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Editorial on the Research Topic

Advances in understanding the pathogenetic mechanisms of

neurodevelopmental disorders and neurodegenerative disease — The

environment as a putative risk factor

Introduction

Neurodevelopmental disorders are generally influenced by not only genetic, but also

intrauterine and extrauterine factors that affect the fetal-maternal environment and/or brain

development that continues after birth (1). Specific genetic polymorphisms may increase

susceptibility to environmental factors that alter the trajectory of brain development via

diverse molecular mechanisms (2). In particular, pre- and post-natal exposure to neurotoxic

metals, pesticides, persistent organic pollutants, and other chemicals is increasingly

recognized as involved in the pathogenesis of neurodevelopmental disorders, such as autism,

deficiency attention/hyperactivity disorders, and even fetal and infant death, including

SIUDS (SuddenUnexplained Intrauterine Death Syndrome) and SIDS (Sudden Infant Death

Syndrome) (3–9).

Similar evidence has been found also for neurodegenerative disorders such as

Parkinson’s, Alzheimer’s disease, and chronic multiple sclerosis (10–12). In fact, especially in

the context of specific genetic vulnerability, exposure to such environmental factors across

the lifespan increases the likelihood of neurodegenerative processes. Combining research

outputs from studies of both neurodevelopment and neurodegeneration may help advance
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our understanding of the complex phenomena that modulate brain

structure and function throughout life, with implications for health

and disease.

Thus, it is essential to study the ethio-pathogenetic and

anatomo-pathological aspects of neurodevelopmental disorders

and neurodegenerative disease with particular attention to

the study of specific biomarkers useful for diagnostic and

prognostic purposes.

The goal of the Research Topic “Advances in understanding

the pathogenetic mechanisms of neurodevelopmental disorders and

neurodegenerative disease — The environment as a putative risk

factor” was to collect contributions from expert authors in order

to advance the state of knowledge regarding the pathogenetic

mechanisms by which various factors, including drugs, diet,

genetic, and environmental factors, interact to increase individual

risk for neurological disorders and diseases across the lifespan.

This Research Topic was proposed in particular to focus on the

following subtopics:

• Genetic background that may increase susceptibility to

environmental factors that alter nervous system development

• Molecular and neuropathological features of neurological

disease across the lifespan

• Approaches for identifying specific genetic substrates and

environmental factors that alter brain development to

cause disease

• Mechanisms by which genetic and environmental factors

interact to increase risk of neurological disease

• Neuropathology of unexplained perinatal deaths, considering

also the interaction between environmental risk factors and

brain developmental defects

• Proposal of evidence-based prevention and management

strategies to decrease the incidence of these pathologies.

Published articles

In order to summarize the contributions to this Research Topic,

we have grouped the articles in two main sections: one dedicated

to new perspectives useful both for preventive and diagnostic

purposes of various neurological disorders and a second focused

on new biomarkers which can help in predicting Alzheimer’s and

Parkinson’s diseases.

Section 1- Original perspectives on
pathogenesis of sleep disorders, cognitive
alterations and neurodegenerative
processes

The articles are distributed in the following subsections:

(a) New indicators of neurodegenerative processes

• Through a meta-analysis approach, Zhang L. et al. highlighted

a positive association between exposure to first-generation

antiepileptic drugs (such as valproate, carbamazepine, and

clonazepam) and increased risk of dementia.

• Li W. et al., in an original study found that dietary

inflammation and blood inflammation indexes are

negatively associated with cognitive function in an elderly

American population.

• The experimental research of Li G.-S. et al. explored the

ultrastructural pathological changes of the neurovascular

unit (NVU), a structural and functional complex that

plays an important role in the coupled interaction between

neural activity and microcirculation, and consequently in the

pathophysiological mechanism of many cerebral disorders.

The study disclosed the presence of NVU destruction in the

development stage of the cervical spondylotic myelopathy

(CSM), themost common cervical spinal cord disorder among

the elderly population.

(b) Involvement of environmental factors in neurological

disorders

• Calderón-Garcidueñas et al. envisaged how exposures to

high concentrations of particulate matter (PM2.5), ultrafine

particulate and industrial nanoparticles, can damage the

nervous system dating back to in prenatal life, playing a

significant role in the development of neurodegenerative

processes and sleep disorders.

• The adverse impact of exposure to neurotoxic metal mixtures

on brain connectivity was illustrated by Invernizzi et al.

through neuroimaging studies on a wide set of young

people. They demonstrate that various metal mixtures may

alter the brain development by modifying the global and

local connectivity. These changes may potentially lead to

alterations in cognition and neurobehavior in adolescents and

young adults.

• Damage from toxic metals was also demonstrated by Vegard

et al.. The aim of this study was to investigate whether

early-life exposure to toxic metals and essential elements can

adversely affect nervous system development. These authors

demonstrated an association between second trimester

maternal blood levels of copper and manganese and increased

risk of Cerebral Palsy, which is the most common motor

disability in childhood, the causes of which are currently only

partly known.

• The study of Humphreys and Valdés Hernández, based

on a systematic review and meta-analysis, supports the

hypothesis that prenatal polycyclic aromatic hydrocarbon

exposure negatively affects cognitive function and increases

the risk of neurodegeneration in humans.

• Spencer et al. proposed an intensive analysis of published

geographic clusters of conjugal cases, single-affected twins,

and young-onset cases of Amyotrophic Lateral Sclerosis

(ALS), to identify which environmental factors may

trigger motor neuron disease. The study highlights that

exposure to naturally occurring or synthetic hydrazine-

related chemicals, acting alone or in the presence of a

genetic susceptibility, is associated with the development of

clinical ALS.
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Section 2- New diagnostic parameters for
the early identification of individuals at risk
of Parkinson’s and Alzheimer’s diseases

• New biomarkers for predicting the occurrence of Parkinson’s

disease (PD) have been highlighted by Zhang P. et al.

They used bioinformatics analysis of the immune system to

show that the analysis of four immune infiltration-related

genes (precisely SYT1, NEFM, GAP43, and GRIA1) identified

individuals at risk of PD before the onset of motor symptoms.

• The relation between hypertension and increased risk

of AD has been underlined by Sáiz-Vazquez et al. in

original research based on the analysis of information

predominantly obtained by meta-analyses of primary

studies worldwide.

• In an explorative study, Tsai et al. investigated the associations

between sleep parameters measured using polysomnography

and plasma levels of selected biomarkers of neurodegenerative

diseases in patients with suspected obstructive sleep apnea

(OSA) to assess the relationships between sleep disorders and

the risk of Alzheimer’s disease development. The results reveal

that individuals at high-risk have significantly higher mean

values for various indices of sleep-disordered breathing and

arousal responses than those at low-risk.

Conclusions

We believe that the above contributions, although

heterogeneous in their approach, collectively broaden

the current knowledge on the pathogenetic mechanisms

of neurodevelopmental disorders and neurodegenerative

diseases, which often involves complex interactions between

genetic and non-genetic factors, including exposure to

environmental contaminants. In conclusion, we hope

these articles will prove useful for improving current

diagnostic criteria and preventive strategies and also for

providing impetus for further research in the field of this

Research Topic.
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Background and purpose: The pathogenesis of cervical spondylotic

myelopathy (CSM) remains unclear. This study aimed to explore the

ultrastructural pathology of neurovascular unit (NVU) during natural

development of CSM.

Methods: A total of 24 rats were randomly allocated to the control group and

the CSM group. Basso–Beattie–Bresnahan (BBB) scoring and somatosensory

evoked potentials (SEP) were used as functional assessments. Hematoxylin–

eosin (HE), toluidine blue (TB), and Luxol fast blue (LFB) stains were used for

general structure observation. Transmission electron microscopy (TEM) was

applied for investigating ultrastructural characteristics.

Results: The evident compression caused significant neurological

dysfunction, which was confirmed by the decrease in BBB score and

SEP amplitude, as well as the prolongation of SEP latency (P < 0.05). The

histopathological findings verified a significant decrease in the amount of

Nissl body and myelin area and an increase in vacuolation compared with the

control group (P < 0.05). The TEM results revealed ultrastructural destruction

of NVU in several forms, including: neuronal degeneration and apoptosis;

disruption of axonal cytoskeleton (neurofilaments) and myelin sheath and

dystrophy of axonal terminal with dysfunction mitochondria; degenerative

oligodendrocyte, astrocyte, and microglial cell inclusions with degenerating

axon and dystrophic dendrite; swollen microvascular endothelium and loss

of tight junction integrity; corroded basement membrane and collapsed

microvascular wall; and proliferated pericyte and perivascular astrocytic

endfeet. In the CSM group, reduction was observed in the amount of

mitochondria with normal appearance and the number of cristae per

mitochondria (P < 0.05), while no substantial drop of synaptic vesicle number

was seen (P > 0.05). Significant narrowing of microvascular lumen size was

also observed, accompanied by growth in the vascular wall area, endothelial

area, basement membrane thickness, astrocytic endfeet area, and pericyte

coverage area (rate) (P < 0.05).
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Conclusion: Altogether, the findings of this study demonstrated ultrastructural

destruction of NVU in an experimental CSM model with dorsal–lateral

compression, revealing one of the crucial pathophysiological mechanisms of

CSM.

KEYWORDS

ultrastructural pathology, neurovascular unit, chronic, compressive, spinal cord
injury, cervical spondylotic myelopathy, ultrastructural evidence

Introduction

Cervical spondylotic myelopathy (CSM) is the most
common cervical spinal cord disorder among the elderly
population (Amenta et al., 2014). The chronic compression
to the cervical spinal cord ultimately causes structural and
functional neurovascular destruction in the forms of ischemia,
blood–spinal cord barrier (BSCB) disruption, apoptosis of
neuron and oligodendrocyte, and axonal demyelination (Baron
and Young, 2007; Kalsi-Ryan et al., 2013). However, the vast
variation of clinical symptoms and functional presentation
among the population of CSM could not be well explained.
A good understanding of pathophysiology in CSM is therefore
required.

The neurovascular unit (NVU) is a structural and functional
complex that plays a vital role in the coupled interaction between
neural activity and microcirculation (Lok et al., 2007; Iadecola,
2017; McConnell et al., 2017; Huang et al., 2021). Numerous
studies have demonstrated that NVU destruction is involved
in the pathological and pathophysiological mechanism of CNS
disorders such as brain trauma (Armstead and Raghupathi,
2011; Lok et al., 2015), cerebral ischemia injury (Cai et al.,
2017; Zhao et al., 2020), and degenerative cerebral disorders (Cai
et al., 2017; Yu et al., 2020). The intercellular connection and
interaction among microvascular endothelial cells, perivascular
astrocytes, and pericytes regulate the structural and functional
integrity of BSCB (Hawkins and Davis, 2005; Sá-Pereira
et al., 2012; McConnell et al., 2017). The intercellular
coupling between neuron and neuroglial cells has an essential
effect on balancing ionic homeostasis, regulating axoplasmic
neurotransmission and synaptic re-uptake, and insulating axons
to promote nerve conduction velocity (Lok et al., 2007; Guo
and Lo, 2009). Thus, the multicellular and multicomponent
NVU constitutes a complexed neural–vascular network that
is responsible for not only oxygen and nutrition delivery
but also intercellular signaling coupling and maintenance of
the microenvironmental homeostasis for neural activity (Sá-
Pereira et al., 2012; McConnell et al., 2017; Yang et al., 2020;
Zhao et al., 2020). In fact, NVU destruction develops prior to
motor neuron degeneration (Miyazaki et al., 2011), and NVU
remodeling or repair could improve functional recovery (Lake

et al., 2017; Chio et al., 2019; Ye et al., 2021). It suggests that
NVU could be an early and effective target of treatment. A recent
study reported that NVU destruction following the chronic
compressive spinal cord injury may lead to impairment of
endothelial cell, defect of tight junction, degeneration of neuron
and axon, and swelling of astrocyte endfeet and mitochondria
(Xu et al., 2017). However, the ultrastructural evidence of NVU
is scarce and far from being able to reveal the underlying
pathophysiology of CSM (Xu et al., 2017; Guo et al., 2021).

This study explored the ultrastructural pathology of NVU
during the natural development of CSM. Pathological staining
[hematoxylin–eosin (HE), toluidine blue (TB), and Luxol fast
blue (LFB)] and transmission electron microscopy (TEM)
examination were used to comprehensively investigate the
(ultra)pathological characteristics of NVU in an experimental
rat CSM model. Ultrastructural characteristics and notable
changes in different aspects of NVU following chronic dorsal–
lateral cervical cord compression at the C5 level will be
thoroughly examined.

Materials and methods

Experimental materials and animal
model establishment

A total of 24 female adult Sprague–Dawley (SD) rats (180–
250 g) were divided into the CSM group (n = 12, cervical spinal
cord compression for 2 months) and control group (n = 12).
All the animal-handling procedures were in accordance with the
Guide for the Care and Use of Laboratory Animals, approved by
the local Committee on the Use of Live Animals.

In the CSM group, a water-absorbing and progressively
expandable synthetic polyurethane polymer sheet (Fulin Ltd.,
Shenzhen, China) of 3 × 1 × 1 mm was used as an implant
material to create compression on the spinal cord (Long
et al., 2013). In brief, the rats received general anesthesia
with a mixture solution of 10% ketamine and 2% xylazine
(Sigma Chemical Co., St. Louis, MO, USA) intraperitoneally.
The location of cervical spine levels was identified by X-ray
fluoroscopy (Figure 1A). The thin polymer sheet was carefully
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FIGURE 1

Establishment of experimental CSM rat model. (A) Spine location in X-ray fluoroscopy. (B) Surgical exposure at C4 and C5 spinal levels. Sagittal
MRI T2-weighted images of control group (C) and CSM group (D). Axial MRI T2-weighted images of control group (E) and CSM group (F). (G,H)
View of specimen after compression.

implanted into the left side of the spinal canal at the C5 level
(Figure 1B). The rat after implantation fully recovered from
the surgery on a heating bed and was then sent back to the
cage freely for food and water. All of the animals in this study
survived at the end of observation.

To confirm spinal cord compression, MRI T1- and T2-
weighted images were obtained with a 3.0-T MR imager
(Discovery MR 750, GE Medical Systems, Milwaukee) 2 weeks
after the implantation. Hemorrhage and edema in the epidural
space were observed.

Neurological function assessment

Locomotor function was evaluated by using 21-point Basso–
Beattie–Bresnahan (BBB) scoring system in the open field
(Basso et al., 1996). The evaluation time point was set at 1 day,

3 days, 7 days, 14 days, 21 days, 1 month, and 2 months
postoperatively. Two equally trained spinal surgeons, who were
not involved in previous implantation surgeries, were invited to
independently evaluate the locomotor function of all rats. The
average score was calculated to depict the dynamic change of
motor function.

Sensory functional integrity was evaluated by
somatosensory evoked potentials (SEP). To elicit cortical
SEP, a constant current stimulation with a frequency of
5.1 Hz and a pulse duration of 0.2 ms was applied to the
tibial nerve. The cortical SEP was recorded from the skull
at location Cz–Fz in the 10–20 system. SEP signals were
amplified 100,000 times band-passed between 20 and 2,000 Hz
by an electrophysiological measurement system (YRKJ-G2008,
Zhuhai, China). The latency and amplitude of the SEP waveform
were analyzed after averaging 200 trials.
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Tissues preparation and
histopathological examination

All samples from both groups underwent satisfactory
euthanasia with sodium pentobarbital solution 2 months
postoperatively. Half of the samples from each group were
designated to histopathological examination, while the other
half reserved for TEM examination.

For histopathological examination, the whole cervical spinal
cord was carefully harvested and fixed with 4% phosphate
buffer liquid in formaldehyde solution. Then, a 5-mm-long
cord block at the C5 level was longitudinally cut and
embedded in paraffin. Five-micrometer slides of transverse
cord were continuously sectioned for histopathological and
immunohistochemical (IHC) staining.

A total count of 12 sectioned specimens were stained
with HE (Sigma Chemical Co., St. Louis, MO, USA), TB,
and LFB (Sigma Chemical Co., St. Louis, MO, USA). All
images of the cords were acquired with a microscope (FV-
1000, Olympus, Japan). The number of large motor neurons
was counted in the ventral horn of the gray matter at
×10 view for all specimens using ImageJ 1.47v (National
Institutes of Health, USA). Nissl body area was examined
at ×40 view. After LFB staining, the blue color intensity
(×20 view ImageJ) in the posterior funiculus indicated the
content of myelin.

Transmission electron microscopy
examination

For TEM examination, the specimen sections were stained
with uranyl acetate and alkaline lead citrate for observation with
TEM (JEM-1400). Images acquired from the imaging system
(GATAN 832) were used to investigate ultrastructural features
of neurovascular cytohistology.

Electron micrographs (4,008 × 2,672 pixels,
6.384 × 4.252 µm, 1.6 nm/pixel) of capillaries from the
CSM group and control group were compared. Micrographs
of microvessels in cross section were taken at 15,000× to
measure the area of lumen, endothelial cell, microvascular
wall (lumen area was excluded), astrocytic endfeet, and the
circumference of microvessel and pericyte with “freehand
selections” tool. The pericyte coverage rate (percentage) of
microvessel abluminal surface and the total length of the
inner pericyte processes around each microvascular abluminal
surface were divided by the perimeter of microvessel in 60,000×

magnification micrograph. The integrity of tight junction was
evaluated by the number of mitochondrial cristae and synaptic
vesicle under 100,000× magnification. The tight junctions
were recognized as intercellular space when the fluid space is
wider than 50 nm.

Statistical analysis

Sample sizes were determined prior to the experiment. All
data are presented as the mean values ± standard error of the
mean (SEM). All statistical analyses were performed using SPSS
25.0 software (IBM Corp., Armonk, NY, USA). Comparisons
between groups were made using t-test of two independent
samples. P < 0.05 was deemed statistically significant.

Results

Image verification of spinal cord
compression

Hypointense changes on T1WI and T2WI were observed
in the CSM group. The compressor posed dorsal–lateral
compression at C5–C6 level and caused evident cord
deformation, without spinal cord edema, hemorrhage,
and intramedullary cavity (Figures 1C–F). The expanded
compressor was encompassed by pseudomembrane inside the
spinal canal (Figures 1G,H). A sunken C5 spinal cord was seen
on the dorsal–lateral dissected specimen (Figure 1H).

Neurological dysfunction after chronic
cervical cord compression

The CSM group showed significantly declined BBB scores
in contrast to the control group with normal BBB scores
at different evaluation time points (P < 0.05) (Figure 2A).
Ipsilateral upper limb weakness with paw contractures, fore–
hind limb discordance, and trunk imbalance were observed
in the CSM group. The spontaneous locomotor function
recovery was observed 1–2 months postoperatively, before the
locomotor function appeared to be in a steady state (16.8 ± 2.0)
(Figure 2A).

Somatosensory evoked potential examination confirmed
sensory dysfunction in the CSM group (Figure 2B). In the CSM
group, there were delayed latency (9.46 ± 1.40 ms at 2 months
postoperatively vs. 8.21 ± 1.32 ms preoperatively, P < 0.05) and
decreased amplitude (2.88 ± 1.21 uv at 2 months postoperatively
vs. 4.40 ± 1.93 uv preoperatively, P < 0.05) (Figure 2C).

Motoneuronal and axonal
degeneration after chronic
compression

In the control group, numerous large motor neurons
with a high amount of Nissl body and clear nucleus were
identified in the ventral horn (Figures 3A1,A2). In contrast,
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FIGURE 2

Neurological dysfunction after compression. (A) Locomotor evaluation with BBB scores. (B) Representative SEP waveforms. (C) Values of SEP
amplitude and latency in two groups. “*” compare with the control group at the same time point for BBB scores (P < 0.05); “#” compared with
the control group for SEP (P < 0.05); CSM group (n = 12), control group (n = 12).

neuronal death and loss of neuron number were remarkable
in the CSM group (Figures 3B1,B2). Disappearance or loss
of Nissl body was rather obvious in the large motor neuron
(Figures 3B1,B2). Statistical analysis demonstrated a significant
decline in Nissl body size (2,753 ± 234 µm2 in the CSM
group vs. 7,952 ± 543 µm2 in the control group, P < 0.05)
(Figure 3A3). Meanwhile, vacuolization was seen in the ventral
horn of the CSM group (Figure 3B1). A significant increment in
the vacuole area was found (66.44 ± 3.20 in the CSM group vs.
46.84 ± 2.90 in the control group, P < 0.05) (Figure 3B3).

Compared with clear neural fiber derived from the dorsal
horn in the control group (Figures 4A1,A2), disrupted neural
fiber with increased number of vacuoles was identified in the
CSM group (Figures 4B1,B2). A significant increase in the
vacuole area around the axon in the posterior funiculus was
seen in the CSM group (63.80 ± 3.46) compared with that
in the control group (46.64 ± 2.87, P < 0.05) (Figure 4A3).
LFB staining also showed obvious vacuole formation and a
significant decrease in myelin area (27,721 ± 1,587 µm2 in
the CSM group vs. 42,960 ± 2,153 µm2 in the control group,
P < 0.05) (Figure 4B3).

Ultrastructural destruction to
neurovascular unit after chronic
compression

In the control group, the Nissl body (Nb), chromatin, and
primary lysosome (L) were evenly distributed in karyoplasm
(Figures 5A1,A2). The neuropils with several bundles of
neurofilaments were clearly distinguished in the gray matter.
The mitochondria appeared with clear cristate. In the CSM

group, the neurons presented degenerative ultrastructural
changes, which were characterized with dense and dark
chromatin, plenty of phagolysosomes and autophagic vacuoles,
dystrophic neurites, and swelling and disappearance of cristate
of mitochondria (Figures 5B1,B2). In particular, increased
dense cytoplasm, karyoplasm chromatin condensation and
densification, organelles aggregation, and ultrastructural
destruction such as nuclear membrane breakdown and
nuclei–cytoplasm separation were the most prominent
morphological ultrastructural characteristics of apoptotic
neuron (Figures 5B1,B2). In addition, a close contact of
neuron, oligodendrocyte (Oli), astrocyte endfeet (Ae), and
microvessels was seen in the CSM group, which was considered
one of the NVU paradigms (Figures 5B1,B2).

In the control group, the axons of normal myelinated neural
fibers have an even and pale axoplasm with clearly identifiable
neurofilaments and microtubules. Some of the mitochondria
have distinct cristate (Figure 6A1). The myelinated axons
were encompassed with visible lamellae of the myelin sheath.
In the CSM group, the swollen axons were found with
atrophic axoplasm and cavitation, surrounded by absolutely
disorganized and disrupted outer and inner loops of myelin
sheaths. Myelin sheath splitting was frequently observed in
a large proportion in the neural fibers. Neurofilaments and
microtubules were difficult to recognize in the axoplasm in the
majority of the neural fibers. Mitochondria were swollen, and
mitochondrial cristate disappeared or vacuolized in the CSM
group (Figure 6B1).

In the control group, numerous axonal terminals
synapsed with dendrite spine and formed mostly asymmetric
synapse along with a plenty of spherical synaptic vesicles
(Figure 6A2). The axonal terminal axoplasm mainly contained
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FIGURE 3

Neuronal degeneration verified by HE and TB staining. (A1,A2) Numerous large motor neurons with rich Nissl body were identified in the ventral
horn. (B1,B2) Loss of neuron and Nissl body with vacuolization in the ventral horn. Black arrow indicates large motor neuron, black arrowhead
indicates vacuoles, and white arrow indicates Nissl body. A significant decline in Nissl body (A3) and increment in vacuoles (B3) in the
compression group (P < 0.05). “#” significant difference between CSM group and control group (P < 0.05, n = 6 per group).

neurofilaments and abundant mitochondria with clear
cristate (Figure 6A3). In the CSM group, the axonal terminal
appeared to be degenerately changed. Observation included
disruption of axonal terminal membrane, disorganized
neurofilament, and swelling and vacuolar degeneration of
the mitochondrial cristae (Figures 6B2,B3). The proportion
of normal mitochondria (59.38 ± 7.76 in the CSM group
vs. 91.21 ± 8.94 in the control group) and the number
of mitochondrial cristate per mitochondria (4.30 ± 1.93
in the CSM group vs. 7.60 ± 1.72 in the control group)
decreased significantly (P < 0.05) (Figures 6D,E), whereas
no significant difference in the number of synaptic vesicles
and total mitochondria (96.97 ± 16.03 in the CSM group vs.
130.84 ± 19.88 in the control group, P > 0.05) was found
(Figures 6C,F).

In the white matter of the control group, the fibrous
astrocytes showed oval nuclei contour with relatively even
and lower electron density of karyoplasm and cytoplasm,
along with a thin and condense rim of heterochromatin
beneath the karyolemma (Figure 7A1). Organelles such as
short cisternae of granular endoplasmic reticulum (GER), free
glycogen granules, and mitochondria were sparsely distributed
in the cytoplasmic matrix, whereas a few of neurofilaments
bundles were the most prominent component in the perikaryal
cytoplasm. In particular, the astrocyte endfeet (Ae) was seen
closely surrounding the microvascular wall (Figures 7B1,B2).
In contrast, increased electron density of karyoplasm and
cytoplasm was seen in the CSM group (Figure 7B1). The
cytoplasm of astrocytes appeared to be filled with degenerating
axon (Figure 7B1). The chromatin of oligodendrocytes is
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FIGURE 4

Axonal degeneration in the posterior funiculus after compression revealed by HE and LFB staining. Organized neural fiber derived from the
dorsal horn (A1, HE staining) and myelin sheath stained in dark blue in the control group (A2, LFB staining). (B1,B2) Vacuoles formation and a
decrease in myelin staining in the posterior funiculus of the CSM group. Vacuolation area increased (A3) and myelin area decreased (B3)
significantly in the CSM group (P < 0.05, marked with “#” n = 6 per group).

clumped and circulating along the karyolemma or scattering
throughout the karyoplasm (Figure 7A2). The cytoplasm
contains numerous short GER, abundant free ribosomes,
well-developed Golgi apparatus (G), and relatively smaller
mitochondria. Tight connections between the cytomembrane of
oligodendrocytes and some myelinating axons were found in
the control group (Figure 7A2). After compression, dissolved
karyolemma, degenerating axon, and myelin sheaths inclusions
were clearly observed (Figure 7B2).

The microglial cells in the resting state from the CSM group
appeared to have elongated nuclei outline, higher density of
clumped chromatin, and slightly denser cytoplasm compared
with oligodendrocytes in the control group (Figure 7A3). Also,
the perikaryal cytoplasm from the CSM group was distended by
phagocytosed material, some of which appeared to degenerate
myelin and dystrophic dendrite (Figure 7B3). Lipofuscins and
autophagy cavitation were seen in the perikaryon (Figure 7B3).

Destruction of the vascular elements and collapse of vascular
contour were evident in the CSM group (Figures 8A1,B1).
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FIGURE 5

Comparison of ultrastructural evidence of neuron, NVU degeneration, and apoptosis between samples from the control group (A1,A2) and CSM
group (B1,B2).

Compared with the control group, significant increases were
found in the vascular wall area (79.34 ± 14.14 vs. 46.57 ± 10.43,
P < 0.05) (Figure 8C), endothelium area (73.45 ± 6.58 vs.
58.83 ± 4.35, P < 0.05) (Figure 8E), and BM thickness
(215.30 ± 52.32 vs. 106.70 ± 29.54, P < 0.05) (Figure 8G), while
a significant decrease was found in lumen size (17.72 ± 4.14
vs. 53.43 ± 10.43, P < 0.05) (Figure 8D). In the control group,
the endothelium has distinct and integrated nuclei, karyoplasm,
and organelles (Figures 8A1,A2), which was obviously different
from the fuzzy and loose appearance of endothelium in
the CSM group (Figures 8B1–B3). Loss of electron density
of cytoplasmic matrix, mitochondria swelling, disappearing
mitochondria, and vacuolation were the main observations
of endothelium in the CSM group (Figures 8B2,B3). Such
swelling appearance was further proved by the increased area of
endothelium in the vascular wall under a chronic compression
condition (Figure 8E). After compression, disruption of the
interacting plasm membranes of tight junctions and caveolae-
like enlargement of the intercellular space were clearly observed
(Figures 8B3,F). In the control group, the BM’s electron density
was even lower (Figures 8A2,A3). The contour’s corrugated
deformation was consistent with the distorted and collapsed
vascular profile. Compared with the control group, the thicker
BM in the CSM group was scattered with an increased density
of electron granules that appeared to be corroding change
(Figures 8B3,G).

Unlike the flattened and elongated nuclei of endothelium,
pericytes have more roundish or oval nuclei contour
(Figures 9A,B). Similar to the oligodendrocyte, the chromatin

is quite clumped adjacent to karyolemma and throughout
karyoplasm (Figure 9A). In contrast, loss of chromatin was
observed in some of the pericytes in the CSM group (Figure 9B).
Long and narrow cytoplasmic processes of pericytes crawled
and circumvoluted affixed the long axis of microvessels,
constituting another physical barrier that strengthened the
vascular wall (Figure 9B). The outmost barrier, referred to
as astrocytic endfeet, was seen closely affixed to the pericyte
or BM. Pericyte vascular coverage rate (%) and pericytes area
(µm2) were defined as the percentage of ensheathed pericyte
length and the area attached to the vascular wall’s long axis,
respectively. A significant increment can be seen in the pericyte
vascular coverage rate (%) (67.02 ± 4.83 in the CSM group vs.
36.35 ± 3.56 in the control group, P < 0.05) and pericytes area
(71.48 ± 8.34 in the CSM group vs. 54.41 ± 6.62 in the control
group, P < 0.05) (Figures 9C,D).

Astrocytic endfeet appeared to be irregularly morphed in
cross section with lower electron density (Figures 8A2,B2). In
the CSM group, mitochondria expanded and cristae disappeared
in most of the perivascular astrocytic endfeet (Figure 8B2),
accompanied by a significant increase in perivascular astrocytic
endfeet area (30.62 ± 5.03 in the CSM group vs. 21.04 ± 5.40 in
the control group, P < 0.05) (Figure 8H).

Discussion

This study comprehensively disclosed the ultrastructural
characteristics of NVU and its components’ critical changes
after chronic dorsal–lateral compressive spinal cord injury.
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FIGURE 6

Comparison of ultrastructural destruction of axon and axonal terminal between samples from the control group (A1–A3) and CSM group
(B1–B3). Increased total number of mitochondria (C) but significantly decreased number of mitochondria with normal appearance (D) and
mitochondrial cristae (E) in the CSM group. (F) No significant decrease in the number of synaptic vesicles after compression. Ax, axon; MS,
myelin sheath; f, filament; At, axonal terminal; SC, synaptic cleft; SV, synaptic vesicle; D, dendrites; M, mitochondria; Cri, mitochondrial cristate;
yellow oval include synaptic vesicle “*” axonal cavitation; “#” significant difference between compression and control group (P < 0.05, n = 6
rat/group).
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FIGURE 7

Ultrastructural evidence of neuroglial cells degeneration. Astrocyte (A1,B1), oligodendrocytes (A2,B2), and microglial cells (A3,B3) in the control
and CSM groups, respectively. N, nucleus; Ax, axon; MS, myelin sheath; f, filament; At, axonal terminal; D, dendrite; GER, granular endoplasmic
reticulum; Lip, lipofuscin; L, lysosome; “*” empty phagocytic inclusion; yellow oval includes abundant of free ribosomes; orange arrowhead
indicates a few of free glycogen granules in astrocyte; and red arrow indicates degenerating myelin.

Ultrastructural observation revealed a series of pathological
NVU changes in addition to decreased BBB score, prolonged
SEP latency, and reduced SEP amplitude. The NVU destruction
appeared with the following ultrastructural characteristics:
neuronal degeneration and apoptosis; disruption of axonal
cytoskeleton and myelin sheath with dystrophy of axonal
terminal; degenerative oligodendrocyte, astrocyte, and
microglial cell inclusion with degenerating axon and dystrophic
dendrite; swollen microvascular endothelium and loss of
tight junction integrity; corroded basement membrane
and collapsed microvascular wall; proliferated pericyte and
perivascular astrocytic endfeet; and swollen mitochondria in
neuron, axon (axonal terminal), and astrocyte. The results
of this study have explicitly and systematically demonstrated
the ultrastructural destruction of each NVU component
in the experimental rat CSM model, which may provide
a profound understanding of pathophysiology of CSM.
It would help build a research platform for investigating
the neurovascular mechanisms behind NVU and finding

potential treatment targets to promote an effective therapeutic
strategy for CSM.

The surgery-induced compression to the cervical cord at the
C5 spinal level was verified at 2 weeks postoperatively using
MRI. Neurological dysfunction indicated by changes in BBB
score and SEP measurement further validated the establishment
of the CSM model as previously reported (Long et al., 2013).
It was noted that rats could develop spontaneous functional
recovery in 2 months after compressive spinal cord injury, which
is different from human. However, behavior, electrophysiology,
and pathological findings are useful in simulation of CSM.

In this study, axonal degeneration and demyelination in
the CSM group were demonstrated by HE and LFB staining in
the posterior funiculus. The ultra-pathological results further
verified the loss of Nissl body and large motor neuron in
general observation of histopathological findings. The apoptotic
changes in large motor neuron in ventral horns during early
and mediate phase included increased density of cytoplasm,
condensation and densification of karyoplasm chromatin,
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FIGURE 8

Ultrastructural destruction of microvascular and vascular elements. (A1–A3) Normal ultrastructure of microvascular and vascular elements in
the control group. (B1–B3) Ultrastructural destruction of microvascular and vascular elements in the CSM group. Comparison of characteristics
between two groups: vascular wall area (C), endothelium area (E), Tj disruption (F), BM thickness (G), endfeet area (H), and lumen size (D). Ax,
axon; E, endothelial cells; p, pericyte; BM, basal membrane; Tj, tight junction; M, mitochondria; Ae, astrocyte endfeet; f, filament; “*” Ca,
caveolae; yellow arrow indicates disruption of interacting plasm membranes of Tj; “#” significant difference between CSM and control group
(P < 0.05, n = 6 per group).

swelling mitochondria and disappearance of its cristate,
breakdown of nuclear membrane and separation of nuclei-
cytoplasm, as well as plenty of phagolysosomes and autophagic
vacuoles (Figures 5B1,B2). These changes proved that neurons
were undergoing apoptosis due to chronic and persistent
compression, which is one of the typical neuropathological
impairments responsible for neurological dysfunction in CSM

(Baptiste and Fehlings, 2006; Yu et al., 2009; Kalsi-Ryan et al.,
2013; Karadimas et al., 2013, 2015; Akter et al., 2020). Although
ischemia injury and inflammatory impairment have been
proposed as the main pathophysiological factors for neuronal
apoptosis (Kalsi-Ryan et al., 2013; Karadimas et al., 2015), the
underlying mechanisms are still not entirely clear. It is worth
noting that the decrease in the number of mitochondria and
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FIGURE 9

Ultrastructural evidence of pericytes degeneration. (A) Control group. (B) CSM group. Comparison of pericyte vascular coverage rate (C) and
pericytes area (D). N, nucleus; P, pericyte; Ax, axon; Ae, astrocyte endfeet; D, dendrite; “*” indicates caveolae. #P < 0.05 compared with the
control group, n = 6 per group.

mitochondrial cristate was the most important characteristic
in the degenerative or apoptotic large motor neuron. Thus,
more investigations could be focused on the mitochondria-
induced pathway in neuronal apoptosis to further elucidate the
pathophysiological mechanism of CSM.

Disruption of axolemma, disorganized neurofilament
(Figures 6B2,B3), and decreased number of normal
mitochondria and mitochondrial cristate in the axonal terminal
provided additional particulars for axonal degeneration.
The ultrastructural findings were consistent with the axonal
degenerative changes revealed by histopathological staining,
including increased vacuolation area and decreased myelin
area. It may provide an explanation for the underlying
pathomechanism of sensory dysfunction, i.e., abnormal
SEP latency and amplitude. The axonal terminal (synapse)
carrying the neurotransmitter by synaptic vesicle enables
interneuron information transmission (Harris and Littleton,
2015). Meanwhile, such context may also have a great impact
on mitochondrial viability/renewal and thereby energy
supply for synaptic plasticity, axoplasmic transportation,
and neurotransmission (Todorova and Blokland, 2017). In
brief, these findings may provide ultrastructural evidence for
further interpreting the early consensus that long-lasting static
and repetitive compression accumulatively produces stretch-
associating injury to the axon cytoskeleton (Shi and Pryor, 2002;

Baptiste and Fehlings, 2006), disturb axoplasmic transportation,
and thereafter cause axonal degeneration, axonal terminal
degeneration, and synaptic dysfunction in CSM (Zhou et al.,
2015).

In the present study, increased perivascular astrocytic
endfeet area was thought to be an astrocytic reaction to chronic
compressive injury. Astrocytes can help maintain ion balance
around neurons, constitute the BSCB by perivascular astrocytic
endfeet, regulate microcirculation (Marina et al., 2020), and
mediate transsynaptic signaling in physiological conditions
(McConnell et al., 2017). It allows intercellular exchange of
other small neutral molecules through aquaporins (Hladky and
Barrand, 2016). But the reactive astrocytic is regarded as a
detrimental factor that prevents axonal sprouting and plasticity
(Okada et al., 2018). It is interesting to note that the astrocytes
have numerous inclusions in their cytoplasm, which appeared
to be degenerating axon with myelin sheath and axonal terminal
(Figure 7B1). Thus, it could be speculated that astrocyte might
expedite axonal degeneration or participate in clearing the
degenerative axon in chronic compressive circumstances.

In contrast to astrocyte, the oligodendrocytes can be
identified by a high density of clumped chromatin, rich
and denser cytoplasm, and rich organelles (Figure 7A2). In
the gray matter, the oligodendrocyte was frequently seen
surrounding the neuron (Figure 5B1), which was called
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satellite oligodendrocytes, and it also aided in maintaining
the normal function of neuron. But in the white matter, the
oligodendrocytes defined as interfascicular oligodendrocytes
were arranged in rows alongside the axon, providing glucose for
neuronal axons under poor nutrition conditions (Hamanaka
et al., 2018). The apoptotic changes, which were rather
distinct in some of the oligodendrocytes, included strikingly
dissolved/disrupted karyolemma, degenerating axon, and
myelin sheaths inclusions (Figure 7B2). They indicate
that chronic compression may induce the apoptosis of
oligodendrocyte. Our findings further support the previous
conclusions that apoptosis of oligodendrocyte may lead to
axonal demyelination, neuronal impairment, and neurological
dysfunction in CSM (Kim et al., 2003; Baptiste and Fehlings,
2006; Yu et al., 2009, 2011; Karadimas et al., 2010, 2013;
Kalsi-Ryan et al., 2013).

In the CSM group, we also found that perikaryal
cytoplasm was distended by phagocytosed material, some
of which appeared to be degenerating myelin, dystrophic
dendrite, lipofuscins, and autophagy cavitation (Figure 7B3).
The findings indicate that microglial cells were involved
in promoting phagocytosis and clearing degenerated neural
tissues. Hence, microglial cells often serve as “daring vanguard”
or “maintainer” who could detect any subtle damage in
microenvironment and clear the degenerated tissues and injury
debris (Liu L. R. et al., 2020). Moreover, neuroinflammatory
impairments regulated by microglial cell are one of the
key pathophysiological causes that lead to neuronal and
neuroglial cell death (Glass et al., 2010; Savage et al., 2018).
In immunological and inflammatory environment, microglial
cells may develop into M1-like phenotype (classical activated
macrophages) or M2-like phenotype (alternative activated
macrophages) (Orihuela et al., 2016). M1-like phenotype is
associated with secretion of inflammatory cytokines such as
tumor necrosis factor alpha (TNF-α), interleukin-1 (IL-1),
and interleukin-6 (IL-6) and is regarded as a detrimental
phenotype. Meanwhile, M2-like phenotype is able to promote
anti-inflammatory cytokine expression such as interleukin-
10 (IL-10), transforming growth factor beta (TGF-β), and
glucocorticoids and is regarded as a beneficial phenotype (Liu
L. R. et al., 2020). In an experimental rat CSM model, M1-
like phenotype microglial cell existed chronically and may
be responsible for neuronal and axonal degeneration, while
M2-like phenotype appeared only temporally (Hirai et al.,
2013). Thus, inducing the development of M2-like phenotype
while inhibiting M1-like phenotype by changing the cellular
microenvironment to prevent inflammatory impairment seems
to be a promising therapeutic strategy for CSM (Plastira et al.,
2019).

Blood–spinal cord barrier is one of the key components
of NVU that is comprised of, from inside to outside,
tightly connected endothelial cells, the encapsulated basement

membrane, the adhesive pericyte, and the enwrapping astrocytic
endfeet (Hawkins and Davis, 2005; Choi and Kim, 2008).
The interactions and reciprocation among those components
construct the functional integrity of BSCB (Choi and Kim,
2008). BSCB disruption is one of the key pathophysiological
processes in the CSM (Karadimas et al., 2013; Blume et al.,
2020), and the magnitude of BSCB disruption was strongly
correlated with the severity of myelopathy (Blume et al.,
2020). In this study, microvascular ultrastructural destruction
induced by chronic compression was characterized by swollen
endothelial cell, expanded and corrugated basement membrane,
and collapsed microvascular contour and luminal stenosis
(Figures 8B2,B3). The findings were consistent with the
previous ultrastructural features depicted (Xu et al., 2017).
However, this study presented the swollen mitochondria
with disrupted mitochondrial cristae in the endothelial cells
as a potential pathomechanism responsible for endothelial
dysfunction. We also observed disrupted integrity of tight
junctions in the forms of disruption of interacting plasm
membranes and caveolae-like enlargement of intercellular space
(Figure 8B3). Such disrupted integrity leads to the increase
in BSCB permeability. Tight junctions are the main inter-
endothelium connections that strengthen the physical barrier
that controls paracellular substance diffusion through the
vascular wall into the parenchyma of spinal cord. The tightly
connected endothelial cells and tight junction gateways enable
physiological transcellular flux that is responsible for nutrition
delivery from peripheral blood and metabolism substance
transfer from the neural tissues (Bartanusz et al., 2011; Daneman
and Prat, 2015).

Our findings verified that chronic compression led to the
corrosion and expansion of basement membrane (Figure 8B3).
In addition, the abnormally thickened basement membrane
was arranged in a loose pattern and had lower electron
density and indistinct lamellar structure (Figure 8B3). This
indicates the swollen expansion rather than the proliferation
of basement membrane in chronic compressive circumstances.
The basement membrane, mainly composed of laminin
and collagen IV (Hallmann et al., 2005), encapsulates the
microvascular endothelial cell. Besides, deformation contour
of basement membrane was also thought to contribute to the
collapse of microvascular wall. Accordingly, it can be inferred
that the collapse of microvascular wall and stenosis of vascular
lumen may reduce spinal cord perfusion. It is known that
extracellular matrix enzymes such as matrix metalloproteases
(MMP) are essential in regulating the metabolic balance of
basement membrane and extracellular matrix. However, an
intemperate expression of MMP-9 may speed up degradation
process of basement membrane and lead to NVU destruction
(del Zoppo, 2010).

Pericytes are embedded in the basement membrane, and
they wrapped around the abluminal surface of microvessel,
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maintaining structural and functional integrity of microvessel
(Brown et al., 2019; Liu Q. et al., 2020). In the present study, the
cytoplasmic processes of pericytes were observed to crawl and
circumvolute affixed the long axis of microvessel (Figure 9B),
constituting another physical barrier for the vascular wall. In
the CSM group, loss of chromatin may indicate degeneration in
some of the pericytes (Figure 9B) and could be associated with
increased microvascular permeability (Armulik et al., 2010).
A recent study also demonstrated that pericyte degeneration
reduced microvascular blood flow and oxygen supply, leading
to NVU dysfunction and neurodegeneration (Kisler et al., 2017).
We also found that pericyte vascular coverage rate and pericytes
area increased significantly in the CSM group (Figures 9C,D).
Similar findings from the previous study showed that the
coverage rates of pericytes along the long axis of vascular wall
were 54 and 71% in the control and CSM groups, respectively,
exceeding the 22–32% coverage rate of cerebral capillary surface
(Fisher, 2009). Meanwhile, it remains unanswered whether
such a difference was a compensatory proliferating response to
chronic compression. In addition, caveolae-like vesicle/vacuoles
were also commonly seen in the cytoplasm of pericytes as in
the endothelium in both groups (Figures 9A,B), suggesting
that pericyte may participate in transcellular exchange between
the blood and the spinal cord parenchyma (Xu et al., 2017).
Besides, pericyte could promote development of endothelial
cells (Hellström et al., 2001), maturation of microvasculature
(Fisher, 2009), and repairment of destructed NVU components
potentially on behalf of the stem cell (Fisher, 2009). In brief,
pericyte plays an important role in the regulation of microvessel
and microcirculation homeostasis (Sá-Pereira et al., 2012).

Compared with the progressive neurological deterioration
of CSM in human, rats usually show spontaneous functional
recovery in 2 months, disallowing a long-term study over
2 months. Clinical trials are needed for a translation study
(Nishida et al., 2012). The present study applied dorsal–
lateral compression to the spinal cord as animal CSM model.
It is a question of whether the NVU changes would vary
after ventral compression was applied. Further development of
animal models with ventral compression is needed to observe
variation of NVU changes in different compression types.

Conclusion

In summary, we have established explicit and systematic
ultrastructural evidence of NVU destruction in the present
experimental CSM model with dorsal–lateral compression.
The ultrastructural changes have the following characteristics:
(1) neuronal degeneration and apoptosis; (2) disruption
of axonal cytoskeleton (neurofilaments and microtubules)
and myelin sheath with dysfunction mitochondria; (3)
disruption of axolemma and dystrophy of axonal terminal with
dysfunction mitochondria; (4) degenerative oligodendrocyte,

astrocyte, and microglial cell inclusion with degenerating
axon and dystrophic dendrite; (5) swollen endothelium with
dysfunction mitochondria and loss of tight junction integrity;
(6) expanded and corrosive change of basement membrane
with collapsed contour of microvascular wall; (7) increment
in pericyte vascular coverage rate (area); and (8) increased
perivascular astrocytic endfeet area with significant dysfunction
mitochondria. Above all, neuronal and axonal degeneration
and ultrastructural destruction of cellular constituents and
organelles, such as dysfunction of mitochondria, were most
evident in the present study. Microvascular collapse and
compensatory changes in the forms of expanded basement
membrane and proliferated pericytes and astrocytic endfeet
were remarkable. These characteristics may inspire further
pathophysiological investigation on the potential target
NVU component of treatment to promote an effective
therapeutic strategy.
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Objectives: Obstructive sleep apnea (OSA)may increase the risk of Alzheimer’s

disease (AD). However, potential associations among sleep-disordered

breathing, hypoxia, and OSA-induced arousal responses should be

investigated. This study determined di�erences in sleep parameters and

investigated the relationship between such parameters and the risk of AD.

Methods: Patients with suspected OSA were recruited and underwent

in-lab polysomnography (PSG). Subsequently, blood samples were

collected from participants. Patients’ plasma levels of total tau (T-Tau)

and amyloid beta-peptide 42 (Aβ42) were measured using an ultrasensitive

immunomagnetic reduction assay. Next, the participants were categorized

into low- and high-risk groups on the basis of the computed product

(Aβ42 × T-Tau, the cuto� for AD risk). PSG parameters were analyzed

and compared.

Results: We included 36 patients in this study, of whom 18 and 18

were assigned to the low- and high-risk groups, respectively. The average

apnea–hypopnea index (AHI), apnea, hypopnea index [during rapid eye
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movement (REM) and non-REM (NREM) sleep], and oxygen desaturation index

(≥3%, ODI-3%) values of the high-risk group were significantly higher than

those of the low-risk group. Similarly, the mean arousal index and respiratory

arousal index (R-ArI) of the high-risk group were significantly higher than

those of the low-risk group. Sleep-disordered breathing indices, oxygen

desaturation, and arousal responses were significantly associated with an

increased risk of AD. Positive associations were observed among the AHI,

ODI-3%, R-ArI, and computed product.

Conclusions: Recurrent sleep-disordered breathing, intermittent hypoxia, and

arousal responses, including those occurring during the NREM stage, were

associated with AD risk. However, a longitudinal study should be conducted

to investigate the causal relationships among these factors.

KEYWORDS

obstructive sleep apnea, Alzheimer’s disease, sleep-disordered breathing, total tau,

amyloid beta-peptide 42, arousal response

Introduction

The prevalence of obstructive sleep apnea (OSA) in

the general population ranges from 9 to 38% (1). OSA is

characterized by repetitive upper airway collapse, which leads

to intermittent hypoxia, recurrent arousal responses, and sleep

fragmentation (2). OSA is associated with a 1.26-fold risk (95%

CI: 1.05–1.50) of cognitive impairment and dementia and has

been linked to memory dysfunction (3, 4). One review reported

that 11–71% of patients with cognitive impairment have OSA

(5). In another study, more than 90% of the enrolled patients

with dementia had diagnosed OSA, and 39.1% of the cases of

diagnosed OSA were severe (6).

Studies have provided possible explanations of the

pathological mechanisms underlying the relationship between

OSA and dementia. For example, one study indicated that

the respiratory events associated with OSA—namely episodes

of apnea and hypopnea—affect cerebral circulation as well

as cerebrovascular responses and result in hypercapnia and

concomitant hypoxia (7). Intermittent hypoxia is associated

with elevated reactive oxygen species formation, which can

cause oxidative stress; oxidative stress can lead to inflammatory

cytokine activation and, in turn, cerebral neuron impairment

(8). In addition, hypercapnia and hypoxia can induce arousal

responses, which are associated with fragmented sleep and

an increased risk of cognitive impairment (9, 10). Therefore,

exploring the effects of the various responses induced by OSA

stimuli on individuals’ risk of developing neurodegenerative

diseases is crucial.

OSA severity is classified using the apnea–hypopnea index

(AHI), which is the total number of respiratory events during

sleep time. Although it can be used to assess sleep-disordered

breathing, the AHI may not be entirely suitable for evaluating

all phenotypic subtypes of OSA (11). For example, the AHI does

not sufficiently reflect the pattern or level of sleep fragmentation

or the effect of arousal responses, although these factors are

correlated. Frequent arousal, which leads to sleep fragmentation,

can result in neurodegeneration and is associated with dementia

(12). Another study recruited male participants and investigated

the relationships between brain cortical thickness and sleep

parameters measured using polysomnography (PSG) among the

participants with severe OSA (13). Those results indicated that

the arousal index (ArI) and respiratory arousal index (R-ArI)

values of the patients were significantly and negatively correlated

with the cortical thickness of the prefrontal and parietal

cortex areas, which may elucidate some of the underlying

mechanisms of cognitive dysfunction. Additionally, researchers

have established numerous animal models to investigate

the association between arousal indices and biomarkers of

neurodegenerative diseases. In a mouse model of Alzheimer’s

disease (AD), for example, increased amyloid beta peptide

(Aβ) deposition was determined to be related chronic sleep

fragmentation induced by intermittent nocturnal arousals (14).

In other studies, sleep arousal significantly increased both Aβ

and tau protein levels in the interstitial fluid of mice and reduced

the clearance efficiency of these proteins in animal models

(15, 16). However, the associations among sleep-disordered

breathing, arousal responses, and the risk of AD development

remain unclear and warrant further investigation.

This explorative study, conducted in Taiwan, investigated

the associations between sleep parameters measured using

PSG and plasma levels of biomarkers of neurodegenerative

diseases. We also compared the sleep parameters of the

patients in the low- or high-risk groups, who were grouped

on the basis of biomarker levels. These aims to determine

the relationships between sleep disorders and the risk of AD
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FIGURE 1

Participant recruitment flowchart. PSG, polysomnography.

development. The findings of this study may help elucidate the

effects of the accumulation of neurochemical biomarkers on

arousal responses.

Methods

Ethics

The study protocol was approved by the Joint Institutional

Review Board of Taipei Medical University (TMU-JIRB:

N201912097), and the study was conducted in accordance with

the Declaration of Helsinki. Informed consent was obtained

from each participant before data collection. Participant

enrollment, PSG outcome access, and blood sample collection

were performed in accordance with approved guidelines.

Study population and procedure

Patients with suspected OSA were recruited and referred

to the Sleep Center of Taipei Medical University Shuang Ho

Hospital (New Taipei City, Taiwan). The participants were

recruited from June to October 2018 and from July 2020 to

March 2022. The recruitment criteria were as follows: (1) no

history of otorhinolaryngological surgery for OSA, (2) no use of

psychotropic or hypnotic drugs in the prior 6 months, (3) an

age between 18 and 80 years, (4) a PSG recording of over 6 h,

(5) no diagnosis of neurological disorders (e.g., AD, dementia,

epilepsy, and Parkinson’s disease) and other comorbidities (e.g.,

cardiovascular disease, renal failure, and metabolic syndrome),

and (6) absence of cognitive symptoms. Figure 1 presents

a flowchart of the study procedure. We arranged for the

eligible participants to undergo overnight PSG at the Sleep

Center. We collected blood samples from each patient in the

morning at a fixed time (6:30 a.m.) after they underwent PSG

to determine their plasma levels of neurochemical biomarkers.

All the collected data were statistically analyzed.

PSG

The PSG examination was performed using a ResMed

Embla N7000 (ResMed, San Diego, CA, USA) and an Embla

MPR (ResMed Global Supplier Alliance, Sydney, Australia)

at the Sleep Center. The collected images were scored using

RemLogic software (version 3.41; Embla Systems, Thornton,

CO, USA) by certified PSG technologists who undergo monthly

interscoring training. All the scoring rules were established

in accordance with the 2017 guidelines of the American

Association of Sleep Medicine (17). To ensure the consistency of

the scoring, all the scoring outcomes were examined by another

technologist, and any inconsistencies were resolved through

discussion. Regarding the PSG parameters of interest, we

collected the participants’ sleep architecture–related, respiratory

event–related, hypoxemia-related, and arousal-related indices.

OSA severity was categorized as normal (AHI < 5 events/h),

mild (AHI = 5 to 15 events/h), moderate (AHI = 15 to 30

events/h), or severe (AHI ≥ 30 events/h) (18). All arousal
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events were categorized as spontaneous arousal, respiratory

arousal (apnea or hypopnea related), limb-movement arousal

(single, periodic, or respiratory-related movement), or snore

arousal on the basis of cause. The ArI value was the sum

of all arousal values. In particular, abrupt alterations in

electroencephalography caused by alpha (8 to 12Hz), theta (4

to 8Hz), or high-frequency (>16Hz, but not with a spindle

pattern) bands were scored. Alterations were recorded only

if they continued for more than 3 s (≥10 s of stable sleep

preceding the alterations). Next, we calculated the respiratory

event–related and arousal-related indices during the rapid eye

movement (REM) stage, the non-REM (NREM) stage, and total

sleep time. Briefly, certified PSG technologists first examined

apnea, hypopnea, oxygen desaturation (≥3%), arousal events,

and sleep stages. Next, the scoring system automatically used

different sleep periods to calculate the indices. The apnea index

(AI) is defined as apnea events divided by total sleep time.

AINREM is defined as the apnea event that occurred during

the NREM period divided by NREM time. AIREM is defined as

the apnea event that occurred during the REM period divided

by REM time. All arousal subtypes were classified on the

basis of factors induced before the arousal event. For instance,

respiratory arousal was defined as respiratory events, including

apnea and hypopnea, that cause arousal, whereas spontaneous

arousal was defined as the occurrence of arousal without the

induction of any particular factor.

Blood sample collection and processing

The blood samples of the participants were collected using

a procedure described in another study (19). Approximately

16mL of venous blood was collected from each participant

and stored in a lavender-top tube coated with tripotassium

ethylenediamine tetra-acetate. Within 1 h of collection, the

samples were centrifuged at 2,500 g for 15min at room

temperature. The extracted plasma was then aliquoted into

cryovials, frozen at−80◦C, and delivered toMagQu (New Taipei

City, Taiwan) to test the levels of neurochemical biomarkers.

Measurement of neurochemical
biomarkers in blood samples

The participants’ plasma levels of total tau (T-Tau) and

Aβ42 were determined using an ultrasensitive immunomagnetic

reduction (IMR) assay. The procedure and technical details

of the assay were reported in another study (20). The

biomarkers Aβ42 and T-Tau were assayed using different

reagents (MagQu, catalog number: MF-AB2-0060 and MF-

TAU-0060). Mixtures of various volumes of reagents and

samples were analyzed using a SQUID-based alternating-

current magnetosusceptometer (model XacPro-S, MagQu, New

Taipei City, Taiwan). The plasma levels of T-Tau protein and

Aβ42 were quantified on the basis of the IMR signals generated

by interaction between IMR reagents and target proteins; these

signals were then converted into concentrations on the basis

of the characteristic curves of each protein. The cutoff value

for the computed product of Aβ42 and T-Tau for identifying

AD (382.68 pg2/mL2, 92% accuracy in identifying AD) was

established in another study (21). In this study, we used this

established cutoff value to separate the recruited participants

into two groups on the basis of whether they were at low or high

risk of developing AD.

Statistical analysis

All the statistical analyses were performed using SPSS

version 20 (SPSS, Chicago, IL, USA). The Shapiro–Wilk test

was first conducted to examine the normality of the derived

parameters. Student’s t-test and the Mann–Whitney U test

were used to identify between-group differences in the mean

values of the continuous variables with normal distributions

(Shapiro–Wilk test, p > 0.05) and non-normal distributions

(Shapiro–Wilk test, p < 0.05), respectively. Categorical variables

were analyzed using the chi-squared test. Next, to explore

the associations between the variables of the low-risk group

(computed products ≤ 382.68 pg2/mL2) and those of the

high-risk group (computed products > 382.68 pg2/mL2), we

used simple and multivariable logistic regression models with

adjustment for age, sex, and body mass index (BMI). The results

are reported as crude or adjusted odds ratios (ORs) with 95%

CIs. The level of significance was set to p < 0.05.

Results

Demographic characteristics of enrolled
participants

Table 1 presents the demographic data of the participants.

The low- and high-risk groups consisted of 18 participants

each. No significant between-group differences in body-

related parameters were identified. Regarding neurochemical

biomarkers levels, compared with the low-risk group, the high-

risk group had significantly higher levels of T-Tau and Aβ42 as

well as a higher average ratio (Aβ42/T-Tau) and product (Aβ42

× T-Tau) of the two. In addition, the OSA severity distributions

of the groups did not differ significantly (p = 0.11); most of

the participants in both groups had severe OSA (low-risk group:

61.11%; high-risk group: 88.89%).

Sleep parameters

Table 2 presents the participants’ sleep architecture

parameters, oximetry parameters, and sleep-disordered
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TABLE 1 Comparison of demographic characteristics of the low- and

high-risk groups.

Categorical variable Low-risk

group

(n = 18)

High-risk

group

(n = 18)

p

Age (y)a 51.72± 11.4 52.78± 11.24 0.90

Sex (male/female)b 10/8 13/5 0.30

BMI (kg/m2)a 29.5± 5.22 28.62± 3.82 0.62

Neck circumference (cm)a 41.67± 10.44 38.56± 3.05 0.60

Waist circumference (cm)a 95.36± 20.19 96.72± 9.76 0.99

Biomarker levelsa

T-Tau (pg/mL) 20.31± 2.62 27.39± 4.57 <0.01

Aβ42 (pg/mL) 15.83± 0.72 16.98± 0.85 <0.01

Aβ42/T-Tau 0.79± 0.1 0.63± 0.08 <0.01

Aβ42 × T-Tau (pg/mL)2 322.02± 46.75 467.79± 102.24 <0.01

OSA severityb 0.11

Normal, n (%) 1 (5.56%) –

Mild, n (%) 4 (22.22%) –

Moderate, n (%) 2 (11.11%) 2 (11.11%)

Severe, n (%) 11 (61.11%) 16 (88.89%)

BMI, body mass index; OSA, obstructive sleep apnea.

Data are expressed as means± standard deviations.
aDifferences between groups were assessed using Mann–Whitney U test.
bDifferences between groups were assessed using the chi-squared test.

breathing indices. Regarding peripheral arterial oxygen

saturation (SpO2) indices, compared with the low-risk group,

the high-risk group had significantly higher oxygen desaturation

index values (≥3%, ODI-3%; p < 0.01) and lower minimum

SpO2 (p < 0.05). Regarding sleep-disordered breathing indices,

the low-risk group had significantly lower AHI, AI, and

hypopnea index (HI) values than did the high-risk group

(AHI: 28.55 ± 15.56 vs. 52.59 ± 17.28 events/h, p < 0.01; AI:

6.33 ± 8.03 vs. 19.53 ± 16.4 events/h, p < 0.01; HI: 22.22 ±

13.23 vs. 33.07 ± 14.39 events/h, p < 0.05). Regarding the

indices calculated during NREM sleep, the high-risk group

had significantly higher mean AINREM and HINREM values.

No significant between-group difference in sleep-disordered

breathing indices calculated during REM sleep was identified.

Arousal parameters

Table 3 presents the participants’ arousal-related parameters

during the REM and NREM stages and total sleep time. The ArI

and R-ArI of the low-risk group were significantly lower than

those of the high-risk group (ArI: 17.44± 8.94 vs. 28.46± 15.95

events/h, p< 0.05; R-ArI: 8.87± 6.44 vs. 20.93± 14.93 events/h,

p< 0.01). Regarding NREM sleep parameters, the ArINREM and

R-ArINREM of the high-risk group were significantly higher than

those of the low-risk group (ArINREM: 16.59 ± 8.35 vs. 28.91

TABLE 2 Comparison of sleep parameters of the low- and high-risk

groups.

Categorical variable Low-risk

group

(n = 18)

High-risk

group

(n = 18)

p

Sleep architecture parameters

Sleep efficiency (%) 79.16± 15.53 77.55± 13.37 0.39

Wake (% of SPT) 17.46± 14.49 17.08± 11.16 0.75

NREM (% of SPT) 71.97± 11.57 70.32± 10.41 0.67

REM (% of SPT) 10.55± 6.81 12.6± 5.52 0.33

WASO (min) 60.04± 48.7 57.65± 32.42 0.82

TST (min) 288.97± 57.25 285.21± 49.4 0.54

Oximetry parameters

Mean SpO2 (%) 95.19± 1.63 93.98± 2.1 0.06

Minimum SpO2 (%) 83.17± 7.65 76.39± 8.61 <0.05

ODI-3% (events/h) 25.16± 15.11 47.16± 16.56 <0.01

SDB indices (events/h)

AHI 28.55± 15.56 52.59± 17.28 <0.01

AI 6.33± 8.03 19.53± 16.4 <0.01

AINREM 5.38± 8.76 19.39± 17.5 <0.01

AIREM 12.26± 15.45 21.34± 18.01 0.13

HI 22.22± 13.23 33.07± 14.39 <0.05

HINREM 21.2± 13.3 33.38± 14.66 <0.05

HIREM 27.24± 21.18 33.05± 20.47 0.41

SPT, Sleep period time; NREM, non-rapid eye movement; REM, rapid eye movement;

WASO, wake time after sleep onset; TST, total sleep time; SpO2 , peripheral arterial

oxygen saturation (as measured using pulse oximetry); ODI-3%, oxygen desaturation

index ≥3%; SDB, sleep-disordered breathing; AHI, apnea–hypopnea index; AI, apnea

index; AINREM , apnea index in non-rapid eye movement stage; AIREM , apnea index in

rapid eye movement stage; HI, hypopnea index; HINREM , hypopnea index in non-rapid

eye movement stage; HIREM , hypopnea index in rapid eye movement stage.

Data are expressed as means± standard deviations.

Differences between groups were assessed using the Mann–Whitney U test.

± 16.97 events/h, p < 0.05; R-ArINREM: 8.05 ± 6.14 vs. 21.2 ±

15.95 events/h, p < 0.01). In addition, the high-risk group had a

significantly higher mean R-ArIREM than did the low-risk group

(p < 0.05). However, no significant between-group differences

in the types of spontaneous arousal were observed.

Elevated sleep-disordered breathing
indices are associated with a higher risk
of AD development

Table 4 presents the associations among the sleep-disordered

breathing indices of the low- and high-risk groups determined

using the logistic regression models. An increase of 1 event of

ODI-3% per hour was associated with a 1.10-fold higher OR

(95% CI: 1.03–1.17, p < 0.01) and a 1.13-fold higher OR (95%

CI: 1.05–1.21, p < 0.01) for developing AD in the crude model

and the model adjusted for age, sex, and BMI. Similarly, we
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TABLE 3 Comparison of arousal indices of the low- and high-risk

groups.

Variable (events/h) Low-risk

group

(n = 18)

High-risk

group

(n = 18)

p

ArI 17.44± 8.94 28.46± 15.95 <0.05

ArINREM 16.59± 8.35 28.91± 16.97 <0.05

ArIREM 23.54± 17.3 25.36± 13.55 0.73

Sp-ArI 6.61± 4.45 5.51± 5.01 0.27

Sp-ArINREM 6.64± 4.48 5.62± 5.12 0.25

Sp-ArIREM 9.09± 9.17 4.31± 5.78 0.05

R-ArI 8.87± 6.44 20.93± 14.93 <0.01

R-ArINREM 8.05± 6.14 21.2± 15.95 <0.01

R-ArIREM 12.44± 15.49 19.12± 13.93 <0.05

Sn-ArI 0.26± 1.11 0.45± 1.32 0.62

Sn-ArINREM 0.26± 1.08 0.47± 1.39 0.57

Sn-ArIEM 0.31± 1.3 0.34± 1.0 0.62

L-ArI 1.64± 2.05 1.63± 2.14 0.79

L-ArINREM 1.69± 3.7 1.55± 2.93 0.71

L-ArIREM 1.72± 2.03 1.58± 2.09 0.63

ArI, arousal index; ArINREM , arousal index in non-rapid eye movement stage; ArIREM ,

arousal index in rapid eye movement stage; Sp-ArI, spontaneous arousal index; Sp-

ArINREM , spontaneous arousal index in non-rapid eye movement stage; Sp-ArIREM ,

spontaneous arousal index in rapid eyemovement stage; R-ArI, respiratory arousal index;

R-ArINREM , respiratory arousal index in non-rapid eye movement stage; R-ArIREM ,

respiratory arousal index in rapid eye movement stage; Sn-ArI, snore arousal index;

Sn-ArINREM , snore arousal index in non-rapid eye movement stage; Sn-ArIREM , snore

arousal index in rapid eye movement stage; L-ArI, limb movement arousal index; L-

ArINREM , limb movement arousal index in non-rapid eye movement stage; L-ArIREM ,

limb movement arousal index in rapid eye movement stage.

Data are expressed as means± standard deviations.

Differences between groups were assessed using the Mann–Whitney U test.

determined the statistically significant ORs for developing AD

for each event-per-hour increase in the following parameters:

AHI (crude OR 1.10, 95% CI 1.03–1.18, p < 0.01; adjusted OR

1.13, 95% CI 1.05–1.18, p < 0.01), AI (crude OR 1.10, 95%

CI 1.02–1.20, p < 0.05; adjusted OR 1.10, 95% CI 1.01–1.2, p

< 0.05), and HI (crude OR 1.06, 95% CI 1.0–1.12, p < 0.05;

adjusted OR 1.12, 95% CI 1.02–1.22, p < 0.05). Similar results

were obtained when the analysis was restricted to parameters

measured during NREM sleep (AINREM: crude OR 1.09, 95% CI

1.01–1.18, p< 0.05; adjusted OR 1.09, 95%CI 1.01–1.2, p< 0.05;

HINREM: Crude OR 1.07, 95% CI 1.01–1.13, p < 0.05; adjusted

OR 1.12, 95% CI 1.02–1.22, p < 0.05).

Elevated arousal indices are associated
with a higher risk of AD development

Table 5 presents the associations among the arousal indices

of the low- and high-risk groups determined using the logistic

regression models. Every event-per-hour increase in ArI and

TABLE 4 Odd ratios (ORs) associated with the sleep-disordered

breathing indices of the low- and high-risk groups.

Variable (events/h) Crude OR Adjusted OR

(95% CI)a (95% CI)b

Oximetry parameter

ODI-3% (events/h) 1.10 (1.03–1.17)** 1.13 (1.05–1.21)**

SDB index (events/h)

AHI 1.10 (1.03–1.18)** 1.13 (1.05–1.21)**

AI 1.06 (1.01–1.10)* 1.10 (1.01–1.2)*

AINREM 1.09 (1.01–1.18)* 1.09 (1.01–1.18)*

AIREM 1.03 (0.99–1.08) 1.04 (0.99–1.09)

HI 1.06 (1.0–1.12)* 1.12 (1.02–1.22)*

HINREM 1.07 (1.01–1.13)* 1.12 (1.02–1.22)*

HIREM 1.01 (0.98–1.05) 1.03 (0.98–1.08)

ODI-3%, oxygen desaturation index≥3%; SDB, Sleep-disordered breathing; AHI, apnea–

hypopnea index; AI, apnea index; AINREM , apnea index in non-rapid eye movement

stage; AIREM , apnea index in rapid eye movement stage; HI, hypopnea index; HINREM ,

hypopnea index in non-rapid eye movement stage; HIREM , hypopnea index in rapid eye

movement stage.
aSimple logistic regression models.
bMultivariable logistic regression models adjusted for age, sex, and body mass index.

*p < 0.05; **p < 0.01.

R-ArI was associated with a 1.08-fold higher OR (95% CI: 1.01–

1.15, p < 0.05) and 1.16-fold higher OR (95% CI: 1.03–1.31, p

< 0.05) for developing AD, respectively. After adjustment for

age, sex, and BMI, each event-per-hour increase in ArI and

R-ArI was significantly associated with a 1.08-fold higher OR

(95% CI: 1.0–1.16, p < 0.05) and 1.16-fold higher OR (95%

CI: 1.02–1.31, p < 0.05) of developing AD, respectively. When

the analysis was restricted to arousal indices measured during

NREM sleep, we identified similar trends in ArINREM and R-

ArINREM (ArINREM: crude OR 1.08, 95% CI 1.01–1.16, p <

0.05; adjusted OR 1.08, 95% CI 1.01–1.16, p < 0.05; R-ArINREM:

crude OR 1.15, 95%CI 1.03–1.3, p< 0.05; adjusted OR 1.15, 95%

CI 1.02–1.29, p < 0.05).

Associations between sleep parameters
and computed product (Aβ42 × T-Tau)

Table 6 presents a summary of the associations between the

computed product and sleep parameters, including oximetry,

sleep-disordered breathing, and arousal, determined using

multivariable linear regression after adjustment for age, sex,

and BMI. Each additional ODI-3% and AHI event occurring

per hour of sleep was significantly associated with an elevated

level of the computed product [ODI-3%: 0.41, 95% confident

interval (CI): 0.08 to 0.74, P < 0.05; AHI: 0.40, 95% CI:

0.06–0.74, P < 0.05]. For the arousal index, every event-

per-hour increase in R-ArI and R-ArINREM was significantly

associated with an increased level of the computed product
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TABLE 5 Odd ratios associated with arousal indices of the low- and

high-risk groups.

Variable (events/h) Crude OR Adjusted OR

(95% CI)a (95% CI)b

ArI 1.08 (1.01–1.15)* 1.08 (1.0–1.16)*

ArINREM 1.08 (1.01–1.16)* 1.08 (1.01– 1.16)*

ArIREM 1.01 (0.97–1.05) 1.0 (0.96–1.05)

Sp-ArI 0.95 (0.82–1.1) 0.98 (0.84–1.14)

Sp-ArINREM 0.95 (0.83–1.1) 0.99 (0.85– 1.15)

Sp-ArIREM 0.92 (0.83–1.01) 0.92 (0.84–1.02)

R-ArI 1.16 (1.03–1.31)* 1.16 (1.02–1.31)*

R-ArINREM 1.15 (1.03–1.3)* 1.15 (1.02– 1.29)*

R-ArIREM 1.03 (0.98–1.08) 1.03 (0.98–1.09)

CI, confidence interval; ArI, arousal index; ArINREM , arousal index in non-rapid

eye movement stage; ArIREM , arousal index in rapid eye movement stage; Sp-ArI,

spontaneous arousal index; Sp-ArINREM , spontaneous arousal index in non-rapid eye

movement stage; Sp-ArIREM , spontaneous arousal index in rapid eye movement stage;

R-ArI, respiratory arousal index; R-ArINREM , respiratory arousal index in non-rapid eye

movement stage; R-ArIREM , respiratory arousal index in rapid eye movement stage.
aSimple logistic regression models.
bMultivariable logistic regression models adjusted for age, sex, and body mass index.

*p < 0.05.

(R-ArI: 0.34, 95% CI: 0.02–0.66, P < 0.05; AHI: 0.35,

95% CI: 0.04–0.67, P < 0.05).

Determination of odds ratio by using
di�erent cuto� points

To enhance the robustness of the observed outcomes,

we employed another cutoff for the product (Aβ42 × T-Tau;

403.72 pg2/mL2), which was determined using the IMR

technique (22). According to this cutoff, 14 and 22 patients

were included in the high- and low-risk groups, respectively.

Supplementary Tables S2, S3 present associations among

the sleep-disordered breathing indices and arousal indices,

respectively, in the low- and high-risk groups determined

using logistic regression models. Significant associations among

ODI-3%, AHI, HI, and HINREM were observed in both crude

and adjusted models (adjusted for age, sex, and BMI). In terms

of the arousal effect, R-ArI was significantly associated with

the risk of AD in both crude and adjusted models. When the

analysis was restricted to only the NREM period, significant

associations were observed between ArINREM and R-ArINREM

in both crude and adjusted models.

Discussion

Although OSA has been determined to be associated with

the formation and accumulation of neurochemical biomarkers,

the relationship between the clinical symptoms of OSA, such

TABLE 6 Associations between sleep parameters and computed

product (Aβ42 × T-Tau).

Variable (events/h) Beta coefficient

(95% confidence interval)

Oximetry parameters

ODI-3% (events/h) 0.41 (0.08 to 0.74)*

SDB indices (events/h)

AHI 0.40 (0.06 to 0.74)*

AI 0.21 (−0.12 to 0.54)

AINREM 0.20 (−0.13 to 0.54)

AIREM 0.19 (−0.16 to 0.54)

HI 0.35 (−0.03 to 0.72)

HINREM 0.36 (−0.0 to 0.72)

HIREM 0.17 (−0.25 to 0.59)

Arousal indices (events/h)

ArI 0.26 (−0.07 to 0.59)

ArINREM 0.26 (−0.06 to 0.59)

ArIREM 0.08 (−0.3 to 0.45)

Sp-ArI −0.11 (−0.46 to 0.24)

Sp-ArINREM −0.12 (−0.47 to 0.23)

Sp-ArIREM −0.12 (−0.46 to 0.21)

R-ArI 0.34 (0.02 to 0.66)*

R-ArINREM 0.35 (0.04 to 0.67)*

R-ArIREM 0.13 (−0.24 to 0.51)

ODI-3%, oxygen desaturation index≥3%; SDB, sleep-disordered breathing; AHI, apnea–

hypopnea index; AI, apnea index; AINREM , apnea index in the non-rapid eye movement

stage; AIREM , apnea index in rapid eye movement stage; HI, hypopnea index; HINREM ,

hypopnea index in non-rapid eye movement stage; HIREM , hypopnea index in rapid eye

movement stage. ArI, arousal index; ArINREM , arousal index in non-rapid eye movement

stage; ArIREM , arousal index in rapid eye movement stage; Sp-ArI, spontaneous arousal

index; Sp-ArINREM , spontaneous arousal index in non-rapid eye movement stage; Sp-

ArIREM , spontaneous arousal index in rapid eye movement stage; R-ArI, respiratory

arousal index; R-ArINREM , respiratory arousal index in non-rapid eye movement stage;

R-ArIREM , respiratory arousal index in rapid eye movement stage.

Multivariable linear regression models were adjusted for age, sex, and body mass index.

*p < 0.05.

as intermittent hypoxia and arousal responses, and levels of

neurochemical biomarker has not been explored. Therefore,

we compared the sleep parameters (measured using PSG) of

individuals at low and high risks of developing AD and explored

the associations between the participants’ sleep parameters and

neurochemical biomarker levels. The results reveal that the high-

risk group had significantly higher mean values for various

indices of sleep-disordered breathing and arousal responses

than the low-risk group. We determined that increased risk of

developing ADwas associated with various arousal response and

sleep-disordered breathing indices.

The mean AI, HI, AINREM, HINREM, ODI-3%, and

AHI of the low- and high-risk groups differed significantly

despite the lack of significant differences between the OSA

severity distributions of the groups. Moreover, significant and

positive associations were observed among the AHI, ODI-3%,
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and computed product. These findings are consistent with

those of studies investigating the association between oxygen

desaturation and elevated levels of neurochemical biomarkers

(23, 24) that serve as indicators of hypoxia, a major risk factor

for neurochemical biomarker accumulation. Hypoxia causes

neuronal apoptosis and tau hyperphosphorylation (25). One

study reported a significant association between high AHI

values and neurochemical biomarker levels in American patients

with severe OSA without dementia (26). Another prospective

study analyzed the sleep disorder characteristics of 298 older

women (aged ≥ 65 years) without dementia and reported

that an increased oxygen desaturation index (≥15 events/h)

was associated with the risk of mild cognitive impairment

or dementia after adjustment for age, BMI, and ethnicity

(27). Hypercapnia, another key risk factor of OSA, can cause

deterioration of the functional and anatomic status of cerebral

vessels, which may lead to AD (28). Taken together, the available

evidence suggests that sleep-disordered breathing is related to an

individual’s risk of developing AD.

Regarding arousal responses, the patients in the high-risk

group had significantly higher ArI, R-ArI, ArINREM, and R-

ArINREM values than did those in the low-risk group. Moreover,

R-ArI and R-ArINREM values were positively associated with the

increased computed product. These results may be attributed to

the pathogenic mechanisms of sleep arousal. Specifically, arousal

responses refer to abrupt alterations between sleep and fractional

wakefulness (29). Recurrent sleep arousal can interrupt the sleep

cycle, alter the sleep architecture, and affect the metabolism of

neurodegenerative biomarkers (30). They may also be attributed

to the tendency of arousal to disrupt the clearance of neurotoxic

proteins, resulting in the increased formation of amyloid plaques

and the hyperphosphorylation of tau protein strands in the

brain, as demonstrated in another study (31). One review

similarly concluded that sleep fragmentation and nighttime

awakening were associated with AD progression (32). In the

present study, the groups’ mean arousal indicesmeasured during

NREM sleep differed significantly. This may be explained by

the underlying mechanisms of slow-wave sleep, which only

occurs in the NREM stage and is associated with the modulation

of neurochemical biomarkers; that is, arousals during NREM

sleep are likely to interfere with the clearance of neurotoxic

proteins. Studies have indicated that lessened or unstable NREM

sleep increases the level of neurochemical biomarkers, which

is consistent with the findings of the present study (33, 34).

Collectively, the results of the present study indicate that the

high-risk group had higher mean values for the selected arousal

indices because arousal responses may disrupt the clearance of

neurotoxic proteins, resulting in sleep fragmentation and, in

turn, an increased risk of developing AD.

We further explored the relationships between sleep

parameters and the risk of AD development by using

logistic regression models with and without adjustment

for demographic characteristics. Our findings indicate that

frequent respiratory events, intermittent hypoxic episodes, and

respiratory arousal responses were significantly associated with

an increased risk of developing AD. These findings may be

attributable to various risk factors, including hypoxia, oxidative

stress, and sleep cycle fragmentation. One review elucidated the

pathological roles of hypoxia in AD, which include facilitating

the accumulation of neurotoxic proteins, enhancing the

hyperphosphorylation of tau protein, diminishing the function

of the blood–brain barrier, and accelerating neurodegeneration

(35). Research has demonstrated the relationship among AD

pathology, oxidative stress, and oxidative damage to the brain

(36). Another study reported that sleep discontinuity interfered

with the clearance of neurotoxic proteins from the central

nervous system by the glymphatic system (37). Similarly,

another study suggested that sleep disturbance may cause

systemic inflammation, thereby increasing Aβ accumulation,

which is thought to be a driver of AD pathogenesis (38). Taken

together, the findings of this study reveal that high indices of

sleep-disordered breathing and hypoxia and a high frequency

of respiratory arousal are associated with an increased risk of

developing AD.

The present study has some strengths. First, this study

analyzed data derived from patients without cognitive

symptoms and observed positive associations among sleep-

disordered breathing events, neuron biomarker levels, and AD

risk. These outcomes are in accordance with the findings of

several studies indicating an association of OSA with AD risk

(23). Moreover, in contrast to previous studies analyzing sleep

parameters in patients with AD (6, 39), this pilot study focused

on patients without any cognitive impairment symptom, and the

findings of this studymay help in understanding the relationship

between OSA and AD risk. Another major finding of this pilot

study is the positive associations between the respiratory arousal

frequency and neuron biomarker levels. Previous studies have

investigated the associations between arousal responses and

cognitive impairment or different neuron biomarker plasma

levels in children (40, 41). The results of this study demonstrated

that respiratory arousal events were associated with elevated

neuron biomarker levels and thus increased AD risk in adult

patients without cognitive impairment. The findings of this

pilot study suggest that sleep-disordered breathing and related

arousal responses may increase neuron biomarker levels and

thus AD risk.

This study has several limitations that should be addressed.

First, although individuals with diagnosed AD were excluded

from this study, we did not perform neuropsychological

evaluations to assess the brain function of the enrolled

participants. Moreover, we did not enroll patients who had

cognitive symptoms or were diagnosed as having neurological

disorders. The mean age of the enrolled patients was 52.25

years; thus, they may have a relatively low risk of cognitive
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impairment (42). Nevertheless, future studies should investigate

the associations among PSG parameters, cognitive questionnaire

responses, and biomarker levels to enhance the robustness

of our results. Next, during the recruitment process, the

presence of genes associated with neurodegenerative diseases

was not determined to be predictive of an individual’s risk of

developing neurodegenerative diseases. However, the potential

effects of genetic factors (e.g., ApoE4) on the participants’

baseline levels of neurochemical biomarkers and the risk of

AD development must be taken into account (43). We did

not measure the levels of biomarkers in the participants’

cerebrospinal fluid to compare against their levels in the

plasma samples, and only one cross-sectional measurement

was performed. We were therefore unable to track shifts

in biomarker levels over time or evaluate the potential

causal relationship between sleep parameters and individuals’

risk of AD development. Next, this study did not measure

other biomarkers in plasma, such as p-tau 181, Aβ40, or

neurofilament light chain protein. These related biomarkers

may help identify the risk of AD and thus the associations

between OSA and AD. Although we observed positive

associations between sleep-disordered breathing indices and

the computed product (Aβ42 × T-Tau), we did not measure

the levels of inflammatory biomarkers (i.e., glial fibrillary

acidic protein). Examination of the level of this biomarker

can help in identifying the relationships among hypoxia,

inflammation, and neuron impairment. These limitations

should be addressed in long-term follow-up studies involving

cohorts of patients with OSA.

Another limitation of this study is that it included a small

sample of participants enrolled from a single sleep center.

Such a small sample size may affect the generalization of

our results to different populations. In addition, we recruited

individuals only from a single region in Taiwan as the

study population. The relationships between arousal indices

and neurochemical biomarkers should be further explored

in multicenter studies. Previous studies have indicated that

the ratio of slow oscillations in the N3 stage was linked to

cognitive impairment or AD risk (44). However, this study

calculated only the sleep index during the NREM period to

eliminate the first-night effect of PSG instead of splitting

them into N1, N2, and N3 stages. The first-night effect,

resulting from the sleep laboratory environment or PSG devices,

may reduce slow-wave sleep and thus cause the incorrect

estimation of sleep parameters in some particular sleep stages

(e.g., sleep indices in the N3 stage may be overestimated

due to the short N3 period) (45). However, respiratory and

arousal events occurring in the N3 stage may be crucial risk

factors interrupting neuron biomarker clearance. Therefore,

researchers should include a large sample and individuals of

different ethnicities as well as perform multiple-night PSG

to increase the number of participants and investigate sleep

parameters in each sleep stage but with the elimination of the

first-night effect.

Conclusion

In this study, drawing on the PSG data and plasma levels

of selected biomarkers of a sample population from northern

Taiwan, we observed that the group that was at high risk of

developing AD (patients with computed products > 382.68

pg2/mL2) had higher mean values for several sleep-disordered

breathing and arousal indices (during both the REM and NREM

stages) than did the group that was at low risk of developing

AD. In addition, higher values for sleep-disordered breathing

indices, namely AI, HI, AINREM, HINREM, AHI, and ODI-3%,

were associated with an increased risk of AD. Arousal responses,

especially respiratory arousal responses, were also associated

with an increased risk of AD. Moreover, sleep-disordered

breathing indices (AHI and ODI-3%) and respiratory arousal

indices (R-ArI and R-ArINREM) were positively associated with

the computed product. These results indicate that respiratory

events, intermittent hypoxia, and arousal responses, including

those that occur during the NREM stage, are associated with

an increased risk of developing AD. However, the causal

relationships among these factors must be further explored

through a longitudinal study.
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Introduction: This article documents an emerging body of evidence

concerning the neurological e�ect of polycyclic aromatic hydrocarbon

(PAH) exposure with regard to cognitive function and increased risk of

neurodegeneration.

Methods: Two electronic databases, PubMed and Web of Science, were

systematically searched.

Results: The 37/428 studies selected included outcomes measuring cognitive

function, neurobehavioral symptoms of impaired cognition, and pathologies

associated with neurodegeneration from pre-natal (21/37 studies), childhood

(14/37 studies), and adult (8/37 studies) PAH exposure. Su�cient evidence was

found surrounding pre-natal exposure negatively impacting child intelligence,

mental development, average overall development, verbal IQ, and memory;

externalizing, internalizing, anxious, and depressed behaviors; and behavioral

development and child attentiveness. Evidence concerning exposure during

childhood and as an adult was scarce and highly heterogeneous; however,

the presence of neurodegenerative biomarkers and increased concentrations

of cryptic “self” antigens in serum and cerebrospinal fluid samples suggest a

higher risk of neurodegenerative disease. Associations with lowered cognitive

ability and impaired attentiveness were found in children and memory

disturbances, specifically auditory memory, verbal learning, and general

memory in adults.

Discussion: Although evidence is not yet conclusive and further research

is needed, the studies included supported the hypothesis that PAH

exposure negatively impacts cognitive function and increases the risk of

neurodegeneration in humans, and recommends considering the introduction

of a variable “rural vs. urban” as covariate for adjusting analyses, where the

neurological functions a�ected (as result of our review) are outcome variables.

KEYWORDS

polycyclic aromatic hydrocarbon (PAH), cognition, neurological, neurodegeneration,

neurobehavioral, meta-analysis, systematic literature search
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Introduction

Exposure to air pollution in the environment is now

recognized globally by governments, leading research scientists,

and civil society as one of the greatest public health hazards of

the 21st century (1). Legislation such as “The UK National Air

Quality Strategy” (2), and the European Commission’s “Fourth

Daughter Directive” (3) have introduced standards to monitor

and limit levels of air pollutants posing the greatest risk to

human health. Polycyclic aromatic hydrocarbons (PAHs) are

a group of pollutants included in such legislation. PAHs are

atmospheric organic compounds composed of two or more

benzene rings arranged in a variety of different configurations.

PAH compounds also include functional derivatives of the PAHs

only containing carbon and hydrogen atoms (e.g., nitro-PAHs)

and the heterocyclic analogs (e.g., aza-arenes) (4). Over 100

different PAHs were already identified by the beginning of the

21st century (4), and now the list exceeds 300, with an exact

number still to be determined, as those studied are mainly

selected based on the instrumentation available to each research

group and reference standards (5). They are discharged from

anthropogenic sources (Supplementary Figure 1), involving

the incomplete combustion and pyrolysis of hydrocarbons,

predominantly found in coal, oil, wood, and petrol. PAHs exist in

the atmosphere in a gaseous state or are adsorbed to particulate

matter. Over 80% of particulate-bound PAHs are associated

with particulate matter of an aerodynamic diameter ≤ 2.5µm

Abbreviations: AD, Alzheimer’s disease; ADHD, Attention deficit

hyperactivity disorder; APOE4, Apolipoprotein E4; Aβ1−42, Amyloid

beta protein fragment 1–42; α-synuclein, Alpha-synuclein; B[a]P,

Benzo[a]pyrene; BDNF, Brain-derived neurotrophic factor; CEREB IgG,

Cerebellar antigen;CO, Carbon monoxide; CSF, Cerebrospinal fluid;

ETS, Environmental tobacco smoke; IFN γ, Interferon gamma; IgA,

Immunoglobulin A; IgG, Immunoglobulin G; IgM, Immunoglobulin M; IL

β, Interleukin beta; IL 2, Interleukin 2; IL 6, Interleukin 6; IL 10, Interleukin

10; IQ, Intelligence quotient; MBP, Myelin basic protein; MBP IgA,

Myelin basic protein immunoglobulin A; MBP IgG, Myelin basic protein

immunoglobulin G; MCP-1, Monocyte chemoattractant protein-1; MOG

IgG, Myelin oligodendrocyte glycoprotein immunoglobulin G; MOG

IgM, Myelin oligodendrocyte glycoprotein immunoglobulin A; NHANES,

National Health and Nutrition Examination Survey; Non-p-tau, Non-

phosphorylated tau; NOx, Nitrogen oxide species; NO2, Nitrogen dioxide;

OZ IgA, Occludin/zonulin immunoglobulin A; OZ IgG, Occludin/zonulin

immunoglobulin G; PAH, Polycyclic aromatic hydrocarbons; PAH-

DNA adducts, Polycyclic aromatic hydrocarbon- DNA adducts; PD,

Parkinson’s disease; PM, Particulate matter; PM2.5, Particulate matter with

an aerodynamic diameter > 2.5 micrometers; PM10, Particulate matter

with an aerodynamic diameter > 10 micrometers; p-tau, Phosphorylated

tau; S-100 IgG, Astrocytic protein immunoglobulin G; S-100 IgM,

Astrocytic protein immunoglobulin M; TDP-43, Transactive response

DNA binding protein 43; TRAP, Tra�c-related air pollution.

(PM2.5) (6). However, a large number have been also identified

in tobacco smoke (5). The study of PAHs and their impact on

health has been compounded by their ubiquitousness and the

numerous and widespread sources in which they can be found,

some of which are also affected by other air pollutants. As PAHs

are rather present as part of complex mixtures in air, water, soil,

and food, their identification and characterization, for studying

their effect on human health, is challenging (5).

Research surrounding PAH exposure and acute short-term

health effects in humans has, thus, far focused on vulnerable

individuals with pre-existing health conditions: thrombotic

effects in individuals with pre-existing coronary heart disease

and impaired lung function in asthma sufferers (7). Chronic

long-term exposure has implicated PAH’s reactive metabolites

as having the ability to bind to proteins and DNA and

exert carcinogenic effects (8). Such biochemical disruption

and cellular damage have been most extensively researched

in occupational studies, whereby high exposure has been

associated with increased incidence of lung, bladder, skin, and

gastrointestinal cancer (8–11). Additionally, decreased immune

function, developing cataracts, and having kidney or liver

damage, including jaundice, have also been associated with high

exposure (5, 12). Whilst extensive research exists surrounding

PAH’s genotoxic and carcinogenic properties, an emerging

body of evidence concerns PAH’s neurotoxic effect through the

induction of oxidative stress, inflammation (13), and vascular

injury within the brain (14). Recently, research has emerged

associating PAH exposure with impaired cognitive function and

increased risk of neurodegeneration.

To the best of our knowledge, from the large body of

literature on the influence of air pollution on human health,

the implications of PAH exposure specifically, on cognitive

function and neurodegeneration in humans, have not been

systematically reviewed. Prior reviews have addressed the

implications of PAH exposure on general health (15, 16)

and its carcinogenic outcomes (17, 18). The reviews which

have made cognitive function and neurodegeneration the

outcome of interest include exposures to a vast mixture of

air pollutants (19–22). Therefore, we aim to disentangle the

unique neurotoxic effect of PAHs in specific age groups and

cognitive-related functions to provide evidence for cognitive

research and more vigilant monitoring and tighter restrictions

on the main sources of emission, tailored to each age group,

given the differential factors affecting the various stages of

brain development. The Department for Environment, Food

and Rural Affairs currently considers annual monitoring of

concentrations of one PAH, benzo(a)pyrene (B(a)P), to be a

sufficient representation of all atmospheric PAHs, and classifies

the potential effect on human health of PAHs collectively, as six

compounds, categorized as probably or possibly carcinogenic.

No mention is made of the adverse neurological impact (2).

A possible explanation is the consideration of concentration

levels that constitute a risk for cancer, below which the effect
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of these pollutants can pass inadvertently. The UK national

air quality objective for B(a)P is 0.25 ng m−3. However,

emissions of B(a)P have been increasing since 2008 and have

exceeded this limit in multiple locations at multiple time

points (23). Atmospheric PAH concentrations are subject to

seasonal variation and climate (24), as seen in pollution level

charts that are used by studies to stratify exposure. While

such stratification may add granularity to the data, it is often

unrealistic given urban movement and the effect of different

local government policies e.g., transportation. A more robust

stratification would be to contrast urban and rural areas,

where the pollution levels known to widely differ. Therefore, a

further aim is to explore the difference in PAH concentration

in rural vs. metropolitan areas and the influence this could

have on cognitive function and neurodegeneration to inform

further studies.

Methods

Eligibility criteria

This review was conducted in line with the PRISMA

guidelines (25). Studies included were observational cohort

studies of both male and female humans. Time of exposure was

inclusive of the gestational period and stretched throughout

life until death. Exposure quantification was limited to

studies that measured the level of exposure to ambient

PAHs or PM2.5 through environmental air sampling or

spatiotemporal modeling. Measures of exposure also included

concentration of PAH metabolites in urine and dosimetry of

PAH-DNA adducts from DNA extracted from white blood

cells. Outcomes included involved a formal assessment of

cognitive function, neurobehavioral symptoms of impaired

cognition, and pathologies associated with neurodegeneration.

Reports were limited to published scientific articles written

in the English language. No publication dates were imposed.

Studies were excluded if they did not fulfill the inclusion

criteria, were not in humans, or where PAH exposure

was measured as a component of the diet, environmental

tobacco smoke (ETS), or traffic related air pollution (TRAP).

Exposure through diet and ETS is not an appropriate

representation of a major source of atmospheric PAH that can

be geographically differential (i.e., in terms of urban vs. rural

areas) or influential in both short- and long-term exposure.

Moreover, prior research has elucidated contaminating

pollutants within TRAP composition detrimentally affecting

cognitive function, and the effect of diet-related benzo[a]pyrene,

dibenz[a,h]anthracene, and benzo[h]fluoanthracene in human

health and cognition (e.g., learning and memory functions).

The inclusion of such studies would confound results and

prevent us from elucidating the specific impact of ambient PAH

on cognition.

Information sources

Studies were identified by searching electronic databases

PubMed (1984–2021) and Web of Science (1979–2021). Given

the environmental changes seen as the consequence of lockdown

policies and movement restrictions mainly in the period April

2020 to December 2021, publications that reflected or analyzed

the environmental effect of this “abnormal” period were

excluded. “Polycyclic aromatic hydrocarbons” in addition to

the following search terms: “brain,” “neurological,” “cognitive,”

“cognition,” “neurodegenerative,” “neurodegeneration,”

“neurodevelopment,” and “neurodevelopmental” were used to

identify articles in both databases. Limitations applied to the

search included only the fields “Title” and “Abstract” being

searched. In Web of Science, the document type “Articles”

was applied. In PubMed, an additional limitation of species,

“Humans,” was applied. Eligibility assessment was performed

independently in an unbiased standardized manner by one

reviewer. Ambiguity concerning the inclusion or exclusion

of a study was resolved by a second reviewer being consulted

and a consensus taken. Initial screening was performed by

reviewing the title and abstract, after which, the full manuscript

was reviewed.

Data collection process

A data extraction sheet was developed and pilot tested

on five randomly selected included studies, before being

refined accordingly. One review author extracted data

from the included studies, a second was consulted where

ambiguity arose surrounding the appropriate data to

extract. One author was contacted through email to provide

numerical data that had only been presented graphically.

Information extracted from studies comprised sample

size, sample characteristics, ratio between sexes, mean age,

age range, comorbidities, air pollution component, time

of exposure, air pollution data acquisition method, and

outcome measure.

Risk of bias in individual studies

The risk of bias was assessed in line with the

QUADAS1 guidelines (University of Bristol, 2003). To

ascertain the risk of bias within each study included,

one reviewer working independently extracted the

following information: participant inclusion/exclusion

criteria explained, participant withdrawals from the

study explained, use of/comparison with a control/low

1 QUADAS-2. URL http://www.bristol.ac.uk/population-health-

sciences/projects/quadas/quadas-2/.
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FIGURE 1

Flow chart of the search, study inclusion, and subgroup division.

exposure population, confounding variables identified,

appropriate method/analysis to adjust for confounding

variables, outcome assessors aware of exposure status

of study participant, intermediate or unexpected results

explained/reported, and whether or not the methods of the

study were reproducible.

Methods of analysis

Studies included were divided into four subgroups

depending on the time at which the exposure was measured:

pre-natal, childhood, adult, and finally childhood +

adult. The category childhood + adult included studies

of young individuals from a wide age range, some

exposed during childhood, and others where exposure

extended through to adulthood, not analyzed separately.

Subsequently, studies were further divided into categories

depending on the outcome measured: cognitive abilities,

neurobehavioral development, or neurodegeneration. This

subgroup division was conducted to adjust for heterogeneity

between studies. The meta-analysis was performed by

extracting odds ratios and 95% confidence intervals (CI)

for the effect sizes of reported outcomes or calculating

them from the parameters and data given in the original

publications using the Practical Meta-Analysis Effect

Size Calculator by David B. Wilson, from (https://www.

campbellcollaboration.org/escalc/html/EffectSizeCalculator-

OR-main.php). Results were double-checked using the

following online resources: (https://www.gigacalculator.

com/calculators/odds-ratio-calculator.php) and effect size

converter (https://www.escal.site/). Forest plots were used to

visualize differences in effect sizes between studies within the

same subgroup.

Results

Study selection

The search of Web of Science and PubMed provided a total

of 490 citations. After adjusting for duplicates, 428 remained.

Subsequent screening of the title and abstract resulted in a

further 289 being discarded. Of the remaining 139, a further 102

were excluded upon further examination of the full manuscript
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FIGURE 2

Global distribution of the population cohorts in each of the 37 studies included in this review (figure made using: Biorender.com).

and application of inclusion criteria. One study (26) reported

data from a previous study (27). Sixteen were reviews and

did not include any primary data, 47 reported outcomes not

relevant to cognitive function or neurodegeneration, and in 38

the recorded exposure to PAH was not in keeping with the

specified criteria, resulting in a total of 37 studies included in

this review. Subgroup division resulted in 21 pre-natal exposure

studies, 15 concerning cognitive development outcomes, and 13

on neurobehavioral development, seven included measures of

both. From 11 childhood exposure studies, three were on general

cognition, five on neurobehavioral development, and three on

neurodegeneration. There were also five adult exposure studies

all with outcomes of general cognition, and three childhood +

adult studies all with measures of neurodegeneration. One study

included measured outcomes for both pre-natal and childhood

exposure (28) and two studies involved two different study

cohorts: one exposed only during childhood and the other

included a mix of childhood and adult-exposed subjects (29,

30). Figure 1 depicts the flow chart for study inclusion and

subgroup division. The full dataset can be found at the following

link: https://doi.org/10.7488/ds/3031.

Study characteristics

The 37 studies involved populations from nine countries

(Figure 2). Study population characteristics including sample

size and mean age (±SD) are displayed in Figure 3.

Eleven studies included cohorts from the USA. Six of

them selected participants from the Columbia Center for

Children’s Environmental Health cohort; however, each study

selected different subgroups of the population and measured

different outcomes (31–36). Two studies selected a subgroup

of participants from the National Health and Nutrition

Examination Survey 2001–2002 (NHANES) (37), one of which

included additional participants from the NHANES 2003–2004

cohort (38). The remaining three studies involved cohorts

from the Childhood Autism Risks from Genetics and the

Environment Study (28), the Adolescent Brain Cognitive

Development Study (39), and the Asthma Coalition on

Community, Environment and Social Stress project (40). Eight

studies reported results from populations in China. One study

involved a Taiyuan population (41) in addition to two selecting

different subgroups from the Taiyuan Mother and Child Cohort

Study (42, 43). Three involved populations were from Tongliang

(27, 44, 45), and the remaining two were from Shanxi province

(46) and Qingdao City (47).

Five studies involved populations from Spain. Two involved

a subgroup from the Infancia y Medio Ambiente Project (48, 49)

and three studies from the Brain Development and Air Pollution

Ultrafine Particles in School Children project (50–52).

Four studies reported on populations in Poland, three

including participants from the Krakow Study (53–55) and

one from the Polish Mother and Child Cohort Study

(56). Four studies reported on populations in Mexico. All

involved Mexico City residents (57), where two refer to
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FIGURE 3

Characteristics of the study population involved in each study. Circle size is representative of the sample size. Red bars indicate mean age and

SD. Four studies were omitted from this analysis due to insu�cient data (28, 34, 43, 60).

six Mexican cities (29, 58), and another included details

of three small Mexican cities (30). Two studies involved a

Korean population (59, 60). Further individual studies included

populations from the Czech Republic (61), Kenya (62), and

Belgium (63).

Exposure assessment

Of the 37 studies included, seven measured exposure

through environmental PAH sampling, five by environmental

PM2.5 sampling, seven by PM2.5 spatiotemporal modeling, 10

by concentrations of PAH metabolites in urine, and eight using

dosimetry to measure PAH-DNA adducts (Figure 4).

Outcome assessments

Outcomes included 21 different tests measuring cognitive

function, nine different tests measuring neurobehavioral

symptoms of impaired cognition, and three different measures

of pathologies associated with neurodegeneration (Figure 5).

Pre-natal exposure

Association between pre-natal PAH exposure
and cognitive abilities in childhood

Children with a high pre-natal PAH exposure were found

to have a delay in overall child intelligence [OR = 1.75, 95%

CI, 1.11–2.71) (54), mental development [OR = 0.65 (32)],

and average overall development (27, 44) (OR = 0.84, 95%

CI, 0.52–1.36; OR = 1.85, 95% CI, 1.13–3.01, respectively).

Specifically, the greatest negative effects reported were in

verbal IQ (OR = 3.45, 95% CI, 0.95–12.49) (53) and language

(OR = 5.99, 95% CI, 1.88–19.02) (47). However, the latter

could not be confirmed in five out of six studies (27, 42,

44, 45, 56). Two studies analyzed the effect of PAH on

general cognitive abilities with contradictory results: one (31)

reported a negative effect (OR = 2.89, 95% CI, 1.33–6.25)

while another (56) reported no effect. PAH effect on impaired

motor development was inconclusive, as confirmed by four

studies (27, 42, 44, 45) (OR = 0.95, 95% CI, 0.58–1.53;

OR = 1.91, 95% CI, 1.22–2.97; OR = 1.63, 95% CI, 1.00–

2.65; OR = 1.82, 95% CI, 3.21–1.03, respectively), whereas

three others could not confirm it. No association was found

between PAH exposure and developmental motor ability (56),
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FIGURE 4

Pie chart representing the proportion of included studies measuring exposure to PAH as a measure of environmental PAH sampling,

environmental PM2.5 sampling, PM2.5 spatiotemporal modeling, concentration of urinary PAH metabolites, and dosimetry of PAH-DNA adducts.

FIGURE 5

Pie chart representing the number of studies using di�erent tests to measure outcomes. Measures include cognitive function, neurobehavioral

symptoms of impaired cognition, and pathologies associated with neurodegeneration.

fine and gross motor abilities (47), and psychomotor abilities

(31). Only one study reported the effect of PAH and reduced

adaptive development (27) (OR= 1.77, 95%CI, 1.09–2.88) while

four out of five studies reported no association with adaptive

domains (42, 44, 45, 47). Size effects reported by the studies

mentioned are graphically represented in Figure 6 and listed in

Table 1.

Association between pre-natal PAH exposure
and neurobehavioral development

Children with a high pre-natal PAH exposure were found

to exhibit externalizing and internalizing behavioral problems

(OR = 2.49, 95% CI, 1.57–3.95; OR = 2.39, 95% CI, 1.51–

3.79, respectively) (55), and infants exhibited a decrease in

behavioral development (OR = 2, 95% CI, 1.27–3.15) (43).
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FIGURE 6

Forest plot of the calculated odds ratios (OR) and 95% confidence intervals (95% CI) for the association between pre-natal exposure to PAH and

measures of cognitive development. Bayley Scales of Infant Development—revised (BSID-II), Depressed Verbal IQ Index (DepVIQ), Gesell

Development Schedule (GDS), Raven Colored Progressive Matrices Test (RCPM), Wechsler Intelligence Scale for Children IV (WISC-IV). One

study had insu�cient data to calculate 95% CI (32).

Associations with anxious/depressed behavior were found in

three out of four studies (33, 34, 55) (OR = 8.89, 95% CI, 1.7–

46.51; OR = 8.14, 95% CI, 1.21–54.94; OR = 1.7, 95% CI, 1.08–

2.68, respectively), with no association found by one study (36).

Three out of five studies reported a negative effect on children’s

attentiveness (33, 35, 36) (OR = 1.34, 95% CI, 0.85–1.83; OR

= 2.02, 95%, 1.35–3.03; OR = 3.79, 95% CI, 1.14–12.66) whilst

two (34, 55) reported no effect. The report from one study (55)

about the effect of both withdrawn/depressed and aggressive

behavior (OR= 2, 95% CI, 1.27–3.16; OR= 2.29, 95% CI, 1.45–

3.62, respectively) was contradicted by another study (36) that

reported no effect for either. The latter (36) did, however, report

the effect of impaired thought problems (OR = 1.95, 95% CI,

1.3–2.91) which was contradicted by the former (55). Only one

out of seven studies reported an association between PAH and

social problems (55) (OR = 1.57, 95% CI, 1.00–2.48), and the

remaining six reported no effect (27, 36, 42, 44, 45, 47). Two

studies (36, 55) found no effect on rule breaking behavior or

somatic complaints. One study (35) reported no associations

with attention deficit hyperactivity disorder (ADHD) index

scores or hyperactive compulsive behavior, nor did another

from the same research group (31) regarding total behavioral

problems. Studies reporting neurobehavioral effects are reported

in Table 2, and effect sizes are depicted in Figure 7.

Association between pre-natal PM2.5 exposure
and cognitive abilities and neurobehavioral
development in childhood

A study (40) examined high PM2.5 exposure during

early, mid, and late pregnancy with measures of full-scale

IQ score, inattentiveness, and adverse memory performance.

Boys highly exposed during late pregnancy exhibit lower

IQ and inattentiveness when exposure was from mid to

late pregnancy. Girls highly exposed during early to mid

pregnancy exhibited adverse memory performance. No effect

was reported for the remaining domains analyzed by this

study (40).

The finding of impaired motor development (48)

was not supported by a subsequent study conducted

by the same group (49), which reported, however,

impaired memory in boys (49). From studies analyzing

the impact of pre-natal PM2.5 exposure on cognition

and neurobehavioral development (Table 3), no effect was

found on visual-motor functioning (61), general cognitive

ability (28, 49), mental status (48), non-verbal intelligence

(61), adaptive function or autism spectrum disorder

(28), nor on verbal, perceptive manipulative, and numeric

development (49).
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TABLE 1 Studies with measured pre-natal PAH exposure on cognitive abilities in childhood.

References Sample
size

Sample characteristics Male:
female

Mean
age
(SD)

Age
range

Comorbidities Air pollution
data
acquisition
method

Perera et al.

(31)

183 Children 3 years of age, mothers 18–35

years, non-smoking, free of diabetes,

hypertension, or known HIV, African

American and Dominican women

residing for a minimum of a year in

Washington Heights, Harlem, or the

South Bronx in New York City

84:99 3.5 (0.5) 3 years to

3 years 12

months

N/A Environmental

samples analyzed

for 8 PAHs

Jedrychowski

et al. (53)

170 Children 7 years of age, mothers ≥18

years of age, non-smoking, singleton

pregnancies, no history of illicit drug

use, pregnancy related diabetes, or

hypertension, no current occupational

exposure to PAH or any other known

developmental toxicants, and have been

resident in Krakow, Poland for a

minimum of a year

80:90 7.5 (0.5) 7 years to

7 years 12

months

N/A Cord blood

PAH–DNA adduct

Zhang et al.

(47)

211 Infants 12 months of age, free from

delivery injuries, neonatal problems,

acquired disabilities, developmental

dysplasia or other developmental

defects, mothers resident in Qingdao

city, China for at least 3 years, free from

diabetes, known HIV and known

neuropsychiatric disease.

192:156 1.0

(0.083)

1 year to 1

year 1

month

N/A Cord blood

benzo(a)pyrene-

DNA adducts

(ng/mL)

Perera et al.

(32)

380 Children 2 years of age, mothers 18–35

years, non-smoking, free of diabetes,

hypertension, or known HIV, African

American and Dominican women

residing for a minimum of a year in

Washington Heights, Harlem, or the

South Bronx in New York City.

N/A 2.5 (0.5) 2 years to

2 years 12

months

N/A PAH/aromatic

DNA adducts in

umbilical cord

blood samples

Polanska et al.

(56)

406 Children 1–2 years of age, mothers had

single pregnancy up to 12 weeks of

gestation, no assisted conception, no

pregnancy complications, no chronic

disease, resident in Poland

192:214 1.5 (0.5) 1 year to 2

years 12

months

N/A 1-hydroxypyrene

metabolites in

mothers’ urine

Edwards et al.

(54)

214 Children 5 years of age, mothers ≥18

years of age, non-smoking, singleton

pregnancies, no history of illicit drug

use, pregnancy related diabetes, or

hypertension, no current occupational

exposure to PAH or any other known

developmental toxicants, and have been

resident in Krakow, Poland for a

minimum of a year

103:111 5.5 (0.5) 5 years to

5 years 12

months

N/A Environmental

samples analyzed

for 8 PAHs

Perera et al.

(44)

217 Children 2 years of age, born between

either March to June 2002 or March to

May 2002, mothers ≥20 years,

non-smoking, resident within 2 km of

Tongliang power plant

113:104 2.5 (0.5) 2 years to

2 years 12

months

N/A Cord blood

benzo(a)pyrene-

DNA adducts

(ng/mL)

Tang et al. (45) 110 Children 2 years of age, born between

March and June 2002, mothers ≥20

years, non-smoking, resident within

2 km of Tongliang power plant

54:56 2.5 (0.5) 2 years to

2 years 12

months

N/A Cord blood

benzo(a)pyrene-

DNA adducts

(ng/mL)

Tang et al. (26) 215 Children 2 years of age, born between

either March to June 2002 or March to

May 2002, mothers ≥20 years,

non-smoking, resident within 2 km of

Tongliang power plant

106:109 2.5 (0.5) 2 years to

2 years 12

months

N/A Cord blood

benzo(a)pyrene-

DNA adducts

(ng/mL)

(Continued)
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TABLE 1 (Continued)

References Sample
size

Sample characteristics Male:
female

Mean
age
(SD)

Age
range

Comorbidities Air pollution
data
acquisition
method

Cao et al. (42) 158 Children 2 years of age, mothers ≥18

years of age, non-smoking, resident in

Taiyuan, Shanxi province, China for a

minimum of 1 year

82:76 2.5 (0.5) 2 years to

2 years 12

months

N/A The sum of the

maternal

concentrations of

eleven urinary

PAHs metabolites

Σ-OHPAHs

FIGURE 7

Forest plot of the calculated odds ratios (OR) and 95% confidence intervals (95% CI) for the association between pre-natal exposure to PAH and

measures of neurobehavioral development. Gesell Development Schedule, Diagnostic (GDS) and Statistical Manual of Mental Disorders, 4th

Edition (DSM-IV), Child Behavior Checklist (CBCL), Neonatal Behavioral Neurological Assessment (NBNA). *Sample sizes were assumed equal.

Childhood

Association between childhood PAH exposure
and cognitive abilities and neurobehavioral
development

Children exposed to high levels of PAH post-natally

exhibited lower general cognitive ability and delayed impaired

memory (62). Increased inattentiveness was reported by two

studies (50, 62), but this finding was contradicted by one

study (51). The negative effect of post-natal PAH exposure was

not observed in all memory domains. A study (50) found an

association between impaired working numeric memory but not

on working verbal memory. Short-term memory was not found

affected either (62).

The association with ADHD diagnosis reported by one

study (38) was not supported by two other studies (50, 51).

Neither study found an effect on learning performance (38,

62) or an association with visual spatial skills, non-verbal test

performance, executive function, motor performance (62), or

behavioral problems (50). Studies reporting childhood PAH

exposure can be found in Table 4.

Association between childhood PM2.5 exposure
and cognitive abilities and neurobehavioral
development

From the four studies reporting post-natal PM2.5 exposure

on general cognition and neurobehavior (Table 5), one reported

that children exposed to high levels of PM2.5 post-natally

displayed impaired selective and sustained attention (63), but

this finding was contradicted by two studies (39, 52) reporting

no effect on inattentiveness or attention and executive function,

respectively. A study’s report of impaired visual information

processing speed (63) was again contradicted by another (39)

reporting no association with processing speed. No association

was found with working memory (39, 52), episodic memory,

language (39), cognitive ability, adaptive function, or autism

spectrum disorder (28).

Association between childhood PM2.5 exposure
and neurodegeneration

Only three studies by the same research group analyzed

post-natal PM2.5 exposure to neurodegeneration (Table 6). Two
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TABLE 2 Studies with measured pre-natal PAH exposure on neurobehavioral development.

References Sample
size

Sample characteristics Male:
female

Mean
age
(SD)

Age
range

Comorbidities Air pollution
data
acquisition
method

Perera et al.

(35)

351 Children 9 years of age, mothers 18–35

years, non-smoking, free of diabetes,

hypertension, or known HIV, African

American and Dominican women

residing for a minimum of a year in

Washington Heights, Harlem, or the

South Bronx in New York City.

163:188 9.01

(0.19)

9 years to 9

years 12

months

N/A Cord blood

benzo(a)pyrene-

DNA adducts

(ng/mL)

Perera et al.

(33)

253 Children 6–7 years of age, mothers

18–35 years, non-smoking, free of

diabetes, hypertension, or known HIV,

African American and Dominican

women residing for a minimum of a

year in Washington Heights, Harlem, or

the South Bronx in New York City.

131:122 6.5 (0.5) 6 years to 7

years 12

months

N/A Environmental

samples analyzed

for 8 PAHs

Perera et al.

(34)

215 Children 3 years 9 months to 5 years 11

months of age, mothers 18–35 years,

non-smoking, free of diabetes,

hypertension, or known HIV, African

American and Dominican women

residing for a minimum of a year in

Washington Heights, Harlem, or the

South Bronx in New York City.

87:128 4.8 (not

reported)

3 years 9

months to 5

years 11

months

N/A Cord blood

benzo(a)pyrene-

DNA adducts

(ng/mL)

Pagliaccio

et al. (36)

319 Children 11 years old, mothers 18–35

years, non-smoking, free of diabetes,

hypertension, or known HIV, African

American and Dominican women

residing for a minimum of a year in

Washington Heights, Harlem, or the

South Bronx in New York City.

177:142 11.5 (0.5) 11 years to

11 years 12

months

Early life stress Environmental

samples analyzed

for 8 PAHs

Nie et al. (43) 247 Infants 3 days of age, mothers ≥18

years, non-smoking, no chronic disease

or family history of neurological disease,

single gestational viable fetus, who

delivered in the Sixth Hospital of Shanxi

Medical University and the Eighth

People’s Hospital of Taiyua, resident in

Taiyuan for at least a year

132:115 3 days

(not

reported)

3 days N/A Urinary metabolite

concentrations of

2-hydroxyfluorene

Perera et al.

(55)

248 Children from Krakow, Poland, mothers

≥18 years, non-smoking

122:126 7.28

(0.98)

6 years to 9

years 12

months

Maternal

psychological

distress

Personal air

monitoring

analyzing

concentrations of

8 PAHs

Tang et al. (45) 110 Children 2 years of age, born between

March to June 2002, mothers ≥20 years,

non-smoking, resident within 2 km of

Tongliang power plant

54:56 2.5 (0.5) 2 years to 2

years 12

months

N/A Cord blood

benzo(a)pyrene-

DNA adducts

(ng/mL)

Zhang et al.

(47)

211 Infants 12 months of age, free from

delivery injuries, neonatal problems,

acquired disabilities, developmental

dysplasia or other developmental

defects, mothers resident in Qingdao

city, China for at least 3 years, free from

diabetes, known HIV, and known

neuropsychiatric disease.

192:156 1.0

(0.083)

1 year to 1

year 1

month

N/A Cord blood

benzo(a)pyrene-

DNA adducts

(ng/mL)

Perera et al.

(44)

217 Children 2 years of age, born between

either March to June 2002 or March to

May 2002, mothers ≥20 years,

non-smoking, resident within 2 km of

Tongliang power plant

113:104 2.5 (0.5) 2 years to 2

years 12

months

N/A Cord blood

benzo(a)pyrene-

DNA adducts

(ng/mL)

(Continued)
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TABLE 2 (Continued)

References Sample
size

Sample characteristics Male:
female

Mean
age
(SD)

Age
range

Comorbidities Air pollution
data
acquisition
method

Tang et al. (27) 215 Children 2 years of age, born between

either: March to June 2002 or March to

May 2002, mothers ≥20 years,

non-smoking, resident within 2 km of

Tongliang power plant

106:109 2.5 (0.5) 2 years to 2

years 12

months

N/A Cord blood

benzo(a)pyrene-

DNA adducts

(ng/mL)

Cao et al. (42) 158 Children 2 years of age, mothers ≥18

years of age, non-smoking, resident in

Taiyuan, Shanxi province, China for a

minimum of 1 year

82:76 2.5 (0.5) 2 years to 2

years 12

months

N/A The sum of the

maternal

concentrations of

11 urinary PAHs

metabolites

Σ-OHPAHs

Perera et al.

(31)

183 Children 3 years of age, mothers 18–35

years, non-smoking, free of diabetes,

hypertension, or known HIV, African

American and Dominican women

residing for a minimum of a year in

Washington Heights, Harlem, or the

South Bronx in New York City

84:99 3.5 (0.5) 3 years to 3

years 12

months

N/A Environmental

samples analyzed

for 8 PAHs

of them found that children highly exposed to PM2.5 post-

natally exhibited lower amyloid beta protein fragment 1–42

(Aβ1−42) and brain-derived neurotrophic factor (BDNF) (29,

30), with one finding, in addition, higher interferon (IFN)

γ concentrations in cerebrospinal fluid (CSF) (30). No effect

was found with regard to concentrations of biomarkers: non-

phosphorylated tau (non-p-tau), vitamin D, tau phosphorylated

at threonine 181 (30), cellular prion protein, total tau,

interleukin (IL) β, leptin (29, 30), total alpha- synuclein (α-

synuclein), oligodendrocyte α-synuclein, hyperphosphorylated

tau, tumor necrosis factor alpha, IL 2, IL 6, IL 10, or monocyte

chemoattractant protein-1 (MCP-1) (29). Of 33 antibodies to

neural and tight junction proteins, actin immunoglobulin G

(IgG), occludin/zonulin (OZ) immunoglobulin A (IgA), OZ

IgG, myelin oligodendrocyte glycoprotein (MOG) IgG, MOG

immunoglobulin M (IgM), myelin basic protein (MBP) IgA,

MBP IgG, astrocytic protein (S-100) IgG, S-100 IgM and

cerebellar antigen (CEREB) IgG in serum, and MBP antibodies

in CSF were higher in children exposed to high levels of PAH

compared to controls (58).

Adult

Association between adult PAH exposure and
cognitive abilities

Adults highly exposed to PAH exhibited impaired auditory

memory (41, 46), individual accounts of memory disturbances

(60), and impaired verbal learning and memory (59). However,

there was no effect on working memory and executive function,

visuospatial memory/attention and planning (59), or visual

perception memory (41, 46).

There was one account of impaired cognitive disturbances

(60), which was contradicted by two reports of no association

with cognitive dysfunction (37, 59) and by additional

individual accounts of no effect in approximate number

system functioning (41) (i.e., digit span, digit symbol, number

of dots tests), confrontational word retrieval, verbal fluency,

delayed reaction time between congruent and incongruent

stimuli, visual attention, and task switching (59). Mood state,

attention/response speed, manual dexterity, or perceptual

motor speed were not found associated with PAH exposure

in adulthood (41, 46). However, it must be noted that two

investigations were population studies (37, 59), while the other

three (41, 46, 60) were occupational health studies on brain

effects of PAHs in coke ovens (41, 46) or oil spill (60) workers,

who are exposed to very high levels of PAHs, especially high

molecular weight compounds including benzo(a)pyrene and

other compounds with five to six or more hydrocarbon rings.

A summary of the population characteristics of the five studies

exploring adult PAH exposure and general cognition can be

found in Table 7.

Childhood and adult

Association between childhood and adult PM2.5

exposure and neurodegeneration

Details from the three studies reporting on cohorts inclusive

of participants exposed to PM2.5 only during childhood and

some participants through to adulthood can be found in Table 8.

In a cohort of mixed exposure to PM2.5, the presence of

neurodegenerative biomarkers phosphorylated tau (p-tau), α-

synuclein, and transactive response DNA-binding protein 43
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TABLE 3 Studies with measured pre-natal PM2.5 exposure on cognitive abilities and neurobehavioral development in childhood.

References Sample
size

Sample characteristics Male:
female

Mean
age
(SD)

Age
range

Comorbidities Air pollution
data
acquisition
method

Blazkova et al.

(61)

169 Children 5 years of age, born in the

summer 2013 to winter 2014,

non-smoking mothers, resident in

Karvina and Ceske Budejovice, Czech

Republic

78:90 5.5 (0.5) 5 years to 5

years 12

months

Viral diseases otitis

bronchitis GIS

HCD

Analysis of 11

OH-PAHs in urine

Kerin et al.

(28)

325 Children 2–5 years, resident in

catchment area of 20 counties in

northern California, the central valley

and parts of Los Angeles metropolitan

area, US, complete history of

environmental air exposure, lived with

at least 1 biological parent who speaks

English or Spanish.

281:44 (not

reported)

2 years to 5

years 12

months

N/A Residential

addresses inputted

into Tele Atlas

database and

software

Lertxundi et al.

(49)

560 Children 4 years male, mothers ≥16

years, resident in Valencia, Sabadell, and

Gipuzkoa in Spain

560:00 4.8 (4.9) 4 years to 4

years 12

months

N/A Land use

regression models

Lertxundi et al.

(48)

438 Children aged∼15 months age, mothers

≥16 years, singleton pregnancies

198:240 1.25

(0.25)

1 year 1

month to 1

year 6

months

N/A Environmental

samples from

digital DHA-80

high-volume

aerosol samplers

Chiu et al. (40) 119 Mothers ≥18 years, at 28.4± 7.9 weeks

gestation between August 2002 and

January 2000 in Boston.

00:119 6.5

(0.98)

6 years to 7

years 3

months

N/A Use of a hybrid

satellite based

spatio-temporal

prediction model

and residential

address during

pregnancy

(TDP-43) was confirmed in brainstems (57). The faster increase

in concentrations with regard to the age of non-p-tau in CSF

was also associated with increased exposure (30). However, no

association was found with regard to the concentration of total

and oligomer α-synuclein in CSF (29).

Risk of bias within studies

All studies included were of high quality with reproducible

accounts of the method employed to assess relevant outcomes,

and the inclusion/exclusion criteria used to select the study

population were explained in sufficient detail (refer to detailed

QUADAS tool responses in the publicly available data at https://

datashare.ed.ac.uk/handle/10283/3892). Where applicable, all

studies provided explanations for participant withdrawal, which

were unrelated to both the exposure and the outcome

being measured and reported intermediate or unexpected

results. Approximately 54% of studies involved the use of a

comparison with a low exposure or control population either

by dichotomizing exposure data or using a demographically

matched control population. The remaining 46% of studies

assessed PAH exposure as a continuous variable. All studies

correctly identified confounding variables, and the method

and analysis were adjusted accordingly. There was, however, a

considerable risk of information bias amongst studies, with only

16% of studies reporting the outcome assessor to be blinded and

unaware of the exposure status of the study participant. Seventy-

three percent of the studies provided no indication as to whether

they were or not blinded, and in 11% the outcome assessors were

confirmed not blinded.

Discussion

This review found sufficient evidence that pre-natal

PAH exposure negatively impacts cognitive function with

specific regard to child intelligence, mental development,

verbal IQ, memory impairment, average overall development,

child attentiveness, behavioral development, and externalizing,

internalizing, anxious, and depressed behavioral problems.

Evidence concerning exposure during childhood and as

an adult with cognitive function was insufficient to conduct

a meta-analysis, due to a reduced number of studies, low

consistency, and high heterogeneity in results. However,

associations can be observed such as exposure during childhood

with lowered cognitive ability, impaired child attentiveness,

and exposure as an adult manifesting in memory disturbances
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TABLE 4 Studies with measured childhood PAH exposure on cognitive abilities and neurobehavioral development.

References Sample
size

Sample characteristics Male:
female

Mean
age
(SD)

Age
range

Comorbidities Air pollution
data
acquisition
method

Suter et al. (62) 31 Children aged 5–12 resident in Nairobi,

Kenya, Infected with HIV and

previously enrolled in the Optimizing

HIV-1 Therapy Study

N/A 6.6 (0.8) 5 years to

12 years 12

months

HIV Concentration of

urinary PAH

metabolite

1-hydroxypyrene

(1-OHP)

Mortamais

et al. (51)

242 Children 7–10 years, resident and

enrolled in one of 40 schools in

Barcelona, Spain, no dental braces

123:119 8.4 (0.8) 7 years to

10 years 12

months

N/A Environmental air

sampling

Abid et al. (38) 83 Children 6–15 years of age, part of a

civilian population resident in the US

58:25 11.2 (0.5) 6 years to

15 years 12

months

N/A Urinary metabolite

concentrations of

2-napthol

Alemany et al.

(50)

1589 Children aged 7–11, attending one of 38

schools in Barcelona, Spain, and one

school in the adjacent municipality, Sant

Cugat del Vallés

831: 758 8.52

(0.87)

7 years to

11 years 12

months

APOE e4 allele Environmental

samples analyzed

for 7 PAHs

with specific regard to auditory memory and verbal learning

and memory.

Studies concerning PAH exposure during childhood

and as an adult were scarce, but an increased risk of

neurodegeneration was found through the presence

of neurodegenerative biomarkers and increased

concentrations of cryptic “self ” antigens in serum and

CSF, indicative of the neuroinflammatory pathology

which precedes Alzheimer’s disease (AD) and Parkinson’s

disease (PD).

It is known that some pathways of aryl-hydrocarbon

neurotoxicity are common for PAHs, TCDD, dioxin-like

agents, polyphenols, and similar xenobiotics. A review of the

neuropathological mechanisms of PAHs highlights that these,

together with their metabolites, may cross the blood–brain

barrier causing neurological abnormalities that may include

neuronal damage, impaired neurotransmitter regulation,

parasympathetic dysregulation, and neurodegeneration (65).

Preclinical studies hint at a common neuropathological

mechanism of PAH action being the binding of these

compounds to the aryl-hydrocarbon receptor (AhR), a

cytosolic transcription factor that initiates a complex

pathway leading to alteration of gene regulation. AhR

is also present in neural cells and can be involved in

the mechanisms leading to PAH-induced neurological

disorders (65).

This review differentially addressed the neurological impact

of PAHs in three different domains, namely, cognitive abilities,

neurobehavioral development, and neurodegeneration, and can

be used as evidence for policy surrounding the monitoring

of PAHs specifically. In addition, it raises awareness of the

potentially confounding effect that different ambient PAH

concentrations, in metropolitan and rural settings, can have

on research assessing outcomes concerned with cognitive

function and neurodegeneration in studies. It was not possible,

however, to conclude on the differential impact of PAHs

acquiredmainly from outdoor sources from those acquired from

indoor sources.

A previous review on the impact of PM2.5 in disease

incidence did not stratify patients by age nor considered

differences between urban and rural areas, rather stratifying

studies by the pollution level in which the country was

considered (i.e., “lightly polluted” vs. “heavily polluted”)

(64). Other reviews have highlighted general adverse health

conditions such as chronic asthma, increased incidence of

premature death and hospital admissions (15), and kidney

and liver damage (16). Some focused specifically on the

carcinogenic properties and resulting incidence of the lung

(17), urinary tract (18), and skin and gastrointestinal tract

cancers (16). Those that focused on the neurological impact

of air pollution concerned a diverse mixture of compounds.

One specifically focused on non-communicable diseases and

the roles of nitrogen dioxide (NO2), nitrogen oxide species

(NOx), carbon monoxide (CO), and PM2.5 (19). Another

(20) raises awareness concerning ambient pollution’s adverse

effect on cognitive decline and impairment, concurring with

findings from (22), where the emphasis was on ozone, PM2.5,

and PM10. A study (21) reported NO2, NOx, black carbon,

and PMs as potential risk factors for AD, PD, and multiple

sclerosis. Despite the outcomes assessed being orientated

toward neurological health, the exposures measured either

include multiple pollutants or compounds NO2, NOx, CO,

PM, or black carbon, around which extensive research already

exists and has culminated in tight air quality restrictions and

monitoring, which is closely adhered to by governing bodies.

This review raises awareness of the neurological impact PAH
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TABLE 5 Studies with measured childhood PM2.5 exposure on cognitive abilities and neurobehavioral development.

References Sample
size

Sample characteristics Male:
female

Mean
age
(SD)

Age
range

Comorbidities Air pollution
data
acquisition
method

Cserbik et al.

(39)

10, 343 Children aged 9–10 years, resident in

one of 21 study sites in the US

5,410:

4,933

9.93

(0.64)

9 years to

10 years

and 12

months

N/A Ensemble-based

model approach

combining aerosol

optical depth

models, land-use

regression, and

chemical transport

models

Kerin et al.

(28)

325 Children 2–5 years, resident in

catchment area of 20 counties in

northern California, the central valley

and parts of Los Angeles metropolitan

area, US, complete history of

environmental air exposure, lived with

at least one biological parent who speaks

English or Spanish

281:44 (Not

reported)

2 years to 5

years 12

months

N/A Residential

addresses inputted

into Tele Atlas

database and

software

Rivas et al. (52) 2,221 Children 7–10 years old, attending one

of 39 schools in Barcelona, Catalonia,

Spain, without special needs

1,133:

1,088

8.5 (0.9) 7 years to

10 years 12

months

N/A Land use

regression models

Saenen et al.

(63)

310 Children in grades 3–6 in three primary

schools, Flanders, Belgium.

158: 152 10.2 (1.3) N/A N/A Chronic exposure:

spatial temporal

interpolation

method to model

the daily

residential

exposure. Recent

exposure (at

schools): portable

devices

has, independent of other pollutants, the importance of which

is paramount with the current health impacts of PAHs in the

UK air quality strategy detailed as “possibly” or “probably”

carcinogenic, detracting from the seriousness of their impact

on neurological human health (2). This review proceeds to

categorize outcomes into subgroups depending on the time of

exposure to provide further insight into the demographics of

the individuals most vulnerable to the pollution levels reported

and to differentiate between the areas of cognitive function and

neurodegeneration most impacted, elucidating the potential

mechanisms of neurotoxicity. The observation that the most

profound effect of PAH exposure culminates from the pre-natal

period is in keeping with prior research, showing the fetal brain

to be more vulnerable to environmental toxic insult than the

adult. The increased permeability of the not yet fully formed

blood–brain barrier combined with the rapid brain growth

during the second trimester means the period of most intense

construction and brain architecture is also the time the brain is

most vulnerable to the passage of toxins and neurotoxicity (66).

Overall, this review has systematically located, summarized,

and meta-analyzed evidence about the potent neurotoxicity

of direct or indirect exposure to PAHs across the human

lifespan, highlighting the need for more well-designed

epidemiological studies.

Limitations

Studies included in the analysis were limited to those

written in the English language. Publication bias and selective

reporting within studies cannot be discarded, nor can indexing

issues, in which the search terms may have failed to identify

relevant studies.

The study populations included only originated from nine

countries, of which the UK was not one. Findings are therefore

limited to the environments and seasonal variations in climate

found in these countries, and no specific recommendations for

the UK, where the present review was conducted, can be made.

The studies included also involved the use of different subgroup

samples from the same large cohort, due to the necessity and

availability of a limited number of longitudinal study databases.

Sampling bias cannot, therefore, be disregarded.

Other polluting aryl-hydrocarbons present in the air,

in particulate matter (PM2.5) and diets, such as 2,3,7,8-

tetrachlorodibenzo-p-dioxin (TCDD) and its congeners,

dibenzofurans and dioxin-like polychlorinated biphenyls,

have been reported to induce similar neurotoxicity and

neurological disorders to PAHs. The concomitant exposure to

these compounds, which are ubiquitously present as persistent

organic pollutants, could have confounded the measured
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TABLE 6 Studies with measured childhood PM2.5 exposure on neurodegeneration.

References Sample
size

Sample characteristics Male:
female

Mean
age
(SD)

Age
range

Comorbidities Air pollution
data
acquisition
method

Calderón-

Garcidueñas

et al. (30)

1) 426 2) 81 Children admitted to Mexico City

hospital, resident in Mexico City

Metropolitan area (MCMA) and other

small cities in Mexico

1) 256:161

2) 44:33

1) 13.36

(8.82)

2) 11.54

(5.1)

(Not

reported)

Lymphoblastic

leukemia

Environmental air

sampling, for

regulating levels

above the USEPA

standards

Calderón-

Garcidueñas

et al. (22)

1) 73 2) 126 Children admitted to Mexico City

hospital, resident in Mexico City

Metropolitan area (MCMA) and other

small cities in Mexico

1) 42:31

2) 59:70

1) 11.7

(5.14)

2) 17.49

(15.98)

(Not

reported)

Lymphoblastic

leukemia

Environmental air

sampling

Calderón-

Garcidueñas

et al. (58)

111 Children within 5 miles of Mexico City

Metropolitan Area (MCMA) or small

control cities in Mexico (Zacatlán and

Huachinango, Puebla; Zitaácuaro,

Michoacaán; Puerto Escondido, Oaxaca;

Chalma, Veracruz; Tlaxcala, Tlaxcala),

No ETS exposure, lived within 5 miles of

an air monitoring station

54:57 13.37

(4.2)

(Not

reported)

N/A Environmental air

sampling

effects of PAHs reported in the studies reviewed. If the primary

sources did not disentangle their effects, it is possible that some

of the meta-analyzed results embody added effects of these

aryl-hydrocarbons on ambient PAHs.

To adjust for heterogeneity, studies were stratified

depending on the time point of exposure and outcome

assessed; however, this did not account for heterogeneity

between evaluators and instruments used, mainly due to

the limited number of sources analyzed. In addition to

this, the use of five different measures to quantify levels of

PAH exposure, as well as the inclusion of quantification of

PM2.5 as a measure, resulted in heterogeneity in exposure

measurement instruments and the inclusion of potential

contaminating compounds within PM2.5, which would

confound results. Finally, there were insufficient data to

calculate 95% CI for one study (32), and the request for numeric

data from another study received no response (60); hence,

the report of an effect on memory and cognitive disturbances

was inferred from a figure with no confirmation from the

raw data.

Future research

The role of biological sex in the neurotoxic effects

of PAH exposure requires further investigation. Sex

stratification of data concerning memory impairment in

pre-natally exposed populations was contradictory. Further

accounts of memory impairment following both childhood

and adult exposure should be dichotomized to examine

sensitivity between sexes. Pre-natal PAH exposure’s effect on

motor development was an area of controversy. Additional

research is required in this domain to eliminate ambiguity.

Individual reports of a lack of association with motor

performance and perceptual motor speed, respectively,

were inadequate to clarify such controversy or draw

any conclusions.

In addition to this, a more thorough examination

of the timescale of PAH exposure is needed,

utilizing a smaller scale to determine critical

windows.

Stratification by pregnancy term elucidated differential full-

scale IQ, inattentiveness, and memory performance results. No

effect on the concentration of non-p-tau in CSF was reported

following childhood exposure, however when looked at in a

mixed cohort of childhood and adult exposure, as association in

relation to age progression was reported, indicative of a critical

window of exposure.

Furthermore, gene-environment interactions need

further analysis, for example PAHs effect on the brain of

genetically susceptible populations, such as carriers of the

APOE4 allele.

Repeated future analysis on longitudinal cohorts is

required to examine the impact of sustained high PAH

exposure or subsequent markedly reduced exposure,

the effects such fluctuations can have on cognitive

function and neurodegeneration, and whether some

adverse effects from pre-natal or early life exposure

are recoverable.

Future research should identify and analyze the individual

contributions and specific synergistic combinations of

PAHs on neurological health. This would differentiate

and determine the most neurotoxic PAHs and provide

evidence for updates in policy, requiring the monitoring
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TABLE 7 Studies with measured adult PAH exposure on cognitive abilities.

References Sample
size

Sample characteristics Male:
female

Mean
age
(SD)

Age
range

Comorbidities Air pollution
data
acquisition
method

Du et al. (46) 697 Employed at a coking plant in Shanxi

province, China for minimum of 1 year

470:227 39.73

(9.74)

24–64 years

12 months

N/A The sum of the

concentrations of

11 urinary PAHs

metabolites

Σ-OHPAHs

Cho et al. (59) 949 ≥50 year-old individuals, no known

neurological diseases, resident in Seoul,

Incheon, Wonju, and Pyeongchang,

Republic of Korea.

421:528 67.24

(6.39)

≥50 years Hypertension

diabetes

dyslipidemia angina

myocardial

infarction

Concentrations of

urinary PAHs

metabolites

including:

1-hydroxypyrene

Ha et al. (60) 565 Volunteers in the Hebei Spirit oil spill,

2007, near the shore of Taean, Korea.

275:288 N/A N/A Asthma 1-hydroxypyrene

and 2-naphthol

metabolites in

urine

Niu et al. (41) 176 Male 23–48-year-old coke oven workers

Taiyuan, China, employed for a

minimum of 1 year, middle school

educated.

176:00 37.86

(6.61)

23 years to

48 years 12

months

N/A Concentration of

urinary PAH

metabolite

1-hydroxypyrene

(1-OHP)

Best et al. (37) 454 ≥60-year-old individuals without

known neurological diseases, resident in

15 randomly selected states in the US

221:233 70.1

(0.02)

≥ 60 years Hypertension

thyroid disease

stroke kidney

disease liver disease

The sum of the

concentrations of

eight urinary

PAHs metabolites

(Σ-OHPAHs)

TABLE 8 Studies with measured cohorts inclusive of childhood and adult PM2.5 exposure on neurodegeneration.

References Sample
size

Sample characteristics Male:
female

Mean
age
(SD)

Age
range

Comorbidities Air pollution
data
acquisition
method

Calderón-

Garcidueñas

et al. (57)

186 Metropolitan Mexico City residents,

acute cause of death not involving the

brain, autopsies were performed 3.7±

1.7 h after death, autopsy material

examined between 2004 and 2008

162:186 27.29

(11.8)

11 months

to 41 years

N/A Ministry of

environment of

Mexico city

monitoring

stations

Calderón-

Garcidueñas

et al. (30)

1) 426 2) 81 Children admitted to Mexico City

hospital, resident in Mexico City

Metropolitan area (MCMA) and other

small cities in Mexico

1) 256:161

2) 44:33

1) 13.36

(8.82)

2) 11.54

(5.1)

N/A Lymphoblastic

leukemia

Environmental air

sampling, for

regulating levels

above the USEPA

standards

Calderón-

Garcidueñas

et al. (22)

1) 73 2) 126 Children admitted to Mexico City

hospital, resident in Mexico City

Metropolitan area (MCMA) and other

small cities in Mexico

1) 42:31

2) 59:70

1) 11.7

(5.14)

2) 17.49

(15.98)

N/A Lymphoblastic

leukemia

Environmental air

sampling

of additional PAHs, rather than only B(a)P. Additional

research into the threshold at which PAH is capable of

exerting neurotoxic effects would inform policy, with

scientific backing to implement a safe limit with regard to

neurological health and update the limit of 0.25 ng.m−3

B(a)P, which was set only with regard to carcinogenic

properties. Furthermore, more studies are needed concerning

populations in the UK, to account for the local environmental,

climate, and seasonal variations capable of altering PAH’s

neurotoxic properties.
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Background: Alzheimer’s disease (AD) is a neurological disorder of unknown

cause, resulting in the death of brain cells. Identifying some of the modifiable

risk factors for AD could be crucial for primary prevention and could lead to a

reduction in the incidence of AD.

Objective: This study aimed to perform a meta-meta-analysis of studies in

order to assess the e�ect of blood pressure (BP) on the diagnosis of AD.

Method: The search was restricted to meta-analyses assessing high systolic

BP (SBP) and diastolic BP (DBP) and AD. We applied the PRISMA guidelines.

Results: A total of 214 studieswere identified frommajor databases. Finally, five

meta-analyses (52 studies) were analyzed in this review. Results confirm that

high SBP is associated with AD. The exploration of parameters (sex, age, study

design, region, and BP measurements) shows that only region significantly

moderates the relationship between BP and AD. Asian people are those whose

SBP levels >140 mmHg are associated with AD. BP is associated with AD in

both people aged ≤65 years and those aged ≥65 years and in cross-sectional

and longitudinal studies. In the case of DBP, only women are at a higher risk of

AD, particularly when its levels are >90.

Conclusion: SBP is associated with both cerebrovascular disease and AD.

Therefore, future studies should use other uncontrolled factors, such as

cardiovascular diseases, diabetes, and stroke, to explain the relationship

between SBP and AD.

KEYWORDS

Alzheimer’s disease, blood pressure, systo-diastolic hypertension, risk factor, meta-

analysis

1. Introduction

There are 55 million people affected by dementia worldwide (1).

Alzheimer’s disease (AD) is the most common cause of dementia, accounting

for up to 75% of all dementia cases (2). The prevalence of AD increases

every year in individuals between the ages of 65 and 85 years (3), and

by the year 2050, the worldwide prevalence of AD will grow four-folds,
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to 106.8 million (range 47.2–221.2) (4). While between the ages

of 65 and 74 years, about 10% of people have AD, and in those

over 85 years old, the risk increases by 50% (3). According

to estimates by the World Health Organization (WHO), the

projected global prevalence of AD by 2050 will increase by 110%

from 2010 (5).

Alzheimer’s disease is a neurological disorder of unknown

cause, resulting in the death of brain cells (3). AD is the most

common cause of cognitive impairment (6). AD is characterized

by hallmark pathological changes such as extracellular Aβ

plaques and intracellular neurofibrillary pathology, which

selectively affect specific subclasses of neurons and brain circuits.

While dementia is a general term, Alzheimer’s disease is a

specific brain disease. It is marked by symptoms of dementia

that gradually get worse over time (7). Dementia is a rather

broad syndrome of global cognitive decline. However, AD first

affects the part of the brain associated with specific cognitive

functions, such as language (aphasia), motor skills (apraxia), and

perception (agnosia) (8, 9). Moreover, in AD, early symptoms

often include changes in memory, thinking, and reasoning

skills (10).

Some of the first symptoms that occur with AD

(neuropsychiatric) are a direct cause of early institutionalization

(11). In AD, there is an identity loss (12) and worsening in

the physical and social areas (11), along with the progressive

deterioration of basic cognitive (episodic memory, linguistic,

and spatial orienting) and executive functions (inhibitory

abilities and the visuospatial functions) (13). Emotional and

mental health problems (e.g., delusions and hallucinations,

abnormal behaviors, or physical violence and hitting) are

common, cause distress to caregivers, and may be amenable to

treatment (14, 15). All these symptoms affect the quality of life

and activities of daily living in individuals diagnosed with this

disease (15).

The most important non-modifiable risk factor for

developing AD is age. Many cardiovascular risk factors increase

with age, such as high blood pressure (BP), which, in turn, could

affect the mechanisms that lead to impairment in the brain (16).

According to Ballard et al. (17), the development of dementia

is associated with not only genetic factors but also acquired

factors (i.e., hypertension) that could predict a higher risk of

AD. In this study, we particularly focused on analyzing high

BP as a risk factor for the development of AD (18, 19). The

overall prevalence of high BP in adults is 25%, with more

than 50% of those individuals over 60 years (20). Vascular risk

factors like BP could change the anatomy of the human body

by modifying vascular walls or causing ischemia and cerebral

hypoxia, which may consequently lead to the development

of AD (21). Furthermore, BP could generate dysfunction in

the blood–brain barrier, which has been associated with the

genesis of AD (22). Studies on the relationship between BP and

AD have yielded inconsistent results, showing an association

between AD and high BP, or no significant association between

these variables (23–25). For example, Mielke found that systolic

hypertension was associated with an increased risk of AD.

However, the authors did not find an association between

diastolic hypertension and AD (22).

Findings also established that the association between AD

and hypertension was determined by age of onset (early-onset

AD ≤ 65 years and late-onset AD ≥ 65 years). In fact, AD has

been classified as presenile or early onset (≤65 years) and as

senile or late onset (≥65 years) that tend to be sporadic and

slow moving (26). However, it is still not clear in the current

literature whether age moderates the relationship between BP

and AD. Indeed, some researchers have indicated that elevated

BP occurring in either middle age or late life may be involved in

the development of AD (23, 27, 28). Also, one study concluded

that high systolic BP (SBP) and diastolic BP (DBP) were related

to worse cognitive function for persons aged 65–74 years.

However, in older age (≥75), higher SBP and DBP were related

to adequate cognitive function (29).

Other studies have studied the relationship between

hypertension and gender. Gillis and Sullivan (30) concluded

that women are more likely to be prehypertensive than men.

Furthermore, Anstey et al. (31) concluded that hypertension

in middle-aged women was associated with greater cognitive

impairment and AD. However, recent studies have shown that

the prevalence of hypertension is higher in men before the

sixth decade of life, although it increases in women after

menopause (32).

Related to regions due to the high incidence of hypertension

in developed countries, studies are aimed at prevention

strategies (33, 34). In addition, the earlier onset and more

aggressive development of AD in the young population have

been identified as risk factors for hypertension in these

countries (35).

The literature refers to various degrees of hypertension.

This study was based on the cutoff points established by the

International Society of Hypertension (ISH) (36). On the one

hand, the ISH establishes the following measures for SBP:

elevated (130–139mmHg), grade 1 (140–159mmHg), and grade

2 (160–179 mmHg). On the other hand, there are also three

cutoff measurements for DBP: elevated (85–89 mmHg), grade 1

(90–99 mmHg), and grade 2 (100–109 mmHg) (36, 37). Mielke

et al. (38) concluded that SBP measurements greater than 160

mmHg were associated with greater cognitive impairment in the

elderly, which may lead to AD. Similarly, according to Launer

et al. (23), elevated midlife SBP > 160 mmHg and DBP ≥ 90

mmHgwere particularly associated with an increased risk of AD.

Furthermore, longitudinal (39, 40) and cross-sectional (41,

42) studies have been used to identify risk factors and elucidate

some characteristics of AD. To this end, we aggregated data

from longitudinal and cross-sectional studies and used meta-

analytic equation modeling to test for causal relationships. One

major advantage of meta-analytic equations is that it allows an

integration of the given data from all studies into one model
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and specify models that have not been tested in the primary

studies (43).

Based on the results and evidence of other articles and

meta-analyses, we aimed to perform a meta-meta-analysis of

longitudinal and cross-sectional studies to test the association

between BP (high SBP and high DBP) and the risk of AD. We

also aimed to pool findings separately from cross-sectional and

longitudinal studies and assess the effect of BP on the risk of

subsequent diagnosis of AD.

2. Materials and methods

2.1. Data collection

The search was restricted to meta-analyses assessing high

SBP andDBP andAD.We applied the Preferred Reporting Items

for Systematic Reviews andMeta-Analyses (PRISMA) guidelines

(44). The literature searches were carried out in five electronic

databases, including ISI Web of Science, Scopus, PubMed,

Elsevier Science Direct, and Google Scholar. No publication date

was set. The list of keywords was generated through a system

of successive approximations: “blood pressure” and “Alzheimer’s

disease” and “meta-analysis.” A Google Scholar search was also

performed but was limited to the title. The literature search was

carried out in English and Spanish.

2.2. Inclusion criteria

The procedures applied to carry out this meta-meta-analysis

were as follows: (1) search and selection of meta-analyses

assessing high SBP and DBP and AD and (2) selection of

primary studies contained in the meta-analyses and the deletion

of duplicates.

Meta-analyses and primary studies that met each of the

following criteria were selected: (1) meta-analysis and primary

studies that measured the relationship between hypertension

(high SBP and DBP) and the risk of AD; (2) meta-analysis

and primary studies reported data that allowed the estimation

of a pooled effect size; (3) meta-analysis and primary studies

that diagnosed AD through clinical examination, using defined

diagnostic criteria, DSMV (9) and NINCDS-ADRDA (45); (4)

meta-analysis and primary studies that reported the sample size;

and (5) meta-analysis and primary studies written in English

or Spanish.

To avoid bias in eligible studies, all abstracts were

independently reviewed by two investigators (O.S. and A.P.).

After excluding all irrelevant abstracts, the remaining articles

were analyzed, and data precision was examined in detail.

In meta-analysis where relevant data were lacking (k = 1),

the authors were contacted to request additional data to be

subsequently added to the meta-analysis. Then, duplicate

reports were excluded to pool the primary studies. After all

meta-analyses and primary studies were selected, a third

researcher independently extracted the highlighted data

(S.U.). Information on all data collected from the primary

studies included in the meta-analysis is presented in the

Supplementary Table 1.

2.3. Quality assessment

The qualities of themeta-analyses were independently coded

by two co-authors using the 11-item Assessment of Multiple

Systematic Reviews (AMSTAR) tool (46), which has been shown

to have a good inter-rater agreement, reliability, and content

validity (46, 47). Total scores for the meta-analyses were

calculated as the sum of the 11 items on a binary scale. Quality

classifications were set as low quality (0–4), moderate quality

(5–8), and high quality (9–11).

2.4. Statistical analysis

Initially, we reported the associations between hypertension

and AD for each primary study included in the previous meta-

analysis (see Supplementary material).

Then, for this review of meta-analyses, first, we calculated

the cumulative incidence ratio [or log risk ratio (LnRR)]

of AD for both SBP and DBP for each primary study.

Second, we identified separate effect sizes for SBP and

DBP measurements and their relationships with the risk

of AD. Third, study outcomes were grouped according to

the definition of BP (SBP or DBP) and the measurement

of hypertension established by the ISH: (1) SBP: elevated

(130–139 mmHg), grade 1 (140–159 mmHg), and grade 2

(160–179 mmHg), and (2) DBP: elevated (85–89 mmHg),

grade 1 (90–99 mmHg), and grade 2 (100–109 mmHg) (36,

37). Heterogeneity between study samples was assessed using

Cochran’s Q statistic (48). The I2 statistic was calculated to

express the fraction of variation between studies that was

due to heterogeneity. The I2 statistic explains the percentage

of variance in the observed effects due to variance in

the true effects. An I2 value <25% was considered low

heterogeneity, between 25 and 50% was considered moderate

heterogeneity, and >50% was considered high heterogeneity

(48). Statistical significance was set at p ≤ 0.05. Data

were analyzed using Comprehensive Meta-Analysis version

3.1 (Biostat Inc, NJ, USA) (49). Additionally, to test for

the possibility of publication bias, we computed the Egger

regression test. Results revealed no evidence for a publication

bias (50).

For each primary study included in the meta-analysis, we

calculated the following (see Table 1): (a) k or number of

studies, (b) effect size, (c) 95% confidence interval (95%CI)
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of the effect, and (d) p (two-tailed significance) (55). We

used a random-effect model for the calculation of pooled

effect estimates. Then, to assess the heterogeneity of our

results, subgroup analyses were performed to examine the

differential effects of type of BP: (1) SBP, (2) DBP, and (3)

BP (total) on the risk of AD. We did not assume a common

among-study variance component across subgroups. High-

resolution forest plots were also developed separately with

random effects.

Additionally, moderating variables were selected based on

substantive considerations and the availability of data across

studies included in the meta-analysis. We anticipated interstudy

heterogeneity as there was some variation between studies

according to the study design (longitudinal k effect size = 29

vs. cross-sectional k effect size = 46) and the measures of SBP

(>140 mmHg k effect size = 52 and >160 mmHg k effect size =

8) and DBP (>85mmHg k effect size= 2 and>90mmHg k effect

size = 9). Finally, we also considered whether age at exposure

assessment (early age of onset≤65 k effect size= 39 vs. late age of

onset or ≥65 k effect size = 36) could account for heterogeneity

in associations. When possible, we used separate summary

measures for early- and late-life measures of BP. Otherwise, BP

in early life or late life was defined according to the mean of

age. Moreover, we also analyzed the sex (male or female) in the

different BP measurements. In the same line, we also analyzed

the continent where the sample was recruited (Europe, Asia, and

North America) in the different BP measurements.

3. Results

A total of 214 studies were identified from major databases:

61 in ISI Web of Science, 55 in Scopus, 17 in PubMed, 79

in Elsevier Science Direct, and 2 in Google Scholar. In total,

189 articles were excluded from this review for various reasons:

(a) k = 89 were duplicates and (b) k = 100, in which no

information was provided on the relationship between BP

and AD.

A total of 25 meta-analyses were eligible for inclusion

in this review of meta-analyses. Of these meta-analyses, 20

were excluded: (a) k = 14 studies were duplicated data;

(b) k = 2 were systematic reviews about other issues;

(c) k = 2 aimed to study the effect of antihypertensives

on AD; and (d) k = 2 aimed to study genetic factors

(Figure 1).

Table 1 summarizes key features of the included primary

diagnosis, design, number of primary studies, regions of origin

of the study, sample size, gender, mean age, results, effect sizes

of the relationships between BP and AD, and AMSTAR scores.

Although the meta-meta-analyses were based on the criteria

established by ISH, the studies only showed values for the

following cutoff points: SBP (>140 mmHg and >160 mmHg)

and DBP (>85 mmHg and >90 mmHg). Eggers’ test was not
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FIGURE 1

Flowchart depicting the selection of articles for our meta-analysis. From Page et al. (56).

significant: the intercept (B0) is 0.47, Se = 0.28, 95%CI (−0.09,

1.04), with t = 1.65, df= 73, indicating no publication bias.

3.1. BP and AD: Heterogeneity analysis

A total of 75 effect sizes were extracted from a total of five

meta-analyses that included k = 52 primary studies. Also, 60

effect sizes provided information about high SBP and risk of AD

(80%); k = 11 about high DBP (14.7%); and k = 4 about the

combined effect (5.3%) (Supplementary Table 1).

For the pooling LnRR analysis, we analyzed primary studies.

The total effect size was LnRR = 0.07, Se = 0.02 (0.031, 0.125),

Z = 3.27, p = 0.001, and heterogeneity was high (Qb = 415.56,

df = 74, p = 0.0000; I2 = 82.19). These findings suggest that

heterogeneity of effect may be present in some analyses.

3.2. Systolic blood pressure and AD

Four meta-analyses examined the relationship between high

SBP and AD. Themeta-analyses carried out by Lennon et al. (22)

(k = 11 effect sizes; N = 7,666; n = 1,520 participants with AD

and high SBP; nHC = 6,146 HC participants), Xu et al. (51) (k

= 40 effect sizes; N = 1,443,213; n = 17,113 participants with

AD and high SBP; n = 1,426,100 HC participants), Meng et al.

(52) (k= 1 effect size;N = 786; n= 79 participants with AD and

high SBP; n = 707 HC participants), and Wang et al. (54) (k =

8 effect sizes; N = 5,885; n= 385 participants with AD and high

SBP; n= 5,500 HC participants) compared HC and AD subjects

with high SBP. Only two of them (22, 52) found significant

associations between high SBP and the risk of AD (Figures 2–4).

The total random effect of the high SBP value was k =

60 effect sizes; N = 1,457,550 participants; nAD = 19,097
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FIGURE 2

Forest plot of the meta-analysis of incidence rates of AD in participants with high SBP. Individual and pooled estimates of the association

between measures of hypertension and AD. The size of the box representing the point estimate for each study in the forest plot is proportional

to the contributing weight of that study estimate to the summary estimate.
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FIGURE 3

Forest plot of the meta-analysis of incidence rates of AD in participants with high DBP. Individual and pooled e�ect estimates of the association

between DBP hypertension and AD. The size of the box representing the point estimate for each study in the forest plot is proportional to the

contributing weight of that study estimate to the summary estimate.

FIGURE 4

Forest plot of the meta-analysis of rates of AD in participants with high BP (high SBP and high DBP). The size of the box representing the point

estimate for each study in the forest plot is proportional to the contributing weight of that study estimate to the summary estimate.

participants; nHC = 1,438,453 (LnRR = 0.09, 95%CI = 0.013–

0.166, Z = 2.28, p = 0.022) (see Table 2). The heterogeneity was

high: Q-value= 380.08, df= 59, and I2 = 84.

3.3. Diastolic blood pressure and AD

Three meta-analyses showed the relationship between DBP

and AD: Lennon et al. (22) (k = 1 effect size; N = 378; n = 78

with AD and high DBP; n= 300 HC participants), Xu et al. (51)

(k= 5 effect sizes; N = 12,225; n= 497 with AD and high DBP;

n = 11,728 HC participants), and Wang et al. (54) (k = 5 effect

sizes; N = 7,745; n= 306 with AD and high DBP; n= 7,439 HC

participants). None of the three meta-analyses show significant

associations between high DBP and AD.

Consistently, our results (k = 11 effect sizes; N = 20,348;

nAD = 881; HC = 19,467) did not find an association between

high DBP and the risk of AD (LnRR= 0.15, 95% CI=−0.045 to

0.338, Z = 1.50, p = 0.133) (see Table 3). The heterogeneity was

high: Q-value= 29.99, df= 10, and I2 = 66.65.

3.4. High SBP and high DBP studies:
Combined e�ect sizes

Ameta-analysis reported a combined effect size for high SBP

and high DBP (97). This study (k = 4 effect sizes; N = 7,494; n

= 211 with AD and high SBP/DBP; n = 7,283 HC participants)

found a non-significant association between high SBP and high

DBP and AD (LnRR = 0.02, 95% CI = −0.179 to 0.222, Z =
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TABLE 2 Individual and pooled estimates of the association between high SBP and AD.

References Statistics for each study

Sample LnRR Se Ve LLIC ULIC Z p

Lennon et al. (22)

Kivipelto et al. (1)

(18)

AD n= 48 0.74 0.47 0.22 −0.174 1.658 1.59 0.113

HC n= 1,400

Morris et al. (1) (25) AD n= 324 0.03 0.13 0.02 −0.221 0.280 0.23 0.817

HC n= 378

Morris et al. (2)

(25)a
AD n= 54 0.12 0.79 0.63 −1.430 1.674 0.15 0.877

HC n= 378

McGrath et al. (57) AD n= 81 0.30 0.24 0.06 −0.174 0.775 1.24 0.215

HC n= 1,440

Chiang et al. (58) AD n= 64 0.23 0.35 0.12 −0.448 0.910 0.67 0.505

HC n= 292

Kimm et al. (1) (59) AD n= 282 0.26 0.12 0.01 0.030 0.495 2.21 0.027

HC n= 821

Kimm et al. (2) (59) AD n= 164 0.18 0.60 0.36 −1.000 1.364 0.30 0.762

HC n= 821

Kimm et al. (3)

(59)a
AD n= 274 0.34 0.13 0.02 0.088 0.584 2.66 0.008

HC n= 821

Kimm et al. (4)

(59)a
AD n= 206 0.18 0.11 0.01 −0.041 0.405 1.60 0.109

HC n= 821

Ninomiya et al. (1)

(60)

AD n= 6 −0.05 0.29 0.08 −0.619 0.516 −0.18 0.859

HC n= 149

Ninomiya et al. (2)

(60)a
AD n= 17 −0.17 0.35 0.12 −0.865 0.516 −0.50 0.621

HC n= 177

Total (22) 0.20 0.06 0.00 0.090 0.307 3.58 0.000

Xu et al. (51)

Launer et al. (1)

(27)

AD n= 81 0.20 0.61 0.37 −0.996 1.394 0.33 0.744

HC n= 2.137

Posner et al. (24) AD n= 257 −0.22 0.34 0.12 −0.892 0.446 −0.65 0.513

HC n= 1.259

Verghese et al. (1)

(61)

AD n= 65 −0.39 0.34 0.11 −1.049 0.278 −1.14 0.255

HC n= 406

Tyas et al. (39) AD n= 35 0.13 0.39 0.15 −0.634 0.897 0.34 0.737

HC n= 685

(Continued)
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TABLE 2 (Continued)

References Statistics for each study

Sample LnRR Se Ve LLIC ULIC Z p

Bermejo et al. (62) AD n= 113 0.73 0.38 0.15 −0.020 1.475 1.91 0.056

HC n= 3.824

Huang et al. (63) AD n= 612 0.26 0.10 0.01 0.064 0.460 2.60 0.009

HC n=

142.744

Chu et al. (64) AD n= 10 0.04 0.02 0.00 0.009 0.069 2.54 0.011

HC n= 153

Luchsinger et al.

(65)

AD n= 246 0.34 0.22 0.05 −0.087 0.760 1.56 0.120

HC n= 1.138

Forti et al. (1) (66) AD n= 18 −0.26 0.77 0.60 −1.777 1.254 −0.34 0.735

HC n= 466

Forti et al. (2) (66) AD n= 30 −0.03 0.46 0.21 −0.939 0.878 −0.07 0.948

HC n= 238

Song et al. (67) AD n= 416 0.01 0.15 0.02 −0.276 0.296 0.07 0.946

HC n= 2.790

Raffaitin et al. (68) AD n= 134 0.10 0.31 0.10 −0.509 0.700 0.31 0.757

HC n= 7.087

Muller et al. (69) AD n= 147 0.41 0.25 0.06 −0.085 0.896 1.62 0.105

HC n= 1833

Lindsay et al. (70) AD n= 194 −0.13 0.18 0.03 −0.486 0.231 −0.70 0.485

HC n= 4.088

Kivipelto et al. (1)

(71)

AD n= 48 0.96 0.46 0.21 0.060 1.851 2.09 0.037

HC n= 1.449

Borenstein et al.

(72)

AD n= 90 0.58 0.40 0.16 −0.196 1.361 1.47 0.143

HC n= 1.859

Hayden et al. (73) AD n= 104 −0.42 0.22 0.05 −0.847 0.016 −1.89 0.059

HC n= 3.264

Kuller et al. (74) AD n= 330 −0.11 0.24 0.06 −0.582 0.372 −0.43 0.665

HC n= 2.807

Ronnemaa et al.

(75)

AD n= 127 0.00 0.09 0.01 −0.182 0.182 0.00 1.000

HC n= 2.268

Annweiler et al.

(76)

AD n= 70 −0.36 0.31 0.10 −0.968 0.254 −1.14 0.253

HC n= 498

Wang et al. (77) AD n= 8.488 0.32 0.13 0.02 0.076 0.568 2.57 0.010

HC n=

1.230.400

(Continued)
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TABLE 2 (Continued)

References Statistics for each study

Sample LnRR Se Ve LLIC ULIC Z p

Qiu et al. (1) (78) AD n= 333 0.28 0.16 0.03 −0.034 0.590 1.74 0.081

HC n= 1.301

Olazaran et al. (79) AD n= 68 −0.45 0.26 0.07 −0.946 0.054 −1.75 0.080

HC n= 1.376

Becker et al. (80) AD n= 48 −0.11 0.32 0.10 −0.729 0.518 −0.33 0.740

HC n= 288

Dal et al. (1) (81) AD n= 40 −0.14 0.32 0.11 −0.775 0.496 −0.43 0.668

HC n= 576

Dal et al. (2) (81) AD n= 67 −0.54 0.30 0.09 −1.134 0.045 −1.81 0.070

HC n= 781

Harwood et al. (1)

(82)

AD n= 202 0.41 0.21 0.05 −0.011 0.822 1.91 0.056

HC n= 392

Harwood et al. (2)

(82)

AD n= 188 −0.36 0.31 0.10 −0.969 0.256 −1.14 0.254

HC n= 84

Wu et al. (83) AD n= 201 0.68 0.30 0.09 0.095 1.261 2.28 0.023

HC n= 391

Brayne et al. (84) AD n= 18 −0.25 0.37 0.14 −0.983 0.486 −0.66 0.507

HC n= 340

Mendez et al. (85) AD n= 50 −0.06 2.02 4.07 −4.015 3.891 −0.03 0.976

HC n= 407

French et al. (86) AD n= 76 −0.07 0.42 0.17 −0.887 0.742 −0.17 0.861

HC n= 102

Kokmen et al. (87) AD n= 203 −0.36 0.31 0.10 −0.972 0.258 −1.14 0.256

HC n= 415

Foroughan et al.

(88)

AD n= 42 0.54 0.23 0.05 0.078 0.995 2.30 0.022

HC n= 115

Roberts et al. (89) AD n= 151 0.07 0.21 0.04 −0.348 0.483 0.32 0.750

HC n= 264

Kondo et al. (90) AD n= 60 0.41 0.16 0.03 0.082 0.729 2.46 0.014

HC n= 120

Suhanov et al. (91) AD n= 127 0.59 0.34 0.12 −0.086 1.262 1.71 0.087

HC n= 260

Graves et al. (92) AD n= 18 0.43 0.03 0.01 0.339 0.472 11.90 0.000

HC n= 340

Tsolaki et al. (93) AD n= 65 −0.77 0.19 3.86 −1.161 −0.391 −3.94 7.829

HC n= 69

(Continued)
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TABLE 2 (Continued)

References Statistics for each study

Sample LnRR Se Ve LLIC ULIC Z p

Imfeld et al. (94) AD n= 3.541 −0.38 3.75 1.41 −0.459 −0.312 −10.26 0.000

HC n= 7.086

Total (52) 0.05 0.05 0.00 −0.038 0.146 1.16 0.246

Meng et al. (52)

Joas et al. (95) AD n= 79 1.59 0.67 0.45 0.285 2.902 2.39 0.017

HC n= 707

Wang et al. (54)

Qiu et al. (2) (96) AD n= 150 0.61 0.28 0.08 0.060 1.159 2.18 0.030

HC n= 1.270

Qiu et al. (3) (96)a AD n= 124 0.39 0.19 0.03 0.019 0.751 2.06 0.039

HC n= 441

Li et al. (1) (97) AD n= 14 0.39 0.31 0.10 −0.225 0.995 1.24 0.216

HC n= 530

Li et al. (2) (97) AD n= 19 −0.51 0.23 0.05 −0.953 −0.069 −2.26 0.024

HC n= 733

Li et al. (3) (97) AD n= 37 −0.73 0.60 0.36 −1.908 0.440 −1.23 0.220

HC n= 530

Li et al. (4) (97)a AD n= 31 0.32 0.34 0.12 −0.346 0.990 0.95 0.345

HC n= 733

Li et al. (5) (97)a AD n= 4 −0.06 0.21 0.04 −0.476 0.352 −0.29 0.770

HC n= 733

Li et al. (6) (97)a AD n= 6 −0.36 0.52 0.27 −1.384 0.670 −0.68 0.496

HC n= 530

Total (55) 0.08 0.16 0.03 −0.241 0.399 0.48 0.629

Total random 0.09 0.04 0.00 0.013 0.166 2.28 0.022

aMeasures SBP > 160.

0.21, p = 0.835) (see Table 4). The heterogeneity was medium:

Q-value= 4.52, df= 3, and I2 = 33.69.

3.5. Subgroup analyses

Results of the subgroup analysis on the primary outcomes

are presented in Table 5. Study outcomes were grouped by

definition of hypertension and measures of BP (e.g., SBP, DBP,

or total BP). Notably, 60 effect sizes examined SBP at both

grades (22): 52 effect sizes examined only grade 1 (>140

mmHg) (51, 54) and 8 effect sizes examined only grade 2

(>160 mmHg) (53). Eleven effect sizes examined DBP at both

grades: 2 effect sizes examined DBP using a cutoff point of >85

mmHg (51, 54) and 9 effect sizes >90 mmHg. Four effect sizes

combined both types of hypertension (53). Moderator analyses

were performed comparing effect sizes according to sex (men

and women), age (≤65 and ≥66), study design (cross-sectional

or C and longitudinal or L), and regions (Europe, Asia, and

North America).

The results of pooling studies that reported RRs for a total

score of BP showed that sex, age, and design did not moderate

the relationship between hypertension and AD risk (Qb: p ≤

0.50). These results indicate that the risk of AD in participants

with hypertension did not change significantly according to sex,

age, and study design groups. However, it can be observed that

there are significant relationships between different categories

of the variables such as sex, age, study design, and AD (Z: p ≤

0.50). Findings revealed a significant relationship only between

being women and a greater risk of AD (p = 0.008). Age was
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TABLE 3 Individual and pooled estimates of the association between high DBP and AD.

References Sample Statistics for each study

LnRR Se Ve LLIC ULIC Z p

Lennon et al.

(22)

Morris et al. (3)

(25)

AD n= 78 0.44 0.49 0.24 −0.513 1.402 0.91 0.363

HC n= 300

Xu et al. (51)

Launer et al. (2)

(27)

AD n= 87 0.62 0.31 0.10 0.005 1.236 1.98 0.048

HC n= 2.137

Verghese et al.

(2) (61)

AD n= 65 0.65 0.31 0.09 0.048 1.246 2.12 0.034

HC n= 406

Qiu et al. (4) (78) AD n= 87 0.64 0.17 0.03 0.303 0.981 3.71 0.000

HC n= 1.301

Ruitenberg et al.

(98)

AD n= 107 −0.11 0.11 0.01 −0.331 0.120 −0.92 0.359

HC n= 6.985

Shah et al. (99) AD n= 151 0.00 0.01 0.00 −0.010 0.010 0.00 1.000

HC n= 899

Total (52) 0.27 0.15 0.02 −0.019 0.554 1.83 0.068

Wang et al. (54)

Qiu et al. (5) (96) AD n= 245 −0.25 0.19 0.03 −0.613 0.116 −1.34 0.182

HC n= 2,249

Li et al. (7) (97) AD n= 22 −0.20 0.53 0.28 −1.245 0.848 −0.37 0.710

HC n= 2.605

Li et al. (8) (97) AD n= 28 −0.31 0.39 0.15 −1.086 0.457 −0.80 0.424

HC n= 1.321

Li et al. (9) (97)a AD n= 4 0.54 0.28 0.08 −0.018 1.091 1.90 0.058

HC n= 905

Li et al. (10)

(97)a
AD n= 7 −0.04 0.22 0.05 −0.464 0.383 −0.19 0.850

HC n= 359

Total (54) −0.04 0.15 0.02 −0.339 0.263 −0.25 0.805

Total random 0.15 0.10 0.01 −0.045 0.338 1.50 0.133

aMeasures DBP > 90.

also associated with increased risk of AD in early (p = 0.008)

and late (p = 0.047) age of onset, and this association was also

significant in cross-sectional (p = 0.021) and longitudinal (p =

0.013) studies. Regions moderated the association between BP

and AD. The risk of AD was greater in studies that used samples

from Asia and North America than those performed in Europe.

Results did not find significant differences in the risk of AD

according to the measures of SBP (>140 and >160 mmHg)

and DBP (>85 and >90 mmHg). Similarly, sex, age, design,

and region did not moderate the relationship between SBP and

DBP and the risk of AD, except sex in the case of DBP. Results

found that women showed a stronger risk of developing AD than
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TABLE 4 Individual and pooled estimates of the association between high BP and AD.

References Sample Statistics for each study

LnRR Se Ve LLIC ULIC Z p

Guan et al. (53)

Qiu et al. (6) (19) AD n= 75 0.22 0.20 0.04 −0.168 0.599 1.10 0.272

HC n= 719

Stewart et al.

(100)

AD n= 35 −0.12 0.23 0.05 −0.566 0.333 −0.51 0.611

HC n= 1.778

Treiber et al.

(101)

AD n= 65 0.17 0.14 0.02 −0.103 0.434 1.21 0.227

HC n= 3.634

Hassing et al.

(102)

AD n= 36 −0.17 0.14 0.02 −0.441 0.092 −1.28 0.199

HC n= 1.152

Total random 0.02 0.10 0.01 −0.179 0.222 0.21 0.835

men. It is also observed that only in longitudinal studies and

Asia regions, significant associations were found between SBP

and AD.

According to measures of SBP (>140 and >160 mmHg),

results indicated that SBP had no significant differences in

effect sizes on the risk of AD at different sexes, ages, and

designs. However, for SBP > 140 mmHg, there was evidence of

heterogeneity between regions in RRs of AD. Asian countries

showed stronger effect sizes between SBP and risk of AD than

European and North American countries. Also, results found

that elevated SBP (>160 mmHg) was significantly associated

with AD risk in the young elderly (≤65), longitudinal studies,

and in Europa and Asia.

For DBP (>85 and >90 mmHg), there was evidence

of heterogeneity between the sexes. Women with elevated

DBP (>90 mmHg) showed a greater risk of AD than men.

Furthermore, there were no significant differences in AD risk

according to age, design, and region.

Finally, age and region did not moderate the relationship

between the combined effects of BP and the risk of AD.

4. Discussion

This study analyzes the association between high BP

and the risk of AD. This is the first study to evaluate

this relationship by identifying previous meta-analyses and

analyzing primary studies worldwide. The present study

summarized the information on meta-analyses of hypertension

(DBP and SBP) and AD and expanded the findings from

individual studies. In this study, 52 primary studies and 75 effect

sizes were extracted. Furthermore, we included some moderator

variables between high DBP and high SBP and AD, such as sex,

age, study design, regions, and measures of SBP and DBP.

Overall, results suggest that hypertension is associated with

an increased risk of AD (RR = 1.08, 95%CI: 1.032, 1.13, Z =

3.273, p= 0.001). It indicates that the risk of AD increases by 8%

for patients with SBP.

In this study, 46 primary studies and 60 effect sizes extracted

from four meta-analyses (22, 51–53) confirm the relationship

between high SBP and AD (RR = 1.09, 95%CI: 1.013, 1.181,

Z = 2.285, p = 0.022). These results indicate that participants

with high SBP increase the rate risk of AD by 9% and

support findings of previous studies, suggesting that there were

consistent demonstrations of a relationship between SBP and

the risk of developing AD. In this vein, research demonstrated

that high SBP could increase the risk of AD since it could cause

neurobiological alterations (deposits of beta-amyloid protein),

which lead to lesions in the brain, such as cerebral atrophy, senile

plaques, and neurofibrillary tangles, which could be explanatory

factors of the development of AD (103, 104). Other studies

also suggest that high SBP could cause brain vascular injury,

leading to increased flow of blood, cerebral patency, and cerebral

amyloid angiopathy which were also associated with a higher

risk of AD (105–107). However, our analysis cannot underlie

the pathophysiology of AD and could only define SBP as a

risk factor.

The relationship between high DBP and AD was studied

through k = 8 primary studies and eleven effect sizes (three

meta-analyses) (22, 51, 54). Findings did not find a significant

association between high DBP and the risk of AD. Nevertheless,

according to previous studies, these results could be explained

by confounding due to associations between BP and advanced

disease or other unknown modifiable risk factors (108–110).
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TABLE 5 E�ects of sex, age, design, and regions in di�erent types of SBP (>140 and >160 mmHg) and DBP (>85 and >90 mmHg).

Group by Statistics for each study

E�ect sizes LnRR Se Ve LLIC ULIC Z p I2 Qb

BP (all types)

Sex

Men 54 0.06 0.04 0.00 −0.023 0.140 1.407 0.159 72.01 1.867,

p= 0.172

Women 21 0.16 0.06 0.00 0.041 0.274 2.657 0.008 88.38

Age

≤65 36 0.09 0.03 0.00 0.024 0.160 2.645 0.008 58.70 0.280,

p= 0.596

≥65 39 0.07 0.03 0.00 0.001 0.132 1.984 0.047 88.11

Design

C 46 0.06 0.03 0.00 0.010 0.120 2.303 0.021 87.61 0.744,

p= 0.389

L 29 0.11 0.04 0.00 0.023 0.197 2.484 0.013 36.48

Regions

Europe 23 −0.05 0.03 0.00 −0.113 0.025 −1.244 0.214 87.66 20.65,

p= 0.0001

Asia 15 0.19 0.04 0.00 0.115 0.284 4.627 0.000 58.27

North

America

37 0.11 0.04 0.00 0.038 0.190 2.939 0.003 62.02

SBP

>140 52 0.08 0.04 0.01 −0.007 0.158 1.786 0.074 86.01 0.948,

p= 0.330

>160 8 0.19 0.11 0.01 −0.027 0.407 1.720 0.085 3.14

Sex

Men 42 0.08 0.05 0.01 −0.015 0.174 1.649 0.099 67.99 0.107,

p= 0.744
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TABLE 5 (Continued)

Group by Statistics for each study

E�ect sizes LnRR Se Ve LLIC ULIC Z p I2 Qb

Women 18 0.11 0.06 0.01 −0.012 0.221 1.158 0.079 88.94

>140 Men 35 0.06 0.05 0.01 −0.045 0.162 1.11 0.267 71.87 0.237,

p= 0.626

Women 17 0.09 0.06 0.00 −0.025 0.222 1.565 0.118 89.81

>160 Men 7 0.21 0.11 0.01 −0.009 0.426 1.880 0.060 15.65 0.018,

p= 0.895

Women 1 0.18 0.11 0.01 −0.041 0.405 1.601 0.109 0.000

Age

≤65 29 0.101 0.07 0.01 −0.034 0.250 1.495 0.135 54.50 0.133,

p= 0.715

≥65 31 0.07 0.07 0.01 −0.063 0.207 1.040 0.298 90.29

>140 ≤65 25 0.08 0.08 0.01 −0.084 0.234 0.927 0.354 49.01 0.000,

p= 0.987

≥65 27 0.08 0.07 0.01 −0.067 0.221 1.048 0.295 91.54

>160 ≤65 4 0.26 0.10 0.01 0.070 0.455 2.667 0.008 23.26 1.854,

p= 0.173

≥65 4 0.01 0.17 0.03 −0.318 0.334 0.047 0.962 0.00

Design

C 41 0.06 0.05 0.01 −0.031 0.152 1.294 0.196 88.23 1.336, p=

0.248

L 19 0.16 0.07 0.01 0.018 0.302 2.206 0.027 35.78

>140 C 41 0.06 0.05 0.00 −0.032 0.152 1.290 0.198 88.23 0.517,

p= 0.472

L 11 0.14 0.10 0.01 −0.052 0.327 1.425 0.154 50.73

>160 C – – – – – – – – –

L 8 0.21 0.07 0.01 0.065 0.356 2.834 0.005 3.14
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TABLE 5 (Continued)

Group by Statistics for each study

E�ect sizes LnRR Se Ve LLIC ULIC Z p I2 Qb

Regions

Europe 18 0.03 0.09 0.01 −0.148 0.198 0.284 0.777 89.30 5.785, p=

0.055

Asia 14 0.27 0.09 0.01 0.095 0.436 3.044 0.002 60.41

North

America

28 0.01 0.07 0.01 −0.130 0.152 0.156 0.876 64.11

>140 Europe 17 0.00 0.09 0.01 −0.187 0.176 0.057 0.955 89.62 5.985,

p= 0.050

Asia 11 0.29 0.10 0.01 0.091 0.493 2.854 0.004 63.14

North

America

24 0.01 0.08 0.01 −0.143 0.160 0.109 0.913 67.66

>160 Europe 1 0.61 0.28 0.08 0.060 1.159 2.176 0.030 0.00 3.562,

p= 0.169

Asia 3 0.23 0.08 0.01 0.067 0.389 2.771 0.006 9.15

North

America

4 0.01 0.17 0.03 −0.318 0.334 0.047 0.962 0.00

DBP

>85 2 0.21 0.24 0.06 −0.266 0.680 0.859 0.390 61.98 0.067,

p= 0.795

>90 9 0.14 0.11 0.01 −0.081 0.358 1.236 0.217 69.65

Sex

Men 8 −0.01 0.06 0.01 −0.13 0.118 −0.109 0.913 39.20 13.37,

p= 0.0001

Women 3 0.62 0.15 0.03 0.307 0.927 3.897 0.0001 0.00

>85 Men 2 0.22 0.29 0.08 −0.344 0.782 0.763 0.446 61.98 –

Women – – – – – – – – –

>90 Men 6 −0.02 0.05 0.01 −0.126 0.079 −0.452 0.641 35.53 16.052,

p= 0.0001

Women 3 0.62 0.15 0.02 0.321 0.915 4.081 0.0001 0.00
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TABLE 5 (Continued)

Group by Statistics for each study

E�ect sizes LnRR Se Ve LLIC ULIC Z p I2 Qb

Age

≤65 4 0.21 0.18 0.03 −0.133 0.552 1.198 0.231 85.01 0.131,

p= 0.717

≥65 7 0.12 0.16 0.03 −0.196 0.442 0.756 0.449 39.41

>85 ≤65 – – – – – – – – – –

≥65 2 0.22 0.29 0.08 −0.344 0.782 0.763 0.446 61.98

>90 ≤65 4 0.21 0.18 0.03 −0.147 0.574 1.160 0.246 85.01 0.245,

p= 0.621

≥65 5 0.08 0.21 0.04 −0.334 0.485 0.363 0.716 36.35

Design

C 5 0.26 0.14 0.02 −0.015 0.537 1.854 0.064 82.58 1.345,

p= 0.246

L 6 0.01 0.17 0.023 −0.317 0.334 0.052 0.958 28.15

>85 C – – – – – – – – –

L 2 0.22 0.29 0.08 −0.344 0.782 0.763 0.446 61.98

>90 C 5 0.26 0.14 0.02 −0.013 0.530 1.864 0.062 82.58 2.450,

p= 0.118

L 4 −0.15 0.21 0.05 −0.575 0.282 −0.671 0.502 0.00

Regions

Europe 3 0.12 0.19 0.04 −0.253 0.498 0.638 0.523 87.13 0.074,

p= 0.786

Asia – – – – – – – – –

North

America

8 0.19 0.15 0.02 −0.109 0.487 1.241 0.215 49.06

>85 Europe – – – – – – – – – –

Asia – – – – – – – – –

North

America

2 0.22 0.29 0.08 −0.344 0.782 0.763 0.446 61.98

>90 Europa 3 0.12 0.21 0.04 −0.278 0.525 0.604 0.546 87.13 0.041,

p= 0.840
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TABLE 5 (Continued)

Group by Statistics for each study

E�ect sizes LnRR Se Ve LLIC ULIC Z p I2 Qb

Asia – – – – – – – – –

North

America

6 0.18 0.19 0.04 −0.193 0.554 0.946 0.344 53.09

BP (combined e�ects)

Sex

Men 4 0.02 0.10 0.01 −0.179 0.222 0.209 0.835 33.68 –

Women – – – – – – – – –

Age

≤65 3 −0.05 0.12 0.02 −0.289 0.192 −0.387 0.669 27.19 0.978,

p= 0. 323

≥65 1 0.17 0.18 0.03 −0.182 0.513 0.934 0.350 0.00

Design

C –

L 2 0.02 0.10 0.01 −0.179 0.222 0.209 0.835 33.69

Regions

Europe 2 −0.01 0.19 0.04 −0.383 0.383 −0.026 0.979 62.61 0.522,

p= 0. 770

Asia 1 −0.12 0.32 0.10 −0.736 0.503 −0.368 0.713 0.00

North

America

1 0.16 0.26 0.07 −0.339 0.670 0.643 0.520 0.00
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For instance, secondary diseases, such as obesity, cardiovascular

diseases, silent infarcts, and vascular risk factors (111) or type

2 diabetes (103, 108, 109), could be closely related to the

development of AD. Hence, in these cases, it is not clear if

hypertension is directly related to the risk of AD or whether

AD is indirectly motivated by a secondary disease (110). Finally,

there was a small number of studies analyzing DBP and AD in

comparison with SBP, and in consequence, it is possible that we

did not have sufficient statistical power to obtain a significant

pooled estimate of the association between DBP and AD.

Related to the combined BP hypertension, only a meta-

analysis (53) with four independent studies and effect sizes

compared the incidence of AD between subjects with and

without hypertension. These studies found that high BP is

not associated with an increased risk of AD. This result is

contradictory to the general view on the association between

risk for AD and hypertension. For example, Guan et al. (53)

highlighted that AD and hypertension are independent diseases

with some common etiopathogenesis, which is a risk factor

in AD.

To explore the influence of other research parameters in

the relationship between high SBP and high DBP with AD, we

analyzed differentmoderators: sex, age, study design, and region.

This study does not find differences in the risk of AD according

to the type of measure of SBP (>140 and >160 mmHg) and

DBP (>85 and >90 mmHg). Total scores reveal significant

differences between men (RR = 0.99, 95%CI: 0.887, 1.125, Z =

−0.109, p= 0.913) and women (RR= 1.85, 95% CI: 1.359, 2.527,

Z = 3.897, p = 0.001) (rate risk of AD increases by 85%) in the

relationship of high DBP and AD, but not between SBP and AD.

Specifically, the data suggest that women with high DBP (>90

mmHg) had an increased risk of AD compared with men (RR=

1.86, 95%CI: 1.379, 2.498, Z = 16.05, p= 0.001), which increase

the rate risk of AD by 86%. These results have been shown in

previous studies that worked with different samples (women and

men), where AD was also associated with high DBP mainly in

women (107, 108). For instance, Benetos et al. (112) found that

DBP in women is associated with a higher cardiac output, pulse

pressure, and heart rate (HR) factors that are related to a higher

risk of AD (63.8%).

Total scores of BP show that age is associated with increased

risk of AD in the early and late age of onset (RR = 1.10, 95%CI:

1.024, 1.174, Z = 2.645, p = 0.008; RR = 1.07, 95%CI: 1.001,

1.141, Z = 0.047, p = 0.047), with the rate risk of AD increases

by 10% and 7%. However, the age of onset (early onset≤65 years

and late onset ≥65 years) does not moderate the relationship

between high SBP/DBP and AD, showing similar effect sizes for

both categories. Related to the measure of BP, this study found

that elevated SBP > 160 mmHg was associated with the risk of

AD in the young elderly (≤65 years), but not in those≥65 years

of age. In this vein, several studies have found that hypertension

has different impacts on cognitive function at different ages

(19, 22, 110). Current literature indicates that hypertension is

a risk factor for cognitive decline in midlife and young old age

but may be protective against cognitive decline in late life (22).

For example, some authors concluded that high BP at the early

age of onset impacted cognitive functions and increased the

risk of developing AD in older age (19, 113). Iadecola et al.

(114) also found that hypertension in early onset is associated

with a higher risk of AD. Therefore, changes in BP may be due

to hemodynamic regulation being altered by neurodegenerative

processes in the years preceding disease onset (22).

The only variable that moderates the relationship between

BP and AD is the region. We observe a higher risk of AD in Asia

with SBP >140 mmHg (RR = 1.34, 95%CI: 1.096, 1.637, Z =

2.854, p = 0.004) compared with European (RR = 0.99, 95%CI:

0.829, 1.193, Z = −0.057, p = 0.955) and North America (RR

= 1.01, 95%CI: 0.866, 1.174, Z = 0.109, p = 0.913). Therefore,

the rate risk of AD in Asia increases by 34%. These results

are related to the findings of some studies. During the past

four decades, the highest BP measurements worldwide have

shifted from high-income countries to low-income countries,

such as South Asia and Africa (115), which could explain our

results (116, 117). On the one hand, several authors suggest that

recent lifestyle changes in Asia countries, such as diet, changing

demographics, urbanization, environmental interactions, and

other factors, may help explain this relationship (117). On the

other hand, one study with data from 90 countries showed that

the percentage of people with hypertension receiving treatment

increased in both high-income and low- and middle-income

countries, but the gap between them widened (118). Moreover,

our results also show that the risk of AD related to SBP > 160

mmHg in Europe (RR = 0.61, 95%CI: 0.060, 1.159, Z = 2.176, p

= 0.030) and Asia (RR = 0.23, 95%CI: 0.067, 0.389, Z = 2.771,

p = 0.006) is significant. However, North America (RR = 0.01,

95%CI: −0.318, 0.334, Z = 0.047, p = 0.962) did not find a

significant relationship. Despite these results, the strength of the

association between SBP (>160 mmHg) and AD risk is similar

in the three regions.

Finally, results do not find differences in the effect size

of the association between high SBP and DBP and the risk

of AD according to the type of design (cross-sectional and

longitudinal). Our results found an association between BP and

the risk of AD in both types of studies. However, findings

confirm that the relationship between higher SBP and AD is

only significant in longitudinal studies and with SBP > 160

mmHg (RR = 1.23, 95%CI: 1.067, 1.428, Z = 2.834, p =

0.005), so the rate risk of AD increases by 23%, while high

DBP (>85 and >90 mmHg) is not related to increased AD

risk. In this vein, previous work found differences according

to the type of design that may result in part from the use of

different definitions of hypertension and non-uniformmeasures

of high or low BP. In this study, we use standardized criteria to

define BP (SBP > 140/160 mmHg and DBP > 85/90 mmHg)

and AD (clinical criteria) which could explain that there are

no differences according to the study design. After controlling
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for this confounding factor, the effect size of longitudinal

studies is higher in all the BP and SBP measures, although

the differences do not reach significance. Longitudinal studies

provide an opportunity to assess the temporal relationship

between BP and AD and the length of follow-up remains

relevant since hypertension could render individuals more

vulnerable to comorbid conditions, such as cerebrovascular

disease, that confer greater risk for AD during long periods

of follow-up.

However, there are some limitations to our study. The key

limitation is that only a small number of studies examined the

association between DBP, both types of BP combined, and AD

compromising the generalizability of the results. Furthermore,

it is likely that due to the procedure used in this meta-meta-

analysis, some primary studies were not included. Another

challenge was that studies reported outcomes using different

metrics (OR, HR, and RR). Likewise, not all the cutoff points

established by ISH could be analyzed since the stages of SBP ≥

130–139 and DBP ≥ 100 could not be defined due to the lack

of primary studies. Other confounders may also influence the

study’s findings. For example, results were not adjusted for other

risk variables including cardiovascular disease, stroke, alcohol

consumption, smoking, kidney disease, and many others. Also,

two studies did not report the mean age of the sample, and

they were not included in the moderator analysis. Moreover, the

relationship between hypertension and AD could not be thought

of as binary but rather as a dynamic one, changing with life

stage and disease state. Hence, a single measurement of BP may

not accurately reflect the participant’s average BPmeasurements.

Additionally, data on the age at the onset of hypertension

and years of living with the condition may be important in

clarifying temporal relationships between hypertension and

AD. Also, we did not examine the potentially modifying

impact of antihypertensive therapy on the relationship between

hypertension and AD. In addition, another limitation is the

absence of studies from South America andAustralia. Finally, we

did not include educational level as a moderator variable since

the external validity of some of the results has been questioned.

The primary studies contained in this meta-analysis used very

different forms of measurement. For instance, some studies

analyzed education using individual (i.e., no formal education,

mandatory education, secondary studies, university studies)

(79, 88) or community-based samples (i.e., family education

level, region, or country) (80, 88), quantitative (linear relation

between the number of years of education and the risk of

dementia) (81, 83) or qualitative measures (a threshold effect at

a given level of education) (86), and composite measures (i.e.,

socioeconomic status, SES defines education plus income) (67,

119) that show different results. Therefore, we should interpret

our results cautiously.

Several strengths of our review of a meta-analysis should be

emphasized. First, most prior studies were drawn from general

community samples or non-AD-specific studies (vascular

dementia, cortical dementia, or dementia in general), whereas

the current study relied on AD. Second, we add to the

current literature by analyzing 52 primary studies extracted

from the previous meta-analysis increasing the statistical power

of our results. Third, we analyzed the impact of different

moderators (sex, age, study design, region, and measures of

SBP/DBP) to explore the influence of other research parameters

in the relationship between high SBP and DBP and AD.

Finally, we want to focus on effect sizes since the statistical

significance should never be interpreted as evidence that an

effect had clinical importance. It is important to note that

the effect sizes were “relatively small” and the variation is

great within the same meta-analysis. Therefore, the clinical

significance and practical importance of these results should

be considered in relation to the patient’s status, goals, and

clinician experience.

As a practical implication, this study suggests that high

SBP could be a risk factor for AD. There is limited evidence

that single cardiovascular risk factors affect AD risk, but the

strength of the association is influenced greatly by changing

the parameters of the risk factors and in particular by

identifying interactions between the factors. Future research

should confirm this and determine whether stabilizing BP

might be a target to slow or decline the development

of AD.

5. Conclusion

This study analyzes the association between

SBP/DBP/combined BP and the risk of developing AD. A

total of five meta-analyses and 52 primary studies were analyzed

in this review of meta-analysis. Our study found that SBP

is associated with an increased risk of AD by 11%, although

no association was found for DBP. Measures of SBP >140,

SBP >160, DBP >85, and DBP >90 do not moderate the

relationship between SBP and DBP and AD. Moderator analysis

(sex, age, study design, region, and measures of SBP/DBP)

shows a significant association between high DBP (>90)

and AD in women. The age of onset (early-onset AD ≤65

years and late-onset AD or senile AD ≥65 years) did not

moderate the relationship between SBP and DBP and AD.

Finally, regarding the type of study, there were no differences

in the association between BP and AD between longitudinal

and cross-sectional studies. However, Asian countries showed

stronger effect sizes between SBP > 140 and risk of AD than

European and North American countries. Future work should

use other uncontrolled factors (e.g., cardiovascular diseases,

diabetes, and stroke) to explain the relationship between high

BP and AD.
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Background: Parkinson’s disease (PD) is Pengfei Zhang Liwen Zhao Pengfei Zhang

Liwen Zhao a common neurological disorder involving a complex relationship with

immune infiltration. Therefore, we aimed to explore PD immune infiltration patterns

and identify novel immune-related diagnostic biomarkers.

Materials and methods: Three substantia nigra expression microarray datasets were

integrated with elimination of batch effects. Differentially expressed genes (DEGs)

were screened using the “limma” package, and functional enrichment was analyzed.

Weighted gene co-expression network analysis (WGCNA) was performed to explore

the key module most significantly associated with PD; the intersection of DEGs and

the key module in WGCNA were considered common genes (CGs). The CG protein–

protein interaction (PPI) network was constructed to identify candidate hub genes

by cytoscape. Candidate hub genes were verified by another two datasets. Receiver

operating characteristic curve analysis was used to evaluate the hub gene diagnostic

ability, with further gene set enrichment analysis (GSEA). The immune infiltration

level was evaluated by ssGSEA and CIBERSORT methods. Spearman correlation

analysis was used to evaluate the hub genes association with immune cells. Finally,

a nomogram model and microRNA-TF-mRNA network were constructed based on

immune-related biomarkers.

Results: A total of 263 CGs were identified by the intersection of 319 DEGs and 1539

genes in the key turquoise module. Eleven candidate hub genes were screened by

the R package “UpSet.” We verified the candidate hub genes based on two validation

sets and identified six (SYT1, NEFM, NEFL, SNAP25, GAP43, and GRIA1) that distinguish

the PD group from healthy controls. Both CIBERSORT and ssGSEA revealed a

significantly increased proportion of neutrophils in the PD group. Correlation

between immune cells and hub genes showed SYT1, NEFM, GAP43, and GRIA1 to be

significantly related to immune cells. Moreover, the microRNA-TFs-mRNA network

revealed that the microRNA-92a family targets all four immune-related genes in PD

pathogenesis. Finally, a nomogram exhibited a reliable capability of predicting PD

based on the four immune-related genes (AUC = 0.905).
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Conclusion: By affecting immune infiltration, SYT1, NEFM, GAP43, and GRIA1, which

are regulated by the microRNA-92a family, were identified as diagnostic biomarkers

of PD. The correlation of these four genes with neutrophils and the microRNA-92a

family in PD needs further investigation.

KEYWORDS

Parkinson’s disease, bioinformatics analysis, immune infiltration, weighted gene co-
expression network analysis (WGCNA), hub genes, gene set enrichment analysis

Introduction

Neurological disorders, as the main cause of disability worldwide,
impose a major financial burden (Feigin et al., 2019). Compared to
other neurological disorders, Parkinson’s disease (PD) has shown
the fastest growth in prevalence and incidence in recent years
(Bloem et al., 2021). The main characteristic features of PD include
progressive loss of neurons in specific areas of the substantia nigra
and the presence of Lewy bodies in the brain (Wakabayashi et al.,
2013), which lead to dysfunction in patients. There have been
significant advances in the treatment of PD, such as dopamine
substitution and deep-brain stimulation, which retard symptom
progression and improve quality of life for decades after disease
onset (LeWitt and Fahn, 2016; Limousin and Foltynie, 2019).
However, PD eventually leads to severe disability, which remains
a healthcare challenge. Therefore, modifying PD progression and
delaying disability are still key problems that need to be solved. When
early clinical signs are inadequate for diagnosis of PD, in particular
a lack of typical motor symptoms, diagnosis is often delayed and
misdiagnosis may occur (Feigin et al., 2019; Bloem et al., 2021). By the
time a diagnosis of PD is made, a substantial proportion of neurons
in the brain have been lost (Gaenslen et al., 2011; Postuma and Berg,
2016). Thus, new diagnostic methods, including biomarkers that can
identify individuals at risk and early before clinical manifestation of
the onset of motor symptoms are needed.

In recent years, growing evidence has indicated that the immune
system is involved in the pathophysiology of PD and increases the
progression of PD (Öberg et al., 2021; Zhang et al., 2021). For
instance, immune infiltrating cells CD8+ and CD4+ T cells, which
were significantly different in PD samples compared with control
animal models (Brochard et al., 2008; Harms et al., 2017), were
related to dopaminergic neuron cell loss in the PD group (Brochard
et al., 2008; Williams et al., 2021). Notably, a high proportion of
substantia nigra CD8 T-cell infiltration has been considered an early
alteration in PD, even occurring before death of dopamine neuronal
cells and α-synuclein aggregation, which is also associated with
progression of PD (Galiano-Landeira et al., 2020). However, the
pathological mechanism underlying immune infiltration in PD lacks
comprehensive evidence. Thus, understanding the mechanism of
immune regulation in PD and identifying reliable biomarkers related
to immune regulation can guide clinical diagnosis and immune
strategies for treatment of the disease.

MicroRNA (miRNA), a small single-stranded non-coding RNA
molecule, binds to mRNA and induces mRNA degradation
and translational repression for posttranscriptional regulation of
gene expression. Recent studies have elucidated that dysregulated
expression of miRNAs plays a substantial role in regulating PD

(Briggs et al., 2015; Nair and Ge, 2016). For instance, miR-153
can significantly reduce expression of synuclein-alpha (SNCA) (Je
and Kim, 2017), which has been confirmed to be relevant to the
pathogenesis of PD (Lesage et al., 2020; Kung et al., 2022). Moreover,
miRNAs are not only related to dopaminergic neuron survival
(Kabaria et al., 2015) and neuroinflammation (Yao et al., 2018),
but can also serve as diagnostic biomarkers (Shu et al., 2020) and
therapeutic tools for PD (Gan et al., 2019; Nies et al., 2021). Therefore,
miRNAs can provide useful insight into the pathophysiology of PD
to identify new therapeutic targets and strategies to slow or reverse
neurodegeneration.

In recent years, with the development of microarray technology,
bioinformatics analysis has been widely applied to identify
potential novel biomarkers and reveal key pathways to explore
the pathogenesis and drug targets of different diseases (Zhou
et al., 2021). In this study, we conducted systematic bioinformatics
analysis to identify novel immune infiltration-related diagnosis
genes and understand the potential immune mechanism during the
development of PD.

We integrated three datasets from the Gene Expression Omnibus
(GEO) database, including 38 substantia nigra samples from the
PD group and 29 normal samples. Differential expression gene
(DEG) analysis of the integrated dataset comparing PD samples
with normal controls, Gene Ontology (GO) functional analysis,
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis, weighted gene co-expression network analysis (WGCNA),
and protein–protein interaction (PPI) analysis were successively
performed. Next, six hub genes were identified after validation using
another two cohorts. The diagnostic effectiveness of the hub genes,
gene set enrichment analysis (GSEA) of the hub genes, and the
correlation between the hub genes and immune infiltration type
were investigated. Then, four immune infiltration-related marker
genes were confirmed. Finally, a nomogram model and miRNA-TF-
mRNA network were constructed based on four immune infiltration-
related marker genes, constituting potential biomarkers for the early
diagnosis and treatment of PD.

Materials and methods

Data collection and preprocessing

We used the keyword “Parkinson’s disease” to search the
GEO1 (Clough and Barrett, 2016). Five datasets were downloaded,

1 https://www.ncbi.nlm.nih.gov/geo/
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and those datasets met of the following inclusion criteria: (1)
related to Homo sapiens; (2) datasets containing Parkinson’s patients
and control subjects; and (3) tissue derived from the substantia
nigra.

We downloaded the original data files (∗.CEL) of the four
datasets (GSE8397, GSE20163, GSE20164, and GSE20292), which
were all based on the GPL96 (HG-U133A) Affymetrix Human
Genome U133A Array (Affymetrix, Santa Clara, CA, United States).
The GSE26927 dataset, including 12 PD substantia nigra tissue
samples and 8 normal substantia nigra samples, was based
on the GPL6255 platform Illumina humanRef-8 v2.0 expression
beadchip (Illumina Inc., Bethesda, MD, United States). The GSE8397
dataset (GPL96, HG-U133 A chips) consisted of 47 individual
brain tissue samples, including substantia nigra tissues of 24
patients with PD and 15 control samples. GSE20163 contained
17 substantia nigra tissue samples, including 9 patients with PD
and 8 normal substantia nigra tissue samples. GSE20164 consisted
of 11 substantia nigra tissue samples, including 5 PD samples
and 6 normal samples. GSE20292 consisted of 29 substantia
nigra tissue samples, including 11 PD samples and 18 normal
samples. GSE26927 was used to validate the hub genes. The
raw data files (∗.CEL) of the four datasets (GSE8397, GSE20163,
GSE20164, and GSE20292) were processed by the “affy” package
(version 1.74.0) (Gautier et al., 2004). The robust multichip
average (RMA) method was used for the above four datasets to
obtain the gene expression matrix after background correction,
normalization and calculation of expression values in the “affy”
package.

We used the “limma” package (version 3.52.2) of R software2

(ver. 4.2.0) (Ritchie et al., 2015) to match the identity document
(IDs) of the datasets with that of the gene (gene symbol)
based on each platform annotation file; empty probes that
did not match the gene symbol were removed. If multiple
probes corresponded to the same gene symbol, the maximum
expression value was taken as its expression value. The gene
expression profiles of GSE8397, GSE20163, and GSE20164 were
integrated by the “limma” package in R. The combined dataset
is processed using the surrogate variable analysis (SVA) package
(version 3.44.0) (Leek et al., 2019) to remove batch effects
and other unwanted variations in high-throughput experiments.
Supplementary Table 1 shows the detailed information of the
five datasets, and a flow chart of the study design is shown in
Figure 1.

Analysis of differentially expressed genes
(DEGs)

The “limma” package was used to normalize the integrated
dataset with the ‘normalize Between Arrays’ function in R software
(version 4.2.0) and then screen DEGs between 38 patients with PD
and 29 normal substantia nigra tissues from control patients with
the threshold of adjusted p-value < 0.05 and | log2 Fold change
(FC)| > 0.5. Heatmap and volcano plots of DEGs were created by
the “pheatmap” package (version 1.0.12) and the “ggplot2” package
(version 3.3.6) in R software (version 4.2.0), respectively.

2 https://www.r-project.org/

Gene ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes
(KEGG) analyses

We examined GO functions from three classifications,
including biological processes (BP), cellular component (CC),
and molecular function (MF), to further explore the potential
molecular mechanisms of DEGs. KEGG was used to integrate
pathway information for those DEGs. The R project was used to
perform GO and KEGG analyses based on the “clusterProfiler”
(Wu et al., 2021), “org.Hs.e.g.db” (Carlson et al., 2019), “ggplot2”
(Villanueva and Chen, 2019), “enrichplot” (Yu, 2019), and “DOSE”
(Yu et al., 2015) packages, and adjusted p < 0.05 was considered to
be statistically significant.

Construction of weighted gene
co-expression network analysis (WGCNA)
and identification of hub modules

Weighted gene co-expression network analysis, a systematic
biology approach, was utilized to construct a co-expressed gene
network and to explore genes closely associated with the clinical
phenotype. First, according to variation across samples in the
integrated dataset, the top 5000 genes were imported into WGCNA
using the “WGCNA” package (version 1.71) (Langfelder and
Horvath, 2008). Second, all samples were clustered, and discrete
samples were removed to ensure the reliance of the network
construction results. Third, the soft threshold parameter was
calculated, and the optimal parameter β was selected to form the
scale-free network based on the scale independence and mean
connectivity. According to the suitable power of β = 7 (R2 = 0.85), the
topological overlap matrix (TOM) and corresponding dissimilarity
(1-TOM) were calculated. Fourth, through the dynamics cut tree
algorithms, hierarchical clustering genes were identified, and then
similar genes were classified into the same modules based on the
TOM-based dissimilarity measure.

Each module of the gene dendrogram contained at least 50 genes,
and similar modules were merged, with a height cutoff of 0.25.
Finally, the module membership (MM) and gene significance (GS)
were measured. The relevance between module eigengenes (MEs)
and clinical traits was assessed by the Pearson correlation test and
was shown with a heatmap to identify the most significant modules
associated with MEs. Significant module genes were selected for
further analysis.

Construction of a protein–protein
interaction (PPI) network and
identification of candidate hub genes

The “VennDiagram” package (Chenn, 2018) (version 1.7.3) was
used to obtain intersecting common genes (CGs) between DEGs
and the genes in the most significant module of WGCNA. The
PPI network of CGs was analyzed with the Search Tool for the
Retrieval of Interacting Genes (STRING3; version 11.0) online

3 www.string-db.org
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FIGURE 1

Flowchart of the study. GEO, gene expression omnibus; DEGs, differentially expressed genes; WGCNA, weighted gene co-expression network analysis;
ssGSEA, single-sample gene set enrichment analysis; GSEA, gene set enrichment analysis; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and
Genomes; PPI, protein–protein interaction; PD, Parkinson’s disease; TF, transcriptional factor.

database (Szklarczyk et al., 2019). In addition, we selected PPI
interaction pairs with a significance cutoff of interaction score over
0.4 while hiding disconnected nodes in the network. Finally, the
results of the PPI network were visualized in Cytoscape (Shannon
et al., 2003) (version 3.9.1). We selected the CytoHubba (version
0.1) plugin in Cytoscape by nine algorithms, namely, maximal clique
centrality (MCC), maximum neighborhood component (MNC),
node connection degree (Degree), edge percolated component (EPC),
BottleNeck, closeness, radiality, stress, and betweenness, to detect the
top 30 genes by each approach from the PPI network. Then, the
number of nodes for each gene (PPICount) was calculated, and the
top 30 genes with the largest nodes were obtained in R software. For
this study, nine approaches of CytoHubba and PPIcount were used
to screen candidate hub genes by the “UpSetR” package (Gehlenborg,
2019) (version 1.4.0) in R.

Identification of hub genes and diagnostic
implications of hub genes for PD

Expression of candidate hub genes was extracted from GSE20292
and GSE26927. The difference between PD and normal samples
of each candidate hub gene was calculated and visualized by the

“ggpurb” package (Kassambara, 2020). Candidate hub genes that
were statistically significant in both training and validation sets were
considered hub genes. A p-value of<0.05 was considered significant.

To evaluate the ability of the hub genes in both the training and
validation sets to identify PD, the “pROC” package (Robin et al.,
2011) was used to conduct receiver operating characteristic (ROC)
curve analysis. The area under the curve (AUC) value was used
to examine the diagnostic effectiveness in discriminating PD from
control samples in both training and validation sets.

Single-gene gene set enrichment analysis
(GSEA)

Through the median expression value of six hub genes (SYT1,
GAP43, SNAP25, GRIA1, NEFL, and NEFM), we divided the 38 PD
substantia nigra tissues into low- and high-expression groups based
on each hub gene. Then, to further explore the function of hub genes,
single-gene GSEA was implemented by the ordered gene expression
matrix based on the Pearson correlation between each hub gene
and other genes in R software using the “clusterProfiler” (Wu et al.,
2021) and “enrichplot” (Yu, 2019) packages. A p-value of <0.05 was
considered significant.
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Evaluation of immune cell infiltration by
ssGSEA and CIBERSORT

Single-sample gene set enrichment analysis (ssGSEA) was
implemented to estimate infiltration levels of 16 immune cells and 13
immune functions on the basis of expression profiling between the
PD and control samples using the “GSVA” package (version 1.40.1)
(Hänzelmann et al., 2013). The “pheatmap” package (version 1.0.
12) (Kolde, 2019) was used to visualize the heatmap of 29 immune
cells and immune functions. The correlation heatmap between risk
scores and the scores of 16 immune cells and 13 immune functions
was generated using the “corrplot” package (Version 0.90) (Wei and
Simko, 2021). Boxplots were separately generated using the “ggpubr”
package (version 0.4.0) (Kassambara, 2020) and the “reshape2”
package (Wickham, 2007). We used Spearman correlation analysis
to reveal the correlations between the candidate hub genes and 29
immune cells and immune functions.

In addition, the CIBERSORT algorithm (Newman et al., 2015)
was applied to quantify and calculate the proportion of 22 types
of infiltrating immune cells among the merged expression profile;
CIBERSORT filters the samples at p< 0.05. A bar plot was generated
to show the percentage of 22 types of immune cells in each sample.
The heatmap, violin plot, and correlation heatmap were generated
using the “pheatmap” package (Kolde, 2019), “vioplot” package
(version 0.3.7) (Adler and Kelly, 2020), and “corrplot” package (Wei
and Simko, 2021) by the R program, respectively.

Correlations between the candidate hub genes and 20 types
of immune infiltrations were calculated and visualized by
using Spearman correlation analysis. Based on ssGSEA and
CIBERSORT, four hub genes that were most relevant to immune
infiltration were selected.

Construction of a nomogram model for
PD

We established a nomogram model based on four immune-
related biomarker genes for predicting the occurrence of PD using
the “rms” package (Harrell, 2021). The accuracy of the nomogram
was assessed through calibration curve analyses. In addition, the
AUC value was utilized to quantify the predictive performance of the
nomogram model based on ROC curve analyses using the “ROCR”
package (Sing et al., 2005).

Analysis of transcription factors (TFs) and
miRNAs of immune-related hub genes

We searched the target miRNAs of immune-related biomarker
genes in the miRWalk (Dweep et al., 2011), RNAInter (Kang et al.,
2022), and TargetScan (Agarwal et al., 2015) databases and retained
common miRNAs. Moreover, we determined the transcription
factors (TFs) for the hub genes in the Enrichr database4 and screened
the results with a p-value < 0.05. Finally, a miRNA-TF-mRNA
regulatory network was constructed using Cytoscape.

4 http://amp.pharm.mssm.edu/Enrichr/

Statistical analysis

We used version 4.2.0 of R software (limma, ggpurb, pheatmap,
violplot, corrplot package, and so on) for all statistical analyses.
Student’s t test was applied to compare the mean difference
between groups. Correlation between variables was determined using
Pearson’s or Spearman’s correlation test. Two-tailed p-values < 0.05
were considered significant.

Results

Identification of DEGs

Differentially expressed genes of the integrated dataset were
analyzed using the “limma” package. A total of 319 genes were
differentially expressed between 38 PD samples and 29 normal
substantia nigra tissue samples, with 45 genes being upregulated and
274 downregulated. The volcano plot and heatmap of DEGs are
shown in Figures 2A, B, respectively.

GO and KEGG analyses of DEGs

Differentially expressed genes were assessed through GO and
KEGG analyses to explore the biological functions associated with
PD. KEGG enrichment analysis results showed that DEGs are
mainly related to synaptic vesicle cycle, phagosome, collecting duct
acid secretion, gap junction, GABAergic synapse, and Parkinson’s
disease, among others (Figures 3A–C and Supplementary Table 2).
GO enrichment analysis indicated DEGs to be associated with
neurotransmitter transport, vesicle-mediated transport in synapse,
synaptic vesicle cycle, regulation of neurotransmitter levels, and
regulation of trans-synaptic signaling, among others, in biological
processes (BP) analysis. Cellular component (CC) analysis showed
the DEGs to be mainly enriched in presynapse, neuronal cell body,
transport vesicle, distal axon, and exocytic vesicle, among others.
The top five significant terms enriched in molecular function (MF)
analysis were structural constituent of cytoskeleton, ATPase-coupled
ion transmembrane transporter activity, ATPase activity (coupled to
transmembrane movement of ions, rotational mechanism), proton-
transporting ATPase activity (rotational mechanism), and GTPase
activity (Figure 3D and Supplementary Table 2).

Construction of a weighted co-expression
network and identification of hub modules

The variance of all genes in integrated dataset was calculated,
and the top 5000 variant genes were selected for analysis using the
“WGCNA” package. We performed clustered hierarchically analysis
of all samples to remove outliers by setting the threshold value to
50, and no outlier samples were removed (Figure 4A). The power
of β = 7 (scale-free R2 = 0.885) was selected as the soft threshold to
ensure a scalefree network (Figure 4B). As shown in Figure 4C, 12
modules were finally identified after merging similar modules in the
cluster tree by setting the threshold to 0.25. The correlation between
module eigengene (ME) values and clinical features is presented
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FIGURE 2

Identification of DEGs in the integrated dataset. (A) Volcano plot of all DEGs. The tomato nodes represent upregulated DEGs with p-value < 0.05 and
logFC > 0.5; the cyan nodes represent downregulated DEGs with p-value < 0.05 and logFC < –0.5. (B) Heatmap of DEGs in PD samples vs. normal
samples. Each row of the heatmap represents one gene, and each column represents one sample. The red and blue colors represent gene expression
levels corresponding to upregulated and downregulated expression. DEGs, differentially expressed genes; FC, fold change; PD, Parkinson’s disease.

in Figure 4D. Seven modules exhibited significant correlation with
PD (p < 0.05), and the turquoise module represented the highest
negative correlation with PD compared (r = 0.62; p = 3E-8). The
correlation between different modules was illustrated through the
cluster diagram and heatmap (Figure 4E). Moreover, 400 genes
were randomly selected in R software to draw a heatmap of the
weighted gene co-expression correlations to further illustrate the
correlation between different modules (Figure 4F). GS and MM
of all modules were calculated to draw scatterplots. As expected, a
significant correlation existed in the turquoise module MM and GS
(| cor| = 0.72, p < 1E-200, Figure 4G), including 1593 genes, which
were most significantly associated with PD and selected for further
analysis.

PPI network and candidate hub genes

Venn analysis was performed based on the DEGs screened from
the integrated dataset and the genes in turquoise module, and 263
common genes (CGs) genes were found (Figure 5A). The PPI
network of 263 CGs was constructed to investigate the relationships
of those genes at the protein level and obtain candidate hub genes
using Cytoscape according to the STRING database (Figure 5B).
The top 30 genes with the largest number of adjacent nodes were
screened as PPICount, including SNAP25, SYN1, SYT1, SNCA,
GAP43, GRIA1, STXBP1, RAB3A, TH, and CALB1 (Figure 5C
and Supplementary Table 3). Then, we applied nine algorithms to
calculate the score of each node gene using the CytoHubba plug-
ins of Cytoscape and selected the top 30 genes of each algorithm
(Supplementary Table 3). Finally, we screened 11 intersected genes
(SNAP25, SNCA, SYT1, ENO2, GRIA, STXBP1, SYN1, TH, NEFM,
GAP43, and NEFL) through 10 approaches by “UpSet” in the R
package (Figures 5D, E). All these intersected genes that were defined
as candidate hub genes were found to be downregulated.

mRNA expression of hub genes in patients

The mRNA expression results for the candidate hub genes in the
GSE20292 indicated SNAP25, SNCA, SYT1, GRIA, NEFM, GAP43,

and NEFL to be expressed at significantly lower levels in the PD
group than the control group (Figure 6A, p < 0.05). No significant
differences were found in mRNA expression of ENO2, STXBP1,
SYN1, and TH. In addition, we verified expression of marker genes
in the GSE26927 dataset, and SNAP25, SYT1, GRIA, NEFM, GAP43,
NEFL, and TH expression was significantly lower in PD patients than
normal samples (Figure 6B, p< 0.05). Finally, SNAP25, SYT1, GRIA,
NEFM, GAP43, and NEFL, which could effectively differentiate PD
patients from controls (p< 0.05), were selected and considered as the
hub genes and potential biomarkers for PD.

Diagnostic effectiveness of hub genes for
PD

Receiver operating characteristic curves analyses were used to
examine the accuracy of the six potential biomarker genes to
diagnose PD, with AUC values of 0.896 (GAP43), 0.837 (GRIA1),
0.775 (NEFL), 0.762 (NEFM), 0.740 (SNAP25), and 0.890 (SYT1),
respectively, in the training set (Figure 7A). As shown in Figure 7B,
the AUC values of GAP43, GRIA1, NEFL, NEFM, SNAP25, and SYT1
were 0.722, 0.808, 0.813, 0.773, 0.788, and 0.788, respectively, in the
validation set (GSE20292). Figure 7C indicates that the AUC for
all genes was greater than 0.7 in the GSE26927 dataset. The above
evidence suggests that GAP43, GRIA1, NEFL, NEFM, SNAP25, and
SYT1 can be used as diagnostic biomarkers for differentiating PD
patients from normal controls.

Single-gene GSEA

Parkinson’s disease substantia nigra tissues were divided into
two subgroups based on the median expression of the six hub
genes. Then, we utilized single-gene GSEA to explore potential
signaling pathways of the potential biomarker genes. The top five
pathways enriched for potential biomarker genes are illustrated
in Figures 7D–I. After comprehensive analysis, we found low
NEFM expression to be associated with immune responses (B-
cell receptor signaling pathway, Th1 and Th2 cell differentiation,
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FIGURE 3

Gene ontology and KEGG pathway enrichment analyses of DEGs. (A) Barplot of KEGG analysis based on the obtained 263 genes. (B) The bubble
diagrams show the top ten significantly enriched terms in KEGG analysis. The X-axis is the GeneRatio (gene count/gene size) of the term, and the Y-axis
denotes the name of the term. The darker the color is, the smaller the adjusted p-value is. (C) Subnetwork showing the top five KEGG pathways and
related genes. (D) The top 5 terms for BP, CC, and MF with p < 0.05 are shown. DEGs, differentially expressed genes; KEGG, Kyoto Encyclopedia of
Genes and Genomes; GO, gene ontology; BP, biological processes; CC, cell component; MF, molecular function.

etc.) and various immunologic disease pathways (systemic lupus
erythematosus, intestinal immune network for IgA production,
etc.), and the neuroinflammation response (NF-kappa B signaling
pathway, IL-17 signaling pathway, etc.). The remaining five hub
genes are also involved in several immune response pathways
or various immunologic disease pathways, including viral protein
interaction with cytokine and cytokine receptor (GAP43, GRIA1,
NEFL, SNAP25, and SYT1), primary immunodeficiency (GAP43,
GRIA1, NEFL, SNAP25, and SYT1), autoimmune thyroid disease
(GRIA1, NEFL, SNAP25, and SYT1), and maturity-onset diabetes
of the young (GAP43, NEFL, and SNAP25), among others. The
details of the KEGG pathway results for the six hub genes are
shown in Supplementary Table 5. The above results suggest that

these potential marker genes may influence PD development through
immune-related pathways.

ssGSEA of immune infiltration

We evaluated the samples in the integrated dataset by ssGSEA
to quantify the immune infiltration and enrichment scores of
29 immune cells and immune-related functions. A heatmap was
drawn to investigate correlations between substantia nigra tissue
samples with or without PD and immune cells (Supplementary
Figure 1A). In the PD group, immune cells such as B cells,
neutrophils, plasmacytoid dendritic cells (pDCs), T follicular helper
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FIGURE 4

The WGCNA process for the integrated dataset. (A) Clustering dendrogram of 38 PD substantia nigra tissue and 29 normal substantia nigra tissue gene
expression patterns. (B) Analysis of the scale-free fit index (left) and the mean connectivity (right) for various soft-thresholding powers; the power value β
was set as 7 for further analysis. (C) Clustering dendrograms of 5000 genes based on a dissimilarity measure (1-TOM). Seventeen co-expression modules
were constructed with various colors under the gene tree, and similar modules were merged into twelve modules with a height cutoff of 0.25. Each
color represents one module. (D) Heatmap of associations between modules and clinical traits. Correlation coefficients and p-values are shown in each
cell, which were obtained by the intersection of rows and columns. The turquoise module correlated significantly with PD. (E) Visualization of the
eigengene dendrogram and eigengene adjacency heatmap. Red indicates more similarity, and blue indicates less similarity. (F) Visualization of 400
random genes from the WGCNA network using a heatmap plot to depict the TOM among all modules included in the analysis. A redder background
indicates a higher module correlation. (G) Scatter plot of module membership vs. gene significance for PD in the turquoise module. WGCNA, weighted
gene co-expression network analysis; TOM, topological overlap matrix; PD, Parkinson’s disease.

cells (Tfhs), tumor-infiltrating lymphocytes (TILs), and regulatory
T cells (Tregs) had higher ssGSEA scores (p < 0:05, Figure 8A).
Moreover, the box plot illustrated that immune pathways such
as APC_co_stimulation and CCR were associated with elevated
ssGSEA scores in the PD group, whereas Type_I_IFN_Reponse
immune function was lower in the PD group (p < 0:05, Figure 8B).
The corHeatmap of immune-related functions result showed that

check-points were positively related with T_cell_co-stimulation and
T_cell_co-inhabition (r = 0.84 and 078, respectively, Supplementary
Figure 1B). Similarly, parainflammation had a significant positive
correlation with CCR (r = 0.78, Supplementary Figure 1B).
Immune cells such as neutrophils, pDCs, T_helper_cells were
positively related with TILs (r = 0.77, 0.73, and 0.73, respectively,
Supplementary Figure 1C), whereas aDCs were negatively related to
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FIGURE 5

Protein–protein interaction network and identification of candidate hub genes. (A) Venn plot showing the intersection between the DEGs and genes in
the turquoise module, and 263 CGs were obtained. (B) PPI network of CMs by Cytoscape. The size and gradient color of circles are adjusted by the
degree value, which reflects the connectivity between nodes. The size of circles has a positive correlation with the degree value. (C) PPI Count, revealing
the number of adjacent nodes of the top 30 genes (ranked from low to high) based on the PPI network. (D) UpSet plot showing the intersection of ten
algorithms, namely, MCC (top 30), MNC (top 30), Degree (top 30), EPC (top 30), BottleNeck (top 30), Closeness (top 30), Radiality (top 30), Stress (top
30), and Betweenness (top 30), and PPI Count (top 30). (E) Eleven candidate hub genes. All these candidate hub genes were found to be downregulated.
PPI, protein–protein interaction; CGs, common genes; MCC, maximal clique centrality; MNC, maximum neighborhood component; EPC, edge
percolated component.

Tregs (r = −0.42, Supplementary Figure 1C). Correlation analysis
showed that most of immune cells had a negative correlation with all
of the hub genes (Figure 8C and Supplementary Table 4).

CIBERSORT analysis of immune infiltration

We performed CIBERSORT analysis to assess infiltrating levels
of 22 immune cells in PD samples and normal samples by R
software. The heatmap showed the relationship between immune
cells and all of the samples filtered (Supplementary Figure 2A). The
correlation heatmap of 22 types of immune cells demonstrated that
T cells regulatory were positively related with T cells CD8 (r = 0.56,
Supplementary Figure 2B) but that activated dendritic cells and M1
macrophages had a negative correlation (r = −0.70); activated mast
cells were negatively related to resting mast cells (r = −0.69). The
violin plot of the immune cells showed that PD patients had a higher
level of neutrophils, activated NK cells and monocytes (p < 0:05,
Figure 9A). Supplementary Figure 2C illustrates the proportion
of each type of immune cell in each sample. Pearson correlation
analysis revealed a negative correlation for neutrophils with four
downregulated genes, including NEFM, GRIA1, SYT1, and GAP43
(Figure 9B and Supplementary Table 4). Combined with above two

methods, four genes (NEFM, GRIA1, NEFL, and SYT1) were strongly
negatively related to immune infiltration, especially neutrophils, and
regarded as marker hub genes related to immune infiltration.

Construction of a nomogram model to
predict occurrence of PD

The marker hub genes, namely, NEFM, GRIA1, NEFL, and
SYT1, were then used to construct a nomogram model to predict
PD occurrence (Figure 10A). We also utilized calibration plots to
confirm the performance of this nomogram model, with a sufficient
degree of fit for predicting the incidence of PD (Figure 10B). The
AUC was 0.905, suggesting that the predictive model had high
predictive accuracy (Figure 10C).

MiRNA–TF–mRNA regulatory network
analysis based on marker genes

After miRNA and TF pairs were predicted based on the four
marker hub genes, we constructed a miRNA-TF–mRNA network,
including 70 miRNAs common in three databases (miRWalk,
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FIGURE 6

Validation of candidate hub genes. (A) Validation of candidate hub genes in the GSE20292 dataset. (B) Validation of candidate hub genes in the
GSE20681 dataset (*p < 0.05, **p < 0.01). PD, Parkinson’s disease.

RNAInter and TargetScan database), 10 TFs, and 4 downregulated
marker genes. The regulatory network included 69 nodes and 81
edges, as established through Cytoscape 3.9.1 (Figure 11). Within the
network, expression of all marker genes is regulated by hsa-miR-92a-
3p, hsa-miR-92b-3p, and hsa-miR-25-3p.

Discussion

Parkinson’s disease is the most common movement disorder,
though its mechanisms have not been fully clarified. This present
study used bioinformatics analysis to identify immune infiltration-
related marker genes, which were used to construct a nomogram
model for the early prediction of PD and miRNA-TF-mRNA network
analysis to explore potential therapeutic targets for PD. We obtained
a total of 319 DEGs based on the integrated dataset. WGCNA was
performed and confirmed the turquoise module as the key module

correlating with PD. Intersecting DEGs and genes in the turquoise
module were obtained; a total of 263 CMs were screened, which
were then used for PPI network construction. We then used 10
approaches based on Cytoscape software and obtained 11 candidate
hub genes. Moreover, those 11 genes were validated in the GSE20292
and GSE26927 datasets, with 6 genes, namely, SNAP25, SYT1, GRIA,
NEFM, GAP43, and NEFL, screened. ROC analysis demonstrated the
effective diagnostic of those six hub genes in PD, suggesting potential
for distinguishing PD patients from normal controls.

Six hub genes were selected for further single-gene GSEA by
dividing the PD samples into two subgroups based on median
expression of the six hub genes. We found that low expression of
hub genes was mainly related to the immune response and immune
diseases. Then, we analyzed differences in immune cell infiltration
level between the substantia nigra of PD samples and healthy
brain tissue. Our result indicates that the proportion of neutrophils,
monocytes, and activated NK cells were significant higher in PD
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FIGURE 7

Diagnostic efficacy of potential biomarkers (GAP43, GRIA1, NEFL, NEFM, SNAP25, and SYT1) for prediction of PD and GSEA based on expression levels of
those potential biomarkers. ROC analysis of six hub genes (GAP43, GRIA1, NEFL, NEFM, SNAP25, and SYT1) for diagnosing PD in the integrated dataset
(A) and the validation sets GSE20292 (B) and GSE26927 (C). Single-gene GSEA-KEGG pathway analysis of GAP43 (D), GRIA1 (E), NEFL (F), NEFM (G),
SNAP25 (H), and SYT1 (I). PD, Parkinson’s disease; GSEA, gene set enrichment analysis; ROC, receiver operator characteristic.

samples than in controls by CIBERSORT analysis. The ssGAEA
algorithm also showed that B cells, neutrophils, pDCs, Tfhs, TILs,
Treg, APC_co_stimulation, and CCRs had higher ssGSEA scores in
the PD group but that immune function of Type_I_IFN_Reponse was
lower in the PD group. The above results revealed that the immune
cells (DC, NK cells, T cells, CCRs, neutrophils, and monocytes) play
a vital role in the pathogenesis of PD.

Overexpressed α-synuclein induces infiltration of pro-
inflammatory monocytes through C-C chemokine receptor type 2
(CCR2) in the CNS, whereas deletion of CCR2 prevents this and
subsequent dopaminergic neuronal death in the progression of PD
(Harms et al., 2018). Dysregulation of peripheral human monocytes
in PD has also been observed (Grozdanov et al., 2014), subsequently
inducing a higher infiltration level of monocytes in the cerebrospinal
fluid than in the control group (Schröder et al., 2018). The correlation
of circulating monocytes and immune cells may be that chemokines
lead to increased blood–brain barrier permeability, invasion of

peripheral monocytes into the CNS, and infiltration of immune cells
(Harms et al., 2018). However, the potential role monocytes in the
pathogenesis of PD in humans has not yet been investigated, and
further research is warranted.

Increasing evidence suggests that significantly increased T
cells (CD8 and CD4) are present in the substantia nigra of PD
patients compared with control subjects (Theodore et al., 2008;
Harms et al., 2017), and T-cell responses were connected with
dopaminergic neuron cell loss (Brochard et al., 2008; Lira et al.,
2011; Williams et al., 2021). A growing body of evidence shows
that Treg cells, Foxp3-expressing CD4+ CD25+ T lymphocytes,
play an important role in immune regulation (Noack and
Miossec, 2014). Treg cells protect neurons by inhibiting microglial
oxidative stress and inflammation in the central nervous system
(CNS) (Reynolds et al., 2007). Huang et al. (2017) revealed
that dopaminergic neuronal protection of Treg cells is achieved
via interaction between CD47 and signal regulatory protein α
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FIGURE 8

Visualization and evaluation of immune infiltration levels based on ssGSEA. (A) Comparison of 16 immune cells between PD samples and control
samples. (B) Box diagram of different immune function expression levels in the PD and control groups. (C) Pearson correlation analysis of 29 types of
immune cells and immune-related functions with hub genes (*p < 0.05 and **p < 0.01). PD, Parkinson’s disease.

(SIRPA) in PD processes. Moreover, dysfunction of Treg cells
decreases the ability to suppress the function of effector T cells
in PD, which may accelerate its progression (Saunders et al.,
2012).

T follicular helper cells, which are essential in B-cell activation,
are a specialized subtype of CD4+ T cells that are expressed
at significantly higher levels in PD patients than in controls
(Zhao et al., 2020). In addition, Tfh cells promote Th-17-induced
neuroinflammation by inducing inflammatory B-cell responses in
the CNS and increasing disease severity (Quinn et al., 2018). Such
progression of disease severity can be reduced by inhibiting Tfh cells
in the CNS.

Combining two methods, ssGSEA and CIBERSORT, we found
that neutrophils were differentially expressed between PD samples
and normal samples. The PD-relevant immune response is related
not only to changes in brain immune cells and neuroinflammation
but also to changes in the peripheral blood system. A recent study
reported higher neutrophil counts in PD compared to controls
and a decreased lymphocyte count (Jensen and Jacobs, 2021). The
neutrophil-to-lymphocyte ratio, which has proven prognostic value
in infection, inflammatory diseases and several types of cancers,
is significantly higher in PD patients than the peripheral immune

profile (Akıl et al., 2015; Muñoz-Delgado et al., 2021). Such an
elevated neutrophil population leads to mitochondrial changes,
increased markers of oxidative stress, and overexpression of nitric
oxide, suggesting that neutrophils participate in the pathological
progression of PD (Vitte et al., 2004).

Plasmacytoid dendritic cells can regulate the immune response by
producing large amounts of cytokines, particularly type I interferons,
which induce B cells to differentiate into plasma cells and produce
immunoglobulin (Jego et al., 2003; Poeck et al., 2004; Menon et al.,
2016), activate NK-cell cytolytic activity (Colonna et al., 2004), and
affect T-cell functions (Agnello et al., 2003). The former is supported
by studies in other disease, whereas a direct influence of pDCs in PD
remains to be confirmed.

Similarly, Alzheimer’s disease (AD), the most common
neurodegenerative disease, is also closely related to immune
infiltration (Hu and Wang, 2021; Qian et al., 2022; Zhang et al.,
2022). A previous study revealed that some specific immune cells in
brain tissue, including Treg cells, activated NK cells, and neutrophils,
were significantly more or less abundant in patients with AD than
in healthy controls (Hu and Wang, 2021), which is consistent with
the results of this study. The infiltration levels of some immune cells,
such as pDCs, macrophages, and basophils, were altered in the brain
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FIGURE 9

Visualization and evaluation of immune infiltration levels based on the CIBERSORT algorithm. (A) Comparison of 22 immune cells between PD samples
and control samples. (B) Pearson correlation analysis of immune cell infiltration with hub genes (*p < 0.05 and **p < 0.01). PD, Parkinson’s disease.

tissue samples of PD and AD patients compared to healthy controls
(Qian et al., 2022; Zhang et al., 2022). The potential reasons for
this were that the brain tissue samples were derived from different
regions and that the pathological mechanisms of these two diseases
are not completely the same. The roles of immune infiltration in
neurodegenerative diseases still require further investigation.

Moreover, we identified the relationship between the six genes
(NEFM, GRIA1, NEFL, SYT1, NEFL, and SNAP25) and immune
cell type by CIBERSORT and ssGSEA, and NEFM, GRIA1, NEFL,
and SYT1 were found to be closely related to immune cells. KEGG
analysis results showed DEGs to be enriched in the synaptic vesicle
cycle. Disorders of the synaptic vesicle cycle participate in the
pathogenesis of PD and play a critical role in degeneration of
dopaminergic neurons. Synaptotagmin-1 (SYT1), a potential target
in treating nervous system disorders, regulates neuron exocytosis and
the synaptic vesicle cycle (Mingazov and Ugrumov, 2016; Liu and
Kaeser, 2019). It has been demonstrated that by sponging miR-34-
5p, overexpression of SYT1 has a neuroprotective effect in a mouse
model of PD (Shen et al., 2021).

Growth-associated protein-43 (GAP-43), also known as
neuromodulin, a marker of synaptic formation and neuronal
elongation, plays an essential role in the early stage of nervous system
development. PD patients have significantly lower expression levels
of GAP-43 in dopaminergic neurons than age-matched controls,
which results in reduced regenerative capacity in dopaminergic
neurons, as well as involvement of GAP43 downregulation in
glial PD pathophysiology (Saal et al., 2017; Chung et al., 2020).
Another study revealed that an enriched environment promotes
GAP-43 upregulation to induce plastic brain changes and prevent
dopaminergic cell loss on the progression of neuronal impairment
related to PD (Yuan et al., 2018).

Emerging evidence supports that GluA1 (also known as GRIA1),
a subunit of a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) receptors, mediates synaptic plasticity, thereby playing
a critical role in brain function and dysfunction (Qu et al.,
2021). The GluA1-homomeric form, a calcium-permeable AMPA
receptor subtype, induces trafficking and insertion of AMPARs
(AMPA receptors) in synapses (Zhang and Abdullah, 2013;
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FIGURE 10

Construction of the nomogram. (A) Construction of a nomogram for immune-related hub genes (GAP43, GRIA1, NEFM, and SYT1) for predicting the
occurrence of PD. (B) Calibration curve estimates the prediction accuracy of the nomogram for PD patients. (C) The area under the curve (AUC) was
0.905. PD, Parkinson’s disease; AUC, area under the curve.

Tamano et al., 2018). Defects in regulated AMPAR trafficking can
lead to movement disorders, which may be involved in the
pathogenesis of PD (Tamano et al., 2018). One study demonstrated
that the mechanism for the treatment of Alzheimer’s disease (Qu
et al., 2021) is mainly related to upregulation and phosphorylation
of GluA1.

Neurofilament proteins, composed of a triplet of neurofilament
medium chain (NFM), heavy chain (NFH), and light chain (NFL)
proteins according to their molecular weight, are commonly used as
reliable biomarkers for neurodegenerative pathology (Zucchi et al.,
2020). It has been demonstrated that NEM, also known as NEFM,
is linked to regulatory functions in dopaminergic neurotransmission
(Kim et al., 2002) and is associated with the immune response
(Barboni et al., 2014; Li et al., 2021). Increased levels of NEFM have
been detected in various neurological diseases, such as brain damage
(Martínez-Morillo et al., 2015), schizophrenia spectrum disorders
(Runge et al., 2022), and amyotrophic lateral sclerosis (Häggmark
et al., 2014). However, the association of NEFM with PD has not been
reported previously and requires further investigation.

We also investigated the associations between four biomarker
genes and AD. NEFM (Mirza and Rajeh, 2017; Hu et al., 2020)
and SYT1 (Mirza and Rajeh, 2017) were notably downregulated
in AD compared with control brain tissues in previous studies,
demonstrating that these two genes are linked to the pathogenesis
of AD. In a postmortem study, the hippocampal expression levels
of GRIA1, GAP-43, and NEFM were significantly decreased in
AD patients compared with controls (Chowdhury et al., 2020). In
addition, the CSF levels of both GAP-43 and SYT1 significantly
increased in patients with dementia due to AD, implying that these
genes can potentially be used as biomarkers of synaptic dysfunction to
predict the progression of AD (Öhrfelt et al., 2016; Qiang et al., 2022).
The above evidence identifies four biomarker genes associated with
AD; however, their roles in this disease still require further research.

Various biomarkers for early PD diagnosis have been proposed
(Surguchov, 2022), but they remain investigational and need further
confirmation. Recent studies have demonstrated that exosomes
mediate the transfer of α-synuclein protein to brain cells, providing a
potential mechanism for the propagation of pathological α-synuclein
aggregation in brain cells and the acceleration of pathology in PD
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FIGURE 11

The miRNA-TF-mRNA interaction network. The red circles represent marker hub genes, the blue triangles represent miRNAs, and the green inverted
cones indicate TFs. mRNAs, messenger RNAs; miRNAs, microRNAs; TFs, transcription factors.

(Pinnell et al., 2021; Valencia et al., 2022). α-Synuclein aggregation
in CSF as detected by protein misfolding cyclic amplification
(PMCA) and real-time quaking-induced conversion (RT-QuIC)
had high diagnostic accuracy (AUC 0.93 and 0.89, respectively)
in distinguishing PD patients from controls (Kang et al., 2019).
Pathological α-synuclein in plasma neuron-derived exosomes can
serve as a biomarker to differentiate PD patients from healthy
controls (Kluge et al., 2021). Moreover, CNS-derived exosomes in
plasma were significantly higher in PD patients than in controls,
whereas the performance of plasma exosomal α-synuclein was only
moderate (AUC 0.654). We should conduct further research to
shed more light on this extraordinary phenomenon. Whether the
four biomarker genes drive this discrepancy by interacting with
or regulating α-synuclein aggregation in fluid or neuron-derived
exosomes and lead to this discrepancy also remains to be explored.

Next, the four immune-related biomarkers were selected as key
genes for further miRNA-TF-mRNA network analysis. Taking the
miRNA-TF-mRNA network into account, we explored the regulatory
mechanisms of NEFM, GRIA1, NEFL, and SYT1, which might be
regulated by hsa-miR-92a-3p and hsa-miR-92b-3p. Our findings
indicate that hsa-miR-92a is the hub miRNA in both regulatory

and co-expression networks and has a strong functional role in PD.
Based on integrated network analysis, hsa-miR-25-3p and hsa-miR-
363-3p were also identified as bridges connecting to GRIA1, NEFL,
and SYT1. Campos-Melo et al. demonstrated that miR-92a-3p is
expressed in motor neurons of the spinal cord and can directly
downregulate NEFM. MiR-92a is also able to repress translation of
GluA1 receptors to block homeostatic scaling in rats (Letellier et al.,
2014). Moreover, researchers have found that an inhibitor of miR-363
increases the expression level of GAP43 in glioma cells (Conti et al.,
2016). Interestingly, miR-25, miR-92a-3p (miR-92a-1 and miR-92a-
2), and miR-363 all belong to the miR-92 family, a group of highly
conserved miRNAs (Olive et al., 2010). MiR-92a may be viewed as
a potential therapeutic target for PD. Previous studies have revealed
aberrant expression of miR-92a in various cancers, and it exerts its
function in tumors mainly by promoting cell proliferation, invasion
and metastasis and inhibiting apoptosis (Dou et al., 2020; Feng et al.,
2021). Overexpression of miR-92a suppresses immune cell function
in many kinds of malignant tumors (Dou et al., 2020; Feng et al.,
2021). However, the regulatory mechanisms of miR92a have rarely
been studied in PD. Thus, we speculate that the miR92a family
may regulate the identified biomarkers to participate in immune
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infiltration in PD, and further studies to explore the pathophysiology
of the miR92a family in PD are required in the future.

Finally, we developed a nomogram to predict the occurrence
in PD patients based on the four immune-related biomarkers. The
results showed that the nomogram model had excellent individual
predictive effects. Therefore, this nomogram may provide new insight
and contribute to accurate diagnosis of PD, particularly for early stage
PD.

To the best of our knowledge, this is the first diagnostic
nomogram to predict PD based on GEO datasets. However,
there are still some limitations in this study. First, although we
performed rigorous bioinformatics analysis and external validation
to verify expression of the hub genes and their predictive power
in PD diagnosis, the results need to be thoroughly investigated
in in vitro experiments. Second, there are few datasets of miRNA
expression in the substantia nigra of PD, and the relationship of
miRNAs and immune infiltration should be investigated. Further
studies are warranted to focus on miRNAs with mechanisms in
PD. Finally, although a nomogram to predict PD is presented,
this analysis was based on genome-wide expression of the
substantia nigra from postmortem brains, and detection of substantia
nigra mRNA expression in practical applications is difficult to
implement. Future research should focus on comparing gene
expression and immune infiltration patterns between different
neurodegenerative diseases, enabling the identification of early stage
disease biomarkers that can improve the understanding of the
pathophysiology of neurodegenerative diseases and facilitate the
application of timely symptomatic interventions. Nevertheless, this
study provides new insight into exploring the mechanism of PD and
PD diagnosis.

Conclusion

In conclusion, this study not only suggests that immune cell
infiltrates are associated with PD but also presents four effective
diagnostic immune-related biomarkers for PD patients. We also
predict that the miRNA-92a family might target these immune-
related biomarkers in regulating PD. Our research provides further
insight into potential therapeutic targets for PD.
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Introduction: Adolescent exposure to neurotoxic metals adversely impacts

cognitive, motor, and behavioral development. Few studies have addressed the

underlying brain mechanisms of these metal–associated developmental outcomes.

Furthermore, metal exposure occurs as a mixture, yet previous studies most often

consider impacts of each metal individually. In this cross–sectional study, we

investigated the relationship between exposure to neurotoxic metals and topological

brain metrics in adolescents.

Methods: In 193 participants (53% females, ages: 15–25 years) enrolled in the Public

Health Impact of Metals Exposure (PHIME) study, we measured concentrations

of four metals (manganese, lead, copper, and chromium) in multiple biological

media (blood, urine, hair, and saliva) and acquired resting–state functional magnetic

resonance imaging scans. Using graph theory metrics, we computed global and local

efficiency (global:GE; local:LE) in 111 brain areas (Harvard Oxford Atlas). We used

weighted quantile sum (WQS) regression models to examine association between

metal mixtures and each graph metric (GE or LE), adjusted for sex and age.

Results: We observed significant negative associations between the metal mixture

and GE and LE [βGE = −0.076, 95% CI (−0.122, −0.031); βLE= −0.051, 95% CI

(−0.095, −0.006)]. Lead and chromium measured in blood contributed most to this

association for GE, while chromium measured in hair contributed the most for LE.

Discussion: Our results suggest that exposure to this metal mixture during

adolescence reduces the efficiency of integrating information in brain networks at

both local and global levels, informing potential neural mechanisms underlying the

Frontiers in Neuroscience 01 frontiersin.org98

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1098441
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1098441&domain=pdf&date_stamp=2023-02-06
https://doi.org/10.3389/fnins.2023.1098441
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.1098441/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1098441 January 31, 2023 Time: 15:49 # 2

Invernizzi et al. 10.3389/fnins.2023.1098441

developmental toxicity of metals. Results further suggest these associations are due

to combined joint effects to different metals, rather than to a single metal.

KEYWORDS

resting state–fMRI, graph theory, global and local efficiency, topological network properties,
exposure, neurotoxic metals

Introduction

Exposure to neurotoxic metals and their impact on the brain is
a growing worldwide health concern (Carmona et al., 2021). Metals
such as lead and manganese have been shown to readily pass the
blood-brain barrier and accumulate within various brain areas, where
they exert neurotoxic effects (Balali-Mood et al., 2021; Carmona
et al., 2021) and are associated with altered neurotransmission,
disrupted synaptic structure (Sadiq et al., 2012; Karri et al., 2016;
Carmona et al., 2021; Goel and Aschner, 2021) and accelerated
neurodegeneration (Caito and Aschner, 2015; Karri et al., 2016;
Lim et al., 2019; Twohig and Nielsen, 2019). These among others
key features of the above mentioned metals contributed to define
the brain as the target organ for exposure (Chandra et al., 1983;
Caito and Aschner, 2015; Gilani et al., 2015; Chen et al., 2022).
Growing research has identified adolescence as a critical window
(Schalbetter et al., 2022) that is vulnerable to environmental exposure
including metals (Rechtman et al., 2020). Few studies investigated the
neural mechanisms of metal neurotoxicity throughout this extended
window of vulnerability. Findings from these studies have linked
metal exposure with alterations in regional brain volume (Claus et al.,
2012, 2014; Horton et al., 2014, 2018; Levin-Schwartz et al., 2021;
Heng et al., 2022; Migneron-Foisy et al., 2022), and brain metabolite
concentrations (Trope et al., 2001; Meng et al., 2005; Thomason
et al., 2019, 2021; Cecil, 2022) during this period. This heightened
vulnerability may be due to rapid growth and differentiation of
the brain throughout childhood. Neurotoxic exposures during this
critical period can also disrupt behavioral, cognitive, and motor
development (Claus et al., 2012, 2014; Horton et al., 2018; Rechtman
et al., 2020; Levin-Schwartz et al., 2021; Heng et al., 2022). Despite the
breadth of research on the developmental effects of childhood metal
exposure, the underlying brain mechanisms behind these observed
metal-associated outcomes are still not clear.

Over the past decade, increasing use of functional magnetic
resonance imaging (fMRI) provides insight into the mechanisms
linking metal exposure and alterations in brain functions (Horton
et al., 2014). In particular, resting-state functional MRI - task-
independent assessment of spontaneous fluctuations in blood oxygen
level dependent (BOLD) signal from the brain at rest–has emerged
as a novel tool in pediatric populations to investigate the intrinsic
functional connectivity of the brain. Different from task-based fMRI
which requires participants to engage or respond to stimuli (Canario
et al., 2021), in rs-fMRI participants are instructed to simply lay
still in the scanner with their eyes closed, while allowing their
mind to roam freely (i.e., not focusing their thought on anything
in particular). This facilitates research in younger populations,
who may have difficulty completing complex tasks in the scanner
(Canario et al., 2021). Results from rs-fMRI studies have shown a
topological organization of the brain in a highly efficient manner

with a high level of local clustering, together with long-distance
connections (van den Heuvel et al., 2009). Graph theory analysis of
rs-fMRI data characterizes the topological organization of the brain
at rest (Wang et al., 2010) using metrics such as global and local
efficiency, which quantify how efficient the brain is at integrating
information at global and local levels, respectively (Wang et al.,
2010). Global efficiency (GE) provides an indication of how efficiently
the information is integrated and exchanged between the different
regions of the brain (Stanley et al., 2015; Rakesh et al., 2020). In
contrast, local efficiency (LE) measures the ability of the brain to
perform functionally specialized and segregated processing within a
network, requiring densely interconnected regions within modules
(Stanley et al., 2015; Rakesh et al., 2020). Previous results have
demonstrated the utility to characterize the topological network
organization of the brain by using graph metrics based on rs-fMRI
and link them with human behavior (Xu et al., 2015; Liu et al.,
2022), cognition (van den Heuvel et al., 2009; Uehara et al., 2013),
and diseases (Liu et al., 2008; Supekar et al., 2008). Recent studies
have used rs-fMRI to demonstrate intrinsic functional connectivity
patterns in a priori selected brain regions associated with early life
exposure to individual metals (i.e., lead, manganese) (de Water et al.,
2018, 2019; Thomason et al., 2019). Our data-driven graph theory
approach builds on this foundational research by informing potential
neural mechanisms underlying the developmental toxicity of metal
mixture exposure during adolescence.

To investigate the impact of metal exposure on the brain, it
is critical to consider not only single metal exposures but the
mixture of co-occurring neurotoxic metals (Bauer et al., 2020).
Historically, studies measure individual chemical concentrations
in individual biological media (i.e., blood, urine, etc.). These
exposure biomarkers are used as surrogates of total exposure
from the environment. However, metals distribute unevenly among
biological media that represent different aspects of each chemical’s
toxicokinetics. Therefore, each medium provides complementary
information on different biological processes. Recent studies have
started to combine information from multiple biomarkers using
statistical methods, like multi-media biomarker approaches, that
resulted in an improved measure of the total body burden and thus
improved exposure characterization (Levin-Schwartz et al., 2020,
2021; Bauer et al., 2021). Exposure, defined as metal mixtures, has
been observed to more negatively impact neurodevelopment than
exposure to a single metal component (Claus et al., 2012, 2014; Freire
et al., 2018; Horton et al., 2018). Therefore, examining the effects
of metal mixtures on brain function is crucial to better understand
the real-world impact of metal exposure on cognition and behavior.
In this study, we will use an integrated measure of metal mixtures
across multiple media, called multi-media biomarker (MMB) (Levin-
Schwartz et al., 2020), to analyze the impact on the brain of each metal
across multiple media.
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In this study, we investigate how metal exposure impacts brain
network properties in adolescents. We use graph theory metrics to
quantify how the brain integrates globally (GE) and locally segregates
(LE) information and assess associations between these metrics
with metal mixture exposure. To define our metal mixtures, we
measured concentrations of four metals [lead (Pb), manganese (Mn),
chromium (Cr), and copper (Cu)] in four biological media (blood,
urine, hair, and saliva) from 193 adolescent participants living nearby
ferro-manganese industry/alloy plant activity in northern Italy
enrolled in the Public Health Impact of Metals Exposure (PHIME)
study. Then, using weighted quantile sum (WQS) regression, a
statistical method commonly used to assess the impact of chemical
mixtures on various health outcomes (Tanner et al., 2019), we
examined associations between the metal mixture and each graph
metric (GE and LE), adjusting for sex and age. This paper contributes
to further understanding the impacts of environmental exposures
to a mixture of neurotoxic metals in developmental windows like
adolescence.

Materials and methods

Participants

The Public Health Impact of Metal Exposure (PHIME) cohort
investigates associations between metal exposure from anthropogenic
emissions and developmental health outcomes in adolescents and
young adults living nearby the ferro-manganese industry in northern
Italy. Details of the study have been described elsewhere (Lucchini
et al., 2012a; Lucas et al., 2015). Inclusion criteria were: birth in
the areas of interest; family residence in Brescia for at least two
generations; residence in the study areas since birth. The exclusion
criteria were: having a neurological, hepatic, metabolic, endocrine,
or psychiatric disorder; using medications (in particular with neuro-
psychological side effects); having clinically diagnosed motor deficits
or cognitive impairment and having visual deficits that are not
adequately corrected. Detailed description of this recruitment process
and study design can be found in previous publications (Lucchini
et al., 2012a,b). A convenience based sample of 202 participants
(53% female, ages 15–25 years) were selected to participate in a
multi-modal magnetic resonance imaging (MRI) study, PHIME-
MRI. They completed multimodal MRI scans, neuropsychological
tests, including measures of IQ [Kaufman Brief Intelligence Test,
Second Edition (KBIT-2)] (Kaufman and Kaufman, 2014; Reynolds
et al., 2014), memory and motor functions. All participants satisfied
eligibility criteria for MRI scanning [i.e., metal implants or shrapnel,
claustrophobia, no prior history of traumatic brain injury, body
mass index (BMI) ≤40]. Mn, Pb, Cr, and Cu were measured in
saliva, hair, blood and urine, for each PHIME-MRI participant.
Complete exposure data (i.e., all metals in all media for a total of
16 components), MRI and covariates data were available for 193
participants included in this analysis. A total of 193 participants were
included in this analysis, 9 were missing at least one biological marker
(Supplementary Figure 1).

Written informed consent was obtained from parents, while
participants provided written assent. Study procedures were
approved by the Institutional Review Board of the University of
California, Santa Cruz and the ethical committees of the University
of Brescia, and the Icahn School of Medicine at Mount Sinai.

Biomarker measures of exposure

Biological samples including venous whole blood, spot urine,
saliva and hair were collected from each subject upon enrollment, as
described in detail in previous studies (Smith et al., 2007; Eastman
et al., 2013; Lucas et al., 2015; Butler et al., 2019). Complete
overview of biomarkers can be found in Supplementary Figure 1 and
Table 1. Biological samples were processed and analyzed for metal
concentrations using magnetic sector inductively coupled plasma
mass spectroscopy (Thermo Element XR ICP-MS), as described
elsewhere (Smith et al., 2007; Eastman et al., 2013; Lucas et al., 2015;
Butler et al., 2019).

MRI and fMRI data acquisition

Magnetic resonance imaging (MRI) and functional MRI (fMRI)
data acquisition was performed on a high-resolution 3-Tesla
SIEMENS Skyra scanner using a 64-channel phased array head
and neck coil, at the Neuroimaging Division of ASST Spetali
Civili Hospital of Brescia. For each participant, a high-resolution
3D T1-weighted structural scan was acquired using a MPRAGE
sequence (TR = 2.4 ms, TE = 2.06 ms, TI = 230 ms, acquisition
matrix = 256 × 256 and 224 sagittal slices with final voxel
size = 0.9 mm3). Fifty contiguous oblique-axial sections were used
to cover the whole brain where the first four images were discarded
to allow the magnetization to reach equilibrium. For each subject, a
single 10-min continuous functional sequence using a T2∗weighted
echo-planar imaging (EPI) sequence (TR = 1.0 ms, TE = 27 ms,
70 axial slices, 2.1 mm thickness, matrix size 108 × 108, covering
the brain from vertex to cerebellum) was acquired. During resting-
state scans, lights of the MRI room were off and participants were
instructed to stay awake, relax and daydream (not think about
anything) with their eyes open. They were presented with an image
of a night skyline figure projected on a MRI compatible monitor.
Padding was used for comfort and reduction of head motion.
Earplugs were used to reduce noise. Data were read by a board-
certified radiologist to determine quality and possible incidental
findings–no findings were reported.

fMRI data analyses

Image pre-processing, global and local efficiency calculations,
and statistical analyses were performed using SPM12 (Wellcome
Department of Imaging Neuroscience, London, UK), Brain
Connectivity toolbox (Rubinov et al., 2009; Rubinov and Sporns,
2010) and customized scripts, implemented in MatLab 2016b (The
Mathworks Inc., Natick, MA, USA) and R (v3.4).

Image preprocessing
For each subject, the structural magnetic resonance image was

co-registered and normalized against the Montreal Neurological
Institute (MNI) template and segmented to obtain white matter
(WM), gray matter (GM) and cerebrospinal fluid (CSF) probability
maps in the MNI space. FMRI data were spatially realigned, co-
registered to the MNI-152 EPI template and subsequently normalized
utilizing the segmentation option for EPI images in SPM12. All
normalized data were denoised using ICA-AROMA (Pruim et al.,
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TABLE 1 Metal concentrations (Mn, Pb, Cr, and Cu) measured in blood, urine, hair, and saliva collected from 193 adolescents participants PHIME-MRI
included in the current study.

Medium* Metal % > LOD LOD mean ± SE GM GSD

Saliva

Lead 90.6 0.05 ± 0.003 0.19 3.07

Chromium 91.7 0.13 ± 0.003 0.50 3.69

Manganese 96.4 0.08 ± 0.001 3.13 2.97

Copper 97.4 0.35 ± 0.025 8.63 2.35

Blood

Lead 100 0.16 ± 0.003 8.84 1.56

Chromium 62.7 0.19 ± 0.008 0.34 4.54

Manganese 100 0.49 ± 0.018 8.45 1.49

Copper 100 1.09 ± 0.035 586.94 1.30

Hair

Lead 100 0.003 ± 0.0001 0.09 2.97

Chromium 100 0.004 ± 0.0001 0.04 2.57

Manganese 100 0.005 ± 0.0003 0.06 2.58

Copper 100 0.04 ± 0.002 9.96 1.62

Urine

Lead 98.4 0.06 ± 0.003 0.36 2.17

Chromium 96.9 0.09 ± 0.004 0.28 3.07

Manganese 80.3 0.11 ± 0.003 0.24 3.69

Copper 100 0.30 ± 0.009 6.01 1.85

GM, geometric mean; GSD, geometric standard deviation; LOD, limit of detection; SE, standard error of the mean. *Metrics used to measure metal concentrations within each medium were: blood
and saliva (ng/mL), hair (ug/g), urine (ug/mL).

2015). Additionally, spatial smoothing was applied (8 millimeters)
to the fMRI data. As further quality check of fMRI data, large head
motion in any direction or rotation (>3 mm or 3◦) was used as
exclusion criteria in our study–no participants were excluded in this
study. No global signal regression was applied.

Based on the Harvard-Oxford (Desikan et al., 2006) atlas, 111
regions of interest (ROI; 48 left and 48 right cortical areas; 7 left
and 7 right subcortical regions and 1 brainstem) were defined. In
this atlas, the brain areas were defined using T1-weighted images
of 21 healthy male and 16 healthy female subjects (ages 18–50).
The T1-weighted images were segmented and affine-registered to
MNI152 space using FLIRT (FSL), and the transforms then applied
to the individual brain areas’ label. Finally, these were combined
across subjects to form population probability maps for each ROI
(Desikan et al., 2006). For each ROI, a time-series was extracted
by averaging across voxels per time point. To facilitate statistical
inference, data were “pre-whitened” by removing the estimated
autocorrelation structure in a two-step generalized linear model
(GLM) procedure (Monti, 2011; Bright and Murphy, 2015). In
the first step, the raw data were filtered against the 6 motion
parameters (three translations and three rotations). Using the
resulting residuals, the autocorrelation structures present in the
data were estimated using an Auto-Regressive model of order
1 [AR (1)] and then removed from the raw data. Next, the
realignment parameters, white matter (WM) and cerebrospinal
fluid (CSF) signals were removed as confounders on the whitened
data.

Graph theory metrics/Network properties
Global and Local Efficiency (GE and LE) were computed using

the Brain Connectivity toolbox (Rubinov et al., 2009; Rubinov
and Sporns, 2010) on the defined ROI time course data per
subject. GE and LE build on the concept of efficient integration of

communication in a network at local (LE) and whole (GE) level.
Based on the average inverse shortest path length in the brain or
network, GE is defined as the inverse of the average characteristic
path length between all nodes in the networks (Latora and Marchiori,
2001; Bullmore and Sporns, 2012). For each individual node defined
as ROI, the shortest number of steps required to go from one node to
another was computed. Then, the average number of shortest steps to
all defined nodes was computed separately for each node. To correct
for the total number of connections between nodes, the inverse of
the average number of shortest steps for each node was summed
across all network nodes and normalized. LE is computed on the
neighborhood of each single ROI/node (Rubinov et al., 2009; Rubinov
and Sporns, 2010) and defined as the inverse of the shortest average
path length of all neighbors of nodes among themselves (Latora
and Marchiori, 2001). First we identified a set of nodes which are
directly connected with a given node, then we removed that node
from the identified subgraph and calculated the averaged shortest
path between all remaining nodes. GE and LE are scaled measures
ranging from 0 to 1, with a value of 1 indicating maximum GE/LE in
the brain.

Statistical analyses

Descriptive statistics
Visual inspection and descriptive statistics (geometric mean,

geometric standard deviation and Pearson’s correlation) were used
to characterize the metal concentrations in different media.
All descriptive statistical analyses were performed using R
version 4.2.1.

Multi-media biomarker (MMB) approach
To examine associations between our multi-media metal mixture

(four metals, four media) and graph theory outcomes (GE and LE),
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we used a WQS-based multi-media biomarker (MMB) approach (Lee
et al., 2019; Levin-Schwartz et al., 2021). Figure 1 shows the complete
flowchart of the analysis performed. Briefly, WQS is a data driven,
mixture-based ensemble modeling strategy that tests for associations
between the combined effect of multiple, correlated variables and
an outcome of interest. The WQS MMB approach builds on WQS,
by incorporating exposure information across different biological
media, providing an integrated estimate of total bodily exposure to
a given chemical as well as identifying the chemical-matrix specific
combination that contributes most to the overall association with the
graph theory based outcomes (GE and LE) (Levin-Schwartz et al.,
2021). The MMB WQS is hierarchical with two levels. The first level
estimates a weighted index across all biological media for a single
metal and the outcome (i.e., Pb MMB = blood Pb, urine Pb, saliva
Pb, hair Pb). Our model estimated across 50 bootstrap samples, and
100 repeated holdouts (Tanner et al., 2019) for each individual MMB.
By using the repeated holdouts WQS (Tanner et al., 2019), the data
are randomly partitioned 100 times to produce a distribution of
validated results where the mean is taken as the final estimate. The
directionality of the association of the WQS index was constrained
to be negative. Note that the WQS assumptions of linearity and
directional homogeneity were validated through visual inspection of
residuals (Levin-Schwartz et al., 2021). The second level estimates a
weighted index across the different metals (i.e., Pb MMB, Mn MMB,
Cr MMB, Cu MMB; (Levin-Schwartz et al., 2019, 2021)). First level
MMBs are included in the WQS regression model predicting the
association between the metal biomarker “mixture” and GE or LE.
A significance test for the WQS index provided an estimate of the
association with the metal mixture, while the weights associated with
each metal MMB provided an indicator of each individual metal
contribution to the overall effect. All weights are constrained to sum

to one, enabling sorting by relative importance. Metals that impact
the outcome have larger weights; factors with little or no impact on
the outcome have near-zero weights. These models were adjusted
for age and sex, and prior to model estimation, all exposures were
grouped into deciles.

Results

Demographic and exposure
characteristics

This study included 193 participants (53% female) living in
Northern Italy, with an average age of 19.2 years (range = 15–
25). Metal concentrations in the different media are reported in
Table 1 while Pearson’s correlations between them is reported in
Supplementary Figure 3.

First level MMBs and brain topological
properties

We first examined the association between each individual metal
in all media with GE and LE (Figure 2). For all metals, urinary metal
concentrations contributed most to the association between the first
level MMB (i.e., individual metal in each matrix) and GE. Urinary
Pb contributed 46% of the association between Pb exposure and GE.
Urinary Mn, Cr and Cu contributed 51, 34, and 68%, respectively
to the association with GE. For LE, the most heavily weighted
metal-matrix combination differed by metal; blood Pb concentration

FIGURE 1

Data analysis flowchart. (A) Resting-state fMRI data were preprocessed and the averaged time-series were extracted using the Harvard-Oxford atlas.
Then, global and local efficiency (GE and LE, respectively) metrics were computed for each participant using graph theory. Small solid gray circles
represent nodes of the graphs (brain regions), while gray connecting lines are the edges of the graph (functional connections). Larger dotted circles
represent segregated sub-graphs/networks (functional network characterized by highly connected brain areas), while dashed red lines are the
within-network connections at the whole brain level. Panel (B) shows the two hierarchical levels of analysis performed using the MMB WQS approach to
measure the effect of Pb, Mn, Cr, Cu on brain metrics (GE and LE). At the first level, WQS was performed to measure and derive the MMB metric for each
metal individually (Pb, Mn, Cr, Cu) on brain metrics (GE and LE). Then, the joint effect of Pb, Mn, Cr, Cu on brain metrics was assessed by applying WQS
to Pb, Mn, Cr, and Cu MMBs. All models were adjusted for sex and age. Figure adapted from Levin-Schwartz et al. (2019) and Rakesh et al. (2020).
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contributed most to the association with LE (34%). Hair Mn and
hair Cr contributed 31 and 43% to the association with LE. Urine Cu
contributed the most to the Cu-LE association. Beta coefficients and
95% confidence intervals obtained for each individual MMB WQS
model are reported in Figure 2 and Supplementary Figure 2.

Second level MMB and brain topological
properties

Results from second level repeated holdout WQS analyses
revealed associations between the overall metal mixture and GE
and LE (Figure 3A), and the contribution of each metal MMB
to these associations (Figure 3). We observed significant negative
associations between the combined metal mixture MMB and both
GE [βGE = −0.076, 95% CI (−0.122, −0.031); Figure 3A], and LE
[βLE = −0.048, 95% CI (−0.095, −0.006); Figure 3A]. We observed
that Cr and Pb contributed most to the association between the
combined metal mixture and GE (29%; Figure 3B), whereas Cr
contributed most to the association with LE (38%; Figure 3C).

Discussion

This is the first study to use rs-fMRI to investigate global
and local connectivity in adolescents exposed to a neurotoxic
metal mixture. Using graph-theory based network metrics and a
multimedia biomarker (MMB) approach, we observed a significant
negative association between exposure to a mixture of five neurotoxic
metals (lead, manganese, copper, chromium, and zinc) and global
efficiency (GE), with lead and chromium contributing most to
this association. Significant negative associations between the metal
mixture and both GE and LE were found [βGE = −0.076, 95% CI
(−0.122, −0.031); βLE = −0.048, 95% CI (−0.095, −0.006)]. We also
observed that urinary lead and chromium contributed most to the
association with GE (29 and 24%, respectively); while hair chromium
contributed most to the association with LE (38%). Overall, our
results substantiate previous findings of associations between metal
exposure and altered brain connectivity, and further suggest that
environmental exposure to a mixture of neurotoxic metals during
adolescence reduces the brain ability to efficiently integrate and
segregate information, highlighting the need to further study the
impacts of environmental exposures in developmental windows like
adolescence (Golub, 2000; Spear, 2007; Rechtman et al., 2020).
Furthermore, our results suggest these associations are due to the
combined joint effects of multiple metals, rather than to a single
metal, emphasizing the importance of analyzing metal mixtures to
better understand the real-world impact of metal exposure on brain
health.

Our findings show that urinary lead and chromium were the top
contributing metals in the association between the metal mixture
and GE, and hair chromium contributed most to the association
with LE, suggesting that urine and hair may be critical biomarkers
for estimating the effects of metal mixtures on brain connectivity
and further, these metals may exert a greater influence on global
and/or local functional connectivity across/within topological brain
networks. Lead exposure is known for causing the disruption of
neuronal activity, in particular to alter the release and storage
of neurotransmitters from the presynaptic nerve endings, that

may change the developmental processes of synapse formation in
children and young adults and results in altered brain functions
(Bressler and Goldstein, 1991). Previous human neuroimaging
studies have observed associations between lead exposure and
altered structural connectivity and functional activation patterns
in both children and adults (Thomason et al., 2019, 2021; Cecil,
2022). In particular, Thomason et al. (2019) found prenatal lead
(Pb) exposure was associated with altered age-related intrinsic
functional connectivity patterns in developing fetuses. Furthermore,
previous studies in animal models have found lead exposure to
disrupt multiple neurotransmitter systems (Goel and Aschner,
2021) (e.g., glutamatergic, dopaminergic, cholinergic), as well as
neurotransmitter and synaptic function in various areas of the brain,
including the hippocampus (Sadiq et al., 2012; Carmona et al., 2021),
and prefrontal cortex (Mansouri et al., 2013). Therefore, our finding
of lead being a top contributor to the negative association between
the metal mixture and global efficiency, could in part be explained by
its impact on structural connectivity (e.g., white matter integrity) and
synaptic function and neurotransmission within/across the brain.

The underlying mechanism for neurotoxicity of chromium is
still not fully understood (Xu et al., 2021). Increased oxidative
stress, chromosome disruptions and DNA-adduct formation are
some of the many cellular damages found to be caused by high
level exposure to Cr in the brain (Wise et al., 2022). While
there are no neuroimaging studies investigating the impact of
chromium exposure to date, previous studies in humans have
observed evidence linking chromium exposure to neurological
and psychiatric conditions, including olfactory dysfunction, autism
spectrum disorder, and acute schizophrenia (Watanabe and Fukuchi,
1981; Kitamura et al., 2003; Saghazadeh et al., 2020; Wise et al.,
2022). These findings suggest an impact of chromium exposure
on underlying neurobiological function. Furthermore, previous
studies across various animal models have observed brain-wide
neurodegeneration following chromium exposure, again suggesting
an impact of chromium exposure on neurobiological function via
its neurodegenerative effects (Soudani et al., 2012; Hao et al., 2017;
Wise et al., 2022). Therefore, our finding of chromium being a top
contributor to the negative association between the metal mixture
and both local and global efficiency is consistent with these prior
studies suggesting its widespread neurodegenerative effects, which
could potentially contribute to changes in functional connectivity
across brain networks.

Several studies have also detailed the potential synergistic
neurotoxic effects of certain metals upon co-exposure, based on their
unique chemical properties and similar neurobiological mechanisms
of action (de Andrade et al., 2021). Metals within our mixture that
have been shown to produce such synergistic neurotoxic effects
include lead and manganese (Tao et al., 1999; Chen et al., 2016;
Lu et al., 2018), whose co-exposure has been observed to increase
disruptions to neurodevelopment in both animal (Chandra et al.,
1981, 1983; Shukla and Chandra, 1987; Levin-Schwartz et al., 2021)
and human studies (Kim et al., 2009; Claus et al., 2012; Lin et al.,
2013; Levin-Schwartz et al., 2021). de Water et al. (2018) found that
early postnatal manganese (Mn) concentrations were associated with
altered intrinsic functional connectivity within cognitive control and
motor brain areas of adolescents. Additionally, in another study,
de Water et al. (2019) found prenatal Mn concentrations were
associated with reduced intrinsic functional connectivity of brain
areas involved in emotion processing and regulation in children.
Furthermore, co-exposures of certain metals have been reported
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FIGURE 2

First level MMB models. Results obtained from the MMB WQS association between each metal’s respective exposure biomarker (e.g., blood Pb) and GE
or LE was estimated among 193 adolescents included in the current study. Bar plots show estimated weights for each component of the mixture in the
WQS regressions. Red dotted lines represent the significant thresholds for each WQS model. 95% confidence intervals obtained for each individual MMB
WQS model are reported. All models were adjusted for sex and age. Components abbreviations: the first letter represents the medium (S, saliva; B, blood;
U, urine; H, hair) and the second and third letters represent the metals (Mn, manganese; Pb, lead; Cr, chromium; Cu, copper).

to potentially increase accumulation, retention and distribution of
individual metal components in animal models (Chen et al., 2016).
In particular, manganese has been shown to increase accumulation of
various metals in the brain, notably lead (Chandra et al., 1983; Chen

et al., 2016), and copper (Mercadante et al., 2016). Therefore, while
lead and chromium were found to contribute most to the association
between the metal mixture and GE, and chromium contributed most
to the association with LE, the higher influence of these metals may
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FIGURE 3

Second level MMBs approach. Beta coefficients (A) and weights (B,C) obtained from the WQS association between each MMB metal and GE or LE was
estimated among 193 adolescents included in the current study. Panel a reports the beta coefficients for GE (orange) and LE (blue), respectively. In
panels (B,C), data points indicate weights for each of the 100 holdouts; box plots show the 25, 50, and 75th percentiles while the whiskers show the 10
and 90th percentiles of weights for the 100 holdouts. Diamonds show the mean weights for the 100 holdouts. Dotted lines indicate the thresholds. Mn,
manganese; Pb, lead; Cr, chromium; Cu, copper.

be due to synergistic interactions with other metals in the mixture
(e.g., manganese). This possibility highlights the importance of
analyzing metal mixtures rather than single metals in environmental
epidemiological studies, as the influence of a single metal exposure
may be affected by other metals an individual is exposed to. Further,
our findings show that urine contributed most to the association
between both lead, chromium and GE, and hair contributed most
to the association between chromium and LE, suggesting that urine
and hair may be critical for estimating the effects of metal mixtures
on brain connectivity. Previous studies that analyzed one metal at
the time, have indicated blood as the most reliable biomarker to
assess lead exposure (Levin-Schwartz et al., 2021), and blood has
also been used previously as an exposure biomarker for other metals
such as chromium (Alexopoulos et al., 2008; Wise et al., 2022) and
manganese (Levin-Schwartz et al., 2021). By using novel techniques
like MMB WQS, we can increase the accuracy in measuring mixture
effects compared to individual biomarkers and provide a data-driven
biomarker selection (Levin-Schwartz et al., 2019, 2020). Finally, as
previous neuroimaging studies have mainly examined associations
between brain function and a single metal exposure, future studies
should aim to utilize metal mixtures to better account for these
potential synergistic effects due to metal co-exposure, which would
ultimately help better understand the real-world impact of metal
exposure on the brain.

Limitations

In this study, while we found robust associations between metals
and GE and LE metrics, our small sample size resulted in relatively
small effect sizes (Figure 3). While it would be beneficial to repeat
our analysis in a larger dataset, to our knowledge no such dataset with
multi-media biomarkers and fMRI data exists. Further, we assumed
that all metals have a linear association with both global and local
efficiency metrics. Our MMB WQS approach does not assume linear
associations between outcomes but only considers additive effects.
Future studies should investigate non-linear associations between
outcomes and possible multiplicative effects. Finally, MMB WQS
might suffer from overfitting issues, since two WQS models are

performed on the same set of data. To compensate for this, we
split our data into training and testing datasets in both MMB WQS
analysis levels.

Conclusion

Using a multimedia biomarker (MMB) approach, we were able
to estimate the associations between a complex metal mixture and
brain metrics. This method allows us to leverage the complementary
information provided by each medium on different biological
processes and therefore, to improve the exposure characterization.
Our findings that urine contributed most to the associations between
both lead and chromium and GE, and hair contributed most to
the associations between chromium and LE, suggests that urine
and hair may be critical overlooked biomarkers for estimating the
effects of metal mixtures on brain connectivity. Given our results, we
suggest that future neuroimaging studies on metal mixture exposure
aim to collect multiple media, including urine and hair specimens,
to explore the effects of metal mixtures on the brain. Altogether,
our research supports the notion of adolescence being a timepoint
of vulnerability to environmental exposures. More specifically, our
results suggest that the adolescent brain connectivity is vulnerable to
metal mixture exposures during this period. Given that adolescence
is a period of rapid brain development, our results suggest that
metal exposure may have the potential to alter neurodevelopment via
changes to global and local connectivity. These connectivity changes
may potentially lead to alterations in cognition and neurobehavior in
adolescence. Therefore, future environmental neuroimaging studies
should focus on adolescents to further characterize how metal
mixture exposure during this period can lead to potential alterations
in brain development (e.g., brain volume, functional connectivity),
and ultimately neurobehavior and cognition.
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The identity and role of environmental factors in the etiology of sporadic

amyotrophic lateral sclerosis (sALS) is poorly understood outside of three former

high-incidence foci of Western Pacific ALS and a hotspot of sALS in the French Alps.

In both instances, there is a strong association with exposure to DNA-damaging

(genotoxic) chemicals years or decades prior to clinical onset of motor neuron

disease. In light of this recent understanding, we discuss published geographic

clusters of ALS, conjugal cases, single-affected twins, and young-onset cases in

relation to their demographic, geographic and environmental associations but also

whether, in theory, there was the possibility of exposure to genotoxic chemicals of

natural or synthetic origin. Special opportunities to test for such exposures in sALS

exist in southeast France, northwest Italy, Finland, the U.S. East North Central States,

and in the U.S. Air Force and Space Force. Given the degree and timing of exposure

to an environmental trigger of ALS may be related to the age at which the disease

is expressed, research should focus on the lifetime exposome (from conception to

clinical onset) of young sALS cases. Multidisciplinary research of this type may lead

to the identification of ALS causation, mechanism, and primary prevention, as well as

to early detection of impending ALS and pre-clinical treatment to slow development

of this fatal neurological disease.

KEYWORDS

genotoxin, gyromitrin, agaritine, monomethylhydrazine (MMH), methylazoxymethanol
(MAM), lifetime exposome, motor neuron disease
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Introduction

Amyotrophic lateral sclerosis (ALS) has an average clinical onset
age of 58–60 years, an annual incidence rate of 1–2.6 cases/100,000
persons and a prevalence of ∼6 cases/100,000 (Talbott et al., 2016),
with higher rates among males (GBD 2016 Motor Neuron Disease
Collaborators, 2018). Inherited forms of the disease account for 5–
10% of cases in the U.S., whereas the balance has no clearly defined
causation (Mehta et al., 2018). While almost 50 ALS gene mutants
are recognized (Smukowski et al., 2022), with many more suspected,
the vast majority of ALS cases occurs sporadically. Young-onset
ALS refers to patients with initial symptom onset before age 45, the
percentage of which has declined markedly since 1850, with a greater
proportion on the continents of Africa, Asia, and South America
perhaps related to nutritional and occupational factors (Gouveia and
de Carvalho, 2007; Turner et al., 2012). The etiology of sporadic
ALS (sALS) is often attributed with little evidence to undefined
environmental agents acting on a genetic susceptibility to the disease
(Al-Chalabi et al., 2010; Vasta et al., 2021; Goutman et al., 2022).
Viruses, fungi, cyanobacteria, heavy metals, pesticides, persistent
toxicants, solvents, electromagnetic radiation, electric shock, cigarette
smoke, DNA damage, impaired DNA repair, epigenetic changes,
immune dysfunction, endocrine abnormalities, excessive exercise,
professional soccer, and trauma, have all been associated with sALS
(Tandan and Bradley, 1985; Chiò et al., 2005; Armon, 2009; Pritchard
and Silk, 2014; Alonso et al., 2015; Coppedè and Migliore, 2015;
Harwood et al., 2016; Schwartz and Klug, 2016; Riancho et al., 2018;
French et al., 2019a; Filippini et al., 2020; Andrew et al., 2022; Re
et al., 2022), but convincing evidence of a causative role for any
of these factors has yet to be demonstrated. Among heavy metals,
lead has been proposed as a risk factor for ALS (Kamel et al., 2002;
Fang et al., 2010; Meng et al., 2020; Andrew et al., 2022) but the
association is considered weak (Wang et al., 2014; Newell et al., 2021).
One group has proposed sALS arises from an opportunistic fungal
infection (French et al., 2019a,b), and another has published evidence
of mixed fungal and bacterial infection in the CNS of a small number
of sALS cases (Alonso et al., 2017, 2019).

While mutations are suspected and often found in familial
ALS, the operation of culpable trans-generational environmental
exposures cannot be excluded (Johansen et al., 2021). For example, in
the case of the former ultra-high incidence of familial and sporadic
ALS among the Chamorro people of Guam, where the disorder
was first thought to result from a dominantly inherited genetic trait
(Plato et al., 1969), disease rates fell steadily in the second half of
the twentieth century such that the high incidence had essentially
disappeared (Garruto et al., 1985; Chen, 1995). A comparable
reduction of high-incidence ALS has occurred in the Kii Peninsula
of Honshu Island, Japan, and in Papua, Indonesia, in the western
half of the island of New Guinea (Kihira et al., 2005; Spencer et al.,
2005; Okumiya et al., 2014). Given the disparate genetic origins
of Chamorro, Japanese, and Papuan New Guinean people, coupled
with the absence of any consistent mutant genotype associated
with these disappearing hyperendemic foci of ALS, the etiology of
Western Pacific ALS appears to be dominated by environmental
factors, particularly the gradual loss of traditional food and medicinal
practices that accompanied societal modernization (Spencer et al.,
2020). The only known exogenous factor of consequence arising
from traditional practices is to the neurotoxic seed of cycad
plants (Cycas spp.), which were formerly used for food (Guam)

or medicine (Guam, Kii-Japan and Papua-Indonesia), as recorded
on film1. These practices resulted in systemic exposure principally
to methylazoxymethanol (MAM, the aglycone of cycasin and
neocycasins) and also to beta-N-methylamino-L-alanine (L-BMAA),
compounds with genotoxic, epigenotoxic and other toxic actions on
the developing and adult mammalian nervous system (Spencer et al.,
2020). Guam ALS was significantly correlated with the concentration
of cycasin—but not with L-BMAA—in cycad flour used for food by
Chamorros (Román, 1996). A diet of Chamorro-prepared cycad flour
induced unilateral arm weakness and neuropathological changes
thought to be reminiscent of ALS (Dastur, 1964), mice fed washed
cycad pellets developed an ALS-like syndrome, with loss of motor
neurons and later loss of dopaminergic innervation of the striatum
(Wilson et al., 2002), and cycasin is known to be responsible for
induction of hindlimb stiffness and weakness, muscle wasting, and
spinal lesions in cattle and goats grazing on cycad leaves or seed
(Shimizu et al., 1986; Spencer et al., 2022b). Formaldehyde is a
metabolite of both L-BMAA and MAM (Spencer et al., 2020), variably
identified as a risk factor for ALS (Weisskopf et al., 2009; Pinkerton
et al., 2013; Seals et al., 2017) and the potential role of formaldehyde
in relation to neuronal DNA damage and ALS has been discussed
(Spencer, 2018).

Beyond the Western Pacific, L-BMAA and formaldehyde have
been reported to be highly associated with sALS (French et al.,
2019b). L-BMAA is produced by prokaryotic (cyanobacteria) and
eukaryotic (diatoms and dinoflagellates) microorganisms across the
globe (Delzor et al., 2014; Nunes-Costa et al., 2020). However,
L-BMAA was excluded as a risk factor in a hotspot of sALS in
the French Alps, where an association was made with consumption
of poisonous wild Gyromitra mushrooms (Lagrange et al., 2021b).
Species of these fungi contain hydrazones that are metabolized to
monomethylhydrazine (MMH), a genotoxic that produces a pattern
of DNA damage comparable to that of MAM. Hydrazine-related
chemicals occur worldwide as natural products of certain bacteria,
fungi, plants, and marine organisms; in synthetic form, they are
used to produce certain pharmaceuticals and agrochemicals; in the
manufacture of paints, inks, and organic dyes; in the preparation
of polyurethane coatings and adhesives; as corrosion inhibitors in
water treatment; to remove solids in steam generators; as oxygen
scavengers; as reducing agents for metal recovery, as propellants for
jet aircraft, rockets and spacecraft, and, formerly (1950s–70s) for
artillery (World Health Organization, 1987; Knapton and Stobie,
1993; ATSDR, 1997; European Chemical Agency on request of the
European Commission, 2011; Nguyen et al., 2021; Spencer and
Kisby, 2021). Given the recently discovered association between
food-derived MMH and sALS in France (Lagrange and Vernoux,
2020; Lagrange et al., 2021b), further research on the possible
etiologic relationship between hydrazine-related chemicals and sALS
is merited.

This paper proposes a strategy to maximize the possibility of
discovering exogenous factors potentially underpinning the etiology
of sALS. Once these factors have been identified, prevention
can follow, either in primary form (avoidance of exposure) or,
in theory, secondarily via post-exposure therapeutic blockade of
neuropathogenesis. Two principles underlie the proposed research
approach: (a) focus on conjugal, single-affected twin, young-onset,
migrant, and geographically clustered sALS cases and (b) lifetime

1 https://vimeo.com/1621281
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search for atypical exposures to chemical agents of all types
(exposome), especially those relevant to the nervous system (neural
exposome) and, in particular, to substances chemically related to
those implicated in Western Pacific ALS. The present paper addresses
the first point and asks whether, among published ALS cases, there
are plausible potential links between sALS and a history of exposure
to the many sources of hydrazine-related chemicals.

Materials and methods

Literature citations were retrieved from online databases
(principally PubMed Central R©) using Boolean search procedures.
Search terms included: ALS, Lou-Gehrig disease; motor
neuron(e) disease; epidemiology, clusters, cases, and studies
of neurodegenerative disease; intoxication/poisoning linked to
hydrazine; hydrazine-related chemicals; cycads; mushrooms/fungi;
gyromitrin; pesticides; agrochemicals; organic solvents; jet airplane
fumes; ALS-related regional geographic information, populations,
customs, practices, military service, and war. Focus was limited to
conjugal, single-affected twin, young-onset, migrant, and clustered
sALS cases, and their reported and potential association with
chemicals of natural and synthetic origin.

Results

Environmental etiology: Migrant ALS cases

Western Pacific ALS declined after WWII in all three affected
populations (Spencer et al., 2020). Best studied in Guam, mean
ALS incidence among males (65/100,000) and females (35/100,000)
peaked in 1950–54 and then began to decline steadily through the
end of the twentieth century when high-incidence motor neuron
disease had disappeared (Plato et al., 2003). While the motor neuron
was clinically typical of ALS elsewhere, the disorder was sometimes
associated with parkinsonism and dementia in more elderly subjects,
mean incidence rates of which peaked in males in 1960–64
(50/100,00) and females in 1970–74 (25/100,000), before declining
in concert with ALS (Plato et al., 2003). Signs of parkinsonism have
been reported in 30% a of population-based cohort of ALS patients
(Calvo et al., 2019), and dementia is commonly associated with
ALS, particularly in patients with a hexanucleotide repeat expansion
(C9ORF72) in the non-coding region of chromosome 9 open reading
frame 72 (Abramzon et al., 2020).

An important feature of the Western Pacific ALS Parkinsonism-
Dementia Complex was the acquisition of neurodegenerative disease
by persons who had migrated to, and resided for decades within,
communities with a high incidence of the disease (Garruto et al.,
1981; Kokubo et al., 2022). Also noteworthy was the development
of ALS in persons years or decades after migration as children or
teenagers from a hotspot of the Western Pacific disease (Reed and
Brody, 1975; Garruto et al., 1980; Yoshida et al., 1998; Tsunoda
et al., 2017). Taken together with the steady progressive decline
(from 1950s to 2000) and virtual disappearance of ALS on Guam
(Garruto et al., 1985; Chen, 1995) and in the two other high-
incidence disease foci (Kihira et al., 2005; Spencer et al., 2005;
Kuzuhara, 2007; Doi et al., 2010; Okumiya et al., 2014), these
epidemiological observations provided powerful evidence in support

of an environmental etiology of motor neuron disease; furthermore,
since the ALS focus among former hunter-gatherers in western New
Guinea was present before the introduction of any human-made
chemicals, a natural causal agent seemed likely (Gajdusek and Salazar,
1982) and was subsequently linked to the medicinal use of the toxic
pulp of cycad seed (Spencer et al., 1987b, 1991). The progressive
decline of the traditional use of cycad seed for food and oral medicine
was also, respectively, associated with the disappearance of high-
incidence ALS on Guam and in the Kii Peninsula of Honshu, Japan
(Spencer et al., 1987a, 2020).

Young-onset sALS

Western Pacific ALS cases
While Western Pacific ALS was clinically indistinguishable from

ALS elsewhere, it is considered part of an ALS/Parkinsonism-
Dementia Complex (ALS/PDC). ALS affected young subjects
(20 years and older), while atypical parkinsonism with dementia
(P-D), or dementia alone, affected older persons, with all such
phenotypes in at least one instance occurring in the same Guam
family, while some other cases exhibited mixed forms of the
neurodegenerative disease complex (Spencer et al., 2020). While
unproven, it seems plausible that persons with larger exposures to
the culpable environmental agent(s) developed motorsystem disease
at an early age (expressed clinically as ALS) while lesser-exposed
subjects who survived fatal motor neuron loss developed mixed
forms of ALS/PDC expressed clinically later in life. Additionally,
on Guam in particular, many with and without ALS/PDC had a
stationary pigmentary retinopathy (Campbell et al., 1993), which
was replicated in laboratory species treated with cycasin or MAM
at an age equivalent to the second trimester of human pregnancy
(Spencer, 2020; Kisby and Spencer, 2021). While the exposure
age for acquisition of neurodegenerative disease in later life is
unknown, subjects who moved from the high-incidence focus in Kii-
Japan developed motor neuron disease 1–7 decades later (Yoshida
et al., 1998; Tsunoda et al., 2017), while exposure to Guam during
adolescence/young adulthood, but not childhood, correlated strongly
with ALS/PDC (Borenstein et al., 2007).

U.S. Veterans
In 1999, ALS cases were described among young American

servicemen in an age group in which the disease is usually
rare. A 2003 paper reported a nationwide epidemiologic case
ascertainment study of ALS occurrence during the 10-year period
since August 1990 among U.S. military subjects who served in the
Gulf War (August 2, 1990, through July 31, 1991) during which the
U.S. and its allies fought Iraq. A significant elevated risk of ALS was
found among all U.S. personnel deployed to the Gulf region and was
especially high among deployed Air Force personnel (Horner et al.,
2003). During 8 post-War years, 17 of 20 Gulf War Veterans (GWV)
were diagnosed with ALS before age 45 years (Haley, 2003). Although
a 2005 study found an excess risk for ALS generally associated with
U.S. military service (Weisskopf et al., 2005), the excess risk of ALS
among 1991 GWVs was limited to the decade following the War
(Horner et al., 2008). Whereas ALS prevalence among GWV was 5.8
per 100,000 over 10 years after the Gulf War, there was a significantly
higher prevalence (19.7 per 100,000 persons over 14 years) among a
somewhat older group of U.S. Veterans deployed in support of post-
9/11 conflicts (Sagiraju et al., 2020). ALS prevalence (33/2/100,000)
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was significantly higher in Air Force personnel relative to that of other
service branches, and among tactical operation officers in comparison
with general and administrative officers. Tactical operations officers
consisted primarily of pilots, aircraft crew, missile, and combat
operations staff. These data suggest that environmental concerns
should be explored among those who routinely work with jet aircraft
and develop ALS at a young age (Hayes et al., 2021; Andrew et al.,
2022).

Interview of 82 mostly young (<45 years old) Gulf-deployed and
non-Gulf-deployed U.S. Veterans with ALS diagnosed between 1998
and 1999 revealed familial cases in 10% and one deployed and 2 non-
deployed subjects with prior service on Guam, plus a Guam-born
Chamorro (Palmer and Spencer, 2002). Principal findings are shown
in Box 1. Ten percent of deployed GWVs in this study were fighter
pilots or involved in aircraft maintenance.

One Gulf-deployed Veteran not included in this preliminary
study was a 32-year-old American F16 fighter pilot who flew 44
combat missions in Gulf War Operation Desert Storm, was diagnosed
with ALS at age 37, and died 9 years later (Miller, 2022; Netter and
Taylor, 2005). During Desert Storm operations, the U.S. Air Force
relied heavily on the F16 Fighting Falcon, a multirole jet fighter
uniquely equipped with an Emergency Power Unit (EPU) powered
by the monopropellant H-70, which contains 70% hydrazine (N2H4)
and 30% water by weight (Anon, 2022s). With the exception of 12 F16
fighter jets used by the Royal Bahrani Air Force, none of the Allied
Countries (Canada, France, Italy, Kuwait, Qatar, Saudi Arabia, U.K.,
United Arab Emirates) used this jet fighter during Operation Desert
Storm (Anon, 2022m). Iraq had experimented with hydrazine rocket
fuels, including unsymmetrical dimethylhydrazine, but the U.S.
Department of Defense concluded these fuels were not used by Iraq
during the Gulf War. Thus, while it appears unlikely that non-U.S.
Coalition service members were exposed to hydrazine rocket fuels
during the 1991 Gulf War (Brown, 2006), prior investigations of toxic
exposures among U.S. GWVs have failed to recognize the potential
for exposures to hydrazine associated with powering up or servicing
the F16 EPU (Suggs et al., 1979; Anon, 2022h; Cenciotti, 2022). Such
potential exposures from F16 EPUs continue to this day; 4,600 F16s
had been built by 2012, while improved versions will continue to
be constructed for export customers (Bahrain, Slovakia, Bulgaria,
Taiwan, Morocco, and Jordan) through 2026 (Anon, 2022k). Small
numbers of F-16 variants are used for non-flying ground instruction
of maintenance personnel (Anon, 2022k). Hydrazine is also used to
fuel an auxiliary power unit on the Eurofighter Typhoon, but use
of hydrazine in the European Union beyond 2025 is predicted to be
banned (Anosseir, 2021).

ALS clusters and hotspots

Studies on the incidence of ALS and the identification of
geographical clusters have taken place in many Western countries,
including the USA (Taylor and Davis, 1989; Sienko et al., 1990;
Turabelidze et al., 2008; Caller et al., 2009; Reddy, 2020), Italy
(Giagheddu et al., 1983, 1993; Grainieri et al., 1989; Uccelli et al.,
2007), Sweden (Gunnarsson et al., 1996), Finland (Sabel et al.,
2003), Denmark (Johansen et al., 2021), United Kingdom (Mitchell
et al., 1998; Scott et al., 2009), Greece (Kalfakis et al., 1991), and
France (Boumédiène et al., 2011; Lagrange et al., 2021b). While an
aggregation of patients in a given geographic area theoretically may
occur by chance or be the consequence of a statistical bias in the

process of patient selection (Malaspina et al., 2002), their intensive
study has the potential of discovering important environmental
associations, as demonstrated by the experience with Western Pacific
ALS. Noteworthy is that a cluster across generations might arise from
a genetic factor, an established local practice, or a geographically
restricted exposure (Malaspina et al., 2002).

France and Italy
Environmental factors were examined closely in a hotspot of

sALS in Savoie in southeast France (Lagrange et al., 2021b). After
excluding a role for heavy metals, pesticides, garden chemicals,
and L-BMAA in drinking water, a case-control study of 14 sALS
patients among part-time and full-time residents of a ski-resort
hamlet revealed the prior food use of wild mushrooms (Gyromitra
spp., including the Snow Morel G. gigas) (Miller et al., 2020).
Subsequent investigation revealed that ALS patients also consumed
the poisonous False Morel, G. esculenta. Half of the ALS cases
reported an acute illness following ingestion of gyromitres 5–20 years
prior to onset of muscle weakness. Control subjects had also collected
and eaten wild mushroom species, but not G. esculenta. Banned
for sale in France, G. esculenta (False Morel, Brain mushroom,
Turban fungus) contains gyromitrin (N-methyl-N-formylhydrazine)
and eight additional homologous hydrazones that generate genotoxic
MMH (Nagel et al., 1977; Liener, 1986; Trestrail, 1994, 2000) which,
like cycad-derived MAM (Matsumoto and Higa, 1966; Nagata and
Matsumoto, 1969; Nair, 1990) and nitrosamines (Shank and Magee,
1967) produces carbon (methyl) free radicals that methylate DNA
and RNA.

While the generality of the following observation is unknown,
samples of G. esculenta collected in southern France at middle
altitudes (900–1,200 m, Mt. Aigoual, Gard/Lozère; Espinouse
Mountains, Hérault) reportedly have higher MMH concentrations
(200–350 mg MMH) than concentrations (50–60 mg MMH) found
in specimens at higher altitudes (2,200 m) in the Pyrénées Orientales,
France (Lac des Bouillouses). Prolonged desiccation (76 days
for > 6 months) resulted in the concentration of MMH stabilizing
around 300–450 mg/kg of dry specimen (equivalent to about 15–
30 mg MMH/kg of reconstituted fresh specimen) (Andary et al.,
1985). Collection of wild mushrooms for food is locally popular
on the other side of the Alps, in northwest Italy (Piedmont, Aosta
Valley) (Anon, 2022t); ALS incidence is high (Marin et al., 2017),
and hotspots of sALS have been reported in Cuneo and Vercelli
(Migliaretti et al., 2013), Briga Novarese, Trino and Tronzano, and
Vercellese (Uccelli et al., 2007; Figure 1), and confirmed in Acqui
Terme, province of Alessandria (vide infra) (Vasta et al., 2018),
regions (province of Biella) that harbor MMH-generating fungi,
notably G. esculenta (Pers.) Fr. (Anon, 2022n), that can trigger acute
poisoning (Andary et al., 1985; GBIF, 2022). Today, food use of
Gyromitra spp. in Piedmont is reportedly almost non-existent (Nicola
Sitta, personal communication, February 2022).

On the island of Sardinia (Figure 1), the distribution of
ALS was non-homogenous (more cases in rural areas) and more
common among farmers and shepherds with low levels of education
(Giagheddu et al., 1983, 1993; Grainieri et al., 1989). While
no association has been made between ALS and food use of
mushrooms outside of southeast France, wild morels are among the
fungi collected in Sardinia (Anon, 2020), and many authors have
warned that some MMH-generating False Morels can be mistaken
for the highly sought-after True Morel (Morchella esculenta)
(Gone 71◦N, 2022; Figure 2). In recent decades, there has been a
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BOX 1 ALS among U.S. Gulf War Veterans.

Principal findings of a preliminary 2002 investigation of exposures of U.S. Gulf War Veterans (GWV, n = 33 males) who were deployed to S.W. Asia during
the period August 1, 1990–July 31, 1991) and U.S. Gulf-era Veterans (GEV, n = 49 males) not deployed to S.W. Asia, who were diagnosed with definite ALS
(D-ALS) or probable ALS (P-ALS) between 1991 and 2001 (Palmer and Spencer, 2002). (Supported by Department of Veterans Affairs Cooperative Studies
Program #500). Report available on request from Corresponding Author.
• Approximately 10% of ALS cases were familial, three others had seen service on Guam and one was Guam-born.
• Similar numbers of D-ALS and P-ALS among GWV and GEV serving in the Army, Navy or Air Force.
• Similar dates of diagnosis for D-ALS and P-ALS, with peak incidence in 1988–99 for both groups.
• One third of D-ALS and P-ALS involved with aircraft, land-based vehicles or construction.
• Chemical exposures/activities included pesticides, organic solvents, jet fuel, welding, soldering, others.
• Voluntary skin applications included a shampoo containing neurotoxic zinc pyridinethione.
• Physical exposures included radiation (radar, microwave), electromagnetic fields, electric shocks.
• Biological exposures included vaccines, sand flies, mosquitoes; several cases of prior Lyme disease.
• Physical exposures included survival training in tropics, long-distance running and physical exhaustion.
• Oral exposures included contaminated/malodorous water and large quantities of diet and other sodas.
• One familial case collected and ate mushrooms like his uncle: both developed ALS at 37–38; years of age.
• Conjugal pair, electric mechanic/industrial cleaner and wife exposed to his chemical-saturated clothing.

FIGURE 1

Left image: Map of Italy (including the islands of Sardinia center left and Sicily, bottom), showing the Aosta Valley in red (upper left) and nearby ALS
hotspots (right) in Piedmont. The town of Acqui Terme is located ∼50 miles due east of Cuneo.

sharp rise in foraging for wild mushrooms across Sardinia along with
an increase in the number of acute (but unspecified) intoxications,
few of which have proved fatal (Comandini et al., 2018). Noteworthy
is that images #11 and #21 in an historical treatise on the hypogeous
fungi of Sicily and Sardinia (Mattirolo, 1900) depict False Morels
(Gyromitra spp.).

Denmark, Sweden, and Finland
The incidence and prevalence of ALS is high in the Danish

Faroe Islands (Johansen et al., 2022), particularly the southernmost
island of Suðuroy, where the prevalence is three times higher
than the nationwide prevalence (Johansen et al., 2021). While
familial clustering (14%) was in excess of that expected for ALS on
Suðuroy, a result suggestive of genetic contribution, environmental
factors were not excluded or sought. In Sweden, compared to the
rest of the population, agricultural work was significantly more
common among cases in an ALS cluster in the county of Skaraborg
(Gunnarsson et al., 1996), where G. esculenta was formerly eaten

(Denchev et al., 2013; Svanberg and Lindh, 2019). Additionally, as
discussed elsewhere (Spencer, 2019), the birth location of a cluster
of ALS subjects in Finland (Sabel et al., 2003) corresponded to a
region of False Morel consumption promoted by wartime-associated
food shortages. Between 2000 and 2015, almost 20% of mushroom-
identified calls to the Finnish Poison Information Center involved
acute food poisoning from G. esculenta (Tähkäpää et al., 2020).

United Kingdom
Clusters of ALS have been reported in areas of southeast England

and East Lancashire (Mitchell et al., 1990, 1998; Scott et al., 2009).
G. esculenta, which has a localized U.K. distribution in coniferous
regions, has been reported in these regions (Anon, 2022j,o).
The East Lancashire focus of ALS in Addington/Owaldtwistle
is the location of the urban Foxhill Nature Reserve where
mushroom hunters are taught to identify poisonous species (Cruces,
2010). The U.K. lists 4 Gyromitra spp. and 36 Agaricus spp.
(BMS, 2022), the latter containing various concentrations of
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FIGURE 2

(A) False Morel (Gyromitra esculenta). (B) True Morel (Morchella
esculenta). Reproduced from Arłukowicz-Grabowska et al. (2019)
under Creative Commons license. Mistaken identification of morels
can lead to group poisoning events, as occurred in February 2019
among diners at a Michelin-starred restaurant in Valencia, Spain. https:
//www.thelocal.es/20190221/michelin-starred-valencia-restaurant-
closed-amid-fears-diner-died-from-poisonous-mushroom/. In
2020, the U.S. issued an alert given the history of G. esculenta
contaminating imported commercial shipments of dried and canned
M. esculenta (FDA, 2020). A 2-year survey showed 21% of the True
Morel and 15% of the wild mixed mushrooms were contaminated with
toxic look-alike species (Gecan and Cichowicz, 1993). An
epidemiologic study of ALS in southern Greece showed an
overrepresentation of farmers among patients and an aggregation of
cases in the region of Cephalonia (Kalfakis et al., 1991), where morels
occur (Denchev et al., 2013). See also: how to identify a real morel
from a false morel. Available at:
https://www.youtube.com/watch?v=OXePLfjCUeI.

the phenylhydrazine derivative agaritine [N-(γ-L(+)-glutamyl)-4-
hydroxymethylphenylhydrazine] (Schulzová et al., 2009).

Spain
A 2018 study identified three ALS clusters in agriculture-

intensive areas of north/northeast Catalonia (Povedano et al.,
2018), two of which are proximate to national parks with edible
True Morels (M. dunalii) and several poisonous hydrazinic fungi
(Agaricus spp.) (Sierra and Valverde-Valera, 2019), one of which
[A. bitorquis (Qu l.) Sacc.] had (in the Czech Republic) a very
high content of agaritine (Schulzová et al., 2009). The Catalonian
authors proposed their results were consistent with exposure to
agricultural pesticides, as well as to air pollution, but dietary factors
were not addressed. Among wild mushrooms in Catalonia are
the bolet de greix (fat mushrooms), namely G. esculenta and G.
gigas, that grow beneath pine trees during Spring, and G. infula,
which is found in the autumn (Anon, 2011). G. esculenta, while
recognized to be poisonous, reportedly has been consumed since
ancient times in the Valleys of the Pyrenees (Anon, 2022e). In
recent times, G. esculenta has been sold in a market called
Mercat del bolet de Cal Rosal located in Olvan (Bergueda) (R.V.A.,
personal observation), which joins the Pyrenees and Central
Depression and is within the north-south cluster of ALS in the
Barcelona region. Further north in the Pyrenees, G. esculenta and
G. infula are recorded in the Ordesa y Monte Perdido National
Park (Pancorbo et al., 2017).

Southwest Central France
Three ALS clusters in Nouvelle Aquitaine (formerly Limousin)

were geostatistically linked to the presence of paper paste and
water-treatment plants; the authors suggested that heavy use
of chemicals and water in these plants would create habitats
favorable to cyanobacteria and, hence, the generation of L-BMAA
(Boumédiène et al., 2011). Formaldehyde is heavily associated with
paper or paperboard production, while hydrazine is mainly used
for eliminating oxygen in water for steam generation in the paper
industry (Korhonen et al., 2004). Hydrazine is widely employed in
thermal engineering as an anticorrosive agent; when preserving and
passivating equipment, a large volume of wastewater containing a
high concentration of hydrazine (about 100 mg/dm3) is formed
after chemical cleanings (Gogolashvili et al., 2001). In the Limousin
study, the Standardized Incidence Ratio for ALS exceeded unity (but
without statistical significance) for water-treatment stations that used
an active sludge system, which cannot handle hydrazine (Farmwald
and MacNaughton, 1981). Also noteworthy is the strong mushroom
culture in Limousin that includes distinguishing edible (notably
Boletus edulus, or cèpe) from toxic varieties (Harley, 2021), including
G. esculenta (Taylor, 2008). A 2003–2011 population-based study
of >5 million inhabitants in 10 départements (the name assigned
to the largest unit of government in France) in 5 regions of France
found the “possible over-incidence” of ALS (8 cases vs. 2 expected) in
one département (Haute Vienne, town of Rochechouart) of Nouvelle
Aquitaine (Boumédiene et al., 2022). Among seven areas subject to
complete the robust analysis, only one “definite cluster of ALS” was
identified, namely that associated with gyromitres in the French Alps
(Lagrange et al., 2021b).

United States Mainland
MMH-related mushroom poisoning is recorded in many

countries, including the USA, notably the State of Michigan
(Trestrail, 1994; Hatten et al., 2012; Brandenburg and Ward, 2018;
Horowitz et al., 2022; Figure 3) in the Midwest, which has among the
highest prevalence of ALS in the nation2. Self-identified clusters of
ALS are common in Michigan, such as three friends with proximate
childhood homes who later developed ALS around the same time
(Feldman, 2000). A case-control study of ALS in Michigan (Yu
et al., 2014) that sought information on occupational and residential
exposures, residence location, exercise and sports, body weight,
tobacco use, military experience, and family history, found an
association with fertilizers and pesticides and no association with
smoking, occupational exposures to metals, dust/fibers/fumes/gas
and radiation, and physical activity. Questions related to diet were
not included in this study.

A 1989 study found evidence for clustering of ALS in northeast
Wisconsin adjacent to northwestern Lake Michigan (Taylor and
Davis, 1989; Figure 3), where wild morel season begins in May
(Anon, 2022d); while G. esculenta can be found (Anon, 2022l),
G. brunnea is most common (Volk, 2002; Anon, 2022l). Additionally,
a 1990 case-control study found a small cluster of ALS cases among
long-term residents of Two Rivers, Manitowoc County, Wisconsin.
Physical trauma, the frequent consumption of freshly caught Lake
Michigan fish, and a family history of cancer were reported more
often by case patients than control subjects (Sienko et al., 1990).
While diet was among many factors examined, it is not clear whether

2 https://www.pbs.org/video/als-xmw7rw/
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FIGURE 3

Map of USA in which each dot represents one call to a U.S. poison center regarding ingestion of a mushroom species containing monomethylhydrazine
(MMH) over the 10-year period 2001–2011. Redrawn from Hatten et al. (2012). A 2006 paper from the North American Mycological Association tabulated
reports of acute illness from Gyromitra spp. (including G. brunnea, esculenta, gigas, montana) from Arkansas, Idaho, Iowa, Massachusetts, Michigan,
Montana, Quebec, Oregon, and Washington (Beug et al., 2006), and an Asian couple west of the North American Rockies (Leathem and Dorran, 2007).
Several MMH reports originated from the northwestern United States (notably Oregon, Idaho), northcentral and central states, including Wisconsin
(adjacent to Michigan) Missouri (southernmost cluster of dots) and a few from New England states, including New Hampshire (oval). (Upper-right) The
highest concentration of MMH-related calls came from Michigan (arrow) in the Great Lakes region of the upper Midwestern United States, the home of
several species of poisonous False Morels (Mushroom Observer, 2015). Areas of Michigan suspected to have a high ALS incidence include the towns of
Cadillac and Greenville, and Newaygo County (Anon, 2022b). Mesick, a town 19 miles northwest of Cadillac, holds morel-hunting contests at the May
Annual Mesick Mushroom Festival (Anon, 2022p). The National Morel Mushroom Festival takes place in Boyne City in northern Michigan (National Morel
Mushroom Festival, 2022). These locations are all in northern Michigan’s Lower Peninsula where wild morels have been mapped (Morels, 2022). Note
that fungi take up not only metals from soil but also persistent environmental pollutants, including organochlorine pesticides, polychlorinated biphenyls,
and brominated flame retardants (Moeder et al., 2005; Rodríguez-Rodríguez et al., 2012; Bokade et al., 2021), certain members of which were elevated in
the blood of Michigan patients with ALS (Su et al., 2016).

their research instrument queried the popular practice in Wisconsin
of collecting and eating wild morels (Craddock, 2017; Anon, 2022f).

A 2009 study of nine patients in Enfield, New Hampshire
(Figure 3), revealed an incidence of sporadic sALS that was 10–25
times the expected incidence of 2/100,000/year (Caller et al., 2009,
2013). The patients lived close to Lake Mascoma, one of several
New Hampshire waterbodies with higher-than-average mercury
concentrations (Neils and Nelson, 2018) and a history of algal
blooms. The authors suggested the ALS hotspot might arise from
chronic exposure to cyanobacterial neurotoxins (such as L-BMAA)
in association with aerosols, fish consumption or ingestion of lake
water. Uninvestigated is whether these cases engaged in the Spring
harvesting of True Morels (M. esculenta) (Anon, 2016; Figure 2) but
collected and consumed G. esculenta either deliberately or in error
(De Román et al., 2006), a subject addressed by the Northern New
England Poison Center (Colin, 2019). Other ALS clusters have been
reported in eastern and northwestern Vermont, Maine and western
New Hampshire (Caller et al., 2013), where seasonal collection of wild
morels is also popular (Garrett, 2012; Anon, 2022r).

A 2008 epidemiologic investigation of ALS in Jefferson County,
Missouri (Figure 3), identified a small cluster of patients around
a lead smelter area (Taylor and Davis, 1989). Mushrooms flourish
in smelter areas, where they take up heavy metals such as

lead (Spencer and Palmer, 2021). In the case of G. caroliniana
(Big Red) (Kuo, 2021), which is distributed statewide in Missouri
(Anon, 2022c), fungal metal uptake might require continuous
production of hydrazine-related compounds to store the potentially
toxic elements in the form hydrazine-metal chelates (Govindarajan
et al., 1995). Selenium is of interest in this regard because this metal
has been linked to ALS in South Dakota USA (where Gyromitra spp.
also occur Miller et al., 2020) and in Reggio Emilia Italy (Kilness and
Hichberg, 1977; Vinceti et al., 2010a,b), where education on False
Morels has been posted (Cocchi and Siniscalco, 2022). G. caroliniana
is widely available in North Carolina, where bulbar presentation of
ALS occurred in three geographically proximate long-term residents
(Hochberg et al., 1974).

Conjugal ALS

Conjugal cases are important because of the possibility of
identifying a history of common environmental exposures with
potential relevance to etiology (Godeiro-Junior et al., 2009), as
demonstrated by the association of cycad toxins with Western Pacific
ALS, especially on Guam (Spencer et al., 2020). Outside of Guam,
where conjugal cases of ALS were reported in 1975 (Reed et al., 1975),
diagnoses of ALS in couples is rare (Dewitt et al., 2012). Through
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2021, there were reports of at least 20 conjugal ALS pairs in the
literature. There was an important geographical cluster of 10 pairs
in southeast France (Camu et al., 1994; Corcia et al., 2003; Lagrange
et al., 2021b), 5 pairs in Italy (Paolino et al., 1984; Poloni et al.,
1997; Rachele et al., 1998; Chiò et al., 2001; Bersano et al., 2014;
Vasta et al., 2018), 2 pairs each from Brazil (Godeiro-Junior et al.,
2009) and the UK (Orrell et al., 1996; Fernandes et al., 2017), one
pair each from Libya (Maloo et al., 1989) and Spain (Martínez Matos
et al., 1986), and 4 pairs from the United States (Chad et al., 1982;
Cornblath et al., 1993; Palmer and Spencer, 2002). No conjugal case
was shown to be consanguineous and, prior to ALS diagnosis, all
pairs had lived together for at least 10 years and sometimes much
longer. These reports raise the possibility of shared exposure to
unknown environmental risk factors; unfortunately, they have been
often dismissed as coincidental, random associations.

France
Two reports of geographic clustering of conjugal ALS cases in

southeast France are of singular importance (Camu et al., 1994;
Corcia et al., 2003; Figure 4A). In total, 18 patients representing
9 couples (cases) presented with ALS between January 1975 and
December 1999. Eight patients had disease onset between 1975 and
1992, while 10 were diagnosed during or after 1994. The mean age
of onset was 65 years (range, 41–85 years), and the mean interval
between onset of spousal ALS was 8 years (range, 1–19 years). Disease
onset was spinal in 60% and bulbar in one third. There was no known
consanguinity between affected spouses, and there was no major
predominance of a given occupation or any specific environmental
exposure that could be identified. The mean conjugal lifetime before
the first ALS case was 10 to > 40 years (mean: 25 years), which is
consistent with the long-latent period for post-exposure development
of Western Pacific ALS (Spencer et al., 2020). Three of the conjugal
cases resided in Drôme département and two of these lived in
Valence, a town in Auvergne-Rhone-Alpes not far removed from
the département of Savoie to the northeast, the location of a cluster
of ALS patients in Montchavin (Lagrange et al., 2021b), including a
conjugal case (Figure 4A), all of which reported a history of food
use of gyromitres. The University of Illinois Natural History Survey
Fungarium lists genetically confirmed examples of G. gigas in the S.E.

French alpine region (Figure 4B); an equivalent map for G. esculenta
is not yet available.

Italy
One of the 5 reported conjugal Italian cases resided in a hotspot

of ALS in Acqui Terme, a town situated in the Monferrato area
of the province of Alessandria, Piedmont, Italy (Bersano et al.,
2014; Vasta et al., 2018; Figure 1, right). In 2005, spinal-onset ALS
was diagnosed in a 63-year-old male and, 3 years later, bulbar-
onset ALS in his 68-year-old non-consanguineous wife. Genetic
screening of both patients revealed no ALS-associated mutant
genes. Environmental histories identified no common exposures
to radiation, food-borne pathogens, cosmetics, drugs, or pesticides
in agricultural environments; nor were there exposure risks from
smoking, intense physical activity, or trauma. While the etiology was
not identified, it is noteworthy that a May 16, 2020 article in the local
Acqui Terme newspaper L’Ancora described an undefined syndrome
associated with food use of Gyromitra spp. (Falsa Spugnola), which
contains high concentrations of “giromitrina (a hydrazine mixture).”
An article on page 9 described two “Serate Micologiche” (Evenings
Mycological) devoted to fungal toxicology organized from the Punto
Cultura Association, with the patronage of the municipality of Acqui
Terme and the Province of Alexandria.

Conjugal ALS was also reported to affect a married couple,
members of which originated from different regions of Italy and lived
in a small Piedmont town of 19,571 inhabitants (Chiò et al., 2001),
a population approximating that of Acqui Terme (Figure 1, right).
The husband was diagnosed with ALS in 1994 (age 61 years), the
wife in 1999 (age 53 years). He had used “solvents: nitro-compounds
and dimethylketone.” Prior to their diagnoses, both had engaged
in various jobs including, between 1989 and 1993, the collaborative
maintenance and operation of a gasoil-powered central heating
system that served the apartments of the house in which they resided.
Their chemical exposure during this period was unstated, but it is of
potential interest that hydrazine solutions are used to control oxygen
corrosion in boiler systems (Scrivenand and Winter, 1978).

Three other Italian reports describe non-consanguineous
conjugal cases of ALS in the second half of life. Two conjugal
pairs involved residents of Sardinia (Figure 1, left). One pair (from

FIGURE 4

(A) Geographic distribution of the conjugal amyotrophic lateral sclerosis cases. The French territory is divided on the map into its different départements.
Each conjugal case is represented by its number in the text. #1, Bouches-du-Rhône; #2-4, Drôme; #5, Pyrénées-Orientales; #6, Alpes-Maritimes, #7,
Puy-de-Dôme; #8, Rhône; #9 Indre-et-Loire, #10 Montchavin-Les Coches. Modified from Corcia et al. (2003) to include data from Lagrange et al.
(2021b). (B) Location of genetically confirmed samples of G. gigas Krombe. Cooke collected from woodland conifers in S.E. France. Left:
Alpes-de-Haut-Provence, Colmars, Ratery. Right: Ain, Hauteville-Lompnes, Col de la Berche; Ain, Innimond, Plaine du Bief; Isere, Lans-en-Vercors,
Combe de Servagnet; Savoie, Ugine, La Mollette; Savoie, Les Allues, Altiport de Méribel; Alpes-de-Haut, Verdaches, Haut-Bès. (Sourced from the Illinois
Natural History Survey Fungarium, University of Illinois, January 2022).
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Barbagia, province of Nuoro) was involved in sheep breeding
(Paolino et al., 1984), another lived next to a distillery (Rachele et al.,
1998). The third pair lived adjacent to a metallurgical plant in a
heavily farmed area of southern Italy (location not stated). Affected
couples had lived together for 3–4 decades (Poloni et al., 1997;
Rachele et al., 1998), with common exposure to water and garden
vegetables reportedly resulting in no significant exposure to heavy
metals, pesticides or “known toxic substances” (Poloni et al., 1997).
Couples were considered to have conjugal ALS by chance (Paolino
et al., 1984; Rachele et al., 1998; Chiò et al., 2001).

Other countries
Three papers describe three conjugal cases of ALS in mainland

USA (Chad et al., 1982; Cornblath et al., 1993; Palmer and Spencer,
2002), but none investigated common environmental exposures and
one attributed the conjugal association to chance (Cornblath et al.,
1993). A conjugal case occurred in a >20-year married couple; the
husband worked for the U.S. military as an electrical mechanic with
large air conditioners and refrigeration and had chemical-saturated
clothing washed by his wife (Palmer and Spencer, 2002). Common
exposures were also not explored for (a) an elderly Libyan couple
who had lived together for 40 years (30 years in Benghazi) and
developed ALS within 15 months of each other (Maloo et al., 1989)
or (b) for another conjugal ALS couple from Spain (Martínez Matos
et al., 1986). Another study lacking an exposure history described
two couples with conjugal ALS from Brazil; one couple had lived
together for 40 years, and the second for 20 years in the countryside
outside Sao Paulo (Godeiro-Junior et al., 2009). Near simultaneous
onset of motor weakness occurred in the 7th decade of life of a
couple living in Scotland; since no common environmental history
was found, conjugal ALS was assumed to have occurred by chance
(Fernandes et al., 2017). Studies of ALS in the Lothian lowlands of
Scotland between 1961 and 1981 did address potential environmental
exposures to the extent of employment history (Holloway and
Mitchell, 1986). None of the foregoing studies explored food-related
exposures.

Twins discordant for ALS

Twins with only one ALS-affected subject can serve as matched-
pair case-controls for study of disease etiology (Schlesselman, 1982).
A 1997 British (England and Wales) study of 70 pairs of monozygotic
and dizygotic twins assessed the environmental exposure history of
pairs of twins discordant for ALS (Graham et al., 1997). Seventy-
seven probands were identified, of which 26 were monozygotic and
51 dizygotic, with deaths between 1979 and 1989. Four monozygotic
probands were concordant, but two probands came from a family
known to have familial ALS. The content of the questionnaire and
interviews of surviving relatives was not stated, but the results
suggest the authors focused on occupation. Although analysis of
the exposure history of discordant monozygotic twins would be
of primary interest, small subject numbers required the authors to
include both discordant monozygotic and dizygotic twins in their
analysis. The strongest and most highly significant association (OR
7.0, 95% CI 1-33-89-90, p = 0.006) was with a history of regular
car/vehicle maintenance (Graham et al., 1997). Noteworthy is that
hydrazine was used to fuel racing cars, funny cars and dragsters in the
1960s (with events in the U.S. and U.K.) (Cook, 2018; Anon, 2022a),
and several individuals with a history of motor racing developed

ALS (Spencer, 2019), as did a Gulf War Veteran with familial ALS
(Palmer and Spencer, 2002). The British twin study also found a
significant association between motor neuron disease and a history
of occupational paint usage (OR = 3.75; 95% CI 1-0-17 1, P = 0.022)
(Graham et al., 1997). Hydrazide compounds are widely used in paint
and adhesive thermoset applications, including latent hardeners for
epoxy resins and as crosslinking agents in acrylic emulsions (Hara,
1990; ATSDR, 1997).

Close-proximity ALS groups

There are several brief reports of unrelated people living or
working in close proximity who developed ALS at approximately the
same time (Table 1).

A 2007 report described three friends who grew up in the
same village in southeast England, began to play soccer at age
15/16, continued together at a moderately high level for many
years (sometimes in the soccer league/team), and 10–20 years after
they had stopped playing soccer, developed symptoms of ALS (no
family history of ALS) within a few years of each other (Wicks
et al., 2007). This account was preceded and followed by reports of
an elevated risk of ALS among Italian First and Second Division
soccer players. Whereas no cases of ALS were found during the
1970–1979 period, the standardized morbidity ratio was significantly
increased for the periods 1980–1989 and 1990–2001. Moreover,
a dose-response relationship between the duration of professional
football activity and the risk of ALS was found (Chiò et al., 2005),
with a younger age at onset of symptoms in soccer players born in
more recent years (Vanacore et al., 2018). The mean age at diagnosis
was 45.0 years, > 20 years earlier than that for the general population
(Pupillo et al., 2020). No cases of ALS were found among professional
basketball players or cyclists, suggesting that the physical activity of
soccer players per se was not causally related (Chiò et al., 2009),
although a possible role for repetitive head trauma during play
could not be excluded (Beghi, 2013). The Italian and English reports
also raised the possibility of repetitive player contact with pesticidal
chemicals used on soccer pitches (Vanacore et al., 2006).

Discussion

We propose intensive study of young-onset, conjugal, twin-
discordant and clusters of sALS as a method to discover and identify
exogenous agents with the potential to trigger motor neuron disease.
Among such agents, acting alone or in the presence of a genetic
susceptibility, there is evidence that sufficient exposure to naturally
occurring or synthetic hydrazine-related chemicals is associated with
the development of clinical ALS years or decades later. While this
association requires confirmation, it is known that hydrazines and
MAM form carbon-centered free radicals (potent alkylating agents)
that can methylate DNA in the O6-, N7-, and C8-positions of guanine
(Kobayashi and Matsumoto, 1965; Matsumoto and Higa, 1966; Shank
and Magee, 1967; Albano et al., 1989; Gamberini and Leite, 1993;
Kisby et al., 1999; Spencer et al., 2015). The accumulation of DNA
lesions is responsible for the teratogenic, mutagenic, hepatotoxic,
carcinogenic, and neurotoxic properties of MAM (Laqueur, 1977;
Sieber et al., 1980; Kisby and Spencer, 2011). Neurons are proposed
to be susceptible to O6-methylguanine because the specific DNA-
repair enzyme O6-methylguanine methyltransferase (MGMT) is
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TABLE 1 Close-proximity ALS case groups.

ALS grouping Location Common exposures Environmental factors References

A Ranchers (n = 3) South Dakota, USA Proximate residences High selenium soil content Kilness and Hichberg, 1977

B Males (n = 3) North Carolina USA Common residence No association proposed Hochberg et al., 1974

C Mail clerks (n = 3) Florida, USA A11 died within 10-years period No association proposed Sanders, 1980

D Three (2M, 1F) Montreal, Canada Apartment complex No association proposed Melmed and Krieger, 1982

E Teachers (n = 3) Ohio, USA Same classroom No association proposed Hyser et al., 1987

F NASA staff (n = 7) California, USA Common workplace No association proposed Noack, 2016; NASA Ames Astrogram, 2018

G Population Missouri, USA Lead smelter proximity Small cluster Turabelidze et al., 2008

H Three friends (3F) Michigan, USA Childhood proximity No association proposed Feldman, 2000

Rows: (A) Region has a high soil content of selenium, one of many elements taken up and concentrated by mushrooms (Spencer and Palmer, 2021). (B) Unstated occupational, travel, dietary
and animal-exposure histories similar to that of local people. Hunting for True Morels and avoiding False Morels is an annual pastime between March and May in North Carolina (Johnson,
2020). (C) G. montana was sold to unnamed restaurants in Florida (Bergo, 2021) and poisonings from unnamed wild mushrooms are recorded in the State (Kintziger et al., 2011). (D) Ashkenazi
Jews. Wild mushrooms, including morels, are considered kosher and, as such, have served as an important component of food for Ashkenazi and other Jewish people (Gelman, 2019). (E) No
unusual shared dietary habits or medications, different residential locations, and no other social, occupational or environmental interactions. Hydrazine-related chemicals may be used in schools
(EPA, 2006; NIOSH, 2006). (F) The National Aeronautics and Space Administration (NASA) Ames Research Center led development of the liquid hydrazine-propelled Pioneer 10 spacecraft
launched in 1972 (NASA, 2022), and hydrazine sulfate and ammonium hydrazinium sulfate were subjects of five papers listed by Ames published between 1993 and 1998 (Spencer, 2019). (G)
A small but significant cluster (p = 0.04) was detected around the lead smelter area (Wang et al., 2014; Meng et al., 2020); lead is taken up by mushrooms (Spencer and Palmer, 2021). (H)
Three friends whose childhood homes were located proximate to the County High Point of Kalamazoo, Michigan. Kalamazoo is a popular location for collection of wild morel mushrooms (see:
https://www.mlive.com/news/kalamazoo/2016/04/planning_a_morel_mushroom_hunt.html).

downregulated in mid to late S-phase of the cell cycle (Mostofa et al.,
2018) such that post-mitotic cells have low MGMT levels (Kisby
and Spencer, 2021). Noteworthy is that changes in gene and protein
expression of MGMT have been found in Alzheimer disease (Oláh
et al., 2015; Chung et al., 2022; Kisby et al., 2022).

ALS and botanical exposures to hydrazinic
chemicals

Fungal hydrazine-related compounds include agaritine in
Agaricus spp. (Schulzová et al., 2009) and gyromitrin in Gyromitra
spp. (Monographs, 1987; Figure 5) and certain other fungal genera
(vide supra) (Trestrail, 2000). The association between food use of
gyromitres and sALS in Savoie, France (Lagrange and Vernoux, 2020;
Lagrange et al., 2021b) receives support both from the discovery of
multiple conjugal cases clustered in adjacent French départements
and in pockets of ALS to the east in Piedmont, Italy, where gyromitres
are consumed. Since G. gigas reportedly contains 1,500-fold lower
concentrations of gyromitrin than that of G. esculenta (Viernstein
et al., 1980), the latter constitutes a substantially greater health threat
and, thus, this highly poisonous species may have contributed to ALS
cases in both Savoie and Piedmont, Italy. Urgently needed are precise
analytical methods (e.g., HPLC-MS/MS) to quantify gyromitrin and
minor hydrazones in Gyromitra spp. under specified environmental
conditions. Focused research is merited in these regions to test
this hypothesis in retrospective and, potentially, prospective studies.
There is also justification to explore whether other pockets of sALS
are linked to deliberate or mistaken food use of False Morels (Cruces,
2010; Beug, 2014; Pulse, 2022), especially in northern Michigan,
USA, given the State’s relatively frequent occurrence of acute MMH
poisoning (Figure 3) and high prevalence of ALS (Feldman, 2000).
In Europe and Scandinavia, most acute MMH intoxications occur
from consumption of False Morels collected in the conifer forests
of Germany, Poland, Sweden, and Finland (Horowitz et al., 2022).
The birth location of a cluster of ALS subjects in Finland (Sabel
et al., 2003) corresponds to a region of False Morel consumption
(Spencer, 2019). Gyromitra esculenta, among other species, if

found on conifers (mostly pines) across Europe, Scandinavia, and
North America, parts of Central (Mexico, Costa Rica) and South
America (Argentina, Chile) and the Caribbean (Dominican Republic,
U.S. Virgin Islands), parts of Asia (Georgia, Japan, Kazakhstan,
Pakistan, Russia), including India (Jammu and Kashmir) and China
(Heilongjiang), Northern Africa (Algeria, Morocco, Canary Islands),
Australia, and New Zealand (Minter, 2018).

There are numerous factors that determine the toxic effects of
fungal hydrazones in False Morels (Nordic Council of Ministers,
1995). The concentration of the principal hydrazone gyromitrin
(Figure 5) is said to vary across Gyromitra species, age, geographic
location, elevation, temperature (Anon, 2022q) and, conceivably,
the soil content of metal elements and atmospheric humidity.
All parts of the fungus are potentially toxic, including the stipe
and cap that are used as food. The concentration of gyromitrin
changes according to the method and duration of mushroom
preservation (refrigeration, canning, desiccation) (Pyysalo, 1976).
Fresh European specimens of G. esculenta may contain 1,200–
1,600 mg/kg gyromitrin, while concentrations in dried tissue have
ranged between 14.7 to >6,400 mg/g (Nagel et al., 1977). False
Morel food preparation (cutting, washing, boiling, frying) reduces
gyromitrin concentration and, since MMH boils at 87.5◦C, fumes
with potential for acute human intoxication are released into the air
(Anon, 2022j). The amount, frequency and duration of consumption
determines the dosage of hydrazones received by the consumer
and the total amount of MMH (via N-methyl-N-formylhydrazine)
generated by acid hydrolysis in the stomach (Nagel et al., 1977;
Garnier et al., 1978). Symptoms of acute MMH intoxication appear
6–14 h after ingestion or 2–8 h after inhalation, with the lethal
dose in micrograms/kg estimated to be 10–30 for children and 20–
50 for adults (Trestrail, 2000). Whatever the route of exposure,
gastrointestinal illness may be accompanied by hemolysis and, in
severe intoxication, hepatorenal toxicity with jaundice, liver failure,
delirium, seizures, coma, and death (Trestrail, 2000).

Individual susceptibility to acute MMH toxicity seems to vary
widely (Miller et al., 2020), but no formal studies have been carried
out to establish this widely held impression. The toxin affects the
liver, central nervous system, and sometimes the kidneys. As with
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FIGURE 5

Metabolic pathway to monomethylhydrazine (MMH) of the major hydrazone gyromitrin in G. esculenta. MMH has acute neurotoxic properties but, like
cycad-derived methylazoxymethanol, also induces DNA lesions (O6- and N7-methylguanine) that are poorly repaired in neurons and are proposed to
result in multiple downstream cellular effects linked to neurodegenerative diseases, such as ALS.

MAM-liberating cycad seed, acute food poisoning from ingestion of
G. esculenta takes the form of vomiting and diarrhea several hours
after consumption, often followed by dizziness, lethargy, vertigo,
tremor, ataxia, nystagmus, and headaches and fever. Severe cases
may exhibit delirium, muscle fasciculation and seizures, mydriasis
progressing to coma, circulatory collapse, and respiratory arrest 5–
7 days of ingestion (Michelot and Toth, 1991). Acute poisoning by
Gyromitra spp., which is similar in character to the toxic effects of
hydrazine propellants (Azar et al., 1970), is scarce in Western Europe
and more frequent in Eastern Europe (Patocka et al., 2012; National
Research Council [NRC], 2022).

In other alpine countries (Switzerland, Monaco, Italy,
Liechtenstein, Austria, Germany, and Slovenia) and beyond (Eastern
Europe, Russia), G. esculenta has various local names (Michelot
and Toth, 1991; Anon, 2022i; GBIF, 2022) and mushroom culinary
traditions vary (Peintner et al., 2013). Other fungi reported to
contain gyromitrin include (Cudonia circinans syn. Leotia circinans),
L. lubrica (Jelly Baby), Helvella crispa (Elfin Saddle), H. lacunose
(Slate Gray Saddle), H. elastica (Elastic Saddle), and H. macropus
(Felt Saddle) (Andary et al., 1985; Flume, 2022).

Wild hydrazinic mushrooms consumed in Sicily include H. crispa
(spugnola crespa, funci di chiddi rizzi, munachessi) and two species
of Agaricus (funcia campagnola, funcia picurina) are eaten raw or
cooked (Lentini and Venza, 2007). This may be relevant to the
spatio-temporal and spatial high-incidence clusters of sALS on the
southeastern flank of Mt. Etna in Sicily that have been linked to
a possible etiologic role for metals in volcanic ash (Nicoletti et al.,
2016; Boumediene et al., 2019). Importantly, fungi are able to
accumulate metals from contaminated soils and even have a role in
soil bioremediation (Spencer and Palmer, 2021).

There appears to be a narrow margin for ingestion of Gyromitra
spp. between individual tolerance and development of acute illness;
symptoms may follow an “all or none” pattern both in monkeys and
humans (Miller et al., 2020; National Research Council [NRC], 2022).
Nothing is known about individual susceptibility, but age, physical
health and gene status are possible variables, such that individuals
with fast acetylator hepatic metabolism may be able to mitigate
the potential acute and delayed effects of consuming False Morels
(Lagrange and Vernoux, 2020). Genetic variation in expression of

microsomal cytochrome P450 isoenzymes also has relevance since
(in rat liver) hydrazine is metabolized and detoxified by CYP2E1,
CYP2B1, CYP1A1/2, ultimately yielding molecular nitrogen (IARC,
1999). Subject medication may be another variable (Lagrange and
Vernoux, 2020) since hydrazine-derived drugs also generate DNA
lesions (Mathison et al., 1994) and alter microbiome composition
(Wei et al., 2010). Vitamin B6 status is also significant since
gyromitrin binds to and inhibits pyridoxal phosphokinase, the
enzyme responsible for transforming dietary pyridoxine into active
pyridoxal 5-phosphate, without which glutamic acid decarboxylase
cannot convert glutamate to the neurotransmitter γ-aminobutyric
acid (GABA). The resulting depletion of GABA promotes CNS
excitation and seizures (Horowitz et al., 2022). While severe MMH
poisoning from consumption of Gyromitra spp. is well documented,
some people can consume appropriately prepared False Morels for
years/decades without experiencing acute illness (List and Luft,
1967; Trestrail, 1994). Indeed, in Finland, local G. esculenta are
commercially available for sale to the public according to strict
regulations set by the Ministry of Trade and Industry of Finland
and accompanied by precise food preparation instructions from the
Finnish Food Authority (FFA) (Anon, 2022j; Pulse, 2022). Given
that gyromitrin residues may remain when these instructions are
followed, the FFA advised in 2019 against consumption by pregnant
and breast-feeding women, and children (FFA, 2022). This appears
to have been driven by concerns relating to the long-recognized
carcinogenic and teratogenic potential of fungal hydrazines in
laboratory animals (Toth, 1991, 1993; Toth and Gannett, 1994).
Outside of Scandinavia, the sale of False Morels is generally banned
(Germany, Switzerland) but still are consumed by some in Bulgaria
and Spain,3 and they are available on-line for purchase from
Piliakalni, Lithuania (Morel Mushrooms, 2022).

The foregoing makes it apparent that as-yet-undefined conditions
must be fulfilled before the toxic properties of MMH are expressed
clinically as an acute illness and, presumably, in the context of ALS,
if indeed there is not only an association (Lagrange et al., 2021b)
but an actual cause-effect relationship with ingestion of Gyromitra
spp. Testing that relationship requires a detailed understanding of the

3 https://en-academic.com/dic.nsf/enwiki/182112
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lifetime exposome prior to onset of motor symptoms, not the rather
superficial knowledge of exposures gained through epidemiological
surveys of ALS, which have tended to emphasize occupational
exposures (Holloway and Mitchell, 1986; Chancellor et al., 1993;
Graham et al., 1997; GBD 2016 Motor Neuron Disease Collaborators,
2018) and have rarely examined dietary history. An example of
studying individual subjects with uncommon forms of ALS is a
56-year-old man with a history of poisoning from eating either
crude or undercooked false morels: he developed muscle cramps,
nausea and vertigo, and a rapidly evolving/sub-acute upper and
lower motor neuron syndrome with significant weakness in all four
limbs and bulbar region; however, 6 months later, his condition
plateaued, and he began a progressive recovery over subsequent
years to reach normal neurological status with no electromyographic
evidence of denervation (Lagrange et al., 2021a). Note that certain
other Gyromitra spp. (G. ambigua, G. infula) are thought to
contain gyromitrin (Brooks and Graeme, 2016), while other fungi
contain related toxic azo/azoxy compounds (Andary et al., 1985;
Flume, 2022), including the Stump Puffball [Apioperdon (formerly
Lycoperdon) pyriforme] and Yellow Puffball (Calvatia rubroflava),
which are considered to be edible (Blair and Sperry, 2013).

ALS and non-botanical exposures to
hydrazinic chemicals

There is potential for significant non-botanical exposures to
hydrazine-related chemicals in industrial, agricultural and military
settings. Their principal applications include chemical blowing agents
(40%), agricultural pesticides (25%), and water treatment (20%)
(Wiser, 2022). In the military and in aerospace, hydrazine has been
used in various rocket fuels, in fuel cells to power an experimental
Army truck (Anon, 2022g) and to fuel the EPUs of the NASA Space
Shuttle, the Lockheed U-2 Spy Plane, and the General Dynamics F-
16 fighter jet (Mayfield, 2022). Given America’s heavy use of F-16s
in the 1991 Gulf War and the potential for hydrazine exposure of
those who flew and serviced these aircraft, there is reason to explore a
possible association with the high incidence of ALS among relatively
young subjects who served in the U.S. Air Force at that time (Horner
et al., 2008). The proposal that inhalation of aerosolized cyanotoxins
(notably L-BMAA) in desert sands was a significant factor for the
development of Gulf War-related ALS (Cox et al., 2009) cannot
explain why the disease only developed in isolated members of the
U.S. military. For reasons unknown, even during later periods (2002–
2005), ALS continued to impact the U.S. Air Force more than other
armed services (Sagiraju et al., 2020).

Some ALS researchers have identified agrochemicals, notably
the broad class of pesticides, as plausible causal factors for sALS
among farmers and other rural residents (Granieri et al., 1988;
Poloni et al., 1997; Govoni et al., 2005; Gams et al., 2018;
Povedano et al., 2018; de Jongh et al., 2021). Hydrazine compounds
are used as active ingredients in combination with other agricultural
chemicals, including insecticides, miticides, nematicides, fungicides,
antiviral agents, attractants, herbicides, and plant growth regulators
(Toki et al., 1994). Specifically, it is noteworthy that a synthetic
hydrazine-related compound (maleic hydrazide: 1,2-dihydro-3,6-
pyridazinedione), a plant-growth regulator synthesized in 1947
(Schoene and Hoffman, 1949) and introduced in the U.K. in 1984
(EFSA, 2016), served as a first-generation plant regulator for turf

management in sports fields (Anon, 2015). Use of a hydrazine-related
compound to control turf on sports fields has obvious potential
relevance to the higher risk for ALS reported among relatively young
professional and amateur soccer players (Vanacore et al., 2006; Chiò
et al., 2009; Beghi, 2013). Factors relevant to this consideration
include: the stability of maleic hydrazide in (simulated) sunlight, its
slow degradation in situ, the lack of product odor, and the potential
for exposure through inhalation and dermal contact (PubChem,
2022), and (b) the paucity of genetic fast acetylators in European (5–
10%) as compared to Japanese (45%) populations (Koizumi et al.,
1998). Hydrazine-related chemicals have also found use as herbicides
(Metribuzin, Paclobutrazol) and fungicides (Triademifon) (Toki
et al., 1994), and nitrosamines (vide supra) are released from recycled
rubber crumb used in artificial turf (United States Environmental
Protection, 2022; van Bruggen et al., 2022).

Occupational exposure to hydrazine and nitrosamines has
occurred in the leather industry (de la Burde et al., 1963; Lahiri
et al., 1988), which historically has had elevated rates of ALS (Hawkes
and Fox, 1981; Buckley et al., 1983), a subject discussed elsewhere
(Spencer, 2019), as well as an excess of stillbirths and an increased
number of congenital malformations (Hawkes et al., 1989). Textile
workers, who work with azo (hydrazone) dyes (Benkhaya et al.,
2020) have also been identified as possible subjects at risk for ALS
(Abarbanel et al., 1985, 1989). In the 1970s, azo dyes that form
aromatic amines were used in hair rinses and tints (Ames et al., 1975;
Yung and Richardson, 2004), which has potential relevance to the
report of an elevated risk of ALS among hairdressers (Chió et al.,
1991; D’Ovidio et al., 2017).

ALS exposome research

Experience with migrants to and from Guam demonstrates that
years or decades separate the timing of exposure to an environmental
trigger (cycad genotoxins) and clinical onset of motor neuron disease.
Additional experimental evidence indicates that exposure to the
culpable agent (primarily cycasin) can occur prior to or after birth
(Spencer, 2020), during infancy or in adolescence, although the
latter may be a period of greatest vulnerability (Spencer et al.,
2020). Detailed assessment of an ALS patient’s exposure to extrinsic
factors from conception to onset (lifetime exposome) is a daunting
task (Maguire, 2017). In general, one searches both for unusual
high exposures to commonly encountered exogenous agents as well
as exposures to agents to which few are in contact, whether the
agent itself or the history of exposure deviates substantially from
the norm. Such exposures, even to a single chemical class (such
as hydrazine-related compounds), may involve a wealth of natural
and synthetic substances deployed in multiple loci that cannot
be addressed by conventional epidemiologic methods. Indeed, the
“neural exposome,” a construct recently introduced by the NIH-
National Institute of Neurological Disease and Stroke, comprises
not only exogenous factors but also behavioral and endogenous
components (Tamiz et al., 2022). When available, the science of
exposomics may employ internal and external exposure assessment
methods (Vasta et al., 2021). While research on the selected group
of ALS cases highlighted here may be questioned, it is important
to recognize that major discoveries of the causes of both acute and
chronic neurologic diseases have been made by intensive study of
very small numbers of patients. For example, end-stage L-dopa-
responsive parkinsonism in a handful of post-teenage males was
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traced to drug use of a meperidine analog contaminated with
methylphenyltetrahydropyridine (MPTP) (Langston, 2017).

Since onset of sALS in younger vs. older persons might plausibly
result from a higher dosage of culpable agent(s) at a critical point
in life, patients who are diagnosed with sALS in their second to
fourth decade represent invaluable subjects for research investigation.
Such cases are also more likely to have living parents and older
siblings able to describe the ALS subject’s environmental exposures
that occurred from conception onward. Our experience has taught
that interviews with the patient and their family members are best
conducted in a semi-structured manner (Palmer and Spencer, 2002)
without rigid adherence to a research instrument with pre-formed
questions that often reflect researcher interests or biases, such as
the commonly perceived overarching etiologic relevance to sALS of
workplace chemical exposure. The power of a non-biased approach
to the acquisition of local knowledge was demonstrated by several
Guam Chamorros who suggested six decades ago that food use
of cycad was responsible for leetiko (ALS) in their community, an
observation that led to the identification in cycad seed of glucosides
of methylazoxymethanol (MAM) and the non-protein amino acid
alpha-amino-beta-methylaminopropionic acid (Whiting, 1988), later
named L-BMAA (Nunn, 2017). Over the course of six NIH-
sponsored cycad conferences (1962–1972), discovery that MAM (like
MMH) is a genotoxin with carcinogenic properties, prematurely
diverted interest away from neurology and toward cancer biology.
Since MAM exposures induce DNA damage in both cycling and non-
cycling cells (i.e., neurons), this may result in tumorigenesis of the
former and degeneration of the latter. Concurrent study of cancer and
sALS may thus be merited in the search for genotoxic mechanisms as
discussed elsewhere (Bharucha et al., 1983; Eizirik and Kisby, 1995;
Spencer et al., 2012; Fang et al., 2013; Bertuzzo et al., 2015; Gibson
et al., 2016; Taguchi and Wang, 2017).

Evidence from studies of familial ALS and sALS suggests that an
interplay among DNA damage, altered DNA repair, and changes in
epigenetic pattern, contribute to neurodegeneration (Goutman et al.,
2022). Genome-wide DNA methylation age is the most consistently
altered epigenetic signature in ALS. In twins with ALS, there was
a much greater between-co-twin difference in DNA methylation
age in a late-onset sALS twin set compared to an early-onset sALS
twin set (Tarr et al., 2019). Noteworthy is that hydrazine induced
hypomethylation of c-jun and p53, and hypermethylation of c-Ha-ras
and DNA methyltransferase, in rodent liver (Kuppusamy et al., 2015).
The experimental DNA-damaging activity of hydrazine-related
compounds, including hydrazine hydrate and 1,2-methylhydrazine
(which is metabolized to MAM), is well established in the cancer
literature (Pollard and Zedeck, 1978; Parodi et al., 1981), and
experimental systemic treatment of young adult mice with MAM
induces brain transcriptional profiles associated with both cancer and
neurodegenerative disease (Kisby et al., 2011).

Future research direction

We propose there are special opportunities for discovery of
environmental factors associated with/causal of ALS from intensive
analysis of the lifetime exposome of patients with young-onset
sporadic disease, as well as very rare ALS-discordant twin and
conjugal ALS cases (Spencer et al., 2019, 2022a). Since the lifetime
probability of conjugal ALS (in Britain) has been estimated as
1/510,000 couples (∼0.75 couples/year) (Cornblath et al., 1993;

Fernandes et al., 2017), less rare, young onset sALS cases (45 years
of age and younger) represent priority research subjects. While sALS
occasionally occurs in the second decade of life, such cases should
also be screened for mutant genes since juvenile-onset genetic forms
of ALS occur in children and subjects < 25 years of age (Turner
et al., 2012). Genetic screening, exposome analysis and the timing of
exposure may also reveal evidence of postulated gene-environment
interactions in ALS (Bradley et al., 2018; Goutman et al., 2022).
Environmental exposures should cover both synthetic and natural
agents, including mycotoxins, given their potential relevance to the
etiology of ALS (Alonso et al., 2015; Reid, 2017, 2020; French et al.,
2019a,b).

Retrospective analysis of sALS clusters and geographically
proximate cases is another valuable research strategy. This approach
requires collaboration among ALS neurologists, epidemiologists,
mycologists, analytical chemists, toxicologists, and other specialists,
often with input from members of ALS-affected communities. Given
the recent recognition of an association between sALS and prior
False Morel poisoning in the French Alps (Lagrange et al., 2021b),
an association that should be tested in other populations, prospective
research strategies should include long-term follow-up of patients
with a history of acute MMH poisoning identified by poison control
centers. While the focus here is on the environmental etiology of
ALS and its potential relationship to hydrazine-related chemicals, the
hypothesis may be pertinent to other neurological disorders, since
cycad-associated Western Pacific ALS phenotypes included atypical
parkinsonism and progressive Alzheimer-like dementia (Borenstein
et al., 2007; Spencer et al., 2020).
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Objective: To determine the correlations between dietary and blood

inflammation indices in elderly Americans and their effects on cognitive

function.

Methods: This research extracted data from the 2011–2014 National Health

and Nutrition Examination Survey for 2,479 patients who were ≥60 years old.

Cognitive function was assessed as a composite cognitive function score (Z-

score) calculated from the results of the Consortium to Establish a Registry for

Alzheimer’s Disease Word Learning and Delayed Recall tests, the Animal Fluency

test, and the Digit Symbol Substitution Test. We used a dietary inflammatory

index (DII) calculated from 28 food components to represent the dietary

inflammation profile. Blood inflammation indicators included the white blood

cell count (WBC), neutrophil count (NE), lymphocyte count (Lym), neutrophil–

lymphocyte ratio (NLR), platelet–lymphocyte ratio (PLR), neutrophil–albumin

ratio (NAR), systemic immune-inflammation index [SII, calculated as (peripheral

platelet count) × NE/Lym], and systemic inflammatory response index [SIRI,

calculated as (monocyte count) × NE/Lym]. WBC, NE, Lym, NLR, PLR, NAR, SII,

SIRI, and DII were initially treated as continuous variables. For logistic regression,

WBC, NE, Lym, NLR, PLR, NAR, SII, and SIRI were divided into quartile groups, and

DII was divided into tertile groups.

Results: After adjusting for covariates, WBC, NE, NLR, NAR, SII, SIRI, and DII scores

were markedly higher in the cognitively impaired group than in the normal group

(p < 0.05). DII was negatively correlated with the Z-score when combined with

WBC, NE, and NAR (p < 0.05). After adjusting for all covariates, DII was positively
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correlated with SII in people with cognitive impairment (p < 0.05). Higher DII with

NLR, NAR, SII, and SIRI all increased the risk of cognitive impairment (p < 0.05).

Conclusion: DII was positively correlated with blood inflammation indicators, and

higher DII and blood inflammation indicators increased the risk of developing

cognitive impairment.

KEYWORDS

cognitive function, DII, blood inflammation indicators, NHANES, regression analysis

Introduction

With the advent of an aging society, the cognitive decline of
the elderly has become a social problem that is important to all
humankind and needs to be solved (Hebert et al., 2013; Wang et al.,
2021). The number of people living with dementia is increasing
worldwide (Afzal et al., 2014). The increasing incidence rates
of cognitive impairment and dementia will lead to an increased
incidence of various geriatric diseases, which will greatly increase
medical investment and impose a heavy socioeconomic burden
(Mangialasche et al., 2009; Ruangritchankul et al., 2020). There
is now evidence that cognitive impairment is related to human
inflammation (Ferrucci and Fabbri, 2018; Irwin and Vitiello,
2019; Barter et al., 2021; Minhas et al., 2021). An adjustable,
controlled intake of anti- or proinflammatory foods may be able
to modulate the inflammatory state of the body, thereby positively
impacting human cognitive function (Aquilani et al., 2020, 2022;
van’t Klooster et al., 2020). The foods that people consume in
daily life have complex constituents, which make it necessary to
explore the impacts of certain combinations of dietary conditions
on inflammation and cognitive impairment in humans (Watson
et al., 2022). The dietary inflammatory index (DII) is calculated by
combining various food components and is a recognized indicator
of overall dietary inflammation (Shivappa et al., 2017, 2019; Ryu
et al., 2019). There is evidence that DII is negatively correlated with
cognitive function (Hayden et al., 2017; Frith et al., 2018; Shin et al.,
2018), and studies have also found that DII has no significant effect
on cognitive function (Zabetian-Targhi et al., 2021). There is a need
to systematically explore the relationship between DII and cognitive
function.

The blood inflammation indicators analyzed in the study
were collected during physical examinations and recorded
in the National Health and Nutrition Examination Survey
(NHANES) database. Platelets, platelet–lymphocyte ratio (PLR),
and neutrophil–lymphocyte ratio (NLR) have been found to
be positively associated with the risks of cerebrovascular and
cardiovascular disease (Trakarnwijitr et al., 2017; He et al.,
2019). The systemic inflammatory response index [SIRI, calculated
as neutrophil count (NE) × (monocyte count)/(lymphocyte
count) (Lym)] and the systemic immune-inflammation index
[SII, calculated as (peripheral platelet count) × NE/Lym] may
be associated with age-related diseases such as those of the
cerebrovascular and cardiovascular systems (Jin et al., 2021; Xu
et al., 2021). However, there is little comprehensive evidence
of the relationships between DII and the white blood cell
count (WBC), NE, Lym, NLR, PLR, neutrophil–albumin ratio

(NAR), SII, and SIRI, or of their synergistic effects on cognitive
function.

We therefore used NHANES data to investigate the
relationships of DII and a blood inflammation index with
cognition in older Americans, and to explore possible ways to
reduce the occurrence of cognitive impairment.

Materials and methods

Data source

The data used in our study were derived from the NHANES
public database in the United States. All participants provided
written informed consent (Wu et al., 2021). There is a dedicated
system management system that is responsible for data collection
and updates in the NHANES, and the survey data and project
information are updated regularly on the website and can be
accessed by the public for free (Wu et al., 2021).

Participants

Data on the DII, blood inflammation index, and cognitive
performance test scores were obtained from the NHANES for the
period from 2011 to 2014 (Yang et al., 2020). All participants
or their guardians signed an informed-consent form. We only
included people aged 60 years or older, and after further exclusion
screening, 2,479 cases were finally included (Figure 1).

Calculation of DII

This study analyzed 28 of the 45 food components from
the original DII: carbohydrates, protein, total fat, alcohol, fiber,
cholesterol, saturated fat, MUFA, PUFA, n-3 fatty acids, n-6 fatty
acids, niacin, vitamin A, thiamin (vitamin B1), riboflavin (vitamin
B2), vitamin B6, vitamin B12, vitamin C, vitamin D, vitamin E, Fe,
Mg, zinc, selenium, folic acid, beta-carotene, caffeine, and energy.
There is evidence that DII is still useful for predicting overall
inflammation when only information on fewer food components
is available (Shivappa et al., 2014a). DII calculations were based on
a 24-h dietary recall interview or food record of the participant or
their guardian (Shivappa et al., 2014b; Wirth et al., 2017). There
are standard reference values for each food parameter in the world
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FIGURE 1

Case inclusion process.

database. The 24-h dietary recall data were multiplied by standard
food parameters from the world database to obtain individual
dietary inflammation composite cognitive function scores (Z-
scores) relative to the standard global average. We transformed
this value into a percentile to reduce bias. Each percentile was
doubled, and then 1 was subtracted from it. The percentage values
for each food parameter were then multiplied by their respective
“overall food parameter-specific inflammatory effect scores” to
obtain individual food-specific DII scores. Finally, the DII scores
for all individual food components were summed to obtain the
“overall DII score” for each person (Shivappa et al., 2014a).

Cognitive function

The cognitive function assessment consisted of the
following four tests: Consortium to Establish a Registry for
Alzheimer’s Disease Word Learning (CERAD-WL) test, Animal
Fluency (AF) test, Digit Symbol Substitution Test (DSST),
and CERAD Delayed Recall (CERAD-DR) test. The CERAD-
WL test requires participants to recall as many words as
possible after reading ten unrelated words aloud in different
orders for a total of 30 points. The CERAD-DR test was
administered after the AF test and DSST. Participants were
asked to recall words on the CERAD-WL test, which was
used to assess transient and delayed learning ability (Rosen,
1983).

The Animal Fluency (AF) tests. Participants were asked to
name as many animals as possible within 1 min. The absolute verbal
fluency and executive function of the participants were examined
(Clark et al., 2009; Sutin et al., 2022).

In the DSST, we asked participants to copy the corresponding
symbols into the boxes next to the numbers within 2 min for a total
of 133 points (Brody et al., 2019). This test examines the executive
function and working memory capacity of the participants.

Composite cognitive function score

To exclude uneven differences in individual cognitive scores,
we used a Z-score consisting of the CERAD-WL test, CERAD-DR
test, AF test, and DSST as the total globally standardized cognitive
function score. The Z-score was calculated as Z = (x-m)/σ, where
x is the raw score, m is the overall mean, and σ is the overall SD.
A Z-score of<-1 is taken to indicate that the person has cognitive
impairment (Wirth et al., 2017; Frith et al., 2018; Zhang et al., 2022).

Blood inflammation indicators

Data on WBC, NE, Lym, NLR, PLR, NAR, SIRI, SII were
extracted from the NHANES database or calculated using extracted
peripheral blood counts (Wu et al., 2021).

Covariates

The possible effects of the following confounders were
assessed: age (continuous), sex (male and female), race (Mexican
American, other Hispanic, non-Hispanic white persons, non-
Hispanic black persons, and non-Hispanic American), marital
status (married/living with a partner, widowed/divorced/separated,
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TABLE 1 Characteristics of participants [mean (SE)/N (%)].

Normal cognitive performance
(N = 2,053)

Low cognitive performance
(N = 426)

P

Age (year) 68.551 (0.205) 73.568 (0.592) <0.0001**

Gender 1

Male 985 (46.49) 240 (46.50)

Female 1,068 (53.51) 186 (53.50)

Race <0.0001**

Mexican American 161 (2.90) 56 (9.05)

Non-Hispanic white persons 1,116 (82.46) 131 (54.34)

Non-Hispanic black persons 420 (6.70) 133 (19.52)

Other Hispanic 163 (2.57) 85 (13.58)

Other races 193 (5.37) 21 (3.50)

Material status (%) <0.001**

Married/living with partner 1,250 (66.92) 218 (52.36)

divorced and separated and widowed 657 (27.26) 179 (41.35)

never married 146 (5.82) 29 (6.28)

Educational level (%) <0.0001**

less than 9th grade 106 (3.01) 157 (27.67)

9–11th grade 239 (8.89) 92 (19.51)

high school graduate/ged or equivalent 496 (21.78) 90 (25.08)

some college or a degree 655 (33.33) 56 (17.48)

college graduate or above 557 (32.98) 31 (10.26)

Body mass index (%) 29.098 (0.251) 28.382 (0.603) 0.325

Ever told you had high blood pressure (%) <0.0001**

Yes 1,246 (55.82) 298 (72.16)

No 807 (44.18) 128 (27.84)

Doctor told you have diabetes (%) <0.0001**

Yes 416 (17.23) 147 (32.24)

Borderline 101 (4.46) 16 (2.96)

No 1,536 (78.31) 263 (64.81)

CERAD-WL 20.492 (0.236) 13.757 (0.324) <0.0001**

CERAD-DR 6.619 (0.110) 3.462 (0.115) <0.0001**

AF 18.941 (0.173) 11.491 (0.203) <0.0001**

DSST 55.865 (0.458) 24.456 (0.658) <0.0001**

The composite cognitive score Z-score 0.549 (0.032) −1.455 (0.029) <0.0001**

CERAD-WL, the Consortium to Establish a Registry for Alzheimer’s Disease Word Learning; CERAD-DR, the Consortium to Establish a Registry for Alzheimer’s Disease Delayed Recall; AF,
the Animal Fluency. DSST, Digit Symbol Substitution Test. *P < 0.05 and **P < 0.01.

and unmarried), education level (less than 9th grade, 9–11th grade,
high school graduate/GED or equivalent, some college or a degree,
and college graduate or above), BMI (continuous), hypertension
(yes and no), and diabetes (yes, borderline, and no).

Statistical analysis

We calculated new sample weights for the data analysis
(Liu et al., 2013). If continuous variables did not conform

to the normal distribution, they were represented by median
(interquartile range) values; otherwise mean (SE) values were used.
Regarding intergroup comparisons of baseline data, weighted-
sample independent t-tests were used for continuous variables,
while chi-square tests were used for categorical variables. WBC, NE,
Lym, NLR, PLR, NAR, SII, SIRI, and DII were initially considered
as continuous variables. In the logistic regression, WBC, NE, Lym,
NLR, PLR, NAR, SII, and SIRI were divided into quartile groups
(Q1, Q2, Q3, and Q4), and DII was divided into tertile groups
(T1, T2, and T3) (Brody et al., 2019). The logistic regression model
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TABLE 2 Comparison of dietary inflammatory index and blood inflammatory indicators between the cognitive impairment group and the normal group.

Total The composite cognitive score Z-score

Normal cognitive performance Low cognitive performance P-value

DII 1.353 (0.073) 1.279 (0.079) 2.040 (0.100) <0.0001**

WBC 6.955 (0.080) 6.906 (0.083) 7.407 (0.156) 0.004**

NE 4.209 (0.051) 4.167 (0.054) 4.606 (0.123) 0.003**

Lym 1.916 (0.033) 1.912 (0.032) 1.953 (0.072) 0.513

NLR 2.502 (0.041) 2.464 (0.039) 2.850 (0.138) 0.008**

PLR 131.252 (2.095) 131.166 (2.146) 132.054 (3.497) 0.79

NAR 0.101 (0.001) 0.095 (0.001) 0.104 (0.002) <0.001**

SII 561.714 (11.226) 554.512 (11.386) 628.510 (26.768) 0.01*

SIRI 1.440 (0.030) 1.417 (0.031) 1.658 (0.082) 0.009**

DII, dietary inflammatory index; WBC, white blood cell; NE, neutrophil count; Lym, lymphocyte count; NLR, neutrophil–lymphocyte ratio; PLR, platelet-lymphocyte ratio; NAR, neutrophil-
albumin ratio; SII, systemic immune inflammation index; SIRI, system inflammation response index. *P < 0.05 and **P < 0.01.

was adjusted for sex, age, race, marital status, education level, BMI,
hypertension, and diabetes. Significant results were indicated by
p < 0.05. All analyses were performed using R software.

Results

General characteristics

The study finally included 2,479 individuals aged ≥60 years.
The Z-scores indicated that 426 participants had low
cognitive function and 2,053 had normal cognitive function.
According to Z-scores, the low-cognitive-function group was
older and had higher rates of non-Hispanic black persons,
divorced/separated/widowed, lower education levels, hypertension,
and diabetes than the normal group (Table 1).

Comparisons of DII, WBC, NE, Lym, NLR,
PLR, NAR, SII, and SIRI between
low-cognitive-function group and
controls

No differences in LE and PLR were found between the
cognitively impaired and normal groups. Patients in the cognitively
impaired group had higher DII (p < 0.0001), WBC (p = 0.004), NE
(p = 0.003), NLR (p = 0.008), NAR (p < 0.001), SII (p = 0.01), and
SIRI (p = 0.009) than the normal group (Table 2).

Correlations of DII, WBC, NE, Lym, NLR,
PLR, NAR, SII, and SIRI with the Z-score

Multiple linear regression analysis was performed to analyze
the Correlations of DII, WBC, NE, Lym, NLR, PLR, NAR, SII, and
SIRI with the Z-score. DII combined with Lym, NLR, PLR, SII, and
SIRI, were no correlation with Z-scores after adjusting for all of the
abovementioned covariates (p > 0.05). However, DII (β = −0.091,
p < 0.0001) combined with WBC (β = −0.028, p = 0.012), NE

(β = −0.036, p = 0.003), and NAR (β = −1.776, p < 0.001) were
negatively correlated with Z-scores (Table 3).

Performance of DII on WBC, NE, Lym,
NLR, PLR, NAR, SII, and SIRI in cognitive
impairment

The relationship between DII and blood inflammation indices
(WBC, NE, Lym, NLR, PLR, NAR, SII, and SIRI) in the cognitively
impaired group was further investigated using multiple linear
regression. After adjusting for covariates, DII was found to be
positively correlated with SII (β = 27.476, p = 0.047). No significant
associations were found between DII and the other inflammation
indicators (p > 0.05) (Table 4).

The role of inflammation indicators in
patients with cognitive impairment

A logistic regression approach was used to explore the
association between inflammation scores and cognitive impairment
risk. Q1 was the reference for all comparisons. First, after
adjusting for all the confounding factors that we accounted for,
the relationship between inflammatory indicators (DII, WBC, NE,
Lym, NLR, PLR, NAR, SII, and SIRI) and the risk of cognitive
impairment risk was examined independently (Table 5). The results
indicated that T2 and T3 of DII (T2: OR = 1.879, 95% CI = 1.242–
2.842; T3: OR = 2.661, 95% CI = 1.745–4.058), Q4 of WBC
(OR = 1.778, 95% CI = 1.022–3.096), Q4 of NLR (OR = 1.671, 95%
CI = 1.162–2.403), Q4 of NAR (OR = 1.656, 95% CI = 1.094–2.509),
Q4 of SII (OR = 1.717, 95% CI = 1.092–2.700), and Q4 of SIRI
(OR = 1.563, 95% CI = 1.082–2.258) were risk factors for cognitive
impairment. DII combined with WBC, NE, Lym, NLR, PLR, NAR,
SII, and SIRI were tested in models 1–8, respectively. Although the
combinations of DII and WBC, NE, Lym, and PLR were not found
to be significantly associated with the risk of cognitive impairment,
higher DII with NLR, NAR, SII, and SIRI significantly increased the
risk of cognitive impairment (p < 0.05) (Table 6).
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TABLE 3 Relationship between DII and cognitive function after binding
of each blood inflammatory index separately.

The composite cognitive score Z-score

95% CI P

Model 1

DII effects −0.091 (−0.118, −0.065) <0.0001**

WBC effects −0.028 (−0.050, −0.007) 0.012*

Model 2

DII effects −0.092 (−0.118, −0.065) <0.0001**

NE effects −0.036 (−0.060, −0.013) 0.003**

Model 3

DII effects −0.094 (−0.120, −0.068) <0.0001**

Lym effects −0.025 (−0.077, 0.028) 0.339

Model 4

DII effects −0.094 (−0.120, −0.068) <0.0001**

NLR effects −0.012 (−0.036, 0.011) 0.284

Model 5

DII effects −0.094 (−0.120, −0.069) <0.0001**

PLR effects 0 (0.000, 0.001) 0.268

Model 6

DII effects −0.091 (−0.118, −0.063) <0.0001**

NAR effects −1.776 (−2.732, −0.821) <0.001**

Model 7

DII effects −0.094 (−0.120, −0.067) <0.0001**

SII effects 0 (0.000, 0.000) 0.279

Model 8

DII effects −0.094 (−0.120, −0.067) <0.0001**

SIRI effects −0.019 (−0.053, 0.016) 0.279

Data are all adjusted by age, sex, race, marital status, education level, body mass index,
hypertension, diabetes. Models 1–8 show the effects of DII and WBC, NE, Lym, NLR, PLR,
NAR, SII, and SIRI on cognitive function, respectively. DII, dietary inflammatory index;
WBC, white blood cell; NE, neutrophil count; Lym, lymphocyte count; NLR, neutrophil–
lymphocyte ratio; PLR, platelet-lymphocyte ratio; NAR, neutrophil-albumin ratio; SII,
systemic immune inflammation index; SIRI, system inflammation response index. *P < 0.05
and **P < 0.01.

Discussion

We systematically explored the relationships between dietary
inflammation, blood inflammation indicators, and cognitive
impairment. Our study found that DII combined with WBC, NE,
NLR, NAR, SII, and SIRI were considerably higher in the low-
cognitive-ability group than in the normal group. DII, WBC, NE,
NLR, NAR, SII, and SIRI were negatively correlated with Z-scores.
DII combined with WBC, NE, and NAR were all negatively
correlated with Z-scores. DII was positively correlated with blood
inflammation indicators. Older adults with higher levels of DII and
blood inflammation indicators (NLR, NAR, DII, and SIRI) were at
a higher risk of cognitive impairment.

In the elderly, the body becomes less functional and more
susceptible to inflammation (Tangestani Fard and Stough, 2019).
Human inflammation indicators (NLR, PLR, NAR, SII, and
SIRI) have been indicated to be potentially related to various

TABLE 4 Relationship between DII and each blood inflammatory index in
a cognitively impaired population.

The composite cognitive score Z-score

β 95% CI P

WBC 0.13 (−0.062, 0.321) 0.174

NE 0.092 (−0.031, 0.214) 0.135

Lym 0.027 (−0.034,0.088) 0.370

NLR 0.068 (−0.036, 0.172) 0.188

PLR 2.716 (−1.489, 6.921) 0.195

NAR 0.003 (0.000, 0.006) 0.075

SII 27.476 (0.360, 54.593) 0.047*

SIRI 0.052 (−0.066, 0.171) 0.370

Data are all adjusted by age, sex, race, marital status, education level, body mass index,
hypertension, diabetes. DII, dietary inflammatory index; WBC, white blood cell; NE,
neutrophil count; Lym, lymphocyte count; NLR, neutrophil–lymphocyte ratio; PLR, platelet-
lymphocyte ratio; NAR, neutrophil-albumin ratio; SII, systemic immune inflammation index;
SIRI, system inflammation response index. *P < 0.05.

health hazards in the elderly, including cardiovascular and
cerebrovascular diseases (Trakarnwijitr et al., 2017; He et al., 2019;
Dong et al., 2020; Jin et al., 2021; Li et al., 2021; Xu et al., 2021).
Platelets, PLR, NLR, and NAR are associated with the risks of
stroke and cardiovascular disease (Trakarnwijitr et al., 2017; He
et al., 2019). Our results found that DII combined with WBC,
NE, NLR, NAR, SII, and SIRI were considerably higher in the
cognitive-impairment group than in the normal group. DII, WBC,
NE, Lym and NAR were negatively correlated with Z-scores, which
was similar to the results of previous studies (Xu et al., 2021).

DII represents the combined inflammatory profile of the
human diet, and the relationship between DII and many risk factors
has been demonstrated for age-related diseases (Frith et al., 2018).
Our study found that DII was significantly associated with SII.
Although no significant correlation was found with other blood
inflammation indicators, SII is a more-reliable and representative
marker of inflammation, so we believe that the evidence here is
sufficient and convincing. However, our conclusion differed from
those of previous studies, including that of Wang et al. (2022),
who found that DII was significantly correlated with SIRI but not
with SII. The possible reasons for this are that the previous study
involved Chinese subjects, and Chinese and American diets are
very different, there are various racial differences, and the Montreal
Cognitive Assessment scale differs from the Z-score calculated
by our CERAD-WL, CERAD-DR, AF, and DSST. However, both
studies suggested that DII contributes to chronic inflammation
development in humans.

The correlation between DII and cognitive impairment has
been previously explored in different regions. Hayden et al. (2017)
found that DII scores were positively associated with the risk of
developing cognitive impairment, Shin et al. (2018) found that
higher DII indicated higher cognitive impairment risk, and Frith
et al. (2018) also found that higher DII scores were negatively
associated with cognitive impairment risk. Our study found that
DII, WBC, NE, NLR, NAR, SII, and SIRI were all negatively
associated with Z-scores. DII combined with WBC, NE, and NAR
were negatively correlated with Z-scores. This suggests that DII
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TABLE 5 The effect of dietary inflammatory index and blood inflammation indicators on cognitive function was analyzed by logistic regression.

The composite cognitive score Z-score

OR (95% CI) P

DII effects

T2 (0.74∼2.60) vs. T1 (≤ 0.74) 1.879 (1.242,2.842) 0.005**

T3 (> 2.60) vs. T1 (≤ 0.74) 2.661 (1.745,4.058) <0.001**

WBC effects

Q2 (5.60∼6.70) vs. Q1 (≤ 5.60) 1.136 (0.678,1.903) 0.608

Q3 (6.70∼8.10) vs. Q1 (≤ 5.60) 1.299 (0.769,2.196) 0.307

Q4 (> 8.10) vs. Q1 (≤ 5.60) 1.778 (1.022,3.096) 0.043*

NE effects

Q2 (3∼3.90) vs. Q1 (≤ 3) 0.830 (0.481,1.432) 0.481

Q3 (3.90∼5) vs. Q1 (≤ 3) 1.145 (0.726,1.805) 0.539

Q4 (> 5) vs. Q1 (≤ 3) 1.558 (0.912,2.661) 0.099

Lym effects

Q2 (1.50∼1.90) vs. Q1 (≤ 1.50) 0.826 (0.535,1.277) 0.368

Q3 (1.90∼2.30) vs. Q1 (≤ 1.50) 0.639 (0.409,0.997) 0.048*

Q4 (> 2.30) vs. Q1 (≤ 1.50) 1.133 (0.779,1.648) 0.493

NLR effects

Q2 (1.53∼2.07) vs. Q1 (≤ 1.53) 0.969 (0.647,1.451) 0.871

Q3 (2.07∼2.88) vs. Q1 (≤ 1.53) 1.212 (0.788,1.863) 0.359

Q4 (> 2.88) vs. Q1 (≤ 1.53) 1.671 (1.162,2.403) 0.008**

PLR effects

Q2 (92.71∼117.20) vs. Q1 (≤ 92.71) 1.018 (0.744,1.393) 0.903

Q3 (117.20∼150) vs. Q1 (≤ 92.71) 0.799 (0.540,1.181) 0.242

Q4 (> 150) vs. Q1 (≤ 92.71) 1.033 (0.695,1.535) 0.864

NAR effects

Q2 (0.07∼0.09) vs. Q1 (≤ 0.07) 0.853 (0.530,1.372) 0.489

Q3 (0.09∼0.12) vs. Q1 (≤ 0.07) 1.111 (0.754,1.638) 0.575

Q4 (> 0.12) vs. Q1 (≤ 0.07) 1.656 (1.094,2.509) 0.020*

SII effects

Q2 (320∼452.57) vs. Q1 (≤ 320) 1.405 (0.920,2.146) 0.108

Q3 (452.57∼653.05) vs. Q1 (≤ 320) 0.865 (0.543,1.376) 0.518

Q4 (> 653.05) vs. Q1 (≤ 320) 1.717 (1.092,2.700) 0.022*

SIRI effects

Q2 (0.76∼1.13) vs. Q1 (≤ 0.76) 1.334 (0.805,2.209) 0.245

Q3 (1.13∼1.69) vs. Q1 (≤ 0.76) 0.997 (0.665,1.496) 0.988

Q4 (> 1.69) vs. Q1 (≤ 0.76) 1.563 (1.082,2.258) 0.020*

Data are all adjusted by age, sex, race, marital status, education level, body mass index, hypertension, diabetes. DII, dietary inflammatory index; WBC, white blood cell; NE, neutrophil
count; Lym, lymphocyte count; NLR, neutrophil–lymphocyte ratio; PLR, platelet-lymphocyte ratio; NAR, neutrophil-albumin ratio; SII, systemic immune inflammation index; SIRI, system
inflammation response index. *P < 0.05, **P < 0.01.

and blood inflammation indices can synergistically serve to affect
cognitive function.

Logistic regression was used to further investigate the
synergistic effect of blood inflammation index and DII on cognitive
impairment risk. The results indicated that older adults with higher
DII and levels of blood inflammation indicators (NLR, NAR,
DII, and SIRI) were at a higher risk of cognitive impairment,

which was similar to the results of previous studies (Jin et al.,
2021). The possible mechanism is that inflammation indicators
can cross the blood–brain barrier to inflame nerves, leading to
neurodegeneration (d’Avila et al., 2018; Godos et al., 2020; Leng
and Edison, 2021). A comprehensive assessment of diet and blood
inflammation can help us take early steps to develop a rational
dietary intervention plan and protect cognitive function.
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TABLE 6 Synergistic effects of dietary inflammatory index and blood inflammation indicators on cognitive function.

The composite cognitive score Z-score

OR (95% CI) P

Model 1

DII effects

T2 (0.74∼2.60) vs. T1 (≤ 0.74) 1.812 (1.199,2.739) 0.008**

T3 (> 2.60) vs. T1 (≤ 0.74) 2.583 (1.686,3.957) <0.001**

WBC effects

Q2 (5.60∼6.70) vs. Q1 (≤ 5.60) 1.142 (0.675,1.933) 0.597

Q3 (6.70∼8.10) vs. Q1 (≤ 5.60) 1.301 (0.769,2.201) 0.302

Q4 (> 8.10) vs. Q1 (≤ 5.60) 1.699 (0.970,2.975) 0.062

Model 2 −0.165 (−0.282, −0.048) 0.008*

DII effects

T2 (0.74∼2.60) vs. T1 (≤ 0.74) 1.825 (1.207,2.761) 0.007**

T3 (> 2.60) vs. T1 (≤ 0.74) 2.638 (1.728,4.029) <0.001**

NE effects

Q2 (3∼3.90) vs. Q1 (≤ 3) 0.789 (0.453,1.375) 0.378

Q3 (3.90∼5) vs. Q1 (≤ 3) 1.111 (0.703,1.754) 0.632

Q4 (> 5) vs. Q1 (≤ 3) 1.478 (0.852,2.564) 0.152

Model 3

DII effects

T2 (0.74∼2.60) vs. T1 (≤ 0.74) 1.920 (1.255,2.937) 0.005**

T3 (> 2.60) vs. T1 (≤ 0.74) 2.678 (1.728,4.152) <0.001**

Lym effects

Q2 (1.50∼1.90) vs. Q1 (≤ 1.50) 0.792 (0.499,1.256) 0.298

Q3 (1.90∼2.30) vs. Q1 (≤ 1.50) 0.627 (0.390,1.008) 0.053

Q4 (> 2.30) vs. Q1 (≤ 1.50) 1.094 (0.741,1.615) 0.629

Model 4

DII effects

T2 (0.74∼2.60) vs. T1 (≤ 0.74) 1.835 (1.203,2.801) 0.008**

T3 (> 2.60) vs. T1 (≤ 0.74) 2.654 (1.716,4.105) <0.001**

NLR effects

Q2 (1.53∼2.07) vs. Q1 (≤ 1.53) 0.987 (0.659,1.477) 0.945

Q3 (2.07∼2.88) vs. Q1 (≤ 1.53) 1.198 (0.771,1.861) 0.396

Q4 (> 2.88) vs. Q1 (≤ 1.53) 1.687 (1.176,2.418) 0.007**

Model 5

DII effects

T2 (0.74∼2.60) vs. T1 (≤ 0.74) 1.877 (1.231,2.860) 0.006**

T3 (> 2.60) vs. T1 (≤ 0.74) 2.640 (1.717,4.058) <0.001**

PLR effects

Q2 (92.71∼117.20) vs. Q1 (≤ 92.71) 1.008 (0.745,1.365) 0.954

Q3 (117.20∼150) vs. Q1 (≤ 92.71) 0.824 (0.557,1.218) 0.307

Q4 (> 150) vs. Q1 (≤ 92.71) 1.046 (0.702,1.558) 0.814

Model 6

DII effects

T2 (0.74∼2.60) vs. T1 (≤ 0.74) 1.815 (1.198,2.749) 0.008**

T3 (> 2.60) vs. T1 (≤ 0.74) 2.610 (1.712,3.980) <0.001**

(Continued)
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TABLE 6 (Continued)

The composite cognitive score Z-score

OR (95% CI) P

NAR effects

Q2 (0.07∼0.09) vs. Q1 (≤ 0.07) 0.830 (0.509,1.354) 0.430

Q3 (0.09∼0.12) vs. Q1 (≤ 0.07) 1.056 (0.712,1.564) 0.773

Q4 (> 0.12) vs. Q1 (≤ 0.07) 1.577 (1.045,2.379) 0.032*

Model 7

DII effects

T2 (0.74∼2.60) vs. T1 (≤ 0.74) 1.639 (0.995,2.702) 0.052

T3 (> 2.60) vs. T1 (≤ 0.74) 2.140 (1.325,3.458) 0.005**

SII effects

Q2 (320∼452.57) vs. Q1 (≤ 320) 1.513 (0.929,2.464) 0.089

Q3 (452.57∼653.05) vs. Q1 (≤ 320) 0.944 (0.589,1.513) 0.794

Q4 (> 653.05) vs. Q1 (≤ 320) 1.996 (1.251,3.183) 0.007**

Model 8

DII effects

T2 (0.74∼2.60) vs. T1 (≤ 0.74) 1.883 (1.243,2.851) 0.005**

T3 (> 2.60) vs. T1 (≤ 0.74) 2.627 (1.727,3.997) <0.001**

SIRI effects

Q2 (0.76∼1.13) vs. Q1 (≤ 0.76) 1.371 (0.879,2.138) 0.151

Q3 (1.13∼1.69) vs. Q1 (≤ 0.76) 0.853 (0.529,1.378) 0.491

Q4 (> 1.69) vs. Q1 (≤ 0.76) 1.679 (1.052,2.680) 0.032*

Data are all adjusted by age, sex, race, marital status, education level, body mass index, hypertension, diabetes. DII, dietary inflammatory index; WBC, white blood cell; NE, neutrophil
count; Lym, lymphocyte count; NLR, neutrophil–lymphocyte ratio; PLR, platelet-lymphocyte ratio; NAR, neutrophil-albumin ratio; SII, systemic immune inflammation index; SIRI, system
inflammation response index. *P < 0.05 and **P < 0.01.

This study had some limitations. First, because the study
had a cross-sectional design, it was not possible to infer causal
relationships between dietary and blood inflammatory indicators,
and cognition. Second, dietary inflammatory indicators calculated
from dietary intake data obtained from 24-h dietary recall might
not accurately reflect individual dietary intakes and are subjected
to recall bias. Third, we did not identify the cause of any
impairment, such as Alzheimer’s disease, Lewy-body dementia, or
vascular dementia.

Our study also shows strengths and important originality. First
of all, the study has a rich sample size and is analyzed only in older
adults over 60 years of age, which has a strong social significance. In
addition, the study used relatively accurate dietary data. Finally, the
cognitive impairment composite -z score was created by summing
the z scores [(individual test score - mean score)/SD] of these
three individual tests (DSST, AFT, CERAD), with good sensitivity
and avoiding ceiling and floor effects. For cognitive purposes our
findings emphasize the importance of an anti-inflammatory diet
with clinical implications.

In conclusion, we found that dietary and blood inflammation
indicators were negatively associated with cognitive function in
an elderly American population, and that dietary inflammation
indicators were also negatively associated with cognitive function
when combined with blood inflammation indicators. DII was
positively correlated with blood inflammation. Older adults with
higher DII and blood inflammation indicator levels were at a higher
risk of cognitive impairment. An ideal dietary intake among older

adults was associated with improved cognitive function, and future
studies should therefore further investigate the interrelationships
and the mechanisms underlying their effects on cognition.
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Sleep matters:
Neurodegeneration spectrum
heterogeneity, combustion and
friction ultrafine particles,
industrial nanoparticle pollution,
and sleep disorders—Denial is not
an option

Lilian Calderón-Garcidueñas1,2*, Ricardo Torres-Jardón3,

Glen P. Greenough4, Randy Kulesza5, Angélica González-Maciel6,

Rafael Reynoso-Robles6, Griselda García-Alonso2,

Diana A. Chávez-Franco2, Edgar García-Rojas2,

Rafael Brito-Aguilar2, Héctor G. Silva-Pereyra7, Alberto Ayala8,9,

Elijah W. Stommel4 and Partha S. Mukherjee10

1College of Health, The University of Montana, Missoula, MT, United States, 2Universidad del Valle de

México, Mexico City, Mexico, 3Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad

Nacional Autónoma de México, Mexico City, Mexico, 4Department of Neurology, Geisel School of

Medicine at Dartmouth, Hanover, NH, United States, 5Department of Anatomy, Lake Erie College of

Osteopathic Medicine, Erie, PA, United States, 6Instituto Nacional de Pediatría, Mexico City, Mexico,
7Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosi, Mexico, 8Sacramento

Metropolitan Air Quality Management District, Sacramento, CA, United States, 9Department of

Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, United States,
10Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata, India

Sustained exposures to ubiquitous outdoor/indoor fine particulate matter (PM2.5),

including combustion and friction ultrafine PM (UFPM) and industrial nanoparticles

(NPs) starting in utero, are linked to early pediatric and young adulthood aberrant

neural protein accumulation, including hyperphosphorylated tau (p-tau), beta-

amyloid (Aβ1−42), α-synuclein (α syn) and TAR DNA-binding protein 43 (TDP-

43), hallmarks of Alzheimer’s (AD), Parkinson’s disease (PD), frontotemporal

lobar degeneration (FTLD), and amyotrophic lateral sclerosis (ALS). UFPM from

anthropogenic and natural sources and NPs enter the brain through the

nasal/olfactory pathway, lung, gastrointestinal (GI) tract, skin, and placental

barriers. On a global scale, the most important sources of outdoor UFPM are

motor tra�c emissions. This study focuses on the neuropathology heterogeneity

and overlap of AD, PD, FTLD, and ALS in older adults, their similarities with

the neuropathology of young, highly exposed urbanites, and their strong link

with sleep disorders. Critical information includes how this UFPM and NPs cross

all biological barriers, interact with brain soluble proteins and key organelles,

and result in the oxidative, endoplasmic reticulum, and mitochondrial stress,

neuroinflammation, DNA damage, protein aggregation and misfolding, and faulty

complex protein quality control. The brain toxicity of UFPM and NPs makes them

powerful candidates for early development and progression of fatal common

neurodegenerative diseases, all having sleep disturbances. A detailed residential

history, proximity to high-tra�c roads, occupational histories, exposures to

high-emission sources (i.e., factories, burning pits, forest fires, and airports), indoor
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PM sources (tobacco, wood burning in winter, cooking fumes, and microplastics

in house dust), and consumption of industrial NPs, along with neurocognitive and

neuropsychiatric histories, are critical. Environmental pollution is a ubiquitous,

early, and cumulative risk factor for neurodegeneration and sleep disorders.

Prevention of deadly neurological diseases associated with air pollution should

be a public health priority.

KEYWORDS

air pollution, Alzheimer’s, nanoparticles, nanoneuropathology, PM2.5, sleep disorders

RBD, OSA, depression

1. Introduction

Chronic exposures to outdoor concentrations of PM2.5

above WHO air quality guidelines (annual 5 µg/m3) caused

6.4 million premature deaths and 93 billion days lived with

illness in residents worldwide in 2019 (1). Exposures to

traffic-generated pollutants, residency close to high-traffic

roads, incomplete combustion emissions, firepit emissions,

and in vitro experimental PM exposures of neural tissues,

among other sources, have all been associated with extensive

neural damage and increases in neurodegenerative diseases,

including AD, PD, and ALS for the last two decades (2–17).

Millions of US residents are exposed to wild forest fires and

live near high-volume traffic roads and traffic-related air

pollution (TRAP) (18, 19). Disadvantage populations, including

minorities and low-income individuals, are exposed to high TRAP

pollution (19, 20).

This study focuses on how incomplete combustion species and

friction-derived and industrial-sourced nanoparticles reach neural

tissues and damage target organelles in the nervous system; how

these UFPMs and NPs travel in the brain and affect brain hubs

with extensive communications and key roles in the integration

of critical information, including sleep (21–23). For this study, we

would be using either UFPMs and/or NPs, since our focus is on

particle size, i.e., ≤100 nm.

The identification of the initial neuropathological stages of

Alzheimer’s disease (hyperphosphorylated tau and amyloid beta)

(24) in 202/203 Metropolitan Mexico City forensic autopsies, with

an average age of 25.4 ± 9.2 years, including 44 children with an

average age of 12.89 ± 4.9 years, and the progression of the disease

by the second and third decades of life, along with the concomitant

development of PD and TDP-43 pathology in young urbanites,

are at the core of our research efforts and our deep interest in

comparing sleep disorders in patients with AD, PD, FLTD, and

ALS, the involvement of aberrant neural proteins, and the presence

of UFPM and NPs in sleep hubs in young highly exposed to air

pollution cohorts (9–11, 24–34).

Populations that are exposed chronically to high concentrations

of outdoor and indoor PM2.5 are at higher risk of developing

early diagnostic and neurodegenerative hallmarks, and the fact that

they overlap from the earliest ages strongly suggests that there is

a common denominator affecting the protein neural structures.

UFPM and NPs could be the causative agents in association

with genetic, epigenetic, and other environmental variables, and

damaged sleep hubs, and resulting sleep disorders could be early

findings (35–43).

Millions of people worldwide are exposed to outdoor and

indoor environmental fine particulate matter (PM2.5) and nanosize

PM ≤ 100 nm [ultrafine particulate matter (UFPM) and industrial

nanoparticles (NPs)]. Metal combustion and friction-derived

UFPM and NPs are identified in brain organelles starting in utero

and are directly responsible for intense oxidative stress, protein

misfolding, protein aggregation, and fibrillation. AD, PD, and ALS

are associated with exposure to air pollutants. Sleep disorders are

strong predictors of fatal neurodegenerative disorders.

2. Particulate matter pollution, what is
it? How do we measure it? Why
nanosize PM is key?

Particulate matter (PM) consists of a mixture of microscopic

solids and aerosols (liquid droplets) of different sizes and

compositions found in the air. Different sizes of PM are based

on their aerodynamic diameters: PM10 (mass of PM with an

aerodynamic diameter<10µm); fine or PM2.5 (particles<2.5µm),

and ultrafine particles (UFPM, with an aerodynamic diameter

<0.1µm). PM differs in chemical composition, size, shape,

morphology, and air lifetime, depending mainly on their origin,

which in turn can be primary or secondary. Particles emitted

directly into the atmosphere are primary PM, while those formed

within the atmosphere from a number of processes such as

nucleation, condensation, and/or chemical reactions of gas-phase

species are secondary PM, mainly gaseous air pollutants (44).

PM10 and PM2.5 are our current indicators for PM pollution

worldwide, particularly in highly polluted urban areas (i.e.,

Metropolitan Mexico City, Figure 1). Routine measurements of

UFPM are neither common nor enforced, despite it being well-

recognized that they can reach alveoli, circumvent primary

airway defenses, and carry numerous toxic organic and inorganic

compounds (44, 45).

Notably, while PM10 and PM2.5 ambient concentrations

and their regulatory compliance with air quality standards are

determined by mass-based methods, UFPMs have negligible

mass, making them very difficult to measure. UFPMs are

quantified by number concentration, which in many cases
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FIGURE 1

Time series trend of annual mean 24-h PM2.5 concentrations, averaged over 3 years, for five representative monitoring stations in MMC from 1990 to

April 2020 and their comparison with the respective annual USEPA NAAQS. Data were processed and evaluated from measurements reported by the

manual PM network of the Secretaría del Medio Ambiente del Gobierno de la Ciudad de México (SEDEMA) under a 6-day sampling schedule. Annual

means from the years before 2004 were estimated from available information on PM10 since 1990 and the mean slope of the correlation PM10 vs.

PM2.5 between 2004 and 2007. Source of data: http://www.aire.cdmx.gob.mx/default.php#.

do not correlate with the mass concentrations reported as

PM10 or PM2.5 (46–48). We currently do not have worldwide

ultrafine particle matter regulations (21, 22). Although some

countries have guidelines for UFPMs in terms of particulate

number concentrations, their focus has been on short-term

exposures in occupational environments and for specific

materials, thus they do not apply to outdoor or indoor

environments. Available measurement systems for UFPMs

include condensation particle counters, electro-mobility

spectrometers, diffusion battery counters, and photoelectric

nucleus counters (44–49).

As road traffic and uncontrolled small combustion sources

generate a significant number of nanoparticles, heavily polluted

urban areas are suffering from strong UFPM problems (48).

Metropolitan Mexico City (MMC) has experienced a dramatic

increase in the number of vehicles in the last 20 years. Before

2000, CO and PM2.5 levels in MMC were among the highest levels

registered in North America. However, due to actions to reduce

traffic pollution, UFPM particle number concentrations (PNC)

from the mid-2000s on, have been reduced to around 30,000 cm−3

(50). Using a non-linear correlation model between PNC, CO,

and PM2.5 concentrations obtained from short-term monitoring

studies, we have estimated that in the 1990s, PNC in MMC was

around 300,000 cm−3 (50–54). Figure 2 shows the estimated annual

average UFPMs number trend coupled with the CO annual median

for MMC from 1989 to 2021 (50). We assumed that PM2.5 and CO

could be reasonable proxies of vehicular emissions and incomplete

combustion processes in the urban area. Typical particle number

concentrations measured in 44 urban areas worldwide are in the

order of∼5× 103 to∼8× 104 cm−3 with extremes above 1× 105

cm−3 in China and India (48).

3. Nanoparticles, metals, metalloids,
and plastics. How harmful? How early?
Where do they go in the brain? How
relevant are systemic inflammation
and neuroinflammation in
neurodegeneration and their
association with air pollution?

Nanoparticles, regardless of composition or shape, go

everywhere in the body, cross all biological barriers, and go

through paracellular pathways, including tight junctions, adherens

junctions, and cytoskeletons (55–62). Their small size facilitates

their absorption capabilities and their passage through membranes

(5, 63–71); red blood cells (RBCs) and white blood cells (WBCs)

are very efficient transporters of UFPM and NPs because they

can reach any place, including the brain (12, 71). Their portals of

entry (55) are key to understanding the importance of inhalation

and ingestion of NPs and their direct brain entrance through the

olfactory region and access to the trigeminal nerve. The inhalation

entry starts in the nasal mucosa and continues to the alveolar

space and the enormous lung capillary bed with the transport

of UFPM and NPs through RBCs and WBCs and their free

systemic circulation transportation. The massive amount of NPs
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FIGURE 2

Trends of estimated PNCs and the associated annual medians of 1-h average CO for five representative monitoring stations of the MMC from 1989 to

2021. The colored circles in the figure correspond to the medians of PNCs measured by the authors referenced in (51*), (52**), (53***), and (54****).

CO data source: http://www.aire.cdmx.gob.mx/default.php.

we ingest every day have direct access to the intestinal epithelium

and submucosa, causing significant damage to the paracellular

structures and allowing direct entry of NPs to the enteric nervous

system (ENS) (72).

The neurovascular unit (NVU) (73), defined as a complex

functional and anatomical structure integrated by endothelial cells,

capillaries, arterioles, a basal lamina covered by pericytes, smooth

muscle cells, and neural cells including neurons, interneurons,

astrocytes, and an extracellular matrix, is a direct UFPM/NP target,

a critical observation explaining the extensive capillary and small

arteriole vascular damage starting in utero and in childhood upon

PM air pollution exposures (9, 10, 12, 55). As described by Schaeffer

and Iadecola (73), NVU damage, regardless of the source, has

serious effects on neurovascular regulation and coordination of

vascular responses to central and peripheral signals, which are

critical to maintaining brain homeostasis. NVU damage predicts

neurodegeneration (21, 55, 72–74).

The detrimental impact of NPs on the brain includes high

production of reactive oxygen species, neural inflammation,

depletion of anti-oxidative enzymes, DNA damage, apoptosis,

structural cell damage, including organelles, nuclei, tight junctions,

adherens junctions, endothelial damage, and dysfunction (5, 55, 59,

62, 64, 70, 75–78).

Particularly relevant to this study is the fact that UFPM/NPs

are very effective in their capacity to aggregate, conglomerate,

and produce protein folding, destabilization, and fibrillation (5,

61, 63, 65, 67, 69, 70, 79–82). John et al. (81) referred to

large nanostructures of ≥20 nm affecting the kinetic peptide

aggregation, thus size and shape matter. They also discussed how

NPs serve as a surface for the adsorption of peptide monomers

and facilitate nucleation to oligomers and fibril formation (81).

Mohammad-Beigi et al. (82) discussed how α-synuclein undergoes

interactions with NPs and how these interactions can be prevented

by the characteristics of the protein corona acquired during

the exposure of NPs to serum proteins. When α-synuclein

and polyethylenimine-coated carboxyl-modified polystyrene NPs

(PsNPs-PEI) interact, the NP surface promotes the primary

nucleation step of amyloid fibril formation, thus key to pathological

fibrillation, serum proteins modulate the complex interplay

between NPs and amyloid proteins (82).

NP/UFPM interactions with brain cells are complex, and

variables such as the nature of the protein corona, bioavailability,

biodistribution, size, shape, charge, composition, cell and organelle

targets, and certainly portal of entry are all impacting the extent and

type of brain damage.

An interesting and concerning factor in UFPM composed

of iron (magnetite and maghemite) is precisely their magnetic

properties (5, 83–85). In the study by Shu et al. (85), the

superparamagnetic NPs could respond to an external magnetic

field, and magnetic NPs could be seen setting down in the magnetic

pole regions (see Figure 4d of that study). This magnetic cell settling

does, in fact, occur in MMC residents, as we have documented the

phenomenon in electron micrographs [(55), Figure 3B]. The issue

is more than a sporadic finding; MMC brains contain significant

concentrations of magnetic NPs measured as saturation remanent

magnetization (SIRM), being highest in the cerebellum (10). The
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cerebellum in young MMC residents shows extensive vascular

pathology and cerebellar endothelial erythrophagocytosis (50) and

significant atrophy by volumetric brain MRI in young MMC

residents (39).

Systemic inflammation and endothelial dysfunction are very

relevant to air pollution exposures, as shown by our laboratory

in Mexico City children (86), along with nasal inflammation,

DNA nasal epithelial damage (87–90), and CSF inflammation

(43). Systemic inflammation and endothelial dysfunction have

been described in 295 pregnant women (91) with strong

associations between increases in soluble vascular adhesion

molecule-1 (sVCAM-1) levels for each 10 µg/m3 increase in

PM10 concentration, strongly suggesting that inflammation and

endothelial dysfunction have a key role in modulating the

detrimental effects of air pollution exposure during pregnancy, as

shown recently in our laboratory with the extensive presence of

nanoparticles of industrial origin in placentas of all ages and brain

fetal tissues (12).

Oxidative stress and inflammation are common denominators

of particulate matter (PM) air pollution exposures (92), including

PM containing polycyclic aromatic hydrocarbons (PAHs) at low

exposure settings. Occupational exposures are equally important

for both systemic and neural inflammation and neurodegeneration

(93, 94). Orysiak et al. (93) described a significant increase in

proinflammatory cytokines in firefighters, along with respiratory

inflammation, a piece of information that is very significant

given the massive exposure of the US population to forest

fires (18) and traffic air pollution (19). Thus, the report of

Huang et al. (94) on neuroinflammation in the 2001 World

Trade Center (WTC) responders is not a surprise, nor is the

increment in suicides among the same responder population (95–

97). The expected responses of the highly PM-exposed WTC

responders were precisely what researchers are publishing 22

years later and what we commented within hours of the tragic

event: acceleration of neuroinflammation, neurodegeneration,

and suicides, as we see in Mexico City residents, more

pronounced in APOE4 carriers, and associated with dose and

routes of exposure key for both WTC responders and MMC

residents (9–12).

Monitoring systemic inflammation in children should be a

health priority since ambient air pollution impacts inflammatory

responses from childhood (86, 98). Certainly, UFPM/NPs

play a key role in both systemic and neural inflammation

(12, 14, 16, 17, 21, 45, 50, 55, 62, 64), and diesel and Fe-NPs cause

significant damage to neural cells under experimental conditions

(62, 64). The issue also applies to industrial NPs consumed

worldwide in massive amounts, i.e., titanium oxide NPs (99).

Rolo and coworkers (99) have an excellent review of the TiO2-

NPs in foods causing oxidative stress, cytotoxicity/apoptosis/cell

death, inflammation, cellular and systemic uptake, genotoxicity,

and carcinogenicity, and although the authors made a plea to

support limiting the use of TiO2-NPs in food, we are aware as

toxicologists that the food industry will be reluctant to follow-

up on the recommendations. Thus, although the literature

supports the multiple pathways UFPM/NPs are capable of

causing systemic and neural damage through oxidative stress,

neuroinflammation, mitochondrial function, neurodegeneration,

via excessive activation of cellular prion protein signaling,

hippocampal-impaired neurogenesis and synaptic plasticity,

abnormal peptidomic responses, apoptosis, and necrosis (100–

105), we still do not have NPs and UFPM regulations in the

United States, and we need to establish clear correlations between

PM exposures, neurodegeneration, and inflammation (106–109).

4. Development of Alzheimer’s and
Parkinson’s diseases and TDP-43
pathology in children and young adult
MMC residents. The diagnostic neural
abnormal proteins are present and
overlap from childhood and are key
for the diagnosis of early sleep
disturbances

In 2002, we described the association between the

neuropathological hallmarks of Alzheimer’s disease and air

pollution exposures in our laboratory, stating: Neurodegenerative

disorders such as Alzheimer’s may begin early in life with air

pollutants playing a crucial role (37). Two decades later, we have

robust evidence to support this statement in populations exposed

to high levels of PM2.5 and UFPM/NPs. Our studies demonstrate

the development of AD, PD, and TDP-43 pathology starting in

childhood, and it is corroborated clinically with the progressive

cognitive deterioration, abnormal gait and equilibrium, brainstem-

evoked auditory potentials, olfactory deficits, sleep abnormalities,

and brain MRI cortical, subcortical, and cerebellar atrophy in

seemingly healthy individuals (36–42). Low CSF concentrations of

amyloid β 1−42 and BDNF differentiate children exposed to MMC

air pollution from low pollution controls (43).

We have identified p-tau, the presence of Aβ and α-synuclein,

and abnormal TDP-43 expression in 202 MMC forensic autopsies

from residents who died in accidents, homicides, and suicides

aged 25.3 ± 9.2 years (9, 10). Extensive, early, and progressive

neurovascular unit damage and key organelle ultrastructural

pathology were associated with metal- and metalloid-rich

UFPM/NPs, making solid UFPM/NPs an agent for brain pathology

in MMC subjects (9–12).

Figure 3 illustrates the two key AD neuropathology markers,

namely, hyperphosphorylated tau and beta-amyloid, in MMC

residents per decade, including 44 children (9). We thoroughly

studied the extra neural tissues and confirmed there were no gross

and/or light microscopy abnormalities.

As seen in Figure 3, every child had h-tau pre-tangle stages

in the 1st decade of life, and by the 2nd decade, we documented

neurofibrillary (NFT) tangles I–V (24). Subjects in the 4th

decade were clearly in NFT I–V stages, and pre-tangle stages

could no longer be identified. In contrast, Aβ progressed slowly

and remained in the early phases. Interestingly, in our autopsy

studies (9, 10), apolipoprotein E allele 4 (APOE4) carriers of

the strongest Alzheimer’s disease genetic risk factor (110–113)

had higher AD Braak stages and the highest risk for suicide

associated with lower cumulative exposures to PM2.5 vs. APOE3

carriers. A finding in keeping with the literature regarding the

higher risk of carrying two copies of ε4 allele increasing the
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FIGURE 3

Two hundred and three forensic autopsies were staged for Alzheimer’s disease using p-tau and Aβ1−42 (9). Subjects were 25.4 ± 9.2 years old and

causes of death were related to car accidents, homicides, and suicides; 202/203 had AD pathology, including the youngest subject, an

11-month-old baby.

FIGURE 4

Venn diagram showing the overlap of neurodegenerative fatal diseases in a cohort of 186 MMC residents with an average age of 27.3 ± 11.8 years

(10). Alzheimer’s disease neuropathology changes (ADNC) (h-tau and Aβ) were present in each case.

AD risk up to 15-fold versus an APOE3 carrier in European

ancestry subjects (114). APOE is a key protein in the equation

of AD risk, neuroinflammation, oxidative stress, and metals (35,

112–114). The study by Tcw et al. (115), relating local APOE

haplotype and the ε4-specific amino acid changes to important

deficits in lipid metabolism dysregulation, glial activation, and

inflammation, is of considerable interest in the setting of air

pollution (9).
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The overlap of AD, PD, and TDP-43 pathology is remarkable

in young MMC residents as it is extraordinarily similar to

the mixed protein pathologies described in elderly demented

patients diagnosed with AD, FTLD, LBD, PD, ALS, and cerebral

amyloid angiopathy (CAA), white matter rarefaction (WMR)

pathology, and in the younger than 60-year patients who are

AD demented (25–34, 116–119). Metha and Schneider (118)

illustrated the overlapping neuropathology in a Venn diagram,

which was further discussed by Jellinger (119, 120). It is clear

that in elderly populations, AD is a heterogeneous disease, and

co-pathologies (119), including LBD and TDP-43 pathology,

and cerebrovascular lesions, are critical for the clinical picture,

imaging, and laboratory results (25, 119–128). Figure 4 illustrates

the aberrant neural protein overlap in MMC young without extra

neural pathology (10).

All major neuropathological hallmarks of AD, PD, FTLD, and

ALS are identified in young urbanites, from brainstem p-tau and

diffuse amyloid plaques in an 11-month-old baby to extensive

cortical p-tau in carriers of APOE4 alleles in 15-year olds. Common

findings in MMC residents include p-tau in substantia nigrae and

lack of nuclear TDP-43 in cortical motor neurons, lower motor

neurons for cranial nerves III, V, and XII, and cervical motor

neurons in teens and young adults (9–11). Hyperphosphorylated

tau is definitely the major aberrant protein in highly exposed

air pollution young urbanites (36). Figure 5 shows the overlap of

aberrant neural protein in MMC young residents (10), compared

to elderly subjects in the key work of Karanth et al. (25).

Cerebrovascular pathology involving small and large cerebral

vessels, with lesions ranging from gross and microscopic infarcts,

atherosclerosis, and arteriolosclerosis, is commonly attributable to

aging and independently associated with a higher risk of AD in

elderly subjects (116, 118–120, 128). Strikingly, we have described

extensive brain capillary and arteriole endothelial pathology and

abnormal NVU in MMC dogs, children, and fetal brains in

weeks 12–15 (12, 129). In dogs and children, capillaries displayed

abnormal tight junctions—a critical component of the NVU

(129), decorated with UFPM/NPs, and white matter extensive

perivascular damage with leaking capillaries and arterioles

displaying extravascular lipids and erythrocytes. The endothelial

basement membranes are thickened and display beta-sheet

structures, and the perivascular glial sheet is focally absent. NPs

(10–48 nm) are localized in endothelial cells (EC), pericytes, and

across the basement membranes. Endothelial damage associated

with NPs is detected very early and worsens with age in children

and teens with high PM exposures (Figure 6) (129).

We strongly suggest that neural abnormal protein overlap

could be explained by the presence of UFPM/NPs in critical hubs

with portals of entry, emission sources, cumulative exposures, size,

shape, surface charge, chemical composition, biomolecular corona

proteins, target organelles, cellular toxicity, axonal anterograde and

retrograde transport, trans-synaptic movements, and a number of

genetic (i.e., APOE4 carrier status) and environmental factors (in

utero exposures), comorbidities, etc., accounting for the neural

damage and the heterogeneity of neurodegenerative diseases (12–

17, 25–34, 113, 116–129).

The nanosize PM is composed of metals including Fe, Ti,

Hg, Cu, Al, and Bi; post-transition metals, i.e., Al and Pb;

alkaline earth metals, i.e., Ba; and non-metallic chemical elements

such as Si are identified in every organelle in neurons, glial

cells, microglia, and endothelial cells in Mexico City residents

(10). Mitochondria and endoplasmic reticulum (ER), as well

as the mitochondria-ER membrane contacts (MERC), are key

NPs targets, and abnormal MERCs are common in highly

exposed subjects (55, 56, 129). UFPM/NPs are also localized

in the nuclear matrix—in close contact with heterochromatin—

and nuclear pores. The outstanding accumulation of NPs in

endolysosomes and specific structures like neuromelanin has great

relevance in targeted neurodegenerative processes, including PD

(Figure 7) (10, 55, 56, 130).

The spectrum of metals and metalloids is critical for brain

targets. We are identifying Fe-based, highly magnetic UFPM

along with metals commonly associated with electronic waste,

such as elongated TiO2 NPs (131). Shredding of e-waste is an

extensive source of NPs in the United States (131), and very

high concentrations of lead, for example, 2.9 µg-lead m3, are

common 1.8m away from the shredder operator, with extensive

metal surface contamination reaching up to 250,000 particles cm3

with fine PM2.5 up to 171 µg m3, and both failing to return

to background levels after 40min of inactivity, as described by

Ceballos et al. (131). As stated by Frazzoli et al. (132), the

aggressively extractive advanced technology industry thrives on the

intensive use of non-renewable resources and hyper-consumeristic

culture and unfortunately, the health impact on the brain is

detrimental. Figures 8, 9 show the metal and metalloid profiles

in individual UFPM/NPs in neural and vascular cells analyzed by

energy-dispersive X-ray spectrometry (EDX).

UFPM/NPs in targeted organelles with critical functions,

including the assembly of proteins, lipid synthesis, regulation,

transportation, clearing of damaged organelles via lysosomal

degradation, inter-organellar communication, Ca2+ storage,

transport and signaling, apoptosis, autophagy, stress responses,

and formation and activation of inflammasomes, are at the core

of the nanoneuropathology, as shown by the myriad of interesting

studies focusing on alterations of mitochondria, MERCS, ERs,

mitochondria-lysosome connections, neuromelanin, and nuclear

pores (133–142).

Neurodegenerative diseases are heterogeneous, multisystem

disorders with multiple abnormal proteins frequently associated

with cognitive impairment and sleep disorders. The heterogeneity

includes clinical-brain imagen variants that complicate diagnoses

and putting forward we still have limitations for clinical and

neuropathology diagnostic criteria (25–34, 116–129). AD, PD, and

TDP-43 pathology start in childhood in populations with high

exposures to PM2.5 (for this review, concentrations above the

USEPA annual standards of 12 µg/m3) and UFPM and NPs.

5. Neurodegeneration spectrum
heterogeneity, quadruple neural
abnormal proteins, and sleep disorders

At the core of this study are the neuropathology spectrum

heterogeneity and the overlap in neuropsychiatric outcomes,

including sleep disorders (25–34, 117–128, 143–166). There

is consensus that for specific sleep disorders, i.e., rapid eye
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FIGURE 5

(A, B) A comparison in aberrant neural proteins between the young MMC 186 autopsy cohort (10) and Karanth et al. (25) 375 autopsies with an

average age of 86.9 ± 8.04 years including subjects with normal cognition, mild cognitive impairment (MCI), impaired (but not MCI), and dementia.

FIGURE 6

Light and electron microscopy of the brain in di�erent anatomical locations in MMC young residents. (A) Thirteen-year-old girl’s olfactory bulb

showing small blood vessels with red blood cells (RBC) in the lumen and prominent endothelial cells. A significant number of perivascular vacuolated

foamy cells (short arrows) and extensive areas of vacuolated neuropil (*) are observed. (B) A frontal blood vessel showing two luminal RBCs and

prominent endothelial extensions into the lumen (short arrow). The basement membrane (bm) is thickened, and a pericyte (arrow heads) is identified.

(C) The activated endothelial cell sends filopodia into the lumen (short arrows), while the lumen is occupied by ghost cell fragments (*), seen in

higher magnification in (D). (E) Small frontal blood vessel containing one single luminal RBC and extravascular numerous lysosomal structures

containing lipids and NPs (*). (F) Cerebellar blood vessel showing a typical RBC endothelial phagocytosis. The RBC is sequestered by the EC and

surrounded by EC cytoplasm (short arrows). (G) Small blood cortical vessel with luminal RBCs closely in contact with the EC. The EC basement

membrane is detached from the cell (*), and an accumulation of lysosome-like structures is seen. The basement membrane (bm) shows focal

thickening. (H) A close-up of a tight junction Tj—a key structure in brain endothelial cells—showing poorly defined integrity (arrow).

movement sleep behavior disorder (RBD), the association with

synucleinopathies, i.e., PD, LBD, or multiple system atrophy

(MSA), is supported (143–146, 152–160, 162–166). RBD is

regarded clinically as preceding the appearance of motor symptoms

and cognitive decline by several decades and the overlap of

neurodegenerative diseases is certainly present as magnifically
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FIGURE 7

(A) Locus coeruleus (LC) neuron surrounded by loose neuropil (*) and myelinated axons (a). (B) An LC neuron with neuromelanin (Nm) structures

containing nanoparticles (arrows) and similar NPs identified inside the nucleus (N). (C) Numerous NPs are identified both in large endolysosomal

structures (long arrows) and in mitochondria (m) (short arrows). (D) The Golgi apparatus is a target of NPs, as well as the endoplasmic reticulum

dilated structures (ER) (short arrows) and the lysosomal structures (long arrows).

FIGURE 8

(A) Using the transmission electron microscopy (TEM) Z-contrast technique, metallic nanoparticles are documented in brain tissues. Only the

nanoparticles marked with red arrows are Sn-NPs, while the rest are Fe-NPs. (B) The presence of Sn-NPs is verified through the acquired

energy-dispersive X-ray spectrometry (EDX) that shows the tin metal (Sn) peak.

shown by Boeve and collaborators (26). LBD, LBD and AD, MSA,

AD, and progressive supranuclear palsy (PSP) were diagnosed

at autopsy in patients with a clinical diagnosis of PD, cognitive

impairment, and autonomic dysfunction (29). Further support for

evidence of dopaminergic and cholinergic system alterations in

neuroimaging is present in the literature (143, 144).

There is a complex etiopathogenesis involved in the association

of sleep disorders and diseases such as PD. As discussed by
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FIGURE 9

(A) The green arrows indicate three Hg-NPs that stand out from surrounding iron NPs. (B) An area of Fe-NPs. These NPs are magnetic.

Mizrahi-Kliger et al. (147), patients with PD exhibited at least

four distinct pathways to explain their sleep problems: (i). a path

directly associated with their PD synucleinopathy with regional

involvement, (ii). medical therapy, (iii). degeneration of non-

dopaminergic cells altering the circadian rhythm, and (iv). damage

to brainstem dopaminergic neurons and its effect on the basal

ganglia (147). Thus, common sleep complaints are linked to

complex etiopathogenesis in the context of synucleinopathies,

along with poor sleep quality associated with depression, PTSD,

mood disorders, and excessive daytime sleepiness (148, 149, 156).

Howmuch should we be concerned about sleep complaints and

neurodegeneration? The answer is that we should be concerned

depending on the patient, age, gender, clinical history, and how

many risk factors, including environmental factors, are impacting

neurodegenerative processes. The issue is relatively easy when we

deal with a diagnosed elderly patient with AD or FTLD (151, 156,

157, 161), but not if we have a young adult resident in a polluted

city or with occupational exposures (36).

It is in the younger adult population that learning about

the etiopathogenesis of sleep disorders in AD, FTLD, PD,

and movement disorders is helpful (24–34, 161, 167–169).

Standlee and Malkani (169) underlined the mechanisms by which

movement disorders are associated with sleep and circadian rhythm

disruption, sleep fragmentation, insomnia, and excessive daytime

sleepiness. It is worth emphasizing, as these authors did (169),

the extensive involvement of brainstem nuclei regulating sleep and

wakefulness in neurodegenerative processes.

At this time, it is unclear if sleep disturbances precede the

common clinical neurodegenerative symptoms (i.e., cognition

deficits) or if the sleep problems are some of the initial, early

manifestations of neurodegenerative processes. Sleep complaints

and neurodegeneration may be bidirectional. The sleep literature

has addressed the abovementioned concerns in many different

ways. For example, Zamore and Veasey (170) addressed chronic

sleep disruption and neural damage, focusing on key variables,

including duration and type of sleep disruption, age at which sleep

loss occurs, neuronal populations responding to the injury, and the

presence of genes involved in neurodegenerative processes. Sleep

disruption impacts cognitive targets, such as episodic memory and

sustained vigilance, pre- and post-synaptic impairment, the release

of inflammatory cytokines and chemokines from microglia, and

in transgenic 3×Tg-AD mice models, daily sleep-wake rhythm

chronic fragmentation, increases in brain amyloid-beta (Aβ)

levels, and neuroinflammation (170, 171). Grigg-Dambererger

and collaborators (172) discussed acceleration of mild cognitive

impairment (MCI) and dementia in patients with sleep-wake

disorders and the removal of Aβ in non-rapid eyemovement stage 3

sleep and fragmented or insufficient sleep leading to accumulation

of abnormal neural proteins in preclinical stages. Burke et al.

(173) explored the association between sleep disturbance and brain

volumes in 1,533 subjects (cognitively normal/cognitively impaired

or demented) using a single question from the Neuropsychiatric

Inventory Questionnaire (NPI-Q): “Does the patient awaken you

during the night, rise too early in the morning, or take excessive

naps during the day?” The sleep disturbance was rated in a

binary fashion (yes/no). Subjects with a yes answer to the NPI-

Q question had a lower total brain, hippocampal volume and

frontal and temporal lobe gray matter volume. The authors

concluded as follows: These findings suggest that disrupted sleep is

associated with atrophy across multiple brain regions and ventricular

hydrocephalus ex vacuo. We will add that since the brain MRI

findings take years to evolve, it is possible that the atrophic brain

changes preceded the sleep disturbances. The direct relationship

between subcortical wake-promoting damaged neurons and sleep

phenotypes has been described by Oh et al. (174), in patients

with AD and progressive supranuclear palsy (PSP). In fact, in 19

subjects, aged 70 ± 7.7 years at their demise, neuronal counts

in three wake-promoting nuclei, namely, noradrenergic locus

coeruleus [LC], orexinergic lateral hypothalamic area [LHA], and

histaminergic tuberomammillary nucleus [TMN], were correlated

with decreased homeostatic sleep drive. The authors suggested

subcortical wake neurons correlate with sleep phenotypes in a
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number of neurodegenerative diseases, an observation that has

practical and immediate applications (174).

On the other side of the relationship between sleep disorders

and neurodegeneration, we find the literature on the brain impact

of obstructive sleep apnea (OSA) and intermittent hypoxia as

risk factors for preclinical AD and the incidence and progression

of cognitive deficits (175–180). There is strong data on OSA

producing intermittent hypoxia and sleep disruption and the

observation that patients with OSA have higher serum levels of

amyloid-beta and total tau and neuronal-derived Aβ and tau

exosomes, going hand in hand with changes in sleep architecture

(175, 176). There is strong evidence for the role of OSA as a

risk factor for cognitive deficits (177) and the risk of developing

or having OSA is significantly higher in patients with MCI or

who are demented (178). It is also clear that several pathways are

involved in neuropathological processes, including dysregulation of

the orexinergic system and cerebral β-amyloid metabolism (179),

major changes in CSF production, circulation, and glymphatic

system abnormalities, which are crucial for the removal of

metabolic waste (180). The American Thoracic Society workshop

on the link between obstructive sleep apnea and neurocognitive

impairment (181) concluded there is a strong biological plausibility

but insufficient data to prove bidirectional causality of the

associations between OSA and aging brain pathology. Thus, future

research needs to address sleep disorders, oxidative stress, and

accelerated brain aging (182, 183).

The WHO Mental Health Action Plan 2013–2030 emphasizes

depression, affecting 4% of the population, ∼280 million people,

as an important cause of disability worldwide (184). Depression

should be considered in the setting of sleep–wake disorders,

anxiety, stress, burnout, and suicide (185, 186). Insomnia and

mental health conditions coexist among US college students:

depressed students (adjusted odds ratio, 9.54; 95% CI, 4.50–

20.26) had significantly higher odds of insomnia, which were also

significantly higher among employed students (odds ratio, 2.10;

95% CI, 1.05–4.18) (187). Sleep and mental disorders are related,

and in the case of major depressive disorder (MDD), insomnia

seems to be a comorbid disorder (188). The relationship between

depression and sleep is highly concerning for sleep physicians given

the association between depression and neuropathology (189).

Villela Nunes and coworkers (189) examined the autopsies in 741

Brazilian non-demented individuals with an average age of 72.2

± 11.7 years and major depressive disorder (MDD) (7.3%), late-

life MDD (LLD) (10.8%), and depressive symptoms (DS) close to

death (22.7%). Remarkably, all three correlated with small vessel

disease: LLD andDSwith brain infarcts and LBD, andDSwith beta-

amyloid plaques and amyloid angiopathy (189). Therefore, in fact,

depression could be considered a premorbid neurodegeneration in

elderly people (189), and it is associated with insomnia in young

individuals (187).

The issues of sleep outcomes, sleep deprivation, sleep spindles,

and neurodegeneration are critical to the bidirectionality of the

relationship (190–194). The relationship between fast-frequency

sleep spindles, aging, AD, and glial activation is very interesting

and opens up the possibility of establishing an early marker

associated with microglia dysfunction, synaptic loss, p-tau, and

memory impairment. Sleep spindle deficits are a good example of

the opportunity of using sleep variables as early AD biomarkers in

aging and as trackers of AD progression (190–192). Furthermore,

slow oscillations, sleep spindles, and their coupling during non-

REM sleep are useful in experimental AD mouse models and could

apply to patients with AD as key biomarkers and as guides to

identify translationally relevant biomarkers and early intervention

strategies to prevent or delay AD progression (193, 194).

Most of the associations between neurodegenerative processes

have been done with particulate matter, especially UFPM and NPs,

due to their capacity to travel to the brain and be localized in every

organelle and cellular compartment (4, 5, 9–11, 16, 21, 22, 44, 137);

however, the atmospheric chemistry is very complex and has to

be seen as a continuum connecting emissions through chemistry

and transport, as discussed by Finlayson-Pitts (195). Toxicologists

and atmospheric chemistry researchers are working to understand

sources, chemical characteristics, relationships between different

pollutants, and transformations, as they are major challenges in air

quality control and climate research (196, 197).

There has been a significant reduction in the solid fraction

of PM in the United States and Europe; however, the generation

of UFPM by nucleation of organic vapor during the dilution of

the exhaust remains a serious issue (198), and the carbon UFPM

from brakes, tires, and road wear will remain a problem even if

we accomplish a fully electric vehicle fleet (198, 199). Furthermore,

exposure to microplastics and nanoplastics is ubiquitous, and

these nanoplastics can reach the brain and induce oxidative

stress (57, 58).

Sleep is impacted in every neurodegenerative disease and has a

robust link with depression. For a number of patients with sleep

disorders, there is a close association between sleep complaints

and the development and progression of well-characterized

proteinopathies. It is important to determine if a sleep disorder

is a consequence of the neurodegenerative process or if it

plays a key role in the development of the neurodegenerative

process itself. The bidirectionally/interplay between sleep and

neurodegeneration makes sleep a critical physiological process

subject to study in young populations with high risk for

neurodegenerative pathologies.

6. Summary

1. Sleep disorders are common in neurodegenerative diseases,

and the presence of targeted sleep problems associated with

a high risk of development of common proteinopathies, along

with significant associations between sleep deprivation, obstructive

sleep apnea, intermittent hypoxia, cognitive deficits, pre-clinical

AD, and other neurodegenerative pathologies, make sleep and

neurodegeneration a focus for exploration in a number of patients

sent to sleep laboratories (200).

2. Sustained and significant exposures to high concentrations

of PM2.5 and UFPM/NPs are likely to play a significant role in the

developing of neurodegenerative processes, dating back to in utero

exposures. The presence of quadruple abnormal neural proteins

starting in MMC infants and progressing as the subjects remain

in the polluted environment should be of deep concern for health

workers and has serious implications, including sleep disorders, for

millions of people residing in such places.
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3. We have shown the overlap of AD, PD, and TDP-43

pathology in highly exposedMexico City children and young adults

and the similarity of the overlap five decades later, when the patients

are in terminal stages. We support that nanosized PM plays a

key role in brain protein alterations and the complex subsequent

cellular pathology.

4. Sleep disorders affect individuals of all ages with serious

consequences across professions, including sleep deprivation in

physicians (201). Our children are sleeping less, and there is a

strong association between adverse childhood experiences and

age-specific insufficient sleep duration in US youth, with serious

repercussions in adulthood (202–208). There are also significant

differences in sleep duration for US children depending on

ethnicity and socioeconomic status (SES): among 9–13-year olds;

black children sleep fewer hours compared to white, and poor

children compared to higher-income children (204). Across the

US, children sleep much less than what pediatricians recommend

according to age, and minorities and disadvantaged children

accumulate risk factors detrimental to their health (205). Moreover,

lack of sleep increases the risk for addiction in adolescents based on

chronic sleep loss and circadian misalignment (208). A potential

association between inadequate sleep duration and changes in

telomere length raises significant concerns related to cellular

function (209).

5. The relationship between air pollution, sleep,

neurodegeneration, depression, and suicide (210, 211) should

encourage health workers to know about combustion and friction

UFPM sources and engineered NPs (food products, cosmetics,

toothpaste, sun protectors, surface disinfectants, paints, and

e-waste). The presence of zinc, silver, copper, gold, selenium,

and calcium NPs as potential food additives for animals (212),

nanoplastics in drinking water (213), the massive presence of

nanometric particle fraction of TiO2 in the food industry, and

Fe3 O4 magnetic nanoparticles from food production, processing,

storage, and detection, make constant exposures to NPs a serious

health issue (76, 214).

6. The problem of human exposure to ultrafine particle

pollution is solvable. We are knowledgeable of the cellular effects

under experimental conditions and their intracellular and key

organelle presence in the brains of urbanites (5, 10, 45, 48, 57–

59, 62–71, 81, 82, 84). We also know the main emission sources and

the technological options to control them (27, 215–217). The cost-

benefit ratio is in favor of raising awareness (the role of our study)

and taking action. We need a broader concern and awareness and

the will to protect public health from deadly UFPM and industrial

nanoparticles.We are also facing a lack of support for research from

sleep medical societies. Denial is not an option.
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Objective: There is growing evidence of a relationship between anti-seizure

medication (ASM) use and the risk of dementia. This study examined this

association using a meta-analysis approach.

Methods: PubMed, EMBASE, and Cochrane Library were systematically searched

for peer-reviewed observational studies published up to February 2023. Study

quality was evaluated using the Newcastle-Ottawa Scale, and an overall odds ratio

(OR) was pooled using fixed or random-e�ects models.

Results: The analysis included 9 publications with 10 studies. The results showed

that overall ASM exposure was associated with an increased risk of dementia [OR:

1.09, 95% confidence interval (CI): 1.03–1.15; P = 0.003] in general population.

However, this association disappeared (OR: 1.02, 95% CI: 0.97–1.07; P = 0.361)

when the study data adjusted for drug indications were pooled. Subgroup analysis

based on individual drugs found only a positive association among those exposed

to valproate, carbamazepine, and clonazepam. Furthermore, an increased risk

was found in patients with bipolar disorder exposed to ASMs (OR: 1.43, 95% CI:

1.07–1.92; P = 0.015).

Conclusions: The statistically significant association between ASM and dementia

in general population may be driven by unmeasured confounding or several

individual first-generation ASMs. However, a higher risk of dementia was observed

among bipolar disorder patients treated with ASMs. Given the few included studies

and evidence of high heterogeneity, further larger, prospective studies that control

for important confounders are needed to verify our findings.

KEYWORDS

anti-seizure, second generation, cognitive, systematic, meta-analysis

1. Introduction

Dementia is a progressive neurodegenerative disease characterized by progressive

cognitive and functional decline constituting one of the leading causes of disability

worldwide (1). It mainly affects older people, especially those over 65 years old (2). With

the growing aging population, the number of people with dementia is predicted to triple to

an estimated 152 million worldwide by 2050 (3). Considering the lack of treatment options,

recognition of the risk factors of dementia may help to prevent the disease and could also

inform appropriate interventions. Modifiable risk factors, including hypertension, infection,
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mental disorders, diabetes, and smoking, account for around 35%

of dementia cases (4). Therefore, decreases in the incidence of

dementia are partially attributable to avoiding some of these risk

factors (5).

Anti-seizure medication (ASM) are widely used to treat

epilepsy and bipolar disorder (6). While effective, they have been

linked to negative clinical outcomes, such as increased risks of

cognitive decline (7), cardiovascular disease (8), and fracture

(9). Increasing numbers of epidemiological studies (10–18) have

investigated the risk of dementia in ASM users; however, the results

have been controversial. Some found an increased risk of dementia

with ASM exposure, whereas others revealed no association. In the

earliest cohort study, Carter et al. (10) reported that ASM use was

associated with an increased risk of dementia; in three other large

studies (14, 15, 18), however, dementia was not associated with

ASM use. The findings of three studies (11, 12, 17) focusing on

patients with bipolar disorder also conflicted. Because the various

factors associated with ASM exposure (i.e., type of ASM and

participants) may alter the risk of dementia differentially, these

factors should be evaluated. Due to the increasing use of ASMs,

determining the long-term effects of these drugs on dementia is

important. The purpose of this systematic literature review and

meta-analysis is to assess whether ASMs exposure increases the

incidence of dementia.

2. Methods

Preferred Reporting Items for Systematic Reviews and Meta-

analysis framework guidelines (PRISMA) were followed for

this meta-analysis.

2.1. Data sources and search strategy

A comprehensive literature search of the PubMed, EMBASE,

and Cochrane Library databases was conducted on February

2, 2023, according to the PRISMA statement, with no year

restrictions. The search incorporated index terms (Mesh) and free

text words for the search concepts: (antiepileptic AND antiseizure

AND anticonvulsant AND valproic acid AND paraldehyde

AND phenobarbitone AND levetiracetam AND lorazepam AND

carbamazepine AND phenytoin AND midazolam AND lidocaine

AND fosphenytoin AND bumetanide) AND (dementia OR

Alzheimer OR frontotemporal dementia OR cognitive dysfunction

OR cognitive impair OR cognitive decline OR vascular dementia

OR multiinfarct dementia OR neurodegenerative diseases OR

neurocognitive disorders) AND (risk OR ratio OR prospective

studies OR epidemiologic studies OR case-control studies OR

cohort studies). An additional search was conducted in the

bibliographies of relevant articles and relevant reviews.

2.2. Selection criteria

The studies were assessed by two independent reviewers

who determined whether the studies met the inclusion

criteria. Observational studies were included if they were: (1)

a peer-reviewed study with a case–control or cohort design

published in English, (2) included ASM exposure preceding

a diagnosis of dementia, (3) included participants 18 years

or older, (4) explored the association between ASM exposure

and the risk of dementia, and (5) provided sufficient data

to allow the calculation of risk estimates if adjusted data

were not provided. Case reports, case series, animal studies,

editorials, reviews, and meta-analyses were excluded. Studies that

considered dementia as comorbidity and not as an outcome were

also excluded.

2.3. Data extraction

Two authors extracted information from all selected studies

using piloted data extraction sheets. Any discrepancies in the

extracted data were resolved by a third author. The following

information was collected from each study: author, publication

year, study location, sample demographics, information on ASM

exposure, diagnostic criteria for dementia, number of subjects in

each group, statistical adjustments, and study quality.

2.4. Risk of bias and quality assessment

The quality of the included observational studies was

assessed using the Newcastle-Ottawa Scale (NOS) (19), which

is recommended by the Cochrane Handbook for Systematic

Reviews of Interventions. The assessment focuses on three

major areas: the study population selection, the comparability

between the two groups, and the ascertainment of exposure

(for case-control studies) or the outcome of interest (for

cohort studies).

2.5. Statistical analysis

We used the STATA ver.16.0 (StataCorp., College Station,

TX, USA) to perform meta-analysis. A random-effects model

was used to pool the odds ratios (ORs) and 95% confidence

intervals (CI) of individual studies; such models are optimal in

terms of allowing the results to be generalized because they can

deal with potential heterogeneity (20). ORs were considered as

approximations of relative risks (RRs) or hazard ratios (HRs)

because the dementia outcome under study is rare in all populations

and subgroups under review. Splitting one study into several

estimates leads to substantially more weight being assigned to

this study in the meta-analysis, especially in a random-effects

model. Therefore, we used a fixed-effects model to produce

a pooled OR if more than three estimates from one study

were provided, and then included this pooled OR in the meta-

analysis. The I2 statistic was used to assess between-study

heterogeneity; The I2 values were classified into four groups:

of 0–29%, 30–49%, 50–74%, and 75–100%, representing very

low, low, medium, and high inconsistency, respectively (21).

Funnel plots and Egger’s test were used to test the presence

of potential publication bias within this review (22, 23). All
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FIGURE 1

Flow chart of the search process and study selection.

the statistical tests were bilateral, and P-values < 0.05 indicated

considered significant.

3. Results

3.1. Search results

After using the keywords, 4,687 records were identified in the

initial search. Of these, 1,124 were duplicates, and 3,511 records

were not relevant to the Research Topic after title and abstract

screening, leaving 52 potentially eligible studies for which the full

text was reviewed. Based on the inclusion and exclusion criteria,

9 publications with 10 studies were eligible for inclusion; all nine

(10–18) were observational studies. Figure 1 is a flow diagram of

the literature search and selection process.

3.2. Study characteristics

Table 1 summarizes the nine studies considered in this analysis.

The studies included 1,629,213 participants from three different

continents: five studies from Europe (13–16, 18), two from North

America (10, 11), and two studies from Asia (12, 17). The

publication year ranged from 2007 to 2022, and the sample sizes

of the included studies ranged from 5,158 to 353,576. Exposure

to ASMs was assessed using interviews or a drug prescription

database. Three studies (11, 12, 17) assessed the use of ASMs

and the development of dementia in individuals with bipolar

disorder, and the remaining study evaluated this association in

a general population. Regarding study quality, the mean NOS

score for the nine studies was 8.3, indicating the high-quality of

the included studies (Table 1). The score breakdown is given in

Supplementary Tables S1, S2.
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TABLE 1 Characteristics of the included studies.

References Location, setting Study design Age Ascertainment
of antiepileptic
exposure

Outcome
measurement

Number of
participants

Confounding adjusted Quality

Carter et al. (10) Canada,

population-based

Cohort, general

population

>65 Clinical examination or

questionnaire

Modified mini-mental

state examination or

clinical examination

Exposed 67

Non-exposed 5,309

Age, sex, baseline 3MS score, head

trauma, and stroke

6

Gerhard et al. (11) USA, population-based Cohort, patients with

bipolar disorder

≥50 Pharmacy claims ICD-9-CM Exposed 20,778,

Non-exposed 18,119

Gender, ethnicity, age, Medicaid

eligibility, long-term care residency,

depression, anxiety, alcohol-related

disorders, drug-related disorders,

arrhythmia, heart failure, myocardial

infarction, other acute ischemic heart

disease, other chronic ischemic heart

disease, hypertension, cerebrovascular

disease, diabetes mellitus, Parkinson’s

disease, antidepressant use,

antipsychotic use, use of anti-anxiety

medications

9

Tsai et al. (12) Taiwan,

population-based

Cohort, patients with

bipolar disorder

≥20 Pharmacy claims ICD-9-CM Valproate exposed 1,792,

Non-exposed 3,366

Age; sex; obesity; length of hospital

admissions because of bipolar disorder;

and the use of lithium, carbamazepine,

antipsychotics, or benzodiazepine

derivatives

9

Taipale et al. (13) Finland,

population-based

Case-control, general

population

NA Pharmacy claims Hospital discharge

register

Case 20,325,

Control 81,300

Polypharmacy, stroke, depression,

cardiovascular diseases, diabetes, and

epilepsy

8

German,

population-based

Case-control, general

population

≥60 Pharmacy claims ICD-9 Case 70,718,

Control 282,858

Polypharmacy, stroke, depression,

cardiovascular diseases, diabetes, and

epilepsy

8

Coupland et al. (14) England,

population-based

Case-control, general

population

≥55 Pharmacy claims Clinical codes or

prescriptions

Case 58,769,

Control 225,574

Body mass index, calculated as weight in

kilograms divided by height in meters

squared, smoking status, alcohol

consumption, Townsend deprivation

score, ethnic group, coronary heart

disease, atrial fibrillation, heart failure,

hypertension, hyperlipidemia, diabetes,

stroke, transient ischemic attack,

subarachnoid hemorrhage, renal

disease, asthma, chronic obstructive

pulmonary disease, anxiety, depression,

bipolar disorder, schizophrenia, severe

head injury, cognitive decline/memory

loss, antihypertensive drugs, aspirin,

hypnotics, anxiolytic drugs,

non-steroidal anti-inflammatory drugs,

statins, and with matching by age, sex,

general practice, and calendar time

8

(Continued)
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3.3. Meta-analysis

3.3.1. Association between ASM use and dementia
among general population

The results of all analyses are listed in Table 2. Six studies

measured the relationship between overall ASM exposure and

the risk of dementia among the general population. A meta-

analysis of these studies with 9 estimates indicated that overall

ASM exposure was significantly associated with an increased risk of

dementia (OR: 1.09, 95% CI: 1.03–1.15; P= 0.003) (Figure 2). High

heterogeneity was observed among these studies (I2 = 85.6%). As

shown in Supplementary Figure S1, we did not find any evidence of

publication bias (Begg’s test, P = 0.3).

A subgroup analysis by study design found a significant

association in cohort studies (OR: 1.12, 95% CI: 1.02–1.23; P =

0.02; I2 = 73.3%), but a non-significant trend toward an increased

risk of dementia in case–control studies (OR: 1.07, 95% CI: 1–1.16;

P = 0.059; I2 = 89.3%).

Considering the number of adjustment variables revealed a

significantly increased dementia risk in those studies adjusting for

fewer than five variables (OR: 1.12, 95% CI: 1.02–1.23; P = 0.02;

I2 = 73.3%), but no significant association in those adjusting for

more than five (OR: 1.07, 95% CI: 1–1.16; P = 0.059; I2 = 89.3%).

When we grouped studies by ASM type, significant associations

were observed for those using valproate (OR: 1.47, 95%

CI: 1.29–1.67; P < 0.001; I2 = 63.2%), carbamazepine (OR: 1.11,

95% CI: 1.03–1.19; P = 0.004; I2 = 56.6%), or clonazepam (OR:

1.21, 95% CI: 1.11–1.32; P < 0.001; I2 = 29.2%), but no significant

association was observed for those using levetiracetam (OR: 1.25,

95% CI: 0.85–1.85; P = 0.253; I2 = 80.9%), topiramate (OR: 1.11,

95% CI: 0.84–1.47; P= 0.452; I2 = 0%), lamotrigine (OR: 1.05, 95%

CI: 0.91–1.21; P = 0.527; I2 = 0%), gabapentin (OR: 0.76, 95% CI:

0.49–1.18; P = 0.225; I2 = 92.3%), pregabalin (OR: 0.84, 95% CI:

0.64–1.11; P = 0.227; I2 = 73.1%), primidone (OR: 1.25, 95% CI:

0.95–1.64; P = 0.11; I2 = 80.1%), or phenytoin (OR: 1.05, 95% CI:

0.92–1.19; P = 0.465; I2 = 32.3%).

3.3.2. Association between ASM use and dementia
among patients with bipolar disorder

Three studies compared the risk of dementia in bipolar

disorder patients who were and were not exposed to ASMs; the

combined OR of dementia was 1.43 (95% CI: 1.07–1.92; P = 0.015;

I2 = 85.9%) (Figure 3). When our analysis limited to studies only

evaluated valproate; the combined OR of dementia was 1.62 (95%

CI: 1.38–1.89; P < 0.001; I2 = 0%).

4. Discussion

This meta-analysis of current observational evidence

suggests that the statistically significant association between

ASM use and dementia in general population can be partially

explained by unmeasured confounding. However, subgroup

analyses based on individual ASMs found that only valproate,

carbamazepine, and clonazepam were associated with an increased

risk of dementia. Furthermore, we found that bipolar disorder
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TABLE 2 Meta-analysis for studies included in the analysis.

Subgroup analysis Number of studies Number of estimates Pooled RR (95% CI), I2 statistics (%) Model used

General population 6 9 1.09 (1.03–1.15); I2 = 85.6% Random effects

Study design

Cohort 3 3 1.12 (1.02–1.23); I2 = 73.3% Random effects

Case-control 3 6 1.07 (1–1.16); I2 = 89.3% Random effects

No. of adjustment variables

<5 3 3 1.12 (1.02–1.23); I2 = 73.3% Random effects

≥5 3 6 1.07 (1–1.16); I2 = 89.3% Random effects

Type of AEDs

Valproate 3 6 1.47 (1.29–1.67); I2 = 63.2% Random effects

Carbamazepine 3 6 1.11 (1.03–1.19); I2 = 56.6% Random effects

Clonazepam 3 6 1.21 (1.11–1.32); I2 = 29.2% Random effects

Levetiracetam 2 2 1.25 (0.85–1.85); I2 = 80.9% Random effects

Topiramate 2 2 1.11 (0.84–1.47); I2 = 0% Random effects

Lamotrigine 2 2 1.05 (0.91–1.21); I2 = 0% Random effects

Gabapentin 2 2 0.76 (0.49–1.18); I2 = 92.3% Random effects

Pregabalin 2 2 0.84 (0.64–1.11); I2 = 73.1%

Primidone 3 6 1.25 (0.95–1.64); I2 = 80.1% Random effects

Phenytoin 2 5 1.05 (0.92–1.19); I2 = 49% Random effects

Bipolar disorder 3 4 1.43 (1.07–1.92); I2 = 85.9% Random effects

Type of AEDs

Valproate 2 3 1.62 (1.38–1.89); I2 = 0% Random effects

patients who were prescribed ASM showed an increased risk

of dementia.

The impact of ASM use on cognitive function is controversial.

Theoretically, ASMs can adversely affect cognitive functions

by suppressing neuronal excitability or enhancing inhibitory

neurotransmission (7, 24); however, several studies (25–27) have

shown that exposure to several ASMs was associated with improved

cognitive function because they also induce the neurogenesis

of neural progenitor/stem cells both in vitro and in vivo (28).

Consistent with the findings of these preclinical studies, the results

of clinical studies that assessed the effects of ASMs on cognitive

function or dementia varied. Furthermore, previous reviews (7, 24)

have summarized this relationship, but failed to provide an overall

estimate of the effects of ASMs on cognitive function or dementia.

The authors noted that first-generation drugs had negative effects

on cognitive function, but they were not found to increase the risk

of dementia.

Although these modifying effects of ASMs on dementia are

biologically plausible, the results of the included studies were

discordant, as reflected in the high heterogeneity in the overall

meta-analysis. This heterogeneity could not be accounted for in

the subgroup analyses based on study design, location, or quality;

number of adjustments; drug indications; and individual drugs.

The existence of clinical heterogeneity should lead to a degree of

statistical heterogeneity in the results.

Most of the studies in our overall analysis drew conclusions

based on general-population data and did not consider the drug

indications. However, epilepsy was shown to be associated with

an increased risk of dementia (29). It is reasonable to speculate

that this association may be overestimated if the studies did not

adjust for this potential confounder. To minimize the effect of

indication, we conducted a subgroup analysis based on the number

of adjustment variables and found no significant association

after we combined the estimates from the included studies

adjusted for the drug indication. In addition to epilepsy, ASMs

are commonly prescribed to treat bipolar disorder, depression,

and other mental disorders (6). Previous meta-analysis have

demonstrated that bipolar disorder is associated with an increased

risk of dementia (30). Three included studies (11, 12, 17) focused

on patients with bipolar disorder and used non-exposed patients

as negative controls to minimize the effects of indication. In

our meta-analysis, we observed an ∼ 1.43-fold increase in the

risk of dementia in patients with bipolar disorder who were

exposed to ASMs.

The high heterogeneity of the overall analysis may also arise

from the types of ASM. In our subgroup analysis of individual

ASMs, only valproate, carbamazepine, and clonazepam, which are

first-generation ASMs, were found to increase the risk of dementia.

Previous studies demonstrated that the main cognitive effects of

ASM use were impaired attention, vigilance, and psychomotor
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FIGURE 2

Forest plot of the overall risk of dementia in relation to ASMs use among the general population.

FIGURE 3

Forest plot of the overall risk of dementia in relation to ASMs use among patients with bipolar disorder.
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speed. One double-blind, placebo-controlled study (31) reported

convincing evidence of improved motor skills after discontinuing

valproate in patients with epilepsy. Two double-blind, placebo-

controlled studies (32, 33) involving epilepsy patients on ASM

monotherapy (mainly carbamazepine or valproate) observed

that drug discontinuation significantly improved performance

in tests that required complex cognitive processing under time

pressure. However, most studies (25, 34, 35) tend to report

little or no cognitive impairment associated with pregabalin or

gabapentin in people with partial epilepsy. Consistent with the

cognitive findings in epilepsy patients, our individual ASM analysis

found that newer ASMs act more favorably on dementia risk

compared with first-generation drugs. Recently, preclinical studies

demonstrated a protective effect of levetiracetam on cognitive

function. In the transgenic mice models of Alzheimer’s disease,

a low dose of levetiracetam could alleviate cognitive decline,

through suppression of proinflammatory cytokines expression

and inhibition of abnormal tau hyperphosphorylation (36, 37).

In clinical study, levetiracetam improved performance on spatial

memory and executive function tasks in patients with Alzheimer’s

disease (38). However, the beneficial role of levetiracetam on

dementia was not detected in our analysis. Hence, our results of

individual ASM on risk of dementia may be limited by sample size

and need further investigation to clarify this issue.

To our knowledge, this meta-analysis is the first to explore the

association between ASM use and dementia risk. The strengths of

this work are the comprehensive search and the rigorous systematic

review and meta-analysis of all relevant reports to date. We

also performed several additional analyses to test the robustness

of the results. Nonetheless, there are several limitations to this

meta-analysis. First, residual confounders are always a concern in

epidemiological observational studies. Second, all of the included

studies considered Western populations and not subjects from

Asia or Africa, which may have affected the generalizability of our

results. Third, information on the dose of ASM used in the included

studies could not be extracted; therefore, any exposure parameter

possibly associated with dementia could not be defined.

In summary, this systematic review and meta-analysis only

observed a greater risk of dementia with the use of valproate,

carbamazepine, or clonazepam in general population. We also

found that ASMs are associated with an increased risk of dementia

in bipolar disorder. However, large, well-designed, prospective

cohort studies that consider a greater number of confounding

factors are warranted to verify our findings.
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Association between gestational 
levels of toxic metals and essential 
elements and cerebral palsy in 
children
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Guro L. Andersen 2, Torstein Vik 2, Guido Biele 1, Helle K. Knutsen 3, 
Cathrine Thomsen 3, Helle M. Meltzer 3, Thea S. Skogheim 1, 
Stephanie M. Engel 4, Heidi Aase 1 and Gro D. Villanger 1*
1 Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway, 
2 Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 
Trondheim, Norway, 3Division of Infection Control and Environmental Health, Norwegian Institute of 
Public Health, Oslo, Norway, 4 Gillings School of Global Public Health, University of North Carolina at 
Chapel Hill, Chapel Hill, NC, United States

Introduction: Cerebral palsy (CP) is the most common motor disability in 
childhood, but its causes are only partly known. Early-life exposure to toxic 
metals and inadequate or excess amounts of essential elements can adversely 
affect brain and nervous system development. However, little is still known 
about these as perinatal risk factors for CP. This study aims to investigate the 
associations between second trimester maternal blood levels of toxic metals, 
essential elements, and mixtures thereof, with CP diagnoses in children.

Methods: In a large, population-based prospective birth cohort (The Norwegian 
Mother, Father, and Child Cohort Study), children with CP diagnoses were 
identified through The Norwegian Patient Registry and Cerebral Palsy Registry 
of Norway. One hundred forty-four children with CP and 1,082 controls were 
included. The relationship between maternal blood concentrations of five toxic 
metals and six essential elements and CP diagnoses were investigated using 
mixture approaches: elastic net with stability selection to identify important 
metals/elements in the mixture in relation to CP; then logistic regressions of 
the selected metals/elements to estimate odds ratio (OR) of CP and two-way 
interactions among metals/elements and with child sex and maternal education. 
Finally, the joint effects of the mixtures on CP diagnoses were estimated using 
quantile-based g-computation analyses.

Results: The essential elements manganese and copper, as well as the toxic metal 
Hg, were the most important in relation to CP. Elevated maternal levels of copper 
(OR = 1.40) and manganese (OR = 1.20) were associated with increased risk of 
CP, while Hg levels were, counterintuitively, inversely related to CP. Metal/element 
interactions that were associated with CP were observed, and that sex and 
maternal education influenced the relationships between metals/elements and 
CP. In the joint mixture approach no significant association between the mixture 
of metals/elements and CP (OR = 1.00, 95% CI = [0.67, 1.50]) was identified.

Conclusion: Using mixture approaches, elevated levels of copper and manganese 
measured in maternal blood during the second trimester could be  related to 
increased risk of CP in children. The inverse associations between maternal Hg 
and CP could reflect Hg as a marker of maternal fish intake and thus nutrients 
beneficial for foetal brain development.
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1. Introduction

Cerebral palsy (CP) is defined as a “group of permanent disorders 
of the development of movement and posture” caused by a 
non-progressive lesion in the developing brain occurring before 2 
years of age (1). Cerebral palsy is the most common motor disability 
in childhood, with a prevalence of about 0.2 percent (2), but affecting 
up to one in 10 extremely preterm born children (3). About 30% have 
severe gross- and fine motor impairments, being unable to walk 
without assistive devices or being dependent on a wheelchair and/or 
unable to use their hands independently. In addition, associated 
neurodevelopmental disorders and difficulties are common, 
including epilepsy, intellectual disability, eating difficulties, speech 
and communication difficulties as well as pain and musculoskeletal 
complications (4). The pathophysiology underlying CP is varied and 
complex, and the resulting brain injuries include brain malformations, 
white and grey matter injuries, though congenital malformations are 
identified in a minority of cases (5). CP is further classified into 
subtypes based on the dominating clinical symptom, i.e., spasticity, 
dyskinesia, or ataxia. Based upon the timing of the insult, CP is 
classified as postneonatal occurring from day 28 after birth to the age 
of 2 years, or congenital CP. Whereas the event leading to 
postneonatal CP is usually clearly identified, the aetiology underlying 
congenital CP is more obscure (6).

Genetic causes of CP are rare, but genetic factors may interact 
with risk factors, as the prevalence of CP is elevated among close 
relatives (7). Rather than being a direct cause of CP, genetic factors 
may interact with other risk factors, such as preterm birth, foetal 
growth restriction, placental dysfunction, and hypoxic ischemic 
insults during delivery, leading to neonatal encephalopathy and 
seizures (8). However, in the majority of congenital CP cases the 
aetiology still remains unexplained (5).

In utero exposure to chemicals may alone, or interacting with 
other factors, interfere with normal brain development leading to 
an early brain insult and CP. Earlier studies have found increased 
risk of CP diagnosis in children prenatally exposed to 
pharmaceuticals such as paracetamol or aspirin, as well as 
environmental toxicants such as pesticides and perfluoroalkyl 
substances (PFASs), which are known or suspected to adversely 
affect brain development (9–11).

Several toxic metals, such as mercury (Hg) and lead (Pb), can 
contribute to neurodevelopmental disorders, and neurological and 
motor impairments in children (12). Children and foetuses are 
especially vulnerable to such exposures, due to the rapid development 
of the brain and nervous system, lack of detoxifying enzymes and 
underdeveloped blood-brain barrier (13). Thus, toxic metals in 
maternal blood can pass the placenta and reach the foetal brain, and 
adversely affect foetal development of the brain and nervous system 
and later functioning (14–16).

In contrast to toxic (non-essential) metals, essential elements, 
such as copper (Cu), cobalt (Co), selenium (Se), zinc (Zn), 
magnesium (Mg), and manganese (Mn), are important in human 
physiological and biochemical processes (17). A healthy, nutrient-
rich diet during pregnancy is imperative to ensure a healthy 
development of the foetus (18). Pregnant women are at increased risk 
of micro- and macronutrient deficiency due to increased demands 
from the foetus (19). Essential elements generally have a narrow 
optimal dose range, and both excessive and insufficient intake may 
adversely affect health (17, 20, 21).

Although there are uncertainties as to whether gestational 
exposure to toxic metals and essential elements are associated with 
risk of neurological disorders like CP in the child, there is some 
evidence that elevated exposure to the toxic metals Pb, Hg, arsenic 
(As) and the essential element Mn can impair motor function in 
children and adolescents (22–27). For example, symptoms of 
chronic Hg intoxication in childhood includes muscular hypotonia, 
tremor, ataxia, and coordination problems (28), and prenatal 
exposure to Hg has been related to poorer motor function and gross 
motor skills (29). A study from Japan reported a high incidence of 
CP following pollution of wastewater with methylmercury (MeHg) 
leading to high concentrations in local fish and seafood ingested by 
the local population, including pregnant women (30). Similar to 
MeHg, Pb is an established developmental neurotoxicant (31). 
Bansal et  al. (32) found increased blood Pb concentrations in 
children with CP, compared to controls. However, few or no 
previous studies, to our knowledge, have investigated associations 
between gestational levels of toxic metals and essential elements, 
and CP diagnosis in the child.

Studies of CP diagnoses requires very large sample sizes, due 
to the heterogeneity and the low prevalence of CP. The present 
study aims to address this question by using data from a large 
population-based cohort, the Norwegian Mother, Father, and 
Child Cohort Study [MoBa; Magnus et al. (33)]. Most studies on 
health effects from chemical exposure have been limited to only 
a few exposures (34), however human populations are not 
exposed to only one metal at the time, but rather to a mixture of 
multiple metals. Metals, as well as essential elements, can act 
jointly (additively), or they can interact antagonistically or 
synergistically, yielding potentially different effects on 
development and health compared to when the metals/elements 
are considered alone (29, 35). Investigating the associations of 
combinations of metals/elements with health outcomes is 
therefore critical when it comes to research on environmental 
factors and children’s health (36, 37).

The aim of the present study is to investigate the associations 
between gestational levels of toxic metals and essential elements, 
individually and as mixtures, and risk of CP diagnoses in children 
using a prospective, population-based birth cohort.

167

https://doi.org/10.3389/fneur.2023.1124943
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Weyde et al. 10.3389/fneur.2023.1124943

Frontiers in Neurology 03 frontiersin.org

2. Methods

2.1. Study sample

2.1.1. The Norwegian Mother, Father, and Child 
Cohort Study (MoBa)

Participants in the current study were selected from NeuroTox, a 
sub-study to MoBa aimed at investigating the association of prenatal 
exposure to environmental toxicants and risk for neurodevelopmental 
and neurological disorders in children. MoBa is a population-based 
pregnancy cohort study conducted by the Norwegian Institute of 
Public Health. Participants were recruited from all over Norway 
during 1999–2008. The women consented to participation in 41% of 
the pregnancies. The cohort now includes 114,500 children, 95,200 
mothers and 75,200 fathers (33). Blood samples were obtained from 
both parents during pregnancy and from mothers and children 
(umbilical cord) at birth (38). The current study is based on version 
12 of the quality-assured data files. The establishment of MoBa and 
initial data collection was based on a license from the Norwegian Data 
Protection Agency and approval from The Regional Committees for 
Medical and Health Research Ethics. The MoBa cohort is now based 
on regulations related to the Norwegian Health Registry Act. The 
Norwegian Patient Registry (NPR) has approved the linkage between 
NPR and MoBa, identifying cases with a diagnosis of CP. Linkage 
between MoBa and the Cerebral Palsy Registry of Norway (CPRN) 
was also used to identify cases. The CPRN is a consent-based national 
medical quality register established in 2006 containing clinical data on 
individual children born from 1996 onwards (39). The Medical Birth 
Registry of Norway (MBRN) is a national health registry containing 
information about all births in Norway.

2.1.2. Cases and controls
In total, 247 MoBa children with CP diagnoses (one or more 

registrations of ICD-10 codes G80.0-G80.9; 40) in the CPRN (39) 

or the NPR (41) were identified. For children with recorded CP 
diagnoses in the NPR, but who were not previously captured by 
the CPRN (39), the diagnoses were validated according to the 
standard procedures of the CPRN. The inclusion criteria in the 
present study were (Figure 1): Singleton, alive at 2 years of age, 
born 2002 or later, available record from the MBRN, available 
maternal MoBa questionnaire 1 (gestations week 15), no 
registration of Downs syndrome and available maternal whole 
blood samples (gestations week ~18). The final sample consisted 
of 144 CP diagnostic cases and their mothers. Of the CP cases, 59 
were categorised as hemiplegic, 43 as diplegic, 16 quadriplegic, 2 
choreo-athetotic, 13 dystonic, 7 ataxic and 4 unknown or 
unclassifiable. The CP cases were analysed together, as there is 
often overlap in presentation and clinical significance between 
them (6).

The control population in the NeuroTox project was designed 
to be used for other outcomes as well, including autism spectrum 
disorders (ASD), attention deficit/hyperactivity disorder (ADHD), 
and epilepsy. This control group was randomly sampled from the 
eligible MoBa sample, frequency matched with birth year and child 
sex to all diagnostic cases in NeuroTox applying the same inclusion 
criteria as for the cases. Since CP, and especially ADHD and ASD, 
are more prevalent among boys (42), more male than female 
controls were sampled. The final control group consisted of 1,082 
children and their mothers. The high case-control ratio leads to 
increased statistical power when the prevalence of cases is small 
(43). In addition, this study was a part of a larger studies on 
neurodevelopment and neurological outcomes in children, where 
control group was designed to fit all cases groups such as ADHD, 
ASD and epilepsy, where the prevalence in children is higher than 
that of CP (44).

The current study was approved by The Regional Committees for 
Medical and Health Research Ethics (ref. no. 2012/985-1). Parents 
enrolled in MoBa gave written consent for the use of this data.

FIGURE 1

Flow chart showing the selection of cases and controls in a nested case-control study of cerebral palsy in the Norwegian Mother, Father, and Child 
Cohort Study (MoBa), 2002–2006.
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2.2. Measurement of toxic metals and 
essential elements in maternal blood

The present study used maternal blood samples from around 
gestation week 18. Details about the sampling procedure and handling 
and storage in the MoBa biobank are described in detail elsewhere 
(38). Eleven toxic/non-essential metals and essential elements were 
determined in maternal whole blood, using inductively coupled 
plasma-sector field mass spectrometry (ICP-SFMS). These included 
the toxic metals As, cadmium (Cd), caesium (Cs), Pb and Hg, and the 
essential elements Co, Cu, Mg, Mn, Se, and Zn. Hg and As were 
measures of total Hg and total As, containing both inorganic and 
organic forms. In the Norwegian population, these measures will to a 
large degree reflect organic forms from intake of fish and seafood (45). 
Most samples (n = 1,121) were analysed at ALS laboratory group’s lab 
in Sweden, and some (n = 105) were analysed at the University of 
Lund (Sweden). Internal quality control samples and procedure blanks 
were analysed along with each batch of samples to ensure high quality 
of the determinations throughout the project. Additionally, reference 
samples were included (Seronorm Trace Elements whole blood L-1, 
SERO AS, Billingstad, Norway) that were used as project-specific 
quality control (QC) samples. Case, control, and QC samples were 
randomized to batch and blinded to the analysist. Details on analytical 
procedures, limits of detection (LOD), limits of quantification (LOQ) 
and quality control are presented in Supplementary materials 1 and 3. 
For most metals/elements, concentrations above LOQ are reported, 
but for As, Cd, Pb, and Hg, concentrations above LOD are reported. 
Metal/element concentrations are given in μg/L, except for Mg, which 
is given in mg/L.

Due to issues related to project design and logistics, the 
blood samples were pulled from the biobank and analysed for 
metals and elements in three separate analytical rounds 
(Supplementary material 1). In addition, some samples were analysed 
at the University of Lund in another MoBa sub-study (~round 4). To 
account for analytical variation across analytical rounds, the metal/
element concentrations were normalised for each participant using 
the QC samples (Seronorm reference material) analysed in each of 
the analytical rounds. The approach used was similar to the scaled 
variation of the Ratio-G batch adjustment described in Luo et al. (46). 
Let M be  the measured metal/element concentration i for each 
participant j. M*ij is then the analytical round adjusted metal/
element concentration, and is calculated as (Eq. 1):

 M ij Mij∗ = × ( )meanQCl meanQClk/ , (1)

where meanQCl represents the geometric mean of metal/element 
i in reference samples across all analytical rounds, and meanQClk 
represents the geometric mean of metal/element i in reference samples 
from analytical round k (i.e., in the analytical round in which sample 
of participant j was measured).

2.3. Covariates

The covariates in the present study were obtained from three 
prenatal MoBa questionnaires completed in gestation weeks 15, 22, 
and 30 (33) and from the MBRN. The following covariates were 

considered: from MoBa: maternal education (up to and including 4 
years of university/college vs. 5 years of university/college or more), 
maternal smoking during pregnancy (daily/sometimes vs. no), 
maternal seafood consumption during pregnancy obtained from 
the food frequency questionnaire (gestation week 22), and maternal 
pre-pregnancy body mass index; from MBRN: child sex, child birth 
year (2002–2005 vs. 2006–2009), parity (0 vs. 1+), maternal age at 
delivery (in years), gestational age, and birth weight. A minimal 
adjustment set was identified using directed acyclic graphs made at 
dagitty.net [DAGs; Textor et al. (47); see Supplementary material 11 
and Table 1], and included maternal education, maternal seafood 
intake during pregnancy, maternal age at delivery, maternal 
smoking during pregnancy, and parity. Sex and birth year were 
additionally included as covariates, since these variables are 
important in relation to CP and metal/element exposure, 
respectively.

TABLE 1 Descriptive information for controls, cases, and the total study 
sample in a nested case-control study of cerebral palsy in the Norwegian 
Mother, Father, and Child Cohort Study (MoBa), 2002–2006.

Controls CP cases Total

N = 1,082 N = 144 N = 1,226

Maternal age [mean (SD)]a 30.0 (4.5) 30.4 (4.7) 30.1 (4.5)

Seafood intake, pregnancy 

[mean (SD)]a

36.5 (21.8) 33.7 (21.2) 36.2 (21.8)

  Missing 128 15 143

Maternal folate intake, 

pregnancy [mean (SD)]b

511.2 (272.3) 547.5 (277.8) 515.5 (273.1)

  Missing 242 31 273

Gestational age, days [mean 

(SD)]b

279.6 (11.7) 265.0 (31.3) 277.9 (16.0)

  Missing 4 1 5

Paritya

  0 459 (42.4%) 80 (55.6%) 539 (44.0%)

  1+ 623 (57.6%) 64 (44.4%) 687 (56.0%)

Maternal educationa

  <5 year university 357 (33.8%) 49 (34.8%) 406 (33.9%)

  ≥5 year university 698 (66.2%) 92 (65.2%) 790 (66.1%)

  Missing 27 3 30

Maternal smoking, pregnancya

  No 937 (86.6%) 132 (91.7%) 1,069 (87.2%)

  Yes 145 (13.4%) 12 (8.3%) 157 (12.8%)

Maternal pre-pregnancy 

BMIb

23.4 (5.9) 24.5 (7.1) 23.5 (6.1)

Birth yeara

  <2006 867 (80.1%) 65 (45.1%) 932 (76.0%)

  ≥2006 215 (19.9%) 79 (54.9%) 294 (24.0%)

Sexa

  Boys 744 (68.8%) 83 (57.6%) 827 (67.5%)

  Girls 338 (31.2%) 61 (42.4%) 399 (32.5%)

aAdjustment variables in the analyses.
bNot part of minimal adjustment set.
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2.4. Statistical analyses

Preliminary analyses (see Supplementary material 12) indicated 
that some metal/element outliers could influence the estimates of the 
individual metal/element-CP relationships. To deal with outliers, a 
winsorization approach was used (48) where metal/element 
concentrations below the first and above the 99th percentiles were 
replaced with the value of the first and 99th percentile, respectively. 
Then all metal/element concentrations were natural log transformed 
to reduce skewness.

Multiple imputation (M = 20) was used to replace missing values 
with Amelia II in R (49). As, Cd and Co had some missing values due 
to concentrations below LOD or LOQ. Therefore, lower (≈0) and 
upper (LOQ for Cd and Co; LOD for As) bounds were specified for 
these variables in the imputation. Missing Mg and Cs (not analysed at 
the University of Lund) were imputed based on their log-normal 
distributions. We also imputed missing covariates (see Tables 1, 2). 
Imputations were based on the following variables: CP diagnoses, 
log-transformed metal/element concentrations, maternal age, 
maternal smoking during pregnancy, parity, maternal education, child 
sex, maternal pre-pregnancy BMI, maternal seafood intake during 
pregnancy, birth year, gestational age in days, and total maternal folate 
intake during pregnancy. Kernel density plots were used to confirm 
that the imputed values seemed reasonable.

Correlations in one of the imputed datasets among the measured 
toxic metals and essential elements in maternal blood were 
investigated using Spearman correlation.

All regression models are based on multiple imputed data, unless 
otherwise mentioned, and adjusted for child sex, birth year, parity, 
maternal education, maternal smoking during pregnancy, maternal 
age at delivery, and maternal seafood consumption during pregnancy.

2.4.1. Identifying important metals/elements in 
the association with CP

Simultaneously including multiple correlated exposure variables 
can produce unstable estimates and inflated standard errors when 
running traditional regression models (50). To overcome this 
limitation, a method for regularization and variable selection was 
used: elastic net regression (51) (see Supplementary material 2), to 
identify metal/element exposures important for CP. The covariates 
were not penalized. Elastic net regression is a suitable method to 
identify the most important elements in relation to the outcome 
within a mixture, which then can be  used to characterise in the 
independent exposure-response relationships of the selected mixture 
member(s) (50).

To ensure the robustness of the elastic net results, stability 
selection was performed. In stability selection, variables that are only 
weakly related to the outcome are more likely to be filtered out, due to 
more noise being introduced into the data (52). In short, random 
sampling from the original data with replacement was done 200 times, 
yielding 200 new datasets. In each of these datasets, 20 multiple 
imputed (MI) datasets were made. Elastic net was run in every MI 
dataset, and it was calculated how often, on average, the exposures 
were selected. Thus, each randomly drawn dataset yielded selection 
probability estimate for each exposure. The mean of the selection 
probabilities across the 200 randomly drawn datasets was then 
calculated. A permutation procedure was used to calculate p-values 
from the elastic net regression with stability selection.

The selection probabilities and p-values were in combination 
used as an indication of the strength of the association between 
exposure and outcome. Exposures with p-value ≤0.05 (and a high 
selection probability; >0.6) were selected for further analyses and 
entered into multivariable, adjusted logistic regression models 
(co-adjusted for other selected exposures) in order to obtain odds 
ratios (ORs) for CP. The regression model was run in each imputed 
dataset, and resulting ORs (no CIs or p-values were considered) 
were combined using Rubin’s rules (53). For reason of comparison 
with the variable selection results, we ran multivariable adjusted 
linear regression models with all individual metal/elements. 
Estimates are given as OR per interquartile increase in metal/
element.

Whether the associations between selected individual exposures 
and risk for CP deviated from a monotonic dose-relationship was 
further investigated using multivariable adjusted natural splines with 
knots at 10th, 50th, and 90th percentiles. A model with the exposure 
as linear term was then tested against a model with the exposure 
modelled as splines using likelihood ratio (lr) tests.

2.4.2. Identifying important two-way interactions
In order to detect possible multiplicative two-way interactions 

between individual metals/elements, we performed the elastic net 
stability selection described above. Previous studies have found 
associations with CP for sex and parental education (42, 54, 55). 
Thus, we also investigated interaction (effect measure modification) 
by child sex and maternal education (as proxy for SES). All 
independent variables were standardized. Pairwise interaction terms 
between all the metals/elements and between metals/elements and 
sex and maternal education were generated. The selected interaction 
terms (with p-value ≤0.1 and high selection probability) were 
included in a logistic regression model and visualized using 
line graphs.

2.4.3. Assessment of total metal/element mixture 
effect using quantile g-computation

The effect of individual exposures may be small and difficult to 
identify, while the joint effect of multiple chemicals in the mixture 
can cause stronger effects than that of single exposures (35). 
Therefore, analyses to investigate the joint effects of three mixtures 
were performed using three models: (1) a mix containing all 11 
metals/elements (MixAll), (2) a mix containing five toxic metals (As, 
Hg, Cd, Cs and Pb; MixTox), and (3) a mixture containing six 
essential elements (Mn, Cu, Co, Se, Mg and Zn; MixEssential). For 
this purpose, quantile g-computation (qgcomp) analyses with the R 
package qgcomp (56) were used. In this approach the exposure 
variables are used to construct a weighted exposure index of the 
mixture, reducing dimensionality and possible multicollinearity 
problems. The index is included in a regression model along with 
covariates of interest, yielding an overall effect estimate for the 
mixture. A one-unit increase in the mixture corresponds to all 
metals/elements in the mixture increasing by one unit. Weights are 
constructed to represent the relative strength of each exposure in 
relation to the outcome. The model was run in each imputed dataset, 
with exposures categorized as quartiles. The estimates with 95% CIs 
were combined using Rubin’s rules (53). Additionally, the interactions 
identified in the elastic net analysis were tested, along with potential 
non-linear effects of the mixture using the qgcomp.boot function.
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TABLE 2 Batch adjusted metal concentrations (μg/L or mg/L) for controls, cases, and the total study sample in a nested case-control study of cerebral palsy in The Norwegian Mother, Father, and Child Cohort 
Study (MoBa), 2002–2006.

Controls CP cases Total

N = 1,082 N = 144 N = 1,226

Mean (SD) Min 10% 50% 90% Max Mean (SD) Min 10% 50% 90% Max Mean (SD) Min 10% 50% 90% Max

Hg (ug/L), adjusted 1.4 (0.9) 0.1 0.6 1.2 2.5 8.4 1.2 (0.7) 0.1 0.3 1.0 2.2 3.5 1.4 (0.9) 0.1 0.5 1.1 2.4 8.4

As (ug/L), adjusted 2.4 (3.1) 0.1 0.6 1.6 4.8 51.9 2.1 (2.3) 0.2 0.8 1.4 3.7 14.9 2.4 (3.0) 0.1 0.6 1.6 4.8 51.9

  Missinga 12 0 12

Cd (ug/L), adjusted 0.3 (0.3) 0.0 0.1 0.2 0.5 3.0 0.2 (0.2) 0.0 0.1 0.2 0.3 2.1 0.2 (0.3) 0.0 0.1 0.2 0.5 3.0

  Missinga 22 0 22

Pb (ug/L), adjusted 10.0 (5.5) 2.0 5.6 9.0 15.1 85.8 9.8 (7.6) 1.0 4.9 8.7 14.4 86.0 10.0 (5.8) 1.0 5.5 8.9 15.0 86.0

Mn (ug/L), adjusted 11.2 (8.8) 3.4 6.6 9.8 15.2 162.7 13.4 (12.9) 1.9 6.7 10.2 19.4 105.1 11.5 (9.4) 1.9 6.6 9.8 15.5 162.7

Se (ug/L), adjusted 92.3 (20.4) 45.8 71.6 89.7 116 303.5 91.9 (18.7) 56.7 69.3 90.0 121.7 144.1 92.3 (20.2) 45.8 71.1 89.7 117.0 303.5

Co (ug/L), adjusted 0.3 (0.9) 0.0 0.1 0.2 0.4 29.3 0.2 (0.2) 0.0 0.1 0.2 0.3 1.4 0.3 (0.9) 0.0 0.1 0.2 0.4 29.3

  Missinga 32 1 33

Cs (ug/L), adjusted 2.4 (0.9) 0.9 1.5 2.3 3.4 8.4 2.3 (0.8) 0.8 1.4 2.2 3.3 5.3 2.4 (0.9) 0.8 1.5 2.2 3.3 8.4

  Missinga 103 2 105

Cu (ug/L), adjusted 1,583 (243) 778 1,300 1,551 1891 3,178 1,623 (282) 939 1,277 1,609 1980 3,069 1,588 (248) 778 1,297 1,554 1903 3,178

Zn (ug/L), adjusted 5,491 (1088) 1,641 4,090 5,460 6,837 10,294 5,203 (909) 1,432 4,056 5,240 6,264 7,433 5,457 (1072) 1,432 4,086 5,436 6,751 10,294

Mg (mg/L), adjusted 30.3 (3.5) 18.3 25.9 30.3 34.8 45.0

aMissing was due to values below level of detection.
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2.4.4. Sensitivity analyses
Sensitivity analyses were performed in regression models of 

selected metals only. Analyses were stratified by children of mothers 
with folate intake during pregnancy below (N = 613) or above (N = 
613) the median. Analyses were restricted to children born to term 
(born in gestational week 37 or later; N = 1,138), children not born 
small for gestational age [SGA; Maršál et al. (57); N = 1,199], and 
children of mothers who did not smoke during pregnancy (N = 1,069). 
The main analysis was also done without winsorizing (N = 1,226) and 
on complete cases (subjects without missing values; N = 1,002). In 
addition, due to multiple comparison, the results from the elastic net 
stability selection were assessed controlling the false discovery rate 
(fdr) at α = 0.05 (α = 0.1 for the interactions), according to a method 
proposed by Ahmed et  al. (58) (see Supplementary material 2 
for details).

All analyses were done in R version 4.0 (59), using the packages 
glmnet (60), qgcomp (56), forestplot (61), ggplot2 (62), sjPlot (63), 
ggExtra (64), ggeffects (63), stargazer (65), mitools (66), Amelia II (49), 
reshape (67), and splines (68). Example scripts for the analysis are 
available at https://osf.io/5867z/. Data from MoBa and MBRN used in 
this study are managed by Norwegian Institute of Public Health and 
can be made available to researchers, provided approval from the 
Regional Committees for Medical and Health Research Ethics (REC), 
compliance with the EU General Data Protection Regulation (GDPR) 
and approval from the data owners. The consent given by the 
participants does not open for storage of data on an individual level in 
repositories or journals. Researchers who want access to data sets for 
replication should apply through helsedata.no. Access to data sets 
requires approval from The Regional Committee for Medical and 
Health Research Ethics in Norway and an agreement with MoBa.

3. Results

The characteristics of the study population is presented in Table 1. 
Compared to mother of controls, mothers of children with CP had a 
lower seafood consumption during pregnancy and had slightly higher 
pre-pregnancy BMI. A larger proportion of children with CP were 
first-borns, were girls and had lower birth weight and gestational age 
than compared to the controls (Table 1), which is in line with previous 
literature (69, 70). Table 2 and Supplementary material 4 present the 
distribution of adjusted and non-adjusted (original) gestational 
concentrations of metals/elements, respectively.

Spearman correlations between the log-transformed 
concentrations of the metals and elements showed low to moderate 
correlations (Figure  2), with the highest correlations being those 
between As and Hg (r = 0.59) and Mg and Zn (r = 0.53).

Using elastic net models in conjunction with stability selection 
and the permutation approach, maternal levels of Cu (p = 0.018, 
Psel = 0.88), Hg (p = 0.019, Psel = 0.87) and Mn (p = 0.055, Psel = 
0.79); had the strongest associations with odds of CP in children. 
These associations did not remain when comparing with p-values 
adjusted for multiple comparisons (p > pFDR; Figure  3 and 
Supplementary material 5). When Mn, Hg and Cu were included 
in the same multivariable adjusted, logistic regression models, this 
resulting in the following effect estimates (ORs; per interquartile 
range increase in exposure): Higher maternal levels of Cu (OR = 
1.40) and Mn (OR = 1.2) were associated with an increased risk of 

CP in the child, whereas Hg was associated with a lowered risk (OR 
= 0.68) (Figure 4 and Supplementary material 6). A similar pattern 
was observed in multivariable adjusted logistic regression models 
of single exposures: Hg [OR = 0.69, 95% CI = (0.51, 0.92)], Mn [OR 
= 1.30, 95% CI = (1.00, 1.50)] and Cu [OR = 1.50, 95% CI = (1.10, 
2.00)] (Figure 4 and Supplementary material 6).

Modelling the relationship between the selected metals/element 
exposures and CP as natural splines with knots at 10th, 50th, and 90th 
percentiles, indicated no departure from linearity in the relationship 
between prenatal levels of Cu, Mn and Hg and odds of CP in the child 
(Supplementary material 6).

Restricting the analyses to children of non-smokers, children born 
at term, non-SGA children, or complete cases only, the effect estimates 
remained relatively unaffected (Supplementary material 14 and 
Supplementary material 7). When stratified by median maternal folate 
intake during pregnancy, the results in the lower intake group 
attenuated somewhat, whereas the higher intake group tended to 
be further away from one.

Several two-way interactions were identified: Cu*Pb (p = 0.017, 
Psel = 0.89;), Cd*Cu (p = 0.065, Psel = 0.82), Maternal education*Cu (p 
= 0.059, Psel = 0.79), Hg*Mg (p = 0.025, Psel = 0.79), Maternal 
education*Hg (p = 0.061, Psel = 0.74;), Cd*Pb (p = 0.088, Psel = 0.73), 
Child sex*Cu (p = 0.090; pFDR = 0.010), Cu*Mn (p = 0.096, Psel = 0.72), 
and Co*Hg (p = 0.084, Psel = 0.70) (Figure  5 and 
Supplementary material 8). None of the relationships remained when 
controlling for multiple comparisons (p > pFDR; Figure  5 and 
Supplementary material 6). The identified interaction terms (i.e., p ≤ 
0.10) are visualized using stratified, linear regression plots in Figure 6. 
The plots show, for example, that the positive relationship for Cu with 
CP was larger for lower Pb levels and higher levels of Cd, and for 
children of less educated mothers, and for boys. The relationship 
between Mn and CP was stronger for higher prenatal levels of Cu. The 
inverse relationship for Hg was largest in children of less educated 
mothers, and for lower levels of Mg.

Using qgcomp, there was no significant association between the 
metal/element mixture [MixAll—OR = 1.00, 95% CI = (0.67, 1.50), 
Supplementary material 6]. When restricting the analysis to the toxic 
metals mixture (MixTox) there was an inverse association with CP 
[OR = 0.77, 95% CI = (0.56, 1.00); Figure  4 and 
Supplementary material 6], with Hg being the largest contributor to 
this association (Supplementary material 13). The association did not 
remain after excluding Hg [OR = 0.83, 95% CI = (0.61, 1.12)], or when 
comparing with false discovery rate for multiple comparisons 
(Supplementary material 6). No significant effect was found for the 
essential elements mixture [MixEssential—OR = 1.30, 95% CI = (0.93, 
2.50), Supplementary material 6]. The MixAll model including all the 
interactions identified using elastic net regression did not find 
significant effects [OR = −0.05, 95% CI = (−0.3, 0.27)], nor did the 
model accounting for nonlinear effects [quadratic fit OR = 0.004, 95% 
CI = (−0.008, 0.008)].

4. Discussion

The present study is among the first to investigate the associations 
between multiple toxic metals and essential elements and their 
mixtures measured in maternal blood during pregnancy and risk of 
CP diagnosis in the child within a population-based birth cohort. As 
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a first mixture approach, a penalized regression analysis was used to 
identify potentially important elements in the mixture in relation to 
risk of CP. Mn, Cu, and Hg appeared the most important. Follow-up 
logistic regression models of these individual elements indicated an 
increased risk of CP in the child associated with increased maternal 
levels Cu and Mn. In addition, maternal level of Hg was inversely 
related to CP. Using a similar approach, several two-way interactions 
were identified among metals/elements that appeared important for 
risk of CP, as well as effect measure modification by child sex and 
SES. The second mixture approach, investigating the joint effect of the 
mixture(s), revealed no significant effect for the metal/element 
mixture, but the mixture containing toxic metals revealed an inverse 
association with CP, in which Hg appeared to have the most influential, 
though it must be noted that since it will be missing co-confounding 
or co-exposure effects, it might not be very reliable. The discrepancy 
between the effects of the overall (MixAll) and toxic (MixTox) 
mixtures could point to antagonism between essential and toxic 
metals. None of the associations for selected metals/elements, two-way 
interactions or the joint mixture effect remained after adjusting for 

multiple comparisons. Therefore, the results must be interpreted with 
caution. Still, highlighted exposures herein should be  considered 
important candidates for further studies of metal/element exposure 
and risk of CP in children, especially since very little knowledge exists 
to date on associations between toxicant and micronutrient levels 
during perinatal development and risk of CP.

The main source of Cu exposure in humans is food, and in some 
cases, drinking water (71). Cu is an essential trace mineral for many 
important enzymes and proteins in living organisms (72). It is 
important for foetal and child development, but excess levels can 
be toxic (17). There is evidence to support an adverse effect of Cu in 
human neurological disorders, such as Alzheimer, Huntington, and 
Menkes diseases (73). Possible mechanisms for Cu toxicity include its 
contribution in the formation of reactive oxygen species that modify 
the structure and/or function of essential biomolecules (72). Little is 
known about prenatal Cu and CP, and the present study is, to our 
knowledge, among the first to investigate and report this association. 
Only very few studies have investigated potential adverse effects of Cu 
on brain development, especially when it comes to psychomotor 

FIGURE 2

Spearman correlation between the metals/elements (adjusted concentrations) in a nested case-control study of cerebral palsy in the Norwegian 
Mother, Father, and Child Cohort Study (MoBa), 2002–2006. N = 1,226. Arsenic (As); cadmium (Cd); cesium (Cs); cobalt (Co); copper (Cu); lead (Pb); 
magnesium (Mg); manganese (Mn); mercury (Hg); selenium (Se); zinc (Zn).
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development (74, 75). Elevated airborne Cu exposure at school at ages 
8 years and 12 years was associated with poorer motor performance 
and altered basal ganglia structure and function of the brain (76). 
Partly consistent with our findings, Amorós et al. (77) found inverse 
associations between Cu measured in maternal blood during the first 
trimester, and scores on neuropsychological development at one and 
5 years. Also, in line with our findings where the risk of CP was higher 
among boys than compared to girls in relation to maternal Cu levels, 
Amorós et al. (77) found the associations to be strongest for boys at 
age 1 year. A stronger susceptibility for males to a range of toxicants is 
also found in several other studies (78). Further, the association 
between Cu and CP in the present study was strongest for lower 
concentrations of Pb, higher concentrations of Cd, and higher 
concentrations of Mn. Previous studies have shown that the toxicity 
of a toxicant can depend on the presence of other toxicants or elements 
(37, 79). Further, the effect of Cu was mainly found in children of less 
educated mothers, but not for children of highly educated mothers. 
Higher SES is associated with healthier lifestyle and living conditions 
(80), which might attenuate the adverse effects of increased Cu in the 
body. For example, studies have reported effect measure modification 
by SES in the relationship between Pb and adverse neurodevelopment, 
and it has been hypothesized that this might be due to differences in 
genetic susceptibilities, environmental enrichment, or stress (81).

Since preterm birth is an important predictor of CP (82), it was of 
special interest to see whether the effect estimates changed when 
children born before term were excluded from the analyses. For Cu, 
the estimate was slightly attenuated, indicating that the association for 
Cu might be stronger in preterm born children.

The maternal blood concentration of Cu in the present study 
(mean = 1,588 μg/L) was comparable to those in other studies, such 
as studies of pregnant women from Northern Norway (mean = 
1,670 μg/L), Poland (mean = 1,694 μg/L), and Republic of Korea 

(mean = 1,650 μg/L) (83–85). Thus, the present study indicates that 
Cu blood levels during pregnancy might be associated with CP, even 
at concentration ranges commonly seen in populations.

For the trace element Mn measured in pregnancy, a positive 
association (increased risk) was identified with CP in the child. The 
main source of Mn exposure in humans is diet, and some industrial 
occupations (i.e., mining, welding and steel production) also represent 
a risk for increased Mn exposure by inhalation (86). As for Cu, 
excessive exposure can be  neurotoxic and Mn is an established 
developmental neurotoxicant (31), although there is no clearly 
established mechanistic underpinning for its neurotoxicity. Mn could 
act through substituting calcium (Ca), and thus interfere with 
dopaminergic synaptic transmission, disruption of ATP synthesis in 
the mitochondria, and oxidization of dopamine, leading to increased 
intracellular oxidative stress (87, 88).

In adults, inhalation of Mn can lead to a condition called 
manganism, which is characterized by tremors, difficulties walking, 
and facial spasms. There is limited knowledge about early-life Mn 
exposure and neurological outcomes, but there is some evidence of 
adverse impact on cognition and behaviour (35, 89). Prenatal Mn 
concentrations in blood is associated with reduced birth weight and 
head and chest circumference (90). A South Korean study measured 
blood levels of Mn in pregnant women at term, and found associations 
with mental and psychomotor development at child age 6 months 
(91). A study on Italian adolescents found associations between 
increased soil Mn concentrations and impaired motor coordination 
and hand dexterity, and positive associations between blood and hair 
Mn concentrations and tremor intensity (22). Another study of 
children in Bangladesh found no associations between Mn in drinking 
water and Mn in blood and urine, and between Mn and motor 
function (23). However other neurodevelopmental outcomes (i.e., 
impaired cognitive function and academic achievement, internalizing 

FIGURE 3

Mean selection probability (boxplot) in a nested case-control study of cerebral palsy in the Norwegian Mother, Father, and Child Cohort Study (MoBa), 
2002–2006. N = 1,226. Based on elastic net regression in 2000 datasets (20 multiple imputed datasets in each of 100 randomly drawn datasets with 
replacement), and calculated p-values [based on 240,000 elastic net runs (once in each of 10 multiple imputed datasets in each of 20 randomly 
sampled datasets with replacements in each of 1,200 permuted datasets)], and Benjamini and Hochberg false discovery rate thresholds. All analyses 
adjusted for maternal age, parity, maternal smoking during pregnancy, maternal education, sex, and birth year. Arsenic (As); Benjamini and Hochberg 
false discovery rate thresholds (BH); cadmium (Cd); cesium (Cs); cobalt (Co); copper (Cu); lead (Pb); magnesium (Mg); manganese (Mn); mercury (Hg); 
selenium (Se); zinc (Zn).
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and externalizing classroom behaviour) have been reported with 
elevated Mn exposure (92–94). The present study adds to the findings 
that increased Mn exposure is associated with adverse neurological 
effects in children. Contrary to some studies [i.e., (90)], the association 
in the present study was linear (positive), and not U- or inverted 
U-shaped. The maternal Mn concentrations in the present study 
(arithmetic mean = 11.5 μg/L, median = 9.8 μg/L, range: 1.9–163 
μg/L) was similar or lower than reported in other studies general 
female United States population [median = 9.7 μg/L; Oulhote et al. 
(95)]; pregnant women during first trimester in the United States 
[median = 9.0 μg/L; Ashley-Martin et al. (96)]; and in mid-to-late-
term pregnant Japanese women [median = 16.1 μg/L; Nakayama et al. 
(97)], and was within what is considered the normal range of 4 to 15 
μg/L (87) [but higher in pregnant women (98)]. Thus, the present 
study indicates that elevated maternal levels of Mn in the second 
trimester can be associated with risk for CP, even at variation within 
normal concentration ranges.

The effect size of Cu and Mn found in the present study (OR for 
an increase in interquartile range = 1.40 and 1.20) is comparable to 

effect sizes of other reported risk factors for CP, such as low and high 
maternal age, low SES, and maternal hypertension during 
pregnancy (8).

Increased prenatal Hg exposure was associated with lowered 
odds of CP in the child. Much of the previous research indicates 
harmful effects of Hg on various human health outcomes, including 
adverse neurodevelopmental outcomes impaired motor function in 
children (25, 99). For example, cohort studies in the Faroe and 
Seychelles Islands found that increased prenatal MeHg exposure 
was related to lower scores on tests of motor function, coordination, 
fine motor skills, and motor speed in children (100–102). One of 
the most well-known examples is the MeHg poisoning in Minamata 
Bay in the 1950s (103). Hundreds of people died, after ingestion of 
MeHg-contaminated fish and shellfish from the Minamata Bay. 
Many people, especially children that were exposed to MeHg in 
utero, also displayed various adverse neurological effects, some 
similar to symptoms of CP. The Hg concentrations in Minamata 
were, however, much higher (i.e., hair concentrations of total Hg 
measured in 1960 was 15 times higher in Minamata than in the 
Kumamoto, a city located on the same island) than in the present 
study (104).

The inverse association between prenatal Hg exposure and 
odds of CP in the present study was unexcepted. This relationship 
also appeared to be driven by children of less educated mothers. 
Several studies report higher seafood intake in the higher SES 
strata, resulting in an elevated Hg prenatal exposure compared to 
the lower SES strata (105–107) since seafood is an important 
source of Hg (20). In a study of pregnant women from MoBa, Hg 
concentrations in blood were positively associated with total fish 
and seafood intake (45). Among the well-educated in the present 
study, the mothers of controls and CP cases ate similar amounts 
of seafood and Hg levels were approximately similar 
(Supplementary material 10). Among the less-educated, however, 
mothers of children with CP reported eating less seafood than 
mothers of controls, and they also appeared to have lower Hg 
blood concentrations than the mothers of controls 
(Supplementary material 10). In this study the analyses were 
adjusted for estimated maternal seafood intake. Even though it is 
possible that our results were biased by residual or unmeasured 
confounding, it could be speculated that if the Hg concentrations 
in blood is an even better marker of seafood intake than maternal, 
self-reported FFQ-based estimates of fish and seafood intake. If 
so, the seemingly lowered CP risk associated with increasing 
maternal Hg concentrations could in fact reflect increased intake 
of seafood and its beneficial nutrients for brain development 
(e.g., polyunsaturated fatty acids and iodine) (108).

The toxic metal mixture (MixTox) was inversely associated with 
risk of CP. This was mainly due to the inverse association between Hg 
and CP, reflected in the large negative weight for Hg 
(Supplementary material 13). There were no association between the 
essential element mixture (MixEssential) and CP or the total mixture 
and CP. Supplementary material 13 shows that the metal/element 
weights tend to go in opposite directions. In addition, some of the 
two-way interactions show that the effect of one metal or element is 
attenuated for certain concentration ranges of another metal or 
element (i.e., Cu and Pb). Nevertheless, the total mixture (MixAll) 
might have a stronger impact in other populations exposed to higher 
levels of toxic metals and/or with inadequate intake of essential 

FIGURE 4

Estimates from logistic regression models of single exposures (with 
95% CI), selected exposure (co-adjusted) and joint mixture exposure 
in a nested case-control study of cerebral palsy in the Norwegian 
Mother, Father, and Child Cohort Study (MoBa), 2002–2006. N = 
1,226. Odds ratios for single metals/elements are per interquartile 
range increase in exposure. Yellow squares are estimates from the 
quantile g-computation analyses and represent ORs per one quartile 
increase in mix. *MixAll = all 11 metals/elements; MixEssential = Co, 
Cu, Mn, Se, Mg, Zn; MixToxic = As, Hg, Cd, Pb, Cs. All models were 
fit in 20 multiply imputed datasets, adjusting for maternal age, parity, 
maternal smoking during pregnancy, maternal education, sex, and 
birth year. The estimates were combined using Rubin’s rules. Arsenic 
(As); cadmium (Cd); cesium (Cs); cobalt (Co); copper (Cu); lead (Pb); 
magnesium (Mg); manganese (Mn); mercury (Hg); selenium (Se); zinc 
(Zn).
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elements or other micronutrients (e.g., folate), as they could have 
antagonistic effects.

This study has several strengths. First, it is among the first and 
largest studies of the association between prenatal exposure to toxic 
metals and essential elements, and CP diagnoses in children. Since 
only a relatively small percentage of children are diagnosed with CP 
(109), large studies are needed to identify a sufficient number of cases. 
The MoBa cohort was well suited for this purpose. Second, the 
scientific literature has called for investigation of chemical mixtures, 
as was done in the present study, which represent a more relevant 
exposure-scenario than assessing one or very few toxicants (37). By 
additionally assessing multiple two-way interactions between metals/
elements, a more nuanced picture of the associations studied could 
be given. Third, our study was nested within a well-characterized 
prospective birth cohort with extensive questionnaire data that 
enabled us to obtain a wide range of relevant information on covariates.

Our study has some limitations. One limitation concerns self-
selection bias into MoBa, resulting in larger proportion of older 
mothers with high education and healthier lifestyle than the general 
population (110). A second limitation is the lack of information on 
iron status. Iron is a main determinant for absorption of Mn and Cd 
in the body (79). Unfortunately, good measures of maternal iron levels 
were lacking in the present study so there is uncertainty regarding how 
well the levels of these metals reflect environmental exposure. Third, 
despite being one of the largest studies of its kind to date, the statistical 
power enabling identification of small to medium effect sized 
associations with intrauterine metal/element levels is probably 
restricted by the relatively low number of CP cases. Thus, future 
studies should strive to increase the case sample size.

5. Conclusion

When investigating the associations between gestational levels of 
11 toxic metals and essential elements, within normal population 
ranges, Cu, Hg, and Mn were found to be  associated with CP in 
children. Higher maternal levels of the essential elements Cu and Mn 
were associated with increased risk of CP in the child. While the total 
mixture effect was not found to be significant, counterintuitively, an 
inverse association between maternal Hg levels and risk of CP was also 
observed, and this association was mainly found in the lower SES 
strata. However, the inverse association reported herein should not 
be interpreted as a protective effect of Hg, but rather that Hg could 
be acting as a marker of seafood intake and nutrients that are beneficial 
for brain development. Disentangling adverse neurodevelopment of 
Hg or other contaminants originating from seafood intake and SES 
remains a great challenge within environmental epidemiology. The 
etiology of CP is a complex and multifactorial disease. Considerable 
research effort remains to elucidate the role of toxicants and 
micronutrients and their interactions during perinatal development 
in the etiology of CP in children, including increased attention to Cu 
and Mn. Consortium studies would be preferred, in order to produce 
larger case groups.

Data availability statement

The data analyzed in this study is subject to the following licenses/
restrictions: data from the Norwegian Mother, Father and Child 
Cohort Study (MoBa) and the Medical Birth Registry of Norway 

FIGURE 5

Mean selection probability (boxplot) for two-way interaction terms in a nested case-control study of cerebral palsy in the Norwegian Mother, Father, 
and Child Cohort Study (MoBa), 2002–2006. N = 1,226. Based on elastic net regression in 4000 datasets (20 multiple imputed datasets in each of 200 
randomly drawn datasets with replacement; alpha = 0.9), and calculated p-values [based on 1,000,000 elastic net runs (once in each of 5 multiple 
imputed datasets in each of 20 randomly sampled datasets with replacements in each of 10,000 permuted datasets)], and Benjamini and Hochberg 
false discovery rate thresholds. All analyses adjusted for maternal age, parity, maternal smoking during pregnancy, maternal education, sex, and birth 
year. Arsenic (As); Benjamini and Hochberg false discovery rate thresholds (BH); cadmium (Cd); cesium (Cs); cobalt (Co); copper (Cu); lead (Pb); 
magnesium (Mg); manganese (Mn); mercury (Hg); selenium (Se); zinc (Zn).
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FIGURE 6

Graphs of selected two-way interaction terms in a nested case-control study of cerebral palsy in the Norwegian Mother, Father, and Child Cohort 
Study (MoBa), 2002–2006. N = 1,226. Based on a single imputed dataset. All analyses adjusted for maternal age, parity, maternal smoking during 
pregnancy, maternal education, sex, and birth year. N = 1,226. Arsenic (As); cadmium (Cd); cerebral palsy (CP); cesium (Cs); cobalt (Co); copper (Cu); 
lead (Pb); magnesium (Mg); manganese (Mn); mercury (Hg); selenium (Se); zinc (Zn).
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Public Health and can be made available to researchers, provided 
approval from the Regional Committees for Medical and Health 
Research Ethics (REC), compliance with the EU General Data 
Protection Regulation (GDPR) and approval from the data owners. 
The consent given by the participants does not allow for storage of 
data on an individual level in repositories or journals. Researchers 
who want access to data sets for replication should apply through 
helsedata.no. Access to data sets requires approval from the Regional 
Committees for Medical and Health Research Ethics in Norway and 
an agreement with MoBa. Requests to access these datasets should 
be directed to helsedata.no, service@helsedata.no.
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