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Editorial on the Research Topic

Research advances of modification and nutrition properties of food

carbohydrates, volume I

1. Introduction

As a group of essential biopolymers, carbohydrates exist widely in living organisms and

play many known and unknown biological roles in life activities via different pathways.

Carbohydrates are widely used in foodstuffs, pharmaceuticals, biofuels, and biomaterials,

to name a few. Parallelly, a growing understanding and deeper investigation drive the

development of natural carbohydrates for novel applications, especially for treating chronic

diseases, e.g., hyperlipidemia, obesity, and diabetes. The emerging evidence indicates

that carbohydrates are effective for modulating gut microbiota, a vital organ in health

and diseases. In addition, modifying carbohydrates alters and/or enhances nutrition

properties, further expanding their application potential. Notably, the nutritional properties

of carbohydrates depend on their chemical structures and chain conformations. Thus,

structural identification of carbohydrates and their derivatives helps expand their food,

pharmaceutical, and related applications. To this end, a Research Topic entitled “Research

Advances of Modification and Nutrition Properties of Food Carbohydrates” was launched by

Frontiers in Nutrition, Food Chemistry (Frontiers) to provide a forum for researchers to

disseminate their latest research findings on starch, non-starch polysaccharides, dietary fiber,

pectin, cellulose, hemicellulose, and other food components. A total of 16 manuscripts from

various countries were submitted, of which 12 were accepted for publication after the peer

review, including two reviews and 10 research articles.
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2. Starch

There were many studies on the modification and nutritional

properties of food carbohydrates. In this set, starch is widely used

in the food industry for bakery items, noodles, instant foods,

and snacks. However, poor solubility, instability during pasting,

undesired consistency, and retrogradation of native starches limit

their widespread utility. To address these issues, physical, chemical,

and enzymatic modifications and their combinations have been

employed to enhance the physicochemical properties of starch.

These modifications improve solubility, stability, and consistency

and reduce retrogradation, making starch more suitable for

various food applications. Gao et al. isolated and purified Lanzhou

Lily (Lilium davidii var. unicolor) by polyethylene glycol-based

ultrasonic-assisted enzymatic extraction method (PEG-UAEE).

Single-factor experiments and response surface methodology

(RSM) established the most effective process conditions.

Subsequently, the preliminary structure of the low-molecular-

weight polysaccharides (LLPs) was characterized using HPLC,

FT-IR, and SEM, and their antioxidant activities were assessed. The

findings demonstrated that the optimized conditions resulted in an

LLPs yield of 14.75%: enzyme-to-substrate (E/S) ratio of 1,400 U/g;

pH of 5.0; ultrasonic time of 30min; and ultrasonic temperature

of 50◦C. The LLPs exhibited a pyranose ring, uronic acid, and

characteristic absorption peaks of –OH, C=O, and C–H. Scanning

electron microscopy revealed irregular distribution, dispersed

structure, and numerous pores in the LLPs. HPLC analysis

indicated that the LLPs were heteropolysaccharides consisting

of galactose (6.36%), glucose (76.03%), rhamnose (2.02%), and

arabinose (7.09%). Furthermore, in vitro testing demonstrated

significant antioxidant effects of the LLPs. These results suggest

that LLPs hold potential for applications as natural antioxidants

and functional food ingredients. Yan et al. provided an overview

of the production strategies employed for xylooligosaccharides

(XOS) and discussed the raw materials, preparation methods,

and purification techniques. Additionally, they presented the

biological characteristics and applications of XOS. The most

commonly recommended approach for XOS production is the

two-stage method involving alkaline pre-treatment and enzymatic

hydrolysis, with subsequent membrane filtration for enhanced

yield and prebiotic functionality. Furthermore, novel strategies and

technologies such as hydrothermal and steam explosion methods

have also been explored, combined with enzymatic hydrolysis to

produce XOS. It exhibits various significant physiological activities,

particularly regulating blood glucose, reducing blood lipid levels,

and improving the host intestinal flora structure. Furthermore,

an additional study examined the correlation between glycemic

release characteristics and the fine supramolecular structure

of starches derived from cassava (ECS), potato (EPS), jackfruit

seed (EJFSS), maize (EMS), wheat (EWS), and rice (ERS). These

starches were prepared using an improved extrusion modification

technology (IEMS). The results revealed that the extruded

cooking starches transitioned from the A-type to V-type crystal

structure. Specifically, IEMS-treated cassava, potato, and rice

starches displayed broken α-1,6-glycosidic amylopectin (long

chains), while the others exhibited sheared α-1,4-glycosidic

amylopectin. The molecular weight, medium and long chain

counts, and relative crystallinity decreased while the number of

amylopectin short chains increased. ECS, EPS, EJFSS, and EWS

demonstrated improved glycemic index (GI) and digestive speed

rate constant (k) compared to raw starch. Although EMS and ERS

exhibited degraded molecular structures, their particle morphology

transformed from looser polyhedral shapes to more compact ones

with fewer enzymolysis channels due to the rearrangement of

side chain clusters of amylopectin, resulting in enhanced enzyme

resistance. Notably, the IEMS-treated samples exhibited significant

variations in starch characteristics. EPS had the highest amylose

content, medium chains, long chains, and molecular weight

but with the lowest GI, relative crystallinity, and k. Conversely,

ERS displayed an opposite trend. Consequently, IEMS impacts

starches with variable GIs. This investigation provides a foundation

for broader applications of conventional crop starches in the

food industry catering to diverse nutritional needs (Li, Zhang,

et al.). Li L. et al. investigated the structural properties and

physicochemical characteristics of lotus seed cross-linked resistant

starches (LSCSs). Various concentrations of crosslinking agents

were used to produce eight samples LS-0CS, LS-1CS, LS-2CS,

LS-4CS, LS-6CS, LS-8CS, LS-10CS, and LS-12CS. The degree of

crosslinking increased with higher crosslinking, leading to greater

LSCS granular agglomeration. As observed in FT-IR analysis

the P=O vibration at 1,250 cm−1 confirmed the crosslinking

reaction. The covalent bonds formed by the phosphate groups

were primarily composed of distarch monophosphate (DMSP), as

determined by 31P NMR. As the degree of crosslinking increased,

the peak strength of DMSP became stronger, and the specific

gravity increased. Among the eight samples, LS-12CS exhibited

the highest degree of crosslinking and the greatest specific gravity.

Additionally, the solubility of LSCSs decreased, while thermal

stability and resistance to digestion improved with increasing

crosslinking, which correlated with the degree of agglomeration

and the presence of DMSP. LS-12CS displayed a resistant starch

(RS) content of 48.95 ± 0.86%. With its low solubility, heat

resistance, and high RS content, LS-12CS demonstrates potential as

a prebiotic ingredient for the food industry. Zeng et al. summarized

the effects of various dietary compounds, including cell walls,

proteins, lipids, non-starchy polysaccharides, and polyphenols,

on the enzymatic digestion of starch. These compounds were

found to have distinct impacts on the digestion process. Cell

walls, proteins, and non-starchy polysaccharides hindered starch

disruption during hydrothermal treatment, preserving ordered

structures that limited enzymatic binding. Additionally, these

compounds encapsulated starch granules and acted as physical

barriers, preventing enzymes from accessing the starch. Proteins,

non-starchy polysaccharides, lipids, and polyphenols interacted

with starch and formed organized assemblies. Furthermore, non-

starchy polysaccharides and polyphenols exhibited a strong ability

to reduce the activities of α-amylase and α-glucosidase. Based on

these findings, it can be concluded that dietary compounds play a

role in reducing starch digestion through three main mechanisms:

(i) preservation of ordered structures and formation of organized

assemblies with dietary compounds; (ii) creation of physical

barriers that prevent enzyme access and binding to starch; and

(iii) inhibition of enzyme activities. Modulating starch enzymatic

digestion by dietary compounds holds significant potential in

Frontiers inNutrition 02 frontiersin.org6

https://doi.org/10.3389/fnut.2023.1270049
https://doi.org/10.3389/fnut.2022.976607
https://doi.org/10.3389/fnut.2022.977548
https://doi.org/10.3389/fnut.2022.985929
https://doi.org/10.3389/fnut.2022.989042
https://doi.org/10.3389/fnut.2022.1035619
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Zhang et al. 10.3389/fnut.2023.1270049

regulating postprandial glucose response to food and preventing

or treating type II diabetes. Li, Xie, et al. isolated starches from

Chinese mutant Musa acuminata Colla acuminata and double

balbisiana (MA), Musa double acuminata cv. Pisang Mas (MAM),

Musa acuminata cv. Pisang Awak (MAA), Musa Basjoo Siebold

(MBS), Musa double acuminata and balbisiana-Prata (MAP).

The results showed that all the starches had a high amylose

content, ranging from 34.04 to 42.59%. Based on particle size,

the starches were categorized into two groups: medium-sized

(MA, MAM) with particle sizes ranging from 14.54 to 17.71µm,

and large-sizes (MAA, MBS, and MAP) from 23.01 to 23.82µm.

The medium-sized starches exhibited A-type crystallization,

higher peak viscosity, final viscosity, gel fracturability, and gel

hardness. On the other hand, the large-sized starches presented

B-type crystallization, compact particle morphology, a higher

degree of crystallinity, short-range order, gelatinization enthalpy,

pasting temperature, lower porosity, and higher water absorption

capacity (WAC), and oil absorption capacity. The medium-sized

starches with higher peak viscosity and gel hardness were found

suitable as food thickening or gelling agents. The large-sized

starches, with their unique characteristics such as higher degree

of crystallinity, lower porosity, and WAC, showed potential as

materials for resistant starch production. The study highlighted

the significant influence of amylose content on the microstructure

and physicochemical properties of starch samples. Overall, these

findings suggested that the amylose content plays a crucial role in

determining the microstructure and properties of starches, and

provide opportunities for utilization in various food applications.

3. Non-starch polysaccharides

Non-starch polysaccharides find extensive application in

various foods, including candies, pastries, and dairy products. They

offer nutritional benefits and enhance the quality and texture of

these foods through gelation, water holding, binding, foaming,

stability, solubility, emulsification, and other properties. However,

functional properties often fall short of expectations. Several

methods, such as physical, chemical, and enzymatic modifications,

are handy to improve the functional properties. He et al.

summarized an overview of the chemical structures and probiotic

potential of polysaccharides (LPs) extracted from fermented litchi

pulp using Lactobacillus fermentum for different durations (ranging

from 0 to 72 h, corresponding to LP-0 through LP-72, respectively).

The fermentation time impacted the yields, total sugar content,

uronic acid content, molecular weight, and monosaccharide

composition of LPs. The LPs’ yields and uronic acid content

displayed irregular trends with fermentation time, while the total

sugar content decreased and the molecular weight increased.

Notably, LP-6 exhibited the highest extraction yield (2.67%), lowest

uronic acid content, and smallest average molecular weight (104

kDa; p < 0.05). Analysis of the monosaccharide composition

in the fermented LPs indicated decreased glucose proportions,

whereas arabinose and galacturonic acid proportions increased

compared to unfermented LP-0. Furthermore, LP-6 demonstrated

the highest growth stimulation for Bifidobacterium compared to

LP-0, while other fermentation durations exhibited comparable

or inferior probiotic-promoting activities. These findings suggest

that fermentation by lactic acid bacteria alters the physicochemical

properties of litchi polysaccharides, and selecting an appropriate

fermentation duration can enhance their probiotic activities. They

further indicate that a proper fermentation time by lactic acid

bacteria for litchi pulp might facilitate the probiotic properties

of its polysaccharides. Wei et al. evaluated the relationship

between the characteristics of regional rice as raw material and

the resulting quality of rice noodles. Four commonly used rice

cultivars for noodle production in Guangxi were examined. The

findings revealed that the composition of rice flour significantly

influenced gelatinization and retrogradation, which in turn affected

the textural and sensory properties of rice noodles. The amylose

content exhibited a strong positive correlation with the peak

viscosity (PV) and trough viscosity (TV) of rice flour (p< 0.01). PV

and TV showed strong negative correlations with adhesive strength

(p < 0.01) and positive correlations with chewiness (p < 0.05),

hardness, peak load, and deformation at the peak of rice noodles (p

< 0.01). The protein content demonstrated a positive correlation

with the setback of rice flour (p < 0.05), which is known to

influence retrogradation. Additionally, solubility exhibited positive

correlations with cooking loss (p< 0.01) and broken rate (p< 0.05)

of rice noodles and a strong negative correlation with springiness

(p < 0.01). Swelling power negatively correlated with the broken

rate (p < 0.05). As the sensory score of rice noodles was negatively

correlated with the broken rate (p < 0.05) and cooking loss (p

< 0.01) and positively correlated with springiness (p < 0.01),

it can be inferred that the solubility and swelling power of rice

flours are useful indicators for predicting consumer acceptability

of rice noodles. Ji et al. isolated a new polysaccharide (PZMP3-1)

from Ziziphus Jujuba cv. Muzao fruit, and composition, molecular

weight, and principal structural components were examined.

It contains 2.56 rhamnose, 7.70 arabinose, 3.73 galactose, and

6.73 galactose, with an average molecular weight of 241 kDa.

Methylation and nuclear magnetic resonance spectroscopy (NMR)

analyses identified the key structural components, including 1,2,4

and 1,4-linked GalpA, 1,4-linked Galp, 1,3 and 1,5-linked Araf,

and 1-linked Rhap. Structural analysis using X-ray diffraction

(XRD), Fourier transform infrared spectroscopy (FT-IR), atomic

force microscopy (AFM), and scanning electronmicroscopy (SEM)

revealed a tangled and branching pattern. Overall, PZMP3-1

possesses unique bioactivities and potential for wide applications

in nutritional supplements. Yang et al. conducted an extraction

of polysaccharides from Sibiraea laexigata (L.) Maxim (SLM) and

purified two fractions of SLM polysaccharides (SLMPs) named

SLMPs-1-1 and SLMPs-2-1 usingDEAECellulose-52 and Sephadex

G-100 chromatography. The preliminary structure of these two

fractions was established through various analyses such as chemical

composition, molecular weight measurement, UVS, HPLC-PMP,

FTIR, nuclear magnetic resonance (NMR) spectroscopy, and SEM.

The results revealed that the two fractions had different molecular

weights of 1.03 and 1.02 kDa composed of glucose (46.76 and

46.79%, respectively). The structural characterization using FT-

IR, 1H NMR, and SEM indicated that SLMPs-1-1 and SLMPs-2-1

exhibited typical pyranose polysaccharide characteristics with α-

glycosidic and β-glycosidic bonds. Additionally, it was observed

that SLMPs-1-1 could increase the levels of tumor necrosis
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factor-alpha (TNF-α) and interleukin-2 (IL-2) while mitigating

immune organ tissue damage in cyclophosphamide (Cy)-treated

mice. The results from RT-qPCR and Western blot analysis

showed that SLMPs-1-1 significantly upregulated the levels of

NF-kB and TLR4, indicating its potential involvement in the

immunosuppressive protection of Cy-treated mice. These findings

suggest that SLMPs-1-1 has the potential to serve as an alternative

immunostimulatory and could find applications in the food

and pharmaceutical industries. Zeng et al. examined the effects

of polysaccharides from Artocarpus heterophyllus Lam. pulp

(jackfruit, JFP-Ps) on intestinal barrier function. The researchers

investigated the impact of JFP-Ps on intestinal health by performing

H&E staining and biochemical analysis to assess the pathological

and inflammatory state of the intestine, as well as oxidative

damage. They also analyzed the expression of genes and proteins

associated with intestinal health and inflammation using RT-qPCR

and western blotting. The results demonstrated that JFP-Ps had

several beneficial effects on intestinal barrier function. Firstly, JFP-

Ps promoted bowel movement and modified the physiochemical

environment of the intestine by reducing fecal pH and increasing

fecal water content. Additionally, they alleviated oxidative damage

in the colon, relieved intestinal colonic inflammation, and regulated

blood glucose transport in the small intestine. They further repaired

intestinal mucosal damage, increased the thickness of the mucus

layer, and improved intestinal physiological status. Furthermore,

they downregulated the expression of inflammatory genes such

as TNF-α and IL-6, while upregulating the expression of free

fatty acid receptors (GPR41 and GPR43) and tight junction

protein (occludin). These findings suggest that JFP-Ps exert a

protective effect on intestinal function by enhancing the intestine’s

biological, mucosal, immune, and mechanical barrier functions.

JFP-Ps also activate signaling pathways related to short-chain fatty

acids (SCFAs) and GPR41/GPR43. Based on these results, JFP-

Ps show promise as a natural compound for improving human

intestinal health and may be used as a potential phytochemical

for this purpose. Gao et al. (1) extracted polysaccharides (ALPs)

from Arctium lappa L. using an optimized aqueous two-phase

system with specific conditions: polyethylene glycol (PEG) relative

molecular weight of 6,000, PEG quality fraction of 25%, (NH4)2SO4

quality fraction of 18%, and extraction temperature of 80◦C.

The extraction rate reached 28.83%. FTIR, SEM, and HPLC

analyses revealed that ALPs were acidic heteropolysaccharides

with uneven particle size distribution, irregular shape, and

rough surface. The composition of ALPs consisted primarily of

glucose, rhamnose, arabinose, and galactose, with molar ratios of

70.19:10.95:11.16:6.90, respectively. Additionally, ALPs exhibited

strong in vitro antioxidant activity, effectively scavenging hydroxyl

radicals (·OH), DPPH radicals, and superoxide anions, with IC50

values of 1.732 mg/ml, 0.29 mg/ml, and 0.15 mglmL, respectively.

These findings highlight the potent antioxidant properties of ALPs

and their potential as functional food ingredients.

4. Dietary fiber, cellulose and
hemicellulose

Dietary fiber, a non-digestible polysaccharide, is considered

a crucial nutrient by the nutritional community. It cannot

be absorbed by the gastrointestinal tract, making it unique

among nutrients. Enhancing insoluble dietary fiber’s quality and

functional properties through physical, chemical, and biological

methods is essential for its extensive use in the food industry.

These approaches aim to improve its characteristics and make

it more suitable for various food applications. Wang et al.

utilized tigernut to synthesize soluble dietary fiber-manganize

complex [SDF-Mn(II)]. Comprehensivemicroscopic and structural

analyses were conducted, including scanning electron microscopy,

Fourier infrared spectroscopy, UV full-band scanning, X-ray

diffraction, thermal analysis, gel permeation chromatography, and

nuclear magnetic resonance. The in vitro hypoglycemic activity

of SDF-Mn(II) was also investigated. The results revealed that

the interaction between Mn(II) and SDF primarily involved

hydroxyl and carbonyl groups. Nuclear magnetic resonance

analysis demonstrated specific covalent bonding and substitution

primarily occurring at the C6 position. Compared to SDF

alone, the SDF-Mn(II) complex exhibited a porous structure,

induced a red-shift and enhanced color intensity in UV

characteristic peaks, displayed increased crystallinity, reduced

molecular weight, and improved thermal stability. Furthermore,

SDF-Mn(II) demonstrated significantly enhanced inhibition of α-

amylase and α-glucosidase, indicating potent in vitro digestive

enzyme inhibition activity.

Cellulose and hemicellulose, like non-starch polysaccharides,

are widely utilized in various food applications. They contribute

not only to the nutritional value but also to the quality and texture

of foods due to their gelation, water retention, binding, foaming,

stability, solubility, emulsification, and other functional properties.

However, the inherent functional limitations of cellulose and

hemicellulose often necessitate improvements. Various methods,

including physical, chemical, and enzymatic modifications, have

been employed to enhance the functional properties of cellulose

and hemicellulose, allowing for their broader utilization in the

food industry. Su et al. (2) found that cellulose and hemicellulose

edible films with 10% microcapsule content showed the best

overall performance, improving mechanical properties, thermal

stability, and barrier properties. The films effectively inhibited

Listeria monocytogenes (93.69%) and Escherichia coli (95.55%)

and suppressed the growth of Staphylococcus griseus. When used

for blueberry preservation, the ClO2 self-releasing films delayed

quality decline and prevented mold contamination during a 14-day

storage period. Additionally, the antibacterial film group exhibited

higher anthocyanin accumulation. These findings suggest that films

containing ClO2 microcapsules hold promise for future fruit and

vegetable packaging.

5. Conclusions

The articles in this Research Topic encompass a wide

range of topics, including enhancing the physical properties of

key food components, investigations into biological activities,

and applications in food preservation. Pursuing desirable food

texture and taste, as well as the increasing demand for safe,

environmentally friendly, and efficient food materials, are the main

motivations driving ongoing research in this field. We hope these
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novel research findings find practical and more useful applications

in food and related applications.
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Structure characterization and
antioxidant activity analysis of
polysaccharides from Lanzhou
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Penghui Guo1, Xin Cao1, Yong Cai1, Hongwei Xu1 and

Jutian Yang1*

1College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China,
2Technology Research and Development Center, Gansu Tobacco Industry Co. Ltd, Lanzhou, China

Lanzhou Lily (Lilium davidii var. unicolor) is a traditional medicinal plant and

popular edible vegetable bulb in China. In this study, the polysaccharides of

Lanzhou Lily (LLPs) were extracted by polyethylene glycol-based ultrasonic-

assisted enzymatic extraction method (PEG-UAEE). The optimum process

conditions were obtained by single-factor experiments and response

surface methodology (RSM). Then, the preliminarily structure of LLPs was

characterized by HPLC, FT-IR, and SEM, and its antioxidant activities were

evaluated. The results showed that LLPs yield reached 14.75% under the

optimized conditions: E/S ratio 1,400 U/g; pH 5.0, ultrasonic time 30min;

and ultrasonic temperature 50 ◦C. The LLPs has pyranoid ring, uronic acid,

and the characteristic absorption peaks of -OH, C = O, and C-H. The

results of scanning electron microscope indicated that the LLPs had irregular

distribution, dispersed structure, and many holes. The HPLC analysis showed

that the LLPswere heteropolysaccharide containing galactose (6.36%), glucose

(76.03%), rhamnose (2.02%), and arabinose (7.09%). Moreover, the LLPs showed

obvious antioxidant e�ect in vitro.

KEYWORDS

Lanzhou Lily, polysaccharide, extraction, structural characteristic, antioxidant activity

Introduction

Lanzhou Lily is a plant of morningstar lily bulb, called “sweet lily.” It is

the only sweet and edible lily in China with white color and sweet taste (1).

Modern researches have shown that Lanzhou Lily has high edible, medicinal

and ornamental value, and has further development and application potential (2).

Lanzhou Lily contains massive pectin, alkaline elements and natural phospholipids,

as well as abundant plant protein and cellulose. Lanzhou Lily has the functions of

strengthening the spleen, nourishing the stomach, delaying aging and preventing gout.

Lanzhou Lily also has many biological activities, including antioxidant, antitumor,

hypoglycemic, immunomodulatory, and other pharmacological effects (3, 4), thus

protecting human spleen, lung, and other organs, is beneficial to human body.
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Polysaccharide is a natural high polymer linked by aldose

or ketose through glycosidic bonds, and widely exists in

plants. It is an important macromolecular substance in

organisms and a basic substance maintaining normal life

activities. Polysaccharides are mostly polymerized by several

monosaccharides in a certain proportion. Polysaccharides vary

in the molecular composition and weight (5). The content of

polysaccharides in Lanzhou Lily is about 14.58mg/g, which exert

pharmacological effects such as antioxidant, hypoglycemic, anti-

tumor, anti-fatigue and immune regulation (6). The principle

of extracting Lanzhou Lily polysaccharide is to obtain the

maximum extraction rate and reserve the active structure. It is

of great significance to select an appropriate extraction method

for polysaccharides.

The commonly used extraction methods of lily

polysaccharide include hot water extraction, ultrasonic

extraction, microwave extraction, and enzymatic extraction (7).

Hot water extraction method is easy to operate and realize,

but the cost is high and the yield is low. Ultrasonic extraction

method can dramatically shorten the extraction time and

improve the extraction efficiency, but it has high requirements

on the container and large noise. Microwave extraction has the

advantages of short time and simple equipment, but it is easy to

be affected by external factors. Enzymatic extraction reaction

conditions mild, less side reaction, but it needs a long time.

PEG can be used as solvent and cosolvent due to the

good water solubility and low relative molecular weight (8).

In this work, we developed an ultrasonic assisted enzymatic

extraction method to obtain LLPs using PEG as the solvent. The

method has developed a kind of efficient extraction technique to

extract polysaccharides from various biomaterials. As expected,

compared to ultrasonic assisted, PEG reagent provides -OH

groups to enhance the interaction of polysaccharides which

could improve polysaccharides yield. The optimal extraction

process of LLPs was obtained by single-factor experiments

and RSM with box-behnken design. Then, FT-IR, SEM, and

HPLC were used to analyze the compositions and structural

characteristic of LLPs. Moreover, antioxidant activities of LLPs

were also evaluated.

Materials and methods

Materials and reagents

Fresh Lanzhou Lily at the mature stage of commercial was

purchased from the local markets at Lanzhou city (Gansu,

China). Cellulose and pectinase were obtained from Solarbio

Biological Reagent Co., Ltd. (Beijing, China). 1,1-diphenyl-

2-trinitrophenylhydrazine (DPPH), Trifluoroacetic acid (TFA)

and monosaccharide standard products were from Sigma-

Aldrich Chemical Co., Ltd. (Louis, USA). PEG and other

reagents were all analytically pure and purchased from

Sinopharm Chemical Reagent Co., Ltd. (Beijing, China).

Extraction of LLPs

Fresh Lanzhou Lily was cleaned, and then was frozen-dried

by a vacuum freeze dryer (LGJ-100F, Thermo Co., USA). The

dried lily powder was crushed and collected through an 80 mesh

sieve. Then the power was degreased twice with n-hexane (M:

V = 1:3) for 6 h every time, dried and collected for further use.

Three gram defatted lily powder was accurately weighed, 45mL

30% PEG-400 solution was added at the ratio of material to

liquid of 1:15, and a mixed enzyme (cellulose: pectase= 1:2) was

added. After pH adjustment, ultrasonic cleaning machine (SB-

500DTY, Ningbo Xinzhi Biotechnology Co., China) was used

for extracting under a ultrasonic power of 250W. Repeated the

above process 3 times. The extracts were mixed, centrifuged

at 5,000 rpm for 10min (Heraeus Multifuge X1R, Thermo,

America), and the supernatant was taken. Sevage reagent (n-

butanol: chloroform = 1: 5, v/v) was added to the supernatant

to remove proteins. The solution was centrifuged (5,000 r/min,

10min) and the upper layer solution was collected. Then 3

times (v/v) anhydrous ethyl alcohol was added for alcohol

precipitation, and precipitate was formed after standing at 4◦C

for 24 h. The precipitate was recovered by centrifugation at

5,000 r/min for 10min, and was successively washed by ethanol,

petroleum ether and diethyl ether. The precipitate was dried

in a DHG-9030A oven (Shanghai Grows Instrument Co., Ltd.,

China) to obtain LLPs. The extraction rate (%) of LLPs was

calculated as follows:

R =
m1

m0
× 100 (1)

Where R is the extraction rate of LLPs (%); m1 is the

weight of lily polysaccharide extracted (g); m0: the weight of the

extracted lily powder (g).

Experimental design of optimization of
extraction conditions

The effects of E/S ratio (700, 1,400, 2,100, 2,800, and 3,500

U/g), pH (3.0, 4.0, 5.0, 6.0, and 7.0), ultrasound time (10, 20,

30, 40, and 50min), and ultrasound temperature (30, 40, 50, 60,

and 70◦C), on the extraction rate of LLPs were investigated. The

experiments were conducted in triplicate.

According to the results of the single-factor experiments, X1

(E/S ratio), X2 (pH value), X3 (ultrasound time), X4 (ultrasound

temperature) were selected as the independent variable, and Y

(crude polysaccharide extraction rate) was used as the response

value. A four-factor three-level Box-Behnken response surface
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TABLE 1 The process parameters setting for LLPs extraction,

according to Box-Benkhen design.

Factor Level

−1 0 1

X1-E/S ratio /(U/g) 700 1,400 2,100

X2-Extraction pH value 4.0 5.0 6.0

X3-ultrasound times/min 20 30 40

X4-ultrasonic temperature/ ◦C 40 50 60

experimental design (BBD) was carried out. Three levels (−1,

0, and 1) were designed for each independent variable, the

influencing factors and level design were shown in Table 1. Each

experiment was repeated 3 times. By analyzing the results, a

linear quadratic model was obtained as follow:

Y = B0 +

k = 3∑

i = 1

BiXi +

k = 3∑

i = 1

BiiX
2
i +

k = 3∑

i = 1

BiiXiYi (2)

Where Y is the response variable (LLPs extraction

yield, %); B0, Bi, Bii, and Bij are the regression coefficients

of variables for the intercept, linear, quadratic, and

interaction terms, respectively; Xi and Xj are the independent

variables (i 6= j).

FT-IR spectrometric analysis of LLPs

A sample pellet was prepared by mixing 1mg LLPs with

500mg KBr, mortared, and pressed 5min by a HYP-15 machine

(Tianjin Port East Technology Co., Ltd, China). The sample was

scanned for 20min between 4,000 and 400 cm−1 using a Fourier

infrared spectrometer (FTIR-650, Tianjin Port East Technology

Co., Ltd, China) to analyze the chemical bonds and functional

groups of LLPs (9).

SEM analysis of LLPs

LLPs were fixed on the sample table with conductive

adhesive, and the samples coated with gold sputtering were

scanned at 20 kV with Zeiss tungsten filament scanning

electron microscope (ZEISS EVO18, Carl Zeiss AG, Bruker Co.,

Germany) to observe the sample morphology under different

multiples (10).

Monosaccharide composition analysis

The monosaccharide components of LLPs were determined

by HPLC (Agilent1260, USA) coupled with 3-methyl-1-phenyl-

2-pyrazolin-5-one (PMP) pre-column derivatization (4.6 ×

250mm, 5µm, Agilent Co., USA) (9, 11). 10.00mg crude LLPs

sample was precisely weighed and 5mL of 2M trifluoroacetic

acid (TFA) solution was added. Then the sample was hydrolyzed

in water bath at 100◦C for 5 h. After cooling, the pH was

adjusted to 7.0 using 3M NaOH, then centrifuged at 5,000

r/min for 10min. 0.2mL of 0.5M PMP/methanol solution

and 0.3M NaOH were added into 0.2mL polysaccharide

hydrolysate. After swirling mixing, water bath at 70◦C for

1 h was performed. Then, 1mL chloroform and 0.2mL

HCL (0.3M) were mixed, centrifuged to get the supernatant

and filtered through 0.22µm membrane for monosaccharide

composition analysis. Monosaccharide standards (rhamnose,

glucose, galactose, fructose, and arabinose) were treated as same

as described above.

HPLC analysis was performed using an Agilent 1260 HPLC

system with a diode array UV-Vis detector (DVD), and an

Agilent ZORBAX Eclipse XDB-C18 analytical HPLC column

(4.6 × 250mm, 5µm). The mobile phase consisted of 20.0mM

phosphate buffer (pH 6.8) (A) and acetonitrile (B) in a ratio of

81: 19 (v/v). The column temperature was 28◦C and the flow rate

was 1 mL/min. The injection volume was 5µL and the detection

wavelength was 250 nm.

In vitro antioxidant activity assay

·OH radical scavenging assay

The ·OH radical scavenging activity of LLPs were

determined by the method of Zhou et al. (12). The solutions

of LLPs were prepared at concentrations of 0.0, 0.2, 0.4, 0.6,

0.8, and 1.0 mg/mL, respectively. An aliquot of 1.0mL sample

solution, 1.0mL o-phenanthroline ethanol solution (0.75mM)

and 1.0mL FeSO4 (0.75mM) were mixed, and placed in a water

bath at 37◦C for 30min. After that, 1.0mL H2O2 (0.01%) and

2.0mL PBS (pH 7.4) were added to the mixture. When the

mixture was evenly mixed, incubated it in a water bath at 37◦C

for 15min. After cooling, the absorbance value Ax of the sample

solution was determined at 510 nm, and distilled water was used

as blank control. VC (0.0, 0.2, 0.4, 0.6, 0.8, and 1.0 mg/mL) was

used as positive control. The ·OH radical scavenging activity

was calculated by the following formula:

E = (1−
Ax − Axo

Ao
)× 100 (3)

Where E is ·OH radical scavenging activity (%); Ao is the

absorbance value of blank control; Ax is the absorbance value of

Frontiers inNutrition 03 frontiersin.org

12

https://doi.org/10.3389/fnut.2022.976607
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Gao et al. 10.3389/fnut.2022.976607

the samples; Axo is the absorbance value of the sample without

·OH radical.

DPPH radical scavenging assay

The DPPH radical scavenging activity of LLPs was measured

by the method of Liu et al. with slight modification (13). 2mL

LLPs samples at different concentrations (0.0, 0.2, 0.4, 0.6, 0.8,

1.0 mg/mL) were mixed with 2mL DPPH solution (0.2mM),

reacted at room temperature for 30min in a dark environment.

And the absorbance value of the mixed solution was measured

at 517 nm. The control 1 was composed by 2.0mL DPPH and

2.0mL distilled water, the control 2 was composed by 2.0mL

sample solution and 2.0mL distilled water, and VC group was

used as positive control. The DPPH radical scavenging ability

was calculated according to the following equation (14):

E = (1−
Aa − Ac

Ab
)× 100 (4)

Where Aa is the absorbance of the samples; Ab is the

absorbance of the control 1; Ac is the absorbance of the control 2.

·O–
2 radical scavenging assay

The ·O−
2 radical scavenging activity of LLPs was determined

according to the method described previously (15, 16). The

LLPs samples and VC were formulated into solutions with

concentration gradients of 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0 mg/mL,

respectively. After adding 1.0mL LLPs solution and 4.5mL

Tris-HCl buffer (pH 8.2), the mixture was incubated at 25◦C

water bath for 10min. Then 0.4mL of 25mM catechol solution

was added and fully mixed, and incubated at 25◦C water bath

for 5min. Finally, 1mL of 8M hydrochloric acid was added

to terminate the reaction, and the absorbance values were

measured at 320 nm. Distilled water instead of polysaccharide

solution was used as blank control and VC group as positive

control. The scavenging activity was calculated as follows:

E =
Aii − Ai

Aii
× 100 (5)

Where Ai is the absorbance of the control; Aii is the

absorbance of the samples.

Statistical analysis

SPSS 25.0 software was used to analyze the data, and

the results were expressed as mean ± standard deviation. An

ANOVA analysis was performed. The design expert software

(Version 8.0.6, Stat-Ease, Inc., Minneapolis, MN, USA) was

used for the experiment design. All the experiments or analyses

were carried out in triplicate. The 50% inhibitory concentrations

(IC50 values) were calculated by Probit analysis method using

the SPSS software.

Results and discussion

E�ects of E/S ratio, pH, ultrasonic time,
and ultrasonic temperature on the
extraction yield of LLPs

Cellulase and pectinase are normally able to degrade

cellulose and pectin in plant cell walls, which could improve

the extraction yield of LLPs (17). The cellulase and pectinase

amounts can markedly affect the extraction yield of the LLPs.

As a consequence, E/S ratio (700, 1,400, 2,100, 2,800, 3,500 U/g)

on the extraction yield were investigated with enzymolysis pH

of 5.0, ultrasonic time of 30min, and ultrasonic temperature

of 50◦C. As shown in Figure 1A, the extraction ratio of LLPs

increased from 10.95 to 13.42%, and then fall solely as E/S ratio

increased from 1,400 to 3,500 U/g. The possible reason for this is

the increase of cellulase and pectinase can effectively destroy the

lily cells, resulting in more polysaccharide overflow and higher

polysaccharide yield. However, when the E/S ratio was large,

the polysaccharide glycosidic bond was partially hydrolyzed

due to substrate saturation, and the extraction decreases (18).

Considering the cost, E/S ratio of 1,400 U/g was selected as the

center point of RSM.

It has been shown that the same type of enzymes from

different origins have different activities and different pH

optimums. PH value will affect the degree of dissociation of

the essential groups on the enzyme activity center. The enzyme

shows different activities under different pH conditions, and too

high or too low pH value will reduce the enzymatic hydrolysis

efficiency. Hence, pH values (3.0, 4.0, 5.0, 6.0, and 7.0) were

selected as a univariate variable. As Figure 1B showed that the

extraction ratio of LLPs increased with pH from 3.0 to 5.0,

reaching a maximum value of 14.05 ± 0.09% at pH 5.0, and

then decreased continuously with pH from 5.0 to 7.0 (17). The

results could be that cellulase enzyme achieved only limited

solubilization (19). Based on our results, a pH value of 5.0 was

chosen as the RSM central point.

Ultrasound treatment could improve the efficiency of LLPs

extraction, because of high pressure, temperature and shear

force generated by the ultrasonic wave may break chemical

bonds of polysaccharide in cell walls (20). The increase of

ultrasonic time provides the conditions for ultrasonic wave to

destroy more lily cells, so that more polysaccharides can be

dissolved in PEG solution. As a result, the effect of ultrasonic

time (10, 20, 30, 40, 50min) on the extraction yield were

investigated when the others extraction parameters were set

as follows: E/S ratio 5.0, pH 5.0, and ultrasonic temperature

50◦C. Figure 1C shows that polysaccharide yield reached the
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FIGURE 1

The e�ects of E/S ratio (A), extraction pH (B), Ultrasound time (C), and Ultrasonic temperature (D) on the yield of LLPs.

maximum value of 14.25 ± 0.04% when ultrasonic time was

30min. If the ultrasonic time exceeded 30min, the LLPs

extraction rate decreased significantly. When the ultrasonic

time was <30min, more polysaccharides had enough time

to dissolve in the container with the extension of time, so

the yield of polysaccharides increased. When the ultrasonic

time exceeded 30min, the high pressure, temperature and

shear force generated by ultrasonic may destroy the chemical

bonds of polysaccharides, leading to the hydrolysis of some

polysaccharides, and the extraction rate of LLPs decreased

significantly. Cai et al. (21) reported that with extended

ultrasonic times, strongmechanical shock damages the dissolved

ingredients and leads to the hydrolysis of some polysaccharides,

which is consistent with our findings. Hence, 30min was chosen

as the optimal ultrasonic time and the RSM central point.

Temperature is also an important factor in the extraction

of polysaccharides. The diffusion coefficient and solubility of

polysaccharide in the extracting solvent was enhanced at a

higher temperature, is possibly caused by the increase of the

extraction rate of polysaccharides (22). Therefore, ultrasonic

temperature (30, 40, 50, 60, 70◦C) was studied under the

conditions of fixed E/S ratio 5.0, pH 5.0, ultrasonic time 30min.

According to Figure 1D, the yield of LLPs increased with

temperature in the range of 30–50◦C, and reached themaximum

value of 14.30 ± 0.02% at 50◦C. After that, the yield of LLPs

decreased with the increase of temperature (50–70◦C). Themain

reason for this phenomenon was that the solubility and diffusion

coefficient of polysaccharides in the extraction solvent increase

at higher temperature, so that the amount of polysaccharides

dissolved in the solution increases. When the temperature was

too high, the biological potential of the enzyme was destroyed

and lost activity, and irreversible changes occurred. Meanwhile,

the polysaccharide structure was damaged and degraded in

the high temperature environment, so the extraction rate of

polysaccharide decreased. Cai et al. (21) reported that the mild

conditions are beneficial to maintain the biological potential of

enzyme, while a higher temperature will destroy the biological

potential of enzyme (23). In conclusion, the optimal ultrasonic

temperature was 50◦C, which was used as the center point

of RSM.

Analysis of the response surface

Statistical analysis and the model fitting

According to the principle of BBD central combined test,

29 groups were designed by Design-expert 8.0.6 software.

The experimental Design level and experimental results of

independent variables were summarized in Table 2. The

extraction rate varied from 9.28 to 14.75%, with the maximum
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TABLE 2 Box-Benkhen design of the independent variables and experimental values of LLPs yield (Y).

No. Factor Y (LLPs yield)/%

X1-E/S ratio/(U/g) X2-pH value X3-ultrasonic times/min X4-ultrasonic temperature)/◦C

1 700 4.00 30.00 50.00 11.05

2 2,100 4.00 30.00 50.00 11.88

3 700 6.00 30.00 50.00 12.91

4 2,100 6.00 30.00 50.00 11.50

5 1,400 5.00 20.00 40.00 10.27

6 1,400 5.00 40.00 40.00 9.69

7 1,400 5.00 20.00 60.00 10.61

8 1,400 5.00 40.00 60.00 10.10

9 700 5.00 30.00 40.00 11.76

10 2,100 5.00 30.00 40.00 10.28

11 700 5.00 30.00 60.00 11.31

12 2,100 5.00 30.00 60.00 11.56

13 1,400 4.00 20.00 50.00 10.88

14 1,400 6.00 20.00 50.00 11.24

15 1,400 4.00 40.00 50.00 9.38

16 1,400 6.00 40.00 50.00 11.62

17 700 5.00 20.00 50.00 12.87

18 2,100 5.00 20.00 50.00 9.98

19 700 5.00 40.00 50.00 9.28

20 2,100 5.00 40.00 50.00 12.39

21 1,400 4.00 30.00 40.00 9.89

22 1,400 6.00 30.00 40.00 11.48

23 1,400 4.00 30.00 60.00 10.95

24 1,400 6.00 30.00 60.00 11.49

25 1,400 5.00 30.00 50.00 14.75

26 1,400 5.00 30.00 50.00 13.97

27 1,400 5.00 30.00 50.00 14.18

28 1,400 5.00 30.00 50.00 14.64

29 1,400 5.00 30.00 50.00 14.43

value being obtained under the conditions of E/S ratio 1,400

U/g, pH 5.0, ultrasonic time 30min, and ultrasonic temperature

50◦C. The second-order polynomial equation of the influence of

the three test variables on the response variables was obtained

as follows:

Y = 14.39− 0.13X1 + 0.52X2 − 0.28X3 +

0.22X4 − 0.56X1X2 + 1.50X1X3 + 0.43X1X4 +

0.47X2X3 − 0.26X2X4 + 0.017X3X4 − 1.12X2
1

−1.43X2
2 − 2.17X2

3 − 2.04X2
4 (6)

Where Y is the LLPs yield (%); X1, X2, X3, and X4

are the coded values of the tested E/S ratio (%), extraction

pH value, ultrasonic times (min), and ultrasonic temperature

(◦C), respectively.

The results of analysis of variance (ANONA) analysis were

shown in Table 3. The model had a high F value (81.95) and a

low P-value (<0.0001), indicating that themodel was statistically

significant and effective. Where R2 = 0.9879, indicating that

98.79% of the results can be explained by this model adjustment

coefficient, and 1.21% of the results can’t be explained. The R2
adj

= 0.9759, closed to R2, indicating that the model has a good

fit with the actual, the correlation between the observed value

and the predicted value is good (13). The low coefficient of

variation (C.V. = 2.14%) showed high accuracy of the model.

The significance of each coefficient was listed in Table 3. The

major factor (X2, X3, and X4), minor factor (X2
1, X

2
2, X

2
3, and

X2
4) and interaction item (X1X2, X1X3, X1X4, and X2X3) had

significant effects on the yield of LLPs (P < 0.01). However,

the interaction term (X2X4 and X3X4) of the main factor (X1)

had not a significant influence (P > 0.05). It can be seen that
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TABLE 3 Analysis of variance and results of regression equation.

Source Sum of square Df Mean square F value P-value

Model 70.39 14 5.03 81.95 <0.0001**

X1 0.21 1 0.21 3.43 0.0851

X2 3.21 1 3.21 52.38 <0.0001**

X3 0.96 1 0.96 15.61 0.0014**

X4 0.59 1 0.59 9.54 0.008**

X1X2 1.25 1 1.25 20.44 0.0005**

X1 X3 9 1 9 146.69 <0.0001**

X1 X4 0.75 1 0.75 12.2 0.0036**

X2 X3 0.88 1 0.88 14.4 0.002**

X2 X4 0.28 1 0.28 4.49 0.0524

X3 X4 0.001 1 0.001 0.02 0.8896

X2
1 8.08 1 8.08 131.71 <0.0001**

X2
2 13.24 1 13.24 215.79 <0.0001**

X2
3 30.65 1 30.65 499.51 <0.0001**

X2
4 26.96 1 26.96 439.39 <0.0001**

Model 0.86 14 0.061

Lack of Fit 0.44 10 0.044 0.43 0.8729

Pure Error 0.41 4 0.1

Cor total 71.25 28

R2 = 0.9879 C.V.= 2.14% R2
Adj = 0.9759

*represents significant difference (P < 0.05), **represents extremely significant difference (P < 0.01).

the influencing factors of the four variables were in the order of

X2 >X3 >X4 >X1, and the pH value had the greatest influence

on the extraction rate.

Response surface plot and contour plot
analyses of the extracted LLPs

The three-dimensional response surface and contour

diagram are shown in Figure 2. Each sub-figure shows the

response surface and contour map of two factors to LLPs

extraction rate, respectively. The influence of various factors on

the response surface is staggered, and the degree of influence

can be clearly reflected by the strength of the isoline in the

contour map and the steep inclination of the response surface.

Dense contour lines indicate steeper response surface and higher

impact. The larger the distance between contour lines, the

smaller the influence (24). Figures 2A–C showed that when pH

value, ultrasonic time and ultrasonic temperature were fixed at

themedian value (level 0), the extraction rate reached the highest

with the increase of E/S ratio. When the E/S ratio remained

level 0, the extraction rate increased first with the increase

of pH value, ultrasonic time and ultrasonic temperature, and

then decreased. The results indicated that long ultrasonic time

or high extraction temperature would increase the solubility

rate of LLPs, but excessive ultrasonic time and extraction

temperature would result in the hydrolysis of polysaccharides.

A moderate high pH increased the activity of the enzyme, but

a higher pH inhibited the activity of the enzyme. Figures 2D,E

showed that when ultrasonic time and temperature were fixed

at level 0, the highest extraction yield was observed with the

increase of pH. The extraction rate increased first and then

decreased with the increase of pH value, ultrasonic time and

ultrasonic temperature. The interaction between ultrasonic time

and ultrasonic temperature was shown in Figure 2F, when the

ultrasonic time and temperature were fixed at level 0, the

extraction rate was maximal. During the experiment, when E/S

ratio, pH value, sonication time, and sonication temperature

closed to 1,400 U/g, 5.00, 30min, and 50◦C, respectively, the

polysaccharide extraction rate was maximized. The graphs of

X1 and X2, X1 and X3, X1 and X4, X2 and X3 were steeper,

and their contour lines can be seen to be ellipses. The graphs

of X2 and X4, X3 and X4 were gentler, and their contour

lines were circles. This result was consistent with the results of

the ANOVE.

Validation of the predictive model

According to the mathematical prediction of the

BBD, the optimal PEG-based UAEE conditions with the

maximum LLPs yield (Y) obtained by the Design Expert

software were: E/S ratio (X1) of 1,295 U/g, extraction

pH value (X2) of 5.20, ultrasonic times (X3) of 28.95min
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FIGURE 2

Response surface (3D) showing the e�ect of E/S ratio and pH value (A), E/S ratio and ultrasonic time (B), E/S ratio and ultrasonic temperature (C),

pH value and ultrasonic time (D), pH value and ultrasonic temperature (E), and ultrasonic time and ultrasonic temperature (F) on extraction yield

of LLPs.

and ultrasonic temperature (X4) of 50.22◦C. Under the

optimal conditions, the extraction yield reached 14.75%,

close to the predicted value of 14.39% by response

surface. The ultrasound-assisted enzymatic extraction (25)

showed a low extraction rate (9.62%) compared to our

method, indicating the PEG-UAEE extraction of LLPs

is effective.

FT-IR spectrum of LLPs

Figure 3 shows the Fourier infrared spectrum of LLPs.

According to the spectrogram, the characteristic absorption

peak at 3379.6 cm−1 was assigned to the O-H stretching

vibration (26), the 2999.7 cm−1 peak was relegated to

C-H stretching vibration. The rough absorption peak at

1540.5 cm−1 were caused by C=O stretching vibration of

the carboxyl products in the polysaccharide, and suggested

the existence of uronic acid (26). The broader band of

LLPs at 1540.5 cm−1 indicated higher content of uronic

acid. There was also an absorption peak at 1 080.6 cm−1,

suggesting the LLPs has pyranose rings. The absorption peak

at 773.5 cm−1 indicated that LLPs was α -D-glucan (25).

This conclusion is generally consistent with Chen et al. (27)

that the polysaccharide of tiger lily has the characteristics

of pyranose.
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Microstructure of LLPs

The data of SEM were presented in Figure 4. Sub-

Figures 4A,B were 500X and 1000X images amplified under

scanning electron microscopy. LLPs showed a fragmented

and irregularly shaped morphology at magnifications of

500X (28). LLPs were composed of many small particles

and clay-like clusters with irregular shapes and sizes.

Most of the particles were massive, with irregular size and

cracks (29, 30). The surface of LLPs when observed at

magnifications of 1000X appeared to be relatively smooth,

with some honeycombed cavities. LLPs presented irregular

distribution, structure scattered, with many holes. Compared

with the results of Hou et al. (31), the smooth surface of

LLPs and the far difference in other characteristics may

be due to the different treatment methods affecting the

sample structure.

Monosaccharide composition of LLPs

The chromatogram of standards (rhamnose, glucose,

galactose, fructose, and arabinose) and the LLPs are shown

in Figure 5. The results showed that the LLPs was mainly

composed of galactose, glucose, rhamnose, and arabinose,

with a molar ratio of 6.36: 76.03: 2.02: 7.09. Chen et al.

(27) found that LLPs-3, a purified component of lily water-

soluble polysaccharide, was mainly composed of arabinose,

galactose, glucose and mannose, with a molar ratio of 2:2:2:1.

Gao et al. inferred that l-rhamnopyranose, d-arabinofuranose,

d-glucopyranose, and d-galactopyranose in the molar ratio

of 1.88:2.13:1.00:2.50 were main monosaccharide type of

a novel polysaccharide fraction (LP2-1) from the edible

bulbs of Lilium lancifolium Thunb (32). The two results

indicated that the main monosaccharide compositions of LLPs

were similar.

Antioxidant activity analysis

Scavenging hydroxyl radical

Hydroxyl radicals are a kind of compound harmful to

organisms, and have a very high reactivity and can essentially

attack and destroy living cells (33). Polysaccharides can be used

as electron or hydrogen donors to remove hydroxyl radicals.

Polysaccharides not only inhibit the production of ·OH, but also

remove existing ·OH, indicating important antioxidant effects

(34). The ·OH radical scavenging ability of LLPs was shown in

Figure 6A, the scavenging ability of LLPs increased in the range

of 0.2–1.0 mg/mL. Particularly, LLPs reached the highest values

of 65.5% when the concentration was at 1.0 mg/mL, indicating

that the scavenging ability of LLPs on ·OH free radical was

concentration-dependent. At the same time, the semi-inhibitory

FIGURE 3

Infrared spectra of LLPs.

concentration IC50 of LLPs was 0.63 mg/mL. The IC50 of VC

was 0.51 mg/mL. LLPs owe their scavenging ability of ·OH

free radical to either the ·OH group possibly existing in their

structure or the influence imposed by the density of electrons

around heterocyclic carbon (35).

DPPH radical scavenging

Polysaccharides have many hydroxyl groups and most of

them can donate hydrogen to reduce the DPPH radical (36).

DPPH radical scavenging model is widely used in quantitative

analysis of antioxidant ability. The Figure 6B showed the

DPPH scavenging activity of LLPs increased from 23.3 to

65.5% with the concentration ranging from 0.0 to 1.0 mg/mL,

indicating that the scavenging DPPH free radical of LLPs in

a concentration-dependent manner (29). The concentration in

the range of 0.0–0.4 mg/mL had a greater effect on DPPH

radical scavenging ability, while the concentration had a smaller

effect in the range of 0.4–1.0 mg/mL. LLPs at 1.0 mg/mL

showed the highest DPPH radical scavenging ability of 86.1%.

The scavenging ability of VC at the same concentration was

95.1%. Moreover, the IC50 of LLPs was 0.32 mg/mL. Results

showed that LLPs had a significant scavenging effect on DPPH

free radicals, which was similar to results from a previous

study (25).

Scavenging superoxide anion radicals

Superoxide radical can be found in the numerous biological

and photochemical reactions. Although the superoxide radical

is less reactive, it can reproduce other reactive oxygen species

to cause the tissue damage and various diseases. As shown

in Figure 6C, LLPs had significant scavenging activity on

·O−
2 radical. The scavenging value of LLPs reached 83.4%
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FIGURE 4

Scanning electron microscopy of LLPs [(A): 500 X, (B): 1.00 KX].

FIGURE 5

HPLC chromatogram of reference monosaccharides (A) and monosaccharides composition of LLPs (B).

at 0.2 mg/mL, increased slowly in the range of 0.2–1.0

mg/mL. Particularly, the clearance rates of VC and LLPs

at 1.0 mg/mL were 99.5 and 88.9%, respectively. Although

the superoxide radical scavenging activity of LLPs was a

little weaker than those of VC, LLPs could be used as the

superoxide radical inhibitors to reduce oxidative damage (37).

In addition, the IC50 of LLPs was 0.30 mg/mL. Xu et al.

reported that the scavenging activities of LLPs (LLP-1, LLP-2,

LLP-3) were 93.20, 91.49, 96.83% when the concentration was

1.0 mg/mL (38).

Frontiers inNutrition 10 frontiersin.org

19

https://doi.org/10.3389/fnut.2022.976607
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Gao et al. 10.3389/fnut.2022.976607

FIGURE 6

Scavenging e�ect of LLPs on (A) ·OH radicals compared with VC, (B) DPPH radicals compared with VC, and (C) ·O−
2 radicals compared with VC.

Conclusions

LLPs were extracted by ultrasonic assisted enzymatic

method with polyethylene glycol. A LLPs yield of 14.75%

was obtained at the optimized conditions: E/S ratio 1,400

U/g, pH 5.0, ultrasonic temperature 50 ◦C, ultrasonic time

30min. The LLPs was mainly composed of galactose, glucose,

rhamnose, and arabinose, with a ratio of 6.36: 76.03: 2.02:

7.09. LLPs were a α-d-glucan and pyranoid polysaccharide

with characteristic absorption peaks of -OH, C=O, and C-

H. The LLPs product had irregular distribution, dispersed

structure and many holes. The LLPs showed a high ·OH

radical scavenging activity, DPPH radical scavenging activity,

and ·O−
2 radical scavenging activity of 62.1, 65.5, and

88.9%, with IC50 values of 0.63, 0.32, and 0.30 mg/mL,

respectively. The results suggested that LLPs have potential

application as natural antioxidant and food ingredients in

functional food.
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The structural properties and physicochemical characteristics of lotus seed

cross-linked resistant starches (LSCSs; LS-0CS, LS-1CS, LS-2CS, LS-4CS,

LS-6CS, LS-8CS, LS-10CS, and LS-12CS) with different concentrations of

cross-linking agents were investigated. The degrees of cross-linking of LSCSs

increased along with the amount of cross-linking agent. The higher the degree

of cross-linking, the greater the degree of LSCSs granule agglomeration. The

occurrence of the cross-linking reaction was confirmed by the appearance

of P = O at 1,250 cm−1 as assessed by FT-IR, and the covalent bonds

formed by the phosphate group in LSCSs were mainly composed of distarch

monophosphate (DMSP) as determined by 31P NMR. As the crosslinking

degree increased, the peak strength of DMSP in starch was stronger and

the specific gravity of DMSP was larger. Among the samples, LS-12CS had

the highest cross-linking degree, with a greater specific gravity of DMSP.

Moreover, the solubility levels of LSCSs decreased and the thermal stability

and anti-digestive properties improved as the cross-linking degree increased,

which was correlated with the degree of agglomeration and DMSP in LSCSs.

The RS content of LS-12CS was 48.95 ± 0.86%.

KEYWORDS

lotus seed cross-linked resistant starch, cross-linking, structural properties,
physicochemical properties, in vitro digestion

Introduction

Lotus seeds are an economically important specialty product in China, with a
greater than 2,000-year history of cultivation. Starch, the main constituent of lotus seeds,
represents approximately 50% of the dry basis and is abundant in raw material resources,
especially during the processing of lotus seed milk drinks that produce numerous
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lotus seed starch by-products (1). Natural starches are
susceptible to reconstitution and dehydration during storage,
low resistant to pH, temperature changes and mechanical
treatment and have unstable functional properties. However,
these inherent functional limitations can be overcome by starch
modification. Resistant starch (RS) is divided into five types:
physically trapped starch (RS1), natural resistant starch granules
(RS2), retrograded starch (RS3), chemically modified starch
(RS4) and a complex of amylose and lipids (RS5). They all
require modifications to form, except for RS1 and RS2 (2).
These starches are prepared using three main methods: physical,
chemical and enzymatic modifications.

RS4 is currently being widely studied and applied in
routine food products. It is formed using chemical modification
methods, such as etherification, esterification and cross-
linking reactions. Cross-linking treatments are usually used
in the chemical modification of starch. During the cross-
linking reaction, cross-linking agents are introduced into
the intermolecular bridges between biopolymer layers to
undergo chemical reactions, such as esterification reaction
and etherification, which may change the overall structural
properties and surface chemistry of the polymer backbone
(3). The cross-linking agents commonly used in this
reaction are sodium trimetaphosphate (STMP), sodium
tripolyphosphate (STPP), epichlorohydrin and phosphoryl
chloride (4). Phosphoryl chloride reacts violently with water
and poses certain safety hazards.Although epichlorohydrin
has the advantages of mild reaction, easy control and excellent
cross-linking effect, it is toxic by oral and nasal inhalation
and skin absorption. STMP and STPP are nontoxic and safe
with low costs, controllable degrees of substitution, ability
to change physical and chemical properties even at low
substitution, and small structural changes of starch chain
bases. The cross-linking reaction results in the starch structure
being strong and dense, reduces the transparency of the
paste, increases the resistance of the starch granules to acid,
heat and shear, and reduces their tendency to dissolve and
swell (5). Sandhu et al. (6) prepared cross-linked sorghum
starch with different doses (0.1–1.0%) of epichlorohydrin as
cross-linker and showed that its amylose content, swelling
power and solubility decreased as the amount of cross-linker
increased compared with raw starch. The surface of cross-linked
sorghum starch is rough, with cavities and cracks. Broad bean
starch with different concentrations (1, 3, and 5%) STMP as
a cross-linking agent was formed by Sharma et al. (7). The
cross-linked starch has a higher phase transition temperature
and enthalpy of pasting (1H) compared with the raw starch,
indicating a denser internal structure of the starch granules.
The content of RS increases along with the concentration of
cross-linking agent, indicating limitations in the actions of
digestive enzymes.

Although much research has been conducted on the
preparation and characterization of cross-linked starches, it is

meaningful to study their structure-phosphorylation-function
relationships in depth. No studies on the modification of
lotus seed starch by cross-linking have been performed. Thus,
here, lotus seed starch was reacted with different doses of
cross-linking agents (STMP/STPP) in an alkaline environment
to form lotus seed cross-linked resistant starches (LSCSs)
with different degrees of cross-linking. The aim was to
characterize their structural properties and to investigate the
physicochemical properties as well as in vitro digestibility
of LSCSs prepared by the addition of different cross-
linking agents.

Materials and methods

Materials

Lotus seed starch (Green Field Food Co., Ltd., Fujian,
China) was isolated as described previously (8). Sodium
trimetaphosphate (STMP) and sodium tripolyphosphate (STPP)
were obtained from China National Pharmaceutical Group
Chemical Reagent Co. The α-amylase and glucose amylase for
in vitro digestibility studies were provided by Shanghai Yuanye
Biotechnology Co.

Preparation of lotus seed cross-linked
resistant starch

LSCSs was prepared using the methodology of Carmona-
Garcia et al. (9) with slight modifications. Lotus seed starch
(20 g) was dispersed in water (30 mL), mixed with Na2SO4

(2 g), and the pH adjusted to 11.5 using NaOH (1 mol/L). Then,
0%, 1%, 2%, 4%, 6%, 8%, 10%, and 12% (w/w) of mixed cross-
linking reagents (STMP/STPP, 99:1) were added independently,
and stirred at 50◦C for 4 h in a water bath. Then, HCl (1 mol/L)
was used to adjust the pH to 6.5, and the starch slurry was
washed with distilled water until neutralization. Samples were
centrifuged two to three times at 3,000× g, then hot air-dried at
45◦C for 24 h. These samples were designated as LS-(0, 1, 2, 4, 6,
8, 10, and 12) CS, respectively.

Degree of cross-linking

The total phosphorous content of each cross-linked starch
was determined as previously described (10). The samples
(0.5 mg) were digested with a mixture of concentrated nitric
acid and concentrated sulfuric acid. The absorbance of the
solution at 825 nm was determined spectrophotometrically. The
absorbance of the measured solution was compared with the
calibration curve to determine the phosphorous content, and
the phosphorous content was calculated using Eq. (1). The
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FIGURE 1

Standard curve of the phosphorus content.

phosphorous content was used to express the degree of cross-
linking. Standard curve of the phosphorus content is shown in
Figure 1

Phosphorous content (%) =
M1 × V0 × 100
M0 × V1 × 106 (1)

where M1 (µg) represents the phosphorus content of the
sample solution determined from the standard curve, V0 (mL)
represents the volume of the sample solution, M0 (g) represents
the mass of the test sample and V1 (mL) represents an equal
volume of sample solution for determination.

Scanning electron microscopy (SEM)

Scanning electron micrographs of starch samples were
obtained by SEM (PHILIPS = XL30 ESEM, Philips-FEI,
Netherlands) with a magnification of 5,000× operating at
an accelerating voltage of 6.0 kV, as described by Lin et al.
(11) with some modifications. A small amount of sample
was uniformly distributed on the conductive adhesive metal
platform and gold sprayed.

X-ray diffraction

X-ray diffraction patterns and relative crystallinities of the
samples were determined using an X-ray diffractometer (Xpert
3; Analyx Corp. Ltd., Boston, MA, United States), as described
by Zhang et al. (1), with some modifications. The diffraction
angle was scanned from 5◦to 50◦at a scanning rate of 5◦/min,

with a target voltage of 40 kV and a current of 200 mA. The
degrees of crystallinity were calculated by Eq. (2).

Crystallinity(%)
Ac

Aa+Ac
× 100% (2)

where Ac represents the crystalline area on the X-ray
diffractogram, and Aa represents the amorphous area on the
X-ray diffractogram.

Fourier transform infrared (FT-IR)
spectroscopy

The FT-IR spectra of the samples were measured using an
FT-IR spectrometer (Avatar 360, Thermo Nicolet Corporation
Ltd., Madison, WI, United States). The starch samples were
mixed well with dried KBr at a ratio of 1:100, ground in an agate
mortar under an IR lamp and pressed into round thin slices.
The scanning wave number range was 400–4,000 cm−1 with a
resolution of 4 cm−1 and 32 scans.

31P NMR spectroscopy

31P NMR spectra were obtained using an NMR
spectrometer (Avance III 500, Bruker Ltd., Karlsruhe, Germany)
by solid state resonance, as described by Dong & Vasanthan
(2), with some modifications. Pure solid samples were analyzed
without any treatment. The spectrometer was configured for a
frequency analysis of 161.67 MHz at room temperature, using a
double-resonance probe with a CP/MAS detection system.

Swelling power and solubility

Swelling power and solubility were measured in accordance
with a modified method of Miaomiao (12). The samples
(0.4 g) were mixed with water (40 mL), heated, and stirred
in a 95◦C water bath for 30 min. They were then cooled
to room temperature, centrifuged at 3,000 × g for 30 min,
and the weights of the dissolved pellet and the supernatant
after complete evaporation were directly measured. Swelling
power and solubility were calculated using Eqs. (3) and (4),
respectively.

Solubility(%) =
A
W
× 100% (3)

Swelling power(g/g) =
P
W

(1− Solubility) (4)

where W (g) represents the weight of a starch sample; and A and
P(g) represent the weights of the dried supernatants and swollen
granules respectively
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Differential scanning calorimetry (DSC)

The thermal properties of the samples were measured
using a differential scanning calorimeter (DSC-Q2000 TA
Instruments, New Castle, DE, United States), as described
previously (13). Thermal parameters, including melting
enthalpy (1H), onset temperature (To), peak temperature (Tp)
and conclusion temperature (Tc), were recorded.

In vitro starch digestibility

The in vitro digestibility of starch was analyzed in
accordance with the method of Zheng et al. (14) with some
modifications. The samples (0.2 g) were dispersed in sodium
acetate buffer (10 mL, pH = 5.2) and incubated at 37◦C for
20 min. Then, a mixture (10 mL) of α-amylase (200 U/mL)
and amyloglucosidase (160 U/mL) was added and incubation
continued in a 37◦C water bath with shaking (100 rpm/min).
At different time points (0, 20, 40, 60, 90, 120, 150, and 180 min)
starch digest (0.5 mL) was aspirated and mixed with 2 mL of
anhydrous ethanol to inactivate the enzymes, followed by the
addition of distilled water (4 mL) and dilution to 5 mL for
the determination of sugar content using the glucose oxidase
method. The hydrolysis rate, rapidly digestible starch (RDS),
slowly digestible starch (SDS) and resistant starch (RS) contents
were calculated using Eqs. (5), (6), (7), and (8), respectively.

Hydrolysis rate(%) =
Gt
TS
× 0.9 × 100% (5)

RSD(%) =
G20min − G0min

TS
× 0.9 × 100% (6)

SDS(%) =
G120min − G20min

TS
× 0.9 × 100% (7)

RS(%) = (1− RDS− SDS) × 100% (8)

where Gt represents the glucose release from hydrolysis at time
t, G0min represents the free glucose content at 0 min of digestion,
G20min represents the glucose release at 20 min of digestion,
G120min represents the glucose release at 120 min of digestion,
and TS represents the weight of the starch sample.

Statistical analysis

All the experiments were repeated at least three times.
Experimental graphics were processed using Origin 9.0
(OriginLab Corporation, Northampton, MA, United States).
Data were analyzed and statistical significances were determined
using DPS 9.5 (Science Press, Beijing, China) (p < 0.05).

FIGURE 2

Phosphorous content of lotus seed cross-linked resistant starch.
Different lowercase letters represent significant differences
(p < 0.05).

Results and discussion

Crosslinking degree of lotus seed
cross-linked resistant starch

The effect of cross-linking agent (STMP/STPP) addition on
the degree of cross-linking of LSCSs is shown in Figure 2. The
combined phosphorous content showed an obvious increasing
trend along with the increased addition of cross-linking agent.
When the cross-linking agent content was 12%, the amount
of combined phosphorus in the starch was 0.38% ± 0.008%,
which did not exceed the upper limit for food safety (0.4%)
(15). The effects of different cross-linking agent additions
on the crosslinking degree in three crystal forms (A, B and
C) of starch have been investigated by Kou and Gao (16).
They demonstrated that the phosphate group of STMP/STPP
molecules covalently bound with the ionized hydroxyl group of
the anhydroglucose unit of starch. The phosphorus content is a
value that indirectly indicates the degree of cross-linking. This
is because as the amount of cross-linking agent added increases,
the more phosphate groups of STMP/STPP molecules involved
in the cross-linking reaction, the more phosphorus content in
the generated products (17). LSCSs had the highest degree of
cross-linking when the cross-linking agent content was 12%.
This was in agreement with the results of Sharma et al. (7). They
cross-linked broad bean starch at different levels (1, 3, and 5%)
using STMP as a cross-linking agent and found that the degree of
cross-linking increases along with the cross-linking agent’s level.

Scanning electron microscope of lotus
seed cross-linked resistant starch

Scanning electron micrographs of LSCSs are shown in
Figure 3. The starch granule structure of LS-0CS was
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FIGURE 3

Scanning electron microscope images of lotus seed cross-linked resistant starch samples.

complete, circular or oval in shape, with a smooth surface,
whereas those of other LSCSs did not change, which
indicated that the cross-linking reaction did not change their
granular morphology. The granular morphology of LS-0CS
was consistent with that of natural lotus seed starch (1).
However, adhesion between the starch granules of LS-1CS
and LS-2CS was clearly observed owing to the crosslinking
reaction between the starch and the cross-linking agent (See
the arrow), which resulted in the formation of a “bridge”,
and promoted adhesion, between the starch molecules. The
phenomenon in the present study was consistent with the
results reported by Chen et al. (18), in which cross-linked
starches were prepared by cross-linking kudzu starch with
STMP. They found that starches with different degrees of

cross-linking were all similar to the raw starch in terms
of granular morphology, and granular adhesion was also
observed. Here, the starch granules of LS-4CS started to
agglomerate owing to the adhesion phenomenon, and the
degree of agglomeration between LSCSs starch granules became
stronger as the degree of cross-linking increased, which
may result from the introduction of cross-linking agent.
Functional groups change the intermolecular interactions
between starch chains and connect starch molecules to
form spatial network structures. More functional groups
were introduced as the cross-linking degree increased, which
resulted in more starch molecules being connected and a
tighter spatial network structure. Consequently, the degree of
agglomeration was greater.
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FIGURE 4

X-ray diffraction patterns of lotus seed cross-linked resistant
starch samples.

Crystal structure analysis of lotus seed
cross-linked resistant starch

On the basis of the source, a natural starch crystal structure
is categorized as A, B, C or V type. The characteristic diffraction
peaks of the crystalline structure of A-type are at 15◦, 17◦,
17.8◦, and 23◦(2θ), and the characteristic diffraction peaks of the
crystalline structure of B-type are at 5.6◦, 17◦, 19.5◦, 22◦, and
24◦ (2θ) (19). The crystalline structure of C-type is a mixture of
A-and B-crystalline structures, containing characteristic peaks
of both crystalline structures (20). Previous studies have shown
that natural lotus seed starch is a C-type crystal structure with
main diffraction peaks at 14.93◦, 17.03◦, and 23.02◦ (2θ ) (1).

The X-ray diffraction pattern of LSCSs is shown in Figure 4.
All the starch samples had obvious diffraction peaks near 15◦,
17◦, 18◦, and 23◦ (2θ), and a weak diffraction peak at 20◦

(2θ), which indicated that all the starch samples contained
characteristic peaks of the crystalline structures of A- and
B-types, making them C-types. This was in accordance with
the results of a previous study (1). The positions of the main
X-ray diffraction peaks of LSCSs were not affected by the
cross-linking reaction compared with LS-0CS, which did not
change with increasing degree of cross-linking, because the
cross-linking agent acted as a bridge to shorten the distance

between starch molecules without changing the crystallization
structure within the starch granules. Additionally, the cross-
linking reaction mainly occurred in the amorphous regions on
the starch granules that were easily exposed to the cross-linking
agent. Thus, the cross-linking reaction did not change the crystal
type of the starch granule. This conclusion is consistent with
a previous report by Yang et al. (21). Moreover, Falsafi et al.
(22) prepared cross-linked starches at different pH values (9–
12), different cross-linker concentrations (STMP/STPP 99:1,
5–15%) and under sonication and conventional treatment
conditions. They found that the cross-linking reaction did not
affect the crystal type of the corn starch compared with the
raw starch, which was further evidence that the cross-linking
reaction occurred mainly in the amorphous region of the
granule structure.

The relative crystallinity of LSCSs samples are shown in
Table 1. Compared with LS-0CS, the crystallinity of the rest
of LSCSs was significantly reduced. The crystallinity levels
of LS-10CS and LS-12CS were the lowest, which indicated
that the crystallinity decreased as the cross-linking increased,
presumably due to chemical modifications, and that crystal
structure changes occurred during the cross-linking process.
The disorder of chain arrangements was caused by substituting
the hydroxyl group of starch with phosphate, but the disruption
of the crystalline region was not great enough to change
the crystalline shape of starch because of the low cross-
linking degree. These results were consistent with the previous
results reported by Chen et al. (18), which showed that
compared with the native starch, the crystallinity of cross-linked
starch decreased.

Fourier transform infrared (FT-IR)
spectroscopic analysis of lotus seed
cross-linked resistant starch

The variations in helical structures, chain conformations
and crystal forms of starches alter their absorption of infrared
energy. Therefore, the changes in the molecular structure of
different LSCSs were analyzed using FT-IR spectroscopy, as
shown in Figure 5. The extreme broad band at approximately
3,300–3,500 cm−1, which was attributed to inner- and intro-
hydroxyl group stretching vibration, was observed in all the
starches. The band at 2,930 cm−1, which was strong and
sharp, represents the anti-symmetry stretching vibration of
the carbon-hydrogen bond (23). Because of the H2O bending
vibration, and given that the hydroxyl groups in water molecules
were absorbed by starch, the absorption at 1,640 cm−1

is a characteristic absorption band of starch. The shapes
and positions of the spectral peaks of all the LSCSs were
almost the same. The molecular structures of the samples
remained unchanged after the cross-linking treatment, but
further observations revealed that the degree of O-H stretching
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TABLE 1 Relative crystallinity levels of lotus seed cross-linked resistant starch samples.

Sample LS-0CS LS-1CS LS-2CS LS-4CS LS-6CS LS-8CS LS-10CS LS-12CS

Relative crystallinity (%) 32.80± 1.13a 30.03± 0.95b 29.73± 1.12bc 29.63± 0.64bc 29.47± 0.55bc 29.10± 0.42bc 28.20± 0.57c 28.15± 0.21c

Different superscript letters indicate significant differences (p < 0.05).

FIGURE 5

FT-IR spectroscopy of lotus seed cross-linked resistant starch
samples.

vibration near 3,400 cm−1 of the LSCSs changed and the
intensity of the peak weakened compared with LS-0CS. This
indicated that the alcoholic hydroxyl group of the starch was
covalently bound to the phosphate group of the crosslinking
agent. This result was in accordance with the reports of Xie
et al. (4). A new peak at 1,250 cm−1 appeared in the LSCSs,
and it was characteristic of P = O bonds in crosslinked starch,
which confirmed that the starch samples had reacted with
STMP/STPP. This was consistent with the results reported by
Shalviri et al. (24). Moreover, when Ashwar et al. (23) prepared
rice crosslinked starch, the appearance of P = O at 1,244 cm−1

was also observed by FT-IR spectroscopy.

31P NMR of lotus seed cross-linked
resistant starch

During the reaction of starch with cross-linking agents, the
starch phosphate is formed (25). The starch phosphate content

was adjusted by controlling the degrees of starch esterification
and crosslinking, which in turn improved the functional
properties of the starch. The 31P NMR spectra of lotus seed
cross-linked resistant starches are shown in Figure 6. The signal
peaks at -10 ppm to -5 ppm, -5 ppm to 1 ppm, and 3.6 ppm
to 5.2 ppm were attributed to the structures of monostarch
diphosphate (MSDP), distarch monophosphate (DSMP) and
monostarch monophosphate (MSMP), respectively, as studied
previously (5).

The LSCSs had different signal peaks compared with LS-
0CS, indicating phosphate starch ester generation, which further
confirmed the occurrence of the cross-linking reaction. This was
consistent with the results of the FT-IR spectroscopy. LS-1CS
and LS-2CS had weak signals at 4.7 ppm, and LS-4CS, LS-6CS
and LS-8CS had weak signals at 3.6 ppm. The signal peak of
MSMP was hardly observed in LS-10CS and LS-12CS. In the
other LSCSs, a small amount of MSMP production occurred.
Moreover, the MSMP signals at 4.7 ppm, 4.4 ppm, and 3.6 ppm
correspond to the phosphorylation of hydroxyl groups at C-2,
C-3, and C-6, respectively (26). Therefore, the MSMP produced
in LSCSs was mainly located at C-6 and C-3 of the glucose
unit. This indicated that most of the cross-linkages formed in
MSMP were between two glucose residues located on different
starch chains, and a small portion of cross-linkages may have
formed between two glucose residues in the same starch chain.
Presumably, because MSMP was unstable, LS-10CS and LS-
12CS did not produce signal peaks in the range of 3.6 ppm
to 5.2 ppm, which was consistent with the previous results
reported by Sang et al. (27), who found that after stirring
wheat 10.5 in a slurry at pH 11.5 for 3 h at 45◦C, MSMP
signal peaks of wheat starch with a high degree of cross-linking
disappeared completely.

The LSCSs, except LS-1CS and LS-2CS, generated weak
signals in the range of -10 ppm to -5 ppm, indicating that a small
amount of MSDP was generated. During the reaction of starch
with cross-linker (STMP/STTP) under alkaline conditions, the
ring-opening attack of starch alcoholate ions on the cross-
linker first formed mono-amyl triphosphate, which was unstable
during the synthesis reaction. It had four negatively charged
ionized hydrogens, and all three phosphoryl groups on its
triphosphoryl chain had a strong ionizable acidic OH. When
hydroxide or starch alcoholate ions react with monostarch
triphosphate, pyrophosphate is more likely to detach from the
group than orthophosphate, which leads to the reaction of an
RO- or OH- ion with the α-phosphorous of the triphosphonyl
group to form DSMP or MSMP, respectively. With a further

Frontiers in Nutrition 07 frontiersin.org

29

https://doi.org/10.3389/fnut.2022.989042
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-989042 August 3, 2022 Time: 16:22 # 8

Li et al. 10.3389/fnut.2022.989042

FIGURE 6
31P NMR of lotus seed cross-linked resistant starch samples.

reaction, the γ-phosphate group exfoliates, which in turn
generates MSDP. Thus, when a small amount the cross-linking
agent was added, the cross-linking reaction was not strong
enough to generate MSDP.

The LSCSs had strong signals in the range of -1 to 0 ppm and
a weak signal in the range of 0 to 1 ppm, which indicated that
the cross-linking reaction mainly produced DSMP. A stronger
signal in the -1 to 0 ppm range occurred as the degree of
cross-linking increased, leading to a greater content of DSMP.
Because the hydroxyl groups at C-6 and C-3 were more reactive
to the cross-linking reagent than those at C-2, DMSP may
only occur within the hydroxyl groups at C-6 and C-3. Lack
et al. (28) found that the DSMP signal in the range of -
1 to 0 ppm indicated a cross-linking reaction between two
different starch molecules, and the DSMP signal in the range
of 0 to 1 ppm was a cross-linking reaction within the starch
molecule, meaning between the hydroxyl groups of the glucose
part of the same chain. This indicated that the generation of
DMSP in this study was mainly a cross-linking reaction between
the lotus starch molecules. Thus, the cross-linking reaction
under alkaline conditions could induce the existing MSDP and
MSMP to form new cross-linked ester bonds with hydroxyl

groups, increasing the DSMP level. Moreover, as shown in
Figure 5, as the crosslinking degree increased, the peak strength
of DMSP in starch was stronger and the specific gravity of
DMSP was larger. The covalent bonds formed by phosphate
groups are mainly composed of DMSP (29), and combined
with the phosphorous spectral analysis in this study, DMSP was
presumably closely related to the physicochemical and digestive
properties of the LSCSs.

Swelling power and solubility of lotus
seed cross-linked resistant starch

The swelling power and solubility indicate the magnitude
of starch chain interactions within the amorphous and
crystalline regions, respectively (30). The swelling power of
starch granules is the characteristic of a disordered crystalline
region and consequent association between hydroxyl groups
and water molecules via hydrogen bonding. The solubility
levels and swelling powers of the LCSCs under heating
treatment are shown in Figure 7. Compared with LS-0CS,
the solubility of the LSCSs were all significantly lower, with
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FIGURE 7

Swelling powers and solubility levels of lotus seed cross-linked
resistant starch samples. Different lowercase letters represent
significant differences (p < 0.05).

LS-6CS, LS-8CS, LS-10CS, and LS-12CS having significantly
lower solubility levels than LS-1CS. Compared with LS-
0CS, the crystallinity of the LSCSs were also all significantly
lower. This indicated that the decrease in solubility was
related to crystallinity. These results were consistent with
the previous results reported by Chen et al. (18) in which
the decrease in crystallinity contributes to the decrease in
starch granule solubility. According to the 31P NMR analysis,
the higher cross-linked LSCSs contained more phosphate
groups forming covalent bonds, and the specific gravity of
DMSP was greater. Additionally, the starch molecules were
strengthened by covalent bonding, which caused a significant
decrease in solubility. Shi et al. (12) prepared pea cross-linked
starch using different concentrations of cross-linking agents
(STMP/STPP, 99:1, w/w). They found that the solubility of
pea cross-linked starch was lower than that of natural starch
and that it decreased as the amount of cross-linking agent
added increased.

The swelling power of LSCS was also significantly lower
than that of LS-0CS because the cross-linking reaction enhanced
the intra- and intermolecular bonds between amylose and
amylopectin, increasing the density of starch by binding
the starch chains together, decreasing the mobility of the
macromolecular chains and the degree of decomposition of
starch granules during pasting, which limited the expansion of
starch granules. However, there were no significant differences
among the swelling powers of the LSCSs, indicating that within
a certain range, the leaching of starch molecules from the starch
granules was not significantly affected owing to the increase
in cross-linking. Because the hydrogen bond in starch was
broken during the pasting process and replaced by hydrogen
bond with water, the FT-IR spectroscopy showed that the
peak of LS-0CS located at 3,400 cm−1 was related to the
hydroxyl stretching vibration of free and hydrogen-bonded

hydroxyl groups, and the cross-linking reaction weakened the
hydrogen bond during the pasting process, which was not
easily replaced by the hydrogen bond of water. Thus, the starch
granules remained stable and did not easily swell. These results
agreed with that of Chen et al. (18). They cross-linked kudzu
starch with STMP at different temperatures to obtain cross-
linked kudzu starches with different degrees of cross-linking,
and the resulting starches’ swelling powers were significantly
lower than that of the original starch. Additionally, the swelling
power did not change significantly as the degree of cross-
linking increased.

Thermal stability of lotus seed
cross-linked resistant starch

The thermodynamic parameters of the LCSCs are shown
in Table 2. Compared with LS-0CS, the phase transition
temperatures of the LSCSs increased, with the T0 of LS-12CS
being significantly higher than those of LS-1CS, LS-2CS, LS-
4CS, and LS-6CS, and the Tc and Tp values of LS-6CS, LS-
8CS, LS-10CS, and LS-12CS being significantly higher than
those of LS-1CS, LS-2CS, and LS-4CS. This indicated that
higher temperatures were required for LSCSs pasting owing
to the covalent bonds formed by phosphate groups in the
LSCSs that strengthened the bonding between starch molecules
to different degrees. Additionally, the cross-linking treatment
inhibited the melting of crystals in starch granules and tightened
their lattice structures, which increased the pasting temperature.
As indicated by the 31P NMR analysis, the covalent bonds
formed by phosphate groups were mainly composed of DMSP
(29). The specific gravity of DMSP increased along with the
degree of cross-linking; therefore, LS-12CS had the highest
phase transition temperature and required the highest pasting
temperature. The transition temperature range of starch (Tc–T0)
is a measure of the integrity of the microcrystalline structure of
amylopectin. The higher the values of Tc–T0, the wider the heat
absorption peak (31). Compared with LS-0CS, the Tc–T0 values
of the LSCSs were significantly higher, with the Tc–T0 values
of LS-12CS being significantly higher than those of LS-1CS
and LS-2CS, which implied that the amylopectin microcrystals
were more uniform after cross-linking treatment. These results
were consistent with the study of Dong and Vasanthan (32),
in which broad bean cross-linked and pea cross-linked starches
were prepared, and the DSC showed that the T0, Tp, Tc, and Tc–
T0 values of the natural bean starch were significantly lower than
those of the cross-linked starch.

The energy required for the dissociation of the crystalline
double helix is represented as 1H. Compared with LS-0CS
and LS-1CS, the 1H values of the remaining LSCSs were
significantly lower and the 1H decreased significantly as the
degree of cross-linking increased. This indicated that less
thermal energy was required to melt the double helixes of the
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TABLE 2 Thermal stability levels of lotus seed cross-linked resistant starch samples.

Sample To (◦C) Tp (◦C) Tc (◦C) Tc-To (◦C) 1 H1 (J/g)

LS-0CS 67.71± 0.16d 74.58± 0.10e 79.40± 0.21c 11.70± 0.37c 16.41± 0.03a

LS-1CS 68.12± 0.18cd 76.29± 0.14d 81.70± 0.16b 13.59± 0.02b 16.28± 0.04a

LS-2CS 68.27± 0.11bcd 76.57± 0.11c 81.90± 0.16b 13.63± 0.04b 14.36± 0.07b

LS-4CS 68.42± 0.15bc 76.96± 0.07b 82.11± 0.10b 13.70± 0.05ab 13.71± 0.06c

LS-6CS 68.51± 0.21bc 77.38± 0.13a 83.04± 0.22a 14.23± 0.01ab 13.18± 0.05d

LS-8CS 68.72± 0.42abc 77.41± 0.08a 83.09± 0.23a 14.37± 0.65ab 10.65± 0.06e

LS-10CS 68.82± 0.40ab 77.51± 0.12a 83.20± 0.17a 14.38± 0.57ab 10.59± 0.04e

LS-12CS 69.19± 0.25a 77.52± 0.16a 83.42± 0.13a 14.53± 0.27a 10.31± 0.10f

Different superscript letters in the same column indicate significant differences (p < 0.05).

FIGURE 8

Hydrolysis rates of lotus seed cross-linked resistant starch
samples.

LSCSs, probably due to the more complex and amorphous
internal structures of cross-linked starches. These starch samples
were not only connected by hydrogen bonding but also
molecularly connected by cross-linking reactions, which was
consistent with the change in the relative crystallinity calculated
by X-ray diffraction. Similar findings were determined in cross-
linked starches from common maize, broad beans and field peas
(32), in which the cross-linking reaction increased the thermal
stability, broadened the value of Tc–T0 and decreased the 1H
value to varying degrees compared with natural starches.

In vitro digestion characteristics of
lotus seed cross-linked resistant starch

The hydrolysis curves and digestion properties of the
LSCSs are shown in Figure 8. Under the same digestion
conditions, the hydrolysis rates of the LSCSs were lower than
that of LS-0CS, with the most significant effect on LS-12CS
after 120 min of digestion. This indicated that the hydrolysis
effect of digestive enzymes on starch granules was significantly

reduced by the cross-linking reaction, resulting in their lower
digestibility levels. The hydrolysis patterns of the LSCSs per
unit time showed that their digestibility decreased to different
degrees with the length of the cross-linking reaction. This
indicated that some of the hydroxyl groups of starch were
replaced by phosphate ester bonds generated by the cross-
linking reaction, and the presence of phosphate groups on
the starch chains sterically hindered the formation of starch-
amylase complexes. The abilities of digestive enzymes to enter
the internal structures of starches were enhanced by the swelling
of starch granules; consequently, the limited swelling of cross-
linked starch inhibited its hydrolysis rate. Moreover, the SEM
analysis revealed that the higher the degree of cross-linking, the
stronger the agglomeration of starch granules, which to a certain
extent inhibited the digestive enzymes. This was consistent
with the results of Shi et al. (12), who cross-linked starch
with different concentrations of STMP and STPP (99:1, w/w)
and showed that the higher the degree of cross-linking, the
more resistant the starch was to digestion by enzymes. This
may also be related to various other factors, such as solubility
and swelling power.

The starch fractions of the LSCSs are shown in Figure 9.
According to a component availability study of the in vitro
digestion of starch, starch can be classified into RDS ( < 20 min),
SDS (20–120 min) and RS ( > 120 min) in accordance with
the time of starch digestion (33). The modulating effect of
the cross-linking reaction on the digestive fraction of lotus
seed starch may be clarified by measuring and calculating the
variation in the difference between the contents of each fraction
of the starch samples. As observed in the Figure 8, the RS
content was significantly increased in the LSCSs compared
with LS-0CS, and the RDS and SDS contents of the LSCSs
decreased with the length of the cross-linking reaction, whereas
the RS content increased accordingly. In the cross-linking
reaction, the amorphous region was preferentially bound by
the phosphorylating reagent, resulting in a change in the
starch structure, decreases in the RDS and SDS contents
and a corresponding increase in the RS content. Among
the various cross-linking reaction products of starch, DSMP
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FIGURE 9

RDS, SDS, and RS contents of lotus seed cross-linked resistant
starch samples. Different lowercase letters represent significant
differences (p < 0.05).

was reported to limit the enzymatic action of starch in the
presence of a limited number of combined phosphorous and
contributed to the formation of indigestible starch fractions (2).
According to the phosphorous spectral analysis, the specific
gravity of DMSP increased along with the degree of cross-
linking. Consequently, the RS content of LS-12CS was the
greatest among the samples. In summary, the enzymatic
resistance of cross-linked RS of lotus seeds was influenced
not only by solubility and swelling power, but also by
structural properties, such as starch granule morphology and
crystal structure.

Conclusions

Different concentrations of cross-linking agents
had significant effects on the structural properties and
physicochemical properties of LSCSs, and the degree of
cross-linking of LSCSs increased along with the addition of
cross-linking agents. The cross-linked starches all exhibited
appearances similar to the original starch, but the cross-
linking agent played a “bridging” role, causing the granules
to gradually aggregate, which resulted in more starch chains
being “bound” together by the covalent bonds formed by
the phosphate groups. The covalent bonds formed by the
phosphate groups in the LSCSs were mainly composed of
DMSP. The level of DMSP formed was correlated with the
physicochemical properties of the LSCSs. Moreover, the
cross-linking reaction mainly occurred in the amorphous
regions. Compared with LS-0CS, the more complex and
amorphous internal structures of LSCSs allowed the cross-
linking reaction to raise the transition temperature, but
lowered 1H and the solubility, which was also related to

the degree of LSCSs agglomeration. The RS increased along
with the level of cross-linking, indicating a limitation for
the digestive enzymes. The higher resistance of LS-12CS to
digestion was not only related to its crystallinity, high DSMP
specific gravity and other structural properties, but also to
its low solubility. Based on its low solubility, heat resistance
and high RS content, LS-12CS is a potential prebiotic for
the food industry.
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1College of Light Industry and Food Engineering, Guangxi University, Nanning, China, 2Spice and

Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China,
3Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan

Province, Wanning, China, 4Women’s and Children’s Hospital of Wanning, Wanning, China

Nowadays, the highly e�ective modified technology to starch with various

digestibility is gaining interest in food science. Here, the interactions between

glycemic release characteristics and fine supramolecular structure of cassava

(ECS), potato (EPS), jackfruit seed (EJFSS), maize (EMS), wheat (EWS), and

rice starches (ERS) prepared with improved extrusion modification technology

(IEMS) were investigated. The crystalline structures of all extruded cooking

starches changed from the A-type to V-type. IEMS-treated cassava, potato,

and rice starches had broken α-1.6-glycosidic amylopectin (long chains).

The others sheared α-1.4-glycosidic amylopectin. The molecular weight,

medium and long chain counts, and relative crystallinity decreased, whereas

the number of amylopectin short chains increased. The glycemic index (GI)

and digestive speed rate constant (k) of ECS, EPS, EJFSS, and EWS were

improved compared to those of raw starch. Although EMS and ERS had

degradedmolecular structures, their particlemorphology changed from looser

polyhedral to more compact with less enzymolysis channels due to the

rearrangement of side chain clusters of amylopectin, leading to enzyme

resistance. The starch characteristics of IEMS-treated samples significantly

di�ered. EPS had the highest amylose content, medium chains, long chains,

and molecular weight but lowest GI, relative crystallinity, and k. ERS showed

the opposite results. Thus, IEMS may a�ect starches with di�erent GIs to

varying degrees. In this investigation, we provide a basis for wider applications

of conventional crop starch in the food industry corresponding to di�erent

nutrition audience.

KEYWORDS

glycemic release rate, improved extrusion cooking technology, staple crop starch, fine

supramolecular structure, principal component analysis
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Highlights

- Various glycemic indices (GI) starches were treated by new

extrusion cooking (IEMT).

- GI of IECT rice, maize starch was lower than the native, that

differed with others.

- Crystal structure of IECT starches became V-type from

A-type after IECT treatment.

- The degraded mode of amylose glycosidic bond was

associated with amylose content.

- IECT starches showed lower molecular weight, fraction of

long chain than the native.

Introduction

Starch is a major macronutrient required by humans and

is frequently extracted from unripe fruit pulp, seeds, roots,

tubers, stems, and grains of crops such as jackfruit, cassava,

rice, wheat, potato, and maize. Because different starch sources

have various molecular encapsulation reaction of glucan chains

of amylopectin and amylose, starches are defined as CA/B-

types, A-types, and B-types based on their crystal structure

(1). The Va, Vh and B+V-type crystal structure is usually

characteristic of modified starch (2). Starches from different

crops have unique supramolecular structures causing such foods

to have variable digestibility (3). According to Li et al. (4),

jackfruit seed and cassava starches are medium-level blood

glucose foods, potato starch is a low-level blood glucose food,

and starches of common staple crops such as rice starch are

high-level blood glucose foods. This probably produced distinct

modification mechanisms between them. However, most native

starches are difficult to digest in the initial digestion stage

because of their low rate of enzymatic hydrolysis (k), preventing

timely nutrient release from native starches in the human

body. Furthermore, native starches have a high weight-average

molar mass (Mw), high amylopectin long-chain distribution,

and high relative crystallinity (Rc), leading to a slow glycemic

release. And it is difficult to maintain the necessary nutrition

of the human body (2). Therefore, native starches should

be modified to improve their digestion rate in the human

intestine. The various glycemic release characteristic of cassava,

Abbreviations: ECS, extrusion cooking cassava starch; EPS, extrusion

cooking potato starch; EJFSS, extrusion cooking jackfruit seed starch;

EMS, extrusion cooking maize starch; EWS, extrusion cooking wheat

starch; ERS, extrusion cooking rice starches; IEMS, improved extrusion

cooking technology; DMSO, dimethyl sulfoxide; HI, hydrolysis index;

GI, glycemic index; RDS rapidly digestible starch; SDS slowly digestible

starch; RS, resistant starch; SDI, starch digestible index; C∞, equilibrium

concentration; k, enzymatic hydrolysis speed rate; Mw, weight-average

molar mass; Mn, number-average molar mass; Rg, radius of gyration; Rc,

relative crystallinity; PCA, principal component analysis.

potato, jackfruit seed, maize, wheat, and rice starches were

due to the significantly different amylose content, crystalline

structures, chain length distribution, molecule weight and

particle morphology. This probably also might produce the

distinct modification mechanisms between them (1, 4). In

addition, based on Zhang et al. (2), extrusion modification could

be used to prepare a pregelatinized starch. This kind of starch

could use directly as an edible food to provide essential nutrients.

The supramolecular structures and digestibility

characteristics of native starches can be changed during

extrusion cooking, high-pressure microfluidization,

hydrothermal treatment, and annealing treatment (5, 6).

Extrusion cooking have been becoming a common modification

technology, which was a continuously elevated temperature

process with a fast-heating rate. During extrusion cooking

process, the moistened expandable starch is physically swelled

through an extremely high shear stress, temperature and

pressure compared with those of other modification methods.

Moreover, the improved extrusion modification technology

was initially mentioned by Zhang et al. (7). It can alter the

molecular structure of starch by using more mild extrusion

cooking conditions (lower shear stress and temperature)

and higher intensity of pressure than those of a common

extrude. We previously developed an improved extrusion

modification (IEMS) system as a gel-modification pattern

for changing starch digestibility. This method can alter the

molecular structure of starch because it uses a lower shear

stress and temperature and higher pressure compared to

that of many other approaches (1). According to Al-Rabadi

et al. and Zhang et al., as the starch is sourced from diverse

plant varieties, the changes of supramolecular structure, in

vitro glycemic release rate, and estimated glycemic level of

starch samples could vary greatly after treated by extrusion

cooking. In our previous study, we used IEMS to explore the

digestion mechanism of the resistant starch content in JFSS (5).

However, the supramolecular structures and in vitro digestive

kinetics of extruded cooking staple crop starch with various

estimated glycemic indices have not been compared, limiting

the exploitation and utilization of starch resources from staple

crops. Based on the various digestibilities of extrusion cooking

starch with various estimated glycemic indices, starch can be

produced as an excellent base for thickeners, stabilizers, and

potential wall materials for microencapsulation in starch-basis

processing industries., to improve the rate of nutrient release

from food.

Therefore, jackfruit seed (JFSS) and cassava, rice, wheat,

potato, and maize starches were extracted and used to measure

the molecular weight distribution, branching chain distribution

of amylopectin, crystallization characteristics, amylose content,

digestive kinetics, and estimated glycemic index after IEMS

treatment. The possibly distinct in vitro digestive mechanism

of starch with various glycemic indices prepared by IEMS was

further analyzed. This study provides a basis for comprehensive
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application of starches of various digestibility levels in the

food industry.

Materials and methods

Materials

Fruits of the Malaysia 1 jackfruit cultivar were collected

in 2019 from the Xinglong Tropical Botanical plantation

(Wanning, Hainan, China) and assigned voucher number

202009. Cassava, maize, potato, wheat, and rice were purchased

from a local market (Nanning, Guangxi, China).

Preparation of di�erent starches

Jackfruit seeds, cassava, maize, potato, wheat, and rice were

pre-treated quickly after drying in a drying cabinet at 50◦C. The

pre-treated samples were milled with distilled water (1:3 w/w)

for 2min in a colloid grinder. Then pH of starch slurry was

adjusted to 7.0, mixed with neutral protease solution (0.015%

w/w) (Alphalase NP, 240,000 U/g, Sigma, St. Louis, MO, USA),

and transferred into a constant-temperature shaking bed (60◦C,

9 h and 150 rpm). The mixed solution was filtered through

a filter cloth (200 mesh) and centrifuged (3,000 ×g, 5min)

to remove residual brown impurities. After repeated washing

with distilled water, the sediment was collected. The centrifuged

sediments were repeatedly cleaned and collected. The resulting

wet starch was dried under vacuum (50◦C) until the moisture

content was lower than 13 g/100 g. After passing through a 200-

mesh sieve, the dry starch was stored in a vacuum dryer until

use (8).

Modification of di�erent starches with
IEMS

Extrusion modification experiments were conducted in a

twin-screw extruder equipped with a barrel with self-adapting

multiple-region temperature system (7). The length-width ratio

of the extruder screwwas approximately 19.5:1, and the diameter

was 100mm. The self-adapting multiple-region temperatures

were adjusted to 50, 65, 85, 95, and 100◦C, respectively. The

starch samples with 30% w/v water prepared by that calculated

water and the raw starch with certain quality (dry basis) were

added to a flourmixingmachine within the extrusion equipment

(13 rpm, 5min). The screw speed range was 25 rpm. The starch

was filled into a revolving feed system at 13 rpm. The extrudates

were cut with a rotary cutter at 6 rpm, dried under vacuum, and

stored in a vacuum dryer. The extrusion-cooked JFSS, cassava,

maize, potato, wheat, and rice starches were named as EJFSS,

ECS, EMS, EPS, EWS, and ERS, respectively.

In vitro digestibility of extrusion-cooked
starches of various estimated glycemic
levels

The proportions of resistant starch (RS), slowly digestible

starch (SDS), and rapidly digestible starch (RDS) were

determined as described by Englyst et al. (9) with slight

modifications. The mixed enzyme solution, which contained

≥225 U/mL of amyl-glucosidase and 20 U/mL of porcine

pancreas α-amylase (Megazyme, Wicklow, Ireland), was

transferred to 20mL sodium acetate buffer (0.1M, pH 5.2)

with 1 g of starch. The mixed liquids were incubated in a

constant temperature water bath (36.5–37◦C, 180 rpm). The

enzymes were inactivated by adding 70% ethanol (20mL)

to the supernatant (0.5mL) at 20- and 120-min intervals.

This solution was centrifuged (4,000 ×g, 10min), and the

supernatant was collected to determine the glucose content

using a glucose oxidase-peroxidase method (Megazyme) and

a spectrophotometer (UV-2700, Shimadzu, Kyoto, Japan) at

510 nm. The RDS, SDS and RS contents in extrusion-cooked

starches were calculated as follows:

RDS (%) =
(G20 − GF) × 0.9

TS

SDS (%) =
(G120 − G20) × 0.9

TS

RS (%) =
[TS− (RDS+ SDS)]

TS

where G20 (%) is the released content of glucose within 20min,

G120 (%) is the released content of glucose at 120min, GF (%) is

the free glucose content, and TS (%) is the total starch content.

Characteristics of in vitro digestibility
kinetics of starch

The in vitro digestibility kinetics of starch was determined as

described by Goñi et al. (10) with slight modifications. 15-mL

sodium acetate buffer solution was mixed with 200mg starch

(dry basis). Then Amyloglucosidase (15 U/mL) and porcine

pancreatic α-amylase (290 U/mL) (total 10mL) (Megazyme)

and seven glass were added to that solution. The mixed liquids

were reacted in a shaking bed (37◦C, 150 rpm). At 10-, 20-,

30-, 60-, 90-, 120- and 180-min, absolute ethanol (4mL) was

added to the supernatant (0.5mL). This solution was centrifuged

at 6,000 ×g for 15min at 10◦C, and the supernatant was

transferred to glucose oxidase-peroxidase to analyze the glucose

content. The percentage of enzymatic hydrolysis was calculated

as follows (11):

Percentage of hydrolyzed starch (%) =
Gt × 25× 0.9

200
× 100
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where 0.9 is the transformation coefficient from starch to

glucose (162/180 w/w), 25 is the dilution factor, and glucose

concentration within t min was defined as Gt.

The equilibrium concentration (C∞) and speed rate

constant (k) (h−1) were obtained from the enzyme hydrolysis

curves, and the first-order formulas were as follows:

C = C∞

(
1− e−kt

)
, C∞ ≤ 100%

AUC = C∞

(
tf − to

)
−

(
C∞

k

) [
1− exp− k

(
tf − t0

)]

where AUC is the area under the fitted curve, t0 and tf are the

initial and final times of hydrolysis, and t is the time of in vitro

digestibility kinetics (min).

Predictive glycemic index of starch

The area of the in vitro digestibility kinetics curve was

calculated as the hydrolysis index (HI) and estimated glycemic

index (GI) corresponding to white bread as a reference using the

following equation (12):

HI =
AUC (sample)

AUC (white bread)

GI = 39.71+ (0.549HI)

Granule morphology analysis

As described by Zhang et al. (8), a scanning electron

microscope was used to observe the granule morphology

of starch samples (Quanta-200, FEI Company, Hillsboro,

OR, USA). The accelerating voltage was set to 15 kV and

magnification was 60× and 500×.

Fine structure of starch samples

According to Bi et al. (13), the fine structure was

generally analyzed by determining the debranched chain length

distributions. Pullulanase (10 µL; 1,000 NPUN/g, 50mM, pH 6,

Sigma-Aldrich) was mixed with 40mg starch for debranching.

Short chains [A chains, degree of polymerization (DP): 6–12],

middle short chains (B1 chains, DP: 13–24), middle long chains

(B2 chains, DP 25–36) and long chains (B3+ chains, DP: ≥ 37)

of starch samples were analyzed in a Cabopac PA200 column

(3 × 250mm, Dionex Corporation, Sunnyvale, CA, USA)

using high-performance anion-exchange chromatography with

pulsed amperometric detection (ICS-5000, Dionex Corporation)

connected to a ED50 electrochemical detector.

Molecular structure analysis

As described by Zhang et al. (14), the molecular structure

was analyzed by determining the molecular weight distribution.

Completely dissolved solution (starch samples/dimethyl

sulfoxide was 2 mg/mL, 90◦C, 24 h) was evaluated with

an absolute molecular weight analysis system including

multi-angle laser light-scattering detector (Wyatt Technology

Corporation, Santa Barbara, CA, USA), refractive index detector

(Wyatt Technologies), and high-performance size-exclusion

chromatography (Wyatt Technology Corporation). The guard

column, Shodex OHpak SB-804 HQ and Shodex OHpak SB-806

HQ (Showa Denko K.K., Tokyo, Japan) Phenogel columns

were used. The column temperature was 60◦C, and flow rate

of the dimethyl sulfoxide mobile phase was 0.3 mL/min. The

sample injection consisted of 100 µL. Data obtained using

this system were analyzed with Astra software (version 5.3.4,

Wyatt Technology).

Crystal structure and degree of
gelatinization analysis

For crystal structure analysis, an X-ray diffractometer (Bede

XRD Di System, Durham, UK) operated at 40 kV, 4 to 40◦,

200mA, and 0.154 nm CuKα radiation was used. Relative

crystallinity (Rc) was calculated using MDI Jade v6.5 (15). It was

measured by that the ratio of peak cell area to total area.

The degree of gelatinization (DG) was defined as the

glucose content of per gram of gelatinized starch sample after

enzymolysis. Therefore, DG could be carried out based on

method of enzymatic detection. 100mg starch sample were

passed 200 mesh sieve and hydrolyzed by amyloglucosidase

(50U, 37◦C, 30min). The glucose oxidase-peroxidase method

used to detect glucose content. The DG was measured by the

ratio of starch samples to fully gelatinized starch standard.

Proportions of amylose and amylopectin

According to Chen et al. (1), a mixed liquor composed of

1mL absolute alcohol and 9mL of 1M sodium hydroxide was

prepared, which was mixed with 100mg samples (dry basis) and

boiled in a water bath for 15min. This solution was diluted

to 100mL using distilled water. Next, 2.5mL of the diluent

were further diluted to 50mL using distilled water. The 0.50mL

of acetic acid solution (1M) and 1mL of iodide and iodine

(0.0025M I2, and 0.0065M KI) was used to react with that

diluent, then stewing 20min for Color reaction. The absorbance

was measured in an ultraviolet spectrophotometer at 620 nm

(SPECORD 250 plus, Analytik Jena, Germany). The standard

curve of potato amylose (Alphalase NP, Sigma) was used to
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TABLE 1 In vitro nutritionally starch fractions, kinetic equation characteristics of enzymatic hydrolysis and glycemic index of test material.

Starch samples RDS (%) SDS (%) RS (%) C∞ (%) k (h−1) HI GI

EJFSS 46.28± 6.41de 34.60± 3.86de 19.11± 2.56b 82.52± 1.44e 1.88± 0.10bc 96.50± 1.70e 92.69± 0.93e

ECS 53.99± 1.74ab 30.75± 1.33f 15.26± 0.40c 85.28± 3.49d 1.61± 0.20d 99.69± 4.11d 94.43± 2.26d

EPS 28.32± 0.80f 42.13± 4.25b 29.55± 5.05a 79.23± 1.69f 1.43± 0.09f 92.22± 1.62f 90.34± 0.89f

EMS 50.03± 5.18cd 36.83± 1.28d 13.13± 3.90cd 90.42± 2.51b 1.55± 0.13de 105.69± 2.96bc 97.73± 1.62bc

EWS 55.22± 1.79a 41.80± 1.11bc 2.98± 0.27e 92.25± 2.02a 1.90± 0.13b 107.88± 2.38a 98.93± 1.30a

ERS 50.44± 0.52c 47.66± 0.75a 1.90± 1.26f 90.78± 2.45b 2.06± 0.18a 105.17± 2.88ab 98.00± 1.58ab

RDS, SDS and RS were rapidly digestible starch, slowly digestible starch, and resistant starch. C∞ and k represented equilibrium concentration and first-order kinetics constant. HI and GI

were predictive hydrolysis index and glycaemic index. Samples with different letters in the same column are significantly different at P < 0.05.

calculate the amylose and amylopectin contents.

Amylopectin (%) = (1− amylose(%))× 100

Statistical analysis

The means, standard deviations, and principal component

analysis (PCA) performed using SPSS (version 20.0; SPSS, Inc.,

Chicago, IL, USA) were used to determine the interaction

between the glycemic release rate characteristics and fine

supramolecular structure. The data was analyzed by one-way

ANOVA at 5% level of significance. The significance of

differences between parameters (at p < 0.05) was determined

using Duncan’s multiple.

Results and discussion

In vitro nutrition fractions

The in vitro nutrition fragments (RDS, SDS, and RS) of

EJFSS, ECS, EPS, ERS, EWS, and EMS were shown in Table 1.

The RDS, SDS, and RS showed obvious diversities among the six

sample types (p < 0.05). EPS showed the maximum proportion

of RS but minimum RDS values. ERS showed the maximum

SDS and lowest RS. The highest RDS content was observed in

EWS and lowest SDS content was observed in ECS. Therefore,

EPS showed the strongest enzyme resistance, followed by EJFSS,

ECS, EMS, and EWS. ERS was also susceptible to enzymolysis.

Moreover, according to Zhang et al. (3), cassava, maize, potato,

wheat, and rice starches have an A-type crystalline structure,

whereas potato starch has a B-type crystalline structure. Wang

et al. (16) also found that cooked some mung bean starch

and sago starch with B-type crystalline structure also showed

significantly gelatinization characteristics at a molecular level,

compared with A-type crystalline corn, oats and barley starch.

This phenominon might be exlpained by that the diversities

of ishort chain aggregates, isolated single helices rregularly and

packed structures between B-type crystalline starch and A-type

crystalline satrch (16, 17). Therefore, the highest RS in EPS

may be explained by that although extrusion cooking starch

might all show V-type crystal structure, the different crystal

types between native potato starch and other raw samples still

have different modification mechanisms, leading to the various

relative crystallinity and repetition distance of semicrystalline

lamellar. According to Ma et al. (17), for the extruded A-type

crystalline starch samples, different nutrition fragments were

produced, possibly because of the responsiveness of α-amylase to

the hyperfine structure of starch pellets. Our results were similar

to those of hull-less barley starch, which showed an RS content

of 17–56% after extrusion cooking (18). The RDS content of the

extrusion-cooked starch samples (28.32–55.22%) was consistent

with that of extruded high-amylose maize flour (RDS 19.32–

66.83%); however, the SDS content (30.75–47.66%) was broadly

higher than that of extruded high-amylose maize flour (SDS

2.70–36.51%) (19). These differences may be ascribed to the

higher degree of amylopectin polymerization in our samples

compared to that in extruded high-amylose maize flour.

The RDS contents of all extruded cooking samples were

notably higher compared to those in the corresponding raw

samples, whereas the RS content was much lower (p < 0.05)

(Table 1, Supplementary Table S2). After IEMT treatment, the

SDS contents of the JFSS and potato starch were significantly

higher, while those of the other native starches were significantly

lower (P < 0.05). These results indicate that most RS and SDS

in ECS, ERS, EWS, and EMS were converted into RDS, whereas

the RS in EJFSS and EPS was converted to both RDS and

SDS. According to Zhang et al. (19), extrusion promotes the

formation of defective crystalline regions and disordered semi-

crystalline lamellae. This may lead to improved digestibility of

starch samples after extrusion cooking. In addition, based on Li

et al. (4), the different conversion abilities of nutrition fragments

between JFSS and potato starch compared to other kinds of

starch, may be related to the higher amylose content in JFSS

(27.01%) and potato starch (24.82%) than in the other starch

samples (3.25–21.65%). This led to higher formation of nearly

perfect crystals and better short-range order structures for JFSS

and potato starch, resulting in different levels of digestibility

after extrusion. Changes in the in vitro nutrition fraction

contents of the six types of starch during extrusion cooking were
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FIGURE 1

Primitive curve (A) and forecast curve (B) of in vitro hydrolysis of di�erent extrusion-cooked starch samples.

similar to those of extruded waxy rice flour, in which the RDS

increased from 50.50% to 78.88%, RS decreased from 14.74 to

2.36%, and SDS decreased from 34.77 to 6.84% (20).

However, the in vitro nutrition fractions contents suggested

by Englyst et al. (9) were not confirmed in accurate enzymolysis

studies (21). Hence, the in vitro glycemic release rate and

estimated glycemic level should be analyzed to assess the

digestibility of native starch extrudates.

In vitro digestive kinetics of IEMS starches

As shown in the primary and fitted digestive curves in

Figures 1A,B, the enzymatic hydrolysis rates followed the order:

ERS > EWS > EMS > ECS > EJFSS > EPS. Le Corre et al. (22)

reported that starch digestion mainly occurs in the amorphous

region formed by amylose in the entangled state and branch

points of low DP amylopectin. Therefore, the various extrudate

digestion rates may be explained by their distinct distribution

patterns of entangled state amylose, which forms a differently

compacted amorphous structure. The hydrolysis curve of

extrudates showed a rapid increase from 0–75min, after which

the hydrolysis curve increased slowly to a maximum over 75–

180min (Figures 1A,B, Supplementary Table S1). Zhang et al.

(8) also reported that extrusion-cooked JFSS undergoes faster

hydrolysis in 0–60min compared to that in 90–180min. The

digestion rates of the starch extrudates were 59.21–78.80%,

72.49–89.95%, and 80.33–96.39% at 60, 120, and 180min,

respectively. This result indicates that all extrudates were weakly

resistant to digestion. Furthermore, the hydrolysis curves of

extrudates samples were notably higher compared to those of

the corresponding native samples (p < 0.05) (Figures 1A,B,

Supplementary Tables S1, S2). This occurred possibly because

the fragments of amylose and amylopectin reassociated, and the

polymers were reconstituted with weak intermolecular forces

during the retrogradation stage of extrusion cooking starch

based on Zhang et al. (19, 20). Zhang et al. (8) reported similar

results; at all time intervals, the hydrolysis ratio of extrusion-

cooked JFSS (0–91.68%) exceeded the corresponding hydrolysis

ratio of native starch (0–31.84%).

The C∞ values were in the following order: EWS > ERS

≈ EMS > ECS > EJFSS > EPS (Figure 1B, Table 1). The

starch sample extrudates had significantly increased C∞ values

compared with those of the native starches (Table 1 and S1 p

< 0.05), whereas ERS and EMS showed the opposite trend.

The C∞ values of ERS (90.78%) and EMS (90.42%) were

considerably lower than those of raw rice starch (91.06%) and

maize starch (92.05%), respectively; these results differed from

those of enzymatic hydrolysis curve analysis. C∞ is significantly

correlated with the enzymatic hydrolysis time intervals (12) and

k (5). C∞ represents the predicted final glycemic release content

after the digestive reaction. The difference may be attributed

to the various k values among EJFSS, ECS, EPS, ERS, EWS,

and EMS, resulting in different C∞ values. To determine the

mechanism of the change in C∞ during extrusion cooking and

explain the differences among the results, the k of native starch

extrudates was analyzed.

ERS and EWS had higher k values than EJFSS, ECS, EPS,

and EMS, indicating faster glycemic release in ERS and EWS

and leading to higher C∞ than that in the other extrudates.

This may have led to a notably lower C∞ of ERS and EWS

compared to those of raw starches, whereas the others were

higher (Table 1, Supplementary Table S2). Based on previous

studies (17, 23), the branching chain distribution properties of
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amylopectin and crystallization characteristics may have caused

differences in k among the extrudate samples. Furthermore, k of

extrusion cooked starches (1.55–2.06 h−1) exceeded that of raw

starches (Table 1, Supplementary Table S1). This may be because

the enzymatic hydrolysis site transforms from the amorphous

region near the particle surface into the amorphous structure

near the center in starch particles, as reported by Jiang et al. (24).

AlRabadi et al. (25) reported similar results, where the k value

of sorghum starch extrudates (2.12 h−1) was higher than that of

raw starch (0.20 h−1).

Glycemic index analysis

According to Goñi and Valentín-Gamazo (11), a high blood

glucose level was considered as GI ≥ 70. A GI value between 55

and 69 is considered as a medium glycemic index level and <55

indicates a low glycemic index level (10). The HI and GI values

are shown in Table 1. All extrusion cooking samples had high

blood glucose levels (GI: 90.34–98.93, HI: 92.22–107.88). The HI

andGI values were in the following order: EWS> ERS≈ EMS>

ECS > EJFSS > EPS, possibly because of the various quantities

of more ordered mass fractal structure of the extrudates (1). The

HI and GI values of the extrusion-modified samples remarkably

surpassed those of raw starches (p < 0.05), except for ERS and

EMS (Table 1, Supplementary Table S2), possibly because the

numerous branch linkages in the crystallites caused a higher k

but a lower C∞ in ERS and EMS than in the other samples, as

reported by Li et al. (5). The GI of amaranth starch extrudates

showed a similar result; the GI value (91.2) of extrusion cooked

starches significantly exceed that of native starch (87.2) (26).

Granule morphology

SEM and the supramolecular structure can be used to

investigate the in vitro glycemic release mechanism of particles

after IEMS treatment. Therefore, we examined the granule

morphology of starch extrudates. All extrudate samples showed

irregular shape (Figure 2). The EPS granules had more compact

surfaces with fewer pits compared to those of EJFSS, ECS,

ERS, EWS, and EMS granules. EWS had the loosest and most

void-distributed granule surfaces. EWS molecules may break

more easily during the hydrolysis of amyl-glucosidase and α-

amylase than the other samples, whereas EPS showed significant

opposite trend (27). Similarly, Faraj et al. (18) showed that

the degree of damage to the extrudate granule morphology of

different types of barley flour significantly differed. Moreover,

the EJFSS, ECS, EPS, and EWS granule morphology exhibited

numerous large emulsion bumps with concave holes (Figure 2),

in contrast to the smoother, smaller, and round or bell-shaped

native starch granule surfaces observed previously (4). Thus,

the extrudate granules may have been seriously damaged after

FIGURE 2

Micrographs of di�erent types of starch extrudates at 60× (left)

and 500× (right) magnification.

IEMS treatment, leading to superior digestibility compared to

that of their raw starches (28). The ERS and EMS granules

had concave holes and large sizes, whereas their native starches

had abundant small pores randomly distributed on the rough

surface. Therefore, ERS and EMS had a poor GI value compared

with that of their raw starches. Román et al. (29) also found

a high degree of granule morphology disruption in extruded

maize flour.
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Supramolecular structure

Absolute molecular weight distribution of
starch samples

The absolute molecular weight parameters of EJFSS, ECS,

EPS, ERS, EWS, and EMS were 0.30–1.31 × 107 g/mol (Mw),

0.26–1.13× 107 g/mol (Mn), 53.9–125.4 nm (Rg), and 1.06–2.24

(PI), respectively, and all absolute molecular weight parameters

of EPS, EJSS, and ECS were higher than those of EMS, EWS,

and ERS (Table 2, Figure 3). This indicates that EMS, EWS, and

ERS had looser molecular structures, a weaker force between

molecules, and lower molecular weight dispersion compared to

those of EPS, EJSS, and ECS (30). The higher Rg, PI, and average

molar mass of EPS, EJSS, and ECS may be associated with their

relatively lower digestion rates than those of EMS, EWS, and

ERS. In addition, Mw chromatogram of starch samples in this

study only displayed a single-peak elution curve, that differed

with the report of Liu et al. (31) who found the doublet-peak

elution curve including amylose and amylopectin curve. This

differencemight be attributed to the diversity of sensitivity of the

MALLS-RI system, the different analysis conditions or variations

in the data evaluation techniques.A similar study reported that

the Mw of extrusion-cooked waxy maize starch was 40–336 ×

106 g/mol (32).

In contrast, the Mw and Mn of EJFSS, ECS, EPS, ERS,

EWS, and EMS were significantly decreased compared to those

of their raw starches (Table 2, Supplementary Table S2). Rg and

PI slightly differed between the extrudate samples and raw

starch samples. The different Mw and its distribution between

the extrudates and native starch samples may be explained by

rupture of the internal intermolecular hydrogen bonds during

extrusion (19). This results in complete destruction of the

amylopectin double helix backbone, leading to crystallization of

semicrystalline lamella degradation of starch molecules. Hence,

raw starch showed weaker resistance to digestion after extrusion

(27). However, ERS and EMS showed lower Mw and Mn

but higher resistance to digestion than their native starches.

Based on previous reports (13, 30), the shear degradation

of unconjugated side-chain branch points of amylopectin

outside the starch microcrystal molecule generally resulted

in decreased GI, which differed from amylopectin backbone

degradation. These contrasting results for ERS and EMS may

be explained by the varied degradation approaches. Liu et al.

(33) found that granular molecules in rice starch are significantly

degraded after extrusion cooking, which is consistent with

our results.

Fine molecular structure of modified starch

As shown in Table 2 and Figure 4, the A, B1, B2, and

B3+ chain values of EJFSS, ECS, EPS, ERS, EWS, and

EMS were 32.06–43.09%, 44.37–48.61%, 10–15.81%, and 2.54–

7.46%, respectively. There was notable diversity between the T
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FIGURE 3

Molecular weight and distribution curve of starch samples.

debranched chain length distributions of the extrudate samples

(p < 0.05). EWS, with the longest A chain lengths, had

the shortest medium (B1 chains), medium-long (B2 chains),

and long chains (B3+ chains) compared with that of the

other extrudates. EPS showed the opposite trend, resulting

in EWS having the highest GI and EPS having the lowest

GI as described by Bi et al. (13). According to previous

studies (2, 13), part of the medium and short chains forms

a flawed crystal and amorphous layer, and both medium-

long and long chains constitute a defective and perfect crystal

layer in the starch semi-crystalline structure. Therefore, the

different results of chain length distributions of extrudate

samples resulted in diverse structures within crystallized and

amorphous layers, leading to their various GI. Similarly, Lee and

Moon (34) found that the A chains content in potato starch

was 21.1%, proportion of B1 chains was 49.1%, and values of

Frontiers inNutrition 09 frontiersin.org

43

https://doi.org/10.3389/fnut.2022.985929
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Li et al. 10.3389/fnut.2022.985929

FIGURE 4

Branched chain length distributions of starch samples.

middle-long chains and long chains were 12.0% and 11.6% after

heat-moisture treatment.

The proportion of A chains in all extrudate samples was

notably increased and those of B2 and B3+ chains were

notably decreased compared with those of raw samples (Table 2,

Supplementary Table S1). The proportion of B1 chains in EPS,

EJFSS, ECS, ERS, and EMS was higher than that in the

corresponding native starches, whereas the proportion of B1

chains in EWS showed the opposite tendency. These results

indicate that the B2 and B3+ chains of all native starches were
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transformed into A and B1 chains. For wheat starch, B1, B2,

and B3+ were converted into short chains. These trends caused

notable decreases in the Mw of all extrusion modified starches,

which is attributed to the significant correlation between the

long chains of amylopectin, Mw, and GI (35, 36). According to

Zhu (35), for the Mw, fine structure, and digestibility results of

raw and extrusion-cooked starches, the long helix with strong

hydrogen-bonding interactions in the ordered crystal layer was

clearly destroyed. This led to formation of abundant incomplete

double-helix chains in the disorder phase of the semi-crystalline

structure during IEMS (2, 37). However, compared to native

starches, rice and maize extrudates showed a decreased order

degree of crystallizing layer arrangement but an increased anti-

enzymatic ability. According to Ren et al. (38), this result may be

explained by the formation of abundant amylose andmore stable

α-1,4 glucosidic bonds units within the defective crystallizing

layers of IEMS-transformed rice and maize starch. Nakazawa

and Wang (37) similarly reported that the A chains value

increased and values of B1, B2 and B3+ chains of maize starch

decreased during extrusion cooking.

Crystallinity characteristic and DG analysis of
starches

As shown in Figure 5 and Table 2, Rc values were in the

order EJSS (16.22%) > ECS (15.10%) > ERS (13.92%) > EWS

(12.62%)> EMS (12.29%)> EPS (9.28%). According to Liu et al.

(33), the differences between samples can be explained by the

number of amylose lipid complex, the different degrees of close

packing mode of the double-helix structure and double helix

orientation within crystal lamellae, leading to various perfect

crystallite numbers and sizes of each extrudate. In addition, EPS

had a lower Rc but lower digestibility than that of the other

starches, possibly because EPS has a larger number of superhelix

structure formed by linear amylose and amylopectin compared

to that of the other samples (27). A similar study reported that

the Rc of extruded rice starch was 4.4–6.5% (33).

The Rc values of starch extrudates (9.28–16.22%)

were notably decreased compared to those of the

corresponding native samples (15.91–29.39%) (Table 2,

Supplementary Table S2), indicating that the crystallization

region was degraded after IEMS. The fine supramolecular

structures showed that B3+ chains transformed into A, B1, and

B2 chains, causing a decrease in Mw and Rc values. Therefore,

molecular degradation occurred in most crystalline structures

within the crystalline regions, altering the digestive rate between

the raw starch and extrudates (39). Similarly, the Rc values

decreased from 31.63% and 28.58% to 12.68% and 13.67%

in extrusion cooked rice starch and JFSS (2, 7). Diffraction

peaks of the extrudates were observed at 15, 13, 17, 18, 20,

and 23◦ (EJFSS) or at 13 and 20◦ (ECS, EPS, EMS, EWS,

and ERS), indicating that A- or B-type crystallinity feature

changed to the V-type compared with our previous results

FIGURE 5

X-ray di�raction patterns of di�erent types of starches.

(4). These results may be ascribed to the change in stacking

modes of the open packing of helices and array of inter-helical

crystal water structures in each hexagonal crystal unit (38).

Similarly, Sarawong et al. (40) reported that the A-, B-, or C-type

crystalline structures of green banana flour were converted into

V-type structures after extrusion cooking.

In addition, the DG values of extrudates followed the

order of EPS (98.84%) > EJFSS (98.05%) > ECS (97.63%)

> EMS (97.11%) > ERS (96.57%) > EWS (96.08%). The

different DG values of extrusion cooking samples might be

the diversities of rigidity degree of native starch molecular

crosslinking network formed by ordered helices and amorphous

single chains. Based on Ren et al. (38), it was found that there was

a small impact for DG values to digestibility of starch extrudates

when DG values higher than 95%. DG values of extrusion

cooking samples was higher than that of cooking foxtail millet

starch (<90%) published by Ren et al. (38). This phenomenon

might can be due to the high gelatinization efficiency produced

by instantaneous high temperature, high pressure and high

sheer force of IEMS technology, compared with traditional

gelatinization technology.

Amylose content

The proportions of amylose and its proportional

relationships with amylopectin of starch followed the order EPS

(31.34 and 45.65%) > EJFSS (26.98 and 36.98%) > ECS (24.08

and 31.72%) > EWS (22.50 and 29.05%) > EMS (20.56 and

25.87%) > ERS (9.63 and 10.67%) (Table 2). The amylopectin

content followed the order of ERS (90.37%) > EMS (79.44%)

> EWS (77.50%) > ECS (75.93%) > EJFSS (73.02%) > EPS

(68.66%). The amylose content of the extrudates nearly agreed

with the results for the Mw, Rs, and long chains (B2 and B3)
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FIGURE 6

Mechanisms of improved extrusion cooking technology (IEMS) treatment of di�erent types of starches.

of amylopectin. These results indicate that higher proportions

of amylose, a lower value of amylopectin, and higher values of

their ratios can cause higher tensile forces between adjacent

amylose conformations, causing shrinkage of the amorphous

regions (13, 38). Thus, the fine structures of EPS, EJFSS, and

ECS were compact, indicating that these starches were digested

more slowly compared to those of EWS, EMS, and ERS,

which had a higher proportion of amylose. The proportions

of amylose in extrusion cooked samples were similar to those

previously reported for extrusion-cooked green banana starch

(17.96–33.49%) (40).

The amylose contents and amylose/amylopectin ratios

of ECS, EPS, and ERS were notably increased compared

to those of the corresponding native samples (Table 2,

Supplementary Table S3); the amylopectin contents of ECS,

EPS, and ERS showed contrasting results. Sarawong et al. (40)

found similar results, where the proportion of amylose in

extrusion-cooked banana starch improved from 16.20 to 33.49%.

The proportions of amylose and amylose/amylopectin content

obtained from EJFSS, EMS, and EWS slightly differed from

those of their native starches. Our results were similar to those

of previous findings on the amylopectin content of amaranth

flour, which changed slightly from 68.8% (native) to 69.4–69.7%

(extrudates) (41). During IEMS treatment, the diverse changes

in amylose and amylopectin contents between ECS, EPS, and

ERS compared to the others, may be ascribed to differences in

plant origins and the number of entanglements between amylose

chains (19, 35). Additionally, the weight average molar mass of

amylopectin accounts for more than 90% of the whole starch

molecules (31). The Mw of all different types of starches was

decreased during extrusion cooking, indicating that amylopectin

(long chains) is degraded into amylose/amylose was sheared

into amylose fragments or integral amylopectin sheared into

incomplete amylopectin fragments (41). Therefore, the two

different mechanisms of IEMS treatment of starch samples

require further analysis.

Mechanisms of starch samples treated
using IEMS

Figure 6 shows the possible degradation mechanisms of

IEMS treatment of different kinds of starches. For cassava,

potato, and rice starches, most amylopectin α-1,6-glycosidic

bonds linked to the backbone were cut off because of their

increasing amylose content, decreasing the Mw and Rc in the

presence of the strong shear force generated during IEMS

(Figure 6, Table 2, Supplementary Table S2). According to Liu

et al. (33) and Le Corre et al. (22), these residual amylopectin

backbones with few short side chains may have been entangled

and curled by stronger conjugation effects of non-reducing or

reducing terminal glucosyl residues, converting into a spiral
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FIGURE 7

Principal component analysis (PCA) score and loading plots

(PC1 and PC2) of starches.

amylose fragment. Additionally, numerous branched chains of

cleaved α-1,6-glycosidic bonds of amylopectin were converted

into amylopectin fragments with a lower Mw, rather than being

converted into amylose. Moreover, according to Menegassi et al.

(41), few amylose-lipid complexes were generated by amylose

formed from the curled amylopectin molecule, which partly

slowed digestibility and stabilized few crystalline structures of

ECS, EPS, and ERS. Our results agree with published results

for wheat and rice starch (31, 40) but contrasted with those of

jackfruit seed starch (5).

However, another degradation mechanism was observed in

EJFSS, EMS, and EWS during IEMS. As shown in Figure 6,

Table 2, Supplementary Table S2, the shear force produced in

the extruder mainly acted on α-1,4-glycosidic bonds of long

amylopectin chains by degrading them into many amylopectin

fragments with lower Mw. This may be explained by their

insignificant change in the amylose content, decreasing Mw,

and long chains of amylopectin in all starch samples were

degraded to middle and short chains during extrusion cooking

(Figure 6, Table 2, Supplementary Table S2). According to Chen

et al. (1) and Li et al. (42), the higher branch density of

amylopectin fragments caused a stronger van der Waals force

between each side chain and the corresponding backbones,

preventing the amylopectin fragments from curling into amylose

through a squeezing conjugation action. Therefore, amylopectin

transformed into amylopectin fragments rather than amylose

during IEMS. Although EMS showed a degradation pattern

opposite to that of ERS, EMS also had a lower digestion rate

compared to that of raw maize starch. According to Zhang

et al. (3), a different superhelix formed by linear amylose and

amylopectin fragments during IEMS treatment may explain this

result. The degradation mechanism in EJFSS agreed with that

observed previously (5).

Previous studies (2, 27, 43), found that when different types

of native starches show distinct amylose values, the hydrogen-

bonding forces of the amylopectin branches are significantly

different owing to the dissimilar patterns in amylose and

amylopectin that are self-assembled by granule-bound starch

synthase I or IIa enzymes (GBSSI and SSIIa). Consequently, the

higher amylose content of starch resulted in weak intermolecular

hydrogen bonding within the side-chains of α-1,4-glycosidic

bond of amylopectin than that of the α-1,6-glycosidic bond

compared with starch of a lower amylose content (43, 44).

Therefore, the different molecular degradation mechanisms

during IEMT treatment between cassava, potato, and rice

starches and jackfruit seed, maize, and wheat starches may

be induced by various amylose contents as well as by the

unraveling structural disassembly and reassembly actions of

starch molecules grown from distinct plant sources. Moreover,

based on the same degradation mechanism, amylopectin was

cut off, and B3+ chains of amylopectin in all starch samples

were degraded to B1, B2 and A chains. The declining Mw and

Rc caused the broken morphology of the native starches. The

mechanism of the IEMT treatment of starch samples agreed

with that observed by Ji et al. (44), whose conclusion suggested

that raw corn starch with a different amylose/amylopectin ratio

presented a distinct mechanism of extrusion cooking.

Interaction between glycemic release
speed characteristics and fine
supramolecular structure

The PCA results are shown in Figure 7, and the results were

further analyzed to determine the interaction between glycemic

release characteristics and fine supramolecular structure of

IEMT treated samples. ERS, EMS, EWS, ECS, EJFSS, and EPS

was broadly distributed in the PCA figure, indicating that

differed genotypes of the native starches significantly influenced

the supramolecular structures and in vitro glycemic release

characteristics during IEMT treatment (13). ECS, EJFSS, and

EPS were scattered in PC1, and ERS, EMS, and EWS existed

in PC2. These results indicate that ECS, EJFSS, and EPS have

more similar characteristics than do ERS, EMS, and EWS.

Moreover, PC1 mainly included the short chain (A chain),

middle-long chain (B2 chain), long chain (B3+ chain), RS,

Mw, and proportion of amylose. SDS, C∞, HI, GI, k, middle-

short chain, RDS, and Rc was displayed in PC2 part. A highly

remarkably positive relationship was shown among the short

chain, middle-long chain, long chain, RS, Mw, and proportion

of amylose in PC1 (p < 0.05). C∞, HI, GI, k, middle-short

chain, and RDS also showed a significant positive relationship

(p < 0.05). Zabidi et al. (12) similarly reported that the C∞

of chempedak seed flour swelled to 15.48% from 14.19%, k

swelled to to 0.09 h−1 to 0.07 h−1, and GI increased from
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61.10 to 63.44. Short chain, middle-long chain, long chain, RS,

Mw, and proportion of amylose showed a negative correlation

with C∞, HI, GI, k, middle-short chain, and RDS (p < 0.05).

SDS had a significantly negative relationship with long chain,

RS, Mw, proportion of amylose, and Rc (p < 0.05). Lee and

Moon (34) showed a similar result with present research, who

found that a strong negative relationship was observed between

the B3+ chain and RDS when waxy potato starch underwent

heat–moisture treatment. Rc and RS had a significant negative

correlation (p < 0.05), which agreed with a published report

(13), whose investigation showed that the value RS increased

from 19.04 g to 46.42 g/100 g, however, the Rc decreased to

31.41% from 41.66% for cooked banana starch. Rc had a weak

correlation with the B3+ chain, Mw, and amylose content,

which was similar with a previous report (33), who showed that

Rc was closely associated with the molecular weight distribution

of extrusion-cooked rice starch. These dissimilarities might

be due to dissimilarities in the degree of stability of the

chain segment conformations of starch amylopectin molecules

(13). The outcomes obtained from PCA indicated that the

supramolecular structure plays an important role in affecting the

in vitro glycemic release characteristics during IEMT treatment.

Furthermore, the supramolecular structures of cassava, jackfruit

seed, maize, potato, rice, and wheat starches were broken,

as observed from the cleavage of the α-1,4, or 1,6-glycosidic

bonds of amylopectin fine structure. Accordingly, morphologies

of cassava, jackfruit seed, potato, and wheat starches granules

were changed from smooth and compact surfaces to looser

polyhedrals with many pits and hollows; this transformation

resulted in enhanced digestibility. Although the glycosidic bonds

of rice and maize starch were broken and the supramolecular

structures were degraded during IEMT treatment, the granule

morphology had smaller and less concave holes than did that

of the native starches as a result of decreased digestibility.

The distinct results between ERS and EMS and the other

extrudate samples can be ascribed to the lower proportion

of amylose and larger pores on the surface fissures, and

channels within raw rice and maize starch granules compared

to those of cassava, jackfruit seed, corn, potato, and wheat

starches (3, 4). Moreover, ordered chain alignment and cross-

linking of ERS and EMS amylopectin might have been formed

after IEMT (20, 33). Therefore, the ordered and tight cross-

linking of long chains with high DP caused the formation of

a rigid macromolecular network, resulting in lower in vitro

glycemic release characteristics in extruded starch than in

raw starch.

Conclusion

The glycemic release characteristics and fine supramolecular

structure for jackfruit seed, cassava, rice, wheat, potato, and

maize starches modified by IEMS were evaluated. ECS, EJFSS,

EPS, and EWS showed higher in vitro glycemic release

compared to that of the corresponding native starches, whereas

EMS and ERS showed the opposite trend. The A chains in

the extrudates were transformed into B2 and B3+ chains,

and Rc and Mw were notably decreased after extrusion

cooking (p < 0.05). The original crystallization structure

of all starch samples was altered to V-type from A-type

crystallization. The amylose contents in ECS, EPS, and ERS

were remarkably higher than those in corresponding native

starches (p < 0.05), whereas changes in the amylose content

of EMS, EJFSS, and EWS were minimal (p > 0.05). In

summary, it was demonstrated that, during IEMT treatment,

the α-1,4-glycosidic bonds of maize, jackfruit seed, and wheat

starch amylopectin were disrupted because of the high amylose

content. The lower amylose content observed for cassava,

potato, and rice starches was degraded through α-1,6-glycosidic

bonds. Consequently, the van der Waals forces between

the branched chains were weakened, and abundant unlinear

amylose and amylopectin fragments with side chains were

generated. After degradation, the various reassembly patterns

of amylose and amylopectin molecules resulted in improved

digestibility for ECS, EJFSS, EPS, and EWS and stronger

enzyme-resistance capacity for EMS and ERS. PCA further

revealed the association between the supramolecular structure

and in vitro glycemic release characteristics. Moreover, ECS,

EJFSS, and EPS had a more ordered molecular structure and

compact granule morphology compared to those of EWS,

EMS, and ERS, resulting in lower digestibility because of

the higher Mw, proportion of amylose, and long chains of

amylopectin in the EWS, EMS, and ERS granules. These

results may improve the utilization of starches with various

GIs of different food fields for people who require different

nutritional adaptations.
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This study investigated the chemical structures and probiotic potential of

different polysaccharides (LPs) extracted from the litchi pulp that fermented

with Lactobacillus fermentum for different times (i.e., 0–72 h corresponding

to LP-0 through LP-72, respectively). Fermentation times affected the

yields, total sugar contents, uronic acid contents, molecular weights, and

monosaccharide compositions of LPs. The LPs yields and uronic acid

contents exhibited irregular trends in association with fermentation time,

while total sugar contents decreased, and the molecular weights increased.

Particularly, LP-6 contained the highest extraction yields (2.67%), lowest

uronic acid contents, and smallest average Mw (104 kDa) (p < 0.05).

Moreover, analysis of the monosaccharide composition in the fermented

LPs indicated that the proportions of glucose decreased, while arabinose

and galacturonic acid proportions increased relative to unfermented LP-0.

Further, LP-6 demonstrated the highest growth for Bifidobacterium compared

to LP-0, while the other fermentation time led to comparable or worse

probiotic promoting activities. These results suggest that lactic acid bacteria

fermentation alters the physicochemical properties of litchi polysaccharides,

such that suitable fermentation time can enhance their probiotic activities.

KEYWORDS

litchi, fermentation, polysaccharide, chemical structure, probiotic activity

Introduction

Litchi (Litchi chinensis Sonn.) is a tropical to subtropical fruit that has become one
of the most popular fruits because of its high nutritive value (1). Litchi is prone to
spoilage and has a short shelf-life due to its rich nutrition content and maturation
during high temperature and high humidity conditions. Processing is an important
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way to prolong litchi shelf-life. Lactic acid bacteria fermentation
is widely used in fruit processing, because it enhances fruit
nutritional properties and improves flavors (2, 3), thereby
representing a useful means of exploiting litchi nutritional
content. For example, the total phenolic and total flavone
contents in litchi juice dramatically increase after Lactobacillus.
casei fermentation (4). The contents of total amino acids in
litchi juice-soybean protein complexes decrease with lactic acid
bacteria fermentation (5), while the species and contents of fatty
acid groups increase (6). Additionally, Lactobacillus plantarum
HU-C2W was used as a starter culture and enhanced the
production of γ-aminobutyric acid in fermented litchi juice (7).
Overall, investigations of lactic acid bacterial fermentation of
litchi have primarily focused on changes in nutrient content,
like those of polyphenols, flavonoids, fatty acids, and γ-
aminobutyric acid. In contrast, few studies have evaluated the
effects of lactic acid bacteria fermentation on the primary
functional ingredients in litchi pulp. Previous studies have
suggested that numerous health benefits of litchi pulp could be
related to polysaccharides that exhibit immunostimulatory (8),
antioxidant (9, 10), and antiproliferative effects (11). However,
the effects of lactic acid bacterial fermentation on litchi pulp
polysaccharides were unknown yet.

Previous studies showed that polysaccharides are
indigestible food components and exhibit their bioactivities
primarily depending on the regulation of intestinal flora
and their metabolites (12). For example, Lycium barbarum
polysaccharides significantly increase the abundances of
some potential probiotic bacterial genera like Akkermansia,
Lactobacillus, and Prevotellaceae that can promote
immunostimulatory activity (13). In addition, the anti-
diabetic effects of Plantago asiatica L. polysaccharides in type 2
diabetic rats may be associated with increased colon bacterial
diversity and abundances, including those of Lactobacillus
fermentum and Prevotella loescheii (14). Further, bitter gourd
polysaccharides have been shown to improve intestinal flora
disorders and increase the abundance of beneficial flora
that can ameliorate rat obesity (3). Thus, polysaccharides
exert health benefits by selectively promoting intestinal
probiotic strains. Hence, an assessment of the probiotic
activities of polysaccharides is essential for evaluating their
potential health effects. Previous studies have reported that
polysaccharides from pistachio hulls exhibit probiotic potential
by promoting the proliferation of L. plantarum PTCC 1896
and L. rhamnosus GG (15). Similarly, yam polysaccharides
have been shown to significantly promote S. thermophilus
growth (16). Longan polysaccharides significantly improve
Leuconostoc mesenteroides and Lactobacillus casei proliferation
(17). In contrast, the potential probiotic activities of litchi
polysaccharides remain unknown.

The present study aimed to investigate the influence
of lactic acid bacterial fermentation on the physicochemical
properties and probiotic activities of litchi pulp. To accurately

identify changes in polysaccharide structures and prebiotic
properties during fermentation, polysaccharides were prepared
from different fermentation times (0, 6, 12, 24, 36, 48,
60, and 72 h), followed by the analysis of their chemical
composition, monosaccharide composition, molecular weights
(Mw), functional group characteristics, and their promotion of
Bifidobacteria strain proliferation.

Materials and methods

Materials and chemicals

Plant materials and chemicals
Fresh litchi (cv. Hei-ye) fruits were provided by the

Pomology Research Institute of Guangdong Academy of
Agricultural Sciences (Guangzhou, China). Fresh litchi pulp was
dried under hot air at 70◦C for further analysis.

Standard dextran, rhamnose (Rha), arabinose (Ara), glucose
(Glu), galactose (Gal), and mannose (Man) chemicals were
purchased from Sigma (St. Louis, MO, United States). All
other reagents were of analytical grade. Man-Rogosa-Sharpe
(MRS) and sugar-free MRS were purchased from Guangdong
Huankai Microbial Technology Co., Ltd. (Guangzhou,
China). All other chemicals were purchased from Guangzhou
Qiyun Biological Co., Ltd. (Guangzhou, China) and were of
analytical grade.

Bacterial strains
Lactobacillus fermentum CICC 21828 was purchased

from the China Center of Industrial Culture Collection
(Beijing, China). Bifidobacterium longum ATCC 15707,
Bifidobacterium infantis GDMCC 1.207 and Bifidobacterium
adolescentis GDMCC 1.278 were purchased from the
Guangdong Microbial Culture Collection Center (Guangzhou,
China). Strains were stored in MRS broth containing
25% glycerol within liquid nitrogen until later use. Prior
to use, bacterial strains were revived in MRS broth
supplemented with 0.05% L-cysteine using previously described
procedures (18).

Preparation of fermented litchi pulp

Dried litchi pulp pH was adjusted to 5.0 ± 0.2 with
2 M NaOH after homogenizing with water (1:7 w/v) for
5 min. Litchi juice was then sterilized at 121◦C and
103.4 kPa for 20 min. Individual Erlenmeyer flask was used
for 100 mL of sterilized litchi juice without any other
nutrients. Each flask received 1 mL inoculum containing
6.0 log CFU/mL of activated L. fermentum. Fermentation
was then initiated by incubation on a reciprocal shaker for
72 h at 37◦C. Three duplicate samples were taken at 0,
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6, 12, 24, 36, 48, 60, and 72 h to determine culture pH
and extract polysaccharides. Enumeration of L. fermentum
cell densities at each fermentation time point were also
conducted using MRS agar.

Litchi polysaccharide extraction

Litchi polysaccharides were extracted as previously
described (19), with slight modifications. Briefly, fermented
litchi pulp was boiled for 10 min at 100◦C to kill live
Lactobacillus. Boiled juice was topped with 900 mL distilled
water up to 1 L, followed by incubation at 90◦C for 4 h
before collecting filter liquor. The extraction process was
repeated and the filtrates were collected, combined, and
then vacuum concentrated at 65◦C. To remove proteins,
the extracted solutions were subjected to the Sevag method
four times (20). Fourfold volumes of ethanol were added
to the protein-removed solutions to achieve polysaccharide
precipitation at 4◦C for 24 h. The precipitates were collected
by centrifugation at 4,000 × g for 10 min, washed with ethanol,
and lyophilized to obtain the final litchi polysaccharides
(LPs). The polysaccharides extracted from different time
points during litchi pulp fermentation are referred as
follows: LP-0, LP-6, LP-12, LP-24, LP-36, LP-48, LP-60,
and LP-72, respectively.

Physicochemical properties of litchi
polysaccharides

Chemical compositions
Total sugar contents were determined using the phenol-

sulfuric acid method according to previously published methods
(21) and with glucose as the standard. Briefly, 1 mL crude
LP solution (0.25 mg/mL) was mixed with 500 µL 6% phenol
and 2.5 mL concentrated H2SO4. After cooling in an ice
bath for 30 min, the absorbance of the sample was measured
using a UV–VIS spectrophotometer at 490 nm. Uronic acid
contents were determined using a modified hydroxy diphenyl
method and with galacturonic acid as the standards (11).
Briefly, 0.25 mL of the crude LP solution (0.25 mg/mL) was
added with 1.5 mL sulfuric/tetraborate and vortexed. The
mixture was in a water bath at 100◦C for 5 min. After
cooling in an ice bath, 25 µL m-hydroxydiphenyl reagent
was added. Then the absorbance of the sample was measured
using a UV–VIS spectrophotometer at 524 nm. Lastly, protein
concentrations were measured with the Bradford method using
bovine serum albumin for standards (22). Briefly, 1 mL of
the crude LP solution (10 mg/mL) was added with 5 mL
of Bradford reagent and incubated at 37◦C for 15 min in a
water bath. Absorbance was read at 590 nm in a UV-VIS
spectrophotometer.

Molecular weight analysis
To determine the molecular weights of the polysaccharides,

the average molecular weights (Mw) were detected by high-
performance gel permeation chromatography (HPGPC) using
an Agilent technologies 1260 series instrument (Agilent Co.,
United States) equipped with a Shodex OH-pak SB-804 HQ
column (8 mm × 300 mm). Chromatographic procedures
and conditions were performed as previously described (23).
Dextran standards with different molecular weights (6.7 × 105,
4.1 × 105, 2.7 × 105, 5 × 104, 2.5 × 104, 1.2 × 104, 5 × 103,
and 1 × 103 Da) were used to calibrate the standard curve
using the GPC software program (Agilent Technologies, Inc.,
United States, version 3.4).

Monosaccharide compositions
Litchi polysaccharides monosaccharide compositions were

determined by HPLC with PMP precolumn derivatization
(24). Briefly, polysaccharide samples (2.0 mg) were hydrolyzed
with 0.2 mol/L trifluoroacetic acid at 120◦C for 2 h. After
hydrolysis, excess acid was removed by evaporation under a
nitrogen atmosphere. Sodium hydroxide (0.1 mol/L) was added
to dissolve the dried hydrolyzates. The mixtures were treated
with 0.5 mol/L PMP in methanol and then incubated at 70◦C
for 30 min. After cooling to room temperature, the mixture
was neutralized by adding 0.3 mol/L hydrochloric acid and
then extracted with chloroform, followed by chloroform. The
extractions were repeated three times. The aqueous phases
were filtered through a 0.22 µm membrane and the resulting
solutions were analyzed on an Agilent 1100 HPLC system
(Agilent, United States) with a C18 column (4.6 mm × 250 mm,
5 µm) and a DAD detector. Elution was performed with a
mixture of 0.1 M phosphate buffer solution (pH 7.0) and
acetonitrile in a ratio of 82:18 (v/v), a flow rate of 1.0 mL/min,
and a detection wavelength set as 250 nm.

Fourier transform infrared spectroscopy
A Fourier Transform Infrared (FT-IR) spectrophotometer

(NEXUS 670, Nicolet, United States) was used to investigate the
functional groups within LPs. Ground LPs were mixed with dry
KBr and pressed into a mold to generate a tablet that was then
subjected to the spectral region of 4000–400 cm−1 (25).

Probiotic activities

Three Bifidobacterium strains—B. adolescentis, B. infantis,
and B. longum were used to investigate in vitro probiotic
activities of the LPs isolated from the unfermented and
fermented litchi pulps. Carbohydrate-free MRS broth
supplemented with 0.05% (w/v) L-cysteine was used as the basal
medium for the experiments and as the blank control, while
fructooligosaccharide (FOS) was used for the positive control.
All LPs and FOS were filter-sterilized and separately added to
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the basal medium to obtain 1.0% (w/v) final concentrations.
Activated Bifidobacterium strains were added to medium at
final concentration of 1 × 106 CFU/mL and then incubated at
37◦C for 48 h under anaerobic conditions (85% N2, 10% CO2

and 5% H2). Bacterial growth was monitored by measuring
culture optical density at 600 nm (OD600) at 24 and 48 h, while
culture pH was simultaneously measured using a pH meter (pH
S-3C, Shanghai Precise Scientific Instrument Corp., China).

Statistical analyses

All experiments and analyses were performed in triplicate.
Data analysis was performed using the SPSS statistical software
program (version 19; SPSS, Inc., Chicago, IL, United States).
Results are reported as means ± SD. Data were subjected to
one-way ANOVA tests followed by Duncan’s multiple range
tests to identify statistical differences between values. Statistical
significance was considered at p < 0.05.

Results and discussion

Litchi pulp fermentation

The effects of fermentation time on the growth of
L. fermentum and litchi pulp pH were shown in Figure 1,
where it can be seen that bacterial counts increased during
fermentation (Figure 1A). Specifically, an initial population of
5.41 log fu/mL, slightly increased during the lag phase (0–
2 h), and then rapidly increased to 8.49 log CFU/mL during
the logarithmic phase (2–24 h). During the stationary phase,
bacterial number slowly decreased until 60 h (8.28 log CFU/mL),
then markedly decreased from 60 to 72 h (6.20 log CFU/mL) in
the decay phase due to nutrient deficiencies.

The increased bacterial number indicated that L. fermentum
used the nutrients within the litchi juice to grow. The
consumption of sugars by lactic acid bacteria results in the
accumulation of lactic acid and short-chain fatty acids (23).
Consequently, the growth of probiotic microorganisms was also
accompanied by decreased medium pH. Accordingly, the pH of
litchi juice decreased throughout fermentation. Specifically, pH
began at 5.16, slightly dropped over 2–4 h, then quickly fell to
3.95 at 12 h. And pH slowly continued to decline until reaching
3.81 at 60 h (Figure 1B).

Preliminary characterization of litchi
polysaccharides

The yields and contents of total sugar, uronic acids, proteins,
in addition to the molecular weights of isolated LPs were
evaluated (Table 1). Compared with unfermented samples,

FIGURE 1

Growth effects of litchi pulp on Lactobacillus fermentum with
different fermentation times (A), and the pH of litchi pulp
cultures (B). Mean ± SD (n = 3). Different lowercase letters
represent statistically significant differences among samples
(p < 0.05).

polysaccharide yields first increased with fermentation at 6 h,
then decreased with increasing fermentation time from 6 to
48 h, and then gradually increased in later fermentation times
(48–72 h). LP-6 exhibited the highest yield among all samples
(p < 0.05). The total sugar content of non-fermented litchi
pulp polysaccharide was higher than those of fermented samples
(p < 0.05). Similar decreases in carbohydrate contents have also
been observed for polysaccharides from rice bran after Grifola
frondosa fermentation (26). In addition, LP-72 exhibited the
highest uronic acid content, while LP-6 exhibited the lowest
(p < 0.05). The protein contents in fermented polysaccharides
decreased with fermentation time (p < 0.05). Further, the
protein contents in non-fermented polysaccharides were lower
than in fermented samples (i.e., LP-6, LP-12, LP-24, LP-36, and
LP-48) (p < 0.05).

The Mw of LPs were determined using GPC with
RID. Overall, LPs Mw first decreased and then increased
with fermentation time, while LP-6 exhibited the lowest
Mw (Table 1). Similar results have also been observed
for polysaccharide from longan pulp after fermentation for
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TABLE 1 Physicochemical properties of polysaccharides derived from litchi pulp fermented with Lactobacillus fermentum for different times.

LPs Extraction yield (%) Total sugars (%) Uronic acid (%) Protein (%) Mw (× 104 Da)

LP-0 1.73 65.27 ± 0.01a 33.33 ± 0.93bc 0.24 ± 0.01e 13.60

LP-6 2.67 61.90 ± 0.00b 20.87 ± 0.88e 1.03 ± 0.02b 10.40

LP-12 1.90 56.92 ± 0.01cd 31.87 ± 0.86bc 1.28 ± 0.01a 13.80

LP-24 1.93 52.49 ± 0.01e 24.84 ± 0.30d 1.29 ± 0.01a 14.50

LP-36 1.50 59.18 ± 0.01bc 33.52 ± 0.04b 0.61 ± 0.01c 14.80

LP-48 1.66 53.21 ± 0.01e 30.51 ± 0.05c 0.40 ± 0.01d 16.00

LP-60 2.08 54.66 ± 0.04de 24.03 ± 0.10d 0.01 ± 0.01f 15.90

LP-72 2.34 55.45 ± 0.01de 36.67 ± 0.66a 0.02 ± 0.01f 15.20

Different lowercase letters represent statistically significant differences among samples (p < 0.05).

TABLE 2 Monosaccharide compositions of polysaccharides derived from litchi pulp fermented with Lactobacillus fermentum for different times.

LPs GalA (%) Glu (%) Ara (%) Gal (%) Man (%) GlcA (%) Xyl (%) Rha (%)

LP-0 40.45 ± 5.01ab 30.14 ± 3.83a 18.72 ± 1.46ab 5.35 ± 0.01ab 2.59 ± 0.01c 2.42 ± 0.21b 0.17 ± 0.24a 0.17 ± 0.24a

LP-6 39.24 ± 0.25a 33.41 ± 1.85a 17.79 ± 1.77a 5.04 ± 0.17a 2.22 ± 0.08a 1.95 ± 0.19a 0.34 ± 0.06abc –

LP-12 48.04 ± 1.76c 20.37 ± 0.50bc 20.80 ± 0.67bc 5.85 ± 0.03c 2.18 ± 0.04a 2.35 ± 0.04b 0.25 ± 0.36ab 0.15 ± 0.22a

LP-24 38.79 ± 2.00a 30.57 ± 2.05a 19.74 ± 0.03abc 5.49 ± 0.19b 2.27 ± 0.08a 2.37 ± 0.10b 0.51 ± 0.09abc 0.26 ± 0.00a

LP-36 46.63 ± 4.48bc 22.02 ± 2.85bc 19.71 ± 1.47abc 6.16 ± 0.13c 2.42 ± 0.02b 2.50 ± 0.17bc 0.39 ± 0.05abc 0.15 ± 0.21a

LP-48 44.79 ± 0.12abc 18.66 ± 0.56c 23.53 ± 0.58de 6.69 ± 0.12d 2.50 ± 0.06bc 2.86 ± 0.04cd 0.67 ± 0.01bc 0.30 ± 0.00a

LP-60 38.82 ± 2.78a 28.18 ± 1.53ab 21.56 ± 0.64cd 6.03 ± 0.12c 2.17 ± 0.02a 2.57 ± 0.20bc 0.54 ± 0.09abc 0.13 ± 0.18a

LP-72 43.91 ± 1.90abc 17.82 ± 0.50c 24.29 ± 0.94e 7.45 ± 0.27e 2.48 ± 0.03bc 3.14 ± 0.18d 0.74 ± 0.21c 0.17 ± 0.24a

Different lowercase letters represent statistically significant differences among samples (p < 0.05).

different times (19). The prominent decrease in Mw of LP-
6 could be related to the accumulation of carbohydrases
secreted by bacteria during the lag and logarithmic phases
(Figure 1A). Such activities would lead to the efficient hydrolysis
of polysaccharides, thereby reducing overall Mw values and
providing useable carbon sources for bacterial growth (27).
However, the Mw of the fermented polysaccharides (except
for LP-6) increased to various degrees compared to the LP-
0 samples. The increased Mw likely arose from that the
bacteria preferentially use the smaller Mw fractions over larger
Mw fractions (28), thereby increasing the average Mw across
fermentations over time.

Monosaccharide compositional analyses revealed that
all LPs were heteropolysaccharides that comprised different
ratios of galacturonic acid, glucose, arabinose, galactose,
mannose, glucuronic acid, xylose, and/or rhamnose (Table 2).
The monosaccharide compositions of the seven fermented
polysaccharides were similar to those of unfermented
polysaccharide, indicating that fermentation did not
change the essential monosaccharide types identified
within the litchi polysaccharides. However, the ratios of
monosaccharide compositions considerably differed. The major
monosaccharides in the LPs were galacturonic acid, glucose, and
arabinose. Galacturonic acid was most abundant in all samples,
with a minimum value of 38.79% in LP-24 and a maximum
value of 48.55% in LP-12. The relative percentages of glucose

FIGURE 2

Fourier Transform Infrared (FT-IR) spectra for polysaccharides
derived from litchi pulp fermented with Lactobacillus
fermentum for different times.

in the other fermented LPs (except for LP-6) were lower than
in the non-fermented LP-0 sample. Conversely, the percentage
compositions of arabinose and galactose exhibited opposite
trends. This was consistent with the other reported finding,
as Saccharomyces cerevisiae and Bacillus subtilis fermentation
decreased the molar ratio of glucose among wheat bran
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FIGURE 3

The growth of probiotic strains Bifidobacterium adolescentis (A), Bifidobacterium infanitis (B), and Bifidobacterium longum (C) cultivated on
polysaccharides derived from litchi pulp fermented with Lactobacillus fermentum for different times. Mean ± SD (n = 3). Different letters
indicate significant (p < 0.05) differences at the same incubation time.

FIGURE 4

The pH of probiotic strains Bifidobacterium adolescentis (A), Bifidobacterium infanitis (B), and Bifidobacterium longum (C) cultivated on
polysaccharides derived from litchi pulp fermented with Lactobacillus fermentum for different times. Mean ± SD (n = 3). Different letters
indicate significant (p < 0.05) differences at the same incubation time.

polysaccharides, while increasing the molar ratio of arabinose
and galactose (24).

Fourier Transform Infrared analysis of LPs was also
conducted (Figure 2). All LPs fractions exhibited a strong broad
peak at 3600–3200 cm−1 and a sharp weak band at 2930–
2926 cm−1 in their FT-IR spectra, which arose from the O–H
and C–H stretching vibrations, respectively (29). In addition,
characteristic absorption peaks associated with uronic acid were
observed at 1747 and 1616 cm−1 (30), while a characteristic
absorption peak for galacturonic acid in pectic polysaccharides
was observed at 1025 cm−1 (31). The observed absorption
peaks near 1100–1000 cm−1 derived from characteristic C–O–
C glycosidic bond vibrations and ring vibrations overlapping
glycosidic bridges, indicating the presence of pyranose (32).
Absorption signals near 890 cm−1 and 775 cm−1 were
attributed to β– and α– type glycosidic linkages, respectively
(33, 34). Together, these results provided important insights into
potential LPs that represented acidic heteropolysaccharides with
both α– and β– ring structures. The characteristic absorption
peaks of LPs were similar, demonstrating that fermentation
did not alter the primary functional group compositions of
polysaccharides (35).

Litchi polysaccharides probiotic
activity

Bacterial growth of three Bifidobacterium strains was
evaluated when LPs, Glu, or FOS were used as carbon
sources for 24 and 48 h incubation (Figure 3). In the case
of B. adolescentis, all evaluated carbon sources supported
significant growth of probiotic strain cultures when compared
against the blank control (Figure 3A). This suggested LPs
could be used by probiotic strains for growth similarly to
FOS and Glu, and this was supported by previous findings
(36). Bacterial growth dynamics were similar between 24
and 48 h and increased following the order of Glu >FOS
>LPs at both fermentation time points (p < 0.05). Moreover,
some fermented LPs (i.e., LP-6, LP-24, and LP-60) exhibited
better probiotic activity at 48 h compared to unfermented
polysaccharides (LP-0), with LP-6 exhibiting the highest
microbial growth promotion.

Bifidobacterium infantis growth for both Glu and blank
groups did not exhibit any obvious changes between different
incubation times, while LPs and FOS cultures exhibited
marginal increases at 48 h compared to 24 h (Figure 3B).
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This result was consistent with a previous study (30) that
the complex structures of LPs and FOS likely led to their
slower metabolism rate and continuous probiotic growth
at 48 h relative to Glu. Moreover, differences in bacterial
growth on fermented litchi polysaccharides were exhibited
compared to the unfermented control. LP-6 and LP-24
exhibited better probiotic activity compared to LP-0, while
LP-6 activity was the highest at 48 h. The highest OD600

values of the LPs groups were generally observed at 48 h,
with relative differences in the following order of LP-6 > LP-
0 ≈ LP-24 ≈ LP-60 > LP-12 ≈ LP-36 > LP-48 ≈ LP-
72.

The effects of LPs on the growth of B. longum strains
were also evaluated (Figure 3C). All LPs, FOS and Glu
supplements stimulated greater bacterial activity compared to
the blank control. Bacterial growth increased in all test groups
at 48 h relative to 24 h. The LP-6 exhibited the most bacterial
growth among all LPs, while the LP-72 exhibited the worst
growth (p < 0.05) at both 24 and 48 h. Further, only LP-
6 exhibited the most bacterial growth among fermented LPs
compared to unfermented LP-0, while the other fermented
LPs exhibited comparable or worse growth of bacteria. The
maximum OD600 values for LPs cultures at 48 h followed
the order of LP-6 > LP-0 ≈LP-24 > LP-60 > LP-36 ≈ LP-
12 > LP-48 > LP-72. Overall, these results indicated that the
fermentation of litchi pulp with L. fermentum could influenced
the probiotic effects of polysaccharides for the growth of
Bifidobacterium.

The acidifying activities of probiotics, which were stimulated
by LPs, FOS and Glu, were further investigated (Figures 4A–
C). The pH of evaluated strains cultures decreased in the
order of blank > LPs > Glu > FOS at 24 and 48 h. Among
the experimental conditions for all three Bifidobacteria, the
pH of LP-6 cultures was lower than in the LP-0 cultures
but still higher than in the positive control FOS and Glu
cultures. These results contrasted with the relative ordering of
probiotic abundances when stimulated with polysaccharides,
consistent with the results of a previous study (23). Minimum
pH values reflected the acidifying activity of bacterial strains,
in addition to the use of carbohydrates by the specified
strain (37). Fermentation was not always promoted probiotic
bacteria growth using litchi pulp polysaccharides compared with
unfermented polysaccharides, contrasting with previous results
for fermented longan pulp polysaccharides (19). Overall, these
results indicated that a proper fermentation time by lactic acid
bacteria for litchi pulp might facilitate the probiotic properties
of its polysaccharides.

Structure-function relationship

Clarifying the relationships between the structures and
probiotic properties of polysaccharides was important for

understanding their mechanisms of action. Previous studies
have indicated that the sugar contents of polysaccharides
can affect their probiotic activity (36). In this study, obvious
correlations were not apparent between the contents of
total sugars and uronic acids in LPs with their probiotic
effects. Similar results were also observed for polysaccharides
from bamboo shoot residues that were prepared with four
different drying methods (38). In addition, molecular weights
also influenced the probiotic effects of carbohydrates. For
example, some polysaccharides with lower molecular weights
are potential probiotic influencing factors (39, 40). Different
ratios of monosaccharides in various fractions of rapeseed
polysaccharides have been shown to contribute to their
differing probiotic effects (41). Further, polysaccharides that
primarily comprise glucose, xylose, and galactose exert better
growth-stimulating effects (42). In the present study, LP-6
exhibited the greatest stimulation of Bifidobacteria growth.
This could be attributed to the LP-6 sample containing the
lowest average molecular weight among all LPs. Furthermore,
LP-6 primarily comprised glucose, galactose, and xylose,
which were the most abundant components of all LPs.
In contrast, LP-48 and LP-72 cultures exhibited lower
bacterial growth associated with the lower proportions of
the above three components and higher Mw values. These
molecular structural features interactively influenced the
probiotic activities of LPs. Previous studies have observed
that fermentation can be an effective means to enhance
probiotic activity (19, 43). This study further observed that
an appropriate fermentation time was critical for increasing
probiotic activities.

Conclusion

In this study, the impact of lactic acid bacteria fermentation
on the physicochemical properties and probiotic activities of
LPs was evaluated. The extraction yields, total sugar contents,
uronic acid contents, molecular weights, and monosaccharide
compositions of LPs varied as fermentation proceeded.
Moreover, LP-6 exhibited the best probiotic activity by
promoting the proliferation of Bifidobacterium strains. These
results provide an experimental basis for the development
of novel litchi polysaccharides and suggest that Lactobacillus
fermentum fermentation can be used to generate prospective
probiotic activity polysaccharides.
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E�ects of composition, thermal,
and theological properties of
rice raw material on rice noodle
quality

Ping Wei1,2, Fang Fang3, Guoming Liu1,2, Yayuan Zhang1,2*,

Linyan Wei1, Kui Zhou1,2, Xiangrong You1,2*, Mingjuan Li1,2,

Ying Wang1,2, Jian Sun2 and Sili Deng4

1Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences,

Nanning, China, 2Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology,

Nanning, China, 3Whistler Center for Carbohydrate Research and Department of Food Science,

Purdue University, West Lafayette, IN, United States, 4Guangxi Institute of Botany, Guangxi Zhuang

Autonomous Region and Chinese Academy of Sciences, Guilin, China

The study aims to evaluate the relationships between characteristics of regional

rice rawmaterial and resulting quality of rice noodles. Four of most commonly

used rice cultivars in Guangxi for noodles production were investigated. The

results showed that compositions of rice flour primarily a�ected gelatinization

and retrogradation, which then influenced the textural and sensory properties

of rice noodles. Amylose content had strong positive correlation with peak

viscosity (PV) and trough viscosity (TV) of rice flour (P < 0.01). PV and TV

had strong negative correlations with adhesive strength (P < 0.01) and positive

correlations with chewiness (P < 0.05), hardness, peak load and deformation

at peak of rice noodles (P < 0.01). Protein content had positive correlation

with the Setback of rice flour (P < 0.05), which is known to have influences

on retrogradation. In addition, solubility had positive correlations with cooking

loss (P < 0.01) and broken rate (P < 0.05) of rice noodles and strong

negative correlationwith its springiness (P< 0.01). Swelling power had negative

correlation with broken rate (P < 0.05). As sensory score of rice noodles was

negatively correlated with broken rate (P < 0.05) and cooking loss (P < 0.01)

and positively correlated with springiness (P < 0.01), solubility and swelling

power of rice flours were presumed to be useful for predicting consumer

acceptability of rice noodles.

KEYWORDS

rice, rice noodle, processing, cooking performance, sensory properties

Highlights

- Amylose content of rice is strongly correlated with the texture profile of rice noodle.

- Adhesive strength had a negative correlation with texture profile of rice noodles.

- Peak, trough, and final viscosities had positive correlations with texture of

rice noodles.
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- Rice with 24% amylose content could be a critical value

used in different rice noodles processing.

- Sensory score correlated negatively with cooking qualities

and positively with springiness.

Introduction

Rice noodles are very popular in southern China and some

southeast Asian countries, such as Thailand and Sri Lanka. Rice

noodles are commonly processed from indica rice, and classified

into fresh, dried, and frozen products in various thicknesses

and shapes (1, 2). Guangxi province is the top producer of rice

noodles in China and has a large number of different types of

rice noodles. Consumers have different requirements regarding

taste andmouthfeel properties for different types of rice noodles.

For example, snail noodles have relatively high hardness and

springiness, while rolled noodles and Guilin rice noodles have

soft texture.

Rice noodle quality is closely related to the physical and

chemical properties of rice flour. Starch is the major component

of rice. Just like other crop starch (3–5), the viscoelastic property

of rice noodles depends primarily on the starch structure and

properties (2, 6, 7). Zhou et al. (8) reported a highly significant

correlation between amylose content and the sensory score

of rice noodles, so amylose content was usually selected as

the sensitive indexes to predict the quality of rice noodles.

The amylose content suitable for processing the pressed fresh

rice noodles were found to be in the range of 22.2–26.9 %.

Xuan et al. (9) suggested that it is essential to use rice with

an amylose content in the range of 20–25% for rice noodle

production. Rice with amylose content of less 20% or more

than 25% is not suitable for rice noodle production. It can be

seen from the above that the recommended range of amylose

content for rice noodle production by different researchers was

different. The appropriate rice starch content should be selected

according to the actual demand of rice noodle products. Rice

protein (endosperm protein) is also an important component

of rice. The protein content in rice varied greatly in different

varieties growing in different environments. Martin et al. (10)

suggested that the gelatinization characteristics of rice flour

were influenced by the network structure formed by the protein

binding with water and the formation of disulfide bond. Baxter

et al. (11) concluded that rice protein indirectly affected the

rice processing adaptability mainly by changing gelatinizing

properties of starch, including its heat resistance, extrusion

performance and retrogradation. Protein in rice could inhibit

the water absorption and expansion of starch particles, resulting

in higher gelatinization peak temperature of rice flour than

that of starch alone. In addition, protein could strengthen

the network structure of rice flour gel. Therefore, it is often

considered that protein content can be used as an auxiliary index

to choose the rice flour raw material for noodle production.

The lipid content in rice starch is very low, but it is closely

related to the gel properties of rice. Ibáñez et al. (12) reported

that lipids had a greater effect on gelatinization and rheological

properties compared to protein. Usually, the presence of lipids

reduces the gelatinization heat enthalpy of starch and promotes

the formation of gel system. The complex formed by lipids

and starch prevents the amylose crystallization, reduces the

dissolution of starch, maintains the stability of gel structure, and

thereby inhibits the generation of aging and extends the shelf life

of products. As lipid content in all kinds of rice varieties were

usually very low, most previous reporter considered that it is no

longer considered as an important quality index of raw rice used

for rice noodles (line) production.

Different rice noodles are commonly produced from

different sources of raw rice materials (mainly refer to the

early polished indica rice), which is largely depends on the

experiences of rice producer using regional rice varieties as

raw materials. For example, dry rice noodles are usually

made with Guichao varieties; some other rice varieties are

combined with broken rice for snail rice noodles production;

and rolled noodles are usually made from Zhengui varieties

in Gxuangxi. It is very important to clarify the relationship

between physical properties of rice varieties and the quality

of regional rice noodles in China, which thereby could better

guide the production of high-quality regional rice noodles. In

the present study, four rice cultivars commonly use in rice

noodle production in Guangxi were chosen to prepare rice

flours. Their physicochemical composition, physicochemical

characteristics, thermal properties, pasting properties, and

rheological properties were investigated. Furthermore, the

correlation between the physicochemical properties of rice

starch and qualities (cooking qualities, texture properties

and sensory quality) of rice noodles were analyzed. This

study provides theoretical guidance regarding the selection of

suitable rice raw materials for different rice noodle production,

optimizing rice noodle processing technology, and improving

rice noodle quality.

Materials and methods

Chemicals and reagents

Four early polished indica rice cultivars, including Zhengui

(ZG), Shuanggui (SG), Guichao (GC), and Suimi (SM, belongs

to GC variety) were selected and purchased from a local market

in Nanning, China. Rice was ground by a high-speed grinder

(WND-200, Zhejiang Lanxi Weinengda Electric Appliance Co.,

Ltd., Lanxi, China), passed through a 100-mesh sieve (CT410,

FOSS Scino Co., Ltd., Suzhou, China), and then stored at 25◦C

in desiccator until further analysis. Amylose contents in rice

standards were 0.40, 10.60, 16.20, and 26.50% w/w, respectively,

which was provided by China National Rice Research Institute.
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D-Glucose, α-amylase, and glucosidase were purchased from

Sigma-Aldrich Ireland Ltd. (Dublin, Ireland). GOPOD was

obtained from Megazyme (Bray, Ireland). Potassium hydroxide

(cat. no.1310-58-3), sodium sulfite (cat. no.7757-83-7), sodium

hydroxide (cat. no.1310-73-2) were from Sinopharm Chemical

Reagent Co., Ltd. ethanoic acid (cat. no. 64-19-7), ethyl alcohol

(cat. no. 64-17-5), acetic acid sodium salt (cat. no. 127-09-3),

iodine (cat. no.7553-56-2), potassium iodide (cat. no.7681-11-

0), ethanoic acid (cat. no.64-19-7) were from Shanghai anpu

Experimental Technology Co., Ltd. All chemical reagents were

of analytical grade.

Properties of rice flour

Compositions of rice flour

The moisture content, crude protein, and crude lipid

contents in different rice flours were measured according to

the method of Ministry of Health of the People’s Republic of

China (GB5009.3-2016, GB/T 5009.5-2016 and GB/T 5009.6-

2016) respectively (13–15). The content of total starch in rice

was determined using the method (AOAC, 996.11) provided

by the Association of Official Agricultural Chemistry (16). The

amylose contents were determined bymeasuring the absorbance

at 700 nm via UV-Vis spectrophotometer (UV-2800, Unico

Instrument Co., Ltd., Shanghai, China) following the method of

Ministry of Health of the People’s Republic of China (17). The

adhesive strength of different rice flours was evaluated according

to the method of Ministry of Health of the People’s Republic of

China (18). The chemical compositions of rice were determined

in triplicate for each rice sample, and all results were reported on

a dry weight basis.

Solubility and swelling power of rice flour

The solubility (S) and swelling power (SP) were determined

following the method as described by Yi et al. (19) with minor

modifications. Rice flour (1 g) in 100mL deionized water was

heated at 90 ◦C for 1 h with stirring. The sample was cooled

to room temperature and centrifuged at 4,000 r/min for 15min.

The supernatant was dried in an oven at 105 ◦C until a constant

weight was obtained. The S and SP were calculated using the

following formulas:

S(%) = dry supernatant weight/dry sample weight×100

SP = wet sediment weight/[dry sample weight×(1− S)]

Thermal properties of rice flour

Thermal properties of the rice flour were analyzed using

a differential scanning calorimeter (DSC, TA Instruments,

Q2000, USA). Rice flour and distilled water suspension (1:3)

were sealed in aluminum pans and equilibrated at room

temperature for 24 h before analysis. An empty aluminum

pan was used as a reference. The gelatinization temperature

and enthalpy were determined following the procedure of Wu

et al. (20) with some modifications. The samples were heated

at 10 ◦C/min over a temperature range of 30–105 ◦C. After

that, the sealed pans were stored at 4◦C for 7 d, followed

by characterization of retrogradation with the same heating

procedure. The onset temperature (To), peak temperature (Tp),

conclusion temperature (Tc), enthalpies in gelatinization (1H1)

and retrogradation (1H2) were recorded. The retrogradation

degree (1H) was calculated as follows:

1H/% =
1H2

1H1
× 100

Pasting properties of rice flour

The pasting properties of the rice flours were determined

using a Rapid Visco Analyzer (RVA 4800, Perten Instruments

Australia Pty Ltd., Sydney, Australia). The RVA parameters were

previously described by Geng et al. (21). Rice flour (3.0 g, 14

g/100 g moisture basis) was weighted into an aluminum canister,

and 25 g distilled water was added to attain a total sample

weight of 28.0 g. The suspension was equilibrated at 50◦C for

1min, heated to 95◦C at a rate of 12◦C /min and maintained

at 95◦C for 2.5min. It was then cooled to 50◦C at the same

rate and maintained at 50 ◦C for 2min. The rotating speed of

the paddle was kept at 160 rpm throughout the measurement.

The parameters including Peak Viscosity (PV), Trough Viscosity

(TV), Breakdown (BD), Final Viscosity (FV), and Setback (SB)

values were obtained.

Rheological properties of rice flour

Rheologic properties of all samples were analyzed following

the method as described by Meng (22) and carried out using

a Discovery-1 rheometer (DHR-1, TA Instruments Ltd., New

Castle, DE, USA). Rice flour suspensions (20%) were placed

in the center of a Peltier plate attached to the rheometer. An

aluminum parallel plate geometry (40mm diameter) was used.

The gap was set at 1,000µm. Oscillation temperature ramp

tests were performed at a strain of 2%, with a temperature

ramp from 25 to 95◦C to gelatinize the sample, followed

by cooling down from 95 to 25◦C for gel formation. The

heating and cooling rates were both 5◦C/min. Subsequently,

frequency sweep tests were performed at 25◦C in the range

of 0.1–20Hz at a strain of 2%. The 2% strain was in the

linear viscoelastic region, according to the strain sweep results.

Rheological parameters such as storage modulus (G
′
) and loss

modulus (G
′′
) were obtained directly from rheometer data

analysis software (Trios.Version 4.3.0.38388).
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Rice noodles

Preparation of di�erent rice noodles

Rice noodles were prepared using a One-step Modeling

Rice Noodle Machine (MFD25C, Hunan Fenshifu Mechannical

Technology Co., LTD, China). Before extrusion, rice was soaked

in water at room temperature for 8 h. The soaked rice was

poured into the extrusion pipe (preset temperature at 90◦C) and

extruded through a circular die with 0.20 cm round openings,

and then and cut to the same length as they exited the extruder

die. After extrusion, the rice noodles were placed in an incubator

(YH0515T, Hunan Fenshifu Mechannical Technology Co., LTD,

China) for 4 h at 75% humidity and 28◦C to allow starch

retrogradation to some extent. Finally, the rice noodles were

taken out and dried at room temperature for 12 h to reduce the

moisture content to below 14%. The dried noodles were kept in

sealed plastic bags before analysis.

Cooking qualities of di�erent rice noodles

The cooking time and broken rate of different rice noodles

were determined by AACC standard methods (23). Five g of

rice noodles with length of 15 cm for each strand were placed

into 150mL of boiling water and cooked. Cooking time was

determined as the time required for the disappearance of white

core as judged by gently squeezing the noodle between two

glass slides. Broken rate was the ratio of the number of broken

noodles to that of dried noodles. Noodles were drained, and

the cooked water was collected in a beaker. The solid material

content in the cooking water was determined by evaporating in

a hot air oven at 105 ◦C overnight until a constant weight was

reached. The cooking loss of noodles were determined according

to Raungrusmee et al. (24) by the following equations:

Cooking loss/ % =
remaining solid content after drying

weight of fresh noodle
× 100

Sensory evaluation of rice noodles

The sensory properties of rice noodles were evaluated on

a percentage point system (< 60 means poor, 61–80 means

intermediate level, >80 means excellent) according to Wang

et al. (25) with some modifications. The sensory panel was

composed of 10 trained members who were 25–35 years old

(five men and five women). All the cooked rice noodles were

coded with random four-digit numbers. Meanwhile, water was

provided for the panelist to gargle before testing different

rice starch noodles. The samples were evaluated using a 100

point scale and the sensory characteristics include color (0–15

points), odor (0–10 points), tissue shape (0–15 points), firmness

(0–20 points), smoothness (0–20 points) and elasticity (0–20

points), The value of each sensory characteristic was averaged

and the total points were expressed as the sum of all sensory

characteristics scores.

Textural properties of rice noodles

The textural profile of rice noodles was evaluated by

texture profile analysis (TPA) and tensile properties using a

texture analyzer (CT3, Brookfield, USA) according to a reported

method (26). The rice noodles were cooked in boiling deionized

water for the best cook time, followed by cooling to room

temperature with deionized water, and drained off the water

beforemeasurement. For TPA, noodle samples were cut to 10 cm

segments. There segments were placed in parallel with no space

on the groove of the plate. The measurement parameters of

TPA were: TA5 cylinder probe (diameter 12.5mm and length

35mm) at the test speed of 2.0 mm/s, 50% compression ratio,

5 g trigger force, 5 s interval between the compressions, and 200

pp/s data acquisition rate. TA-DGA model fixture was used for

tensile properties testing. The samples were measured with a

starting distance of 60mm and target distance of 50mm. The

trigger force was set at 10 g with a tensile speed of 2 mm/s.

Measurements were performed in six replicates.

Statistical analysis

The results are reported as mean and standard deviation

of at least triplicate. The statistically analysis was performed by

variance analysis (ANOVA) using SPSS 17.0 statistical software

(SPSS Inc., Chicago, IL, USA). Significant differences between

the means were determined by Duncan test (P < 0.05). Pearson’s

correlation coefficients among parameters were also calculated

using SPSS 17.0 statistical software.

Results and discussion

Properties of rice flour

Compositions of rice flour

Total starch, amylose, crude protein and fat contents

of different rice flours are shown in Table 1. the basic

physical and chemical indexes of different rice varieties are

different. Starch and protein are main rice compositions.

The total starch and protein content in rice flour were

73.08–75.09 g/100 g (GC>SM>ZG>SG) and 7.31–8.04 g

/100 g (GC>SM>SG>ZG), respectively. The amylose

contents were in the range of 21.00–23.91 g/100 g following

the order of GC>ZG>SG>SM. There were significant

differences in amylose and protein content among different rice

flours (P < 0.05).
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TABLE 1 Physicochemical compositions of di�erent rice flour.

Rice varieties Moisture (%) Total starch (%) Amylose (%) Protein (g/100 g) Fat (g/100 g)

ZG 10.82± 0.57ab 74.31± 0.07b 22.44± 0.15c 7.31± 0.00a 0.82± 0.02a

SG 10.11± 0.42a 73.08± 0.08a 21.96± 0.08b 7.45± 0.00b 1.03± 0.02b

GC 10.98± 0.42bc 75.09± 0.32c 23.91± 0.12d 8.04± 0.00d 1.01± 0.01b

SM 11.73± 0.16c 74.46± 0.31a 21.00± 0.10a 7.74± 0.01c 1.50± 0.01c

ZG, zhengui; SG, shuanggui; GC, guichao; SM, suimi.

Means followed by different letters in the same column are significantly different at P < 0.05.

Solubility and swelling power of rice flour

The solubility (S) and swelling power (SP) are shown in

Table 2. The lower S is associated with smaller cooking loss of

rice noodles, and low SP of starch granules relates to relatively

high anti-shear ability (27). Amylose content in ZG, SG and GC

rice flours has no significant correlation with S, which was in

agreement with previous reports. Li and Vasanthan suggested

that samples with higher amylose content were less susceptible

to swelling during gelatinization (28). Jiao et al. reported that

starch-based material of pea starch forms a stronger gel due

to a higher amylose content of pea starch, which is desirable

in noodle processing (29). However, compare with ZG, SG,

and GC, the solubility of SM rice flour increased significantly

(P < 0.05) and the swelling power of SM rice flour decreased

significantly (P < 0.05) with the amount of amylose decreased

to 21.00%. The reason may be that S and SP were not only

related to amylose content, but also related to the structure of

amylopectin. Previous studies suggested that the value of SP

depends on the magnitude of interaction between starch chains

within the crystalline and amorphous domains (30). The SP of

starch mainly reflects the insolubility of amylopectin, which is

primarily caused by the formation of hydrogen bond between

side chains of amylopectin (31). The expansion characteristic

of amylopectin is also related to the length of the amylopectin

chains (32). When rice amylose contents are close, contents of

protein and fat, and damaged starch content that was caused

during milling process may take a primary role in influencing

the characteristics of rice gel (10–12). Tong et al. (2) found that

physicochemical characteristics (the degree of starch damage,

etc.) of rice flours prepared from wet-, dry- and semidry-

milling methods were different. According, the resulting textural

profile and cooking qualities of rice noodles prepared with these

different milled rice flours were varied significantly.

Thermal properties of rice flour

The results of thermal properties are shown in Table 2.

There were significant differences of thermal properties (TP,

TC, and 1H1) in the four rice raw materials (P < 0.05). TP,

TC and 1H1 of rice followed the order of SM>SG>GC>ZG.

There were also significant differences of 1H2 between the four

rice raw materials following the order of SM>GC>SG>ZG

(P < 0.05). According to literature, gelatinization temperature

is associated with internal arrangement of starch granules,

and crystallinity degree affects gelatinization enthalpy (30).

The structural changes in starch granules, including the

interactions of amylose-lipid and amylose-amylose, could lead

to changes in gelatinization properties (33). Therefore, a slight

decline in Tp might be attributed to the arrangement of

starch granules, the difference in crystallinity degree, and the

interactions of amylose-amylose, amylose-lipid and amylose-

protein in granules. The variation in chain-length distribution

in amylopectin might also account for the evident increase of

1H1, because more energy was needed to dissociate longer

linear chains (34, 35). These changes in gelatinization properties

directly affected the cooking quality, as lower Tp meant shorter

cooking time (36).

The results of retrogradation properties are also shown

in Table 2. It is known that, retrogradation is an inevitable

procedure during rice noodle processing (37). In this study,

the retrogradation degree (1H) of different rice materials

were significantly different among different varieties (31.61–

52.19%). The 1H values from high to low followed the order

of GC (52.19%) >SM (48.62%) >SG (46.78%) >ZG (31.61%).

Research showed that 1H is highly correlated with amylose

content and starch sources (35). In this study, GC had a higher

1H than other three rice flours (Table 2), which may due to

its higher amylose content (Table 1). However, it is interesting

that when the amylose contents were close (ZG, SG, and SM),

there was no correlation between the 1H and the amylose. In

this study, the amylose content in ZG rice was slightly higher

than that in SG and SM, but its 1H was the lowest, which may

be affected by other factors such as protein or fat. The content

of protein and fat in ZG rice is relatively low compared to

other varieties. Our results were in agreement with Marcoa and

Likitwattanasade et al. (38, 39), who found that 1H increased

with protein addition. Thus, when choosing raw materials for

rice flour processing, the influence of amylose content should

be considered first for the acute improvement of retrogradation

degree. Meanwhile the influence of other ingredients such as

proteins and fats content should be taken into account when

amylose content were similar.

Pasting properties of rice flour

Pasting properties of starches can be used to estimate the

applicability of rice noodle making (40). The pasting properties

of different rice starch are presented in Table 2 and Figure 1. All

Frontiers inNutrition 05 frontiersin.org

64

https://doi.org/10.3389/fnut.2022.1003657
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Wei et al. 10.3389/fnut.2022.1003657

T
A
B
L
E
2

P
h
y
si
c
o
c
h
e
m
ic
a
l
p
ro
p
e
rt
ie
s
o
f
d
i�
e
re
n
t
ri
c
e
fl
o
u
r.

V
ar
ie
ty

A
d
h
es
iv
e

st
re
n
g
th

(m
m
)

S
o
lu
b
il
it
y

(%
)

S
w
el
li
n
g

p
o
w
er

(g
/g
)

T
h
er
m
al
p
ro
p
er
ti
es

P
a s
ti
n
g
p
ro
p
er
ti
es

T
o
(◦
C
)

T
p
(◦
C
)

T
c(

◦
C
)

1
H
1
(J
/g
)

1
H
2
(J
/g
)

1
H
/%

P
V
(c
P
)

T
V
(c
P
)

F
V
(c
P
)

B
D
(c
P
)

S
B
(c
P
)

Z
G

42
.8
3
±

0.
76

4.
53

±
0.
46

a
10
.0
6
±

0.
99

b
64
.4
3
±

0.
12

a
69
.3
2
±

0.
17

a
78
.3
9
±

0.
22

a
9.
75

±
0.
10

a
3.
08

±
0.
00

a
31
.6
1
±

0.
31

a
25
0.
00

±
3.
00

c
24
6.
33

±
2.
08

c
40
1.
33

±
1.
53

b
3.
67

±
1.
15

a
15
5.
00

±
1.
73

a

SG
46
.1
0
±

0.
36

4.
58

±
0.
87

a
10
.4
7
±

0.
42

b
72
.9
0
±

0.
36

b
77
.7
6
±

0.
18

c
84
.4
1
±

0.
23

c
11
.8
6
±

0.
26

c
5.
55

±
0.
10

b
46
.7
8
±

0.
54

b
19
5.
33

±
1.
53

b
19
3.
33

±
1.
53

b
37
6.
00

±
4.
36

a
2.
00

±
0.
00

a
18
2.
67

±
3.
06

b

G
C

35
.0
0
±

0.
20

4.
48

±
0.
25

a
9.
85

±
0.
37

b
73
.0
7
±

0.
07

b
77
.0
8
±

0.
08

b
83
.6
8
±

0.
08

b
11
.4
2
±

0.
02

b
5.
96

±
0.
06

c
52
.1
9
±

0.
43

d
36
5.
25

±
2.
63

d
36
3.
00

±
2.
94

d
60
4.
00

±
5.
77

d
2.
25

±
0.
50

a
24
1.
00

±
6.
78

d

SM
49
.5
0
±

0.
78

5.
72

±
0.
12

b
8.
66

±
0.
24

a
75
.3
6
±

0.
27

c
79
.8
6
±

0.
18

d
94
.2
6
±

0.
18

d
13
.4
0
±

0.
26

d
6.
51

±
0.
09

d
48
.6
2
±

0.
99

c
18
4.
25

±
0.
50

a
18
1.
50

±
1.
91

a
41
1.
50

±
6.
45

c
2.
75

±
1.
71

a
23
0.
00

±
5.
94

c

Z
G
,z
h
en
gu
i;
SG

,s
h
u
an
gg
u
i;
G
C
,g
u
ic
h
ao
;S
M
,s
u
im

i.

T
o
,o
n
se
t
te
m
p
er
at
u
re
;T

p
,p
ea
k
te
m
p
er
at
u
re
;T
c,
fi
n
al
te
m
p
er
at
u
re
;1

H
1
,g
el
at
in
iz
at
io
n
en
th
al
p
y;

1
H

2
,r
eg
en
er
at
iv
e
en
th
al
p
y;

1
H
,T

h
e
re
tr
o
gr
ad
at
io
n
d
eg
re
e.

P
V
,p
ea
k
vi
sc
o
si
ty
;T

V
,t
ro
u
gh

vi
sc
o
si
ty
;F
V
,fi
n
al
vi
sc
o
si
ty
;B

D
,b
re
ak
d
o
w
n
;S
B
,s
et
b
ac
k
.

M
ea
n
s
fo
ll
o
w
ed

b
y
d
iff
er
en
t
le
tt
er
s
in

th
e
sa
m
e
co
lu
m
n
ar
e
si
gn

ifi
ca
n
tl
y
d
iff
er
en
t
at
P

<
0.
05
.

samples exhibited a typical pasting property of native rice flour,

which contained peak viscosity during heating and subsequent

breakdown on holding at 95◦C, followed by setback during

cooling. The peak and trough viscosities of rice flour samples

followed the same order of GC>ZG>SG>SM. Peak viscosity

(PV) is the maximum viscosity obtained from gelatinized starch

during heating in water, which indicates the water-binding

capacity of the starch granules (19). High PV of rice batter

enhances its adhesion properties (41). Through viscosity (TV)

refers to the viscosity decreasing rapidly after reaching the peak

and falling to the lowest viscosity at a high temperature. PV and

TV had a positive correlation with amylose content (P < 0.05).

Final viscosity (FV) is the viscosity of sample at the end of the

test at 50◦C. Pearson’s correlation analysis showed that the FV

of rice flours was not positive correlated with amylose content

(P > 0.05). FV of GC was noticeably higher than SM and ZG

followed by SG. the FV is not positive correlation with amylose

content, as can be seen from Table 2. FV value of SM was larger

than ZG and SG, the reason may be related to varieties, SM used

in this study was the broken rice of GC varieties. The result

of FV was contradictory to the previous study (20), Wu et al.

reported that high FV was accompanied by high gel hardness.

The breakdown (BD) indicates the propensity of starch granules

for disintegration (42) and represents hot paste stability. BD

was caused by structural disruption of gelatinized starches at

high temperature and affected by amylose content and fine

structure of amylopectin (19, 43). Among the four cultivars, BD

had no significant difference and was not directly correlated

with the amylose content. The setback (SB) determines the

retrogradation tendency of the product and reflects short-term

aging ability and cold paste stability of starch (19, 44). SB is

affected by content and molecular size of amylopectin in a

pure starch system (34). In a complex flour system, SB could

be influenced by starch content, amylose: amylopectin ratio,

structural characteristics of amylose, and other factors like

protein and lipid contents.

Rheological properties of rice flour

Rice flours that were prepared from different rice cultivars

had different rheological properties during a heat-cooling cycle

in a temperature range of 25–95◦C (Figure 2A). During heating,

G
′
and G

′′
sharply increased at ∼70◦C. When the temperature

reached 80–85◦C, G
′
and G

′′
reached the maximum values,

which was caused by swelling and gelatinization of starch

granules (45). With the continuous increases of temperature,

G
′
and G

′′
began to decrease rapidly reaching the highest

temperature, which was due to the deformation of swollen starch

granules and breakdown of crystalline structure after treatment

(36, 45). During cooling from 95 to 25◦C, G
′
and G

′′
increased

steadily. During this process, starch granules aggregated, and

association formed between starch and other molecules (30, 46).

G
′
and G

′′
values were higher for the rice flour samples with
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FIGURE 1

Pasting properties of rice flour. ZG, zhengui; SG, shuanggui; GC,

guichao; SM, suimi.

higher amylose contents. As can be seen in Figures 2A, 3A,

the G
′
and G

′′
values of four kinds of rice were as follows:

GC>ZG>SG>SM, which was in accordance with the results

obtained by Charles et al. (47) who found that high contents of

amylose contribute to gel firmness and stability. In addition, it

is interesting to note the changes of G
′
were not linear with the

increases of amylose. Differences of amylose content between SG

(21.96%) and SM (21.00%) resulted in small differences in G
′
,

but the increases of amylose content to 23.91% (GC) seems to

result in a large G
′
value. The higher the amylose content of rice

flour, the desirable the viscoelasticity of the gel system.

The gelatinized rice flour formed a strong gel (Figure 3).

G
′
had a notably higher value than G“ and had a weak

dependence on frequency, suggesting a dominant elastic

rheological behavior. G
′
and G

′′
increased with increasing

amylose content. Amylose has fewer branches than amylopectin,

and it can retrogradation in a shorter time to form molecular

aggregations and intermolecular double helices. Starch with a

higher amylose content tends to form a stronger gel in a shorter

time (47). Gels with higher G
′
showed higher rigidity and

strength (45, 48). Amylose content and starch type affect the

viscoelasticity of gels (49). Extruded rice noodle is a kind of gel

product, so the rheological analysis can be used as an auxiliary

approach for selecting raw rice materials for noodle production.

Rice noodles qualities

Cooking qualities and sensory evaluation of
rice noodles

Rehydration time, broken rate, and cooking loss of rice

noodles are shown in Table 3. The rehydration time is associated

with its cooking time, and the broken rate and cooking loss

were two important indexes of the cooking qualities for rice

noodles. ZG, SG, and GC had no significant difference in

FIGURE 2

Rheological properties of di�erent rice flours samples in the

process of temperature ramp (A) for the G
′
of samples, (B) for

the G
′′

of samples. G
′

, storage modulus; G
′′

, loss modulus; ZG,

zhengui; SG, shuanggui; GC, guichao; SM, suimi.

rehydration time (15–16min, P > 0.05), which was significantly

higher than SM (12min). SM had approximately two times

of broken rate higher than ZG, SG, and GC, while the latter

three had no significant differences (P > 0.05). The cooking

loss of rice noodles followed the order of GC<ZG<SG<SM.

Overall, GC and ZG noodles had the best cooking quality with

low broken rate and cooking loss, followed by SG. SM had the

lowest cooking quality with highest broken rate and cooking

loss. Previous research had reported that noodles with a higher

amylose content generally had a shorter rehydration rate, higher

gel strength, and smaller breaking rate and cooking loss (35, 37).

In this paper, the similar phenomenon were observed. The

morphology of rice noodles shown in Figure 4 was in agreement

with the rice noodle quality analysis (Table 3). There were only

slight differences of the rice noodles morphology among ZG, SG,

and GC, as their starch granular structure was not destroyed

during processing. The appearance of ZG, SG, and GC had

negligible differences, but SM noodle had a darker color and

more short segments, and the shape of rice noodles produced by
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FIGURE 3

Rheological properties of di�erent rice flours samples in the

process of frequency sweep (A) for the G
′

of samples, (B) for the

G“ of samples). G
′
, storage modulus, G

′′
, loss modulus, ZG,

zhengui; SG, shuanggui; GC, guichao; SM, suimi.

SM was relatively poor. The reason may be the overall structure

of the SM rice starch granules was damaged worse during the

process of shucking and stripping.

The results of sensory evaluation are summarized in Table 3.

There were no significant difference (P > 0.05) in odor of ZG,

SG GC, and SM. While compared with noodles made from SM,

there were significant increases in the color, tissue shape and

smoothness points of noodles made by GC, ZG, and SG (P <

0.05). The firmness points were correlated with rice amylose

content. As we can see in Table 3, firmness points significantly

increased (P < 0.05) when amylose content of different rice

increase from 21.00 to 23.91 % (GC>ZG>SG>SM). Elasticity

points were also correlated with rice amylose content. Compared

with noodles made from SM, there were significant increases

elasticity points of noodles made by GC, ZG, and SG (P < 0.05).

However, elasticity points of ZG and GC had no significantly

differences (P > 0.05). The total score was calculated from

the sum of color, odor, tissue shape, firmness, smoothness and T
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FIGURE 4

Morphology of rice noodles made from selected varieties of early polished indica rice. ZG, zhengui; SG, shuanggui; GC, guichao; SM, suimi.

elasticity scores. Total scores from high to lowwere: ZG, GC, SG,

and SM. The total scores were not completely positive correlated

with rice amylose content. As we can see, though the amylose

content of GC rice (23.91%) was slightly higher than that of ZG

rice (22.44%), its score (84.00) was not higher than that of ZG

rice (86.00) (P > 0.05). Therefore, when the amylose content

of different rice varieties were approximately, in addition to

considering the main factor of starch, the influence of other

factors such as protein also should be properly considered.

Texture properties of rice starch noodles

The texture of cooked noodles has substantial effects on the

sensory properties and the resulting consumers’ acceptance. In

this study, noodle texture was analyzed using a compression test

(texture profile analysis) and a tensile test (Table 3). In TPA,

hardness is a measurement of force to compress the sample

in the first bite with molar teeth. Springiness is the degree

to which a sample returns to its original shape after partial

compression with the molar teeth, and chewiness is the amount

of work to chew the sample to get it ready to swallow. Chewiness

is related to hardness, cohesion and elasticity, and it equals

to product of hardness, cohesiveness and springiness. When

the amylose content of GC rice was 23.91%, the hardness of

the rice starch noodles was 1628.67 g and significantly higher

(P < 0.05) than that of noodles made from ZG, SG, SM

(with hardness of 1084.00, 1097.00, and 941.67 g, respectively),

which is likely related to amylose content. The amylose content

(23.91%) in GC rice flour had a higher amylose content than

ZG, SG and SM, and GC starch formed a stronger gel strength

than the other three (Table 1, Figures 2, 3). The hardness of

ZG, SG and SM noodles had no significant differences (P

> 0.05). In addition, the changes of springiness, chewiness,

peak load and deformation at peak value of rice noodles were

consistent with the changes of amylose content. There was no

significant difference between GC and ZG in springiness, which

was consistent with G
′
(Table 3, Figures 2A, 3A). There was no

significant difference of chewiness value between ZG and SG (P

>0 .05). For the deformation at peak, there was no significant

difference in the variation of other rice varieties in addition to

SM, which indicated that although the amylose content of rice

was dominant, the texture quality of rice flour also might be

affected by other factors especially when the amylose content of

different rice varieties are similar.

In summary, the texture profile of different rice noodles

variedmainly depending on amylose content. Early indica rice of

GC with higher amylose content (23.91%) was more suitable to

produce rice noodles with higher elasticity, such as snail noodles.
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TABLE 4 Correlations between physicochemical properties of rice starch and rice starch noodles qualities.

Amylose Protein Adhesive

strength

Solubi

lity

Swelling

power

1H PV TV FV BD SB Broken

rate

Cooking

lost

Hard

ness

Springi

ness

Chewi

ness

Peak

load

Deformation

at peak

Sensory

score

Amylose 1

Protein 0.45 1

Adhesive

strength

−0.99** −0.51 1

Solubility −0.77 0.16 0.71 1

Swelling power 0.49 −0.41 −0.4 −0.92* 1

1H 0.13 0.83 −0.15 0.26 −0.29 1

PV 0.96** 0.62 −0.98** −0.57 0.23 0.22 1

TV 0.96** 0.62 −0.98** −0.57 0.23 0.23 1.00** 1

FV 0.83 0.86 −0.87 −0.29 −0.04 0.52 0.93* 0.93* 1

BD −0.15 −0.51 0.12 0.06 −0.18 −0.86 −0.09 −0.1 −0.29 1

SB 0.18 0.96* −0.24 0.42 −0.59 0.89* 0.37 0.37 0.68 −0.54 1

Broken rate −0.79 0.12 0.73 1** −0.91* 0.21 −0.60 −0.60 −0.33 0.11 0.37 1

Cooking loss −0.81 0.14 0.75 0.99* −0.88 0.30 −0.63 −0.63 −0.34 −0.01 0.41 0.99** 1

Hardness 0.95* 0.69 −0.96** −0.59 0.30 0.43 0.96** 0.96** 0.94* −0.37 0.46 −0.63 −0.62 1

Springiness 0.85 −0.08 −0.81 −0.97** 0.80 −0.32 0.71 0.70 0.42 0.09 −0.40 −0.97** −0.99** 0.66 1

Chewiness 0.99** 0.35 −0.98** −0.84 0.58 0.06 0.92* 0.92* 0.76 −0.14 0.07 −0.86 −0.87 0.92* 0.90* 1

Peak load 0.97** 0.65 −0.98** −0.61 0.30 0.33 0.99** 0.99** 0.94* −0.25 0.41 −0.64 −0.65 0.99** 0.70 0.94* 1

Deformation at

peak

0.99** 0.49 −1.00** −0.69 0.36 0.09 0.99** 0.99** 0.86 −0.04 0.22 −0.71 −0.74 0.94* 0.81 0.97** 0.97** 1

Score 0.80 −0.17 −0.75 −0.96** 0.81 −0.41 0.64 0.64 0.33 0.17 −0.50 −0.95* −0.99** 0.58 0.99** 0.86 0.63 0.76 1

* , **significant at P<0.05, P<0.01, respectively.
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ZG and SG indica rice with moderate amylose content was more

suitable for processing relatively soft taste of rice noodles such as

rolled rice noodles and sliced rice noodles. In addition, although

the textural properties of rice noodle made by SM was relatively

poor, it can be mixed with some high amylose rice in food

industry, which reduces production cost and increases quality

of rice noodles.

Correlations between physicochemical
properties of rice starch and qualities of rice
noodles

Correlations between physicochemical properties of rice

flour and the qualities of rice noodles were analyzed.

Pearson’s correlation coefficients are presented in Table 4. The

physicochemical properties of rice flour had a significant

influence on the qualities of rice noodles. Amylose content

of the rice had a positive correlation with hardness of rice

noodles (P < 0.5) and a strong positive correlation with peak

and trough viscosities, chewiness, peak load and deformation at

peak of rice starch noodles (P < 0.01). Adhesive strength had a

strong negative correlation with hardness, chewiness, peak load

and deformation at peak of rice starch noodles (P < 0.01). In

addition, there were positive correlations between RVA paste

viscosities and texture qualities of rice starch noodles (P <

0.01). PV and TV had positive correlations with chewiness (P

< 0.05), and a strong positive correlation with hardness, peak

load and deformation at peak of rice starch noodles (P < 0.01).

FV also showed a positive correlation with hardness and peak

load (P < 0.05). This was consistent with what was reported

by Bhattacharya et al. (50). Who suggested the suitability

and advantages of using pasting properties for selection of

rice cultivars suitable for noodle preparation. The rice noodle

properties in this study, including the cooking qualities, texture

properties, and sensory evaluation score, were closely correlated

with amylose content, adhesive strength, and pasting properties.

Meanwhile, other influencing factors (e.g., protein) should also

be considered.

Conclusions

The relationships between the characteristics of four rice

raw materials, processing performance, and cooking and

sensory properties of rice noodles were discussed in the

present study. This study shows that amylose content, adhesive

strength, and pasting properties had great influences on

cooking qualities and sensory properties of rice noodles.

Starch properties could be used for selection of suitable

rice materials for noodle production and prediction of rice

noodle quality. This study is useful for selecting rice for

food industry in different regional markets for specific rice

noodle product requirements. It provides information for

formulating pre-extrusion material for rice noodle production

by combining several dried rice flours, such as early indica

rice, late indica rice and some plant starches with higher

amylose than starch (e.g., corn starch). Further study could

focus on optimizing rice noodle processing conditions and

producing rice noodles with regional characteristics and

high quality.
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Xylooligosaccharide (XOS) are functional oligosaccharides with prebiotic

activities, which originate from lignocellulosic biomass and have attracted

extensive attention from scholars in recent years. This paper summarizes the

strategies used in the production of XOS, and introduces the raw materials,

preparation methods, and purification technology of XOS. In addition, the

biological characteristics and applications of XOS are also presented. Themost

commonly recommended XOS production strategy is the two-stage method

of alkaline pre-treatment and enzymatic hydrolysis; and further purification by

membrane filtration to achieve the high yield of XOS is required for prebiotic

function. At the same time, new strategies and technologies such as the

hydrothermal and steam explosion have been used as pre-treatment methods

combined with enzymatic hydrolysis to prepare XOS. XOS have many critical

physiological activities, especially in regulating blood glucose, reducing blood

lipid, and improving the structure of host intestinal flora.

KEYWORDS

xylooligosaccharide (XOS), xylanase, nutritional properties, agricultural and forestry

byproducts, application

Introduction

XOS are functional oligosaccharides, which are composed of 2–7 xylose molecules

linked by β-1, 4-glycosidic bonds, and the relative molecular weight is generally about

200–300 kDa (1, 2). XOS have excellent physical and chemical properties, such as high

heat and acid resistance (3). The sweetness of XOS is about 40%-50% of sucrose (4). The

viscosity of XOS is lower than other oligosaccharides, which can reduce the water activity

and improve the ability to hold water in water solution (5).

Frontiers inNutrition 01 frontiersin.org

73

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://doi.org/10.3389/fnut.2022.977548
http://crossmark.crossref.org/dialog/?doi=10.3389/fnut.2022.977548&domain=pdf&date_stamp=2022-09-13
mailto:tianshuangqi@haut.edu.cn
mailto:chen_1958@163.com
https://doi.org/10.3389/fnut.2022.977548
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnut.2022.977548/full
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Yan et al. 10.3389/fnut.2022.977548

In addition to excellent physical and chemical properties,

XOS are also the research hotspots of scholars from all walks

of life as prebiotics (6). A large number of animal experiments

have proved the beneficial effects of XOS in preventing

caries, regulating blood glucose, reducing blood lipid, reducing

cholesterol, preventing inflammatory, improving immunity,

preventing oxidation, promoting calcium absorption, which are

relating to the ability of regulating intestinal flora structure

of XOS (7–16). In addition, XOS could effectively prevent

obesity, cardiovascular disease, atherosclerosis, and intestinal

diseases (17, 18). The International Association of probiotics

and prebiotics (ISAPP) identified XOS as emergent prebiotic

oligosaccharides in its latest update of its prebiotic definition

(19).

Most XOS are prepared by degradation of agicultural

biomass (20, 21). Typical raw materials for preparation of

XOS include crop straws such as wheat and sugarcane, as

well as processing byproducts such as corncob and rice husk

(22). XOS can also be produced from the cotton stalk, corn

straw, sugarcane bagasse, and other common agricultural

wastes (23). There are three main methods of extracting XOS:

autohydrolysis, acid hydrolysis, and enzymatic hydrolysis (24–

26). At present, enzymatic hydrolysis preparation of XOS is the

primary method (27).

XOS have great potential as food ingredients due to their

price competitiveness, thermal stability and pH stability, sensory

properties and multidimensional effects on human health and

livestock compared with other prebiotics (28–30). Globally, XOS

are mainly used in the feed industry (49.6%), followed by health

and medical products (25.4%), food and beverage (23.2%), and

other applications (1.8%) (31). In addition, the industry’s interest

in XOS is reflected in an increasing number of XOS patent

applications (20). The global prebiotic ingredient market is

estimated to be 4.07 billion in 2017, expected to reach $7.37

billion by 2023. The compound annual growth rate (CAGR) is

10.4% (32), and the Asia Pacific region, including China, India,

and Japan, are expected to have the highest increase, exceeding

9.5% (33).

This article summarizes the research progress of preparation

and purification methods of XOS in recent years and introduces

the physiological activities and applications of XOS to provide

the basis for the further development and application of XOS.

Preparation of XOS

Raw materials for XOS preparation

Figure 1 showed the schematic representation of the

lignocellulosic biomass composition. Lignocellulose biomass are

the non-starch part of renewable and abundant plant materials.

Lignocellulose materials are mainly cellulose, hemicellulose,

and lignin (35). The composition of lignocellulose varies, with

an average of cellulose (30–50%), hemicellulose (20–40%),

and lignin (15–25%) in the total dry matter (36). Cellulose

is composed of a glucose molecular chain, which forms

hydrogen bonds between different layers of polysaccharides and

forms crystalline conformation. Xylan, the main component of

hemicellulose, is the critical target of XOS production.

Figure 2 showed the structure of xylan. Xylan is the main

component of hemicellulose (60–90%), a heteropolysaccharide

with a degree of polymerization (DP) between 50 and

200, containing acetyl, 4-o-methyl-dglucouronosyl, and α-

substituents of arabinofuranyl residues, related to themain chain

of β-1,4-linked xylopyranose units (23, 37). Table 1 lists the

composition of several common lignocellulose raw materials.

The higher the xylan content of the raw materials, the lower the

cost of XOS production. Among these lignocellulose biomass,

the hemicelluose content of corncob, sugarcane bagasse, and

wheat straw are relatively high, which are ideal raw materials for

XOS industrial production.

Preparation of XOS

Acid hydrolysis

Xylan can be hydrolyzed into soluble XOS under acidic

conditions. Generally, dilute hydrochloric acid and sulfuric acid

are used to hydrolyze xylan with a high degree of polymerization

to produce XOS. The purpose of acid treatment is to improve

the hydrolysis degree of hemicellulose, to improve the yield

of XOS. Hemicellulose is separated into oligosaccharides and

monosaccharides with a wide range of DP through the breaking

of glycosidic bonds of xylose (37, 47). However, acid hydrolysis

leads to equipment corrosion, which limits its use. In addition,

acid hydrolysis will produce excess xylose and other toxic

reaction products at high temperatures, such as furfural and

hydroxymethylfurfural (HMF), which are harmful to food

applications (48, 49).

It was reported that the yield of XOS obtained by

hydrolyzing poplar wood with 5% acetic acid at 170◦C

was 39.8% (50). Ying et al. elucidated that the increase

of sulfuric acid dosage enhanced the lignin removal of

poplar pretreated with hydrogen peroxide acetic acid (51).

The maximum XOS yield was 68.5% when XOS were

produced by hydrolyzing corncob with 5% propionic acid

at 170◦C for 50min (52). It was reported that the product

obtained by hydrolyzing brewer’s grains with 1.85% sulfuric

acid for 19.5min contains 6.6 g/L arabinoxylooligosaccharide

(AXOS) (53). The acetic acid pre-treatment of poplar could

effectively produce XOS, with a yield of 55.8%, and acetylation

degradation of lignin occurred after acetic acid pre-treatment

(54).

Acid hydrolysis to obtain XOS has been widely used

because it was a fast and easy technology (21). High XOS

yield could be obtained by hydrolysis with sulfuric acid
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FIGURE 1

Schematic representation of the lignocellulosic biomass composition [Adopted from Capetti et al. (34)].

FIGURE 2

Xylan structure shows di�erent intermolecular bonds [Adopted from Otieno et al. (7)].

of lignocellulose biomass. However, the yield of oligomers

is lower than monomers, mainly due to the higher yield

of xylose (6, 55). Even some methods change the acid

conditions, improve the yield of XOS and optimize the

existing preparation process; but the acid hydrolysis

efficiency is still not high; there are still many impurities

in the prepared products; and the content of XOS is

still low.

Autohydrolysis

Agricultural plant biomass rich in xylan can also be directly

hydrolyzed under high temperature and high pressure to

produce XOS. Autohydrolysis is a non-chemical process, which

refers to the deacetylation of D-xylan at high temperature

in the presence of water (56). Autohydrolysis occurs under

slightly acidic conditions due to the partial cleavage of acetyl

groups in plant cell walls to form acetic acid (57). In the
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TABLE 1 Cellulose, hemicellulose, lignin composition in raw

lignocellulose biomass.

Biomass Cellulose

(%)

Hemicellulose

(%)

Ligin

(%)

References

Almond shell 34.3 20.2 28.8 (38)

Big blue stem 37 28 18 (36)

Birch wood 40 24 24 (39)

Beech wood 42.5 34.3 22.2 (40)

Corncob 30–42 31–38 18–22 (37)

Coconut husk 34.1 32.6 26.0 (41)

Chestnut husk 20.6 10.5 48.3 (42)

Corn stover 40 25 17 (36)

Hazelnut shell 18.7 28.9 46.7 (43)

Miscanthus 43 24 19 (36)

Olive pomace 13.8 18.9 31.2 (44)

Olive stones 15.3 20.3 42.1 (44)

Pineapple peel 20.9 31.9 10.4 (45)

Peanut shell 20.9 19.3 42.7 (46)

process of autohydrolysis, XOS are typical reaction intermediate,

and their concentration depends on the balance between

the decomposition of polymer hemicellulose into XOS and

their further decomposition into monomer xylose. Therefore,

under medium conditions, the yield of XOS will be higher.

Treatment with increased severity resulted in decreased DP

and increased decomposition of XOS into xylose. Hemicellulose

is easily affected by water under high pressure and high

temperature. Exposure of lignocellulosic biomass to water causes

hemicellulose to penetrate the cellular structure, resulting in

cellulose hydration and hemicellulose depolymerization. The

action mode of hydrothermal treatment of lignocellulosic

biomass was in the subcritical region of water (100–374◦C) (58).

Autohydrolysis is heat treatment with steam or liquid water

at high temperature or high pressure (55, 56). Under the

autohydrolysis, the autoionization of water will produce ions,

which leads to the depolymerization effect of hemicellulose (59).

Acetic acid is usually added during autohydrolysis to increase

the formation of hydrogen ions (23). The yield of XOS is

the high under moderately severe operating conditions (60). It

was reported that the maximum yield of XOS (55.3 wt%) was

obtained by hydrothermal treatment of pecan shells at 160◦C

for 2 h. At the same time, high temperature (220◦C) and short

time (0.5 h) were helpful in hydrolyzing XOS with high DP,

in which the yield of XOS (DP2-6) was 37.5 wt% (61). The

autohydrolysis of almond shells (200◦C, 5min) resulted in low

DP, and the concentration of XOS (xylobiose and xylotriose)

was only 3.5% (38). Small-scale (150 tons of brewery waste grain

per day) biological refineries could make profits by valuing the

waste grain produced by large breweries and applying high-solid

hydrothermal technology to produce high-value products xylitol

and XOS (62). It was also elucidated that the recovery rate of

high-purity polymeric hemicellulose withmolecular weight (21–

30 kDa) was 35–37% when high-purity hemicellulose (xylan)

was partially extracted from wood waste by alkali mediated

hydrothermal method; the separated hemicellulose could be

chemically transformed into high-value commercial products,

such as prebiotics (XOS) (63).

The main advantage of autohydrolysis method is that it

has low or no requirements for corrosive compounds and is

marked as an environmentally friendly process (36). In the past

decades, hydrothermal treatment has been widely studied as the

first step of biorefinery because of its environmentally friendly

advantages and the selectivity of dissolving hemicellulose as

oligosaccharides over other treatments (64, 65). Hydrothermal

pre-treatment is considered an ecologically friendly and

inexpensive alternative method to treat lignocellulose (66,

67). Autohydrolysis technology automatically ionizes water

into hydrogen ions, allowing hemicellulose compounds to be

released from lignocellulose, such as acetyl groups in acetic

acid. This organic acid acts as a mild catalyst during the

reaction, which is conducive to the subsequent dissolution of

other hemicellulose-derived compounds (68, 69). Therefore,

hydrothermal treatment is a technology to reduce the corrosion

effect and cost of different solvents, and has high selectivity

for hemicellulose.

Although the consumption of chemicals is low, due to

the high pressure and temperature conditions, autohydrolysis

process requires high energy consumption. The green

characteristics of autohydrolysis will also depend on the

energy used (70). It was reported that the most common

temperature range to achieve high yield and minimum

degradation of compounds was about 160–180◦C (42, 71). The

high temperature usually causes the release of many monomers

(xylose) and impurities, such as furfural and HMF produced by

sugar degradation, as well as the phenolic compounds produced

by lignin (72, 73). The acidic hydrogen ion is formed due to

the release of acetyl group in lignocellulosic biomass; acetyl

group is the catalyst for hemicellulose depolymerization (71).

The depolymerization of oligomers begins with the random

breaking of the bond of xylose, producing oligomers short

enough to be extracted from the biomass structure (74).

The main disadvantage of heat treatment is still to produce

a large number of unwanted byproducts, such as other

oligomers, monosaccharides, acetic acid, furfural, HMF, formic

acid, levulinic acid, phenolic compounds, etc., (30, 75). It was

observed that the degradation compounds released from the

mixed biomass of hydrothermal treatment, had a significant

inhibitory effect on the growth of Lactobacillus brevis. The

dissolved lignin concentration of 1 g/L inhibited the growth

of Lactobacillus brevis. After the adsorption purification step

using Amberlite XAD 16N resin, the purified XOS showed

the exact cell yield and product yield as commercial XOS

(76). In general, a separation process is required to remove
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unwanted compounds. The existence of the former compound

in XOSmixture leads to serious purification difficulties, and then

increases the production cost (56).

The release of degraded compounds depends on the

composition of biomass and process conditions. Generally

speaking, a separation process is required to remove unwanted

compounds. The presence of the former compound in the XOS

mixture leads to serious purification difficulties and consequent

increased production costs (56). Another disadvantage of using

autohydrolysis to produce XOS is that special equipment is

required due to high temperature and high pressure (23, 24).

Enzymatic hydrolysis

Figure 3 showed the xylanase hydrolysis of lignocellulose.

XOS can also be produced by enzymatic hydrolysis of xylan.

Compared with acid hydrolysis and autohydrolysis, enzymatic

degradation is an ideal XOS production method because it

has specificity and the least byproducts. In addition, enzymatic

hydrolysis does not require any special equipment. The current

commercial process uses an enzyme process, which has mild

operating conditions, and does not use toxic chemicals, so

enzymatic hydrolysis is more in line with the viewpoint of

biodegradation process. In addition, the use of xylanase is

efficient and specific, allowing higher control of DP and reducing

the production of unwanted xylose and other byproducts (77).

Enzymatic hydrolysis is usually used for the extraction

of XOS due to the mild enzymatic hydrolysis conditions

and high product quality (78). However, the isomerization

of lignocellulosic materials will be seriously affected by the

structure of composite lignin-hemicellulose. Therefore, it is

essential to destroy the composite structure to expose more

hemicellulose to improve the extraction efficiency. Physical

and chemical pre-treatment technology have been used before

enzymatic hydrolysis. In addition, the source of materials and

xylanase have an impact on enzymatic hydrolysis.

Physical pre-treatment

Physical pre-treatment mainly includes the hydrothermal

method, steam explosion method, ultrasonic method, and

microwave method.

Steam explosion is instantaneous blasting under high

temperature and high pressure. The hemicellulose recovery of

corn cob after steam explosion at 196◦C for 5min was 22.8%

(79). After a steam explosion at 204◦C for 4min and 180◦C for

30min, the yield of XOS in wheat straw was 8.9 and 13.9/100 g

(72, 80). Steam explosion was also applied to the pre-treatment

of rice husk, and the final output of XOS was 17.35 mg/mL xylan

(81). In addition, after the steam explosion, 40% of xylan was

degraded into XOS, and the degree of polymerization of steam

explosion hydrolysates had good prebiotic properties (82).

The hydrothermal method processes materials in high-

temperature or high-pressure hot water. It was reported that the

xylan yield of wheat straw reached 56.2 g/kg after hydrothermal

pre-treatment at 180◦C for 40min (39). After hydrothermal pre-

treatment at 190◦C, 1.8 MPa for 13min, the extraction rate

of xylan from corncob was 18% (6). The extraction rate of

xylan was 23.82/100 g from dry corn straw subjected to non-

isothermal hydrothermal pre-treatment (83). The extraction of

XOS from corn fiber by hydrothermal pre-treatment at 160◦C

was also reported (84).

Ultrasonic and microwave had been applied to the pre-

treatment of lignocellulose materials. Under 121◦C ultrasonic

pre-treatment, 39% of xylan in corncob was released, which

was higher than the conventional extraction method (34%), and

the extraction time shortened from 24 h to 43min (85). After

microwave pre-treatment at 185◦C for 10min, the recovery

rate of xylan was higher than that of high-pressure steam pre-

treatment, because microwave pre-treatment was easy to control

the degree of reaction (86).

The results showed that physical pre-treatment was helpful

to the release of xylan and XOS. The steam explosion can

significantly improve the release of XOS, which has the

advantages of simple operation, no pollution, low energy

consumption, and a short production cycle. Therefore, the

steam explosion is a promising pre-treatment method for XOS

extraction in the future.

Chemical pre-treatment

Chemical pre-treatment mainly uses acid and alkali to

extract xylan from lignocellulosic materials, and the yield of

xylan varies according to the source of materials and extraction

conditions. Table 2 lists the material sources, extraction

conditions, and pre-treatment methods.

As shown in Table 2, the most commonly used chemical pre-

treatment method was alkali extraction, which mainly used 5–

24% sodium hydroxide and potassium hydroxide as extraction

solvents. However, the yield of xylan was relatively low when

alkali extraction is used alone. Auxiliary methods such as steam

and ultrasound are needed to improve the yield of xylan.

Xylan was extracted from corncob with sodium hydroxide and

methanol solvent, and the extraction rate reached 11% (89).

A similar xylan yield can be obtained when xylan is extracted

from dry corncob with 10% sodium hydroxide at 75◦C (89).

The yields of XOS were 83 and 84.5%, respectively, when

xylan were extracted from corncob and corn shells with 12%

sodium hydroxide solution with the steam pre-treatment (6, 92).

Ultrasonic assisted alkali extraction can significantly improve

the yield of XOS in corncob, and the content of related XOS can

reach 174.81 mg/g matrix (93).

Due to the low efficiency of acid extraction, acid extraction

was rarely used and was usually assisted by physical methods.

Xylan was extracted from corncob by acid electrolyte water (pH

2.0) combined with the steam explosion, and the extraction rate

was 55% (87). After pretreated corncob with dilute acid and

alkali to extract the lignin-saccharide complex, the yeild of XOS
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FIGURE 3

Schematic representation of XOS manufacture by enzymatic method.

was 5.80± 0.14mg/mL from the complex by xylanase hydrolysis

(94). According to reports, after being dissolved in 1.0MH2SO4

for 12 h, XOS were extracted from corncob by high-pressure

hydrolysis, and the maximum yield was 67.7% (95).

The alkali extraction method is greatly affected by

temperature and the extraction rate increases with the increase

of temperature. The alkali extraction method does not produce

byproducts, which is better than the acid extraction method,

but it have high requirements for equipment. Therefore, it

is suggested to use physical processes (such as steam and

ultrasonic) and chemical processes to improve the yield of xylan.

Xylanase hydrolysis

Xylanase systems include endo-xylanase and xylose releasing

enzyme exo-xylanase, or β-xylosidase, and debranching enzyme

(30, 96). For the production of XOS, only endo-xylanase are

meaningful. Based on sequence conservation, these enzymes

can be found in glycoside hydrolase families (GH) 5, 8, 10, 11,

and 43. In addition, exo-xylanase or β-xylosidase preparations

with low activities were needed to avoid xylose production

(56). Xylanases have been isolated from many different fungi

and bacteria, but most commercial xylanase hydrolysates are

currently produced by transgenic xylanase strains (97, 98).

It was reported that the main product was xylobiose

after the cauliflower stalk was hydrolyzed by natural endo-

xylanase extracted from Aspergillus niger TCC9687. The

cauliflower stalk XOS showed significantly high antioxidant

and antibacterial activities and reduced the viability of human

bone cancer MG-63 cells, both alone and in combination

with (Lactiplantibacillus plantarum, Bifidobacterium bifidum,

Lactobacillus delbrueckiissp. Helveticus); the antibacterial

components of cauliflower stalkm XOS were dihydroxybenzoic

acid and aspartic acid (99). Abdella et al. reported that after

the xylanase produced by Paecilomyces wallichii was applied to

beech xylan to produce different types of XOS; when the extract

concentration was from 0.1 to 1.5 mg/mL, the antioxidant

activity of XOS increased from 15.22 to 70.57% (100). XOS from

oil palm empty fruit bunch hemicellulose produced by xylanase

from Thermomyces cyanobacterium hydrolysis was composed

of xylotriose and xylobiose. XOS was evaluated as the substrate

of two probiotics (Lactobacillus plantarum WU-P19 makes

better use of XOS than Bifidobacterium TISTR2129) found in

the human gastrointestinal tract (101).

Table 3 lists the hydrolysis and yield of different raw

materials with endo-xylanase from different sources. It can be

seen from Table 3 that the yield of fungal xylanase is high.

It is reported that bacteria such as bacillus and streptomyces

could also produce xylanase (114). Recombinant xylanase could

also obtain a relatively high yield, but large-scale natural

production of recombinant enzyme required a highly complex

purification process, which significantly increases the cost.

Enzymatic hydrolysis of xylan could also be achieved in

situ by microbial fermentation. In this process, bacteria were

cultured to produce xylanase and secreted into the reaction

medium, where the enzyme hydrolyzes xylan to produce

XOS (115).
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TABLE 2 Material sources, conditions, and xylan yield of commonly

used chemical pre-treatment methods.

Material

sources

Extraction

method

Xylan yield References

Corn cob 12% NaOH 83% of original

xylan

(6)

Acidic electrolyte

water, pH 2.0

55% (87)

4% NaOH and

methyl alcohol

11% (88)

10% NaOH, 75◦C,

90min

20% (89)

Wheat straw 0.5 mol/L NaOH,

55◦C, 2 h

49.3% of

original xylan

(90)

Corn stalks 10% NaOH+1%

NaHBH4 , 20
◦C,

10 h

54% of original

hemicellulose

(91)

Corn husks 12% NaOH, 121◦C,

0.2 MPa, steam

45min

84.60± 2.19%

of original

xylan

(92)

Xylanase hydrolysis process is relatively soft and easy to

purify. There is no apparent other production, and the color of

XOS is relatively light. XOS prepared by enzymatic hydrolysis

have good prebiotic potential and antioxidant performance. In

addition, the use of xylanase has high efficiency and specificity,

allowing higher control of DP and reducing the production of

unwanted xylose and other byproducts. At present, xylanase

hydrolysis is the primary method to produce XOS.

To sum up, the existing methods have optimized the

preparation of XOS to a certain extent and improved product

efficacy. In recent years, the industrial application of XOS has

been greatly limited due to high content of impuritie XOS; and

the product quality of XOS was not easy to control. Therefore,

the refining, separation, and purification of XOS have also

become the key to subsequent industrial application. At present,

the development of XOS has not reached its peak. As a new

generation of functional sugars, XOS have not been fully used.

These production optimizations have promoted the application

and development of XOS and laid the primary theoretical

foundation for large-scale popularization and use in the future.

XOS purification

After XOS production, undesirable compounds and

oligosaccharides were produced (116). The presence of

unwanted compounds such as glucose and xylose will increase

the calorific value of XOS and change their sweetness ability

(56). On the other hand, the prebiotic effect of XOS also seems

to depend on their purity level. It has been observed that

high-purity XOS products have a more significant impact on

biological function (57).

To remove unwanted components and obtain high-purity

XOS, subsequent purification treatment is required (28).

In particular, more components will effect the purity of

product when the autohydrolysis method is adopted to treat

lignocellulose (117).

The commonly used purification methods include

adsorption separation, solvent extraction, membrane separation,

and chromatographic separation.

Adsorption on the active solid surface is usually used in

combination with the solvent elution step to separate oligomers

from monomers and remove other unwanted pollutants.

Commonly used adsorbents for purifying XOS include activated

carbon, acid clay, bentonite, diatomite, aluminum hydroxide

oxide, titanium, silica, and porous synthetic materials (1, 56,

118). Among them, activated carbon is the most commonly used

evaluation method, whether in solution or fixed bed adsorption.

Activated carbon treatment has proven to be a viable option

for removing extract-derived, lignin-derived, and carbohydrate

degrading compounds present in XOS mixtures (119). On the

other hand, ion exchange resins are combined with different

purification strategies to remove salts, heavy metal ions, charged

organic compounds and pigments in XOS mixtures (56, 120).

Solvent extraction mainly removes the non-sugar

components from the hydrolysate. The recovery and purification

degree of the XOS mixture depend on the solvent used for

extraction. Ethanol, acetone, and isopropanol are the most

common options for refining crude XOS solutions (121–123).

In XOS production, solvent extraction is usually used to recover

hemicellulose derivatives from pre-treatment (55). In this

case, vacuum evaporation is generally used in the first stage

to remove volatile compounds and concentrate XOS solution

(56). On the other hand, organic solvent precipitation allows

the recovery of XOS or xylose while removing phenols and

extracting derived compounds.

Chromatographic separation for XOS purification produces

analytical grade high-purity components. Gel permeation

chromatography (GPC) (124), water-soluble exclusion

chromatography (SEC) (125), ion-exchange chromatography

(IEC), and centrifugal partition chromatography (CPC) are

some standard technologies for purifying XOS (126, 127), Ho

et al. used GFC to purify XOS produced by autohydrolysis of

agricultural residues. In this cases, GFC could effectively remove

high DP oligosaccharides. More importantly, GFC could

remove unwanted small molecules, such as monosaccharides,

acetic acid, and degradation compounds (furfural, HMF, and

phenol) (128).

Membrane separation is another powerful technique

commonly used for oligomer purification. Ultrafiltration

and nanofiltration based technology is the most promising

processing strategy for manufacturing high-purity and
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TABLE 3 Xylanase used for XOS production, operational conditions, and yield.

Xylanase Biomass

substrate

Xylanase ratio Operational

conditions

Hydrolysis

yield

References

Wild-Type endo-xylanase Paper mulberry pulp 125 U/g 53.8◦C, 12 h 1.23± 0.09 g/L (102)

Recombinant endo-xylanase Paper mulberry pulp 125 U/g 53.8◦C, 12 h 1.59± 0.07 g/L (102)

Cellulase-Free xylanolytic enzyme

from Bacillus firmus K-1

Corn cob 3 U/mL 50◦C, pH4.8, 4 h 44.6% (intial xylan) (103)

Endo-Xylanase from Aspergillus

niger MTCC 9687

Lauliflower stalk 20 U/g 50◦C, 5h, pH5.4 7.4 mg/mL (104)

Crude fungal xylanases from A.

flavus KUB2

Spent mushroom 20 U/g 50◦C, 5h, pH5.4 1.37–1.48 mg/mL (105)

GH10 from Caldicellulosiruptor

bescii xylanase

Rice straw xylan

Sugarcane bagasse

300 U/mL 50◦C, pH 6.0, 72 h 2.93 mg/mL

1.12 mg/mL

(106)

GH11 from Bacillus firmus K-1

xylanase

Rice straw xylan

Sugarcane bagasse

300 U/mL 50◦C, pH6.0, 72 h 1.79 mg/mL

1.10 mg/mL

(106)

Two recombinant endo-xylanase

from Streptomyces thermos-Riseus

(StXyl10, StXyl11)

Red alga dulse 0.5µg/mL

Then 2.0µg/mL

StXyl10 (50◦C, 4 h)

StXyl11(60◦C, 36 h)

95.8% (intial xylan) (107)

Crude xylanase produced with

Aureobasidium pullulans NRRL

Y−2311–1 from wheat bran

Autohydrolysis of

hazelnut shells

240 U/g 50◦C, pH 6.0, 24 h 22.5 g/L (108)

Combinations of

endo-β-(1,4)-D-xylanase enzyme

with accessory enzymes

(α-L-arabinofuranosidase,

feruloy-esterase, and

acetylxylan-esterase)

Barley straw Endo-β-(1,4)-D-xylanase

NS50030 7.2 U/mL;

α-L-arabinofuranosidase

6.3 U/mL;

feruloylesterase 0.05

U/mL, and acetylxylan

esterase 5 U/mL

50◦C, pH 4.8, 5 h 13.6 g XOS/100 g (109)

Commercial xylanase Rice husk arabinoxylan 50 U/g 50◦C, pH 5.5 24 h 64.01% (110)

Commercial xylanase Rice straw

arabinoxylan

100 U/g 50◦C, pH 5.5, 24 h 59.52% (110)

Crude xylanase from

Aureobasidium pullulans CCT

1261

Beechwood xylan 260 U/g 40◦C, pH 6.0 24 h 10.1 mg/mL (111)

Aspergillus versicolor

endo-xylanase

Xylan from sugarcane

bagasse 0.17%

substrate

65 UI/g 55◦C, 24 h 67.43% (112)

Aspergillus versicolorendoxylanase Xylan from sugarcane

leaf 0.17% substrate

65 UI/g 55◦C, 24 h 69.71% (112)

Xylanase complex fermentation by

Aspergillus niger

Sugarcane extracted

xylan

5 U/mL 55◦C, pH 5.8, 1 h 3.1 g/L (113)

concentrated oligosaccharides (55). The popularity of this

technology can be attributed to its low energy consumption

requirements, relatively easy amplification, and easy operation

variables (13, 116, 129–131). Membrane technology is currently

considered to be the most promising strategy for industrial

production of high-purity XOS. In this case, the ultrafiltration

separation of oligosaccharides from high molecular weight

compounds has low energy consumption and is easy to

operate and enlarge (128). However, its disadvantage is

that its performance is poor when small molecules must

be removed.

Meanwhile, purification strategies with different properties

are often used in combination to improve the purification of

XOS. It was reported that a combination of nanofiltration,
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solvent extraction and dual ion exchange chromatography

method could achieve 90.7% XOS purity (132).

Nutritional properties of XOS

Figure 4 showed the main nutritional properties of XOS.

XOS have many important physiological activities, especially

in regulating blood glucose, reducing blood lipids, improving

antioxidant capacity, preventing cancer, preventing dental, and

improving the structure of host intestinal flora.

Optimizing the intestinal flora

Figure 5 showed the role of XOS in regulating intestinal

flora. XOS can change the composition of intestinal

microorganisms, increase the number of probiotics and

produce healthy fatty acids. It was found that XOS from

giant awn could increase the number of Bifidobacteria,

Lactobacillus and Escherichia coli without affecting the number

of pathogenic bacteria such as Clostridium perfringens (134).

XOS extracted from corn straw also had a significant effect

on the proliferation of Lactobacillus and Bacteroides (80).

The addition of XOS during fattening period would increase

the concentration of acetic acid, linear fatty acids and short-

chain fatty acids in pig intestinal contents, and change the

composition and metabolic activity of intestinal flora (135).

The intake of XOS could significantly increase the number of

Bifidobacteria in human intestine (136). It was elucidated that

in vitro fermentation of XOS from birch could significantly

proliferated the number of Bifidobacteria, Staphylococcus,

especially Staphylococcus hominis, which could produce

bacteriostasis and inhibit corresponding pathogenic bacteria

such as Staphylococcus aureus and Helicobacter pylori (137).

Hald et al. elucidated that after ingestion of arabinoxylan,

the number of Bifidobacteria in feces increased significantly,

while the number of Lactobacillus, Clostridium, and Akmann

mucophilus did not change significantly (138).

The reason that XOS selectively proliferate beneficial

bacteria such as Bifidobacteria in the intestine is related to the

production of vitamins and immune stimulation (139). The

proliferation of Bifidobacteria in the intestine will also inhibit

the growth and reproduction of pathogenic bacteria, produce

some digestive enzymes and help the body rebuild the intestinal

flora (140). The effect of XOS on intestinal health is also reflected

in the large production of organic acids, such as short-chain

fatty acids, acetic acid, propionic acid, and butyric acid, as

well as other organic acids such as lactic acid, succinic acid,

formic acid, isobutyric acid, valeric acid, caproic acid, and

isohexanoic acid (99, 141). These organic acids play essential

roles in preventing various intestinal diseases. The increase

in acetic acid concentration was particularly significant after

FIGURE 4

Nutritional properties of XOS.

ingestion of Arabinoxylooligosaccharide (136). It was reported

that the proliferation of Bifidobacteria caused by the intake of

XOS is an essential reason for maintaining intestinal health

and preventing intestinal diseases (30). The study found that

after the intake of XOS, the number of Enterobacteriaceae and

Clostridium perfringens decreased significantly, which effectively

reduced the incidence of intestinal diseases caused by harmful

bacteria (88, 142).

XOS can selectively proliferate beneficial bacteria for

three reasons: (1) Providing energy materials for beneficial

bacteria (143). (2) Proliferating beneficial bacteria form a

microbial barrier to prevent pathogen colonization (144). (3)

XOS are fermented and utilized by Bifidobacteria and other

microorganisms in the intestine, and the organic acids produced

reduce the pH of the intestine, and most pathogenic bacteria are

suitable to grow in a neutral environment to inhibit the growth

and reproduction of pathogenic microorganisms (145).

Regulating blood sugar

XOS have unique molecular structure of β-1, 4 glycosidic

bonds so that the enzymes in the digestive tract in the body

cannot decompose them and cannot be directly absorbed and

utilized by the human body, so they do not affect the blood

glucose concentration. XOS cannot be digested and absorbed

by the animal gastrointestinal tract but can be fermented and

utilized by beneficial bacteria such as Bifidobacteria in the

intestine in the large intestine and produce a large number of

organic acids such as short-chain fatty acids (146). It was found

that type 2 diabetic patients had significantly lower blood sugar

levels after 8 weeks of XOS intake (147). The intake of 5%
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FIGURE 5

Illustration of benefits incurred by prebiotics on immune system: Stimulates growth of the beneficial bacterium in the large intestine that

prevents colonization of harmful bacteria; increases production of short-chain fatty acids (SCFA) and helps in improving bowel health that

reduces risks of colon cancer [Adopt from Slizewska et al. (133)].

XOS could significantly reduced the blood glucose of obese mice

(146). XOS from cereals could effectively improve the blood

glucose level of mammals (148).

It was reported that XOS regulated blood glucose and

lipid metabolism in mammals depending on their fermentation

process in the colon (148). Some researchers argued that XOS

could improve glucose tolerance by reducing plasma glucose

levels and enhancing insulin sensitivity (149). It was reported

that after XOS were ingested by mammals, a large amount

of propionic acid produced by the fermentation of beneficial

bacteria in the intestine could stimulate the production of

glucagon like peptide 1 (GLP-1), which stimulates the secretion

of insulin, thereby increasing the synthesis of liver glycogen and

reducing the level of plasma glucose (150).

To sum up, XOS play a regulatory role in blood

glucose levels. For people with high glucose, diabetes, or

impaired glucose tolerance, XOS intake has a positive effect

on lowering blood sugar levels, which is consistent with

most studies.

Reducing blood lipids

Many studies have shown that XOS could effectively reduce

the lipid levels of obese people. For example, it was found that

after 8 weeks of continuous intake of 4 g/d xylose, fat in patients

with type 2 diabetes decreased significantly (147). XOS could

reduce the levels of total cholesterol, low-density lipoprotein,

triglyceride, and increase the level of high-density lipoprotein in

obese mice with a high-fat diets (146). XOS could also reduce the

fat level of broilers (151).

The intake of oligosaccharides will reduce the levels of

total auxin and acylated auxin. In contrast, the reduction of

acylated auxin will reduce food intake to improve obesity and

control metabolism. It was found that the short-chain fatty acids

produced by microbial fermentation of XOS in the intestine

affect the metabolism of cholesterol, in which propionic acid

was absorbed by the intestine and entered the blood through the

portal vein to the liver to reduce the synthesis of cholesterol in

the liver and improve the sensitivity of insulin to regulate the
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body’s lipid metabolism (152). In addition, some studies have

explained the mechanism of XOS reducing blood lipid from

the perspective of bile acid. It was found that the mechanism

that XOS reduced the cholesterol level of patients with high

cholesterol was the excessive excretion of bile acids (153).

Improving antioxidant capacity

XOS also have antioxidant activity (154). The antioxidant

activities of XOS are mainly reflected in increasing the content

of non-enzymatic antioxidant substances and improving the

activity and level of antioxidant enzymes (147). It was found

that XOS could significantly reduce the levels of oxidized

glutathione (GSH) and malondialdehyde (MDA) in serum,

heart and liver of high-fat diet mice, and normal mice (146).

XOS intake could significantly increase the activity and level

of antioxidant enzymes such as SOD (superoxide dismutase),

CAT (catalase), and GSH PX (glutathione peroxidase) in the

heart of mice with a high-fat diet (155). Abasubong et al.

reported that 5% XOS (the mass fraction of 1.5%) could

significantly improve the growth performance, antioxidant

capacity, innate immunity, and hydrophilic bacilli resistance of

Sparus macrocephalus (156). XOS could increase the contents

of Lactobacillus and Bifidobacterium in mouse feces and reduce

the contents of Enterococcus, Enterobacter, and Clostridium.

The vitro antioxidant results showed that the conbination of

XOS and Lactobacillus plantarum had free radical scavenging

activity (154).

Preventing cancer

Short-chain fatty acids and other organic acids produced

by XOS fermentation in the intestine have a specific role

in preventing cancer, and their immune regulation in the

body are essential means to prevent cancer (146, 157). Studies

have shown that XOS could change the intestinal microbiota

of mice and improve the intestinal barrier (158). It was

demonstrated that XOS could reduce systemic inflammation,

increase trabecular thickness, reduce osteoclasts and active

erosive surfaces, and restore the rate of mineral deposition and

bone formation in male Wistar rats (159). Yin et al. found that

the inflammatory state and intestinal barrier of XOS-fed piglets

improved significantly (160). Many reports have reported that

the addition of oligosaccharides could reduce the expression of

TNF-α (tumor necrosis factor) and NF-κβ (proinflammatory

nuclear transcription factor protein) in the colon (161). It was

also verified the anti-inflammatory activity of wheat arabinose

oligosaccharides (162). XOS could also significantly increase

the activation potential of T cells and B cells in tumor-bearing

mice, as well as the immune ability in body fluids and cellular

mediators, and play an anti-tumor role. It was also reported

that the taking of XOS could minimize the risk of colon cancer,

produce cytotoxic effects on leukemia cells, improve the immune

system, and has a positive effect on type 2 diabetes (40, 163–165).

Beneficial bacteria can regulate immune factors and

antibodies by using organic acids produced in the process

of XOS to improve the immune function of the body

(166). Bifidobacterium can increase the number of peripheral

leukocytes so that the immune function is enhanced through

the proliferation of Bifidobacteria (154). At the same time,

XOS can increase the number of blood monocytes, serum

alkaline phosphatase activity, and lysozyme activity. As an

immune adjuvant, Bifidobacterium can recognize PP lymph

nodes, activate intestinal lymph nodes, and induce lymphocyte

outflow through lymphatic vessels; the immune system of

the body is activated through lymphatic circulation (167). In

addition, oligosaccharides directly bind to sugar receptors on the

surface of immune cells to stimulate immune cell differentiation

and increase activity; XOS can also be used as foreign antigens

to effectively and permanently stimulate the immune system

and promote the cell division and development of immune

organs (153).

Other nutritional properties of XOS

At the same time, XOS can also prevent dental caries (168).

XOS can not be decomposed by Streptococcus mutans and other

bacteria in the mouth. The absorption rate of calcium was

improved when XOS and calcium were ingested simultaneously

(161). Kobayashi et al. found that the use of acidic XOS in mice

with iron deficiency anemia significantly reduced the contents

of ferritin in the liver and iron transporter in the small intestine,

indicating that XOS could improve the body’s iron absorption

capacity and promote the body’s absorption of minerals. XOS

could promote the proliferation of beneficial bacteria in the

intestine; and the enzymes (such as phytase) produced by the

beneficial bacteria promoted the dissociation of mineral ions in

the intestine and improved the intestinal absorption rate of the

mineral (169).

Application of XOS

Figure 6 showed the different application of XOS. In the

food industry, XOS are commonly used as gelling agents,

viscosity regulators, foam stabilizers, and tablet adhesives (170).

In addition, the use of XOS as fat substitute in dairy products

improves the elasticity and hardness of low-fat cheese and

improves the storage stability of the cheese (171, 172). Except

in the food industry, XOS are also widely used in medicine,

agriculture and feed and other field because of their good

physical and chemical properties.
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FIGURE 6

Application of XOS.

Application of XOS in food

Application of XOS in baked food

XOS are widely used in baked foods because of their

excellent acid and thermal stability. The moisture retention and

water retention of XOS can change the rheological properties

of dough and control the best moisture effect to change the

taste and appearance of baked food. It was reported that the

partial substitution of 5% XOS for sucrose would not change

the physical and chemical properties of biscuits but would triple

the content of crude fiber and increase the content of dietary

fiber by 35%; and the biscuits had the functions of storage

stability and prebiotic function (173). The addition of XOS

increased the baking characteristics of biscuits, which increased

caramel flavor, darker color, and more brittle texture (174).

The addition of XOS also increased the sweetness and overall

taste intensity of biscuits, indicating that XOS play a role in

flavor enhancement in baked products. XOS have proved to be

a promising new substitute which can increase the dietary fiber

content of cereal biscuits.

Application of XOS in beverages

With the addition of XOS to orange juice, pomegranate juice,

and whey beverage, the overall sensory acceptance generally

improved (170, 175). The strawberry whey beverage with

XOS showed an inhibitory effect on the enzymes controlling

hypertension and diabetes in vitro.With the addition of XOS, the

viscosity of the beverage increased, which was attributed to the

substantial network formed by hydrogen bonding between XOS

and protein and the strong water holding capacity of XOS (176).

Application of XOS in fodder

XOS could promote the improvement of food-specific

characteristics and have been incorporated into animal feed to

improve health (20).

In poultry feed, XOS could effectively increase the number

of Lactobacillus in the ruminant intestine and improve animal

digestibility. It was elucidated that adding XOS to grain

could improve the feed conversion rate by adjusting the

nutrient digestibility and ileal morphology of laying hens, which

might be due to the increase of bacterial richness and the

change of microbial composition, especially the enrichment of

Lactobacillus and short-chain fatty acid-producing bacteria and

the decrease of Bacteroides abundance (177). The addition of

XOS to the diet had a positive effect on the growth performance,

nutrient digestibility, and SCFA ratio of broilers attacked by

coccidia (178). Ribeiro et al. studied the effect of XOS on

the performance of broilers and reported that the dietary

supplementation of XOS increased the nutritional value of the

wheat diet, and the improvement of animal performance was

accompanied by the transfer of microbial population settled in

the upper gastrointestinal tract (179).

In terms of livestock feed, the addition of 100 g/t XOS

in a grain diet could increase the height of jejunal villus, the

abundance of Lactobacillus and Bifidobacterium, as well as the

concentration of acetic acid and short-chain fatty acids, and

could significantly improve the intestinal ecosystem of Weaned

Piglets (180). The addition of XOS had a positive impact on the

growth performance, nutrient digestibility, and the proportion

of short-chain fatty acids of pigs (181). The supplement of

100 g/t XOS in the growth completion stage of pigs would

increase the relative abundance of Lactobacillus and short-chain

fatty acids and biogenic amines (135). Yin et al. elucidated that

the addition of XOS to the diet significantly enhanced the α-

diversityof the intestinal microbiota of weaned piglets (157). The

addition of XOS increased the villus height: crypt depth ratio in

jejunum of weanling piglets. The addition of XOS alone (200

mg/kg) could improve the apparent digestibility of dry matter,

nitrogen, and total energy on the 14th day, improve trypsin

activity and reduce fecal NH3 concentration. On day 14, taking

XOS reduced the number of E. coli in feces and increased the

number of Lactobacilli (182).

In terms of aquatic feed, XOS could promote the growth of

aquatic animals, reduce the content of serum cholesterol and

triglyceride, effectively control blood glucose level and enhance

the immunity of aquatic animals. It was reported that after fed

Caspian white fish with 3% XOS for 8 weeks, the antibacterial

activity and total protein level of skin mucus was significantly

improved. After taking XOS into the diet, the total number

of intestinal heterotrophic bacteria and lactic acid bacteria

increased significantly, which proved the beneficial effect of XOS

on different skin mucosal immune parameters (183). Feeding

juvenile triploid O. mykiss 5.0–10.0 g/kg XOS could increase the
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number of Lactobacillus by promoting intestinal development,

limiting intestinal injury and inflammation, and regulating the

structure of the intestinal microbial community (182). The high-

fat diet supplemented with 1–3% XOS promoted the growth of

carp fed with high-fat diet; and XOS could improve the growth,

digestive enzymes, antioxidants, and immune response of carp

fed with a high-fat diet (184). The appropriate level of XOS

supplement could improve the growth performance of grass

carp, increase the number of Lactobacillus and Bifidobacterium

and the concentration of short-chain fatty acids, improve

the growth performance of grass carp and prevent intestinal

cell apoptosis (185). It was reported that added 5% XOS to

the diet could significantly improve the growth performance,

antioxidant capacity, innate immunity, and hydrophilic bacilli

resistance of Megalobrama amblycephala (156). Adding XOS to

feed European bass (Dicentrarchusla-brax) could significantly

increase body weight and protein efficiency ratio and feed

conversion rate, improve growth, stimulate immunity, and

enhance anti-infection ability (186).

Application of XOS in medical treatment

The unique physiological activities of XOS makes them

widely used in medicine for the treatment and prevention of

a variety of diseases. In medical care, XOS can be an option

in preventing cardiovascular, tumor, and endocrine diseases.

XOS can be used as anti-tumor stabilizers, immune stimulants,

antioxidants, and drugs. XOS can also be widely added to

health care products as functional factors to assist in treating

of some human diseases. Through clinical verification, XOS

can be combined with traditional Chinese medicine extracts

or added to the formula of Western medicine to replace

some auxiliary materials such as starch and dextrin, which

can strengthen the efficacy of drugs. In addition, XOS can

also directly develop health products and enhance the body’s

physique. According to clinical trials, XOS play an important

role in treating diabetes, hypertension, hyperlipidemia, chronic

hepatitis, irritable bowel syndrome, chronic gastroenteritis,

osteoporosis, pruritus, and otitis (187). Sheu and other studies

reported that 8 weeks of XOS as a dietary supplement could

effectively improve blood glucose and lipid levels in type 2

diabetes (147). It was found that XOS was beneficial to the

reversible change of intestinal microflora in diabetic patients,

such as decreasing the growth of Enterorhabdus, Howardella,

SLackia, and so on (48). At the same time, XOS could

also reduce the OGTT-2h (2 h oral glucose tolerance test)

of prediabetic patients. It was reported that ID-HWS1000

composed of Lactobacillus and Bifidobacterium, XOS, and

dietary fiber directly improved the discomfort related to

defecation, reduced the proportion of vertebrates, increased

the proportion of Bacteroides, improved the perception of

intestinal activity in patients with functional constipation, and

produced positive changes (188). XOS supplementation could

also improve intestinal function, calcium absorption and lipid

metabolism, as well as reduce cardiovascular disease, and colon

cancer (23).

Application of XOS in agriculture

XOS were also known as plant growth regulators (189).

XOS could also be used as fertilizers to improve soil activity

and promote crop growth. When XOS were used as soil

conditioner, the number of soil microorganisms and enzyme

activity increased significantly, and the soil ecosystem was

improved (190). In XOS treatment, the content of Brassinolide

(BRS) increased significantly. Some researchers pointed out

that BRS could induce the accumulation of zeatin nucleoside

in plants to enhance photoprotection by accumulating many

cold shock proteins and effectively prevent the accumulation

of cold induced proteins (191). Finally, the resistance of plants

to low temperature increased (192). Chen et al. reported

the effect of XOS on improving salt tolerance of Chinese

cabbage (193). XOS had a force to increase root biomass

(increased by 69.5%), and the absorption of auxin also increased

significantly (194).

Other applications of XOS

It was reported that adding 3% XOS to a snakehead ball

could increase the elasticity of the fishball by 1.32 times without

changing the hardness (195). XOS were excellent food additives

and could be used as sucrose substitutes in the hydrostatic

preparation of high protein meat products. Maillard reaction of

soybean protein isolate and XOS could prepare new antioxidant

wall materials (196). Soy isolate protein and oligosaccharide

conjugate based on Maillard reaction showed excellent potential

in microencapsulation of probiotics. Neves and other studies

reported that the spray drying blue coloring agent using XOS has

shown great potential in many foods as functional ingredients,

replacing artificial blue coloring agents and combining the

prebiotic characteristics (197). XOS could induce stomatal

closure through the production of reactive oxygen species

(ROS) and nitric oxide (NO) mediated by salicylic acid signal

(198). In addition, in the cosmetics industry, the antioxidant,

moisturizing, stabilizer, and emulsifier capabilities of XOS, as

well as their ability to restore the microflora, making XOS

very attractive (20). Brazil International Flavor Association

reported that probiotics and prebiotics were one of the most

important active ingredients in the cosmetics market, which

could promote the balance of skin microbiota, improve skin

resistance, replenish water and alleviate irritation. It was
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elucidated that XOS could avoid protein denaturation during

frozen storage; shrimp soaked in XOS solution (3.0% w/v)

had better water retention, stability of myofibrillar protein,

and excellent texture characteristics (199). The mechanism

of protein stability was described by the hydrogen bond

between XOS and the polar residues of muscle protein and

by limiting the fluidity of water to avoid the growth of

ice crystals.

Conclusion

XOS are highly effective prebiotic nutritional

oligosaccharudes, which can be produced by hydrolysis of

hemicellulose, a rich component in agricultural residues rich

in xylan. At present, the preparation of XOS mainly includes

acid hydrolysis, autohydrolysis, and chemical enzyme synthesis.

Although XOS can be produced by chemical hydrolysis;

enzymatic hydrolysis has significant advantages because it

usually does not produce byproducts, which is very important

for the application of XOS. In the industrial environment, the

need for biomass pre-treatment and the relatively low efficiency

of subsequent enzymatic hydrolysis limit the yield of XOS.

Therefore, the successful production of XOS requires strict and

optimized conditions.

The existing methods optimize the preparation of XOS to

a certain extent and improve the preparation efficiency. In

recent years, the industrial application of xylan, a byproducts of

agricultural products, has been greatly limited due to its high

content of impurities, and the product quality is not easy to

control. Therefore, the refining, separation, and purification of

XOS have also become the key to their subsequent industrial

application. At present, the development of XOS has not reached

its peak, and as a new generation of functional sugars, XOS

have not been fully used. These production optimizations have

promoted the application and development of XOS and laid the

primary theoretical foundation for large-scale popularization

and use in the future.

The existing physiological activity studies of XOS are

carried out in animals and can only speculate on the

effect on human body according to the obtained data.

The actual effects need further experimental verification.

In the preparation process of XOS, the effects of

different raw materials on the structure and physiological

activity of XOS cannot be determined; further research

is needed.

XOS have an auspicious future. With the continuous in-

depth development and promotion of the health care industry,

there are more and more customers’ needs. The advantages

of XOS are less addition, good stability, and high selectivity,

which is in line with the general demand that capsules,

tablets, and other dosage forms are easier to carry and take.

These advantages are unmatched by other oligosaccharides. In

addition, as relatively new feed additive, they also have excellent

performance in bacteriostasis. XOS can further maintain the

health and productivity of animals. With many countries have

enacted laws, and more and more antibiotics are avoided

outside the scope of feed additives, including the continuous

improvement of various policies and the gradual diversification

and innovation of industrial development, there will be a

new opportunity for the sustainable development of the

XOS industry.
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Sibiraea laexigata (L.) Maxim (SLM) has been used as an herbal tea for treating

stomach discomfort and indigestion for a long time in china. Polysaccharides

have been identified as one of the major bioactive compounds in the

SLM. In the present paper, ultrasonic-assisted enzymatic extraction (UAEE)

method was employed in polysaccharides extraction derived from SLM using

polyethylene glycol (PEG) as extraction solvent, two SLM polysaccharides

(SLMPs) fractions (SLMPs-1-1 and SLMPs-2-1) were purified by DEAE

Cellulose-52 and Sephadex G-100 chromatography in sequence. Then, the

preliminarily structure of the two factions were characterized by chemical

composition analysis, molecular weight measurement, UVS, HPLC-PMP, FT-

IR, nuclear magnetic resonance (NMR) spectra analysis and SEM. The results

showed that SLMPs-1-1 and SLMPs-2-1 with different molecular weights

of 1.03 and 1.02 kDa, mainly composed of glucose (46.76 and 46.79%),

respectively. The results of structural characterization from FT-IR, 1H NMR,

and SEM revealed that SLMPs-1-1 and SLMPs-2-1 contained the typical

pyranoid polysaccharide with α-glycosidic bond and β-glycosidic bond.

Furthermore, it was found that SLMPs-1-1 could increase the levels of

tumor necrosis factor-α (TNF-α) and interleukin-2 (IL-2), and alleviated the

immune organs tissue damage of cyclophosphamide (Cy)-treated mice. RT-

qPCR and Western-Blot analysis showed that SLMPs-1-1 could significantly

up-regulated the levels of NF-κB, TLR4, which revealed that SLMPs-1-

1 could participate in immunosuppressive protection of Cy-treated mice.

These findings suggested that the potential of SLMPs-1-1 as an alternative

immunostimulator could be used in food and pharmaceutical industries.

KEYWORDS

Sibiraea laexigata (L.) Maxim, polysaccharides, purification, structural
characterization, immunological activity

Frontiers in Nutrition 01 frontiersin.org

93

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://doi.org/10.3389/fnut.2022.101302{0}
http://crossmark.crossref.org/dialog/?doi=10.3389/fnut.2022.101302{0}&domain=pdf&date_stamp=2022-09-15
https://doi.org/10.3389/fnut.2022.101302{0}
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnut.2022.101302{0}/full
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-1013020 September 9, 2022 Time: 14:51 # 2

Yang et al. 10.3389/fnut.2022.1013020

Introduction

Polysaccharides, a kind of natural macromolecular
polymers, have been reported to have various biological
activities, including antioxidant (1), anti-tumor (2) and
enhancing immune activity (3), etc. In recent years, many
natural plant polysaccharides have emerged as one of the
hot topics and are widely perceived as ideal candidates
for immunomodulatory agents in functional food (4)
and practical medical fields due to their relatively low
side effects and toxicity (5). For example, a polysaccharide
derived from Astragalus has been developed as an immune
enhancer using for adjuvant treatment of cancer in
China (6).

Sibiraea laexigata (L.) Maxim (SLM), which belongs to the
Rosaceae family (Genus Xianbei), mainly distributed in the
shrub of 3,000–4,000 m in the western part of China. The
aerial part of SLM is called “Liucha,” which has been used
as a herbal tea and is typically utilized for the treatment of
stomach discomfort and indigestion by Tibetans in Tibetan
folk medicine of China for a long time (7). It has been
found that the significant effective ingredients of SLM include
polysaccharides (8), triterpenoids (9), flavonoids (10), and
monoterpenes (11). However, previous studies about SLM
mainly focused on extensive phytochemical investigations and
the extraction of crude SLMPs, lacking a detailed study of the
structures characterization and their immunomodulatory effects
in vivo (12).

In present work, SLMPs was extracted by PEG-
UAEE method and purified by DEAE Cellulose-52
and Sephadex G-100 chromatography in sequence.
Then, the preliminary structure characterization of
SLMPs-1-1 and SLMPs-2-1 were measured by chemical
composition analysis, molecular weight measurement,
UVS, PMP-HPLC, FT-IR, nuclear magnetic resonance
(NMR) spectra analysis, and SEM. Furthermore, the
immunoregulatory of SLMPs-1-1 and underlying mechanisms
were thoroughly investigated by modulating CTX-induced
immunocompromised mice via TLR4 and NF-kB receptor
signaling pathways.

Materials and methods

Materials and reagents

SLM leaves were obtained from Hezuo City (102◦54′E,
34◦58′N, Gansu Province, China), dried and ground in
a BJ-400 high disintegrator (Yongkang Boou Instrument
Co., Ltd., Shanghai, China), sieved (80 mesh), and
stored at 4◦C until use. 1-phenyl-3-methyl-5-pyrazolone
(PMP), monosaccharide standard products and TFA were

purchased from Sigma-Aldrich Chemical Co., Ltd. (Louis,
United States). DEAE Cellulose-52, Sephadex G-100, Cytokine
(IL-2 and TNF-α) ELISA kits and Total ribonucleic acid
(RNA) Purification Kits were purchased from Solarbio
Biological Reagent Co., Ltd. (Beijing, China). Injectable
cyclophosphamide (Cy) and Injectable levamisole (LH) were
purchased from Shanghai Sangon Biotech Co., Ltd. (Shanghai,
China). All other reagents used in experiments were all
analytically pure.

Extraction and purification of Sibiraea
laexigata (L.) Maxim polysaccharides

The PEG-UAEE method was employed in crude
polysaccharides extraction from SLM leaves (13). Briefly,
3.0 g pretreated SLM sample powder was immersed in a 45
mL aqueous PEG complex enzyme solution (E/S ratio of 21
U/g), the mixture was treated by a SB-500DTYultrasonic
extraction equipment (Ningbo Xinzhi Biotechnology Co.,
Ltd., China) under an ultrasonic power of 400 W, ultrasonic
times of 2.0 h, and ultrasonic temperature at 80◦C. Then,
the resultant extracts were centrifuged (Heraeus Multifuge
X1R, Thermo Co., United States) at 5,000 r/min for 15 min,
the supernatants were collected and concentrated to one-
third of the initial volume using a RE52CS-1 vacuum
distillation (Shanghai Yarong Biochemical Instrument Co.,
Ltd., China). The concentrated solution was sufficiently
mixed with 3 times volumes of anhydrous ethanol and
stored at 4◦C for 24 h. The precipitate was dried by a LGJ-
100F vacuum freezing dryer (Thermo Co., United States)
at –80◦C for 36 h to obtain the crude SLMPs (14). Sevage
reagent was used to eliminate the proteins, and activated
carbon was used to remove the pigment from the crude
SLMPs (15). The yield of polysaccharides was calculated as:

Y(%) =
W1

W0
× 100% (1)

Y is the yield of SLMPs (%, w/w), W1 is the weight of the
crude SLMPs (g), and W0 is the weight of SLM leaves (g).

The crude SLMPs was re-dissolved in distilled water
(20 mg/mL), then loaded onto a column of DEAE Cellulose-52
(50 cm× 2.6 cm) and successively eluted by the deionized water
and NaCl solutions of different concentrations (0, 0.3, 0.6, 0.9,
and 1.0 mol/L) at a flow rate of 1.0 mL/min (16). The absorbance
of each tube was measured at 490 nm to analyze polysaccharide
content of SLMPs according to the phenol–sulphuric acid
method, then the eluents were dialyzed overnight at 4◦C to
remove salt, lyophilized, yielding two polysaccharide fractions
(SLMPs-1 and SLMPs-2). These two purification fractions were
further loaded on a Sephadex G-100 column (50 × 2.6 cm)
eluting with deionized water (3 mL/min, 10 mL/tube) to afford
SLMPs-1-1 and SLMPs-2-1, respectively.
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Structural characterization of Sibiraea
laexigata (L.) Maxim
polysaccharides-1-1 and Sibiraea
laexigata (L.) Maxim
polysaccharides-2-1

Chemical composition analysis
Phenol-sulfuric acid method was used to determine the

total sugar content of SLMPs-1-1 and SLMPs-2-1 and glucose
was used as a standard (17). The protein content of SLMPs-1-
1 and SLMPs-2-1 were quantified by Bradford methods using
bovine serum albumin (BSA) as a standard (18). The uronic acid
content of SLMPs-1-1 and SLMPs-2-1 were estimated according
to vitriol-carbazole method using D-glucuronic acid as the
standard (19).

Molecular weight distribution
The molecular weights (Mw) of SLMPs-1-1 and SLMPs-2-

1 were determined using a Waters 1260 Infinity HPLC system
(Waters Co., United States) with 2410 differential refractive
index detector and Ultrahydroge1TM-inear (300 × 7.8 mm,
8 µm, Agilent Co., United States) column. Dextrans (MWs:
1, 5, 10, 21, 40, and 84 kDa) were used as standards for
calibration. The column temperature was maintained at 40◦C,
with 0.1 mol/L NaNO2 solution as the mobile phase and a flow
rate of 1.0 mL/min (20). The regression equation of the standard
curve was logMw = –0.6493x + 6.1564 (R2 = 0.9987); where Mw
is the molecular weight; x is the retention time (min).

Monosaccharide composition analysis
The monosaccharide compositions of the purified SLMPs-

1-1 and SLMPs-2-1 were determined according to Chen et al.
with slight modification (21). 10.00 mg of freeze-dried SLMPs-
1-1 and SLMPs-2-1 were treated with TFA (2 mol/L, 5 mL)
at 110◦C for 5 h. After cooling, the pH of the mixture was
adjusted to 7.0 with NaOH (3 mol/L) and centrifuged to obtain
supernatant. Then, 0.2 mL supernatant, 0.2 mL PMP methanol
solution (0.5 mol/L), and 0.2 mL NaOH solution (0.3 mol/L) and
were mixed and reacted at 70◦C for 1 h. Finally, the reaction
solution was neutralized by adding 1 mL trichloromethane and
0.1 mL HCl solution (0.5 mol/L), extracted with chloroform,
repeated 3 times, centrifuged and collected the supernatant,
which was filtered through 0.22 µm membrane and used for
monosaccharide composition analysis by HPLC.

The determination process of monosaccharide composition
was carried out with an Agilent 1260 HPLC system (ARC,
Agilent Co., United States) equipped with a C18 column
(4.6 × 250 mm, 5 µm, Agilent Co., United States) and a DAD
detector. The mobile phase was a mixture of phosphate buffer
(0.02 mol/L, pH 6.8) and acetonitrile in a ratio of 81: 19 (v/v)
at flow rate 1.0 mL/min with column temperature of 28◦C, and
monitored at 250 nm. The monosaccharide standards, including

Rha, Glu, Gal, Fru, and Ara were analyzed by HPLC in the
same way as above.

FT-IR spectrometric analysis
The purified SLMPs-1-1 or SLMPs-2-1 were mixed

with spectroscopic-grade KBr powder (Sigma Aldrich Co.,
United States), ground, and then pressed into 1 mm pellets
for spectral measurement in the frequency range of 4000–
400 cm−1 using a Nicolet 6700 FT-IR spectrometer (Thermo
Co., United States) (22).

Nuclear magnetic resonance analysis
The NMR sample was prepared by mixing the 20 mg freeze-

dried SLMPs-1-1 or SLMPs-2-1 with 0.5 mL of deuterated water
(D2O), and NMR spectra of different fractions were obtained
using a Bruker AVANCE III HD 400 spectrometer (Bruker Co.,
Germany) equipped with 5 mm double-tuned BBO probe and
operating at 300 MHz for 1H. Each experiment was carried out
at 80◦C using a single-pulse experiment, an acquisition time of
1.66 s, a recycle delay of 5 s, and a spectral width of 10 kHz. The
spectra were referenced at 0.0 ppm (23).

Scanning electron micrograph analysis
The morphological features of purified SLMPs-1-1 and

SLMPs-2-1 were analyzed by a Zesis EVO18 field emission
scanning electron microscope under 20.00 kV (Bruker Co.,
Germany). To render the power conductive, SLMPs-1-1 or
SLMPs-2-1 was fixed on the sample stage with conductive
adhesive for gold spraying and the appearance morphology was
observed under different multiples (24).

Congo red staining assay
The Congo red staining assay was carried out to analyze

the triple-helix arrangements of SLMPs-1-1 and SLMPs-2-
1 according to the method reported by Huang et al. (25).
Briefly, 1.5 mL Congo red solution (0.2 mmol/L), 1.0 mL
sample solution of polysaccharides (2 mg/mL), and 3 mL NaOH
solution with different concentrations (0, 0.2, 0.4, 0.6, 0.8, and
1.0 mol/L) were mixed thoroughly and reacted at 28◦C for 1 h.
Furthermore, the full-wavelength scan of the reaction solution
in different concentrations of NaOH solution was performed by
a UV-visible spectrophotometer (UV-1800, Shimadzu, Japan) at
a wavelength of 200–800 nm, respectively, and the maximum
absorption wavelength of the sample reaction was recorded.

Immune activity analysis

Animals treatment and experimental design
A total of 60 Female Balb/c mice (specific-pathogen free

grade,18–24 g, 5 weeks) were purchased from the Laboratory
Animal Center of Lanzhou University and kept in room
temperature at 24± 2◦C and relative humidity of 60± 5% under
an automatic 12 h light/12 h dark cycle. Six groups (10 mice in
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each group) were used in experiments: group 1 (normal saline
control, PS): animals were treated with saline (1–30 d); group
2 (cyclophosphamide, CTX): animals were administrated with
cyclophosphamide (1–10 d) (80 mg kg−1

·bw) and saline (11–
30 d); group 3 (levamisole hydrochloride, LH): animals were
administrated with cyclophosphamide (1–10 d) and levamisole
hydrochloride (11–30 d); group 4 (High-SLMPs-1-1 doses,
SLMPs-H): animals were administrated with cyclophosphamide
(1–10 d) and SLMPs (11–30 d, 800 mg kg−1

·bw); group 5
(Mid-SLMPs-1-1 doses, SLMPs-M): animals were administrated
with cyclophosphamide (1–10 d) and SLMPs (11–30 d, 400 mg
kg−1
·bw); group 6 (Low-SLMPs-1-1 doses, SLMPs-L): animals

were administrated with cyclophosphamide (1–10 d) and
SLMPs (11–30 d, 400 mg kg−1

·bw); At the end of the treatment,
mice were sacrificed within 24 h, and their spleen and thymus
were dissected under sterile conditions (26).

Determination the cytokine content in serum
The whole blood samples of mice in each group was

obtained by taking eyeball under sterile conditions and the
serum was separated by centrifugation (8,000 rpm, 5 min)
at 4◦C for 10 min. The levels of IgG, IFN-γ, IL-4, and
TNF-α in mice serum were determined using a ELISA kits
(Solarbio Biological Reagent Co., Ltd., Beijing, China) by the
manufacturer’s instructions. The color intensity was read using
absorbance (A450) by a tunable microplate reader (Fisher FC,
Thermo Co., United States), and the concentration of different
cytokine were calculated according to a standard curve (27).

Histological observations of spleen and thymus
The spleen and thymus tissues were fixed in 10% PFA

for at 37◦C for 24 h, washed by flowing water for 24 h,
dehydrated in a graded series of ethanol, soaked in xylene for
5 min, embedded in paraffin, and sectioned at 5 µm using a
Leica RM2255 a microtome (Leica Biosystems Inc., Germany).
Then the paraffin sections were stained with hematoxylin and
eosin (HE) method, and observed under an Olympus Simon-01
microscope (Olympus Optical Co., Japan) (28).

Ribonucleic acid isolation, cDNA synthesis and
RT-qPCR

RT-qPCR analysis was employed in detection of the mRNA
expression of TLR4 and NF-κB in mice spleens extracted from
each group (29). The total RNA of mice spleens in each
group was extracted using a Trizol reagent Kit (TransGen
Biotech Co., China). The concentration and purity of RNA
were determined by ultraviolet spectrophotometry at 260 and
280 nm, aliquoted and stored at –80◦C for future use. RNA was
reverse-transcribed to cDNA using a PrimeScriptTM RT reagent
kit with cDNA Eraser (Takara Biotechnology Co., Ltd., Dalian,
China) according to the manufacturer’s introduction. RT-qPCR
was performed to quantify mRNA expression by a CFX96
Real-time PCR System (Bio-Rad, Hercules, United States) with

SYBR Green Real-time Master Mix (Toyobo, Japan). The PCR
program was: 95◦C, 10 min; 95◦C, 15 s; 60◦C, 30 s, 40 cycles;
melting curve analysis 65→95◦C to detect the fluorescence
signal every 0.5◦C –cycle, and the reaction system was 2.0 µL
cDNA, 1.5 µL 2.5 µM primers, 7.5 µL 2 × RT-qPCR Mix, 4
µL ddH2O, a total of 15 µL. The used primers are presented in
Table 1.

Protein sample preparation and western blot
A protein extraction Kit (Solarbio, China) was used to

isolated the total protein of the spleen tissue in each group mice,
and a BCA protein quantitative Kit (Solarbio, China) was used
to measure protein concentration. Then the protein (20 µg) was
separated by 10% SDS-PAGE gel, transferred onto a 0.2 µm
polyvinylidene difluoride (PVDF) membrane through a trans-
blot Turbo transfer system (Bio-Rad, Hercules, United States)
for 10 min at 25 V. The membrane was blocked in 0.02 mol/L
PBS buffer (containing 5% skim milk powder (w/v) and 0.05%
Tween-20, pH 7.5) at room temperature for 1 h, then incubated
in a primary antibody solution at 4◦C for 24 h. Thereafter, the
membrane washed by TBST, incubated with secondary antibody
at room temperature for 1 h. The protein bands were observed
by using the ECL Western Blotting Analysis System (Bio-Rad,
Hercules, United States) on an Image Quant LAS 4000 mini
imager (GE, Life Science, United States) (30).

Statistical analysis

All the experimental data were analyzed by SPSS statistical
software version 19.0 (SPSS, Chicago, United States). The
significant differences of each groups were determined by
using a one-way analysis of variance (ANOVA) and Duncan’s
test, taking P < 0.01 as extremely significant difference,
and P < 0.05 as significant difference. Each experiment was
performed in triplicate, and the data are demonstrated as
mean± standard deviation (SD).

Results and discussion

Extraction, isolation and purification of
crude Sibiraea laexigata (L.) Maxim
polysaccharides

The crude SLMPs were extracted by PEG-UAEE method,
alcohol precipitation, deproteinization, and freeze-drying with a
yield of 10.95± 0.13%, which was calculated using the weight of
the dried SLM leaves. Since PEG can provide more -OH groups,
it can enhance the solubility of polysaccharides in water and thus
increase the yield of polysaccharides (1).

As shown in Figure 1, the crude SLMPs was firstly separated
into two fractions (SLMPs-1 and SLMPs-2) purified by a DEAE
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TABLE 1 The primer sequence for RT-qPCR.

Gene Product
(bp)

Primer pair Primer sequence (5′–3′)

GAPDH 133 Forward CCTCGTCCCGTAGACAAAATG

Reverse TGAGGTCAATGAAGGGGTCGT

NF-κB 212 Forward CGAGTCTCCATGCAGCTACG

Reverse TTTCGGGTAGGCACAGCAATA

TLR4 151 Forward GGAACAAACAGCCTGAGACACTT

Reverse CAAGGGATAAGAACGCTGAGAA

FIGURE 1

Elution profile of SLMPs by anion exchange chromatography on
a DEAE-52 cellulose column.

cellulose-52 anion exchange chromatographic column on with
gradient elution of 0–1.0 mol/L NaCl; These two fractions
were collected, dialyzed, concentrated, freeze-dried, and loaded
onto Sephadex G-100 gel filtration chromatographic column for
further purification, respectively. As shown in Figure 2, each
fraction generated only one single elution peak, representing
SLMPs-1-1 and SLMPs-2-1, with yields of 61.4 and 54.9%,
respectively. There is also a difference in the order of the
collection tubes of SLMPs-1-1 and SLMPs-2-1, indicating that
these two fractions are not only relatively pure single polymers,
but also have different molecular weights.

Characterization of the Sibiraea
laexigata (L.) Maxim polysaccharides

Physicochemical property
As shown in Table 2, the total sugar contents of SLMPs-

1-1 and SLMPs-2-1 were 82.08 and 81.64%, respectively, the
two purified components had no significant difference. Table 2
also showed that the two fractions still contain a small amount
of glycosyl-bound protein (0.18–0.21%), indicating that the
protein was primarily removed by the Sevage method many
times. However, after being separated and purified by DEAE
cellulose-52 anion exchange chromatographic column and

Sephadex G-100 gel filtration chromatographic column, the
protein content of SLMPs-1-1 and SLMPs-2-1 were significantly
reduced by 0.30 ± 0.94% and 0.33 ± 0.93% compared
with SLMPs, indicating that the purified polysaccharide was
relatively pure, and the process of purification were effective in
removing the protein. Besides, the sulfate content in SLMPs-
1-1 was significantly higher than that in SLMPs-2-1, and
the two fractions were both acidic polysaccharides because
they contained higher uronic acid content (22.4 and 20.3%,
respectively). Many studies have shown that the polysaccharide
can show good bioactive functions when sulfate content is
higher, so SLMPs-1-1 will be preferred for further animal
experiments (31).

Ultraviolet spectral analysis
As shown in Figure 3, at a concentration of 1 mg/mL,

SLMPs-1-1 and SLMPs-2-1 had no prominent absorption peaks
appeared at the wavelengths of 260 and 280 nm in the UV
spectral and negative responses to the Bradford test, which
indicates absence of nucleic acid and protein in SLMPs-1-1 and
SLMPs-2-1.

Molecular weight determination
HPGPC has been widely used in determination of

polysaccharide molecular weight from different plants due to
its advantage of rapid, great accuracy, good reproducibility,
and high resolution (32). As shown in Table 2, both SLMPs-
1-1 and SLMPs-2-1 are homogeneous polysaccharide, because
they were gave a single symmetrical peak in Sephadex G-100
gel filtration chromatographic profile (Figure 2). The molecular
weight of SLMPs-1-1 and SLMPs-2-1 were determined to be
1.29 × 103 Da and 1.27 × 103 Da on HPGPC in reference
to standard glucans, respectively. Compared with the similar
studies, the molecular weight of SLMPs was lower than other
published polysaccharides (33). In addition, polydispersity
values (Mw/Mn) could reflect the width of molecular mass
distribution, thus the higher the polydispersity value represents
the wider the distribution of polysaccharides. The value of
Mw/Mn was close to 1, indicating that the two fractions had a
relatively low polydispersity index and a homogeneity molecular
weight distribution.

Monosaccharide composition analysis
The monosaccharide composition of SLMPs-1-1 and

SLMPs-2-1 were determined by HPLC-PMP (Figure 4). The
results suggested that SLMPs-1-1 and SLMPs-2-1 had different
monosaccharide compositions and content, although they were
separated from the same native fraction SLMPs. SLMPs-1-1
and SLMPs-2-1 contained the same types of monosaccharides
components (Ara, Glu, Gal, and Rha) and peak times. It
may be since, during purification, the higher concentration
of NaCl solution preferentially acts on the hydrogen bonds
on the glycosidic bonds near fructose and arabinose, which
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FIGURE 2

Elution curve of SLMPs-1-1 (A) and SLMPs-2-1 (B) on Sephadex G-100 column to obtain SLMPs-1 and SLMPs-2.

TABLE 2 Chemical composition and relative molecular weight analysis of SLMPs-1-1 and SLMPs-2-1 (x ± s, n = 3).

Sample Yield (%) Total sugar content (%) Protein content (%) Sulfate content (%) Uronic acid content (%) Mw/Mn

SLMPs 10.95± 0.13 87.82± 0.17 0.52± 0.05 8.62± 0.12 21.8± 0.24 /

SLMPs-1-1 6.37± 0.15 82.08± 0.21 0.21± 0.11 6.51± 0.08 22.4± 0.17 1.03

SLMPs-2-1 4.58± 0.21 81.64± 0.18 0.18± 0.12 5.73± 0.09 20.3± 0.14 1.02

reduces the degree of polysaccharide polymerization. SLMPs-
1-1 was composed of Glu, Ara, Fru, Rha and Gal in the
ratio (molar) of 46.79%: 13.96%: 13.04%: 8.69%:3.07%, and
the monosaccharide composition of SLMPs-2-1 was Ara, Gal,
Glu, and Rha, in molar ratio of 31.98%: 34.14%: 21.06%:
12.68%, indicating that the purification method might affect
the structure and physicochemical properties of polysaccharides
(34). Several studies have revealed that the biological activities of
polysaccharides derived from different herbs primarily depend
on these structural features, including inmonosaccharide
composition and molecular weight (33).

FT-IR spectrum
FT-IR spectra of SLMPs-1-1 and SLMPs-2-1 are compared

in Figure 5. The robust ant broad absorption band at
3366.11 cm−1, which was attributed to the stretching vibration
of O-H in the constituent sugar residues, and the strong

absorbance band at around 2879.75 cm−1 was represented
the stretching vibration of C-H in the sugar ring. These two
absorbance peaks are characteristic of sugars, which proves
that SLMPs-1-1 and SLMPs-2-1 were polysaccharide (35). The
absorbance band at 1732.76 cm−1 was related to the bending
vibration of bond water. Moreover, the absorption peak at
1436.25 and 1611.16 cm−1 were attributed to the carboxylic
groups (COO-) and stretching vibrations of ester carbonyl
groups (C = O), respectively, which indicated that purified
SLMPs-1-1 and SLMPs-2-1 were acidic polysaccharides with
uronic acid units, the locations of these peaks were similar to
the investigations of Atratylodes macrocephala polysaccharides
by FT-IR (36). This is consistent with the analytical results
of monosaccharide compositions of SLMPs-1-1 and SLMPs-
2-1. In addition, the absorbance band at 1,060 cm−1 was
caused by C-O-C stretching and angular vibration in the sugar
ring, the results suggested that the monosaccharide of purified

Frontiers in Nutrition 06 frontiersin.org

98

https://doi.org/10.3389/fnut.2022.101302{0}
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-1013020 September 9, 2022 Time: 14:51 # 7

Yang et al. 10.3389/fnut.2022.1013020

FIGURE 3

UV spectra of SLMPs-1-1 and SLMPs-2-1.

SLMPs-1-1 and SLMPs-2-1 had pyranose rings. Moreover,
the characteristic absorbance at 840.82 cm−1 suggested the
presence of α-pyranose in SLMPs-1-1 and SLMPs-2-1, while the
characteristic absorbance at 947.92 cm−1 related to the presence
of a β-anomeric configuration in SLMPs-1-1 and SLMPs-2-1. It
can be inferred that SLMPs-1-1 and SLMPs-2-1 were α- and β-
type polysaccharides according to the more critical peak value of
FT-IR spectra (37).

FIGURE 5

Infrared spectra of SLMPs-1-1 and SLMPs-2-1.

Nuclear magnetic resonance spectroscopic
analysis

The structure identification and analysis of polysaccharides
mostly use 1H NMR as the primary method to study the
types of glycosidic bonds. The range of δ4.5–5.5 in the
1H NMR spectrum is the region where the proton signal
mainly exists in the glycosidic bond of the polysaccharide,
so there are several proton signals in this region in the
1H NMR spectrum, indicating that the sugar has several

FIGURE 4

The HPLC chromatogram of monosaccharides of reference substances solution (A), SLMPs-1-1 (B), and SLMPs-2-1 (C).
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monosaccharide species. While other hydrogen signals are
mainly concentrated in the narrow region of δ3.3–4.3, and
the signal peaks overlap seriously. Among them, δ5.0 is
the critical value of the proton signal to distinguish the
configuration of pyranose. When the proton shift of the first
carbon is more significant than 5.0, it is an α-glycoside,
and when it is less than 5.0, it is a β-glycoside. The one-
dimensional 1H NMR spectra of SLMPs-1-1 and SLMPs-
2-1 can be seen in Figure 6. It can be seen from the
figure that SLMPs-1-1 have 4 proton signal peaks, and in
SLMPs-2-1, only two signal peaks were detected in the
range of δ4.5∼5.5, this may be due to the overlap and
interference between proton signals, leading to the lack
of monosaccharide composition analysis (38), Furthermore,
anomeric hydrogen appears in the range of δ4.2–4.4 and
δ5.0–5.8 signal, indicating that there are both α-glycosidic
bonds and β-glycosidic bonds in SLMPs-1-1 and SLMPs-
2-1, which was consistent with the result from FT-IR
analysis.

Microstructure analysis
The microscopic scanning electron micrographs (SEM)

structure of purified SLMPs-1-1 and SLMPs-2-1 (Figure 7)
revealed that the single particle had irregular shapes,
rough surface with different dimensions, which are typical
characteristics of amorphous powders. The irregular-shaped
particle also accompanied by fold structure with holes which is
similar to the Macroalgae polysaccharides prepared by hot water
extraction (39). It can be proved that SLMPs-1-1 and SLMPs-2-1
have a prominent amorphous structure and relatively complete
structural morphology.

Conformational analysis
The triple-helix arrangements of SLMPs-1-1 and SLMPs-

2-1 were measured by Congo red test, and the results were
displayed in Figure 8. It was apparently observed that the
maximum absorbance wavelength of each sample in different
concentration of NaOH (0.1–0.8 mol/L) had a certain degree
of redshift compared with Congo red solution. The degree of

FIGURE 6
1H nuclear magnetic resonance (NMR) spectra of SLMPs-1-1 and SLMPs-2-1.
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FIGURE 7

Scanning electron microscopy of SLMPs-1-1 and SLMPs-2-1. [(A) 5.00 KX; (B) 8.00 KX].

FIGURE 8

Conformation transition analysis of SLMPs-1-1 and SLMPs-2-1
at different concentration of NaOH.

redshift of SLMPs-1-1 was more dramatic than SLMPs-2-1,
indicating that SLMPs-1-1 has a tighter triple-helical structure
(40). With an increase in the concentration of NaOH, the
degree of redshift of SLMPs-1-1, SLMPs-2-1 become smaller.
This was because a high concentration of NaOH could destroy

the hydrogen bond of the polysaccharide and induce the
degradation of polysaccharides This indicated that SLMPs-1-
1 and SLMPs-2-1 could form a regular ordered triple-helix
structure in the neutral or weakly alkaline range (41).

Effect of SLMPs-1-1 on serum IgG, IL-4,
TNF-α, and IFN-γ levels

Immune globulin (Ig) and cytokines are mainly present in
plasma, tissues and body fluids, playing an essential roles in
immune response and regulation (42). As shown in Table 3,
the serum levels of IgG, IL-4, TNF-α and IFN-γ in the mice
treated with different SLMPs-1-1 concentrations were evaluated
relative to CTX mice and PS group, respectively. It was found
that IgG, IL-4, TNF-α and IFN-γ level in the CTX group was
significantly lower than these in the PS group (P < 0.01),
indicating that the CTX-treated mouse immunocompromised
model was successfully established. IgG, IL-4, TNF-α, and IFN-γ
level of each SLMPs-1-1 dose groups were significantly increased
compared with the CTX group (P < 0.01), and the levels of
IgG, IL-4, TNF-α, and IFN-γ in the mid-doses of SLMPs-1-1
was the highest in three different dose of SLMPs-1-1 groups
(P < 0.05). Moreover, after 20 days of SLMPs-1-1 feeding,
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compared with the CTX group, the level of IgG, IL-4, TNF-α,
and IFN-γ in the mid-dose of SLMPs-1-1 group was increased
by 4.4, 8.13, 11.2, and 10.95%, respectively. This phenomenon
indicated that SLMPs-1-1 could enhance immune regulatory
through upregulating regulatory cytokines secretions (43).

Histological observations of spleen and
thymus

As shown in Figure 9, the histopathology of the thymus
and spleen were observed with an optical microscope. The

histopathology of the spleen and thymus from PS group mice
had clear medullar structure, visible the medulla inside and
regular shape of the thymus cortex. Compared with that in the
PS group, the boundary between the medulla and cortex was not
clear, and the lymphatic sheath around the arteries was severely
damaged in the CTX group, indicating that the model in this
experiment was successful (44). Compared with the CTX group,
the border between the red pulp and the white pulp were evident
in the mid-dose group of SLMPs-1-1, and the boundary between
the cortex and medulla was not evident in the high- and low-
dose of SLMPs-1-1 groups, but slightly better than that in the
CTX group. Similarly, in the LH group and mid-dose group

TABLE 3 Comparison of plasma levels of IL-4, TNF-α, IFN-γ, and IgG in each group of mice.

Group IL-4 (ng/mL) TNF-α (ng/mL) IFN-γ (pg/mL) IgG (ng/mL) P

IL-4 TNF-α IFN-γ IgG

PS 3.070± 0.09 2.722± 0.04 243.485± 2.22 3.812± 0.04

CTX 2.831± 0.03 1.213± 0.05 165.983± 1.24 2.827± 0.05 0.000À 0.000À 0.000À 0.000À

LH 2.865± 0.03 2.570± 0.04 251.416± 0.84 3.576± 0.02 0.000Á 0.000Á 0.000Á 0.000Á

SLMPs-L 2.487± 0.04 2.115± 0.03 215.640± 0.69 3.267± 0.03 0.000Â 0.000Â 0.000Â 0.000Â

SLMPs-M 2.648± 0.02 2.307± 0.04 237.624± 1.31 3.412± 0.04 0.000Ã

0.004Å

0.000Ã 0.002
Å

0.000Ã 0.000
Å

0.000Ã 0.024
Å

SLMPs-H 2.393± 0.03 1.704± 0.13 214.753± 1.27 3.174± 0.10 0.000Ä

0.007Æ

0.018Ç

0.000Ä

0.003Æ

0.000Ç

0.000Ä

0.008Æ

0.000Ç

0.000Ä

0.004Æ

0.000Ç

À Compare CTX group with PS group; Á Compare LH group with CTX group; Â Compare SLMPs-L group with CTX group; Ã Compare SLMPs-M group with CTX group; SLMPs-L
group comparison; Æ SLMPs-H group compared with SLMPs-L group; Ç SLMPs-H group compared with SLMPs-M group.

FIGURE 9

Effect of SLMPs-1-1 on spleen and thymus histomorphology in mice.→ Represents periarterial lymphatic sheath, W represents white pulp,
? represents red pulp.
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of SLMPs-1-1, the increase in the area of white pulp was more
prominent, and the white pulp and red pulp were close to the
PS group. The results indicated that SLMPs-1-1 could prevent
damage to the spleen and thymus cells in CTX-induced mice
(45).

Effects of SLMPs-1-1 on TLR4 and
NF-κB mRNA expression in spleen

The relative gene expression levels of TLR4 and NF-κB
in the spleen of CTX-induced immune deficiency model mice
were detected by the RT-qPCR, aiming to demonstrate that
SLMPs-1-1 can improve the immune suppression effect of
mice by regulating the expression level of immune regulatory
factors in the spleen.

TLR4 is a membrane protein expressed on immune
cells and epithelial cells (46), and its mainly distributed in
macrophages, renal tubular epithelial cells, and other parts,
which can be activated without the need for foreign pathogens
to invade Innate immune inflammatory response (47). It
mainly uses the MyD88-dependent pathway as a classic signal
transduction pathway, and mediates the production of NF-κB
to stimulate downstream inflammatory effects (48). Changes in
the expression level of TLR4 mRNA detected by RT-qPCR in
the spleen of different groups mice are shown in Figure 10A,
a melting curve analysis has been used to verify the presence
of a single gene-specific peak and the absence of primer dimer
(49). The results showed the ratio of TLR4 mRNA in the
CTX group and LH group was 0.44 and 0.96, and the mRNA
expression level of TLR4 in SLMPs-1-1 first increased and then
decreased with the increase of dose. The LH group and SLMPs-
1-1 dose groups were significantly up-regulated (P < 0.01)
compared with the CTX group, and there were significant
differences between SLMPs-1-1 dose groups (P < 0.05), but the
mid-dose group of SLMPs-1-1 had no significant up-regulation
effect (P > 0.05). In conclusion, the effect of SLMPs-1-1 on
the expression level of TLR4 mRNA in the spleen tissue of
CTX-induced immunocompromised model mice was obvious,
and the dose-response relationship was in the range of 200–
400 mg/kg.

NF-κB is an essential to signal transduction, cell activation,
and transcriptional activator in the TLR4 immune regulatory
network’s downstream signaling pathway, which regulates
cytokines levels, immune receptors, and anti-apoptotic proteins;
therefore, NF-κB induces inflammatory immune responses (50).
In addition, the dissolution curves of each hand have no signs
of non-specific dissolution peaks or miscellaneous peaks, which
confirmed the high specificity of the primers and indicated the
amplified products have sure accuracy and can be used for
experiments analyze (51). The mRNA expression levels of NF-
κB in different dose groups were significantly decreased (P <

0.05, P < 0.01) compared to the PS group (Figure 10B). It was

FIGURE 10

Effect of SLMPs-1-1 on the regulation of TLR4 and NF-κB gene
expression in mouse tissues. (A) TLR4 gene expression in mouse
tissues, (B) NF-κB gene expression in mouse tissues.

apparently observed that the mRNA expression levels of NF-
κB in the LH group and each dose group were significantly
increased (P < 0.01) compared with the CTX group. Among
them, the mRNA expression level of NF-κB in the mid-dose
group of SLMPs-1-1 was the highest (P < 0.01). This indicated
that the dose of SLMPs-1-1 should be fully considered if the
SLMPs-1-1 was used as an alternative immunostimulator in
food and pharmaceutical industries.

Effects of SLMPs-1-1 on related
proteins expression in spleen

The protein expression levels of TLR4, and NF-κB in mice
spleen were determined by western blotting (Figure 11). It
was found that the proteins expression levels of NF-κB and
TLR4 in the CTX group were significantly lower than those
in the other groups (P < 0.05), and the proteins expression
levels in the LH group and the mid-dose group of SLMPs-1-
1 were higher than those in the CTX group (P < 0.05). The
proteins expression levels of TLR4 and NF-κB were higher in
the low- and high-dose group of SLMPs-1-1 group compared
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FIGURE 11

Effects of SLMPs-1-1 on the proteins expression of NF-κB and TLR4 in spleen [compared with PS group (∗P < 0.05; ∗∗P < 0.01); compared with
CTX group (#P < 0.05; ##P < 0.01)].

with the CTX group but were still significantly lower than
those in the mid-dose group of SLMPs-1-1 (P < 0.05), and
the dose of SLMPs-1-1 showed a dose-response relationship
in the range of 200–400 mg/kg. This indicated that SLMPs-
1-1 effectively improved the expression of NF-κB and TLR4
in the spleen tissue of CTX-induced immunocompromised
mice, consequently playing a protective role during immune
regulation.

Conclusion

In this study, two SLMPs fractions (SLMPs-1-1 and SLMPs-
2-1), with average molecular weight of 1.29 × 103 and
1.27 × 103 Da, respectively, were isolated and purified. The
main components of the two polysaccharides were Glu and
Gal (46.79 and 34.14%). The two polysaccharides fractions
exhibited absorption peaks of characteristic α-glycosidic and β-
glycosidic bonds pyranoid polysaccharides. The results showed
that SLMPs-1-1 could accelerated recovery of spleen and

thymus indexes, and up-regulate the levels of IgG, IL-4, TNF-
α, and IFN-γ in the serum of the Cy-treated mice. SLMPs-
1-1 also could improve the adaptive immune function by
increasing the mRNA and protein expression of TLR4 and NF-
κB. These results suggest that SLMPs-1-1 can be used as an
immunostimulator to stimulate both the innate and adaptive
immune responses for application in immunological diseases
and functional foods.
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Dietary compounds significantly a�ected starch enzymatic digestion.

However, e�ects of dietary compounds on starch digestion and their

underlying mechanisms have been not systematically discussed yet. This

review summarized the e�ects of dietary compounds including cell walls,

proteins, lipids, non-starchy polysaccharides, and polyphenols on starch

enzymatic digestion. Cell walls, proteins, and non-starchy polysaccharides

restricted starch disruption during hydrothermal treatment and the retained

ordered structures limited enzymatic binding. Moreover, they encapsulated

starch granules and formed physical barriers for enzyme accessibility. Proteins,

non-starchy polysaccharides along with lipids and polyphenols interacted

with starch and formed ordered assemblies. Furthermore, non-starchy

polysaccharides and polyphenols showed robust abilities to reduce activities

of α-amylase and α-glucosidase. Accordingly, it can be concluded that

dietary compounds lowered starch digestion mainly by three modes: (i)

prevented ordered structures from disruption and formed ordered assemblies

chaperoned with these dietary compounds; (ii) formed physical barriers and

prevented enzymes from accessing/binding to starch; (iii) reduced enzymes

activities. Dietary compounds showed great potentials in lowering starch

enzymatic digestion, thereby modulating postprandial glucose response to

food and preventing or treating type II diabetes disease.

KEYWORDS

starch digestion, dietary compounds, starch structure, enzyme activity, nutrition

Introduction

Starch which is a polysaccharide composed of linear chains (amylose) or branched

chains (amylopectin) is a major source of energy in the human diet. Starch digestion is

accomplished by two type of enzymes in human gastrointestinal tract (GIT): (i) salivary

and pancreatic α-amylases and (ii) intestinal brush border glucoamylases, maltase-

glucoamylase, and sucrase-isomaltase (1). Amylase digests amylose intomaltose subunits

(disaccharide) and amylopectin into branched chains (i.e., dextrins). Both maltose and

dextrins are digested by enzymes located in intestinal brush border, which in turn
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produced glucose. The glucose released from starch is

subsequently absorbed in the intestine and hydrolyzed to

produce adenosine triphosphate or stored in animals as the

polysaccharide glycogen. Accordingly, starch-based diets are

commonly the main foods that provide the necessary energy.

However, rapid digestion of starch contributes to postprandial

hyperglycaemia, which in turn possibly results in an impaired

insulin secretion and the incidence of chronic diseases such as

obesity and type II diabetes (2, 3). Slowing starch enzymatic

digestion in the GIT is of great interest in preventing the

incidence of chronic diseases.

Enzymatic reactions consist of three steps: diffusion of

enzymes to the solid surfaces, absorption/binding, and catalysis

(1). Regarding to starch enzymatic digestion, there are two

factors influencing the extent and rate of starch digestion:

(i) barriers that slow down or prevent digestive enzymes

from accessing/binding to starch and (ii) starch structural

features that limit enzyme action after initial binding (4). Starch

structuration on fine structure, helical structure, crystalline

structure, lamellar structure, short-range ordered structure,

and nanoscale aggregate structure significantly slowed enzymes

binding with starch and reduced enzymes catalyzation toward

starch (5–13). It has been summarized that slowly digestible

starch (SDS) was the fraction with high α-1,6 linkages, short

branch chains [degree of polymerization (DP)< 13], long chains

with DP 25–36, or imperfect helical and crystalline structures,

while the resistant starch (RS) was the fraction rich in high

amylose content, double helix-promoting chains with DP ca.

12–24 and DP ≥ 37, along with some chains with DP 25–36,

perfectly-packed double helices and crystalline structures, V-

type crystals, or densely-packed crystalline lamellae and more

ordered reassembled aggregate structures (8). According to

previous studies (14–19), starch digestion was affected not only

by its intrinsic structures but also by the interactions between

starch and dietary non-starchy compounds and between

digestive enzymes and non-starchy foods. At present, many

reviews have indicated dietary compounds such as polyphenols,

lipids, and non-starchy polysaccharides significantly affected

starch digestion (15–20). However, the effects of dietary

compounds such as cell walls, protein, lipids, non-starchy

polysaccharides, and polyphenols on starch digestion and

their underlying mechanisms have been not systematically

summarized yet.

Therefore, this review provided a survey of the latest

developments on dietary strategies for slowing starch enzymatic

digestion, with a particular focus on the mechanisms underlying

the modulation of starch digestion. Future perspectives

regarding the dietary strategies for the control of starch digestion

will be proposed. This review can provide better insights into the

modulation of starch enzymatic digestion through complexation

with dietary compounds.

Cell walls slow starch digestion

The basic architecture of plant cell wall is shown in

Figure 1. Plant cell walls are cellulose-based assemblies

containing cellulose and non-cellulosic polysaccharides (e.g.,

pectin, xyloglucans, heteroxylans, and β-glucans), lignin

and some proteins (20, 21). Cellulose fibrils assembled

and served as scaffold filling with amorphous non-

starchy polysaccharides (20). While the filling non-starchy

polysaccharides prevented aggregation and collapse of

the cellulose/hemicellulose network, the interactions of

the non-starchy polysaccharides significantly contributed

to the density and porosity of cell walls and in turn

determined the permeability of hydrolases through the

cell walls (22, 23).

Effects of cell walls on starch gelatinization and enzyme-

starch interaction are shown in Figure 1 (21). Cell walls

entrapped starch granules, thereby limiting the enzymatic

digestion through the physical barriers (24). In addition,

non-starchy polysaccharides-rich cell walls of starchy foods

retained their intact structures during food processing, and

in turn significantly slowed starch enzymatic digestion (25,

26). Non-starchy polysaccharides were not digested in the

GIT due to the lack of corresponding enzymes. Therefore,

the cell walls of processed foods provided physical barriers

for enzymes diffusion to starch and hydrolyzation of starch

molecules. Li et al. suggested that the integrity of cell walls

of pulse significantly affected starch digestion (27). Food

processing yielded disorganization of cell walls, which in turn

increased cell wall permeability and facilitated enzyme diffusion

through the cell walls along with increased starch enzymatic

digestion (27–31). Treatments with a higher temperature

or a longer time promoted starch swelling, weakening the

physical barriers, and increasing the degree of process-

induced cell wall permeability, which in turn increased

starch enzymatic digestion (29, 31). Although decreasing

cell intactness has been shown to increase the rate but

not the extent of starch digestion (26), most of studies

indicated that the increase in cell permeability slowed the

rate and reduced the extent of starch digestion in vitro

(24, 25, 28–30, 32–34).

Li et al. indicated that enzymatic digestion of starch

granules entrapped within cell walls in pulses depended

on both the intactness of cell walls as well as the

ordered structures of pulses after food processing (27).

Cell walls not only limited enzymes diffusion onto

starch molecules, but also delayed starch gelatinization,

retarded starch granules swelling and leaching of starch

molecules. Accordingly, ordered structures (e.g., helical

structures, crystalline structures, granular form) of starch

granules within cell walls retained as shown in Figure 1
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FIGURE 1

Schematic showing the structures of starch-containing intact and broken cells during gelatinization and in vitro digestion. The intact cell walls

limited enzymes and water di�usion onto starch, while the intact cell walls yielded starch complete gelatinization and enzymes di�usion onto

starch surface. The graph is collected from Li et al. (21).

(21, 27–29, 32, 34, 35). The retained starch ordered structures

significantly slowed starch enzymatic digestion (7, 8). Thus,

the cell walls slowed starch digestion through retarding

the disruption of starch ordered structures during food

hydrothermal processing.

In addition to the roles of cell walls on starch ordered

structures, cell walls also bound with enzymes and affected

hydrolyzation activities of the enzymes (25, 34). The non-

catalytic binding of amylase on cell walls limited enzymes

diffusion onto starch molecules, which reduced the amylolysis

of starch within intact cells (25, 34). Starchy foods like pulses

contained α-amylase inhibitors such as tannins, lectins and

other proteinaceous inhibitors (36). Li et al. reported that both

soluble and insoluble components from pulse cells showed

a significant inhibition (ca. 3–15%) on enzymes activities,

thereby slowing the enzymatic digestion of starch within pulse

cells (34).

Proteins slow starch digestion

Protein is one of the most important compounds in foods

systems. It has been summarized that proteins could non-

covalently interact with starch through hydrogen bonding,

hydrophobic interactions, electrostatic forces, ionic interactions,

and van der Waals force (17). Endogenous rice protein

interacted with rice starch significantly lowered starch digestion

extent through reducing swelling of starch granules and

suppressing the accessibility of enzymes to starch granules

(37). Potato protein isolate interacted with starch and in

turn restricted starch disorganization and reduced starch

digestion extent (38). Denatured plant proteins interacted with

starch through hydrogen bonds and electrostatic interactions

and restricted starch hydration and enzymatic cleavage (39).

Whey protein interacted with starch to form starch-protein

assemblies, which significantly increased starch short-range

Frontiers inNutrition 03 frontiersin.org

109

https://doi.org/10.3389/fnut.2022.1004966
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Chi et al. 10.3389/fnut.2022.1004966

ordered structure while lowering starch digestion extent (40).

Enzymatically hydrolyzed (the combination of pepsin and

pancreatin) rice protein interacted with rice starch to promote

the formation of V-type crystals and lowered starch digestion

extent (41). In addition to the role of proteins on structures of

pure starch and starch-protein assemblies, some proteins bound

with enzymes and lowered enzymes activities and finally reduced

the digestion rate and extent of starch (41–43). Water soluble

barley proteins bound with α-amylase, which reduced α-amylase

activity and slowed starch digestion rate and lowered starch

digestion extent (42). Rice proteins hydrolyzed by pepsin and

pancreatin bound with α-amylase, and in turn, inhibited α-

amylase activity [the IC50 value (the half maximal inhibitory

concentration) was in the range of 1.75–2.15 mg/mL] and

lowered starch digestion extent (41). The activity of α-amylase

was decreased greatly from 0.42 to 0.07 units by native gluten

pepsin-hydrolyzed gluten (43).

Although the effects of protein structures on starch

digestion in foods systems has not been resolved yet, it

can be preliminarily concluded that dietary protein has a

strong ability to mitigate starch enzymatic digestion. Dietary

proteins affected starch enzymatic digestion via different

pathways: (i) proteins acted as physical barriers and restricted

the interaction of enzymes with starch molecules (37);

(ii) proteins interacted with starch and restricted starch

swelling and disorganization during hydrothermal treatment,

which increased ordered structures and blocked the binding

sites of starch molecules for digestive enzymes (39, 41);

(iii) proteins or their hydrolysates interacted with starch

to form ordered structures which were slowly digestible

or not digestible (40, 41); (iv) proteins bound with α-

amylase and lowered α-amylase activities and starch digestion

extent (41, 42).

Lipids slow starch digestion

Lipids are the important hydrophobic dietary compounds

in foods. In starch-containing foods systems, lipids tended

to interact with starch through hydrophobic interaction and

formed starch-lipid inclusion complexes or starch-lipid-protein

complexes (18). According to Dhital et al. (4), the access of

enzymes to the glucosidic bonds in the substrate is a key factor

affecting starch enzymatic digestion. The interaction between

lipids and starch significantly changed the torsion angles of

the glucosidic bonds, forming the starch helical structure

and in turn affecting the binding activity of the amylolytic

enzymes (18). The intact structures of starch-lipids inclusion

complexes did not favor the formation of enzyme-substrate

complexes (44). Accordingly, starch-lipids inclusion complex

was classified into type-5 RS (45). Promoting the formation of

starch-lipids inclusion complexes significantly lowered starch

digestion extent.

Starch structures, lipid type and structures, and the

preparation conditions significantly affected the formation of

starch-lipid inclusion complexes. Amylose is much easier to

interact with lipids compared with amylopectin. Starches with

higher amylose content formed more starch-lipids complexes

compared with less amylose-containing starches (46, 47).

Debranching using pullulanase or isoamylase increased amylose

content, which favored the formation of starch-lipid complexes

and reduced starch digestion extent in a higher magnitude

(48). A suitable polymerization of amylose is required for the

formation of starch-lipid complexes (44, 49, 50). Increasing the

chain length of amylose favored the formation of starch-lipid

inclusion complexes (49), while a very long amylose hampered

the formation of starch-lipid inclusion complexes (50).

Increasing lipids concentration favored the interaction of

lipids with starch, thereby lowering starch digestion in a

higher magnitude (51). However, lipids might self-assemble

at a high concentration and reduce the content of starch-

lipid inclusion complexes formed during the reaction (52).

Free fatty acids formed starch-lipid inclusion complexes as

a function of concentration (51, 53). Monoglycerides and

phosphatidylcholine could also interact with starch and formed

starch-lipids inclusion complexes (54, 55). Sincemonoglycerides

had higher solubility in water compared with fatty acids, they

were more likely to interact with starch and formed more

starch-lipid inclusion complexes (56). However, diglycerides

(e.g., dipalmitate glycerol) and triglycerides (e.g., tripalmitate

glycerol) could not form inclusion complexes with starch

because of their steric hindrance and low solubility in water

(56). By reducing the carbon chain length of free fatty acids,

the complexation index of fatty acids increased and the content

of starch-lipid inclusion complexes significantly increased

(57). The degree of unsaturation also affected the formation

of starch-lipid inclusion complexes and starch digestibility.

Fatty acids with a lower unsaturation could formed more

inclusion complexes with starch, thereby greatly decreasing

starch digestion extent (58, 59).

Proteins in food systems affected the formation of starch-

lipid inclusion complexes. β-lactoglobulin favored lipids (e.g.,

fatty acids and monoglyceride) dissolution in water and

promoted lipid-starch entanglement (58, 60–62). Notably,

β-lactoglobulin promoted fatty acids which had a shorter

length and lower unsaturation interaction with starch and

formed starch-fatty acids-β-lactoglobulin complexes, while β-

lactoglobulin in the binary system of starch, β-lactoglobulin,

and monoglyceride rather promoted the formation of starch-

monoglyceride complexes (61). Fatty acids contained carboxyl

groups and might behave negatively in food systems, allowing

fatty acids to interact with starch through hydrophobic

interactions and with proteins through electrostatic interactions

(63–65). However, monoglyceride is neutrally charged and

cannot electrostatically bridge the formation of the starch-

monoglyceride-β-lactoglobulin (61). In addition to the lipid
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types, protein types also affected the formation of starch-lipids

inclusion complexes (66). Whey protein isolate and A-type

gelatin promoted linoleic acid interaction with starch because

of their emulsifiability. A-type gelatin showed a weaker ability

to promote the formation of starch-linoleic acid inclusion

complexes, which was attributed to the fact that A-type gelatin

which had an isoelectric point higher than 7.0 might compete

with starch for linoleic acid and reduce the accessibility of

linoleic acid to starch hydrophobic cavity (66).

During the preparation of starch-lipid inclusion complexes,

the temperature, complexation time and modes, pH, NaCl,

and cooling rate significantly affected the formation of the

complexes (67–71). A higher temperature and a longer time

of the complexation, better-defined structures of the inclusion

complexes had (67, 68, 71, 72). Regarding the complexation

of swelled normal corn starch granules with lauric acid, the

modes of adding lauric acid to the starch slurry [adding the

lauric acid to the heated starch suspension (method I) or

adding the lauric acid to the starch suspension and then heating

(method II)] affected the content of starch-lauric acid inclusion

complexes formed during the reaction (73). The method I was

more beneficial to the formation of starch-lauric acid inclusion

complexes than that of method II, because the lauric acid

interacted with starch granules on surface, thereby inhibiting the

migration of lauric acid into interior starch granules to form

the complexes (73). A system with a higher pH promoted the

formation of starch-lauric acid inclusion complexes and starch-

lauric acid-β-lactoglobulin complexes, which was attributed to

the greater solubility of lauric acid and higher leaching of

amylose in the system (69). The presence of NaCl promoted

the formation of starch-fatty acid inclusion complexes due

to the improved solubility of fatty acids in NaCl-containing

aqueous medium (70). The cooling rate of starch paste affected

starch mobility during the cooling, which significantly affected

structures of starch-lipid inclusion complexes (74, 75). At a

higher cooling rate, amylose reorganized faster and more lipids

could be entrapped into amylose hydrophobic cavity to form

starch-lipid inclusion complexes (71).

Non-starchy polysaccharides slow
starch digestion

Non-starchy polysaccharides affected starch gelatinization,

the viscosity of starch paste, starch reorganization, and enzymes

activities, which affected starch digestion by different modes.

Polysaccharides such as chitosan, guar gum, and xanthan

interacted with starch granules and lowered starch swelling

and amylose leaching during hydrothermal treatment (76–

80). Pectin, κ-carrageenan, guar gum, arabic gum, pullulan,

Cordyceps polysaccharides, Mesona chinensis polysaccharides,

agar, xanthan gum and konjac glucomannan restricted starch

disruption during the hydrothermal treatment and interacted

with starch to form ordered structures, and in turn, lowered

starch digestion extent (77, 78, 81, 82). Xanthan gum, guar gum,

pectin, and konjac-glucomannan might interact starch and form

physical barriers around starch molecules, reducing enzymes

accessibility to starch molecules and lowering starch digestion

extent (83, 84).

Due to the interaction between starch and non-starchy

polysaccharides, the viscosity of starch suspension which

complexed with xanthan gum, guar gum, konjac glucomannan,

pectin, and chitosan significantly increased (85, 86). The

increased viscosity of starch suspension in turn retarded

enzymes diffusion onto starch surface, leading to a significant

reduction in starch digestion extent (85, 86). Other soluble

fibers including locust bean gum, fenugreek gum, fenugreek

gum, and soy soluble polysaccharide also limited enzymes

diffusion toward starchmolecules and retarded glucose liberated

from the starch-polysaccharide systems (86). It seems that

starch digestion rate and extent could be controlled through

modulating the viscosity of the starchy food systems.

The interaction between starch and non-starchy

polysaccharides also significantly affected properties of matrix

structures formed by starch and non-starchy polysaccharides

(82, 87–89). Agar, xanthan gum and konjac glucomannan in

starch pastes significantly promoted the formation of gel-like

matrix structures, and in turn, lowered starch digestion rate

and extent (87). The interaction between starch and non-starch

polysaccharides and the increased gel rigidity of the matrix

were the key factors affecting starch enzymatic digestion

(87). Mesona chinensis polysaccharides also interacted with

starch and significantly promoted the formation of a more

ordered structure of blended systems of starch and Mesona

chinensis polysaccharides, which remarkably lowered starch

digestion rate and extent (82, 88, 89). Comparing with xanthan,

guar, locust bean gum, and agar, starch-Mesona chinensis

polysaccharides complexes had better-defined gel structures

and the Mesona chinensis polysaccharides were found to be

the most effective polysaccharides in reducing wheat starch

digestion (88).

Starch digestion was controlled not only by starch ordered

structures and food viscosity, but also by the activities of

enzymes. Pectin bound with pancreatic amylase to reduce

amylase activity, resulting in slower starch enzymatic digestion

(90). Polysaccharides from oat (Avena sativa L.), Camellia

oleifera Abel. fruit hull, oolong tea, shaddock (Citrus aradise),

Coriolus versicolor LH1, mulberry fruit, pumpkin (Cucurbita

moschata) fruit, fermented puerh tea, green tea flower, corn

silk, Acacia tortilis gum exudate, Chinese traditional medicine

Huidouba, Mallotus furetianus, hemp (Cannabis sativa L.),

Fagopyrum tartaricum, blackberry fruit, Rosa roxburghii Tratt

fruit, Annona squamosa, wax apple, Chaenomeles speciosa

seeds, and Momordica charantia, significantly reduced the

activities of α-glucosidase or α-amylase, which showed great

potentials in slowing starch enzymatic digestion (19, 91–99). The
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FIGURE 2

Mechanism scheme for e�ects of polyphenols on starch digestion. Figure was adapted from Sun and Miao (16).

structure-function of polysaccharides toward enzymes activity

has been not revealed yet.

Accordingly, non-starchy polysaccharides lowered starch

digestion rate and extent by four different ways: (i) interacted

with starch granules and restricted starch disruption during

food processing (77–80); (ii) increased systems viscosity and

in turned restricted enzymes diffusion onto starch molecules

(85, 86); (iii) formed matrix structure with starch and

increased rigidity and ordered structures of starch-non-starchy

polysaccharide complexes (82, 88, 89); (iv) interacted with α-

glucosidase or α-amylase and reduced enzymes activities (91).

Polyphenols slow starch digestion

Effects of polyphenols on starch digestion are schematically

shown in Figure 2. α-amylase and α-glucosidase are two key

enzymes for starch digestion. Accordingly, starch digestion

could be significantly lowered through reducing activities of

α-amylase and α-glucosidase. Tea polyphenols, flavonoids,

phenolic acids, and tannins significantly reduced activities of

α-amylase and α-glucosidase, which showed great potentials in

mitigating starch digestion as summarized in previous reviews

(16, 100–102). Polyphenols with different structures showed

great differences in inhibition of activities of α-amylase and α-

glucosidase. Effects of flavonoids structures on the inhibitory

activity of α-glucosidase is schematically shown in Figure 3.

The hydroxylation and galloylation of flavonoids improved the

inhibitory activity, while the glycosylation of hyroxyl group

and hydrogenation of the C2=C3 double bond on flavonoids,

and the mono-glycosylation of chalcones reduced the inhibition

(102). Cooperating polyphenols into starchy foods systems can

remarkably slowed starch enzymatic digestion.

Polyphenols could interact with starch and form ordered

starch structures, and in turn, lowering starch digestion as

shown in Figure 2. It has been reported that polyphenols could

interact with starch and promote the formation of starch ordered

structures (103–110). Tea polyphenols, sorghum phenolic

FIGURE 3

Flavonoids key sites that a�ecting activities of α-glucosidase.

The up arrows and down arrows represent increasing and

reducing the inhibition activity, respectively. Figure was

collected from Xiao et al. (102).

compounds, gallic acid could non-covalently interact with starch

to form ordered structures for lowering starch digestion extent

(103, 105, 106, 111–114). V-type crystals are the structures

that are highly resistant to enzymatic digestion (8). Tannins,

proanthocyanidins, and longan seed polyphenols interacted

with starch and formed V-type crystals, which significantly

lowered starch digestion rate and extent (105, 107–109, 111).

Proanthocyanidins with a higher degree of polymerization had

stronger abilities to interact with starch and form more V-

type crystals (107, 114). Controlling the molecular weight of

proanthocyanidins would be a promising pathway to control the

formation of V-type crystals and thus starch enzymatic digestion

(114). Hydrophilic polyphenols were hardly to form V-type

with starch using conventional complexation method (e.g., high

speed shearing) (115). However, high pressure homogenization

could promote starch interaction with gallic acid and green

tea polyphenols, thereby forming V-type crystals and short-

range ordered structures for lowering starch enzymatic digestion

(105, 112). In addition to V-type crystals, gallic acid might

form “hamburger-like” structure of starch-polyphenol-starch
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complexes, which increased ordered structure of starch gel and

lowered starch digestion extent (103).

Other dietary compounds

In addition to the compounds discussed above, other dietary

compounds such as NaCl and phytosterols also affected starch

digestibility (70, 116, 117). NaCl would promote the formation

of starch-lipid inclusion complexes, which would slow starch

enzymatic digestion in a higher magnitude (70). Generally,

retrograded starch showed a low digestibility due to its ordered

structures (118). Co-crystallization with NaCl to produce single-

helix amylopectin was regarded as a promising strategy to

retard starch retrogradation (116), suggesting NaCl potentially

increased digestibility of retrograded starch. Phytosterols, which

showed robust abilities in lowering enzymes activities (117),

indicating phytosterols could slow starch digestion significantly

via inhibiting enzymes activities.

Concluding remarks and future
directions

This review summarized effects of dietary compounds

including cell walls, proteins, lipids, non-starchy

polysaccharides, and polyphenols on starch enzymatic

digestion and their underlying mechanisms were discussed.

Dietary compounds lowered starch digestion through three

pathways: (i) retained starch ordered structures or formed

ordered assemblies chaperoned with these dietary compounds;

(ii) formed physical barriers and prevented enzymes from

accessing/binding to starch; (iii) reduced enzymes activities.

Cell walls, proteins, and non-starchy polysaccharides restricted

starch disruption during hydrothermal treatment and the

retained ordered structures limited enzymatic binding. In

addition, they encapsulated starch granules and formed

physical barriers for enzymes accessing. Proteins, non-starchy

polysaccharides along with lipids and polyphenols interacted

with starch and formed ordered assemblies. Non-starchy

polysaccharides and polyphenols showed robust ability to

reduce activities of α-amylase and α-glucosidase. Comparing

with cell walls, protein, and non-starchy polysaccharides, lipids

and polyphenols had stronger ability to slow starch digestion.

Food systems are relative complex with cell walls, proteins,

lipids, non-starchy polysaccharides, polyphenols, vitamin,

minerals, sugar, salts, etc. Dietary compounds might interact

with each other and affect starch digestion in complicated

pathways. How the complex dietary compounds affected starch

digestion in real foods systems must be further investigated.

Currently, effects of dietary compounds on starch digestion were

interrogated in vitro. Dietary compounds would be digested and

absorbed in the gastrointestinal tract and in turn affected starch

digestibility. Starch in vitro digestibility may quite different to

in vivo digestibility. Accordingly, in vivo glycemic response is

the most important property of starchy foods. Further studies

are needed to investigate the roles of dietary compounds on

starch in vivo glycemic response. In addition, different groups

of people such as children, athletes, middle- and old-aged

human have different requirements for starch digestion rate and

extent. Targeted structuring food structures and starch digestion

behaviors via complexation with dietary compounds remains

of interest.
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Polysaccharides from
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(jackfruit) pulp improves
intestinal barrier functions of
high fat diet-induced obese rats
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Wanning, China, 2College of Food Science and Engineering, Hainan University, Haikou, China,
3College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China, 4Key
Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan
Province, Wanning, China, 5Department of Pharmacology, School of Basic Medicine and Life
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Polysaccharides show protective effects on intestinal barrier function due

to their effectiveness in mitigating oxidative damage, inflammation and

probiotic effects. Little has been known about the effects of polysaccharides

from Artocarpus heterophyllus Lam. pulp (jackfruit, JFP-Ps) on intestinal

barrier function. This study aimed to investigate the effects of JFP-Ps on

intestinal barrier function in high fat diet-induced obese rats. H&E staining

and biochemical analysis were performed to measure the pathological and

inflammatory state of the intestine as well as oxidative damage. Expression

of the genes and proteins associated with intestinal health and inflammation

were analyzed by RT-qPCR and western blots. Results showed that JFP-

Ps promoted bowel movements and modified intestinal physiochemical

environment by lowering fecal pH and increasing fecal water content. JFP-

Ps also alleviated oxidative damage of the colon, relieved intestinal colonic

inflammation, and regulated blood glucose transport in the small intestine.

In addition, JFP-Ps modified intestinal physiological status through repairing

intestinal mucosal damage and increasing the thickness of the mucus layer.

Furthermore, JFP-Ps downregulated the inflammatory genes (TNF-α, IL-6)

and up-regulated the free fatty acid receptors (GPR41 and GPR43) and tight

junction protein (occludin). These results revealed that JFP-Ps showed a

protective effect on intestinal function through enhancing the biological,

mucosal, immune and mechanical barrier functions of the intestine, and

activating SCFAs-GPR41/GPR43 related signaling pathways. JFP-Ps may be

used as a promising phytochemical to improve human intestinal health.

KEYWORDS

Artocarpus heterophyllus Lam. polysaccharide, intestinal function, inflammation,
protective effect, obese rats
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Introduction

The intestine is the largest digestive and immune organ
which closely linked to the body health, participates in the
digestion and absorption of nutrients. The intestine also
provides a favorable anaerobic environment for microbial
colonization, plays an important role in defending the host
from pathogens, and regulating the host’s immune system
(1–4). The contents of short-chain fatty acids (SCFAs) and
colonic water, and colonic pH value are basic indicators for
intestinal health, which is closely linked to the body health (5).
Changes in dietary composition can affect the development of
gastrointestinal disease and the integrity of the gut by altering
the growth and metabolism of the intestinal flora (6). Wang
et al. (7) found that walnut green husk polysaccharides alleviated
obesity, chronic inflammatory responses, non-alcoholic fatty
liver disease and colonic tissue damage via regulating gut
microbiota and SCFAs content.

Polysaccharides have been reported to improve gut health
via enhancing intestinal barrier function and restoring intestinal
homeostasis, and regulate intestinal function via mitigating
oxidative damage and inflammation, and probiotic function
(8, 9). Polysaccharides from Cyclocarya paliurus leaves,
Dendrobium officinale, fruiting body of Hericium erinaceus
and polysaccharide-rich sage weed extracts were found to
maintain intestinal health through lowering fecal pH value,
increasing fecal water content and SCFAs concentration (5, 6,
10, 11). Gao et al. (12) reported that polysaccharide fractions
from okra improved intestinal function via increasing the
contents of SCFAs and caecum moisture, thickness of mucosa
and muscular layer. Dendrobium huoshanense polysaccharide
improved intestinal mucosal barrier function by modifying
intestinal mucosal structures, regulating the production of
cytokines and promoting the expression of the tight junction
proteins (8).

Polysaccharides from Artocarpus heterophyllus Lam
(jackfruit) pulp (JFP-Ps) has been demonstrated to possess
immunomodulatory effects (13). In the past few years, our team
has investigated the isolation, purification, in vitro digestive
properties, antioxidant activity and in vivo prebiotic effects of
JFP-Ps (14–16). However, to our knowledge, little has been
known about the protective effects of JFP-Ps on intestinal
health. Therefore, the present study aimed to investigate the
protective effects of JFP-Ps on intestinal function of obese rats
induced by a high-fat diet.

Abbreviations: JFP-Ps, polysaccharides from Artocarpus heterophyllus
Lam. (jackfruit) pulp; SOD, superoxide dismutase; GSH-Px,
glutathione peroxidase; CAT, catalase; MDA, malondialdehyde; MPO,
myeloperoxidase; TNF-α, tumor necrosis factor-α; IL-1β, interleukin-1β;
IL-6, interleukin-6; IL-10, interleukin-10; SGLT1, sodium-glucose
cotransporter 1; GPR43, G protein-coupled receptor 43; GPR41, G
protein-coupled receptor 41; SCFAs, short-chain fatty acids.

Materials and methods

Materials and reagents

Jackfruit fruits were collected from Xinglong Tropical
Botanical Garden (Wanning, Hainan, China). JFP-Ps was
extracted from the Artocarpus heterophyllus Lam pulp using
hot water extraction and ethanol precipitation as previously
described by Zhu et al. (14). JFP-Ps was mainly composed of
Rha, Ara, Gal, Glc, Xyl, and GalA, with an average molecular
weight of approximately 1,668 kDa.

The normal-chow diet (D12450H, 10% calories from
fat) and high-fat diet (D12451, 45% calories from fat)
were obtained from Jiangsu Synergy Pharmaceutical and
Biological Engineering Co., Ltd., (Jiangsu, China). Assay kits
for the activity of superoxide dismutase (SOD), glutathione
peroxidase (GSH-Px) and catalase (CAT) and the content
of malondialdehyde (MDA) were obtained from Suzhou
Grace Biotechnology Co., Ltd., (Jiangsu, China). ELISA kits
for myeloperoxidase (MPO), tumor necrosis factor-α (TNF-
α), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-
10 (IL-10) and sodium-glucose cotransporter 1 (SGLT1)
were purchased from Shanghai Enzyme-linked Biotechnology
Co., Ltd., (Shanghai, China). The qPCR primers for TNF-
α, IL-6, G protein-coupled receptor 43 (GPR43), G protein-
coupled receptor 41 (GPR41) and β-actin were purchased
from Sangon Biotech (Shanghai) Co., Ltd., (Shanghai, China).
TriQuick reagent and bicinchoninic acid (BCA) assay kits
were purchased from Beijing Solarbio Science & Technology
Co., Ltd., (Beijing, China). SuperReal Premix Plus assay kits
were purchased from Tiangen Biotech (Beijing) Co., Ltd.,
(Beijing, China). Rabbit-derived polyclonal antibodies against
occludin (27260-1-AP) and secondary antibody (SA00001-
2) were purchased from Proteintech Group, Inc., (Wuhan
Sanying, Hubei, China). BeyoRTTM III first-strand synthesized
kit, BeyoECL Plus reagent, poly (vinylidene fluoride) (PVDF)
membrane, rabbit-derived monoclonal antibodies against β-
actin (AF5003) and paraformaldehyde were purchased from
Beyotime Biotechnology (Shanghai, China).

Animal experiments

Sprague-Dawley rats (SPF-grade, male), with body weights
(BW) ranging from 180 to 200 g, were purchased from Hunan
Silaikejingda Experimental Animal Co., Ltd., (Changsha, China)
with the experimental animal production license SCXK (Xiang)
2019-0004. All rats were housed in an animal facility under
controlled interior temperature (23 ± 2◦C), relative humidity
(55 ± 15%), noise (≤60 dB) and lighting cycle (12:12 h light-
dark). After 1-week acclimation, the rats were divided into
two groups: normal control (NC) group (n = 8) fed with
normal-chow diet, obesity group (n = 45) fed with high fat diet
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(HFD). After 12 weeks, the average body weight (BW) of the
obesity group was significantly higher than that in the normal
group (p< 0.01). The animals in obesity group were further
randomly divided into five groups: HFD group, inulin group,
low-, medium- and high- dose JFP-Ps groups (JFP-Ps-L, JFP-Ps-
M, JFP-Ps-H), and continually fed with the high fat diet. During
the diet intervention, the NC group and HFD group were treated
daily with an equivalent volume of distilled water by oral gavage.
The inulin group was treated daily with inulin (1.5 g/kg BW)
by oral gavage (17, 18). The JFP-Ps-L group, JFP-Ps-M group
and JFP-Ps-H group were treated daily with 50, 100, and 200
mg/kg JFP-Ps by oral gavage, respectively. The diet intervention
was lasted for 6 weeks. The recipes of the diets are listed in S1
and S2. All animal experimental procedures were approved by
the Animal Ethics Committee of Hainan University and Hainan
Medical University with experimental animal use permit SYXK
(Qiong) 2017-0013.

Sample collection

All the rats were fasted for 12 h and anesthetized with
chloral hydrate by intraperitoneal injection, and then dissected.
Fecal samples were collected, immersed immediately in liquid
nitrogen, and stored at −80◦C for water content and pH value
analysis. The length of the colon was measured and the intestinal
tissue was rinsed with pre-cooled saline, blotted on filter paper,
and divided into three portions for further analysis.

Water content and pH value of feces

A portion of fecal sample was heated in an air-oven at 105
± 2◦C to a constant weight. The water content of the feces was
calculated from the mass of the feces before and after drying.
The other part of fecal sample was diluted with distilled water
at a ratio of 1:10 (w/v) and the pH value was determined using a
SevenCompactTM S220 pH meter (Mettler Toledo, Switzerland).

Antioxidant activities analysis

One hundred milligram colon tissue were mixed with
pre-cooled saline (4◦C, 0.9%, w/w) at a ratio of 1:10 (w/v),
homogenized over ice for 3 min, and centrifuged (12,000
× g, 15 min, 4◦C) to gather supernatants. The activities
of SOD, GSH-Px and CAT and the content of MDA
were determined using the biochemical kits following the
manufacturer’s protocols.

Enzyme-linked immunoassay

One hundred milligram of colon tissue were homogenized
with 1.0 mL pre-cooled saline (4◦C, 0.9%, w/w) over ice

for 5 min. Then tissue homogenate was centrifuged (12,000
× g, 20 min, 4◦C) to collect supernatants. The activity of
MPO and the concentrations of TNF-α, IL-1β, IL-6, and
IL-10 in the colon were measured by ELISA assay kits
following the manufacturer’s instructions. The activity of
SGLT1 in the small intestine was analyzed following the
manufacturer’s instructions.

Histological examination

The small intestine tissue was fixed in 4% paraformaldehyde
overnight, dehydrated with graded alcohol, imbedded in a
paraffin wax, and whittled down to 4 µm thickness. Then the
sections were mounted onto clean glass slides, soaked in graded
xylene and alcohol, stained with hematoxylin and eosin. Lastly,
slides were sealed with neutral balsam for inspection under a
binocular microscope.

RT-qPCR analysis

The mRNA levels of TNF-α, IL-6, GPR43, and GPR41
were determined by RT-qPCR. Total RNA was extracted
from the small intestine tissue with the TriQuick reagent
according to the manufacturer’s protocol. The purity and
concentration of total RNA was determined by Thermo
ScientificTM NanoDropTM 2000C spectrophotometer. cDNA
was generated by reverse transcription of RNA using BeyoRTTM

III first-strand synthesized kit. RT-qPCR analysis of the target
genes was performed on the Bio-Rad R©CFX96 Real Time PCR
System using a SuperReal PreMix Color (SYBR Green). The
relative expression levels of the genes were calculated according
to the 2−11 Ct method and normalized to the housekeeping
gene, β-actin. Primer information is listed in Table 1.

Western blot analysis

Fifty milligram of small intestine tissue were homogenized
with 0.5 mL pre-cooled RIPA buffer, 5 µL PMSF lysis
buffer and 5 µL protease inhibitor cocktail over ice for
5 min, and centrifuged (12,000 × g, 10 min, 4◦C) to collect
supernatants. The protein concentrations were quantified
by BCA Protein Assay Kit. Denatured protein samples were
fractionated on a 10% SDS-PAGE and transferred onto 0.45
µm PVDF membranes. After the membranes were blocked
with 5% skimmed milk at room temperature for 60 min, the
membranes were incubated overnight with primary antibodies
(1:1,300) at 4◦C, and then HRP-conjugated secondary
antibody (1:1,000) following the manufacturer’s instructions.
Protein bands were developed using an ultrasensitive ECL
chemiluminescence kit and visualized using a Tanon 5200 Multi
chemiluminescent imaging system, and lastly quantified using
Image J software.
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TABLE 1 The primer sequences for amplification in RT-qPCR.

Target gene Primer Sequence (5′–3′) Product size (bp)

β-actin Forward TGTCACCAACTGGGACGATA 165

Reverse GGGGTGTTGAAGGTCTCAAA

TNF-α Forward AAAGGACACCATGAGCACGGAAAG 136

Reverse CGCCACGAGCAGGAATGAGAAG

IL-6 Forward ACTTCCAGCCAGTTGCCTTCTTG 110

Reverse TGGTCTGTTGTGGGTGGTATCCTC

GPR43 Forward TGCACCATCGTCATCATCGTTCAG 137

Reverse ACCAGGCACAGCTCCAGTCG

GPR41 Forward TCTGCTCCTCTTCCTGCCATTCC 150

Reverse CGTTCTATGCTCACCGTCATCAGG

Statistical analysis

Results are expressed as means ± standard error of the mean
(SEM). Data were analyzed by one-way analysis of variance
(ANOVA), followed by Duncan’s multiple comparison tests with
SPSS Statistics 26 software (IBM, USA). p < 0.05 indicated a
statistically significant difference.

Results

Effects of JFP-Ps on water content and
pH value of feces

The water content of feces was significantly lower in the
HFD group (56.75 ± 2.64%) than that in the NC group (64.68
± 1.28%) (Figure 1A). JFP-Ps and inulin treatments increased
water content as compared with HFD treatment. Moreover, the
water content in the JFP-Ps-H group (67.05 ± 1.34%) was close
to that in the inulin group (67.47 ± 2.02%), which was slightly
higher than that in the normal group. As shown in Figure 1B,
the pH value of feces in the HFD group was significantly
higher than the NC group (p < 0.05). After feeding with JFP-Ps
and inulin, the pH values of feces were significantly decreased
in obese rats compared with the HFD treatment. The results
indicated that JFP-Ps significantly increased fecal water content
and decreased fecal pH value in obese rats.

Effects of JFP-Ps on colon length and
intestinal micromorphology

As shown in Figures 2A,B, the colon of the HFD group
was significantly shorter than the NC group (p < 0.05). JFP-Ps
and inulin significantly inhibited the decrease of colon length
compared with the HFD group (p < 0.01).

Morphological changes in jejunal tissue between the groups
were visualized by H&E staining. As shown in Figure 2C,

the jejunum in the NC group showed clear tissue structure,
with finger-shaped villi closely and evenly arranged, a large
number of cup-shaped cells within the columnar epithelium,

FIGURE 1

Effect of JFP-Ps on fecal water content (A) and fecal pH value
(B) in obese rats. Data are expressed as mean ± SEM (n = 6 for
each group) and analyzed using one-way ANOVA. *p < 0.05,
**p < 0.01 compared to the NC group; #p < 0.05, ##p < 0.01
compared with the HFD group.
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FIGURE 2

Effect of JFP-Ps on colon length and intestinal
micromorphology in obese rats. (A) Representatives of colonic
tissue in each group, (B) colon length, (C) jejunal
micromorphology (original magnification 20X). Data are
expressed as mean ± SEM (n = 6 for each group) and analyzed
using one-way ANOVA. *p < 0.05, **p < 0.01 compared to the
NC group; ##p < 0.01 compared with the HFD group.

and a clear demarcation between the submucosa and the
muscular layer. In the HFD group, the mucosal layer of jejunum
was disorganized; the shape of the villi was not clear; and
the tips of the villi were mixed and accompanied by severe
inflammatory infiltration, with cup-shaped cells visible only
at the base of the villi. Comparison to the HFD group, the
jejunum of the JFP-Ps-L group and JFP-Ps-M group showed
clearer structure, with the villi gradually becoming clearer
in shape and more uniformly arranged, with less mixing
of the villi apices and less inflammatory infiltration, and a
gradual increase in the distribution of cupped cells within the
columnar epithelium. The morphology and structure of the
jejunal tissue in the JFP-Ps-H group was similar to that in
the NC group, but the length and number of villi increased.

Moreover, villi were more closely arranged; the volume of
the intestinal lumen decreased; more cup-shaped cells were
distributed within the columnar epithelium and the thickness
of the mucosal layer increased. The results showed that JFP-
Ps restored intestinal mucosal damage induced by a high-
fat diet in obese rats, increased the thickness of the mucus
layer and protected the barrier function of the intestinal
mucosa, which in turn had a positive effect on intestinal
health.

Effects of JFP-Ps on antioxidant
activities in colon

As shown in Table 2, in comparison to the NC group,
the activities of SOD, GSH-Px, and CAT in the HFD group
were decreased and the content of MDA in the HFD group
was increased (p< 0.01). Compared with HFD group, JFP-Ps
treatment increased the activities of SOD, GSH-Px and CAT,
and the activities of GSH-Px increased significantly (p < 0.01).
Moreover, JFP-Ps decreased the content of MDA significantly
(p < 0.01). The results indicated that JFP-Ps may alleviate
oxidative damage in the colon of obese rats and improve
integrity of the intestinal epithelium by enhancing the activities
of antioxidant enzymes in the colon.

Effects of JFP-Ps on
inflammation-related indicators in
colon

As shown in Table 3, the MPO activity in the HFD group
was significantly increased (p < 0.05), and the contents of pro-
inflammatory cytokines (TNF-α, IL-1β, and IL-6) increased, and
the content of anti-inflammatory cytokine (IL-10) decreased,
compared to that in the NC group. However, compared
with HFD group, the MPO activity in the JFP-Ps group
was significantly decreased (p < 0.01), the contents of pro-
inflammatory cytokines were decreased in a dose-dependent
manner, and the level of the anti-inflammatory cytokine was
increased. The results indicated that JFP-Ps may decrease the
inflammation in the colon of obese rats induced by high-fat diet.

Effects of JFP-Ps on glucose transport
in the small intestine

As shown in Figure 3, SGLT1 activity in the small intestine
of rats from the HFD group was decreased compared with the
NC group. The JFP-Ps intervention reduced SGLT1 activity in
HFD group. The results showed that JFP-Ps may inhibit glucose
transport in the small intestine by reducing SGLT1 activity in the
intestinal epithelium of obese rats.
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TABLE 2 Effect of JFP-Ps on antioxidant activities in the colon of obese rats.

Group SOD (U/mL) GSH-Px (nmol/mL) CAT (µ mol/mL) MDA (nmol/mL)

NC 39.64 ± 2.57 97.35 ± 3.91 117.16 ± 18.75 2.47 ± 0.17

HFD 22.72 ± 2.28 54.92 ± 2.38** 77.48 ± 2.72 3.85 ± 0.10**

Inulin 33.40 ± 1.59 109.12 ± 3.54## 104.28 ± 17.24 2.44 ± 0.14##

JFP-Ps-L 25.08 ± 9.18 96.73 ± 1.63## 98.42 ± 15.27 2.94 ± 0.45#

JFP-Ps-M 30.24 ± 8.80 108.34 ± 4.32## 113.46 ± 32.90 2.06 ± 0.18##

JFP-Ps-H 34.68 ± 3.05 105.87 ± 5.33## 115.53 ± 12.86 1.80 ± 0.06##

Data are presented as mean ± SEM (n = 6). **p < 0.01 compared to the NC group; #p < 0.05, ##p < 0.01 compared with the HFD group.

TABLE 3 Effect of JFP-Ps on inflammation-related factors in the colon of obese rats.

Group MPO (U/L) TNF-α (ng/L) IL-1β (ng/L) IL-6 (pg/mL) IL-10 (ng/L)

NC 50.74 ± 0.71 82.25 ± 6.29 5.55 ± 0.12 29.68 ± 0.70 6.70 ± 1.53

HFD 58.10 ± 3.44* 89.87 ± 12.44 6.30 ± 0.54 36.98 ± 5.73 4.21 ± 0.33

Inulin 47.71 ± 2.11# 81.89 ± 1.56 4.91 ± 0.30# 32.12 ± 2.75 6.34 ± 0.30

JFP-Ps-L 46.67 ± 2.61## 83.32 ± 8.35 5.67 ± 0.12 32.39 ± 5.24 5.67 ± 0.60

JFP-Ps-M 46.63 ± 2.68## 73.92 ± 4.03 5.59 ± 0.41 27.88 ± 2.90 5.79 ± 0.95

JFP-Ps-H 45.70 ± 1.32## 72.37 ± 0.95 5.24 ± 0.37 26.44 ± 1.85 5.86 ± 0.26

Data are presented as mean ± SEM (n = 6). *p < 0.05 compared to the NC group; #p < 0.05, ##p < 0.01 compared with the HFD group.

Effects of JFP-Ps on the expression of
gut barrier function-related genes in
small intestine

The levels of TNF-α and IL-6 mRNA expression were
significantly increased in the small intestine of the HFD
group, and the gene expression levels of GPR41 and GPR43
were slightly down-regulated (Figures 4A–D). Interestingly,
treatment with JFP-Ps decreased the expression of TNF-α and
IL-6, while increased the gene expression of GPR43 and GPR41

FIGURE 3

Effect of JFP-Ps on SGLT1 activity in small intestinal tissues. Data
are expressed as mean ± SEM (n = 6 for each group) and
analyzed using one-way ANOVA. No significant difference was
observed.

in a dose-dependent manner. These results showed that JFP-Ps
may inhibit inflammation and enhance immune function in the
small intestine of obese rats.

Effects of JFP-Ps on the protein
expression level of occludin in small
intestine

Western blot analysis showed that protein expression level
of occludin in the HFD group was significantly lower than
the NC group (p < 0.01) (Figures 4E,F). JFP-Ps significantly
increased the protein expression of occludin in a concentration-
dependent manner (p < 0.01). The result showed that JFP-Ps
may enhance mechanical barrier function in the small intestine.

Discussion

Intestine is the largest digestive and immune organ in
the body, provides a favorable and anaerobic environment
for microbial colonization and performs an important role
in nutrient absorption, detoxification and immune regulation
(2, 3). Intestinal dysfunction is closely associated with
obesity and other related metabolic diseases (19, 20). Natural
polysaccharides could prevent and treat intestinal diseases
caused by various factors via restoring intestinal barrier function
(21). The results of this study indicated that JFP-Ps possessed a
protective effect on the intestine via improving intestinal barrier
function and alleviating intestinal inflammation.
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FIGURE 4

Effect of JFP-Ps on the expression of inflammatory genes, free fatty acid receptor genes and tight junction protein in the small intestine of
obese rats. (A) TNF-α, (B) IL-6, (C) GPR43, (D) GPR41, (E) protein expression of occludin, (F) relative band intensities of occludin. Data are
expressed as mean ± SEM (n = 6 for each group) and analyzed using one-way ANOVA. *p < 0.05, **p < 0.01 compared to the NC group;
#p < 0.05, ##p < 0.01 compared with the HFD group.

The higher water content in the feces is accompanied by
an increase in the volume and looseness of the feces, which
facilitates the body’s bowel movements (22). A high water
content in feces also indicates a high moisture environment
in the intestine, which may help the exchange and transport
of substances and the intestinal mucus layer in dissolving

mucins, immune factors, electrolytes, etc., thus maintaining the
integrity of the intestinal mucosal layer and the balance of
osmotic pressure and protecting the intestinal barrier (23–25).
In addition, water in the intestinal lumen enters the enterocytes
in the villi by osmosis, causing the cells to swell and the
tissue to thicken, leading to spontaneous bending of adjacent
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FIGURE 5

The beneficial effects of JFP-Ps on intestinal barrier function in high fat diet-induced obese rats.

tissue, promoting the formation of crypt foci in the intestine,
and reducing the lumen volume (26). Do et al. (27) reported
that polysaccharide fraction from greens of Raphanus sativus
increased water content in the feces of obese mice induced
by high-fat diet. JFP-Ps increased the water-holding capacity
of feces and promoted the body’s bowel movements, implying
that the intake of JFP-Ps may contribute to the integrity of the
intestinal mucosal layer, formation of the crypt, and protection
of the intestinal barrier.

The pH value of the intestinal contents is an important
parameter in measuring intestinal health (28). An increased
intestinal pH value is associated with a decrease in the
abundance of probiotic bacteria (such as Lactobacillus
and Bifidobacterium) and an increase in the abundance
of pathogenic bacteria. Oligosaccharides were fermented
by intestinal microorganisms to produce SCFAs, lowering
intestinal pH value and promoting the growth of probiotic
bacteria (29). In the study, JFP-Ps was found to decrease
intestinal pH value, suggesting that JFP-Ps may be fermented
by intestinal microorganisms to produce SCFAs, creating an
acidic intestinal environment, inhibiting the growth of harmful
bacteria, promoting the growth of probiotic bacteria and the
balance of intestinal flora, thereby enhancing the biological
barrier function of the intestine in the obese rats. The results
were consistent with our previous study (16).

The colon acts as an important site for absorbing water and
salt from food residues and provides a habitat for intestinal
flora. Dietary fibers are fermented in the colon, and the timing
and effect of fermentation is influenced by the growth state

of the colon (30). The colon length may be shortened due
to intestinal diseases. However, the butyric acid produced by
intestinal probiotics (e.g., Lactobacillus, Bifidobacterium, etc.)
from the fermentation of dietary polysaccharides provides 60–
70% energy for the colon cells, promoting the regeneration
and growth of colon epithelial cells, which in turn increases
colon length (30, 31). Polysaccharide fraction from greens of
Raphanus sativus was reported to increase colon length and
restore intestinal barrier function in high-fat diet induced obese
mice (27). In the study, JFP-Ps increased colon length in a dose-
dependent manner, restored intestinal mucosal damage and
increased the thickness of the mucus layer in obese rats induced
by a high-fat diet, suggesting that JFP-Ps may enhance intestinal
barrier function and reduce the risk of intestinal diseases.

The antioxidant enzymes SOD, GSH-Px and CAT constitute
the body’s enzymatic antioxidant system, play an important
role in protecting the body from oxidative damage, and are
regarded as the first line of defense against oxidative damage
(32). MDA is a product of lipid peroxidation in tissues and
organs, and its level reflects the degree of tissue damage. A high-
fat diet causes oxidative damage in the body and promotes the
development of obesity. Wang et al. (7) reported that walnut
green husk polysaccharides could prevent colonic oxidative
stress and inflammation damage caused by high-fat diets. Our
previous study has found that JFP-Ps exhibited a strong free
radical scavenging activity (14). Consistent with these reports,
JFP-Ps increased the activities of SOD, GSH-Px and CAT and
decreased the content of MDA, suggesting that JFP-Ps may
maintain the integrity of intestinal epithelium by increasing
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the activities of antioxidant enzymes in the colon of obese rats
induced by a high-fat diet.

Weakening of the intestinal mucosal barrier allows a large
number of foreign antigens to enter the intestinal wall, inducing
an inflammatory response in the gut and accumulation of
inflammatory cells and inflammatory cytokines, and triggering
an immune response and damage (33). MPO is a hemoglobin
enriched in neutrophils, and MPO activity was used to reflect
neutrophil aggregation and tissue inflammation. TNF-α, IL-1β

and IL-6 are typical pro-inflammatory cytokines that promote
the inflammatory cascade; IL-10 is an anti-inflammatory
cytokine that inhibits the inflammatory response. Liu et al. (34)
reported that Rheum tanguticum polysaccharide significantly
reduced MPO activity in the colonic mucosa of rats with colitis.
A polysaccharide purified from Arctium lappa inhibited the
increase of pro-inflammatory factors in the colon of mice with
colitis (35). Angelica sinensis polysaccharide increased IL-10
level in the colon of rats with immune colonic injury (36).
Consistent with these reports, JFP-Ps decreased the contents
of TNF-α, IL-1β and IL-6, and increased the content of IL-10,
suggesting that JFP-Ps may alleviate colonic inflammation in
high-fat diet-induced obesity rats.

SGLT1 is a key transporter mainly expressed in small
intestinal tissues, which involved in glucose absorption in
the intestinal lumen, and closely associated with metabolic
diseases, such as obesity and diabetes (37). In obese patients
with type 2 diabetes, the overexpression of SGLT1 caused
an abnormal increase in blood glucose in the body (38).
Inhibition of SGLT1 expression can reduce glucose absorption
in small intestine, the escaped glucose transferred into the
large intestine and fermented to produce SCFAs, which
in turn reduces the occurrence of obesity and type 2
diabetes (37, 39). Consistent with the previous study, JFP-
Ps reduced SGLT1 activity in the intestinal epithelial cells
of obese rats, suggesting that JFP-Ps may alleviate the
development of obesity.

The expression levels of TNF-α and IL-6 in small
intestinal tissues may reflect the inflammatory status of
small intestinal tissues in obese rats. Han et al. (40)
found that polysaccharide from Gracilaria Lemaneiformise
reduced intestinal inflammation and prevented colitis in
mice by decreasing the levels of pro-inflammatory factors
in the mouse colon. GPR41 and GPR43 is a group of free
fatty acid receptors that are activated by SCFAs. Intestinal
microbes can ferment indigestible dietary fiber to produce
SCFAs, which in turn activate GPR41 and GPR43, and
mediate immune function in the small intestine (41–43).
Consistent with these reports, our results showed that
JFP-Ps down-regulated the expression of pro-inflammatory
genes (TNF-α, IL-6), up-regulated the expression of GPR41
and GPR43. These results suggested that JFP-Ps could
alleviate inflammation and enhance immune barrier function
of the small intestine in obese rats via inhibiting the

expression of pro-inflammatory genes and activating SCFA- and
GPR41/GPR43-related signaling pathways in the small intestine
of obesity rats.

Occludin is a tight junction protein and is believed to
be directly involved in the barrier and fence functions of
tight junctions (44). Occludin has been identified as an
important component of the intestinal mechanical barrier and
regulates macromolecule flux across the intestinal epithelial
tight junction barrier (45). Sang et al. (46) reported that
polysaccharide from sporoderm-broken spore of Ganoderma
lucidum up-regulated the expression of occludin protein in
the ileum of mice fed with high-fat diet. In line with this
report, JFP-Ps increased the protein expression of occludin
in a concentration-dependent manner, suggesting that JFP-
Ps may enhance mechanical barrier function in the small
intestine of obese rats.

Conclusion

In conclusion, JFP-Ps exhibited a protective effect on
intestinal function and was beneficial to intestinal health.
As shown in Figure 5, JFP-Ps promoted bowel movements
and modified intestinal physiochemical environment by
lowering fecal pH value and increasing fecal water content.
Meanwhile, JFP-Ps was found to increase the length of the
colon, alleviate oxidative damage of the colon, relieve intestinal
colonic inflammation, and inhibit glucose transport in the
small intestine. In addition, JFP-Ps repaired intestinal mucosal
damage, and increased the thickness of the mucus layer.
The potential mechanism of JFP-Ps improved intestinal
barrier functions involved in inhibiting the expression
of the inflammatory genes (TNF-α, IL-6), promoting the
expression of the tight junction protein (occludin), and
activating SCFA-GPR41/GPR43 related signaling pathways.
Our findings would provide theoretical support for the
development of JFP-Ps as a promising phytochemical to
improve human health.
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From Ziziphus Jujuba cv. Muzao fruit, a new polysaccharide (PZMP3-1)

with high molecular weight was isolated. Constructional characterization

revealed that PZMP3-1 comprized 2.56 rhamnose, 7.70 arabinoses, 3.73

galactose, and 6.73 galactose, and it has a 241 kDa average molecular

weight. The principal structural components of PZMP3-1 were 1,2,4 and

1,4-linked GalpA, 1,4-linked Galp, 1,3 and 1,5-linked Araf, and 1-linked Rhap

based on methylation and nuclear magnetic resonance spectroscopy (NMR)

analyses. X-ray diffraction (XRD), Fourier transforms infrared spectroscopy

(FT-IR), atomic force microscopy (AFM), and scanning electron microscopy

(SEM) structural analysis of PZMP3-1 revealed a tangled and branching pattern.

Overall, these structural results suggested that PZMP3-1 could have unique

bioactivities and be widely used in nutritional supplements.

KEYWORDS

jujube, high-molecular-weight polysaccharide, structural characterization, NMR,
GC-MS

Introduction

Recent studies have investigated the biological effects of polysaccharides (PZMP3-1)
that include their abilities to suppress free radicals and exert anti-bacterial, anti-
cancer, anti-tumor, anti-coagulant, anti-viral, and immunological effects, etc., (1, 2).
The chemical composition and structural characteristics of polysaccharides could
determine their biological effects (3). Numerous studies have demonstrated that
sulfation produces excellent physiological effects that support health maintenance and
disease prevention (4).

The fruit of Ziziphus Jujuba Mill., often known as jujube, is called Jujubae
Fructus and is known by the Chinese names Dazao or Hongzao (5, 6). Jujube
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has been demonstrated as anti-oxidant, anti-provocative,
anti-microbial, anti-cancer, cardiovascular, gastrointestinal
protective, anti-HIV, neuroprotective, sedative-hypnotic,
anxiolytic, and other bioactivities in vitro and in vivo
technological research, demonstrating the fruit’s
pharmacological potential (7, 8). Bioactive metabolites are
responsible for these actions, containing polysaccharides,
oligosaccharides, saponins, cyclopeptide alkaloids, minerals,
triterpenoid acids, vitamins, and flavonoids, which are thought
to be the distinctive and functional elements of the jujube
fruit (9, 10).

The origin of Z. jujuba cv. Muzao fruit is mainly from
Lüliang Shanxi Province and Yulin Shaanxi Province of China
(11). Polysaccharides were found in jujube’s pharmacological
components and have been linked to various health benefits,
such as immunomodulation, anti-cancer, anti-oxidation,
hypoglycemic, hepatoprotective, and gastrointestinal protection
(12, 13). Numerous investigations on low molecular weight
polysaccharides have emphasized their structural characteristics
and pharmacological activities (14–16). Jujube polysaccharides
with molecular weights varying between 104 and 106 Da
have been detected in various experimental conditions, and
these polysaccharides demonstrated anti-oxidant activities (2,
17). From Z. jujuba cv. Jinsixiaozao, the polysaccharides
(four fractions) have Mw values ranging from 86 to
160 kDa, according to Li et al. (18, 19). However, the
higher molecular weight fraction of Z. jujuba cv. Muzao
polysaccharides is not present.

In the current study, from Z. jujuba, isolation and
purification of a unique polysaccharide with high molecular
weight, was given the designation PZMP3-1. The structural
conformation and physicochemical properties of PZMP3-1 were
detected by model analytical instruments [gas chromatography
(GC), high-performance gel permeation chromatography
(HPGPC), Fourier transforms infrared spectroscopy (FT-
IR), methylation analysis, X-ray diffraction (XRD), nuclear
magnetic resonance spectroscopy (NMR), atomic force
microscopy (AFM), and scanning electron microscopy
(SEM)]. The eventual objective of this research could be to
offer a new scientific understanding of the composition of
polysaccharides from jujube.

Materials and methods

Materials

Ziziphus Jujuba cv. Muzao fruit was donated by Shaanxi
Loess Plateau Experimental Orchard (China). GE Healthcare
Life Sciences (Piscataway, NJ, USA) provided the Sephacryl
S-300 gels and anion-exchange DEAE Sepharose Fast Flow.
Sigma-Aldrich Co., Ltd (Sigma, St Louis, MO, USA) provided

the standard monosaccharides. The analytical grade was used
for all other compounds and reagents.

PZMP3-1’s isolation and purification

From Z. jujuba cv. Muzao, the unprocessed polysaccharides
(ZMP) were isolated by water extraction, deproteinized,
decolorized, precipitated by ethanol, and freeze-dried, as
shown by the method of Ji et al. (20). The dissolved ZMP
in deionized water was centrifuged and then filtered the
supernatant through a membrane (0.45 µm), a 2.6 × 100 cm
diethylaminoethyl (DEAE)-Sepharose Fast Flow column eluted
with 0.3 M NaCl was loaded with ZMP. On a 2.6 × 100 cm
Sephacryl S-300 column that was equilibrated with distilled
water, a separated fraction was pooled, desalted, and further
purified. PZMP3-1 and PZMP3-2 were pale yellow powders and
derived from the fractions of the prominent peaks collected,
concentrated, dialyzed, and lyophilized to get different parts
(21). For further structural characterization, the PZMP3-1
fraction was employed.

Analysis of chemical composition

The method (phenol-sulfuric acid) detected the total
amount of carbohydrates in PZMP3-1, with glucose serving as
the reference (22). Bradford’s technique assessed the protein
content, with bovine serum albumin as the reference (23). The
Folin-Ciocalteu test assessed the total phenolic content (24).
At room temperature, the UV-vis spectra of the PZMP3-1
(1.0 mg/ml) in the wavelength (200–400 nm) were captured
using a spectrophotometer (25).

Mw determination and
monosaccharide analysis

The high-performance liquid chromatography (HPLC)
measurement of PZMP3-1’s Mw was detected on an Agilent
instrument (LC 1200, USA) with a 7.8 × 300 mm TSK-
gel G3000PWxl column. Using a calibration curve, the Mw
concerning dextran was calculated (26).

Utilizing a collection of monosaccharides as a standard,
the Shimadzu GC (2014 C) with a high-performance capillary
column DB-17 (30 ml × 0.25 mm ID; 0.25 µm film thickness,
Agilent) measured the various monosaccharide by comparing
retention durations and peak regions (27).

FT-IR and NMR analysis

PZMP3-1 was combined with 100 mg of potassium
bromide (KBr) powder before being crushed into granules for
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infrared spectral measurement between 4,000 and 400 cm−1.
A spectrophotometer was used to measure the FT-IR spectra of
polysaccharide (VERTEX 70, Bruker, Germany) (28).

To replace exchangeable protons, the freeze-dehydrated
PZMP3-1 (50 mg) was dissolved in 2 ml of 99.9% D2O and
freeze-dried three times. A Bruker-600 MHz NMR Spectrometer
(Bruker, Rheinstetten, Germany) was used to record the one-
dimensional NMR spectra for the 1H and 13C at 25◦C. Using
the standard Bruker NMR software, data were collected and
examined (21).

Methylation analysis

As described in previous studies (29), PZMP3-1 was
methylated, followed by hydrolysis, reduction, and acetylation,
to analyze glycosyl bonds. The measurement of partially
methylated alder aldehyde using gas chromatography/mass
spectrometry (GC-MS) requires the use of GCMS-
QP2010 Ultra apparatus and a DB-17MS capillary column
(60.0 m× 0.25 mm× 0.25 µ m).

Analysis of the molecular structure

PZMP3-1 used the XRD pattern to determine the crystal
structure present. The angular range of the diffractometer
was 5–50◦ (2θ), the step size was 0.01◦, the scan speed was
15◦/min, and tube pressure (40 kV) and tube flow (40 mA)
were present. Using an SEM (S-4800, Japan), the morphological
characteristics of PZMP3-1 were documented. We used the
Cressington 208 HR Sputtering Coater with sputtering gold
samples. We dissolved the polysaccharides with distilled water
and dried the test samples dripping on the mica carrier surface
at ambient pressure of 70◦C. A 5500 atomic force microscope
(Agilent) was used to create the AFM images (30).

Data analysis

Version 17.0 of SPSS was used for the statistical analysis.
The data were reported as mean ± standard deviation (SD),
with Duncan’s multiple-range test (p < 0.05) arriving after the
analysis of variance (ANOVA) for each experiment, which was
carried out in triplicate.

Results and discussion

PZMP3-1’s extraction and purification

In the current study, the yield of about 3.82% of the
fruit of the Z. jujuba cv. Muzao was used to produce

FIGURE 1

The PZMP3-1’s separation flow diagram.

crude ZMP. On a Sepharose Fast Flow column (DEAE), the
ZMP was separated using 0.3 M NaCl solution (Figure 1).
This fraction was then further purified using Sephacryl S-
300 columns and yielded 3.04% of PZMP3-1, the same
as the neutral polysaccharide PZMP1 from Z. jujuba cv.
(2.95%) (31).
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Characterization of preliminary
PZMP3-1

The number of carbohydrates in PZMP3-1, followed by the
phenol-sulfuric acid method, was 95.35 ± 1.25%. The result
was different with Z. jujuba cv. Hamidazao polysaccharides
which Yang et al. reported that only 0.32% polyphenol and
2.11% protein were found (14). Figure 2A demonstrates that
the lack of nucleic acids and proteins is shown by PZMP3-1’s
UV spectrum (there is no absorption at 260–280 nm), which
is in line with the research of chemical analysis as previously
reported (32).

Determination of Mw and
monosaccharide compositions of
PZMP3-1

Biological activity depends on the Mw distribution
of plant polysaccharides (33). The Mw of PZMP3-1 was
determined to be 241 kDa based on the calibration curve
of standards, which corresponded to a retention period of
17.10 min and might indicate a higher molecular weight
polysaccharide. Li et al. observed that from Z. jujuba cv.
Jinsixiaozao, the molecular weights of four polysaccharide
fractions (ZSP1b, ZSP2, ZSP3c, and ZSP4b) varied
between 86 and 160 kDa (19), and Cui et al. showed
that Fructus Jujubae polysaccharides consisted mainly
of low molecular weight (83.8 and 123.0 kDa) fractions
(34). The PZMP3-1 obtained in this study significantly
exceeded the polysaccharide Mw shown in previous
studies. The Mw of Z. jujuba polysaccharide obtained
by each research group was different. This may be due
to the variety, extraction, purification process, and test
method (13, 35).

The PMP-GC technique was used to examine the
monosaccharides content of PZMP3-1. Rhamnose, arabinose,
galactose, and galacturonic acid made up most of PZMP3-1,
with the molar ratios being 2.56:7.70:3.73:6.73, with arabinose
and galacturonic acid making up the most significant amount
when compared to other monosaccharides, according to the
monosaccharide standards. Previous reports (HJP1, the ratio
of mannose to galacturonic acid to rhamnose to galactose to
glucose to arabinose, was 1.3:6.7:27.6:13:3.7:47.6 and HJP3 was
0.6:16.7:16:21:6.5:39.2) reported by Wang et al. could be used
to confirm the polysaccharide molar ratio and monosaccharide
content found in Z. jujuba cv. Dongzao (36), which had
rhamnose, arabinose, galactose, glucose, and xylose ratios of
1.0:3.6:1.0:0.5:0.2 (37) and had results that were distinct from
those of PZMP3-1 in this work. The varietals, production
conditions, and measurement techniques might play a role in
the monosaccharide composition of jujube polysaccharides
(13, 14).

FT-IR spectra of PZMP3-1

Detecting distinctive organic groups in polysaccharides
using FT-IR spectroscopy is a powerful technique (38, 39).
The primary functional groups of plant polysaccharides may
be better understood using the FT-IR spectrum. The FT-IR
spectra showed that PZMP3-1 contained the typical absorption
peaks of plant polysaccharides (Figure 2B; 40). Stretching
vibration (O-H) caused the characteristic peak at 3,431 cm−1,
and stretching vibration (C-H) caused the rise at 2,935 cm−1

(41). They were regarded as the defining bands for polymers
comprized of plant polysaccharides because of their two
significant absorption peaks. Stretching vibrations (carboxylic
groups) were connected to the absorption peak at 1,741 cm−1

(29). PZMP3-1’s absorption peak at 1,616 cm−1 showed that
symmetrical stretching vibrations (C = O) were present (42).
The bands in the 1,415 cm−1 likely represented the bending and
deformation of C-OH and C-H vibrations, respectively (43). The
intense bands at 1,099 and neighboring 1,000 cm−1 revealed the
pyranose form of galactosyl residues (44).

Methylation analysis of PZMP3-1

Less information about the detailed structure of jujube’s
high molecular weight polysaccharides is available in the
literature, especially the glycosidic bond types. Methylation
analysis could determine the kind and number of glycosidic
linkages in plant polysaccharide polymers (45). To determine
PZMP3-1’s glycosidic bond types by GC-MS analysis, it was
methylated, hydrolyzed, reduced, and converted into partially
methylated alditol acetates (PMAAs) (46). The linkage patterns
of PZMP3-1 were compiled, which are shown in Table 1,
using a spectral database based on the PMAA standard
date in the Complex Carbohydrate Research Center (CCRC)
spectrum database, retention duration, and relevant literature.
Six different methylated sugar derivatives were found, i.e., 1,2,4
and 1,4-linked GalpA, 1,4-linked Galp, 1,3 and 1,5-linked Araf,
and 1-linked Rhap. The composition of monosaccharides and
PZMP3-1 was discovered using methylation analysis (45). NMR
spectra provided additional evidence supporting the structure of
PZMP3-1.

PZMP3-1’s NMR analysis

To understand the structural characteristics of PZMP3-1,
1H and 13C NMR spectra (one-dimensional) were identified
and resolved. The five residues of PZMP3-1 that GC-MS
isolated were given chemical shifts (Table 2) based on 1D
spectra (Figure 3) and information from the literature. Five
anomeric signals were present in the 1H and 13C NMR
spectra (Figures 3A,B) at 3.70–5.25 ppm and 60–110 ppm,
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FIGURE 2

PZMP3-1’s physicochemical analysis. (A) The X-ray diffraction (XRD) pattern. (B) The spectrum of UV-vis. (C) The spectrum of Fourier transforms
infrared spectroscopy (FT-IR). (D,E) Scanning electron microscopy (SEM) images [×1,000 in panel (D), ×5,000 in panel (E), and ×10,000 in panel
(F)]. (G) Atomic force microscopy (AFM) images; (H) a three-dimensional image of AFM.
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TABLE 1 PZMP3-1’s methylation analysis results.

Peak no. Residues Retention time (min) Methylated sugars Linkage patterns Relative amount (mol%)

1 40.086 2,3,4-Me3-Rhap Rhap-(1→ 7.45

2 C 40.245 2,4,5-Me3-Araf →3)-Araf -(1→ 5.72

3 D 41.437 2,3-Me2-Araf →5)-Araf -(1→ 39.75

4 E 63.049 2,3,6-Me3-Galp →4)-Galp-(1→ 16.5

5 A 65.037 2,4,6-Me3-GalpA →4)-GalpA-(1→ 22.93

6 B 66.250 3,6-Me2-GalpA →2,4)-GalpA-(1→ 7.65

TABLE 2 PZMP3-1’s 1H and 13C nuclear magnetic resonance spectroscopy (NMR) data.

Residues Linkage 1 2 3 4 5 6

C →3)-Araf -(1→ C 107.53 82.26 84.04 86.79 63.93

H 5.12 4.28 4.18 3.98 3.92

D →5)-Araf -(1→ C 109.35 82.26 79.06 86.79 68.34

H 5.12 4.28 4.17 3.99 3.93

E →4)-Galp-(1→ C 100.52 70.56 80.96 72.01 74.39 63.67

H 4.94 3.71 4.50 4.07 4.77 3.85

A →4)-GalpA-(1→ C 103.39 68.08 71.26 81.37 73.49 170.91

H 5.21 3.77 4.08 4.42 4.80

B →2,4)-GalpA-(1→ C 103.39 70.62 71.98 81.37 73.49 171.01

H 5.21 3.97 4.10 4.42 4.80

respectively. The primary anomeric proton signals in PZMP3-
1 were identified as A, B, C, D, and E in the 1H NMR spectra at
5.21, 5.21, 5.12, 5.12, and 4.94.

In the 1H NMR spectrum, residues C-2, 3, 4, and 5’s
protons received chemical shifts between 3.7 and 4.28. Five
anomeric signals were resonated at 103.39, 103.39, 107.53,
109.35, and 100.52 after labeling the corresponding signal
(allogeneic carbon) tagged in the 13C NMR spectra. Based on
findings from the literature, Table 2 displays the results; the
signals of all the tagged residues in the 1H and 13C NMR spectra
are assigned. The heteropoly proton of residue A’s chemical shift
caused the signal at δH 5.21, and in the heterogeneous carbon,
the corresponding signal was seen at δC 103.39. The signals were
created by the residue A’s C-2, 3, 4, 5, and 6 at δC 68.08/δH 3.77,
δC 71.26/δH 4.08, δC 73.49/δH 4.80, and δC 170.91, respectively.
According to the NMR data, this residue A’s chemical shifts
were the same as those of→4)-GalpA-(1→ (17). Similar to how
residue B was identified as →2,4)-GalpA-(1→, the signals at
δC 2 70.62/δH 2 3.97, δC 3 71.98/δH 3 4.10, and δC 6 171.01
matched the residue B (anomeric carbons and protons) (47).

Araf was initially given credit for the cross-peak in the
anomeric area at 107–110 ppm (residues C and D). The chemical
shifts of H-1, 2, 3, 4, and 5 were determined from the 1H spectra
at 5.12, 4.28, 4.18, 3.98, and 3.92 ppm, respectively (Figure 3A),
in agreement with previous reports. From the proton chemical
shifts in the C spectra, the carbon chemical shifts of the residue
C from C-1, 2, 3, 4, and 5 were found (Table 2). The carbons
and anomeric protons of residue D were identified by the

signals at δC-1 109.35/δH-1 5.12, δC-3 79.06/δH-3 4.17, and
δC-5 68.34/δH-5 3.93. These outcomes corroborated FT-IR
and methylation analysis results, demonstrating that residues
C/D were (1→3)-linked Araf /(1→5)-linked Araf (29, 31).
According to the NMR data, the similar alternate signals for
carbon and hydrogen were 100.52 (4.94), 70.56 (3.71), 80.96
(4.50), 72.01 (4.07), 74.39 (4.77), and 63.67 (3.85), this residue’s
chemical changes were the same as those of 1,4-linked Galp (48,
49).

Morphological properties of PZMP3-1

It is generally known that plant polysaccharides could be
crystallized using XRD technology (50). Figure 2C depicts
the X-ray diffraction pattern of PZMP3-1. PZMP3-1 had a
prominent peak that appeared at around 20 and 30◦, and
its X-ray diffraction curves were "bun-shaped" (30, 51). The
semicrystalline structure we obtained earlier could explain
that PZMP3-1 might have some semicrystalline structures (an
abundant polysaccharide in galacturonic acid from Z. jujuba cv.
Muzao) (21, 52).

The findings of the SEM analysis of PZMP3-1’s surface
morphology are shown in Figures 2D–F. PZMP3-1 was
formed in an aggregation condition with an unsteady
surface. The formation of intermolecular and intramolecular
hydrogen bonds between polysaccharides requires the
polysaccharide to have a higher molecular weight (30, 53).
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FIGURE 3

The PZMP3-1’s nuclear magnetic resonance spectroscopy (NMR) spectra in D2O. (A) 1H spectrum. (B) 13C spectrum.

For this reason, PZMP3-1 revealed a tangled structure that is
folded with each other.

Observing the three-dimensional structure of biologically
active macromolecules requires using AFM and nanoscale
microstructures, especially the form of plant polysaccharides
(54, 55). PZMP3-1’s 3-dimensional and planar AFM pictures
are displayed in Figures 2G,H, respectively. PZMP3-1 had
a linear or branched structure, and the chain of PZMP3-
1 featured a helical shape. PZMP3-1 aggregation might be
explained by intermolecular and intramolecular hydrogen
bonding on its surface, which acted as a catalyst to produce the
potent intramolecular and intermolecular connections and the
interactions with the water molecule (56, 57). Considering these
morphological traits, we could conclude that the entangled and
branched structure existed in PZMP3-1 molecules, which could
significantly affect the bioactivity, structure, and distribution.

Conclusion

In the current work, Z. jujuba cv. Muzao fruit was
used to create a new polysaccharide PZMP3-1 with high
molecular weight, and its characteristics were elucidated
through physicochemical and experimental investigations using
modern analytical instruments. Rhamnose, galactose, arabinose,
and galacturonic acid were the main components of PZMP3-
1, which was 241 kDa in weight and had a molar ratio of
2.56:3.73:7.70:6.73. PZMP3-1’s primary linkage types included
→2,4)-GalpA-(1→, →4)-GalpA-(1→, →4)-Galp-(1→, →5)-
Araf -(1→, →3)-Araf -(1→ and Rhap-(1→ based on the
findings of the methylation and NMR analyses. According
to studies on chain conformation, PZMP3-1 was entangled
with itself. The biological functions of PZMP3-1 and the
links between its structure and activity are the subject of in-
depth research.
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A study of starch resources with
high-amylose content from five
Chinese mutant banana species

Bo Li1,2,3†, Baoguo Xie4†, Jin Liu5†, Xiaoai Chen1,3†,

Yanjun Zhang1,3*, Lehe Tan1,3, Yitong Wang6, Libin Zhu7,

Kexue Zhu1,3 and Chongxing Huang2*

1Chinese Academy of Tropical Agricultural Sciences, Spice and Beverage Research Institute,

Wanning, Hainan, China, 2College of Light Industry and Food Engineering, Guangxi University,

Nanning, Guangxi, China, 3Key Laboratory of Processing Suitability and Quality Control of the

Special Tropical Crops of Hainan Province, Wanning, Hainan, China, 4Reproductive Medicine Center,

The First A�liated Hospital of Hainan Medical University, Haikou, China, 5Women’s and Children’s

Hospital of Wanning, Wanning, Hainan, China, 6School of Forest, Northeast Forestry University,

Haerbing, Heilongjiang, China, 7College of Food Science, Heilongjiang Bayi Agricultural University,

Daqing, Heilongjiang, China

Investigation on staple crop starch of new species has been becoming the

research focus of scholars at present. Based on this, the physicochemical

properties and microstructural characteristics of starches isolated from

Chinese mutant Musa acuminata Colla acuminata and double balbisiana (MA),

Musa double acuminata cv. Pisang Mas (MAM), Musa acuminata cv. Pisang

Awak (MAA), andMusa Basjoo Siebold (MBS), and Musa double acuminata and

balbisiana-Prata (MAP) were investigated. Results exhibited that all starches

exhibited high content of amylose (34.04–42.59%). According to the particle

size, they were divided into medium (MA, MAM) (14.54–17.71 µm) and

large (MAA, MBS, MAP) (23.01–23.82 µm) group. The medium group with

A-type crystallization showed higher peak viscosity (PV), final viscosity, gel

fracturability and gel hardness. For large group with B-type crystallization, the

compact particle morphology, higher degree of crystallinity, short range order,

gelatinization enthalpy, pasting temperature, lower porosity, water absorption

capacity (WAC) and oil absorption capacity were found. In addition, the

medium group with higher PV and gel hardness could be used as food

thickening or gelling agents. The large group with higher Rc, short-range

order, lower porosity and WAC could be potential to become raw material for

resistant starch. All results showed the amylose content, had significant e�ect

on the microstructure and physicochemical properties of starch samples.

Outcomes in this investigation might provide a basis of theoretical application

for industrial food production.

KEYWORDS

high amylose banana starch, new Chinese banana resources, A-or B-type crystallize,

physicochemical properties, particle morphology properties, statistical analysis
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Introduction

Banana (Musa spp.) is a subtropical and tropical giant

perennial herb belonging to the Musaceae botanical family

originating from Southeast Asia, Malaysia, and China. China is

the second largestMusa producer after India (1, 2). Due to their

low investment, high efficiency, and rapid income, bananas have

become the fifth most important crop produced in the world

after coffee, cereals, sugar, and cocoa. Banana production is also

a source of employment in many developing countries (2). The

unripe banana flesh has <1% soluble sugar content, 2 g/100 g

fresh weight of fiber, 5.55 mg/100 g of potassium, and 20–23%

starch content (wet basis) (3).

Musa is also a climacteric fruit with respiration and fruit

ripening is dependent on ethylene production; therefore, it

cannot be stored for longer periods (4). Until now, a large

number of unsalable bananas decay frequently, resulting in

a wastage of resources. Since Musa fruit is rich in starch,

converting some green (unripe) banana pulps into starch would

provide a more stable storage form (1–2 years) and increase

its generality and practicality (5). Due to its cyclic regeneration

capability and low cost, starch is considered one of the three

major nutrient substances in human beings and is widely

applied in food products as a green alternative material (6). In

addition, the Chinese mutant banana species, a novel potential

resource of high amylose content starch, was cultivated in the

South Subtropical Crops Research Institute, Chinese Academy

of Tropical Agricultural Sciences. However, the physicochemical

properties and crystalline characteristics of these new types of

Chinese banana starch with a high amylose content have not

been reported.

Starch granules are semicrystalline polysaccharides

consisting of amylose with (1–4)-linked α-glucan and

amylopectin with α-(1–4)-linked α-glucan with α-(1–6)

branch points (7). Due to various packing patterns of amylose

and amylopectin structures, diverse crystallinity properties

and physicochemical properties have been identified (8).

Chen et al. (9) found that a high amylose content within the

crystalline region confers a high rate of amylose reassociation

after gelatinization for jackfruit seed starch, leading to its high

retrogradation rate of the crystal nucleus. This phenomenon

Abbreviations: MA, Musa acuminata Colla acuminata and double

balbisiana; MAM, Musa double acuminata cv. Pisang Mas; MAA, Musa

acuminata cv. Pisang Awak; MBS, Musa Basjoo Siebold; MAP, Musa

double acuminata and balbisiana-Prata; WAC, water absorption capacity;

OAC, oil absorption capacity; Rc, relative crystallinity; PV, peak viscosity;

BDV, breakdown viscosity; FV, final viscosity; SBV, back viscosity; TV,

trough viscosity; PT, pasting temperature; To, onset temperature; Tp, peak

temperature/gelatinization temperature; Tc, conclusion temperature;

1Hg, enthalpy of gelatinization; R, gelatinization range; TPA, textural

profile analysis; PCA, principal component analysis.

could lead to a significant change in the quality and nutrition

structure of starch-based food products during food processing.

Therefore, starch with a high amylose content has become the

hot spot of research so that it can be used as potential raw

materials for food additives and human staple food. Zou et al.

(10) reported that the high amylose content of yam starch

resulted in high proportions of a double helix, and compact and

ordered crystalline structures, leading to high thermal stability

and low digestibility, which demonstrated that a high amylose

content of yam starch could be considered the resource of a

high-resistant starch content (10). The new type of banana

starch with high amylose content in this study needed to be

further studied to be utilized as a potential resource of food

additives and resistant starch.

Therefore, this study aimed to characterize the crystal

structure and physicochemical properties of high-amylose starch

from five mutant banana species grown in China: Musa

acuminata Colla acuminata and double balbisiana (MA), Musa

double acuminata cv. Pisang Mas (MAM), Musa acuminata

cv. Pisang Awak (MAA), Musa Basjoo Siebold (MBS), and

Musa double acuminata and balbisiana-Prata (MAP). The

proximate composition, physicochemical properties, and crystal

characteristics were measured. Principal component analysis

(PCA) was used to determine the correlation between each

characteristic parameter. The results obtained from this analysis

will contribute to food and non-food applications in the future.

Materials and methods

Materials

Unripe fruits of all banana species were collected from

the agricultural land of the South Subtropical Crops Research

Institute, Chinese Academy of Tropical Agricultural Sciences

(Guangzhou, China). The banana species were obtained in three

batches-−29 August 2021, 25 September 2021, and 30 October

2021—and each batch included 20 kg of each banana species.

Starch preparation

The unripe mutant banana pulp was dried in a vacuum

freeze dryer (50◦C for 48 h) and ground into banana flour.

The Musa flour (100 g) was mixed with 1 L of distilled water,

and the mixed liquor was sieved through a 100-mesh filter

cloth. The filtrate was centrifuged (4,000 × g, 15◦C, 10min),

the precipitate was dissolved in 1 L of NaOH (0.2% w/v),

and the solution was stirred (10min) to remove soluble fibers.

The mixed liquor was centrifuged at 4,000 × g for 10min,

and the supernatant was discarded. Then, the brown skin

(exogenous impurities) was removed, and the starch sediment

was repeatedly washed with distilled water until neutrality was
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achieved. The remaining samples were dried at 50◦C for 24 h

until the moisture content was<13 g/100 g and was then filtered

through a 100-mesh sieve (7).

X-ray di�raction analysis

X-ray diffraction (XRD) patterns were analyzed using

an X-ray diffractometer (Bede XRD Di System, Durham,

United Kingdom). A copper tube was used to measure starch

samples (40 kV and 200mA, Cu Kα radiation at 0.154 nm).

The diffraction pattern was measured by a step length of 0.02◦,

a scattering slit width of 1◦, a slit width of 0.02mm, and

scanning from 4 to 40◦ (2◦) at a speed of 4◦/min. Each sample

was evaluated in triplicate. The relative crystallinity of different

starch samples was calculated as described by Barros et al. (5).

Proximate composition of isolated starch

The AOAC Official Methods of Analysis. 18th edn.

Association of Official Analytical Chemists; Arlington, VA, USA:

2012method was used tomeasure the contents of moisture, total

starch, ash, lipid, and protein (11).

Amylose content

The amylose content was quantified as mentioned by Li et al.

(12). A measure of 1ml of ethanol and 9ml of 1M NaOH were

mixed with a 100mg of starch sample (dry basis) and then boiled

in a water bath. After cooling to 25◦C, the mixed solution was

diluted to 100ml. A volume of 2.5ml of this aliquot was added to

50ml of 1M I2-KI. The absorbance of the obtained mixture was

then measured at 620 nm in an ultraviolet spectrophotometer

(SPECORD 250 Plus, Analytik Jena AG, Jena, Germany).

Pasting properties

For studying the pasting properties, 3 g of the starch sample

was added to 25ml of deionized water in an RVA container. The

solution was stirred at 960 rpm/min for 10 s, followed by 160

rpm/min, and then was analyzed using a Rapid Visco Analyzer

(RVA super 4, Newport Scientific, Australia). The corresponding

viscosity characteristics was calculated by a Stander 1 program

in this instrument (12). The samples were incubated at 50◦C for

1min and then heated to 95C at 6 ◦C/min. The starch paste was

cooled to 50C at 6◦C/min, maintained at 95◦C for 5min, and

then kept at 50◦C for 2min. All measurements were performed

in triplicate.

Morphology and particle size distribution
analysis of starch granules

The granule morphology of the starch samples was

examined using a scanning electron microscope (SEM)

(Phenom ProX, Phenom Company, The Netherlands). The

starch samples were applied to a silver plate coated with a thin

film of gold (10 nm) and then kept at an accelerating voltage of

15 kV. Then, the samples were examined using a polarized light

microscope linked to a CCD camera, using which we observed

Maltese crosses (Olympus BX51, Tokyo, Japan).

The size distributions corresponding to granules of the

starch were measured using a Malvern Mastersizer 3,000 laser

diffraction size analyzer following the method of Barros et al. (5)

and Ren et al. (13).

Water and oil absorption capacity

A measure of 1 gram of the starch sample was taken in

a centrifuge tube and then 10ml of distilled water or first-

grade peanut oil was added to it, and the mixture was pre-

weighed. The solution was mixed for 1 h in a vortex oscillator.

The mixture was centrifuged (2,000 × g, 30min, 25 ◦C), the

supernatant was discarded, and the tube containing the pellet

was weighed. The oil and water absorption capacities were

expressed as percentages of water or oil absorbed by the starch

samples (11).

Bulk, true densities, and porosity

Bulk densities were measured by using the method of Zhang

et al. (14), except that 5 g of the starch sample was used. The bulk

densities were calculated as the ratio of the weight of the starch

sample to the occupied volume. True density (Td) was measured

using the liquid displacement method and calculated as follows:

Td =
WS

X +W − Y
(1)

where W is the weight of the sample, S is the specific gravity

of xylene, X is the weight of the bottle and xylene, and Y is the

weight of the bottle, xylene, and the sample.

The porosity (Pf) of the starch sample was calculated using

the following formula:

pf =

(
1−

Bd
Td

)
× 100% (2)

where Bd is the bulk density and Td is the true density.
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Thermal properties

A differential scanning calorimeter (DSC-Q2000 TA

Instruments, USA) equipped with a thermal analysis data

station (TA Instruments, New Castle, DE, USA) was used

to study the gelatinization parameters of thermal properties

following the method of Zhang et al. (7). A total of 5mg of dry

sample was mixed with 10mg of distilled water in a crucible,

sealed, incubated at room temperature for 24 h, and then the

mixture was heated from 10 to 100◦C (10◦C /min). Universal

Analysis Program (TA Instruments) was used to calculate To,

the temperature at which the tangential line from the lower

temperature side of the peak intersects with the baseline; Tp, the

temperature at the tip of the peak; Tc, the temperature at which

the tangential line from the high-temperature side of the peak

intersects with the baseline; and 1Hg, the area under the peak

bound by the baseline on the graph. Each sample was evaluated

in triplicate.

Fourier transform infrared (FTIR)
spectrum

The short-range order was analyzed using a Nicolet 6700

Fourier transform near-infrared spectrometer (Thermo Fisher

Scientific, USA) linked to a smart ITR attachment. The scanning

times and resolution were 64 and 4 cm−1, respectively. The ratio

of 1,047/1,022 cm−1 was recorded (15).

Gel texture properties of starch

A texture analyzer (TA.XTPlus, Texture Technologies Corp.,

United Kingdom) equipped with a weight sensor (max 50 kg)

was used to conduct a texture profile analysis (TPA) of starch

gels prepared by the RVA. The Texture Expert Exceed version 1.0

program (StableMicro Systems software) was used to record and

analyze the texture properties of the gel. A P/36R cylinder probe

was used to carry out the TPA pattern, and a P/0.5R cylinder

probe was used to determine the gel 0.5 pattern according to

the methods in the program with 40% strain, a pre-test speed

of 1.0 mm/s, a test speed of 2 mm/s, and a post-test speed of

2 mm/s. The hardness, fracturability, adhesiveness, springiness,

cohesiveness, gumminess, chewiness, resilience, gel strength, gel

rupture strength, gel rupture distance, and gel hardness of the

sample were determined (16).

Statistical analysis

Mean, standard deviations, and significant differences

between values and correlations between parameters were

calculated using SPSS 12.0.1 (SPSS Inc., Chicago, Illinois, USA).

Significant differences between the means were determined by

using Duncan’s multiple range test at a significance level of

0.05. The significant differences, mean values, and standard

deviation between values were identified by Duncan’s multiple

range tests at a significance level of 0.05 (SPSS 20.0., Inc.,

Chicago, Illinois, US). IBM SPSS 20.0 was used to analyze the

principal component analysis (PCA), neural network analysis,

and cluster analysis.

Results and discussion

Crystalline structure

The characteristics of crystalline structures and long-range

order in the starch granules were analyzed by XRD (Figure 1).

The diffraction peaks of MA and MAM occurred at 2θ = 15,

17, 18, and 23◦, which represent an A-type crystal structure,

as mentioned in Jiang et al. (2). The MAA, MBS, and MAP

occurred at 2θ = 15◦, 17◦, and 23◦, indicating a B-type crystal

structure (Figure 1), as describes by Zhang et al. (8). This result

was broadly consistent with Utrilla-Coello et al. (17), who also

found a B-type crystal structure for Mexico banana starch. The

degree of relative crystallinity (Rc) followed the order: MAP

(37.06%) > MBS (33.75%) > MAA (32.01%) > MAM (30.95%)

>MA (27.36%) (Table 1). A significant difference in the Rc value

between banana samples was observed (p < 0.05). Based on

Zou et al. (10), this diversity might be ascribed to the difference

in the Bragg diffraction distance and characteristic size of the

crystallite unit. Compared with the B- or C-type crystal structure

of banana starch reported in a previous study (5), it was found

that the type of the crystal structure and Rc of banana starch in

the present study significantly differed. This distinct conclusion

might be explained by the difference in the planting genotype,

which causes a diversity of banana starch-branching enzyme

(BE)IIb, gene-encoding starch synthase (SS)IIa, and granule-

bound starch synthase (GBSS)I (15). The Rc of the A-type

crystal structure banana starch samples was also higher than

that of Enano, Morado, Valery, and Macho banana species

starch samples (28–30%) (17). According to Bi et al. (18),

a more ordered arrangement of amylopectin double helices

in the semicrystalline lamellae is correlated with higher Rc

values. Meanwhile, Zhang et al. (16) also reported that higher

crystallinity (Rc) is consistent with longer single helices of

amylose and greater disruption of double helix crystals.

Composition analysis

The moisture and protein contents of starch from all banana

species were below 13 and 1.0%, respectively, in accordance with

the food industry of China and Food Chemicals Codex (19),

which required that the maximum value of moisture and protein

were lower than 18% and 1% for the high purity starch (14). The

amylose content of MA, MAM, MAA, MBS, and MAP was in
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FIGURE 1

X-ray di�raction patterns of starch samples.

the range of 34.04–42.59% (Table 1); therefore, all species tested

were regarded as starch with a high amylose content according

to published research (8). The amylose content of banana starch

was partly higher than that reported by Bi et al. (18), who

reported that the amylose content of MAACavendish starch was

31.41%. The difference in the amylose content of MAA may be

due to various growing conditions. It was suggested that starch

with a high amylose content may be used as a water-insoluble

dietary fiber for promoting colony-balanced microbiota in the

human small intestine (10).

According to Jiang et al. (2), the total starch content in some

Chinese banana cultivates is about 92.10%, which is lower than

that observed in this study (96.75–99.07%) (Table 1). Significant

variations between the species were observed in starch yield,

moisture, purity, protein, lipid, and ash amounts. In our study,

moisture, protein, and lipid contents of the starch samples were

compared with those of Colombian banana species (7.5–7.8%,

0.8–1.1%, and 0.1–0.8%) (20), but the protein content was lower

in our study samples. MBS showed the highest ash and lipid

content, a relatively high protein content, and the lowest purity

and amylose content. Based on Zou et al. (10), the lower starch

purity of MBS might be explained by the lower amylose content

of MBS than the others, which caused a higher surface tension of

MBS resulting in its stronger suction force of nano-surface. This

showed that MBS was easily mixed with small bran-containing

protein, ash, and lipids and was difficult to completely remove.

Morphology and size distribution

The particle morphologies of MA, MAM, MAA, MBS, and

MAP starch samples showed two major shapes: elongated and

spherical (Figure 2 left). MA had consistent rod-like shapes

with narrower and longer elongations, with a rough appearance
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TABLE 1 Chemical composition, granule size and distribution, bulk, true density, porosity, and water and oil absorption capacity of starch samples

isolated from five di�erent banana species.

Starch samples MA MAM MAA MBS MAP

Starch yields (%) 19.82± 0.35cd 23.61± 0.68a 21.14± 1.44bc 18.70± 0.98d 22.45± 1.22ab

Moisture (%) 6.67± 0.75b 3.88± 0.34d 5.94± 0.63c 10.28± 0.35a 3.51± 0.24d

Starch (%, db) 98.94± 0.24a 98.56± 0.76a 99.14± 0.65a 96.75± 0.59b 99.07± 0.36a

Protein (%, db) 0.39± 0.03c 0.54± 0.02a 0.22± 0.03d 0.47± 0.05b 0.44± 0.04bc

Lipid (%, db) 0.40± 0.05c 0.57± 0.03b 0.26± 0.02c 2.31± 0.16a 0.29± 0.03c

Ash (%, db) 0.27± 0.07cd 0.32± 0.05bc 0.39± 0.04ab 0.47± 0.04a 0.20± 0.03d

Amylose content (%, db) 40.58± 0.33b 41.09± 0.38b 41.39± 0.17b 34.04± 0.69c 42.59± 0.96a

Rc (%) 27.36± 0.18e 30.95± 0.47d 32.01± 0.40c 33.75± 0.56b 37.06± 0.71a

D [4,3]-D [3,2] (µm) 4.44± 0.55b 3.57± 0.52b 3.43± 0.76b 4.39± 0.69b 8.64± 0.71a

Bulk density (g/ml) 0.73± 0.04d 0.80± 0.03cd 0.88± 0.03bc 0.99± 0.03ab 1.02± 0.04a

True density (g/ml) 1.33± 0.08b 1.43± 0.06b 1.54± 0.08ab 1.70± 0.07a 1.71± 0.04a

Porosity (%) 45.28± 0.61a 44.13± 0.45b 42.67± 0.55c 41.50± 0.52d 40.24± 0.41e

Water absorption capacity (%) 88.45± 1.54a 83.20± 0.63b 80.92± 1.06c 77.84± 1.21d 74.53± 0.92e

Oil absorption capacity (%) 67.66± 0.35a 65.49± 1.03b 62.19± 1.31c 60.39± 0.32d 58.85± 0.76e

The Dx (10), Dx (50), and Dx (90) are the granule sizes at which 10, 50, and 90% of all the granules by volume are smaller. The D [3,2] and D [4,3] are the area mean diameter and volume

mean diameter, respectively. Samples with different letters in the same column are significantly different at P < 0.05.

compared with the other samples. Meanwhile, the starch

granules of the MAM, MAA, MBS, and MAP species were

flattened, and the surfaces were smooth. Our results were

different from those of jackfruit seed starch samples, which

had oval/bell shapes with a smoother granule surface (11).

The differences may be ascribed to differences in amylose

content and the type of the X-ray crystal. In addition, previous

research (21, 22) revealed that a large number of smaller

spherical clusters polymerized by amylopectin nanomodules

within semicrystalline lamella could arrange beneath the surface

of starch granules. This might have led to the lower root mean

square roughness of the starch nanosurface and could also be

used to explain the smoother granule surface of theMAM,MAA,

MBS, and MAP than that of MA. Typical Maltese crosses (radial

organization) were observed in the top position microstructures

of all starch granules (Figure 2 right). This study showed that

all samples have a semicrystalline structure, which is similar to

the findings reported by Tongdang (23). In addition, the size

distribution corresponding to the starch particle determined

by the SEM is shown in Figure 2. For this part, Dx (10), Dx

(50), and Dx (90) represent a starch particle size smaller than

the corresponding diameter, which accounted for 10, 50, and

90% of the total amount of the particles, respectively (13). The

Dx (10), Dx (50), and Dx (90) of MA, MAM, MAA, MBS,

and MAP were in the following range: 8.72–30.47, 10.87–34.87,

15.60–41.45, 14.41–43.72, and 14.76–44.87µm, respectively.

The particle size distribution in this study was consistent with

previous studies on banana (7.6–49.6µm) (24) and yam starch

(19.79–32.25µm) (10). A surface area moment mean diameter

(D[3,2]) and volume moment mean diameter (D[4,3]) were

18.98–32.22µm and 14.54–23.82µm, respectively, which were

significantly different from the size distributions of the five

banana starch samples (p < 0.05).

According to their significant area mean particle size (p <

0.05), the starch samples could be divided into two groups:

medium (MA, MAM) and large (MAA, MBS, MAP) (Figure 2).

MAP had significantly higher Dx (10), Dx (50), Dx (90), D[3,2],

and D[4,3] values (14.76, 25.34, 23.82, 32.22, and 44.87µm) (p

< 0.05) than the other starch samples. Meanwhile, MA showed

the lowest Dx (10), Dx (50), Dx (90), D [3,2], and D [4,3]

values (8.72, 16.05, 30.47, 14.54, and 18.98µm). A previous

report showed that when the amylose content of banana starch

increased from 26.54 to 29.01%, the granule sizes increased from

36.58 to 41.88µm (5). It is suggested the difference in the particle

size distribution among MA, MAM, MAA, MBS, and MAP may

be due to the varieties of bananas and different plant growth

conditions, leading to different amylose contents between each

starch sample. Moreover, according to Ao and Jane (21) and

Espinosa-Solis et al. (22), the highest particle size distribution

for MAP might also be explained by that MAP showing the

highest branching degree of amylopectin and the highest value

of the degree of polymerization of trans-lamellar amylopectin

long chains than the other samples. The difference values in

D[4,3]-D[3,2] of MA, MAM, MAA, and MBS were comparable

(Table 1), indicating that these starch samples had the highest

granule consistency, while MAP had the lowest consistency,

which agrees with Zou et al. (10). According to previous studies

(5, 21), the surface micro-textures of starch granule including

channel pores (extend into the hilum), emulsion bumps, fractal

dimension, and roughness could significantly affect the contact

area between the exposed hydroxyl group and free water.

Therefore, morphology and size distributions are related to the
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FIGURE 2

Particle size and distribution, and microscopy of starch granules at 2,000 × magnification (SEM) and visualized with a polarized light microscope.
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properties of banana starch, and the physicochemical properties

were measured as follows.

Bulk, true density, porosity, and water,
and oil absorption capacity

The large group (MAA, MBS, and MAP) had a significantly

higher bulk density and true density than the medium-sized

group (MA and MAM), and significant differences in bulk

density were also found between samples in the medium-sized

group (Table 1). The true densities of all species were similar

to those of different rice starch samples (1.620–1.989 g/ml)

(25); however, the bulk densities of all species were higher than

those of different rice starch samples (0.633–0.675 g/ml) (26).

MA showed the highest porosity (45.28%), followed by MAM

(44.13%), MAA (42.67%), and MBS (41.50%), while the lowest

porosity was found for MAP (40.24%). All these values were

lower than those of different Colocasia starch samples (69.7–

73.28%) (27). The differences in the density and porosity of

the starch samples may be attributed to the particle size and

granule morphology, which may be related to differences in

starch composition, starch origin, and amylose contents (25, 27).

The water absorption capacity (WAC) and oil absorption

capacity (OAC) of the five different samples were ranked as

MA (88.45 and 67.66%) > MAM (83.20 and 65.49%) > MAA

(80.92 and 62.19%) > MBS (77.84 and 60.39%) > MAP (74.53

and 58.85%) (Table 1), indicating that there was a significant

difference between large- and medium-sized groups (p < 0.05).

MA and MAP showed the highest and the lowest ability to

bind water and oil, respectively. This differs from the WAC

and OAC values of various rice starch samples (93.73–106.34%

and 112.55–151.48%, respectively) (28). The different results

between rice and banana starch may be due to distinct internal

associative forces of water-binding sites within the starch

molecule, according to Bhat and Riar (26). According to Falade

& Christopher. (28), the lower water and oil binding ability

of MAP particles might be because MAP particles have more

ordinal and close-knit molecular structures.

Thermal properties

The significant thermal properties were determined for MA,

MAM, MAA, MBS, and MAP (p < 0.05). Specifically, the onset

temperatures (To, 68.74–72.91
◦C) and conclusion temperatures

(Tc, 84.57–91.62
◦C) of MA, MAM, MAA, MBS, and MAP in

this study (Figure 3A, Table 2) were similar to those of cassava

starch (60.47and 79.32◦C, respectively) (9), while the peak

temperatures (Tp, 76.08–82.55
◦C) and gelatinization enthalpies

(1Hg, 5.39 11.79 J/g) were consistent with those of Brazilian

banana starch (70.58–72.17◦C and 9.45–14.73 J/g, respectively)

(5). Tp and 1H depend on the amylose-to-amylopectin ratio

and ordering of the double helix structure within crystalline

regions (9). Moreover, To, Tc, and R remarkably correlated with

the homogeneity and size of crystallites units, and the number of

double helices and V-type polymorphs (27, 28). Therefore, the

highest and lowest To, Tp, Tc, R, and 1Hg values in MAP and

MA indicated that these samples showed the highest and lowest

quantity of amylose contents and ordered helix structures of the

starch crystallites, respectively, which is indicative of their degree

of homogeneity and characteristic size.

Pasting properties

Significant variations were found in pasting behaviors

among the five starch samples (Figure 3B, Table 2) (p < 0.05).

The peak viscosity (PV, 3,723–5,399 cP) and breakdown viscosity

(BDV, 226–2,383 cP) of banana starch in our study were

comparable with those reported in previous studies on cassava,

corn, potato, maize, wheat, and rice (PV, 1,852–8,046 cP

and BDV, 767–6,717 cP) (12). Similarly, our trough viscosity

(TV, 1,962–4,825) was similar to the TV values of different

rice starch samples (1,635–3,403 cP) (26). MAM showed the

highest PV compared with the other samples, indicating it

has the most rigid gel network, which was shown to be

formed during starch retrogradation. Meanwhile, MBS had the

highest TV, which may have resulted from much lower swelling

power and a comparatively smoother particle surface, according

to Chen et al. (9). The highest BDV was found in MAA,

indicating it has a much lower stability than the other samples

under high temperatures and mechanical stirring based on Xia

et al. (29).

The setback viscosity (SBV) and final viscosity (FV) of MA,

MAM, MAA, MBS, and MAP were 2,661–5,414 cP and 4,623–

8,161 cP, respectively (Figure 3B, Table 2), with the MA and

MAP samples showing the highest and lowest FV and SBV

values, respectively. Our range of values differs from a previous

study on potato starch, showing an SBV of 202 cP and an FV

of 1622 cP (29). These differences may be due to the length of a

shorter amylopectin side chain and the amylose-to-amylopectin

ratio (30). According to Chen et al. (9), granules with high

FV (MA) have stronger reassociation forces (van der Waals)

of amylose molecules during retrogradation. In addition, as

described in a previous study (30), the higher SBV of MA than

that of MAM, MAA, MBS, and MAP was responsible for its

higher strength gel network formation. which involves amylose

and amylopectin after gelatinization, which leads to a higher

reassociation ability of MA amylopectin chains during cooling.

The peak time (4.93–5.07min) and pasting temperature (Pt,

82.25to 86.25 ◦C) of theMusa starch samples varied significantly

among samples (Figure 3B, Table 2). Our peak times were

consistently lower than previous findings with rice starch (5.33–

7.23min), while the pasting temperatures (75.25–87.20◦C) were

comparable (Bhat & Riar, 2019). MAP showed the highest

pasting temperature among the five starch samples, indicating

its low porosity and high amylose content (Table 2) may result
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FIGURE 3

Physicochemical property of starch from five Chinese banana species. (A) Thermodynamic characteristics of starch samples. (B) Pasting profiles

of di�erent kinds of starch. (C) Deconvoluted FTIR spectra of starch samples. (D) Textural properties of starch gels from starch samples. a.

Occlusal dynamic curve of TPA pattern. b. Occlusal dynamic curve of gel 0.5 pattern.

in a compact granular structure, attributed to stronger van der

Waals forces between the amylose and amylopectin molecules

based on the result of Zhang et al. (8).

Short-range order analysis

The short-range order of the starch molecules was analyzed

by infrared spectroscopy at 800–1,200 cm−1 (Figure 3C) with

the absorbance ratios (1,047 cm−1/1,022 cm−1) of the five

banana samples ranging from 0.68 to 0.87 (Table 2). A significant

difference in short-range order value was observed for the

five banana samples (p < 0.05). These results are comparable

with those obtained for Amaranthus starch (0.644) (13). Starch

molecules with high-amylose chain length distributions and

alternately arranged order between the crystalline lamellae

and the amorphous lamellae show a higher short-range order

(15, 30). Moreover, the combination of the results of thermal

properties and pasting properties suggested that the higher

length of a shorter amylopectin side chain, higher amylose chain

length distributions, and larger numbers of ordered amylopectin

double helices within crystalline lamella might lead to higher

short-range orders and compact granular structures (18), which

contributed to the higher values of Pt, To, Tp, Tc, R, and

1Hg. However, this resulted in lower FV, PV, and BDV due

to the lower stability and strength of the gel network formed

by weaker reassociation of amylose and amylopectin chains.

These theories could be used to explain the differences in the

short-range order, thermal properties, and pasting properties

among the banana starch samples. Moreover, for a large size

group with B-type crystallization, the overall higher amylose

content, Rc, short-range order, and compact and smooth

particle morphology could be attributed to higher 1Hg and

Pt. Based on published reports (27, 28), the denser molecular

crosslinking network and the lower space distance of the six

double helices in a crystal water unit cell led to a higher Rc, short-

range order, and Pt, causing the higher RS content. Therefore,

compared with a previous report on other banana starch

samples, cassava, and rice starch (5, 28), a higher Rc, short-

range order, and Pt were found for alarge-particle size group

(MAA, MBS, MAP) (Tables 1, 2), which might be suggested the

MA and MAM could be used as the potential raw materials of

thickening or gelling agents to improve quality and taste during

food processing.
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TABLE 2 Thermal properties, relative crystallinity, short-range molecular order (1,047 cm−1/1,022 cm−1), pasting properties, and texture profiles of

TPA pattern and gel 0.5 pattern of di�erent starch samples.

Starch samples MA MAM MAA MBS MAP

To (◦C) 68.74± 0.53d 69.33± 0.60cd 70.61± 0.93bc 71.56± 0.57b 72.91± 0.89a

Tp (◦C) 76.08± 0.96d 77.53± 0.82c 78.39± 0.74bc 79.22± 0.58b 82.55± 0.66a

Tc (◦C) 84.57± 0.92d 87.78± 0.87c 86.91± 0.41c 89.86± 0.64b 91.62± 0.36a

1Hg (J/g) 5.39± 0.37a 8.12± 0.43c 7.53± 0.21c 10.57± 0.35b 11.79± 0.49a

R (◦C) 15.83± 0.72c 18.45± 0.73b 16.30± 0.67c 19.95± 0.77a 20.06± 0.53a

I 1047/1022 0.68± 0.02a 0.69± 0.03a 0.71± 0.04ab 0.76± 0.03b 0.87± 0.03c

Peak viscosity (cP) 5099± 1.78b 5399± 0.87a 4711± 1.55d 5051± 1.99c 3723± 2.54e

Trough viscosity (cP) 2747± 1.45c 3016± 1.35b 2027± 1.67d 4825± 2.44a 1962± 2.61e

Breakdown viscosity (cP) 2352± 1.27c 2383± 1.01a 2684± 1.95b 226± 2.69e 1761± 1.83d

Final viscosity (cP) 8161± 2.07a 6967± 1.99c 6815± 4.89d 7760± 9.82b 4623± 4.01e

Setback viscosity (cP) 5414± 1.39a 3951± 2.01c 4788± 2.04b 2935± 2.09d 2661± 2.22e

Peak time (mins) 5.07± 0.08a 4.73± 0.11d 5.00± 0.02b 5.07± 0.02a 4.93± 0.03c

Pasting temperature 82.25± 0.17e 83.55± 0.19d 84.00± 0.04c 85.15± 0.03b 86.25± 0.03a

Hardness 434.60± 3.39a 288.69± 6.54c 209.55± 1.98d 357.89± 5.17b 122.90± 2.33e

Fracturability 8.77± 0.29b 10.80± 0.22a 8.53± 0.03c 8.77± 0.10b 7.75± 0.05d

Adhesiveness (g.s) −4.16± 0.04d −13.40± 0.03e −4.47± 0.07c −0.63± 0.05b −0.54± 0.03a

Springiness 0.95± 0.03d 1.07± 0.02c 1.19± 0.05a 1.11± 0.02ab 1.10± 0.02ab

Cohesiveness (g) 0.52± 0.05e 1.09± 0.01b 1.06± 0.03bc 1.44± 0.04a 1.02± 0.01d

Gumminess (g) 227.26± 1.97c 315.25± 6.61b 221.99± 1.89d 176.67± 2.63e 365.38± 1.59a

Chewiness (g) 216.57± 3.33d 336.17± 2.57b 263.34± 2.77c 196.11± 3.15e 402.11± 4.75a

Resilience (g) 0.28± 0.02e 0.71± 0.01b 0.76± 0.04ab 0.42± 0.01d 0.64± 0.02c

Gel strength (g) 58.40± 1.99e 96.83± 1.24a 78.20± 1.88b 19.49± 0.33d 19.96± 0.05cd

Gel rupture strength (Hardness) (g) 210.96± 5.60c 196.24± 2.39b 180.35± 7.32d 198.67± 3.10ab 169.16± 6.37e

Gel Rupture Distance (g) 14.29± 0.44b 10.29± 0.05d 13.99± 0.07c 9.60± 0.71e 15.00± 0.09a

To, onset temperature; Tp, peak temperature; Tc, conclusion temperature; R, gelatinization temperature range; 1Hg, enthalpy of gelatinization (J/g dry starch). Samples with different

letters in the same column are significantly different at P < 0.05.

Textural properties

A texture profile analysis has been used to simulate human

chewing in vitro via double occlusion. The apparent texture

property parameter of gelatinous foods was measured by an A

P/36R TPA pattern. In general, the internal texture property

parameter is determined by using a P/0.5R cylinder probe.

TPA using T/36 R and T/0.5 R probes showed consistent

results, with the MA and MAP gels being the hardest

(434.60 g for T/36R and 210.96 g for T/0.5R) and softest

(122.90 g for T/36R and 169.16 g for T/0.5R), respectively,

from the five samples [Table 2,Figure 3D (a, b)] . This

differs from the hardness reported for wheat starch (68.0–

131.1 g) (31). There is a positive correlation between gel

hardness and the crystallization speed of the amylopectin

double helix (31); therefore, the differences may be ascribed

to variability in the amylose content and crystal structures

of the two different starch sources. It was indicated that

MA and MAP had the fastest and slowest amylopectin

retrogradation, respectively.

MAP starch gels exhibited the greatest gel adhesiveness

(−0.54 g.s), followed by MBS (−0.63 g.s), MA (−4.16 g.s), MAA

(−4.47 g.s), and MAM (−13.40 g.s). This was lower than the

values obtained for potato starch gel (−26.257 g.s to−81.315 g.s)

(32), indicating that green banana starch might have a stronger

starch gel network than potato. Previous results showed that

gel adhesiveness is linked to Rc since the Rc of jackfruit seed

starch increases from 13.29 to 15.87% when the gel adhesiveness

increases from 134.38 to 121.31 g.s (16). Our results followed a

similar trend, with MAP showing the highest Rc value, while

MAM has the second lowest Rc value. Moreover, the lower

gel adhesiveness of MAP is correlated with its higher speed

of amylose retrogradation than that of the other samples, as

reported by Nie et al. (32).

The ranges of fracturability, springiness, cohesiveness,

gumminess, chewiness, resilience, cohesiveness, gel strength,

gel rupture strength, and gel rupture distance were as follows:

7.75–10.80, 0.95–1.19, 0.52–1.44, 176.67–365.38, 196.11–402.11,

0.28–0.76, 19.49–96.83, 169.16–210.96, and 9.60–15.00 g,

respectively [Table 2,Figure 3D (a, b)]. Higher fracturability,
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springiness, cohesiveness, gumminess, and chewiness but

lower resilience of MA, MAM, MAA, MBS, and MAP were

determined in this study compared with the earlier reports of

wheat, potato, and rice starch (32, 33), indicating that green

banana starch samples have stronger particle properties. The

significant differences in the TPA between cereal starch and

green banana starch samples may be due to the different

amylose contents, and variations in true density, WAC, and

short-range order. In addition, the medium-size group with

A-type crystallization showed higher water absorption capacity

and porosity in general, leading to their higher PV, FV, BDV, and

gel hardness (Tables 1, 2). Compared with the obvious majority

report for potato, wheat, and rice (29, 32, 33), the higher FV

and gel hardness for the medium particle-size group (MA and

MAM) indicated that MA and MAM could be used as the raw

materials of thickening or gelling agents to improve quality and

taste during food processing.

Relationship between the
physicochemical properties, amylose
content, and particle size

Principal component analysis

The interactions among the physicochemical characteristics

using PCA showed that the starch samples were widely

scattered, indicating that the type of starch markable affected

the physicochemical and functional characteristics (Figure 4A).

According to a previous study (15), these diversities might

be explained by plant origins, climate, and environmental

surroundings, leading to the distinct properties of starch

self-assembled synthases, including synthase (BE)IIb, synthase

(SS) IIa, and synthase I (GBSSI). As displayed in the PCA

Figure, a significant positive correlation (p < 0.05) could be

conjectured when the inclined angle between two components

was remarkably smaller than 90◦. Furthermore, there might

be a positive correlation when the angle between the two

components was remarkably higher than 90◦ (p< 0.05), whereas

no correlation could be conjectured when the angle between the

two components was nearly 90◦ (p > 0.05). The first principal

component (PC1) mainly included PV, BDV, porosity, WAC

and OAC, hardness, gel rupture strength, and FV. The second

principal component (PC2) mainly included amylose content,

Rc, Tp, Pt, 1Hg, R, D[3,2], and 1,047/1,022. A significantly

positive correlation was observed between gel adhesiveness, Rc,

Tp, Pt, 1Hg, R, D[3, 2], 1,047/1,022, and amylose content (p

< 0.05), and among PV, porosity, WAC and OAC, hardness,

gel rupture strength, and FV. The PV, BDV, porosity, WAC,

and OAC also showed a positive correlation. These findings

broadly correlate with the results reported in a study by Utrilla-

Coello et al. (17), who found that when the Tp of different

types of banana starch samples increased from 70.2 to 78.7◦C,

the 1H increased from 10.4 to 15.1 J/g. Also, when the WAC

of jackfruit seed starch increased from 88.98% to 112.46, the

BDV increased from 174 to 981 cP (11). Overall, the proportions

of gel adhesiveness, amylose, Rc, Tp, Pt, 1H, R, D[3,2], and

1,047/1,022 were significantly negatively correlated with PV,

porosity, WAC and OAC, hardness, gel rupture strength, and

FV (p < 0.05). A similar result using cocoyam starch found

that when the FV increased from 189.79 to 252.17 RVU, Pt

decreased from 88.75 to 84.83◦C (34). The amylose content

did not correlate with adhesiveness and 1H (p > 0.05). A

proportion of BDV showed a weak correlation with the gel

rupture strength, hardness, and FV (p > 0.05).

Neural network and cluster analysis

The neural network and cluster analysis based on the

Pearson correlation are shown in Figures 4B,C, which could

be used to further analyze the interactions among the

physicochemical characteristics (8). As shown in Figure 4B,

it was found that when the line showed deep red and deep

purple between physicochemical characteristic parameters, it

represents that there is a significant correlation between them

(p < 0.5), while lines of other colors represented a less

correlation between physicochemical characteristic parameters.

In this part, a remarkably positive correlation was shown for

Rc, Tp, Pt, 1Hg, R, D[3,2], and 1,047/1,022. Porosity showed

a significantly positive correlation with WAC and OAC. FV

was positively correlated with hardness, gel rupture strength,

and PV and BDV. The amylose content showed a positive

correlation with BDV. Rc displayed a negative correlation with

WAC and OAC, FV, hardness, gel rupture strength, and PV.

Porosity showed a significantly negative correlation with Rc,

Tp, 1,047/1,022, and D[3,2]. Tp and 1,047/1,022 showed a

negative correlation with WAC and OAC, FV, gel rupture

strength, and PV. 1Hg showed a negative correlation with

WAC and OAC, and D[3,2] displayed a significantly negative

correlation with WAC and OAC, hardness, and gel rupture

strength. The results of neural network analysis slightly differed

from the results of principal component analysis. Based on

Li et al. (12), this diversity might be due to the differences

in statistical analysis mechanism. PCA relied on the kernel

of optimal scaling and dimension reduction, and the neural

network was based on the two-dimensional visualization of

the correlation coefficient. Cluster analysis inferred that MAM

and MA had relatively similar physicochemical characteristics.

MBS, MAA, and MAP had cluster consistency. This conclusion

was agreed with the classification for medium-size (MA,

MAM) and large-size (MAA, MBS, MAP) size groups in this

research. Moreover, four types of cluster trees were obtained.

Rc, Tp, 1Hg, R, D[3,2], and 1,047/1,022 were found in one

cluster tree. Porosity, WAC, OAC, FV, PV, hardness, and

gel rupture strength were found in another cluster tree. PV

and BDV appeared in one cluster tree. According to Zhang
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FIGURE 4

Statistical analysis. (A) Principal component analysis (PCA) score and loading plot of PC1 and PC2 of starch samples. (B) Neural network analysis

based on the Pearson method. (C) Cluster tree analysis.

et al. (16), these phenomena indicated that these characteristic

parameters could interact and affect each other. Adhesiveness

showed weaker interactions with others. Zhang et al. (15)

found similar results in jackfruit seed starch and reported

that when Rc increased from 28.58 to 35.29%, Tp increased

from 83.4to 86.2◦C and 1,047/1,022 increased from 0.710

to 0.796.

The combination of PCA, neural network, and cluster

analysis indicated that the crystalline structure, number of

double helices, and double helix order, long-/short-range order

(XRD/FTIR), amylose content, and particle size significantly

influenced the physicochemical characteristics of A-type crystal

green banana starch. Strong hydrogen bonds between the

double helix of amylose and amylopectin form a higher long-

/short-range order, double helix arrangement order, double

helix structure content, and larger and smoother particle

morphology (35), which resulted in stronger particle properties

(higher Rc, Pt, Tp, and 1Hg, and lower WAC, FV, PV,

gel hardness, and porosity) in MAP than the other banana

starch samples, while the opposite particle properties were

observed among the other samples. However, Zhang et al.

(16) reported that the particle size negatively correlated with

Rc, Pt, Tp, and 1Hg in seed starch of different jackfruit

species, indicating that small starch particles have stronger
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particle properties. Based on previous reports, the crystalline

structure types and winding manner of amylose with single

helices have important effects on the particle properties (17,

32, 33), which are likely to be relevant to the study of banana

starch. In addition, compared with previous research studies

(2, 5, 17, 18, 24), it was found that crystal structure type

and amylose content of banana starch in the present study

significantly differed, suggesting its higher starch extraction

rate, Rc, semicrystalline conformation order, gelatinization

enthalpy, gelation temperature, final viscosity, setback viscosity

peak viscosity, breakdown viscosity, and gel hardness than

banana starch of other species. Therefore, this phenomenon

indicated that starch from Chinese mutant banana species

might provide a wider range of applications for food or non-

food products.

Conclusion

The characteristics of starch from Chinese mutant banana

species were investigated, which showed a high-amylose starch

content. The crystal structure and physicochemical properties

varied among the starch species (p < 0.05). Based on diverse

starch properties, the starch samples were divided into the

medium-size group (MA and MAM) and the large-size group

(MAA, MBS, and MAP). The higher amylose content, Rc, short-

range molecular order, Pt, Tp, and lower viscous characteristics

and gel hardness were shown by the large-size group, and

a contrary result was shown by the medium-size group.

The A-type structure of banana starch was found in the

medium-sized group, and the B-type structure was shown in

the other group. Neural network and cluster analyses further

showed that gel adhesiveness, Rc, Tp, Pt, 1H, R, D[3,2], and

1,047/1,022 were significantly positively correlated (p < 0.05).

A significant positive correlation was also exhibited among

PV, porosity, WAC, and OAC; hardness, gel rupture strength,

and FV; PV, BDV, porosity, WAC, and OAC. Meanwhile,

gel adhesiveness, amylose, Rc, Tp, Pt, 1Hg, R, D[3,2], and

1,047/1,022 were significantly negatively correlated with PV,

porosity, WAC and OAC, gel hardness, gel rupture strength,

and FV (p < 0.05). These results demonstrated that a higher

amylose content, short-range order, double helix arrangement

order, double helix structure content, and larger and smoother

particle morphology of MAP lead to its higher Pt, Tp, and

1Hg, and lower porosity, WAC, FV, PV, and gel hardness

than those of MA, MAM, MAA, and MBS. These findings

may be used as a reference to prompt a wider investigation

of green banana starch for utilization in the food and non-

food industries.
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Characterization of manganized 
soluble dietary fiber complexes 
from tigernut meal and study of 
the suppressive activity of 
digestive enzymes in vitro
Yifei Wang 1†, Weihao Wang 1,2†, Yunjiao Wu 1, Junlan JiLiu 1, 
Xin Hu 1, Mingzhi Wei 1 and LongKui Cao 1,2*
1 College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China, 2 National Coarse 
Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China

In this study, manganized soluble dietary fiber (SDF–Mn(II)) was prepared from 
tigernut meal using a microwave solid-phase synthesis method with SDF. 
Microscopic morphological and structural analyses of SDF–Mn(II) were carried out 
using scanning electron microscopy, Fourier infrared spectroscopy, UV full-band 
scanning, X-ray diffraction, a thermal analyzer, gel permeation chromatography, 
and nuclear magnetic resonance, and its in vitro hypoglycemic activity was initially 
investigated. The results of these analyses revealed that the reaction of Mn(II) with 
SDF mainly involved hydroxyl and carbonyl groups, with the Nuclear magnetic 
resonance (NMR) analysis showing that specific covalent binding was produced 
and substitution was mainly carried out at the C6 position. Moreover, compared 
with SDF, the SDF–Mn(II) complex exhibited a porous structure, red-shifted, and 
color-enhancing effects on the UV characteristic peaks, significantly increased 
crystallinity and decreased molecular weight, and improved thermal stability; in 
addition, SDF–Mn(II) afforded significantly enhanced inhibition of α-amylase and 
α-glucosidase and possesses good in vitro digestive enzyme inhibition activity.

KEYWORDS

soluble dietary fiber, manganese, structural characterization, α-amylase, α-glucosidase

1. Introduction

Tigernuts (Cyperus esculentus L.) are widely distributed throughout the world, mainly as a snack 
in tropical and Mediterranean regions. They are often used in the food industry for the production 
of flavored beverages (1, 2). They have the ability to tolerate drought and sandy and acidic 
environments and are now widely grown in the northern regions of China (3), where they are 
cultivated with great ability and high yield. Because of its high oil content and ease of cultivation, it 
has potential value for the development of edible oil resources in China. Tigernut meal, a by-product 
of the processing of tigernuts, is rich in dietary fiber and a good source of high-quality dietary fiber.

The intake of dietary fiber is inversely proportional to the level of blood glucose values, and 
many studies have shown that a moderate intake of dietary fiber can prevent the development 
of diabetes and alleviate the manifestations of the disease, to some extent, in these patients (4). 
Dietary fiber lowers blood glucose mainly by improving insulin resistance, regulating disorders 
of glucolipid metabolism, improving oxidative stress and the inflammatory response, and 
regulating the intestinal flora; furthermore, it stabilizes postprandial blood glucose by inhibiting 
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the activity of digestive enzymes and delaying glucose absorption in 
the intestine (5).

Manganese is an essential trace element that is mainly taken up 
through food and water, digested and absorbed through the 
gastrointestinal tract, and transported to mitochondria-rich organs 
(especially the liver, pancreas, and pituitary gland), where it exerts its 
biological effects (6). Manganese is involved in the synthesis and 
activation of various enzymes in the body, aids in glucose and lipid 
metabolism, regulates endocrine disorders, and improves immune 
function (7). Manganese supplementation also increases insulin 
secretion, improves glucose tolerance under conditions of dietary stress, 
and prevents type II diabetes and its complications (8). A moderate 
intake of organic trace elements can improve animal productivity and 
immunity, with the advantage of being able to reduce antagonistic effects 
among trace elements (9). Previous studies have shown that heavy metals 
can denature enzymes, resulting in a decrease in enzymatic activity (10).

α-amylase and α-glucosidase are important enzymes in the 
catabolism of starch, glycogen, and disaccharides in the gastrointestinal 
tract. Because of the reduced rate of intestinal carbohydrate 
metabolism, inhibition of the activity of these enzymes is commonly 
used to control blood glucose levels (11). α-Glucosidase plays an 
important role in the regulation of postprandial blood glucose levels 
in humans (12), and its inhibitors block postprandial hyperglycemia 
and are commonly used to prevent or treat type II diabetes (13). 
α-amylase acts as a catalyst in reactions involving α-1,4-glycosidic 
bonds, to hydrolyze branched-chain starch, straight-chain starch 
glycogen, and many maltodextrins, thus acting as a catalyst in the 
reactions responsible for starch digestion (14).

Tigernut meal is a by-product of the processing of tigernuts, and 
there is no report on the inhibition of in vitro enzyme activity by 
chelation of SDF from tigernut meal with metal ions. In this study, the 
method of solid-state microwave synthesis is adopted, an SDF–Mn(II) 
complex was prepared by introducing Mn2+ (which is a factor that can 
increase insulin secretion) onto SDF (which has an anti-glycemic effect) 
using the latter as the raw material. The particle morphology, structural 
characterization, relative molecular mass, and thermal properties of SDF 
and SDF–Mn(II) were determined using scanning electron microscopy, 
Fourier transform infrared spectroscopy, ultraviolet spectroscopy, X-ray 
diffraction, NMR, gel permeation chromatography, and a thermal 
analyzer; moreover, their in vitro digestive-enzyme inhibitory activities 
were investigated to provide a new direction for controlling blood 
glucose levels and slowing down blood glucose elevation.

2. Materials and methods

2.1. Materials

Commercially available tigernut meal was used. α-amylase 
(enzymatic activity, 50 U/mg) and α-glucosidase (enzymatic activity, 
40–80 U/mg) were purchased from Sigma, United States. Manganese 
chloride was from Tianjin Damao Chemical Reagent Factory. The 
remaining chemicals and reagents were of analytical grade.

2.2. Extraction of SDF from tigernut meal

The preparation of SDF from defatted tigernut meal was carried 
out according to the method of Shen et  al. (15), with slight 

modification. The SDF was extracted from the supernatant by 
centrifugation, concentrated by rotary evaporation, subjected to 
alcoholic sedimentation in 95% ethanol for 12 h, and freeze dried after 
centrifugation for 8 h. The purified SDF was obtained by dialysis and 
deproteinization (16).

2.3. Synthesis of SDF–Mn(II) complexes

SDF–Mn(II) was synthesized according to the method of Xu 
Lockping (17). SDF and MnCl2 were weighed according to the mass 
ratio of 1:0.8, followed by the addition of 150% (relative to the mass of 
SDF) anhydrous ethanol; the solution was mixed well and placed in a 
microwave solid-phase synthesis extractor (Xianghu Technology 
Development Co., Ltd., Beijing, China), with the microwave time set 
to 3 min and its power set to 210 W for the coordination reaction. The 
precipitate was dried in a hot-air drying oven (55°C) to a constant 
weight, to obtain SDF–Mn(II).

2.4. Determination of manganese content 
and fit rate in SDF–Mn(II)

The obtained samples were dissolved and the content of 
manganese (II) was determined using a spectrophotometric 
method (540 nm) (18). The equation of the manganese standard 
curve was as follows: y = 0.0343x + 0.002, with a linear correlation 
coefficient of R2 = 0.9998, where y is the manganese content and x 
is the absorbance in μg/g. The manganese content of the SDF–
Mn(II) prepared in this experiment was 71.89 μg/g, with a fit ratio 
of 41.60%.

2.5. Scanning electron microscopy (SEM) 
analysis

The microstructure of SDF and SDF–Mn(II) was observed using 
SEM (Type-SU1510 Hitachi microscope; HITACHI Inc., Japan) (19). 
The samples were dried and processed, and a specific amount was 
collected and bonded using conductive tape; the samples were then 
gold-plated and observed.

2.6. Fourier transform infrared (FT-IR) 
spectroscopy

FT-IR (Tensor 27 instrument; Bruker Daltonics Inc., Bremen, 
Germany) was used for the determination the sample (20). The sample 
was mixed with potassium bromide powder in the ratio of 1:100 and 
fully ground in a mortar, to homogenize the mixture, which was then 
poured into a compression device and finally scanned on the machine 
(4,000–400 cm−1).

2.7. UV spectroscopy

This experiment was performed using an ultraviolet generalizable 
spectrophotometer (T6 series; Yuan Analysis Instrument Co., Ltd., 
Shanghai, China). The sample solution was prepared at a mass 
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concentration of 2 mg/ml, and distilled water was used as a blank 
control. The sample to be measured was aspirated using a syringe, 
filtered through a pinhole filter, and scanned in the wavelength range 
of 190–400 nm with a scan interval of 1 nm (21).

2.8. X-ray diffraction (XRD) pattern analysis

Measurements were performed using an X-ray diffractometer 
(Type D/MAX2000V, Neo-Confucianism Manufacturing Company, 
Japan). The dried and delicate samples were uniformly dispersed in 
the plate frame and compacted, so that the sample surface was 
smooth and flat, and the sample frame was fixed and tested. The 
diffraction test conditions were as follows: tube current, 40 mA; tube 
voltage, 40 kV; Cu target wavelength, 1.5406 Å; Co target wavelength, 
1.79026 Å; scan rate, 7°/min; and measurement range, 2θ from 5° to 
70° (22).

2.9. Molecular weight determination

A narrowly distributed polyethylene glycol (PEO) was used as the 
standard curve for the relative calibration method and as the standard 
sample group in the detection using a differential refractive index 
detector (RID-20, Shimadzu, Japan). The precipitate was washed twice 
with anhydrous ethanol, air dried, dissolved by adding a solution of 
0.1 mol/l NaNO3 and 0.06% NaN3, reacted at 121°C for 20 min, and 
centrifuged at 5000 r/min for 10 min; subsequently, 20 μl of the sample 
was collected. The detection conditions were as follows: flow rate, 
0.6 ml/min, and column temperature, 35°C.

2.10. Nuclear magnetic resonance (NMR) 
measurements

The samples were dissolved in D2O and shaken well to achieve 
complete dissolution, followed by 1D-NMR (1H-NMR, 13C-NMR) 
measurements using a 600 MHz NMR instrument (Bruker AVANCE 
III, Brooke, Inc., Germany) (23).

2.11. Thermal stability analysis

These measurements were performed using a thermogravimetric 
analyzer (TGA 550; TA Instruments, New Castle, DE, United States) 
(24). A 20.0 mg sample was placed in an alumina crucible and heated 
in the temperature range of 25°C–600°C at a rate of 10°C/min under 
a nitrogen atmosphere, to obtain TGA and DSC curves.

2.12. In vitro enzymatic activity inhibition 
study

2.12.1. Inhibition of α-glucosidase by SDF and 
SDF–Mn(II)

α-Glucosidase was diluted with 0.1 mol/l (pH = 6.8) phosphate-
buffered solution to 1 U/ml. For the assay, 50 μl of the sample solution 
and 50 μl of the pNPG solution were simultaneously added to a 

96-well plate. Incubate at 37°C for 10 min, and then 100 μl of the 
α-glucosidase solution was added and incubated for 45 min at 
37°C. The reaction was terminated by adding 50 μl of Na2CO3 solution 
at a concentration of 0.2 mol/l. The absorbance at 405 nm was 
measured using an enzyme standardizer for the calculation of the 
enzyme inhibition rate (25).

2.12.2. Inhibition of α-amylase by SDF and  
SDF–Mn(II)

A buffer solution was used to prepare porcine α-amylase at a 
concentration of 2 U/ml. The sample solution at different 
concentration gradients was mixed with 40 μl of α-amylase and 
incubated at 37°C for 30 min. A 40 μl of soluble starch was then 
added and incubated for 10 min, followed by the addition of 160 μl 
of DNS and boiling for 5 min, for color development. The 
absorbance of the inhibited group was measured at 540 nm; control, 
background, and blank groups were also used in this 
experiment (26).

2.12.3. Data statistics and analysis
Data were processed using the SPSS 22 software, and the 

statistical analysis of the data was performed using the Excel 2019 
software, whereas plotting was performed using the Origin 96 
software. Three groups of parallel experiments were set up for 
all experiments.

3. Results

3.1. SEM analysis

The results of the SEM analysis of SDF and SDF–Mn(II) are 
reported in Figure 1. From the figure, we can clearly see that SDF 
is in the form of a sheet structure, with a dense structure and 
fewer holes. However, SDF-Mn (II) structure presents a cellular 

FIGURE 1

The SEM diagram of SDF (A), SDF-Mn(II) (B).
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structure with obvious fragmentation trend, which increases the 
relative surface area and may lead to changes in its physical and 
chemical properties. After microwave treatment, the internal 
structure, morphology, and polymerization mode were altered, 
and the wrapped groups were exposed, which laid the structural 
foundation for the full completion of the subsequent 
chelation reaction.

3.2. FT-IR analysis

The Fourier transform infrared spectra of SDF and SDF–Mn(II) are 
shown in Figure 2A. SDF showed a characteristic absorption peak of 
O-H at 3,384 cm−1 (27), while the O-H characteristic absorption peak in 
the absorption spectrum of SDF-Mn(II) was red-shifted to 3,422 cm−1. 
The intensity of the SDF-Mn(II) absorption peak becomes weaker, which 
may be due to the chelation reaction consuming part of the O-H in 
SDF. The absorption peak detected at 2,940 cm−1 may be attributed to the 
C-H stretching vibration of the -CH2 group (28). In turn, the peak near 
1,764 cm−1 in the SDF–Mn(II) spectrum may be  attributed to the 
stretching vibration of the carbonyl group, which is not present in SDF 
(29); thus, the carbonyl group may be involved in the chelation reaction. 
SDF has a strong absorption peak near 1,654 cm−1 for the carboxyl group 
(30). The peak here in SDF-Mn(II) was not significantly shifted, but the 
peak strength weakened，indicating that the carboxyl group may 
be involved in the chelation reaction. The presence of an absorption peak 
near 1,449 cm−1 indicated the existence of a pyranoside functional group 
(31). The appearance of the absorption peak at 1,129 cm−1 was mainly 
attributed to the coupling valence vibration of the C=O bond and the 
deformation vibration of the C–H bond (32). Most of the characteristic 
peaks of SDF did not significantly change between before and after the 
modification, indicating that the basic skeleton of SDF remained 
unchanged. Finally, the IR spectrograms showed that the hydroxyl and 
carbonyl groups were mainly involved in the chelation reaction.

3.3. UV spectroscopy

The UV spectra of SDF and SDF–Mn(II) are provided in 
Figure 2B. There was no obvious absorption peak between 260 and 
280 nm, indicating a negligible amount of protein in the sample (33). It 
can be seen from the figure that SDF shows a strong absorption peak at 
216 nm, while SDF-Mn(II) shows a strong absorption peak at 236 nm. 
SDF–Mn(II) is a complex comprising several components. Mn2+ is an 
oxidation state transition metal ion with a half-full d orbital (an electron 
acceptor), and SDF is an organic compound with a conjugated 
π-electron system (an electron donor). Therefore, SDF–Mn(II) belongs 
to the spectral ligand-to-metal charge transfer, a process equivalent to 
the reduction of metals. With the enhancement of the metal cation 
reduction ability, the wavelength shifts toward the long wave direction, 
producing a red-shift effect. In turn, with the enhancement of the cation 
oxidation ability, the color deepens, producing a color-enhancing effect. 
Because the main chromogenic group present in SDF is the carbonyl 
group and the co-color group is the hydroxyl group (34), as can be seen 
from the figure, the absorption of SDF-Mn(II) in the UV region is 
significantly higher than that of SDF, thus indicating that mainly the 
carbonyl and hydroxyl groups are involved in the coordination reaction, 
which results in a change in the UV absorption intensity. It may also 
be due to the conjugation of several chromogenic groups to produce a 
new conjugated absorption band.

3.4. XRD analysis

The XRD analysis of SDF and SDF–Mn(II) is reported in 
Figure  2C. From the figure, we  can see that both SDF and 

FIGURE 2

FT-IR spectrum diagram (A), UV spectra (B), X-ray diffraction plot (C).
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SDF-Mn(II) show broad diffraction peaks, which are typical for 
polymers, and the broad peaks indicate low crystallinity in the 
structure, which may be due to the fact that the extracted SDF is 
a mixed polysaccharide (35). Which are typical of polymers; 
moreover, wide peaks indicate a lower crystallinity in the 
structure, which may be attributed to the fact that the extracted 
SDF is a mixed polysaccharide. Furthermore, the figure shows that 
the peak dispersion of SDF was lower than that of SDF–Mn(II) 
and the calculated crystallinity of SDF was 23.48%, whereas that 
of SDF–Mn(II) was 33.82%, which may be  attributed to the 
disruption of macromolecular chains after treatment, resulting in 
the higher crystallinity of SDF–Mn(II) (36, 37). The XRD results 
were very different, further confirming the formation of 
SDF–Mn(II).

3.5. Molecular weight analysis

The relative molecular masses of SDF and SDF–Mn(II) are 
provided in Table 1, from which it can be seen that the Mw of SDF 
was 5,776, with a dispersion coefficient of 25.72, whereas the Mw 
of SDF–Mn(II) was 2,567, with a dispersion coefficient of 4.25. 
The data included in the table revealed that the Mw and dispersion 
coefficient of SDF were increased and the molecular weight 
distribution broadened, whereas those of SDF–Mn(II) Mw were 
significantly reduced, probably because the molecular chains were 
opened after microwave treatment, resulting in a decrease in the 
molecular weight of the modified SDF; in contrast, the dispersion 
coefficient was also significantly reduced, which suggests that the 
modified SDF system is more homogeneous and simpler in 
composition (38).

3.6. NMR analysis

The SDF and SDF–Mn(II) NMR 1H spectra are shown in 
Figure 3. The chemical shifts were affected by the sugar type, bond 
type, substitution, and modifications. It was previously shown that 
the chemical shifts are lower than 5.0 × 10−6 for β-configuration 
pyranosides and higher than 5.0 × 10−6 for α-configuration 
pyranosides, which can be used to distinguish the types of sugar 
rings (39). In the range of heteroheaded hydrogen proton signals, 
SDF exhibited three peaks at 1.830, 2.293, and 3.656 × 10−6, 
indicating that it belongs to the group of β-configuration 
pyranosides (40). In contrast, SDF–Mn(II) had two signal peaks 
at 3.219 and 4.350 × 10−6, indicating that the conformation of SDF 
did not significantly change after treatment and the reduced signal 
peak of SDF–Mn(II) may be attributed to the shortening of the 

ligand relaxation time that occurs upon binding of SDF to Mn2+; 
moreover, the large width of the signal range precluded the 
detection of the signal around paramagnetic Mn2+, thus forming 
a high-spin blind region with Mn2+ as the core (41).

The SDF and SDF–Mn(II) NMR 13C spectra are provided in 
Figure 4. The signal detected at 60.208 × 10−6 was attributed to the 
C6 glycosidic bond. The spectrum of SDF–Mn(II) became more 
complex because the carbon directly attached to the electron-
absorbing group shifted to a lower field position, whereas the 
carbon indirectly attached to the electron-absorbing group shifted 
to a higher field position (42). Moreover, the signal peak of SDF–
Mn(II) detected at 60.208 × 10−6 disappeared; this may 
be attributed to the highest -OH activity at the C6 position, which 
was replaced by the Mn2+ group. The C1 signal splits if the -OH on 
C2 is substituted, and this splitting correlates well with the degree 
of substitution on the C2 atom (43). In Figure 4B, At 90–100 × 10−6, 
the signal exhibited multiple splits, which may have been caused 
by the substitution of the hydroxyl group on C2 by the Mn2+ group 
(44), because the -OH activity at the C2 position was second only 
to that at C6.

3.7. Thermal characterization

Thermal stability plays an important role in food industry 
applications (45); therefore, the thermal properties of SDF before 
and after modification were characterized using TGA and 
DSC. Figure 5A shows that the decomposition temperature of SDF 
is 161°C, while the decomposition temperature of SDF-Mn(II) is 
162°C, The two decomposition temperatures are similar, so the 
ease of dehydration is similar for both When the temperature 
increased from the decomposition temperature to 500°C, the 
weights of both samples started to significantly decrease because 
of the violent thermal degradation of the galacturonic acid chains 
in the samples, followed by decarboxylation of the acidic side 
groups in the rings and the carbon, which eventually produced 
different gaseous products, to form solid carbon (46, 47). 
Furthermore, the final residual mass of SDF (37.36%) was lower 
than that of SDF–Mn(II) (43.35%), suggesting that the thermal 
stability of SDF–Mn(II) is stronger than that of SDF. The curves 
of DSC presented in Figure 5B demonstrated that SDF had two 
exothermic peaks, at 105°C and 500°C, whereas SDF–Mn(II) 
exhibited one exothermic peak at 102°C. The appearance of two 
exothermic peaks for SDF may be related to the inhomogeneity of 
the composition, with SDF–Mn(II) becoming one peak, which 
suggests that the composition of SDF–Mn(II) is more 
homogeneous, in agreement with the results of the relative 
molecular mass analysis.

TABLE 1 Relative molecular mass of SDF, SDF-Mn(II).

Index SDF SDF–Mn(II)

Mn(Da) (2.25 ± 0.56) × 102 (6.05 ± 1.23) × 102

Mw(Da) (5.776 ± 1.21) × 103 (2.567 ± 1.57) × 103

Mw/Mn 25.72 ± 0.23 4.25 ± 0.44

Mn, Number Average Molecular Weight; Mw, Weight Average Molecular Weight.
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FIGURE 3

SDF (A), SDF-Mn(II) (B) NMR 1H diagram.

FIGURE 4

SDF (A), SDF-Mn(II) (B) NMR 13C diagram.
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3.8. Inhibitory effect of SDF and SDF–Mn(II) 
on enzymatic activity in vitro

SDF has inhibitory activity against sugar hydrolases, including 
α-amylase and α-glucosidase; thus, it has the potential to replace 
commercial hypoglycemic drugs, such as acarbose and voglibose (48). 
The inhibition of α-amylase by SDF occurs via binding interactions 
between SDF and the active site of the enzymes as a result of hydrogen 
bonding and hydrophobic forces (44). The structure of SDF 
determines, to a large extent, its binding affinity to the enzymes. 
Figure  6 shows the inhibitory activities of SDF and SDF–Mn(II) 
toward α-amylase and α-glucosidase. Figure 6A shows the rate of 
inhibition of α-amylase, which gradually increases with increasing 
sample concentration (0–1.8 mg/ml); moreover, the inhibition rate of 
SDF–Mn(II) was stronger than that of SDF. When the sample 
concentration was greater than 1.2 mg/ml, the inhibitory effect no 
longer linearly increased, with the IC50 values of SDF and SDF–Mn(II) 

being 0.87 and 0.729 mg/ml, respectively. Figure 6B shows the rate of 
inhibition of α-glucosidase, which was similar to the results reported 
for α-amylase, with the SDF and SDF–Mn(II) IC50 values being 1.025 
and 0.583 mg/ml, respectively. The figure demonstrated that there was 
a significant increase in the inhibitory rate of SDF–Mn(II) for both 
enzymes (49), which may be attributed to the microwave treatment, 
as it reduced the molecular weight of SDF–Mn(II) and facilitated 
binding to the active site of the enzyme, leading to an enhanced 
inhibition (50, 51); alternatively, the manganese element was 
introduced to denature the enzyme, leading to a decrease in enzymatic 
activity. The higher inhibitory activity of SDF–Mn(II) toward 
α-amylase and α-glucosidase may delay the absorption of dietary 
carbohydrates, which may contribute to the control of postprandial 
blood glucose levels.

4. Conclusion

This study reported the structural characterization and enzyme 
activity inhibition analysis of SDF and SDF–Mn(II). The experiments 
showed that SDF–Mn(II) exhibited a porous surface structure with a 
more obvious fragmentation trend, without obvious changes in the 

FIGURE 5

Thermal characteristics analysis of SDF, SDF–Mn(II). (A) The mass loss 
of SDF and SDF-Mn (II). (B) The changes in SDF and SDF-Mn (II) DSC.

FIGURE 6

Effect of SDF and SDF-Mn(II) inhibition on α-amylase (A) and 
α-glucosidase (B).
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basic skeleton, as well as red-shifting and color-enhancing effects in 
the UV characteristic peaks, increased crystallinity, and decreased 
relative molecular mass. NMR revealed that SDF-Mn(II) mainly 
underwent a substitution reaction on C6. SDF-Mn(II) has better 
structural and thermal properties and has better inhibition of in vitro 
digestive enzymes, providing a good theoretical basis for further 
studies of SDF-Mn(II).
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