized by the
maximum power demand and by peak power demand, measured
during peak months, with the sale of energy to the grid during the
months of low power demand (where not only there is lower
consumption but also more photovoltaic (PV) energy is generated).

The energy cost during off-peak months is higher than in the
base case (tariff BT-1). Given that the battery bank is used to
decrease the demand for power, it is easy to amortize with the sale
of energy; hence the incorporation of batteries helps the internal rate
to be below the base case during off-peak hours. From the conditions
used to define the energy cost at peak and off-peak hours, it can be
observed that the tariff is self-regulated and allows to transfer the cost
to each individual customer and, at the same time, encourages the
efficient consumption of energy. Customers who decide to be more
flexible and efficient, exhibiting a thriftier use of electricity, are able to

transfer part of their consumption from peak hours to low demand
hours, which will cause a decrease in the energy cost in low demand
hours, due to the additional available energy. On the other hand, and
since there will be less energy to amortize the charge for themaximum
peak demand, the monomic cost of peak hour energy will increase.
Therefore, without an effective change in peak power demand, the
control system simply establishes that customers who exhibit an
inefficient and inflexible electricity consumption of the supply that
is made available by the microgrid, shall double-subsidize efficient
customers. Even more important is the fact that this tariff proposal
will allow customers to adapt and have incentives to change their
habits and be more efficient, which will trigger thereafter a sustained
reduction of the maximum demand in peak hours and with it, an
effective saving by the community of energy consumers as a whole.

A singular aspect of the homeostasis model proposed in this
work is the fact that customers, being considered as one single load
by the electricity company, create the need to establish internal rules
regarding the way to consume energy, to identify the diversity of
energy consumption habits in the community and how to transfer
the costs of operation and power supply to customers individually. A
simple way to do so, as demonstrated in the simulation, is to transfer
costs through an internal rate based on the monomic price for
energy differentiated during peak and non-peak hours, the latter
being considerably higher. This monomic price considers the cost
per kW of electric power that must be realized and self-regulates by
absorbing the dynamics represented by the external tariff and by the
customers, so that the costs of supplying the customers of the
microgrid are always unequivocally transferred while encouraging
the residents to consume more electricity during off-peak hours so
as to facilitate the operation of the control system and to reduce the
demand limit adjusted for peak hours in the future.
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Nomenclature

i Customera

N Number of customers of the sustainable block™

t elapsed time (in minutes)

Y year

Δt 15 min interval

dit customer i demands power (kW) during period t

Dt total power demanded by the sustainable block™ in period t

PPVt electric power generated by the microgrid in period t

ηt number of batteries connected

QBatt battery capacity in period t [kWh]

PBatt battery power charge/discharge process in period t at the DC side

Pbt battery power charge/discharge in period t at the AC side

EBatt electrical energy (in kWh) stored in the battery in period t

E max , E min maximum and minimum electrical energy in the battery

ηc , ηd efficiency rating of the charging and discharging of the battery

Pgridt electric power supplied by the distribution grid in period t

Pgridit electric power (kW) consumed by customer i in period t

PinGridt electric power injected to the grid in period t

PinGridit electric power injected to the grid by customer i in period t

Pmax t average reading of the two highest registered power demands in a 12-month period

Pmax Pt average of the two highest power demands during peak hour (6 p.m.–11 p.m.) registered in the winter period (April to September in Chile)

Ppoolt electric power being transferred among customers in period t

Ppoolit electric power supplied by customer i to another customer in period t

Cm monomic energy price [$/KWh]

CmP ,Cmop monomic energy price at peak and off-peak hours respectively [$/KWh]

Cp ,Cop peak and off-peak power demand cost [$/kW]

Cim cost to supply energy to customer i in month m in [$]

CiY annual cost to supply energy to customer i [$]

CSBm cost of energy supplied to the sustainable block™ in month m [$]

Ce cost of electric power supply from the grid [$/kWh]

CinGrid electric power sold back to the grid by the community [$/kW]

Cpool cost of the electrical energy exchange among customers [$/kWh]

MDph peak power demand per month during peak hours [kW]

MDoph peak power demand per month during off-peak hours [ kW]

monthp winter season’s month (from April to September)

monthop summer season’s month (from October to March)

hp hours of peak electricity consumption, from 6 p.m. to 11 p.m. in winter

hop off-peak electric consumption hours, from 11:01 p.m. to 5:59 p.m.

CBSA cost to supply energy to the sustainable block™ in year Y in [$]
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