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Editorial on the Research Topic

The impact of adipose tissue dysfunction on cardiovascular and renal
disease, Volume II
Obesity is a global health problem that affects millions of people and increases the risk

of various chronic diseases, such as cardiovascular disease (CVD) and chronic kidney

disease (CKD). Adipose tissue is a heterogeneous tissue that regulates metabolism,

inflammation and immunity. It also mediates the harmful effects of obesity on health.

The location and characteristics of adipose tissue determine its positive or negative impact

on different organs and systems (1). Excess adipose tissue mass has been traditionally

associated with metabolic dysfunction, but recent evidence suggests that adipose tissue

quality and distribution are more critical for metabolic health than quantity (2). In addition

to the well-known visceral and subcutaneous fat depots, other adipose tissues around blood

vessels, such as perivascular, perirenal and epicardial fat, have emerged as novel

contributors to CVD and CKD pathogenesis (3–5). These adipose tissues have unique

features and dysfunctions in obesity and metabolic syndrome that may cause vascular and

renal damage. However, the molecular mechanisms that mediate the communication

between these adipose tissues and the cardiovascular and renal systems are still unclear and

need further research. This Research Topic showcases a collection of 7 original research

and 4 review articles that span from basic to clinical research, providing new insights into

the pathophysiology of adipose dysfunction in CVD and CKD.

Obesity predisposes to various comorbidities. However, the risk of developing these

comorbidities differs among obese individuals, depending on fat distribution in different

body regions. Liu et al. examined the role of central fat distribution and comorbidity in

4899 obese participants from the NHANES database. They found that more than half had

at least one comorbidity, and that central fat distribution varied by sex and age. They also
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showed that higher android fat ratio, visceral fat ratio and visceral to

subcutaneous fat ratio were associated with increased risk of

comorbidity in both men and women, while higher gynoid fat

ratio and subcutaneous fat ratio were associated with decreased risk

of comorbidity. These results suggest that central fat distribution is

strongly related to comorbidity in obese individuals.

Perivascular adipose tissue (PVAT) is a fat tissue that wraps

around blood vessels and can produce various factors influencing

vascular tone, inflammation, and remodeling. One of the mechanisms

that may control PVAT function is mechanotransduction, which is

how cells sense and respond to mechanical forces. PIEZO1 is a

mechanosensitive ion channel protein found in various cell types,

including adipocytes. Rendon et al. found that pressure or stretch can

activate PIEZO1 in PVAT preadipocytes, affecting multiple cellular

processes, such as proliferation, differentiation, migration, and

metabolism. These data suggest that PIEZO1 activation in PVAT

reduces adipogenesis and lipogenesis andmay be an adaptive response

to hypertension.

Another fat depot that can modulate CVD is epicardial adipose

tissue (EAT), which surrounds the heart and can have both beneficial

and detrimental effects on cardiac function and metabolism. EAT can

exert cardioprotective and metabolic effects, but it can also induce

inflammation and metabolic dysfunction that exacerbate CVD. Li

et al. provided a comprehensive overview of the role of EAT in CVD

and discussed the methods for EAT quantification and the potential

strategies for EAT manipulation. A similar review by Willar et al.

summarized how aging and obesity increase EAT size and how EAT is

linked to atrial fibrillation and its complications. They proposed that

EATmay interact with the cardiac autonomic nervous system and the

atrial cardiomyocytes to modulate atrial electrophysiology and

arrhythmogenesis. In an original study, Gruzdeva et al. investigated

the association of adipocytokines in different fat depots with

cardiovascular risk factors in patients with coronary artery disease

or valve disease. They reported that low levels of ADIPOQ expression

and high levels of interleukin-6 in EAT may increase the risk of

atherosclerosis and CAD progression, especially in combination with

other risk factors. More research is needed to elucidate the

mechanisms and implications of EAT in CVD and to develop

effective interventions for EAT modulation.

CKD is another chronic disease that is associated with obesity-

related adverse events. Besides the adipose-CVD axis, Arabi et al.

provided a comprehensive update on the mechanisms and clinical

implications of the adipose-renal axis in CKD. They described how

obesity predisposes to CKD and how CKD alters adipose tissue

function and exacerbates insulin resistance, creating a feedback loop

between the kidney and the fat tissue. This highlights the role of

cellular senescence in both adipose tissue and CKD.

Upper-body subcutaneous fat is also a unique fat depot that

presents an extra risk for metabolic disorders, estimated by neck

circumference and neck-to-height ratio (NHR). He et al. reported

that patients with diabetic kidney disease (DKD) had higher neck

circumference and neck-to-height ratio (NHR) than those without

DKD. They also showed that higher NHR was related to lower

estimated glomerular filtration rate (eGFR) and higher albumin-to-

creatinine ratio. They concluded that NHR was a risk factor for
Frontiers in Endocrinology 026
DKD in this population and suggested that measuring NHR could

help identify patients at risk of DKD.

In addition to NHR, other indices that reflect obesity, such as

body mass index (BMI) and body roundness index (BRI), also have

implications for CKD outcomes, especially in kidney transplant

recipients. A cohort study conducted by Bellini et al. studied 396

kidney transplant recipients with different BMI classes and

followed them for about 6 years. They found that the recipient’s

BMI did not affect the patient’s survival, but it did affect graft

survival and function. They concluded that obesity was a risk factor

for graft failure and suggested that BMI should be considered when

selecting kidney transplant candidates. Similarly, BRI, which is a

measure of body roundness based on height and waist and hip

circumferences, also showed a negative impact on kidney function in

a large Chinese population. Zhang et al. conducted a cross-sectional

study of 36,784 Chinese adults aged over 40 years and measured their

BRI and eGFR. They reported that higher BRI was associated with low

eGFR and this association was stronger in subgroups of older people,

women, smokers, and those with diabetes or hypertension. They

concluded that BRI was a positive risk factor for kidney disease in

the Chinese population and recommended BRI as a screening tool to

identify kidney disease complications.

Another specific type of kidney disease that is influenced by

obesity is IgA nephropathy, which is characterized by the

accumulation of IgA antibodies in the kidney. Wang et al.

examined 1054 IgA nephropathy patients and compared their

outcomes according to their body weight status. They found that

obese IgA nephropathy patients had impaired kidney function,

more metabolic disturbances and unhealthy behaviors than non-

obese IgA nephropathy patients. They concluded that obesity is a

risk factor for IgA nephropathy patients when coexisting

with hypertension.

Obesity is also associated with increased inflammation, which

can worsen kidney damage and accelerate CKD progression. One of

the inflammatory mediators that has been implicated in CKD is

chemerin, a chemokine that initiates the early immune response. A

meta-analysis by Behnoush et al. compared chemerin levels

between CKD patients and healthy controls using 8 high-quality

studies with 875 participants. They reported that chemerin levels

were significantly higher in CKD patients, especially those on

hemodialysis, suggesting more inflammation. They inferred that

chemerin could be a potential biomarker for CKD and

recommended further research to investigate its clinical and

pathophysiological role in CKD.

Overall, the articles presented in this Research Topic highlight the

crucial role of various adipose tissue dysfunction in CVD and CKD

development and progression, and raise a timely question of whether

manipulating specific adipose tissue depotsmay offer a novel target for

more effective strategies to prevent and/or treat CVD and CKD.
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During hypertension, vascular remodeling allows the blood vessel to withstand

mechanical forces induced by high blood pressure (BP). This process is well

characterized in the media and intima layers of the vessel but not in the

perivascular adipose tissue (PVAT). In PVAT, there is evidence for fibrosis

development during hypertension; however, PVAT remodeling is poorly

understood. In non-PVAT depots, mechanical forces can affect adipogenesis

and lipogenic stages in preadipocytes. In tissues exposed to highmagnitudes of

pressure like bone, the activation of the mechanosensor PIEZO1 induces

differentiation of progenitor cells towards osteogenic lineages. PVAT’s

anatomical location continuously exposes it to forces generated by blood

flow that could affect adipogenesis in normotensive and hypertensive states. In

this study, we hypothesize that activation of PIEZO1 reduces adipogenesis in

PVAT preadipocytes. The hypothesis was tested using pharmacological and

mechanical activation of PIEZO1. Thoracic aorta PVAT (APVAT) was collected

from 10-wk old male SD rats (n=15) to harvest preadipocytes that were

differentiated to adipocytes in the presence of the PIEZO1 agonist Yoda1 (10

µM). Mechanical stretch was applied with the FlexCell System at 12%

elongation, half-sine at 1 Hz simultaneously during the 4 d of adipogenesis

(MS+, mechanical force applied; MS-, no mechanical force used). Yoda1

reduced adipogenesis by 33% compared with CON and, as expected,

increased cytoplasmic Ca2+ flux. MS+ reduced adipogenesis efficiency

compared with MS-. When Piezo1 expression was blocked with siRNA

[siPiezo1; NC=non-coding siRNA], the anti-adipogenic effect of Yoda1 was

reversed in siPiezo1 cells but not in NC; in contrast, siPiezo1 did not alter the

inhibitory effect of MS+ on adipogenesis. These data demonstrate that PIEZO1

activation in PVAT reduces adipogenesis and lipogenesis and provides initial

evidence for an adaptive response to excessive mechanical forces in PVAT

during hypertension.

KEYWORDS
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Introduction

The perivascular adipose tissue (PVAT) is an integral part of

blood vessels. As such, changes in its structure and function are

part of the pathogenesis of hypertension and other

cardiovascular diseases (1, 2). Like other adipose tissues (AT)

depots, PVAT is composed of adipocytes and a stromal vascular

fraction containing immune, vascular, endothelial, neural, and

stem cells of different lineages (3). PVAT is present in most

blood vessels except the brain (4–6). The importance of the

PVAT on vascular function is related in part to its capacity to

modulate the contractile function of the vasculature. In addition,

many of the vasoactive factors secreted by PVAT are adipokines

(e.g., adiponectin). Thus, maintaining a healthy population of

adipocytes is essential to support adequate vascular function.

PVATs are unique among AT depots as they are exposed to

continuous and synchronous mechanical forces exerted by blood

flow, including tensile stress and cyclic strain (reviewed by

Hayashi and Naiki (7)). During hypertension, as blood

pressure rises, these mechanical forces induce changes in the

physiology of cellular components of the vascular tunicas intima,

media, and adventitia. This process is known as vascular

remodeling and includes alterations such as cellular

hypertrophy and hyperplasia and collagen deposition in

different tunicas (8–10). The direct effects of this process on

the vasculature include reduced vessels’ elasticity and

compliance and increased stiffness (11, 12). For example, the

thoracic aorta in hypertensive patients has lower elasticity,

increased vascular thickness, and fibrosis of its anatomical

layers compared to normotensive patients (13, 14). The effects

of mechanical forces on the adipogenic and lipogenic capacity of

PVAT preadipocytes are currently unknown. However, there are

reports on cellular responses to mechanical stimuli in cell lines

and stromal vascular fraction (SVF)-derived preadipocytes

harvested from non-PVAT depots. In the 3T3-L1 fibroblast,

equibiaxial stretching above 9% promotes lipogenesis, but its

effects on adipogenesis are not described. In the human

adipogenic cell line SGBS, compressive force inhibits

adipogenesis by suppressing the expression of its master

regulator PPARg. Reports from primary cell lines are scarce

and do not include pharmacological and mechanical stimulation

of mechanoreceptors (15–17).

Recent studies demonstrate that adipocytes express

mechanoreceptors and, therefore, could sense mechanical

forces through these specialized proteins (18). Among these,

PIEZO1 is present in murine subcutaneous and visceral fats (18,

19) and aortic and mesenteric PVAT (20). This mechanosensor

is a transmembrane protein capable of transforming a physical

stimulus into a chemical signal. PIEZO1 is a non-selective Na+,

K+, and Ca+ permeable channel (21–26). This mechanoreceptor

is essential for regulating sensation, touch, and blood pressure

(27). PIEZO1 appears to play a role in the differentiation process

of resident progenitor cells such as neural stem cells and human
Frontiers in Endocrinology 02
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mesenchymal stem cells (28, 29). In visceral AT, Offermanns and

colleagues showed that during high-fat diet-induced adiposity,

the enlargement of lipid droplets in non-PVAT adipocytes

generates a stretch force that activates PIEZO1, indicating the

capacity of these cells to sense mechanical forces (18). However,

it is unknown if PVAT preadipocytes express Piezo1, how

PIEZO1 activation alters PVAT adipogenic and lipogenic

responses, and if PIEZO1 activity could be a mechanism

triggering PVAT remodeling during cardiovascular diseases.

This study evaluated the role of the mechanosensor PIEZO1

on PVAT adipogenic processes. We hypothesized that activation

of PIEZO1 in PVAT preadipocytes limits their adipogenic

capacity. We identified that PVAT preadipocytes express the

gene encoding and the protein PIEZO1. Pharmacological and

mechanical activation of PIEZO1 reduced adipogenesis

efficiency. Our data demonstrate that in PVAT, PIEZO1

activation regulates adipogenesis, possibly linking hypertension

with the loss of adipocyte PVAT populations.
Materials and methods

Animals

Male Sprague-Dawley rats of 8-10 weeks (Charles River

Laboratories, Inc., Portage, MI, RRID: SCR_003792) were

housed in a temperature-controlled room at 22°C, with 12:12-

h light-dark cycles and environmental enrichment using

standard cages. Animals were fed a regular chow diet with

distilled water ad libitum. All animal procedures were

approved by the MSU Institutional Animal Care and Use

Committee and followed the “Guide for the Care and Use of

Laboratory Animals,” 8th edition (30). Rats were anesthetized

with an intraperitoneal injection of 60-80 mg/kg of

pentobarbital. Deep anesthesia was verified by lack of paw

pinch and eye-blink reflexes, and death was assured

by pneumothorax.
Preadipocyte isolation and culture

The thoracic aorta, including its perivascular adipose tissue

(APVAT), was dissected and then immersed in Krebs-Ringer

Bicarbonate Buffer (KRBB) containing NaCl 135 mM; KCl 5

mM; MgSO4 1 mM; KH2PO4 0.4 mM; Glucose 5.5 mM; HEPES

20 mM (pH 7.4) (Teknova, Cat N° H1030) and supplemented

with 100 units/mL of penicillin; 100 µg/mL of streptomycin, 0.25

µg/mL of Amphotericin B and 50µg/mL of Gentamicin. PVAT

preadipocytes were isolated as previously described (5, 31). The

APVAT was separated from the thoracic aorta under a

dissection stereoscope, and ~50mg fragments were minced in

1-3 mm pieces and then digested for 1 h at 37°C in a rotisserie

incubator using 0.5mg/mL of Liberase™ TL (Roche diagnostics,
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Cat N° 5401020001) dissolved in Hanks’ balanced salt solution

supplemented with 4% BSA (Fisher, Cat N° BP9706-100) and 10

mM HEPES. Digested material was filtered through 70 µm cell

strainers (Corning, Cat N° 22363548) and then centrifuged at

37°C for 5 min at 300 x g to remove the buoyant cells

(adipocytes) from the stromal vascular fraction (SVF)

containing preadipocytes. Pellets were resuspended in RBC

lysis buffer 1X (Biolegend, Cat N° 420301), incubated at room

temperature for 5 min, and then centrifuged at 37°C for 5 min at

300 x g; pellets were resuspended in MesenPRO RS™

(ThermoFisher, Cat N° 12746012) with 2% Fetal Bovine

Serum (FBS) (Corning, Cat N° 35-016-CV) and plated in T25

flasks (Sigma, Cat N° SIAL0639) and cultured at 37°C with 5%

CO2. Cells were expanded as previously described using

preadipocyte medium (PAM) containing 10% FBS, Dulbecco’s

Modified Eagle’s Medium/F12, 44.05 mM sodium bicarbonate

(Corning, Cat N° 61-065-RO), 100 µmM ascorbic acid, (Sigma-

Aldrich, Cat N° A4544-100G), 33 µM biotin (Sigma-Aldrich,

B4501-1G), 17 µM pantothenate (Sigma-Aldrich, Cat N° P5155-

100G), 1% L-glutamine (Gibco, Cat N° 25030-081), 1 µg/mL

amphotericin (Sigma-Aldrich, Cat N° A-2942) 10 µg/mL

ampicillin (Sigma-Aldrich, Cat N° A0166-5G) and 20mM

HEPES with replacement every 2 days (32).
Immunohistochemistry

To assess the expression of PIEZO1, preadipocytes and

tissue sections were processed for immunohistochemistry as

described with some modifications (5). First, preadipocytes

cells were seeded on Ibidi µ-slide 8 well (Ibidi GmbH, Cat N°

80822) and incubated overnight to allow cell adherence; after

washing with PBS were fixed with 4% of paraformaldehyde in

PBS. On the other hand, tissue sections from the thoracic aorta

that included PVAT were harvested, kidney samples were used

as a positive control for PIEZO1 expression. Tissues were fixed

in 4% formalin, embedded in paraffin, and then sectioned into

4–5 mm by the Michigan State University Investigative

Histopathology Laboratory. Slides with tissues and cells were

incubated in a species-specific serum (1.5% goat serum in PBS-

TX; Vector Laboratories, Burlingame, Canada) and then

incubated overnight with PIEZO1 primary antibody (1:600,

Alomone, Cat N° APC-087, RRID : AB_2756743). The next

day, samples were washed with PBS and incubated with

AlexaFluor 488 goat anti Rabbit (ThermoFisher, Cat N°

A11008, RRID: AB_143165) for 30 mins at room temperature.

A second wash was performed, and cells were counterstained

with VectaShield® HardSet™ with DAPI (Vector Laboratories,

Cat N° H-1500-10). Images were captured with a Nikon Digital

Sight DS-Qil camera in a Nikon Eclipse Ti inverted microscope

at an x20 magnification with a Lumencore LED light source and

Nikon NIS Elements BR 3.00 software. Each photograph is a

combination of DAPI (Nuclei marker) and FITC (PIEZO1)
Frontiers in Endocrinology 03
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channels and standardized for true fluorescence based on

the control FITC for that specific tissue section that was

then embedded into the image and carried through all

image analysis.
Adipogenesis experiments

Preadipocytes were seeded in six well-plates and induced to

differentiate into adipocytes in standard adipogenic media alone,

as previously described by our group (31), in the presence of the

PIEZO1 agonist Yoda1 10 µM (Tocris, Cat N° 5586), a

concentration reported in different cell types (18, 29, 33–36).

Adipogenesis was evaluated using Bodipy 493/503

(ThermoFisher Cat N° D3922), a neutral lipid staining, and

the nuclear stain NucSpot® Live 650 (Biotium, Cat N° 40082)

and reported as Bodipy fluorescence intensity/nuclei count using

long-term live-cell imaging IncuCyte® S3 system. Cultured cells

were imaged every 6 hours during 4 days in culture.

Quantification of cell images after 4 days was performed using

IncuCyte ZOOM™ software.
Viability and apoptosis assay

Viability and apoptosis assays were performed according to

the manufacturer’s specifications. Briefly, viability was

determined in preadipocytes exposed to 10 µM Yoda1 (Tocris,

Cat N° 5586) in adipogenic media for 4 days. Negative control of

dead cells was made with 0.1% of saponin (Alfa Aesar, Cat N°

J63209) in 1X PBS for 10 mins before collection time, all

conditions were incubated at room temperature with Calcein

AM (Biotium, Cat N° 30002) during 45 mins. Fluorescence was

measured in a microplate reader (BioTek, Synergy H1M).

Apoptosis was calculated detecting Caspase 3/7 activity

(Biotium, Cat N° 10403), preadipocytes were exposed to

different concentrations of Yoda1 during 4 days of adipogenic

induction, and with 0.2 µg/mL of Doxorubicin HCl (TCI, Cat N°

D4193) used as a positive control of apoptosis, fluorescence is

reported as relative fluorescence units (RFU).
RNA isolation and purification

RNA was extracted using the Maxwell® RSC simplyRNA

cells kit (AS1390, Promega, Madison, WI) as reported previously

(32). Cultured cells were homogenized in 1-Thioglycerol/

Homogenization Solution (Maxwell® Cat N° Z305H) and

vortexed for 15 sec. The cell lysate was mixed with 200 mL
lysis buffer (Maxwell® Cat N° MC501C) and vortexed for 15 sec.

The 400 mL cell lysates were transferred into the sample well of

the Maxwell® RSC Cartridge. 5 mL of DNase I solution were

added in well #4 of the Maxwell® RSC Cartridge to eliminate
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genomic DNA. The RNA was automated extracted in Maxwell®

RSC Instrument (Promega, Madison, WI, USA) following the

manufacturer protocol. The purity, concentration, and integrity

of mRNA were evaluated using a NanoDrop One©

spectrophotometer (Thermo Scientific, Cat N° 840274200). All

samples had a 260:280 nm ratio between 1.9 and 2.1 and the

RNA integrity number > 7.
cDNA synthesis and qualitative PCR

Reverse transcription was performed with 500 ng of RNA in 20

mL of reaction volume containing 4 mL of qScript cDNA SuperMix

(95048-500, Quantabio, Beverly Hills, CA, USA). The reverse

transcription conditions were 5 minutes at 25°C, 30 minutes at

42°C, and 5 minutes at 85°C; cDNA was stored at -20°C.

Transcriptional studies were performed using the the Quan

Studio 7 Flex System (Applied Biosystems, MA, USA) and the

high-throughput qPCR instrument Wafergen Smartchip

(Takara Bio, Mountain View, CA, USA) conducted with

Taqman or SYBR gene expression primers commercially

available or designed from murine sequences and synthesized

(IDT Technologies (Coralville, IA). For PCR data in Figure 1

samples were assayed in duplicate. Each 20 µL of PCR reaction

contained 1X of PerfeCTa Fast Mix II (Quantabio, Cat N°
Frontiers in Endocrinology 04
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95119-012), Taqman assays (Suppl Table 1) were used at 1X,

and 4 ng/µL of sample cDNA. For all other experiments, the

samples were assayed in duplicate. Each 20 µL of PCR reaction

contained 1X of PerfeCTa Fast Mix II (Quantabio, Cat N°

95119-012), Taqman assays (Suppl Table 1) were used at 1X,

and 4 ng/µL of sample cDNA. For all other experiments, the

samples were assayed in duplicate; each 100 nL PCR reaction

contained 1X of LightCycler 480 SYBR Green Master Mix

(Roche), 200 nM of primer assays, and 1.5 ng/mL of sample

cDNA. A non-reverse-transcriptase control and no-template

control examined the DNA contamination and primer-dimer

formation in the assay reaction. Primer sequences are reported

in Suppl Table 1. The cycling conditions for Taqman assays

included: initial enzyme activation at 95°C for 20 sec, 40 cycles of

denaturation at 95 °C for 1 sec, and annealing/extension at 60 °C

for 20 sec. For SYBR green assays, the cycler conditions included:

initial enzyme activation at 95°C for 10 min, 45 cycles of

denaturation at 95°C for 10 sec, and annealing/extension at

60°C for 60 sec, followed by a melting curve analysis of 65-95°C

with 0.5°C increments 5 sec per step. The housekeeping genes

with the lowest pairwise variation value were selected, including,

Eif3k (eukaryotic translation initiation factor 3 subunit k), Rps29

(ribosomal protein s29), and B2m (Beta-2-microglobulin). The

expression of target genes was normalized against the geometric

mean of selected housekeeping genes as described by (37).
A B

C

FIGURE 1

PVAT and preadipocytes express PIEZO1. (A) PIEZO1 staining of thoracic aorta PVAT and kidney. White arrows indicate positive cells. DAPI is the
nuclear stain. Inserts are sections without primary antibody. P=PVAT, M=Media vascular layer. Images are representative of n=4. (B) Piezo1
expression in APVAT preadipocytes treated with Piezo1 siRNA (siPiezo1), non-coding siPiezo1 (NC), and non-treated (Control). (C) PIEZO1
staining of cells in B are representative of n=6. Scale bars = 50 µm. Bars are means ± SEM, Bars with *** (P<0.001) are different relative to the
expression of Actb.
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Short interference RNA

To assess the effects of PIEZO1 activation on adipogenesis,

we inhibited the expression of the protein by using short

interference RNA (siRNA) following a human preadipocyte

protocol with some modifications (38). In brief, 21.000/cm2

preadipocytes were plated at 70% confluency. Cells were

incubated overnight in aMEM (Corning, Cat N° 50-010-PB),

5% FBS, Hiperfect transfection reagent (Qiagen, Cat N° 301704),

and 40 nM of three combined siRNA sequences targeting Piezo1,

a non-coding siRNA (NC), or a siRNA targeting Hprt (Suppl

Table 1). All sequences were designed by IDT Technologies

(Coralville, IA). Control without the addition of transfection

reagent was also included. After incubation, the medium was

replaced with preadipocyte media, and cells were allowed to

proliferate for 72 h. The fluorescence dye TYE 563 was used to

optimize the concentration of sequence and transfection reagent.
Calcium influx experiments

Cellular calcium trafficking was determined using the

indicator Fluo-4 AM Ester (Biotium Cat ° 50018). Cells were

washed with Krebs-Ringer-HEPES-Glucose Buffer (KRH-glc)

that includes 25mM of glucose and then loaded with 5 µM of

Fluo-4 AM in KRH-glc + 0.5% bovine serum albumin (BSA) for

30 mins at room temperature protected from light. Two washes

removed extracellular fluorophore with KRH-glc + 0.5%BSA,

then measured all the conditions using the same buffer. To

evaluate the kinetics of calcium, Yoda1 (10µM; 5586, Tocris,

Bristol, UK) was added after the basal reading (0 min), DMSO,

and 5µM of Ionomycin (Biotium Cat N° 59007) were used as

negative and positive control respectively. The fluorescence

intensity excited at 488 nm and emitted at 526 nm is

proportional to the cytosolic free calcium concentrations,

using microplate reader samples were measured in triplicates

(BioTek, Synergy Cat N° H1M).
Mechanical stretch experiments

Preadipocytes cells were seeded in collagen type 1-coated

Bioflex 6-well plates (Flexcell International, Cat N° BF-3001C) at

40,000 cells/cm2. Cells were transfected with siRNA and NC

sequences as described above; after they reached full confluency

3 d post-transfection were induced to differentiate into adipocytes as

previously described. Mechanical stretching was applied

simultaneously using the FX-6000 Tension System. This

computer-driven instrument creates strain conditions with

vacuum pressure to deform the cells on the flexible, matrix-
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bonded surface of the Bioflex plates. The mechanical stress (MS+)

was set up at a rate of 1 Hz with 12% elongation in a half-sine

pattern for 4 d; cells without mechanical stretch (MS-) were used as

control. Samples were analyzed for gene expression and

adipogenesis efficiency using the Spectrum Image Cytometry

System. Briefly, cells were washed with PBS 1X and detached

with Trypsin 0.05%, centrifugated two times at 300 x g for 5

mins, and then resuspended in 40µl of dye master mix (2X ViaStain

Far Red (Nexcelom Cat N° CS1-V0010-1) + 10µM of Bodipy 493/

503 in PBS 1X). Images in triplicate were obtained in Spectrum 5

software and analyzed using ImageJ software, and adipogenesis

efficiency was determined as Bodipy fluorescence count/

nuclei count.
Statistical analysis

Data were analyzed by one- or two-way ANOVA using JMP

(SAS, Cary, NC), SAS 9.4 (SAS Inst, Cary, NC), and GraphPad

Software (GraphPad, San Diego, CA). Proc Mixed program was

used, and post hoc comparisons were performed using Tukey’s

adjustments test. Residuals of the model were checked for

normal distribution—random effect of the rat within the

treatment and mechanical stretch. Statistical significance was

set at P ≤ 0.05.
Declaration and ethical statements

All animal procedures were approved by the MSU

Institutional Animal Care and Use Committee and followed

the Guide for the Care and Use of Laboratory Animals,” 8th

edition (30).
Results

Preadipocytes from PVAT
express PIEZO1

The PVAT surrounding the thoracic aorta (APVAT)

expresses the protein PIEZO1 (Figure 1A). To validate the

specificity of the PIEZO1 antibody, we used targeted gene

knockdown with siRNA in APVAT preadipocytes. Piezo1

expression was reduced by 70% in cells treated with the siRNA

targeting its transcription (siPiezo1) compared with those

exposed to non-coding siRNA (NC, Figure 1B). In addition,

preadipocytes treated with siPiezo1 showed a reduced signal

intensity of PIEZO1 compared to untreated cells and

NC (Figure 1C).
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PIEZO1 activation in PVAT preadipocytes
promotes calcium influx

Treating APVAT preadipocytes with the selective agonist

Yoda1 increased Ca2+ flux into the cells treated with NC

sequence measured with Fluo-4 AM, a molecule that exhibits

fluorescence upon Ca2+ binding. Preadipocytes treated with

siPiezo1 were unresponsive to Yoda1 (Figure 2).
PIEZO1 activation reduces adipogenesis
in PVAT preadipocytes

To evaluate the effect of PIEZO1 activation on APVAT

preadipocytes, we treated cells during the first 4 days of

adipogenesis induction with the PIEZO1-specific activator

Yoda1. Yoda1 at different concentrations during adipogenesis

did not affect the viability as determined by Calcein AM a

fluorescent molecule emitted by live cells, or induce Caspase 3/

7 activity, an enzyme stimulated during apoptosis

(Supplementary Figure 1). After 4 days of culture in

adipogenic media, cells treated with Yoda1 had lower

adipogenic efficiency than cells cultured in adipogenic media

alone and this was reflected as a reduction in lipid droplet

formation (Figures 3A, B). Preadipocytes exposed to Yoda1 had

reduced expression of critical adipogenic genes such as Pparg,

Plin1, Adipoq, and Fabp4 compared with cells in adipogenic

media alone (Figure 3C).

A subset of APVAT preadipocytes were treated with siPiezo1

or NC; this allowed us to reduce the expression of Piezo1 during

7 days of culture (Figure 3C). Silencing the mechanoreceptor

abrogated the anti-adipogenic effect of Yoda1, which was

reflected in a higher adipogenesis efficiency compared to NC

cells treated with Yoda1 (Figures 3A, B). siPiezo1 treated cells

cultured in media with Yoda1 had similar expression of
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adipogenic genes (Pparg, Plin1, Adipoq, and Fabp4) to cells

treated with NC alone in adipogenic media, while Fgf9

expression was not increased by Yoda1 when siPiezo1 was

used (Figure 3C).
Cyclic mechanical stretch impairs the
adipogenic potential of APVAT
preadipocytes regardless of
Piezo1 expression

The next step was to evaluate the effect of direct mechanical

stimulation on APVAT preadipocytes adipogenesis. Cells pre-

treated with siRNA (siPiezo1+) and NC (siPiezo1-) sequences

were exposed to 4 days of cyclic stretch (MS+) simultaneously

during adipogenesis induction (Adipogenic media). Compared

to MS-, MS+ reduced adipogenic efficiency in cells cultured in

adipogenic media pretreated with NC or siPiezo1, and this was

reflected as fewer lipid droplets within each cell. A similar

response was observed when PIEZO1 was pharmacologically

activated with Yoda1 in NC and MS- conditions (Figures 4A, B).

Yoda1 and MS+ had an additive effect in the reduction of

adipogenesis in NC-treated cells. However, siPiezo1 inhibited

the impact of Yoda1 only in MS- cells. siPiezo1 did not obliterate

the effects of mechanical stretching on adipogenesis of cells

exposed to Yoda1 and MS+ (Figures 4A, B).

Pharmacological and mechanical activation of PIEZO1

altered the expression of some adipogenic and lipogenic gene

networks in APVAT. The activation of PIEZO1 by mechanical

or pharmacological conditions did not change the expression of

mechanoreceptors Piezo1 or Piezo2 (Table 1). Yoda1 suppressed

the lipogenesis-related genes Dgat1 and Agpat2 which encode

rate-limiting enzymes of triacylglycerol synthesis in adipocytes.

Genes associated with extracellular matrix proteins such as

Col6a1 had reduced expression in mechanically stimulated
A B

FIGURE 2

PIEZO1 activation enhances calcium influx in PVAT preadipocytes. (A) Fluo-4-loaded preadipocytes treated with non-coding (NC) and siPiezo1
(siRNA Piezo1), the activity of Fluo-4 AM was measured in fluorescence intensity after exposure to 10 µM of Yoda1 starting before min 1. (B)
Area Under the Curve of fluorescence units of Fluo-4 AM in siPiezo1 treated cells and NC preadipocytes depicted in (A) *P<0.05. representative
of n=6.
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cells, while Col1a1, and Fn1, were not altered by either chemical

(Yoda1) or mechanical activation (MS+) of PIEZO1 (Table 1).

As for fibroblast growth factors, MS+ increased Fgf10, a gene

essential for cell proliferation and tissue repair, while Fgfr2, a

receptor of the same family, was downregulated. Other genes

from this network, Fgf2, Fgfr1, or Fgfr3, were not affected by

Yoda1 or MS. In addition, Wnt16, a member of the WNT/b
catenin pathway, was upregulated by Yoda1 exposure (Table 1).
Discussion

A healthy PVAT is a source of vasoactive molecules,

including adiponectin and nitric oxide. During hypertension,

PVAT inflammation impairs its capacity to secrete these

products (8, 14). A possible mechanism is the reduction of

adipocyte populations. Results from the present study suggest

that these changes in the cellular populations of PVAT may be
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related to a decline in the adipogenic potential of preadipocytes

driven by the activity of the stretch-activated ion channel

PIEZO1. Physical forces generated by blood flow may enhance

the calcium influx in preadipocytes through PIEZO1 and

ultimately reduce adipogenesis.
APVAT preadipocytes mechanosense
through PIEZO1

Our results indicate that the PVAT of the thoracic aorta is a

vascular layer with mechanosensory capacity. First,

p read ipocy te s i so l a t ed f rom APVAT expres s the

mechanotransducer PIEZO1 abundantly, a result that concurs

with the evidence found by Miron et al. in PVAT depots (20).

Other tissues subjected to frequent mechanical activity, such as

lungs, skin, or kidneys, also express PIEZO1 (39). The APVAT

in rodents is mainly composed of brown adipocytes (BAT).
A

B

C

FIGURE 3

Activation of PIEZO1 reduces adipogenesis in APVAT. Preadipocytes were incubated in preadipocyte or adipogenic media (M.) in the presence of
the Piezo1 activator Yoda1. A subset of cells was treated with siRNA targeting Piezo1 (siPiezo1) or non-coding (NC) siRNA. (A) Adipogenesis
efficiency as calculated by the IncuCyte zoom software (N° of cells with at least one lipid droplet over total # of cells in each well), columns
with strips indicate (siPiezo1) n=5-8. (B) Representative images of cultured cells. Triglycerides, in green, were stained with Bodipy. Scale bar =
200 microns. (C) Expression of Piezo1, adipogenic genes (Pparg, Plin1, Adipoq, and Fabp4) and Fgf9. Values are relative mRNA abundance after
normalization with the reference gene Rps29. Bars are means ± SEM; bars with different letters a, b, c, d (P<0.05) or ** (P<0.01) differ. Images in
(B, C) are representative of n=4.
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Previous reports describe high expression levels of the PIEZO1

mechanosensor in BAT (20, 40, 41). In addition, preadipocytes

cultured under adipogenic conditions maintain their Piezo1

expression. These results are consistent with previous evidence

of the expression of PIEZO1 in preadipocytes, adipocytes, and

stem/progenitor cells (18, 19, 28, 29, 33).
PIEZO1 activation increases intracellular
Ca2+ reducing APVAT
adipogenic potential

We demonstrated that PIEZO1 activation reduced

adipogenesis in APVAT preadipocytes. The chemical agonist

Yoda1 was used in this study to determine the role of PIEZO1

since it is highly specific for this mechanosensor (34), avoiding

activation of PIEZO2 channels (42, 43). As expected, the
Frontiers in Endocrinology 08
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expression of Piezo1 was essential to enhance Ca2+ influx in

preadipocytes (Figure 2). This observation coincides with those

in dental pulp stem cells (DP-MSC) (33), adipocytes (18), and

endometrial epithelial cells (35), where Ca2+ fluxes shifts are

essential to induce mechanoreceptor responses.

The influx of calcium via PIEZO1 could alter several

functions within the cell, including proliferation, homeostasis,

apoptosis, and differentiation (44–46). PIEZO1 activation

during early adipogenesis (1 to 4 days post-induction) did not

affect cell integrity but impaired differentiation of PVAT

preadipocytes. We confirmed these responses using Yoda1 as a

pharmacological PIEZO1 agonist and siRNA targeting PIEZO1.

The latter reduced Piezo1 by 70%, a reduction similar to those

reported in dental pulp (33) and bone marrow progenitors (29).

The Ca2+ flux-mediated anti-adipogenic response to PIEZO1

activation observed in this study is consistent with observations

in adipocyte progenitor cells derived from different species and
A

B

FIGURE 4

Mechanical stretching affects adipogenesis efficiency. Preadipocytes previously exposed to siPiezo1 (siPiezo1+) and NC control (siPiezo1-) were
induced to become adipocytes in the presence of Yoda 1 (10µM: Yoda1+, 0µM: Yoda1-) and 12% of cyclic elongation (MS+) or 0% (MS-) for 4
days. (A) Adipogenesis efficiency calculated by ImageJ (N° cells with at least one lipid droplet over total # of cells per image) analyzed by
triplicates. Columns with strips indicate mechanical stretch (MS+). Significant differences are indicated by letters a, b, c, and d (P < 0.05). Bars are
means ± SEM. (B) Representative images of cultured cells: Triglycerides indicated by the arrow were stained with Bodipy and nuclei with
ViaStain Far Red. Images in B are representative of n=4, scale bar = 200 microns.
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TABLE 1 The effect of mechanical and simultaneous pharmacological activation of PIEZO1 on the expression of genes related to
mechanoreceptors, adipogenic, lipogenic, fibrogenic, extracellular matrix, and WNT/B catenin pathway.

Gene network Gene (MS-) (MS+) P values

Adipogenic M Yoda1 Adipogenic M Yoda1 MS Tx MS*Tx

Mechanoreceptors Piezo11 Estimate 1.95 1.73 1.73 1.47 NS5 NS NS

LCI2 1.70 1.48 1.48 1.23

UCI3 2.20 1.98 1.97 1.72

Piezo2 Estimate 2.05 0.34 0.45 1.82 NS NS NS

LCI 0.75 -0.85 -0.74 0.62

UCI 3.36 1.53 1.64 3.01

Lipogenic Agpat2 Estimate 14.84a 6.61b 10.97a 5.51b NS <.0001 NS

LCI 10.54 2.30 6.67 1.20

UCI 19.15 10.92 15.28 9.82

Dgat1 Estimate 3.66a 2.44b 2.75a 1.62b NS <.0001 NS

LCI 2.77 1.55 1.87 0.73

UCI 4.54 3.32 3.64 2.50

Extracellular matrix Col1a1 Estimate 0.24 0.24 0.25 0.36 NS NS NS

LCI 0.02 0.01 0.03 0.14

UCI 0.46 0.46 0.47 0.58

Col6a1 Estimate 1.12a 1.51a 0.88b 0.92b <0.05 NS NS

LCI 0.76 1.15 0.52 0.56

UCI 1.48 1.87 1.23 1.28

Fn1 Estimate 0.66 0.66 0.65 0.74 NS NS NS

LCI 0.32 0.32 0.31 0.40

UCI 1.00 1.00 0.99 1.08

Fibroblastic Fgf10 Estimate 1.45a 1.32a 1.70b 1.81b <0.05 NS NS

LCI 0.69 0.55 0.94 1.05

UCI 2.21 2.08 2.47 2.57

Fgf2 Estimate 0.63 0.77 0.66 0.72 NS NS NS

LCI 0.20 0.34 0.23 0.29

UCI 1.06 1.20 1.09 1.16

Fgfr1 Estimate 1.43 1.47 1.45 1.48 NS NS NS

LCI 1.06 1.10 1.09 1.11

UCI 1.79 1.83 1.82 1.84

Fgfr2 Estimate 2.06a 1.54a 1.37b 1.32b <0.01 NS NS

LCI 1.67 1.15 0.99 0.94

UCI 2.44 1.93 1.76 1.71

Fgfr3 Estimate 1.95 2.28 1.63 1.65 NS NS NS

LCI 1.03 1.36 0.71 0.73

UCI 2.88 3.21 2.56 2.58

WNT/b catenin Wnt16 Estimate 3.88b 10.99a 5.98b 12.61a NS <0.05 NS

LCI -4.70 2.41 -1.86 4.77

UCI 12.45 19.57 13.83 20.45
Frontiers in Endocrino
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fronti
PVAT preadipocytes (n=6) exposed to 0 (MS -) or 12% elongation (MS +) in different media conditions (Tx), adipogenic media, and adipogenic media + 10µM Yoda1 (Yoda) for 4 d.
a-c Fold changes without a common superscript within a row represent differences determined by Tukey adjustments of DCt values.
Fold change = 2(-DDCt); DDCt = DCtcalibrator sample – DCttarget sample.
1Gene expression values were calculated from LSM differences of the DCt values (DDCt) normalized to the mean of Eif3k, Rps9, and B2m housekeeping genes.
2LCI= Lower confidence interval 95%.
3UCI= Upper confidence interval 95%.
4MS= Mechanical stretching, Tx= treatment.
5NS = P > 0.10.
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AT sites. Murine and human non-PVAT progenitors had

reduced adipogenic potency when exposed to agents that

increased intracellular calcium (47, 48) or when the activity of

calcium-dependent proteins such as calcineurin, a protein

essential for muscle renewal and cardiac hypertrophy

development, was increased (49, 50). PIEZO1 activation

appears to impair the adipogenic program by reducing the

expression of Pparg, encoding PPARg, the master key

regulator of adipogenesis which reaches maximum expression

during days 3-4 of the adipogenesis process (51). Possibly related

to lower PPARg activity, PIEZO1 activation also reduced the

expression of genes relevant for maintaining adipocytes’

phenotype and function, such as Plin1, a protein that coats

lipid droplets (52); Adipoq, a factor highly secreted by adipose

tissue that increases PPARg ligand activity (53); Agpat2 and

Dgat1, rate-limiting enzymes for triglyceride synthesis, and

Fabp4 a fatty acid-binding protein (54).
PIEZO1 activates anti-adipogenic
APVAT pathways

In the present study, pharmacological activation of PIEZO1

with Yoda1 elicited expression of Fgf9 in PVAT preadipocytes.

This gene has been identified as a potent inhibitor of

adipogenesis and the browning of white adipocytes (55, 56). In

addition, Fgf9 stimulates the proliferation of vascular smooth

muscle, epithelial, and colorectal cancer cells (57). The

mechanism for this proliferation response is mediated through

the activation of the WNT/b catenin pathway (58, 59). Miyazaki

et al. demonstrated that pharmacological or mechanical

activation of PIEZO1 in dental stem cells upregulates the

Wnt16 member of the Wnt/b catenin family (36). The WNT

pathway promotes myogenic differentiation while suppressing

adipogenesis (60–64). Remarkably, in the present study, Wnt16

was upregulated during PIEZO1 activation in APVAT

preadipocytes. This may be an alternate mechanism for

adipogenesis suppression in APVAT preadipocytes; however,

more studies are required to determine if PIEZO1 and Wnt16

activation can promote myofibrogenesis of these cells

during hypertension.
Mechanical stimulation reduces APVAT
adipogenic potential independent of
Piezo1 expression

To our knowledge, this is the first report on the impact of

mechanical forces on adipogenesis and lipogenesis in APVAT.

Preadipocyte exposure to cyclic mechanical strain during the

early stages of adipogenesis reduces adipogenic efficiency, a

response that was not affected even when Piezo1 was silent.

This finding suggests that other mechanosensors act parallel
Frontiers in Endocrinology 10
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with PIEZO1 during mechanosensation in APVAT. The

mechanotransduction process can involve different mediators,

including mechanosensors and structural proteins. Among

mechanosensors, Piezo2, Trpv4, Tmem16, and Panx1 were

identified in APVAT and other PVAT previously; these

proteins could complement PIEZO1 mechanosensing activity

(20) however, the impact of their activity on adipogenesis

remains to be elucidated. Among structural proteins, integrins

are a family of transmembrane proteins that can suppress

adipogenic genes such as C/ebpa and Ppparg and promote the

expression of anti-adipogenic pathways, including Runx2, b-
catenin, and SMAD proteins. Remarkably, integrins can also be

activated by Ca2+ influx, a direct response to PIEZO1 activation

in APVAT preadipocytes (65). Our results highlight the need for

studies evaluating the interaction among PIEZO1, other

mechanoreceptors, and structural proteins and their impact on

APVAT adipogenesis and function.
Limitations

Our study provides evidence for the effect of PIEZO1

activation on APVAT preadipocyte adipogenesis. However,

given the differences among PVAT sites (e.g., mesenteric

PVAT, abdominal aorta PVAT) on adipocyte phenotype and

the characteristics of mechanical forces acting on other sites,

results from the present study cannot be extrapolated directly to

other PVAT tissues. Second, the cyclic mechanical strain

frequencies used in the current experiments are lower than

those occurring in vivo, given their rapid heart rates (66).

Thus, future research is needed to establish the direct effect of

mechanical force frequency on APVAT. To date the role of

PIEZO1 in vivo remains elusive, while global deletions lead to

embryonic lethality, tissue-specific gain or loss of function

demonstrate specific responses depending on the type of cell

involved. Therefore, future studies that include targeted deletion

of this mechanosensor in preadipocytes and other PVAT cells

that take into account sex differences in normotensive and

hypertensive animals are required to determine the impact of

PIEZO1 on cardiovascular diseases.
Conclusion

Results from the present study demonstrate that

pharmacological activation of the mechanosensory protein

PIEZO1 reduces adipogenesis on aortic PVAT preadipocytes.

At the same time, mechanical stimulation can activate other

routes than PIEZO1 that may suppress adipogenesis.

Pharmacological activation of PIEZO1 activation mediated

transient calcium influx through the membrane leading to a

repression of adipogenic essential genes, which reduces the

adipogenic potential. Reduced hyperplasia of adipocytes may
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diminish the synthesis of vasoactive chemokines, which explains

that the progression of hypertension has been associated with

loss of anti-contractile response of PVAT (67).
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Characteristics of adipocytokine
expression by local fat depots of
the heart: Relationship with the
main risk factors for cardio-
vascular diseases

Olga V. Gruzdeva †, Yulia A. Dyleva †*, Ekaterina V. Belik †,
Maxim Yu. Sinitsky, Kiril A. Kozyrin and Olga L. Barbarash

Federal State Budgetary Scientific Institution, Research Institute for Complex Issues of
Cardiovascular Diseases, Kemerovo, Russia
In our study we investigated the relationships between adipocytokines in

adipose tissue (AT) and cardiovascular disease (CVD) risk factors; (2)

Methods: fat tissue biopsies were obtained from 134 patients with stable

CAD undergoing coronary artery bypass grafting and 120 patients

undergoing aortic or mitral valve replacement. Adipocytes were isolated

from subcutaneous (SAT), epicardial (EAT), and perivascular AT (PVAT)

samples, and cultured for 24 h, after which gene expression of

adipocytokines in the culture medium was determined; (3) Results: men

showed reduced ADIPOQ expression in EAT and PVAT, LEP expression in

PVAT, and LEPR expression in SAT and PVAT compared to women. Men also

exhibited higher SAT and lower PVAT IL6 than women. Meanwhile, dyslipidemia

associated with decreased ADIPOQ expression in EAT and PVAT, LEPR in EAT,

and IL6 in PVAT. Arterial hypertension (AH) associated with low EAT and PVAT

ADIPOQ, and high EAT LEP, SAT, as well as PVAT LEPR, and IL6 in SAT and EAT.

ADIPOQ expression decreased with increased AH duration over 20 years

against an increased LEP background in ATs. Smoking increased ADIPOQ

expression in all ATs and increased LEP in SAT and EAT, however, decreased

LEPR in PVAT. Patients 51–59 years old exhibited the highest EAT and PVAT

LEP, IL-6, and LEPR expression compared to other age groups; (4) Conclusions:

decreased EAT ADIPOQ expression against an increased pro-inflammatory IL6

background may increase atherogenesis and contribute to CAD progression in

combination with risk factors including male sex, dyslipidemia, and AH.
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Introduction

Morbidity and mortality from cardiovascular diseases

(CVD) remain prevalent in many countries, despite ongoing

prophylaxis and the introduction of new treatment methods (1).

The epicardial adipose tissue (EAT) and perivascular (PVAT)

are important in the pathogenesis of atherosclerosis as they are

located in close proximity to the myo-cardium and coronary

arteries and function as active endocrine organs, being able to

synthesize and produce adipocytokines. In patients with elevated

cardiovascular risk, higher pro-inflammatory adipocytokine

levels are observed in EAT than subcutaneous adipose tissue

(SAT) (2), and the EAT of patients with severe coronary artery

disease (CAD) expresses less adiponectin (3). Moreover, EAT

thickness correlates with metabolic risk factors and contributes

to coronary artery atherosclerotic plaque development (4).

Adiponectin, the main protein secreted by adipocytes, exhibits

cardioprotective, an-ti-diabetic, anti-atherogenic, and anti-

inflammatory effects, unlike other adipokines (5). Low

adiponectin levels are associated with arterial hypertension (AH),

obesity, insulin resistance, type 2 diabetes mellitus, and myocardial

infarction (MI) (6). Conversely, leptin has pro-inflammatory and

prothrombotic effects (7), whereas pro-inflammatory inter-leukin 6

(IL-6) can elicit hypertrophy-inducing effects and is an independent

predictor of CAD vessel disease (8). Recently, an increasing body of

evidence has demonstrated that the expression of adipocytokines

differ depending on the location of the fat depot.

Although assessing cardiovascular risk based on traditional risk

factors has high prognostic value, identifying new parameters can

significantly improve the stratification model for patients with

cardiovascular disease. Various factors, including pro-

inflammatory markers, that have demonstrated potential

association with athero-genesis, are produced by AT (9), however,

data regarding the association between age, sex, and other

parameters, with adiponectin, leptin, and IL-6 levels in the various

local fat depots, remain limited and are often contradictory.

Accordingly, determining the factors that impact the course of

CAD, as well as the associated prognosis, remains critical (10).

Moreover, as atherosclerosis constitutes a multifactorial disease

influenced by both un-modifiable (e.g., sex, age) and modifiable

(smoking, dyslipidemia) factors, clarification of the pathogenetic

relationships between adipocytokines and CVD risk factors is

necessary. Toward this end, we evaluated the expression of

adiponectin, leptin, its soluble receptor (sOB-R), and IL-6 in EAT,

PVAT, SAT, and their relationships with themain CVD risk factors.
Materials and methods

Study design and patients

This study was performed at the Federal State Budgetary

Institution’s Research In-stitute for Complex Issues of
Frontiers in Endocrinology 02
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Cardiovascular Diseases. We examined 134 patients with a

median age of 65.6 (49.3; 70.3) years with CAD who

underwent elective coronary artery bypass grafting (CABG)

and 120 patients median aged 60.47 (45.2; 63.2) years with

aortic or mitral valve replacement. Exclusion criteria included: 1)

> 75 years of age; 2) clinical conditions including MI, type 1 or

type 2 diabetes mellitus, anemia, autoimmune diseases, liver or

kidney failure, infectious or inflammatory diseases, and

oncological diseases.
Cardiovascular risk factor assessment

Traditional cardiovascular risk factors and patient treatment

were recorded. AH was defined as systolic blood pressure > 140

mmHg Art., diastolic blood pressure > 90 mmHg. Dyslipidemia

was defined as a previously detected increase in total serum

cholesterol (> 200 mg/dl), triglycerides (>200 mg/dl), or low-

density lipoprotein (LDL) cholesterol (> 150 mg/dl) for at least 1

year or use of lipid-lowering drugs. Smoking was classified as

current or former smokers; current smoking status was defined

as at least one cigarette daily over the last year.
Sample collection and evaluation

SAT, EAT, and PVAT biopsies (3 to 5 g) were obtained

during aortocoronary bypass surgery and aortic or mitral valve

replacement. SAT samples were obtained from the subcutaneous

tissue of the lower angle of the mediastinal wound. EAT was

sourced from its largest source, from the right heart (right

atrium and ventricle) and PVAT were ob-tained from the area

of the right coronary artery. Adipocytes were isolated from

adipose tissues under sterile conditions in a laminar flow hood

(BOV-001-AMS MZMO, Millerovo, Russia), as previously

described (11). Adipocytes were counted in a Goryaev

chamber. Cell viability was evaluated according to the method

described by Suga et al. (12). Adipocytes (20 × 105) were seeded

into a 24-well plate (Greiner Bio One International GmbH,

Kremsmünster, Austria), and the volume in each well was

adjusted to 1 mL with culture medium, as previously described

(11). Cells were incubation for 24 h at 37 ± 1°C in an atmosphere

of 5% CO2 and 10% oxygen. The adipocytes were then

immediately processed for RNA extraction to determine

adipocytokine gene expression.
RNA extraction

Total RNA was isolated from adipocytes using the

commercial RNeasy® Plus Uni-versal Mini Kit (Qiagen,

Hilden, Germany), according to the manufacturer ’s

instructions with slight modifications, as described previously
frontiersin.org
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(13). The quantity and quality of puri-fied RNA were assessed

using a NanoDrop 2000 Spectrophotometer (Thermo Fisher

Scientific) by measuring the light absorbance at 280 nm, 260 nm,

and 230 nm and calcu-lating the 260/280 (A260/280) and 260/

230 (A260/230) ratios. The integrity of the RNA was determined

by electrophoresis in agarose gel, followed by visualization using

the Gel Doc™ XR+ System (Bio-Rad, Hercules, CA, USA).

Extracted RNA was stored at –70°C.
cDNA synthesis

Single-stranded cDNA was synthesized using the High-

Capacity cDNA Reverse Transcription Kit (Applied

Biosystems, Foster City, CA, USA) on a VeritiTM 96-Well

Thermal Cycler (Applied Biosystems). Reverse transcription

was performed using the program suggested by the

manufacturer. The quantity and quality of synthesized cDNA

were assessed using a NanoDrop 2000 Spectrophotometer.

Samples were stored at –20°C.
Gene expression determination

Expression of adiponectin (ADIPOQ), leptin (LEP), soluble

leptin receptor (LEPR) and IL6 genes was evaluated by

quantitative real-time polymerase chain reaction (qPCR) using

TaqManTMGene Expression Assays (ADIPOQHs00605917_m1,

LEP Hs00174877_m1, LEPR Hs00174497_m1, IL6

Hs00174131_m1, Applied Biosystems, USA) on a ViiA 7 Real-

Time PCR System (Applied Biosystems). Each 20 µL reaction mix

contained 10 µL of TaqManTM Gene Expression Master Mix

(Applied Biosystems), 1 µL of TaqManTMGene Expression Assay

(Applied Biosystems), and 9 µL of cDNA template comprising 100

ng of cDNA + nuclease-free water). Samples were amplified under

the following thermal cycling conditions: 2 min at 50°C, 10 min at

95°C, 40 cycles of 15 sec at 95°C and 1 min at 60°C. As a negative

control, 20 µL of reaction mix with no cDNA template was used.

For each sample and negative control, three technical replicates

were prepared.

The results were normalized using reference genes HPRT1,

GAPDH, and B2M. Test gene expression was calculated using

the Pfafflmethod and expressed on a logarithmic (log10) scale as

a multiple change relative to the control samples (14).
Statistical analysis

Statistical analysis was performed using GraphPad Prism 6 (La

Jolla, CA, USA) and Statistica version 9.1 (Dell Software, Inc., Round

Rock, TX, USA). The Kolmogorov–Smirnov test was used to verify

normal distribution of data. For non-normally distributed variables,
Frontiers in Endocrinology 03
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data were presented as median (Me) and 25th and 75th

quartiles (Q1; Q3). Comparison of two independent groups was

carried out using the nonparametricMann-Whitney test. Differences

between three groups were compared using one-way analysis of

variance (ANOVA) for continuous variables. Categorical variables

are ex-pressed as percentages and compared using chi-squared

test or Fisher’s exact test. P values < 0.05 were considered

statistically significant.
Results

Adipocytokine gene expression
in the culture medium of adipocytes
collected from the adipose tissue of
patients with coronary artery disease
and heart defects

Analysis of the clinical and anamnestic characteristics

revealed that 75% of the sub-jects were men, AH was observed

in 90.5% of all patients, angina pectoris in 97.63%, family history

of CAD in 59.5%, previous MI in 67.86%, history of

cerebrovascular acci-dent/transient ischemic attack in 7.14%,

and 69.0% of patients smoked (Table 1). Patients received

standard therapy with antiplatelet agents, beta-blockers, ACE

inhibitors, and HMG-CoA reductase inhibitors.

Moreover, ADIPOQ expression in CAD patients was lower

in EAT compared to SAT (p = 0.038) and PVAT (p = 0.027),

while that of leptin was higher in EAT compared to SAT and

PVAT (p = 0.003 and p = 0.002, respectively). Similarly, LEPR

was more highly ex-pressed in EAT (p = 0.001) and PVAT

(0.0003) compared to SAT, with that in the PVAT higher than in

the EAT (p = 0.028). In addition, EAT was characterized by the

highest IL-6 expression in comparison with the of SAT and

PVAT samples (p = 0.001 and p = 0.025, respectively). Similar

expression patterns were observed in the tissues collected from

patients with heart defects. However, patients with defects were

characterized by a higher ADIPOQ expression in EAT (p =

0.031), lower LEP expression in EAT (p = 0.004) and PVAT (p =

0.008), lower LEPR expression in the PVAT (p = 0.022), as well

as lower IL-6 expression in EAT (p = 0.0002) and PVAT (p =

0.003) compared to patients with CAD.
Adipocytokine gene expression in the
adipocytes collected from adipose tissue
based on the sex of coronary artery
disease patients

Women exhibited higher ADIPOQ expression in EAT (2.5-

fold, p = 0.001) and PVAT (2.8-fold, p = 0.002) compared to men,

whereas expression in SAT did not differ between sexes (Figure 1).
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Women also showed higher LEP mRNA expression in

PVAT (1.4-fold, p = 0.013), while that in SAT and EAT did

not significantly differ. In men, LEPR expression was lower in

SAT (1.5-fold, p = 0.033) and PVAT (1.3-fold, p = 0.042), but

higher in EAT (1.3-fold, p = 0.013). Also, the IL6 mRNA

expression in men was significantly higher in SAT (3-fold, p =

0.003), however, was 2-fold lower in PVAT (p = 0.01), whereas

no dif-ference was observed between sexes in EAT.
Frontiers in Endocrinology 04
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Adipocytokine gene expression in the
adipocytes collected from adipose
tissue based on the age of coronary
artery patients

Evaluation according to patient age (≤ 50 years; younger,

51–59; mid-age, and ≥ 60; older) revealed maximum SAT

ADIPOQ expression in the younger group, which was
TABLE 1 Clinical and medical history of patients with coronary heart disease.

Parameter Patients with CAD,
n=134

Patients with aortic or mitral valve replacement,
n=120

Р

Males 80 (60) 58 (48.3) 0.053

Age, years 65.6 (49.3; 70.3) 60.47 (45.2; 63.2) 0.061

Body mass index, kg/m2 29.57 (25.19; 33.22) 26,59 (23.44;28.31) 0.075

Overweight 45 (33.58) 7 (5.8) 0.011

Arterial hypertension 75 (56) 28 (23.3) 0.014

Dyslipidemia 57 (42.5) 12 (10) 0.009

Smoking 64 (47.8) 14 (11.7) 0.017

Family history of coronary artery disease 79 (58.9) 42 (35) 0.049

Angina prior to MI 118 (88.1) 0

Previous MI 91 (67.9) 0

History of cerebrovascular accident/transient ischemic
attack

10 (7.5) 0

Atherosclerosis of other pools 21 (15.7) 0

No angina 4 (3) 120 (100) 0.001

Angina I FC 0 0

Angina II FC 62 (46.3) 0

Angina III FC 68 (50.7) 0

Angina IV FC 0 0

CHF I FC 16 (11.9) 16 (13.3) 0.066

CHF II FC 11 (8.2) 54 (45) 0.003

CHF III FC 5 (3.7) 38 (31.6) 0.001

CHF IV FC 0 0

Atherosclerosis of the 1st coronary artery 12 (9) 0

Atherosclerosis of the 2st coronary artery 8 (6) 0

Atherosclerosis of three or more coronary artery 114 (85.1) 0

Ejection fraction, % 51.4 (43.7; 57.2) 53.1 (45.0;59.2) 0.048

C-reactive protein
before surgery

2.79 (2.11;3.38) 3.02 (2.81;3.40) 0.302

Treatment strategy/group of drugs

Aspirin 131 (97.8) 0

Clopidogrel 21 (15.6) 0

Warfarin 0 100 (83.3)

b-blockers 131 (97.8) 109 (90.8) 0.177

Angiotensin-converting enzyme 101 (75.4) 91 (75.8) 0.525

Statins 134 (100) 89 (74.2) 0.061

Calcium channel blocker 103 (76.9) 86 (71.7) 0.143

Nitrates 11 (8.2) 10 (8.3) 0.673

Diuretics 102 (76.1) 118 (98.3) 0.055
frontiersi
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equivalent to twice that observed in the mid- age (p = 0.021) and

older (p = 0.013) groups (Figure 2).

In EAT, the highest ADIPOQ mRNA expression was

observed in the older group, which was 1.7-fold that in the

younger (p = 0.011) and mid-age (p = 0.003) groups. Lowest

PVAT ADIPOQ expression was observed in the younger group

which was approximately 1.4-fold lower than that in the mid-age

(p = 0.002) and older (p = 0.014) groups.

The mid-age group exhibited decreased LEP in SAT (1.2-fold)

compared to the younger (p = 0.002) and older (p = 0.023) groups,

however, increased LEP levels were observed in EAT and PVAT of

mid-age patients compared to the younger (2-fold, p = 0.013; 1.6-

fold, p = 0.004, respectively) and older (1.5-fold, p = 0.003; 2.2-fold,

p = 0.001, respectively) groups.

The older group exhibited the highest LEPR expression in

SAT (3-fold, p = 0.001 vs. younger; 2.3-fold, p = 0.031 vs mid-

age), whereas the mid-age group showed highest ex-pression in

EAT and PVAT (1.6-fold, p = 0.003 and 1.8-fold, p = 0.012 vs

younger; 1.1-fold, p = 0.024 and 1.2-fold, p = 0.035 vs older).

SAT IL-6 expression was higher in the older group (4-fold, p =

0.011 vs younger; 2-fold, p = 0.023 vs mid-age). Meanwhile, themid-

age individuals exhibited the highest IL6 expression in EAT (2.2-fold,

p = 0.013 vs younger; 2.05-fold, p = 0.004 vs older) and PVAT (2.3-

fold, p = 0. 011; 2.2-fold, p = 0.014 times, respectively) (Figure 2).
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Adipocytokine gene expression
in the adipocytes collected from
adipose tissue based on the presence
of dyslipidemia in coronary artery
disease patients

In patients with dyslipidemia, ADIPOQ mRNA was

decreased in EAT (2.7-fold, p = 0.021) and PVAT (3.6-fold,

p = 0.033), however, did not differ in SAT (Figure 3).

Meanwhile, LEP expression was not correlated with

dyslipidemia. Conversely, dyslipidemia was associated with a

2.1-fold (p = 0.014) decrease in LEPR mRNA in EAT and 2.3-

fold decrease in IL6 in PVAT (p = 0.023). Alternatively, IL-6 did

not differ based on dyslipidemia status in SAT and EAT.
Adipocytokine gene expression in the
adipocytes collected from adipose tissue
depending based on arterial
hypertension in coronary artery disease
patients

AH in patients with CAD exhibited decreased ADIPOQ

expression in EАT (2-fold, p = 0.004) and PVAT (1.8-fold, p =
FIGURE 1

Adipocytokine genes expression in the subcutaneous, epicardial, and perivascular adipocytes based on the sex of patients with coronary artery
disease. Data are presented in Me (Q1; Q3). SAT, subcutaneous adipose tissue; EAT, epicardial adipose tissue; PVAT, perivascular adipose tissue;
p, level of statistical significance; sOB-R, soluble leptin receptor; IL6, interleukin 6.
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0.021) coordinated with increased LEP mRNA expression in

EАT (1.7-fold, p = 0.001), LEPR in SAT (3-fold, p = 0.003), and

PVAT (1.7-fold, p = 0.001), but not in EAT. AH was also found

to correlate with increased IL6 expression in SAT (8-fold, p =

0.013) and EAT (10.4-fold, p = 0.001) (Figure 4).

AH duration also proved important for adipocytokine

expression dynamics. Spe-cifically, in patients with AH for less

than 10 years, LEPR was increased in SAT, whereas it was

increased in the EAT of patients with AH for 11–19 years.

Meanwhile, an AH du-ration of more than 20 years was

associated with decreased ADIPOQ expression owing to LEP

increases in all ATs, along with decreased IL6 in SAT, which was

increased in PVAT (Figure 5).
Adipocytokine gene expression in the
adipocytes collected from adipose tissue
based on smoking status in coronary
artery disease patients

Smokers with CAD showed increased ADIPOQ expression

in SAT (1.9-fold, p = 0.012), EAT (1.7-fold, p = 0.003), and

PVAT (1.5-fold, p = 0.033), as well as increased LEP expression

in SAT (1.6-fold, p = 0.024) and EAT (1.8-fold, p = 0.003).

However, LEPR ex-pression was decreased (1.3- fold, p = 0.001)
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only in PVAT of smokers. No associations were found for

smokers with CAD and IL6 expression (Figure 6).
Discussion

Sex-based differences

The results of this study revealed sexual dimorphism in the

expression of adipo-cytokines in local fat depots, with primary

EAT and PVAT localization. Specifically, men with CAD had

lower ADIPOQ expression in EAT and PVAT, and lower LEP

expression in PVAT compared to women. These results agreed

with previously obtained data on lower LEP expression in the

SAT of men relative to women (15). Our results also show a

decrease in ADIPOQ and LEP expression in the EAT of male

patients with CAD, while no difference was observed in the SAT

(16). However, currently, a unanimous opinion has not been

reached regarding the relationship between sex and the level of

ADIPOQ in the PVAT. Thus, some researchers believe that sex

affects both ADIPOQ expression and secretion, while others

note differences only in the level of adiponectin secretion (17).

The revealed differences in adipokine expression may be due to

the influence of sex hormones. For example, androgens, including

testosterone, can cause dysfunction of AT through repression of
FIGURE 2

Adipocytokine gene expression in the adipocytes collected from adipose tissue based on the age of coronary artery patients. Data are presented
in Me (Q1; Q3). SAT, subcutaneous adipose tissue; EAT, epicardial adipose tissue; PVAT, perivascular adipose tissue; p, level of statistical
significance; sOB-R, soluble leptin receptor; IL6, interleukin 6.
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ADIPOQ and LEP mRNA transcription via blocking of RNA

polymerase and formation of a transcriptional complex (18).

Moreover, Machinal-Quélin, F. at al. investigated the effects of in

vitro 24-hour exposure to androgens and estrogens on LEP

expression in the SAT of men and women. In men, only high

concentration di-hydrotestosterone (100 nM) caused a decrease in

the level of LEP expression, while in women 17-estradiol (10–100

nM) increased the expression of LEP. The authors suggested that

the sexual dimorphism of LEP expression in humans is due to

estrogen recep-tor-dependent stimulation of LEP expression in the

AT by estrogens and estrogen pre-cursors in women (19). Further, a

portion of testosterone becomes converted to estrogen through

aromatization. McTernan P.G. at al. showed that the level of LEP

expression in the adipocytes of women did not change in the

presence of testosterone due to the low expression of aromatase in

human adipocytes compared to pre-adipocytes (20).

When determining the level of IL6 expression, taking into

account patient sex, men were found to have increased IL6 in

SAT and decreased expression in PVAT, whereas no differences

were observed in the EAT, compared to women. These results

are consistent with our previous study, which demonstrated an

increase of IL-6 expression in SAT during cardiac surgery (21).
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Age

It was hypothesized that the expression of adipocytokines

changes with age, which is inextricably linked to CVD risk, an

increase in the number and degree of coronary arteries, and the

incidence of CAD. Our results demonstrate a clear association

between age and adipocytokine mRNA levels. For instance,

patients aged 50–59 were characterized by a low level of

ADIPOQ in EAT, as well as high levels of LEP and IL-6 in

EAT and PVAT. These expression patterns agree with the

generally accepted opinion regarding increased pro-

inflammatory activity in AT with age and, thus highlights the

vulnerability of this patient population. The increase in IL-6

expression is likely caused by AT aging, which represents the

main source of this cytokine. This was demonstrated in an in

vitro study that treated visceral AT of C57BL/6 mice with

lipopolysaccharides and found that IL-6 production was

significantly higher in adipocyte cultures of mice aged 24

months com-pared to young mice (4 months). The authors

also showed that IL-6 overproduction is regulated by the

autocrine/paracrine action of IL-1b , which initiates

inflammatory pro-cesses in old age (22).
FIGURE 3

Adipocytokine gene expression in the adipocytes collected from adipose tissue based on the presence of dyslipidemia in coronary artery disease
patients. Data are presented in Me (Q1; Q3). SAT, subcutaneous adipose tissue; EAT, epicardial adipose tissue; PVAT, perivascular adipose tissue;
p, level of sta-tistical significance; sOB-R, soluble leptin receptor; IL6, interleukin 6.
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FIGURE 4

Adipocytokine gene expression in the adipocytes collected from adipose tissue based on arterial hypertension in coronary artery disease
patients. Data are presented in Me (Q1; Q3). SAT, subcutaneous adipose tissue; EAT, epicardial adipose tissue; PVAT, perivascular adipose tissue;
AH, arterial hypertension; p; level of statistical significance; sOB-R, soluble leptin receptor; IL6, in-terleukin 6.
FIGURE 5

Adipocytokine genes expression in the subcutaneous, epicardial, and perivascular adipocytes based on duration of arterial hypertension in
patients with coronary artery disease. Data are presented in Me (Q1; Q3). SAT, subcutaneous adipose tissue; EAT, epicardial adipose tissue;
PVAT, perivascular adipose tissue; p, level of sta-tistical significance; sOB-R, soluble leptin receptor; IL6, interleukin 6.
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Dyslipidemia

Age-related AT dysfunction is believed to be associated with

dyslipidemia, metabolic dysfunction, and mild chronic systemic

inflammation, which affect the quality and duration of life (23).

In the current study, the presence of dyslipidemia in CAD

patients correlated with decreased ADIPOQ expression in

EАT and PVАT. Similarly, EAT LEPR expression was lower in

individuals with dyslipidemia, as was PVAT IL6 expression.

However, it was previously shown that ADIPOQ expression

increases in the PVAT of men with CAD and a BMI above 30 kg/

m2 compared to patients with a lower BMI (24), which,

according to the authors, is reflective of the “obesity paradox.”

Adiponectin affects the accumulation of LDL-C in the vascular

wall, inhibiting its oxidation, as well as the transformation of

macrophages into foam cells, and proliferation of smooth muscle

cell neointima, while stimulating expression of the cholesterol

ABCA1 ATP-binding transporter in the liver, thereby enhancing

the biogenesis and reverse transport of HDL cholesterol

exhibiting antiatherogenic properties (25). The observed

decrease in ADIPOQ expression within patients with

dyslipidemia, therefore, indicates negation of the above

protective effects and contributes to the progression of

atherosclerosis and vascular damage.
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Furthermore, the decreased IL6 expression observed in the

PVAT of CAD patients may result in increased accumulation of

lipids in adipocytes, causing their hypertrophy. IL-6 is known to

inhibit the expression of lipoprotein lipase (LPL), the most

abundant of which is the cells of AT, heart and skeletal

muscles. Normally, LPL is exported from ad-ipocytes to the

endothelial lining of AT capillaries, where it cleaves the

triglycerides of chylomicrons and VLDL, thereby regulating

the concentration of triglycerides (26).
Arterial hypertension

Analysis of adipocytokine expression based on the presence of

AH demonstrated a decrease in ADIPOQ expression in EAT

against the background of increased LEP and IL-6 expression.

Moreover, the presence of hypertension for more than 20 years

was found to be associated with a decrease in the level of ADIPOQ

and increase in LEP within all AT types. Our results are consistent

with those of a previous study that reported reduced expression of

ADIPOQ and its receptors (AdipoR1 and AdipoR2) within the

perivascular adipocytes of mice with angiotensin II-induced

hypertension (27). Similarly, Teijeira-Fernandez et al. reported a

decrease in ADIPOQ expression in the EAT of AH patients. The
FIGURE 6

Adipocytokine gene expression in the culture medium of adipocytes collected from adipose tissue based on smoking status in coronary artery
disease patients. Data are presented in Me (Q1; Q3). SAT, subcutaneous adi-pose tissue; EAT, epicardial adipose tissue; PVAT, perivascular
adipose tissue; p, level of statistical significance; sOB-R, soluble leptin receptor; IL6, interleukin 6.
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authors concluded that of ADIPOQ expression in EAT may be

associated with AH status regardless of CAD or other concomitant

diseases, which confirms the hypothesis regarding the effect of EAT

on CVD (28).

In hypertension, the expression of LEP increases in EAT, which,

given the possible proliferative effect of leptin and the effect on

vascular permeability, may contribute to the progression of this

disease. Research by Nepomuceno at al. demonstrated the presence

of a direct correlation between LEP expression and blood pressure

(29). The simultaneous decrease of ADIPOQ expression in the EAT

and PVAT may also have an unfavorable affect as this adipokine

attenuates vascular damage in hypertension.
Smoking

When determining if smoking affects the expression of

adipocytokines in CAD pa-tients, it was found that smoking is

associated with an increase in ADIPOQ (in all types of AT), and

LEP expression (in SAT and EAT), however, does not impact IL-6

expression. Similarly, a previous study sought to examine the effect

of tobacco smoke in vitro and in vivo on the intracellular and

extracellular distribution of adiponectin and its high mo-lecular

weight form. Results showed that the total secretion of adiponectin

was sup-pressed, while administration of tobacco smoke extract to

mice reduced the adiponectin concentration in culture medium and

the plasma of wild-type mice against the back-ground of its

intracellular accumulation in cultured adipocytes. They further

reported an enhancement of the adiponectin-retaining chaperone

ERp44, localized in the endoplasmic reticulum, as well as

suppression of the adiponectin secretion factor DsbA-L, following

exposure to tobacco smoke. These results can help explain

hypoadiponectinemia and the increased risk of developing T2DM

in smokers due to its intracellular delay in the AT when exposed to

tobacco smoke (30).

Moreover, the observed results regarding LEP expression

agree with those of a pre-vious study that reported the effect of

nicotine on the expression and secretion of leptin in vitro. They

found that LEP expression did not differ significantly during the

first 6 h of incubation with nicotine in cultured 3T3-L1 mouse

adipocytes and AT explants from healthy women who

underwent mammoplasty surgery. Meanwhile, LEP expression

in 3T3-L1 mouse cells increased in the first hour and

subsequently decreased by 45% after a 6-hour incubation with

0.5 mg/ml nicotine. However, low dose nicotine (0.05 mg/ml) did

not affect LEP expression in 3T3-L1 cells. The observed change

in LEP expression in cul-tured cells incubated with nicotine, and

subsequent sharp decrease in plasma leptin concentration when

smoking cigarettes suggested that the decrease in plasma leptin

concentration in smokers is not associated with the direct effect

of nicotine on LEP ex-pression and secretion, but rather with

indirect exposure to catecholamines (31).
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Study limitations

Certain limitations were noted in this study. First, it

was a single-centered study and, second, the sample size

was small.
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Neck-to-height ratio is
positively associated with
diabetic kidney disease in
Chinese patients with type 2
diabetes mellitus

Zhi-Ying He1, Xiao Gu1, Lin-Jia Du1, Xiang Hu1,
Xing-Xing Zhang1, Li-Juan Yang1, Ying-Qian Li1, Jing Li1,
Lin-Yu Pan1, Bo Yang2,3, Xue-Jiang Gu1,3*† and Xiu-Li Lin4*†

1Department of Endocrine and Metabolic Disease, The First Affiliated Hospital of Wenzhou Medical
University, Wenzhou, China, 2Department of Preventive Medicine, School of Public Health and
Management, Wenzhou Medical University, Wenzhou, China, 3Institute of Lipids Medicine,
Wenzhou Medical University, Wenzhou, China, 4Department of Infection, The First Affiliated
Hospital of Wenzhou Medical University, Wenzhou, China
Introduction: The aim of this study was to investigate the associations of neck

circumference (NC) and neck-to-height (NHR) with diabetic kidney disease

(DKD) in Chinese patients with type 2 diabetes mellitus (T2DM).

Materials and methods: A total of 2,615 patients with prevalent T2DM were

enrolled. NHR was calculated through NC (cm) divided by height (cm), and

prevalent DKD was defined as the urinary albumin-to-creatinine ratio (UACR) ≥

30 mg/g or the estimated glomerular filtration rate (eGFR) < 60 ml/min per 1.73

m2 in the absence of other primary kidney diseases.

Results: The levels of NC and NHR were higher in DKD patients compared with

non-DKD patients (38.22 vs. 37.71, P = 0.003; 0.232 vs. 0.227, P < 0.001,

respectively). After full adjustments, individuals at the highest tertile of NHR had

higher odds of DKD than those at the lowest tertile (multivariate-adjusted OR =

1.63, 95% CI: 1.22, 2.18), but this association was not pronounced with NC

(multivariate-adjusted OR = 1.24, 95% CI: 0.87, 1.76). Individuals at the highest

tertile of NHR had lower eGFR (b = -4.64, 95% CI: -6.55, -2.74) and higher

UACR levels (b = 0.27, 95% CI: 0.10, 0.45) than those at the lowest tertile. The

adverse association between NHR and prevalent DKD remained statistically

significant among most of the subgroups analyzed and no interaction effects

were observed.

Conclusion: The increase in NHR was adversely and independently associated

with DKD in this Chinese T2DM population.

KEYWORDS

upper-body subcutaneous fat, neck-to-height ratio, neck circumference, diabetic
kidney disease, interactive analysis
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1 Introduction

Diabetic kidney disease (DKD), as one of the most common

chronic complications of diabetes, is developed in about 20 -

40% of patients with diabetes (1). Patients with DKD are more

likely to progress to end-stage renal disease (ESRD), as well as

have a higher risk of cardiovascular diseases (CVD) and all-

cause mortality (2, 3). It is vital to discover potential markers to

identify patients at a higher risk of DKD.

Obesity is proved to be an important risk factor for kidney

damage. Adipose tissue releases a mass of signaling molecules,

including inflammatory and hormonal factors, which are critical

for inter-organ crosstalk. The communication between

adipocytes and the kidney, known as the adipo-renal axis is

critical for normal kidney function and the effective response of

the kidney to injury (4, 5). Meanwhile, plenty of anthropometric

indices of obesity, such as body mass index (BMI), waist

circumference (WC), waist-to-hip ratio (WHR), and the

Chinese visceral adiposity index (CVAI) have already been

reported to be related to DKD (6–8).

Upper-body subcutaneous fat, a unique fat depot independent of

generalized and central adiposity, could present extra risk for

metabolic disorders (9, 10). Evidence to date have suggested that

upper-body subcutaneous fat could always be estimated by neck

circumference (NC) (11), which as a simple anthropometric index is

not affected by clothing or feeding. However, NC as a regional obesity

indicator, could not take the overall body fat distribution fully into

account. Neck-to-height ratio (NHR), adjusted for the discrepancies

in NC attributable to different heights, shows its advantage in

reflecting the whole body fat distribution based on height. And

accumulating evidence from clinical studies supported that NHR was

a better index for the assessment of upper-body subcutaneous fat

than NC in patients with metabolic disorders (12–14). Of note,

population-based studies that focused on the relationship between

upper-body subcutaneous fat and kidney damage are limited. In

populations without diabetes, clinical findings suggested that NC was

associated with indicators of kidney dysfunction (15–17). Only a

Chinese study targeted subjects with diabetes showed that NC was

positively associated with the prevalence of DKD (8). Furthermore,

there has been no population-based studies to investigate the

association between NHR and renal damage.

Therefore, the goal of our study was to explore the

associations of NC and NHR with DKD in patients with type

2 diabetes mellitus (T2DM).
2 Materials and methods

2.1 Study subjects

A total of 3267 adults were enrolled from National Metabolic

Management Center (MMC) (18, 19) in the First Affiliated
Frontiers in Endocrinology 02
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Hospital of Wenzhou Medical University from January

2017 to May 2021. 3067 subjects were diagnosed with T2DM

according to the diagnostic criteria of World Health

Organization (WHO) (20). The exclusion criteria were as

fol lowed: 1) pat ients without data of NC, height

measurements, serum creatinine or the urinary albumin–to–

creatinine ratio (UACR); 2) patients with acute or chronic

nephritis, IgA nephropathy, or other primary kidney diseases,

or had kidney space-occupying surgeries before. Finally, 2615

patients were included in the present study. An overview of the

patients selected was presented in Figure 1.

The study was approved by the Ethics Committee in Clinical

Research of the First Affiliated Hospital of Wenzhou Medical

University (No: KY2021-173), and all participants have been

given written informed consent.
2.2 Data collection

Including systolic blood pressure (SBP), diastolic blood

pressure (DBP), weight, height, WC and NC were measured

by trained staff according to standard protocols. Body weight

and standing height were measured accurate to the 0.1 kg and

0.1 cm without shoes or heavy clothes. WC was measured at the

midpoint between the lowest rib and the iliac crest. NC was

measured with the upper border of a flexible tape placed below

the laryngeal prominence and circled vertically to the long axis

of the neck (9). BMI was calculated through body weight (kg)

divided by the square of height (m2). NHR was calculated

through NC (cm) divided by height (cm).

Biochemical indicators, including fasting plasma glucose

(FBG), glycosylated hemoglobin A1c (HbA1c), triglyceride

(TG), total cholesterol (TC), high-density lipoprotein

cholesterol (HDL-C), low-density lipoprotein cholesterol

(LDL-C), and uric acid (UA) were assayed through venous

blood samples obtained in the morning after an overnight fast

(≥ 8h). Non-HDL-c was calculated through TC minus HDL-C.

Serum creatinine (Cr), urinary albumin and urinary creatinine

were measured with an automatic biochemical analyzer

(Beckmann AU 5800). UACR was ratios of urinary albumin to

urinary creatinine, the estimated glomerular filtration rate

(eGFR) was calculated according to the Chronic Kidney

Disease Epidemiology Collaboration (CKD-EPI) equation (21).

Diabetes duration, lifestyle factors including education

attainment, current smoking and drinking and medication

history were all obtained by standardized questionnaires.
2.3 Definition of variables

DKD was defined as UACR ≥ 30 mg/g or eGFR < 60 ml/min

per 1.73 m2, meanwhile in the absence of other primary kidney

diseases as suggested by the ADA recommendations (1).
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Overweight/general obesity was defined as BMI ≥ 24 kg/m2, and

central obesity was defined as WC ≥ 90 cm for men, ≥ 85 cm for

women, all according to the Guideline for the Prevention and

Treatment of Type 2 Diabetes Mellitus in China (22).

Hypertension was defined as SBP ≥ 140 mmHg and/or DBP ≥

90 mmHg, or undergoing antihypertensive medication currently

(23). Dyslipidemia was defined as TG ≥ 2.3 mmol/L, or TC ≥ 6.2

mmol/L, or HDL-c < 1.0 mmol/L, or LDL-c ≥ 4.1 mmol/L, or

non-HDL-c ≥ 4.9 mmol/L, suggested by the 2016 Chinese

Guidelines for the Management of Dyslipidemia in Adults (24).
2.4 Statistical analysis

All statistical analyses were performed by SPSS version 26.0

software (IBM Corporation). Data were displayed as means ±

standard deviation or as median (interquartile range) for

continuous variables, numbers and percentage for categorical

variables. Discrepancies between subjects with and without DKD

were analyzed using Student’s t test for normally distributed

continuous variables, Mann-Whitney U test for abnormally

distributed continuous variables, and chi-square test for

categorical variables. Multivariable logistic regression models

were applied to investigate the relationship between DKD and

the tertiles of NC and NHR, odds ratios (ORs) and 95%

confidence intervals (CIs) were provided. In addition,
Frontiers in Endocrinology 03
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multivariable linear regression models were used for eGFR and

log-transformed UACR (LnUACR) in relation to the tertiles of

NHR. Subgroup analyses were conducted to test the potential

interactions between NHR and the other cardiometabolic factors

on DKD. For regression models that mentioned above: age and

sex were adjusted for in model 1; age, sex, diabetes duration,

smoking and drinking status, SBP, TC, FBG were adjusted for in

model 2; age, sex, diabetes duration, smoking and drinking

status, SBP, TC, FBG, BMI, WC, antidiabetic agents currently

and antihypertensive agents currently were adjusted for in model

3. All P values were two-sided and considered statistically

significant when < 0.05.
3 Results

3.1 Baseline characteristics

There were 702 (26.85%) patients with DKD and 1913

(73.15%) patients without DKD enrolled in the present study.

NC and NHR levels were significantly higher in patients with

DKD compared to those without (38.22 vs. 37.71, P = 0.003;

0.232 vs. 0.227, P < 0.001). In contrast to patients without DKD,

those with DKD were older, less educated, and had longer

diabetes duration, higher proportions of women and non-

smokers, as well as had higher levels of SBP, DBP, BMI, WC,
frontiersin.org
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FBG, TG, TC, Cr, UACR, UA, current antidiabetic agents,

current antihypertensive agents usage and lower height, eGFR

(all P < 0.05). There were no statistical differences in current

drinking status, HbA1c, HDL-c or LDL-c between the two

groups (Table 1).
Frontiers in Endocrinology 04
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3.2 Associations of NC and NHR with
prevalent DKD

As shown in Table 2, after full adjustments for age, sex,

diabetes duration, smoking and drinking status, SBP, TC, FBG,
TABLE 1 Baseline characteristics of study participants based on DKD status.

Total DKD+ DKD- P Value

Participants (n, %) 2615 702, 26.85 1913, 73.15 /

Socio-demographics factors

Age (years) 50.96 ± 10.95 53.29 ± 10.43 50.10 ± 11.02 <0.001

Female (n, %) 829, 31.70 267, 38.03 562, 29.38 <0.001

Education attainment: high school or above (n, %) 633, 24.61 116, 16.89 517, 27.43 <0.001

Diabetes duration (month) 68.0 (12.0, 135.0) 109.5 (41.0, 165.0) 60.0 (4.0, 126.0) <0.001

Lifestyle risk factors

Current smoking (n, %) 874, 33.44 202, 28.77 672, 35.15 0.002

Current drinking (n, %) 1142, 43.67 297, 42.31 845, 44.17 0.394

Anthropometric parameters

SBP (mmHg) 127.26 ± 18.72 134.78 ± 20.77 124.51 ± 17.11 <0.001

DBP (mmHg) 75.42 ± 11.00 77.95 ± 12.00 74.49 ± 10.46 <0.001

BMI (kg/m2) 24.67 ± 3.49 25.28 ± 3.71 24.45 ± 3.38 <0.001

WC (cm) 88.98 ± 9.59 90.39 ± 9.97 88.46 ± 9.39 <0.001

NC (cm) 37.85 ± 3.78 38.22 ± 4.07 37.71 ± 3.66 0.003

Height (cm) 164.7 ± 8.4 163.2 ± 8.5 165.3 ± 8.3 <0.001

NHR 0.228 (0.217, 0.241) 0.232 (0.221, 0.245) 0.227 (0.215, 0.239) <0.001

Biochemical indexes

FBG (mmol/L) 7.7 (6.1, 9.7) 8.1 (6.2, 10.4) 7.5 (6.0, 9.5) <0.001

HbA1c (%) 10.09 ± 2.41 10.12 ± 2.35 10.08 ± 2.43 0.660

TG (mmol/L) 1.55 (1.07, 2.35) 1.81 (1.24, 2.70) 1.45 (1.02, 2.23) <0.001

TC (mmol/L) 4.83 (4.04, 5.68) 4.97 (4.10, 5.92) 4.78 (4.02, 5.60) 0.001

HDL-c (mmol/L) 0.99 (0.84, 1.16) 0.98 (0.84, 1.14) 0.99 (0.84, 1.17) 0.229

LDL-c (mmol/L) 2.71 ± 0.90 2.69 ± 0.94 2.71 ± 0.89 0.550

Cr (mmol/L) 62.0 (52.0, 73.0) 65.0 (51.0, 83.0) 62.0 (52.0, 71.0) <0.001

eGFR (ml/min per 1.73 m2) 104.16 ± 18.44 95.91 ± 25.16 107.18 ± 14.13 <0.001

UACR (mg/g) 11.10 (5.90, 33.00) 107.10 (48.48, 337.50) 7.80 (5.00, 13.00) <0.001

UA (mmol/L) 316.0 (261.0, 379.0) 329.0 (266.0, 401.5) 312.0 (260.0, 372.0) <0.001

Antidiabetic agents currently(n, %) 1775, 67.98 543, 77.57 1232, 64.47 <0.001

Antihypertensive agents currently (n, %) 747, 28.61 312, 44.51 435, 22.77 <0.001

The data were displayed as means ± standard deviation or as median (interquartile range) for continuous variables, or numbers and percentage for categorical variables. DKD diabetic
kidney disease, SBP systolic blood pressure, DBP diastolic blood pressure, BMI body mass index, WC waist circumference, NC neck circumference, NHR neck-to-height ratio, FBG
fasting plasma glucose, HbA1c glycosylated hemoglobin A1c, TG triglyceride, TC total cholesterol, HDL-c high-density lipoprotein cholesterol, LDL-c low-density lipoprotein
cholesterol, Cr serum creatinine, UACR urinary albumin-to-creatinine ratio, UA uric acid
fron
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BMI, WC, antidiabetic agents currently and antihypertensive

agents currently, the highest tertile of NC was not associated

with prevalent DKD compared to the lowest tertile of NC (OR =

1.24, 95% CI: 0.87, 1.76). However, patients at the highest tertile

of NHR were 1.63 times more likely to have DKD (OR = 1.63,

95% CI: 1.22, 2.18) than those at the lowest tertile of NHR in the

same full-adjusted model.

The secondary analyses were further performed to explore

the associations of NHR with levels of eGFR and UACR.

Compared with the lowest one, the highest tertile of NHR was

significantly associated with lower eGFR level (b = -4.64, 95% CI:

-6.55, -2.74) and higher LnUACR level (b = 0.27, 95% CI: 0.10,

0.45) after full adjustments (Table 3).
3.3 Subgroup analysis

Interaction effects were analyzed in strata of sex, age,

diabetes duration, overweight/general obesity, central obesity,

hypertension, and dyslipidemia after total adjustments. As

presented in Table 4, participants at the highest tertile of NHR

remained at a higher risk of DKD than those at the lowest tertile

among most of the strata analyzed, except in those with older

age, shorter diabetes duration, central obesity, and in those

without overweight/general obesity or dyslipidemia. No

interactive effects were observed in any of these strata (all P

for interaction > 0.05)
4 Discussion

The current study was the first population-based

epidemiological study to investigate the associations of NC
Frontiers in Endocrinology 05
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and NHR, as indicators of upper-body subcutaneous fat, with

prevalent DKD in Chinese population with T2DM. Our major

finding indicated that NHR, instead of NC, was positively

associated with the presence of DKD in patients with T2DM,

independent of cardiometabolic risk factors. The increase in

NHR was also related to a decrease in eGFR and an increase in

UACR levels. Such discoveries suggested that NHR might be a

potential indicator for identifying patients at a higher risk

of DKD.

Studies about the relationship between NC and kidney

dysfunction were limited and inconsistent. A research based

on the general Chinese adults found the negative association

between NC and eGFR (16). Similarly, a Korean community-

based study also showed that eGFR was decreased in subjects

with higher NC (17). However, a study including 177 patients

with high cardiometabolic risk indicated that larger NC was

related to the higher eGFR level (15). The disagreements with

these studies might due to different health conditions of

populations enrolled and distinct influencing factors

considered. A Chinese research hold by Wan et al. showed

that NC was positively associated with prevalent DKD, but

without further adjusted for WC (8). WC, a proxy for central

obesity, was found to be closely related to microalbuminuria and

renal damage in patients with diabetes (25–27). Thereby, in

order to testify the independent effect of NC on DKD, the impact

of WC should be considered. Of note, our study found that the

connection between NC and DKD disappeared with adjustments

for WC. Moreover, in Xue et al.’s study (16), the negative

association of NC with eGFR no longer existed in subjects

with diabetes, which suggested that the relationship between

NC and eGFR might be concealed by the strongly harmful effect

of hyperglycemia on renal function. These results indicated that

NC might be unstable and inaccurate to reveal kidney damage in

patients with diabetes.
TABLE 2 Associations of NC and NHR with the prevalence of DKD in patients with T2DM.

Case/Participants (%) Model 1 Model 2 Model 3

OR 95% CI P Value OR 95% CI P Value OR 95% CI P Value

NC

T1 174/687 (25.33) 1.00 1.00 1.00

T2 227/866 (26.21) 1.45 1.13-1.88 0.004 1.29 0.98-1.69 0.071 1.17 0.88-1.56 0.290

T3 301/1062 (28.34) 1.98 1.50-2.61 <0.001 1.48 1.10-1.99 0.010 1.24 0.87-1.76 0.232

NHR

T1 173/877 (19.73) 1.00 1.00 1.00

T2 242/864 (28.01) 1.70 1.35-2.13 <0.001 1.48 1.16-1.88 0.002 1.43 1.11-1.85 0.006

T3 287/874 (32.84) 2.21 1.76-2.78 <0.001 1.77 1.39-2.25 <0.001 1.63 1.22-2.18 0.001

Model 1: age, sex; Model 2: Model 1 + diabetes duration, smoking and drinking status, SBP, TC, FBG; Model 3: Model 2 + BMI, WC, antidiabetic agents currently, antihypertensive
agents currently. NC neck circumference, NHR neck-to-height ratio, DKD diabetic kidney disease, T2DM type 2 diabetes mellitus, OR odds ratio, CI confidence interval, SBP systolic
blood pressure, TC total cholesterol, FBG fasting plasma glucose, BMI body mass index, WC waist circumference
fron
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Likewise, several other studies have showed that in contrast

to NC, NHR was more closely related to metabolic disorders,

such as arterial stiffness, liver stiffness, obstructive sleep apnea

syndrome (OSAS) and metabolic syndrome (MetS) (12, 13, 28–
Frontiers in Endocrinology 06
37
30). A community-based study demonstrated that the increase

in NHR, rather than NC was related to higher brachial-ankle

pulse wave velocity (baPWV) (12). An Indian study revealed

that NC and NHR were both great indicators for MetS, but as to
TABLE 4 Subgroup analyses on the association of NHR with the prevalence of DKD in T2DM patients.

Subgroup Case/Subjects (%) OR 95% CI P Value P for interaction

Total 702/2615 (26.85) 1.63 1.22-2.18 0.001

Sex 0.241

Male 435/1786 (24.36) 1.58 1.08-2.31 0.019

Female 267/829 (32.21) 1.62 1.02-2.58 0.041

Age 0.557

< 65 years 598/2348 (25.47) 1.62 1.18-2.20 0.003

≥ 65 years 104/267 (38.95) 1.93 0.86-4.37 0.112

Diabetes duration (median) 0.473

< 68 months 257/1289 (19.94) 1.52 0.97-2.37 0.066

≥ 68 months 439/1292 (33.98) 1.75 1.19-2.57 0.005

Overweight/ general obesity 0.562

No 257/1149 (22.37) 1.56 0.95-2.56 0.082

Yes 445/1466 (30.35) 1.58 1.05-2.38 0.027

Central obesity 0.577

No 292/1239 (23.57) 2.40 1.54-3.75 <0.001

Yes 409/1371 (29.83) 1.31 0.87-1.97 0.196

Hypertension 0.414

No 193/1345 (14.35) 1.65 1.02-2.67 0.043

Yes 509/1270 (40.08) 1.59 1.10-2.30 0.013

Dyslipidemia 0.266

No 198/898 (22.05) 1.37 0.81-2.30 0.237

Yes 504/1717 (29.35) 1.91 1.34-2.72 <0.001

Above analyses were adjusted for age, sex, diabetes duration, smoking and drinking status, SBP, TC, FBG, BMI, WC, antidiabetic agents currently and antihypertensive agents currently.
NHR neck-to-height ratio, DKD diabetic kidney disease, T2DM type 2 diabetes mellitus, OR odds ratio, CI confidence interval, SBP systolic blood pressure, TC total cholesterol, FBG
fasting plasma glucose, BMI body mass index, WC waist circumference.
TABLE 3 Associations between NHR and eGFR/LnUACR level in patients with T2DM.

NHR Case/Participants (%) eGFRa LnUACRb

b 95% CI P Value b 95% CI P Value

T1 173/877 (19.73) 1.00 1.00

T2 242/864 (28.01) -2.19 -3.84- (-0.55) 0.009 0.07 -0.08-0.22 0.381

T3 287/874 (32.84) -4.64 -6.55- (-2.74) <0.001 0.27 0.10-0.45 0.002

aThe model was adjusted for sex, diabetes duration, smoking and drinking status, SBP, TC, FBG, BMI, WC, antidiabetic agents currently and antihypertensive agents currently.
bThe model was adjusted for age, sex, diabetes duration, smoking and drinking status, SBP, TC, FBG, BMI, WC, antidiabetic agents currently and antihypertensive agents currently.
NHR neck-to-height ratio, eGFR the estimated glomerular filtration rate, LnUACR log-transformed urinary albumin-to-creatinine ratio, T2DM type 2 diabetes mellitus, CI confidence
interval, SBP systolic blood pressure, TC total cholesterol, FBG fasting plasma glucose, BMI body mass index, WC waist circumference
fron
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cardiovascular risk prediction, NHR was more plausible (29). It’s

conceivable that NHR is more reliable than NC to represent for

upper-body subcutaneous fat, since it considers the effect of

height on whole body fat distribution. However, no studies to

date have been done to explore the relationship of NHR with

kidney dysfunction in any population. Our study based on

Chinese patients with T2DM discovered that NHR

was positively associated with prevalent DKD after full

adjustments. What’s more, none of the interaction effects of

cardiometabolic risk factors, which were all found to be closely

related to DKD (1, 7, 31, 32), on the association between NHR

and DKD were observed in our study. It indicated that the

influence of NHR on DKD was not interfered by these

cardiometabolic risk factors and further revealed the relative

independence and stability of NHR in its relationship with DKD.

Additionally, in consideration of BMI and WC as indicators for

generalized and central fat accumulations respectively, our

findings might indirectly prove that upper-body subcutaneous

fat accumulation, represented by NHR, was indeed the unique

fat site, which could confer extra metabolic risks beyond

generalized and central obesity (33, 34).

The mechanisms for the association between excessive upper-

body subcutaneous fat and the increasing risk of DKD remained

unclear. Firstly, upper-body subcutaneous fat releases the majority

of free fatty acids (FFAs) (35, 36), which could lead to the

endothelial dysfunction and motivate the production of reactive

oxygen species (37, 38), thereby having pathogenic effects on

kidney, especially on tubulointerstitium (39) and podocytes (40–

42). Secondly, larger upper-body subcutaneous fat is closely related

to the increasing risk of IR (10, 43). While insulin sensitivity of the

glomerular podocytes is vital for normal renal function (44), and

previous studies have discovered that IR did propel the

development of DKD (45, 46). Thirdly, patients with larger

upper-body subcutaneous fat are more likely to have OSAS (47),

the latter would accelerate the progress of DKD and other diabetic

microvascular complications via promoting oxidative and

nitrosative stress (48–50). At last, Mangge et al. proposed that

nuchal fat accumulation, by secreting inflammatory cytokines and

adipokines (51), might accelerate cell turnover and mitochondrial

activity, thus result in telomeres damage and shortening (52).

Shorter pieces of telomeres lead to senescent cells and ultimately

influence phenotypes and functions of organs (53). Previous studies

discovered that patients with shorter telomere length developed

increased microalbuminuria, reduced eGFR and impaired kidney

function (54–56). Telomere shortening may be another cause for

the renal damage due to excessive upper-body subcutaneous fat.

There were several limitations in our study. Firstly, it was a cross-

sectional study, causality between NHR and DKD cannot be

established. Secondly, our study participants were from a single

center and the great majority of them were hospitalized for relative

poor glycemic control, it’s generalizability should be verified by

involving outpatients or community patients in the future. Thirdly,

direct adipose tissue measurements, such as CT or MRI are required
Frontiers in Endocrinology 07
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to verify the authenticity of NHR. Cohort studies with larger and

multicentric samples should also be done.

5 Conclusion

The present study demonstrated that the higher levels of NHR

was significantly associated with the higher presence of DKD in

Chinese patients with T2DM, independent of cardiometabolic risk

factors. NHR might be a potential indicator for screening renal

dysfunction in patients with T2DM, which needs more prospective

studies to be confirmed in the future.
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Chronic kidney disease (CKD) causes considerable morbidity, mortality, and

health expenditures worldwide. Obesity is a significant risk factor for CKD

development, partially explained by the high prevalence of diabetes mellitus

and hypertension in obese patients. However, adipocytes also possess potent

endocrine functions, secreting a myriad of cytokines and adipokines that

contribute to insulin resistance and induce a chronic low-grade

inflammatory state thereby damaging the kidney. CKD development itself is

associated with various metabolic alterations that exacerbate adipose tissue

dysfunction and insulin resistance. This adipose-renal axis is a major focus of

current research, given the rising incidence of CKD and obesity. Cellular

senescence is a biologic hallmark of aging, and age is another significant risk

factor for obesity and CKD. An elevated senescent cell burden in adipose tissue

predicts renal dysfunction in animal models, and senotherapies may alleviate

these phenotypes. In this review, we discuss the direct mechanisms by which

adipose tissue contributes to CKD development, emphasizing the potential

clinical importance of such pathways in augmenting the care of CKD.

KEYWORDS

chronic kidney disease, obesity, cellular senescence, chronic inflammation,
adipokines, senotherapies
1 Introduction

Obesity is a contributing risk factor of 20-25% of chronic kidney disease (CKD) cases

worldwide (1). As per the 2011-2014 National Health and Nutrition Examination Survey,

44.1% of CKD patients in the United States of America (USA) were obese (2). The

number of end-stage kidney disease (ESKD) kidney transplant recipients who were obese
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also grew by 44% from 1999—2009 (3). Diabetes and

hypertension—the two most common causes of CKD

worldwide—frequently accompany obesity and are often put

forward as the major causes of obesity-related CKD. However,

obesity is a risk factor CKD-related disability and mortality after

adjusting for diabetes and hypertension (4, 5). Othman et al.

demonstrated that non-diabetic obese patients were more likely

to undergo CKD progression than non-obese subjects (6). These

results suggest an independent mechanism by which obesity

damages the kidney.

Although lifestyle changes, such as weight loss, are essential

for managing obesity, most patients fail to achieve adequate or

sustained weight loss (7). Recent clinical trials report that the

glucagon-like-peptide-1 (GLP-1) receptor agonist semaglutide

and the GLP and gastric inhibitory peptide (GIP) receptor

agonist tirzepatide induce significant weight loss in obese

patients; high dose terzepatide (10-15 mg weekly) achieved >

20% reductions in body weight, resembling that achieved after

bariatric surgeries (8–12). Sattar et al. concluded that GLP-1

receptor agonists slowed decline in estimated glomerular

filtration rate (eGFR), ameliorated progression to ESKD, and

reduced kidney disease-related mortality (13). Bariatric surgeries

are an option for morbidly obese patients who cannot lose

weight and are refractory to anti-obesity medications. Bariatric

surgery reduces systemic inflammation, proteinuria, and

glomerular hyperfiltration in obese CKD patients (14, 15).

Bariatric surgery also decreases the 5-year risk of mortality by

79% in obese pre-dialysis CKD patients (16). Such data

demonstrate that decreasing adiposity betters various indices

of kidney function and mitigates CKD development

and progression.

The management of obesity-related CKD is still in its

infancy, and evidence-based guidelines are yet to be

established (1). Improvements in risk stratification and

management protocols are urgently needed to improve the

care of obese-related CKD. While diabetes and hypertension

are significant contributors to obesity-related CKD, recent

decades of research have shown that adipocytes are potent

endocrine cells, releasing adipokines which exert direct

pathologic effects on the kidney (17). Adipokines also

indirectly damage the kidney by contributing to the

development of insulin resistance and hypertension (18).

Alternatively, CKD induces several endocrine and

immunologic dysregulations in adipose tissue. Identifying the

key players of this adipose-renal axis may have clinical practice-

changing implications, given the strong links between obesity

and CKD and their paralleled rise in prevalence. Identifying

mediators of adipose tissue-induced kidney disease is essential in

improving risk prediction models of CKD in obese patients and

identifying targets for pharmacotherapies. This review discusses

the adipose tissue-derived mediators of CKD and translational

research on how such mechanisms are targeted.
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2 Adipose tissue inflammation in
obesity and chronic kidney disease
Chronic low-grade inflammation is a biological hallmark of

aging—termed inflammaging (19). Obesity promotes

inflammaging, explaining why obese individuals experience

age-related chronic disease prematurely (20, 21). Conversely,

limiting fat development or inducing adipose tissue depletion

extends health and life span (22). Both obesity and aging impair

adipogenesis, the process by which adipocyte progenitors

differentiate into functional, insulin-responsive adipocytes (23).

Consequently, adipose tissue cannot buffer circulating lipids,

which then deposit ectopically in other organs, such as the liver,

skeletal muscle, and kidney, causing lipotoxicity. Lipotoxicity

impairs insulin signaling in the kidney, liver, and skeletal muscle,

causing insulin resistance (24).

Individual adipocytes hypertrophy in response to impaired

adipogenesis (25). Hypertrophic adipocytes promote adipose

tissue inflammation by producing tumor necrosis factor-a
(TNF-a) and interleukin-6 (IL-6) (26). These proinflammatory

cytokines are critical to the onset of insulin resistance; mice

lacking TNF-a have lower circulating free fatty-acids and are

protected from insulin resistance (27). Hypertrophic adipocytes

also produce macrophage chemoattractant protein-1 (MCP-1),

recruiting adipose tissue macrophages (ATMs) (28). ATMs

constitute less than 10% of the total cell population of adipose

t i ssue in lean indiv idua ls and mice but increase

disproportionately in obesity to make up 40-50% of the

adipose tissue cellular compartment (28). Indeed, increased

ATM recruitment is histologically evident, revealing ATMs

surrounding dead or dying adipocytes, forming crown-like

structures and engulfing lipid droplets (29). ATMs in obesity

are polarized towards a proinflammatory M1 phenotype,

elaborating proinflammatory cytokines such as TNF-a (30).

Therefore, hypertrophic adipocytes and M1-polarized ATMs

actively contribute to adipose tissue inflammation and insulin

resistance. In agreement with these findings, knocking out MCP-

1 or its receptor attenuates macrophage infiltration into adipose

tissue and reduces insulin resistance (31). Pharmacologically

polarizing ATMs towards an M2 phenotype also reduces adipose

tissue inflammation in high-fat diet (HFD) obese mouse models

(32, 33).

The array of cytokines and signaling molecules released by

adipose tissue renders them capable of modulating the

inflammatory and immunologic phenotypes of various organs,

including the kidney. In this light, adipose tissue inflammation

exerts detrimental effects on renal function. Plasma TNF-a and

IL-6 are elevated in obese pateints and are associated with CKD

incidence and severity independent of diabetes (34, 35). Weight

loss or bariatric surgery normalizes these proinflammatory

cytokines and reduces glomerular hyperfiltration (14). IL-1b is
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another pro-inflammatory cytokine elevated in obesity.

Importantly, patients with sustained IL-1b elevations post-

bar ia tr ic surgery exper ienced no improvement in

hyperfiltration (36).

Adipose tissue fibrosis is another important mediator of

adipose tissue inflammation in obesity (37). In this regard,

ATMs secrete matrix metalloproteinase-14 (MMP-14) to

induce extracellular matrix remodeling by activating MMP-2

and MMP-9 (38). Furthermore, certain MMPs impair

adipogenesis in obesity (38). In support of the contribution of

MMPs to adipose tissue inflammation, MMP-12-deficient mice

fed a high-fat diet (HFD) showed better insulin sensitivity and

adipogenesis and an anti-inflammatory M2 ATM phenotype

compared to wild-type mice fed an HFD (39). MMP-12

depletion also attenuated glomerular inflammation and renal

fibrosis (39), indicating that changes in the inflammatory and

immune phenotypes of adipose tissue affect the kidney. Along

this line, pharmacologically polarizing ATMs to an M2

phenotype has renoprotective effects by preventing glomerular

and mesangial expansion and fibrosis (32, 33).

Hypoxia contributes to adipose tissue inflammation and

fibrosis. Rapid adipocyte hypertrophy in obesity outgrows its

blood supply, resulting in hypoxia, cell death, and inflammation

(40). Adipocyte tissue hypoxia activates hypoxia-inducible

factor-1a (HIF-1a). HIF-1a does not elicit pro-angiogenic

responses in adipose tissue but rather pro-fibrotic and pro-

inflammatory transcriptional programs, leading to fibrosis and

inflammation (37, 41). Inhibiting HIF-1a via PX-478 or

introducing a dominant negative mutation prevents these

fibrotic and inflammatory responses, even under a high-fat

challenge (42). Hypoxic conditions in visceral adipose tissue

downregulate the insulin receptor, which is reversible if oxygen

supply is restored. Hypoxia-related insulin insensitivity in

adipose tissue is mediated by micro-RNA 128, which

destabilizes mRNA encoding the insulin receptor (43).

Therefore, adipose tissue inflammation in obesity is multi-

factorial and drives renal dysfunction. This adipose-renal

crosstalk is bidirectional. CKD reduces subcutaneous fat

volume with a redistribution of fat to visceral depots and

ectopic lipid deposition in skeletal muscle and the liver with

consequent lipotoxicity (44). Ectopic lipid deposition also occurs

in the kidneys in CKD, increasing renal inflammation (44). A

recent study observed that exposing adipose tissue to uremic

serum activates NFkB and HIF-1a, which drive adipose tissue

inflammation. Indeed, adipose tissue sampled from dialysis

patients also exhibits higher inflammatory markers (45),

suggesting that it may be a source of the chronic low-grade

inflammation observed in CKD patients in a manner unrelated

to excess adiposity (46). CKD promotes macrophage infiltration

into adipose tissue and consequent inflammation, leading to

glucose intolerance and insulin resistance (44, 47, 48). Martos-

Rus et al. recently demonstrated significantly higher ATM
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density in the adipose tissue of ESKD subjects than BMI-

matched controls (49). ATM recruitment in CKD may be IL-

6-dependent, as IL-6-KO mice showed reduced ATM densities

comparable to wild-type mice. Uremic serum also directly

activates ATMs to a pro-inflammatory M1 phenotype (49).

Lastly, uremia alters the adipokine profile of adipocytes.

Incubating human adipocytes with uremic serum increases

leptin secretion and lipolysis while decreasing perilipin mRNA

transcripts—perilipin promotes fat storage as triglycerides in

adipose tissue (50–52). Urea accumulation in CKD also

increases oxidative stress in adipose tissue, leading to the

production of adipokines resistin and retinol-binding protein-

4, which contribute to insulin resistance (48).
3 Adipokine alterations in obesity
and effects on the kidney

Adipocytes produce various adipokines, enabling them to

modulate the function of remote organs, such as the kidney.

Below we discuss the most studied adipokines, leptin and

adiponectin, and how alterations in these adipokines contribute

to obesity-related CKD (Figure 1). Conversely, CKD also changes

serum leptin and adiponectin levels, which may contribute to

CKD stage progression and systemic complications.
3.1 Leptin

In conditions of nutrient excess, adipocytes produce leptin to

modulate CNS activity, promote satiety, and increase energy

expenditure. Obesity is associated with hyperleptinemia and

leptin resistance (53, 54). Indeed, leptin levels are 5-10x higher

in obese patients compared to non-obese individuals (55, 56).

Since the kidney is the primary organ responsible for leptin

clearance (57), CKD is also associated with hyperleptinemia, the

degree of which correlates with the CKD stage (18, 58, 59). Park

et al. recently demonstrated a significant correlation between

elevated serum leptin levels and the risk of CKD in men after

adjusting for eGFR and age (60). Such associations are even

more evident in females, probably owing to sex-specific

differences in circulating leptin levels (61).

Numerous studies have shown leptin to induce

glomerulosclerosis and hypertension, both risk factors to CKD

(62). The short form of the leptin receptor (Lep-Ra) is the

predominant leptin receptor expressed in the kidney compared

to the long form (Lep-Rb). Glomerulosclerosis and renal fibrosis

in obese mice have been linked to Lep-Rb-dependent JAK2-

STAT signaling in renal mesangial cells (63). Leptin promotes

TGFb-1 release and type IV collagen and fibronectin production

in the glomerulus, leading to proteinuria and glomerulosclerosis

(62). This effect was initially found to be mediated via adenosine
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monophosphate-activated protein kinase (AMPK) activation

(64), which paradoxically inhibits TGFb-1 and protects against

renal fibrosis in several mouse models (65). This discrepancy

suggested that leptin-mediated fibrosis may additionally involve

other signaling pathways in the kidney. Indeed, activation of the

p38/MAPK signaling pathway is involved in leptin-mediated

renal fibrosis (64). Leptin also induces endothelial dysfunction

(ED) by upregulating vascular adhesion molecules such as

intercellular adhesion molecule-1 (ICAM-1) and vascular cell

adhesion molecule-1 (VCAM-1) through AKT/GSK3b and

Wnt/b-catenin signaling pathways, promoting renal

inflammation and vascular remodeling (66, 67). Lastly, leptin

promotes oxidative stress in renal tubular epithelial cells and

stimulates monocytes to release IL-6 and TNF-a, promoting

renal inflammation (68, 69).

Leptin is also considered a uremic toxin, contributing to

many CKD complications including cachexia, protein-energy

wasting (PEW), insulin resistance, hypertension, cardiovascular

disease, and bone pathologies (70). PEW in CKD features

anorexia, increased energy expenditure, decreased protein

stores and muscle mass, and weight loss. Leptin suppresses

food intake and increases energy expenditure through binding

mineralocortin-4 receptors (MC4-R) in the hypothalamus,

leading to uremic cachexia (71–73). Inhibiting MC4-R

improves cachexia and reduces skeletal muscle wasting in
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preclinical models, but this needs further investigation in

humans (73).

Leptin increases the risk of cardiovascular disease, the most

common cause of mortality in CKD patients. Leptin induces

hypertension by increasing sympathetic outflow, decreasing

nitric oxide (NO) production, and increasing endothelin-1 in

endothelial cells (74–76). Leptin promotes atherogenesis

through endothelial cells, macrophages, and smooth muscle

cells via the Lep-Rb receptor, which is reviewed elsewhere

(77). Similarly, leptin binding to the Lep-Rb receptor on

platelets enhances ADP signaling to induce platelet

aggregation, which may cause the platelet dysfunction

characteristic of uremia (78, 79). Lastly, hyperleptinemia

decreases glucose-stimulated insulin release from pancreatic b-
cells and impairs insulin signaling in hepatocytes (80, 81),

although it should be noted that normal leptin levels enhance

insulin release (80, 81).

Therefore, obesity-associated hyperleptinemia may

contribute to renal pathology and CKD, mainly by causing

secondary glomerulosclerosis. Furthermore, CKD-associated

hyperleptinemia may contribute to numerous CKD

complications. In agreement with these findings, leptin-

deficient mice are significantly protected against albuminuria,

glomerular crescent formation, macrophage infiltration, and

glomerular thrombosis (82). Inhibiting leptin using specific
FIGURE 1

Excess adiposity increases serum leptin and decreases adiponectin. Hyperleptinemia promotes renal fibrosis, leading to glomerulosclerosis seen
in obesity-induced glomerulopathy. Leptin is also considered a uremic toxin, contributing to uremic cachexia and platelet dysfunction. The
decrease in renal adiponectin effect in obesity is causal in the development of albuminuria. Loss of adiponectin effect in obesity also increases
renal oxidative stress, fibrosis, and inflammation. Adiponectin-mediated AMPK activation is responsible for many of adiponectin's renoprotective
effects, with a decrease in AMPK implicated in albuminuria and renal injury. The adiponectin receptor agonist AdipoRon and direct AMPK activators
AICAR, berberine, and PF-06409577 are pharmacological strategies to increase renal AMPK levels and mitigate obesity-related kidney disease.
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antibodies or antagonists also substantially reduces blood

pressure in mice with diet-induced obesity (83) and alleviates

cachexia in CKD mice (84). Weight loss, either through lifestyle

interventions, pharmacotherapies, or bariatric surgeries, is

associated with significant decreases in leptin levels (85–89),

but whether leptin normalization after weight loss directly

improves renal function remains to be investigated.
3.2 Adiponectin

Adiponectin secretion is decreased in obesity, promoting the

development of obesity-related chronic complications. The

development of adiponectin-KO animal models have allowed

causal relationships to be drawn between adiponectin deficiency

and several aspects of the metabolic syndrome. For example,

adiponectin-KO mice develop hepatic steatosis, which is

attenuated by transfecting the adiponectin gene (90, 91). In

skeletal muscle, adiponectin stimulates beta-oxidation and

reduces lipid deposition and consequent lipotoxicity (92).

Furthermore, adiponectin inhibits lipolysis and stimulates

triglyceride storage in subcutaneous adipose tissue.

Adiponectin, therefore, promotes fat storage in AT and

increases insulin sensitivity, with its decrease in obesity a

causal factor in insulin resistance, lipotoxicity, and metabolic

syndrome manifestations (92).

The renoprotective effects of adiponectin are well-

documented (18). Two adiponectin receptor isoforms,

ADIPOR1 and ADIPOR2, are expressed in the kidney.

Stimulation of ADIPOR1 and ADIPOR2 activate AMPK and

peroxisome-proliferator activated receptor-a (PPAR-a),
respectively, which attenuate renal inflammation, fibrosis,

glomerulosclerosis, podocyte effacement, and albuminuria (17).

A rise in intracellular AMPK by ADIPOR1 activation in

podocytes inhibits NADPH oxidase and reduces permeability

to albumin (93). In this light, non-obese non-diabetic mice who

are adiponectin-deficient still develop effacement of podocyte

foot processes and albuminuria due to increased oxidative stress

(93, 94). In mesangial cells, adiponectin increases AMPK to

attenuate angiotensin-II-induced TGF-b1 production,

decreasing renal fibrosis (95).

Adiponectin also exerts anti-inflammatory effects on the

kidney. For example, MCP-1 binds to its cognate CCR2

receptor to promote macrophage infiltration into the kidneys

and renal inflammation (96). Adiponectin-deficient CKD mice

develop significant albuminuria, tubulointerstitial fibrosis, and

inflammation characterized by high MCP-1, TNF-a, NADPH
oxidase, and VCAM-1 upregulation (97). Adiponectin

administration via an adenovirus vector significantly reduces

albuminuria, tubulointerstitial fibrosis, glomerular hypertrophy,

and inflammation by lowering TNF-a, NADPH oxidase, and

VCAM1 (97). Adiponectin has also been shown to directly
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stimulate IL-10 production by macrophages and decrease IL-6

and TNF-a, suggesting polarization to an M2 phenotype (98).

Lastly, ceramides are a group of sphingolipids implicated in

renal disease. Serum levels of several ceramides are independent

risk factors for CKD development and stage progression (99), as

well as insulin resistance and lipotoxicity (100). Ceramides also

act at several levels of the insulin signal transduction pathway to

impair insulin signaling. Notably, both ADIPOR1 and

ADIPOR2 possess intrinsic basal ceramidase activity, which is

enhanced by adiponectin binding (101). Elevated ceramidase

activity by ADIPOR1 and ADIPOR2 overexpression increases

insulin sensitivity and glucose utilization while opposing hepatic

steatosis (102). Ceramidase metabolizes ceramides into

sphingosine-1-phosphate, which has anti-apoptotic effects and

may even induce proliferation (103). These studies indicate that

the pleiotropic metabolic, anti-apoptotic, and insulin-sensitizing

effects of adiponectin may at least partly involve amplifying

receptor-associated ceramidase activity.

Serum adiponectin is lower in obese patients compared to lean

individuals. ADIPOR1 and ADIPOR2 expression is also reduced in

the kidneys of obese and diabetic mice (104). Therefore, kidneys

from obese mice and humans showed reduced AMPK levels (105).

Treatment with 5-aminoimidazole-4-carboxamide-1-b-D-

furanoside (AICAR), which enhances adiponectin-mediated

AMPK signaling, increases AMPK levels in obese kidneys and

reduces mesangial expansion and albuminuria (106). The

antioxidant resveratrol also restores ADIPOR expression in the

kidney and increases AMPK activation in diabetic mice, associated

with reductions in albuminuria, oxidative stress, and inflammation

(104). The molecule berberine enhances adiponectin signaling

through AMPK to ameliorate renal pathology in diabetic mice

(107). In animal models of diabetic nephropathy and obesity, the

AMPK agonist PF-06409577 and adiponectin receptor agonist

AdipoRon reduce proteinuria, inflammation, and renal fibrosis

(108–110). These results suggest that targeting adiponectin

receptors or AMPK directly may be beneficial in obesity- and

diabetes-related kidney disease.

Despite adiponectin having numerous renoprotective effects,

adiponectin levels are paradoxically increased in CKD and are

positively correlated with albuminuria, CKD stage, and mortality,

independent of body mass index (BMI) (58, 111). Adiponectin also

predicts adverse cardiovascular outcomes in CKD patients (112).

Unlike leptin, higher adiponectin levels in CKD cannot be simply

explained by decreased renal clearance because the liver clears the

high-molecular-weight form of adiponectin (113). Therefore, why

adiponectin is elevated in CKD and is predictive of disease severity

remains investigational.

Tian et al. induced CKD in non-obese mouse models with

deoxycorticosterone acetate-salt (DOCA) and angiotensin II

infusion (114). Transgenic adiponectin-overexpressing CKD

mice showed significantly lower albuminuria, glomerular and

interstitial fibrosis, and attenuated effacement of podocyte foot
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processes. Markers of tubular injury and inflammation were also

lower in the transgenic models (114). These results are contrary

to the unfavorable prognostic effect attributed to adiponectin in

CKD patients. Yang et al. demonstrated that elevated

adiponectin levels were associated with the presence of bone

marrow-derived fibroblasts in kidneys with unilateral ureteral

obstruction and ischemia/reperfusion injury (115). Adiponectin-

deficient mice showed reduced renal fibroblast and M2 pro-

fibrotic macrophage infiltration. The same study also showed

adiponectin to activate AMPK on bone-marrow-derived

monocytes, thereby increasing a-smooth muscle antigen (a-
SMA) and production of extracellular matrix proteins.

Therefore, the Yang et al. study suggested inhibiting the

adiponectin/AMPK axis may ameliorate fibrotic renal disease

(115). Similarly, Perri et al. reported that administration of

lipopolysaccharide (LPS) induces adiponectin production by

renal tubular epithelial cells to cause renal fibrosis (116).

Numerous other studies have demonstrated the production of

adiponectin by the kidney itself (117, 118). However, how

kidney-derived adiponectin contributes to circulating

adiponectin levels and any potential functional differences are

not yet known.

PPAR-a is also known to exert renoprotective effects. Boor

et al. demonstrated PPAR-a expression in the renal tubular

epithelium but not the interstitium. PPAR-a levels decreased

after fibrosis induction through unilateral ureteral obstruction

and 5/6 nephrectomy (119). Treatment with the PPAR-a agonist

BAY PP1 significantly increased PPAR-a expression, correlated

with a reduction in tubulointerstitial fibrosis, inhibition of

interstitial fibroblasts, lower TGF-b1 levels, and slowed down

the progression of renal dysfunction. Therefore, PPAR-a in

tubular epithelial cells attenuates fibrosis upon renal

injury (119).
4 Cellular senescence in obesity
and CKD

Cellular senescence was initially described by Hayflick and

Moorhead when they observed that fibroblasts stop dividing

after a set number of cell divisions (120). This cell cycle arrest

was due to telomere attrition. The list of senescence-inducing

stimuli has exponentially grown, but most culminate in DNA

damage or oncogene activation, which activate senescence-

inducing pathways. Hence, senescence is defined as an

irreversible growth arrest upon the cell’s exposure to DNA-

damaging or mitogenic stimuli. Senescence is characterized by

numerous structural, biochemical, and metabolic alterations: a

flattened and enlarged cellular morphology, decreased nuclear

Lamin B1 expression, increased p53, p16INK4a and/or p21CIP1

expression, elevated mitochondrial ROS production, elevated
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senescence-associated lysosomal b-galactosidase (SA-b gal)

activity, apoptosis resistance via upregulation of senescence-

associated anti-apoptotic pathways (SCAPs), and elaboration of

a senescence-associated secretory phenotype (SASP) (121). The

transient induction of senescence is considered physiological

and critical to embryogenesis, wound healing, and tumor

suppression. However, the chronic accumulation of senescent

cells is implicated in the pathogenesis of numerous age-related

disorders , inc luding osteoporosi s , obesi ty , s troke ,

neurodegenerative diseases, CKD, cancer, myocardial

infarction and the geriatric syndromes (frailty, sarcopenia, and

mild cognitive impairment) (122). Cellular senescence is indeed

considered a biological hallmark of aging.
4.1 Cellular senescence in adipose tissue

Senescence plays a crucial role in propagating age-related

diseases (123). Senescent cells accumulate in most tissues and

organs with aging, including in adipose tissue. Importantly,

obesity increases the senescent cell burden in adipose tissue. The

p53-dependent DNA damage response is the main inducer of

senescence in adipose tissue (124). A study showed that DNA

polymerase-h KO mice (to increase DNA damage) accumulate

senescent cells in adipose tissue (125). SREBP1—a transcription

factor involved in regulating the expression of genes encoding

proteins involved in lipid metabolism—was recently found to also

facilitate DNA repair in adipocytes (126). Deletion of SREBP1

increased DNA damage and accelerated senescence in adipocytes,

followed by adipose tissue inflammation and consequent insulin

resistance (126). Mice with senescent cell accumulation in adipose

tissue are more prone to obesity and adipose tissue inflammation,

even with a standard chow diet (125).

Oxidative stress-induced senescence in adipose tissue is

linked to higher leptin, IL-6, and TNF-a production in the

SASP, suggesting that adipocyte senescence may be causal in

obesity-related chronic inflammation (124, 127). Depleting

senescent cells in adipose tissue improves glucose homeostasis

and insulin resistance (discussed below). Activin A is another

SASP component which disrupts insulin signaling by decreasing

the expression of insulin-dependent transcription factors

including PPARg and CCAAT-enhancer-binding protein a (C/

EBPa) (128). These observations suggest that senescence in

adipose tissue results in the production of cytokines and

chemokines, leading to adipose tissue inflammation and

insulin resistance. Adipose tissue is composed of many

different cell types, each exhibiting varying susceptibility to

senescence. The discussion herein focuses on the major cell

types comprising adipose tissue and the causes and

consequences of senescence induction in these cell

types (Figure 2).
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4.1.1 Preadipocytes

Preadipocytes are adipocyte precursors are responsible for fat

cell turnover by replacing dead and dying cells—i.e., adipogenesis.

Both irradiation and telomere attrition induce senescence in

preadipocytes, thereby impairing adipogenesis. Impaired

adipogenesis in obesity in turn drives hypertrophic expansion of

the subcutaneous fat compartment, increasing adipose tissue
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inflammation and metabolic dysfunction (129). Senescent

preadipocytes also secrete a proinflammatory SASP, driving

adipose tissue macrophage infiltration and inflammation.

Accordingly, eliminating senescent preadipocytes in obese mice

reduces adipose tissue inflammation and improves insulin

sensitivity (130). These results indicate that senescence in

preadipocytes contributes to adipose tissue inflammation and

insulin resistance by impairing adipogenesis.
FIGURE 2

Nutrient excess triggers senescence in adipose tissue through DNA damage response signaling. Various other conditions, such as sleep apnea,
uremia, and gut microbiome dysbiosis, may directly indce senescence in the adipose tissue independent of nutrient status. The adipose tissue is
populated by various subsets of cells, including preadipocytes, adipocytes, endothelial cells, and macrophages. Senescence induction in preadipocytes
impairs adipogenesis; senescence in macrophages and adipocytes enhances adipose tissue inflammation; and senescence in andothelial cells
promotes adipose tissue hypoxia, inflammation, and fibrosis. An increased senescent cell burden in adipose tissue exerts several systemic
consequences through the SASP as part of the inflammaging process, including cardiomyopathy, cognitive dysfunction, and renal impairment.
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4.1.2 Endothelial Cells

The vasculature of adipose tissue is not fenestrated.

Transport across the vasculature into the adipose tissue

interstitium is mediated by ECs, which express key transport

proteins such as CD36 and fatty acid binding proteins (FABPs)

that transport fatty acids between adipose tissue and blood (131).

Importantly, PPARg activation in ECs enhances transendothelial
lipid transport and fat storage in adipose tissue. Free fatty acids

activate PPARg. Additionally, activated endothelial cells release

PPARg ligands that activate PPARg in adipocytes (132). Adipose

tissue storage of fats, therefore, depends on normal endothelial

cell function, and depleting PPARg in endothelial cells leads to

systemic hyperlipidemia (133). ECs also produce factors that

regulate adipose tissue blood flow, such as NO and angiogenic

factors that increase adipose vascularity.

Adipose tissue EC senescence can be detrimental to normal

adipose tissue function. In this context, ECs of HFD-mice

undergo numerous p53-dependent gene expression alterations,

including endothelial nitric oxide synthase (eNOS)

downregulation, a change associated with insulin resistance

(134). However, this study did not explore if p53 expression

was associated with other senescence-related cellular alterations.

Along similar lines, Barinda et al. showed that senescent ECs

release a SASP that propagates senescence in mature adipocytes

in a paracrine manner, associated with downregulation of the

insulin receptor on mature adipocytes and, consequently,

reduced insulin sensitivity (135). Cellular senescence also

reduces PPARg activation, decreasing the ability of endothelial

cells to transport fatty acids, and the fat storage capacity of

adipocytes (136). Lastly, senescent ECs isolated from visceral

adipose tissue of obese individuals show higher expression of

hypoxia-related genes and elaborate a proinflammatory SASP

(136). Therefore, EC senescence may impair the lipid-buffering

capacity of adipocytes by reducing PPARg and cause adipose

tissue hypoxia and inflammation.
4.1.3 Mature adipocytes

Mature adipocytes are not expected to enter the cell cycle and

divide; they respond to obesity by hypertrophying rather than

dividing. However, Li et al. recently demonstrated that mature

adipocytes can enter the cell cycle and increase in cell number in

response to obesity and hyperinsulinemia (137). Chronic

hyperinsulinemia induces premature adipocyte senescence,

which release a SASP comprising MCP-1, TNF-a and IL-6 that

drives adipose tissue inflammation (125, 137). Mature adipocyte

senescence in obesity occurs before adipose tissue inflammation

and insulin resistance, suggesting a causal relationship between

adipocyte senescence and these phenotypes (138).
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4.1.4 Macrophages

Senescence is associated with adipose tissue inflammation

via the SASP. Although ATMs play a key role in adipose tissue

inflammation and consequent insulin resistance, there is a

paucity of data on whether they can senesce and what

consequences this may have on the inflammatory phenotype

of adipose tissue. An elevated senescent cell burden in adipose

tissue with SASP expression drives ATM recruitment and

polarization into a proinflammatory M1 phenotype (139).

Notably, depleting macrophages attenuates adipose tissue

inflammation and fibrosis, with improvements in glucose

tolerance parameters, indicating that macrophage infiltration

contributes to senescence-induced adipose tissue dysfunction.

However, whether ATMs themselves senesce was not

determined in this study (140). A recent study demonstrated

that senescent macrophages accumulate in the visceral adipose

tissue derived from obese subjects who underwent bariatric

surgery, and their numbers correlated with BMI, insulin

resistance and degree of hyperinsulinemia (141). Importantly,

both senescent adipocytes and macrophages elaborated a pro-

inflammatory SASP, which prompted the authors to suggest that

premature adipose tissue senescence in obesity contributes to

inflammaging, possibly explaining why obese individuals

develop age-related disease prematurely (141).
4.1.5 Systemic

HFD mouse models accumulate senescent cells in multiple

organ systems, which is associated with functional impairment.

HFD mice show senescent cell accumulation in the liver and

hepatic steatosis (142). In the brain of HFD mice, senescent cells

accumulate near the lateral ventricle, which is associated with

anxiety and gliosis (143). Kidneys of HFD mice also reveal a

higher senescent cell burden, associated with renal dysfunction

(144). Sawaki et al. demonstrated that aging adipose tissue

releases osteopontin and TGF-b—in the SASP—which

stimulate cardiac fibroblasts and drive myocardial fibrosis

(145). Removing visceral adipose tissue in these mice reduced

cardiac fibroblast activation, increased fibroblast senescence, and

ameliorated myocardial fibrosis (145). Although this study did

not directly examine senescence in visceral adipose tissue, Khan

et al. reported that an elevated senescent cell burden in adipose

tissue is associated myocardial fibrosis. p53-KO mice or

removing senescent adipose tissue mitigated myocardial

fibrosis (146). To correlate these findings clinically, myocardial

fibrosis is a known mediator of obesity-associated

cardiomyopathy; clinical studies are needed to explore whether

targeting senescence may be beneficial in ameliorating this

condition (145).
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4.2 Senescence in CKD

Numerous studies report a higher senescent cell burden in

diseased and aged kidneys. The regenerative potential of the

kidney after injuries diminishes with aging and CKD. Cellular

senescence is believed to impair regenerative mechanisms in

aged and diseased kidneys, leading to maladaptive repair

and fibrosis.

Proximal tubular epithelial cells are particularly affected by

senescence. Biopsies of transplanted kidneys and those with

glomerular diseases stain positive for senescence markers

p16INK4a and p21CIP1 in the proximal tubular epithelial cells

(147, 148). Telomere attrition, elevated SA-b gal, p16INK4a, and

p21CIP1 expression have also been directly correlated with IgA

nephropathy progression (149). Baker et al. showed that

senescent cells accumulate in aging kidneys in INK-ATTAC

transgenic mice. An elevated renal senescent cell burden was

associated with glomerulosclerosis, which was attenuated by

depleting senescent cells in INK-ATTAC mice (150). Braun

et al. demonstrated that transplanted kidneys in wild-type mice

exhibit elevated senescence markers and incrementally undergo

atrophy and fibrosis (151). By contrast, transplanted kidneys in

p16INK4A-KO mice show less atrophy and fibrosis after

ischemia-reperfusion injury (151). Transplanting kidneys from

senescence-depleted mice consistently show better longevity and

proliferation of tubular epithelial cells. An elevated senescent cell

burden may therefore contribute to long-term allograft kidney

deterioration and CKD development in humans (151).

In vivo mouse models of aged and irradiated kidneys

demonstrate elevated senescence markers, reduced proliferative

repair after injury, and produce TGF-b as a part of their SASP to

induce fibrosis. Using the senolytic ABT-263 to eliminate

senescent proximal tubular epithelial cells improves these

parameters (152). A recent study demonstrated renal tubular

epithelial cell senescence – evidenced by higher p16INK4a, p19,

and p21CIP1 expression – secondary to chronic ischemia from

renal artery stenosis in mice and humans. A dasatinib and

quercetin senolytic combination alleviated renal dysfunction in

these mice, suggesting a causal relationship between chronic

ischemia, cellular senescence, and kidney damage (153). Diabetic

nephropathy is the major cause of CKD worldwide and a

significant contributor to obesity-related kidney disease.

Biopsies of kidneys from patients with type 2 diabetic

nephropathy show elevated senescence markers SA-b gal and

p16INK4a in proximal tubular epithelial cells, mesangial cells,

podocytes, and endothelial cells (154). WT diabetic kidney

disease mouse models develop proteinuria and glomerular

hypertrophy, and both effects are attenuated in p21CIP1-KO

mice (155). Dasatinib and quercetin combination also reduce

AKI to CKD transition in murine models of cisplatin and

radiation-induced kidney injury (156). Senescent markers

SA-b gal, p16INK4A, and p21CIP1 are also elevated in the
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kidneys of rats and cats with CKD (157, 158). These data

show cellular senescence underpins various renal pathologies

that lead to CKD, and senolytics could mitigate this progression.

CKD is considered a systemic premature aging phenotype,

known as uremia-associated aging (159). Uremic patients can

develop age-related conditions, including osteoporosis,

sarcopenia, frailty, impaired wound healing, infections, insulin

resistance, cognitive dysfunction, hypogonadism, and vascular

aging (160–163). Hence, certain uremic toxins expectedly

accelerate biological aging hallmarks, including cellular

senescence, to precipitate a premature aging phenotype (164).

Uremia-induced senescenced was first demonstrated in the

aortas of hypertensive rats, where indoxyl sulfate-related

cellular senescence was correlated with aortic wall calcification

and thickness, a sign of vascular aging (165). Uremia-induced

senescence is mediated by oxidative stress and consequent DNA

damage response signaling and upregulation of p21CIP1 and p53

(166). A recent review by Huang et al. summarized the

mechanisms behind CKD-induced senescence (167). The

uremic toxins indoxyl sulfate and p-cresyl sulfate induce

senescence in mesenchymal stem cells, evidenced by elevated

p21CIP1 expression (168, 169). A normocytic normochromic

anemia is common in CKD pateints, and is mainly thought to

be due to low erythropoietin production by the kidney. Mas-

Oodi et al. recently demonstrated that indoxyl sulfate induced

senescence in CD34+ hematopoietic stem cells, thereby arresting

their proliferation and reducing erythropoiesis (170). Indoxyl

sulfate also induces senescence in renal proximal tubular

epithelial cells in CKD through ROS-dependent p53

expression (171). Senescent proximal tubular cells display a

proinflammatory and profibrotic protein signature, with

elevations in NFkB and TGF-b production, possibly

contributing to further declines in renal function (171, 172).

P-cresyl sulfate activates NADPH oxidase and induces

oxidative stress in mouse 3T3-L1 adipocytes. Exposure to p-

cresyl increases TNF-a and IL-6 production by 3T3-L1

adipocytes and increases ATM infiltration, suggesting that this

uremic toxin is a mediator of CKD-induced adipose tissue

inflammation (172, 173). In agreement with these findings,

Koppe et al. reported that administering p-cresyl sulfate to

normal mice for 4 weeks triggered lipotoxicity and insulin

resistance (174). Although senescence markers were not

evaluated in these studies, it is conceivable that the

intracellular accumulation of p-cresyl sulfate may induce

adipocyte senescence, since oxidative stress is the major

pathway of adipose tissue senescence. In the context of the

adipose-renal axis, these studies suggest that the accumulation of

uremic toxins in CKD trigger senescence in adipose tissue,

amplifying the inflammaging seen in CKD pateints. Further

studies are needed to determine which uremic toxins induce

adipose tissue senescence, the mechanisms involved, which

subpopulations of cells in adipose tissue are affected, the
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important SASP components by which uremia-induced

senescent adipose tissue exerts pathologic systemic effects, and

whether senolytic or other senescent-targeting strategies are

effective in ameliorating uremia-induced senescence. Another

pathway to consider in the adipose-renal axis in CKD is the gut

microbiome. CKD alters the symbiotic relationship between the

intestinal microbiome and the body (i.e., gut microbiome

dysbiosis), leading to the fermentation of macronutrients and

production of various uremic toxins, including indoxyl sulfate,

p-cresyl sulfate and others. CKD-related impairment of the

intestinal epithelial barrier allows for the spillover of these

toxins into the bloodstream, which drive systemic oxidative

stress and inflammation (175, 176). Whether and how certain

dietary modifications lifestyle interventions such as exercise,

restore host-enterobiome symbiosis and alleviate senescence in

the context of the adipose-renal axis is an important topic for

future studies to address.
4.3 Senotherapies in obesity and
kidney disease

Targeting senescent cells pharmacologically can alleviate

numerous age-related diseases. Baker et al. initially

demonstrated that depleting senescent cells prevents the

development of age-related changes in adipose tissue, skeletal

muscle, and eyes of INK-ATTAC transgenic mice (150).

Numerous strategies have emerged to deplete senescent cells

or mitigate their harmful effects. Briefly, senolytic drugs inhibit

SCAPs characteristic of senescent cells, allowing for the selective

depletion of senescent cells. Dasatinib, quercetin, and fisetin are

the most studied senolytics in preclinical animal models thus far,

and numerous clinical trials testing their efficacy in age-related

disorders are underway (177). Senomorphic drugs inhibit

various SASP components without inducing senescent cell

death. Most senomorphics target transcriptional regulators of

the SASP, including ATM, p38 MAPK, JAK/STAT, NFkB, and
mTOR pathways. Other strategies are also emerging, recently

reviewed by Zhang et al. (178, 179). Many preclinical studies

have shown senolytics to alleviate aging phenotypes, including

cancer, chemotherapy- and radiation-induced premature aging,

diabetes, osteoarthritis, neurodegeneration, glaucoma, age-

related macular degeneration, idiopathic pulmonary fibrosis,

heart failure, and CKD (180).

The impact of senescent cell depletion has also been

investigated in obesity and kidney disease. Palmar et al.

cleared senescent cells either by senolytic combination

dasatinib+quercetin or by selective depletion of p16INK4a-

expressing cells and observed reduced adipose tissue

inflammation and improved glucose tolerance and insulin

sensitivity (181). Since DNA damage is the major inducer of

senescence in adipose tissue, interventions such as exercise, N-

acetylcysteine, and senolytics that reduce oxidative stress in
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adipose tissue decrease adipose tissue SC burden and attenuate

ATM infiltration and adipose tissue inflammation (125).

Another study showed that senescent cell clearance in adipose

tissue of HFD obese mice by dasatinib+quercetin and navitoclax

improved insulin sensitivity and increased plasma adiponectin

levels (182). Consistent with higher adiponectin levels, senescent

cell clearance anormalizes microalbuminuria and podocyte

barrier integrity (181). An HFD increases senescent cell

burden in mouse kidneys—detected by p16INK4a, p19, and p53

expression and SASP upregulation—linked to renal fibrosis and

functional impairment (144). Quercetin administration reduced

senescent cell burden in the kidney, attenuated renal fibrosis,

increased renal cortical oxygenation, and lowered plasma

creatinine levels (144).

These findings suggest that depleting adipose tissue-resident

senescent cells by senolytics restores adipogenesis, reduces

adipocyte hypertrophy, improves glucose tolerance and insulin

sensitivity, reduces macrophage infiltration into adipose tissue,

and increases adiponectin secretion.
5 Sleep apnea, obesity and CKD

Obstructive sleep apnea (OSA) is a globally prevalent

disorder increasing in incidence. OSA is characterized by

collapse of the upper airway during sleep, causing arousal with

or without oxygen desaturation, leading to sleep fragmentation

and daytime sleepiness. Obesity is a strong risk factor for OSA:

OSA affects 40% of moderately obese (BMI >30 kg/m2) and 90%

of severely obese patients (BMI >40 kg/m2) (183). A 10%

increase in bodyweight increases the Apnea-Hypopnea Index

(AHI) by 32%, whereas a 10% decrease in body weight decreases

the AHI by 26% (184). Obesity increases pharyngeal

collapsibility by reducing upper airway diameter and lung

volume, predisposing to collapse and consequent OSA (185).

OSA patients are at a significantly higher risk of stroke,

myocardial infarction, arrhythmias, insulin resistance and

diabetes, heart failure, pulmonary hypertension, and CKD.

The pathogenic hallmark of OSA is chronic intermittent

hypoxia (CIH), which exerts direct pathologic effects in

multiple organs. Although the kidney receives 25% of the

cardiac output, blood flow to the renal medulla is tightly

regulated to maintain the interstitial medullary osmotic

gradient which facilitates water reabsorption. The renal

medulla is, therefore, highly vulnerable to ischemic injury.

CIH leads to significant tubulointerstitial damage by increasing

oxidative stress and inflammation (186). In agreement with

these findings, treatment with lipoic acid, an antioxidant,

ameliorates hypoxia-related renal injury by decreasing

oxidative stress, renal cell apoptosis, and tubular injury (187).

CIH also activates interstitial fibroblasts and induces renal

tubular epithelial cells to undergo an epithelial-to-

mesenchymal transition by upregulation of HIFs, leading to
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renal fibrosis (188–191). Nocturnal hypoxia in OSA patients

over-activates the sympathetic and renin-angiotensin-

aldosterone systems, associated with long-term renal

impairment (192–194). These experimental models explain

clinical studies showing that OSA contributes to CKD

development and progression. For example, a cross-sectional

analyzing over 7700 subjects with OSA for CKD revealed that, in

additional to traditional CKD risk factors, lower nocturnal

oxygen saturation was associated with CKD, with a 2% rise in

CKD probability for every 1 unit drop in oxygen saturation

(195). Furthermore, studies following OSA patients

longitudinally have revealed that nocturnal hypoxia is

independently associated with steeper declines in eGFR,

cardiovascular mortality, and all-cause mortality (196–200).

Continuous positive airway pressure (CPAP) therapy is the

mainstay of treating OSA and resolves CIH. CPAP significantly

reduces snoring and daytime sleepiness and improves the quality

of life in OSA patients. CPAP significantly decreases renal

sympathetic and RAAS activity and blood pressure, improves

renal hemodynamics, slows the rate of eGFR decline, and

reduces microalbuminuria in patients with severe OSA (201–

204). However, data suggest that CPAP may be ineffective at

improving renal function in moderate nocturnal hypoxia and

men (205, 206). Furthermore, CPAP is ineffective at reducing the

incidence of a composite clinical end point of cardiovascular

mortality, myocardial infarction, stroke, transient ischemic

attack, and heart failure in patients with moderate-to-severe

OSA (207, 208). Varying degrees of compliance to treatment

among patient groups may partly be responsible for these

discrepant findings. Nevertheless, such data highlight the need

for elucidating the pathogenesis of OSA-related kidney disease.

No pharmacological treatments are currently available for OSA.

Identifying mediators of the systemic organ dysfunction caused

by OSA may reveal pathways that may be clinically beneficial to

target and supplement CPAP therapy to enhance the long-term

outcomes of these patients.

In this regard, OSA may alter patients’ adipokine profiles. OSA

patients have significantly reduced adiponectin compared to non-

OSA patients, regardless of sex, age, or BMI (209, 210). Low serum

adiponectin levels are associated with decreased cystatin C urinary

excretion in male OSA patients (192). Ding et al. demonstrated that

CIH in rats increased oxidative stress andmarkers of apoptosis in the

kidney compared to normal controls (211). Treating CIH rats with

adiponectin reduces oxidative stress and renal cell apoptosis (211).

Similar results have been observed in cardiomyocytes, neurons, and

pulmonary cells (212–214). Improving sleep quality in OSA patients

with cardiovascular disease either by CPAP, nocturnal supplemental

oxygen, or sleep hygiene education significantly increased serum

adiponectin levels and improved glucose tolerance parameters (215).

Therefore, low serum adiponectin in OSA may contribute to their

higher risk of systemic complications including renal impairment

and insulin resistance.
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OSA also increases leptin levels with consequent leptin

resistance (216). Li et al. concluded that leptin is significantly

higher in OSA than non-OSA patients and correlates with a

higher AHI (217). Obesity, a frequent comorbidity of OSA,

causes hyperleptinemia and leptin resistance. Leptin is key in

stabilizing upper airway muscles and stimulating CNS

respiratory drive (218–221). Therefore, it is conceivable that

leptin resistance may contribute to the higher risk of OSA in

obese individuals. Administering leptin intranasally to obese

mice alleviates OSA independent of body weight reduction

(222). OSA also increases leptin levels and causes leptin

resistance through CIH. A recent study reported that CIH for

96 days in rats significantly increased leptin levels (223).

Furthermore, while leptin injections into normoxic controls

reduced food intake, no such effect was observed in the CIH

animals, indicating leptin resistance (223). High levels of leptin

drive oxidative stress and chronic inflammation that underlie the

long-term cardiovascular complications of OSA (224).

Aging is a significant risk factor for many complications seen

in OSA, suggesting that OSA may accelerate aging at the cellular

level and precipitate a premature aging phenotype (225–228).

Sleep deprivation activates a DNA damage response in

peripheral blood mononuclear cells of older adult humans,

with consequent increases in p16INK4a expression and

elaboration of a SASP (229). Sleep fragmentation also induces

senescence in the aorta of adult male C57BL/6J mice (230),

possibly related to a pro-oxidant response in the vascular

endothelium induced by CIH that accelerates vascular aging

(231). Indeed, CIH induces a state of systemic chronic low-grade

inflammation through NFkB activation, which can induce

senescence (232–234). Lee et al. recently demonstrated CIH in

elderly mice to increase lung oxidative stress, inflammation, and

fibrosis (235). Many of the pro-inflammatory cytokines

measured—such as TNF and IL-6 —are SASP components,

although the lungs of these mice were not examined for

senescence markers. Polonis et al. reported that OSA-related

CIH induces senescence in human preadipocytes—expressing

p16INK4a, SA-b gal, and gH2AX —through a ROS-dependent

pathway (236). The subcutaneous abdominal adipose tissue of

OSA patients also demonstrated higher p16INK4a and gH2AX

than non-OSA individuals. Importantly, treatment with statins,

aspirin and/or a RAS inhibitor significantly reduced senescent

cell burden in vitro and in vivo (236). A recent study by Khan

et al. showed that two weeks of CIH increased senescence in the

visceral white adipose tissue of C57BL6 male mice through a

DNA damage response (146). Adipose tissue senescence was

accompanied by increased adipose tissue fibrosis, macrophage

infiltration, and inflammation. Furthermore, CIH was associated

with the upregulation of pro-fibrotic genes in the myocardium

and consequent myocardial fibrosis (146). A major finding of

this study was that p53-KO mice (i.e., a defect in a key

senescence-inducing pathway) did not develop myocardial
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fibrosis, and resection of senescent adipose tissue also prevented

myocardial fibrosis (146).

In summary, the findings above indicate that CIH, which is a

hallmark of OSA, induces senescence in adipose tissue and

several other organs, contributing to systemic functional

impairment. For future research, it will be important to

ascertain whether the available senolytics reduce senescent cell

burden in OSA and whether this ameliorates OSA severity and

prevents complications. OSA-related senescence has also not

been investigated in the kidney but is likely since renal artery

stenosis, which, similar to CIH, leads to chronic ischemia that

induces senescence in the renal tubular epithelium and causes

renal dysfunction (153). It is also important to note that CKD

itself can dysregulate sleep and is a risk factor for OSA

development and/or progression through a variety of

mechanisms (237–240). These observations suggest the

existence of a positive feedback loop, whereby OSA, obesity,

and CKD all worsen systemic oxidative stress, inflammation,

and senescence in multiple organs.
6 Conclusion and perspectives

The increasing prevalence of obesity and kidney disease

necessitates a better understanding of the mechanisms behind

obesity-induced kidney disease. Although weight loss and

lifestyle interventions represent the primary modality of

treating obesity, peripheral treatments based on normalizing

the adipokine profile or reducing senescent burden in obesity

could better clinical outcomes in these patients.

We described the most studied adipokines implicated in

obesity-induced kidney disease, but a myriad of other adipokines

—including resistin, visfatin, angiotensinogen, and lipocalin—

have also been studied in this context. Multiple studies have

demonstrated the existence of an adipose-renal axis, whereby

obesity-derived cytokines and adipokines damage the kidney,

and CKD-related metabolic dysregulation accelerates adipose

tissue aging and dysfunction. This axis is influenced by senescent

cell burden and the presence of sleep apnea, both of which can

amplify inflammation in obesity and CKD. Gut microbiome

dysbiosis is another pathway to consider in the adipose-renal

axis in obesity and CKD (241–243).
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How cellular senescence plays into the adipose-renal

crosstalk is largely unexplored in both laboratory and clinical

studies but is likely since senescent cells accumulate with age,

and obesity-related senescence in adipose tissue and other

organs is well-established. Investigating senescence in different

CKD complications could also reveal novel biomarkers and

targets for pharmacologic intervention. Senolytic and

senomorphic drugs could have potential clinical practice-

changing implications in treating multiple conditions,

including obesity and CKD. Still, their efficacy and, more

importantly, safety profile remains to be shown in ongoing

clinical trials.
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56. Zorena K, Jachimowicz-Duda O, Ślęzak D, Robakowska M, Mrugacz M.
Adipokines and obesity. potential link to metabolic disorders and chronic
complications. Int J Mol Sci (2020) 21(10):3570.

57. Cumin F, Baum HP, Levens N. Mechanism of leptin removal from the
circulation by the kidney. J Endocrinol (1997) 155(3):577–85. doi: 10.1677/
joe.0.1550577

58. Lim CC, Teo BW, Tai ES, Lim SC, Chan CM, Sethi S, et al. Elevated serum
leptin, adiponectin and leptin to adiponectin ratio is associated with chronic kidney
disease in Asian adults. PloS One (2015) 10(3):e0122009. doi: 10.1371/
journal.pone.0122009

59. Zhang J, Wang N. Leptin in chronic kidney disease: a link between
hematopoiesis, bone metabolism, and nutrition. Int Urol Nephrol (2014) 46
(6):1169–74. doi: 10.1007/s11255-013-0623-8

60. Cumin F, Baum HP, Levens N. Leptin is cleared from the circulation
primarily by the kidney. Int J Obes Relat Metab Disord (1996) 20(12):1120–6.

61. Pedone C, Roshanravan B, Scarlata S, Patel KV, Ferrucci L, Incalzi RA.
Longitudinal association between serum leptin concentration and glomerular
filtration rate in humans. PloS One (2015) 10(2):e0117828. doi: 10.1371/
journal.pone.0117828

62. Wolf G, Hamann A, Han DC, Helmchen U, Thaiss F, Ziyadeh FN, et al.
Leptin stimulates proliferation and TGF-beta expression in renal glomerular
endothelial cells: potential role in glomerulosclerosis [seecomments]. Kidney Int
(1999) 56(3):860–72. doi: 10.1046/j.1523-1755.1999.00626.x

63. Alhasson F, Seth RK, Sarkar S, Kimono DA, Albadrani MS, Dattaroy D,
et al. High circulatory leptin mediated NOX-2-peroxynitrite-miR21 axis activate
mesangial cells and promotes renal inflammatory pathology in nonalcoholic fatty
liver disease. Redox Biol (2018) 17:1–15. doi: 10.1016/j.redox.2018.04.002

64. Briffa JF, Grinfeld E, Mathai ML, Poronnik P, McAinch AJ, Hryciw DH.
Acute leptin exposure reduces megalin expression and upregulates TGFb1 in
cultured renal proximal tubule cells. Mol Cell Endocrinol (2015) 401:25–34. doi:
10.1016/j.mce.2014.11.024

65. Chen K-H, Hsu H-H, Lee C-C, Yen T-H, Ko Y-C, Yang C-W, et al. The
AMPK agonist AICAR inhibits TGF-b1 induced activation of kidney
myofibroblasts. PloS One (2014) 9(9):e106554. doi: 10.1371/journal.pone.0106554

66. Liu B, Qiao J, Hu J, Fan M, Zhao Y, Su H, et al. Leptin promotes endothelial
dysfunction in chronic kidney disease by modulating the MTA1-mediated WNT/
b-catenin pathway. Mol Cell Biochem (2020) 473:155–166. doi: 10.1007/s11010-
020-03816-5

67. Ding N, Liu B, Song J, Bao S, Zhen J, Lv Z, et al. Leptin promotes endothelial
dysfunction in chronic kidney disease through AKT/GSK3b and b-catenin signals.
Biochem Biophys Res Commun (2016) 480(4):544–51. doi: 10.1016/
j.bbrc.2016.10.079

68. Santos-Alvarez J, Goberna R, Sánchez-Margalet V. Human leptin stimulates
proliferation and activation of human circulating monocytes. Cell Immunol (1999)
194(1):6–11. doi: 10.1006/cimm.1999.1490

69. Blanca AJ, Ruiz-Armenta MV, Zambrano S, Salsoso R, Miguel-Carrasco JL,
Fortuño A, et al. Leptin induces oxidative stress through activation of NADPH
oxidase in renal tubular cells: Antioxidant effect of l-carnitine. J Cell Biochem
(2016) 117(10):2281–8. doi: 10.1002/jcb.25526
Frontiers in Endocrinology 14
54
70. Alix PM, Guebre-Egziabher F, Soulage CO. Leptin as an uremic toxin:
Deleterious role of leptin in chronic kidney disease. Biochimie (2014) 105:12–21.
doi: 10.1016/j.biochi.2014.06.024

71. Zhang F, Chen Y, Heiman M, DiMarchi R. Leptin: Structure, function and
biology. Vitamins Hormones (2005) 71:345–72. doi: 10.1016/S0083-6729(05)
71012-8

72. Morton GJ. Hypothalamic leptin regulation of energy homeostasis and
glucose metabolism. J Physiol (2007) 583(2):437–43. doi: 10.1113/
jphysiol.2007.135590

73. Cheung W, Yu PX, Little BM, Cone RD, Marks DL, Mak RH. Role of leptin
and melanocortin signaling in uremia-associated cachexia. J Clin Invest (2005) 115
(6):1659–65. doi: 10.1172/JCI22521

74. Rahmouni K. Leptin-induced sympathetic nerve activation: Signaling
mechanisms and cardiovascular consequences in obesity. Curr Hypertens Rev
(2010) 6(2):104–209. doi: 10.2174/157340210791170994
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Introduction: Chemerin as an inflammatory biomarker has gained attention in its

biomarker capability. Several studies measured its levels in chronic kidney disease

(CKD), as one of the common non-communicable causes of mortality and

morbidity. Hence, this systematic review and meta-analysis aimed to investigate

this association.

Methods: PubMed, Scopus, Embase, and the Web of Science databases were

systematically searched for studies investigating chemerin levels in any CKD stage

(including end-stage renal disease patients undergoing hemodialysis (HD)) and

comparing it with healthy controls. Random effect meta-analysis was performed to

calculate the standardizedmean difference (SMD) and 95% confidence interval (CI).

Results: A total of eight studies were included, comprised of 875 individuals, with a

mean age of 56.92 ± 11.78 years. All studies had high quality based on the New

Castle-Ottawa Scale (NOS). Meta-analysis revealed significantly higher levels of

chemerin in CKD patients compared to healthy controls (SMD 2.15, 95% CI 0.83-

3.48, p-value<0.01). Additionally, HD patients had statistically higher levels of

chemerin than controls (SMD 2.10, 95% CI 0.58-3.62, p-value=0.01). In meta-

regression, publication year accounted for 23.50% and 24.17% of heterogeneity for

these analyses, respectively.

Conclusion: Chemerin can be potentially used as a biomarker in CKD patients,

which can suggest the inflammatory pathways for the disease. Further research is

warranted for the assessment of its clinical applications and enlightening its role in

the pathophysiology of CKD.
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chemerin, chronic kidney disease, renal disease, systematic review, meta-analysis
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1 Introduction

Chronic kidney disease (CKD) is a significant contributor to

noncommunicable disease morbidity and mortality. More than 10%

of the adult population had markers for renal disease, according to

large-scale, nationally representative screening programs carried out

in the 2000s (1). This chronic disease is characterized by a permanent

serious impairment of kidney function and a reduced glomerular

filtration rate (GFR) for at least three months, which results in a loss

of the kidneys’ normal ability to remove toxins from the body. Renal

injury markers, such as urinary and hematological changes, can be

used to detect this impairment (2). Biomarkers can be used as tools

for screening, diagnosing, and monitoring diseases as well as

evaluating the response to therapeutic interventions (3).

Chemerin was initially identified as a chemokine found in the

inflammatory fluids of cancer and rheumatoid arthritis patients (4). It

is also known by the names tazarotene-induced gene 2 (TIG2) and

retinoic acid responder 2 (RARRES2). Chemerin and its receptor

CMKLR1 appear to control insulin sensitivity, adipocyte

differentiation, and glucose and lipid balance (5, 6). Adipose tissue,

liver, platelets, placenta, and to a lesser degree, other tissues such as

the kidneys have all been discovered to express it. The connection

between chemerin and renal function has also drawn more attention

recently (7). This marker is thought to influence the beginning and

development of the local inflammatory state. The inflammatory cells

that have been triggered release the enzymes that convert the

circulating pro-chemerin to chemerin. Other immune cells are

drawn to the area of inflammation by this, which strengthens their

adherence (8).

Some studies reported that kidney function is inversely related to

circulating chemerin in CKD patients. Blaszak et al. expressed that the

mean serum chemerin level in stages 3 and 4 of CKD was 70% higher

than the control group and according to a study conducted by

Rutkowski et al., the serum chemerin concentration decreased to

values observed in control subjects after successful kidney

transplantation (6, 8). In another study, Sarhat et al. found that the

concentration of chemerin was significantly lower in patients with

renal failure, compared to controls (2).

To combine recent data of investigations on chemerin in recent

years, addressing the link of this unique marker with CKD, a

thorough evaluation, and meta-analysis of original research

publications were undertaken in this study.
2 Methods

2.1 Search strategy

In November 2022, a comprehensive search of worldwide web

databases, including PubMed, SCOPUS, Web of Science, and Embase,

was conducted. The keywords utilized were “chemerin” AND

“chronic renal disease”, in addition to other pertinent keywords,

which were explained in detail in Supplementary Table 1. The search

was performed without any restrictions or filters.
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2.2 Inclusion and exclusion criteria

The inclusion criteria were: 1) studies assessing chemerin levels in

patients with CKD and controls and 2) studies evaluating chemerin

levels in patients with CKD undergoing dialysis (hemodialysis (HD))

and controls. We excluded: 1) studies without a control group; 2)

studies without exact concentration of chemerin levels, after emailing

the corresponding author; 3) non-English articles; and 4) letters,

commentaries, case reports, conference abstracts, and reviews.
2.3 Screening

Two reviewers (AHB and PB) individually reviewed titles and

abstracts for relevant articles based on inclusion and exclusion

criteria, after eliminating duplicates from the initial search. Then,

the entire texts of included papers were evaluated, and in cases of

disagreement, a discussion with the third reviewer (AK) finalized the

conclusion. Lastly, the references to the included papers

were investigated.
2.4 Data extraction

Using a data extraction sheet, two independent reviewers (AHB

and PS) extracted the following information from each study: 1) First

author’s name, publication year, and country of conduct; 2) the

demographic characteristics of the cases (sample size, mean age,

and gender distribution in each CKD and control group); 3) plasma

and/or serum chemerin concentration in each group; 4) chemerin

gene polymorphism alleles for each study. In situations where precise

data regarding the concentration of chemerin were unavailable, we

contacted the corresponding author of the investigations.
2.5 Quality assessment

The “Newcastle-Ottawa Quality Assessment Scale” (NOS) for

observational studies was used for the quality assessment of included

studies (9). Two authors did the quality evaluation individually. In the

event of a dispute, a third author settled the issue. The NOS contains

three primary classifications of bias: selection, comparability, and

outcome. Studies with quality scores of 9-10, 7-8, 5-6, and less

than 5 were deemed “very good,” “good,” “satisfactory,” and

“unsatisfactory,” respectively.
2.6 Statistical analysis

Random-effect meta-analysis was used to determine the

standardized mean difference (SMD) and 95% confidence interval

(CI) of chemerin concentrations in CKD and control groups. The p-

values <0.05 were used as the cutoff for statistical significance.

Where median and interquartile range or median and range were

presented in the studies, they were transformed to mean and standard
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deviations (SDs) following the methods recommended by Luo et al.

and Wan et al. (10, 11). In addition, means and standard deviations

were combined where necessary, as suggested by the Cochrane

handbook (12).

To calculate the heterogeneity, we utilized Higgins’ I-square test

based on Cochrane’s Q. The heterogeneity thresholds for low,

moderate, and high heterogeneity were 25%, 26-75%, and 75%,

respectively. Due to the high heterogeneity among studies, random-

effect meta-analysis (restricted maximum likelihood (REML)) was

employed. We performed a sensitivity analysis by omitting each study

and examining the effect on the total effect size. To identify potential

outliers, Galbraith plots were also used and analyzed. To identify the

source of heterogeneity, meta-regression of the sample size, mean age,

female percentage, and publication year was also performed. In

addition to Egger’s and Begg’s statistical tests, publication bias was

evaluated using a visual examination of funnel plots (13, 14).
3 Results

3.1 Literature search and baseline
characteristics of included studies

Our search included 381 records from PubMed (n = 74), SCOPUS

(n = 117), Web of Science (n = 84), and Embase (n = 106). After

removing 178 duplicates, 156 records were excluded based on title

and abstract screening. Assessment of full-texts resulted in excluding

39 articles due to not reporting chemerin levels, not assessing

chemerin levels in CKD, review articles, and conference abstracts.

Details of the identification of studies are illustrated in Figure 1.

Eight studies with 875 participants were included in our study that

measured serum levels of chemerin in CKD patients and controls (2, 6,

8, 15–19) (Table 1). The mean age of participants was 56.92 ± 11.78

years and 58.6% were male. Studies were conducted in Poland (6, 8),

Egypt (15, 19), Iraq (2, 16), China (17), and Germany (18) between
Frontiers in Endocrinology 0361
2009 and 2022. All studies had good quality based on the NOS system,

while two of them had very good quality due to high comparability

among studies groups (15, 19) (Supplementary Table 2).
3.2 Meta-analysis of chemerin levels in all-
stage-CKD patients and controls

Pooling of the eight studies comparing CKD in any stage and

healthy controls revealed significantly higher chemerin levels in CKD

patients (SMD [95% CI]: 2.15 [0.83, 3.48], p-value <0.01, Figure 2).

However, this was associated with high heterogeneity (I2: 98.29%).
3.3 Meta-analysis of chemerin levels in HD
patients and controls

Assessment of chemerin levels in HD patients in comparison

with controls was done in eight of the studies. Random-effect

meta-analysis showed statistically higher chemerin blood

concentrations in HD cases (SMD [95% CI]: 2.10 [0.58, 3.62], p-

value: 0.01, Figure 3). Heterogeneity was also high in this analysis

(I2: 98.49%).
3.4 Meta-analysis of chemerin levels in non-
HD CKD patients and controls

Three of the studies reported chemerin levels in CKD patients

who were not undergoing HD and compared it with healthy controls.

Blaszak et al. (8) and El-Khashab et al. (15) investigated stage 3 and 4

CKD patients, while Salama et al. (19) reported levels in CKD patients

on conservative treatment. Meta-analysis of comparison with healthy

controls resulted in significantly higher levels of chemerin (SMD

[95% CI]: 2.55 [1.73, 3.36], p-value<0.01, I2: 76.63%, Figure 4).
FIGURE 1

Flow diagram summarizing the selection of eligible studies based on the PRISMA guidelines.
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TABLE 1 Characteristics of studies evaluating the relation between chemerin levels and chronic kidney disease.

Author Year Location Specimen Population N
Total

Age
(years)

Male
(%) Findings

Blaszak
et al.

2015 Poland Serum
CKD stages
3&4), HD,
KT, Control

187
67.5 ±
12.1

60.96

The mean serum chemerin level in the CKD group (stages 3&4)
was 70% higher than in controls (122.9 ± 33.7 vs. 72.6 ± 20.7 ng/
mL; p<0.001). In addition, no statistical difference was observed
between HD patients and CKD ones (115.7 ± 17.6 vs. 122.9 ± 33.7
ng/mL; n.s.). The mean Chemerin levels significantly decreased
after HD (115.7 ± 17.6 vs. 101.5 ± 16.4 ng/mL; p<0.001).
Chemerin levels after HD were significantly higher than those
with KT (101.5 ± 16.4 vs. 74.8 ± 16.0 ng/mL; p<0.001). There was
also no significant difference between KT patients and controls
(74.8 ± 16.0 vs. 72.6 ± 20.7 ng/mL; n.s.).

El-
Khashab
et al.

2019 Egypt Serum
CKD stages
3&4, ESRD
(HD), Control

80
49.5 ±
13.9

67.5
The mean chemerin level was significantly higher in CKD patients
compared to the healthy controls (p<0.001).

Fahad
et al.

2020 Iraq Serum

HD with and
without DM,
T2DM,
Control

120
54.0 ±
10.1

45.83

The mean serum chemerin was significantly higher in HD patients
with DM (230.13 ± 78.26 ng/ml), followed by HD patients
without DM (221.90 ± 65.17 ng/ml) compared with controls (110
± 20.42 ng/ml). Also, the mean of serum chemerin significantly
increased in DM patients (212.29 ± 70.88 ng/ml) when compared
with the control.

Liu et al. 2022 China Serum
CRF (GFR ≤

60), Control
148

59.2 ±
8.1

66.89

Compared with the healthy group, the expression level of
chemerin in the observation group was decreased, and the
difference was statistically significant (p<0.001). Also, serum levels
of chemerin in the death group were significantly higher than
those in the survival group(p<0.001, 145.41 ± 18.75 vs 98.52 ±
14.92). The ROC-AUC analysis for the prediction of mortality
resulted in an AUC of 0.775 (95% CI: [0.614-0.872]).

Pfau et al. 2009 Germany Serum
CKD
(GFR<50),
Control

120
65.0 ±
17.5

51.67

Median circulating chemerin was more than two-fold higher in
CKD patients (542.2 ± 98.1 mg/l) compared with control patients
(254.3 ± 88.7 mg/l) (p<0.001). There was no significant difference
between males and females or patients with or without T2DM.

Rutkowski
et al.

2011 Poland Serum
ESRD,
Control

46
47.3 ±
13.6

60.86

Patients before KT had significantly higher chemerin levels
compared to healthy controls. After KT, the chemerin levels were
reduced to the range of healthy controls. In 76% of the patients, a
decrease in serum chemerin concentration was observed; however,
the percentage of the changes differed from 13% to 66% (p<0.05).

Salama
et al.

2016 Egypt Serum
Pre-HD, HD,
Control

78
48.6 ±
8.6

NR

Compared with the control participants, pre-dialysis patients and
patients on HD had significantly higher chemerin levels (p=0.001
and p<0.001). In addition, the chemerin level in patients on HD
was higher than that in pre-dialysis patients (p<0.001).

Sarhat
et al.

2018 Iraq Serum
CRF (pre-
and post-
HD), Control

96
43.9 ±
7.6

57.29
CRF patients had significantly lower chemerin levels compared to
controls. In addition, post-HD patients had increased levels of
chemerin.
F
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Data are presented as mean± standard deviation or percentage. NR, not reported; CI, confidence interval; HD, hemodialysis; CKD, chronic kidney disease; KT, kidney transplantation; ESRD, end-stage
renal disease; DM, diabetes mellitus; T2DM, type-2 diabetes mellitus; GFR, glomerular filtration rate; CRF, chronic renal failure; AUC, area under the receiver operating characteristic curve.
FIGURE 2

Forest plot for meta-analysis of chemerin levels in chronic kidney disease patients compared to controls.
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3.5 Publication bias

Publication bias was assessed for CKD vs. control and HD vs.

control meta-analyses. While there was no apparent symmetry for the

former, the latter showed an asymmetry in the funnel plot

(Supplementary Figures 1, 2). Begg’s statistical test could not reveal

any sign of publication bias in either CKD vs. controls (p-value:

0.173), or HD vs. controls (p-value: 0.265); however, Egger’s test

showed a significant publication bias for both of them (p-value: 0.002

and 0.001, respectively).
3.6 Meta-regression analysis

Meta-regression was performed on possible modifiers, including

sample size, mean age, male percentage, and publication year.

Univariable meta-regression showed no significant relationship

between any of these and two of the main analyses. Additionally,

publication year contributed to 44.19% and 24.17% of the observed

heterogeneity in CKD vs. control and HD vs. control meta-analyses,

respectively (Table 2). Bubble plots for all mentioned meta-

regressions are illustrated in Supplementary Figures 3-10.
3.7 Outlier’s detection and
sensitivity analysis

Galbraith plots for both CKD/HD vs. control analyses were

designed and investigated. No outlier study was identified in any of
Frontiers in Endocrinology 0563
the two analyses (Supplementary Figures 11, 12). In addition,

sensitivity analysis was performed by removing each of the studies

and assessing its impact on overall results. Similarly, none of the

studies had a significant effect on the overall pooled result.
4 Discussion

CKD is a global health burden that is strongly associated with a

decreased quality of life and premature mortality. It is usually defined

using the serum creatinine concentration to estimate GFR as an index

of kidney function (20). However, commonly used formulas to

estimate kidney function based on creatinine alone have severe

shortcomings, with an accuracy of less than 65%, according to

estimates (21). These failures point to the need for additional

markers of kidney function to augment current clinical tools. An

example of a successful marker in diagnosing CKD is cystatin C,

which is independent of patient muscle mass and has been used

successfully alone and together with creatinine in new equations for

estimating GFR that outperformed traditionally used equations (22,

23). We investigated whether chemerin could play a similar role.

The observed elevation in chemerin levels can reasonably be

thought to be a result of either an increase in chemerin production

or a decrease in its excretion. Chemerin is expressed throughout the

body, but its production is believed to be dominated by the liver, with

adrenal and pancreatic glands as additional significant sources (24).

Comparatively, the expression of chemerin in the kidney is less than

5% of that in the liver (25). Alternatively, adipose tissue is thought to

be the main source of chemerin in the body (26), which has led to the
FIGURE 3

Forest plot for meta-analysis of chemerin levels in hemodialysis patients compared to controls.
FIGURE 4

Forest plot for meta-analysis of chemerin levels in chronic kidney disease patients without hemodialysis compared to controls.
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investigation of chemerin expression in subcutaneous adipose tissue

in CKD patients in one of our included studies (8). The results

showed no change in tissue expression, despite increased chemerin

levels. While this result shows that subcutaneous chemerin expression

is not the source of increased chemerin levels in CKD patients, it does

not necessarily establish that an increase in chemerin expression

throughout the body, e.g., by visceral adipose tissue, might not be the

cause of the observed increase in chemerin. Additional studies are

required to investigate chemerin expression in the main chemerin-

producing tissues, including the liver, endocrine glands, and kidneys

in patients with CKD.

The second mechanism by which the increased chemerin levels

might be explained is the reduced excretion of chemerin due to

impaired kidney function. This is the main mechanism by which

creatinine and cystatin C are increased in kidney dysfunction as well

(22). Chemerin, in its main form, is a 143 residue polypeptide

weighing 16kDa, which lies within the range associated with

decreased clearance in kidneys with impaired function (7). Elevated

levels of adipokines, including leptin, adiponectin, tumor necrosis

factor-a (TNF-a) , interleukin-6, resist in, visfatin, and

angiotensinogen, with similar molecular shapes and weights to

chemerin, have been observed in kidney dysfunction (27).

Decreased renal function may increase serum adipokine levels by

reducing renal elimination or degradation. A possible source of

evidence for this mechanism is the significant negative association

between GFR and chemerin levels in patients with ESRD as well as the

restoration of chemerin levels after successful kidney transplantation

(6). Stronger evidence is required to validate this hypothesis, most

obviously by measuring urine chemerin levels to calculate chemerin

clearance in CKD patients. This approach was considered in (8) but

was not reported owing to measurement problems.

In addition to the unknown precise mechanism of increased

chemerin levels in CKD, its role in the pathophysiology of renal

failure is unclear. We have discussed reports of meaningful

associations between chemerin levels and the degree and risk of

kidney dysfunction. However, it is unclear whether this observation

is simply a byproduct of reduced kidney function due to other means
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or if chemerin is, in fact, an active pathological agent. Adipokines, in

general, seem to have both protective and degenerative effects on

kidney function, with all but adiponectin causing CKD progression by

mediating endothelial dysfunction, inflammation, fibrosis, and

oxidative stress (27). Chemerin specifically produces its function by

binding one of three receptors: chemerin receptor 1 (chem1),

chemerin receptor 2 (chem2), or chemokine receptor-like 2

(CCRL2). Chem1, the most common chemerin receptor, is a Gi/Go

protein of the G protein family, which inhibits the production of

cAMP and promotes the production of IP3, calcium influx, and

activation of phospholipase C, PI3 kinase, and MAPK pathways (28).

Chem1 is highly expressed in the kidneys, much more so than

chemerin itself, suggesting high sensitivity to chemerin produced

elsewhere (24). This receptor has been shown to mediate the

proinflammatory function of chemerin owing to its expression on

macrophages and dendritic cells. The proinflammatory function of

chemerin has additionally been confirmed in arthritis and psoriasis,

firmly establishing the proinflammatory activity of chemerin (29).

Inflammation, along with the modulation of endothelial damage

characteristic of adipokines, has been recently confirmed in the

kidneys of patients and rats with diabetic nephropathy (DN), where

the expression of chemerin, chem1, and inflammatory factors was

significantly increased in DN, implicating chemerin as an active agent

in the pathophysiology of glomerular endothelial cell inflammation

(30). Additional investigations are needed to shed light on the role

that the chemerin/chem1 axis plays in causing kidney injury.

The observed association between chemerin and kidney disease is

of importance in two general axes (1): as a result of kidney damage,

itself either caused by reduced renal clearance or increased

production, and (2) as a cause of kidney damage, through a variety

of proinflammatory, endothelial, and oxidative mechanisms. These

two axes, in turn, implicate chemerin both as a marker for CKD

diagnosis, as well as a possible target for the treatment of a variety of

kidney diseases.

The strengths of this study include precise compliance with

PRISMA protocols, including a comprehensive search of relevant

databases and the independent screening of search results by two
TABLE 2 Meta-regression of CKD/Controls and HD/Controls meta-analyses.

Moderator No. of subjects Meta-regression R2 Analog (proportion of variance explained)

Case Control Slope 95% CI p-value

CKD vs. Control

Sample Size 506 349 -0.018 -0.055 0.018 0.317 0%

Age (mean, years) 506 349 -0.024 -0.151 0.200 0.785 0%

Male Percentage 448 329 0.034 -0.183 0.251 0.758 0%

Publication year 506 349 -0.254 -0.534 0.026 0.075 23.50%

HD vs. Control

Sample Size 395 349 -0.015 -0.060 0.029 0.495 0%

Age (mean, years) 395 349 0.036 -0.163 0.236 0.720 0%

Male Percentage 360 329 0.000 -0.237 0.236 0.997 0%

Publication year 395 349 -0.290 -0.608 0.027 0.073 24.17%
CI, confidence interval; CKD, chronic kidney disease; HD, hemodialysis.
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reviewers. The measured outcomes are mostly identical and directly

comparable. The major limitation of this analysis was the relevant

differences among included studies’ populations and the small sample

size of them, resulting in a limitation in the generalizability of the

findings. Secondly, few subgroup analyses were performed, which

introduces a possible source of bias. Third, we calculated mean and

SDs from median and IQRs with the methods suggested by Luo et al.

and Wan et al. (10, 11), which despite being used before, may add

some limitations to the analyses. Finally, the lack of additional direct

prognostic indices limits the scope of our reasoning regarding the

appropriateness of chemerin as a prognostic marker for CKD.
5 Conclusion

Evidence from recent studies suggests that the cytokine chemerin

is consistently elevated in patients diagnosed with CKD and in

patients undergoing HD compared to healthy controls. This

evidence can be used to justify the inclusion of chemerin as one of

several possible biomarkers for future models used to classify patients

into CKD vs. normal as well as to predict the future course of their

disease. Evidence from additional studies is needed to solidify and

confirm this observed association as well as to specify pitfalls,

including specific comorbidities or covariates, that cause the

observed association to fail to replicate.
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distribution in central region and
comorbidities in obese people:
Based on NHANES 2011–2018

Chen-An Liu1,2,3,4,5†, Tong Liu1,2,3,4,5†, Guo-Tian Ruan1,2,3,4,5,
Yi-Zhong Ge1,2,3,4,5, Meng-Meng Song1,2,3,4,5, Hai-Lun Xie1,2,3,4,5,
Shi-Qi Lin1,2,3,4,5, Li Deng1,2,3,4,5, He-Yang Zhang1,2,3,4,5, Qi Zhang5,6

and Han-Ping Shi1,2,3,4,5*

1Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China,
2Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China,
3National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical
University, Beijing, China, 4Key Laboratory of Cancer Food for Special Medical Purposes (FSMP) for State
Market Regulation, Beijing, China, 5Beijing International Science and Technology Cooperation Base for
Cancer Metabolism and Nutrition, Capital Medical University, Beijing, China, 6Department of Colorectal
Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital,
Hangzhou, Zhejiang, China
Background: Central obesity is closely related to comorbidity, while the

relationship between fat accumulation pattern and abnormal distribution in

different parts of the central region of obese people and comorbidity is not

clear. This study aimed to explore the relationship between fat distribution in

central region and comorbidity among obese participants.

Methods: We used observational data of NHANES 2011–2018 to identify 12

obesity-related comorbidities in 7 categories based on questionnaire responses

from participants. Fat distribution is expressed by fat ratio, including Android,

Gynoid, visceral, subcutaneous, visceral/subcutaneous (V/S), and total abdominal

fat ratio. Logistic regression analysis were utilized to elucidate the association

between fat distribution and comorbidity.

Results: The comorbidity rate was about 54.1% among 4899 obese participants

(weighted 60,180,984, 41.35 ± 11.16 years, 57.5% female). There were differences

in fat distribution across the sexes and ages. Among men, Android fat ratio (OR,

4.21, 95% CI, 1.54–11.50, Ptrend=0.007), visceral fat ratio (OR, 2.16, 95% CI, 1.42–

3.29, Ptrend<0.001) and V/S (OR, 2.07, 95% CI, 1.43–2.99, Ptrend<0.001) were

independent risk factors for comorbidity. Among these, there was a “J” shape

correlation between Android fat ratio and comorbidity risk, while visceral fat ratio

and V/S exhibited linear relationships with comorbidity risk. The Gynoid fat ratio

(OR, 0.87, 95%CI, 0.80–0.95, Ptrend=0.001) and subcutaneous fat ratio (OR, 0.81,

95%CI, 0.67–0.98, Ptrend=0.016) both performed a protective role in the risk of

comorbidity. In women, Android fat ratio (OR, 4.65, 95% CI, 2.11–10.24,

Ptrend=0.020), visceral fat ratio (OR, 1.83, 95% CI, 1.31–2.56, Ptrend=0.001), and V/

S (OR, 1.80, 95% CI, 1.32–2.45, Ptrend=0.020) were also independent risk factors for

comorbidity, with a dose-response relationship similar to that of men. Only the

Gynoid fat ratio (OR, 0.93, 95% CI, 0.87–0.99, Ptrend=0.016) had a protective effect

on female comorbidity. This association was also seen in obese participants of
frontiersin.org0167

https://www.frontiersin.org/articles/10.3389/fendo.2023.1114963/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1114963/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1114963/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1114963/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2023.1114963&domain=pdf&date_stamp=2023-02-08
mailto:shihp@ccmu.edu.cn
https://doi.org/10.3389/fendo.2023.1114963
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2023.1114963
https://www.frontiersin.org/journals/endocrinology


Liu et al. 10.3389/fendo.2023.1114963

Frontiers in Endocrinology
different age groups, comorbidity numbers, and comorbidity types, although it was

more statistically significant in older, complex comorbidity, cardiovascular,

cerebrovascular, and metabolic diseases.

Conclusions: In the obese population, there were strong correlation between fat

distribution in central region and comorbidity, which was affected by sex, age,

number of comorbidities, and type of comorbidity.
KEYWORDS
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Introduction

Obesity is becoming more widespread all over the world,

according to Global Burden of Disease Group research (1). Wang

et al. predicted that by 2030, the total medical cost of obesity will

double to 860.7-956.9 billion US dollars, accounting for about 16–

18% of the total medical costs in the United States (2). It can threaten

the health of people of any age, including induced cardiovascular

disease (3), metabolic disease (4), liver disease (5), cancer (6), joint

disease (7), and other comorbidities. However, these comorbidity

studies focus mostly on the elderly and children, with little attention

to adults aged 20–59 years, who account for the majority of the

population distribution (8). This might be due to the low comorbidity

rate of this age group. However, we must be aware that once young

and middle-aged people are accompanied by these chronic diseases,

they will be permanently and profoundly affected, and their quality of

life and survival time may be significantly reduced. Therefore, we

include this prevalent yet distinct category in this study.

Although obesity is closely related to a variety of comorbidities,

the advent of the “obesity paradox” in recent years has broken

everyone’s traditional understanding. Obesity based on body mass

index (BMI) alone does not seem to well explain the protective effects

of overweight and obesity in cardiovascular and cerebrovascular

diseases (CCVD), cancer, and other diseases (9, 10), while

individualized research on obesity types, body composition, lean

and fat distribution have become increasingly valuable (11, 12).

We know that fat in obese people is often centrally accumulated,

which is reflected in visceral fat, abdominal subcutaneous fat, hip fat

and other regional fat. Previous studies have shown that the excessive

distribution of Android fat and trunk fat may have a deleterious

impact on subclinical right ventricular function, while the peripheral

fat distribution may have a positive impact (13).

As far as we know, although some studies have conducted

separate researches on waist hip ratio or visceral fat, no large-scale

study has been conducted to explain the relationship between fat

distribution in central region and comorbidities, even the number of

comorbidities in obese patients of different ages and sexes. Therefore,

this study aimed to explore the relationship between fat distribution

and comorbidities such as CCVD, metabolic diseases (MD),

respiratory diseases (RD), cancer, liver diseases, renal diseases, and

joint diseases in obese adults aged 20-59 by analyzing the population
0268
in National Health and Nutrition Examination Survey (NHANES)

database from 2011 to 2018, to provide us with a better scientific

understanding of obesity and fat distribution in central region.
Methods

Participants and study design

The population of this study was sourced from the NHANES

database—a large cross-sectional survey conducted by the National

Center for Health Statistics—to investigate the health and nutritional

status of the population in the United States (14–17). Its research

design is complex and exquisite. The principal sample design

consisted of multiyear, stratified, clustered 4-stage samples (18).

According to the over-sampling standard, researchers over-sampled

some subgroups of people and gave them corresponding weights so as

to improve the accuracy and reliability of the overall data so that it can

represent the demographic characteristics of the entire United States

(19). On the official website of NHANES, we referred to the detailed

survey contents, survey operations, and data-use methods (20).

Personal information was mainly collected through personal

interviews and mobile examination center, and all participants

provided their signed informed consent (18).

In the present study, we analyzed 39,156 participants from the

NHANES during 2011–2018, excluding the following patients: (1)

participants aged <20 years, >59 years, and pregnant; (2) lack of data

information that can be used to evaluate obesity (BMI and waist

circumference); (3) non-obese participants; (4) lack of fat mass data;

(5) lack of baseline data (such as income, marital status, smoking, and

drinking); (6) lack of comorbidity information. Finally, we included

4,899 obese participants (60,180,984 participants after weighting).

The screening process is depicted in Figure S1.
Exposure variables and definitions

In this study, all participants were examined by dual-energy X-ray

absorptiometry (DXA) to determine the fat mass, which is the most

widely accepted method of measuring body composition (21). The fat

distribution in the central region includes Android, Gynoid, visceral,
frontiersin.org
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subcutaneous, visceral/subcutaneous (V/S), and total abdominal fat

ratio (See the Supplementary materials for the definition of these

areas). The fat distribution was described by the ratio (%), that is, the

fat mass of each part/total fat mass × 100%. Obesity was defined as

BMI ≥30 or waist circumference (wc) ≥88 cm in women or wc ≥102

cm in men (22).
Outcome

Our primary study outcome was the comorbidity risk among

obese participants. We obtained whether the patient also had other

diseases from the medical conditions file in the NHANES

questionnaire section. We included 12 obesity-related diseases in 7

categories reported previously, which included CCVD (such as

hypertension, coronary heart disease, heart failure, and stroke), MD

(diabetes and gout), RD (asthma, chronic bronchitis), liver disease,

renal disease, and cancer and joint diseases. Among these, simple

comorbidity is defined as <4 comorbidities, while the participants

with ≥4 diseases were defined as complex comorbidities (23).
Statistical analyses

Considered the complex survey design of NHANES, all statistical

analysis was based on sample weight, stratification, and clustering.

Continuous variables were expressed by means ± standard deviation

(SD), and categorical variables were expressed by percentage (%).

Continuous variables were compared with the Student’s t-test or non-

parametric test, and the categorical variables were compared with the

Rao-Scott Chi-square test. Considering the large difference in the

distribution of fat between men and women, we classified the study
Frontiers in Endocrinology 0369
participants into 2 groups of men and women and applied logistic

regression analysis to clarify the relationship between the distribution

of fat in different portions and the risk of comorbidity. For continuous

variables that did not conform to the normal distribution, we

conducted a natural logarithm transformation and also described

these variables in the form of sex-specific quintiles. The cutoff value

was calculated from the ROC curve. In addition, we used the variance

inflation factor (VIF) to detect multicollinearity among covariates.

VIF >10 was considered to indicate multicollinearity.

In order to clarify the correlation between fat distribution and

comorbidity risk among different subgroups, we analyzed the age

subgroups (<45 and ≥45 years), comorbidity number subgroups

(simple comorbidity and complex comorbidity), and comorbidity-

type subgroups. In order to test the robustness of the results, we

performed a sensitivity analysis, adjusted the age subgroups to <40

and ≥ 40 years old, and then performed a logistic regression analysis

to clarify the relationship between fat distribution and comorbidity.

Two-sided P < 0.05 was considered to indicate statistical significance,

and all statistical analyses were performed by the R software

(Version 4.1.2).
Result

Characteristics of study participants

The mean age (SD) of these 4899 obese participants was 41.35 ±

11.16 years. The majority of them were female, with about 2950

participants. We found significant differences in total fat mass (32.84

± 8.94 kg vs 36.56 ± 10.52 kg) and fat distribution between men and

women (P < 0.001), including Android, Gynoid, visceral,

subcutaneous, and abdominal fat ratio and V/S (Table 1).
TABLE 1 Clinical characteristics and body measurements of study participants in NHANES 2011-2018.

Male (n=1950) Female (n=2949) P value

Weighted sample size, No. (%) 25,553,771 (42.5) 34,627,213 (57.5)

Age (mean) 41.37 (11.12) 41.34 (11.19) 0.941

Race, No. (%) <0.001

Mexican American 358 (12.7) 528 (11.0)

Other Hispanic 214 (7.9) 340 (7.3)

Non-Hispanic White 760 (63.2) 1043 (61.9)

Non-Hispanic Black 387 (9.4) 717 (13.1)

Other Race 231 (6.8) 321 (6.7)

Education, No. (%) <0.001

Less than high school 359 (12.4) 533 (12.5)

High school or equivalent 523 (27.2) 617 (20.4)

College or above 1068 (60.3) 1799 (67.1)

Marital, No. (%) <0.001

Married 1091 (58.4) 1413 (53.1)

Separated 218 (11.6) 586 (18.3)

(Continued)
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The majority of patients had comorbidity (54.1%), and there was

no significant difference in the comorbidity rates between men and

women (P = 0.626). The comorbidity rate of men was about 53.6%,

while women had about 54.4%. The comorbidity types of the two

groups were similar, including hypertension (men, 32.6%, women,

26.5%), arthritis (men, 14.9%, women, 20.9%) and asthma (men,

12.8%, women, 19%).
Relationship between fat distribution and
comorbidity risk in different sexes

After adjusting for age, race, education level, marital status,

income, medical insurance, alcohol drinking, smoking, BMI, wc,

and arm circumference, the Android fat ratio (OR, 4.21, 95% CI,

1.54–11.50, Ptrend=0.007), visceral fat ratio (OR, 2.16, 95% CI, 1.42–

3.29, Ptrend<0.001), and V/S (OR, 2.07, 95% CI, 1.43–2.99,
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Ptrend<0.001) were independent risk factors for comorbidity in men.

The Android fat ratio is “J” type related to comorbidity risk, while the

visceral fat ratio and V/S were very significantly linear type related to

comorbidity risk, that is, compared to Quintile 1, the OR values of

Quintiles 2, 3, 4, and 5 exhibited progressive growth. Simultaneously,

the Gynoid fat ratio (OR, 0.87, 95%CI, 0.80–0.95, Ptrend=0.001) and

the subcutaneous fat ratio (OR, 0.81, 95%CI, 0.67–0.98, Ptrend=0.016)

played a protective role in the risk of comorbidity, and this trend was

still visible after dividing by the cutoff value. After dividing by sex-

specific quintiles, we discovered a significant linear inversely dose-

response relationship between Gynoid fat ratio, subcutaneous fat

ratio, and comorbidity risk, implying that their protective effects

were accumulated as fat ratio increases (Table 2).

We also adjusted for covariates among women. The results

showed that as continuous variables, Android fat ratio (OR, 4.65,

95% CI, 2.11–10.24, Ptrend=0.020), visceral fat ratio (OR, 1.83, 95% CI,

1.31–2.56, Ptrend=0.001), and V/S (OR, 1.80, 95% CI, 1.32–2.45,
TABLE 1 Continued

Male (n=1950) Female (n=2949) P value

Never married 641 (30.0) 950 (28.7)

Ratio of family income
to poverty, No. (%)

<0.001

0-1.0 445 (15.1) 848 (21.2)

1.1-3.0 806 (36.0) 1161 (35.1)

>3.0 699 (48.9) 940 (43.7)

Medical insurance, No. (%) 0.019

No 543 (21.3) 680 (17.8)

Yes 1407 (78.7) 2269 (82.2)

Alcohol drinking, No. (%) <0.001

No 312 (13.9) 954 (24.6)

Yes 1638 (86.1) 1995 (75.4)

Smoke, No. (%) <0.001

No 1014 (52.6) 1927 (61.4)

Yes 936 (47.4) 1022 (38.6)

BMI (mean) 33.29 (4.70) 32.48 (6.41) <0.001

Arm circumference (mean) 37.59 (3.54) 34.72 (4.56) <0.001

Waist (mean) 112.32 (10.94) 104.73 (13.36) <0.001

Total fat mass (kg, mean) 32.84 (8.94) 36.56 (10.52) <0.001

Android fat ratio (mean) 10.34 (1.27) 8.52 (1.31) <0.001

Gynoid fat ratio (mean) 15.48 (1.76) 17.11 (2.11) <0.001

Visceral fat ratio (mean) 2.22 (0.76) 1.65 (0.60) <0.001

Subcutaneous fat ratio (mean) 5.69 (0.66) 6.48 (0.83) <0.001

Visceral to Subcutaneous fat
ratio (mean)

0.40 (0.15) 0.26 (0.10) <0.001

Abdominal fat ratio (mean) 8.06 (0.91) 8.27 (1.06) <0.001

Comorbidity, No. (%) 1074 (53.6) 1640 (54.4) 0.626
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Ptrend=0.020) were also independent risk factors for comorbidity. And

their dose-response association showed the same trend as in males.

Unlike the male results, however, only the Gynoid fat ratio (OR, 0.93,

95% CI, 0.87–0.99, Ptrend=0.016) played a protective role (Table 3).

Although there was a protective trend in the subcutaneous fat ratio

(OR, 0.69, 95% CI, 0.31–1.53), it was not statistically significant (P =

0.350, Ptrend=0.208).
Relationship between fat distribution and
comorbidity risk stratified by age

We separated men and women into two groups(<45 and≥45 years

old) to explore the differences in fat distribution and comorbidity

across age groups. We found variations in all fat ratio among

participants of two groups, regardless of sex (Figure S2). Further

logistic regression analysis showed that (Tables S1, S2; Figure 1), in

contrast to the results of the total male population, the Android fat

ratio (OR, 2.77, 95%CI, 0.87–8.80, P = 0.082) and the Gynoid fat ratio

(OR, 0.91, 95%CI, 0.83–1.00, P = 0.056) of men with <45 were not

statistically significant with the risk of comorbidity. But in men with

≥45, Android fat ratio (OR, 7.24, 95%CI, 1.25-41.49, P = 0.020) and

Gynoid fat ratio (OR, 0.78, 95%CI, 0.68–0.90, P = 0.001) were

significantly associated with comorbidity risk, and this trend also

existed in women (Tables S3, S4; Figure 2)
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Relationship between fat distribution and
risk of complex comorbidity

We reclassified the patients according to the number of

comorbidities. Complex comorbidities were defined as four or

more comorbidities. Based on this, we studied the relationship

between fat distribution as a continuous variable and various

degrees of comorbidity (Figures S3, S4). The forest plot in

Figures 3, 4 clearly showed that, with the emergence of complex

comorbidity, Android fat ratio, visceral fat ratio, and V/S have

significantly increased the risk of comorbidity, while the protective

effect of Gynoid fat ratio and the subcutaneous fat ratio on the risk of

comorbidity had also increased.
Relationship between fat distribution and
risk of different types of comorbidities

We reclassified the patients according to their comorbidity types,

mainly including CCVD, MD, RD, liver disease, renal disease, cancer,

and joint disease, and studied the relationship between fat

distribution and different types of comorbidities. As continuous and

categorical variables, the quintile OR value of CCVD comorbidity risk

of Android fat ratio, visceral fat ratio, and V/S showed a significant

increase. Similarly, the quintiles OR value of Gynoid fat ratio and
TABLE 2 Odds ratio (95%CI) of comorbidity risk with different fat distribution in male obese people.

Android fat(%) Gynoid fat(%) Visceral fat(%)

OR (95%CI) P-value OR (95%CI) P-value OR (95%CI) P-value

As continuous (per SD) 4.21 (1.54, 11.50) 0.006 0.87 (0.80, 0.95) 0.002 2.16 (1.42, 3.29) 0.001

By cut-off Low Ref Ref Ref

High 1.58 (1.20, 2.05) 0.001 0.46 (0.33,0.62) <0.001 1.67 (1.20,2.31) 0.003

Quintile Q1 Ref Ref Ref

Q2 0.75 (0.50, 1.12) 0.154 0.44 (0.30, 0.64) <0.001 1.39 (0.92, 2.10) 0.112

Q3 0.97 (0.69, 1.36) 0.856 0.33 (0.21, 0.50) <0.001 1.62 (1.02, 2.57) 0.042

Q4 1.05 (0.69, 1.62) 0.805 0.37 (0.25, 0.56) <0.001 2.05 (1.31, 3.19) 0.002

Q5 1.53 (1.01, 2.33) 0.047 0.32 (0.20, 0.50) <0.001 2.35 (1.44, 3.84) 0.001

Ptrend 0.007 0.001 <0.001

Subcutaneous fat(%) V/S Abdominal fat(%)

As continuous (per SD) 0.81 (0.67, 0.98) 0.032 2.07 (1.43, 2.99) <0.001 1.13 (0.96,1.32) 0.13

By cut-off Low Ref Ref Ref

High 0.60 (0.47,0.77) <0.001 2.10 (1.62,2.72) <0.001 1.37 (1.05,1.79) 0.022

Quintile Q1 Ref Ref Ref

Q2 0.89 (0.61, 1.31) 0.553 1.53 (1.12, 2.10) 0.008 0.70 (0.49, 1.02) 0.062

Q3 0.80 (0.55, 1.17) 0.249 2.04 (1.38, 3.02) 0.001 0.90 (0.58, 1.40) 0.634

Q4 0.61 (0.39, 0.96) 0.033 2.42 (1.66, 3.54) <0.001 1.06 (0.68, 1.67) 0.779

Q5 0.66 (0.42, 1.05) 0.078 3.92 (2.54, 6.07) <0.001 1.00 (0.61, 1.64) 0.996

Ptrend 0.016 <0.001 0.298
Adjusted for Age, Race, Education, Marital status, Ratio of family income to poverty, Medical insurance, Smoke, Alcohol, BMI, Waist, Arm circumference.
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FIGURE 1

Comorbidity risk odds ratio (95% CI) of different fat distribution in obese male.
TABLE 3 Odds ratio (95%CI) of comorbidity risk with different fat distribution in female obese people.

Android fat (%) Gynoid fat (%) Visceral fat(%)

OR (95%CI) P-value OR (95%CI) P-value OR (95%CI) P-value

As continuous (per SD) 4.65 (2.11, 10.24) <0.001 0.93 (0.87, 0.99) 0.022 1.83 (1.31, 2.56) 0.001

By cut-off Low Ref Ref Ref

High 1.37 (1.09, 1.73) 0.009 0.64 (0.49, 0.83) 0.001 1.71 (1.31, 2.22) <0.001

Quintile Q1 Ref Ref Ref

Q2 0.91 (0.65, 1.28) 0.586 0.57 (0.39, 0.83) 0.004 1.08 (0.79, 1.50) 0.617

Q3 1.16 (0.82, 1.65) 0.401 0.46 (0.32, 0.66) <0.001 1.03 (0.77, 1.38) 0.815

Q4 1.11 (0.77, 1.60) 0.565 0.46 (0.32, 0.67) <0.001 1.41 (1.01, 1.97) 0.044

Q5 1.55 (1.04, 2.31) 0.030 0.55 (0.37, 0.82) 0.004 2.18 (1.35, 3.50) 0.002

Ptrend 0.020 0.016 0.001

Subcutaneous fat(%) V/S Abdominal fat(%)

As continuous (per SD) 0.69 (0.31, 1.53) 0.35 1.80 (1.32, 2.45) <0.001 1.04 (0.94, 1.16) 0.398

By cut-off Low Ref Ref Ref

High 0.85 (0.68, 1.06) 0.136 2.13 (1.67, 2.74) <0.001 1.26 (0.99, 1.60) 0.061

Quintile Q1 Ref Ref Ref

Q2 0.81 (0.59, 1.10) 0.169 1.23 (0.91, 1.67) 0.173 0.87 (0.66, 1.16) 0.331

Q3 0.92 (0.66, 1.28) 0.605 1.36 (1.03, 1.79) 0.032 1.01 (0.75, 1.38) 0.926

Q4 0.72 (0.52, 0.98) 0.036 1.72 (1.20, 2.46) 0.004 1.05 (0.76, 1.45) 0.755

Q5 0.92 (0.68, 1.25) 0.578 3.55 (2.30, 5.49) <0.001 1.06 (0.76, 1.46) 0.739

Ptrend 0.208 <0.001 0.371
F
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Adjusted for Age, Race, Education, Marital status, Ratio of family income to poverty, Medical insurance, Smoke, Alcohol, BMI, Waist, Arm circumference.
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subcutaneous fat ratio, and CCVD comorbidity risk showed a

decreasing trend, indicating that its protective effect was gradually

increasing (Figure S5). Except for subcutaneous fat ratio, Android fat

ratio, Gynoid fat ratio, visceral fat ratio, and V/S were the same in MD

as they were in CCVD (Figure S6). However, when fat distribution

was associated with the risk of RD, liver disease, renal disease, cancer,

and joint disease, these relationships were less regular (Figures

S7–S11).
Sensitive analysis

In addition, we also conducted some sensitivity analyses and

discovered that the results were stable. To overcome the bias caused

by age grouping, we reset the age boundary and investigated the role

of fat distribution in obese participants at the age of 40. Android fat

ratio (OR, 2.60, 95% CI, 0.56–12.12, P = 0.219) and Gynoid fat ratio

(OR, 0.96, 95% CI, 0.86–1.08, P = 0.501) were not significantly

associated with comorbidity among male obese adults aged <40

years (Figure S12). Conversely, the risk effect of Android fat ratio

(OR, 5.30, 95% CI, 1.33–21.13, P = 0.019) and the protective effect of

Gynoid fat ratio (OR, 0.80, 95% CI, 0.71–0.91, P = 0.006) were

obvious for male obese people aged ≥40 years. In women, the results

were similar (Figure S13). Considering the impact of menstrual status

on female fat distribution and some disease risks (CCVD), the results

of subgroups of people with menstrual status by age showed that the

comorbidity risk of postmenopausal (older) participants seemed

more likely to be affected by abnormal fat distribution (Figure S14).

In addition, in order to avoid the impact of estrogen use, we made

additional adjustments to the estrogen use of participants with

complete estrogen use information, and the results were still stable

(Table S5).
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Discussion

We analyzed 60 million obese individuals aged 20–59 years in this

large-scale prospective study that can represent the majority of the US

population. The results showed that even the central regional fat was

highly heterogeneous, with different fat distributions having distinct

consequences on comorbidity risk. In obese patients, the Android fat

ratio, visceral fat ratio, and V/S were all independent risk factors for

comorbidity. The Gynoid fat ratio accumulation provided protection.

Furthermore, in men, the accumulation of abdominal subcutaneous

fat performed a protective role in the risk of comorbidity. However,

the change in total abdominal fat had no discernable effect on the

incidence of comorbidity. Further subgroup analysis showed that the

effects of fat distribution were more strongly correlated with

comorbidity risk in older participants, as well as complex

comorbidity, CCVD, and MD.
Fat distribution and clinical characteristics

This study initially investigated the differences in fat distribution

among obese participants of different sexes and ages. To begin,

males had greater Android fat, visceral fat, and V/S compared to

women, but less Gynoid fat and subcutaneous fat, which may be

related to hormone levels, eating habits, living habits, and genetic

differences (24). Second, this difference was mirrored in fat function.

We also discovered that in men, both visceral fat ratio and

subcutaneous fat ratio were strongly linked with comorbidity risk,

but in women, only visceral fat ratio was significantly associated

with comorbidity risk. This result was completely consistent with

the results of Mutsert et al. (25). As a result, in women, just

variations in visceral fat may need to be assessed for stratification
FIGURE 2

Comorbidity risk odds ratio (95% CI) of different fat distribution in obese female.
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of comorbidity risk, but in men, the potential effects of

subcutaneous fat may need to be additionally assessed. Second,

age was an important reason for the differences in fat distribution

among participants. With advancing age, Android fat, visceral fat,

and abdominal fat increased, but Gynoid fat and subcutaneous fat

decreased. This also coincided with previous research results. Aging

promotes fat redistribution, that is, loss of subcutaneous fat and

growth of visceral fat, and hormonal imbalance can also invert the

distribution of Android and Gynoid fat (26). In terms of fat

function, older participants were more susceptible to fat than

younger participants, which was consistent with previous studies.

Preis et al. also found a stronger correlation between fat distribution

and metabolic diseases in older participants (27).
Fat distribution and complex comorbidity

For obese participants, complex comorbidities are a difficult

public health prevention target (28). Although some studies have

noted the relationship between fat distribution or obesity degree and

various comorbidities, for example, a recent study by Mika et al.

found a dose-response relationship between obese individuals’ BMI

and complex comorbidities, obese participants exhibited a 5-fold

greater risk of simple comorbidity and a 12-fold increased risk of

complex comorbidity compared to healthy weight participants (23).

However, few studies have elucidated the relationship between fat

distribution and complex comorbidity. When compared to people

with simple comorbidity, the fat distribution of participants with

complex comorbidity was more closely related to comorbidity risk,

and this trend was not affected by sex. The results of this study were

unprecedented because it effectively filled the deficiency in previous

studies that relied solely on BMI to determine the risk of

complex comorbidity.
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Fat distribution and comorbidity type

A large number of studies have shown a strong correlation

between obesity and various types of comorbidities, with the most

widely reported comorbidities being cardiovascular, metabolic, and

respiratory diseases (29–31). Albert et al. showed that obesity can

cause a variety of hemodynamic changes, which may lead to cardiac

morphological changes and ventricular dysfunction (32). Although

this theory has been widely confirmed, we cannot ignore the latest

research on the obesity paradox in cardiovascular disease. The

mortality of patients with any kind of heart failure has decreased as

BMI has increased (33). This contradictory phenomenon prompts us

to focus our research on body composition. We found that increasing

the Android fat ratio, visceral fat ratio, and V/S would increase the

risk of CCVD and even the mortality of special causes. However, the

Gynoid fat ratio and subcutaneous fat ratio played considerable

protective roles. This conclusion has not been explored in depth

before and it may be a reasonable explanation for the “obesity

paradox”. The increase in BMI will not benefit all obese people.

Participants will not benefit from a rise in BMI induced by Android

and visceral fat. Only the increase in BMI caused by Gynoid and

subcutaneous fat may achieve the effect of the “obesity paradox”.

Similarly, while obesity is associated with the occurrence of MD such

as diabetes and gout (34, 35), the risk of MD caused by fat in different

regions was not the same.

The most reasonable explanation for this phenomenon is fat

heterogeneity. The Android fat and visceral fat are composed of white

adipose tissues (WAT), which contribute to metabolism and chronic

inflammation in vivo, while triglycerides accumulation in WAT cells

in obese people triggers WAT cells remodeling, proliferation, and

hypertrophy. The ERK and p38 MAPK pathways are activated by

adipocytokines secretion, resulting in increased CCL2 expression in

adipocytes. This in turn triggers pro-inflammatory macrophage
FIGURE 3

The relationship between different fat distribution and different degrees of comorbidity in obese male.
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aggregation, Treg cell reduction, and IL-6 and TNF-a secretion

increases, leading to systemic inflammation, insulin resistance,

oxidative stress, and a series of metabolic reactions (36, 37). As for

Gynoid fat, estrogen induction increases the anti-lipolytic a2-
adrenergic receptors in the gluteal-femoral subcutaneous fat depot,

causing fat to accumulate in the Gynoid area; hence, Gynoid fat

distribution is closely related to estrogen levels (38). Estrogen has

been widely recognized as an important factor in regulating obesity

and metabolic balance in the body (39). Tran’s study showed that

estrogen-regulated multiple calcium-dependent activities in

cardiovascular tissues via influencing calcium signaling mechanism

components (40). Alternatively, by activating eNOS and increasing

NO production, as well as activating cardioprotective signaling

cascades including Akt and MAP kinases, cardiac and endothelial

cells are protected against apoptosis and necrosis, alleviating

pathological myocardial hypertrophy (41). Estrogen also plays an

important role in metabolic pathways. Animal experiments have

shown that estrogen can increase insulin content and glucose-

stimulated insulin secretion in isolated mouse islets, and maintain

glucose homeostasis, while its deficiency will disturb oxidative stress

and endoplasmic reticulum function, resulting in a complete disorder

of insulin function and in vivo metabolism. Therefore, the

accumulation of Gynoid fat caused by increased estrogen

significantly reduces the risk of comorbidity in obese people.

Interestingly, the increase in total abdominal fat did not appear to

affect the risk of any type of comorbidity in this study, which differs

slightly from previous reports indicating total abdominal fat was an

independent risk factor for cardiovascular disease (42). Visceral fat is

primarily responsible for the risk of total abdominal fat, while

subcutaneous fat has a protective effect. Therefore, we specially

analyzed the role of V/S in comorbidity. It has been proved that V/

S can be used to assess the risk of comorbidity, but merely judging

total abdominal fat cannot be very effective in guiding clinical work.
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Individual evaluation of visceral fat, abdominal subcutaneous fat and

V/S is necessary to meet the requirements of precision nutrition and

precision medicine.
Strengths and limitations

Obesity has been on the rise in adults since the 1980s, but over

the past decade, the prevalence of obesity and severe obesity has

continued to increase among young and middle-aged adults aged 20

to 59 years, compared to those aged <20 years and >60 years (43),

despite previous studies focusing primarily on adolescents and the

elderly. This is the first study to systematically study the fat

distribution and comorbidity risk, complex comorbidity, and

comorbidity types of obese people aged 20–59 years. Second, the

part of our study on complex comorbidities is of great public health

significance. Obese individuals aged <50 years had a higher risk of

complex comorbidity than older obese participants, and the

extremely high complex comorbidity rate imposes a huge

socioeconomic burden (23). This study’s population is obese

people aged 20–59 years, so it may effectively guide public health

prevention and control and reduce the complex comorbidity rate of

such people, improving their quality of life and survival time.

Notwithstanding, our study also had some limitations. First, since

this is a cross-sectional study, we could not obtain the dynamic

changes in the participants’ body composition, which may lead to

unclear causality; second, we did not account for diet, exercise, and

lifestyle habits, which could confound our results. Finally, changes

in menstrual status, hormone treatment and hormone level may

affect the distribution and mass of fat, thus affecting the results.

However, due to the limitations of NHANES database, we did not

adjust these covariants. In future clinical research, we will pay more

attention to these aspects.
FIGURE 4

The relationship between different fat distribution and different degrees of comorbidity in obese female.
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Conclusions

Taken together, these results have clinical and public health

implications, and our study highlights the correlation between fat

distribution and comorbidity, which is influenced by sex, age, number

of comorbidities, and type of comorbidity. Aswe age,we should paymore

attention to changes in central fat distribution, and peoplewith abnormal

fat distribution should be on the lookout for CCVD and MD.

Furthermore, because of the strong correlation between abnormal fat

distribution and complex comorbidities, it is particularly important to

distinguish the fat function of various parts of obese people. This result

provides clinical guidance thatobesity treatment (suchas life intervention,

pharmacotherapy and bariatric surgery) should be used with greater

caution and precision for young and middle-aged obese people.
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Association between high levels of gynoid fat and the increase of bone mineral density in
women. Climacteric (2020) 23(2):206–10. doi: 10.1080/13697137.2019.1679112

39. Qian SW, Liu Y, Wang J, Nie JC, Wu MY, Tang Y, et al. BMP4 cross-talks with
Estrogen/ERa signaling to regulate adiposity and glucose metabolism in females.
EBioMedicine (2016) 11:91–100. doi: 10.1016/j.ebiom.2016.07.034

40. Tran QK. Reciprocality between estrogen biology and calcium signaling in the
cardiovascular system. Front Endocrinol (Lausanne) (2020) 11:568203. doi: 10.3389/
fendo.2020.568203

41. Knowlton AA, Lee AR. Estrogen and the cardiovascular system. Pharmacol Ther
(2012) 135(1):54–70. doi: 10.1016/j.pharmthera.2012.03.007

42. Oike M, Yokokawa H, Fukuda H, Haniu T, Oka F, Hisaoka T, et al. Association
between abdominal fat distribution and atherosclerotic changes in the carotid artery. Obes
Res Clin Pract (2014) 8(5):e448–58. doi: 10.1016/j.orcp.2013.09.002

43. Hales CM, Fryar CD, Carroll MD, Freedman DS, Ogden CL. Trends in obesity and
severe obesity prevalence in US youth and adults by sex and age, 2007-2008 to 2015-2016.
JAMA (2018) 319(16):1723–5. doi: 10.1001/jama.2018.3060
frontiersin.org

https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/overview.aspx?BeginYear=2015
https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/overview.aspx?BeginYear=2015
https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/Overview.aspx?BeginYear=2017
https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/Overview.aspx?BeginYear=2017
https://www.cdc.gov/nchs/nhanes/about_nhanes.htm
https://doi.org/10.1016/j.bone.2017.06.010
https://doi.org/10.1161/01.cir.0000437739.71477.ee
https://doi.org/10.1016/S2213-8587(22)00033-X
https://doi.org/10.2174/1381612822666160309115318
https://doi.org/10.1089/met.2017.0128
https://doi.org/10.1159/000485183
https://doi.org/10.1038/oby.2010.59
https://doi.org/10.1016/S0140-6736(12)60240-2
https://doi.org/10.1172/JCI92035
https://doi.org/10.1093/eurheartj/ehab518
https://doi.org/10.1016/j.jaci.2018.02.004
https://doi.org/10.1007/s13679-016-0235-6
https://doi.org/10.1002/jcsm.12980
https://doi.org/10.3390/nu11020233
https://doi.org/10.3390/nu11020233
https://doi.org/10.1001/jamanetworkopen.2020.27421
https://doi.org/10.1001/jamanetworkopen.2020.27421
https://doi.org/10.1016/j.bcp.2021.114723
https://doi.org/10.1515/hsz-2019-0451
https://doi.org/10.1515/hsz-2019-0451
https://doi.org/10.1080/13697137.2019.1679112
https://doi.org/10.1016/j.ebiom.2016.07.034
https://doi.org/10.3389/fendo.2020.568203
https://doi.org/10.3389/fendo.2020.568203
https://doi.org/10.1016/j.pharmthera.2012.03.007
https://doi.org/10.1016/j.orcp.2013.09.002
https://doi.org/10.1001/jama.2018.3060
https://doi.org/10.3389/fendo.2023.1114963
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Cheng-Chao Ruan,
Fudan University, China

REVIEWED BY

Leonardo Centonze,
Niguarda Ca’Granda
Hospital, Italy
Alessandro Anselmo,
Policlinico Tor Vergata, Italy

*CORRESPONDENCE

Maria Irene Bellini

mariairene.bellini@uniroma1.it

SPECIALTY SECTION

This article was submitted to
Obesity,
a section of the journal
Frontiers in Endocrinology

RECEIVED 23 November 2022
ACCEPTED 26 January 2023

PUBLISHED 09 February 2023

CITATION

Bellini MI, Deurloo E, Consorti F and
Herbert PE (2023) Body mass index affects
kidney transplant outcomes: A cohort
study over 5 years using a steroid
sparing protocol.
Front. Endocrinol. 14:1106087.
doi: 10.3389/fendo.2023.1106087

COPYRIGHT

© 2023 Bellini, Deurloo, Consorti and
Herbert. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 09 February 2023

DOI 10.3389/fendo.2023.1106087
Body mass index affects kidney
transplant outcomes: A cohort
study over 5 years using a steroid
sparing protocol

Maria Irene Bellini1*, Emily Deurloo2, Fabrizio Consorti1

and Paul Elliot Herbert2

1Department of Surgery, Sapienza University, Rome, Italy, 2Renal Transplant Department, Hammersmith
Hospital, Imperial College National Health System (NHS) Trust, London, United Kingdom
Background: There is controversy regarding the suitability of high bodymass index

(BMI) candidates accessing the transplant waitlist.

Patients and methods: Observational study on consecutive kidney transplant

recipients undergoing surgery between January 2014 and March 2016 at our

center. Patients were stratified according to BMI. Survival outcomes and graft

function were analyzed to investigate the effect of donor’s and recipient’s

demographic characteristics.

Results: 396 kidney transplant recipients: 260 males, mean age 51.8 ± 15.9 years,

followed up for a mean time of 5.86 ± 2.29 years. Mean BMI 26.2 ± 5.1. BMI class 1 (20

≤ BMI ≤ 24.9) n=133, class 2 (25 ≤ BMI ≤ 29.9) n= 155, class 3 (30 ≤ BMI ≤34.9) n=53,

class 4 (BMI ≥ 35) n=21, class V (BMI ≤ 19.9) n=34. Patient survival was not significantly

different according to the recipient’s BMI class (p=0.476); graft survival was affected

(p=0.031), as well as graft function up to 2 years post-transplant and at 4 years follow

up (p=0.016). At logistic regression the factors independently associatedwith graft loss

were only donor’s age (p=0.05) and BMI class of the recipient (p=0.002).

Conclusions: Obesity did not impact on patient’s survival but affected graft

function and graft loss.

KEYWORDS

obesity, kidney transplant, body mass index, bariatric surgery, equity
Introduction

Obesity represents a major healthcare alert worldwide with a growing incidence in the

last decades, accounting more than 1.9 billion individuals aged > 18 years, being overweight

(39% of the population), of which over 650 million obese (13%) (1).

High body mass index (BMI) poses critical consideration when selecting candidates for

surgery (2). In particular, in view of the limited organ donor pool, there is still controversy
Abbreviations: BMI, body mass index; ESKD, end stage kidney disease; MDRD, Modification of Diet in

Renal Disease.
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whether end stage kidney disease (ESKD) patients suffering from

obesity should be eligible candidates for the waiting list (3), or if given

the increased risk of complications (4), mostly wound infections and

dehiscence (5), but also delayed graft function and acute rejection (6),

they should first lose weight as per a modifiable condition to optimize

transplant outcomes (7).

Since kidney transplantation represents the best replacement

therapy for ESKD (8), it could be seen as discrimination to not let a

patient access this resource only because of his/her BMI status,

especially if a living donor has come forward to avoid dialysis for

the controversial candidate (9). Even for deceased donor

transplantation there is increased life expectancy and quality of

life in the literature well described (10), so ethically the decision to

decline or delay a position on the transplant waiting list due to

BMI alone cannot be taken lightly, but should be evaluated

taking into account all the characteristics of the prospective

recipient (11).

Additionally, while on the waiting-list, another important

consideration must be given to the “obesity paradox” (12), a

complex phaenomenon for which higher BMI is associated with

improved outcomes and lower BMI with reduced survival. A

possible explanation might consist in a better nutrition in general

meaning a better immune response against chronic infections or

other threatening complications, which are often a cause of death in

the lower BMI dialysis population (13). This is also supported by the

J-shaped association of dialysis mortality, where the nadir of the curve

corresponds to normal BMI patients (14), while the historical

unintended weight loss is an independent predictor of death (15).

We have previously demonstrated that overweight and obese

patients did not have inferior outcomes at one-year post-transplant

(16) and that in the mid-follow up, i.e. 3 years, renal function, but not

allograft survival was affected (16). The aim of the present study is to

assess patient and graft outcomes of kidney transplant recipients in a

steroid-free immunosuppression regimen at 5 years follow up, using

BMI as a classifier.
Patients and methods

This is an observational study of a single center kidney transplant

recipient cohort who have consecutively undergone surgery between

January 2014 and March 2016. Clinical data were prospectively stored

in an electronic record. The primary outcomes were death-censored

graft loss and patient survival. Graft loss was defined as need for

return to chronic dialysis. Secondary outcomes included graft

function, expressed as estimated glomerular filtration rate (eGFR)

according to the Modification of Diet in Renal Disease (MDRD) (17)

equation, measured at 3, 6, 12, 24, 36, 48, 60 and 72 months of follow

up, as well as other factors known to be independently associated to

graft loss.

Patients were stratified on the basis of their BMI calculated at the

time of transplant as weight (in kg) divided by height (in meters)

squared. In this way, the entire cohort was divided into 5 weight

classes: group 1 = 20 ≤ BMI ≤ 24.9; category 2 = 25 ≤ BMI ≤ 29.9; class

3 = 30 ≤ BMI ≤34.9; group 4 = BMI ≥ 35 and category 5 = BMI ≤ 19.9.
Frontiers in Endocrinology 0279
All patients underwent treatment with a steroid-sparing

immunosuppressive regimen (7-day course of steroids) with

alemtuzumab induction and tacrolimus monotherapy (trough level,

5–8 ng/mL) or interleukin-2 induction with tacrolimus (trough level,

8–12 ng/mL) and mycophenolate mofetil.

The study was performed in accordance to the Declaration of

Helsinki principles. The data used were anonymized and did not

require patient or public involvement nor affected patient care. The

study fell under the category of research through the use of

anonymized data of existing databases which, based on the Health

Research Authority criteria, does not require proportional or full

ethics review and approval.
Statistical analysis

Continuous variables are presented as mean ± standard deviation

and compared using one-way ANOVA, ordinal and dichotomous

variables with frequency and compared with chi square test. Survival

was calculated with Kaplan-Meier estimate and the differences were

evaluated with Cox regression. A linear regression model with

backwards procedure tested which parameters are acting as

independent predictors for graft loss. A generalized linear model of

univariate repeated ANOVA with post hoc Bonferroni correction was

used to determine whether mean eGFR differed statistically

significantly among different BMI classes during follow up.

Statistical analysis was performed using IBM® SPSS® Statistics

version 27. The confidence interval was set to 95%, and p was

considered significant at less than 0.05.
Results

396 patients were included in the analysis. Donor’s and recipient’s

demographic characteristics are reported in Table 1. At univariate

analysis, only donor’s age was related to graft survival (p=0.002).

Mean BMI was 26.2 ± 5.1. Mean follow up was 5.86 ± 2.29 years.

Patient survival was not statistically significantly different according

to the recipient’s BMI class (p=0.476, HR 0.935, C.I. 0.774-1.129),

Figure 1. Expanding this further, at 5 years of follow up, mean patient

survival was 77.5%, with 78.6%, 75.0%, 76.0%, 77.8%, 87.1% and

77.5% for class I-V respectively.

However, graft survival was instead affected by BMI (p=0.031, HR

1.217, C.I. 1.024-1.448), Figure 2, with a mean survival of 80.3% and

with 83.6%, 82.5%, 77.6%, 75.0%, 66.7% for class I-V respectively.

Graft function was also significantly affected by BMI class during

follow up. Results are summarized in Table 2, with a mean eGFR of

47.6 ± 19.32, 46.37 ± 18.99, 45.66 ± 17.3, 44.94 ± 17.52, 44.69 ± 17.27,

45.32 ± 17.12, 44.09 ± 18.62, 44.13 ± 18.86 ml/min/1.73m2 for all the

classes at 3, 6, 12, 24, 36, 48, 60 and 72 months of follow up. Figure 3

compares kidney function between the five BMI classes.

In Figure 4 mean eGFR up to 5 years follow up for the different

BMI classes is represented. Logistic regression showed that the factors

independently associated with graft loss were only donor’s age

(p=0.05) and BMI class of the recipient (p=0.002).
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Discussion

The survival benefit for end stage kidney disease following kidney

transplantation over long-term dialysis is known (18), and in the

present study we demonstrated there is no significant difference in

terms of overall survival for patients, when considering BMI as a

possible determinant. This poses the important question to allow

access to a limited and precious resource, i.e., the organ donor pool,

for patients otherwise discriminated only on the basis of weight and

height (19). It is very easy to dismiss access for transplantation based

on BMI, as an easily measured metric. However, this study shows that

with a steroid sparing protocol at five years, overall survival
Frontiers in Endocrinology 0380
probability is the same, independent of BMI, and thus the expected

life after transplantation (20) is not a reason to not list patients based

on BMI alone.

On the other side, a high BMI is proved to represent a risk factor for

graft failure, and this confirms the necessity of a weight loss strategy

ahead of transplantation (21), particularly in view of the incoming

lifelong side effects of steroid therapy and immunosuppression (22).

This concept is common to a more generalized pre-habilitation strategy

and could be potentially translated also to other organs (23), but for

kidney in particular, cardiovascular disease prevention and thus obesity

treatment appears fundamental, given this represents a major cause of

death (24). Pre-transplant diet and exercise should be encouraged
TABLE 1 Donor’s and recipient’s demographic characteristics.

Characteristic Overall Graft survival yes Graft survival no OR (CI) p

Donor’s Age 51,8 ± 15,9 50.55 ± 15.9 56.64 ± 15.2 - 0.002

Donation type (DBD/DCD) 195/81 156/61 39/20 1.43 (0.6- 3.2) 0.387

CIT (hours) 13.69 ± 0.43 14.94 ± 0.75 – 0.151

Type of donor
•Cadaveric
•live donor
•simultaneous kidney-pancreas
•pancreas after kidney

258
119
2
17

201
102
1
15

57
17
1
2

–

0.148

Recipient’s Age 52,2 ± 12,8 51.77 ± 12.5 53.57 ± 13.8 – 0.268

Sex (M) 260 215 45 1.46 (0.75-2.83) 0.137

Ethnicity
•Asian
•Black
•Caucasian
•Mixed

134
39
157
66

110
28
132
52

24
11
25
14

0.73 (0.33-1.62)
0.45 (0.1-2.05)
*
1.13 (0.46-2.76)

0.308

BMI classes:

•20 ≤ BMI ≤ 24.9
•25 ≤ BMI ≤ 29.9
•30 ≤ BMI ≤34.9
•BMI ≥ 35
•BMI ≤ 19.9

133
155
53
21
34

112
129
42
16
22

21
26
11
5
12

*
0.99 (0.54-1.82)
1.29 (0.58-2.86)
1.6 (0.53-4.81)
2.61 (1.14-5.99)

0.084
frontier
BMI, body mass index; CIT, cold ischemic time; DBD, donation after brainstem death; DCD, donation after circulatory death. For ethnicity, the comparisons are made between Caucasians and the
other ethnicities. *For BMI, the comparisons are made between normal BMI (control group) and the other classes OR and CI are related to normal.
FIGURE 1

Patient survival according to BMI class.

FIGURE 2

Graft survival according to BMI class.
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before being actively listed for surgery, in order to improve aerobic and

functional capacity, thus especially for frail candidates, as malnourished

obese patients are, in order to reach a significant weight loss through a

healthier lifestyle, including also diet and physical exercise. The issue for

ESKD transplant candidates is yet the necessity of dialysis treatment

while waiting for surgery, therefore the above described interventions

may require years before becoming effective or could not even become a

real option at all, while for the patient every more year spent on dialysis

reduces the overall survival in a significant manner (25). Of note, we did

not find inferior patient survival when stratifying for BMI classes,

therefore the survival benefit kidney transplantation offers could be

interpreted as uniform (26).

Bridge interventions, such as bariatric surgery are increasingly

being adopted to overcome wait listing barriers and we support their

utilization, particularly with regards to sleeve gastrectomy (27), given

its lower risk of adverse renal consequences such as hyperoxaluria and

nephrolithiasis (28), although there is still controversy on timings and

on patient’s selection (3, 9). Additionally, potential post-surgical

complications could translate into lower wait listing and transplant

access for ESKD patients, therefore, there is still concern that bariatric

surgery and the following weight loss could cause significant protein
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malnutrition and frailty, negatively impacting on dialysis patients,

with worse waitlist and post-transplant outcomes (29).

From our analysis, there is evidence that graft function

deteriorates over time and consequently leads to an increased risk

of graft loss for obese individuals, as may other systemic diseases

finally leading to end stage kidney function, particularly when

recurring after transplantation (30). It is known in fact a direct

causal connection between obesity and ESKD, because of an

underpinning renal hyperfiltration driven by the excess weight, also

known as obesity-related glomerulopathy (31). This syndrome can

synergically act with other frequent comorbidities in obese patients,

such as hypertension and diabetes, and in fact the latter was more

common in higher BMI patients (p=0.0.22) (16). Furthermore, these

conditions could worse in the post-transplant period, following

immunosuppressive drugs administration, especially steroids (32).

Yet, it appears not sustainable to condemn to lifelong dialysis

someone only because of their BMI, but it is recommendable to

rather intervening on modifiable risk factors for cardiovascular

mortality, as for example to avoid steroids (32).

An interesting finding of our analysis is that donor age, and not

donor type, affects the incidence of graft loss. Previous work reports
TABLE 2 Mean and standard deviation for kidney function during follow up per BMI category.

BMI
category

eGFR 3
months
p <0.001

eGFR 6
months
p =0.001

eGFR 1
year

p =0.026

eGFR 2
years

p =0.009

eGFR 3
years

p =0.211

eGFR 4
years

p =0.016

eGFR 5 years
p=0.496

eGFR 6 years
p=0.187

* 20 ≤ BMI ≤
24.9

52.49 ± 17.98 49.72 ± 17.97 47.79 ± 17.03 47.35 ± 17.56 45.27 ± 15.93 45.28 ± 15.25 45.59 ± 17.11 44.62 ± 18.14

25 ≤ BMI ≤
29.9

44.46 ±17.89 43.17 ± 17.56 44.33 ± 16.29 43.28 ± 16.12 44.93 ± 17.02 46.14 ± 17.13 44.20 ± 18.44 44.87 ± 17.82

30 ≤ BMI
≤34.9

46.35 ± 20.71 46.31 ± 20.1 44.67 ± 18.82 43.44 ± 19.12 42.05 ± 17.98 43.74 ± 18.53 41.54 ± 19.32 42.87 ± 19.55

BMI ≥ 35 33.55 ± 13.91 35.47 ± 14.61 37.11 ± 15.72 38.06 ± 13.65 37.59 ± 15.5 33.53 ± 14.53 37.42 ± 15.31 30.60 ± 14.28

BMI ≤ 19.9 53.21 ± 22.26 53.52 ± 21.82 51.22 ± 17.56 48.65 ± 19.64 48.93 ± 20.55 52.07 ± 19.03 46.56 ± 23.26 47.12 ± 23.79

Total 47.61 ± 19.13 46.34 ± 18.86 45.76 ± 17.15 44.91 ± 17.37 44.65 ± 17.1 45.44 ± 17.06 44.25 ± 18.50 44.18 ± 18.79
Kidney function is expressed as eGFR ml/min/1.73 m2.
FIGURE 3

Comparison of kidney function between BMI classes.
FIGURE 4

Longitudinal representation of mean eGFR up to 5 years follow up for
the different BMI classes.
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that recipients of grafts from live donors aged < 60 have a 38% lower

risk of developing acute rejection compared to those aged > 60 years

(33). Since recipients of older grafts are generally also older in age, this

leaves to the open debate on immunosuppression in the elderly, in

whom, although physiological immunosenescence linked to biological

aging is known, other potential contributors, such as the engraftment

of older organs, is associated with higher rejection rates, and thus the

need for tailored, age-adopted immunosuppression. If we attribute

this to the fact that obese patients do suffer of immunosuppression

side-effects more because of their intrinsic metabolic condition, it

then could be favored the use of younger donors for obese recipients,

especially because these candidates appear younger and fitter in

general, to be selected for transplantation in view of their

important comorbidities.

Finally, another important finding of the present study, is that

graft and patient survival for class V (BMI<19.9) parallels those of

class IV (BMI > 35). Although caution is warranted, given the sample

size, we assumed that the obesity paradox might be the underpinning

mechanism, in fact as already mentioned above, obesity in ESKD

patients, may play a protective role (12) and could be associated with

decreased mortality, particularly when looking at infections.

Conversely, the presence of signs of undernutrition, like BMI <19.9,

that is often associated to frailty, could lead to a higher susceptibility

to serious complications (34), such as sepsis, another major cause of

mortality in transplanted patients.

Our study presents some limitations: patients fit for

transplantation were selected and many have undergone intensive

medical workup to optimize their cardiovascular risk factors. This

could have biased in selection for transplantable patients, especially in

the high BMI cohort. Also, the use of BMI as a measure for adiposity

is imperfect because it does not differentiate between fat and lean

body mass, as could girth, for example, although most population

variance in obesity is explained by BMI.

In conclusion, the present study suggests that obesity is not an

absolute criterion to exclude a patient from the kidney transplant

waiting list. Further research is warranted to investigate whether

another surrogate marker for obesity could be adopted, and which

patients might benefit of an overall bariatric strategy. If the possibility

of a living donor comes forward, the transplant should not be

postponed, as a survival benefit over dialysis is to be preferred to

the risks related to the decision to defer it.
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31. Câmara NOS, Iseki K, Kramer H, Liu Z-H, Sharma K. Kidney disease and
obesity: Epidemiology, mechanisms and treatment. Nat Rev Nephrology. (2017) 13
(3):181–90.

32. Lopez-Soler RI, Chan R, Martinolich J, Park L, Ata A, Chandolias N, et al. Early
steroid withdrawal results in improved patient and graft survival and lower risk of post-
transplant cardiovascular risk profiles: A single-center 10-year experience. LID.
doi: 10.1111/ctr.12878

33. Bellini MI, Nozdrin M, Pengel L, Knight S, Papalois V. How good is a living donor?
systematic review and meta-analysis of the effect of donor demographics on post kidney
transplant outcomes. J Nephrol. (2022) 35(3):807–20.

34. Harhay MN, Rao MK, Woodside KJ, Johansen KL, Lentine KL, Tullius SG, et al.
An overview of frailty in kidney transplantation: Measurement, management and future
considerations. Nephrol Dial Transplant. (2020) 35(7):1099–112.
frontiersin.org

https://doi.org/10.1093/ndt/gfac169
https://doi.org/10.1111/ctr.12878
https://doi.org/10.3389/fendo.2023.1106087
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Xiaodong Sun,
Affiliated Hospital of Weifang Medical
University, China

REVIEWED BY

Sonia Eiras,
Health Research Institute of Santiago de
Compostela (IDIS), Spain
Laura Petraglia,
University of Naples Federico II, Italy

*CORRESPONDENCE

Timothy P. Fitzgibbons

timothy.fitzgibbons@umassmed.edu

SPECIALTY SECTION

This article was submitted to
Obesity,
a section of the journal
Frontiers in Endocrinology

RECEIVED 31 January 2023

ACCEPTED 06 March 2023
PUBLISHED 20 March 2023

CITATION

Willar B, Tran K-V and Fitzgibbons TP
(2023) Epicardial adipocytes in the
pathogenesis of atrial fibrillation: An update
on basic and translational studies.
Front. Endocrinol. 14:1154824.
doi: 10.3389/fendo.2023.1154824

COPYRIGHT

© 2023 Willar, Tran and Fitzgibbons. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Review

PUBLISHED 20 March 2023

DOI 10.3389/fendo.2023.1154824
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Department of Medicine, Cardiovascular Division, University of Massachusetts Chan Medical School,
Worcester, MA, United States
Epicardial adipose tissue (EAT) is an endocrine organ containing a host of cell

types and undoubtedly serving a multitude of important physiologic functions.

Aging and obesity cause hypertrophy of EAT. There is great interest in the

possible connection between EAT and cardiovascular disease, in particular,

atrial fibrillation (AF). Increased EAT is independently associated with AF and

adverse events after AF ablation (e.g., recurrence of AF, and stroke). In general,

the amount of EAT correlates with BMI or visceral adiposity. Yet on a molecular

level, there are similarities and differences between epicardial and abdominal

visceral adipocytes. In comparison to subcutaneous adipose tissue, both depots

are enriched in inflammatory cells and chemokines, even in normal conditions.

On the other hand, in comparison to visceral fat, epicardial adipocytes have an

increased rate of fatty acid release, decreased size, and increased vascularity.

Several studies have described an association between fibrosis of EAT and

fibrosis of the underlying atrial myocardium. Others have discovered paracrine

factors released from EAT that could possibly mediate this association. In

addition to the adjacent atrial cardiomyocytes, EAT contains a robust stromal-

vascular fraction and surrounds the ganglionic plexi of the cardiac autonomic

nervous system (cANS). The importance of the cANS in the pathogenesis of atrial

fibrillation is well known, and it is quite likely that there is feedback between EAT

and the cANS. This complex interplay may be crucial to the maintenance of

normal sinus rhythm or the development of atrial fibrillation. The extent the

adipocyte is a microcosm of metabolic health in the individual patient may

determine which is the predominant rhythm.

KEYWORDS

epicardial adipose tissue, obesity, atrial fibrillation, inflammation, left atrium,
remodeling, adipocyte
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Introduction

Atrial fibrillation (AF) is the most common sustained arrhythmia

in adults, affecting 37% of patients over the age of 55, hence the

importance of risk factor identification and modification (1).

Environmental factors including chronic disease, age, and acute

triggers have been implicated as risk factors for developing AF.

Coronary artery disease (CAD), hypertension, obesity, diabetes,

obstructive sleep apnea (2), chronic kidney disease (CKD), and

inflammatory diseases increase the risk for AF as do acute triggers

such as binge drinking and physical stressors (e.g., infection, surgery,

and metabolic derangements). AF has been associated with an

increased incidence of stroke, heart failure, dementia, as well as death

and globally, AF is associated with an increased risk for mortality and

morbidity and accounted for 6 million disability adjusted life years in

2017 (1, 3). Given this impact upon human health there is a great need

for interventions to prevent the development of AF and treat prevalent

cases. Epicardial adipose tissue (EAT) has garnered significant interest

as a direct connection between obesity and cardiovascular disease, and

AF in particular. To the extent that EAT may be modified by

behavioral, pharmacologic, or even surgical interventions it is an

attractive therapeutic target to combat AF. A PUBMED search for

“epicardial adipose tissue” returns 1,509 results, with 228 in 2022 alone

(Figure 1). Since 2003, commensurate with the publication of landmark

studies by Mazurek and Iacobellis, there has been a burgeoning interest

in the effects of EAT on cardiovascular pathophysiology (4, 5). There

have been numerous recent comprehensive reviews on this topic to

which the reader is referred (6–9). Herein we will aim to focus more on

the biology of epicardial adipocytes and how this might affect

neighboring cardiomyocytes and contribute to the pathogenesis of

AF. Our goal is to stimulate the readers interest and perhaps spark new

lines of inquiry in this fascinating and important field.
Pathophysiology of atrial fibrillation

The mechanism for developing AF is not clearly understood but

likely changes as a patient progresses from paroxysmal AF to long-
Frontiers in Endocrinology 0285
standing persistent AF. With this progression the impetus

transitions from an arrhythmogenic trigger to an electro

pathology mediated trigger (3). Paroxysmal AF, an arrhythmia

that self-terminates within 7 days, is typically driven by the

cardiac muscle sleeve around the pulmonary veins (PVs) in 90%

of cases and is associated with rapid focal activity and local reentry.

As a patient transitions to persistent AF, requiring pharmacological

or electrical cardioversion, the driver evolves into electrical

remodeling of ion channels and irreversible structural changes to

the atria (10). We hypothesize that any primary effect of epicardial

adipocytes would be in the paroxysmal stage. However, to the extent

that cross talk between atrial myocytes, epicardial adipocytes, and

the cardiac autonomic nervous system (cANS) can occur,

adipocytes may play other roles in the persistent/permanent stage

of AF, by modulating the cANs afferent signals to the brain and

promoting efferent cANs discharge (11).
Molecular changes in atrial myocytes

In terms of the primary changes in the atrial myocardium,

electrical remodeling from altered expression and functioning of

cardiac ion channels favors the development of functional

reentry substrates (10). The molecular mechanism leading to

repolarization changes are not clearly understood, but are

thought to involve sodium, potassium, and calcium channels.

Atrial myocytes in patients with AF show unchanged or slightly

reduced sodium current amplitude. Reduced calcium channel

density is consistent in patients with AF and may be a

determinant of shortening refractoriness and arrhythmogenesis.

In addition, the sarcoplasmic reticulum’s handling of calcium,

which is affected by alterations in ryanodine receptor channels

(RyR2), can lead to calcium leak and thus modulation of RyR2,

which is a prevalent finding in this patient population. Patients

with AF have a more negative resting membrane potential

indicating that potassium channels may also play a role in the

development of AF. Remodeling of gap junction subunits such as

connexin may also be involved in a genetic predisposition to

AF (12).
Fibrosis, fibrofatty infiltration, and
ganglionic plexi

Structural changes, such as fibrosis, neural/autonomic

remodeling, and anatomic features also contribute to the

pathogenesis of AF. Fibrosis can separate muscle bundles, replace

dead myocytes, and can couple electrically to cardiomyocytes,

leading to reentry and ectopic activity. Fibrosis leads to

progression from paroxysmal to permanent forms of AF, which

in turn creates a positive feedback loop of increased fibrosis. In

addition to fibrosis, infiltration of the atrial myocardium by

epicardial fat can contribute to atrial conduction abnormalities

(13). Autonomic/neural remodeling through vagal discharge,

beta-adrenoceptor activation, and atrial sympathetic hyper-
FIGURE 1

PubMed Timeline Results for “Epicardial adipose tissue”. There has
been a dramatic increase in the number of publications regarding
epicardial adipose tissue since 2003.
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innervation can also contribute to positive feedback loops that

promote AF persistence and recurrence. The left and right atria

including PVs, LA posterior wall/roof, the ligament of Marshall, as

well as the vena cava have features that promote both focal and

reentrant triggers (10). The junction of the pulmonary veins and left

atrium has a constellation of ganglionic plexi that receive input

from both the sympathetic and parasympathetic autonomic

nervous system (Figure 2) (11). It is estimated that each plexus

contains 200-1000 neurons. AF can be induced by activation of

these GPs. On the other hand, ablation of these plexi and the ostia of

the pulmonary veins can cure or reduce arrythmia burden in

patients with AF (11). The interaction of epicardial adipocytes

with the GPs of the cANS has yet to be investigated. However, it

is well established that other adipose depots receive important input

from the autonomic nervous system, and feed back to the ANS to

provide metabolic signals to the CNS (14, 15). Recent studies have

shown that macrophages associated with sympathetic neurons

(SAMs) help to regulate this interaction. For example, in obesity,

SAMs in brown adipose tissue induce expression of solute carrier

family 6 member 2 (SLC6A2) and monoamine oxidase A(MAOA)

(2). SLC6A2 is a membrane transporter for norepinephrine (NE)

and MAOA is an enzyme responsible for enzymatic degradation of

NE. With obesity, the induction of these proteins in SAMS causes a

reduction in the sympathetic activation of brown adipose tissue,

thus reducing thermogenesis and energy expenditure (2). We
Frontiers in Endocrinology 0386
hypothesize that macrophages in EAT may mediate interactions

with neurons in cardiac GPs in a similar fashion, allowing for

changes in metabolism to regulate afferent feedback from the cANs

to the brain.
Left atrial size and obesity

On a macroscopic scale, left atrial size, inflammation, and

obesity all seem to play important roles in the development of AF

and the progression from paroxysmal to permanent subtypes.

Patients with paroxysmal AF have smaller LA diameter (4.3 vs

4.8cm) and fewer incidences of LA >5cm as compared to patients

with permanent AF (16). This is particularly important as LA

enlargement is a significant predictor of stroke in men and death

in both sexes (17). Regarding obesity, there is a strong association

between obesity (BMI >30) and AF. The Framingham heart study

showed that for every 1 unit of increased BMI above 25, there was a

4% increase in AF risk. This conclusion was supported by a large

meta-analysis showing that for every 5 unit increase in BMI, AF

incidence increased by 29% (18). The mechanism of obesity

increasing the incidence of AF may be related to epicardial and

abdominal adiposity. A large meta-analysis by Wong showed that

epicardial fat, waist circumference, and waist to hip ratio were all

associated with a higher incidence of AF. However, the strength of
A

B

FIGURE 2

The Microenvironment of the Posterior Left Atrial Wall. (A) The posterior left atrial wall has variable amounts of EAT, which includes the four major
ganglionic plexi and confluence of the pulmonary veins. (B) EAT covers portions of the left atrial wall and includes the ganglionic plexi. In obesity
(left), EAT may promote infiltration of macrophages (blue) via secretion of MCP1 and other pro-inflammatory cytokines. Macrophages and or
myofibroblasts then promote atrial fibrosis (blue lines) with stimulation of pro-fibrotic factors such as TGFB, Angptl2, and Activin A. This causes
fibrosis of the atrial myocardium which creates a substrate for reentry leading to the development of atrial fibrillation. In normal conditions (right),
EAT secretes anti-inflammatory and anti-fibrotic paracrine factors (adiponectin, apelin, omentin-1) that help maintain normal electrophysiologic
properties of the atrial myocardium leading to normal sinus rhythm (NSR). In both obese and normal conditions epicardial adipocytes may secrete
other factors such as extracellular vesicles (EVS) or free fatty acids (FFAs) which may have protective or adverse effects depending upon the EV
contents and particular fatty acid species. MCP1 (macrophage chemoattractant protein-1), IL6 (Interleukin 6), TGFB (transforming growth factor
beta), TNF (tumor necrosis factor), Angptl2 (Angiopoietin Like 2), LSPV (left superior pulmonary vein), LIPV (left inferior pulmonary vein), RSPV (right
superior pulmonary vein), RIPV (right inferior pulmonary vein).
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association was highest for epicardial fat (19). Epicardial fat, given

its proximity to the myocardial cells may confer structural

remodeling like the substrates described above.
Epicardial adipocytes; the same,
but different

It is now well understood that adipose tissue is an active organ

vital to human health (20). Any given adipose depot is comprised of

a multitude of cell types, and it is easiest to consider it in terms of

the adipocyte and stromal vascular fraction (SVF). The SVF is

comprised of all the non-adipocyte cells within a certain fat pad.

These may include, but are not limited to, fibroblasts, stem cells,

neurons, vascular cells, and a broad array of immune cells. Broadly

speaking, there are three different types of adipocytes; white, beige

and brown (20). Brown adipocytes are adipocytes that generate heat

by uncoupling the respiratory chain via the protein uncoupling

protein 1 (UCP1). Brown adipose is present in babies and in smaller

quantities in metabolically healthy adults. It is activated by the

sympathetic nervous system in response to cold exposure, by NE

binding to the b3 adrenergic receptor. Brown adipocytes express

UCP1 constitutively and expression is reduced in chronic

thermoneutral conditions (20). In contrast, beige adipocytes are

adipocytes within subcutaneous fat that induce UCP1 expression

rapidly upon cold exposure. Beige and brown adipocytes generate

heat and contribute to metabolic health by increasing energy

expenditure and releasing “BATokines” which have salutary

effects of peripheral tissues. The amount of brown and beige

adipocytes decreases with aging and obesity (20).

In contrast to brown adipocytes, the principal role of white

adipocytes is to sequester lipid by lipogenesis or regulating lipolysis.

They also secrete bioactive molecules (e.g., extracellular vesicles,

lipokines, and adipokines) that target systemic organs. The mean

volume of a white adipocyte is proportional to the rate of

lipogenesis, the rate of lipolysis, and the nutrient supply/blood

flow (21). EAT and visceral adipose are both predominantly white

adipose depots and similar in many respects. Generally, EAT

volume correlates with visceral adiposity, as measured by

echocardiogram and CT. Epicardial adipocytes and adipocytes

from visceral fat depots are smaller than subcutaneous adipocytes

(22). EAT has a greater concentration of capillaries and increased

expression of a broad array of inflammatory markers (21, 22). On

the other hand, there are subtle differences between epicardial and

adipocytes from fat within the abdominal cavity (21). Ovine

epicardial adipocytes have a greater ratio of oleic acid (18:1) to

stearic acid (18:0) than peri-renal or omental adipocytes. Although

stearoyl-CoA desaturase (SCD) expression was lowest in epicardial

fat compared to all other depots, there was a high correlation

between SCD expression and oleic acid content in epicardial

adipocytes, whereas there was no correlation in visceral

adipocytes (21). Like visceral adipose tissue, EAT has a greater

expression of inflammatory genes than subcutaneous adipose tissue

(22, 23). This is true even in the absence of cardiovascular disease or

obesity. In humans with obesity and in animal models of high fat
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feeding visceral adipose becomes inflamed which leads to

dysfunctional adipocyte biology, lipotoxicity, and insulin

resistance in remote tissues. This vast field of research

(immunometabolism) has ushered in a new era of discovery,

investigation, and therapeutic opportunity that is beyond the

scope of this review (20, 24). However, whether epicardial adipose

tissue responds in the same way to high fat feeding/obesity has yet

to be shown. White perivascular adipose tissue surrounding the

abdominal aorta in mice becomes severely inflamed with HFD (25).

Given the similarities between VAT and EAT, it is reasonable to

consider the possibility that epicardial fat does too.

The predominant stimulus for adipose inflammation in

response to obesity remains elusive. Adipocyte hypertrophy is

likely a primary event, followed by immune cell infiltration,

apoptosis, revascularization, and fibrosis (9, 26). In obese

conditions macrophages account for 40-50% of cells in visceral

adipose tissue (27). There are many different populations of

macrophages in adipose tissue. Adipose tissue resident

macrophages are present even in lean conditions to help maintain

tissue homeostasis. With the onset of obesity and adipocyte

hypertrophy, chemokines such as monocyte chemoattractant

protein-1 (MCP-1) stimulate infiltration of monocyte derived

macrophages (CD11b+, CD11c+, F4/80+). These macrophages

are pro-inflammatory and express factors such as TNFa, IL-1b,
IL6 and NO (26). Thus, a chronic inflammatory state is established

in visceral adipose tissue, leading to failure to effective store TG,

lipotoxicity, and subsequent insulin resistance in skeletal muscle

and liver. Whether or not these processes occur in EAT has yet to

be established.
Basic and translational studies of EAT

For purposes of this section, EAT will be considered to be

adjacent to the atrial myocardium of interest unless noted

otherwise. It should be mentioned that the amount of EAT

adjacent to the right atrium, left atrium and pulmonary veins is

highly variable. Studying EAT in small animal models is

problematic, because rats and mice do not have epicardial

adipose, except after prolonged high fat diet (28). Furthermore,

AF is not common in mice except in only a few genetic strains.

Therefore, atrial fibrillation and EAT are both usually studied in

large animal models (i.e., sheep, dogs, or rabbits), often using the

artificial rapid atrial pacing(RAP) (18) model to induce AF.

Li et al. studied the effect of RAP on EAT. 6 weeks of RAP

induced AF and lowered the effective refractory periods in the left

and right atria (29). This was associated with increased reactive

oxygenated species (ROS) production and phosphorylation of NF-

kB. Concentrations of inflammatory cytokines such as TNFa, IL6,
and TGFb were increased in the left atrial myocytes and EAT (29).

Histology showed atrial and adipose tissue fibrosis, in addition to

adipocyte infiltration into the atrial myocardium. PPARg and

Adiponectin expression was reduced in EAT. Metformin reversed

these alterations. These findings are analogous to prior studies of

perivascular fat in high fat diet fed mice; obese mice had reduced
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Adiponectin expression in perivascular fat surrounding the femoral

artery (30). Loss of adiponectin resulted in decreased nitric oxide

synthase activation and vasoconstriction. With the onset of obesity

expression of beneficial paracrine factors in perivascular adipocytes

is lost; this may also be true of aging adipocytes. In addition to the

loss of beneficial factors, expression of pathologic paracrine factors

is increased, for example TNFa, which promotes neointimal

hyperplasia (31). Therefore, it seems that like perivascular

adipocytes, peri-atrial epicardial adipocytes may signal via

paracrine mechanisms to the underlying atrial cardiomyocytes. In

this case, loss of adiponectin may result in reduced SERCA2a

expression and abnormal calcium handling. Many other studies

have shown putative adverse effects of factors secreted by EAT

(32–35).

Venteclef et al. showed that the EAT secretome stimulated

fibrosis in rat atria in vitro. This fibrosis was associated with

associated with high Activin A concentrations in EAT; in contrast

SAT had low Activin A concentrations (32). The fibrotic effects of

Activin A in vitro were blocked with an antibody targeting

activin A.

Nalliah et al. conducted an elegant study of the right atrial

appendage of humans without AF who were having heart surgery

(13). Greater amounts of EAT around the right atrial appendage

correlated with slow conduction, electrogram fractionation, and

fibrosis of the underlying atrial myocardium. It was also noted that

the gap junction protein connexin-40 migrated laterally in subjects

with increased EAT, becoming dissociated from cadherin (13).

Conditioned media from sheep EAT altered the electrophysiologic

properties of human induced pluripotent stem cell derived

cardiomyocytes (hiPSC-CMS), resulting in a decreased spontaneous

beating rate and prolonged field potential duration in comparison to

non-conditioned media. Proteomic analysis of murine pericardial fat

and inguinal fat was then performed. Pericardial fat was enriched in

proteins that regulate cell metabolism (e.g., ATP-citate synthase,

alcohol dehydrogenase class 3, Long-chain enoyl-COA hydratase).

The top enriched cellular component pathway was “focal adhesion”

(GO:0005925). Interestingly, the top two GO biological processes

were “fatty acid beta oxidation” (GO:0006635) and “cellular response

to interleukin12” (GO:0070671) (13). It should be noted that this

proteomic analysis was done using secreted proteins from murine

pericardial fat, which is likely quite different from EAT (36).

Abe et al. studied the resected left atrial appendages and

associated EAT from 59 consecutive cardiac surgery patients with

AF (35). Fibrosis of EAT was associated with left atrial fibrosis. The

collagen content of left atrial myocardium correlated with

inflammatory proteins in EAT (TNFa, MCP-1, IL6, VEGF,

MMP2, and MMP9). Expression of HIF-1a and Angptl2 was

associated with inflammation in EAT. In a second study, the

same group showed that treatment of rat atria in vitro with

Angptl2 caused fibrosis; this effect was reversed with an anti-

Angptl2 antibody (33). Angptl2 caused an increase in expression

of a-smooth muscle actin, TGFb1, and stimulated phosphorylation

of ERK, inhibitor of kBa, and p38 MAPK. The authors concluded

that antagonism of Angptl2 in EAT may be a therapeutic option for

the prevention of AF (33).
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In addition to aging and obesity/insulin resistance, a third

mechanism that may contribute to EAT inflammation is hypoxia.

Obstructive sleep apnea (2) is a known risk factor for the

development of AF and untreated OSA leads to recurrence after

AF ablation or cardioversion (37–39). In canine models of OSA

induced AF there is evidence of cANS hyperactivity in ganglionic

plexi of the left atrium (40). The ganglionic plexi are surrounded by

EAT and form a ring around the confluence of the pulmonary veins

(Figure 2). Dai et al. studied the effects of chronic OSA on EAT in

canines (41). Chronic OSA resulted in a dramatic fibrosis of EAT and

the adjacent atrial myocardium. OSA resulted in increased expression

of inflammatory markers in EAT, including Activin A, TGFb1,
MMP9, TNFa, and IL-6. Treatment with metoprolol reversed

fibrosis and lowered inflammatory marker expression. The authors

hypothesized that hypoxia may trigger activation of beta-adrenergic

receptors on epicardial adipocytes, and this stimulation was

prevented by treatment with the non-selective beta blocker

metoprolol. This hypothesis is supported by experiments showing

that isoproterenol, a non-selective beta-adrenergic agonist, was

previously noted to stimulate IL6 and TNFa production in 3T3L1

adipocytes (42). Furthermore, exposing adipocytes to hypoxia in vitro

results in decreased adiponectin secretion and increased b1 and b2
adrenergic receptor expression (43).

Wang et al. studied the atria and EAT of subjects with (n=28)

and without AF (n=36) having coronary artery bypass surgery

(34). They found that YKL-40(CHI3L1) mRNA and protein was

significantly higher in the EAT of subjects with AF than of those

without. There was no difference in the serum levels of YKL-40.

There was a positive association between YKL-40 expression in

EAT and the collagen fraction of the atrial myocardium. Obesity

was an independent risk factor for YKL-40 expression in EAT

(34). YKL-40 is a secreted glycoprotein highly expressed in

neutrophils, activated macrophages, and other cell types. YKL-

40 may act in fibroblast proliferation and matrix deposition, and

it’s expression by macrophages in adipose tissue inhibits type I

collagen breakdown (44). Interestingly, the expression of YKL-40

is increased in the visceral fat of obese patients and decreases with

weight loss (45).

Recently, a provocative study by Shaihov-Taper et al. showed

that EAT also releases extracellular vesicles (EVs) (46). EVs are

membrane bound vesicles released from all cell types, containing a

variety of molecules (e.g. proteins, nucleic acids, and lipids), that

can transmit a molecular signal from the releasing cell to a recipient

cell (47). EAT from subjects with AF secreted a greater number of

EVs than EAT from subjects without AF. The EVs from subjects

with AF had higher concentrations of inflammatory and pro-

fibrotic cytokines, and lower concentrations of IL-10, VEGF, and

sFLT-1 (46). Subsequent proteomic analysis revealed that the EVs

from those with AF were related to distinct molecular pathways,

including cardiomyopathy, apoptosis, angiogenesis, and fibrosis.

Furthermore, these enriched EVs triggered fibrosis, angiogenesis,

and facilitated re-entry when co-incubated with mesenchymal,

endothelial, and pluripotent stem cells in vitro (46).

In summary, fibrosis, and inflammation of EAT is associated

with fibrosis of the underlying atrial myocardium. There are many
frontiersin.org

https://doi.org/10.3389/fendo.2023.1154824
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Willar et al. 10.3389/fendo.2023.1154824
bioactive factors released from EAT that could potentially cause

fibrosis of the atria; this causative effect has yet to be clearly

demonstrated (Table 1). Nonetheless, it is clear that EAT is

responsive to changes in metabolic health and could signal this

change to neighboring and possibly even remote systems.
Implications for treatment and
future directions

Weight loss

With the recognition that EAT is associated with increased

cardiovascular risk there have been several studies examining non-

pharmacologic interventions that can reduce the amount of

epicardial fat. In general, epicardial fat is a marker of visceral fat,

and weight loss strategies tend to impact both depots. Diet and

bariatric surgery both result in a significant reduction in epicardial

fat (48). A meta-analysis by Saco-Ledo et al. included 10 studies and

521 subjects (49). They found that endurance training also resulted

in a significant reduction in EAT. It seems that any method of

weight loss can result in a decrease in epicardial fat. Moderate

exercise and weight loss have known effects on reducing AF burden

(18). Whether or not this is effect is dependent on a reduction in

EAT, or simply a reduction in weight, is unknown. For example, in

an echocardiographic study of subjects before and after bariatric

surgery, weight loss was associated with a 30% reduction in visceral

fat area and a 14% reduction in EAT thickness (50). However,

despite these reductions, left atrial function remained impaired and

left atrial volume and pressure increased (50). Therefore there may

be a threshold of obesity or exposure to EAT beyond which

remodeling of the left atrium is irreversible. More studies are
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needed to determine if weight loss results in a reduction in EAT

thickness and whether this translates into cl inical ly

meaningful results.
GLP-1 agonists/SGLT2 inhibitors

Liraglutide and other glucagon-like peptide-1 (GLP-1) receptor

agonists are indicated for the treatment of diabetes mellitus. GLP-1

receptor agonists also have weight loss effects. Treatment of diabetic

patients with GLP-1 receptor agonists lowers cardiovascular events

(51). The mechanism by which these drugs exert their beneficial

effects is not clear. Iacobellis et al. found that treatment with

liraglutide for 6 months causes a rapid and significant decrease in

the thickness of EAT as measured by echocardiogram (52). 95

subjects with DM2 were randomized to metformin or metformin

plus liraglutide 1.8 mg SC daily. Subjects in the liraglutide and

metformin group had a 36% reduction in their EAT thickness at 6

months. Interestingly, the GLP-1 receptor is expressed in EAT (52).

Others have shown similar albeit less dramatic results on EAT

thickness with GLP-1 receptor agonists exenatide and dulaglutide

(53, 54). Potential mechanisms by which GLP1 receptor agonists

work in EAT include but are not limited to, reduction in fat mass,

improved differentiation of pre-adipocytes, reduced lipogenesis, or

browning of EAT (55).

Sodium-glucose co-transporter 2 inhibitors (SGLT2i) reduce blood

glucose and cause weight loss in diabetic patients. This class of drugs

has revolutionized the treatment of heart failure and are now

recommended as one of the four pillars of goal directed medical

therapy (56). Apart from weight loss and the natriuretic effects of

SGLT2 inhibitors, they are thought to have salutary effects on

myocardial metabolism, including a shift in fuel utilization from free

fatty acids to b-hydroxybutyrate (55). However, SGLT2 inhibitors have
TABLE 1 Factors Released from EAT with Possible Paracrine Effects.

Protective
Factors

Mechanism Pathologic
Factors

Mechanism

Adiponectin
(29)

Downregulated in EAT of subjects with AF MCP-1, IL6,
TNF-a (41, 46)

Profibrotic and proinflammatory

Apelin May reduce fibrosis by inhibiting TGFb1
signaling in atrial myofibroblasts (75)

TGF-b1 (76) Upregulated in the EAT of subjects with AF. Promotes fibrosis and ENdMT.

Omentin (76) Downregulated in EAT of subjects with AF.
May inhibit TGF signaling.

HIF-1a,
Angptl2 (35)

Proinflammatory and profibrotic

MMP2, MMP9
(41)

Remodeling of adipose tissue stroma

Activin A (32) Profibrotic

Resistin (77) Proinflammatory

Visfatin Proinflammatory

cTGF (78) Increased in EAT from subjects with AF. Correlates with atrial fibrosis.

Leptin

YKL-40/
CHI3LI (34)

Secreted glycoprotein expressed by activated macrophages, neutrophils, and other
cells. Correlates with atrial collagen fraction and increased in EAT of AF subjects.
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also been shown to reduce EAT thickness by up 20% (55). It is thought

that these compounds may reduce foster adipocyte differentiation and

reduce the secretion of pro-inflammatory cytokines in EAT (57).

Whether or not treatment with SLGT2 inhibitors or GLP-1 receptor

agonists reduce incident AF is unknown.
Statins

Systemic inflammation is a characteristic of chronic obesity. It is

known that obese patients are at increased risk of AF and heart failure

with preserved ejection fraction. Increased epicardial fat thickness

and EAT inflammation may contribute to the development of both

AF and HFpEF in obese patients (58). HMG-coa reductase inhibitors

or “statins” are known to have anti-inflammatory effects separate

from their lipid lowering effects. EAT is known to a greater degree of

inflammation on than subcutaneous adipose tissue (SAT). This

correlates with a higher average contrast attenuation on CT scan in

EAT (-89 HU) than SAT (-129 HU) (59). In a study of 420 women

who had serial CT scans to measure coronary artery calcification, the

use of statins for one year was found to reduce the attenuation of EAT

(-89 HU at baseline vs. -94 HU at follow up, p<0.001). There was no

change in the attenuation of SAT of the same subjects suggesting that

the anti-inflammatory effect was specific to EAT. Furthermore, this

effect was independent of changes in EAT volume, total cholesterol,

or coronary calcium (59). The same group had previously shown that

statin use was also associated with a reduction in EAT volume over

time (60). In 145 patients who had serial coronary angiography,

atorvastatin showed a greater effect of reducing EAT thickness than

simvastatin/ezetimibe(0.47 mm vs. 0.12 mm, p<0.001) (61). Others

have shown that statin use is associated with lower EAT thickness and

decreased inflammation in patient having cardiac surgery (62).

Statins were also shown to have an inhibitory effect on a broad

array of inflammatory cytokines released from EAT in vitro (62). It

appears clear that statins demonstrate salutary anti-inflammatory

properties that are beneficial in metabolic disorders such as obesity,

and these effects may be mediated by a reduction in EAT thickness or

inflammation (58).
Ablation

Increased EAT thickness has been associated with recurrence of

AF after ablation (63). Larger peri atrial EAT volume is also related

to the occurrence of embolic stroke after catheter ablation of AF

(64). Some studies have failed to find an association between EAT

and AF recurrence after catheter ablation, and it may depend on the

stage of AF (paroxysmal vs. persistent) (65). Traditionally AF

ablation has used an endocardial approach to isolate the

pulmonary veins. Recently, a clinical trial evaluated the efficacy of

a hybrid procedure utilizing endocardial and epicardial ablation of

the posterior left atrial wall (66). Compared to endocardial ablation

alone, those who underwent the hybrid procedure had increased

primary effectiveness at 12 months. It is not known whether

incidental modification of EAT at the time of this procedure

plays is instrumental to its efficacy.
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Modulation of ganglionic plexi within EAT

Activation of both the sympathetic and parasympathetic

nervous system is thought to play a role in the initiation of atrial

fibrillation (67, 68). Stimulation of the pulmonary veins in dogs

does not induce AF unless the adjacent ganglionic plexi are also

stimulated (69). A clinical trial of botulinum toxin injection into the

epicardial fat pad at the time of cardiac surgery showed a reduction

in the incidence of both early and late post-operative AF (70).

Interestingly, acetylcholine (Ach) has been found to have acute and

chronic effects on epicardial adipocytes in vitro (71). In comparison

to subcutaneous adipocytes, epicardial adipocytes have greater

increases in calcium flux in response to Ach. Ach also induces

MCP-1 expression in epicardial, but not subcutaneous adipocytes,

and Epicardial adipocytes have increased expression of the g protein

linked muscarinic receptors (mAChR2, mAchR3) (71). Finally,

chronic treatment of cells with Ach caused increased lipid

accumulation in both subcutaneous and epicardial adipocytes

(71). Therefore it seems that Ach may stimulate inflammation

and lipid accumulation in epicardial adipocytes, an effect that

cut putatively be inhibited by botulinum toxin or other methods.

In dogs, ablation of ganglionic plexi with a neurotoxin

(resiniferatoxin) decreased sympathetic and GP activity and

reduced AF inducibility. Resiniferatoxin is a transient receptor

potential vanilloid 1 (TRPV1) agonist (72). These studies

highlight the potential utility of chemical modification of

ganglionic plexi as an adjunct to hybrid or surgical procedures.
Browning

“Browning” refers to the possibility of inducing UCP-1

expression in white adipose via a pharmacologic or alternative

intervention. This would cause increased energy expenditure and

insulin sensitivity; a concept with great promise for treatment of

metabolic disorders and the induction of weight loss. An

additional beneficial aspect of brown adipose tissue is that it is

relatively resistant to inflammation induced by high fat diet (25).

Two early studies in the field detected increased expression of

brown adipose tissue associated genes in EAT (23, 73). However,

on a histological basis, EAT appears more like white adipose

tissue. Nonetheless, the induction of UCP1 in EAT is an intriguing

concept to combat the development of cardiovascular disease

associated with EAT (74).
Conclusion

EAT is a unique fat depot with distinct biochemical

and metabolic properties. The exact function of EAT in

cardiovascular physiology is unknown. The amount of EAT has

been shown to correlate with the development of atrial fibrillation

and adverse outcomes after atrial fibrillation ablation. As in other

fat depots, it is highly likely that EAT interacts with the

autonomic nervous system, and this is a topic that merits
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further investigation. There are many questions that remain to be

answered about this fat depot, but the potential for therapeutic

opportunities is intriguing.
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Association of obesity with
the development of end
stage renal disease in IgA
nephropathy patients

Siqing Wang1,2, Aiya Qin1,2, Lingqiu Dong1,2, Jiaxing Tan1,2,
Xiaoyuan Zhou3 and Wei Qin1,2*

1West China School of Medicine, Sichuan University, Chengdu, Sichuan, China, 2Division of
Nephrology, Department of Medicine, West China Hospital of Sichuan University, Chengdu,
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Background and aim: Immunoglobulin A nephropathy (IgAN) is the most

common primary glomerulonephritis worldwide. We aimed to evaluate

whether obesity is a risk factor for IgAN patients.

Methods: A total of 1054 biopsy-proven IgAN patients were analyzed in this

retrospective study. Patients were divided into four groups according to their

body weight index (BMI) at the period of renal biopsy: underweight group (BMI<

18.5, N=75), normal weight group (18.5≤BMI<24, N=587), overweight group

(24≤BMI<28, N=291) and obesity group (28≤BMI, N=101). The endpoint of our

study was end stage renal disease (ESRD: eGFR <15 mL/min/1.73 m2 or having

renal replacement treatment). Kaplan-Meier analyses and Cox proportional

hazard models were performed to evaluate renal survival. Propensity-score

matching (PSM) was performed to get the matched cohort to evaluate the role

of obesity in IgAN patients. Besides, the effect modification of obesity and

hypertension in IgAN patients was clarified by the synergy index.

Results: IgAN patients complicated with obesity had more severe renal

dysfunction at the time of renal biopsy than those with optimal body weight.

In addition, patients with obesity tended to have higher risk of metabolic

disorders, such as hyperuricemia (64.4% vs 37%, p<0.001), hypertriglyceridemia

(71.3% vs 32.5%, p<0.001) and hypercholesterolemia (46.5% vs 35.6%, p=0.036). It

was observed that obesity patients had higher rate of unhealthy behaviors, such

as smoking (27.7% vs 16.4%, p=0.006) and alcohol drinking (29.7% vs 19.9%,

p=0.027). Although obesity was not confirmed as an independent risk factor for

IgAN patients, we found that IgAN patients with obesity presented with higher

incidence of hypertension, as well as lower event-free renal survival rate (log-

rank p < 0.001), especially in patients with 24-h urine protein ≥ 1g (log-rank

p =0.002). In addition, the synergy index showed that there was positive

interaction between obesity and hypertension in IgAN.

Conclusion:Obesity is an important risk factor for IgAN patients when combined

with hypertension. Hypertension appears to be common in obese IgAN patients.
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Introduction

The prevalence of overweight and obesity have increasing

impact on the quality of life of patients, on health services, and

on society (1). Recent studies have suggested that elevated body

mass index (BMI) was a significant risk factor for coronary heart

disease, stroke (2) and chronic kidney disease (CKD) (3).

Immunoglobulin A nephropathy (IgAN) is the most common

primary glomerulonephritis globally and represents the leading

cause of CKD and renal failure (4). The relationship between

obesity and IgAN has not yet been clarified clearly because

controversial results have been obtained in previous studies.

Several studies have showed that overweight and obesity might be

related to severe renal dysfunction and poor prognosis (5–7).

However, other studies suggested that high BMI was not a direct

risk factor for IgAN (8, 9). Therefore, we performed this study to

determine whether obesity plays a role in the progression and

prognosis of IgAN in Chinese patients.
Materials and methods

Study design

A total of 1588 renal biopsy proven adult IgAN patients from

West China Hospital of Sichuan University between January 2009

and December 2018 were recruited for this retrospective study.

Patients with systemic lupus erythematosus, Henoch–Schonlein

purpura, chronic liver disease and systemic diseases (including

diabetes mellitus) were excluded (31 patients). The other

exclusion criteria were as follows (1): insufficient clinical data and

missing data during follow up (192 patients) (2), renal biopsy

specimens containing <8 glomeruli (284 patients) (3), duration of

follow-up <1 year before reaching end stage renal disease (ESRD:

eGFR <15 mL/min/1.73 m2 or having renal replacement treatment)

(25 patients), and (4) estimated glomerular filtration rate (eGFR)

<15 ml/min/1.73 m2 at the time of renal biopsy (2 patients).

Ultimately, 1054 patients were included (Figure 1). Written

informed consent was obtained from each patient involved. This

study was approved by the Ethical Committee of West China

Hospital of Sichuan University (2019–33).
Clinical data

Patients enrolled in this study were divided into four groups

according to their BMI at the period of renal biopsy. BMI is calculated

as weight in kilograms divided by the measured height in square

meters and expressed in kg/m2. It remains a good parameter to

appreciate excessive weight and the classification is as follows based

on WHO (World Health Organization) classification: underweight

group (BMI < 18.5), normal weight group (18.5 ≤ BMI < 24),

overweight group (24 ≤ BMI < 28), and obesity group (BMI ≥ 28)

(10). Demographics (gender, age), clinical data [systolic blood

pressure (SBP), diastolic blood pressure (DBP), serum creatinine
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(Scr), hemoglobin (Hb), serum albumin (Alb), smoking and drinking

status, serum total cholesterol (TC), serum triglycerides (TG), uric

acid (UA), 24-h urine protein and eGFR] were collected at the time of

renal biopsy. Hypertension was defined as blood pressure > 140/90

mmHg or using antihypertensive agents. Mean arterial pressure

(MAP) was calculated as DBP + 1/3(SBP-DBP) (11). eGFR was

calculated using the CKD-EPI equation (12). Anemia was defined as

Hb <120 g/L in males or Hb <110 g/L in females (13). Hyperuricemia

was defined as UA >420 µmol/L or >360 µmol/L inmales and females

(14). Hypercholesterolemia was defined as serum TC ≥ 5.2 mmol/L.

Hypertriglyceridemia was defined as serum TG ≥1.7 mmol/L (14).

Stages of CKD were based on the Kidney Disease: Improving Global

Outcomes (KDIGO) practice guidelines (15).
Pathological data

Renal biopsy samples were evaluated by light (HE, PAS,

Masson, PASM), immunofluorescence (IgA, IgG, IgM, C3, C4,

C1q) and electron microscopy. All the renal pathology reports

were evaluated by our hospital experienced pathologists and

nephrologists according to the Oxford classification of IgAN

(MEST-C): mesangial hypercellularity (M0/M1); endocapillary

hypercellularity (E0/E1); segmental glomerulosclerosis (S0/S1);

tubular atrophy/interstitial fibrosis (T0/T1/T2) and cellular or

fibrocellular crescents (C0/C1/C2) (16). We also performed

clinical-pathological discussion for all patients, especially for

those with difficulty of diagnosis.
Treatment data

According to different treatment strategies, patients were

divided into two groups: supportive treatment, corticosteroids
FIGURE 1

The flow chart of excluded patients.
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alone or/and plus immunosuppressant therapy. Patients in the

supportive treatment group only received optimized supportive

care with a full dose angiotensin-converting-enzyme inhibitor

(ACEI) or angiotensin receptor blockers (ARB) to achieve target

blood pressure. Patients in the corticosteroids alone or/and plus

immunosuppressant therapy group received optimized supportive

care along with corticosteroids (0.5 - 1 mg/kg prednisone daily,

tapering down within 6 - 8 months) or/and immunosuppressant

therapy (cyclophosphamide 2 mg/kg daily for 3 months, or

mycophenolate mofetil 1-2 g daily for 6-8 months, or

cyclosporine 3–5 mg/kg daily for 6–8 months, or tacrolimus

0.03–0.05 mg/kg daily for 6–8 months) (17).
Endpoint

The main predefined study outcome for the present analysis was

the occurrence of end stage renal disease (ESRD), which was

defined as eGFR <15 mL/min/1.73 m2 or accepting renal

replacement treatment.
Statistical analysis

All the statistical analyses were carried out by using IBM SPSS

Statistic software (version 26.0). Continuous variables were

expressed as the means ± standard deviations (SD) or median

with interquartile range and analyzed with independent samples t-

test or nonparametric test for normally and nonnormally

distributed variables. Categorical data were analyzed using Chi-

square tests and presented as frequencies (percentages). Kaplan-

Meier analyses and Cox proportional hazard models were

performed to evaluate the risk factors for renal progression and

prognosis, and survival curves were compared with the log-rank

test. Combining the results of the univariate Cox proportional

hazard model and clinical experience, we screened out

confounding variables and added them to the different

multivariate Cox proportional hazard models. In the adjusted Cox

proportional hazards models, gender, age, pathologic lesions

(MEST-C), treatment, eGFR and proteinuria were included.
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Results were expressed as hazard ratios (HR) and 95% confidence

intervals (CI). To control the impact of confounding factors among

the four groups, we performed propensity-score matching (PSM)

according to important clinical and pathologic factors (gender, age,

MAP, hypertension, 24-h urine protein, eGFR, treatment, and

Oxford MEST-C score). Underweight, overweight and obesity

groups were matched to normal weight group with 1:1 nearest

neighbor matching without replacement (the caliper width was set

at 0.02) to address the marked differences between the groups (9),

and the matched cohort was divided into three groups: group1

(normal weight and underweight), group2 (normal weight and

overweight) and group3 (normal weight and obesity). Then

Kaplan-Meier analyses and Cox proportional hazard models were

also conducted to evaluate the risk factors in matched cohort.

Besides, the effect modification of obesity and hypertension in

IgAN patients was clarified by the synergy index. Statistical

significance was considered if p value < 0.05.
Results

Demographic and clinicopathological
characteristics

Among 1054 patients, 587 patients (55.7%) were normal weight,

75 patients (7.1%) were underweight, 291 patients (27.6%) were

overweight and 101 patients (9.6%) were obesity. The mean follow-

up time was 61 ± 29 months, the mean age of all patients was 35 ±

11 years, and male patients accounted for 45.2% of the whole

cohort. It was noticed that obesity patients had higher rate of

unhealthy behaviors, such as smoking (27.7%, p=0.006) and

drinking (29.7%, p=0.027). Regarding clinical features,

hypertension was observed in 51.5% of patients in obesity group.

Furthermore, increased serum creatinine and urine protein levels

were associated with higher BMI, especially in obesity patients

(p<0.05). In addition, IgAN patients with obesity tended to have

higher rates of hypertriglyceridemia, hypercholesterolemia and

hyperuricemia (p<0.05). However, no significant difference was

found in pathologic lesions (MEST-C) or medical treatments

among the four groups (Table 1).
TABLE 1 Demographic and clinicopathological characteristics of 1054 unmatched IgAN patients at the time of renal biopsy.

Parameters Normal weight
(N=587)

Underweight
(N=75)

Overweight
(N=291)

Obesity
(N=101)

Male (%) 236 (40.2%) 24 (32%) 160 (55%) ** 56 (55.4%) **

Age (years) 31 (26,40) 25 (21,29) ** 38 (30,46) ** 41 (33,47) **

MAP (mmHg) 95(88,104) 90 (84,99) ** 99 (90,107) ** 102(92,112) **

Hypertension (%) 121 (20.6%) 9 (12%) 107 (36.8%) ** 52 (51.5%) **

BMI (kg/m2) 21.2 (19.8,22.7) 17.6 (17,18.3) ** 25.5 (24.8,26.6) ** 30(28.5,31.7) **

Smoking (%) 96 (16.4%) 4 (5.3%) * 53 (18.2%) 28 (27.7%) **

Drinking (%) 117 (19.9%) 12 (16%) 69 (23.7%) 30 (29.7%) *

(Continued)
frontiersin.org

https://doi.org/10.3389/fendo.2023.1094534
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Wang et al. 10.3389/fendo.2023.1094534
The relationships between BMI and renal
outcomes in IgAN patients

In the unmatched cohort, the percentage of patients progressing

to ESKD was 11.30 per 1000 person-years in normal group and

17.68 per 1000 person-years in obesity group. But, there was no

significant difference in the results of univariate Cox proportional

hazard model and Kaplan-Meier survival analysis (Table 2). Then,

to investigate the association of BMI with the progression of IgAN

by excluding the impact of confounding indicators, we performed

PSM to get the matched cohort (Table 3). After PSM significant

relationships were determined between different groups, compared

with normal weight group, patients with underweight presented

with higher proportions of mesangial hypercellularity, overweight

patients had higher rate of hypertriglyceridaemia. Notably, patients

with obesity had worse clinical features, such as higher proteinuria,
Frontiers in Endocrinology 0497
anaemia and hyperuricaemia. However, BMI did not have a

significant influence on the renal outcome of IgAN patients based

on the Kaplan-Meier survival and univariate Cox proportional

hazard model (Table 4).
Obesity contributes to risk factors for renal
progression and outcomes when
combined with hypertension

In the unmatched cohort, compared with normal weight patients,

obesity groups were associated with higher risk of hypertension. Thus,

we conducted a series of analyses to assess whether hypertension and

obesity could have an effect on the renal outcomes in IgAN patients.

Correspondingly, the patients who presented with normal weight and

non-hypertension were considered as the reference group. The Kaplan-
TABLE 1 Continued

Parameters Normal weight
(N=587)

Underweight
(N=75)

Overweight
(N=291)

Obesity
(N=101)

Anemia (%) 81 (13.8%) 53 (29.3%) ** 30 (10.3%) 7 (6.9%)

24h-proteinuria (g/d) 1.2 (0.7,2.38) 1.0 (0.5,2.16) * 1.47 (0.9,3) ** 2.27 (1,3.74) **

Alb (g/L) 40 (36.2,43.1) 40.9 (37.1,44.5) 40.7 (37.1,43.7) * 40.7 (35.7,43.8)

Hypertriglyceridemia (%) 191 (32.5%) 13 (17.3%) ** 171 (58.8%) ** 72 (71.3%) **

Hypercholesterolemia (%) 209 (35.6%) 13 (17.3%) ** 121 (41.6%) 47 (46.5%) *

Hyperuricemia (%) 217 (37%) 16 (21.3%) ** 129 (44.3%) * 65 (64.4%) **

eGFR (mL/min/1.73 m2) 96 (66,119) 113 (82,130) ** 83(61,107) ** 81(58,106) **

SCr (umol/L) 80 (64,109) 69(58,96) ** 90 (71,114) ** 93 (74,119) **

CKD stages

stage1 327 (55.7%) 54 (72%) * 129 (44.3%) ** 44 (43.6%)

stage2 135 (23%) 11 (14.7%) 9 (31.3%) 30 (29.7%)

stage3 110 (18.7%) 7 (9.3%) 65 (22.3%) 24 (23.8%)

stage4 15 (2.6%) 3 (4%) 6 (2.1%) 3 (3%)

Pathology (Oxford classification)

M1 446 (76%) 53 (70.7%) 203 (69.8%) 75 (74.3%)

E1 21 (3.6%) 5 (6.7%) 12 (4.1%) 7 (6.9%)

S1 360 (61.3%) 39 (52%) 178 (61.2%) 56 (55.4%)

T1/T2 115 (19.6%) 13 (17.3%) 58 (19.9%) 18 (17.8%)

C1/C2 133 (22.7%) 17 (22.7%) 59 (20.3%) 17 (16.8%)

Treatment

Corticosteroids alone or/and plus
immunosuppressant (%)

338 (57.6%) 42 (56%) 175 (60.1%) 63 (62.4%)
MAP, mean arterial pressure; BMI, body mass index; ALB, albumin; eGFR, estimated glomerular filtration rate; SCr, serum creatinine; CKD, chronic kidney disease. M, mesangial proliferation; E,
endocapillary proliferation; S, segmental sclerosis; T, tubular atrophy/interstitial fibrosis; C, crescents; IgAN, Immunoglobulin A nephropathy. Other three BMI groups compared with normal
weight group, which was used as reference.
*, P value <0.05; **, P value <0.01.
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TABLE 3 Demographic and clinicopathological characteristics of matched groups.

Parameters

Group1 Group2 Group3

Normal weight
(N=73)

Underweight
(N=73)

Normal weight
(N=276)

Overweight
(N=276)

Normal weight
(N=95)

Obesity
(N=95)

Male (%) 18 (24.7%) 24 (32.9%) 149 (54%) 149 (54%) 55 (57.9%) 51 (53.7%)

Age (years) 26 (21,32) 25 (21,29) 37 (29,43) 38 (29,45.8) 38 (32,48) 40 (32,46)

MAP (mmHg) 91.7 (85.3,94.8) 90 (83.5,98.8) 96.7 (90,107.3) 98.7 (90,106.7) 99.7 (92.3,113) 101.7
(91.7,111.7)

Hypertension (%) 3 (4.1%) 9 (12.3%) 87 (31.5%) 93 (33.7%) 44 (46.3%) 46 (48.4%)

BMI (kg/m2) 20.7 (19.8,21.8) 17.7 (17,18.3) ** 21.6 (20.2,22.7) 25.5 (24.8,26.6) ** 21.6 (20.2,23.1) 29.4
(28.5,31.7)

**

Smoking (%) 6 (8.2%) 4 (5.5%) 67 (24.3%) 46 (16.7%) ** 25 (26.3%) 24 (25.3%)

Drinking (%) 11 (15.1%) 12 (16.4%) 76 (27.5%) 61 (22.1%) 32 (33.7%) 27 (28.4%)

Anemia (%) 13 (17.8%) 21 (28.8%) 41 (14.9%) 29 (10.5%) 17 (17.9%) 7 (7.4%) **

24h-proteinuria (g/d) 0.83 (0.34,1.98) 1 (0.51,2.17) 1.4 (0.7,2.5) 1.5 (0.9,3) 1.7 (0.7,2.7) 2.2 (1,3.7)
**

Alb (g/L) 39.8 (37.4,42.8) 40.9 (36.9,44.5) 39.8 (36.3,42.9) 40.7 (37.1,43.5) 39.9 (35,42.6) 40.8
(35.8,43.9)

Hypertriglyceridemia (%) 22 (30.1%) 13 (17.8%) 104 (37.7%) 159 (57.6%) ** 40 (42.1%) 68 (71.6%)

Hypercholesterolemia (%) 19 (26%) 13 (17.8%) 104 (37.7%) 117 (42.4%) 41 (43.2%) 44 (46.3%)

Hyperuricemia (%) 19 (26%) 16 (21.9%) 112 (40.6%) 121 (43.8%) 37 (38.9%) 61 (64.2%)
**

eGFR (mL/min/1.73 m2) 114.5 (81.3,125.8) 112.8 (80.8,129.7) 80.1 (54.8, 109.3) 82.8 (60.7, 107.1) 78.2 (51.6,109.6) 84.9
(62.4,106.4)

SCr (umol/L) 67 (57.7,89.5) 69.1 (58,96.5) 91 (71.8,129.4) 90 (71,114) 94.6 (69.9,136.9) 93
(74,115.9)

CKD stages

Stage 1 51 (69.9%) 53 (72.6%) 112 (40.6%) 124 (44.9%) 39 (41%) 43 (45.3%)

Stage 2 9 (12.3%) 10 (13.7%) 79 (28.6%) 85 (30.8%) 24 (25.3%) 29 (30.5%)

Stage 3 12 (16.4%) 7 (9.6%) 73 (26.5%) 61 (22.1%) 26 (27.4%) 20 (21.1%)

Stage 4 1 (1.4%) 3 (4.1%) 12 (4.3%) 6 (2.2%) 6 (6.3%) 3 (3.1%)

(Continued)
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TABLE 2 The relationships between BMI and renal outcomes in the unmatched cohort.

Subgroup ESRD (%) P value of Cox Hazard Ratio (95%CI) P value of KM

Group 1 0.819 1.116 (0.436-2.855) 0.819

Normal weight 35 (6%)

Underweight 5 (6.7%)

Group2 0.889 1.043 (0.577-1.886) 0.889

Normal weight 35 (6%)

Overweight 16 (5.5%)

Group3 0.173 1.714 (0.789-3.723) 0.168

Normal weight 35 (6%)

obesity 8 (7.9%)
P value of Cox and KM were analyzed by Univariate Cox proportional hazard model and Kaplan-Meier survival analysis. In each group, normal weight group was used as reference.
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Meier analysis revealed that IgAN hypertension patients with obesity

had the worse renal outcome (Figure 2) Table 5 shows the results of

different multivariate Cox proportional hazards models. Obesity and

hypertension increased the risk of ESRD, both adjusted and unadjusted

for confounding factors. When unadjusted for confounder factors,

patients with obesity and hypertension were associated with a 5.2-fold

increased risk of ESRD (p < 0.001). After adjustment for gender, age,

pathologic lesions (MEST-C), treatment, eGFR and proteinuria did not

affect the trend (HR = 3.246, 95%CI = 1.207-8.726, p = 0.02). Results

for the remaining covariates in these multivariate Cox regression

analyses are provided in Supplementary Table 1. In addition, risk

stratification has long been developed as a strategy to predict patient

outcomes and potentially alter or optimize comorbidities and

modifiable risk. Clinical risk factors, such as persistent proteinuria or

hypertension, appear to generally have greater predictive power for the

renal outcome (18). Thus, according to the urine protein of the whole

unmatched cohort, patients were divided into 24-h urine protein ≥ 1 g

or < 1 g per day. We found that hypertension and obesity could

accelerate the progression of IgAN, especially for the patients with 24-h
Frontiers in Endocrinology 0699
urine protein ≥ 1 g (Figure 3) In addition, the synergy index was

calculated to assess the effect modification of obesity and hypertension

on the renal outcome of ESRD, and the synergy index was 1.52,

indicating that there was positive interaction between obesity and

hypertension in IgAN.
Discussion

With changes in lifestyle and dietary habits, the prevalence of

metabolism-related diseases such as obesity has increased at a rapid

rate in developed and developing countries around the world in

recent decades (19).

Previously, high BMI was reported as a significant risk factor for

progression and prognosis in IgAN (5, 20), and weight reduction was

suggested to decrease proteinuria in overweight patients with IgAN to

delay renal dysfunction progression (21). Current epidemiologic

evidence indicates that obesity is not a risk factor for IgAN (8, 9).

However, these studies were confined by the small sample size of the
TABLE 3 Continued

Parameters

Group1 Group2 Group3

Normal weight
(N=73)

Underweight
(N=73)

Normal weight
(N=276)

Overweight
(N=276)

Normal weight
(N=95)

Obesity
(N=95)

Pathology (Oxford classification)

M1 65 (89%) 52 (71.2%) ** 196 (71%) 196 (71%) 73 (76.8%) 70 (73.7%)

E1 4 (5.5%) 4 (5.5%) 12 (4.3%) 11 (4%) 5 (5.3%) 4 (4.2%)

S1 34 (46.6%) 39 (53.4%) 157 (56.9%) 108 (60.9%) 46 (48.4%) 53 (55.8%)

T1/T2 10 (13.7%) 13 (17.8%) 63 (22.8%) 54 (19.6%) 20 (21.1%) 18 (18.9%)

C1/C2 20 (27.4%) 17 (23.3%) 62 (22.5%) 57 (20.7%) 15 (15.8%) 16 (16.8%)

Treatment

Corticosteroids alone or/and plus
immunosuppressant (%)

48 (65.8%) 41 (56.2%) 168 (60.9%) 169 (61.2%) 62 (65.3%) 58 (61.1%)
fr
MAP, mean arterial pressure; BMI, body mass index; ALB, albumin; eGFR, estimated glomerular filtration rate; SCr, serum creatinine; CKD, chronic kidney disease. M, mesangial proliferation; E,
endocapillary proliferation; S, segmental sclerosis; T, tubular atrophy/interstitial fibrosis; C, crescents. Each group was compared with normal weight, which was used as reference.
*, P value <0.05; **, P value <0.01.
TABLE 4 The relationships between BMI and renal outcomes in the matched cohort.

Subgroup ESRD (%) P value of Cox Hazard Ratio (95%CI) P value of KM

Group 1 0.252 2.345 (0.545-10.093) 0.240

Normal weight 4 (5.5%)

Underweight 5 (6.8%)

Group2 0.729 0.894 (0.473-1.689) 0.729

Normal weight 24 (8.7%)

Overweight 16 (5.8%)

Group3 0.415 1.486 (0.573-3.853) 0.413

Normal weight 11 (11.6%)

obesity 8 (8.4%)
P value of Cox and KM were analyzed by Univariate Cox proportional hazard model and Kaplan-Meier survival analysis. In each group, normal weight group was used as reference.
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population and no or limited adjustments were conducted for other

critical risk factors for IgAN patients. Moreover, the treatment was

significantly different between obesity and non-obesity patients. In

addition, the influence of obesity on IgAN patients may be confused

by some confounding factors. Therefore, the association between

obesity and IgAN still remains unclear.

Consistent with some previous studies, the main finding of this

retrospective study of 1054 patients with IgAN is that being obesity at

the time of renal biopsy significantly correlated with more severe

clinical features and increased proteinuria and favored the subsequent

development of ESRD. In our current study, all the patients were

divided into four groups: underweight, normal weight, overweight and

obesity. IgAN patients with obesity tended to be old, male and have
Frontiers in Endocrinology 07100
severe proteinuria and renal dysfunction. Besides, they always had

poor healthy lifestyle, smoking and alcohol drinking. More

importantly, in our study, obesity patients were noted to have

metabolic syndrome, including but not limited to hypertension,

hyperuricemia, hypertriglyceridemia and hypercholesterolemia. It

was reported that high BMI indirectly accelerated the progression of

IgAN by inducing metabolic syndrome. Additionally, hypertension,

hypertriglyceridemia and hyperuricemia, which contribute to

metabolic syndrome, are strongly related to the development of

ESRD (22). As a result, it is worth assessing and paying attention to

the risk of obesity.

Obesity can induce afferent arteriole vasodilation and high

intraglomerular pressures in order to augment glomerular filtration

rate to meet the higher metabolic demands. As an individual gains
FIGURE 2

Kaplan-Meier analysis of obesity and hypertension for the
unmatched cohort.
TABLE 5 Univariate and multivariate Cox proportional hazard model for the renal outcome in IgAN patients with obesity and hypertension.

Parameter Unadjusted Model 1 Model 2 Model 3

HR (95%CI) P
value

HR (95%CI) P
value

HR (95%CI) P
value

HR (95%CI) P
value

Normal weight and non-
hypertension

1 (Reference) 1 (Reference) 1 (Reference) 1 (Reference)

Normal weight and hypertension 4.038 (2.004-
8.138)

<0.001 4.307 (2.047-
9.060)

<0.001 2.270 (1.057-
4.873)

0.035 1.612 (0.755-
3.441)

0.217

Obesity and non-hypertension 0.609 (0.081-
4.568)

0.630 0.549 (0.072-
4.170)

0.562 0.644 (0.084-
4.964)

0.673 1.195 (0.149-
9.568)

0.867

Obesity and hypertension 5.177 (2.128-
12.596)

<0.001 5.154 (1.956-
13.579)

0.001 3.767 (1.357-
10.458)

0.011 3.246 (1.207-
8.726)

0.02
fron
Model 1 was adjusted for gender and age.
Model 2 was adjusted for covariates in model 1 plus Oxford M (mesangial hypercellularity), E (endocapillary proliferation), S (segmental glomerulosclerosis), T (tubular atrophy/interstitial
fibrosis), and C (crescent) and Corticosteroids alone or/and plus immunosuppressant (yes or no).
Model 3 was adjusted for covariates in model 2 plus eGFR, 24h-proteinuria≥ 1g (yes or no).
FIGURE 3

Kaplan-Meier analysis of obesity and hypertension for the
unmatched patients with 24-h urine protein ≥ 1 g.
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weight, the glomerular and glomerular capillary diameter might

increase, leading to terminally differentiated podocytes covering a

larger glomerular capillary surface and glomerular capillary wall

tension increasing. These were associated with an increased risk of

proteinuria (23).

There was no significant difference among the four groups

regarding the pathological lesions of MEST-C and treatment after

renal biopsy. Because obesity-related glomerulopathy (ORG) is

characterized by glomerulomegaly in the presence or absence of

focal and segmental glomerulosclerosis lesions (24), more obesity

IgAN patients are needed to investigate pathologic lesions.

A previous study revealed that hypertension and proteinuria

increased the risk of ESRD in IgAN patients (25). However, our

results showed that obesity was not a direct and independent risk

factor for IgAN, and the combination of obesity and hypertension

might be a risk indicator for IgAN. In clinical practice, many patients

are exposed to the combined effects of obesity and hypertension. Our

study found that such exposure is associated with a higher risk for

ESRD. Furthermore, the positive interaction between obesity and

hypertension in IgAN patients was verified by our results.

These results indicated that obesity may not be an independent

risk factor for poor renal outcome, but to some extent, coexists with

hypertension could increase the risk of ESRD in IgAN patients.When

obesity coexists with common risk factors, such as hypertension, it

may further aggravate the patient’s disease progression. Based on our

results, we suggest that IgAN patients, especially those with

hypertension, should strictly control their weight and prevent

obesity, so as to reduce the risk of poor renal prognosis.

The study had three main limitations. First, the body mass index

was calculated at the time of renal biopsy and the groups were

classified by those data. which may lead to different categorization

over time. Besides, it was a retrospective study and only in a single

hospital center. As a result, Multi-center studies would be useful to

verify the findings of this study. In addition, the mean follow-up time

of 61 months was relatively short, especially for IgAN, which is a

slowly progressing disease. Though we tried our best to collect all the

information retrospectively, a total of 192 patients (12%) with missing

data were excluded from the study, which may have affected renal

outcome. However, because of their small number, we do not think it

would have had a significant impact on our findings. In addition, we

are expanding the cohort population and extending the follow-up

time, and expect to find more compelling results in the future.
Conclusions

Obesity had an effect on the progression of IgAN when

combined with hypertension. In addition, hypertension was

common in obesity-IgAN patients.
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Body roundness index is
related to the low estimated
glomerular filtration rate in
Chinese population: A cross-
sectional study

Yue Zhang1,2†, Wenxing Gao2†, Rui Ren1,2†, Yang Liu1,2, Binqi Li2,3,
Anping Wang1, Xulei Tang4, Li Yan5, Zuojie Luo6, Guijun Qin7,
Lulu Chen8, Qin Wan9, Zhengnan Gao10, Weiqing Wang11,
Guang Ning11 and Yiming Mu1*

1Department of Endocrinology, the First Clinical Medical Center of Chinese People’s Liberation Army
General Hospital, Beijing, China, 2Medical School of Chinese People’s Liberation Army, Beijing, China,
3School of Medicine, Nankai University, Tianjin, China, 4Department of Endocrinology, The First
Hospital of Lanzhou University, Lanzhou, Gansu, China, 5Zhongshan University Sun Yat-sen Memorial
Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China, 6Department of Endocrinology, The
First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China, 7Department of
Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China,
8Union Hospital, Tongji Medical College, Wuhan, Hubei, China, 9Department of Endocrinology,
Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan, China, 10Department of
Endocrinology, Dalian Municipal Central Hospital, Dalian, Liaoning, China, 11Ruijin Hospital, Shanghai
Jiao Tong University School of Medicine, Shanghai, China
Background: Kidney disease is related to visceral obesity. As a new indicator of

obesity, body roundness index (BRI) has not been fully revealed with kidney

disease. This study’s objective is to assess the relationship between estimated

glomerular filtration rate (eGFR) and BRI among the Chinese population.

Methods: This study enrolled 36,784 members over the age of 40, they were

from 7 centers in China by using a random sampling method. BRI was computed

using height and waist circumference, eGFR ≤ 90 mL/min/1.73 m2 was

considered to indicate low eGFR. To lessen bias, propensity score matching

was employed, multiple logistic regression models were utilized to examine the

connection between low eGFR and BRI.

Results: The age, diabetes and coronary heart disease rates, fasting blood

glucose, and triglycerides were all greater in participants with low eGFR. The

BRI quartile was still positively connected with low eGFR after controlling for

confounding variables, according to multivariate logistic regression analysis. (OR

[95%CI] Q2:1.052 [1.021-1.091], OR [95%CI] Q3:1.189 [1.062-1.284], OR [95%CI]

Q4:1.283 [1.181-1.394], P trend < 0.001). Stratified research revealed that the

elders, women, habitual smokers, and those with a history of diabetes or

hypertension experienced the connection between BRI level and low eGFR.

According to ROC, BRI was able to detect low eGFR more accurately.
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Conclusion: Low eGFR in the Chinese community is positively connected with

BRI, which has the potential to be used as an effective indicator for screening

kidney disease to identify high-risk groups and take appropriate measures to

prevent subsequent complications.
KEYWORDS

chronic kidney disease, body roundness index, visceral obesity, cross-sectional study,
estimated glomerular filtration rate
1 Background

Global public health is challenged by chronic kidney disease

(CKD). The projected global prevalence rate of CKD in 2017 was

9.1%. it has been reported to be closely related to the occurrence of

multiple diseases, bringing great economic burden and public

health pressure (1). Due to the insidious occurrence and poor

prognosis of chronic kidney disease, early detection of renal

function decline has been the focus of people’s attention. eGFR is

currently used to identify renal insufficiency in clinical practice.

Over the past 30 years, the prevalence of obese individuals has

significantly risen worldwide (2). Obesity, particularly visceral

obesity, has been linked to the beginning and development of

CKD (3). The most popular method for determining obesity is

body mass index (BMI) (4), but it has drawbacks because it does not

account for how a person’s fat is distributed. The new obesity

measurement index BRI developed by Thomas (5) has higher

predictive power for visceral adipose tissue (VAT) percentage

than BMI, and has been demonstrated to be linked to metabolic

syndrome (6), non-alcoholic fatty liver disease (7) and other

diseases are closely related.

Few research, meanwhile, have examined the link between BRI

and chronic renal disease. In order to assess the relationship

between BRI and low eGFR, we gathered data from 38361

persons in China for this study. The goal of this study was to

provide evidence for the early prevention and management of CKD

and to identify high-risk patients as early as possible.
ated glomerular filtration
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tamyl transferase; WHR,
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r the receiver operating

02104
2 Methods

2.1 Participants and study design

We obtained data from a prospective cohort study of cancer risk

assessment in Chinese diabetic patients and non-diabetic people

based on the community population (8), it received approval from

Shanghai Jiao Tong University School of Medicine’s Ruijin

Hospital’s Clinical Research Ethics Committee (No. 2014-25).

Prior to taking the survey, each respondent provided written

informed consent, which was carried out in accordance with the

Helsinki Declaration. From May to December of 2011, data

were gathered.

In seven geographically varied regional centers in China, a total

of 47,808 participants over the age of 40 were registered using

multi-stage stratified cluster random sampling (Dalian, Wuhan,

Lanzhou, Zhengzhou, Luzhou, Shanghai, and Guangzhou).

Propensity matching was employed to lessen potential bias,

considering the variances in baseline traits between the two

groups. Participants having a primary kidney disease diagnosis, a

history of cancer, past antihypertensive drug use (angiotensin-

converting enzyme inhibitors or angiotensin-receptor blockers),

or insufficient data were excluded from the study. In the end,

there were 36,784 participants (11,546 men and 25,238

women) (Figure 1).
2.2 Data collection and measurements

Trained investigators used standardized questionnaires to collect

basic information about the participants, including demographic

information (e.g., sex, age), lifestyle information (e.g., smoking,

alcohol consumption), and disease history (e.g., kidney failure and

tumors). Weight, height, waist measurement (WC), blood pressure,

and other anthropometric measurements are included. Before

collecting the measures, the patients were asked to remove their

clothing and shoes. The height measurement is accurate to 0.1 cm

and is done with a rangefinder. To accurately determine your weight to

the nearest 0.1 kg, use a digital standing scale. Three readings of systolic

blood pressure (SBP) and diastolic blood pressure (DBP) were taken

with a mercury sphygmomanometer, and the average was taken. Prior

tomeasurement, each subject was instructed to remain still for at least 5
frontiersin.org
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minutes.While trained investigators measuredWC, participants had to

stand up straight, while dropping their arms naturally, and keeping

their feet together. When exhaling, the exact halfway between the iliac

crest’s topmost border and the bottom of the thorax is 0.1 cm (9).

A fast of 10 hours was followed by the collection of morning

urine and fasting blood samples by qualified inspectors.

Chemiluminescence immunoassay was used to measure the

amounts of urinary albumin and creatinine, fasting blood glucose

(FBG), glycated hemoglobin (HbA1c), triglycerides (TG), total

cholesterol (TC), two hours postprandial blood glucose (PBG),

high-density lipoprotein cholesterol (HDL-C), low-density

lipoprotein cholesterol (LDL-C), alanine transferase (ALT),

glutamyl transferase (g-GGT), and aspartic acid transferase (AST).
2.3 Definition of variables

Weight divided by the square of height yields BMI (kg/m2). This

formula is used to compute BRI: 364.2-365.5*(1-[WC(m)/2p]2/
[0.5*height(m)]2)½ (5). Height and WC are both expressed in

meters. Waist-to-Hip Ratio (WHR) and waist-to-Height Ratio

(WHtR) are, respectively, WC divided by hip circumference and

WC divided by height. No smoking, occasional smoking (less than

one cigarette per day or seven cigarettes per week), and regular

smoking were considered to be the three types of smoking (at least

one cigarette per day). No drinking, occasional (less than once a

week), and regular drinking were the three categories used to

categorize drinking behaviors (at least once a week for more than

six months).

Using the Collaborative Equation for the Epidemiology of

Chronic Kidney Disease (CKD-EPI eGFR) (10) to estimate the

eGFR. Participants were split into two groups: eGFR < 90 mL/min/
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1.73 m2 for low eGFR and eGFR ≥ 90 mL/min/1.73 m2 for normal

eGFR. Blood pressure was divided into the normal group (SBP <

120 and DBP < 80), prehypertension group (120 ≤ SBP < 140 and/

or 80 ≤ DBP < 90), and hypertension group (SBP ≥ 140 or DBP

≥ 90).
2.4 Statistical analysis

Because eligible participants in the two sets of eGFR had

different baseline characteristics, propensity score matching was

used to minimize bias. All covariates were matched at a ratio of 1:6,

with caliper widths equal to 0.05 of the propensity score Logit’s

standard deviation. Continuous variables were described by mean

and standard deviation (SD), or median and (25th percentile, 75th

percentile) depending on whether they were regularly distributed.

T-tests or Mann-Whitney U tests were used to determine group

differences. Categorical variables were expressed as percentages (%),

and Chi-square tests were used to compare differences.

To identify the factors that were substantially linked with either

the BRI or the eGFR, Spearman correlation tests were run. We

utilized logistic regression analysis to obtain the odds ratios (ORs)

and 95% confidence intervals (CI) to assess the association between

BRI quartile and low eGFR. We split BRI according to quartile

cutoff points. The reference group was the bottom quartile. Model 1

was unadjusted. Model 2 adjusted for center, sex, and age. On the

basis of Model 2, Model 3 further adjusted for drinking, smoking,

diabetes, a history of coronary heart disease (CHD) and diabetes

mellitus disease (DM). On the basis of Model 3, Model 4

additionally adjusted for FBG, TG, LDL-C, TC, SBP, and DBP.

Make OR (95%CI) calculations for each model.

The study was carried out for gender, age (< 60/≥ 60 years),

diabetes history, blood pressure, and smoking habits were

stratified and adjusted for many potential confounders in order

to examine the relationship between the BRI quartile and low

eGFR in more detail. The ROC curve was then displayed, and the

95% CI and area under the receiver operating characteristic curve

(AUCs) were reported to more clearly illustrate the predictive

value of BRI and several anthropometric factors for low eGFR.

SPSS Version 25.0 (IBM, Chicago, IL, USA) was used for data

analysis, and MedCalc Version 13.0 was used for ROC analysis

(MedCalc Software, Mariakerke, Belgium). In order for the

findings to be considered statistically significant, the bilateral P

values had to be less than 0.05.
3 Results

3.1 Clinical characteristics of
study participants

After matching based on propensity scores, a total of 36,784

participants (11,546 men and 25,238 women) were enrolled in the
FIGURE 1

Flow chart of study population.
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study. According to whether or not the participants’ eGFR was

raised, Table 1 displays the clinical and biochemical characteristics

of the subjects, who were divided into two groups. The low eGFR

group had lower HDL-C, was older, had a higher prevalence of DM

and CHD, and had higher LDL-C, WC, BMI, HbA1c, FBG, PBG,

SBP, and DBP values than the normal eGFR group.
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3.2 Correlation between BRI quartile and
low eGFR

Multiple logistic regression analysis was done to investigate the

connection between the BRI quartile and low eGFR (Table 2).

Patients with higher BRI levels had a higher likelihood of having low
TABLE 1 Characteristics of the study population by eGFR category.

Variables
Before propensity score matching After propensity score matching

Normal eGFR Low eGFR P-value Normal eGFR Low eGFR P-value

n 39681 4256 32571 4213

Age,years 57.00 ± 9.06 60.74 ± 10.08 <0.001 57.92 ± 9.00 60.11 ± 10.01 <0.001

Men,% 12301(31.0%) 1128(26.5%) <0.001 10455(32.1%) 1091(25.9%) <0.001

BMI,kg/m2 24.14 ± 3.66 24.67 ± 3.83 <0.001 24.25 ± 3.62 24.63 ± 3.80 <0.001

WC,cm 85.00(78.00,92.00) 87.00(80.00,94.00) <0.001 85.00(78.00,92.00) 87.00(80.00,94.00) <0.001

SBP,mmHg 130.00(117.00,144.00) 140.00(124.00,156.00) <0.001 131.00(118.00,145.00) 140.00(124.00,156.00) <0.001

DBP,mmHg 77.00(70.00,85.00) 79.00(72.00,88.00) <0.001 77.00(70.00,85.00) 79.00(72.00,88.00) <0.001

TC,mmol/L 4.95(4.21,5.71) 5.02(4.29,5.77) 0.006 4.98(4.25,5.73) 5.04(4.31,5.79) 0.004

TG,mmol/L 1.32(0.94,1.90) 1.54(1.08,2.22) <0.001 1.36(0.98,1.93) 1.56(1.11,2.24) <0.001

HDL,mmol/L 1.30(1.09,1.53) 1.23(1.04,1.46) <0.001 1.31(1.10,1.55) 1.25(1.06,1.48) <0.001

LDL,mmol/L 2.82(2.23,3.43) 2.92(2.34,3.54) <0.001 2.83(2.24,3.45) 2.94(2.36,3.56) <0.001

FBG,mmol/L 5.50(5.10,6.10) 5.77(5.20,6.90) <0.001 5.51(5.11,6.12) 5.77(5.19,6.90) <0.001

PBG,mmol/L 7.31(6.00,9.48) 8.51(6.60,12.20) <0.001 7.30(6.00,9.46) 8.51(6.59,12.20) <0.001

HbA1c,% 5.90 ± 0.30 6.10 ± 0.50 <0.001 5.90 ± 0.30 6.10 ± 0.50 <0.001

AST,U/L 20.00(17.00,24.00) 21.00(17.00,26.00) <0.001 20.00(17.00,24.00) 21.00(18.00,26.00) <0.001

GGT,U/L 20.00(14.00,31.00) 22.00(15.00,35.00) <0.001 20.00(14.00,31.00) 21.00(15.00,35.00) <0.001

UACR(mg/g) 8.51(5.38,14.16) 47.97(36.35,79.18) <0.001 8.56(5.40,14.21) 47.89(36.31,79.02) <0.001

BRI 3.95(3.19,4.81) 4.32(3.42,5.27) <0.001 3.97(3.20,4.83) 4.33(3.43,5.29) <0.001

eGFR,mL/min/1.73m2 116.63(105.62,130.14) 81.60(73.60,86.25) <0.001 115.78(104.32,128.98) 81.61(73.60,86.26) <0.001

Smoking habits, % 0.007 0.003

no 34125(86.0%) 3579(84.1%) 28076(86.2%) 3551(84.3%)

occasionally 913(2.3%) 85(2.0%) 717(2.2%) 89(2.1%)

usually 4643(11.7%) 592(13.9%) 3778(11.6%) 573(13.6%)

Current drinker(%) <0.001 <0.001

no 29880(75.3%) 3170(74.5%) 24591(75.5%) 3143(74.6%)

occasionally 7222(18.2%) 796(18.7%) 5830(17.9%) 775(18.4%)

usually 2579(6.5%) 290(6.8%) 2150(6.6%) 295(7.0%)

Previous DM (%) 4206(10.6%) 775(18.2%) <0.001 3485(10.7%) 728(18.1%) <0.001

Previous CHD(%) 2380(6.0%) 272(6.4%) <0.001 1987(6.1%) 270(6.4%) <0.001
fron
Data expressed as mean ± SD for continuous variables or median (IQR) for skewed variables and percentage (%) for categorical variables.
BMI, body mass index; WC, waist circumstance; SBP, systolic blood pressure; DBP, diastolic blood pressure; TC, total cholesterol; TG, triglyceride; HDL, high-density lipoprotein cholesterol;
LDL, low-density lipoprotein cholesterol; FBG, fasting blood glucose; PBG, 2-h postload blood glucose; HbA1c, glycosylated hemoglobin; AST, aspartate transferase; GGT, gamma-glutamyl
transferase; UACR, urinary albumin-creatinine ratio; BRI, body roundness index; eGFR, estimated glomerular fifiltration rate; DM, diabetes mellitus; CHD, coronary heart disease.
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eGFR in Models 1-3 compared to participants in the BRI first

quartile (P < 0.001). Even after further adjusting for FBG, TG, LDL-

C, TC, SBP, and DBP, the correlation for Model 4 remained

significant (OR [95%CI] Q2 vs Q1 1.052 [1.021-1.091], OR [95%

CI] Q3 vs Q1 1.189 [1.062-1.284], OR [95%CI] Q4 vs Q1 1.283

[1.181-1.394], P-value for trend < 0.001).
3.3 The relationship between BRI and low
eGFR in stratified analysis

After thoroughly controlling for age, sex, center, drinking and

smoking habits, history of CHD, history of DM, FBG, TC, TG,

LDL-C, SBP, and DBP, stratified analysis was utilized to further

confirm the stability of the connection between BRI and low eGFR

in various populations (Table 3). BRI in the fourth quartile in

women was significantly linked with low eGFR compared to the

first quartile (OR [95%CI] Q4vs Q1 2.427 [1.616-3.645], P-value for

trend = 0.032), when gender was taken into account (P-interaction

= 0.001). Men’s BRI of the third and fourth quantiles was

significantly connected with low eGFR when compared to the

first quantile (OR [95%CI] Q3vsQ1 1.724[1.122-2.648], OR [95%

CI] Q4vsQ1 2.699 [1.484-4.908], P-value for trend = 0.001). When

the subjects had no prior history of DM, the third and fourth

quantiles of BRI were significantly correlated with low eGFR

compared to the first quantile (OR [95%CI] Q3vsQ1 1.108

[1.002-1.278], OR [95%CI] Q4vsQ1 1.227 [1.011-1.346], P-value

for trend = 0.008), according to the DM history stratification (P-

interaction = 0.056). Participants who had a history of DM showed
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the similar tendency (OR [95%CI] Q3 vs Q1 1.131 [1.107-1.156]

and OR [95%CI] Q4 vs Q1 1.522 [1.138-2.465], P-value for trend

< 0.001).

Younger participants in Q3 and Q4 (age < 60 years) were more

likely to experience a low eGFR when stratified by age (P-

interaction = 0.143), compared with the first quartile of BRI (OR

[95%CI] Q3 vs Q1 1.468[1.021-2.135], OR [95%CI] Q4 vs Q1 2.147

[1.097-4.205], P-value for trend = 0.006). However, BRI in the third

and fourth quartiles was significantly linked with low eGFR in

participants who were older (age ≥ 60 years) (OR [95%CI] Q3 vs Q1

1.404[1.033-2.120], OR [95%CI] Q4 vs Q1 2.563[1.742-3.771], P-

value for trend < 0.001).

Blood pressure stratification (P-interaction = 0.024) revealed a

significant relationship between BRI and low eGFR in the third and

fourth quartiles of the normal blood pressure group (OR [95%CI]

Q3 vs Q1 1.496[1.016-3.173], OR [95%CI] Q4 vs Q1 2.854[1.033-

4.687], P-value for trend < 0.001). Only BRI in the fourth quartile in

the prehypertensive group showed a statistically significant

relationship with low eGFR (OR [95%CI] Q4 vs Q1 2.983[1.160-

4.718], P-value for trend = 0.026). Low eGFR was significantly

linked with BRI in the third and fourth quartiles in the hypertensive

group (OR [95%CI] Q3 vs Q1 2.306[1.489-3.572], OR [95%CI] Q4

vs Q1 3.677[1.842-6.697], P-value for trend < 0.001).

Smoking habit stratification revealed a significant correlation

between BRI in the third and fourth quartile of nonsmokers and low

eGFR (OR [95%CI] Q3 vs Q1 1.132[1.003-2.134], P-interaction =

0.068). There was no statistically significant relationship between

BRI and low eGFR among occasional smokers (OR [95%CI] Q4 vs

Q1 1.394 [1.054-1.845], P-value for trend = 0.002). BRI was
TABLE 2 Association between BRI quartiles and eGFR in the total population.

Variables
BRI Quartiles

Q1 Q2 Q3 Q4 P-value for trend

Model 1

OR(95%CI) 1 1.135(1.043-1.235) 1.373(1.266-1.490) 1.985(1.837-2.146)

P value 0.004** <0.001*** <0.001*** <0.001

Model 2

OR(95%CI) 1 1.127(1.036-1.226) 1.359(1.251-1.475) 1.889(1.740-2.052)

P value 0.005** <0.001*** <0.001*** <0.001

Model 3

OR(95%CI) 1 1.096(1.007-1.193) 1.306(1.202-1.420) 1.773(1.631-1.928)

P value 0.035* <0.001*** <0.001*** <0.001

Model 4

OR(95%CI) 1 1.052(1.021-1.091) 1.189(1.062-1.284) 1.283(1.181-1.394)

P value 0.046* 0.037* <0.001*** <0.001
*: P-value <0.05; **: P-value <0.01; ***: P-value <0.001.
Model 1: unadjusted; Model 2: adjusted for age, sex, centres; Model 3: further adjusted for smoking habits, drinking habits, CHD history, and DM history based on Model 2; Model 4: additionally
adjusted for FBG, TG, LDL, TC, SBP, and DBP based on Model 3; OR, odds ratio; CI, confidential interval; BRI, body roundness index; eGFR, estimated glomerular filtration rate, CHD, coronary
heart disease; DM, diabetes mellitus; FBG, fasting blood glucose; TG, triglycerides; TC, total cholesterol; LDL, low-density lipoprotein cholesterol; SBP, systolic blood pressure; DBP, diastolic
blood pressure.
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significantly linked with low eGFR in the third and fourth quartiles

of frequent smokers (OR [95%CI] Q3 vs Q1 1.305[1.004-1.697], OR

[95%CI] Q4 vs Q1 1.583[1.069-2.132], P-value for trend = 0.002).
3.4 Anthropometric indicators and area
under ROC of low eGFR

The ROC curves for several anthropometric indicators and the

ideal cutoff values as determined by the Youden index are shown in

Figure 2. The BRI’s predictive performance was significantly higher

than BMI, WHtR, and WHR. The BRI’s cutoff value was 4.49, and

its AUC was the largest (0.667, 95%CI: 0.624, 0.692), sensitivity was

54.3%, and specificity was 65.4%. The optimum cutoff for WHtR is

0.557, AUC was 0.606 (95%CI: 0.505, 0.561), the sensitivity and

specificity were 50.5% and 56.1% respectively. The optimum cutoff

for WHR is 0.9031, AUC was 0.581 (95%CI: 0.550, 0.612), 56.0%

and 61.1%, respectively, were the sensitivity and specificity. The
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maximum BMI cutoff was 27.77, AUC was 0.536 (95%CI: 0.505,

0.567), Specificity was 84.3%, and sensitivity was 22.3%. When the

body weight cutoff value was 46.45 kg, the AUC was 0.580 (95%CI:

0.550, 0.611), sensitivity was 96.1%, and specificity was 0.45%.
4 Discussion

In this investigation, we discovered a strong correlation between

rising BRI levels and low eGFR. Importantly, the association was

diminished after additional adjustments for drinking and smoking

habits, FBG, TC, TG, SBP, DBP, history of CHD, and history of

DM, indicating that drinking, smoking habits, abnormal glucose or

lipid metabolism, and history of cardiovascular disease may

increase the risk of low eGFR in patients. Further stratified

analysis revealed that participants with higher BRI were more

likely than participants with lower BRI to have low eGFR,

particularly those who were older (≥ 60 years), women, and those
frontiersin
TABLE 3 Association between BRI quartiles and eGFR in different participants.

Variable BRI Quartiles

Q1
OR(95%CI),P
value

Q2
OR(95%CI),P
value

Q3
OR(95%CI),P
value

Q4
OR(95%CI),P
value

P-value for
trend

P for interac-
tion

Gender <0.001

Women 1.0 1.200(0.653-2.205) 1.724(1.122-2.648)* 2.699(1.484-4.908)** 0.001

Men 1.0 0.911(0.557-1.493) 1.043(0.549-1.982) 2.427(1.616-3.645)** 0.032

DM history 0.056

No 1.0 0.818(0.643-1.042) 1.108(1.002-1.278)* 1.227(1.011-1.346)* 0.008

Yes 1.0 0.874(0.8121.304) 1.131(1.107-1.156)** 1.522(1.138-2.465)** <0.001

Age, years 0.143

<60 1.0 0.767(0.335-1.755) 1.468(1.021-2.135)* 2.147(1.097-4.205)* 0.006

≥60 1.0 1.085(0.706-1.669) 1.404(1.033-2.120)* 2.563(1.742-3.771)** <0.001

Blood pressure,
mmHg

0.024

SBP<120 and
DBP<80

1.0 0.858(0.286-2.571) 1.496(1.016-3.173)* 2.854(1.033-4.687)* <0.001

120≤SBP<140
and/or 80≤DBP<90

1.0 1.067(0.733-1.554) 1.692(0.865-3.253) 2.983(1.160-4.718)* 0.026

SBP≥140 or
DBP≥90

1.0 1.188(0.778-1.813) 2.306(1.489-3.572)*** 3.677(1.842-6.697)*** <0.001

Smoking habits 0.068

No 1.0 0.877(0.798-0.964) 1.132(1.003-2.134)* 1.394(1.054-1.845)* 0.002

Occasionally 1.0 0.654(0.360-1.188) 0.931(0.053-1.699) 0.969(0.553-1.169) 0.320

Usually 1.0 1.187(0.916-1.539) 1.305(1.004-1.697)* 1.583(1.069-2.132)* 0.004
*: P-value <0.05; **: P-value <0.01; ***: P-value <0.001.
adjusted for age, sex, centres, smoking habits, drinking habits, CHD history, DM history, FBG, TG, LDL, TC, SBP, and DBP.
OR, odds ratio; CI, confidential interval; BRI, body roundness index; eGFR, estimated glomerular filtration rate; CHD, coronary heart disease; DM, diabetes mellitus; FBG, fasting blood glucose;
TG, triglycerides; TC, total cholesterol; LDL, low-density lipoprotein cholesterol; SBP, systolic blood pressure; DBP, diastolic blood pressure.
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with hypertension or DM history, as well as participants who

regularly smoked. Additionally, we discovered that BRI had a

stronger corre la t ion with the low eGFR than other

anthropometric variables as BMI, weight, WHtR, WHR, and had

higher predictive power.

The prevalence of overweight and obese adults globally has

increased dramatically over the past 30 years, which presents a

serious challenge to public health due to the rapid economic

development and changes in living patterns. The majority of

overweight or obese people are now found in China, where one

in five children and approximately half of adults are overweight or

obese (11). Obesity can be categorized as systemic, central, or

peripheral depending on where the fat deposits are located.

However, there is growing interest due to the strong connection

between central obesity and numerous disorders, including

cardiovascular disease, DM, hypertension, CKD, and

metabolic diseases.

The WHO recognizes BMI as an indicator of obesity, but it has

limitations, including the inability to distinguish visceral fat from

subcutaneous fat, similar to other conventional anthropometric

indicators like WC, WHtR, and WHR (12). The new

anthropometric index BRI was more accurate in predicting

visceral adipose tissue than BMI (5) and WC (13). In DM

patients, BRI is a useful marker of visceral fat accumulation (14).

The metabolic syndrome (15), hyperuricemia (16), arteriosclerosis

(13), and left ventricular hypertrophy (17) have all been

demonstrated to be intimately related to BRI.

Obesity is linked to a number of harmful health effects,

including a higher risk of CKD. The majority of earlier research,

however, concentrated on the relationship between BMI and eGFR.
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BMI was found to be closely associated with eGFR decline among

older adults (18). Martin et al. (19)discovered a similar significant

positive correlation between elevated BMI and low eGFR in patients

with CKD and obesity in Ireland. In a study of 75,000 participants,

John Munkhaugen et al. discovered a significant link between BMI

and the risk of kidney disease, with obese people being more likely

to develop kidney disease (20).

Few studies have examined the relationship between visceral

obesity and CKD, by exploring correlation between WHR or WC

and GFR decline (21), or End stage renal disease (22), independent

of BMI levels. High visceral adiposity index, a measure of visceral

adiposity, has been linked to an increased risk of developing CKD in

earlier studies (23). High WC (24) and lipid accumulation product

(25) are linked to a quicker loss of GFR. The risk of low eGFR was

independently linked with visceral adiposity as measured by BRI in

our investigation, which comprised 36,784 Chinese people.

The relationship between BRI and low eGFR is currently

unclear, the following theories are put forth: The metabolic

demands placed on the kidneys may firstly rise as a result of

obesity. Obese people experience compensatory hyperfiltration to

satisfy the metabolic demands of weight gain (26). The kidneys are

harmed by elevated glomerular pressure, it has been demonstrated

that hyperfiltration is a reliable predictor can raise the danger of

chronic CKD. Second, obesity’s complicated endocrine activity,

which is characterized by the production of leptin (27), resistin

(28), and adiponectin (29), can also cause direct kidney injury,

causing oxidative stress (30), abnormal lipid metabolism (31),

renin-angiotensin-aldosterone system activation (32), chronic

inflammation (33), and insulin resistance (34). Ectopic lipid

accumulation (35), increased fat deposition in the renal sinuses

(36), glomerular hypertension, increased glomerular permeability,

impairment to the glomerular filtration barrier associated with

ultrafiltration (37), GFR decline are the outcomes of these

pathophysiological alterations. Third, obesity is a complicated

metabolic disorder that can have a variety of adverse effects on

several organ systems, including the kidneys (38), DM, and

hypertension, both of which are risk factors for CKD and may

mediate the effects of obesity on the kidneys, are linked to the

development or exacerbation of obesity. Sex hormones may have an

impact on how fat is distributed. After menopause, lower estrogen

levels in women are substantially linked to obesity and more visceral

fat accumulation (39). Age is known to be an independent risk

factor for renal impairment (40). Older adults over 60 years of age

are more prone to low estimated glomerular filtration than

middle-aged.

The study found that patients who were overweight at age 20

had a three-fold increased risk of subsequent new kidney disease,

even after adjusting for high blood pressure and diabetes. Excess fat

may also increase the risk of DM, high blood pressure and

atherosclerosis, which can indirectly lead to CKD (41).

Considering that the trend of obesity is getting younger and

younger, we have to pay attention to its damage to the multi-

organ function of the whole body as well as the challenge to national

health and economic pressure. The good news is that CKD brought
FIGURE 2

ROC curves of different anthropometric measures for discriminating
low eGFR.
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on by obesity is largely preventable. Weight-loss therapies

consistently reduced blood pressure, glomerular ultrafiltration,

and albuminuria in obese CKD patients, according to a meta-

analysis (42). Obesity and renal disease can be significantly avoided

with adequate nutrition, exercise, and education about the risks

associated with being overweight (43). Our study demonstrates the

utility of BRI as a trustworthy, user-friendly, and efficient screening

method to determine the population’s elevated risk of low estimated

glomerular filtration in subsequent clinical practice.

This study has the advantage of being the first multi-center, large-

sample, cross-sectional clinical analysis to examine the relationship

between BRI and low eGFR. To the best of our knowledge. This

study does, however, have certain limitations. First of all, In order to

pinpoint the precise cause of the low eGFR and BRI, additional

prospective cohort studies are needed because this study was cross-

sectional. Secondly, the applicability of our findings to other regions and

populations may be constrained because the participants we recruited

were all from China and around 40 years old. Thirdly, because direct

measurement of GFR is cumbersome, we used eGFR instead, but it

must be considered that it may be affected by metabolism. Finally, the

gold standard for determining the distribution of visceral obesity is

considered to be magnetic resonance imaging and computed

tomography. however, because of the radiation exposure risk and the

time and cost associated with using them, we did not use them in our

epidemiological investigations. However, previous studies have shown a

strong correlation between BRI and VAT.
5 Conclusion

In this study, we discovered a statistically significant positive

connection between rising BRI levels and low eGFR in adults from

the Chinese population. A greater BRI level was associated with a

higher incidence of low estimated glomerular filtration in women,

the elderly, habitual smokers, those with a history of diabetes or

hypertension. In comparison to BMI, WHtR, and WC, it has also

been demonstrated that BRI may be the best anthropometric

marker for predicting low eGFR. BRI may therefore be a helpful

clinical indicator of chronic kidney disease in Chinese adults since it

is a marker of visceral fat. We propose BRI as a quick and effective

screening method to identify persons at high risk of low estimated

glomerular filtration and advise them to adjust their lifestyles and

engage in regular exercise in light of the association between

obesity, particularly visceral fat, and CKD.
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In recent decades, the epicardial adipose tissue (EAT) has been at the forefront of

scientific research because of its diverse role in the pathogenesis of

cardiovascular diseases (CVDs). EAT lies between the myocardium and the

visceral pericardium. The same microcirculation exists both in the epicardial fat

and the myocardium. Under physiological circumstances, EAT serves as cushion

and protects coronary arteries and myocardium from violent distortion and

impact. In addition, EAT acts as an energy lipid source, thermoregulator, and

endocrine organ. Under pathological conditions, EAT dysfunction promotes

various CVDs progression in several ways. It seems that various secretions of

the epicardial fat are responsible for myocardial metabolic disturbances and,

finally, leads to CVDs. Therefore, EAT might be an early predictor of CVDs.

Furthermore, different non-invasive imaging techniques have been proposed to

identify and assess EAT as an important parameter to stratify the CVD risk. We

also present the potential therapeutic possibilities aiming at modifying the

function of EAT. This paper aims to provide overview of the potential role of

EAT in CVDs, discuss different imaging techniques to assess EAT, and provide

potential therapeutic options for EAT. Hence, EAT may represent as a potential

predictor and a novel therapeutic target for management of CVDs in the future.
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1 Introduction

Cardiovascular disease (CVD) is a considerable health

condition that affects millions of individuals all over the world.

To date, many risk factors are associated with the increasing

incidence of CVDs. Among them, obesity has gained wide

scientific interest. Obesity is closely associated with many other

cardiovascular disease risk factors such as hypertension,

dyslipidemia, metabolic syndrome, and diabetes mellitus. It is

well-established that increased adiposity releases plenty of

inflammatory cytokines that lead to a low-grade inflammatory

microenvironment, endothelial dysfunction, and oxidative stress,

and finally results in several CVDs (1, 2). The epicardial adipose

tissue (EAT) is the visceral fat that deposits between the visceral

pericardium and the myocardium and has direct contact with the

myocardium and coronary artery (3). It usually presents as a white

adipose tissue, but it also displays brown or beige fat-like features

(4). Physiologically, EAT serves as thermoregulator and provides

energy to the myocardium. Furthermore, EAT displays as an

endocrine organ with metabolic activities and secretes bioactive

molecules that affect the heart and coronary arteries via paracrine or

vasocrine effects (5, 6). In recent years, evidence has shown that

EAT is associated with CVDs. Therefore, different non-invasive

imaging techniques have been proposed to identify and assess EAT

to evaluate the risk of CVDs.

There are mainly three non-invasive imaging techniques that are

used to evaluate EAT. First, echocardiography is used to evaluate EAT,

which measures two-dimensional EAT thickness. It is an inexpensive,

readily available, fairly accurate, and reproducible technique. Cardiac

computed tomography (CCT) and cardiac magnetic resonance (CMR)

imaging allow for three-dimensional EAT estimation. The former has

higher space resolution and reproducibility for fat quantification, but it

has limitations of radiation exposure and complex manual

segmentation. However, the latter has no radiation exposure, but it is

limited by space resolution, reproducibility, and higher cost. CMR is

also difficult to perform in obese patients.

In this review, we summarize anatomical, physiological, and

pathophysiological characteristics of EAT and focus on the

potential role of EAT in CVDs and discuss different imaging

techniques to assess EAT. In recent years, several papers have
Frontiers in Endocrinology 02113
shown that EAT measurement via non-invasive imaging

techniques serves as an important diagnostic tool to assess

cardiovascular risks. Therefore, EAT may be a potential

biomarker to monitor CVDs and their complications.
2 Epicardial adipose tissue: anatomy
and physiology

2.1 Anatomy

The adipose tissue surrounding the heart can be divided into

EAT, pericardial adipose tissue, paracardial adipose tissue, and

perivascular adipose tissue (Figure 1). EAT lies between the

myocardium and visceral pericardium and is made up of

adipocytes, ganglia, nerves, and inflammatory, stromovascular,

and immune cell (6). The pericardial adipose tissue (PAT)

consists of epicardial and paracardial fat depots (7). The EAT and

PAT are the entire pericardial fat. They have different embryological

origins but share similar morphological features. EAT is derived

from the splanchnopleuric mesoderm, and PAT is derived from the

thoracic mesoderm (7).

EAT makes up 20% of the cardiac mass and covers 80% of the

cardiac surface under normal physiological condition. It is non-

homogeneously distributed around the heart (6, 8). EAT is mostly

localized at the cardiac base and apex, in the atrioventricular and

interventricular grooves, and around the coronary arteries. It is

thicker around the right ventricle than around the left ventricle. In

general, EAT can be differentiated into peri-coronary and peri-

myocardial EAT. The former is located directly around or on the

coronary artery adventitia; the latter is located just over the

myocardium and is in direct contact with the myocardium (9).

Vascular supply by coronary arteries in EAT forms part of the

perivascular adventitia (10). It is thought to play a protective

mechanical role against the tension and twist of an arterial pulse

(11, 12). The increased EAT might result in cardiac disorders with

increased arrhythmogenicity (13). It is hypothesized that EAT

increases fatty infiltrates in the proximity of myocytes that leads

to structural remodeling and abnormal impulse generation, which

contributes to cardiac arrhythmias (13).
FIGURE 1

The anatomy of epicardial adipose tissue.
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2.2 Physiology

2.2.1 Physical protective barrier and energy
fat source

The epicardial fat surrounds the coronary arteries and

myocardium; hence, EAT is considered to act as a buffering system

in normal physiological conditions. It protects the heart and coronary

arteries from mechanical deformation and facilitates vascular

remodeling (14). In addition, EAT has thermogenic function that

protects the heart from hypothermia. The increased thermogenic

potential is due to brown adipocytes in EAT. Since EAT is more

lipolytic than other adipose tissue depots, it releases abundant free fatty

acids (FFAs) during high energy demand period, which is the main

source of energy for the myocardium (14–16). In addition, EAT is

present close to the myocardium and acts as a buffer to protect the

heart from exposure to excessively high FFAs and lipotoxicity (17, 18).

2.2.2 Adipose tissue properties
Based on embryological, histological, and functional aspects,

adipose tissue can be divided into two major groups: white and

brown adipose tissue. The former has relatively few mitochondria

and a single big lipid droplet, while the latter has multiple small lipid

droplets and abundant mitochondria (19). EAT is basically a white

adipose tissue but also has brown and beige fat-like features. It

releases many mediators through expressing thermogenic genes

related to brown and beige adipose tissues, such as tumor necrosis

factor alpha (TNF-a), interleukin (IL)-1b, IL-1 receptor antagonist,

IL-6, IL-8, IL-10, C-reactive protein (CRP), and plasminogen active

inhibitor 1 (20). These factors may be involved in the communication

between EAT andmyocardial tissue through endocrine effect because

they share the same capillary circulation (19). It is reported that EAT

is twice as metabolically active as normal white adipose tissue, which

is related to lipolysis and free fatty acid release. In addition, EAT has

an increased capacity to release free fatty acids into the blood

circulation and decreased glucose consumption compared to other

adipose tissues (18). It also alters the bioavailability of adipokines and

leads to adipocyte hypertrophy, tissue hypoxia, inflammation, and

oxidative stress (7, 21). Brown fat generates heat in response to cold

temperature and autonomic nervous system activation. Like brown

fat, EAT also protects the myocardium from hypothermia.

2.2.3 Endocrine organ
Besides acting as energy depot, EAT also serves as an endocrine

organ that regulates the heart homeostasis. There are two classical

interaction mechanisms between the myocardium and the EAT:

vasocrine and paracrine. On the one hand, adipokines and FFAs, as

vasocrine signaling molecules, are released from EAT that enters the

vasa vasorum directly and are transported downstream into the

arterial wall. On the other hand, EAT-derived adipokines diffuse in

interstitial fluid that cross the vascular wall (adventitia, media, and

intima), and finally interact with vasa vasorum, endothelia, and

vascular smooth muscle cells of the coronary arteries (18, 22).

However, extracellular vesicles, containing cytokines and

microRNAs have been confirmed as new communication modes

(23). FFAs are the main energy source of the heart. EAT secretes

vasoactive products that regulate coronary arterial tone to facilitate
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the FFA influx. In addition, fatty acid binding protein-4, expressed

by EAT, may participate in the intracellular transport of FFAs from

EAT into the myocardium (24).
3 Cardiac imaging of EAT

3.1 Echocardiography

The advantages of echocardiography to measure EAT thickness

include low cost and more convenient, accessible, and reproducible

(Table 1). However, there are few limitations. It is operator dependent.

EAT is located in some areas of the heart that cannot be visualized with

the ultrasound. In addition, obese patients have poor acoustic window.

Although EAT thickness is considered as a useful diagnostic tool, the

normal value of EAT is still undetermined. Iacobellis et al. (25, 26)

reported a transthoracic echocardiographic method of evaluating EAT

thickness on the free wall of the right ventricle from both parasternal

long- and short-axis views. They choose the right ventricle to measure

EAT because it is considered as the thickest absolute epicardial fat layer

(27), and parasternal long- and short-axis views allow the most

accurate measurement of EAT on the right ventricle with optimal

cursor beam orientation. In addition, they reported an average

epicardial fat thickness of 7 mm in men and 6.5 mm in women for

standard clinical references (28). Another study that enrolled 459

patients with Grade I and II essential hypertension demonstrated

that patients with EAT thickness >7 mm exhibited higher left

ventricular mass index, diastolic dysfunction, and increased carotid

stiffness and intima-media thickness (29). In addition, Islas et al.

reported that acute myocardial infarction patients with EAT >4 mm

have worse left ventricular systolic function and have large infarct size.

EAT >4 mm is an independent predictor of major adverse

cardiovascular events at 5-year follow-up (30).

In addition, Parisi et al. presented a novel method to measure EAT

thickness at the level of the fold of Rindfleisch, a pericardial recess where

the parietal pericardium does not exert a mechanical compression on

visceral fat (31). Moreover, echo-EAT thickness showed a significant

correlation with the CMR-EAT thickness, both measured at the

Rindfleisch fold. Although echocardiography is convenient and

reproducible, it cannot reflect the variability in EAT thickness or

EAT volume accurately. Multidetector CT and cardiac MRI can

provide a more accurate and volumetric quantification of EAT.
3.2 Cardiac computed tomography

CCT is another imaging modality used to measure EAT.

Although CCT has high spatial resolution and provides three-

dimensional view of the heart, it is costly and requires radiation

exposure (Table 1). Currently, coronary CT angiography (CTA)

provides an optimal method that enables the characterization of

morphological changes in the pericoronary adipose tissue (PCAT)

and simultaneous assessment of coronary atherosclerosis (32). CT

attenuation of the adipose tissue reflects morphological

derangements of adipocytes that are exposed to the effects of local

vascular inflammation. EAT volume and density are considered as
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independent markers of adverse cardiometabolic risk that can be

measured by CCT (33, 34). Additionally, increased EAT volume is a

predictor of CVDs that include obstructive coronary stenosis,

myocardial ischemia, and coronary syndromes (33, 35–37).

However, the upper cutoff CT value of normal EAT remains

undermined. Dey et al. reviewed literatures that reported different

inclusion criteria with CT value varying between 125.0 and 139.4

cm3 for men and 119.0–125.0 cm3 for women (38). In addition,

EAT density or attenuation has also been associated with CVDs. It

is reported that EAT attenuation is associated with coronary artery

calcification, acute myocardial infarction, and coronary adverse

events (34, 39–41). PCAT is considered as a metric of local

vascular inflammation. The widely accepted definition of PCAT

by coronary CTA is voxels ranging from −190 to −30 Hounsfield

units, with volume of interest that extends to an orthogonal distance

equivalent to the diameter of the target vessel (42). Antonopoulos

et al. presented a method to detect coronary inflammation by

characterizing the changes in PCAT CT attenuation (43). They

have demonstrated that the average attenuation of EAT is inversely

related to adipogenic gene expression and adipocyte size in a large

cohort of patients who have undergone cardiac surgery.

Nowadays, although manual segmentation of EAT quantification

is the method of choice, it is operator dependent, time consuming, and

not suitable for routine clinical practice. Thus, artificial intelligence that

includes machine and deep learning received more attention to obtain

fast, automatic, and reliable measures of EAT by CCT.
3.3 Cardiac magnetic resonance

CMR is now considered as the gold standard for measuring

visceral adipose tissue (44–46). CMR provides excellent

visualization of visceral and parietal pericardia. Cardiac imaging

is not affected in patients with excess subcutaneous fat. It enables

easy assessment and volumetric quantification of EAT. Although

there is no use of radiation and contrast agents, CMR is expensive
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and time consuming. It is also difficult to perform in patients with

claustrophobia (Table 1). Additionally, CMR can differentiate

cardiac fat into EAT and paracardial fat.

MRI provides explicit parameters about EAT volume and mass

by using the spin-echo sequence technique (2, 47). Manual

contouring of EAT area at end-diastole during cardiac cycles

provides precise quantification of EAT volume (47). A 3D-Dixon

sequence (an electrocardiography triggered and respiratory

navigator gated 3D-gradient echo pulse sequence was used for

cardiac Dixon imaging) has been shown to be a reliable method

for EAT quantification in studies (48). Dixon method separates fat

and water signal via voxel intensity differences present between in-

and opposed-phase MR images (48). Rami Homsi et al. (49)

enrolled 34 healthy volunteers (22 men; BMI range, 14–42 kg/m

(2); age range, 21–79 years) and measured parameters of pericardial

and epicardial adipose volume (PAV, EAV) using a 3D-Dixon-

based CMR approach. They found that the average EAV was 77.0±

55.3 ml, and PAV was 158.0 ± 126.4 ml; both were highly

correlated. Therefore, they proposed a 3D-Dixon-based method

that allows accurate measurement of cardiac fat volume and

provides a valuable tool for cardiovascular risk stratification.

Moreover, CMR measures EAV, left ventricular compliance,

pulse wave velocity, and other indicators simultaneously, which can

evaluate aortic stiffness, myocardial strain, and fibrosis (50, 51). A

combined measurement by CMRmay support the evaluation of risk

and prognosis of CVDs.
4 Epicardial adipose tissue: a new
biomarker for cardiovascular disease
risk assessment

Evidence strongly supports the role of structural and functional

changes of EAT in the pathogenesis of various cardiovascular

diseases (Figure 2).
TABLE 1 Comparison among the main imaging techniques for the evaluation of EAT.

Imaging techniques Echocardiography Computed tomography imaging Magnetic resonance imaging

Availability readily available not readily available not readily available

Invasive non-invasive minimally invasive minimally invasive

Cost low medium high

Radiation no yes no

Operator-dependent yes no no

Definition low high medium

Scan time quick quick long

Patient limitation severely obese allergic to contrast media claustrophobia

Attenuation quantification no yes no

EAT thickness assessment yes yes yes

EAT volume assessment No yes yes

Coronary artery calcification No yes no
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4.1 Atherosclerosis

Atherosclerosis is characterized by deposition of immune cells

and cholesterol in the subendothelial space of arteries. As EAT is

a metabolically endocrine tissue with abundant proinflammatory

cytokines, it is considered to be associated with atherosclerosis. It

is reported that EAT leads to CVDs by involving in the

mechanism of inflammation, insulin resistance, and oxidative

stress. C1q TNF-related protein 3 (CTRP3) is an adipokine

with anti-inflammatory and cardioprotective properties. It has

also been demonstrated to activate nuclear factor kappa B (NF-

kB) signaling and PI3K/Akt/eNOS pathway to attenuate obesity-

related inflammation responses and insulin resistance and thus

regresses atherosclerosis (52, 53). A study involving 34 patients

with elective post-coronary artery by-pass graft (post-CABG)

showed that EAT with lower CTRP3 mRNA level is closely

associated with coronary atherosclerosis and cardiac dysfunction

(54). IL-1b and angiopoietin-like-4 (an inhibitor of lipoprotein

lipase secreted by adipose tissue) were highly expressed in EAT

patients with coronary artery diseases (55). Adipocyte oxidative

stress, characterized by the imbalance of ROS and redox

signaling, is related to metabolic CVDs. It has been

demonstrated that EAT can produce more ROS compared to

subcutaneous adipose tissue because it has higher expression of

NADPH components gp91phox and p47 phox (56). The

hyperglycemia and insulin resistance accelerate adipocyte

oxidative stress (57–59). A recent study showed that patients

with severe coronary atherosclerosis, glucose and insulin

metabolic disorder, and serum adiponectin reduction are

significantly linked with higher oxidative stress in EAT

adipocytes (60). In addition, EAT thickness was related with

endothelial dysfunction (61), and it was concluded that EAT may

predict the early reversible stages of atherosclerosis. The data

from different studies showed that increased EAT volume is

involved in high-risk coronary plaque formation. In addition,
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patients with high-risk coronary plaque have quantitatively higher

EAT volume (35, 62). A prospective cohort study found that EAT

and plasma IL-8 level are associated with elevated coronary artery

calcium score, which is an independent predictor of coronary

atherosclerosis (63).

EAT functions as an endocrine organ. Recent studies have

focused on the signaling molecules released by EAT. A novel

mechanism for EAT-induced CVDs is the secretion of exosomes

that contain non-coding RNAs, especially microRNAs (miRNAs),

which are subsequently absorbed by endothelial cells or

cardiomyocytes (64–66). A previous study verified that

increased has-miRNA-34a is associated with coronary artery

diseases (67). A recent micro- and lncRNA microarrays

followed by GO-KEGG functional enrichment analysis

demonstrated a sex-dependent unique mi/lncRNAs. They are

involved in inflammation, adipogenesis, and cardiomyocyte

apoptosis. They are also modified in human epicardial fat in

both patients with and without coronary artery disease. Examples

include has-miR-320 family, hsa-miR-21, hsa-24-3p, hsa-miR-

378, and hsa-miR-33 (68).
4.2 Arrhythmias

Atrial fibrillation (AF), the most common arrhythmia, is the

major cause of ischemic stroke, heart failure, and cardiovascular

mortality. Atrial electrophysiological and structural remodeling is

the underlying mechanism of AF, which is characterized by

myocardial fibrosis, and the underlying mechanism is

heterogeneous (69). The mechanism of arrhythmias includes

adipocyte infiltration, pro-fibrotic, and pro-inflammatory

paracrine effects, oxidative stress, and other pathways (69–71). A

study in 215 acute embolic stroke patients showed that increased

periatrial EAT thickness on the left side is associated with AF (72).

In patients with AF who have undergone pulmonary vein
FIGURE 2

The increased EAT contributes to the onset and the poor prognosis of cardiovascular diseases. CVDs, cardiovascular diseases; EAT, epicardial
adipose tissue; ROS, reactive oxygen species.
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isolation, EAT volume is associated with AF recurrence (73). In

another study, most of the persistent AF patients who are not

anticoagulated and with increased periatrial EAT thickness were

also associated with an increased risk of cardiovascular events

(74). Julia and colleagues found that patients with lone AF have

larger volume and higher attenuation of EAT compared with

patients without cardiac arrhythmias (75). Moreover, non-

uniformity of EAT radiomic gray level is the only independent

predictor of post-ablation AF recurrence within 12 months follow-

up (75).

EAT was found to be significantly higher in the patients with

nephrotic syndrome and in patients with ECG showing the atrial

depolarization and ventricular repolarization (76). Another study

demonstrated that EAT volume exerts reverse relationship with heart

rate recovery that indicates the potential adverse effects of EAT on

cardiac autonomic function (77). It may result from the pathogenic

effect of local inflammatory cytokines secreted from nearby visceral

fats. As an endocrine organ, EAT influences adjacent myocardium by

secreting a series of bioactive molecules, such as exosomes carrying

circular RNAs (circRNAs), and regulates atrial electrical and

structural remodeling. Zheng and colleagues identified differently

expressed circRNA in EAT via RNA sequencing, such as

hsa_circRNA_000932 and hsa_circ_0078619, which may work as

endogenous RNAs to capture various miRNAs miR-103a-2-5p and

miR-199a-5p, and subsequently regulate the expression of

cardiovascular disorders-related protein-coding genes (78).
4.3 Aortic stenosis

With the global epidemiological increase in elderly population,

AS becomes a challenging disease, representing an important cause

of morbidity, hospitalization, and death in aged population.

Generally, AS is considered as the result of a complex process,

driven by inflammation and involving multifactorial pathological

mechanisms promoting valvular calcification and valvular bone

deposition (79). Importantly, obesity-related chronic systemic

inflammation is associated with a significant increase in the

amount of EAT, the cardiac visceral fat, which is considered a

transducer of the adverse effects of systemic inflammation and

metabolic disorders on the heart (80). As EAT can mediate the

deleterious effects of systemic inflammation on the myocardium, it

may contribute to the pathogenesis of calcific AS. Parisi et al.

hypothesized that EAT may participate in the inflammatory

burden of aortic stenosis (81). Mahabadi et al. found that EAT

thickness, quantified using transthoracic echocardiography, was

significantly associated with severe aortic stenosis, independent of

traditional risk factors (82). Moreover, Arangalagea et al. showed

that EAT volume was independently associated with LV mass in a

prospective cohort of patients with aortic stenosis (83). These

results support the hypothesis of a potent proinflammatory

activation of EAT in patients with AS and suggest the

involvement of cardiac visceral fat in inflammatory and

atherogenic phenomena occurring in the AV and promoting its

degeneration and calcification (79, 81).
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4.4 Thromboembolism

The relationship between AF and thromboembolism is well

established. Recently, preliminary investigations demonstrate the

possible relationship between EAT and AF-related thromboembolism.

In a recent study in AF patients who developed stroke, EAT volume was

significantly increased. Hence, total EAT is considered as an

independent predictor of higher risk of stroke occurrence after AF

diagnosis (84). In addition, EAT thickness was higher in non-valvular

AF patients compared to healthy subjects. EAT thickness was also

related with the CHA2DS2−VASc score in patients with non-valvular

AF (85). A multicenter study in Korea enrolled 3,464 individuals and

showed that larger peri-atrial EAT volumewas independently associated

with post-ablation embolic stroke regardless of AF recurrence and

CHA2DS2-VASc score (86). Patients with post-ablation embolic

stroke had a greater prevalence of prior thromboembolism, lower

creatinine clearance, larger left atrial diameter, frequent AF

recurrence, and abundant total and peri-atrial EAT (86).

However, another study showed that EAT thickness was

directly related with CHA2DS2-VASc scores in patients with

sinus rhythm (87). A single-center retrospective study enrolled

202 patients and showed that a thickened EAT was associated

with low left atrial appendage flow velocity and had increased risk of

thromboembolic phenomena in the presence of AF (88). The

mechanism of correlation between EAT and embolic stroke might

be explained by EAT-mediated atrial cardiomyopathy, which is

characterized by LA enlargement, increased wall stiffness,

hypercontractility, endothelial dysfunction, and impaired

reservoir function that lead to atrial prothrombotic milieu (84, 86,

89, 90).
4.5 Heart failure

EAT is associated with risk factors for HF, such as obesity,

metabolic syndrome, hypertension, and diabetes. Numerous studies

focused on the relationship between EAT and HF. A study enrolled

72 type-2 diabetes subjects with normal cardiac function and

verified that subjects with higher EAT thickness showed a lower

cardiac workload, worse cardiopulmonary function and subclinical

cardiac systolic dysfunction after maximal cardiopulmonary

exercise test with similar duration of exercise (91). Another study

found that HF patients have higher EAT than the control group.

Hence, EAT can be considered as a prognostic predictor of HF with

preserved ejection fraction (HFpEF) (92). In a prospective

multinational PROMIS-HfpEF cohort, increased EAT has been

shown to be associated with cardiac structural alterations,

adiposity, inflammation, lower insulin sensitivity, and endothelial

dysfunction related to HFpEF pathology (93). In addition, a

proteomic analysis of EAT from 2,416 HFpEF patients found that

EAT proteins such as CD36, POSTN, and TRAP1 were

differentially expressed in HFpEF (94). In another study,

increased EAT thickness was found closely related with brachial–

ankle pulse-wave velocity in HFpEF patients and indicated that
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thicker EAT may be independently associated with arterial

stiffness (95).

Interestingly, in a multicenter cohort study, EAT thickness was

found to be greater in patients with HFpEF than HFrEF/HFmrEF.

In addition, the EAT thickness is associated with reduced left atrial

and left ventricle function in HFpEF, but with better function in

HFrEF/HFmrEF (96). Similar results were also found in post-

ablation AF patients (97). However, in patients with non-

ischemic cardiomyopathy, EAT volume was found to be greater

in the LV reverse remodeling group than in the non-remodeling

group, which suggests that EAT volume is an independent predictor

of LV reverse remodeling in patients with non-ischemic

cardiomyopathy (98). Findings by Hao and colleagues indicate

that EAT mediates cardiomyocyte apoptosis after acute

myocardial infarction through secretion of complement factor D

and activation of poly ADP-ribosepolymerase-1 (99), which may

subsequently result in heart failure. A recent study in mice model

with preserved ejection fraction found that inflammasome-

mediated pyroptosis pathway was activated in the EAT.

Moreover, suppression of pyroptosis-related protein gasdermin D

in cultured EAT could lower cardiomyocyte inflammation and

autophagy (100).
4.6 COVID-19-related cardiac syndrome

The coronavirus disease 2019 (COVID-19) pandemic has

spread worldwide with more than 6 million deaths recorded

globally (101). Besides pneumonia, myocardial injury is a typical

COVID-19-related complication and is present in 20%–30% of

patients that contributed to 40% of deaths (102). Patients with

larger EAT seem to get higher cardiac risk in COVID-19 patients

(103, 104), with worse outcomes (105). Moreover, the type of

adipose tissue and its distribution seems to play a crucial role in
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COVID-19 severity (101). It is well-known that EAT has direct

anatomical and functional contiguity with the myocardium, and

these two tissues share the same microcirculation, which support

the pathophysiology of COVID-19-related cardiac injury.

Therefore, clinical studies and practice on COVID-19-related

CVDs have focused on cardiac adipose tissue. Recent studies have

shown that in patients with COVID-19, higher EAT volume and

lower EAT density may be independent predictors of an

unfavorable disease prognosis, including cardiovascular

complications and death (104, 106, 107). It is reported that EAT

is like a highly inflammatory region with dense macrophage

infiltrates and highly enriched proinflammatory cytokines, which

are overexpressed in COVID-19 patients with CVDs that facilitates

viral spread and augments immune response (18, 108, 109).

COVID-19-related cardiac injury is characterized by decreased

angiotensin-converting enzyme 2 (ACE2) and entry ligand

receptor, with pathogenetic role (20, 108). Previous studies

indicated that ACE2 deficiency mediates myocardial inflammation,

and ACE2 reduction is associated with EAT inflammation (110). In

addition, ACE2 downregulation leads to the proinflammatory

polarization of M1 macrophages in EAT and results in the

dysregulation of the inflammatory response, which is highly

observed in COVID-19. Moreover, ICU patients with a higher EAT

volume had a higher risk of developing pulmonary embolism

compared to those with lower EAT volume (111). Therefore, EAT

plays a role in COVID-19-related CVDs and has potential to become

a clinically measurable and modifiable therapeutic target.
5 Therapeutic options in EAT

We have discussed that EAT is an independent risk factor and

has potential to become a therapeutic target for CVDs. Hence,

studies have focused on reducing EAT (Figure 3).
FIGURE 3

Therapeutic options affecting the epicardial adipose tissue.
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5.1 Lifestyle intervention

EAT is exacerbated by several unhealthy life styles, such as

sedentary life, weight gain, and an unbalanced diet (112, 113).

Lifestyle intervention based on dietary control and regular physical

activity is an essential “first-line” strategy for the clinical management

of obesity. Physical exercise and strict diet control reduce visceral fat,

including EAT, and improve cardiac function (114, 115). A recent

study showed that bad childhood experience is associated with

increased EAT in children with depression and reduced physical

exercise (116). Studies have indicated that regular physical activity is

an effective non-invasive strategy for reducing EAT that may provide

beneficial effects on the cardiovascular system (113, 117, 118). Several

studies showed that aerobic exercise decreases EAT thickness

significantly in obese men (118, 119). Another study from India

showed that the 12-week regular Taekwondo training reduces the

EAT thickness significantly in elderly women with hypertension

(120). Another study from Turkey enrolled 74 obese women and

found that long-term, sustained weight loss reduces epicardial fat

thickness significantly as assessed by echocardiography, which can be

used as an indicator of metabolic profile for weight reduction in obese

women (121). Moreover, the decrease in epicardial fat thickness was

significantly higher in patients who reversed their metabolic

syndrome diagnosis with weight loss than in those whose metabolic

syndrome status was unchanged. Iacobellis et al. reported significant

reduction in epicardial fat in severely obese patients after 6 months of

low-calorie diet (122). However, a systematic review and meta-

analysis conducted by Rabkin and Campbell (123) showed that diet

and bariatric surgery markedly reduced EAT, but this was not

achieved with exercise. Moreover, a reduction in body mass

index was significantly associated with reduced EAT by diet-

based interventions.
5.2 Medical treatment

The impact of medical treatment on EAT is worth investigating.

The use of statin is associated with decreased adipokine release from

visceral EAT.

Parisi et al. (124) reported that statin therapy was significantly

associated with lower EAT thickness and with lower levels of EAT-

secreted inflammatory mediators. Of note, there was a significant

correlation between EAT thickness and its proinflammatory status.

Among lipid-lowering agents, atorvastatin has more significant

effect than simvastatin and ezetimibe (125). Other studies also

demonstrated that statins reduce EAT volume (124, 126).

Additionally, antidiabetic drugs such as GLP-1A (127, 128),

metformin (129, 130), and SGLT2 inhibitors (131, 132) were also

proved to reduce EAT. For individuals with severe obesity, bariatric

surgery is the most reliable treatment. It is well-known that different

depots of adipose tissue and visceral fat change after bariatric

surgery. Weight loss following bariatric surgery is associated with

EAT reduction (133). Hunt et al. reported that severely obese

subjects have lower EAT during a 14-year follow-up after

bariatric surgery (134).
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6 Conclusion

The cardiovascular system is widely affected by EAT. The

expansion and remodeling of EAT contributes to vascular

dysfunction and CVDs significantly. The evolving field of non-

invasive imaging technique-based EAT composition analysis

showed great potential for the stratification of CVD risk.

Therefore, it is critical to identify strategies that are capable of

reducing cardiovascular risk by modulating EAT mass, distribution,

and function. At present, there is growing interest regarding EAT.

In the future, the assessment of EATmay become part of the clinical

practice to help clinicians identify patients at great risk of

developing CVDs and to provide information on their clinical

and therapeutic prognosis.
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