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Editorial on the Research Topic
The digitalization of neurology
Introduction

Modern neurology originated in the nineteenth century with the writings of Charcot,

Wernicke, Gowers, Hughlings Jackson, Cajal, Broca, and others (1). For much of the

history of neurology, observations were qualitative, not quantitative. Case reports and

small case series dominated disease descriptions. Neuroimaging was characterized by

plain radiographs that were not suitable for computer analysis. EEG and EMG waveforms

were analog and not digital. Medical records were on paper and were not suitable for

computer analysis. Patients were examined in person. Before modern neuroimaging, a

definitive diagnosis was often impossible without a biopsy or autopsy.

We define the digitalization of neurology as the transition to computable observations,

treatments, diagnoses, and outcomes.

Neurology digitalization began slowly 50 years ago and has accelerated in the last 20

years. Progress has occurred on multiple fronts, including Precision Neurology, Big Data

in Neurology, Computable Neurology, and Remote Neurology.
Precision neurology

Precision neurology is the application of precision medicine principles to the field of

neurology.

Precision neurology involves tailoring neurological care and treatment to individual

patients according to their unique genetic, molecular, and clinical profiles. In this

Research Topic, Differential DNA methylation associated with multiple sclerosis and
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disease modifying treatments in an underrepresented minority

population by Bingen et al. found that MS is associated with

differential DNA methylation in genes that regulate immune cell

differentiation, host defense against gastrointestinal pathogens,

and susceptibility to acute myeloid leukemia. They also found an

epigenetic signature associated with dimethyl fumarate treatment

in genes that regulate cytokine signaling, axon guidance, and

adherens junctions.

In another example of precision neurology, Designing evidence-

based support aids for social media access for individuals with

moderate-severe traumatic brain injury: A preliminary

acceptability study by Zhao et al. examines the feasibility of

modifying access to social networks for people affected by brain

injury.

Another precision neurology study by Howlett-Prieto et al. is

Subtypes of relapsing-remitting multiple sclerosis identified by

network analysis. They used network analysis of multiple

sclerosis phenotypes to identify the first subtypes of relapsing

and remitting multiple sclerosis that could differ in response to

treatment or outcome.
Big data in neurology

Big data in neurology is the creation of large data sets that have

both depth (many patients) and breadth (many variables that

include data from imaging, proteomics, clinical observations,

genomics, etc.)

In a big data approach to epilepsy, INTUITION: a data platform

to integrate human epilepsy clinical care and support for discovery by

Maharathi et al. describes the merging of pathological, clinical,

radiographic, pharmacological and electroencephalographic data

captured in the surgical treatment of epilepsy.

Another article from this Research Topic Parkinson’s disease

population-wide registries in the United States: Current and future

opportunities examines opportunities and barriers to the creation

of large Parkinson’s disease registries in the United States (Wu

and Wilson). The California Parkinson’s Disease Registry has

already collected information on 93,928 unique Parkinson’s

disease patients.

Another article from this Research Topic is entitled Workflow

for health-related and brain data lifecycle and it examines best

practices for curating and maintaining data related to brain

health (Brůha et al.).
Computable neurology

Computable neurology converts neurological observations into

machine-readable codes that can be entered into machine

learning and deep learning applications.

Traditional observations in neurology have been qualitative

rather than quantitative. Computation with qualitative

observations has been difficult. Initially, electroencephalographic
Frontiers in Digital Health 026
and electromyographic waveforms were analog. The digitalization

of these waveforms has made them computable. Similarly, analog

images on radiographic films have been made computable by

digitalization.

The Hecker et al. article Voice Analysis for Neurological Disorder

Recognition–A Systematic Review and Perspective on Emerging Trends

illustrates how voice features can be digitally encoded to enhance the

diagnosis and treatment of neurological disorders.

Medical records on paper have been converted to electronic

health records. However, unstructured patient data in electronic

health records must be normalized using ontologies and natural

language processing methods to create computable concepts

suitable for machine learning and deep learning applications.

Several articles examine methods for extracting computable

concepts from electronic health records, including methods for

annotating neurological concepts. Azizi et al.’s Enhanced

neurologic concept recognition using a named entity recognition

model based on transformers explores the use of neural networks

to extract neurological concepts from unstructured text. Inter-

rater agreement for the annotation of neurologic signs and

symptoms in electronic health records by Oommen et al. evaluates

how well different raters perform in identifying neurological

concepts in free text from electronic health records. After

phenotypes have been extracted from electronic health records,

The visualization of Orphadata neurology phenotypes explores the

visualization of these neurological phenotypes with heat maps

and word clouds (Hier et al.).

Although extracting concepts from unstructured text in

electronic health records shows great promise for precision

neurology and big data, documentation has burdened physicians

and other providers. It contributes to physician burnout (2). An

article in this Research Topic entitled It’s time to change our

documentation philosophy: writing better neurology notes without

the burnout describes strategies that can reduce documentation

burden and take advantage of recent changes in documentation

regulations from the Center for Medicare and Medicaid Services

(CMS) (Rodríguez-Fernández et al.).
Remote neurology

Remote neurology is using technology to provide neurological

services at a distance.

Teleneurology has been used for acute and non-acute

neurological consultations, including stroke (3). Another example

of remote neurology is monitoring neurological patients by

actimetry or telemetry (4, 5). In this Research Topic,

Ward et al.’s Implementation and impact of a point of care

electroencephalography platform in a community hospital: a

cohort study demonstrates the feasibility of providing emergency

EEG services in a community hospital when neurologists and

technicians are not available via a point-of-care EEG device.

The twelve articles in this Research Topic highlight the

accelerated pace of digitalization in neurology and illustrate the

varied uses of neurological observations once they have been
frontiersin.org
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made computable. We believe that further advances in neurology

will depend on the increasing digitalization of neurology and that

the abundant availability of observations in a computable form

will support the implementation of advanced methods from

machine learning and artificial intelligence.
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Quantifying neurological disorders from voice is a rapidly growing field of research and

holds promise for unobtrusive and large-scale disorder monitoring. The data recording

setup and data analysis pipelines are both crucial aspects to effectively obtain relevant

information from participants. Therefore, we performed a systematic review to provide

a high-level overview of practices across various neurological disorders and highlight

emerging trends. PRISMA-based literature searches were conducted through PubMed,

Web of Science, and IEEE Xplore to identify publications in which original (i.e., newly

recorded) datasets were collected. Disorders of interest were psychiatric as well as

neurodegenerative disorders, such as bipolar disorder, depression, and stress, as

well as amyotrophic lateral sclerosis amyotrophic lateral sclerosis, Alzheimer’s, and

Parkinson’s disease, and speech impairments (aphasia, dysarthria, and dysphonia).

Of the 43 retrieved studies, Parkinson’s disease is represented most prominently with

19 discovered datasets. Free speech and read speech tasks are most commonly

used across disorders. Besides popular feature extraction toolkits, many studies

utilise custom-built feature sets. Correlations of acoustic features with psychiatric and

neurodegenerative disorders are presented. In terms of analysis, statistical analysis for

significance of individual features is commonly used, as well as predictive modeling

approaches, especially with support vector machines and a small number of artificial

neural networks. An emerging trend and recommendation for future studies is to collect

data in everyday life to facilitate longitudinal data collection and to capture the behavior

of participants more naturally. Another emerging trend is to record additional modalities

to voice, which can potentially increase analytical performance.

Keywords: neurological disorders, voice, speech, everyday life, multiple modalities, machine learning, disorder

recognition
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1. INTRODUCTION

1.1. Neurological Disorders and Speech
The burden of neurological disorders on the healthcare system
is heavy (1). Neurological disorders manifest themselves with
various symptoms at different disease stages. Recognition and
diagnosis of most neurological disorders still rely on clinical
examinations, mostly upon the manifestation of prominent
symptoms. With modern machine learning approaches,
researchers have attempted to quantify neurological disorders
through various modalities from unobtrusive sensors to gain
a longitudinal and holistic picture of the individual patient
and course of disease (2). Speech, in particular, is a promising
modality, since its production is shown to be very susceptible to
slight perturbations caused by those disorders (3). Furthermore,
voice recordings are unobtrusive and readily available through
the widespread usage of smartphones and other smart devices (4).

To record voice data in a clinical setting, the principle
approach is to access a patient cohort and compare it with a
representative healthy control cohort. An experimental protocol
is developed, which includes a medical assessment to quantify the
disorder as well as the recording of voice samples according to
clearly defined speech elicitation tasks. The medical assessment
provides a ‘ground truth’ description of the disease status, and
the voice recordings are then used to indirectly infer that
disease status.

Existing studies have regarded a multitude of neurological
disorders, which were reported to have a measurable impact
on voice. Those can be loosely grouped, for the scope of this
review, into psychiatric disorders, neurodegenerative disorders
and speech impairments. Psychiatric disorders encompass
depression (3), anxiety, obsessive-compulsive disorder (OCD),
post-traumatic stress disorder (PTSD) (5), schizophrenia (6),
and, to a certain extent, stress (7). Neurodegenerative disorders
include disorders leading to cognitive decline, such as
Alzheimer’s disease (AD) and mild cognitive impairment
(MCI) (8, 9), as well as a broader range of disorders that do not
primarily affect cognition, such as amyotrophic lateral sclerosis
(ALS) (10), multiple sclerosis (MS) (11), and Parkinson’s disease
(PD) (12). Lastly, there are several disorders, which affect speech
production itself, such as aphasia, dysarthria, and dysphonia.
Aphasia is the inability to comprehend or formulate language,
dysarthria emerges when muscle coordination for speech
production is impaired and dysphonia is when voice is hoarse
due to problems with the larynx.

1.2. Data Processing Pipeline
1.2.1. Speech Tasks
The human voice can be produced in various ways, such as
reading text, singing or laughing. Recommendations for the
technical details on how data for the acoustic assessment of
voice production in a clinical setup should be recorded, are
provided by Patel et al. (13). These guidelines are compiled by
an expert panel from the American Speech-Language-Hearing
Association (ASHA), and we strongly recommend consulting
these suggestions before setting up novel data collection efforts.

In research settings, participants are asked to produce specific
vocalisations, which elicit distinct information for comparable
analyses. Those speech tasks, which provide the basis for voice-
based disorder quantification, can be grouped into certain
categories for the scope of this review. Participants can be asked
to produce a sustained phonation of a phone, typically the
vowel /a/. Diadochokinesis is the ability to produce antagonistic
movements in quick succession, these are typically rapid
syllable successions in the case of speech tasks, such as pa-ta-
ka. Read speech categorizes tasks, in which written material
is provided to be read out aloud. Those materials can be
customized for a specific research question or standardised text
passages, for example ‘the north wind and the sun,’ which is
constructed to contain every phone in the English language. Free
speech encompasses tasks, which do at most provide an initial
association point, but then require the participant to associate
or behave freely. Examples are clinical interviews between a
physician and a patient or a ‘picture description task,’ in which
the patient is asked to describe a picture in their own words.

1.2.2. Feature Extraction
With the obtained data at hand, data analysis is performed next.
The typical data analysis pipeline consists of preprocessing the
collected data and then applying analytical methods to obtain
quantitative insights. The very first step here is to enhance
the quality of the raw audio signal by applying, amongst
others, denoising and dereverberation. For data preprocessing,
audio recordings are often filtered for segments containing
speech through voice activity detection (VAD). If multiple
speakers are present in one recording, speaker diarisation can
be applied to try to separate voice segments, for example, from
the patient and a doctor in a clinical interview setting. To
perform linguistic analysis, recent advances in automated speech
recognition (ASR) enable automatic transcription of the content.
With transcriptions, analysis can include, for example, aspects of
the semantic structure of the recorded speech [e.g., as done by
Tóth et al. (14)].

To make the raw audio signal accessible for automated
analysis, statistical derivatives of the signal, namely, features,
are extracted. To quantify voice, several features stem from the
acoustic aspects of the speech signal that account for the structure
of the vocal production system. Prominent and commonly
used acoustic feature sets in the community are the expert-
knowledge driven Geneva Minimalistic Acoustic Parameter Set
[GEMAPS, Eyben et al. (15)] on one hand and the large-scale,
general-purpose driven Computational Paralinguistics Challenge
[COMPARE, Weninger et al. (16)] feature set. Further, there are
features, which are tailored for disease-specific vocal dynamics
[e.g., (8) on AD]. Low et al. (17) provide a comprehensive
overview of the commonly used acoustic features derived from
speech in neurological disorder quantification. They regard the
GEMAPS features and provide a glossary on the regarded features
[based on Cummins et al. (3) and Horwitz et al. (18)], to which
we refer the interested reader.

Recent additions to those ‘traditional’ acoustic features were
introduced at COMPARE 2018 and 2019 (19, 20), and are based
on representations of the audio signal found through deep
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neuronal networks (see 1.2.3 Analysis), as well as a high-level
summary of speech segments through the Bag-of-Audio-Words
(BOAWS) approach. There are out-of-the-box toolkits to extract
features, most prominently PRAAT (21), OPENSMILE (22), and
VOICEBOX. BOAWS can be extracted using the OPENXBOW
framework (23), and learnt representations of the speech
signal can be extracted with the DEEPSPECTRUM (24) and
AUDEEP (25, 26) toolkits. Nonetheless, it is not uncommon to
write custom code to perform feature extraction.

1.2.3. Analysis
After preprocessing and feature extraction, data analysis is
performed. There are two general approaches for data analysis:
statistical analysis and predictive modeling.

For statistical analysis, extracted features are tested with
various statistical means to find significant correlations of
individual features for the tested conditions, which then express
changes in vocal characteristics. The sum of those identified
correlating features can ideally serve as general and reliable
indicators for different disorders, and are occasionally referred
to as ‘vocal biomarkers.’

In predictive modelling, on the other hand, machine learning
approaches are used to try and build statistical models, which
can discriminate between different categories or a general
scale, relevant for the regarded disease at hand. Common
machine learning models employed for categorical classification
are, support vector machines (SVM), the k-nearest neighbors
algorithm (k-NN), decision trees (DT), random forests (RF),
Gaussian Mixture Models (GMMs), and Hidden Markov Models
(HMM). If values from continuous scales are to be predicted,
regression models, such as linear regression, logistic regression,
support vector regression, and regression trees can be utilised.

If sufficient data is available, artificial neural networks (ANN)
can be employed as well, which promise a high performance
on large data sets. For ANNs, organizational architectures of
neuronal networks inspired by the dynamics in the human
brain, are constructed for specific tasks in specific domains.
In the field of disease recognition from voice, convolutional
neural networks (CNNs) and long short-term memory (LSTM)
networks are commonly used, see Cummins et al. (27)
for a review of recent developments and examples in the
field. Foremost, CNNs learn feature representations of input
spectrograms of the audio signal or directly from the raw audio
waveform. They either contain architectural elements to perform
a classification decision right within the network architecture or
other predictive modeling approaches are employed based on
those feature representations.

With COMPARE 2018 and 2019 (19, 20), learnt deep
representations are used as additional baseline feature sets.
With the DEEPSPECTRUM toolkit, CNNs pre-trained for image
recognition tasks, are used to extract abstract representations
of spectrograms from the raw audio signal. AUDEEP first
uses spectrograms from the input audio signal to train
encoder-decoder networks without providing class labels
(sequence-to-sequence autoencoder), specific to the data at
hand. The outputs of the trained encoder can then be used to

output features in the form of abstract representations based on
the spectrograms of the input signal.

1.3. Related Work
Previous reviews in the field have summarized the state of voice
analysis for individual disorders and a few reviews outlined
the state of research across several neurological disorders.
One prominent systematic review was performed by Low et al.
(17), in which they regarded a variety of psychiatric disorders
(depression, PTSD, OCD, bulimia, anorexia, schizophrenia,
hypomania, and anxiety). Therein, they synthesised which
acoustic features are prominently changed in voice in each
disorder. They further provided an overview of recent
developments and guidelines for data collection. Another
review was performed by Voleti et al. (28), which regarded
neurological thought disorders (such as AD, schizophrenia, etc.)
and created a taxonomy for speech and language features used.

However, the scope of the review of Low et al. (17) was
limited to psychiatric disorders and Voleti et al. (28) did
not perform a systematic literature search. In this context, a
comprehensive review that provides a broad overview of the
field of neurological disorder recognition from voice is needed.
Therefore, we extended to the scope of Low et al. (17) by also
including the neurodegenerative disorders ALS, AD, MCI, MS,
and PD. Further, we adopted a reproducible, systematic approach
by querying bibliographic databases.

1.4. Scope of the Review
The aim of this review is to provide a general overview of the
field of neurological disorder recognition from voice. The main
contribution is to survey how voice data is commonly collected
across psychiatric and neurodegenerative disorders, how data is
frequently analysed, and to highlight emerging trends. The novel
insights from this review will be helpful when setting up future
data collection efforts.

We do this by searching for publications on original datasets.
From these retrieved publications, we extract information on
the study setup, the speech tasks utilised, the analysis methods
used, and particularities in the voice recording setup (to uncover
emerging trends). Furthermore, we provide an overview of
significantly correlating acoustic features in common psychiatric
and neurodegenerative disorders by extending the work of
Low et al. (17). Figure 1 presents an overview of these outlined
topics addressed within this review.

2. MATERIALS AND METHODS

This systematic review was conducted according to the Preferred
Reporting Items for Systematic Reviews and Meta-Analysis
(PRISMA) guidelines (29).

2.1. Literature Screening
2.1.1. Information Sources/Identification
The following electronic databases were searched for relevant
articles: PubMed, Web of Science (Web of Science Core
Collection, version 5.35), and IEEE Xplore. Those databases
were queried in August 2020 with the following search term:
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FIGURE 1 | Overview of the topics addressed within this review. Studies

which recorded original datasets to assess neurological disorders from voice

were screened. From those, information was extracted to assess which

speech tasks are commonly employed, which methods are frequently used to

extract features, and which analysis methods are prevalent. In addition,

significantly correlating acoustic features in common psychiatric and

neurodegenerative disorders were summarised. The emerging trends to

record data in daily life and from multiple modalities were uncovered by

screening for particularities in the recording setup of the retained studies.

((speech OR voice) AND (dataset OR ‘data set’) AND <disorder
specification>). In place of <disorder specification>, a search
term for each regarded disorder was inserted:

• (‘mental health’ OR psychiatry OR psychiatric OR ‘affective
disorder’ OR ‘psychological disorder’ OR ‘mental illness’)

• (Anxiety)
• (Depress∗)
• (Stress)
• (‘Acute stress reaction’)
• (‘Obsessive-compulsive disorder’ OR OCD)
• (‘Post-traumatic stress disorder’ OR PTSD)
• (Schizophrenia)
• (Hypomania)
• (Bulimia)
• (Anorexia)
• (Alzheimer∗)
• (Dementia)
• (‘Cognitive impairment∗’)
• (‘Multiple sclerosis’)
• (Parkinson∗)
• (Aphasia).

The disorders to be regarded were primarily based on work from
other reviews on individual and multiple disorders. The aim
was to cover psychiatric as well as prominent neurodegenerative
disorders, stress as well as speech impairments such as aphasia.
No restriction on the date of publication was imposed.

Google Scholar is an ambivalent source for systematic
literature reviews. On one hand, it covers a broad range of
publications, especially those in conference proceedings, but
on the other hand, it is crawler-based instead of bibliographic
and more focused on exploitative instead of systematic search
behavior and does not allow bulk downloads of the returned
results (30). Therefore, we decided not to use Google Scholar

for the systematic search here but can recommend it as well as
explicit dataset search engines such as Google Dataset Search to
the interested reader to explore individual disorders and aspects
of the field.

2.1.2. Screening
Only articles published in English language were considered.
After duplicate removal, the first author (P.H.) screened the title
and abstract of all records. The focus was to include studies,
which report a newly recorded (‘original’) dataset, and whose
research was primarily based on voice and speech. Emphasis
was put on studies, which regraded acoustic features (omitting
purely linguistic analyses to keep the scope manageable). Studies
had to focus on the above-mentioned disorders and include
recording voice data from patients. The exclusion criteria for
screening were: (a) publications that used existing datasets
(i.e., did not record data themselves), (b) publications that
were not focused on the above-mentioned neurological and
psychiatric disorders, studies involving children, publications,
which focused on qualitative or quantitative interview analyzes as
well as literature reviews. 203 duplicates were removed with the
‘check for duplicates’ function in the referencemanagerMendeley
Desktop (version 1.19.6, Elsevier, Amsterdam, Netherlands); the
other bibliography organization of this literature reviewwas done
in Zotero (version 5.0.90, Corporation for Digital Scholarship,
Vienna, Virginia, USA).

2.2. Data Extraction
Data extraction was performed by P.H. with assistance of N.S.
Our approach was to extract a wealth of information to assess
common practices and to identify emerging trends in the field
later on. Data to be extracted consisted of information on
(a) the study setup (number of patients and patient assessment),
(b) the voice recording setup (additional modalities, recording
conditions: in everyday life or laboratory), (c) the speech tasks
(elicitation protocols) used in the study (elicitationmaterial used,
if applicable: performance comparison), and (d) analysismethods
employed (features extracted, analysis methods used: statistical
and predictive modeling and validation schemes).

In published studies, the focus is often put on analysis and it
is not clearly stated in the title or abstract, whether original data
was recorded or an existing dataset was used. The search term
(‘dataset’ or ‘data set’) in this systematic review was introduced to
search for original datasets However, some original studies might
not have been covered. Therefore, we conducted an additional
systematic search for literature reviews, which are focused on
acoustic analysis of individual disorders and synthesized their
identified features.

2.3. Acoustic Features
The aspect of which acoustic features are found to correlate
with which neurological disorder was addressed prominently by
Low et al. for psychiatric disorders (17). In the broader scope of
this review, we aimed to extend their synthesis to also incorporate
acoustic features of the neurodegenerative disorders addressed in
this review.
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Several recent reviews summarized significantly correlating
acoustic features in individual neurodegenerative disorders, and
we systematically screened an electronic database to retrieve
those. We queriedWeb of Science and used their ‘refine’ function
to retain only review articles published from 2015 on. The search
terms to retrieve reviews were:

• TS=((ALS) AND (speech OR voice) AND (analysis))
• TS=((Alzheimer∗) AND (speech OR voice) AND (analysis))
• TS=((Multiple sclerosis ORMS)AND (speechOR voice) AND

(analysis))
• TS=((Parkinson∗) AND (speech OR voice) AND (analysis))
• TS=((stress) AND (speech OR voice) AND (analysis)).

Title and abstract were screened and full-text articles were
retrieved for the matching candidates. Reviews that provided
syntheses in which publications were explicitly listed that
found correlating acoustic features with the respective disorder,
were retained.

With the publicly available source code1 and permission
provided by Low et al. (17), we extended their synthesis of
Figure 3 by adding data of the studies listed in the found reviews.
Studies identifying a significant positive correlation received
a score of 1, studies finding a significant negative correlation
received a score of –1 and non-significant or contradictory
studies were scored with 0. Only the most comprehensive
review on each disorder (clearly stating the studies found with
correlating acoustic features) was used so to cover a comparable
number of studies. Reviews used to extract data for extending
the figure were the following (9–12). The code to extend the
figure of Low et al. (17), and to plot all figures from this review,
can be found at GitHub2. The aspects of stress and speech
impairments were omitted from that overview to fully focus on
neurodegenerative disorders.

Furthermore, stress and speech impairments were found to
be very heterogeneous. Different manifestations of stress were
described by Van Puyvelde et al. (7) for physical, delirious,
emotional, and cognitive load and they presented an own model
for Voice and Effort (MOVE) to characterize those interactions
with voice. Speech impairments such as aphasia, dysarthria, and
dysphonia amongst others, stem from general dysfunctions of the
speech production systems, and for example, dysarthria can be
the consequence of stroke as well as MS.

3. RESULTS

The PRISMA flow diagram is depicted in Figure 2 and shows the
study selection process.

The search terms described in 2.1.1 were used to
retrieve 1,492 publications and ultimately, 43 studies
were included.

1https://github.com/danielmlow/review/tree/389fc387a91f2d38004775ba
7c94a970e3d1ae02
2https://github.com/Pascal-H/speech_analysis_for_neurological_disease_
recognition

After obtaining the final included studies, we noticed that the
disorders described in those studies fell into slightly different
categories than searched for in the search terms. The categories
that started to emerge after data extraction were the following: the
neurodegenerative disorders ALS, AD, and PD, the psychiatric
disorders bipolar disorder, depression and, to some extend, stress
as well as the group of speech impairments, such as aphasia,
dysarthria, and dysphonia. Our results and the discussion are
therefore based on those categories.

Table 1 presents the number of studies found for each disorder
and summary statistics on the number of participants (patients
and controls) for all studies of each disorder. Most studies
describing original datasets were included for PD followed by
stress. PD also has on average most patients included, while
for datasets on stress, usually no patients but only healthy
participants are recruited.

3.1. Speech Tasks
Figure 3 is a synthesis of the included studies and provides
an overview of the proportion of how often each speech task
was recorded for each disorder. To provide an overview of the
proportion of speech tasks represented in general, dependent on
disorder, Figure 3B is an inverse view on the data of Figure 3A.
Here, it is noticeable that speech tasks eliciting free speech (FS)
are used most frequently in the included studies. Furthermore,
that speech task category was used in all disorders analysed,
except for ALS.

Since studies could employ multiple speech tasks, the number
of speech tasks may differ from the number of original datasets
(Table 1). Roughly half of the speech tasks described were utilised
in datasets collected from PD patients, stress was represented
second often.

In comparison to the other speech tasks regarded in
this review, free speech and read speech tasks are less
strictly defined. Nevertheless, several typical setups could be
identified. Common setups for free speech tasks include (clinical)
interview situations (31–37), acted interactions (38–40), picture
description (41–44), letting participants talk about a specific
question or topic (45–47), or even smartphone conversations (48,
49), as well as specific memory and association tasks suitable
for quantifying AD (44). Read speech includes standardised (36,
42, 47, 50) and custom (51–60) sentences or text passages,
such as ‘the north wind and the sun’ (46, 61), ‘the rainbow
passage’ (62, 63), and other passages (64, 65) as well as disease
specific tasks, such as constructed sentences with emotionally
evoking words for depression quantification (31, 66). Especially
in PD, utilising sustained phonation of the vowel /a/ appear
to be popular [e.g., (60, 67–71)]. The most specific speech task
used was diadochokinesis (DD), which was only used in datasets
concerned with PD [e.g., (67)].

Data underlying Figures 3A,B, resulting from data extraction,
are included in Supplementary Tables S1, S2.

3.2. Feature Extraction
Figure 4A presents a synthesis of the feature extraction
toolkits used. PRAAT, OPENSMILE, and VOICEBOX emerged
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FIGURE 2 | PRISMA flow chart for study selection.

TABLE 1 | Overview of the included studies reporting on original (newly recorded)

datasets from neurological disorders to provide a survey over emerging trends in

the field.

Disorder # studies Patients Controls

Median (range) Median (range)

Parkinson’s 20 36 (3–1,513) 20 (8–64)

Stress 6 - 44 (4–60)

Depression 5 92 (12–224) 61 (12–397)

Speech impairments 4 12 (8–21) 13 (8–21)

Alzheimer’s 3 82 (71–214) 93 (82–268)

ALS 3 13 (11–25) 12 (11–13)

Bipolar 2 31 (10–51) 9 (9)

as commonly used out-of-the-box toolkits for feature extraction.
Roughly half of the included studies used custom code or did not
specify the toolkit used.

3.3. Analysis
3.3.1. Statistical Analysis
Figure 4B aggregates broad categories of analysis methods.
Statistical analyses, where individual features are tested for
significance, are relatively frequently used.

Figure 5 is an extended version of the synthesis created
by Low et al. (17). Acoustic feature categorisation is based
on Eyben et al. (15). Each cell represents a summary of
the studies with statistical tests performed for the respective
feature. The more studies were found for a respective feature,
the larger the cell. The found correlation of each study
determines the shading: if a feature correlates positively with
the disorder, the cell is shaded red. In case of a negative
correlation, the cell is shaded blue and if non-significant
findings are presented, the shading is gray. The final shading
of a cell is determined by accounting for all correlations for
all reported studies: the more intense, the more unanimous
the findings across all studies and the less intense, the
less unanimous are the aggregated studies. For each of the
added neurodegenerative conditions, a review was systematically
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FIGURE 3 | Sunburst charts describing the proportion of speech tasks and neurological disorders. (A) speech task categories on the inner circle, (B) disorders on the

inner circle. Only publications describing original (newly recorded) datasets were considered to provide an overview of emerging trends in the field. PD, Parkinson’s

disease; AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; SV, sustained vowels; DD, diadochokinesis; RS, read speech; FS, free speech.

FIGURE 4 | (A) Sunburst chart describing the proportion of feature extraction toolkits used and neurological disorders. ‘Custom’ describes studies which did not

mention the toolkit used or which utilised custom methods to extract features. (B) Sunburst chart describing the proportion of predictive modeling approaches used

and neurological disorders. Categorical classification: SVM, support vector machines; k-NN, k-nearest neighbors algorithm; DT, decision trees; RF, random forests;

GMM, Gaussian Mixture Models; HMM, Hidden Markov Models; Regression models: LR, linear regression; regression: other regression methods. ANNs, Artificial

neural networks; CNN, convolutional neural networks; LSTM, long short-term memory networks; PD, Parkinson’s disease; AD, Alzheimer’s disease; ALS, amyotrophic

lateral sclerosis.
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FIGURE 5 | Extended heatmap based on Figure 3 from Low et al. (17). In addition to psychiatric disorders, significantly correlating features from neurodegenerative

disorders were extracted and added based on recent reviews of the respective disorders. Features that are significantly higher in a psychiatric population than healthy

controls or that correlate positively with the severity of a disorder receive a score of 1 (red), features that are lower or correlate negatively receive a score of –1 (blue),

and non-significant or contradicting findings receive a score of 0 (gray). The mean is computed for features with multiple results. The cell size is weighted by the

number of studies. Features not studied in a disorder are blank. Additionally, the number of studies (n), of which the correlating features are extracted, is given for each

disorder. OCD, obsessive-compulsive disorder; PTSD, post-traumatic stress disorder; ALS, amyotrophic lateral sclerosis; ALS, amyotrophic lateral sclerosis; AD,

Alzheimer’s disease; MCI, mild cognitive impairment; MS, multiple sclerosis; PD, Parkinson’s disease.

identified, which synthesized several studies which reported
correlations of acoustic features with the respective condition.
The review used to extract studies for ALS was (10), the one for
AD and MCI was (9), the one for MS was (11), and the one for
PD was (12).

3.3.2. Predictive Modeling
The predictive modeling approaches pursued by the retrieved
studies are presented in Figure 4B. Classical (non-neural-
network-based) approaches are in the majority. Of those
approaches, support vector machines followed by regression
approaches, are most prominent. General artificial neural
networks (ANNs) and convolutional neural networks (CNNs) are
most widespread in the included studies. Neural networks can
consume the raw audio signal in various ways. The introduced

learnt representations with DEEPSPECTRUM and AUDEEP were
used in Baird et al. (61), and AUDEEP achieved the best results.
Often, features based on the mel-frequency cepstral coefficients
(MFCCs) are used as input to the studies that employ deep
learning approaches. MFCCs, simplified, aim to represent a
spectrum based on how speech is perceived by human hearing.
Mendiratta et al. (46), Khorram et al. (48), and An et al. (56)
use MFCCs to represent the speech signal for their deep learning
approaches. In addition, Khorram et al. (48), Baird et al. (61),
An et al. (56), and Prince et al. (72) provide hand-crafted feature
sets to the neural network, for example, Khorram et al. (48) used
eGeMAPS features as input for a ANN.

Table 2 shows datasets, in which furthermodalities in addition
to audio were recorded. Only included datasets for ALS, PD and
stress recorded multiple modalities.
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TABLE 2 | Included studies with original datasets, in which multiple modalities were recorded.

Year Condition Additional modalities

Garcia-Gancedo et al. (65) 2019 ALS Physical activity, heart rate variability (HRV)

An et al. (56) 2018 ALS Articulatory movement data

Wang et al. (53) 2016 ALS Articulatory movement data

Prince et al. (72) 2019 Parkinson’s Sensor data: Finger tapping, walking, memory

task

Barnish et al. (36) 2017 Parkinson’s Video, Respiratory Sinus Arrhythmia (RSA) and

Heart Rate (HR)

Gratch et al. (32) 2014 Depression Videos

Baird et al. (61) 2019 Stress Biosignals:

Blood volume pulse (BVP),

Skin conductance (SC)

Lefter et al. (38) 2014 Stress

TABLE 3 | Included studies with original datasets, in which data was collected outside a traditional laboratory setup: in everyday life.

Year # Subjects Condition Recording condition

Khorram et al. (48) 2018 60 Bipolar disorder Conversations during daily smartphone usage

Maxhuni et al. (49) 2016 10 Bipolar disorder Smartphone recorded constantly in the

background

Zhang et al. (45) 2020 222 Depression Web forms

Prince et al. (72) 2015 1,513 Parkinson’s User smartphones

Dubey et al. (55) 2015 Parkinson’s Smartwatch in group session for vocal

exercises

Palacios-Alonso et al. (40) 2019 32 Stress Smartphone

Garcia-Gancedo et al. (65) 2019 25 ALS Home monitoring and clinical site visits for

sensor data recording; audio only collected at

clinical site

Table 3 presents datasets, in which data was collected outside
a controlled laboratory setup (‘in everyday life’). Recordings here
were most prominently done via user smartphones or web forms.

4. DISCUSSION

In this review, we systematically screened for publications,
in which voice data for various neurological disorders were
recorded. Syntheses of included studies provide a high-level
overview of different disorders and insights into emerging
trends in the field. Previous work was extended to provide an
overview of which features are correlated with changes in voice
in psychiatric and neurodegenerative disorders.

The respective subsections in the discussion aim to provide
valuable guidance when performing such data collection. We
cover the aspects of which speech tasks are frequently used, which
confounders might be encountered, which feature extraction
toolkits are available, which analysis methods are common, and
which validation procedures should be employed.

4.1. Neurological Conditions and Speech
As presented in Table 1, systematic literature screening
returned the most original datasets for PD. Research done
in this domain was one of the earliest approaches in the

whole field of speech analysis for disease recognition (73)
and therefore, the high aggregation of datasets could be
reasonable. ALS and bipolar disorder, on the other hand, appear
to be relatively under-explored research areas in terms of
datasets published.

4.1.1. Speech Tasks
When regarding the numbers of speech tasks used for different
disorders as presented in Figure 3, it appears that the free speech
task category is most commonly used in existing datasets, closely
followed by read speech with only one dataset less. Both task
categories show broad heterogeneity and can be divided into
individual subcategories. In essence, however, free speech tasks
aim at capturing ‘naturally flowing’ speech, in which especially
hesitations and pauses can be valuable disease indications, for
example, when regarding AD or MCI (9). A very standardised
approach used across multiple disorders appears to be the
picture description task, utilised in PD (41), stress (42), and
AD (43, 44). Recently, Slegers and Filiou (74) reviewed several
studies that employ picture description tasks to describe their
potential in clinical practice to assess AD. Similarly, Mueller et al.
(75) assessed how picture description tasks can be used in
diagnosing AD and even potentially already inMCI. Speech tasks
prompting read speech cover a wide range of the participant’s
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language (in contrast to e.g., the task of the constrained sustained
pronunciation of vowels), while still having a fixed body of text
that is consistent for all participants.

A few publications ced the performances of different speech
tasks used in the same dataset. This can provide valuable insights
into which tasks appear to cover the best information on a
disorder status in an actual recording setup. However, only 6
of the included publications provide those analyses, therefore,
unfortunately, these reports can be only regarded as anecdotal.
Sakar et al. (57) and Karan et al. (51) each report in their
analysis on PD that performance on sustained phonations of
vowels performed better than read speech. Interestingly, (59)
recorded Czech speaking participants with and without PD and
regarded a neutral and a word-stress-modified reading passage
and found that the passage with word stress modifications
performed better. Further, they achieved their best performance
with a free speech task, in which participants had to recite a
poem from memory. Alghowinem et al. (31), Liu et al. (37), and
Zhang et al. (45) reported that tasks using free speech performed
better than sustained vowels and read speech for depression,
respectively. A recent study assessed differences in performance
of various speech tasks eliciting connected speech in patients with
early AD and MCI. That study, therefore, offers some practical
consideration for which particular free speech task might be best
suitable for these conditions (76). Analysing the performance of
speech tasks is valuable for the community, since choosing the
best performing speech task can reduce time effort and burden
imposed on the patient in a clinical as well as in an everyday-life
setup.

4.1.2. Confounders
In their review (section 4.2), Low et al. (17) portray several
relevant confounding factors, which should be considered and
avoided during data collection. Regarding rather symptoms and
problems and not only disorder rating scales promises to provide
a more fine-grained view of a patient and account for disorders,
in which more heterogeneous symptoms are present (77). A
central aspect that needs to be controlled for in voice analysis, are
confounding factors that influence voice production. Commonly
assessed factors are, for example, age, sex, and native language,
less common are comorbidities, race, education, height, weight,
and dialect. Especially medication is not frequently reported
but plays a crucial role since its side effects might influence
speech production.

4.2. Data Processing Pipeline
4.2.1. Feature Extraction Toolkits
Regarding the toolkits used for feature extraction, as portrayed
in Figure 4A, of all studies actually extracting features, almost
half used custom methods. In particular, in the field of PD,
datasets are described, which validate and explore the impact
of Lee Silverman Voice Treatment (LSVT) (78) to mitigate
voice-based impairments due to PD. Success in that treatment
routine is measured in increased vocal intensity [e.g., (63, 79)],
and therefore in those studies, features are very specific and
focused only on that outcome. As pointed out by Low et al. (17),

standardising feature extraction yields the benefit of better
comparability across studies, but specific approaches in which
anatomically informed and manually constructed features can
reflect an aspect of a disorder, which might not be covered by
standardised feature sets, can be valuable as well. Within the
scope of this review, relevant feature extraction toolkits were
presented. Studies using custom methods are hard to quantify
systematically since the performance obtained on one dataset
might not transfer well to another dataset. Further, it is worth
emphasising that, since studies included in this review are limited
to original datasets, the actual usage in all analytical studies
might vary.

4.2.2. Features Correlating With Neurodegenerative

Conditions
We extended the figure of the synthesis of significantly
correlating features for neurological disorders in Low et al. (17)
by adding the neurodegenerative conditions ALS, AD and MCI,
MS, and PD (Figure 5). Findings regarding the disorder-related
features are summarized as the following:

Amyotrophic lateral sclerosis: Chiaramonte and Bonfiglio (10)
conducted a meta-analysis and found that jitter and shimmer
correlate positively, and maximum phonation time (MPT)
correlates negatively, significantly with progression of bulbar
ALS. The predominantly initial spinal type of ALS, characterised
by muscle weakening, usually transitions to show some bulbar
involvement at a later stage, at which speech impairments are
surfacing. No significant correlations between F0 mean and
F0 variability were observed in the meta-analysis.

Alzheimer’s disease and mild cognitive impairment: Martínez-
Nicolás et al. (9) systematically reviewed altered acoustic features
in patients with AD and MCI. Decreased speech and articulation
ratio, as well as an increased number of pauses, are characteristic
for the early stages of AD. Fewer studies are concerned withMCI,
but increased pause duration and longer speech and phonation
time are reported. Language impairments are already present in
the prodromal (pre-symptomatic) stage and the challenge of the
field is to distinguish cognitive impairments due to age from the
onset of AD.

Multiple sclerosis: Noffs et al. (11) systematically screened for
studies describing speech impairments in MS and found, for
acoustic analyses, that a slowing in tongue movement causes a
lower speech and articulation rate. Further, glottal inefficiency
causes increased jitter and shimmer, and intensity variability and
symptoms are expected to worsen upon disease progression.

Parkinson’s disorder: Chiaramonte and Bonfiglio (12)
conducted a meta-analysis and concluded that jitter, shimmer
and F0 variability are significantly increased in patients with PD.
Increased F0 variability is likely to be caused by increased rigidity
in laryngeal and respiratory muscles and the associated inability
to keep the laryngeal muscles in a fixed position.

4.2.3. Analysis Methods
As depicted in Figure 4B, statistical analyses, where individual
features are tested for significance, are described along with
datasets for PD, speech impairments, stress, and depression. Lee
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Silverman Voice Treatment (LSVT) is usually assessed in such
manner (63, 79), and studies describing novel ways in collecting
datasets [e.g., (45)] rely on such statistical descriptions.

From the ‘traditional’ predictive modeling approaches,
support vector machines (SVMs) are most frequently used,
which is in line with the baseline of the Interspeech COMPARE
challenge (16). Regression approaches are suitable to map
disorder assessment scales (e.g., UPDRS for PD) but can
potentially struggle with small sample sizes and unbalanced
class distributions.

Approaches using neural networks are gaining popularity in
recent years and are discussed in the following review (27). The
recent COMPARE 2018 and 2019 (19, 20) introduced features
from deep representations as baseline methods in the domain
of computational paralinguistics. This approach was pursued by
Baird et al. (61) in the retrieved studies. In the other studies
utilising neural networks, various network architectures are
used. The way in which raw audio signals are processed and
fed into neural networks depends strongly on the employed
network architecture.

The overall goal of predictive modeling approaches is to
create models that learn to generalise and therefore could
classify voice samples of speakers, who were not present in
the original dataset. To evaluate how well suggested predictive
modeling approaches would perform at that task, the dataset
should be split up into train, validation and test partitions. The
train partition serves to adjust and fine-tune parameters of the
model and those adjustments are then tested on the validation
partition. The best performing model is then evaluated on the
test partition, a hold-out part of the dataset (or ideally even
a completely independent dataset with samples from the same
disorder). This hold-out part should provide a sound judgement
on how the model performs on data that it did not encounter
during training/validation. Speakers have to be separated through
all partitions since otherwise, the model can learn to identify
a user and not learn the underlying information about the
disease itself.

For imbalanced class distributions, which can be common
in datasets with neurological disorders, the unweighted average
recall (UAR) is the metric used in COMPARE and should be
used for comparing results across different predictive modeling
approaches. Low et al. (17) provide some further, helpful advice
for evaluation and validation of modeling approaches. Foremost,
they advocate for using nested bootstrapping for a more robust
performance estimation on small (< 100 patients) datasets.
Ideally, the train, validation and test partitions would each
represent the whole subject population of the dataset, but since
this is unlikely for smaller subject numbers, nested bootstrapping
provides a means to describe the mean or median estimate over a
multitude of evaluation runs.

4.3. Emerging Trends
Some of the studies included in this review used a non-
conventional clinical data recording setup. Those approaches can
be categorized in a) data collection performed ‘in everyday life’
and b) data collected from multiple modalities. Both categories

are introduced further in the following section to provide an
overview of these emerging trends.

4.3.1. Everyday-Life Data Collection
Traditionally, medical datasets for analysing the impact of
a disorder on voice were recorded in controlled recording
conditions with relatively small sample sizes, since access to
patients is a big obstacle to overcome and only possible through
clinical institutions. Predictive modeling approaches and results
from statistical analyses should be as general and flexible as
possible, and also work on novel participants, who were not part
of the initially recorded data. This requirement led to efforts
in recent years to collect large-scale datasets. In those datasets,
participants are often recruited not only at a clinic, but through
interest groups and networks for disorders (80). Data collection
itself is then being done remotely, in an offsite setup, through
mobile devices such as smartphones (45) and smartwatches (55).
These efforts are very promising to push the field toward a
real-world use case, in which enough data can be collected to
extrapolate models to work sufficiently well when confronted
with completely novel data.

4.3.1.1. Example Studies
In most clinical datasets, participants are only screened once
since there is an increased effort to track and re-invite
participants. Systems with which participants can provide several
samples over a given observation time (49), are a big advantage
and opportunity of large-scale data collection efforts. This can
provide valuable insights in researching longitudinal disease
courses [e.g., (48)], but recording sessions have to be designed
differently than clinical sessions to put particular emphasis on
adherence, therefore reducing user burden, and to motivate the
user to record multiple times.

The overview in Figure 3 presenting which speech tasks
are most commonly used in existing datasets, can provide
some considerations on which speech tasks can be prioritized
when user time is a considerable factor. Therefore, a legit
approach could be to design aminimalist, user-friendly recording
protocol, set up a small, clinical pre-study to validate that
the relevant indications for the disease to be assessed are
covered, and then use that minimalist protocol in a large scale
data collection effort. According to our systematic screening,
it depends on the disorder, but free speech and read speech
tasks are most commonly used and could therefore make up a
minimalist protocol.

After literature screening for this review, a publication was
released, which showcases the highlighted points for everyday-
life data collection (81). The authors managed to gather voice
samples via a web app of over 6,650 participants, of which roughly
10% reported to be depressed. They are piloting an extensive
survey with 17 speech tasks, which on one hand seems to impair
adherence (of 6,650, only 1,382 participants completed at least
two of the total four survey versions), but on the other hand,
can provide valuable insights into which speech tasks indeed
carry most relevant information. This goes to show that a careful
balance between user burden and the information to be collected
is to be considered.
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4.3.1.2. Practical Considerations
The effort to bridge the gap between research and a real-world
use case, however, is very high in the healthcare setup, since
stakes are exceedingly more grave than in other fields. For
example, providing an unsuitable product recommendation in an
e-commerce setup is intuitively less detrimental thanmislabelling
a potential patient in a healthcare setup, where diagnosis or
therapy decisions might be impacted. Therefore, even in large-
scale data collection efforts, representing a whole population of
potential later users is still a challenge, but a big step toward
the right direction. Before generalising to everyday-life use cases,
rigorous validation of experimental results is required, including
quantification of changes in speech with time or treatment, as
emphasised by Robin et al. (82).

Other challenges in large-scale data collections are non-
standardised recording conditions. In controlled, clinical setups,
high-quality microphones and even recording booths are used
[e.g., (31)], but when collecting the data remotely from the
user, microphone types might vary along with the variety of
different smartphones on the market [e.g., (45)]. A few studies
reported experiences and ideas to combat those issues [e.g., (83)].
Additionally, knowing beforehand which features are expected to
be affected by the disorder to be studied can help when trying to
adjust the data analysis pipeline respectively [e.g., (17)].

Obtaining reliable ground truth labels is another relevant
aspect when participants are not recorded in a controlled clinical
setup. Usually, participants are asked to self-annotate their data.
To ensure a sufficient quality for these labels, it has to be ensured
that participants can properly understand the applied labels
themselves, and that the labeling process should be made as
straightforward and effortless as possible (84).

A further consideration for large-scale data collection efforts
is recruitment and user adherence. In clinical setups, cohorts are
usually available through patients who are regularly treated in the
clinic itself. If those patients are usually belonging to a rather
elderly cohort (e.g., PD), specific considerations are required to
ensure that smart devices to be used for large-scale data collection
can be intuitively used and do not cause user frustration (72).
To obtain data from a larger number of patients, the available
cohort at a clinic might not be sufficient. Interest groups and
networks for particular disorders can be a viable source to recruit
patients (80), and healthy participants can be reached through
online marketing or platforms such as Amazon Mechanical Turk
[e.g., as done in R’mani Haulcy et al. (85)].

Another consideration and challenge for large-scale data
collection is the identification of unique users. Machine learning
systems in the voice analysis domain can easily overfit when
no clear speaker separation is done. Since in anonymous data
collection efforts [e.g., Zhang et al. (45)], it cannot be ruled out
that the same speaker donates multiple samples, evaluation of
the system’s performance might be biased. Recruiting a clear set
of speakers can be a solution, or using a setup in which the user
has to register with a unique ID [e.g., via email address, Hecker
et al. (86)].

4.3.1.3. Data Privacy
A major and not negligible caveat in data collection approaches
in everyday life is that the collected voice data might contain

identity revealing aspects, and therefore, potential misuse
could bear severe consequences. Especially in longitudinal data
collection efforts, the longer the data collection effort continues,
the more information from a patient is being collected, and the
likelier a potential breach could be.

In a commercial setting, the technology of voice assistants
seems promising at first glance to be utilised to quantify the
status of disorders from voice. Voice assistants like Amazon Echo
and Google Home are widespread and people interact readily
with them through ‘free speech’ prompts. Recently, some research
has been done to find ways in which health-related processing
of voice assistant queries can be implemented in a privacy-
preserving way [e.g., (87, 88)]. However, privacy considerations
on medical (voice) data collected in everyday life are a magnitude
higher in the medical context than in private usage scenarios,
and therefore, the technology is not yet widely used for medical
voice collection yet (89). The majority of data collection efforts in
everyday life identified within this review nevertheless focuses on
dedicated implementations: custom apps on the smartphone (48,
49, 55, 72) and web sites (40, 45, 65). That way, data is not
being processed or residing on the third party system of a
voice assistant.

4.3.2. Multiple Modalities
Another trend is the collection of data from multiple modalities.
Predictive modeling approaches can gain performance when
using more than a single modality, and this approach is
known for some time already (90). In PD for example, gait
is prominently affected besides voice (91). In affect-related
disorders, such as major depression and bipolar disorder, video
as an additional modality can carry complementary information
on expressed emotion. The prominent Audio/Visual Emotion
Challenge andWorkshop (AVEC) addressed this aspect: featured
sub-challenges in which audio and video data or features from
clinical interviews (92) and interviews with virtual agents (93, 94)
from the Distress Analysis Interview Corpus [DAIC, (32)] are
provided as well as data on bipolar disorder (95). In addition,
setups in which data is collected from the smartphone’s camera as
additional video input within a commercial setup are nowadays
easily conceivable (96). The number of smart devices with sensors
is constantly growing and therefore this topic has also been
increasingly reflected in more recent dataset publications in this
review (40, 48, 65, 72).

4.3.2.1. Example Studies
The datasets we identified, which used multiple modalities,
were recorded from voice data from patients with PD, stress,
and ALS. Interestingly, apart from the traditional pairing of
voice and video [as in Gratch et al. (32) for depression], some
other modalities in combination with speech emerged. For PD,
researchers used sensor data to additionally assess the motoric
capabilities of the patients through a commonly used finger
tapping task, a walking task, and a memory task (72). In another
dataset, video, respiratory sinus arrhythmia, and heart rate
data (36) were combined. Since PD affects motor coordination,
assessing those modalities can yield some benefit, especially
since (72) was done in a remote care setup.
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Similarly, ALS affects muscle coordination and the studies
using additional modalities to voice recorded physical activity
and heart rate variability (65) as well as articulatory movement
data (53, 64).

For stress, datasets were retrieved, which recorded biosignals
such as blood volume pulse and skin conductance (61), as well
as video data (38). Video data is frequently used to assist in the
quantification of the expression of affect and therefore might also
yield valuable additional information in a setting to elicit stress.
Biosignals, such as skin conductance and blood volume pulse,
are traditionally used to predict stress, and the attempt to infer
them from the audio signal could pave the way to detect stress
unobtrusively by voice only.

4.3.2.2. Adapting the Data Processing Pipeline
When recording and analysing data collected from multiple
modalities, however, the complexity of the recording setup and
analysis pipeline is increased, since the different modalities need
to be fused at some point in the analysis pipeline. If features
are fused before predictive modeling algorithms are employed,
the approach is termed ‘early fusion,’ if multiple models for the
respective modalities are created and their outputs are fused, it is
termed ‘late fusion.’

In practice, increased complexity when conducting a study
to record and analyse data as well as the need to still fully
understand the effect of disorders on the voice modality are
likely the reasons for focused datasets. But in line with the
emerging trend toward everyday-life data collection, multimodal
approaches could gain further popularity. When utilising
participants’ smartphones for data collection, their sensors
already provide intrinsic additional modalities such as video,
location, movement, and even device usage data. On the other
hand, relying only on the voice modality could in practice lead to
applications in settings where only that modality is available, for
example when assessing phone calls (48).

4.4. Future Work
Based on the systematic screening of various original datasets
from voice recordings of neurological disorders, we further
highlight the following emerging trends. Future data collection
endeavors will benefit prominently from collecting data in
an everyday-life setup. Recording data in a clinical setup
is a good means to explore specific nuances and aspects
(e.g., symptoms) of a disorder further while recording data
in everyday life enables insights into longitudinal disorder
manifestation. Recording further modalities apart from audio
can boost the performance of predictive modeling approaches.
More research should be done on multi-modal data processing
to balance the benefit of additional information and the cost of
increased complexity.

5. CONCLUSION

To summarize, a variety of speech tasks are used in clinical
practice, and usually, multiple tasks are recorded within one
study to ensure that the relevant, distinct information for

comparable analyses are covered. When regarding the common
analysis methods utilised, we observe that custom feature
extraction methods are quite prominent. However, established
feature extraction toolkits within the research community
yield the benefit of better comparability of the analysed
features across different studies. Recently, learnt representations
from deep learning toolkits are finding their way into the
research community and offer an addition to the standard
acoustic features.

The main contribution of this review is to provide a general
overview of the field of neurological disorder recognition from
voice. We emphasise how data collection efforts are undertaken,
which trends emerge in the field, and aim to provide the readers
with valuable practical insights. Lastly, we extend the overview
of significantly correlating features for psychiatric disorders
from Low et al. (17) and added prominent neurodegenerative
disorders. This overview is particularly helpful when planning a
data collection approach for a respective disorder to see which
manifestations in voice are to be expected and to see with which
speech task these could be captured.
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It’s time to change our
documentation philosophy:
writing better neurology notes
without the burnout
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and Daniel B. Hier2,3

1Department of Neurology, University of Texas Medical Branch, Galveston, TX, United States,
2Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, IL, United
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Succinct clinical documentation is vital to effective twenty-first-century
healthcare. Recent changes in outpatient and inpatient evaluation and
management (E/M) guidelines have allowed neurology practices to make
changes that reduce the documentation burden and enhance clinical note
usability. Despite favorable changes in E/M guidelines, some neurology
practices have not moved quickly to change their documentation
philosophy. We argue in favor of changes in the design, structure, and
implementation of clinical notes that make them shorter yet still
information-rich. A move from physician-centric to team documentation can
reduce work for physicians. Changing the documentation philosophy from
“bigger is better” to “short but sweet” can reduce the documentation
burden, streamline the writing and reading of clinical notes, and enhance
their utility for medical decision-making, patient education, medical
education, and clinical research. We believe that these changes can favorably
affect physician well-being without adversely affecting reimbursement.

KEYWORDS

electronic health records, documentation burden, clinician well-being, evaluation and

management coding, medical decision-making

Introduction

A crisis in physician well-being and the mounting burden of clinical documentation

drives the need for neurologists to change their documentation philosophy. Burnout is

prevalent among all healthcare professionals (1) and neurologists in particular (2, 3).

Documentation is a known contributor to burnout (1, 4, 5). An estimated 40% of

physician time in the electronic health record (EHR) is devoted to documentation (6).

In 2015, the American College of Physicians (7) emphasized the importance of

writing “concise, history-rich notes” that prioritize information relevant to medical

decision-making (MDM). Responding to physician complaints about the burden of

EHR documentation, the AMA Current Procedural Terminology Editorial Panel

recommended changes to evaluation and management (E/M) documentation

guidelines that would reduce the clerical burden (8). On January 1, 2021, the Center
01 frontiersin.org
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TABLE 1 Suggested changes in documentation philosophy.

Old philosophy New philosophy

Bigger is better Less is more

Short but sweeta

If it is not documented, it did not happen Avoid excessive documentation of
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for Medicare and Medicaid Services (CMS) updated E/M coding

guidelines for outpatient visits that would allow physicians to

select a billing level based on the time or complexity of MDM

and would reduce documentation requirements for the history

and physical examination (including the unpopular bullet

point requirements). These requirements were seen as both

tedious and time-consuming. Furthermore, they were seen as

reducing the time available for direct patient care (6). CMS

plans to extend these changes to the inpatient setting (hospital

inpatient, hospital observation, emergency department, and

cognitive impairment assessment) by January 1, 2023 (9).

Time-based coding allows physicians to bill for time spent

outside the patient visit on the day of evaluation, even if the

patient is absent (chart review, documentation, orders,

coordinating care, etc.) The complexity of medical decision-

making (the main driver of billing level) is determined by the

number and complexity of the problems addressed, the risk of

complications (morbidity and mortality), and the complexity

of the data reviewed. These changes simplify setting the

correct level of service for billing purposes. For example, a

patient with migraine headaches who is started on single-drug

therapy has a low level of MDM; a patient with new-onset

seizures who needs adjustments of anti-epileptic medications

and imaging has a moderate level of MDM; and a patient

with epilepsy and poorly-controlled seizures, a structural brain

lesion, and who needs neuroimaging, extended

electroencephalographic testing, and a surgical consultation

has a high-level of MDM.

Initial studies suggest that these CMS changes will enhance

reimbursement for Evaluation and Management (E/M) services

(10) provided by non-surgical specialties but not by surgical

specialties (11). Improvements have not yet been noted in

time spent documenting in the EHR (10). Furthermore, to

date, no study has determined that these changes in

documentation guidelines have lightened provider

documentation burden.

normal findings

Document all pertinent negative findings Focus on abnormal findings

Import labs, radiology, allergies,
medications, family history, and social
history into every note

Maintain histories in one up to
date central location

Longer notes with more bullet points are
reimbursed at higher levels

Reimbursement is focused on
medical decision-making

Documentation is the responsibility of the
physician

Documentation is a team
responsibility

Each physician is free to document as they
please

Let’s agree on a uniform approach
to documentation

Patients will not read our notes Patients can benefit from reading
our notes

Notes are for patient care Notes can be used for research
and patient care

aEspecially in neurology where the history of the event and quantitation of

symptoms is often more important to make the diagnosis than MRI imaging

and other testing. A detailed, chronological description of symptoms is

critical to diagnostic accuracy in neurology.
Why are our notes so bulky?

In the US, the volume of clinical documentation has

increased over the past two decades. It is estimated that US

clinicians do three times more documentation than clinicians

in other medically advanced countries (12). The are several

reasons for the bulkiness of our clinical notes in the US.

• We have been reimbursed more for bulkier notes. Since 1995,

the level of service and reimbursement was linked to the

number of coding elements (also known as “bullet points”)

documented (9).

• It’s too easy to add bulk. Copy and paste functionality in

electronic health records makes it easy to add bulk.

Hyperlinks make it possible to add laboratory results,
Frontiers in Digital Health 02

25
radiology findings, problem lists, medication lists, and

other chart elements to a note with a single mouse click.

One study of over 26,000 physician notes found that only

18% of the text was entered by the physician, 46% was

copied from elsewhere in the EHR, and 35% was imported

from other sections of the EHR (13). Copy and paste may

document care that was never rendered or examinations

that were never performed (14).

• We are trained to document negative findings. As Sinsky has

observed, we need to move away from the dictum that “If it

wasn’t documented, it wasn’t done” (15). Or, as Postal has

wondered, do we have the time and energy to document all

the negatives or should we stick to the salient positives (16)?

• We continue to document based on reimbursement and

tradition rather than scientific evidence. In their essay

subtitled “A farewell to the review of systems,” Barry and

Tseng argue for deleting the traditional review of systems and

that documentation should be based on scientific evidence (17).

It is time to change our
documentation philosophy

A change in documentation philosophy is needed to slim

down bloated notes that are hard to read, hard to write, and

often inaccurate (Table 1). Copying and pasting text from one

note into another fosters bloat, redundancies, and inaccuracies.

When long pre-completed templates are used to document the

neurological exam, parts of the neurological examination may

be documented as normal when these parts were not
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examined. These documentation practices open the door to

litigation. When test results (imaging, electroencephalography,

electromyographic, etc.) are added to clinical notes, they should

be addressed, discussed, and made relevant to the MDM.

Documentation needs to be clear, accurate, and concise. The

emphasis should be on optimal patient care, not maximizing the

billable level of care. Neurology departments need to discourage

clinicians from the redundant documentation of information.

We argue that certain types of medical data (e.g., social

history, past medical history, allergies, surgical history,

medication lists, laboratory results, and radiology results) are

best housed in a central location in the EHR and should not

be added to a note unless relevant to MDM. Clinicians need

to be trained to document allergies, medications, past medical

history, and social history in the appropriate place in the EHR

and not redundantly in each note. This practice has multiple

advantages: it allows patient care team members to share the

work of documentation, it reduces duplicate work, and it

reduces multiple and inconsistent versions of the same data.
We can build consistency and
accuracy of documentation through
standardized notes with quantitative
longitudinal measures

Notes that have a consistent structure across the

organization make notes easier to read and more predictable.

Having a single consolidated note template for each

department or subspeciality facilitates note maintenance.

Detailed documentation of the history or the condition

needed by a subspecialist can be collapsed in the EHR or

linked elsewhere to not overwhelm the generalist user. In

addition to text, developing innovative ways to visualize

changes quantitatively in symptoms over time and their

response to treatments can enhance the clinician’s perspective

on the disease course. An additional benefit of a single

template is the option of providing organizational updates or

reminders to all template users.

The general SOAP (subjective-objective-assessment-plan)

format has been well accepted. With the growing emphasis on

MDM, the APSO (assessment-and-subjective-objective) format has

grown in popularity. We additionally recommend the following:

• Create an institutional culture that values concise

information-rich notes.

• Encourage clinicians to use collapsible sections in their notes

to prioritize which sections are visible.

• Standardize the adoption of the SOAP or APSO note format

at the organizational level.

• Encourage providers to document pertinent negative and

positive findings through direct entry into the EHR rather

than by template or copy and paste.
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• Discourage providers from using hyperlinks in the EHR to

add laboratory and ancillary testing results to notes with

unnecessary redundancy when not relevant to MDM.

• Encourage providers to focus on adding those findings to

notes that are pertinent to medical decision-making.

• Implement “vanishing text” that allows clinicians to view

findings in their notes to support note creation and have it

deleted when the note is finalized.

• Discourage the use of pre-completed examination templates

with all findings marked as “normal.”

• If radiology or other reports are incorporated into a note,

encourage the insertion of the “Impression” paragraph only.

• Look for help from the facility informatics department to

create space-saving ways to represent bulky laboratory

results as “fish bones” and other laboratory diagrams.

• Use hyperlinks, rather than text insertion, to connect notes to

discrete data such as advanced directives or resuscitation

status.

• Develop and implement policies that control copy and paste

functionality, including highlighting of text that has been

pasted into the note (14, 18).

• Use EHR metrics such as note length, time in chart, etc., to

track changes in documentation practices by clinicians.
Let’s engage providers and
leadership in positive changes

The implementation of these recommendations depends

upon proper organizational support. The engagement of key

stakeholders, including departmental leadership, compliance

officers, billing, coders, clinicians, and clinical informaticians,

is critical. Principles and objectives for documentation change

must be developed, agreed upon, and implemented.

Documentation metrics are crucial to evaluating project

success. Key documentation metrics include clinician time in

the EHR, clinician time spent documenting outside of regular

work hours, and time spent writing notes (19). We

additionally suggest tracking mean note length over time.

These metrics can demonstrate project success tangibly to

leadership and clinicians.

The use of sprints or PDSA (plan-do-study-act) cycles can

address implementation barriers before and after project roll-

out. Departmental support is critical to assisting physicians in

adjusting to new documentation methods. Iterative sprints

and cycles are recommended to foster change. Although some

documentation changes are driven by CMS, other regulatory

agencies might have specific documentation requirements that

require compliance, such as quality measures related to stroke

(20). Interdisciplinary teams tasked with documentation

change must address documentation compliance issues for

each sub-specialty.
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Let’s get ready for OpenNotes

OpenNotes is coming. Federal legislation under the 21st

Century Cures Act provides patients access to notes without

delay and charge by April 5, 2021 (21). The OpenNotes

initiative seeks to provide patients with access to their medical

records (22) to improve their understanding of their condition

and give patients more control of their treatment plan. Open

communication with the patient during the visit combined

with succinct understandable notes supports co-ownership of

medical problems by patient and clinician (23–28). Long-term

outcomes from the OpenNotes initiative on patient

satisfaction and patient condition are still being evaluated.

As neurologists, we must recognize that patients will be

reading our notes. For some sensitive conditions, this may be

problematic. For example, in neurology, we often evaluate

patients with functional disorders who have a limited

understanding of the causes and nature of their condition.

Neurologists must be open and should provide transparent

communication with the patient at the time of evaluation and

while creating their notes. Patients with functional disorders

may find terms such as “non-physiological” or “no neurological

correlate” confusing. These patients deserve a clear explanation

of their symptoms in the office and in our notes (29, 30)

Lastly, concerns on disclosure and result interpretation of

sensitive testing for diseases such as Alzheimer’s disease have

been raised, and efforts to develop ethical and patient-centered

policies for disclosure are needed (31).
Let’s embrace team-based
documentation

The goal of team-based documentation is to offload some of

the documentation work from the physician to other team

members. Team-based documentation may variably involve

scribes, nurses, pharmacists, medical assistants, or artificial

intelligence-based dictation devices (32). Some team-based

care models distribute specific documentation tasks such as

recording allergies, documenting past medical history, and

reconciling medication to specific team members (33). When

these tasks are done before the initial interaction between

patient and clinician, clinician time and effort are conserved.

Other team-based documentation models use scribes to free

up clinician time at the point of patient contact (32).
We can flex our documentation to
support education

Clinical documentation is central to the education of

medical students, residents, and fellows (34). Although
Frontiers in Digital Health 04

27
uniformity in documentation templates and methods is a

stated goal, it is important to flex documentation expectations

according to the level of training. Although it is reasonable to

expect a medical student to document their neurological

examination and history in great detail, the same is not true

for an advanced fellow or experienced attending neurologist.

While longer notes are de rigeur for medical students, we

expect experienced clinicians to write concise notes with few

notations about normal findings. Still, we should encourage

medical students to focus on succinct formulations of the

neurological examination and history. Academic institutions

can take advantage of current E/M guideline changes to

encourage trainees to document concisely, to prioritize MDM,

and to avoid adding uninformative “bullet points” (35, 36).

Documentation metrics can guide trainees and their mentors

to adopt the best documentation strategies.
Clinical notes can support research

Although the primary purpose of physician notes in the

EHR is to document care rendered, to support the billing for

services provided, and to serve as a medical-legal record;

electronic health records and free text physician notes have

shown great potential for clinical research (37–39). For

example, EHRs are being used to track disease severity, and

progression in cohorts of patients with amyotrophic lateral

sclerosis and multiple sclerosis (40–42). Natural language

processing and other artificial intelligence algorithms are

unlocking latent value in EHRs. Unlike skimpy information-

poor notes or bloated information-poor notes, concise

information-rich clinical notes can be of great value for

clinical research.
Conclusion

For over two decades, our clinical notes have grown too

long. They are a significant burden and contribute to

physician burnout. This Perspective describes

recommendations to simplify documentation that can be

implemented because of changes in CMS guidelines for

evaluation and management coding and billing. We argue that

it is time to rethink our documentation to enhance

communication, improve patient care, and reduce physician

burnout. Although more work is needed to find optimal

strategies to reduce the documentation burden, it is not too

early to start creating notes that are easy to write and read yet

are still information-rich. Bulky notes waste the time of the

writer and the reader alike. Evidence is growing that when

concerted efforts are made to simplify documentation,

physician satisfaction with the EHR improves, and burnout is

reduced (43–45).
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Poor lifestyle leads potentially to chronic diseases and low-grade physical and
mental fitness. However, ahead of time, we can measure and analyze multiple
aspects of physical and mental health, such as body parameters, health risk
factors, degrees of motivation, and the overall willingness to change the
current lifestyle. In conjunction with data representing human brain activity,
we can obtain and identify human health problems resulting from a long-
term lifestyle more precisely and, where appropriate, improve the quality and
length of human life. Currently, brain and physical health-related data are
not commonly collected and evaluated together. However, doing that is
supposed to be an interesting and viable concept, especially when followed
by a more detailed definition and description of their whole processing
lifecycle. Moreover, when best practices are used to store, annotate, analyze,
and evaluate such data collections, the necessary infrastructure development
and more intense cooperation among scientific teams and laboratories are
facilitated. This approach also improves the reproducibility of experimental
work. As a result, large collections of physical and brain health-related data
could provide a robust basis for better interpretation of a person’s overall
health. This work aims to overview and reflect some best practices used
within global communities to ensure the reproducibility of experiments,
collected datasets and related workflows. These best practices concern, e.g.,
data lifecycle models, FAIR principles, and definitions and implementations of
terminologies and ontologies. Then, an example of how an automated
workflow system could be created to support the collection, annotation,
storage, analysis, and publication of findings is shown. The Body in Numbers
pilot system, also utilizing software engineering best practices, was
developed to implement the concept of such an automated workflow
system. It is unique just due to the combination of the processing and
evaluation of physical and brain (electrophysiological) data. Its
implementation is explored in greater detail, and opportunities to use the
gained findings and results throughout various application domains are
discussed.

KEYWORDS

best practices, brain data, data lifecycle, health information system, health-related data,

physical data, workflow, ontology
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1. Introduction

Poor lifestyle leads potentially to chronic diseases and
deteriorating physical and mental fitness. To overcome (at
least partly) these troubles during aging, prior collection and
evaluation of various health-related data accompanied by
health interventions for those interested in them could help
this unpleasant situation, which mainly affects developed
societies. We can measure and analyze multiple aspects of
physical and mental health, such as body parameters, health
risk factors, degrees of motivation, and the overall willingness
to change the current lifestyle in advance. In conjunction with
data representing human brain activity, we can obtain and
identify human health problems resulting from a long-term
lifestyle more precisely and, where appropriate, improve the
quality and length of human life.

However, the possibility of interpreting various health-
related data and providing subsequent reasonable health
interventions means first defining and collecting a large
amount of various health-related data that can be processed
automatically. It is impossible without using the results of
standardization efforts and best practices applied across
various domains of health-related data. These efforts and
practices significantly impact the entire data collection, storage,
processing, and interpretation lifecycle. As a result, these
(infrastructure-related) issues need to be addressed, presented,
and discussed in the scientific communities so that the
experimental work is better reproducible and the data collected
can be better analyzed across domains and scales. As technical
solutions (technical means to collect, organize, store, annotate,
and analyze data) are becoming less of a barrier, and it
depends increasingly on knowledge and acceptance of partial
solutions, existing standards, and best practices in different
domains, this article offers a synthesis of some existing
approaches to contribute to the interpretability of collected
data and their actual use for communication and possible
timely preventive adjustment of the lifestyle of individuals. It is
done by providing an overview of some current “standards”
and best practices and their integration into a proposed solution.

Health-related data accompanied by metadata are
inherently heterogeneous; they are organized and stored in
various structures, formats, and data repositories. Related
metadata contains various written points ranging from precise
data descriptions to only stated basic information based on
experimenters’ requirements and task circumstances. Also,
metadata can be structured differently and stored in various
formats, making the processing or recreating similar
experiments somewhat tedious. As a result, retrieving the
knowledge from these kinds of data is quite challenging (1).
However, it is still no exception that metadata is written down
on paper as notes without any used standards.

Recently, the popularity of Cyber-Physical Systems (CPSs)

has been on the rise. The thought that wearables, small
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electronic devices (a fitness armband like FitBit is a good

example of this) attached to the surface of the skin, collecting

large quantities of medical data (with a sufficient degree of

data quality and precision) and enhancing the lifestyle of a

person, can be used on a day-to-day basis was adopted by

many people. These CPSs can collect large amounts of health-

related data. However, each of these CPS devices collects the

data in various (generally self-made) data formats, for

example, via connection to a Smartphone of the user (2).

Sharing collected data in a thoroughly described fashion is

mainly left to the experimenter’s best knowledge; it is up to

the experimenter to assess how thoroughly or well-defined the

objectives should be. The need to know how thoroughly the

collected data should be described for a different party to

reproduce the results is often to an open interpretation, which

generally leads to different results. Some standards and

conventions that apply to health-related data can also be

applied to brain data. In our studies and this paper, we focus

on the electrical activity of the human brain, i.e., on

electroencephalography (EEG) and event-related potential

(ERP) data. To bring some widely available standards into

this domain, organizations like INCF have proposed how

neuroscience data could be collected and stored, so they could

be easily accessed and shared across the community (3).

This document emphasizes the best practices regarding the

data lifecycle process, i.e., the collection, annotation, analysis,

interpretation, and publication of data/results and offers them

to a broad scientific audience. Our suggestions will cover the

subjects ranging from the original experiment, data collection,

storage, and description to processes on how to best store and

publish the results. The benefit of a wider audience taking a

look at one’s raw data and findings might lead to a healthy

debate about the achieved goals (highlighting errors or

discovering new findings in the already collected data), as

highlighted in (4). This was, for example, emphasized in win-

win data sharing in neuroscience (5); there can be a lot of

hidden benefits to being discovered when leading a procreative

discussion of results. The data need to be stored to be

understandable and easy to interpret to make the discussion as

frictionless as possible. The general rules of practical data

sharing that can be applied to either neuroscientific or physical

health data were also mentioned in (6).

Inside the growing field, such as neuroscience, giving such

“order” to the collected data is mostly used through the use of

a dynamic “ever-evolving” ontology for the current subject (7).

These ontologies precisely define the used terms inside the

application domain, which again help in easier understanding

and reuse of the once-collected data with new research goals.

The dynamic ontology will help in this regard that the defined

terminology may be used across the scope of multiple subjects

and help thus to answer a variety of questions (8). Also, for a

truly dynamic ontology, it is necessary to ensure how the

changes will be propagated or added in the already existing
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whole (9). There were already proposed multiple ways how it can

be done, for example, through the usage of dynamic web

ontology language (dOWL) (10).

In this document, we would like to show and help visualize

our best practices focusing on all aspects of creating an

experiment and help with the definition and categorization of

results/findings through the use of widely used knowledge

models (in this specific case, through a dynamic ontology)

and publication of the results in an easy-to-understand way.

Finally, various research groups worldwide can either discuss

these findings or reuse these conclusions for their own

specific research without the need to reinvent the wheel.

Since most of these steps seem too abstract, we would like to

show a possible way on how such a data lifecycle might look,

together with practical examples and underlying data

published in widely accessible journals that followed these

above-mentioned best practices. In this paper, we will cover

the subjects ranging from experiment design, collection of

generally heterogeneous data (e.g., heart rate, glucose, body

proportions, physical strength with electroencephalography

data, and many more), and the description of collected data

(for example, by using ontologies) to the publication of both

the findings and underlying raw data for a further

verification/analysis done by the broad scientific audience.
2. Materials and methods

In this chapter, we will focus on showing the current state of

the art and the technological background that was utilized

during the conceptualization and development of the module

architecture utilized by an information system for health-

related data collection.
2.1. State of the art

The lifecycle (Section 2.1.1) of any entity (such as software or

health-related data) should follow key principles (Section 2.1.2).

We recognize the functional aspects (processing) and data

(objects, subjects) stepping into the process. The descriptions of

data and their organizations are various, and we prefer

terminologies (Section 2.1.3) and ontologies (Section 2.1.3)

when it comes to health-related data. The data properly

identified and described are stored in the standardized and

interchangeable data format (Section 2.1.4).

2.1.1. Software engineering methodologies and
data management lifecycles

The organization of software development and data

processing as critical activities to achieve work effectiveness

and efficiency has led to defining development methodologies

and software/data lifecycles. These methodologies and
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lifecycles also create a primary platform to achieve another

challenge—open, fair, and reproducible science.

Agile development methodologies have followed waterfall

software development methodologies (11). At the same time as

the agile methodologies, the era of big data began. It took

significant importance in the last decade when cheap data

storage and computational power increased exponentially. Agile

software development has evolved into a complementary set of

practices called DevOps (12–14), where software development

(Dev, Software Engineering), IT (technology) operations (Ops),

and quality assurance (QA) are present (Figure 1, left part).

Processwise, DevOps represents a typical chain for delivering

software solutions; it includes software development, building,

testing, deployment, and running (Figure 2, upper part).

However, the DevOps does not correspond to the specific

needs of big data; thus, DataOps (15) has been introduced.

DataOps includes other data-driven disciplines like data

engineering, data integration, data security, and data quality

(Figure 1, right part). It represents a complete data lifecycle

from data preparation and gathering over the transformation to

reporting. It brings a bridge between data analytics teams and

IT operations. DataOps focuses highly on data pipeline

orchestration, data quality, and continuous integration/delivery.

It provides the chance to get a consistent and reliable source

for data ingestion and reporting and advanced analytics

represented by machine learning (ML) models and artificial

intelligence (AI) solutions. Next to the processwise qualities,

DataOps provides capabilities about data lifecycle, data

annotation (relations, the meaning given by ontology,

versioning), and data lineage (auditability, explainability).

Processwise, DataOps extends the processing chain to focus

more on the data-related products instead of being software-

centric. It adds sandbox management for implementing data

prototype products, replaces the build process, runs with

orchestration, and addsmonitoring at the end (Figure 2, lower part).

For machine learning, DataOps moved even further and

evolved into the MLOps (18) lifecycle, which covers specific

needs of data science. It represents the practice of

collaboration and communication among data scientists and

operations professionals to help manage the production ML

(or deep learning) lifecycle. The movement of DataOps to

MLOps and later to AIOps (19) for artificial intelligence was

natural since there was technical debt.

Tom et al. (20) explain the technical debt as follows:

“Technical debt is a metaphor that refers to the consequences

of poor software development. Cunningham (1992), who

introduced the concept of technical debt, described how

‘shipping first time code is like going into debt. A little debt

speeds development so long as it is paid back promptly with a

rewrite.’ Since then, the suitability of debt as a way of

explaining the various drivers of increasing costs throughout

the life of a software system has been affirmed by the software

development community (21–25). On the other hand, debt is
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FIGURE 2

DevOps and DataOps processes (17).

FIGURE 1

DevOps (16) and DataOps in the enterprise (16).

1Available at: https://researchops.community.
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not necessarily ‘bad’—a small level of debt can help developers

speed up the development process in the short term (21). In any

case, this consequence may be felt in the longer term if the

project is highly ‘geared’ (which implies onerous debt

repayments), leading to slower development and killing of

productivity.”

Science has been evolving to be more open, fair, and

reproducible (Section 2.2.4) in the last years. Data are

published on various platforms and processed in

on-premise, private, or public cloud storage and services.

The importance of sharing data across scientific fields has

been raised.
Frontiers in Digital Health 04
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The technical debt can thus also be considered for research.

The research systems should provide functionality like data

preprocessing and sharing, analytical tools, reporting tools,

and a complex methodology and ecosystem that consider all

those steps part of a unified lifecycle. Then, ResearchOps1

“provides the roles, tools and processes needed to support
frontiersin.org

https://researchops.community
https://doi.org/10.3389/fdgth.2022.1025086
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


FIGURE 3

ResearchOps Community-separated resources for each of the topics. The link to community- made tools that support each aspect of these open
topics can be found in the footnote below.2
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researchers in delivering and scaling the impact of the craft

across an organization.”

The following topics (Figure 3) are important whenever

research is managed. Governance defines safe, ethical, and legal

research; Guidelines & Templates frame it formally. Tools are

necessary for doing research, its management, and operations.

Knowledge management deals with data and documentation

(which are part of Asset management) and provides resources

for Capability & Opportunity to develop career or capabilities

necessary for a particular research project. Research spaces have

to be maintained, and research staff and subjects must be

recruited (Recruitment). This all needs to be published,

promoted, presented, and advertised through the events within

Event management and communicated (Communication) via

various channels. All needs to be managed and maintained

within Budget management.

Considering scientific research’s disciplines, processes, and

requirements, we need to adapt existing ResearchOps or define

our operational process for the health-related data lifecycle.
2Available at: https://researchops.community/resources (Accessed

2022-06-08).
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2.1.2. FAIR principles
There is a plenitude of guidelines and principles available

that can be used to store, maintain, and disclose open

scientific data. However, the FAIR (an acronym for

Findable, Accessible, Interoperable, and Reusable) principles

(26) have become popular and widely accepted within

scientific communities. They make data for computational

systems easier to find, access, interoperate, and reuse,

without any or just with minimal human intervention. The

four intertwined categories describe how data, metadata,

and resources should be described, stored, and made

available to a broad audience.

The Findable principle declares that it should be easy to

find data and metadata by both humans and machines. It

can be achieved, for example, by assigning a globally unique

and persistent identifier to data, describing data with rich

metadata, and registering or indexing them in a searchable

source.

The Accessible principle deals with data access since

not all data have to be strictly open. If possible, metadata

should be accessible even when the data are no longer

available.

The Interoperable principle focuses on integrating data with

other kinds of information. It is generally achieved using

domain-wide agreed data formats, languages, and
frontiersin.org
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vocabularies. Also, qualified references to other metadata and

data are included.

The Reusable principle ensures that data are easy to reuse,

i.e., they can be well-replicated or combined into different

settings. In this regard, data should be richly described with

many accurate and relevant attributes and released with a

clear and accessible license.

The FAIR principles do not state how they should be

achieved; they represent recommendations that keep the data

open and independent of the application domain. Multiple

initiatives promote these principles across scientific fields, like

the FAIR Data & Services (IFDS3.) or the European Open

Science Cloud (EOSC4.).

2.1.3. Terminologies and ontologies
Terminologies and ontologies are popular for modeling

domain knowledge in many scientific disciplines. Roche (27)

explained that an ontology is not a terminology and a

terminology is not an ontology and that terminology relies on

two different semiotic systems (the linguistic one, which is

directly linked to the “Language for Special Purposes” and the

conceptual system that describes the domain knowledge),

whereas ontology does not take into account the linguistic

dimension of terminology. Zemmouchi-Ghomari and

Ghomari (28) state that building ontologies is considered

much time-consuming and costly than building terminologies

with regard to ontology complexity and formality, two major

differences between these types of resources. They also claim

that terminologies can be considered as preliminary attempts

to model particular domains by their respective experts. Then,

terminologies are intended for human users, while ontologies

are mainly developed for knowledge sharing between both

humans and artificial agents.

Gruber (29) formulated the definition of an ontology: “An

ontology is an explicit specification of a conceptualization.”

Borst (30) modified the definition as: “a formal specification of

shared conceptualization.” In other words, ontologies are

formalized vocabularies of terms. Le Franc et al. (31) defined

ontologies in an alternative way: “Ontologies are formal

models of knowledge in a particular domain and composed of

classes that represent concepts defining the field as well as the

logical relations that link these concepts together.” Designing

an ontology is a long process in which it is necessary to

understand the area and compile a list of used terms (and

creating terminology).
3Available at: https://www.go-fair.org/resources/internet-fair-data-

services/ (Accessed 2022-06-08).
4Available at: https://ec.europa.eu/research/openscience/index.cfm?

pg=open-science-cloud (Accessed 2022-06-08).
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The conceptualization of the real world can be also

translated as taking real existing things and creating standard

terms and their classes to categorize them into a hierarchical

structure. However, many questions need to be answered

before any description can be made.

The first question is how detailed or abstract the ontology

should be since varying degrees of details are desirable. A

detailed ontology can be overdefined when it describes and

tracks every available detail. It can cause uncertainties when

new changes are added to the ontology. On the other hand,

overabstracting (generalization) leads to uncertainty in the

definitions of the terms and their classes when many instances

fall into more classes. The next question deals with the

relations between the terms and their classes. The hierarchy

and number of relationships must be carefully defined;

otherwise, overdefinition or overabstracting can also occur.

Dynamic ontologies (10) add a layer for adjusting or

“evolving” the ontology according to the project’s needs over

time. The changes need to be accommodated once the project

grows, and the used terms and relations will need to be

expanded or adjusted to address these changing needs in the

already existing and published ontology. Examples of such

“actions” can include adding/deleting existing relations

between terms, adding a new property, changing the

ontologies hierarchy, and reusing certain aspects or portions

of other published ontologies.

Especially domain ontologies are popular since more

general ontologies are very difficult to define (suffer from

overabstracting). There are hundreds of biomedical ontologies

and millions of classes (uploaded to Bioportal). The list of

published ontologies steadily increases.

Popular languages for the implementation of ontologies

include, e.g., the Web Ontology Language (OWL) of the

Semantic web or dOWL, an extension to OWL, which consists

of a set of elements that can be used to model these

evolutionary changes in an ontology (32).

There are a lot of web-based systems to support ontology

reuse (e.g., Bioportal,5 OntoFox,6 Ontobee,7 Neuroscience

Information Framework,8 and Ontology Lookup Service9).

Although the popularity of terminologies and ontologies is

still high, the requirement for an analytical definition of the

part of the world is their limiting factor. It is a time-consuming

task requiring not only the definition and implementation of
5Available at: https://bioportal.bioontology.org/ (Accessed 2022-06-08).
6Available at: http://ontofox.hegroup.org/ (Accessed 2022-06-08).
7Available at: http://www.ontobee.org/ (Accessed 2022-06-08).
8Available at: https://neuinfo.org/ (Accessed 2022-06-08).
9Available at: https://www.ebi.ac.uk/ols/index (Accessed on 2022-06-

08).
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the terminology or even ontology itself but also its acceptance by

the wider community when the ontology should become a

standard formal description of a domain. This step is crucial;

hundreds of existing biomedical ontologies and systems that

use them illustrate this issue well. There is some hope for

expanding deep learning methods, which have lower

requirements for data organization and could significantly

alleviate problems with overdefined ontologies.

There are many broad terminologies defined in published

ontologies like the National Cancer Institute Thesaurus (NCIT)10

(33) describing set of terms and their relations. The main NCIT

focus was on providing a controlled vocabulary used by specialists

in the various subdomains of oncology. Across neuroscience, there

exist projects that include terms related to event-related potentials,

also containing MEG (magnetoencephalographic) or EEG

(electroencephalographic) terminology.

The NEMO project (Neural ElectroMagnetic Ontologies)

(34) provides an ontology that contains descriptions of classes

of event-related brain potentials together with their properties,

including spatial, temporal, and functional (cognitive/

behavioral) attributes.11

Minimal Information for Neural ElectroMagnetic Ontologies

(MINEMO) is the minimum set of experimental metadata

required for datasets that are used in the NEMO project (35).

MINEMO specifies the key information that should be provided

when an ERP experiment is uploaded to the NEMO database.

MINEMO terms are explicated in the NEMO ontology, a formal

semantic system created for the ERP domain. There were also

developed web applications (the NEMO portal) and a database

aligned with the MINEMO checklist and ontology. The

checklist, ontology, and database are intended to support the

first complete, cross-laboratorymeta-analysis for the ERP domain.

While creating new terminology (where the reuse of already

existing terms is much endorsed), reusing only its essential parts

may be easier than including the entire terminology. A

recommended set of guidelines MIREOT (Minimum

Information to Reference an External Ontology Term) (36)

was created. It describes the necessary minimum of

information that needs to be overtaken.

For ontologies, we have used recommendations by large and

long-running standardization bodies like The World Wide Web

Consortium (W3C) while including various most commonly

used or recommended practices across the ontology lifecycle.

It is the case with the iterative evolution, expansion, and

enhancement of dynamic ontologies.
10The NCIT ontology is available at https://bioportal.bioontology.org/

ontologies/NCIT?p=summary (Accessed 2022-06-08).
11The NEMO ontology is available at http://bioportal.bioontology.org/

ontologies/NEMO (Accessed 2022-06-08).
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2.1.4. Data formats
Storing and processing health-related data are difficult

because hardware devices and software drivers usually provide

data in proprietary formats. Specific neurophysiological data-

storing formats can severely hamper the collaboration between

the researchers, as there is a need to have the same (and

usually licensed) processing tools that support these data

formats (37).

The main goal of neurophysiology data standardization

initiatives (38) is to create a unified data model and storage

format and tools to convert existing data stored in the

proprietary data formats. These standardization efforts and

their results (data models/formats) can be found in the

following.

In this case, we have selected a list of the data formats

endorsed [Brain Imaging Data Structure (BIDS), Neuroscience

Information Exchange (NIX), Neurodata Without Borders:

Neurophysiology version 2.0 (NWB:N 2.0)] or submitted for

endorsement (Open Metadata Markup Language, odML) to

the INCF Standards and Best Practices Committee. The

endorsement process consists of an expert review against an

established set of criteria, a community review, and a final

committee review that considers comments received during

the expert and community reviews (39). As for the remaining

recommended format, JavaScript Object Notation for Linked

Data (JSON/LD) is one of the few data and metadata formats

used by large technological giants like Google.

2.1.4.1. Neuroscience Information Exchange format
The NIX data model (40) allows storing fully annotated

scientific datasets, i.e., the data together with rich metadata

and their relations in a consistent, comprehensive format.

Although developed initially for electrophysiology data,

neither the data model nor the metadata model are domain-

specific. Both models can be linked to predefined or custom

terminologies. It enables the user to give elements of the

models a domain-specific, semantic context. In contrast to

most other approaches, NIX achieves flexibility with a

minimum set of data model elements. The NIX project

includes native I/O libraries for C++ and Python, language

bindings for Java and MATLAB, and a viewer for NIX data

files, although the HDF5 (41) viewer can also be used.12

2.1.4.2. Open Metadata Markup Language
odML is a format for storing metadata in an organized human-

and machine-readable way (42, 43). It does not constrain the

metadata content while providing a common schema to
12More information is available at https://github.com/G-Node/nix/wiki/

Model-Definition (Accessed 2022-06-08).
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integrate metadata from various sources. odML facilitates and

encourages standardization by providing terminologies13 for

metadata.14 An example of the odML use when collecting and

exchanging metadata in an automated, computer-based

fashion is described in (44). Currently, the odML is included

in the NIX data model.

2.1.4.3. JavaScript Object Notation for Linked Data
JSON-LD (45) is a lightweight syntax to serialize Linked Data in

JSON. Its design allows existing JSON to be interpreted as

Linked Data with minimal changes. JSON-LD is primarily

intended to be a way to use Linked Data in Web-based

programming environments, build interoperable Web services,

and store Linked Data in JSON-based storage engines. Since

JSON-LD is 100% compatible with JSON, many JSON parsers

and libraries can be reused. In addition to all the features that

JSON provides, JSON-LD introduces, e.g., a universal

identifier mechanism for JSON objects via the use of

Internationalized Resource Identifiers (IRIs), disambiguation

of keys shared among different JSON documents, a

mechanism in which a value in a JSON object may refer to a

resource on a different Web site, or the ability to annotate

strings with their language.

2.1.4.4. Brain Imaging Data Structure
The BIDS is a standard endorsed by INCF prescribing a formal

way to name and organize MRI data and metadata in a file

system that simplifies communication and collaboration

between users. There also exists an extension onto the BIDS

format called EEG-BIDS, which is specifically designed to

store the electroencephalography data. If you would be

interested in learning more about the EEG-BIDS format, you

can find it in (46).

In both variants, it enables easier data validation and

software development by using consistent paths and naming

for data files. BIDS is strict regarding file organization,

naming, and metadata, but to support broad adoption, it

permits substantial flexibility in the details of how other

dataset metadata are described within the standard (47).

2.1.4.5. Neurodata Without Borders: Neurophysiology
version 2.0
NWB is a data standard enabling sharing, archiving, using, and

building analysis tools for neurophysiology data. NWB is

designed to store various neurophysiology data, including data
13More information about the odML terminologies can be found at

https://github.com/G-Node/odml-terminologies (Accessed 2022-06-

08).
14More information can be found at https://g-node.github.io/python-

odml/ (Accessed 2022-06-08).
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from intracellular and extracellular electrophysiology

experiments, data from optical physiology experiments, and

tracking and stimulus data (48). NWB:N 2.0 defines an

ecosystem for standardizing neurophysiology data.
2.2. Motivation

In this paper, we focus on the health-related data lifecycle. It

mainly includes data description for further processing, the

richness of data/metadata from the subject perspective,

correlation, and causality research. We aim to achieve that via

four pillars—ontologies (2.2.1), 360-degree overview (2.2.2) of

the research subject from data perspective, standardized

lifecycle (2.2.3) for health-related data, and research reliability

(2.2.4) through reproducibility and repeatability.

2.2.1. Using ontologies
First, let us start with what are the ontologies good for (49).

Their first and foremost advantage is to capture the used

terminology inside any application domain (or the research

subject) and map the definitions, attributes, and relations of

these terms to one another. Since many terms can have

multiple meanings, their precise definition helps even a

newcomer to the application domain better understand the

used terms and their relations; this extended vocabulary maps

relations between defined terms.

An additional benefit to ontologies is that they enable easy

understanding of multiple application domains and can be

reused easily. Their reuse helps reduce the redefinition of the

terms. When an ontology becomes widely available, it

increases its value. The ontology can be expanded and

corrected further down the line to a more detailed and

sufficiently defined result.

2.2.2. 360-degree overview
In most cases, we are talking about EEG/ERP data (50–53).

These types of data bring crucial information about the

measured subject, but we cannot forget to record also the data

related to the subject, outside environment, and the

experiment itself. These additional data provides a 360-degree

overview of the measured subject and give additional potential

to better understand the foundation during the analytical

process.

In some literature studies (54, 55) are such data neglected,

and the main focus is on neuroscientific data. It works well

for narrow field research for single-purpose data collection

during the experiment and making the conclusion published

through single paper. However, with the greater goal, we need

to collect as much data as we can, so it can be later used for

multiple research use cases.

We cannot consider our work to be frontier-bringing such

idea since some literature studies (56, 57) present collection of
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ResearchOps for health-related data.
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data, Metadata, and scenarios of experiments, but we would like

to define standards that can be adapted as is or with extensions

or adjustments.

2.2.3. Standardized lifecycle
Inspired by ResearchOps and DataOps (2.1.1), we derived

the subset of disciplines useful for health-related data

(Figure 4).

We kept in mind disciplines and processes necessary to

cover complete neuroinformatics data lifecycle from asset

management, subjects recruitment, guidelines and templates,

knowledge management, and data governance.

2.2.4. Research reliability
The main idea about the ontology-driven (2.2.1) system is

to provide a platform for reproducibility and repeatability

(58). These two major principles of scientific methods for

research supporting are very important to ensure research

reliability.

2.2.4.1. Replication crisis
In 2005, an essay was published in PLoS Medicine by Professor

John Ioannidis at the Stanford School of Medicine (59), who

argued that a large number, if not the majority, of published

medical research papers contain results that cannot be

replicated. This is practically the foundation for later-defined

term replication crisis, respective replicability, or

reproducibility crisis.

The crisis itself has longer roots, but it started to be

significantly used in the early 2010s (60) as part of growing

awareness of the problem (61, 62).

2.2.4.2. Reproducibility and repeatability
The meaning of reproducibility is to achieve the results of

the experiment again with a high degree of agreement

when the experiment is replicated with the same

methodology by the different researchers. When the

reproducibility is achieved once or several times, the

experiment can be considered a valid contribution to

scientific research.

The repeatability is defined as one (test-retest Reliability) of

the four general classes of reliability estimates (61) from the

theory of reliability (62) we know:

† Inter-rater or inter-observer reliability used to assess the

degree to which different raters/observers give consistent

estimates of the same phenomenon.

† Test-retest reliability used to assess the consistency of a

measure from one time to another.

† Parallel-forms reliability used to assess the consistency of the

results of two tests constructed in the same way from the

same content domain.

† Internal consistency reliability used to assess the consistency

of results across items within a test.
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2.2.4.3. Terms’ ambiguity
In the scientific research exists the ambiguity of reproducibility

and repeatability (62, 63). The usage of the recurrent terms

reproduce and replicate often means different things but

sometimes interchangeable.

As (62) claims, the terminology can be classified as, First,

make no distinction between the words reproduce and

replicate or, second, use them distinctly. This two-term direct

substitution leads to the weight issue that might be solved by

various attempts to invent the terminology across disciplines

and establishment of patterns that help us resolve the

contradictions.
2.3. Summary

In the following section, we mention some of the best

practices and pieces of advice that were recommended by the

wider scientific audience and used within the Body In

Numbers project:

† FAIR principles—It is the utilization of the FAIR principles

across all processes, making the collected data and metadata

easily accessible and shareable.

† Size and scope of the new ontology—It is necessary to

define who will and how to use the ontology. Examples of

questions that might be asked are as follows: How abstract

or detailed should the ontology be? or What subjects will

it cover?

† Learning from already existing ontologies—In case you

have not much experience with creating ontologies, it is

best to go through existing and published ontologies
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inside the same field of study when planning to create a

new ontology. In this case, it is necessary to focus on

how each used term is being defined and what

annotation attributes are used to devise rules for the

ontology creation process.

† Appropriate annotation properties—It is a good practice to

maximize the reuse from already published ontologies.

Relevant ontologies for this task can, for example, be the

Information Artifact Ontology (IAO). If there are no

adequate replacements, new ones can be created.

† Naming terms—Using plain English in the term names is

strongly advised. CamelCase or Under_Score notations

should be avoided. If the term has any notable synonyms

or shortcuts (e.g., acronyms), they are stated. If any

dedicated annotation properties are used, the rdfs:label can

be used instead.

† A unique identifier—In the case of overtaken terms, the

original unique identifier from the source ontology should

be retained; otherwise, a unique ID for each new term has

to be created. Organizations can generate a persistent URL

that enforces the uniqueness requirement for the primary

identifier, e.g., http://purl.obolibrary.org/obo/OBI˙0000185.

† Textual definition of each term—Textual definition needs

to best describe the meaning of the term under which it is

used inside the ontology.

† Reuse (import) of external terms—When any existing term

is overtaken, the attributes and ID should be identical to the

source ontology. Rules for the import of the term can be

further specified inside the source ontology under the

annotation property rdfs:comment.

† Ontology open to collaboration—Any collaboration with

the community can enhance the overall quality of the

ontology.

† Ontology license—The Creative Commons license in its

latest version is advised for most of the open source

ontologies. For monetized ontologies, when the ontology

can be used (under which circumstances), in which

projects or how to obtain access to the ontology needs to

be specified.

† Serialization of ontology—Common formats, e.g., OWL,

RDF/XML, or OBO, are defined for the publication of the

finalized ontology.

† Incremental expansion of ontology—Certain terms might

not have been properly defined as in the original plan.

Small incremental additions of new terms can make the

ontology overall more well-defined.

† Data formats—Suitable, possibly free, and widely accessible

data formats are used within the tools that can be used to

explore the collected data (e.g., for MRI, EEG, ERP, and more).

The methodology used in the Body in Numbers (“BiN” for

short) project is mainly based on the recommendations

mentioned above.
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A thesaurus of all related terms used inside the project was

created in the initial phase of the BiN project. The terms were

related to data collection or the subsequent data processing

phases. Each of these terms had the name and basic definition

stated in plain English.

As a next step, these terms were separated into categories

(classes of terms) and related notation properties, further used

to describe all remaining terms in the ontology. An example

of the annotation property is the author of the definition,

textual definition, synonyms and shortcuts, and name of the

term.

After this phase, it was necessary to maximize the reuse out

of any already existing and published ontological sources, so

that we would limit the amount of “reinventing the wheel” so

to say. At this step, ontological portals were of great help (like

BioPortal, OntoBee, and OBO Foundry).

In the next step, it was necessary to distinguish overtaken

terms from other ontologies and newly defined terms as each

needed to contain different annotation properties. In the case

of overtaken definitions, all attributes were overtaken into the

annotation properties equivalents of the devised ontology. For

the newly defined terms, it was necessary to define a bare

minimum of information that the term needed to contain

(like the synonyms, known shortcuts, and textual definition).

Once the process for the newly added terms was refined, a

dynamic ontology was created. The ontology was then used in

the next steps of the data flow.

However, the workflow for the health-related data lifecycle

goes behind the created ontology. Next to the ontology, we

also provide a 360-degree data overview (2.2.2). This includes

our proposal for standardized lifecycle (2.2.3) inspired by

DevOps, DataOps, and derived from ResearchOps. Then, we

included research reliability (2.2.4) consisting of two

principles—reproducibility and repeatability.
3. Results

In the following section, we will take a closer look onto both

the abstract and also on the implementation aspect of an

undertaken project from the University of West Bohemia

called “Body in Numbers.” We will also describe the entire

process on how the data were acquired, stored, processed,

successively analyzed, and published. The unique part about

this process is a specialized support module architecture

developed in tandem to help with each step of the data cycle.
3.1. Main overview (cube)

The implementation of neuroinformatics experiments is a

conceptually complex system that solves every aspect of the

data flow in races to a given category of interest within
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each of its functionalities. In this case, it is the age category of

the participants in the experiments. The analytical model of

the system is shown in Figure 5. This system determines

any way, for example, how the collected data from children

and adults are handled. Other variants of research

addendum agreements and questionnaires could be used to

measure children and adults. These templates are used to

change measurement procedures depending on whether a

child or an adult participates in the experiment. Later in

the same year, a new change needed to be implemented

related to the analysis, namely, our goal was to find a

statistical significance between the already collected data

and metadata.

When it comes to evaluation of the efficacy in the presented

lifecycle (in the form of the “Cube”), the chosen dimensions

separate the larger process into small tasks that can be at least

partially (based on the situation) automated outright, or it is

possible to create support processes that overall make the step

easier (or faster) across the data flow. For example, data

quality can be ensured during the data collection process by

filling out all mandatory fields and pairing included metadata.

Data duplication can be prevented (at least partially) in this

step. As for the mentioned support processes, the analysis

part of the data flow can automatically prepare overview

statistics about the collected data that help classify or further

analyze the data and metadata.

The chance of errors in the filled-out data and metadata is

dramatically decreased when steps eliminate the “human factor”

from highly repetitive or easy-to-automate tasks. Aside from

that, the time necessary to spend in each data flow step will

also decrease, with much of the validation steps being

eliminated from the equation.

Some of the proposed metrics for evaluating this lifecycle

were defined as follows:

† percentage of complete data entries inside the data collection

phase for the dataset,

† percentage of described data entries inside the annotation

phase for the dataset,

† number of newly required metadata definitions (number of

new terms) from the dataset, for inclusion into the ontology,

† time spent in each of the data flow phases, and

† age range histogram for all measured participants inside the

dataset.
3.1.1. Data flow
This dimension helps streamline and potentially automate

repeatable experiments, minimizing room for errors and

increasing overall efficiency. This part improves the

description of the experiment. Experimenters can make

quicker and smarter decisions. Researchers are empowered to

collaborate in a more productive and agile way.
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The data flow phases are shown in Figure 5. The collection

phase deals primarily with acquiring data from a BiN project

participant; the data are subsequently preprocessed (more

details are in Section 3.3).

The preprocessing consists of cleaning the data and

adjusting it for the next step by converting it into the format

expected in the analysis phase.

The analysis phase is currently aimed at determining

statistical significance between each segment of the measured

data, the values achieved by participants, and respective

questionnaire answers. The summary tables and graphs are

created and used for finding further subsequent research

activities.

During the interpretation phase, new hypotheses are

outlined and revised by scientists to refuse or confirm them.

In the last phase of the data cycle, anonymized data are

published utilizing raw data. The results obtained from the

initial analysis and the pilot experiment are included. The

data published in this way help the broader scientific

community answer further questions and hypotheses.

3.1.2. Application domains
There already exist conceptually close domains. The

Chronic Disease Prevention (4.2.2) domain is focused on

nutrition counseling. The food balance system is calculated to

reduce the user’s food consumption. This system can monitor

the users using smart bracelets (such as FitBit) when

information is sent to a mobile tracking application.
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The Cognitive Disease Prevention (4.2.2) domain works

with cognitive games that improve memory, attention, speed,

and problem-solving abilities.

Both domains are indirectly related to brain activity data

(e.g., EEG, ERP), which however can be used to further help

with either of the previously mentioned application domains.

3.1.3. Dimensions (age groups)
The project focuses on the age range from 11 to 60 years.

Beyond this age limit, the measured results are distorted by

specific errors related to either young or advanced age. In the

case of preschool children, there may be problems with the

numbers (color vision, number recognition) and hand

reaction times (the children might be unable to reach the

upper buttons on the table due to the minimum required

height). In older age, the problems may be responding quickly

to stimuli using legs (leg reaction times) or hands.

The monitored age categories are shown in Figure 5 (age

groups), namely, childhood, youth, young adulthood, middle

adulthood, and the elderly. Of course, the consent and

completion of the questionnaire for a young child will be

different and proceed differently than for adults (in the case

of young children, their legal representatives or parents must

approve the participation in the project and The General Data

Protection Regulation data processing).
15The BiN ontology can be found here: https://bioportal.bioontology.

org/ontologies/BIN/?p=summary (Accessed 2022-06-08).
3.2. Data flow dimension

3.2.1. Data flow semantics
The first step in data preprocessing is to identify the

individual parts of interest and categorize them so that the

data are transferable and shared between different working

groups. Creating the ontologies schematizing relations

between each part of the cube is necessary to make the data

more shareable. Therefore, the task was to develop a system

that would be able to preprocess the data and make it easier

to share with members of the scientific community. The

project aims to create a uniquely annotated collection of

heterogeneous health-related data available for further

analysis. The Body in Numbers system helps collect additional

metadata from questionnaires combined with the measured

health-related data (e.g., weight, height, and blood pressure)

and EEG data from brain–computer interface (BCI)

experiments.

The data collected are anonymized and published within

data articles. They are converted into one of the commonly

used RDF formats, and a backing ontology is created; it may

define additional properties.

The Body in Numbers terminology has included and used

the best practices presented in Section 2.3. The main set of

terms was defined (the definition under which it is used in the

BiN terminology) and compared against the existing definitions
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from relevant sources. If the term was already described inside

other ontologies, but the description did not match the

meaning utilized in the BiN project, a new definition of the

term was created. Otherwise, the existing definition was

overtaken, and a citation was attached appropriately.

The basic set of key terms are given in Figure 6.
3.2.2. Data flow detail
Considering the cube as a modular representation, we sliced

its particular layers with the following topics (Figure 7).

Body in Numbers (BiN) uses its specific terminology:

1. Tools—Devices and tools used during experiments (e.g.,

pressure gauge for measuring pressure and pulse, and

spirometer for measuring lung capacity)

2. Experiments—Participants examination (e.g. measuring

blood sugar requires a finger prick by taking blood on the

measuring strip and then evaluating the results with a

glucometer; the experiment’s output is blood sugar = 6.4

mmol/l).

3. Locations—A locally determined measurement that may

contain one or two more experiments.

4. Measurements—Definition of all sites, experiments, and

assigned aids.

5. Scheduling—Definition of what (e.g., glucose level, weight,

height), how (e.g., glucosemeter, scale, meter), and what

(specific type of the measuring instrument, i.e., specific

glucosemeter type) is used for measurements.

The created ontology15 contained 141 classes of terms, of which

56 classes of terms were overtaken from already existing

ontologies (with their original definition), and for the

remaining 85 terms, new definitions were created (the

definitions from existing published ontologies were insufficient

or the terms were not yet defined). The ontology also

contains 30 annotation properties where every single one was

overtaken from existing sources. An example of subclasses

visualizations is available in Figure 8.
3.2.2.1. Data collection
The following subflow is typical for the data collection process:

1. The experiment and its environment (Section 3.2.2.2) are

defined.

2. The experiment is introduced (64) to each participant; they

sign the consent agreement.

3. The participant is registered to the system [(64), more

information is available in Section 2.2].
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FIGURE 6

Body in Numbers terminology—examples of the root terms. Note that tree visualization only contains a few top degrees of the tree. For more details,
see the link to the terminology in Section 3.2.2.
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4. The participant fills in the questionnaire [(64), more

information is available in Section 2.3] related to a

particular measurement or multiple measurements.

5. The measurement is performed.
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6. The collected data are stored (Section 2.1.4) in a

standardized format together with their metadata collected

during the registration and questionnaire phases (Sections

3.3.2 and 3.3.4).
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FIGURE 7

Data flow–layer details.
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7. Data analysis is performed (Section 3.3.3).

8. The raw data are prepared for publishing (Section 3.3.5).

At the beginning of the experiment, the participant is

acquainted with the project’s goals and the necessary

conditions under which the data are used, and if they agree,

the questionnaire part of the investigation is filled in. After

completing these steps, the participant completes the selected

(or all available) measurement sites. The collected data are

then exported into a .csv or .xlsx file, further used during the

preprocessing and later in the statistical module. After the

unification and purification of preprocessed data, an analysis

follows. In this study, graphs of interest [age, body mass index

(BMI), and others] and chosen statistical parameters are used

to evaluate statistical dependencies and whether they are

essential. From the statistics compiled, signs of some

interesting dependencies can be found.

3.2.2.2. Environment
The measurements can occur in various environments with

limited control of outside disturbances. It affects possible (and

even substantial) modifications of the experiment. The typical

environments are as follows:
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† Hospital environment—The hospital operation’s

limitations and the participant’s health status are usually

significant; the experimental procedure needs to be

adjusted to these limitations.

† Laboratory environment—The laboratory environment is

generally highly controlled; only minor modifications of

the experimental procedure are usually required.

† Participant home environment—The most suitable

environment for the participant; usually minor to averaged

modifications of experimental procedure are required.

† Public environment—A high range and variety of

unwanted disruptions are present; these create unwanted

side effects—substantial and ad hoc modifications of the

experimental procedure are common.

The environment is defined within the Body in Numbers system

as a part of the measurement site.

3.2.2.3. Annotation
While recommendations and opinions on what a proper

ontology should contain are widespread, there is no unified

opinion on what each defined ontology term should contain

(in terms of granularity and detail).
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FIGURE 8

Body in Numbers ontology—the parent node “Device categories” contains links to its child and sibling nodes. Only the subclasses are visualized
(without any additional defined properties). The ontology was visualized with WebVOWL: Web-based Visualization of Ontologies, version 1.1.7,
available at http://vowl.visualdataweb.org/webvowl.html.
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The authors of ontologies generally do not use identical

defining terms, and ontologies often contain similar

definitions of synonyms even inside the same field of

expertise. Functionally identical terms, like a term

defining the author of a dataset, can be marked

differently in each ontology (e.g., author, original_author,

creator, and more).

Consequently, global organizations (such as OBO Foundry,

Open Semantic Framework, or W3C) bring recommendations

and standardization efforts. These standardization efforts

include, e.g., rules that help define importing procedures for

terms already defined in published ontologies, the necessity to

define nomenclature, and providing text definitions for each

contained term inside the ontology.
3.2.2.4. Analysis
In analysis, we created a combination of hypothesis testing and

basic data overview variables. The basic data overview consisted

of summation values like the number of artifacts within the EEG

dataset, averages of various kinds, e.g., box plots of BMI

separated by specific categories, reaction times of either upper

or lower limbs, and age intervals. Another part of this
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information also consisted of more EEG data-related variables,

mainly the P300 visibility, detection, and latency.

3.2.2.5. Interpretation
A statistically significant relationship was examined between

the metadata (questionnaire) and the measured data. For

example, if a participant answered that he/she enjoyed

physical activity, he/she was supposed to answer faster when

performing the reaction time experiment.

When performing statistics, we might find repeated

patterns in the measured data. If such patterns are

identified, it is worth studying what is causing them to

appear. A typical example of a searched pattern is the P300

component, which is prominent during visual stimulation

in most circumstances.

3.2.2.6. Publication
During data publication, an open and widely accepted data

format for data storage and the availability of tools to work

with the collected data are considered. For example, table-

like data are suitable to be published in CSV or Excel

Spreadsheets (rather than in RDF). EEG data are preferred
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to be published in an open format, like NIX, rather than in a

proprietary format.
3.3. Body in Numbers

We will now show a practical example how the project

Body in Numbers system was developed to satisfy the

previously defined abstract necessities (i.e., the “Cube”).

Initially, we needed to design a system for fast health-

related data collection. This can be partially remedied by an

individualized exercise and wellness program that integrates

basic knowledge domains: lifestyle, sports and fitness,

nutrition, and personal/environmental health. However,

collecting, managing, and analyzing data and metadata

related to these domains is demanding and time-consuming.

Moreover, the appropriate annotation of raw data is crucial

for their subsequent processing. A proposed software

infrastructure included the P300 module, a specialized

module for data collection of ERP data (3.3.1), a subsection

for data collection, a semantic module (3.3.2) for data
FIGURE 10

P300 module—The figure describes each of the steps that will be done autom

FIGURE 9

BiN lifecycle—For each of the data flow steps, module was developed tha
architecture.
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annotation, a statistical module (3.3.3) for data analysis, an

evaluation module (3.3.4) for data interpretation, and a

publishing module (3.3.5) for data publication. A part of

this infrastructure, namely, the P300 module, was developed

and tested outside laboratory conditions. This software

prototype allows experimenters to collect various

heterogeneous health-related data in a highly organized and

efficient way. Data are then evaluated, and users can view

relevant information related to their health and fitness (65).

The structure of these specialized modules is available in

Figure 9.
3.3.1. P300 module
The P300 module provides basic information and statistics

(like noise percentages from whole dataset and average values,

i.e., response time) related to the EEG signal. When the EEG

signal is cleaned and preprocessed, the P300 components

latency and amplitude are extracted, with plots of averaged

ERP components and blinking artifacts. The details can be

seen in Figure 10.
atically by the module, showing also the process inputs and outputs.

t assisted with their respective tasks independently of the remaining
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3.3.2. Semantic module
The semantic module ensures that the BiN ontology is

updated when needed. This is achieved by varying

approaches based on whether the newly encountered term

is already known.

The data are enriched based on the used ontology if the

term is known. For example, a list of measurement sites

with the used devices is created; when heart rate is

measured, both the units and device type are

automatically added.

If the term is not known, a curator has to decide

whether a definition for this new term already exists or

if a community poll approach needs to be initiated (for

the most useful and up-to-date definition). Both of these

approaches eventually define a new term for the BiN

ontology. This module description is available in

Figure 11.
FIGURE 12

Statistical module—the figure describes each of the steps that will be done
outputs.

FIGURE 11

Semantic module—the figure describes each of the steps that will be done
outputs.
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3.3.3. Statistical module
The statistical module looks for statistical significance

between the metadata (questionnaire) and the measured data.

The data are first preprocessed and split into sections (based

on the used questionnaire), which are then compared against

each category separately using a stepwise regression on a 5%

significance level. The statistical module is further described

in Figure 12.

For example, if there is a question about sport in the

questionnaire, the stepwise regression will show it as

statistically significant to participant’s reaction times (both

hands and legs), as the reaction times are shorter when the

participant is doing some form of a sport.

3.3.4. Evaluation module
The resulting graphs generally contain averaged or

summed statistic values, for example, top five fastest
automatically by the module, showing also the process inputs and

automatically by the module, showing also the process inputs and
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participants’ reaction times, average reaction time, number

of participating smokers vs. nonsmokers, etc. If the

researcher finds anything interesting they would like to

publish or further investigate, they can let the system

create an ID link to the dataset and, if necessary, convert

the measured data/metadata into a preferred format.

Details of this module are available in Figure 13.

3.3.5. Publishing module
The publishing module is mainly responsible for the

anonymization of data that are going to be published within a

journal and creates a LaTex template that is filled directly

with the measured data, attached to the template, or linked

with the generated ID from the evaluation module. A license
FIGURE 13

Evaluation module – The figure describes each of the steps that will be don
outputs.

FIGURE 14

Publishing module—the figure describes each of the steps that will be don
outputs.
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is stated (open or closed variant) within this template. The

output is then for the researcher to be further filled out. This

module is shown in Figure 14.
3.4. Dimensions

The 360-degree overview (Section 2.2.2) is beneficial for

further data processing and analysis. It gives context to

health-related data sources and allows researchers to work

with them from different perspectives, e.g., filter them to get a

significant subset or cluster them into different cohorts.

What kind of sets of data and metadata would be useful to

collect as part of the undertaken experiments have been
e automatically by the module, showing also the process inputs and

e automatically by the module, showing also the process inputs and
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discussed extensively. In our case, we have looked for useful sets

of metadata recommendations to collect in similarly undertaken

experiments.

This EEG experiment (66) was aimed mainly at motor

imagery BCI; additional metadata were collected to be used

for further analysis and dataset evaluation. Recommendations

about what metadata could be helpful as a part of an EEG

dataset were described by (67) back in 2000.

The above-mentioned literature considers the following

dimensions to be the most significant:

† age groups,

† gender,

† handedness,

† BMI,

† eye defects, and

† geolocation.

For example, brain neuroplasticity changes with age. Older

people are more likely to have problems with some of their

motor skills (and the reaction times of either hands/legs grow

as a result). Most of the collected data are more precisely

evaluated based on age groups instead of age.

Gender was chosen instead of the “easier-to-manage” sex.

Handedness (which hand is used by the participant in most

tasks) is more valuable than laterality (superior development

of one side of the body or brain).

BMI is valuable as it can be used partly to distinguish

between the more bodily challenged participants, as these

generally have a higher chance of being affected by chronic

diseases. Eye defects are essential since most of the

experiments relied on visual stimuli.

Participants feel more comfortable under different weather

and temperature conditions (hot, cold, humid, or dry

environment). Even the measurement’s geolocation affects the

data quality and the participant’s physical and mental

condition. The uncomfortable outside environment leads to

more artifacts in the measured data. The participant’s home

can positively affect his/her mood and concentration.
4. Discussion

This part discusses how the Body in Numbers system can be

used as a template to create an instance of the real system.

Further modules of the system are also described.
4.1. Validation use case

The Body in Numbers system was initially designed to

rapidly collect heterogeneous health-related data for

chronic disease prevention (obesity, diabetes). The original

idea was first published in 2017. However, as the project
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has grown, the system expanded from collecting pure data

to accommodating cognitive and chronic disease

prevention and started to relate to neurorehabilitation

and BCIs.

As the number of subjects has grown, the need to have well-

annotated data has arisen. It would allow for creating different

datasets based on the investigative needs (e.g., creating a study

covering the youth—a need to narrow down the dataset to

only people between 15 and 24 years). The earliest Body in

Numbers system has been expanded to accommodate other

data dimensions and has allowed researchers to collect and

analyze data in different environments.

A working example of such a system, accommodating a

wide range of functions, is shown.
4.1.1. Proof of concept
As the next step, we defined, collected, and annotated

human reaction times and relevant health-related data and

metadata for further human physical and cognitive

performance analysis. A collection of human reaction times

and supporting health-related data was obtained from two

groups comprising together 349 people of all ages—the

visitors of the Days of Science and Technology 2016 held on

the Pilsen central square and members of the Mensa Czech

Republic visiting the neuroinformatics lab at the University of

West Bohemia. Each provided dataset contains a complete or

partial set of data from the following measurements: hand

and leg reaction times, color vision, spirometry,

electrocardiography, blood pressure, blood glucose, body

proportions, and flexibility. It also provides a sufficient set of

metadata (age, gender, and summary of the participant’s

current lifestyle and health) to allow researchers to analyze

further.

A well-annotated collection of human reaction times and

health-related data suitable for further lifestyle analysis and

human cognitive and physical performance was provided.

This data collection was complemented with a

preliminarily statistical evaluation. A procedure for

efficiently acquiring human reaction times and supporting

health-related data in nonlaboratory and laboratory

conditions was also presented (64).

Thanks to the success and daily use of the system, new

requirements related to better security, Scalability, and

maintainability of its architecture have emerged. The next

work presented advances and changes in the architecture of

the Body In Numbers health strategy framework, mainly

focusing on a new definition of user roles, optimization of the

system deployment, and orchestration of the system

components. A Kubernetes cluster prototype was used as

proof of concept to demonstrate the improved architectural

solution (68).
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4.2. Application domains

Relations between the person’s daily life and predispositions

toward specific health-related issues have been proven (e.g., (69)

that covers health-related topics related to insomnia, (70) for the

noise sensitivity and its effect on health, and (71) for the

movement amount and its impact on health). Most well

known are the issues connected with jobs with minimal

movement or jobs that heavily impact a person’s body.

The question of prevention is, most of the time, a decisive

factor in evading any health-threatening problems that might

occur, based on the person’s daily lifestyle when aging. The

topic of prevention is vast; five notable topics were selected:

† Chronic disease prevention (4.2.1)—it is related to

recommended movement activities throughout the day

(generally concerns jobs with large amount of sitting).

† Cognitive disease prevention (4.2.2)—it is related to

maintaining healthy mind and cognitive abilities

† Neurorehabilitation (4.2.3)—when an accident happens

that hinders brain functions (and subsequently, e.g.,

speech and mobility), neurorehabilitation helps with the

person’s recovery.

† Overall wellbeing (4.2.4)—chatbots help reduce the overall

effect of depression symptoms.

† Neural engineering (4.2.5)—it is a discipline aimed at

creating Brain–computer interfaces to control machines by

using a person’s mind.

4.2.1. Chronic diseases prevention
Smoking, excessive drinking, overeating, and physical

inactivity are well-established risk factors that decrease human

physical performance and increase the incidence of chronic

diseases. Moreover, epidemiological work has identified

modifiable lifestyle factors, such as poor diet and physical and

cognitive inactivity, associated with the risk of reduced

cognitive performance (72). Chronic diseases present an

enormous burden to society by increasing medical costs and

human suffering. The Body in Numbers system aims to

influence such modifiable lifestyle risk factors in voluntarily

enrolled individuals, thus decreasing the incidence of chronic

diseases.

The Body in Numbers system enables the collection of large

amounts of heterogeneous data and related metadata in

relatively short periods, enabling repeated measurements of

participants, data processing, and evaluation. The system

output is a list of information for participants (recommended

exercises) and management (employees in various physical

“fitness” categories).

This service is provided to firms and institutions in a series

of steps:

† Participants are registered into the system.
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† The participant fills in the entry questionnaires containing

questions aimed at food consumption habits (dietary and

drinking habits), current lifestyle, significant health issues

(diseases), intensity of medical checkups, smoking habit,

and the intensity of smoking, whether or not the person is

currently under stress and subjectively quantifies it,

quantity and quality of sleep and more (filling out the

questionnaires takes about 3–5 min).

† The system organization allows to manage 16 participants at

once (they are eight measurement sites).

† The output from this system includes raw data (e.g.,

participants’ blood pressure, cholesterol levels, and BMI),

and the participants’ categories based on their willingness

to participate in exercises.

† The participants receive advice on which exercises are most

beneficial to them individually and a set of eating habit

adjustments (based on their favorite food instead of

replacing them with something different).

† Currently, all these properties and calculations were

evaluated based on the Czech Republic Healthcare System

using the standardized SI units and measurements.
4.2.2. Cognitive disease prevention
The Body in Numbers system also helps with cognitive

impairments by offering “brain games,” which motivate users

through various memory, attention, visuospatial perception,

language and speech, or problem-solving exercises. These

games are primarily intended for mobile devices, as the

exercises can be done almost anywhere with little effort and

setup time.

Brain games can be adjusted to the user’s experience and

needs. Some of these games can also be used with a special

neurogear (the NeuroSky Mobile headset).

In the “Dangerous path” game (one of the memory-oriented

exercises), the user has to memorize the location of “good” and

“bad” objects at the beginning of the game. After this initial

startup phase, the path is obfuscated by darkness, and the

user needs to find a way from start to finish while evading all

the “bad” objects.

The “Save the princess” game uses additional gear. The user

is equipped with the NeuroSky Mobile sensor, which measures

the levels of concentration and meditation. The goal of this

game is to save a captured princess somewhere on the mobile

screen while destroying “bad” objects through the usage of a

cannon that shoots in a straight line within a time limit. The

catch is that the shot from the cannon is only as strong as the

users’ concentration level. With low concentration, shooting

the “bad” objects might be necessary multiple times.

The primary goal of these games is to motivate users to

challenge their cognitive skills throughout short repeated

sessions, working as a preventive measure.
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4.2.3. Neurorehabilitation
In neurorehabilitation, it is necessary to adjust the exercise

to the needs of each user to motivate them for repeatable

sessions. This can be generally achieved by appealing to the

user’s hobbies and dynamically adjusting the rehabilitation

task’s difficulty level.

The “Smart Train” model was created in the Body in

Numbers project. This is a handcrafted railway model that

manipulates the train using the BCI. The user drives the train

using a NeuroSky Mindwave Mobile headset (similar to the

previous “Save the princess” game). The supported operations

are as follows:

† The speed of the train model is affected by the concentration

level achieved in the last 3 s (numeric average); this selects

one of the four defined speeds.

† Change of direction (achieved by blinking twice in

succession within 2 s).

† The train is stopped by achieving a meditation level of 100%.

† Lights on the train are turned on/off by blinking once.

† If 80% of concentration is achieved, the train starts to hoot.

† If the locomotive is kept stopped for 10 straight seconds, the

conductor starts whistling.

† When the headset signal is classified as good, the locomotive

starts up and starts to move based on the concentration

levels.

† If the headset signal is low (e.g., due to poor electrode

contact with skin), then the locomotive stops and turns off

the engine.

The “Smart Train” neuroexercise challenges include stopping

the train at a specific location (e.g., on the boarding platform)

or achieving the maximum speed for a certain number of

seconds. The rewarding motivational aspects of this exercise

(“locomotive hooting,” “conductors whistle,” and “locomotive

lights”) reward and inform the user about the current state of

the concentration levels and blinking. Also, the effort required

to achieve high concentration levels can be modified manually

inside the application, making these tasks easier or

demanding based on the user’s current needs.

Another example of a rehabilitation exercise is a ball being

moved using a controller and a NeuroSky Mindwave Mobile

headset. The direction of movement is set using the

controller, and the speed is controlled by the users’

concentration levels measured by the headset. In this case, the

goal is to navigate the ball through a modifiable labyrinth of

passages as fast as possible.

4.2.4. Overall wellbeing
In recent years, wellbeing has been an interesting topic for

scientific research. Wellbeing fits various applications, from

healthy eating to mindful living. Such services can be easily

provided by various applications that notify the user of

repetitive activities or maintain healthy habits. When the
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repetitive notifications become annoying, there is a chance to

increase adherence and attrition by using gamification or

psychology in natural language conversation.

The natural conversation can be scaled and automatized

through dialog systems called chatbots. For example, a food

tracking chatbot named Nombot (73) was developed. The

dialog systems Woebot (74), Wysa (75), and Youper (76)

serve as a treatment for people with symptoms of depression

and anxiety. Lark (77) was designed to promote weight loss

and other health behaviors related to diabetes prevention.

The approaches differ; Woebot utilizes gamification with

various motivation types like points collection or higher-level

unlocking. The remaining two are built on top of cognitive

behavioral therapy. It combines behavioral techniques with

cognitive psychology, the scientific study of mental processes,

such as perception, memory, reasoning, decision making, and

problem solving, to replace maladaptive behavior and faulty

cognition with thoughts and self-statements that promote

adaptive behavior (78).

Furthermore, although these dialog systems are far from the

perfection of full human intervention, they are simple to use

and available 24x7 with significant results, for instance, in the

reduction of depression symptoms with randomized

controlled trials (74).

In the Body in Numbers project, a wellbeing module is

under development. It is interconnected with various projects

mentioned above like “Smart Train” and investigated within

research activities (79).

4.2.5. Neural engineering
The created BCI ERP Experiment, the “Guess the Number,”

uses a visual stimulation where the participant picks one

number between 1 and 9 and focuses on it throughout the

experiment without telling the experimenters (e.g., this

number effectively becomes the target stimulus). In this case,

the experimenters must correctly guess the number the

participant thought.

Throughout the experiment, the participant is exposed to

single pictures of each number between 1 and 9 (shown in

random order) on the screen while the EEG signal and

stimuli markers are recorded. Concurrently, experimenters

observe average ERP waveforms for each number, search for

the P300 component, and try to guess the number thought.

During this time, the same “guessing” is done with a software

component, which automatically identifies the number

thought. The guess is verified at the end of the experiment

when the participant is asked to reveal the number thought

(80, 81).

A variation of this experiment was also done with a picture

of nine tasks (e.g., opening a window, eating, calling the nurse),

where instead of the numbers, one of the tasks was being used

as the target stimulus. This variation was initially created to

demonstrate the use of BCI to the public while also serving
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users with limited mobility (e.g., people who cannot move their

bodies freely and cannot talk) to communicate or accomplish

some basic tasks.
4.3. Experience with the implementation
of best practices

The devised Body in Numbers ontology was successfully

overtaken and used within the components of the Body in

Numbers project while maximizing the reusability of existing

ontologies. The same was applied to the overtaken terms and

the annotation properties, where all the properties were

reused from existing ontologies. The resulting ontology was

published on the Bioportal for community reuse and in

various data formats: OWL, CSV, and RDF/XML.16

So far, the current use of the ontology is limited to the team

of Body in Numbers, which accounts for only tens of people at a

time. The community feedback is severely limited, even though

the incremental processes for expanding the existing ontology

are in place.
4.4. Future work

The following works are planned:

† Extension of terminology and ontology used in other

application domains (cognitive disease prevention,

neurorehabilitation, overall wellbeing, and neural

engineering).

† Completion of individual application domains (like

neurorehabilitation, overall wellbeing and neural

engineering), data collection, and involvement of machine

learning in the evaluation of results.

† Expansion of the used terms based on community feedback.

† Increase in the number of indexers on which the ontology is

available.

It is clear to us that this paper touches on the current absence of

best practices in the health-related data lifecycle and presents, in

particular, technical and methodological solutions that

contribute to the sharing of annotated data from different

providers. However, we have not practically touched on the

nontechnical issues that accompany the possible use of these

best practices.

In general, using best practices that contribute to

reproducible data collection, annotation, analysis,
16The BiN ontology can be found here: https://bioportal.bioontology.

org/ontologies/BIN/?p=summary (Accessed 2022-06-08).
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interpretation, and publication is a laborious process that

requires extensive knowledge and community involvement

from all stakeholders. The resulting rewards (i.e., any

additional benefits from providing well-described and

reproducible data and results) are often perceived as remote

and uncertain. Such a process is then necessarily more

compromised in its implementation. Thus, the acquisition of

clean or well-annotated data (there is no substitute for clean

data), the use of shared terminologies, ontologies, and data

formats (sharing them contributes to mutual understanding;

AI methods better handle extensive data collections), or

software and data engineering practices (they contribute to

reducing technical debt) are goals that can only be gradually

achieved if the environment supports and rewards such

efforts. Providing best practice methods, resources, and tools

for the health-related data lifecycle presented in this paper is

one support in this effort. Another important support may be

a gradual culture change regarding reproducibility and

openness of health-related data and results and the valuing

and demanding of this culture by scientific journals (which is

already happening today), coupled with the provision of

additional means of technical and methodological support

[e.g., repositories for long-term preservation of data such as

(82) or repositories of community-contributed protocols used

in data acquisition process such as (83)].

Another, but probably limited, solution is to rely on

artificial intelligence methods that can extract some relevant

information even from large amounts of raw, noisy data.
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Although deep learning has been applied to the recognition of diseases and
drugs in electronic health records and the biomedical literature, relatively little
study has been devoted to the utility of deep learning for the recognition of
signs and symptoms. The recognition of signs and symptoms is critical to the
success of deep phenotyping and precision medicine. We have developed a
named entity recognition model that uses deep learning to identify text spans
containing neurological signs and symptoms and then maps these text spans
to the clinical concepts of a neuro-ontology. We compared a model based
on convolutional neural networks to one based on bidirectional encoder
representation from transformers. Models were evaluated for accuracy of text
span identification on three text corpora: physician notes from an electronic
health record, case histories from neurologic textbooks, and clinical synopses
from an online database of genetic diseases. Both models performed best on
the professionally-written clinical synopses and worst on the physician-
written clinical notes. Both models performed better when signs and
symptoms were represented as shorter text spans. Consistent with prior
studies that examined the recognition of diseases and drugs, the model
based on bidirectional encoder representations from transformers
outperformed the model based on convolutional neural networks for
recognizing signs and symptoms. Recall for signs and symptoms ranged from
59.5% to 82.0% and precision ranged from 61.7% to 80.4%. With further
advances in NLP, fully automated recognition of signs and symptoms in
electronic health records and the medical literature should be feasible.

KEYWORDS

named entity recognition, clinical concepts, concept extraction, phenotype,

transformers, natural language processing, annotation

I. Introduction

Several factors have accelerated interest in the automated recognition of clinical

concepts in unstructured text held in electronic health records and electronic

publications (1). First, most paper medical records have been converted to electronic

health records (EHRs) (2) with as much as 80% of the data held as unstructured text
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(3). Second, most medical journals are available electronically

(4). Third, the deep phenotyping and precision medicine

initiatives have made the detailed description of patient signs

and symptoms a key piece of data (5,6). Fourth, automated

clinical concept recognition is an important area of natural

language processing (NLP) research. Automated concept

recognition is closely related to the NLP problems of text

mining and named entity recognition. Other important NLP

research areas include machine translation, text classification,

text clustering, speech recognition, question answering, text

summarization, sentiment analysis, picture captioning, and

natural language understanding (7–14).

Krauthammer and Nenadic (1) have divided concept

recognition (variously called term identification, concept

extraction, and information extraction) into three steps: term

recognition (identification of the text span corresponding to

the clinical concept), term classification (identification of the

class membership of the term, i.e., drug, disease, sign,

symptom, etc.), and term mapping (linking of the term to an

entry in a standard vocabulary with an identification code

which is also known as “concept normalization” (15)).

Clinical concept recognition is closely related to the NLP

problem of named entity recognition (NER) in which text

spans referring to named entities (people, places,

organizations, etc.) are tagged and mapped to dictionaries,

gazetteers, or other registries (16).

Text spans that encode clinical concepts (diseases, drugs,

signs, symptoms, etc.) can be mapped (normalized) to

hierarchical ontologies that include SNOMED CT with

352,000 concepts, the Human Phenotype Ontology (HPO)

with 20,000 concepts, the Online Mendelian Inheritance in

Man ontology (OMIM) with 97,000 concepts, or the UMLS

Metathesaurus with 4.6 million concepts (17–20). The NLM

UMLS Metathesaurus maintains interchangeable machine-

readable codes for SNOMED CT, UMLS, HPO, and the OMIM.

Initial NER systems for clinical concept recognition were

either dictionary-based, or rule-based (1,21,22). Some second-

generation NER systems were based on machine learning

algorithms such as conditional random fields, support vector

machines, and hidden Markov models (23,24). Other second-

generation NER systems developed as an outgrowth of

advances in semantic and syntactic analysis (25,26). MetaMap

utilizes linguistic analysis and statistical algorithms to identify

clinical concepts in unstructured text and maps them to

machine-readable codes in the UMLS (27,28). The UMLS has

grown from 900,000 concepts, and 2 million names in 2004

(29) to 4.6 million concepts and 17 million names in 2022

(20). MetaMap tokenizes text input, finds sentence

boundaries, and uses lexical and syntactic analysis to identify

candidate phrases for mapping to concepts in the UMLS.

Candidate phrases are compared to target strings in the

UMLS, lists of potential clinical concepts are generated, and

scored by statistical algorithms. MetaMap can recognize
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abbreviations, acronyms, and negation, can generate word

variants, and can perform word sense disambiguation (27). In

a preliminary study, we found that MetaMap can identify

signs and symptoms in neurological case histories with an

accuracy of 55–84% (30). Most MetaMap errors were false

negatives due to a failure to recognize neurological concepts

that had been expressed as descriptions (e.g., reflexes were

absent) as opposed to those expressed as discrete lexical items

(e.g., hyporeflexia). In their 2017 literature review of

automated information extraction, Wang et al. (31) reviewed

263 information extraction studies and found most centered

on identifying diseases or drugs. The most common systems

used were MetaMap, MedLEE, and cTAKES (32–36) followed

by traditional machine learning algorithms (conditional

random fields, support vector machines, random forests,

decision trees, and naive Bayes).

Third-generation systems for NER are built on deep

learning (37–40). Lample et al. suggested a model for named

entity recognition based on an RNN (recurrent neural

network) with bidirectional LSTM (long short term memory)

and conditional random fields (CRFs). Vani et al. (41)

proposed a “grounded” RNN to predict medical diagnoses

based on text from patient discharge summaries. Liu et al.

(42) found that on a task to label protected health

information in medical records that RNNs based on

bidirectional LSTM outperformed those that used CRFs. An

LSTM NER model with conditional random fields (CRFs) has

been used to identify five classes of chemicals, species, genes/

proteins, cell lines, and diseases (43). Hybrid methods that

combine rule-based and machine learning-based methods

have been proposed to identify protected health information

(PHI) in clinical discharge summaries (44). Liu et al. (42)

developed a hybrid system to identify clinical information by

ensemble learning that combined the instances predicted from

a bidirectional LSTM, a CRF model, and a rule-based system

(45,46). Gehrmann et al. (47) used a convolutional neural

network (CNN) for ten phenotyping tasks and compared it

with other common NLP models. Arbabi et al. (48) have

created a neural concept recognizer (NCR) that uses CNNs

and word embedding to recognize clinical concepts in

unstructured text. The NCR uses an encoder to convert input

phrases to word vectors and word embedding to convert

entries in the target ontology into word vectors. The similarity

between the input phrases and concepts in the target ontology

is calculated by the dot product. For concept recognition in

PubMed abstracts or clinical notes, the NCR outperformed

the NCBO Annotator and BioLark (49). RNNs and variants

can handle long-term dependency in text, but only for a

limited span length. The deep learning architecture

transformers can process longer text spans and has shown

improved performance on NLP tasks (50). Bidirectional

encoder representations from transformers (BERT) have

outperformed other neural network architectures on named
frontiersin.org
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entity recognition (51,50). For clinical concept recognition,

BERT models that are pre-trained on the medical literature

(BioBERT) or clinical notes (ClinicalBERT) outperform BERT

models pre-trained on general corpora by at least 1% (52–55).
A. Proposed approach

Although considerable work has been done on automated

concept identification of drugs and diseases, less work has

been done on the automated identification of signs and

symptoms (52). Identifying signs and symptoms is critical to

precision medicine and deep phenotyping (56). To make the

problem tractable, we limited the signs and symptoms to the

specialty of neurology and restricted the target ontology to a

neuro-ontology with 1,600 concepts (57). Automating the

recognition of signs and symptoms is more challenging than

automating the recognition of diseases or drugs for three

reasons. First, many neurological signs and symptoms have

multiple synonyms; something that is not typical with diseases

or drugs. For example, an expressionless face may be

described as a “masked face,” or “hypomimia.” Second,

physicians variably choose to record signs and symptoms as

descriptions or as names. For example, a patient with diplopia

can be described as “seeing double” or a patient with nausea

can be described as “sick to their stomach.” In contrast,

physicians uniformly identify drugs and diseases by name and

not by description. Third, the meaning of a term may depend

on context. For example, to a neurologist ptosis is a droopy

eyelid, but to a gynecologist, ptosis is a prolapsed uterus.

We propose to identify and normalize the neurological signs

and symptoms found in the unstructured text in two steps: first,

we have trained a neural network-based named entity

recognition model to identify text spans that contain clinical

concepts (signs and symptoms). Second, we have normalized

identified text spans by mapping them to clinical concepts in

a neuro-ontology using a look-up table and similarity metric

(Figure 1).
FIGURE 1

Overview of the pipeline that recognizes text spans that are clinical concept
notes, and Clinical synopses in the OMIM. Text spans are normalized by map
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Since neurologic signs and symptoms can be extracted from

both the medical literature and electronic health records, we

have tested the concept identification pipeline on three

corpora: case histories from neurological textbooks,

neurological clinical synopses from the Online Mendelian

Inheritance of Man (OMIM), and physician neurological

notes from an electronic health record. With this work, we

propose to address four questions:

1. Does writing style differ by corpus?

2. Does the accuracy of concept recognition differ by corpus?

3. Is the accuracy of clinical concept recognition reduced with

longer text spans?

4. Does concept recognition based on BERT outperforms

concept recognition based on CNNs?

Although the superiority of BERT over other neural networks

for concept identification is well-established, the contribution

of this work is to demonstrate that the accuracy of concept

identification depends upon text span length and corpus

writing style.

II. Methods

A. Corpora

We identified signs and symptoms (clinical concept

identification) in three corpora: neurological case histories

from five neurological textbooks (referred to as Textbook

Corpus (58–62), clinical synopses of neurological disease from

the Online Mendelian Inheritance of Man (referred to as

OMIM Corpus) (18), and neurology physician notes from the

electronic health record of the University of Illinois at

Chicago (referred to as EHR Corpus). The use of de-identified

physician notes was approved by the Institutional Review

Board of the University of Illinois at Chicago. Corpora were

converted to plain text files and pre-processed using python.

Email addresses, URLs, HTML, special characters, and

unnecessary punctuation were removed using regular

expressions in python. Contractions were replaced with the

expanded form. Misspelled words, separated words, and
s in three corpora: Textbook neurology case histories, EHR physician
ping to clinical concepts in a neuro-ontology.
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hyphenated words were corrected manually using the spelling

correction tool in Microsoft Word. Abbreviations were not

edited. The pre-processed files were manually inspected for

errors and converted to JSONL files.
B. Text annotation

Signs and symptoms in JSONL files were annotated by a

neurologist using the Prodigy annotation tool (63,64). An inter-

rater reliability study with two other raters based on fifteen

neurology notes showed an unadjusted agreement rate for text

span annotation of 89% and a kappa statistic of 0.85 (65).

Each sign or symptom was tagged as a unigram, bigram,

trigram, tetragram, extended, compound, or tabular concept.

Unigrams were signs and symptoms of length one-word such

as alexia, hyperreflexia, or bradykinesia. Bigrams were signs

and symptoms of length two-words such as double vision,

facial weakness, and poor balance. Trigrams were signs of

symptoms of length three-words such as absent ankle reflex,

impaired hand dexterity, or weak ankle dorsiflexors.

Tetragrams were four-word signs and symptoms such as

relative afferent pupil defect and Hoffman sign was present.

Text spans were tagged as extended when signs and symptoms

were more than four words, such as hand grip was very weak

and barely able to lift his legs off the bed. Text spans were

tagged as compound when more than one sign or symptom

was combined in a single text span such as decreased

vibratory sensation, joint position, and pinprick below the

knees. Tabular concepts with separate columns for the right

and left sides of the body were found only in the EHR notes.

Examples of concepts in table form included biceps weakness

represented as [biceps strength 3 3] (meaning that biceps

strength was 3/5 on both right and left sides) or knee

hyperreflexia represented as [knee reflexes 4+ 4+] (meaning

that the knee reflex was 4+ on both right and left sides). Text

span annotations were stored in an SQLite database and

exported in JSONL format for further processing in the spaCy

(Explosion, Berlin, Germany) python programming

environment.
TABLE I. Performance of CNN and BERT neural networks on concept
extraction task.

Corpus NN F Precision Recall

EHR CNN 57.5 65.6 51.2

BERT 61.7 64.0 59.5

Textbook CNN 69.0 70.1 67.9

BERT 73.0 73.6 72.3

OMIM CNN 76.2 78.8 73.7

BERT 80.4 79.0 82.0
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C. NN model training and evaluation

Two neural network models were trained to recognize text

spans that encoded clinical concepts in text corpora. Both

models were based on NER pipelines. NER pipelines identify a

named entity in a text span and assign the named entity to a

predefined category. Each NN model assigned text spans to one

of the seven defined categories of clinical concepts (unigram,

bigram, trigram, tetragram, extended, compound, and tabular).

For each corpus, 80% of the instances were used for training

and 20% for evaluation. The baseline NN was the default spaCy

named entity recognition model based on a four-layer

convolutional neural network (CNN) that looks at four words

on either side of each token using the NER pipeline and tok2vec

with an initial learning rate 1� 10�3. The standard word

vectors included with spaCy were used for word embedding.

The second named entity recognition model was based on

BERT (51). The BERT base model was implemented in

spaCY (66) and consisted of 12 layers of transformer encoder,

12 attention heads, 786 hidden size, and 100 M parameters.

The BERT model was pre-trained with publicly available

weights and fine-tuned using our training set. We used the

Adam optimizer with a learning rate of 5� 10�5, b1 ¼ 0:9,

b2 ¼ 0:99, a learning rate warm-up over the first 500 steps,

and a linear decay learning rate. The dynamic batch size was

set according to the longest sequence in the batch. The

training was conducted over 20,000 steps. The mini-batch size

dynamically changed according to the longest sequence in the

batch. The largest padded size for batch sequences was 2,000,

and the buffer was 256. A GELU activation function was

used. For each corpus and each model, the F score, precision,

and recall were computed (Table I).
D. Mapping text spans to concepts in the
neuro-ontology (normalization)

Candidate text spans identified by the CNN and BERT

models were mapped to neurological concepts in the target

neuro-ontology. The neuro-ontology (57) is a hierarchical

ontology with 1,600 concepts constructed with the Protégé

ontology editor (67). All concepts map to terms and CUIs

(unique concept identifiers) from the UMLS (20). The highest

levels of neuro-ontology correspond to the main elements of

the neurological examination: mental status, cranial nerves,

motor, sensory, reflexes, and symptoms. The neuro-ontology

is available for download in CSV or OWL format at the

National Center for Biomedical Ontologies BioPortal (https://

bioportal.bioontology.org/ontologies/NEO).

We manually created a look-up table by mapping 3,500

potential target phrases to concepts in the neuro-ontology.

Similarities between the candidate text spans (from either the
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CNN or BERT models) and target phrases in the lookup table

were calculated using the doc.similarity method from spaCy

(66). Both the candidate text span and the target phrase were

converted to doc objects using the spaCy NLP pipeline (https://

spacy.io/api/doc/#similarity), which converts each token in the

phrase into a word vector. The similarity is the cosine distance

between the word vectors from the two phrases and ranges

between 0.0 (least similar) and 1.0 (most similar). We mapped

the candidate text span to its most similar target text span in

the look-up table and retrieved the corresponding concept

name and UMLS CUI from the neuro-ontology (57).
III. Results

A. Writing style and accuracy varied by
corpus

The OMIM corpus used more unigrams and digrams to

encode signs and symptoms and had shorter spans of text

annotations than the EHR corpus or the Textbook corpus

(Figure 2). The length of annotations (histogram insets,

Figure 2) was longer for the EHR corpus. Extended

annotations were more frequent in the EHR corpus and

Textbook corpus. Only the EHR corpus had tabular

annotation (clinical concepts expressed in table format).

Performance on the concept identification task differed by

corpus; F, precision, and recall were highest for the OMIM

corpus and lowest for the EHR corpus (Table 1).
FIGURE 2

Text spans that identified clinical concepts were longer in the EHR
corpus and shortest in the OMIM corpus (see blue inset
histograms). Proportionately, the OMIM corpus used the most
unigrams and bigrams as compared to the EHR corpus and the
Textbook corpus (see red bar charts).
B. Performance of NER model decreased
with the increasing text span length

For all three corpora, the recognition of clinical concepts as

measured by F scores was better for shorter text spans

(Figures 3A,B). This applied to both the CNN and the BERT

models for concept identification (Table 1). F was highest for

unigrams (one-word concepts like ataxia, diplopia, aphasia) for

all three corpora. In general, performance on bigrams was better

than trigrams, and performance on trigrams was better than

tetragrams. Performance tended to be worse for text spans greater

than four words (extended), or text spans with compound

constructions such as weakness of the biceps, triceps, and deltoids.
C. Performance varied by neural network
model

For all three corpora, BERT outperformed the CNN neural

network for the recall of clinical concepts. Precision in clinical

concept identification was about the same for all three corpora

when BERT was compared to the CNN model (Table 1).
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IV. Discussion

Named entity recognition models based on deep learning can

recognize neurologic signs and symptoms in the biomedical

literature and electronic health records (Table 1). Previous

work has shown that BERT outperforms CNNs on recognizing

drugs and diseases in annotated test corpora (52,55). We
frontiersin.org
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FIGURE 3

(A) F values for the BERT NER model sorted by text span label type. The BERT NER model performs similarly on the three corpora for unigrams and
bigrams, but F values lag for the EHR corpora for the tetragrams, extended text spans, and compound text spans. Note that the BERT NER model
performs significantly worse on the EHR corpus for tetragrams, extended text spans, and compound text spans when compared to the Textbook or
OMIM corpus. (B) F values for the BERT NER model sorted by corpus. All three corpora show the same pattern with declining F values with the
increasing length of the text span.
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extend these observations to demonstrate the superiority of BERT

over CNNs for recognizing neurological signs and symptoms in

electronic health records and biomedical literature.

A significant finding was that the accuracy of recognition of

signs and symptoms fell with increasing text span length

(Figures 3A,B). Increased variability in longer text spans likely

poses greater difficulty for NER pipelines, regardless of whether

they are based on linguistic/symbolic methods like MetaMap or

deep learning like BERT or CNNs. Longer text spans are more

likely to be descriptions of named entities (e.g., “the patient fell

to the left when standing with eyes closed” rather than more

concise named entities themselves (e.g., “Romberg sign

positive”). Normalization of longer text spans (mapping to

suitable concepts in the ontology) may pose additional

challenges. The successful mapping (normalization) of “wavering

with eyes closed” to “Romberg sign positive” may require

vectorization (word embedding) of terms in an ontology, as well

as the synonyms and definitions of these terms (48,55).

Another significant observation was that recall of neurologic

signs and symptoms was lower in the EHR corpus than in the

OMIM corpus or Textbook corpus. The Textbook and the

OMIM corpus were written by professional writers and had

undergone careful editing and correction. The EHR corpus

was written by physicians who were not professional writers.

The EHR corpus was marred by irregular spelling, irregular

abbreviations, typographical errors, grammatical errors, and

other irregularities absent from the OMIM corpus and the

Textbook corpus. Others have noted the high frequency of
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irregular abbreviations, spelling, grammatical, and other

writing errors in the clinical notes created by physicians (68–

72) The general approach of the writers of the OMIM corpus

was brevity. OMIM writers tended to use lists of clinical

concepts such as “the patient had optic disk pallor, miosis,

anisocoria, and a relative afferent pupil defect.” The general

approach of the writers of the Textbook corpus was didactic

and explanatory so that a relative afferent pupil defect might be

described as “the swinging flashlight test was abnormal and the

pupil dilated when the light was placed over the abnormal

pupil and the pupil constricted when the light was moved to

the normal pupil.” The EHR corpus was characterized by

brevity but irregular spellings, abbreviations, and syntax so that

the same patient might be described as “RAPD present on R.”

The lower accuracy for recognition of signs and symptoms

in the EHR corpus (physician notes) deserves further comment.

One way to improve automated recognition of signs and

symptoms in physician notes is to encourage them to use

structured rather than unstructured documentation (73).

However, given physician burnout associated with clinical

documentation (74), and physician distaste for structured

documentation (75), it seems unlikely that physicians will

adopt structured documentation for recording signs and

symptoms. Furthermore, given that by training, physicians are

often asked to describe findings rather than name findings, it

seems unlikely that physicians can be converted to using short

names instead of lengthy descriptions of signs and symptoms.

Rather, improvements in NLP are needed to identify better
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clinical concepts held as lengthier texts spans or represented as

descriptions of named entities rather than as the named entity

itself.

NLP models that extract clinical concepts from free text

must recognize negation successfully. The sentence “the

patient has ataxia” has a clinical concept whereas the sentence

“ataxia is absent” denies ataxia (76–78). Negation makes it

difficult to determine if a sign or symptom is present and

suggests that strategies based on regular expressions (REGEX)

will fail. The patient who complains of tremor, who is

tremulous, or is observed to have a tremor must be

distinguished from the patient who denies tremor, is not

tremulous, or has no tremor. MetaMap uses the NEGEX

algorithm to recognize negation (27). We relied on examples

to train the neural networks to recognize negated concepts for

our BERT and CNN models. Further work is needed on

handling negated concepts accurately and efficiently (77).

Another challenge is word disambiguation (79). The sentence

the “patient has had a fall” may contain a valid neurological

concept, whereas the sentence “the patient was seen in the

Fall” does not. Word disambiguation is another area of

continuing research in NLP (79).

This study has several limitations. The study was limited to

the domain of neurology (neurological signs and symptoms).

Furthermore, the text span annotations were done by a single

annotator. We have planned an inter-rater agreement study

(65). We limited the target ontology to 1,600 neurological

concepts. Whether our methods can be generalized to more

complex domains and larger ontologies is uncertain. Although

we achieved a recall of 80% to 90% with shorter text span

lengths, the recall was lower for longer text span lengths. To

make automated high throughput neuro-phenotyping practical,

we estimate that a recall of at least 90% is needed depending

on the application (i.e., research versus patient care).

Identifying clinical concepts in complex grammatical structures

remains challenging for even the best NLP algorithms. For

example, identifying the concepts biceps weakness, triceps

weakness, and hand weakness in the sentence the patient had

3+/5 strength in the biceps, 2+/5 strength in the triceps, and

1/5 hand grip strength remains problematic. Efficient NLP

algorithms that simplify grammar and syntax are an area of

evolving research (80,81). Another limitation of the study is

the small corpus used for training. Our NER models would

likely have improved with more training annotations.

In conclusion, given the burden of physician documentation

(74), patient signs and symptoms will likely continue in

electronic health records as unstructured text. The automated

identification of these signs and symptoms is critical to the

success of deep phenotyping, and precision medicine

initiatives (5,6). Advances in NLP based on word embedding

and deep learning make the automated identification of signs

and symptoms in unstructured text increasingly feasible.
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Designing evidence-based
support aids for social media
access for individuals with
moderate-severe traumatic brain
injury: A preliminary acceptability
study
Fangyun Zhao1,2, Hajin Lim1, Emily L. Morrow3, Lyn S. Turkstra4,
Melissa C. Duff3* and Bilge Mutlu1

1Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI, United States,
2Department of Psychology, University of Wisconsin-Madison, Madison, WI, United States,
3Department of Hearing & Speech Sciences, Vanderbilt University Medical Center, Nashville, TN,
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Background: Adults with traumatic brain injury (TBI) report significant barriers
to using current social media platforms, including cognitive overload and
challenges in interpreting social cues. Rehabilitation providers may be tasked
with helping to address these barriers.
Objectives: To develop technological supports to increase social media
accessibility for people with TBI-related cognitive impairments and to obtain
preliminary data on the perceived acceptability, ease of use, and utility of
proposed technology aids.
Methods: We identified four major barriers to social media use among
individuals with TBI: sensory overload, memory impairments, misreading of
social cues, and a lack of confidence to actively engage on social media
platforms. We describe the process of developing prototypes of support aids
aimed at reducing these specific social media barriers. We created mock-ups
of these prototypes and asked 46 community-dwelling adults with TBI (24
females) to rate the proposed aids in terms of their acceptability, ease of
use, and utility.
Results: Across all aids, nearly one-third of respondents agreed they would use
the proposed aids frequently, and the majority of respondents rated the
proposed aids as easy to use. Respondents indicated that they would be
more likely to use the memory and post-writing aids than the attention and
social cue interpretation aids.
Conclusions: Findings provide initial support for social-media-specific
technology aids to support social media access and social participation for
adults with TBI. Results from this study have design implications for future
development of evidence-based social media support aids. Future work
should develop and deploy such aids and investigate user experience.
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Introduction

The prevalence of social media and computer-mediated

communication (CMC) platforms have altered how people

establish social connections, engage in social events, obtain

information, and maintain effective collaboration in daily life

(1–3). A growing body of research shows that engagement in

social media and CMC, particularly via Facebook, increases

social connectedness and decreases loneliness, plays a critical

role in friendship maintenance, and promotes health and

well-being (4, 5). For individuals with health-related concerns,

social media platforms have provided an important

mechanism to find health information, participate in support

groups, and share their experiences (6, 7). Individuals with

traumatic brain injury (TBI) may particularly benefit from

social media, given that they often report social isolation (8)

and friendship loss (9), along with physical and cognitive

limitations that make in-person social interactions difficult

(10, 11). Previous research suggested that social media can

promote mental well-being among individuals with TBI and

allow them to keep or increase opportunities for social

participation (12, 13). Individuals with TBI want to use social

media platforms such as Facebook and Twitter as much as

their uninjured peers (14). However, these individuals may

experience cognitive impairments and have reported

significant barriers to using current social media platforms,

including cognitive overload and challenges in interpreting

social cues (12, 14–17), so the potential benefits of social

media are often not accessible to them. Rehabilitation

professionals see social media use as a way to reduce social

isolation following brain injury, and such professionals may

play a future role in addressing barriers to increase social

media participation (18).

Social media platforms have provided limited support for

increasing accessibility to individuals with TBI and other

populations with cognitive impairments (19–21). Accessibility

features of social media platforms mostly focus on supporting

individuals with sensory disabilities such as hearing or vision

impairments (22–24). These features include allowing voice-

over gestures for navigating social media sites and providing

automatically generated image captions (22, 25). There are no

parallel supports for individuals with cognitive impairments

such as those routinely observed in individuals with TBI.

The current study is part of a broader effort to develop

technological supports to increase social media accessibility

for people with TBI-related cognitive impairments. A long-

term goal of this line of work is to also understand individual

differences that may influence who is willing to use, and who

would benefit from, technological support to increase social

media accessibility. Here, we report on the process of

designing four social media support aids that address

challenges in using social media platforms associated with

social and cognitive impairments in adults with TBI reported
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in the literature and those we have observed in the clinical

experiences of the author team. The future success of any

technological support to improve accessibility and social

media use, however, depends on their acceptability and

perceived utility and benefit to individuals with TBI (26).

Thus, as a first step in this process, we obtained preliminary

feedback from individuals with TBI on the acceptability and

potential use of these aids to guide future development.

In the following sections, we review previous literature on

social and cognitive impairments in individuals with moderate-

severe TBI that would affect use of social media platforms and

identify four main barriers. We describe potential technological

support aids to address these barriers and the process of

designing prototypes of these aids. Finally, we report on a

survey study where we presented mock-ups of these aids to

gain acceptability data and perceptions of the utility of the aids.
Background

Social and cognitive impairments in
individuals with TBI

Individuals with TBI have a range of deficits that make it

difficult to navigate the social world. Impairments in social

communication skills are a hallmark of TBI, including

impairments in recognizing and interpreting social cues (14,

15, 27–29); missing implied meanings such as sarcasm and

jokes; and losing track of topics in a conversation (30–33).

These social communication deficits are thought to be a

major contributor to the negative social outcomes reported by

many adults with TBI (34–36). Indeed, as a group, adults

with TBI report having fewer friends and social contacts

overall (19), and less social participation with, and more

social isolation from, their uninjured peers (20). These

negative outcomes in turn affect mental health and wellbeing,

not only for the person with TBI but also for their caregivers

(37, 38). Impairments in basic cognitive functions are also

common following TBI in domains such memory (39),

attention (40, 41), decision-making (42–44), and executive

functioning (45, 46). These social communication and

cognitive deficits have typically been examined and reported

in face-to-face, in-person interactions, but recent work

suggests that they might extend to computer-mediated

communication on social media platforms (18, 47).
Four evidence-based social media
barriers among individuals with TBI

The literature on barriers and challenges to social media use

among individuals with TBI, together with the clinical

experiences of some of our team members, identifies four
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major barriers to social media use among individuals with TBI:

sensory overload, memory impairments, misreading of social

cues, and a lack of confidence to actively engage on social

media platforms (14, 47, 48).

Sensory overload
Social media platforms can place high demands on sensory

processing and attention. Individuals with TBI report difficulty

navigating social media sites, keeping up with rapid feeds, and

managing sensory overload (12, 17, 27). Some individuals report

going through a try-and-fail process to get familiar with the

social media platforms due to lack of instructions (14, 15, 27),

being overwhelmed, and going offline. In one study, individuals

with TBI reported that they found the information on Twitter

meaningless and random due to information overload (14).

Difficulty managing attention and disrupted information

processing are well documented challenges in face-to-face

interactions for individuals with TBI (39, 49, 50). These

challenges are consistent with the reports of being overwhelmed

and overloaded and ultimately abandoning online sessions. A

potential solution to this challenge might include restricting the

amount of content displayed at any given time by, for example,

discretizing the information that is shown in the form of an

“infinite scroll” that is widely used by social media platforms.

Memory impairments
Social media platforms can place high demands on working

and declarative long-term memory. Social media users must

quickly identify the owner of the message or post and recall

previous events and histories to interpret a given message, as

well as quickly integrate and update memory as new

information becomes available. Working and declarative

memory impairments commonly follow TBI, and these deficits

are likely to pose a challenge for using social media platforms.

Indeed, declarative memory impairments affected how

individuals with TBI process information on social media (47)

and decreased their social media use (17). Providing memory

assistance that consolidates previous messages to facilitate

comprehension of a current message may help individuals with

TBI manage the memory demands of using social media.

Misreading of social cues
Computer mediated communication requires users to read

social cues from a variety of single and integrated sources

including faces, videos, text, and emoji. Deficits in reading social

cues in individuals with TBI are well documented. Individuals

with TBI have difficulty reading cues in social interaction and

managing turn taking (14, 15) and, relative to uninjured peers,

are less accurate in facial affect recognition (51, 52) and less

sensitive to text-based social cues (53). Such deficits in social

communication are consistent with reports of individuals with

TBI misreading social cues in social media and experiencing

negative consequences (12, 17). Providing users with information
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about the general sentiment of a post might help individuals with

TBI in reading social cues on social media platforms.

Lack of confidence to actively engage on social
media platforms

Individuals with TBI reported a lack of confidence in engaging

in online social activities on social media platforms. They also

report using Facebook more passively than actively, i.e., being

less likely to post status updates or send direct messages to

others on social media compared to uninjured peers (17, 20). In

particular, individuals with TBI reported worrying about

misreading conversations or making mistakes (17, 28). Support

tools that allow individuals with TBI to monitor their messages

and get feedback before posting could increase confidence when

engaging on social media. If so, increased confidence may result

in more active participation, which could in turn provide more

opportunities to experience the benefits of social media use

reported by neurotypical individuals.

Guided by the literature described above, we designed four

aids to address: (1) sensory overload, (2) memory impairments,

(3) misreading social cues, and (4) a lack of confidence to

actively engage on social media platforms. Our overarching

strategy was to design aids that reduced the cognitive or sensory

load (e.g., memory) or that provided assistance in meeting the

social or cognitive demands (e.g., reading social cues) reported

by individuals with TBI as barriers to CMC and that the use of

the aids would be as simple and intuitive as possible.

After the initial conceptual design, we engaged in ideation

and iterative design to develop specific interface solutions that

can be implemented as interface augmentations. We ensured

that our designs were technologically feasible using available

user interface software (e.g., react.js) and commercial text and

visual analysis toolbox (e.g., Watson Natural language

understanding, IBM Visual Insights) for future implementation.

We then created a mock-up of each design for acceptability

testing of the concepts of these aids. The mock-ups were

created by capturing screenshots of the Facebook interface and

modifying its visual elements to represent the design of our aids.
Design of social media aids for
Facebook

We created the mock-ups for Facebook’s platform, as adults

with TBI cited it as their most commonly used platform (21,

54). In this section, we present the design rationale and

development for the social media aids.
Attention aids

To address sensory and information overload reported by

individuals with TBI, we aimed to reduce the visual and
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technical complexity in the current Facebook interface (15, 54)

(Figure 1). A traditional Facebook page contains many elements

including color side bars, newsfeed posts, friend lists, and

advertisements. Arfaa and Wang proposed that grouping and

highlighting necessary information could facilitate easier

navigation of a website layout for older adults (24). We expected

that their suggestion would also be helpful for adults with TBI.

In conceptualizing this aid, we first aimed to reduce visual

complexity by putting a transparent gray overlay over the

Facebook newsfeed, so users can pay attention to and read

one post at a time. Also, to guide better navigation of

Facebook, we grouped and labeled each area of a page by its

primary purpose (i.e., post status updates, send messages) (see

Figure 1). We also created a “Next Post” button to enable

users to bring the next post to focus.
Memory aids

To address impairments in memory, we designed an aid

that automatically searches and consolidates related posts

from a user’s profile and presents them to the user. When

users see a post that builds on context or information from

previous posts, the memory aid retrieves related posts and

presents them in a section, titled “explain more,” so users

have context for the current post. For example, as illustrated

in Figure 2, previous posts about a stage performance were

combined into a thread in the “explain more” button. A user

could then see how the current post related to previous posts,

which provides information implied in the current post and

thus supports understanding of that post based on context
FIGURE 1

An example of modified Facebook page after using the attention aid. Identify
confidentiality.
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that may be missing for individuals with a memory deficit

(i.e., that it refers to a celebration for the performance).
Social cue interpretation aids

Based on evidence of impaired social communication and

misreading of social cues in adults with TBI, we designed an

aid to facilitate social cue interpretation. We suspect that

reading social cues may be particularly difficult when the

demands include integrating the information from text and

images. As illustrated in Figure 3, the social cue

interpretation aid automatically extracts the main sentiment

and topic from the text and/or image from the target post

and presents a short summary of the post.
Message production aids

Individuals with TBI report worrying about misreading

conversations and then making mistakes (17, 28). As a

consequence, they report being less active on social media. To

address this barrier, we designed a message production aid. In

addition to providing feedback on spelling and grammar, we

expected that this tool would serve as a “Theory-of-Mind

check;” that is, it provides feedback on how a recipient would

likely interpret that message. As shown in Figure 4, the aid

provides feedback on grammar and sentiment of the message

before a user posts it, which would give users opportunities to

fix grammatical errors and monitor the tone and emotion

conveyed by their posts before they are sent. When no error
ing information such as names and faces have been blurred to protect
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FIGURE 2

An example of the modified Facebook page using the memory aid. Identifying information such as names and faces have been blurred to protect
confidentiality.

FIGURE 3

An example of the modified Facebook page using the social cue aid. Identifying information such as names and faces have been blurred to
protect confidentiality.
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FIGURE 4

An example of the modified Facebook page using the message production aid.
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is detected, the system provides positive encouragement to

generate their content.

In summary, we identified four key barriers to social media

use for individuals with TBI and designed a set of aids aimed

at reducing these barriers. Each of these aids included specific

design features and functionality to address a key social-

cognitive barrier to social media use by individuals with TBI,

as summarized in Table 1. Before beginning software

development and implementation of the social media support

aids, we created mock-ups of our designs to determine if adults

with TBI would find these tools acceptable and to obtain

additional design suggestions for future social media support

tools for individuals with TBI. To obtain this information, we

conducted a survey to gauge the acceptability of these aids and

perceived use and benefit to individuals with TBI.
Methods for acceptability study

Participants

Participants were recruited through the Vanderbilt Brain

Injury Patient Registry (55) and were a subset of individuals
TABLE 1 Summary of four aids and their design features.

Type of Aid Target Barrier Design Goal

Attention Aids Sensory overload Reduce visual complexity

Memory Aids Memory impairments Consolidate and present previ
to help users comprehend the
post

Social Cue
Interpretation Aids

Misreading of social cues Provide a summary of the sen
targeted post

Message Production
Aids

Lack of confidence in actively
engaging on social media
platforms

Reduce grammatical errors; p
preview of the sentiment of t
message
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with TBI surveyed by Morrow and colleagues (21; see below).

The study by Morrow et al. included 53 adults (28 females)

with moderate-severe TBI, but we excluded seven participants

from that sample who reported that they never had a

Facebook account. The final sample was 46 participants with

moderate-severe TBI (24 females, M = 38.0 years old, SD =

9.6). Participants with TBI had 14.9 years of education (SD =

2.3), on average.

All participants with TBI were in the chronic phase of injury

(>6 months post-injury) and sustained their injuries in

adulthood (i.e., after age 18). Thus, participants’

neuropsychological profiles were in the chronic and stable

phase (56). Average time since injury was 71.8 months (SD =

64.0). Participants with TBI did not have a history of

neurological or cognitive disabilities before the qualifying

brain injury. TBI severity was determined using the Mayo

Classification System (57). Participants were classified as

having sustained a moderate-severe TBI if at least one of the

following criteria was met: (1) Glasgow Coma Scale (GCS) <

13 within 24 h of acute care admission (i.e., moderate or

severe injury according to the GCS); (2) positive

neuroimaging findings (acute CT findings, or lesions visible

on a chronic MRI); (3) loss of consciousness (LOC) > 30 min;
Design Features

A semi-transparent overlay to cover the page; a summary of the
functions of each area; highlighting of targeted area of interest

ous posts
current

An added button that retrieves related posts

timent of An added button that shows the topic and the sentiment of the current
message

rovide a
he

A button that indicates errors in the current message being produced;
when clicked, a message appears that includes errors, a suggested fix,
and the sentiment of the current message
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or (4) post-traumatic amnesia (PTA) > 24 h. Injury-related

information was collected from available medical records and

a semi-structured interview with participants.

GCS was available for 38 participants (ranging from 3 to

15); loss of consciousness (LOC) information was available for

42 participants; PTA information was available for 44

participants; acute imaging information was available for 44

participants (43 with positive findings). Causes of injury were

motor vehicle accidents (25), falls (6), motorcycle or

snowmobile accidents (4), being hit by a car as a pedestrian

(4), assault (3), non-motorized vehicle accidents (1), being hit

by a moving object (1), or other (3).
Survey & procedures

The data for the acceptability study were collected as part of

a larger project investigating social media use among individuals

with TBI. Participants received a link to complete the survey

online via the Research Electronic Data Capture System

(REDCap; 29). The full survey consisted of up to 280

questions, depending on participants’ responses. Participants

with TBI first answered questions related to their general

social media use (reported in ref. 21), how their Facebook

usage changed after the injury, their current experience with

Facebook, and their perceived social support and social

connectedness on Facebook. The results reported here were

from the second part of the survey, in which we presented the

mock-up images of the prototype designs for the four aids,

with explanations of their features, and asked participants

about their perceptions of each prototype design. That is,

participants were presented with screen shot images to give

the sense of the visual appearance and functionality of the

aids, but participants could not click on or interact with the

aids during this phase of testing.
Measure

For each aid, participants were asked to complete a 10-item

questionnaire. The first five items were from the System

Usability Scale (SUS; 58), which has widely been used as a

reliable method to measure usability of software products. Aids

were referred to as “modifications.” We also modified the

wording for question five to make it more relevant to the

current study. SUS items were: #1: I would use this modification

frequently; #2: I found this modification unnecessarily complex;

#3: This modification looks easy to use; #4: I would need

technical support to use this modification; #5: Most people with

TBI would learn to use this modification very quickly.

The five subsequent items asked participants to rate the

perceived benefits of each aid, particularly how that aid could

help them more actively engage in Facebook social
Frontiers in Digital Health 07
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interaction. The items were: #6: I would post and/or share

more things with this modification; #7: I would click on the

content shared by my friends more with this modification; #8: I

would comment more with this modification; #9: I would

spend more time on Facebook with this modification; #10: I

would send more messages to my friends with this modification.

Participants were asked to indicate how much they agreed

or disagreed with each of the 10 statements using a three-item

scale (Disagree, Neither agree nor disagree, Agree). In

addition, participants were asked whether they noticed any

changes in the way they used Facebook after brain injury by

answering either “yes” or “no.” Participants also answered two

open-ended questions regarding their changes in Facebook

use since their injury and their recommendations for

modifications to the existing Facebook platform.
Data analysis

The goal of this study was to explore how individuals with

TBI perceive the aids we designed to address their reported

challenges in using social media. Consistent with this

exploratory goal, we primarily used descriptive statistics to

analyze participants’ responses. We expect that findings would

serve as the foundation for future hypothesis-driven research

on technology-based social media interventions for individuals

with TBI (59). Consistent with this goal, we also performed

ad hoc exploratory analyses to investigate if individual

characteristics such as age, sex, or education influenced the

ratings of the aids.
Results

Responding to individual questions was voluntary, thus, not

all participants answered all questions. The number of

individuals who responded to a given question is listed in

parentheses.
Overall attitudes towards the aids

Before examining the participants’ responses for each aid type

separately, we first summed responses for all aids together

(Table 2). Overall, 29.7% of respondents agreed that they would

use the proposed aids frequently; 33.5% were neutral; and 36.8%

disagreed. Most respondents agreed that the aids looked easy to

use (59.2%) and that they would not require any technical

support (69.2%). Only 24.0% of respondents indicated that the

aids appeared unnecessarily complex, and 10.9% indicated that

they would struggle to learn how to use them.

In regard to Facebook functions, 11.6% of respondents

agreed that the proposed aids would help them become more
frontiersin.org
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TABLE 2 Summary of participants’ responses for all types of aids.

# Item Agree %
(count)

Disagree %
(count)

Neutral %
(count)

Total %
(count)

1 I would use this modification frequently. 29.7% (54) 36.8% (67) 33.5% (61) 100% (182)

2 I find this modification unnecessarily complex. (Reversed) 38.8% (71) 24.0% (44) 37.2% (68) 100% (183)

3 This modification looks easy to use. 59.2% (109) 10.9% (20) 29.9% (55) 100% (184)

4 I would need technical support to use this modification. (Reversed) 69.2% (126) 5.5% (10) 25.3% (46) 100% (182)

5 Most people with TBI would learn to use this modification very
quickly.

39.6% (72) 11.5% (21) 48.9% (89) 100% (182)

6 I would post and/or share more things with this modification. 14.8% (27) 38.5% (70) 46.7% (85) 100% (182)

7 I would comment more with this modification. 14.4% (26) 40.3% (73) 45.3% (82) 100% (181)

8 I would spend more time on Facebook with this modification. 11.6% (21) 46.4% (84) 42.0% (76) 100% (181)

9 I would send more messages to my friends with this modification. 14.4% (26) 42.2% (76) 43.3% (78) 100% (180)

10 I would click on the content shared by my friends more on this
modification.

21.5% (39) 33.7% (61) 44.8% (81) 100% (181)

Note: % is the percentage of respondents who endorsed a statement. Count is the number of respondents who endorsed a statement. Total count is the total number

of respondents who answered a given item. The variability in total count reflects that not all respondents answered all questions. Maximum total count is 184 (46

respondents and four aid types).

Zhao et al. 10.3389/fdgth.2022.991814
active on Facebook; 14.8% agreed they would post more, 14.4%

agreed they would comment more; 14.4% agreed they would

send more messages to friends; and 21.5% agreed they would

click on others’ content more often if using the proposed aids.

The remaining responses were relatively equally divided

between “neutral” and “disagree.”
Attitudes towards the support aids
by type

For the five survey questions about how the aids might affect

participants’ Facebook use (i.e., spending time on Facebook,

posting, commenting, messaging, clicking on content),

responses that were not “agree” were largely divided between

“neutral” and “disagree.” Thus, in the interest of clarity and

brevity, the results for each tool presented in the text include

only the percent that agreed with the statement. Percentages in

the other two categories are listed in the tables for each aid.
Attitudes towards the attention aid

In regard to ease of use, 19.6% agreed that they would use the

attention aid often; 26.1% agreed that they found it unnecessarily

complex; 54.3% agreed that it would be easy to use; 6.5% agreed

they would need technical assistance; and 45.5% agreed that

people with TBI would learn to use the tool quickly. In regard

to Facebook functions, 6.5% agreed that they would spend

more time on Facebook if they used the tool; 8.7% agreed that

they would post or share more; 8.7% agreed that they would

comment more; 6.8% agreed that they would send more

messages to friends, and 17.8% agreed that they would click on

others’ content more. Results are summarized in Table 3.
Frontiers in Digital Health 08
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Attitudes towards the memory aid

In regard to ease of use, 37.0% of respondents agreed that they

would use the memory aid frequently; 28.9% agreed that the

memory aid looked complex; 8.7% agreed that it would be

difficult to use; 10.9% agreed that they would need technical

assistance to use it; and 32.6% agreed that most people with TBI

would learn to use it quickly. In regard to Facebook functions,

13.3% agreed that the memory aid could help them spend more

time on Facebook; 13.0% agreed that they would post or share

more; 8.9% agreed that they would comment more; 13.0%

agreed that they would send more messages; and 21.7% agreed

that they would click on content shared by others more. Results

are summarized in Table 4.
Attitudes towards the social cue
interpretation aid

In regard to ease of use, 22% of participants agreed that

they would use the social interpretation aid frequently;

26.1% agreed that it was unnecessarily complex; 17.4%

agreed that it would take a long time to learn; 56.5% agreed

that it was easy to use; and 75.0% agreed that they would

not require technical support to use it. In regard to

Facebook functions, 8.9% agreed that they would spend

more time on Facebook if they had the social cue aid; 8.9%

agreed that they would comment more; 17.8% agreed that

they would post or share more; 13.3% agreed that they

would send more messages to friends; and 24.4% agreed

that they would click on more content by others if they had

the aid. Results are summarized in Table 5.
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TABLE 4 Summary of participants’ responses for memory aid.

# Item Agree %
(count)

Disagree %
(count)

Neutral %
(count)

Total %
(count)

1 I would use this modification frequently. 37.0% (17) 32.6% (15) 30.4% (14) 100.0% (46)

2 I find this modification unnecessarily complex. (Reversed) 37.8% (17) 28.9% (13) 33.3% (15) 100.0% (45)

3 This modification looks easy to use. 58.7% (27) 8.7% (4) 32.6% (15) 100.0% (46)

4 I would need technical support to use this modification. (Reversed) 63.0% (29) 10.9% (5) 26.1% (12) 100.0% (46)

5 Most people with TBI would learn to use this modification very
quickly.

32.6% (15) 15.2% (7) 52.2% (24) 100.0% (46)

6 I would post and/or share more things with this modification. 13.0% (6) 41.3% (19) 45.7% (21) 100.0% (46)

7 I would comment more with this modification. 8.9% (4) 40.0% (18) 51.1% (23) 100.0% (45)

8 I would spend more time on Facebook with this modification. 13.3% (6) 42.2% (19) 44.4% (20) 100.0% (45)

9 I would send more messages to my friends with this modification. 13.0% (6) 43.5% (20) 43.5% (20) 100.0% (46)

10 I would click on the content shared by my friends more on this
modification.

21.7% (10) 39.1% (18) 39.1% (18) 100.0% (46)

Note: % is the percentage of respondents who endorsed a statement. Count is the number of respondents who endorsed a statement. Total count is the total number

of respondents who answered a given item. The variability in total count reflects that not all respondents answered all questions. Maximum total count is 46 (46

respondents).

TABLE 3 Summary of participants’ responses for attention aid.

# Item Agree %
(count)

Disagree %
(count)

Neutral %
(count)

Total %
(count)

1 I would use this modification frequently. 19.6% (9) 37.0% (17) 43.5% (20) 100.0% (46)

2 I find this modification unnecessarily complex. (Reversed) 30.4% (14) 26.1% (12) 43.5% (20) 100.0% (46)

3 This modification looks easy to use. 54.3% (25) 10.9% (5) 34.8% (16) 100.0% (46)

4 I would need technical support to use this modification. (Reversed) 60.9% (28) 6.5% (3) 32.6% (15) 100.0% (46)

5 Most people with TBI would learn to use this modification very
quickly.

45.5% (20) 4.5% (2) 50.0% (22) 100.0% (44)

6 I would post and/or share more things with this modification. 8.7% (4) 41.3% (19) 50.0% (23) 100.0% (46)

7 I would comment more with this modification. 8.7% (4) 43.5% (20) 47.8% (22) 100.0% (46)

8 I would spend more time on Facebook with this modification. 6.5% (3) 45.7% (21) 47.8% (22) 100.0% (46)

9 I would send more messages to my friends with this modification. 6.8% (3) 40.9% (18) 52.3% (23) 100.0% (44)

10 I would click on the content shared by my friends more on this
modification.

17.8% (8) 31.1% (14) 51.1% (23) 100.0% (45)

Note: % is the percentage of respondents who endorsed a statement. Count is the number of respondents who endorsed a statement. Total count is the total number

of respondents who answered a given item. The variability in total count reflects that not all respondents answered all questions. Maximum total count is 46 (46

respondents).
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Attitudes towards post-writing aid

In regard to ease of use, 40% agreed that they would use the

post-writing aid frequently; 15.2% agreed that the attention aid

looked complex; 67.4% agreed that it would be easy to use; and

78.3% agreed that they would not require technical support to

use it; and 43.5% agreed that most people with TBI would be

able to easily learn to use it. In regard to Facebook functions,

17.8% agreed that they would spend more time on Facebook

if they used this tool; 68.9% agreed that they would post

more; 22.2% agreed that they would comment more; 24.4%

agreed that they would send more messages to friends; and

22.2% agreed that they would click on others’ comments

more. Results are summarized in Table 6.
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Ad hoc exploration of individual
characteristics and types of aids

We were next interested in whether there were individual

characteristics (age, sex, education) that influenced the ratings

of the aids. To conduct this ad hoc exploratory analysis, we

converted the response options to numeric values (i.e.,

Disagree =−1, Neutral = 0, Agree = 1) and conducted an

exploratory factor analysis on data from the ten items. Factor

analysis with Varimax rotation indicated the presence of two

factors: one corresponding to the potential utility of the aids

and another corresponding to ease of use (see Table 7). These

factors accounted for 43.9% and 21.9% of the variance,

respectively. By averaging the items loading on each factor, we
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TABLE 6 Summary of participants’ responses for post-writing aid.

# Item Agree %
(count)

Disagree %
(count)

Neutral %
(count)

Total %
(count)

1 I would use this modification frequently. 40.0% (18) 28.9% (13) 31.1% (14) 100.0% (45)

2 I find this modification unnecessarily complex. (Reversed) 54.3% (25) 15.2% (7) 30.4% (14) 100.0% (46)

3 This modification looks easy to use. 67.4% (31) 10.9% (5) 21.7% (10) 100.0% (46)

4 I would need technical support to use this modification (Reversed) 78.3% (36) 4.3% (2) 17.4% (8) 100.0% (46)

5 Most people with TBI would learn to use this modification very
quickly.

43.5% (20) 8.7% (4) 47.8% (22) 100.0% (46)

6 I would post and/or share more things with this modification. 20.0% (9) 31.1% (14) 48.9% (22) 100.0% (45)

7 I would comment more with this modification. 22.2% (10) 33.3% (15) 44.4% (20) 100.0% (45)

8 I would spend more time on Facebook with this modification. 17.8% (8) 46.7% (21) 35.6% (16) 100.0% (45)

9 I would send more messages to my friends with this modification. 24.4% (11) 35.6% (16) 40.0% (18) 100.0% (45)

10 I would click on the content shared by my friends more on this
modification.

22.2% (10) 26.7% (12) 51.1% (23) 100.0% (45)

Note: % is the percentage of respondents who endorsed a statement. Count is the number of respondents who endorsed a statement. Total count is the total number

of respondents who answered a given item. The variability in total count reflects that not all respondents answered all questions. Maximum total count is 46 (46

respondents).

TABLE 5 Summary of participants’ responses for social cue interpretation aid.

# Item Agree %
(count)

Disagree %
(count)

Neutral %
(count)

Total %
(count)

1 I would use this modification frequently. 22.2% (10) 48.9% (22) 28.9% (13) 100.0% (45)

2 I find this modification unnecessarily complex. (Reversed) 32.6% (15) 26.1% (12) 41.3% (19) 100.0% (46)

3 This modification looks easy to use. 56.5% (26) 13.0% (6) 30.4% (14) 100.0% (46)

4 I would need technical support to use this modification. (Reversed) 75.0% (33) 0.0% (0) 25.0% (11) 100.0% (44)

5 Most people with TBI would learn to use this modification very
quickly.

37.0% (17) 17.4% (8) 45.7% (21) 100.0% (46)

6 I would post and/or share more things with this modification. 17.8% (8) 40.0% (18) 42.2% (19) 100.0% (45)

7 I would comment more with this modification. 17.8% (8) 44.4% (20) 37.8% (17) 100.0% (45)

8 I would spend more time on Facebook with this modification. 8.9% (4) 51.1% (23) 40.0% (18) 100.0% (45)

9 I would send more messages to my friends with this modification. 13.3% (6) 48.9% (22) 37.8% (17) 100.0% (45)

10 I would click on the content shared by my friends more on this
modification.

24.4% (11) 37.8% (17) 37.8% (17) 100.0% (45)

Note: % is the percentage of respondents who endorsed a statement. Count is the number of respondents who endorsed a statement. Total count is the total number

of respondents who answered a given item. The variability in total count reflects that not all respondents answered all questions. Maximum total count is 46 (46

respondents).
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created measures of “potential utility of the aids” (Cronbach’s α

= .91) and “ease of use” (Cronbach’s α = .70).

Correlation analyses were conducted to explore

relationships among the measures for potential utility and

ease-of-use ratings (from the factor analysis) for the four

types of aids and individual characteristics such as age, sex,

education, time since onset (TSO), and frequency of Facebook

use. Results are summarized in Table 8.

There was no significant correlation between type of aid and

either potential utility or ease of use (r = .09,.11 respectively,

p > .05), so we did not conduct post hoc correlational analyses

for each aid type separately. Age was significantly correlated

with both potential utility and ease of use (r = .23,.27

respectively, p < .01). Education was significantly, but negatively,
Frontiers in Digital Health 10

72
correlated with potential utility (r =−.15, p < .05), but not ease
of use (r = .14, p > .05). Sex, TSO, and frequency of Facebook

use were not significantly correlated with either ease of use or

potential utility (r =−.03, −.01 respectively, p > .05).
Discussion

The goal of this study was to elicit feedback on prototype

aids designed to reduce social media access barriers for adults

with TBI. The aids were based on evidence of barriers to

social media use by adults with TBI (e.g., 12, 15, 17, 47, 54)

and known cognitive challenges in this population (e.g., 39–

42, 45), including challenges we had discovered in studies
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TABLE 7 Factor analysis of the ten item measures.

# Item Factor 1 (Potential Utility) Factor 2 (Ease of Use)

1 I would use this modification frequently. .68

2 I find this modification unnecessarily complex. (Reversed) .63

3 This modification looks easy to use. .81

4 I would need technical support to use this modification. (Reversed) .75

5 Most people with TBI would learn to use this modification very quickly. .60

6 I would post and/or share more things with this modification. .85

7 I would comment more with this modification. .86

8 I would spend more time on Facebook with this modification. .84

9 I would send more messages to my friends with this modification. .87

10 I would click on the content shared by my friends more on this modification. .82

TABLE 8 Pearson correlation table among variables.

(Factor 1) Potential
Utility

(Factor 2) Ease of
Use

Sex −.03 −.01

Age .23** .27**

Education −.15* .14

TSO .14 .09

Frequency of FB
use

.00 −.07

Type of Aid .09 .11

Potential Utility 1 .40**

Ease of Use .40** 1

*Correlation is significant at the 0.05 level.

**Correlation is significant at the 0.01 level.
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leading up to this project (e.g., 51, 60–63). The four key barriers

to social media use included cognitive overload, memory

impairments, deficits in social cognition and communication,

and a lack of confidence to actively engage on social media

platforms. We designed prototypes of aids to address these

barriers, presented mock-ups of these aids to participants with

TBI, and asked participants to rate the aids’ potential utility

and ease of use. While the proposed aids are unlikely to

address all barriers to successful social media use, to our

knowledge this was the first evidence-based study to introduce

the concept of social media aids for people with TBI. The

findings here provide a foundation for future development of

technological supports to enable individuals with TBI to fully

access and participate on social media platforms.

Across all aids, nearly one-third of respondents agreed that

they would use the proposed aids frequently. The majority of

respondents also agreed that all of the aids would be easy to

use without technical support and that most people with TBI

could learn to use them quickly. These are positive findings

given the cognitive demands of adopting new technology and

known cognitive challenges of individuals with TBI.

Among the four aids, respondents indicated that they would

be more likely to use the memory and post-writing aids than the
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attention and social cue interpretation aids. The post-writing

aid was rated by users as the most helpful of the four aids

and easiest to use. Brunner and colleagues noted that many

individuals with TBI already rely on writing supports such as

Grammarly to produce messages on social media (17). That

familiarity might have contributed to acceptance of the post-

writing aid, as it includes traditional spelling and grammar

support.

While the memory aid was rated as potentially useful, about

30% of participants found the user interface unnecessarily

complex. As shown in Figure 3, the memory aid consolidated

previous posts and presented them to the user all at once,

which inadvertently added visual complexity to the interface

and increased the amount of information presented at once.

Further investigation is needed to evaluate the tradeoff

between memory-recovery benefit vs. visual and informational

complexity cost associated with such aids.

One potential reason for the low agreement on utility of the

attention and social cue interpretation aids is that the mock-ups

did not fully convey the aids’ functionalities and did not offer

the experience of seeing the aid in operation while using

Facebook. In the context of the attention aid, as seeing the aid

function while being presented a large amount of self-relevant

information might be necessary to effectively experience the

aid’s functioning. In the context of the social cue

interpretation aid, users might have to experience the

difficulty of understanding or interpreting content to

appreciate the potential value of such an aid. A second

reason, and one that might underlie many of the results, is

that individuals with TBI often underestimate their own

cognitive challenges “in the moment,” (64, 65) and thus

might not have appreciated that they had challenges that the

aids could help overcome. While the memory and post-

writing aids were similar to what individuals without TBI

might use (e.g., commercial products like Grammarly or

smart phone apps)) and thus would have face validity without

the individual needing to be aware of their own challenges,

the social cue perception aid in particular would have been

novel to participants and thus might have seemed
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unnecessary. In the future, it would be helpful to collect

subjective and objective measures of participants’ cognitive

abilities, including social cognition, to determine if insight

into one’s deficit is a factor in perceived utility of technology

aids.

Consistent with the well documented heterogeneity among

people with TBI (e.g., 66), the individual differences in

attitudes toward the technology aids that we identified in our

survey is reflective of the wide range of challenges, needs, and

preferences of individuals with TBI. We argue that

rehabilitation professionals will play a key role in

personalizing the social media use of each individual based on

the unique deficits, use patterns, and preferences.

Rehabilitation professionals already report that they see social

media use as a way to reduce social isolation following brain

injury and may play an important supporting role in

addressing social media barriers and participating safely on

social media platforms (e.g., avoiding online scams) (18). We

envision that rehabilitation professionals may also play a

critical future role in helping individuals with TBI determine

if they might benefit from the type of social media aids

reported here and personalizing the social media use of each

individual based on their cognitive profile and social media

use goals. Indeed, rehabilitation professionals, including

speech-language pathologists, are particularly well positioned

to help individuals with TBI understand how cognitive-

communication deficits that are present in face-to-face

interactions can extend to computer-mediated communication

and can provide training on the features and functionality of

future social media aids.

Understanding the utility of these aids requires

information about which individuals may most benefit from

or be most willing to try social media aids. In an attempt to

obtain some preliminary data on individual differences, we

conducted an ad hoc exploratory analysis on the relation

between individual demographic characteristics and potential

utility and ease of use of the aids. Participant age had a

significant positive correlation with perceived ease of use and

utility of social media support tools. An individual’s ability

to adopt new technology decreases with age later in life (67),

which might predict a negative correlation of age with

ratings, but older adults in the U.S. are as active on

Facebook as younger adults (68). The correlation with age

merits replication in the future. Finally, despite the unique

cognitive-communicative challenges individuals with TBI

face in social media use, younger individuals might more

readily accept social media platforms as designed, and older

users might see themselves more as benefiting from aids that

facilitate their use.

Although there is some evidence of a female advantage in

social perception skills in adults with TBI (69), we did not

find any effect of sex on perceptions of the social media

supports in our study. There is evidence that women are
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more likely to seek help for healthcare-related concerns (70),

but to our knowledge there is no evidence that this tendency

extends to cognitive supports such as the aids proposed here.
Future directions

The current study presents several opportunities for future

investigation with the proposed aids. First, based on the initial

evaluation on different types of aids, we can prioritize the

development of post-writing and memory aids over other

types of aids. To extend the potential interests and adoption

of these aids to individuals with TBI who are less conscious

about their social media use after injury, future studies should

consider intervention or tests that can raise awareness on

one’s social media use patterns and TBI symptoms. Second, in

the current study, we found that age might have contributed

to the acceptability of aids. However, due to the small sample

size, we did not find how the effect of age differed with each

aid. For example, we suspect that older adults with TBI might

show a stronger interest in memory aids than younger adults

with TBI. Future research should seek to better understand

individual differences in attitudes towards social media aids

with a larger study population. The potential utility of such

aids can also be assessed in genuine clinical settings where

rehabilitation specialists match the set of aids used by each

individual to their cognitive profile, personalize these aids to

their needs and preferences, and provide the appropriate

training in their use. In this way, individuals with TBI would

opt in or opt out of specific aids in the same way social

media users can select among other display and security

features for personalization.
Limitations

The study described here was an exploratory study that

aimed to assess initial acceptance of the proposed social

media aids. We conducted an online survey with static images

of the design mock-ups. As a result, respondents might not

have been able to fully understand the design concept and

engage with the potential functionality of the aids. The critical

next step, currently underway, is for participants to test and

use the aids over time, to see the costs and benefits in real

time. The study also was a relatively small sample of 46

individuals with TBI, and thus our results might not be

representative of the general TBI population. The general

findings, however, were similar to those reported in previous

studies, and the sample was similar to those in others studies

in regard to age, sex, social media experience, race, and

socioeconomic status of participants. Finally, our findings are

necessarily shaped by the specific decisions we have made in

designing and creating mock-ups of the aids. Iterative
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improvement, expert feedback, and usability testing of our

designs can ensure future aids that are more effective and

widely accepted.
Conclusions

Adults with TBI report significant barriers to using current

social media platforms. We are working to develop

technological supports to increase social media accessibility

for people with TBI-related cognitive impairments. Here, we

found initial support for social-media-specific technology aids

to support social media access and social participation for

adults with TBI. Future work should develop and deploy such

aids and investigate user experience. Future work should also

investigate the role of rehabilitation providers in personalizing

the social media use of each individual based on the unique

deficits, use patterns, and preferences.
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Black and Hispanic American patients frequently develop earlier onset of

multiple sclerosis (MS) and a more severe disease course that can be

resistant to disease modifying treatments. The objectives were to identify

differential methylation of genomic DNA (gDNA) associated with disease

susceptibility and treatment responses in a cohort of MS patients from

underrepresented minority populations. Patients with MS and controls with

non-inflammatory neurologic conditions were consented and enrolled under

an IRB-approved protocol. Approximately 64% of donors identified as Black or

African American and 30% as White, Hispanic-Latino. Infinium MethylationEPIC

bead arrays were utilized to measure epigenome-wide gDNA methylation of

whole blood. Data were analyzed in the presence and absence of adjustments

for unknown covariates in the dataset, some of which corresponded to disease

modifying treatments. Global patterns of differential methylation associated

with MS were strongest for those probes that showed relative demethylation of

loci with lower M values. Pathway analysis revealed unexpected associations

with shigellosis and amoebiasis. Enrichment analysis revealed an over-

representation of probes in enhancer regions and an under-representation

in promoters. In the presence of adjustments for covariates that included

disease modifying treatments, analysis revealed 10 differentially methylated

regions (DMR’s) with an FDR <1E-77. Five of these genes (ARID5B, BAZ2B,

RABGAP1, SFRP2, WBP1L) are associated with cancer risk and cellular

differentiation and have not been previously identified in MS studies.

Hierarchical cluster and multi-dimensional scaling analysis of differential

DNA methylation at 147 loci within those DMR’s was sufficient to

differentiate MS donors from controls. In the absence of corrections for

disease modifying treatments, differential methylation in patients treated

with dimethyl fumarate was associated with immune regulatory pathways

that regulate cytokine and chemokine signaling, axon guidance, and

adherens junctions. These results demonstrate possible associations of
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gastrointestinal pathogens and regulation of cellular differentiation with MS

susceptibility in our patient cohort. This work further suggests that analyses can

be performed in the presence and absence of corrections for immune

therapies. Because of their high representation in our patient cohort, these

results may be of specific relevance in the regulation of disease susceptibility

and treatment responses in Black and Hispanic Americans.

KEYWORDS

epigenetics, biomarker, black, african American, hispanic, latino, dimethyl fumarate

Introduction

Multiple sclerosis (MS) is a major cause of non-traumatic

neurologic disability in young adults. The prevalence of MS is

increasing worldwide and is more common in underrepresented

minority groups than previously thought (Weinstock-Guttman

et al., 2003; Cree et al., 2004; Chinea et al., 2012; Caldito et al.,

2018; Wallin et al., 2019). Although non-Hispanic Whites still

have the highest prevalence rate for MS in the US, the

demographics of newly diagnosed MS are also changing. One

study of patients in the US demonstrated that Black American

women had the highest incidence of MS and that Black men had

a similar incidence as compared to White, non-Hispanic men

(Langer-Gould et al., 2013). Analysis of the Gulf War military-

veteran cohort also demonstrated a higher incidence of MS in

Black Americans than other demographic groups (Wallin et al.,

2012).

In addition, multiple studies have demonstrated increased

disease severity and risk of long-term disability in Black

American patients (Cree et al., 2004; Caldito et al., 2018;

Wallin et al., 2018). Although studies in the modern era

suggest that disease modifying treatments and improved

diagnosis are associated with decreased long-term severity of

MS (Sorensen et al., 2020), these observations may not be

relevant to minority populations. These disparities in clinical

outcomes and treatment responses may reflect social and

environmental determinants of health as has been shown for

other chronic diseases.

These determinants of health may impact the epigenome.

One example is the regulation of DNA methylation, which is a

dynamic process throughout the lifetime of an individual (Li and

Zhang, 2014). The rationale for the study of epigenetic

mechanisms in MS is that environmental factors such as

stress, diet, and environmental exposures are all known

modulators of DNA methylation. Some of these epigenetic

mechanisms are associated with chronic inflammatory states

(Celarain and Tomas-Roig, 2020). Most prior studies of global

DNA methylation in MS have focused on individuals of

Northern European ancestry. As in genome wide association

studies (GWAS), the strongest association between MS and

differential DNA methylation occurs at the HLA-DRB locus

(Kular et al., 2018).

The approach in this study was to evaluate differential DNA

methylation in a cohort of patients that are predominantly from

underrepresented minority groups. This cohort is from our

clinical practice at the University of Illinois, Chicago where

approximately 55% of patients identify as Black or African

American and 25% as Hispanic or Latino. The primary goal

of this work was to identify epigenetic markers and related

cellular signaling mechanisms that are associated with disease

susceptibility in our patient population. In addition, challenges

for the characterization of epigenetic biomarkers in a real-world

setting is that most patients are on disease modifying treatments

which may also regulate DNA methylation. An additional goal

was to demonstrate the feasibility of identifying epigenetic

biomarkers of disease and treatment in parallel analyses.

Results

Clinical phenotype variance in the MS
cohort

MS patients (n = 29) and controls (n = 18) were recruited

from our clinical practice at the University of Illinois,

Chicago. A summary of demographic data for each group

is shown in Table 1, and more detailed demographic and

clinical data for each MS patient are shown in Supplmentary

Table S1. Phenotypic variance of this patient cohort is

shown in Supplmentary Figure S1 based on Functional

Systems Scores. More extensive clinical phenotyping

using network analysis has been performed on a larger

number of patients from the same cohort (Howlett-Prieto

et al., 2022).

Differential DNA methylation between MS
and controls at specific probe sites

The next goal was to analyze patterns of differential DNA

methylation between control and MS donors. As described in

Methods, probes were filtered (n = 788,804) and adjusted for

gender, age, and unknown covariates, some of which

corresponded to disease modifying treatment. Adjusted
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M-values were used to generate Mean Difference (MD) plots

(Figure 1) (Su et al., 2017).

Analysis revealed distinct patterns of global differential

methylation (Figure 1A, blue represents loci that are

demethylated in MS versus controls and red increased

methylation). For those DMP’s (differentially methylated

probes for a specific CpG region) with the greatest fold

change differences [Log (FC) > 0.7 or < -0.7, fold change of

greater 5x, FDR<0.01], these differences primarily reflected

decreased methylation of those DMP’s with lower average

M-values (M value <0; blue, left lower quadrant). There were

174 DMP’s that met these criteria in the left lower quadrant, 10 in

the upper left, 1 in the lower right, and 4 in the upper right

(Supplementary Table S2). These results suggested that those

probes with the greatest differences between MS and controls

were associated with demethylation of loci that have relatively

low levels of methylation across all donors.

In contrast, global differential methylation patterns showed a

more normalized distribution of relative increases or decreases of

probe methylation in a comparison of all Black donors versus all

White (Hispanic and non-Hispanic) individuals (Figure 1B).

Global patterns of methylation were also analyzed in

demographic subgroups (Figures 1C,D). These data suggested

that the global pattern observed for MS versus Control

(Figure 1A) occurs in both MS comparator groups but is most

marked in the Hispanic-Latino group (Figure 1C).

Comparison of differentially methylated
probes between racial and ethnic groups

The top 10,000 DMP’s (Supplementary Tables S3–S5) for

each comparator group (MS versus Control for all patients,

MS versus Control Black American only, and MS versus

Control Hispanic-Latino only) were analyzed to assess

common and distinct probe sets (Supplementary Figure

S2). There were 20,518 probes that were present in at least

one of the comparator groups. We further identified

4395 probes unique for the Black American group and

6,025 probes for the Hispanic-Latino group (Supplementary

Tables S6,S7). These data were not adjusted for unknown

covariates.

KEGG pathway analysis was performed on the Top

10,000 DMP’s for each comparator group (Supplementary

Tables S8–S10). In the comparison between all patients, there

was a possible association with sphingolipid and T cell signaling

pathways (FDR = 0.01). In the Hispanic-Latino group, there was

a possible association with apelin signaling (FDR = 0.07) which

was not observed in the other comparator groups. Pathway

analysis of the probes unique for the subgroups

(Supplementary Figure S1) did not yield any statistically

significant associations (FDR>0.18 for the Hispanic-Latino

group and FDR>0.68 for the Black American group).

More robust results were obtained for pathway analysis

following the removal of CpG regions associated with

methylation quantitative trait loci (mQTL). Although known

SNP regions were filtered prior to analysis, many probes remain

in the data set that are associated with genetic variation at CpG

loci (Min et al., 2021). For this reason, we performed analysis on

subsets of probes that are associated mQTL and those that are

not. The MeQTL Epic database (https://epicmeqtl.kcl.ac.uk) was

utilized to identify mQTL associated with probes for the Illumina

Infinium MethylationEPIC array (Villicana and Bell, 2021). In

the comparison between all patients, 6,577 loci were identified

that were not associated with mQTL (Supplementary Table S11).

KEGG pathway analysis revealed 20 pathways potentially

associated with differential methylation in MS (Table 2; p <
0.005, FDR<0.10). These pathways included those related to

immune function such as hematopoietic cell lineage and

chemokine signaling and unexpected associations with

bacterial invasion of epithelia, amoebiasis, and shigellosis.

Notably, no statistically significant associations were found

for viral infections such as Epstein Barr (p = 0.64, FDR = 0.90).

Significant associations were not observed for loci associated

with mQTL or in the demographic subgroup analyses

(FDR>0.10).

Comparison of differentially methylated
probes with genome wide association
studies

The International MS Genetics Consortium (IMSGC)

reported a detailed analysis of currently available GWAS data

identified a list of 551 non-MHC genes considered to be of high

priority that are associated with peripheral immune function and

microglia (International, 2019). We compared this gene list with

our list of top DMP’s (n = 20,518). 43 SNP regions from the

prioritized gene list were present in genes that also contained

DMP’s at other loci (Supplementary Table S13).

TABLE 1 Donor demographics for methylomic studies.

Group N = Age±SD %
Female (%)

%Black or african
american (%)

%White, hispanic
american (%)

%White, non-
hispanic (%)

MS 29 43 ± 11 69 73 24 3

Control 18 43 ± 14 67 50 39 11
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FIGURE 1
Distinct pattern of differential methylation of genomic DNA associated with MS. In the mean difference (MD) plots, average M-values across all
donors is plotted on the x-axis. A negative number on the x-axis indicates decreased methylation for that locus [differentially methylated probe,
DMP; CpG region), whereas as a positive number designates increased methylation as compared to other loci. Log fold change is plotted on the
y-axis. (A)] For the MS versus control comparison, 52,295 DMP’s were included in this analysis (FDR<0.01). An additional 20,000 probes were
randomly selected for inclusion in the plot (gray). Red points designate probes that showed a relative increase in methylation MS as compared to
controls, and blue points represent probes that demonstrated a relative decrease in methylation in the MS group. Two trends were observed. For
those probes with the greatest fold change differences [Log (FC) > 0.7 or < −0.7, fold change of greater 5×, FDR<0.01], these differences primarily
reflected decreased methylation of those DMP’s with lower average M-values (M value <0; blue, left lower quadrant). If a less stringent cut off was
used for fold change, the results suggested a tendency for significant DMP’s that had an averagemethylation score over 50% (AverageM value >0) to
be hypermethylated in MS patients, and significant probes that had an average methylation below 50% to be hypomethylated in MS patients. (B)
These trends were not observed in a comparison of all Black donors versus all White donors. The racial differences showed a more normalized
distribution of relative increases or decrease in probe methylation as compared to the MS versus control analysis. (C,D). MD plots were also
performed in racial and ethnic subgroups. The trend observed in the MS versus control comparison was most pronounced in the Hispanic-Latino
subgroup.
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Analysis of gene regulatory regions reveals
over-representation of enhancer regions
in MS associated DMP’s

Enrichment analysis was performed to determine if there was an

over-representation of enhancer or promoter regions among those

DMP’s that were associated with MS. For these analyses, the top

10,000 statistically significant DMP’s (Supplementary Tables S3–S5;

n = 20,518) in the 3 comparator groups (MS versus Control for All,

Black and Hispanic American subgroups) were compared to the

proportion of gene regulatory elements in the full data set (n =

788,804). The following databases and regions were analyzed:

FANTOM5 (functional annotations of the mammalian genome,

version 5) enhancers (Andersson et al., 2014), ENCODE

(encyclopedia of DNA elements) annotations for promoter and

enhancer regions (Gerstein et al., 2012), TSS200 (transcriptional

start site within 200 bp), and TSS1500 (transcriptional start site

within 1,500 bp.

These analyses demonstrated over-representation of enhancer

regions and reduced frequency of promoter regions in the MS

datasets (Table 3). The most striking findings were for over-

representation of FANTOM5 enhancer regions (odds ratio 3.90,

p < 1e-15, Fisher’s Exact Test for Count Data) and under-

representation of ENCODE promoter regions (odds ratio 0.26, p <

TABLE 2 KEGG pathway analysis of differential methylation in MS at loci not associated with mQTL.

KEGG pathway Description N (loci) DE P.DE FDR

path:hsa04640 Hematopoietic cell lineage 91 29 2.91E-05 0.010

path:hsa05100 Bacterial invasion of epithelial cells 76 32 0.0001 0.020

path:hsa04611 Platelet activation 123 44 0.0003 0.021

path:hsa04062 Chemokine signaling pathway 189 55 0.0003 0.021

path:hsa04071 Sphingolipid signaling pathway 118 42 0.0003 0.021

path:hsa05418 Fluid shear stress and atherosclerosis 137 41 0.0003 0.021

path:hsa04973 Carbohydrate digestion and absorption 45 18 0.0007 0.035

path:hsa05146 Amoebiasis 98 33 0.0009 0.035

path:hsa04725 Cholinergic synapse 112 42 0.0009 0.035

path:hsa05131 Shigellosis 238 64 0.0014 0.044

path:hsa04912 GnRH signaling pathway 91 33 0.0014 0.044

path:hsa04750 Inflammatory mediator regulation of TRP channels 97 36 0.0015 0.044

path:hsa04660 T cell receptor signaling pathway 99 34 0.0021 0.056

path:hsa04014 Ras signaling pathway 228 68 0.0024 0.059

path:hsa04072 Phospholipase D signaling pathway 144 50 0.0026 0.060

path:hsa04668 TNF signaling pathway 109 32 0.0029 0.065

path:hsa05200 Pathways in cancer 515 132 0.0034 0.067

path:hsa05144 Malaria 49 15 0.0034 0.067

path:hsa04722 Neurotrophin signaling pathway 114 38 0.0041 0.076

path:hsa05221 Acute myeloid leukemia 64 24 0.0043 0.076

DE: discrete elements (genes); FDR: false detection rate.

TABLE 3 Cell type composition analysis.

Condition CD8 CD4 NK B cell Monocyte Neutrophil

Control 0.12 ± 0.04 0.13 + 0.03 0.06 + 0.02 0.07 ± 0.04 0.09 ± 0.02 0.56 ± 0.08

Multiple Sclerosis 0.09 ± 0.04 0.10 ± 0.06 0.05 ± 0.02 0.06 ± 0.04 0.10 + 0.02 0.64 ± 0.11

Values are Mean ± standard deviation.
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1e-15) in theMS versusControl (all donors) comparator group. Similar

results were observed in the demographic subgroups.

Cell composition analysis

Because whole blood methylomics were utilized in this study,

some differences may reflect differences in subsets of peripheral

blood cells. For that reason, we also performed cell type

composition analysis. Methylation data from flow sorted

whole blood was used to estimate cell type composition for

each sample (Salas et al., 2018). Although there was a trend

toward a modest increase in neutrophils and a decrease in

CD8 T lymphocytes in the MS group, these differences were

not statistically significant (Table 4, Figure 2). Neutrophils were

the predominant subtype in both MS and controls.

Differential methylation in HLA-DRB1
region is not associated with MS in our
patient population

In addition to these comparisons, we performed analysis of

14 CpG loci within the HLA-DRB1 region which had previously

TABLE 4 Enrichment analysis for DNA regulatory regions.

Group DNA region DMP proportion Odds ratio* p-value*

Top DMP’s in MS
n = 10,000

All DMP’s
n = 788,804

MS versus Control (All) Enhancer FANTOM5 0.1295 0.0332 3.90 <1e-15

Enhancer 0.2101 0.1535 1.47 <1e-15

ENCODE/X450K

TSS200 0.0216 0.0433 0.49 <1e-15

TSS1500 0.0393 0.0631 0.61 <1e-15

Promoter associated 0.0325 0.1298 0.26 <1e-15

ENCODE

MS versus Control (Black or African American) Enhancer FANTOM5 0.0915 0.0332 2.94 <1e-15

Enhancer 0.2000 0.1535 1.38 4.33e-13

ENCODE/X450K

TSS200 0.0249 0.0433 0.56 <1e-15

TSS1500 0.0461 0.0631 0.72 <1e-15

Promoter associated 0.0362 0.1298 0.25 <1e-15

ENCODE

MS versus Control (Hispanic or Latino) Enhancer FANTOM5 0.0766 0.0332 2.42 <1e-15

Enhancer 0.2053 0.1535 1.42 <1e-15

ENCODE/X450K

TSS200 0.0388 0.0433 0.89 0.026

TSS1500 0.0510 0.0631 0.80 3.78e-07

Promoter associated 0.0442 0.1298 0.31 <1e-15

ENCODE

* Fisher’s Exact Test for Count Data.

Abbreviations: TSS, transcriptional start site; DMP, differentially methylated probe; FANTOM5, functional annotations of the mammalian genome, version 5; ENCODE, encyclopedia of

DNA, elements.
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been shown to be differentially methylated in MS patients

recruited in Scandinavia and Germany (Kular et al., 2018).

Unfiltered and unadjusted M values were utilized for this

analysis because ten of the CpGs had to be retrieved from the

dataset before filtering. Six of them were within known SNPs,

three were known to be cross-reactive, and two (including one of

the cross-reactive probes) were not detected in all samples. Out of

the 19 CpGs in the region identified by Kular et al., 2018, two

were not analyzed here due to being absent from the Infinium

MethylationEPIC bead array chip, and three are not shown here

because they did not show significant methylation differences.

Differential methylation was observed at the remaining

14 loci but did not necessarily indicate disease state

(Figure 3). Four out of 18 control samples were

hypomethylated in this region, whereas 14 out of 29 MS

samples were hypomethylated. These findings primarily reflect

differences in HLA-DRB1 genotype in our patient population.

Hypomethylation in this region (14 MS and 4 controls) likely

signifies that they are HLA-DRB1*15:01 positive.

Identification of gene-level biomarkers by
DMR analysis

The next goal was to identify gene level differences between

MS and controls. The DMRcate package was used to identify

differentially methylated regions (DMR’s) (Peters et al., 2015).

DMR’s contain multiple CpG loci that may be differentially

methylated within a particular gene. This analysis increases

the statistical power. As with the MD plots (Figure 1), the

adjusted M values were used for this analysis and included

corrections for disease modifying treatments.

We first analyzed differences in a comparison of all MS

patients versus all Controls, irrespective of race or ethnicity. This

analysis revealed 10,450 regions of interest (Table S14;

FDR<1.93e-6, HMFDR ≤0.005). Using hierarchal clustering

analysis, a subset of 147 DMP’s (Supplementary Table S15)

within the top 10 DMR’s (FDR<1E-77, HMFDR≤1.15<e-6)
was sufficient to differentiate MS from controls (Table 5;

Figure 4A). Gene regions included: ARID5B, BAZ2B,

CDK2AP1, CLU, CTSZ, RAB34, RABGAP1, SFRP2,

TNFSF12-TNFSF-13, and WBP1L. These genes were not

found to be differentially methylated in a comparison of all

Black American donors versus all White donors (not shown).

ARID5B, BAZ2B, RABGAP1, SFRP2, and WBP1L have not been

previously associated with MS risk, and all are associated with

neoplastic diseases and cellular proliferation.

In the hierarchal cluster analysis, approximately 86% of loci

(123/143) demonstrated relative demethylation in the MS group

as compared to controls. Relative demethylation at these DMR’s

was observed for 9/10 of the gene regions (maximal and mean

differences in M-values, Table 5). Taken together with the

distribution of probes in the MD plot (Figure 1), these results

suggested a tendency toward relative demethylation of DMR’s in

the MS group compared to controls (Table 6).

Multi-dimensional scaling (MDS) was also used to assess

similarities in the DMR datasets of differential methylation based

on disease state (MS versus controls, Figure 4B). As with the

hierarchal cluster analysis, the 143 probes in the top 10 DMR

were sufficient to differentiate MS from controls (Figure 4B). The

goodness of fit (GOF) for this MDS analysis was 0.72.

As described for the analysis of the top DMP’s, we also

performed mQTL analysis of the 143 probes within the top

10 DMR. There were 66 regions associated with mQTL

(Supplementary Table S16) and 77 that were not

(Supplementary Table S17). Hierarchal cluster analysis and

MDS plots are shown in Supplementary Figures S3,S4. The

GOF was 0.71 for those associated with mQTL and 0.74 for

those not. These analyses also showed differentiation of MS from

controls. Plots of the eigenvalues for the MDS plots are shown in

Supplementary Figure S5.

Identification of gene-level biomarkers by
DMR analysis in racial and ethnic
subgroups

DMR analysis was also performed in racial and ethnic

subgroups. In the comparison of MS versus Control in the

Black American subgroup, 3127 regions of interest were

FIGURE 2
Cell composition analysis. The CellCounts2 function in the
FlowSorted.Blood.EPIC package in R software was used to
estimate differential peripheral blood cell counts. No statistically
significant differences were observed between MS and
controls.
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identified (Supplementary Table S18, FDR<1.94e-5). The top

10 DMR’s included 6 regions that were present in the analysis of

all donors (ARID5B, CDK2AP1, CLU, CTSZ, RABGAP1, and

TNFSF12-TNFSF-13) and 4 other regions that reached statistical

significance in the analysis of all donors but that were not in the

top 10 regions (DUSP6, FOXI2, GPX6, and SPI2). The hierarchal

cluster analysis for 72 DMP’s (Supplementary Table S19) within

the top 10 DMR’s is shown in Figure 5A and the MDS plot in

Figure 5B (GOF = 0.81).

In the Hispanic-Latino subgroup, 2285 regions of interest

were identified (FDR<1.01e-10; Supplementary Table S20). The

top 10 DMR’s were: HOXD8, HPS4, KCNIP4, mir124-2,

PTCHD4, PHYHIPL, RAB32, TREML2, UNC5, and

WBSCR17. In the hierarchal clustering analysis of this

subgroup, 55 probes within the top 10 DMR’s was used

(Supplementary Table S21). One control outlier was observed

in the MS cluster (Figure 5C). However, MDS analysis showed

differentiation between MS and controls (GOF = 0.75,

Figure 5D).

Confirmation of DMR results by
pyrosequencing

Three DMR regions (BAZ2B, CLU, and RABGAP1) were

selected for confirmation by pyrosequencing. The common

FIGURE 3
Hierarchal clustering analysis of the HLA-DRB1 region. Differences in methylation were observed at 14 CpG regions within HLA-DRB1 but did
not necessarily correlate with disease state. In the heatmap, MS donors are designated by green, and controls by blue at the top of the heatmap. Blue/
purple designates relative demethylation and orange/red increased methylation at a specific CpG site.
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feature of these regions is that they all contain multiple loci in

close proximity that demonstrated relative demethylation in the

TSS1500 region (1,500 bp upstream of the transcriptional start

site) in the MS group. The regions and assay details are shown in

Table 7. A representative example of the pyrosequencing analysis

is shown for the BAZ2B gene region in Figure 6. The sequences of

interest for the 3 genes (BAZ2B, CLU, and RABGAP1) contain

3 CpG sites, and data were pooled for analysis of each of the

differentially methylated regions. There was a statistically

significant reduction in relative percent methylation at the

CpG sites within each of the analyzed regions for BAZ2B (p <
0.0001), CLU (p < 0.0001), and RABGAP1 (p = 0.0004)

(Table 7).

Identification of gene-level differentially
methylated regions associated with
dimethyl fumarate treatment

Analysis was also performed in the MS subgroup (n = 29) to

compare differential methylation of those patients treated with

dimethyl fumarate (n = 12) versus all other individuals with MS

(n = 17, 8 on glatiramer acetate, 6 on ocrelizumab, 1 on beta-

interferon, and 1 untreated). Probes were filtered as described

above, and adjustments were made for gender, age, race, and

latent variables. However, unlike the prior analyses, disease

modifying treatments were listed as a factor to be preserved.

This analysis showed 1485 DMP’s (Supplementary Table S22)

with an FDR<0.01 (p < 2E-5) and 12,915 with an FDR<0.1 (p <
0.01). KEGG pathway analysis of those probes identified possible

associations with cytokine receptor interactions, adherens

junction regulation, chemokine signaling, and axonal guidance

(Table 8).

Hierarchal cluster and MDS analysis were performed on

77 DMP’s (Supplementary Table S23) within the top 10 DMR’s

(FDR<2.5E-40). These gene regions included: CLASP2, CLU,

DOK3, GPR146, PARVB, PARVG, RAB34, SLC11A2, TAGLN3,

and WBP1L. Four of these genes (CLASP2, PARVB, PARVG,

and TAGLN3) regulate the cytoskeleton, and three of them were

also identified in the top 10 DMR’s for the MS versus controls

comparison (CLU, RAB34, and WBP1L). As shown in Table 8

(maximal and mean differences between groups), all these

regions showed relative demethylation in the DMF group as

compared to those not on DMF. As shown in the heatmap of the

hierarchal clustering analysis (Figure 7A) and in the MDS plot

(Figure 7B), analysis of these regions was sufficient to distinguish

those individuals on dimethyl fumarate versus all other MS

patients (GOF = 0.81 for the MDS analysis).

Discussion

This epigenome-wide association study demonstrated

unique patterns of global and gene level differential DNA

methylation in our MS patient population. To our

knowledge, this study is the first to focus on differential

DNA methylation in an underrepresented population of MS

patients in the United States. Notable findings included

distinct global patterns of differential demethylation in

MS, a preferential association with enhancer regions

rather than promoters, and identification of novel gene

level biomarkers associated with MS and disease

TABLE 5 Top 10 differentially methylated regions (DMR) associated with multiple sclerosis.

DMR Chromosome Start End #CpGs FDR (min
smoothed)

HMFDR Max
difference M

Value
(MSvCon)

Mean
difference M

Value
(MSvCon)

Overlapping
genes

1 chr8 27467783 27470225 14 1.20E-136 2.43E-07 −0.05091 −0.03652 CLU

2 chr17 27044169 27045894 21 6.15E-111 1.79E-05 −0.06709 −0.03536 RAB34

3 chr9 1.26E+08 1.26E+08 14 1.89E-107 9.11E-07 −0.07037 −0.0436 RABGAP1

4 chr10 63807168 63809170 17 1.50E-94 3.11E-06 0.056923 0.040503 ARID5B

5 chr17 7460485 7462249 15 8.03E-94 3.34E-06 −0.05216 −0.02834 TNFSF12-
TNFSF13

6 chr12 1.24E+08 1.24E+08 14 2.76E-90 1.35E-06 −0.06444 −0.03567 CDK2AP1

7 chr20 57581529 57583709 27 1.91E-89 1.58E-05 −0.0482 −0.0146 CTSZ

8 chr10 1.05E+08 1.05E+08 14 8.26E-82 8.14E-07 −0.04491 −0.02297 WBP1L

9 chr4 1.55E+08 1.55E+08 36 1.98E-81 1.97E-05 −0.04727 −0.01471 SFRP2

10 chr2 1.6E+08 1.6E+08 16 6.13E-78 1.15E-06 −0.07885 −0.03049 BAZ2B

DMR: differentially methylated region, CpG: 5′-cytosine-phosphate-guanine-3′, FDR: false detection rate, HMFDR: harmonic mean of individual CpG FDR’s.
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modifying treatments. There was a tendency for many of the

differentially methylated regions to demonstrate relative

demethylation in MS. In addition, pathway analysis

suggested possible associations of epigenetic biomarkers of

cellular differentiation, Shigellosis, and amoebiasis in our

patient cohort.

FIGURE 4
Hierarchal clustering and multi-dimensional scaling (MDS) analysis of differentially methylated regions associated with MS. (A) Hierarchal
clustering analysis was performed on 147 differentially methylated loci within the top 10 differentially methylated regions (Supplementary Table S15).
In the heatmap, MS donors are designated by green, and controls by blue at the top of the heatmap. Blue/purple designates relative demethylation
and orange/red increased methylation at a specific CpG site. Gene regions included: ARID5B, BAZ2B, CDK2AP1, CLU, CTSZ, RAB34, RABGAP1,
SFRP2, TNFSF12-TNFSF-13, and WBP1L. (B) MDS analysis was performed on the same data set and showed a goodness of fit (GOF) of 0.72.
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The most notable observation in the analysis of global

differential DNA methylation in MS was a tendency toward

demethylation of probe regions that demonstrated relatively low

levels of methylation across all donors. Although exceptions

exist, there is a tendency for CpG islands to be

hypomethylated in normal cells and hypermethylated in

neoplastic cells (Bird and Wolffe, 1999; Baylin et al., 2001;

Michal and Wojtas, 2019). Some cancers, such as high-grade

pediatric gliomas, are associated with DNA hypomethylation

(Bender et al., 2013). Many prior studies suggested that

hypomethylated regions in a variety of cancers occur at

introns and intergenic regions (Wilson et al., 2007). More

recent studies in chronic lymphocytic leukemia and other

hematologic malignancies revealed an association of

hypomethylation of promoter regions (Upchurch et al., 2016).

This observation may be most relevant to this study because we

examined whole blood methylomics. Taken together with our

pathway analysis results, these data suggest a possible

relationship between the pathogenesis of MS in some patient

populations and hematological malignancies.

Consistent with those results, we also observed increased

representation of enhancer regions and decreased frequency of

associations with promoters among differentially methylated

probe regions. These differential DNA methylation patterns of

enhancers have been associated with neoplastic transformation,

metastasis of solid tumors, and myelodysplastic diseases (Bell

et al., 2016; Ordonez et al., 2019). In addition, gene level analysis

suggested a pattern of hypomethylation of a subset of genes in

putative promoter regions (TSS1500). For example, one of the

genes analyzed by pyrosequencing analysis, BAZ2B, regulates

chromatin structure and hematopoietic cell development

(Arumugam et al., 2020). These results will need to be

confirmed in larger data sets.

Pathway analysis revealed unexpected associations with

gastrointestinal infections due to bacteria and parasites but

not with viral infection. The specific pathways identified were

for Shigellosis, amoebiasis, and bacterial invasion of epithelia.

Shigellosis may be particularly relevant to our patient population

because frequent outbreaks have been identified in Chicago

(Jones et al., 2006). In addition, one prior genetic study

suggested an association of the Shigellosis pathway with MS

and Crohn’s disease (Restrepo et al., 2016). The possible

association with amoebiasis may be relevant to our Hispanic-

Latino population who have emigrated from Mexico and Central

America and those who have relocated from Puerto Rico.

Although these findings need to be examined in greater detail,

they suggest that prior bacterial and parasitic gastrointestinal

infections may be more relevant to MS susceptibility in our

patient cohort than prior viral infections such as Epstein Barr

Virus (Bjornevik et al., 2022).

Prior studies of differential DNA methylation in MS have

focused primarily on patients of Northern European ancestry

(Kulakova et al., 2016; Kular et al., 2018; Souren et al., 2019;

Kiselev et al., 2021). A prior study demonstrated relative

hypomethylation of the HLA-DRB1 region in MS patients

(Kular et al., 2018). We examined this region in our patient

cohort and observed a subset of individuals that had

hypomethylation of this region, but it did not correlate with

disease state. Although these results may suggest that epigenetic

biomarkers of MS may differ between racial and ethnic groups,

these data likely reflect differences between HLA-DRB1

haplotypes in our patient population. Several other recent

studies of differential methylation in MS have focused on

specific immune cell populations. These include analyses of

CD4+ T lymphocytes (Ewing et al., 2019; Roostaei et al.,

2021), CD8+ T lymphocytes (Li et al., 2017; Deng et al., 2019;

Ewing et al., 2019), monocytes (Ewing et al., 2019; Diniz et al.,

2021), and CD19+ B lymphocytes (Maltby et al., 2018a).

For gene level analysis of differential methylation associated

with MS in our patient cohort, we focused on the top 10 DMR’s:

ARID5B, BAZ2B, SFRP2, WBP1L, CDK2AP1, CLU, CTSZ,

RAB34, RABGAP1, and TNFSF12/TNFSF13. One of these

gene regions, CTSZ, was previously reported to be

hypomethylated in MS in post-mortem brain tissue (Huynh

TABLE 6 Pyrosequencing analysis.

Chromosome Assay ID# Position Strand Name Gene Region CpG#

chr2 PM00685013 160473461 + cg17503977 BAZ2B TSS1500 3

chr9 PM00685139 125795935 + cg14115756 RABGAP1 TSS1500 3

chr8 PM00683935 27469338 + cg13488078 CLU TSS1500 3

Condition BAZ2B CLU RABGAP1

%Methylation %Methylation %Methylation

MS (n = 6) 24.9 ± 2.3** 17.1 ± 1.5** 15.3 + 1.2*

Control (n = 4) 39.6 ± 2.0** 25.6 ± 1.4** 21.2 + 1.4*

*p = 0.004, **p < 0.001.
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et al., 2014) and to also be associated with risk of systemic

sclerosis (Zhu et al., 2018). This latter observation may be of

relevance to the current study because Black Americans have a

higher incidence of systemic sclerosis and are at increased risk of

a more severe disease course (Steen et al., 2012; Steen et al., 1963-

1982). One potential mechanism for CTSZ to mediate pro-

inflammatory effects is through increased interleukin 1β
secretion by antigen presenting cells (Allan et al., 2017).

FIGURE 5
Hierarchal clustering and multi-dimensional scaling (MDS) analysis of differentially methylated regions associated with MS in racial and ethnic
subgroups. (A) The top 10DMR’s for the comparison ofMS versusControls for Black Americans included 6 regions that were present in the analysis of
all donors (ARID5B, CDK2AP1, CLU, CTSZ, RABGAP1, and TNFSF12-TNFSF-13) and 4 other regions that reached statistical significance in the analysis
of all donors but that were not in the top 10 regions (DUSP6, FOXI2, GPX6, and SPI2). 72 DMP’s (Supplementary Table S19) within the top
10 DMR’s were used for hierachal cluster analysis. (B)MDS plot showed a GOF = 0.81. (C) In the Hispanic-Latino subgroup, the top 10 DMR’s were:
HOXD8, HPS4, KCNIP4, mir124-2, PTCHD4, PHYHIPL, RAB32, TREML2, UNC5, and WBSCR17. 55 probes within the top 10 DMR’s were used for
hierarchal cluster analysis (Supplementary Table S21). One control outlier was observed in the MS cluster. (D)) MDS revealed a GOF = 0.75.
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Although the other regions have not been shown to be

differentially methylated in prior studies, some of these genes

have been associated with MS in genomic, transcriptomic, and

proteomic studies. For example, CDK2AP1, a cell cycle regulator,

was previously identified as an MS risk allele that correlated with

reduced RNA expression in lymphoblast cells and peripheral

TABLE 7 KEGG pathway analysis of differential methylation with dimethyl fumarate treatment.

KEGG pathway Description N (loci) DE P.DE FDR

path:hsa04060 Cytokine receptor interaction 280 85 0.00043 0.0756

path:hsa04360 Axon guidance 175 90 0.00052 0.0756

path:hsa04520 Adherens junction 70 41 0.00067 0.0756

path:hsa04062 Chemokine signaling pathway 189 79 0.00088 0.0756

DE, discrete elements (genes); FDR, false detection rate.

FIGURE 6
Pyrosequencing analysis of differentially methylated regions. Bead array data were confirmed by pyrosequencing following bisulfite conversion
of the differentially methylated region of interest. In this representative analysis, the region of interest is in the promoter region (TSS1500) of BAZ2B
gene (sequence is at the top of the figure). CpG regions are highlighted in blue, the regions utilized for bisulfite conversion controls are shown in
yellow. For each of the 3 CpG regions analyzed, there was a relative reduction in the %methylation for the MS donor (bottom pyrogram)
compared to the control (top).
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blood mononuclear cells (PBMC’s) (IMSGC, 2010). It was also

identified as a susceptibility gene for MS in the genomic map

IMSGC study (Supplementary Table S13) (International, 2019).

Other studies demonstrated increased RNA expression of CLU, a

calcium binding protein, in peripheral blood from MS patients

(Razia et al., 2022) and increased protein levels in cerebrospinal

fluid (van Luijn et al., 2016). RAB34 (Liu et al., 2022) and the

TNFSF12-TNFSF13 (Krumbholz et al., 2008) have also been

associated with increased MS risk.

The more novel findings in this study were in genes

(ARID5B, BAZ2B, RABGAP1, SFRP2, and WBP1L) that are

associated with cancer risk and cellular differentiation. For

example, ARID5B, has been associated with leukemia (Treviño

et al., 2009), prostate cancer (Davalieva et al., 2015), gastric

cancer (Lim et al., 2014), and endometrial carcinoma

(Kandoth et al., 2013). As discussed above, BAZ2B

regulates chromosome structure, hematopoietic cell

development, and reprogramming of pluripotent stem cells

(Arumugam et al., 2020). RABGAP1 regulates mitosis, cell

migration, and mTOR signaling (Oh et al., 2022). SFRP2 is a

tumor suppressor protein that can induce cell apoptosis, and

differential methylation of its promoter region has been

associated with leukemias and renal cancer (Jost et al.,

2008; Konac et al., 2013; Li and Luo, 2018). WBP1L

regulates proapoptotic pathways in myeloid cell leukemia

(Morishima et al., 2011). Differential methylation of these

5 gene regions further suggests an association between

regulation of neoplasia and cellular proliferation in our

patient population. These epigenetic determinants may be

mediated by environmental exposures that increase the risk

of some cancers and autoimmune diseases (Dor and Cedar,

2018).

This study also demonstrated the feasibility of performing

parallel analyses to detect associations with MS and disease

modifying treatments. This analysis is important because it

may inform treatment decisions based on biomarkers of

medication responders and non-responders. In addition, in

real world practice, monitoring of biomarkers over the

patient’s disease course requires approaches that allow

ongoing disease modifying treatment to continue. In this

study, we focused on differential DNA methylation

associated with dimethyl fumarate treatment because that

group represented the largest treatment cohort in this pilot

study. Analysis of probes within the top DMR’s demonstrated

relative hypomethylation of these loci in the dimethyl

fumarate group. In a prior study of the effect of dimethyl

fumarate in CD4 T lymphocytes, four differentially

methylated loci were observed, SNORD1A, SHTN1,

MZB1 and TNF (Maltby et al., 2018b). We observed

differential methylation of SHTN1 in our comparison of

the top 10,000 DMP’s for the MS versus Control

comparison (Supplementary Tables S5–S7), but not in the

comparison of dimethyl fumarate versus other treatments.

One common feature is that differential methylation of

TNF was observed in that study and in our own. Another

study assessed differential methylation in monocytes and

CD4 T lymphocytes prior to initiation of dimethyl fumarate

and following treatment (Carlstrom et al., 2019). A potentially

important observation between our study and theirs is an

association of differential methylation with cytokine

TABLE 8 Top 10 differentially methylated regions (DMR) associated with dimethyl fumarate treatment.

DMR Chromosome Start End #CpGs FDR (min
smoothed)

HMFDR Max difference
M Value

(DMFvOther)

Mean
difference M

Value
(DMFvOther)

Overlapping
genes

1 chr22 44463707 44465038 10 2.57E-64 0.001067 −0.07046 −0.0306 PARVB

2 chr17 27044169 27045894 21 2.19E-55 0.01804 −0.07319 −0.03276 RAB34

3 chr10 1.05E+08 1.05E+08 14 5.76E-53 0.003279 −0.04699 −0.01822 WBP1L

4 chr3 1.12E+08 1.12E+08 15 1.42E-52 0.007249 −0.04847 −0.02573 TAGLN3

5 chr22 44568203 44568812 9 9.40E-51 0.004387 −0.05 −0.03259 PARVG

6 chr5 1.77E+08 1.77E+08 13 2.84E-50 0.003224 −0.04945 −0.02524 DOK3

7 chr12 51403056 51403966 6 5.95E-48 0.000422 −0.05586 −0.02471 SLC11A2

8 chr7 1094263 1096387 12 2.54E-46 0.004215 −0.04168 −0.02055 GPR146

9 chr8 27467783 27469673 13 1.19E-44 0.0076 −0.04168 −0.02666 CLU

10 chr3 33700962 33701707 9 2.44E-40 0.003399 −0.03639 −0.02407 CLASP2

*12 patients on dimethyl fumarate, 8 on glatiramer, 6 on ocrelizumab, 1 on interferon, and 1 on natalizumab.

DMR, differentially methylated region; CpG, 5′-cytosine-phosphate-guanine-3′; FDR, false detection rate; DMF, dimethyl fumarate; HMFDR, harmonic mean of individual CpG FDR’s.
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pathways, including IL6 and IL17 regulated signaling. In a

study that focused only on global patterns of differential

methylation, INFβ treatment significantly reduced global

methylation in monocytes but not in lymphocyte of MS

patients (Diniz et al., 2021). Additional studies are required

in the future to assess potential biomarkers associated with

other treatments.

This study has several limitations. One is that it is a pilot study

on a limited number of patients from our clinical practice. Further

studies are required with larger numbers of patients. In addition,

some of the findings may reflect regional differences due to unique

environmental exposures, and additional studies are necessary in

other patient cohorts. However, even if some of the differential DNA

methylation are due to regional differences, it is important to identify

FIGURE 7
Hierarchal clustering and multi-dimensional scaling (MDS) analysis of differentially methylated regions associated with dimethyl fumarate
treatment. (A)Heatmap is shown for hierarchal clustering analysis performed on differentially methylated loci within 77 differentially methylated loci
within the top 10 differentially methylated regions (DMR) (Supplementary Table S23). The gene regions are: CLASP2, CLU, DOK3, GPR146, PARVB,
PARVG, RAB34, SLC11A2, TAGLN3, and WBP1L. In the heatmap, dimethyl fumarate treatment is designated by red (n = 12), and controls by
yellow at the top of the heatmap (n = 17). Blue/purple designates relative demethylation and orange/red increasedmethylation at a specific CpG site.
(B) MDS analysis showed a goodness of fit of 0.81.
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those biomarkers associated with geographic location to better

understand disease heterogeneity on a national level. Another

limitation is that this study focused on whole blood methylomics,

and many relevant methylation differences in the CNS may be

missed. However, pathway and gene level analysis, including CLU

and RAB34, revealed associations with axonal regulatory pathways

and gene regions identified in prior studies of CNS tissue (Liu et al.,

2022) and CSF (van Luijn et al., 2016). Our results are consistent

with a prior study that demonstrated the feasibility of detecting CNS

relevant differential methylation in peripheral blood samples. That

study suggested that analysis of peripheral blood samples can detect

approximately 20%–30% of differential methylation observed in live

brain tissue (Braun et al., 2019). In addition, an important feature of

using whole blood methylomics is that it can be assessed using a

minimally invasive approach, which is important for longitudinal

assessments in real world clinical practice. Integrated analysis with

single cell approaches such as RNAseq also can be used to assess the

relevance of differential DNA methylation in specific immune cell

subtypes. An additional limitation of the current study is that HLA

typing and genome-wide genotyping were not performed.

Integrated analysis of these data with methylomics will need to

be performed in future studies of our patient cohort. In addition, it

will be important to analyze the associations of differentially

methylated regions with environmental and social determinants

of health, particularly for those regions not associated with SNP,

eQTL, or mQTL regions.

Despite the limitations of this study, the results allow us to

develop a working model to postulate possible pathobiological

differences of MS susceptibility in select populations. Overall, the

results suggest that DNA hypomethylation of many gene regions

previously associated with neoplastic regulation are associated

with MS susceptibility in Black and Hispanic American patients

in our cohort. Additional studies are required to assess the

relevance of these findings to the proliferation, invasiveness,

and pathogenicity of specific immune cell populations.

Methods

Subjects

This was a cross-sectional, case-control study. 29 subjects

with multiple sclerosis (MS) and 18 controls with non-

inflammatory neurological disease were enrolled

(Supplementary Tables S1). All subjects were followed at the

University of Illinois-Neurosciences Center and were enrolled in

the University of Illinois at Chicago (UIC) Neuroimmunology

Biobank between August, 2018 and October, 2019. The UIC

Neuroimmunology Biobank is approved by the Institutional

Review Board (IRB) of the University of Illinois College of

Medicine. All subjects provided informed written consent at

enrollment.

Inclusion and exclusion criteria

MS donors met the following criteria: 1) age between

18 and 80 years at the time of enrollment, 2) a diagnosis of

relapsing-remitting MS (RRMS) based on the McDonald

criteria 2017 (Thompson et al., 2018), 3) no history of

relapse(s) 30 days prior to the sample collection, 4) no

history of receiving steroids within 30 days prior to the

sample date, 5) no MRI activity within 30 days prior to the

sample collection date (if MRI available), and 6) availability of

the clinical data at the time of sample collection. The control

group met these criteria: 1) between 18 and 80 years at the

time of sampling, 2) presentation with a neurological

complaint other than a neuro-inflammatory or

neurodegenerative disorder, 3) no history of a recent

ischemic stroke within the 6 months prior to the sample

date, 4) no history of a systemic autoimmune disease, and

5) ambulatory without assistance at the time of sampling.

Exclusion criteria for both MS and control subjects were: 1)

failing to meet the inclusion criteria or 2) being on an

immunomodulating or immunosuppressant agent other

than the disease modifying treatments for MS within

6 months prior to the sample date.

Whole blood methylomics of
genomic DNA

Whole blood genomic DNA (gDNA) was isolated from

whole blood using EZ1 Advanced XL automated instrument

(Qiagen Cat. No. 9001875) using EZ1&2 DNA blood 350 ul kit

(Qiagen Cat. No.951054). Infinium MethylationEPIC bead

arrays (Illumina) were utilized to characterize whole blood

genomic DNA (gDNA) methylation of MS patients and

controls Samples were randomized on the chip. All samples

had very high CpG detection rates, and, therefore, none needed

to be removed from the analysis.

Normalization and filtering

Analysis was performed in R software (version 4.0.3). The

session information and packages utilized are shown in

Supplementary Table S24. Data were normalized using the

preprocessQuantile function from the minfi R package (Aryee

et al., 2014). Probes were filtered and removed from analysis for

low detection value in one or more samples (4,726 probes), sex

differences (19,072 probes on the X and Y chromosomes), CpG

sites associated with known SNP’s (single nucleotide

polymorphisms; 28,567 probes), and probe cross-reactivity

(24,690 probes) (Chen et al., 2013). 788,804 probes remained

for further analysis.
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Linear model of differential methylation

Using the lmFit and eBayes functions from the limma

package (Ritchie et al., 2015), preliminary models were fit as:

Y � Group + Race + Gender + Age

For all 47 samples, and:

Y � Group + Gender + Age

for the 30 Black American samples, and separately in the

14 Hispanic-Latino samples, where Y is the M-value

indicating the degree of methylation at a given CpG, and

Group indicates the MS or control group.

Removal of Unwanted Variation (Jacob et al., 2016) was used

to identify any latent variables that should be included in

analysis. The method of Buja and Eyuboglu (Buja and

Eyuboglu, 1992) was implemented in the num.sv function of

the sva package (Leek and Storey, 2007) indicated that 6 latent

variables should be included in the model with all 47 samples,

4 latent variables should be included in the model with the

30 Black American samples, and 3 latent variables should be

included in the model with the 14 Hispanic-Latino samples.

Negative control probes were selected as those that had a

p-value >0.5 for every effect in each of the respective above

models, which yielded 27413 probes for the model with all

47 samples, 80572 probes for the model with the 30 Black

American samples, and 78369 probes for the model with the

14 Hispanic-Latino samples. The iterateRUV function from the

RUVnormalize package (Jacob et al., 2016) was then used to

estimate latent variables under default parameters. There was no

obvious relationship between the latent variables and

demographic cofactors.

Models were then re-run as:

Y � Group + Race + Gender + Age +W

For all 47 samples, and:

Y � Group + Gender + Age +W

for the 30 Black American samples, and separately for the

14 Hispanic-Latino samples, where W represents the matrix

of latent variables estimated for the respective model.

Adjustment of M-values for covariates,
including disease modifying treatments

The RUVnormalize R package (Jacob et al., 2016) was used to

estimate unknown covariates in the dataset, some of which

corresponded to disease modifying treatments. The

removeBatchEffects function from the limma package (Ritchie

et al., 2015) was used to adjust M-values. Group, race, and

intercept were listed as factors to be preserved. Slide was

indicated as a batch effect. Gender, age, and latent variables

were indicated as covariates to be adjusted for. Data were

analyzed in the presence and absence of adjustments for

disease modifying treatments as a covariate. Adjusted

M-values were used to draw Mean Difference (MD) plots

using the glMDPlot function in the Glimma package (Su

et al., 2017). These values were also used for analysis of

DMP’s within DMR’s.

Analysis of differentially methylated
regions

The DMRcate package was used to identify differentially

methylated regions (DMR’s) based on the p-values used to detect

differentially methylated probes (DMP’s) (Peters et al., 2015). For

each of the three models used for detecting DMP’s, an FDR

threshold was determined at which probes with a p-value of

0.001 or lower would be captured. The dmrcate function was run

with lambda = 1,000 and C = 2.

KEGG pathway and cell composition
analysis

The gometh function of missMethyl was used to identify

enriched KEGG terms among differentially methylated genes

(Phipson et al., 2016). Cell composition analysis was performed

using the CellCounts2 function in the FlowSorted. Blood.EPIC

package in R software (Salas et al., 2018).

Pyrosequencing

Bisulfite conversion of gDNA was performed (EpiTect

Bisulfide Kit (Qiagen Cat. No. 59104), and regions of

interest were amplified by PCR (Qiagen Pyromark Custom

Assays, Qiagen PyroMark kit Cat. No. 978703) using a

QuantStudio 3 real time PCR system. Pyrosequencing and

analysis were performed at the Stanford University School of

Medicine’s Beckman Center for Molecular and Genetic

Medicine. The regions analyzed and assay numbers are

shown in Table 4. Data were analyzed in SPSS (version

28, IBM).
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repository, accession number GSE219293.

Frontiers in Genetics frontiersin.org17

Bingen et al. 10.3389/fgene.2022.1058817

94

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1058817


Ethics statement

The studies involving human participants were reviewed and

approved by University of Illinois Chicago IRB. The patients/

participants provided their written informed consent to

participate in this study.

Author contributions

Design and concept by MC, LC, and MB. Data acquisition by

MB and JB. Computations by LC and MC. Data analysis, data

interpretation, and writing byMC, LC, IM, and JB. Revisions and

approval by MC, LC, MB, IM, and JB.

Funding

This work was funded by the Evelyn Chinea Garcia Multiple

SclerosisResearchFundat theUniversity of Illinois, Chicago andby the

Department of Veterans Affairs (BLR&D Merit Award BX000467).

The content is solely the responsibility of the authors and does not

represent the official views of the U.S. Department of Veterans Affairs.

Acknowledgments

We thank the University of Illinois Health Biorepository for

technical assistance with the processing and storage of donor

samples; Rajeev Ranjan of the University of Illinois, Chicago and

the Stanford University School of Medicine’s Beckman Center for

Molecular and Genetic Medicine for assistance with

pyrosequencing; and the University of Illinois, Urbana-

Champaign, Carver Biotechnology Center for processing

Illumina EPIC arrays and the High Performance Biological

Computing Center for assistance with data analysis.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fgene.

2022.1058817/full#supplementary-material

References

Allan, E. R. O., Campden, R. I., Ewanchuk, B. W., Tailor, P., Balce, D. R.,
McKenna, N. T., et al. (2017). A role for cathepsin Z in neuroinflammation provides
mechanistic support for an epigenetic risk factor in multiple sclerosis.
J. Neuroinflammation 14, 103. doi:10.1186/s12974-017-0874-x

Andersson, R., Gebhard, C., Miguel-Escalada, I., Hoof, I., Bornholdt, J., Boyd, M.,
et al. (2014). An atlas of active enhancers across human cell types and tissues.
Nature 507, 455–461. doi:10.1038/nature12787

Arumugam, K., Shin, W., Schiavone, V., Vlahos, L., Tu, X., Carnevali, D., et al.
(2020). The master regulator protein BAZ2B can reprogram human hematopoietic
lineage-committed progenitors into a multipotent state. Cell Rep. 33, 108474. doi:10.
1016/j.celrep.2020.108474

Aryee, M. J., Jaffe, A. E., Corrada-Bravo, H., Ladd-Acosta, C., Feinberg, A. P.,
Hansen, K. D., et al. (2014). Minfi: A flexible and comprehensive bioconductor
package for the analysis of Infinium DNA methylation microarrays. Bioinformatics
30, 1363–1369. doi:10.1093/bioinformatics/btu049

Baylin, S. B., Esteller, M., Rountree, M. R., Bachman, K. E., Schuebel, K., and
Herman, J. G. (2001). Aberrant patterns of DNAmethylation, chromatin formation
and gene expression in cancer.Hum. Mol. Genet. 10, 687–692. doi:10.1093/hmg/10.
7.687

Bell, R. E., Golan, T., Sheinboim, D., Malcov, H., Amar, D., Salamon, A., et al.
(2016). Enhancer methylation dynamics contribute to cancer plasticity and patient
mortality. Genome Res. 26, 601–611. doi:10.1101/gr.197194.115

Bender, S., Tang, Y., Lindroth, A. M., Hovestadt, V., Jones, D. T., Kool, M., et al.
(2013). Reduced H3K27me3 and DNA hypomethylation are major drivers of gene
expression in K27Mmutant pediatric high-grade gliomas. Cancer Cell 24, 660–672.
doi:10.1016/j.ccr.2013.10.006

Bird, A. P., and Wolffe, A. P. (1999). Methylation-induced repression--belts,
braces, and chromatin. Cell 99, 451–454. doi:10.1016/s0092-8674(00)81532-9

Bjornevik, K., Cortese, M., Healy, B. C., Kuhle, J., Mina, M. J., Leng, Y., et al.
(2022). Longitudinal analysis reveals high prevalence of Epstein-Barr virus
associated with multiple sclerosis. Science 375 (2022), 296–301. doi:10.1126/
science.abj8222

Braun, P. R., Han, S., Hing, B., Nagahama, Y., Gaul, L. N., Heinzman, J. T., et al.
(2019). Genome-wide DNA methylation comparison between live human brain
and peripheral tissues within individuals. Transl. Psychiatry 9, 47. doi:10.1038/
s41398-019-0376-y

Buja, A., and Eyuboglu, N. (1992). Remarks on parallel analysis.Multivar. Behav.
Res. 27, 509–540. doi:10.1207/s15327906mbr2704_2

Caldito,N.G., Saidha, S., Sotirchos, E. S.,Dewey, B. E.,Cowley,N. J.,Glaister, J., et al. (2018).
Brain and retinal atrophy in african-Americans versus caucasian-Americans with multiple
sclerosis: A longitudinal study. Brain 141, 3115–3129. doi:10.1093/brain/awy245

Carlstrom, K. E., Ewing, E., Granqvist, M., Gyllenberg, A., Aeinehband, S.,
Enoksson, S. L., et al. (2019). Therapeutic efficacy of dimethyl fumarate in
relapsing-remitting multiple sclerosis associates with ROS pathway in
monocytes. Nat. Commun. 10, 3081. doi:10.1038/s41467-019-11139-3

Celarain, N., and Tomas-Roig, J. (2020). Aberrant DNA methylation profile
exacerbates inflammation and neurodegeneration in multiple sclerosis patients.
J. Neuroinflammation 17, 21. doi:10.1186/s12974-019-1667-1

Chen, Y. A., Lemire, M., Choufani, S., Butcher, D. T., Grafodatskaya, D., Zanke, B.
W., et al. (2013). Discovery of cross-reactive probes and polymorphic CpGs in the
Illumina Infinium HumanMethylation450 microarray. Epigenetics 8, 203–209.
doi:10.4161/epi.23470

Frontiers in Genetics frontiersin.org18

Bingen et al. 10.3389/fgene.2022.1058817

95

https://www.frontiersin.org/articles/10.3389/fgene.2022.1058817/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.1058817/full#supplementary-material
https://doi.org/10.1186/s12974-017-0874-x
https://doi.org/10.1038/nature12787
https://doi.org/10.1016/j.celrep.2020.108474
https://doi.org/10.1016/j.celrep.2020.108474
https://doi.org/10.1093/bioinformatics/btu049
https://doi.org/10.1093/hmg/10.7.687
https://doi.org/10.1093/hmg/10.7.687
https://doi.org/10.1101/gr.197194.115
https://doi.org/10.1016/j.ccr.2013.10.006
https://doi.org/10.1016/s0092-8674(00)81532-9
https://doi.org/10.1126/science.abj8222
https://doi.org/10.1126/science.abj8222
https://doi.org/10.1038/s41398-019-0376-y
https://doi.org/10.1038/s41398-019-0376-y
https://doi.org/10.1207/s15327906mbr2704_2
https://doi.org/10.1093/brain/awy245
https://doi.org/10.1038/s41467-019-11139-3
https://doi.org/10.1186/s12974-019-1667-1
https://doi.org/10.4161/epi.23470
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1058817


Chinea, A., Perez, N., Perez-Canabal, A., Rojas, F., Torres, J., and Poser, C. (2012).
The Puerto Rico study for the prevalence of multiple sclerosis. Bol. Asoc. Med. P. R.
104, 4–9.

Cree, B. A., Khan, O., Bourdette, D., Goodin, D. S., Cohen, J. A., Marrie, R. A.,
et al. (2004). Clinical characteristics of African Americans vs Caucasian Americans
with multiple sclerosis. Neurology 63, 2039–2045. doi:10.1212/01.wnl.0000145762.
60562.5d

Davalieva, K., Kostovska, I. M., Kiprijanovska, S., Markoska, K., Kubelka-Sabit,
K., Filipovski, V., et al. (2015). Proteomics analysis of malignant and benign prostate
tissue by 2D DIGE/MS reveals new insights into proteins involved in prostate
cancer. Prostate 75, 1586–1600. doi:10.1002/pros.23034

Deng, Q., Luo, Y., Chang, C., Wu, H., Ding, Y., and Xiao, R. (2019). The emerging
epigenetic role of CD8+T cells in autoimmune diseases: A systematic Review. Front.
Immunol. 10, 856. doi:10.3389/fimmu.2019.00856

Diniz, S. N., da Silva, C. F., de Almeida, I. T., da Silva Costa, F. E., and de Oliveira,
E. M. L. (2021). INFβ treatment affects global DNA methylation in monocytes of
patients with multiple sclerosis. J. Neuroimmunol. 355, 577563. doi:10.1016/j.
jneuroim.2021.577563

Dor, Y., and Cedar, H. (2018). Principles of DNA methylation and their
implications for biology and medicine. Lancet 392, 777–786. doi:10.1016/S0140-
6736(18)31268-6

Ewing, E., Kular, L., Fernandes, S. J., Karathanasis, N., Lagani, V., Ruhrmann, S.,
et al. (2019). Combining evidence from four immune cell types identifies DNA
methylation patterns that implicate functionally distinct pathways during Multiple
Sclerosis progression. EBioMedicine 43, 411–423. doi:10.1016/j.ebiom.2019.04.042

Gerstein, M. B., Kundaje, A., Hariharan, M., Landt, S. G., Yan, K. K., Cheng, C.,
et al. (2012). Architecture of the human regulatory network derived from ENCODE
data. Nature 489, 91–100. doi:10.1038/nature11245

Howlett-Prieto, Q., Carrithers, M. D., Wunsch, D. C., and Hier, D. B. (2022).
Subtypes of relapsing-remitting multiple sclerosis identified bypass network
analysis. medRxiv. doi:10.1101/2022.11.16.22282420

Huynh, J. L., Garg, P., Thin, T. H., Yoo, S., Dutta, R., Trapp, B. D., et al. (2014).
Epigenome-wide differences in pathology-free regions of multiple sclerosis-affected
brains. Nat. Neurosci. 17, 121–130. doi:10.1038/nn.3588

Imsgc, I. M. S. G. C. (2010). IL12A, MPHOSPH9/CDK2AP1 and RGS1 are novel
multiple sclerosis susceptibility loci. Genes Immun. 11, 397–405. doi:10.1038/gene.
2010.28

International, C. (2019). Multiple Sclerosis Genetics, Multiple sclerosis genomic
map implicates peripheral immune cells and microglia in susceptibility. Science 365.

Jacob, L., Gagnon-Bartsch, J. A., and Speed, T. P. (2016). Correcting gene
expression data when neither the unwanted variation nor the factor of interest
are observed. Biostatistics 17, 16–28. doi:10.1093/biostatistics/kxv026

Jones, R. C., Liberatore, M., Fernandez, J. R., and Gerber, S. I. (2006). Use of a
prospective space-time scan statistic to prioritize shigellosis case investigations in an
urban jurisdiction. Public Health Rep. 121, 133–139. doi:10.1177/
003335490612100206

Jost, E., Schmid, J., Wilop, S., Schubert, C., Suzuki, H., Herman, J. G., et al.
(2008). Epigenetic inactivation of secreted Frizzled-related proteins in acute
myeloid leukaemia. Br. J. Haematol. 142, 745–753. doi:10.1111/j.1365-2141.
2008.07242.x

Kandoth, C., Schultz, N., Cherniack, A. D., Akbani, R., Liu, Y., Shen, H., et al.
(2013). Integrated genomic characterization of endometrial carcinoma. Nature 497,
67–73. doi:10.1038/nature12113

Kiselev, I. S., Kulakova, O. G., Boyko, A. N., and Favorova, O. O. (2021). DNA
methylation as an epigenetic mechanism in the development of multiple sclerosis.
Acta Naturae 13, 45–57. doi:10.32607/actanaturae.11043

Konac, E., Varol, N., Yilmaz, A., Menevse, S., and Sozen, S. (2013). DNA
methyltransferase inhibitor-mediated apoptosis in the Wnt/β-catenin signal
pathway in a renal cell carcinoma cell line. Exp. Biol. Med. 238, 1009–1016.
doi:10.1177/1535370213498984

Krumbholz, M., Faber, H., Steinmeyer, F., Hoffmann, L. A., Kümpfel, T.,
Pellkofer, H., et al. (2008). Interferon-beta increases BAFF levels in multiple
sclerosis: implications for B cell autoimmunity. Brain 131, 1455–1463. doi:10.
1093/brain/awn077

Kulakova, O. G., Kabilov, M. R., Danilova, L. V., Popova, E. V., Baturina, O. A.,
Tsareva, E. Y., et al. (2016). Whole-genome DNAmethylation analysis of peripheral
bloodmononuclear cells in multiple sclerosis patients with different disease courses.
Acta Naturae 8, 103–110. doi:10.32607/20758251-2016-8-3-103-110

Kular, L., Liu, Y., Ruhrmann, S., Zheleznyakova, G., Marabita, F., Gomez-
Cabrero, D., et al. (2018). DNA methylation as a mediator of HLA-DRB1*15:
01 and a protective variant in multiple sclerosis. Nat. Commun. 9, 2397. doi:10.
1038/s41467-018-04732-5

Langer-Gould, A., Brara, S. M., Beaber, B. E., and Zhang, J. L. (2013). Incidence of
multiple sclerosis in multiple racial and ethnic groups. Neurology 80, 1734–1739.
doi:10.1212/WNL.0b013e3182918cc2

Leek, J. T., and Storey, J. D. (2007). Capturing heterogeneity in gene expression
studies by surrogate variable analysis. PLoS Genet. 3, 1724–1735. doi:10.1371/
journal.pgen.0030161

Li, E., and Zhang, Y. (2014). DNA methylation in mammals. Cold Spring Harb.
Perspect. Biol. 6, a019133. doi:10.1101/cshperspect.a019133

Li, X., Xiao, B., and Chen, X. S. (2017). DNA methylation: A new player in
multiple sclerosis. Mol. Neurobiol. 54, 4049–4059. doi:10.1007/s12035-016-9966-3

Li, Z., and Luo, J. (2018). Research on epigenetic mechanism of SFRP2 in
advanced chronic myeloid leukemia. Biochem. Biophys. Res. Commun. 501,
64–72. doi:10.1016/j.bbrc.2018.04.149

Lim, B., Park, J. L., Kim, H. J., Park, Y. K., Kim, J. H., Sohn, H. A., et al. (2014).
Integrative genomics analysis reveals the multilevel dysregulation and oncogenic
characteristics of TEAD4 in gastric cancer. Carcinogenesis 35, 1020–1027. doi:10.
1093/carcin/bgt409

Liu, Y., Zhou, Y., Yue, H., Dou, H., Rang, X., Wang, X., et al. (2022). Identification
of potential key genes and immune infiltration in Multiple sclerosis. Mult. Scler.
Relat. Disord. 60, 103748. doi:10.1016/j.msard.2022.103748

Maltby, V. E., Lea, R. A., Graves, M. C., Sanders, K. A., Benton, M. C., Tajouri, L.,
et al. (2018). Genome-wide DNA methylation changes in CD19(+) B cells from
relapsing-remitting multiple sclerosis patients. Sci. Rep. 8, 17418. doi:10.1038/
s41598-018-35603-0

Maltby, V. E., Lea, R. A., Ribbons, K. A., Sanders, K. A., Kennedy, D., Min, M.,
et al. (2018). DNA methylation changes in CD4(+) T cells isolated from multiple
sclerosis patients on dimethyl fumarate. Mult. Scler. J. Exp. Transl. Clin. 4,
2055217318787826. doi:10.1177/2055217318787826

Michal, J. D., and Wojtas, B. (2019). Global DNAmethylation patterns in human
gliomas and their interplay with other epigenetic modifications. Int. J. Mol. Sci. 20,
3478. doi:10.3390/ijms20143478

Min, J. L., Hemani, G., Hannon, E., Dekkers, K. F., Castillo-Fernandez, J., Luijk,
R., et al. (2021). Genomic and phenotypic insights from an atlas of genetic effects on
DNA methylation. Nat. Genet. 53, 1311–1321. doi:10.1038/s41588-021-00923-x

Morishima, N., Nakanishi, K., and Nakano, A. (2011). Activating transcription
factor-6 (ATF6) mediates apoptosis with reduction of myeloid cell leukemia
sequence 1 (Mcl-1) protein via induction of WW domain binding protein 1.
J. Biol. Chem. 286, 35227–35235. doi:10.1074/jbc.M111.233502

Oh, R. Y., Deshwar, A. R., Marwaha, A., Sabha, N., Tropak, M., Hou, H., et al.
(2022). Biallelic loss-of-function variants in RABGAP1 cause a novel
neurodevelopmental syndrome. Genet. Med.

Ordonez, R., Martinez-Calle, N., Agirre, X., and Prosper, F. (2019). DNA
methylation of enhancer elements in myeloid neoplasms: Think outside the
promoters? Cancers (Basel) 11, 1424. doi:10.3390/cancers11101424

Peters, T. J., Buckley, M. J., Statham, A. L., Pidsley, R., Samaras, K., Clark, S. J.,
et al. (2015). De novo identification of differentially methylated regions in the
human genome. Epigenetics Chromatin 8, 6. doi:10.1186/1756-8935-8-6

Phipson, B., Maksimovic, J., and Oshlack, A. (2016). missMethyl: an R package
for analyzing data from Illumina’s HumanMethylation450 platform. Bioinformatics
32, 286–288. doi:10.1093/bioinformatics/btv560

Razia, R., Majeed, F., Amin, R., Mukhtar, S., Mehmood, K., and Baig, D. N. (2022).
The analysis of dynamic gene expression patterns in peripheral blood of multiple
sclerosis patients indicates possible diagnostic and prognostic biomarkers. Mol.
Immunol. 147, 147–156. doi:10.1016/j.molimm.2022.05.002

Restrepo, N. A., Butkiewicz, M., McGrath, J. A., and Crawford, D. C. (2016).
Shared genetic etiology of autoimmune diseases in patients from a biorepository
linked to de-identified electronic health records. Front. Genet. 7, 185. doi:10.3389/
fgene.2016.00185

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., et al. (2015).
Limma powers differential expression analyses for RNA-sequencing and
microarray studies. Nucleic Acids Res. 43, e47. doi:10.1093/nar/gkv007

Roostaei, T., Klein, H. U., Ma, Y., Felsky, D., Kivisäkk, P., Connor, S. M., et al.
(2021). Proximal and distal effects of genetic susceptibility to multiple sclerosis on
the T cell epigenome. Nat. Commun. 12, 7078. doi:10.1038/s41467-021-27427-w

Salas, L. A., Koestler, D. C., Butler, R. A., Hansen, H. M., Wiencke, J. K., Kelsey, K.
T., et al. (2018). An optimized library for reference-based deconvolution of whole-
blood biospecimens assayed using the Illumina HumanMethylationEPIC
BeadArray. Genome Biol. 19, 64. doi:10.1186/s13059-018-1448-7

Sorensen, P. S., Sellebjerg, F., Hartung, H. P., Montalban, X., Comi, G., and
Tintore, M. (2020). The apparently milder course of multiple sclerosis: Changes in
the diagnostic criteria, therapy and natural history. Brain 143, 2637–2652. doi:10.
1093/brain/awaa145

Frontiers in Genetics frontiersin.org19

Bingen et al. 10.3389/fgene.2022.1058817

96

https://doi.org/10.1212/01.wnl.0000145762.60562.5d
https://doi.org/10.1212/01.wnl.0000145762.60562.5d
https://doi.org/10.1002/pros.23034
https://doi.org/10.3389/fimmu.2019.00856
https://doi.org/10.1016/j.jneuroim.2021.577563
https://doi.org/10.1016/j.jneuroim.2021.577563
https://doi.org/10.1016/S0140-6736(18)31268-6
https://doi.org/10.1016/S0140-6736(18)31268-6
https://doi.org/10.1016/j.ebiom.2019.04.042
https://doi.org/10.1038/nature11245
https://doi.org/10.1101/2022.11.16.22282420
https://doi.org/10.1038/nn.3588
https://doi.org/10.1038/gene.2010.28
https://doi.org/10.1038/gene.2010.28
https://doi.org/10.1093/biostatistics/kxv026
https://doi.org/10.1177/003335490612100206
https://doi.org/10.1177/003335490612100206
https://doi.org/10.1111/j.1365-2141.2008.07242.x
https://doi.org/10.1111/j.1365-2141.2008.07242.x
https://doi.org/10.1038/nature12113
https://doi.org/10.32607/actanaturae.11043
https://doi.org/10.1177/1535370213498984
https://doi.org/10.1093/brain/awn077
https://doi.org/10.1093/brain/awn077
https://doi.org/10.32607/20758251-2016-8-3-103-110
https://doi.org/10.1038/s41467-018-04732-5
https://doi.org/10.1038/s41467-018-04732-5
https://doi.org/10.1212/WNL.0b013e3182918cc2
https://doi.org/10.1371/journal.pgen.0030161
https://doi.org/10.1371/journal.pgen.0030161
https://doi.org/10.1101/cshperspect.a019133
https://doi.org/10.1007/s12035-016-9966-3
https://doi.org/10.1016/j.bbrc.2018.04.149
https://doi.org/10.1093/carcin/bgt409
https://doi.org/10.1093/carcin/bgt409
https://doi.org/10.1016/j.msard.2022.103748
https://doi.org/10.1038/s41598-018-35603-0
https://doi.org/10.1038/s41598-018-35603-0
https://doi.org/10.1177/2055217318787826
https://doi.org/10.3390/ijms20143478
https://doi.org/10.1038/s41588-021-00923-x
https://doi.org/10.1074/jbc.M111.233502
https://doi.org/10.3390/cancers11101424
https://doi.org/10.1186/1756-8935-8-6
https://doi.org/10.1093/bioinformatics/btv560
https://doi.org/10.1016/j.molimm.2022.05.002
https://doi.org/10.3389/fgene.2016.00185
https://doi.org/10.3389/fgene.2016.00185
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1038/s41467-021-27427-w
https://doi.org/10.1186/s13059-018-1448-7
https://doi.org/10.1093/brain/awaa145
https://doi.org/10.1093/brain/awaa145
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1058817


Souren, N. Y., Gerdes, L. A., Lutsik, P., Gasparoni, G., Beltrán, E., Salhab, A., et al.
(2019). DNA methylation signatures of monozygotic twins clinically discordant for
multiple sclerosis. Nat. Commun. 10, 2094. doi:10.1038/s41467-019-09984-3

Steen, V. D., Oddis, C. V., Conte, C. G., Janoski, J., Casterline, G. Z., and Medsger,
T. A., Jr. (1963-19821997). Incidence of systemic sclerosis in Allegheny County,
Pennsylvania. A twenty-year study of hospital-diagnosed cases.Arthritis Rheum. 40,
441–445. doi:10.1002/art.1780400309

Steen, V., Domsic, R. T., Lucas, M., Fertig, N., and Medsger, T. A., Jr. (2012).
A clinical and serologic comparison of African American and Caucasian
patients with systemic sclerosis. Arthritis Rheum. 64, 2986–2994. doi:10.
1002/art.34482

Su, S., Law, C. W., Ah-Cann, C., Asselin-Labat, M. L., Blewitt, M. E., and Ritchie,
M. E. (2017). Glimma: Interactive graphics for gene expression analysis.
Bioinformatics 33, 2050–2052. doi:10.1093/bioinformatics/btx094

Thompson, A. J., Banwell, B. L., Barkhof, F., Carroll, W. M., Coetzee, T., Comi, G.,
et al. (2018). Diagnosis of multiple sclerosis: 2017 revisions of the McDonald
criteria. Lancet. Neurol. 17, 162–173. doi:10.1016/S1474-4422(17)30470-2

Treviño, L. R., Yang, W., French, D., Hunger, S. P., Carroll, W. L., Devidas, M.,
et al. (2009). Germline genomic variants associated with childhood acute
lymphoblastic leukemia. Nat. Genet. 41, 1001–1005. doi:10.1038/ng.432

Upchurch, G. M., Haney, S. L., and Opavsky, R. (2016). Aberrant promoter
hypomethylation in CLL: Does it matter for disease development? Front. Oncol. 6,
182. doi:10.3389/fonc.2016.00182

van Luijn, M. M., van Meurs, M., Stoop, M. P., Verbraak, E., Wierenga-Wolf,
A. F., Melief, M. J., et al. (2016). Elevated expression of the cerebrospinal fluid
disease markers chromogranin A and clusterin in astrocytes of multiple

sclerosis white matter lesions. J. Neuropathol. Exp. Neurol. 75, 86–98.
doi:10.1093/jnen/nlv004

Villicana, S., and Bell, J. T. (2021). Genetic impacts on DNA methylation:
Research findings and future perspectives. Genome Biol. 22, 127. doi:10.1186/
s13059-021-02347-6

Wallin, M. T., Culpepper, W. J., Campbell, J. D., Nelson, L. M., Langer-Gould, A.,
Marrie, R. A., et al. (2019). The prevalence of MS in the United States: A population-
based estimate using health claims data. Neurology 92, e1029–e1040. doi:10.1212/
WNL.0000000000007035

Wallin, M. T., Culpepper, W. J., Coffman, P., Pulaski, S., Maloni, H., Mahan, C.
M., et al. (2012). The Gulf war era multiple sclerosis cohort: Age and incidence rates
by race, sex and service. Brain 135, 1778–1785. doi:10.1093/brain/aws099

Wallin, M. T., Culpepper, W. J., Maloni, H., and Kurtzke, J. F. (2018). The Gulf
war era multiple sclerosis cohort: 3. Early clinical features. Acta Neurol. Scand. 137,
76–84. doi:10.1111/ane.12810

Weinstock-Guttman, B., Jacobs, L. D., Brownscheidle, C. M., Baier, M., Rea, D. F.,
Apatoff, B. R., et al. (2003). Multiple sclerosis characteristics in african American
patients in the New York state multiple sclerosis Consortium. Mult. Scler. 9,
293–298. doi:10.1191/1352458503ms909oa

Wilson, A. S., Power, B. E., and Molloy, P. L. (2007). DNA hypomethylation and
human diseases. Biochim. Biophys. Acta 1775, 138–162. doi:10.1016/j.bbcan.2006.
08.007

Zhu, H., Zhu, C., Mi, W., Chen, T., Zhao, H., Zuo, X., et al. (2018). Integration of
genome-wide DNA methylation and transcription uncovered aberrant methylation-
regulated genes and pathways in the peripheral blood mononuclear cells of systemic
sclerosis. Int. J. Rheumatol. 2018, 7342472. doi:10.1155/2018/7342472

Frontiers in Genetics frontiersin.org20

Bingen et al. 10.3389/fgene.2022.1058817

97

https://doi.org/10.1038/s41467-019-09984-3
https://doi.org/10.1002/art.1780400309
https://doi.org/10.1002/art.34482
https://doi.org/10.1002/art.34482
https://doi.org/10.1093/bioinformatics/btx094
https://doi.org/10.1016/S1474-4422(17)30470-2
https://doi.org/10.1038/ng.432
https://doi.org/10.3389/fonc.2016.00182
https://doi.org/10.1093/jnen/nlv004
https://doi.org/10.1186/s13059-021-02347-6
https://doi.org/10.1186/s13059-021-02347-6
https://doi.org/10.1212/WNL.0000000000007035
https://doi.org/10.1212/WNL.0000000000007035
https://doi.org/10.1093/brain/aws099
https://doi.org/10.1111/ane.12810
https://doi.org/10.1191/1352458503ms909oa
https://doi.org/10.1016/j.bbcan.2006.08.007
https://doi.org/10.1016/j.bbcan.2006.08.007
https://doi.org/10.1155/2018/7342472
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1058817


TYPE Brief Research Report
PUBLISHED 11 January 2023| DOI 10.3389/fdgth.2022.1063264
EDITED BY

Lina F. Soualmia,

Université de Rouen, France

REVIEWED BY

Leif Simmatis,

University Health Network (UHN), Canada,

A. N. M. Bazlur Rashid,

Edith Cowan University, Australia

*CORRESPONDENCE

Daniel B. Hier

hierd@mst.edu

SPECIALTY SECTION

This article was submitted to Health

Informatics, a section of the journal Frontiers in

Digital Health

RECEIVED 06 October 2022

ACCEPTED 22 December 2022

PUBLISHED 11 January 2023

CITATION

Howlett-Prieto Q, Oommen C, Carrithers MD,

Wunsch II DC and Hier DB (2023) Subtypes of

relapsing-remitting multiple sclerosis identified

by network analysis.

Front. Digit. Health 4:1063264.

doi: 10.3389/fdgth.2022.1063264

COPYRIGHT

© 2023 Howlett-Prieto, Oommen, Carrithers,
Wunsch II and Hier. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.
Frontiers in Digital Health
Subtypes of relapsing-remitting
multiple sclerosis identified by
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We used network analysis to identify subtypes of relapsing-remitting multiple
sclerosis subjects based on their cumulative signs and symptoms. The
electronic medical records of 113 subjects with relapsing-remitting multiple
sclerosis were reviewed, signs and symptoms were mapped to classes in a
neuro-ontology, and classes were collapsed into sixteen superclasses by
subsumption. After normalization and vectorization of the data, bipartite
(subject-feature) and unipartite (subject-subject) network graphs were created
using NetworkX and visualized in Gephi. Degree and weighted degree were
calculated for each node. Graphs were partitioned into communities using the
modularity score. Feature maps visualized differences in features by community.
Network analysis of the unipartite graph yielded a higher modularity score
(0.49) than the bipartite graph (0.25). The bipartite network was partitioned into
five communities which were named fatigue, behavioral, hypertonia/weakness,
abnormal gait/sphincter, and sensory, based on feature characteristics. The
unipartite network was partitioned into five communities which were named
fatigue, pain, cognitive, sensory, and gait/weakness/hypertonia based on
features. Although we did not identify pure subtypes (e.g., pure motor, pure
sensory, etc.) in this cohort of multiple sclerosis subjects, we demonstrated that
network analysis could partition these subjects into different subtype
communities. Larger datasets and additional partitioning algorithms are needed
to confirm these findings and elucidate their significance. This study
contributes to the literature investigating subtypes of multiple sclerosis by
combining feature reduction by subsumption with network analysis.

KEYWORDS

multiple sclerosis, phenotype, network analysis, communities, modularity, subtype,

feature reduction, subsumption

Introduction

Multiple sclerosis (MS) is one of several immune-mediated demyelinating diseases of the

central nervous system that includes transverse myelitis, optic neuritis, neuromyelitis optical,

acute disseminated encephalomyelitis, and acute hemorrhagic leukoencephalopathy (1). MS

has traditionally been divided into four clinical course phenotypes that include relapsing-

remitting multiple sclerosis (RRMS), primary progressive multiple sclerosis (PPMS),

secondary progressive multiple sclerosis (SPMS), and relapsing progressive multiple sclerosis
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98

http://crossmark.crossref.org/dialog/?doi=10.3389/fdgth.2022.1063264&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fdgth.2022.1063264
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdgth.2022.1063264/full
https://www.frontiersin.org/articles/10.3389/fdgth.2022.1063264/full
https://www.frontiersin.org/articles/10.3389/fdgth.2022.1063264/full
https://www.frontiersin.org/journals/digital-health
https://doi.org/10.3389/fdgth.2022.1063264
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Howlett-Prieto et al. 10.3389/fdgth.2022.1063264
(RPMS) (2). In 2013, the criteria for MS phenotypes were revised to

remove RPMS (3–6). More recently, MS has been additionally

classified by activity (active or inactive) or phase (relapsing or

progressive) (4, 5, 7, 8). Another way of subtyping neurologic

diseases is by deep phenotyping where signs and symptoms are

recorded in detail and are mapped to a restricted terminology (9–

13). Patients can then be subtyped according to patterns of signs

and symptoms.

MS may have a variable onset with the diverse symptoms of

optic neuritis, facial pain, hemifacial spasm, Lhermitte’s sign,

transverse myelitis, limb weakness, limb numbness, urinary

retention, dysmetria, intention tremor, incoordination,

dysarthria, hearing loss, color blindness, gait disturbance, and

diplopia (14). MS variably involves the optic nerve (painful

loss of vision), the spinal cord (sphincter dysfunction,

monoparesis, hemiparesis, hypoesthesia, paresthesia), the

brainstem and cerebellum (diplopia, oscillopsia, vertigo, ataxia,

tremor, facial weakness), or the cerebral hemispheres

(hemiparesis, hemihypoesthesia) (8). Subtypes of multiple

sclerosis based on clinical presentation (signs and symptoms)

are recognized (15–18) including tremor (19), ataxia (20),

visual disturbances (21, 22), sensory symptoms (numbness

and paresthesias) (23–26), pyramidal tract findings (weakness,

hyperreflexia, spasticity, and hypertonia) (27–29), or spinal

cord findings (paraparesis, sphincter dysfunction, and sensory

levels) (30, 31). Other MS subjects show cognitive impairment

(32, 33), dysarthria (34), dysautonomia (35), depression (36),

imbalance (37), paroxysmal symtoms (38), or fatigue (39, 40).

The Kurtzke Functional System Score (FSS) (41) is useful in

rating sensory, visual, sphincter, mental, pyramidal, cerebellar,

and brainstem dysfunction in MS. However, there is a limited

ability to categorize MS subjects based on their predominant

clinical presentation. A network analysis of subjects with MS

based on their signs and symptoms could assist in identifying

clinically significant subtypes of MS.

This paper is organized as follows. We first review prior work

on finding subtypes of multiple sclerosis based on signs and

symptoms. We then describe our proposed approach to finding

subtypes of multiple sclerosis based on deep phenotyping,

subsumption of phenotype classes into superclasses, and network

analysis. In the Methods section, we describe how deep

phenotyping was performed, how the features were collapsed into

superclasses, and how the networks were created and partitioned.

In the Results section, we report the partitioning of the networks

into five communities of MS subjects. In the Discussion section,

we discuss the identified communities as possible clinical subtypes

of MS. Finally, we discuss the limitations of network analysis as a

method of finding MS subtypes.

Prior work

Although network analysis has not been used to identify

clinical subtypes of MS, other work is relevant to this
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undertaking (Table 1). Depression and anxiety have been

reported in MS in about 27% of patients, but no specific

phenotype has been described (42, 43, 62). Zhang et al. (63)

examined 13 common symptoms of MS in 1985 MS subjects

and found that depression, pain, and walking difficulties were

the strongest predictors of impaired quality of life. Cognitive

impairment is frequent in MS, possibly affecting 40–80% of

subjects (33, 45–50). Pure cognitive subtypes (cognitive

impairment without other major neurological signs) have

been described in a small minority of MS patients (47, 50). In

their review of functional connectivity based on functional

MRI, Tahedl et al. (64) suggested that cognitive impairment

in MS was associated with disruptions of the default-mode

network of the brain, whereas sensory-motor deficits were

associated with disruptions of the sensory-motor networks of

the brain. Although fatigue is frequent in MS, specific

subtypes have not been described (51).

Although uncommon, spinal MS (leg weakness, sphincter

dysfunction, sensory levels, spasticity, and hyperreflexia), as

well as opticospinal MS (combining spinal MS with optic

nerve involvement), are recognized forms of MS (65–67).

Opticospinal MS must be differentiated from neuromyelitis

optica, a similar but etiologically different disease from MS.

Cree et al. (60) have suggested that spinal MS and

opticospinal MS may be more common in Blacks than

Whites. Nociti et al. (30) reported spinal MS in 2.3% of their

cohort of subjects.

Cerebellar and brainstem phenotypes of MS have been

reported (44) with prominent ataxia and cranial nerve deficits.

Naismith et al. (17) compared 79 Black subjects with MS to

80 White subjects (17) and found more tremor, ataxia, and

need for assistive walking devices in the Black MS subjects.

They speculated that the optico-spinal, cognitive, and ataxic-

spastic phenotypes are more common in Black than White

subjects. In a small study, Ayache et al. (19) found tremor in

56% of their cohort of MS subjects but did not identify a

specific phenotype.

Sensory symptoms are common in MS, including pain,

hypesthesias hyperesthesias, band-like sensations, and

paresthesias (26, 56); however, no specific sensory phenotype

has been described. Optic neuritis is common in MS but

generally recovers fully or partially. Gerbis et al. (61) describe

5 subjects from a cohort of 550 MS who had severe unilateral

optic neuritis without recovery, and suggest that these cases

may represent a subtype of MS subjects.

Functional Systems Scores (FSS) are a good candidate for

identifying clinical subtypes of MS. It is widely used in MS

clinical trials and is divided into seven domains (pyramidal,

cerebellar, brainstem, sensory, bowel and bladder, visual, and

cerebral) (68). An asymmetric distribution of scores in these

domains could identify subtypes of MS. Yang et al. (69) used

a combination of a convolutional neural network and a rule-

based natural language algorithm to accurately predict
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TABLE 1 Summarization of prior work relevant to subtyping multiple sclerosis by phenotypic feature.

Author Domain N Cite Findings Limitations

Donnchadha Behavioral 33 (42) 27% had anxiety Small N, no correlations with
other features

Koch Behavior 1,376 (43) 27% depressed, stable over time No correlation with EDSS

Ganesvaran Brainstem or
cerebellum

20 (44) 80% of 20 MS patients with psoriasis 80% had brainstem or cerebellar
lesions

Small N

Naismith Cerebellar and gait 166 (17) Compared to Whites, Blacks had more gait and cerebellar deficits Small N

Rocca Cognitive 227 (45) Loss of connectivity predicts memory and attention deficits Correlation with cognitive
impairment

Hancock Cognitive 1,281 (46) Cognitive domain impairment: 48% intact, 22% 1-domain, 24% 2-
domain, 15% multi-domain cognitive deficits

Only examined cognitive
impairment

De Meo Cognitive 1,212 (33) 5 cognitive subtypes identified Only 19.5% completely normal Only examined cognitive
impairment

Staff Cognitive 23 (47) Mayo Clinic reported 23 MS patients with isolated cognitive
impairment

Population not reported

Leavitt Cognitive 128 (48) 43.7% cognitively impaired Memory, Processing speed, or both Convenience sample

Cabeça Cognitive 35 (49) Discriminant analysis found reaction time best discriminator Study did not identify cognitive
subtypes

Zurawski Cognitive 2,302 (50) 2.6% had pure cognitive phenotype Only examined cognition

Beckerman Fatigue 264 (51) 88 with low and 174 with high fatigue physical from mental fatigue
correlated

Did not correlate fatigue with
other features

Bove FSSa 1,028 (52) Median and range FSS provided No classification by subtype

Kalincik FSSa 14,969 (53) Increased disability with relapse on on pyramidal, cerebellar, sphincter
FSS

Not classified by phenotype

Stewart FSSa 19,504 (54) Pyramidal, cerebellar, sphincter add to disability with relapse Not classified by phenotype

Scott FSSa 1,173 (55) On followup, most worsening on pyramidal, sensory, cerebellar, and
sphincter FSS scales

Not classified by phenotype

Revil Pain 112 (56) 40 pain free with normal sensation 44 central pain with
hyposensitivity

Only examined pain

Tsantes Relapse phenotype 199 (57) 47% of relapses recurred at initial optic, spinal, brainstem-cerebellum
sites

Small N

Mowry Relapse phenotype 195 (58) Relapse more likely to recur at optic nerve spinal cord, or brainstem-
cerebellum

Small N

Deen Relapse phenotype 190 (59) Relapse recurred at optic nerve brainstem-cerebellum, spinal cord Small N

Nociti Spinal cord 563 (30) 13/563 had spinal MS (2.3%) Retrospective study

Sanders Sensory 127 (26) 84% had paresthesias Small N

Cree Spinal cord 1490 (60) Compared to White, Black MS subjects more corticospinal and
transverse myelitis

Ayache Tremor 32 (19) 56% with tremor Not population-based

Gerbis Vision 550 (61) 5 of 550 patients had severe optic neuritis that never recovered Only examined optic neuritis

Author is the first author, N is the number of subjects in the study, cite is the reference number. Studies are sorted by domain.
aFunctional system score.
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Kurtzke Functional System Scores (FSS) from the EHR notes of

4906 multiple sclerosis subjects. SUMMIT (Serially Unified

Multicenter Multiple Sclerosis Investigation) is an

international effort to create a repository of deeply
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phenotyped MS subjects utilizing standardized neurological

examinations and the Kurtzke FSS (12). However, no subtypes

based on FSS have been reported. Similarly, Dahlke et al. (70)

examined the clinical course in 34,987 MS patients who had
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entered into clinical trials (31,863 with relapsing-remitting MS,

1873 with secondarily progressive MS, and 986 with primary

progressive MS) but did not characterize MS subjects further

as to clinical phenotype. Other ongoing longitudinal studies

have been undertaken to characterize MS clinical phenotypes

(16, 71) but they have not yet yielded new subtypes.

The increment in neurological deficits after MS relapses has

been investigated (53–55, 57–59). Increasing disability in some

subjects has been linked to the accumulation of pyramidal,

sensory, cerebellar, and sphincter abnormalities (53–55).

Furthermore, in some subjects relapses tend to occur at the

same anatomical site as previous attack, and this is especially

so for the optic nerve, spinal cord, brainstem, and cerebellum

sites (57–59), suggesting that neurological signs and

symptoms could accumulate at those affected areas. If relapses

recur at sites of the previous attacks, this could foster

subtypes of MS based on repeated relapses at the same

anatomic site.

A network (also called a graph) is an assembly of nodes that

are interconnected by edges (52). When all connected nodes

come from the same class, the graph is unipartite. When each

node is connected to a node of a second class, the graph is

bipartite (72). Networks can be partitioned into communities

of like nodes (also called clusters) (73, 74). Barabási (75)

defines a community as “a locally dense connected subgraph

in a network (page 325),” and that “…we expect nodes that

belong to a community to have a higher probability of linking

to other members of that community than to nodes that do

not belong to the same community….” Some of the

partitioning algorithms depend upon the maximization of

modularity which measures how well each community is

separated from other communities.

Network analysis has proven useful in visualizing complex

relationships between the phenotypes, genes, proteins, and

metabolic pathways that underlie human diseases (76–81).

Network analysis has provided important insights in into

brain connectivity, and neuroimaging (82, 83). Network

analysis has identified potential genetic causes of autism (84)

and has clustered autism subjects by phenotype (85, 86).

Network analysis has been used to identify genes that govern

MS susceptibility (87–89), proteins implicated in the etiology

of MS (90), as well as brain areas that undergo disconnection

in MS (45, 91–93).
Proposed approach

The review of prior work suggested that there is a gap in

identifying subtypes of MS based on signs and symptoms.

Our goal was to identify clinical subtypes of RRMS using

network analysis after feature reduction. We found 244

unique neurologic signs and symptoms in a cohort of 113

subjects with relapsing-remitting MS, mapped them to classes
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in a neuro-ontology, and then collapsed the classes into

sixteen superclasses (Figures 1A,B). For each subject, the

count of signs and symptoms in each superclass was

normalized. A bipartite graph was created using NetworkX,

with each subject node connected to one of sixteen superclass

nodes by an edge proportional to the normalized count of

signs and symptoms. Distances between subjects were

calculated by the cosine similarity of their signs and

symptoms. A unipartite graph was created in NetworkX

where the nodes were subjects, and the edges were inter-

subject distances. The unipartite and bipartite graphs were

visualized in Gephi and partitioned into communities based

on the Louvain algorithm (94). Modularity scores were used

to evaluate the quality of the partitions. We used feature maps

to characterize the communities. This approach could lead to

classifying MS patients by clinical phenotype and supplement

the phenotyping of MS subjects by disease course.
Methods

Subjects

One hundred and twenty MS subjects followed at the

University of Illinois-Neuroscience Center were enrolled in

the University of Illinois at Chicago (UIC) Neuroimmunology

Biobank between August 2018 and March 2020 (mean age

42:7+ 12:8 years, 73% female, 27% male, 58% Black, 42%

White). The Biobank is approved by the Institutional Review

Board (IRB) of the University of Illinois College of Medicine.

All subjects provided informed written consent at enrollment.

Subjects were between 18-80 years old and had a diagnosis of

RRMS based on the 2017 McDonald criteria (95). Subjects

had been recruited for a study of blood biomarkers in MS

where RRMS was an inclusion criterion and progressive MS

was an exclusion criterion. Seven subjects with normal

neurological examinations were excluded from the analysis

leaving a final study sample of 113 subjects.
Neuro-phenotyping

The neurological progress notes from the electronic health

record of all subjects were reviewed, and neurological signs

and symptoms were recorded (11). The cumulative signs and

symptoms (both active and resolved) of each subject were

recorded and mapped to concepts in a neuro-ontology with

1,600 possible concepts (96). Subjects had 13:2+ 9:2 signs

and symptoms (mean + standard deviation). The 113

subjects had 1,453 total signs and symptoms (244 unique

signs and symptoms). Subsumption (97) was used to collapse

the signs and symptoms (Figure 1A) into 16 superclasses

(Figure 1B) that included behavior, cognitive, cranial nerve,
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FIGURE 1

(A) Word cloud representing the frequency of signs and symptoms in the entire MS cohort before subsumption. Word size is proportional to
frequency. There were 244 unique signs and symptoms. The most frequent signs and symptoms were leg weakness, impaired balance, fatigue,
and paresthesias. Supporting files available on the project’s GitHub site. (B) Word cloud representing the frequency of signs and symptoms in the
entire MS cohort after subsumption into 16 superclasses. Word size is proportional to frequency. The largest superclasses are sensory, weakness,
hyperreflexia, and incoordination. Supporting files available on the project GitHub site.
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eye movement, fatigue, gait, hyperreflexia, hypertonia,

incoordination, pain, sensory, speech, sphincter, tremor, vision,

and weakness. The largest superclasses were weakness,

sensory, incoordination, and hyperreflexia. Each subject was

represented as a 17-dimension vector where the first element

of the vector was the case identification label, and the

subsequent sixteen elements were the count for each of the

sixteen superclasses (Figure 2A). Counts were normalized

over the interval [0, 1] using the continuize widget in Orange

3.32.0 (98) (Figure 2B). We chose to normalize counts
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because counts varied significantly between superclasses. For

supporting data, see the project GitHub site.
Network analysis, distance metrics,
feature maps

Network analyses were performed on normalized 113� 17

data arrays (89, 98, 99). NetworkX (100) converted the data

arrays to GraphML files compatible with Gephi. Bipartite
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FIGURE 2

(A) Feature map of the entire cohort of MS patients before normalization. Rows are subjects, and columns are superclasses. Normalized feature
counts in the columns range between 0 to 13 and the color scale is centered on 3 features. Rows and columns are clustered hierarchically with
Ward linkage. Column distances by Pearson correlation coefficient; row distances are Euclidean. (B) Feature map of the entire cohort of MS
patients after normalization. Rows are subjects, and columns are superclasses. Normalized feature counts in the columns range between 0 to 1
and the color scale is centered on 0.3 features. Rows and columns are clustered hierarchically with Ward linkage. Column distances by Pearson
correlation coefficient; row distances are Euclidean.
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networks were visualized in Gephi 0.9.7 using a variety of

layouts, with the final analysis using the Force Atlas layout

with a repulsion force of 10,000. Visual inspection showed

Force Atlas to have the optimal spacing of nodes and clarity

of visualization. The bipartite network contained nodes of

subjects and features (signs and symptoms) as nodes with a

magnitude of the edges connecting subjects to features equal
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to the normalized feature score for each subject. In the

bipartite networks, there were no direct subject-subject or

feature-feature edges. Node sizes were proportional to the

average weighted degree of each node. Communities were

named based on their predominant features. Nodes were

colored by their community membership, and colors were

used consistently across graphs based on feature
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FIGURE 3

(A) Bipartite graph of normalized features. Labeled nodes are
features; unlabeled nodes are subjects. Weighted connections
(edges) are between features and subjects. (B) Feature map of the
five communities identified by partitioning the bipartite graph with
unnormalized features. Modularity analysis of the bipartite graph of
normalized data showed five communities. Community 1 was
predominantly fatigue, Community 2 was predominantly

Howlett-Prieto et al. 10.3389/fdgth.2022.1063264
predominance. Edge widths were proportional to edge weight

for the bipartite graphs. The unipartite networks were based

on distances between subjects derived from the feature vectors

for each subject. Distances were calculated in Orange using

the distances widget for Pearson, Euclidean, and cosine

distances. Visual inspection of the network graphs showed

that the cosine-based graphs were superior to those based on

the Pearson or Euclidean distances. Only the cosine distances

were retained for further analysis (101). For the unipartite

graphs, all nodes were subjects, and the edges were subject

similarity based on the cosine distances. Node size was

proportional to the degree (number of edges for each node).

The edge width was fixed. Gephi was used to partition the

unipartite and bipartite networks into communities based on

the Louvain algorithm (94). The Louvain algorithm

maximizes modularity (a measure of community separation).

Modularity rises from 0:0 as the number of intra-community

edges increases relative to inter-community edges. Larger

values of modularity reflect a more robust separation of the

communities. The degree, average degree, and modularity

class for each node were calculated by Gephi. Modularity

resolution was set to 1.0 for the unipartite graph and 1.15 for

the bipartite graph. For the unipartite graph, two subjects

were excluded from the final analysis as they formed

communities with only one node. For the normalized

unipartite graph, a cosine distance threshold of 0.4 was used

to exclude weak edges. Feature means for each community

were calculated by SPSS 28 (IBM, Chicago, IL). Differences

between community feature means were tested by one-way

ANOVA (SPSS). Feature maps were created with the heat

map widget from Orange. The word cloud was created with

the word cloud widget from Orange. The concordance for set

membership between communities was measured by the

Jaccard Index (102) where J is the Jaccard Index, and A and

B are the set memberships of two communities:

J ¼ A> B
A< B

:

behavioral, Community 3 was weakness and hypertonia,
Community 4 was gait and sphincter, and Community 5 was
predominantly sensory features indicating features that differed
significantly by the community (One-way ANOVA, p , 0:05, df ¼ 4).
Results

The largest superclasses of signs and symptoms in this

cohort of MS subjects were sensory, weakness, incoordination,

and hyperreflexia (Figure 1B). To prevent the superclasses of

weakness and sensory from dominating the network analysis,

the signs and symptoms were normalized on the interval

[0, 1] before network analysis and partitioning. Visual

inspection of the feature map of the MS cohort suggested

some clustering of subjects on signs and symptoms

(Figures 2A,B) and that a network analysis to identify

distinct communities would be fruitful.
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The bipartite graph was partitioned into five communities

(Figure 3A) with a modularity score of 0.25. Communities

were named and color-coded by the one or two features with

the highest community means as fatigue (n ¼ 23), behavior

(n ¼ 10), hypertonia/weakness (n ¼ 33), gait/sphincter

(n ¼ 22), and sensory (n ¼ 25) (Figure 3B). ANOVA showed

significant differences between communities for behavior

(p , :001), cranial nerve (p ¼ :008), eye movements

(p , :001), fatigue (p , :001), gait (p ¼ :029), hyperreflexia
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FIGURE 4

(A) Unipartite graph based on normalized features. Nodes are
subjects, and node size is proportional to the number of edges.
The largest communities are gait/weakness/hypertonia (red,
n ¼ 38) and fatigue (orange, n ¼ 32). Note the small cognitive
community (pink, n ¼ 3). (B) Feature map of the five communities
identified by partitioning the unipartite network graph based on
normalized features. Asterisks indicate features that differed
significantly by the community (One-way ANOVA, p , 0:05, df ¼ 4).
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(p ¼ :031), hypertonia (p , :001), incoordination (p ¼ :002),

sensory (p ¼ :018), sphincter (p ¼ :021), tremor (p ¼ :006),

and weakness (p ¼ :001).

The unipartite graph was partitioned into five communities

(Figure 4A) with a modularity score of 0.49. Communities were

named by their predominant features: pain, fatigue, cognitive,

sensory, and weakness/gait/hypertonia (Figure 4B). ANOVA

analysis showed significant differences between communities

for behavior (p ¼ :033), cognitive (p , :001), eye movements
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(p ¼ :047), fatigue (p , :001), gait (p , :001), hyperreflexia

(p ¼ :014), hypertonia (p , :001), incoordination (p , :001),

pain (p , :001), sensory (p , :001), and weakness (p ¼ :037).

Although partitioning the bipartite and unipartite graphs

produced somewhat different communities, similarities between

community membership and graphs were notable. We used the

Jaccard Index (a set similarity measure) to assess the similarity

between communities. Membership for the fatigue (J ¼ 0:72)

and sensory (J ¼ 0:56) communities was similar for the

unipartite and bipartite graphs. The unipartite graph

community gait/weakness/hypertonia showed similarity to the

bipartite graph communities hypertonia/weakness (J ¼ 0:36)

and gait/sphincter (J ¼ 0:36). A complete table of Jaccard

Index values is available on the project’s GitHub site.
Discussion

Multiple sclerosis can present as sensory loss, weakness,

incoordination, sphincter disturbance, diplopia, visual loss,

cognitive impairment, fatigue, or even pain. We have used

network analysis to identify distinct clinical subtypes of multiple

sclerosis based on signs and symptoms. We first mapped the

signs and symptoms of a cohort of multiple sclerosis subjects to

concepts from neuro-ontology. We then created a bipartite

graph, where subjects and their signs and symptoms were nodes

in a graph (Figure 3A). In a bipartite graph, subjects are

connected to signs and symptoms and not to other subjects.

When the signs and symptoms of a subject are converted to

vectors, distances between subjects can be calculated so that

subject nodes can be connected to other subjects to form a

unipartite graph (Figure 4A). Network analysis allowed us to

identify communities of multiple sclerosis subjects who shared

signs and symptoms in common. Partitioning of the unipartite

and bipartite graphs based on modularity score identified

communities with strong fatigue and sensory feature

predominance. Both partitions had communities characterized

by weakness combined with hypertonia or gait findings.

Partitioning of the bipartite graph produced a small community

with behavioral changes (depression, anxiety, etc.) and a gait/

sphincter community. Partitioning of the unipartite graph

produced a small community with cognitive findings and a

medium-sized community with pain (Figure 4B).

Partitions of the unipartite graph yielded higher modularity

scores than the bipartite graph, suggesting that the partitioning of

the unipartite graph was more robust. The named communities

for Figure 4B (pain, fatigue, cognitive, sensory, and gait/

weakness/hypertonia) deserve special consideration as potentially

identifiable multiple sclerosis subtypes. We found a strong

overlap between the fatigue and sensory communities across both

graphs as measured by the Jaccard Index. Significant overlap

between the gait/weakness/hypertonia community from the

unipartite graph with the gait/sphincter and hypertonia/
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weakness communities from the bipartite graph was noted.

Although the partitioning of networks based on features suggests

that identifiable MS subtypes may exist, variability across

partitions does not permit a definitive characterization of subtypes.

Although we did not correlate community features with MRI

findings, the communities detected may reflect the anatomic

location of MS lesions (103, 104). Of particular interest is the

tendency for relapses to occur at the sites of previous MS attacks

(57–59). Recurring relapses at the same anatomic site could lead

to increased symptoms in certain domains (e.g., weakness,

incoordination, sphincter, visual, etc.) and make subtypes of MS

more discernible. On the other hand, “pure” subtypes of MS (i.e.,

pure motor, pure sensory, pure cognitive) are uncommon; nearly

all MS patients in our cohort have signs and symptoms in

multiple symptomatic domains (see, for example, Figures 2A,B).

Two strengths of this study should be mentioned. First,

community detection was done by network analysis which

offers an alternative to unsupervised machine learning

algorithms based on cluster analysis (105, 106). Second, we

used subsumption and the hierarchical organization of signs

and symptoms in an ontology to reduce the number of

features used in the analysis (97). The current study

demonstrates that subsumption can successfully group signs

and symptoms of MS subjects into superclasses (Figures 1A,

B). These superclasses can be used to characterize the clinical

features of communities identified by network analysis.

The current study has several limitations. The sample size

was small (N ¼ 113). The small sample size could cause a

selection bias that influenced the communities found by

network analysis. Network analysis of larger sample sizes may

detect more robust communities with a different profile of

predominant features. In particular, we did not identify

communities of MS subjects with predominant vision, cranial

nerve, or incoordination signs and symptoms, although such

communities likely exist (15, 20–22). Another limitation was

that we evaluated only one partitioning algorithm (Louvain).

A limitation of the Louvain algorithm is that it does not

exhaustively examine all possible partitions, so partitioning is

non-deterministic, and partitions may change with each run

(73, 107, 108). Other partitioning algorithms are available and

might yield different results. We used subsumption to reduce

the number of clinical features from 244 to sixteen. Different

subsumption strategies would likely yield different results. We

calculated distances between subjects using the cosine distance

metric; other distance metrics are available and may have

resulted in different results. Although the modularity scores of

the partitions are comparable to those obtained on standard

datasets like the Karate Club (73, 108), they are still modest

(0.25–0.49). Another limitation was that subjects in the study

were diagnosed with the RRMS phenotype. Without further

analysis, our data cannot be extrapolated to other disease

course phenotypes. Our analysis did not consider the race or

sex of the subjects, which could influence clinical subtype (60,
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109, 110). Finally, we partitioned MS subjects based on their

accumulated signs and symptoms. Examining networks based

on signs and symptoms at a single time would be instructive.
Conclusions

MS phenotypes based on the clinical course are well-

established. Clinical subtypes of MS based on clinical

presentation are increasingly recognized. After mapping the

signs and symptoms of a cohort of MS patients to classes in

neuro-ontology and then collapsing these classes into sixteen

superclasses, we used network analysis to identify clinical

subtypes of MS based on signs and symptoms. Feature maps

(Figures 3B, 4B) suggest that identifiable subtypes of MS with

predominant signs and symptoms related to weakness,

sensation, behavior, cognition, pain, and fatigue deserve

further investigation. The clinical subtyping of MS subjects

could supplement phenotyping by disease course. Additional

studies may reveal that MS subtypes correlate with epigenetic,

radiological, immunologic, or protein biomarkers.
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Disease phenotypes are characterized by signs (what a physician observes during the
examination of a patient) and symptoms (the complaints of a patient to a physician).
Large repositories of disease phenotypes are accessible through the Online
Mendelian Inheritance of Man, Human Phenotype Ontology, and Orphadata
initiatives. Many of the diseases in these datasets are neurologic. For each
repository, the phenotype of neurologic disease is represented as a list of concepts
of variable length where the concepts are selected from a restricted ontology.
Visualizations of these concept lists are not provided. We address this limitation by
using subsumption to reduce the number of descriptive features from 2,946 classes
into thirty superclasses. Phenotype feature lists of variable lengths were converted
into fixed-length vectors. Phenotype vectors were aggregated into matrices and
visualized as heat maps that allowed side-by-side disease comparisons. Individual
diseases (representing a row in the matrix) were visualized as word clouds. We
illustrate the utility of this approach by visualizing the neuro-phenotypes of 32
dystonic diseases from Orphadata. Subsumption can collapse phenotype features
into superclasses, phenotype lists can be vectorized, and phenotypes vectors can
be visualized as heat maps and word clouds.

KEYWORDS

neurology, phenotyping, subsumption, ontology, visualization, heat maps, feature reduction

Introduction

The signs and symptoms of a disease characterize its phenotype. In addition to signs (what a

physician observes in a patient) and symptoms (the complaints of a patient), a clinical phenotype

can include the age at the onset of a disease, its mode of onset, its rate of progression, its mode of

inheritance, and its response to treatment. Some researchers include biochemical, radiological,

electrophysiological, and biosensor findings as part of the disease phenotype (1–5). Large

phenotype repositories are available on the internet. The On-Line Mendelian Inheritance in

Man (OMIM) has over 9,500 disease profiles (6) and Orphadata has phenotype profiles of

4,245 rare diseases (7). The Human Phenotype Ontology (HPO) draws phenotype profiles

from Orphadata and OMIM so that some genetic diseases have alternative profiles from each

registry (8,9). All three repositories have sophisticated search engines that retrieve phenotype

features by disease or gene (1). Phenotypic features are recorded as concepts (terms) from

restricted vocabularies such as the Human Phenotype Ontology (20,246 terms) (10), or the

Online Mendelian Inheritance of Man ontology (99,165 terms) (11).
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Neuro-phenotypes

The June 2022 release of Orphadata lists 7,261 rare diseases, with

1,740 classified as rare neurological diseases (https://www.orphadata.

com/linearisation/). Orphadata provides phenotype profiles on 1,184

rare neurologic diseases (https://www.orphadata.com/phenotypes/).

Neuro-phenotyping is the deep phenotyping of neurological disease

(1). We have suggested that most neuro-phenotyping can be done

with a restricted vocabulary of about 1,600 concepts (12). Although

lists of phenotypic features for neurological diagnoses can be retrieved

from Orphadata, OMIM, or HPO, these lists are difficult to visualize.
Visualizations of disease phenotypes have
limitations

OMIM, Orphanet, and HPO yield lists of phenotype features of

variable length, sorted by alphabetical order, feature frequency, or

body system. For example, the Orphadata annotations for Dystonia

Type 13 (DYT13) are:
Very frequent

• stereotypy

• torsion dystonia

• torticollis

Frequent

• limb dystonia

• dystonia

• craniofacial dystonia

• jerky head movements

Occasional

• postural tremor

• action tremor

• focal dystonia

Rare
• Generalized dystonia

• Hoarse voice

Although useful, these lists have limitations. The lists may be long. In

the Orphanet dataset, 25% of the lists are more than 34 features in length.

Many of these lengths are beyond the length of 7+ 2 that is easily

comprehended (13). Side-by-side comparisons of lists are difficult

(Table 1). Lists of signs and symptoms from Orphadata may contain

pathologies (e.g., gliosis, Lewy bodies), radiological findings (e.g.,

abnormal PET FDG), biochemical findings, electrophysiological

findings, and modes of inheritance. Although terms in Orphadata are

from the HPO-controlled vocabulary (20,246 classes) (10), redundancies,

near-synonyms, hypernyms, and hyponyms populate the lists (e.g.,

dysarthria and slow slurred speech; bradykinesia and hypokinesia;

masked facies and hypomimia, etc.) Furthermore, OMIM, Orphadata,

and HPO do not provide native methods for visualization of phenotype.
Prior work

Limited work has been done on visualizing phenotype lists

retrieved from HPO, OMIM, or Orphadata. Xu et al. (14)
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visualized the distances between genetic diseases and their

underlying phenotypes using t-SNE (stochastic neighborhood

embedding) maps. The phenotype features from the OMIM dataset

were used to calculate distances between genetic diseases. The

t-SNE maps are a 2-dimensional representation of the distances

between genetic diseases derived from multi-dimensional data.

Although these t-SNE maps provide instructive information about

the distances between genetic diseases, they do not reveal the

details of the underlying phenotypes. Network analysis and

network graphs have been used to visualize the distances between

diseases based on their phenotype (15–17). However, these

network diagrams do not elucidate the underlying phenotypic

differences between the diseases. Several methods have been

proposed to visualize disease-phenotype relationships, including

radar graphs (18), co-occurrence charts (19), and sunburst

diagrams (20). Cao et al. have developed visualization techniques

called DICON, FacetAtlas, and SolarMap that show promise for

visualizing phenotype features by disease (21–24).

An additional barrier to visualizing neurology phenotype profiles

is the large number of terms in the HPO (N ¼ 20, 390), making the

number of columns in heat maps or tables impractical. A feature

reduction strategy that chunks phenotype features into a more

manageable number of superclasses is needed. For example, Hier

and Pearson (25) have suggested chunking problems in the

electronic health record by body system to increase the readability

of the problem list. Both OMIM and HPO chunk phenotype

features by body system. Orphanet chunks phenotype features by

feature frequency (common to rare). Yauy et al. (26) have chunked

16,600 phenotypic traits into 390 interacting symptom groups.

However, the chunking of phenotype features by body system is

unlikely to yield useful visualizations because dissimilar phenotypic

features are grouped together. For example, chunking concepts by

a nervous system category would put the unlike concepts of

hypertonia, hypotonia, hyperreflexia, and hyporeflexia into the

same category, a grouping of little diagnostic value. Although the

chunking of phenotype concepts by body system or other schemes

helps organize phenotype features, it does not reduce the number

of features. Since the HPO is a hierarchical containment ontology,

we have suggested that subsumption can create superclasses of

phenotypic features and reduce the number of features (27,28).
Proposed approach and use case

We propose to improve the visualization of neurology

phenotypes in the Orphdata dataset utilizing a combination of

subsumption, vectorization, heat maps, and word clouds.

As proof of concept, we illustrate the utility of this approach with

a use case that visualizes the phenotype lists of 32 dystonic diseases

from Orphadata. In 1911 Oppenheim described the disease

dystonia musculorum deformans and coined the term dystonia

(29). Albanese et al. (30) defined dystonia as “a rare movement

disorder characterized by sustained or intermittent muscle

contractions causing abnormal, often repetitive movements,

postures, or both.” Since the description of dystonia by

Oppenheim, many forms of dystonia have been described.

Dystonia is classified along two axes: clinical and etiologic (30).
frontiersin.org
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TABLE 1 The upper half of the Table shows lists of signs and symptoms for each dystonic disease from Orphadata.

Dystonias ! DYT16 DYT6 DYT27 DYT4

List of classes# Dystonia 16 Dystonia 6 Dystonia 27 Dystonia 4

Limb dystonia Dystonia Oral dystonia Blepharospasm

Torticollis Generalized dystonia Laryngeal dystonia Dementia

Dysarthria Dysarthria Action tremor Dysphagia

Parkinsonism Torticollis Writer’s cramp Dysphonia

Hyperreflexia Blepharospasm Limb dystonia Generalized dystonia

Dysphonia Laryngeal dystonia Axial dystonia Laryngeal dystonia

Dysphagia Craniofacial dystonia Focal dystonia Abnl tongue movement

Bradykinesia Lingual dystonia Postural tremor Open mouth

Postural tremor Limb dystonia Torticollis

Orofacial dyskinesia Gait disturbance

Unsteady gait Eunuchoid habitus

Pyramidal sign Sunken cheeks

Lower limb pain Involuntary movements

Motor delay Kyphoscoliosis

Intellectual disability Dysdiadochokinesis

Respiratory distress

Postural Tremor

Vector of superclasses # Subsumption and vectorization # Subsumption and vectorization # Subsumption and vectorization # Subsumption and vectorization #

Ataxia 0 0 0 1

Cognitive 1 0 0 1

Cranial nerve 1 0 0 2

Gait 1 0 0 1

Hyperkinesia 3 8 7 6

Hyperreflexia 1 0 0 0

Hypokinesia 2 0 0 0

Miscellaneous 2 0 0 4

Pain 1 0 0 0

Speech 2 1 0 1

Tremor 1 0 1 1

In the lower half of the Table, lists of classes have been converted to vectors of superclasses using subsumption governed by a lookup table. Counts are the number of times

each class occurs in the superclass and is the input for the row values for the heat maps. Columns from the top half are variable length lists; columns from the bottom half are

fixed length vectors.

Hier et al. 10.3389/fdgth.2023.1064936
Clinical classification is by age at onset, body distribution, the temporal

pattern of symptoms, and associated phenotype features. Etiologic

classification is by genetic versus non-genetic causation. Dystonia is

one of the hyperkinetic movement disorders which also encompasses

chorea, athetosis, hemiballismus, tics, tremors, stereotypy, myoclonus,

and dyskinesia (31). Although all diseases labeled dystonia have a

core symptom of dystonia, there is considerable variability in the

clinical presentation (signs and symptoms) of the dystonias

(29,32,33), making it an excellent use case for phenotype

visualization. Furthermore, better characterization and classification

of the dystonias is a major initiative of the European Reference

Network for Rare Diseases, and Orphadata (34,35).
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We downloaded the most recent Orphadata file with phenotype

annotations of 4,254 rare diseases, including 1,184 rare neurological

diseases. We identified 2,946 unique HPO terms used to characterize

the signs and symptoms of rare neurological diseases and created a

lookup table to map each term to one of 30 superclasses based on

subsumption and expert opinion. The lists of phenotypic features for

32 dystonic diseases from Orphadata were converted into 31-element

vectors, with the first element of the vector being the disease name

and the next 30 elements being the count of features (signs and

symptoms) for each superclass. The full 32-row � 31-column matrix

of the dystonic diseases can be visualized as a feature map (Figure 2);

individual rows can be visualized as word clouds (Figure 3B).
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Methods

Phenotype feature lists by disease (data
acquisition)

An XML file with 4,254 rare disease disorders and 112,256

phenotypic annotations was downloaded (June 2022 release of

Orphadata: (https://www.orphadata.com/phenotypes/). Phenotype

features are coded using the HPO ontology. Orphadata defines a

rare disease as affecting less than 1 in 2,000 individuals in Europe

and classifies 1,184 of the diseases as rare neurological diseases. We

used python to parse the XML file and create a variable-length list

of phenotypic features for each disease. We retained phenotypic

annotations that were clinical signs or symptoms and filtered out

phenotypic annotations related to disease course (progressive,

static, etc.), mode of inheritance (recessive, dominant, etc.),

biochemical abnormality, radiological abnormality, pathological

abnormality, or electrophysiological abnormality. Based on

published literature, Orphadata classifies the frequency of each

phenotypic feature from rare (1–4%) to always present (100%). We

retained phenotypic features classified as occasional or higher

(5–100%).
Lookup table to convert phenotype classes
to superclasses (subsumption)

The HPO (10) is organized as a hierarchical subsumption

ontology so that more-specific concepts in the ontology are

subsumed by more general concepts (28). We identified 2,946

unique concepts that Orphadata used to phenotype neurological

diseases. We collapsed these concepts into 30 superclasses using

subsumption and domain expert opinion. Example class

memberships and class counts are shown for each superclass below.

1. alertness (53 terms) delirium, drowsy, somnolence

2. ataxia (62 terms) asynergia, clumsiness, dystaxia

3. atrophy (69 terms) muscle atrophy, atrophy, limb fasciculations

4. behavior (238 terms) apathy, anxiety, delusions

5. cognitive (202 terms) agnosia, apraxia, forgetfulness

6. cranial nerve (203 terms) ageusia, hyperacusis, facial diplegia

7. dysautonomia (35 terms) hypohidrosis, orthostatic syncope,

dysautonomia

8. eye movements (272 terms) upgaze palsy, nystagmus, hypometric

saccades

9. fatigue (26 terms) muscle fatigue, fatigable weakness, fatigue

10. gait (110 terms) ataxic gait, falls, unsteady gait

11. head (263 terms) microcephaly, macrocephaly, increased head

size

12. hyperkinesia (157 terms) dyskinesia, dystonia, hyperkinesia

13. hyperreflexia (58 terms) increased reflexes, clonus, hyperreflexia

14. hypertonia (58 terms) increased muscle tone, rigidity, spasticity

15. hypokinesia (66 terms) bradykinesia, akinesia, hypomimia

16. hyporeflexia (43 terms) areflexia, hyporeflexia, absent ankle

reflex

17. hypotonia (19 terms) decreased tone, muscle flaccidity, limb

hypotonia
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18. other muscle (119 terms) myokymia, muscle hypertrophy,

myotonia

19. neck (48 terms) stiff neck, neck rigidity, meningismus

20. pain (145 terms) pain, arm pain, allodynia

21. seizure (358 terms) seizure, tonic-clonic seizure, febrile seizure

22. sensory (192 terms) hyperesthesia, dysesthesia, hypesthesia

23. skin (194 terms) cafe au lait spots, petechiae, rash

24. sleep (48 terms) cataplexy, narcolepsy, hypersomnia

25. speech_language (116 terms) dysarthria, aphasia, echolalia

26. sphincter (67 terms) urinary incontinence, constipation,

enuresis

27. tremor (48 terms) tremor, resting tremor, action tremor

28. vision (450 terms) achromatopsia, scotoma, optic atrophy

29. weakness (159 terms) proximal weakness, foot drop, triceps

weakness

30. miscellaneous (618 terms) nausea, vomiting, bradycardia
We used python to assign each phenotypic feature (sign or

symptom) to one of the thirty superclasses based on the lookup

table (see Table 1 for an illustration of how individual phenotype

features were mapped to superclasses). The lookup table is

available in the Supplementary Materials.
Vectorization (conversion of phenotype lists
to phenotype vectors)

Variable-length lists of phenotypic features were converted into

vectors of fixed length 31 elements. The first element of the list

was the disease label, and the following 30 elements were the

counts of features in each of the 30 superclasses based on the

lookup table. When the phenotype is represented as a vector,

phenotypes can be compared by distance metrics. Furthermore, the

magnitude of each element in the phenotype vector carries

additional information that allows comparisons between diseases.

For example, one disease with hyperkinetic features dystonia,

chorea, and athetosis would have a hyperkinesia superclass value of

n ¼ 3, whereas a disease with only dystonia would have a

hyperkinesia superclass value of n ¼ 1. Such weightings could be

useful in distinguishing between phenotypes of similar diseases.
Visualization (creation of heat maps and
word clouds

Heat maps and word clouds were based on the phenotype vectors

generated by python. Heat maps were created using the heat map

widget from Orange (36). The score mapped for each superclass

was the count of the phenotype features subsumed by that class.

When a superclass had no features assigned to it, that superclass

was dropped from the heat map. Word clouds were produced

using the word cloud widget from Orange. Word size in the word

cloud reflected the frequency of phenotypic features for a group of

diseases (Figure 1B) or a single disease (Figure 3B).
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FIGURE 1

(A) To characterize the 32 dystonic diseases, 528 total concepts and 252 unique concepts were used. The most frequent concepts used were dystonia,
bradykinesia, generalized dystonia, dysarthria, and focal dystonia. (B) After feature reduction by subsumption, the number of superclasses needed to
characterize dystonia diseases was reduced to nineteen. The largest superclass is hyperkinesia which encompasses dystonia, generalized dystonia, focal
dystonia, blepharospasm, craniofacial dystonia, and others.
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Results

As our use case, we examined the phenotype profiles of 32

disease variants of dystonia in Orphadata. Phenotype profiles were

lists of features (see Table 1 for examples of DYT4, DYT6, DYT16,

and DYT27). Feature lists ranged from 5 to 48 elements, with a

mean of 18.4 features +10.5. The 252 unique features in the

phenotype lists were reduced by subsumption into one of the 19

available 30 superclasses (Table 1 and Figure 1A,B). This allowed
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visualization of the entire dystonia disease set of 32 variants as a

heat map (Figure 2). This heat map allows an easy distinction of

pure dystonia (e.g., DYT25 and DYT26) from dystonias with

sensory loss (e.g., autosomal dominant dopa-responsive dystonia),

cognitive impairment (e.g., DYT4) and hypokinesia (e.g., adult-

onset dystonia-parkinsonism). Individual rows in the heat map

(Figure 3A can be further visualized with word clouds which

emphasize phenotypic differences between the dystonia variants

(see Figure 3B for word clouds of DYT4, DY6, DYT16, and DYT 27.)
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FIGURE 2

Feature map of 32 dystonias from Orphadata. Each row is a different variant of dystonia. Each column is one of 19 phenotype superclasses. Counts in columns
range from 0 to 8. The color scale is centered at 1. Rows and columns are clustered by hierarchical clustering with Ward linkage. Distances between columns
are by Pearson correlation coefficient. Distances between rows are by Euclidean distance. Hyperkinesia is the most frequent feature, followed by tremor,
behavior, hypokinesia, speech_language, and miscellaneous (See word cloud in Figure 1B). Data underlying this table is available in the Supplementary
Materials.
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Discussion

Rich and detailed information on the phenotypes of neurological

diseases is held in online repositories such as OMIM, HPO, and

Orphadata. Detailed phenotypic data is available for download and

can be used to gain insights into the inter-relationships between

genes, disease, and phenotypes. Nonetheless, the visualization of

the phenotypes retrieved as lists remains problematic. We

identified several limitations to the visualization of disease

phenotypes that included:

1. Phenotype feature lists are long.

2. Too many of the phenotype features are near synonyms,

hyponyms, or hypernyms.

3. The number of unique features is large.
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4. Side-by-side comparisons of phenotypes are difficult.

5. Phenotype lists of signs and symptoms are co-mingled with

radiological, pathological, biochemical, and electrophysiological

findings.

To address these limitations, we proposed restricting our

attention to visualizing the phenotypes of rare neurological diseases

in Orphadata (N ¼ 1, 184). We mapped each of the 4,505 unique

features used to describe signs and symptoms in Orphadata into

one of 30 superclasses (see list in the Methods section). This

allowed us to convert phenotype lists of variable length to vectors

of fixed length (31 elements), in which the first element of the

vector was the disease label and the next 30 elements were the

count of features for each of the 30 superclasses. This process of

converting a list to a vector is illustrated in Table 1 for DYT4,
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FIGURE 3

(A) Heat map of four selected cases of dystonia. Columns are feature
superclasses, and rows are diseases. heat maps and word clouds are
based on Table 1. Each row in the heat map represents a column of
signs and symptoms from Table 1. Feature scores range from 0 to 8,
with the color scale centered at 1. Word cloud visualizations of each
row are below. Compare to Table 1 for comprehensibility. (B) Word
clouds for the four forms of dystonia represented in the heat maps
above and Table 1. Word size reflects the feature count in each
superclass. DYT6 and DYT27 are pure dystonia, whereas DYT4 and
DYT16 have other non-dystonic features. Compare to Table 1 for
comprehensibility. Underlying data available in Supplementary Materials.
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DYT6, DYT16, and DYT27. Only 11 of the 30 superclasses were

needed to represent these four dystonias. Once phenotype lists are

converted to vectors, a group of diseases can be represented as a

matrix. For example, 32 dystonic diseases from Orphadata can be

converted to a matrix with 32 rows (each row a disease) and 20

columns (each column a superclass of phenotypic features plus one

column for the disease label) and then visualized as a heat map

(Figure 2). For easy readability, individual rows (diseases) in the

heat maps can be converted to word clouds to visualize better the

phenotype (Figure 3B).

We have addressed limitation (1) (long feature lists) by using

subsumption to collapse 4,505 phenotypic classes into 30

neurological superclasses. This subsumption of numerous

phenotypic features into 30 superclasses also addressed limitation
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(2) (too many near-synonyms) and limitation (3) (too many

unique features). Once phenotype lists of variable length are

converted to vectors of fixed length, side-by-side comparisons of

diseases become feasible through the use of heat maps and word

clouds (Figures 3A,B); addressing limitation (4). Another

advantage of vectorization is that it allows the calculation of

distances between phenotypes using standard distance metrics such

as cosine and Euclidean. Figure 2 demonstrates the clustering of

rows (dystonic diseases) using the Euclidean distance. We filtered

out biochemical, radiological, electrophysiological, and pathological

features to address limitation (5) (thus, limiting the phenotype to

signs and symptoms.)

This work has some significant limitations. First, collapsing

granular phenotype features into superclasses by subsumption

involves information loss. The superclasses retain no laterality

information (left-sided versus right-sided weakness, etc.) The

superclasses retain no topographical information (proximal versus

distal weakness, etc.) The high information value of some granular

phenotype features, such as impaired vertical gaze (a sign of

progressive supranuclear palsy) or internuclear ophthalmoplegia

(a sign of multiple sclerosis), is lost when the granular features are

collapsed into the superclass of abnormal eye movements. Second,

our current process of collapsing phenotype concepts into

superclasses requires a manually constructed lookup table that

assigns each concept to a superclass. Errors can be made in

assigning concepts to superclasses. We are looking at ways to

improve the subsumption process that collapses ontology concepts

into superclasses. Third, heat map scales are non-linear. For each

superclass score, we counted the number of features in that

superclass. For example, a disease phenotype with the term

hemiparesis would have a superclass score of 1 for weakness. In

contrast, a disease phenotype with terms arm weakness and leg

weakness would have a superclass score of 2. Furthermore, we did

not weight phenotype features by importance. In building the

features maps, a more general concept like hyperreflexia carries the

same weight as a more limited concept such as increased biceps

reflex. We are exploring whether normalization or other

transformations of the underlying data would improve the utility of

the heat maps. Fourth, the size and granularity of the superclasses

were not uniform. For example, the vision superclass subsumed

450 concepts and had many different types of visual impairment,

whereas the fatigue superclass subsumed only 26 concepts and

reflected the concept of fatigue alone. Fifth, our selection of thirty

superclasses was somewhat arbitrary and subject to modification.

Although the selection of the thirty superclasses reflected domain

expert opinion and the underlying structure of the ontologies,

other useful partitions of the ontology into superclasses are

possible. For example, chorea or dystonia could have been distinct

superclasses instead of subsumed into hyperkinesia. Speech (e.g.,

dysarthria) and language disorders (e.g., aphasia) could have been

separate superclasses. Sixth, the superclasses were restricted to

neurological terms and neurological diseases. As a result, the heat

maps will not be useful in visualizing the phenotypes of non-

neurological diseases. Furthermore, the heat maps will not

adequately visualize important non-neurological signs and

symptoms of diagnostic value (such as Kayser-Fleisher rings for

Wilson’s disease (37)). Although true pathognomonic signs and
frontiersin.org

https://doi.org/10.3389/fdgth.2023.1064936
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Hier et al. 10.3389/fdgth.2023.1064936
symptoms are rare in neurology (1,38–40), the heat maps lack the

granularity to show pathognomonic signs. Furthermore, the

current heat maps do not support a drill down to the underlying

granular phenotype features. Although we used Orange to create

the heat maps, suitable heat maps are also available in python, and

R. Other heat map color schemes are available and may give better

visualizations. The Orphadata phenotype datasets are undergoing

revisions and improvements. Some diseases are phenotyped more

completely than others. Although the dataset is curated, omissions,

errors, and discrepancies can still occur. Finally, a similar analysis

could have been done with phenotypic annotations from the

OMIM or HPO datasets.

Despite these limitations, combining feature reduction by

subsumption with vectorization of phenotype lists followed by

visualization by heat maps and word clouds offers a robust method

to explore neurology phenotypes. Subsumption permits the

reduction of thousands of ontological concepts into a reduced

number of phenotype superclasses. Vectorization allows the

conversion of variable-length phenotype feature lists into superclass

vectors of fixed length. Matrices of superclass vectors allow the

side-by-side comparison of disease phenotypes as heat maps.

Individual rows in the heat maps can be visualized with word

clouds, providing an easy-to-grasp representation of a disease

phenotype.
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Parkinson’s disease
population-wide registries in the
United States: Current and future
opportunities
Allan D. Wu1,2,3* and Andrew M. Wilson2,4

1Division of Movement Disorders, Department of Neurology, Feinberg School of Medicine, Northwestern
University, Chicago, IL, United States, 2Department of Neurology, David Geffen School of Medicine,
University of California Los Angeles (UCLA), Los Angeles, CA, United States, 3Stanley Manne Children’s
Research Institute, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, United States, 4Department of
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Parkinson’s disease (PD) is a neurodegenerative disease with both genetic and
environmental risk factors. Efforts to understand the growing incidence and
prevalence of PD have led to several state PD registry initiatives in the United
States. The California PD Registry (CPDR) is the largest state-wide PD registry
and requires electronic reporting of all eligible cases by all medical providers.
We borrow from our experience with the CPDR to highlight 4 gaps to
population-based PD registries. Specifically we address (1) who should be
included in PD registries; (2) what data should be collected in PD case reports;
(3) how to ensure the validity of case reports; and (4) how can state PD
registries exchange and aggregate information. We propose a set of
recommendations that addresses these and other gaps toward achieving a
promise of a practical, interoperable, and scalable PD registry in the U.S., which
can serve as a key health information resource to support epidemiology, health
equity, quality improvement, and research.
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Introduction

Parkinson’s disease (PD) is the most rapidly growing neurodegenerative disease across

the globe (1). Epidemiology studies, using claims datasets, have estimated prevalence and

incidence of PD (2, 3), and observational cohort studies have identified both

environmental and genetic risk factors for the development of PD (4–6). To expand upon

this work, true population-wide PD registries, leveraging real-time electronic health record

(EHR) data associated with clinical care, hold promise to address more comprehensive

questions about epidemiological risk factors, treatment, healthcare utilization, and

outcomes across the wide diversity of people and community settings.

In the United States, statewide PD surveillance registries are growing in momentum to

assess the prevalence, incidence, and distribution of cases and to support public health

education, outreach, and research. Nebraska was the first statewide PD registry (1997),

requiring reporting of new PD cases (7). The California Parkinson’s Disease Registry

(CPDR) was established in 2005 to determine the incidence and prevalence of PD in

California, to examine disparities in PD risk, and to conduct demographic and

epidemiological research. The CPDR started requiring mandatory reporting of all PD

cases in 2018 (8, 9). Multiple states have smaller registries or legislation pending for PD
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or neurodegenerative registries (10, 11). In parallel, Congress

authorized the Centers for Disease Prevention and Control

(CDC) to develop a National Neurologic Conditions Surveillance

System (NNCSS), with initial conditions being PD and Multiple

Sclerosis (12). To date, efforts to align state PD registries to form

an effective network of statewide PD registries are limited.

In this Perspective, we discuss the CPDR as an all-electronic,

near real-time PD registry and the largest current example of a

state PD registry. The CPDR requires all providers to report

encounters where PD is treated or diagnosed, regardless of

encounter type or specialty—a particularly broad set of criteria.

Cases can be reported in real-time using electronic health record

(EHR) case reports (or near real-time in quarterly batches); an

online portal is used for manual reporting of individual cases. As

of 2021, the CPDR has received 534,583 reports from 550

reporting entities across most counties, covering 93,928 unique

PD patients (13). Reporting from California practices is not yet

considered complete and no prevalence estimates have been

released. For researchers, a data disclosure policy and procedure

was released in 2021.

The CPDR also exemplifies many challenges and gaps faced by

population-wide PD registry design, implementation, and usability.

To help address these gaps, the Michael J. Fox Foundation for

Parkinson’s Research recently supported an independent project

at the University of California, Los Angeles (the UCLA-CPDR-

EHR PD UCE-PD project). The UCE-PD project aims were to

assess the accuracy and completeness of data collected by

automated means at a single large academic site and to develop,

implement, and demonstrate a framework of tools to improve

upon CPDR accuracy and completeness. The UCE-PD project

was led by a multidisciplinary team including movement

disorders specialists, general neurologists, and primary care

physicians with expertise representing clinical practice,

epidemiology, clinical informatics, and health services research.

We borrow from our experience with the CPDR and UCE-PD

project to highlight 4 gaps in population-based PD registries.

Specifically we address (1) who should be included in PD

registries; (2) what data should be collected in case reports; (3)

how to ensure the validity of case reports; and (4) how can PD

registries exchange information? We conclude by presenting a list

of recommendations to consider as next steps toward realizing a

population-wide PD registry.
Gap 1: who should be included in a PD
registry?

The clinical diagnosis of PD can be challenging as there is no

confirmatory test or biomarker. Current diagnostic criteria for

PD rely on clinical expertise and factors that are uncommonly

coded reliably or accurately in EHRs (14, 15). There are

circumstances when the diagnosis of PD cannot be made with

confidence (16), particularly early cases of parkinsonism or those

confounded by alternate causes (e.g., drug-related or vascular).

The diagnosis of PD is also confounded by related, though

distinct, neurodegenerative parkinsonism syndromes (NPS) such
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as progressive supranuclear palsy (PSP), corticobasal syndrome

(CBS), multiple systems atrophy (MSA), or dementia with Lewy

bodies (DLB), which may only become clinically clear after years

of being diagnosed with PD. Notably, persons with NPS are of

interest to PD registries because they may share epidemiological

risks and have similar health resource needs as persons with PD

(PwPD). Excluding NPS risks reducing potential value in a PD

registry.

There is also no consensus EHR phenotype for PD. A

combination of diagnosis codes, medications, provider specialties,

and lookback intervals have been used by many published

algorithms for detecting PD from EHR data and support the

ability to detect PD or NPS (17–21). Unfortunately, estimates are

that only 75%–82% of cases of PD detectable by codes are

actually PD (21–23). Such issues, well-known among

neurologists, researchers, and clinicians, contribute to some

skepticism for cases included (or not included) in registries.

Additionally, performance of algorithms are challenging to

interpret because of variation in whether the focus is on the

detection of PD itself, PD with NPS, or parkinsonism in general

(17). Further, algorithms developed in one system have rarely

been tested using data across differing systems, and consensus

algorithms have not yet emerged (24).

The CPDR relies only on ICD10 diagnosis codes (G20 and

G90.3) to trigger encounters to report. While G90.3 is intended

to identify MSA, other NPS were excluded. The G20 code

represents PD, but is also used when the clinician codes for less

certain parkinsonism “not otherwise specified.” When the UCE-

PD team reviewed a sample of 456 patients identified using six

parkinsonism codes, we found that the two code CPDR

combination had a lower positive predictive value for PD than

G20 alone or the broader set of parkinsonism codes (Figure 1A).
Gap 2: what data should be collected
in PD data reports?

Currently, individual statewide PD registries separately develop

data specifications, which limits harmonization of collected data

and reduces the potential benefit of such registries. Consensus

standards for data elements recommended for population-wide

PD registries have yet to be established.

The CPDR experience is illustrative of the challenge of

determining a minimum required specification across a diverse

healthcare system. Initial CPDR proposed specifications included

both administrative data (reporting entity, patient demographics,

provider information) and required available clinical data

elements, such as PD symptoms, medications and comorbidities

(25). Due to non-standard and variable nature of how clinical

data elements are documented among different hospital and

clinic settings, advocacy groups responded with concerns about

reporting feasibility and burden. The final CPDR specification

places nearly all clinical data elements into an optional category,

with exceptions being encounter diagnosis codes and the date of

diagnosis [(9), Supplementary Material S1]. This

oversimplification of required PD data elements limited clinical
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FIGURE 1

Performance of CPDR diagnosis codes and date of diagnosis. (A) Effect of different ICD10 trigger codes on case identification of Probable or Possible PD
in a cross-sectional (CS) sample of cases. Probable and Possible PD assignment was made by a neurologist after manual chart review. The lowest positive
predictive value (PPV) for Probable or Possible PD was with CPDR codes. (B) For cases of Probable PD (n= 348), the date of diagnosis discrepancy
between the CPDR reported date and the date from chart review was within 1 year in 34% of cases. The percentage of cases with discrepancies less
than or more than 5 years (middle and right bar, respectively), and the reasons for those discrepancies, are shown. Some cases had more than one
discrepancy reason. EHR go-live 5 years prior to data collection resulted in a floor for automated CPDR-reported dates.
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utility and reduced some ability to de-duplicate or validate cases

reported.

Some data elements that may be considered for PD registries

may not be easily, reliably, or accurately captured. For example,

the CPDR specification requires that each report include a date

of diagnosis. Even mature cancer registries, where this date is a

key data element and anchored by pathological confirmation,

struggle to obtain this information from oncology specialty

practices (26). To ensure success of initial CPDR

implementation, the registry allows the earliest date of a trigger

diagnosis on the Problem List or the earliest encounter date to

be used as the date of diagnosis (9). This data definition favors

completeness of data reported with potential risk to accuracy.

When reviewed in a sample of 348 Probable PD cases, the UCE-

PD team found that the date of diagnosis reported by CPDR

specifications was accurate within 1 year in 34% of cases when

compared to that by gold-standard manual chart review

(Figure 1B). This work emphasizes that certain data elements

being considered as specifications for a PD registry should be

assessed for quantifiable risk of accuracy or completeness.
Gap 3: how should PD case reports
and registry data be validated?

Quality assurance (QA) and case validation ensure that

registries are capturing data that are complete and high quality.

QA is arguably even more important in real-world, EHR-driven,
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population-wide registries, where data are created as a byproduct

of clinical care (27). Because PD and NPS do not have a

definitive biomarker or standard nomenclature (unlike cancer

staging), the need for a transparent and robust validation process

to build confidence among stakeholders is important to include

in PD registry design.

Cancer registries, consolidated under the CDC National

Program of Cancer Registries (NPCR), cover 97% of the US

population and collect timely data on incidence, treatments, and

outcomes (28, 29). To achieve this, resources are available to

train and certify cancer registry abstractors, usually near the

point of care. As such, population cancer registries focus

abstractor efforts on the collection and submission of high

quality data at the source. Many existing Parkinson disease

registry efforts similarly collect high quality data, requiring

considerable resources, from selected movement disorder

specialty sites (30).

This point of care approach is not practical for population-scale

PD registries where cases are reported across a wide spectrum of

medical practices. Validation within large registries typically

sample cases and compare them against gold-standard neurologic

assessment or manual chart review. The outcome is to assess

whether variations in PD data in the registry between sites are

due to differences in coding practices (17), distribution of care

(3), or represent actual differences in incidence or prevalence.

The CPDR provides completeness data to reporting sites, but has

not yet adopted guidance for validating cases reported to the

registry.
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For the UCE-PD project, we developed a proof of principle

validation workflow for CPDR-eligible cases. The strategy used

was to select cases for review, have trained abstractors manually

review charts using a standardized abstraction tool, and have

experienced adjudicators confirm the PD diagnosis classification

by reviewing summary information from the abstraction tool.

QA tools were developed including abstractor training modules,

feedback sessions, and inter-rater dual abstraction reliability

checks. Challenging cases were escalated for further chart review

to neurologists to finalize an adjudicated classification. Each final

case classification would represent the gold-standard for

validation purposes.

This validation process is theoretically scalable because of its

potential federated approach. The validation abstraction process

and associated QA checks can be conducted within each local

site. Importantly, clinician review would not be required for most

adjudications. Applied across all sites reporting PD cases, this

process can provide standardized validation information that can

help enhance the trust of patients, clinicians, and researchers

participating in PD registries.
Gap 4: how can PD registries exchange
and aggregate information?

It is unrealistic to think that any one singular registry can house

the requisite information to address the epidemiological, clinical,

and health services questions of the future. A successful

population-wide PD registry will require an interoperability

infrastructure that supports data exchange among registries.

Interoperability requires a common standard of codes that

represent data elements captured from all EHRs used. To the

extent possible, registries will specify mappings of required data

elements to standard terminology code sets, such as ICD10 for

diagnoses, RxNorm for medications, CPT for procedures, etc.

(31). However, some concepts important for PD registries may

not yet have a standard code. As an example, movement

disorders, as a neurological subspecialty, is not represented in

standard specialty taxonomy code sets (32). In circumstances

where gaps exist in standard code sets, an interim step can be to

partner with health information exchanges (HIE) that could

support non-standard data elements of importance.

To illustrate, the UCE-PD team developed a focused data

dictionary of symptoms that are commonly encountered in PD.

We worked with an EHR vendor (Epic Systems, Verona WI) to

create common PD registry data elements within the default

EHR system. These symptom data elements are now

automatically available and semantically interoperable for all

customers within the vendor-specific HIE (Supplementary

Material S2).

The technical tools and trust framework of sharing PD registry

data are an area for innovation and ongoing evolution. Health

Level 7 International (HL7) sets widely used standards for the

exchange, integration, sharing, and retrieval of electronic health

information. An electronic case report (eCR) standard was

released by HL7 in 2017 with data elements that represent a
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consensus “minimum necessary” for public health case reports

(33). Prior to 2019, implementation of eCR by entities reporting

to the CPDR was low. As eCR was widely promoted during the

Covid pandemic (34), there was a significant increase in entities

that supported eCR infrastructure. The CPDR saw an increase in

eCR format reports from none in 2019 to 67% of reported cases

in 2021 (personal communication, CPDR). Unfortunately,

piecemeal adoption of eCR formats by individual county and

state public health departments, rather than broad adoption,

remains a barrier to full interoperability.
Discussion

We briefly outlined some of the current state and challenges of

developing population-wide PD registries. We discussed CPDR as

an example of a statewide PD registry implementation,

recognizing the growing momentum toward additional statewide

registries in the near future. With this context, we propose a set

of recommendations that addresses these and other gaps toward

achieving a promise of practical, interoperable, and scalable

population-wide PD registries. While this Perspective focuses on

aspects of a U.S. state implementation, how to adapt these

recommendations to international sites must also be considered.

The state-by-state (e.g., California, Nebraska) approach that

characterizes U.S. public health presents challenges may be less

prevalent in centralized healthcare systems. Our vision is that,

while the initial population-wide registries will first support use

cases of public health surveillance, epidemiology, and assessment

of health care utilization, the maturation of broad interoperability

frameworks will enable development of these PD registries as

key population-wide health information resources. For example,

when eventually linkable to other patient outcomes, clinical

trial data, quality registries, genomics, and biorepository

resources, discoveries can be inferred, developed, and applied at

scale as public health interventions to advance access and

health equity outcomes, quality improvement initiatives, and

research efforts.

Overview recommendations:

1. Propose a series of symposia or workshops to develop

consensus around a core set of infrastructure decisions to

support population-wide PD registries. Participation should

include subject matter experts, patient advocacy groups,

specialty societies, health system informaticists, state public

health departments, and CDC NNCSS to develop broad

stakeholder engagement.

2. Develop a vision and mission statement about the role of

population-wide and state PD registries. This statement

should reflect direct goals supporting public health

surveillance, health services equity, and epidemiology research

as well as longer-term goals to support efforts in public

health intervention, quality improvement, and research.

Endorsement of FAIR (Findable, Accessible, Interoperable,

and Reusable) principles for data management should be

encouraged (35).
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3. Develop, publish, and maintain a repository of standards and

guidelines. As registries are repositories of systematically

collected data, a central set of consensus documentation

around use cases, implementation strategies, data collection

standard operating procedures, and data dictionaries, as

further discussed in points below, will be needed.

4. Develop guidelines at state and federal levels to address

common issues for large public health registries including, but

not limited to patient confidentiality, the balance of public

health vs. right to privacy, ownership of data, reusability of

data, and return of benefits of the registry to stakeholders.

5. Evaluate, develop, and share models for financial and resource

sustainability for individual state PD registries, exploring

partnerships with academia, third-party vendors, federal

regulatory agencies, or other solutions. To date, uncertainties

in state budgets have adversely affected operations in state-

funded registries (i.e., CPDR, Nebraska PD Registry). As an

exemplar, a combination of federal, state, and private funds

have helped sustain cancer registries in the US (36).

Scientific considerations:

6. Encourage inclusive PD/parkinsonism registries that will

encompass both PD and NPS. This recommendation is
FIGURE 2

Proposed EHR PD classifications and future interoperability network with PD re
point in time in PD/parkinsonism registries. Each case has a unique classifi
(Supplementary Table S2 for details). (B) Schematic of a future interope
exchange (HIE) relevant for PD registries. A national trust framework (Tru
exchanges among PD registries and balance public health mandatory repor
appropriate legal, compliance, confidentiality, and privacy policies. Individual
directly, could form interstate PD-specific HIEs, or connect indirectly via oth
the trust framework, could request information from population-wide PD reg
VA, Veteran’s Administration; FQHC, federally qualified health center; AAN
Partnership Parkinson’s Disease; PPMI, Parkinson’s Progression Markers
GENEration; CDC NNCSS, Centers for Disease Control National Neurologic
Registry; CA, California. EHR, electronic health record; VA, Veteran’s Adminis
of Neurology; AMP-PD, Accelerating Medicines Partnership Parkinson’s D
Parkinson’s Genetics Program; PD-GENE, PD GENEration; CDC NNCSS, Ce
System; CPDR, California Parkinson’s Disease Registry; CA, California.
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supported by clinical overlap, challenges in detecting early

possible PD or NPS, and need to understand scientific,

clinical, and health care delivery similarities and differences

with both PD and NPS.

a. Initial CPDR criteria of six ICD10 codes for parkinsonism

are a good starting point, but further scientific consensus

on reporting criteria is recommended.

7. Support development of a practical intermediate classification

system for labelling each case reported in a broadly inclusive

PD/parkinsonism registry. The classification should be

granular enough to reflect real-world uncertainties in PD

diagnosis, yet high-level and discrete enough to facilitate

automatic interoperable mapping between state registries.

a. The UCE-PD team developed a consensus diagnostic

classification scheme to account for the variations in data

quality and diagnostic uncertainty commonly

encountered when validating cases of potential PD.

Figure 2A (and Supplementary Material S3) illustrates

the UCE-PD consensus nomenclature and conceptual

definitions for labelling case reports.

8. Develop a consensus data dictionary of elements recommended

for reporting to population-wide PD registries, prioritizing those

elements that are readily available (feasible and accurate) and are
gistries. (A) Overview of UCE-PD classification for each reported case at a
cation (left) with non-exclusive subclassifications for Possible PD (right)
rability network of networks to support electronic health information
sted Exchange Framework Common Agreement, TEFCA) will facilitate
ting with the sharing of clinical, quality, or research information within
state PD registries (CPDR for example) could connect to the framework
er clinical HIEs. Other specific PD registries (quality, research), if part of
istries for relevant context, and vice versa. EHR, electronic health record;
, American Academy of Neurology; AMP-PD, Accelerating Medicines
Initiative; GP2, Global Parkinson’s Genetics Program; PD-GENE, PD
Conditions Surveillance System; CPDR, California Parkinson’s Disease

tration; FQHC, federally qualified health center; AAN, American Academy
isease; PPMI, Parkinson’s Progression Markers Initiative; GP2, Global
nters for Disease Control National Neurologic Conditions Surveillance
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essential to case de-duplication and validation. Such a data

dictionary will ensure a common base of terminology for

interoperable data exchange among PD registries.

a. Elements range from demographic elements (most feasible),

administrative data elements (e.g., encounter dates and types,

specialties, medications; feasible, some variability), to clinical

symptom, diagnostic certainty, and disease severity elements

(most challenging to standardize within real-time workflows).

9. Recommend a basic, minimum dataset standard for mandatory

reporting across all sites reporting cases. While this dataset

emphasizes feasibility for automated reporting, a minimum data

standard will reduce risk of oversimplification of specifications.

a. Additional data dictionary specifications as distinct data

modules can be considered or added as population-wide

PD registries mature. Such an approach addresses the

problem of missing data when desired data elements are

specified as “required if available” or optional. Sites with

sufficient reporting capabilities, resources, or interest (e.g.,

neurology or movement disorder practices) may be

incentivized to report on additional specified data elements.

10. Assess and ensure that recommended data elements are

represented and mapped to standard concept codes. Gaps

identified should be addressed with a strategy to develop,

test, and create appropriate codes with appropriate standard

development organizations.

a. As an example, a consensus strategy to update the current

ICD10 code for PD (G20) can be considered to separate

out alternate diagnoses of a nonspecific parkinsonism or

an uncertain early PD.

11. Support evaluation of data elements that are considered for

population-wide PD registries, but will be more challenging

to collect. Data elements can be proposed as provisional and

tested before being approved within either a basic or higher

tier data specification.

12. Support, develop, and incentivize a systematic and scalable

validation process for population-based PD registries. As a

starting point for discussion, the UCE-PD team has

developed proof-of-principle processes and tools to support

abstraction and case adjudication for PD registries.

Registry implementation:

13. Recommend that each state PD/parkinsonism registry maintain

a standing scientific and patient advisory committee to ensure

stakeholder engagement and alignment with consensus

guidelines. A forum should be available where state PD/

parkinsonism registries and the CDC NNCSS can

communicate, share strategies, and align on national goals.

14. Prioritize automated reporting through certified EHR

mechanisms. As eCR is now a mandatory component of the

2023 Medicare Promoting Interoperability incentive payment

system (37), we recommend that an eCR specification be

used as a preferred public health report system for PD registries.

15. Monitor and evaluate technologies and policies covering

interoperability solutions as relevant to the development of a

network of interoperable state and population-wide PD

registries (Figure 2B). Examples include:
Frontiers in Digital Health 06124
a. Alignment with the United States Core Data for

Interoperability (USCDI), the federally required set of

data elements that certified EHR systems must support

for interoperability. USCDI+ was recently announced as

a possible domain-specific extension for which PD

registries could be an ideal domain use case (38).

b. Fast Healthcare Interoperability Resources (FHIR)

standards hold promise for enabling interoperability

between population-based registries and can support

domain-specific data dictionaries (39).

c. The Trusted Exchange Framework and Common

Agreement (TEFCA) is a set of principles, technical

requirements, and policies that support a nationwide

system for securely sharing interoperable electronic

health information (40). PD registries may be an ideal

public health use case for the TEFCA network.

Conclusion

With the advent of statewide PD registries, we believe now is

the time to (re)address scope, design, implementation, validation,

and interoperability issues. We call on PD registry owners and

stakeholders to consider these gaps and recommendations as we

work toward a feasible framework for a truly inclusive

population-wide PD registry that serves as a trusted resource for

public health, clinical care, and research.
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To make appropriate clinical decisions, clinicians consider many types of data from
multiple sources to arrive at a diagnosis and plan. However, the current health
systems have siloed data, making it challenging to develop information platforms
that integrate this process into a single place for comprehensive clinical
evaluation and research. INTUITION is a human brain integrative data system that
facilitates multimodal data integration, unified storage, cohort selection, and
analysis of multidisciplinary datasets. In this article, we describe the use of
INTUITION to include electronic health records together with co-registered
neuroimaging and EEG from patients who undergo invasive brain surgery for
epilepsy. In addition to providing clinically useful visualizations and analytics to
help guide surgical planning, INTUITION also links a bank of human brain
epileptic tissues from specific brain locations to quantitative EEG, imaging,
histology, and omics studies in a unique, completely integrated informatics
platform. Having a clinically useful platform for integrating multimodal datasets
can not only aid in clinical management decisions but also in creating a unique
resource for research and discovery when linked to spatially mapped tissue samples.

KEYWORDS

epilepsy, systems biology, integrated informatics, neurology, intuition

Introduction

Epilepsy: a challenging case with enormous potential

Approximately one-third of all epilepsy patients are resistant to anti-epileptic drugs (1).

Some of these patients benefit from surgical resection of the epileptic brain tissue to become

seizure-free. The decision to surgically resect brain tissue requires accurate localization of

seizure onset. The tissue localization process requires integrated evaluation of multimodal

data derived from Electronic Health Record (EHR), spatially co-registered electrodes to

the brain surface, evaluation of intracranial Electroencephalographs (EEGs), imaging,

neuropsychiatric tests, and lab testing. The tissue is then removed following detailed

group meeting discussions to assess outcome (seizure freedom or reduction). Tissue that

is precisely mapped to the underlying electrical signals offers a unique opportunity to

explore the causes of epilepsy and develop new treatments (2). Until recently, major

limitations in maximizing the research utility of tissue removed from epilepsy surgery

patients have been finding ways to link different data modalities, establishing streamlined

data processing pipelines, and enabling integrated informatics. The situation is

compounded since multidisciplinary data types needed for clinical care and

interdisciplinary research are siloed on different computer systems. This requires data

aggregation, curation, quality control, inventory management for different data coming
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from various sources through different data collection protocols,

and robust governance that takes care of security, compliance,

and data access based on the specific needs of researchers.

The removal of human brain tissue to treat or cure epileptic

disorders offers an exceptional research opportunity that is not

possible in most other human brain disorders. Critical to the

success of this research is precise co-registration of tissue with

both the location of intracranial recording electrodes and

multimodal imaging as described in a recent review (2). This has

allowed us to study the cellular (histological) and omics

(genomic, proteomic, metabolomics) correlates of specific

physiological and anatomical measures from EEGs and imaging

studies of multiple epileptic brain regions. Without this

localization, tissue removed has limited value since there is

significant heterogeneity in the electrical signals in different brain

regions determined from intracranial recordings. The integrated

understanding of electrophysiology, neuroimaging, histology,

omics information, along with patient history, can elucidate the

complex mechanism of epilepsy and significantly advance the field.
Creating a multidimensional database of the
human epileptic brain

Several investigator-led initiatives have created comprehensive

neurological disease-related databases for the past few decades to

enhance research and knowledge discovery. Such databases store

large, curated datasets, including EEG, imaging, genomics, and

clinical details. Epilepsy is a common neurological condition of

recurrent seizures, where many diverse types of data are used to

evaluate and surgically treat patients who fail to respond to

medical management. Platforms such as IEEG.ORG,

EPILEPSIAE (3), and Temple EEG Database (4) store EEG

datasets along with clinical and imaging metadata specifically for

epilepsy. There are also databases that store more specific EEG

datasets like the neonatal EEG database (5). On the other hand,

databases like EpimiRBase (6) store epilepsy related microRNA

datasets, and several imaging databases store imaging modality

specific high resolution brain scans for humans (7) and animals

along with genomic information (8). There are additional disease

and condition specific initiatives such as LONI (9) which also

hold both EEG and imaging information along with clinical

details for traumatic brain injury and epilepsy, and our own

PTRD database (10) that holds clinical and preclinical data on

subarachnoid hemorrhage that includes electronic health records,

imaging, EEG, and derived research information along with

intuitive visualizations on patients and animal models.

To date, there has not been a comprehensive system that

collects all the raw data and expands the scope of the system to

accommodate datasets generated through basic, clinical, and

translational research. Given the wealth of data and tissues

produced during the clinical workup for epilepsy surgery, we

have developed a system that collects clinical epilepsy data and

spatially registers all EEG data onto brain imaging, allowing for

precise spatial mapping of resected tissue samples at electrode

positions (Figure 1). This data platform we call ‘INTUTION’ has
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enabled multimodal research studies on the tissues and

integrated datasets, to develop a better understanding of the

underlying disease and drive better treatment plans (2, 11, 12).
Methods

INTUITION enables interdisciplinary collaborative studies.

Along with the raw datasets from several clinical systems,

INTUITION supports asynchronous data processing tools that

help to de-identify EEG and brain imaging, post-process EEG for

epileptic spike-seizure detection, create 3D brain models from

imaging data, and facilitate genomics analysis. The system

enables semi-automatic electrode co-registration of EEG electrode

positions on 3D brain models and registers resected brain tissue

samples to the 3D surface. INTUITION also supports inventory

management for omics samples and maintains the scanned

histology images at different scanning resolutions. Such a well-

curated and controlled data set not only helps in surgical

planning but also helps researchers to understand and develop

new treatments for epilepsy (Figure 1). Here we describe our

integrated informatics approach enabled by INTUITION that

orchestrates several data pipelines to optimize clinical decision

making in epilepsy and supports translational research.
Patient population

INTUITION manages multimodal information from over two

hundred epilepsy patients who have undergone two-stage epilepsy

surgery in the past 20 years. Following patient informed consent,

INTUITION initially collects all raw data, including identifiable

features. Data de-identification modules remove all identifiable

features when the data is moved from the clinical systems to the

research environment. While all the patients had surgery for

epilepsy, many of the patients had additional conditions,

including polymicrogyria, tuberous sclerosis, focal cortical

dysplasia, hippocampal sclerosis, brain injuries, and tumors,

further enhancing the value of the tissue/data collection. We

further link this patient data to a tissue bank containing over one

thousand pieces of human brain tissues precisely mapped to each

recording electrode. The patient population ranges from pediatric

cases (as early as six months old) to older adults (above 50

years). With ongoing data collection and plans to use the

platform at multiple sites, the platform aims to collect richer

datasets from an even more diverse patient population.
Patient data collection

At the University of Illinois at Chicago, the clinical care of

epilepsy patients generates a significant amount of data, a copy

of which is stored in the clinical research data warehouse

(CRDW). INTUITION has an established data request with the

CRDW to prospectively extract new epilepsy patient data to a

REDCap project dedicated to INTUITION. INTUITON, through
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FIGURE 1

INTUITION workflow depicting upstream and downstream data flow. INTUITION has two distinct data flows. In the upstream data flow, INTUITION
receives patient demographic information (EHR), brain imaging (PACS system), EEG and other electrophysiology data (EEG Store), tissue samples,
intraoperative photographs (surgery room), other clinical notes, reports, neuropsychology notes, surgical evaluations, and physician observations
(clinical documents not covered anywhere else). It then de-identifies the information and passes to an intermediate stage, where the data is curated,
and tissue samples are co-registered, tagged, and updated in the inventory. All verified data is then entered into the database for storage. This dataset
is further filtered depending on the scientific question and cohort selection and downloaded for offline processing. The offline dataset is used to
evaluate the cellular structure, genomic profiling, quantitative image analysis, and quantitative EEG analysis. Single modality studies or multimodal
integrative studies are performed depending on the scientific question. The processed data is then uploaded back to the platform for future use.
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its automated data pipelines, downloads, transforms, de-identifies,

and loads patient data to the database. Research users download the

radiology images manually through a local PACS reviewer

workstation and EEG data from the EEG lab in the hospital. The

data details are as below.
Clinical information

We populate de-identified clinical information, including

demographics, clinical diagnoses, procedures, unstructured

clinical notes (blobs), and reports of imaging and

neuropsychological evaluation, into the system through REDCap

APIs. Research coordinators manually enter the surgical

outcomes, seizure observations, intraoperative surgery data, and

copies of the original report files. The research team and

physician always validate the information. Based on the different

study designs and needs, we expand the scope of clinical

information with additional information.
EEG datasets

Every patient in INTUITION had scalp EEG recordings and

the implantation of intracranial electrodes at precise brain

regions using long-term video-EEG recording sessions. While

storing the raw EEG data sets, the data size can expand to

approximately 20 GB for one-day high-density EEG recording

(124 channel, 1000 Hz sampling rate). If the data includes video

files, it can expand to 40–60 GB per patient daily for video-EEG.
Frontiers in Digital Health 03129
During the entire recording period, this data can be up to several

terabytes (TBs) (Table 1). For each patient, at least 3 × 10 min of

EEG segments are collected from the intracranial EEG, which

includes interictal activity. Location and EEG of seizures are also

collected. The data is always reviewed and extracted under

physician supervision to maintain the data quality. For each

patient, we use a variety of algorithms to measure interictal

epileptic waveforms and seizures and link these to precise

locations using offline processing tools as described below.
Multimodal imaging

Imaging modalities are critical for localizing the seizure foci and

related lesions. When combined with the intracranial EEG studies,

they provide the spatial framework for designing therapeutic brain

resections. Brain imaging includes multiple magnetic resonance

imaging (MRI) sequences, computed tomography, x-Rays, positron

emission tomography, single photon emission ictal scans,

magnetoencephalography, and event-related optical imaging. While

not all the recordings or scans are performed on each patient,

usually one or more tests and scans are performed based on the

need. For each patient, pre-electrode implantation, post-electrode

implantation and post-operative imaging scans are collected, which

are needed for the co-registration of EEG electrodes on a

multitude of imaging studies. INTUITION de-identifies and stores

raw images used to understand brain structure, volumetric

information, structural connectivity, tissue co-registration, identify

brain structures, highlight abnormalities and perform

computational image analysis (13–15).
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TABLE 1 Data elements with approximate data size per patient.

Data domain Data module Data type Data records Data records
Clinical Demographics tabular (numeric/string) 1 KB

Diagnosis tabular(string) ∼10–100s KB

Procedures tabular(string) ∼10–100s KB

Medications tabular(numeric/string) ∼100s KB

Labs tabular(numeric/string) ∼1000s KB

Notes tabular(text) ∼100s MB

Ontology tabular(string) 1 KB

Neuropsychology All tests JSON ∼1–2 KB

Outcome Outcome tabular(string) 1 Bytes

EEG Reports tabular(text) ∼1–10s MB

EEG files + meta info file (.eeg/.edf) + tabular(string) ∼3–10s 1 GB—2TBs

Radiology Reports tabular(text) ∼1–30s MB

Imaging Files + meta info file(DICOM RAW, NIFTI, DCM) + tabular(string) ∼1–30s ∼GBs
3D electrode coregistration file(DFS, OBJ) + tabular(string,C SV) ∼1–3s <1GB

Surgery Surgical Data (JPG) + tabular ∼10s ∼100MB

Tissue Images andinventory (JPG) + tabular ∼1–10s ∼100MB

Histology Images (jpeg2000/TIFF) + tabular ∼1–10s ∼GB—TBs

Studies/Omics Tissue usage & results Files, hyperlinks ∼1–10000s ∼TB—PB
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Tissue samples

Tissues removed as part of the surgical procedure and not

needed for diagnosis are used for research purposes and stored

in our NeuroRepository following informed consent. These

samples post-surgery is immediately mapped to the precise

location of the brain using pictures in the surgery room and

brain arterial patterns. Further, these samples are co-registered

with EEG and MRI following standardized protocol (2). These

stored samples are used for histological analysis, staining,

genomics, proteomics, and metabolomics. In this way, each brain

location with specific imaging features and corresponding

electrical properties recorded from in vivo (e.g., spikes or

seizures) can be linked to tissue histology and molecular/genetic

attributes. INTUITION provides an inventory of the entire

dataset, including tissue stored in refrigerators, sectioned tissue

slides, RNA, DNA, and protein inventory (quantity remaining

and storage location), and the links to EEG electrodes, EEG

quantified results (spikes, seizure onset), MRI co-ordinates (for

comparison with brain lesion locations). This information is used

for cohort selection and research.
System design, infrastructure and
management

INTUITION is developed on Django’s model-view-template

(MVT) architecture with PostgreSQL database, Python

middleware, Django web framework, JINJA template engine, and

HTML, CSS, and JavaScript for additional frontend work. An

outline of the system architecture is shown in Figure 2. The

system has a base application along with several service apps to

support tools, viewers, and data operation (Figure 2). Some

packages used for the application are Django Object Relationship

Mapper (ORM) to interface with the database, Django-Migrate for
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database migrations, Django-REST for building RESTful APIs,

Django-Cryptography for hashing utilities, Django-SimpleJWT to

enable JSON Web Tokens (JWT) for API and other security

features, Django-CORS for handling Cross Origin Resource

Sharing (CORS), Allauth for handling authentication and

authorization. We used the Requests library for making HTTP

requests, Pandas for data transformations, Plotly for visualization,

and CRISPY Forms for creating forms in the templates, which

provides advantages of implementing bootstrap v5 forms while

enforcing form functionalities like marking fields as required,

hidden, dropdowns and multi-select checkbox. We secure the

forms from cross-site request forgery using Django inbuilt

functionality of Django CSRF, handling file uploads and

JSONminify to reduce data transmission load between the client

and server. We use the inbuilt Django-Storage library in the

backend to create the file upload field and data storage

management within the media files, which improves the efficiency

of reading and writing files compared to using file storage in a

database. We used Jinja2 templates, HTML (Bootstrap 5), and

JavaScript to make the user interface seamless. We have followed

Jakob Nielsen’s ten general heuristics for interaction design to

ensure our user interactions are seamless and on par with the

global UI/UX standards (16). We also have an asset caching

system that allows us to reduce latency between request and

response by caching static resources in the user’s browser. We also

included features to bulk import and export CSV data from the

system. We also use the PyDICOM library to process DICOM

files and manipulate them to reduce payload for transmitting it to

the client and pylibjpeg to manage image modifications and

functionalities like contrast, brightness, and rotate images. We use

the Django Simple History library to log all the data creation and

modifications performed on Intuition. The Django-Authentication

module manages the user access control. The library manages user

authentication, session management, password hashing, password

validation, and handling of password reset requests.
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FIGURE 2

INTUITION system design.
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We used PostgreSQL (v13) as our database because it is robust

for online transaction processing (OLTP) and a competent

analytical database that integrates well with Django. PostgreSQL

also can manage high volumes of scientific data, is scalable, can

be easily extended, and is freely available. The files for EEG,

imaging, and histology module, along with any document, were

in the Windows Encrypting File System (EFS); the index of these

files was stored in a relational table with entity-attribute-value

(EAV) data model. In the case of the EEG and Imaging dataset,

where the uploaded file count for each patient is quite variable,

and each entry can have associated support files (specifically for

EEG), we have used a simple JSON field in corresponding tables

to store names and associated files with file tags, file types,

extensions, and associated user-created files.

The system’s interactive search lets users search through any

information available on INTUITION. The basic search enables

users to enter keyword-based search terms parsed by the system

to display a list of available patients. Additionally, an advanced

search lets users select predefined search boxes for more complex

patient selections.

INTUITION has a concept of PROJECT, which aggregates a

set of patients for a particular research study and users who have

access to that project enabling investigators to create study

cohorts within the platform and share it with collaborators.

INTUITION is hosted on a Windows server (IIS version 10.0

on Windows 2022). INTUITION maintains end-to-end TLS

using HTTPS protocol. Currently, the INTUITION application is

deployed within the University of Illinois Chicago Private

network for an added layer of security.
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Offline data processing in INTUITION

Data de-identification

We have developed a set tool to de-identify each patient’s

imaging and EEG data.

DICOM de-identification: We have developed a web application

tool that uses Pydicom to perform image modifications. The program

works in two steps. First, it reads all the attributes of the DICOM

header of the uploaded series. It deletes the header elements that

are private and unknown attributes (VR or UN tag) as per the

DICOM standard. It uses three sets of predefined attributes to

perform de-identification. The patient name is updated with user-

entered shifted data and patient code for the attributes marked as

“Update Fields,” such as study date. It will assign random string

values to these attributes if these fields are not provided. Attributes

defined as “Keep Fields” are kept as it is. These attributes are key

to understanding the scan details, parameters, data orientation, and

the data matrix. The “Remove Fields” attributes must be deleted if

found. These fields correspond to accession numbers, machine

serial numbers, hospital addresses, and provider details. In the

second step, the tool displays the DICOM pixel data to the user to

select regions needing removal from the images. The users can

select one or more rectangular regions and whether they need to be

deleted from one slice or all slices of the DICOM series. Once the

selection is made, the tool removes the pixel values and regenerates

the DICOM images in a de-identified format. Further, the data can

be stored on INTUITION, or the user can download it to their

local environment.
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FIGURE 3

INTUITION pages displaying information extracted from electronic health records. The top figure shows the overall status of all modules whereas the
sidebar status shows the records available within each data module. The middle and lower image shows sample of diagnosis and lab measurements
for patient 10001.
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FIGURE 4

INTUITION imaging and EEG visualization tool. Top two panels display an MRI record with capability to review radiology notes and the DICOM image
series on an inbuilt browser. The bottom panel shows the EEG browser with sample EEG data with a seizure event annotated.
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EEG de-identification: The EEG is always extracted in

European Data Format (EDF). The EEG de-identification tool

reads the EEG file headers, removes, or modifies the fields that

correspond to name and data attributes and rewrites the data

back to EEG file in a fashion like the image de-identification.

Further, we also remove all annotations from the file and either

store it on INTUITION or let the user download them.

OMICS data de-identification: OMICS data de-identification is

a complex process that involves ethical, legal, and technical

challenges. To de-identify OMICS data, we follow several steps

that involve technical, data governance, and sharing policy

changes. The details of these steps are as follows. First, we remove

personally identifiable information from the standardized omics

files, such as patient names, IDs, age, gender, clinical conditions,

and tissue location. Second, we manage the coded OMICS data on

a separate server with limited connectivity to the INTUITION

system. Access to this server requires additional privileges. Third,

INTUITION holds derived information from genomic data, which

has a minimal scope of re-identification. The genomic store is also

encrypted to ensure added security. Fourth, complete genome

records are never shared without appropriate request and approval

from the data governance committee.

Fifth, data access is limited to requests with valid scientific

purposes, and minimum data is shared based on the type and

scope of the data request. Finally, upon a suitable agreement, we

share an aggregated and coded dataset. The process of re-coding

and aggregation reduces the risk of patient re-identification.

Overall, these steps aim to ensure that OMICS data is de-

identified and shared in a secure and responsible manner.
EEG and MRI analysis

Our primary goal is to analyze EEG data to identify epileptic

events such as interictal spikes and epileptic seizures, which are

the electrophysiological biomarkers of epilepsy; co-register these

event’s occurrence, location, and propagation patterns (13, 17)

across brain locations over 100 electrodes on a 3D brain model.

Once the tissue is resected, perform additional co-registration of

their locations on the same 3D model. In addition, we can

examine many other EEG features from the raw data not limited

to periodic discharges, frequency band-specific epilepsy

signatures, and high-frequency oscillations. The computational

work is performed offline using in-house algorithms and scripts

developed in MATLAB and Python, and the processed

information is passed back to INTUITION. While the initial

design used MATLAB as the offline tool for signal processing,

the data can be connected to other analytical platforms through

appropriate APIs. In relation to the EEG work, we have

developed an EEG de-identification tool, an EEG visualization tool.

For brain images, we use established tools like BrainSuite or

freesurfer (18) for offline 3D re-constructions of the brain,

cortical thickness, and geodesic distance measures. We use an in-

house developed algorithm to use MRI and CT to co-register the

electrode location and match it with intra-operative images for

accuracy. This method provides an accurate localization of the
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electrodes and corresponding geodesic distance and cortical

thickness. Furthermore, since many patients with epilepsy have

brain lesions such as developmental abnormalities or tumors, our

multimodal analytical framework also localizes these lesions in

relation to the electrode locations. This helps us understand

lesional and non-lesional epilepsy in a detailed manner. To

manage brain imaging data, we have a DICOM-de-identification

tool, DICOM visualization tool, and 3D model rendering tool

that are web-based and integrated into INTUITION.
Histological and molecular/-omics analysis
and image data storage

A unique characteristic of our approach is that each piece of

resected brain tissue is precisely mapped to a specific brain

electrode location. This enables a direct link between brain

structure and electrophysiology at that specific region to the

histology (or cell structure) and molecular features of the

underlying tissue. Our previous work outlines the meticulous way

we subdivide each block of tissue underlying a specific brain

region for these analyses. High-resolution digital images of stained

sections from each brain region, genomics (19–21), proteomics

(21), and metabolomic (22) are stored within INTUITION and

readily available for focused, discovery-based projects to

understand and develop better treatments for epilepsy. While

INTUITION stores the results of omics analysis on-premises, the

raw files, often large (Table 1), are stored on the data server, and

their links are stored on the INTUITION inventory module.
Results

The INTUITION application currently holds two hundred

epilepsy patient data totaling 2 TB of on-premises storage and

several terabytes of omics and imaging data on remote servers.

The system supports a status dashboard that displays the status

of data entries and whether a data reviewer has verified them.

The navigation sidebar additionally provides information

regarding the record counts for investigators to know how much

data has been collected for each patient (Figure 3).

In addition, INTUITION has a patient timeline and data

dashboard view (Figure 4) that has been tested for a previously

published expansion on traumatic brain injury and epilepsy (10).
Search and cohort discovery

INTUITION provides a simple search interface that accepts

text-based search criteria for demographics, diagnosis, and

medications; and returns the qualifying list of patients. This list

can be further aggregated, stored as a project, and can be shared

with other investigators or reused at a later point. INTUITON

also provides advanced search features that help in cohort

discovery. The advanced search page takes information such as

demographic filter (age, gender, date ranges), presence of any
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diagnosis code (ICD codes or descriptive text), prescribed

medication, procedures conducted, presence of specific lab

measurements, and the range of values for that measurement,

availability of the specific type of medical imaging scan along

with the number of times the scans was performed (e.g., Pre and

post-surgery MRI scans), availability of EEG, tissue inventory,

and keyword-based search through available unstructured

clinical notes.
Challenges ahead

We have created a multimodal database platform for

uploading, storing, searching, and analyzing system biology

datasets collected from two-stage epilepsy brain surgery patients.

The platform INTUITION, named to mimic what a physician

requires to make a diagnosis after absorbing many types of data,

currently holds two hundred well-curated patient datasets along

with location co-registered tissue samples used for histology and

omics analysis of thousands of brain regions. While this form of

‘Big Data’ is not large compared to other datasets, the

comprehensive, multimodal nature allows discoveries not possible

with other, larger, but less integrated datasets. This is achieved

through direct linkages between clinical, electrical, imaging,

histological, and molecular data. Having both a clinical and

research environment protects the patient’s identity and enables

the connection of all deidentified data modalities for the same

patient. INTUITION and the datasets within INTUITION have

led to important discoveries summarized in a recent review

article (2). These discoveries range from improving our

fundamental understanding of epilepsy to new therapeutics, new

diagnostic approaches, and discoveries about what makes the

human brain unique. The INTUITION system has fostered

several patent applications, new drugs, and brain imaging

strategies that would not have been possible without a highly

curated, integrated, multimodal dataset of the human brain.

Moving forward, this platform has multiple challenges that are

currently being addressed through further development of the

INTUITION platform: (1) Finding ways to integrate the

heterogeneous datasets for each patient and across all patients at

multiple sites/surgical programs to create a secure, federated

platform of deidentified data; (2) The search for epileptogenic

biomarkers presents specific challenges on combined

electrophysiology and imaging data and histology-omics data

requiring new, offline workflow processes to create metadata sets

that reduce the complexity for meaningful insight; (3) The

platform is highly labor-intensive and requires a significant

amount of manual data processing and entry; (4) Most datasets

that feed into INTUITION reside on different, siloed servers that

do not link to one another.
Conclusion

INTUITION is a unique data platform that brings together

multiple data types within a focused human disease. Building
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this for patients who undergo epilepsy surgery provides some of

the most detailed multimodal data that exists on the human

brain linked to fresh human brain tissue samples. While not a

large database, the carefully curated metadata for each patient

offers an unparalleled opportunity to understand and develop

novel diagnostic and treatment approaches for patients with

epilepsy. Advances made in the building, expansion, and

automation of INTUITION will further advance its utility and

allow discoveries in many other human disorders.
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annotation of neurologic signs
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The extraction of patient signs and symptoms recorded as free text in electronic
health records is critical for precision medicine. Once extracted, signs and
symptoms can be made computable by mapping to signs and symptoms in
an ontology. Extracting signs and symptoms from free text is tedious and
time-consuming. Prior studies have suggested that inter-rater agreement for
clinical concept extraction is low. We have examined inter-rater agreement
for annotating neurologic concepts in clinical notes from electronic health
records. After training on the annotation process, the annotation tool, and
the supporting neuro-ontology, three raters annotated 15 clinical notes in
three rounds. Inter-rater agreement between the three annotators was high
for text span and category label. A machine annotator based on a
convolutional neural network had a high level of agreement with the human
annotators but one that was lower than human inter-rater agreement. We
conclude that high levels of agreement between human annotators are
possible with appropriate training and annotation tools. Furthermore, more
training examples combined with improvements in neural networks and
natural language processing should make machine annotators capable of
high throughput automated clinical concept extraction with high levels of
agreement with human annotators.

KEYWORDS

natural language processing, annotation, electronic health records, phenotype,

clinical concept extraction, inter-rater agreement, neural networks, signs and

symptoms

Introduction

Extracting medical concepts from electronic health records is key to precision medicine

(1). The signs and symptoms of patients (part of the patient phenotype) are generally

recorded as free text in progress notes, admission notes, and discharge summaries (2).

Clinical phenotyping of patients involves the mapping of free text to defined terms that

are concepts in an ontology (3,4). This is a two-step process that involves identifying

appropriate text spans in narratives and then converting the text spans to target

concepts in an ontology (5,6). The process of mapping free text to defined classes in an
01 frontiersin.org137
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ontology, illustrated in (1) and (2), has been termed

normalization (7,8).

patient movements were ataxic ) ataxia

) UMLS CUI :C0004134 (1)

freetext ) clinical concept ) machine readable code (2)

In this example 1, an annotator highlights the term ataxic, then it

is mapped to the concept ataxia, and the UMLS code CUI

C0004134 is retrieved (9). This is a slow and error-prone

process for human annotators. Agreement between human

raters for annotation of clinical text is often low. A study on

the agreement for SNOMED CT codes between coders from

three professional coding companies yielded about 50 percent

agreement for exact matches with slightly higher agreement

when adjusted for near matches (10). Another study of

SNOMED CT coding of ophthalmology notes yielded low levels

of inter-rater agreement ranging from 33 to 64% (11). Identified

sources of disagreement between coders included human errors

(lack of applicable medical knowledge, lack of recognition of

abbreviations for concepts, and general carelessness), annotation

guideline flaws (under specified and unclear guidelines),

ontology flaws (polysemy of coded concepts), interface term

issues (inconsistent categorization of clinical jargon), and

language issues (interpretation difficulties due to use of ellipsis,

anaphora, paraphrasing, and other linguistic concepts) (12).

The goal of high throughput phenotyping is to use natural

language processing (NLP) to automate the annotation process

(13). Approaches to high throughput clinical concept extraction

have included rule-based systems, traditional machine learning

algorithms, deep learning algorithms, and hybrid methods that

combine algorithms (6). Tools for concept extraction based on

rules, linguistic analysis, and statistical models, such as cTAKES and

MetaMap, generally have accuracy and recall between 0.38 and 0.66

(5,14,15). Neural networks are being used for concept recognition

with increasing success. Arbabi et al. developed a convolutional

neural network that matches input phrases to concepts in the

Human Phenotype Ontology with high accuracy (16). Other deep

learning approaches, including neural networks based on

bidirectional encoder representations from transformers (BERT),

show promise for automated clinical concept extraction (5,6,17,18).

In this paper, we examine inter-rater agreement for text-span

identification of neurological concepts in notes from electronic

health records. In addition to the agreement between human

annotators, we examine the agreement between human

annotators and a machine annotator based on a convolutional

neural network.
Methods

Annotation tool

Prodigy (Explosion AI, Berlin, Germany) was used to annotate

neurologic concepts in the EHR physician notes. Prodigy runs
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under python in the terminal mode of macOS, Windows, or

Linux. It creates a web interface locally (Figures 1A,B). As input,

Prodigy requires free text to be converted to JSON format.

{ 0 0text00 : 0 0The patient had weakness andsensoryloss00} (3)

Each line of text from a JSON file 3, appears as a separate screen for

annotation by Prodigy (Figures 1A,B). Annotations are stored in

an SQLite database and are exportable with annotations and text

spans as a JSON file. Prodigy is integrated with the spaCy natural

language processing toolkit (Explosion AI) and can train neural

networks for named entity recognition and text classification.

The Kappa statistic was used to assess agreement between the

three annotators and the neural network. The Kappa statistic

corrects observed rater agreement for chance rater agreement. It

ranges from 0 to 1, where 1 is complete agreement, 0 is a chance

agreement. Values of Kappa of 0.6 to 0.79 are considered

substantial agreement, values between 0.8 and 0.90 are

considered strong agreement, and values over 0.90 are considered

near perfect agreement (19,20). For each line of text that had one

or more annotations (3), the agreement was rated 1 for the

annotations if both annotators agreed and rated 0 if the

annotators disagreed. A line of text with no annotations

(null_annotations) by either annotator was scored 1 for

agreement. The total number of annotations considered by the

Kappa statistic for two raters A and B was

(A< Bþ null annotations).
Rater training and instructions

Three annotators participated in the research. Annotator 1

(A1) was a senior neurologist, Annotator 2 (A2) was a pre-

medical student majoring in neuroscience, and Annotator 3 (A3)

was a third-year medical student. Raters first reviewed neurologic

signs and symptoms in the neuro-ontology of neurological

concepts (21) and then were instructed to find all neurological

concepts in the neurology notes. Signs and symptoms (ataxia,

fatigue, weakness, memory loss, etc.) were annotated but not

disease entities (Alzheimer’s disease, multiple sclerosis, etc.)

Raters annotated the neurologic concepts and ignored laterality

and other modifiers (e.g., arm pain for right arm pain, back pain

for severe back pain, etc.) In addition, annotators tagged each

text span with an category label (see Figures 1A,B). Category

labels included unigrams (one-word concepts such as ataxia),

bigrams (two-word concepts such as double vision), trigrams

(three-word concepts such as low back pain), tetragrams (four-

word concepts such as relative afferent pupil defect), extended

(text span annotations longer than four words), compound

(multiple concepts in one text span such as brisk ankle and knee

reflex), and tabular (concepts represented in tabular or columnar

format, usually showed right and left body sides). Our

motivation for tagging signs and symptoms by the length and

type of the text span was a hypothesis that neural networks

trained to recognize signs and symptoms in medical text would
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FIGURE 1

(A) Annotator screen for a patient with multiple sclerosis. The patient complains of imbalance, leg weakness, and pain, and these concepts have been
annotated. Imbalance and pain are labeled as unigrams; leg weakness is labeled a bigram. Annotators were trained to ignore laterality (e.g., right leg
weakness.) Each Prodigy screen reflects one line of text from the JSON input file. This screen has three potential items to contribute to the Kappa
statistic: imbalance, leg weakness, and pain. (B) Annotator screen for neurological concepts for a patient with multiple sclerosis. The patient denies
problems with vision, sensation, bladder, bowel, gait, or falls. The annotators are trained not to annotate negated concepts. The NN had no specific
negation rule but learned not to tag negated concepts through training examples. Since there are no signs and symptoms in this screen, if both
annotators show no annotations, a score of 1 is assigned to the Kappa statistic for agreement on this screen. If one annotator shows no annotations
and another shows annotations on this screen, annotator disagreement is scored.
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exhibit lower accuracies with longer text spans. This hypothesis was

confirmed by a recent study from our group (18).
The machine annotator

The machine annotator (NN) was a neural network that was

trained to recognize text spans containing neurology concepts in

the electronic health record physician notes. The NN was the

default spaCy named entity recognition model based on a four-

layer convolutional neural network (CNN) that looked at four

words on either side of each token using tok2vec with an initial

learning rate 1� 10�3. The default parameters provided by

Prodigy were used for training. NN was trained on 11,000

manually annotated sentences derived from neurology textbooks,

online neurological disease descriptions, and electronic health

record notes. Further details on training the NN are available in (18).
Annotations

Five patient EHR notes were annotated for each of the three

rounds. The annotation of EHR clinical notes for research

purposes was approved by the Institutional Review Board of the

University of Illinois (UIC Neuroimmunology Biobank 2017-

0520Z). Informed patient consent for use of clinical notes was
Frontiers in Digital Health 03139
obtained from all subjects through the UIC Biobank Project.

Three human annotators (A1, A2, and A3) and the machine

annotator (NN) annotated each note. After each round, the

annotators met and reviewed any annotation disagreements. The

annotations of each annotator were stored in an SQLite database

and exported as a JSON file for scoring for inter-rater agreement

in Python. Text spans were mapped to concepts in the neuro-

ontology (21) utilizing a lookup table with 3,500 target phrases

and the similarity method from spaCy (22) (pp. 152–54).

Univariate analysis of variance and Cohen’s Kappa statistic were

calculated with SPSS (IBM, version 28).
Results

Annotators identified neurological signs and symptoms in

physician notes from electronic health records. Each annotator

identified the text span associated with each sign and symptom

and assigned a category label to each annotation (e.g., unigram,

bigram, trigram, etc.) Inter-rater agreement (adjusted and

unadjusted) was calculated between the three human annotators

and the machine annotator (NN).

Although five EHR notes were annotated for each round, the

notes varied in length. Each line in the EHR note was converted

to a single line in the JSON file and generated one annotation

screen in the Prodigy annotator. Round 1 had 625 annotation
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screens with 139 signs and symptoms to annotate, Round 2 had 674

annotation screens with 205 signs and symptoms to annotate, and

Round 3 had 523 annotation screens with 138 signs and

symptoms to annotate. Since the number of signs and symptoms

was less than the number of annotation screens, many annotation

screens had no signs or symptoms to annotate (null screens).

When both annotators agreed that the annotation screen had no

signs or symptoms, this was scored as annotator agreement for

both the adjusted and unadjusted metrics (Kappa and concordance).

Concordance (unadjusted agreement) on the text span task was

88:9%+ 3:2 (mean+ SD) between the human annotators and

was 83:9%+ 4:6 (mean+ SD) between the human annotators and

the machine annotator (human-human mean was higher, one-way

ANOVA, df ¼ 1, p ¼ 0:016). Concordance (unadjusted agreement)

on the category label task was 87:7%+ 4:4 (mean+ SD) between

human annotators and was 84:6%+ 5:5 (mean+ SD) between the

human annotators and the machine annotator (means did not differ,

one-way ANOVA, df ¼ 1, p ¼ 0:212).
FIGURE 2

(A) Boxplots for the Kappa statistic for inter-rater agreement for text spans fo
mean inter-rater agreement differed by rating pair (one-way ANOVA, df ¼ 5
that pair A1-A2 outperformed pair NN-A2. (B) Boxplots for the Kappa stat
concepts. Univariate analysis of variance showed that mean Kappa for cat
p ¼ 0:165, df ¼ 5).
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Cohen’s Kappa statistic (k) was high for both the text span task

(0.715 to 0.893) and the category label task (0.72 to 0.89)

(Figures 2A,B). On the text span identification task (Figure 3A)

k was higher for the human-human pairs (0:85+ 0:05

mean+ SD) than the human-machine pairs (0:76+ 0:06). On

the category label task, k (Figure 3B) was similar between the

human-human pairs (0:83+ 0:05 mean+ SD) and the human-

machine pairs (0:82+ 0:06). k for the text span task and the

category label task did not differ by round (for p values and

means see Figures 4A,B).
Discussion

Signs and symptoms are an important component of a patient’s

phenotype. Extracting these phenotypic features from electronic

health records and converting them to machine-readable codes

makes them computable (23). These computable phenotypes are
r the neurological concepts. Univariate analysis of variance showed that
, p ¼ 0:021). Post hoc comparisons by the Bonferroni method showed
istic for inter-rater agreement for category labels for the neurological
egory label agreement did not differ by rating pair (one-way ANOVA,
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FIGURE 3

(A) Kappa statistic for agreement between human-human and human-machine raters for text span. Groups differed, one-way ANOVA, df ¼ 1, p ¼ 0:004.
(B) Kappa statistic for agreement between human-human and human-machine raters for category label. Groups did not differ, one way ANOVA, df ¼ 1,
p ¼ 0:589.
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critical to precision medicine initiatives (24–26). Agrawal et al. (5)

have conceptualized clinical entity extraction as a two-step process

of text span recognition followed by clinical entity normalization.

Text span recognition is the identification of signs and symptoms

in the free text; entity normalization is the mapping of this text

to canonical signs and symptoms in an ontology such as UMLS

(9). We have focused on an inter-rater agreement for text span

annotation. For entity normalization, we depended on a look-up

table that mapped text spans to concepts in neuro-ontology. We

found high inter-rater concordance (unadjusted agreement)

among the human annotators (approximately 89%) with a lower

concordance (unadjusted) agreement between the human

annotators and the machine annotator (approximately 84%).

The concordance (unadjusted agreement) for category labels

was lower than the inter-rater agreement for text spans which
Frontiers in Digital Health 05141
may have been due to factors such as the use of hyphens in the

free text of the EHR notes and annotator uncertainty about

which types of text spans required the tabular label. The Kappa

statistic (adjusted agreement) for human-human raters was

between 0.77 and 0.91, and the Kappa statistic for the human-

machine agreement was between 0.69 and 0.87 (Figure 3A). We

consider the inter-rater adjusted agreement between the human

raters (0.77 to 0.91) good, especially when contrasted with the

inter-rater adjusted agreement between trained neurologists

eliciting patient signs and symptoms (27,28). For trained

neurologists eliciting signs and symptoms such as weakness,

sensory loss, ataxia, aphasia, dysarthria, and drowsiness, the k

statistic ranges from 0.40 to 0.70 (27,28).

The higher levels of agreement in this study may reflect that

eliciting a sign or symptom from a patient is more difficult than
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FIGURE 4

(A) Kappa statistic for inter-rater agreement for text span by round. Round 1: 0:78+ 0:03 (mean+ SE), Round 2: 0:84+ 0:03, Round 3: 0:81+ 0:03,
groups do not differ, one-way ANOVA, df ¼ 2, p ¼ 0:310. (B) Kappa statistic for inter-rater agreement for category label by round. Round 1:
0:80+ 0:21 (mean+ SE). Round 2: 0:85+ 0:21, Round 3: 0:83+ 0:21, groups do not differ, one-way ANOVA, df ¼ 2, p ¼ 0:306.
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annotating a sign or symptom in an EHR. Nonetheless, the

adjusted agreement (k) was higher in this study than in prior

annotation studies (10,11), possibly reflecting the training of the

annotators, the use of a neuro-ontology, the decision not to code

severity or laterality of the symptoms, and the use of a

sophisticated annotation tool.

We did not find a training effect for the human annotators

across rounds (Figures 4A,B). Although the annotators met after

each round and discussed discrepancies in their annotations,

inter-rater adjusted and unadjusted agreement did not improve

significantly between rounds. This suggests that there may be a

ceiling for inter-rater agreement for text span annotation with a

Kappa of 0.80 to 0.90 and that higher levels of agreement may
Frontiers in Digital Health 06142
not be possible due to the complexity of the task and random

factors that are not addressable with additional training or

experience. This ceiling effect for the human inter-rater

agreement has implications for the potential for higher rates of

inter-rater agreement between humans and machines

(Figure 3B). Mean inter-rater adjusted agreement for text span

was higher for the human-human pairs (k ¼ 0:85) than the

human-machine pairs (k ¼ 0:76). Additional training examples

would likely improve the performance of the machine annotator

on the text span and category label tasks. Furthermore, other

neural networks are likely to outperform the convolutional

neural network (CNN), which is the baseline for Prodigy. We

have found that a neural network based on bidirectional encoder
frontiersin.org
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representations from transformers (BERT) can improve

performance on the text span task by 5 to 10% (18). Others have

found that deep learning approaches based on BERT outperform

approaches based on CNN for concept identification and

extraction tasks (17). A ceiling effect for inter-rater agreement for

annotating signs and symptoms, whether human-human or

human-machine, near a k of 0.90 is likely.

Given the heavy documentation burden on physicians and

physician burn-out attributed to electronic health records,

physician documentation of signs and symptoms will likely

continue as free text. Structured documentation of signs and

symptoms as an alternative to free text is too burdensome in the

current environment (29–34). A medium-sized medical center

with a daily inpatient census of 300 and a daily outpatient

census of 2,000 generates at least 5,000 clinical notes daily or

over 1.5 million notes annually (unpublished estimates based on

two academic medical centers). The sheer volume of clinical

notes in electronic health records makes the manual annotation

of signs and symptoms impractical. Extracting signs and

symptoms for precision medicine initiatives will depend on

advances in natural language processing and natural language

understanding.

Although high throughput phenotyping of electronic health

records by manual methods is impractical (13), the manual

annotation of free text in electronic health records can be used to

train neural networks for phenotyping. Neural networks can also

speed up the manual annotation process. The annotator Prodigy

(35,36) has an annotation mode called ner.correct, which uses a

trained neural network to accelerate the manual annotation of

signs and symptoms.

With suitable training and guidelines, high levels of inter-rater

agreement between human annotators for signs and symptoms are

feasible. Restricting the annotation to a limited domain (e.g.,

neurological signs and symptoms) and restricted ontology (e.g.,

neuro-ontology) simplifies manual annotation. Although the

inter-rater agreement between human and machine annotators

was lower than between human annotators, advances in natural

language processing should bring inter-rater agreement between

machines and humans closer and make high throughput

phenotyping of electronic health records feasible.

This work has limitations. The sample of clinical notes was

small (five patient notes per annotation round). A larger sample

of notes would have been desirable. The annotation process was

restricted to neurological signs and symptoms in neurology

notes. The target ontology was a limited neuro-ontology with

1600 concepts (21). We evaluated only one machine annotator

based on a convolutional neural network. Other neural networks

are likely to perform better. Our results on an inter-rater

agreement might not generalize to other medical domains and

ontologies. Although we had three raters for this study, we did

not designate any of them as the “gold standard,” and we elected

to calculate inter-rater agreement for each pair of raters

separately. In our opinion, unadjusted agreement at the 90% level

between human raters should be considered high. Likewise,

machine annotators that can reach 90% unadjusted agreement

with human annotators should be considered accurate. Because
Frontiers in Digital Health 07143
we lacked a gold standard, we chose to measure the performance

of the machine annotator as concordance (unadjusted agreement)

and Kappa statistic (adjusted agreement) rather than as accuracy,

precision, and recall. Although we used ANOVA to assess the

significance of differences in the means for adjusted and

unadjusted agreement, we cannot be certain that all assumptions

underlying ANOVA were met in our samples, including

normality, homogeneity of variance, and independence.
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Implementation and impact
of a point of care
electroencephalography platform in
a community hospital: a cohort
study
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1Department of Medicine, Division of Critical Care Medicine, Cooper University Hospital, Cooper
University Medical School of Rowan University, Camden, NJ, United States, 2Department of Medicine,
Critical Care Medicine Fellowship, Inspira Medical Center, Vineland, NJ, United States, 3Cardiopulmonary
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Objective: To determine the clinical and financial feasibility of implementing a
poc-EEG system in a community hospital.
Design: Data from a prospective cohort displaying abnormal mentation
concerning for NCSE or rhythmic movements due to potential underlying
seizure necessitating EEG was collected and compared to a control group
containing patient data from 2020.
Setting: A teaching community hospital with limited EEG support.
Patients: The study group consisted of patients requiring emergent EEG during
hours when conventional EEG was unavailable. Control group is made up of
patients who were emergently transferred for EEG during the historical period.
Interventions: Application and interpretation of Ceribell®, a poc-EEG system.
Measurement and main results: 88 patients were eligible with indications for poc-
EEG including hyperkinetic movements post-cardiac arrest (19%), abnormal
mentation after possible seizure (46%), and unresponsive patients with concern
for NCSE (35%). 21% had seizure burden on poc-EEG and 4.5% had seizure
activity on follow-up EEG. A mean of 1.1 patients per month required transfer to
a tertiary care center for continuous EEG. For the control period, a total of 22
patients or a mean of 2 patients per month were transferred for emergent EEG.
Annually, we observed a decrease in the number of transferred patients in the
post-implementation period by 10.8 (95% CI: −2.17–23.64, p=0.1). Financial
analysis of the control found the hospital system incurred a loss of $3,463.11 per
patient transferred for an annual loss of $83,114.64. In the study group, this
would compute to an annual loss of $45,713.05 for an overall decrease in
amount lost of $37,401.59. We compared amount lost per patient between
historical controls and study patients. Implementation of poc-EEG resulted in an
overall decrease in annual amount lost of $37,401.59 by avoidance of transfer
fees. We calculated the amount gained per patient in the study group to be
$13,936.44. To cover the cost of the poc-EEG system, 8.59 patients would need
to avoid transfer annually.
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Conclusion: A poc-EEG system can be safely implemented in a community hospital leading
to an absolute decrease in transfers to tertiary hospital. This decrease in patient transfers
can cover the cost of implementing the poc-EEG system. The additional benefits from
transfer avoidance include clinical benefits such as rapid appropriate treatment of
seizures and avoidance of unnecessary treatment as well as negating transfer risk and
keeping the patient at their local hospital.

KEYWORDS

status epilepticus, point-of-care EEG, transfers, seizures, community hospital, finances
TABLE 1 Ceribell vs. Conventional EEG characteristics.

Conventional Ceribell

Frequency
Sampling rate (range) 200–1,000 Hz 250 Hz

Frequency response (range) 0.01–500 Hz 0.5–100 Hz

Channels 32 8

Number of electrodes 21 10
Introduction

A significant proportion of comatose patients in the emergency

department (ED) or the intensive care unit (ICU) are at risk of

developing nonconvulsive status epilepticus (NCSE), which is

defined as a state of continuous or repetitive seizures without

convulsions for more than 5 min (1). The annual incidence of

status epilepticus (SE) is estimated to be 9.9–41 per 100,000

hospital admissions, with roughly one third of those classified as

NCSE (2). Of all patients undergoing EEG in the ICU, 19% have

been found to have seizure activity (3) and 48% of patients after

convulsive status have been shown to have NCSE (4). Without

timely diagnosis, treatment, and extenuation of NCSE, patients

are at increased risk of neurological injury and death (5).

Continuous electroencephalogram (cEEG) remains the method

of choice to diagnose NCSE with current guidelines recommending

initiation within one hour of status epilepticus (1). Unfortunately,

EEG is not available at all centers despite its association with

improved outcomes due to resources required for its

implementation, maintenance, and use (6). This leads to

unnecessary transfer to tertiary centers for patients without

NCSE resulting in a delay in further evaluation and treatment as

well as additional costs and risks to the patient. Even at centers

with cEEG, there is frequently a delay in initiation that falls

outside the current guidelines (7, 8) An easy to deploy EEG

system that allows for rapid diagnosis would fill these voids.

A poc-EEG platform uses fewer EEG leads than traditional

EEG but in theory can be applied rapidly and with minimal

training. Poc-EEG integrates three main tools for EEG

interpretation: (a) raw EEG data, (b) sonification of EEG

patterns, and (c) artificial intelligence (AI), which provides a

percentage that reflects probability of seizure, obviating the

necessity for bedside neurology interpretation. When compared

to traditional EEG, poc-EEG has demonstrated similar accuracy

in diagnosing NCSE (9, 10). Poc-EEG has been successfully

implemented in academic centers allowing for timely and

accurate assessment of patients in the critical care setting (8). A

case series of 10 patients has shown the successful use of poc-

EEG to assist in timely diagnosis and treatment of suspected

seizure in a community hospital (11).

One poc-EGG system, Ceribell® (Mountain View, CA), is an

FDA-approved limited montage 10 electrode EEG system that

can be rapidly applied to patients with a suspicion of seizure. To

ensure appropriate connectivity, each electrode has a gel which is

expelled and after twisting the external part of the electrode a
02146
green light is displayed. Once all ten electrodes have an adequate

connection, the device bedside monitor begins recording.

Ceribell’s® software algorithm used by the Seizure Detection

module identifies sections of EEG that may correspond to

electrographic seizures via preprocessing and segmenting signals

into smaller events and then evaluating those signals based on

time, frequency and channel features over a moving 5-min

window. If the seizure thresholds are reached the device produces

an alarm. The algorithm generated a seizure alert with 100%

sensitivity if burden >50%, 88% if >10% but more importantly

showed a negative predictive value of 99% if no seizure burden

was reported (12). A comparison of Ceribell and conventional

EEG characteristics is provided in Table 1 and Figure 1.

In this study, we investigated the feasibility of implementing

Ceribell®, a poc-EEG system, in a community hospital. We

analyzed the effect of poc-EEG on clinical and financial outcomes.

Specifically, our objectives were to: (a) describe implementation of

a poc-EEG system at a community hospital; (b) characterize a

study cohort who would undergo poc-EEG; and (c) provide basic

analysis of potential cost benefit from transfer avoidance and apply

that analysis to the cost of the technology.
Methods

Study design

Patients were prospectively identified with concern for seizure

activity necessitating EEG for management during hours when

conventional EEG was not available. This included patients with

abnormal mentation potentially due to NCSE or rhythmic

movements with concern for underlying seizure activity. A

retrospective cohort consisting of patients requiring transfer for

emergent EEG were used to determine the baseline number of

patients transferred monthly and the costs associated with the

transfer.
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FIGURE 1

Conventional EEG vs Ceribell EEG.
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Setting

Two community hospitals within the Inspira Health Network

located in Vineland, NJ (262 beds) and Mullica Hill, NJ (210

beds) were identified. Neurology consultation was available at

both hospitals as well as routine spot EEGs during regular

business hours, specifically 9am–5pm with limited neurology

coverage and no EEG technicians on weekend days. Twenty-

four-hour critical care fellow support was available at both

hospitals as well as intensivist daytime coverage and 24-hour

availability. Data was collected between January and October

2021. Historical data was obtained from the calendar year 2020.

Transfers during the month of December 2020 were excluded as

this is when the poc-EEG device was piloted, which affected the

number of transfers. The year preceding intervention was chosen

as the historical cohort for several reasons. While practice

patterns throughout the COVID-19 pandemic likely changed, the

two years more closely resembled each other than if compared to

a period not within the COVID-19 pandemic. Furthermore, prior

to 2020 neurology consultation within the hospital system was

even more sporadic as it relied on outpatient neurology coverage.

Starting in 2020, a dedicated in-patient neurology consultant was

hired to cover normal business hours. Prior to this year, patients

were likely transferred for neurology consultation alone, making

comparison impossible.
Intervention

Ten critical care fellows were trained in how to appropriately

apply the Ceribell® headband (Figure 2) by the company’s
Frontiers in Digital Health 03147
educator. Each fellow had a unique login for the mobile portal,

allowing for further investigation. No training was needed by the

bedside nurse, other than to notify the fellow if the device

alarmed or connectivity failed (red light displayed).

Patients in the ED or ICU with concerns for seizure activity

were prospectively identified and Ceribell® headband device was

applied. These patients demonstrated either abnormal mentation

possibly due to NCSE or rhythmic movements potentially due to

convulsive seizure activity. After application, the critical care

fellow directly observed the patient for the first five minutes.

The EEG headband was then allowed to record for a

maximum of two hours. After removal of the headband, the

critical care fellow would review the seizure threshold reached

during the entire two hours via the online portal. A treatment

algorithm was provided (Figure 3) that instructed the

appropriate treatment intervention if the seizure threshold was

<10%, 10%–70%, or >70%. Intensivist and neurology

consultants were available if needed. Based on the findings and

intervention required, a standardized note was documented

(Figure 4). During the next regular business hours, a standard

EEG was performed on all patients as well as a neurology

consultation. In addition, the poc-EEG tracings were

interpreted by the neurology consultant. Figure 5 describes the

workflow.
Population

After adopting the use of poc-EEG, clinical criteria were

established pertaining to appropriate use. Its use was restricted

to patients requiring emergent diagnostic EEG during hours
frontiersin.org
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FIGURE 3

Treatment algorithm.

FIGURE 2

Ceribell poc-EEG headband, recorder and portal.
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when conventional EEG was not available. The use of poc-EEG

was left to the treating physician’s preference and was not part

of a study protocol. Common indications included patients

with hyperkinetic movements post-cardiac arrest, patients

with history of seizures and/or witnessed convulsive seizure
Frontiers in Digital Health 04148
activity without return to baseline mentation, and all

other patients found unresponsive or stuporous upon

admission with concern for NCSE (Figure 6). The study size

was determined by the total number of patients receiving

poc-EEG.
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FIGURE 4

Poc-EEG event note.

FIGURE 5

Poc-EEG workflow.

Ward et al. 10.3389/fdgth.2023.1035442
The control group consisted of patient transferred for emergent

EEG during the historical period.
Data collection

Prior to data collection, the institutional review board of

Inspira Medical Center approved the study (2022-02-001) and

waived the need for informed consent. The standardized note

was reviewed as well as the neurologists’ dictation of the poc-

EEG study and the corresponding standard EEG. Their official

interpretation was used to determine electrographic seizure

activity as well as response to treatment. Chart review was then

completed to identify disposition outcome, mortality, and

complications that occurred throughout the hospitalization.

After the patient was discharged and/or transferred, a coding

summary was generated by the financial billings department and

was included in the patient’s medical record. Each patient’s

hospitalization record was reviewed, and the billing department

provided the average net billed and accrued.
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Financial analysis

Understanding the financial feasibility after implementation of

a new product is important for its longevity. The focus of the

analysis was to define the financial impact due to the absolute

reduction in the number of transferred patients after

implementation of poc-EEG. We chose to compare transfers to

outside hospitals for emergent EEG between groups. While this

may not capture the total financial impact of poc-EEG

implementation, it can act as a surrogate reflecting the financial

burden on the health care system. Transfers to outside hospitals

have been linked to increasing health care costs, and, at least for

NCSE, these costs have been shown to be decreased through the

use of technology and AI (13, 14). Further analysis could be

done to determine if the cost of the technology could be covered

due to patient transfer avoidance.

For all analysis, we used the mean amount collected for each

group. We did not have access to financial data at the level of

individual patients. We used the amount collected as opposed to

the amount charged as charged amounts are subject to pricing
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FIGURE 6

Poc-EEG cohort.
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differences across institutions and therefore may limit

generalizability of results.

To determine the financial impact, we did the following. First,

we calculated the annual loss due to patients transferred for EEG.

We took the control group and determined the mean collected

per patient. We subtracted the expenses of transfer from this

value. This represented the net loss per patient transferred. This

could then be extrapolated to an annual loss based on total

number of patients transferred during the control year. We

assumed that there were no differential transfer costs between

transferred patients in both groups. This allowed us to take the

same amount lost per patient and apply it to the number of

patients transferred in the treatment group providing an annual

loss after implementation of poc-EEG. The difference between

these two values represents the decrease in annual loss of

patients requiring transfer for emergent EEG.

In order to determine the number of patients who avoided

transfer needed to cover the fixed cost of the device, we did the

following. We took the mean amount collected for the treatment

group and subtracted the variable cost of the headband. We then

subtracted the amount lost if the patient was transferred

(calculated above). This represented the net earned by avoiding

patient transfer. We then calculated the annual fixed cost of the

Ceribell® system (monthly subscription fee × 12). By dividing, the

annual cost of the technology by the amount earned per patient

avoiding transfer, the number of transfers needed to cover the

expense of the system could be determined.
Statistical analysis

The results are mostly descriptive in this study. Comparison of

frequencies was preformed using the Chi Square tests. 95%
Frontiers in Digital Health 06150
confidence interval was used with statistical significance at p <

0.05. Quantitative data including reduction in transfers and

financial outcomes did not require further analysis. Confidence

intervals for financial analysis were unable to be calculated as

only the mean for each group was collected. All data was

accounted for.
Results

Clinical characteristics

From January through October 2021, we implemented and

used poc-EEG in 88 subjects. Eligible subjects included patients

with hyperkinetic movements post-cardiac arrest (19%, n = 17/

88), patients with a history of seizures and/or with witnessed

convulsive seizure activity and without return to baseline (46%,

n = 40/88), and all other patients found unresponsive or

stuporous upon admission to the hospital with concern for

NCSE (35%, n = 31/88). Approximately 10% (n = 9/88) of the

poc-EEG were applied in the emergency room, the rest of the

patients were identified in the ICU (90%, n = 79/88). Of the 88

patients, 21% (n = 19/88) had significant electrographic seizure

burden on poc-EEG and 4% (n = 4/88) had electrographic seizure

activity confirmed on follow-up EEG. Another 5% (n = 5/88)

were transferred immediately after poc-EEG identified high

burden of electrographic seizure activity as an immediate need

for continuous EEG was identified; therefore poc-EEG excluded

and/or decreased ongoing concern for electrographic seizure

activity in 78% (n = 69/88) of our inception cohort (Figure 7).

Demographic characteristics of the patients in this cohort

showed a mean age of 57 years old (95% CI: 53.27–60.65), 52%

(n = 46/88) were male, 46.5% (n = 41/88) female, and 1 person

identified as transgender (gender not identified). Approximately

16% (n = 14/88) had a history of seizures on AEDs. Overall, the

cohort was 64% Caucasian (n = 56/88) with 20% African

American (n = 18/88), 11% Hispanic (n = 10/88), 0.3% Asian (n

= 3/88), and 0.1% other (n = 1/88). All data was accounted for

without any missing variables. (Table 2).

Only 2 patients where poc-EEG identified 0% electrographic

seizure burden were found to have electrographic seizure activity

on the follow-up standard EEG; thus only 2.4% of patients (n =

2/83) were found to have electrographic seizure activity on

follow-up EEG despite a negative poc-EEG; 5 patients were

transferred before follow-up EEG could be performed.
Transfer data

During the study period, eleven patients (mean of 1.1 per month)

were transferred for emergent EEG. This constituted 13.4% (n = 11/

82) of the total cohort. During 2020, 22 patients (mean of 2 per

month) were transferred to a tertiary center for emergent EEG.

The difference between these two values represents the decrease in

the annualized number of patients requiring transfer for emergent

EGG. This computed to an annual estimate of 10.8 patients (95%

CI: −2.17–23.64, p = 0.1).
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FIGURE 7

Poc-EEG cohort characteristics.
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Financial analysis

The control group had a mean amount collected of

$4,036.89 per patient. This is for the initial treatment and

stabilization of the patient prior to transfer. For our hospital

system, most patients requiring transfer go to one academic

hospital that is roughly 40 miles away. Given the acuity of

illness of these patients and need for ACLS trained nursing

and appropriate monitoring capabilities, the transfer center

reported a mean cost of $7,500 per patient billed to the

sending facility. When adjusted for the amount collected per

patient, this result in a mean loss of $3,463.11 per patient or

an estimated annual loss of $83,114.64. This was calculated by

multiplying $3,463.11 by 24, the number of patients

transferred during the control period.

When the study period is analyzed, the eleven patients who

required transfer would result in a loss of $38,094.21, $3,463.11

per patient, for the ten-month study period or estimated

annual loss of $45,713.05. For this cohort after the

implementation of poc-EEG, Inspira experienced an overall
TABLE 2 Demographic characteristics.

Cohort characteristics Historical characteristics
Age (years)* 57 (53.27, 60.65) 58 (50.08, 67.84)

Gender
Male 52.2% 60.9%

Female 46.6% 39.1%

Transgender 1.2% 0%

Race
Caucasian 63.6% 56.5%

African American 20.5% 17.4%

Hispanic 11.3% 26.1%

Asian 3.3% 0%

Other 1.2% 0%

*Data presented as mean (25th percentile, 75th percentile).
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decrease in amount lost due to transferred patients of

$37,401.59. This was calculated by subtracting $37,401.59

from $83,114,64.

The treatment cohort (those that received poc-EEG) had a

mean collection of $11,161.33 per patient. As above, assuming

each patient transferred incurs a loss of $3,463.11 per patient

every patient kept because of poc-EEG would result in a net

positive of $13,936.44 per patient after the cost of the poc-

EEG headband was applied. The poc-EEG system has a

monthly fixed cost of $9,975 for a multi-hospital system or

$119,700 annual cost. To cover those costs, 8.59 patients per

year (0.72 per month) would need to avoid transfer. We

demonstrated a reduction in transfer of 0.9 patients per

month (Table 3). It would take 9.5 months to recover upfront

costs. The number needed to avoid transport to recuperate

annual costs would be significantly lower if that patient

required flight transport as these costs often exceed

$40,000.00 and therefore would make avoidance of

unnecessary transfer more important.
TABLE 3 Poc-EEG net income.

Revenue (per
patient)

Variable
expenses (per

patient)

Net income
(per patient)

Billed Collected
Control $11,361.30 $4,036.89 $7,500.00 (transfer

cost)
Control Collected–
Transfer cost =−

$3,463.11

Ceribell $28,585.49 $11,161.33 $688.00 (headband
cost)

Ceribell collected–
headband =
$10,473.33

Savings by avoiding
transfer

Ceribell net income – Control net income = $13,936.44

Ceribell annual fixed
cost

Ceribell monthly cost ($9,975.00) × 12 months =
$119,700.00

# of prevented
transfers needed to
cover costs

($119,700.00)/($13,936.44) = 8.59
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Discussion

Critically-ill neurological patients account for at least 10%–15%

of admissions to intensive care units of which 8%–34% will

experience seizure activity (15, 16). Approximately 3.3% of all

critically ill patients experience seizures and a high index of

suspicion needs to be had by providers especially in comatose

patient or those without return to baseline mentation (17). Of

seizures captured in one study, 34% were nonconvulsive seizures,

and of these, 76% were NCSE (3). Emergent EEG has been noted

to be of increasing importance in critical care but access to this

diagnostic modality has remained limited. At one large US

tertiary care medical center, where EEG availability and

accessibility barriers should be minimal, the time to EEG in the

ICU was 3.5 h (7). However, outside of these centers, even that

time is unachievable as one study showed that in 286 emergent

EEGs, the average interval from request to formal reporting was

1.13 days (18). A recent publication of the use of poc-EEG in

COVID-19 patients showed that for 10 consecutive device

applications, mean time to interpretation was 23.8 min compared

to 126.5 min for routine 18-channel studies (19). Before the

advent of poc-EEG, many smaller hospitals would often transfer

patients for these services; one study conducted in 24 West

Virginia hospitals found that the need for critical care and

neurology services accounted for nearly 54% of all transfers

during their study period (20). Thus, there is clearly a need for

and adaptation of poc-EEGs aimed at reducing the overall time

to EEG as well as expanding EEG availability outside of tertiary

care centers but data on this is limited. Poc-EEG also has the

added benefit of faster application and exposure to those

applying the device to patients who may have communicable

diseases.

Our experience provides a pragmatic framework on how to

successfully implement this technology in a community setting

with limited neurological coverage. The logistics regarding proper

implementation and use of poc-EEG is often the largest obstacle

to overcome. The stepwise approach provided here may provide

guidance for other institutions with similar EEG availability and

a means to fill that void. In addition, the data provided here

demonstrates this can be done with a high concordance between

poc-EEG and the following standard full montage EEG. This

leads to improvement in care provided and a decrease in the

absolute number of transfers to tertiary centers.

Avoidance of unnecessary transfers allows patients to be cared

for in their own community. This decreases the burden of travel on

the patients’ family. It allows provides an opportunity for the

patients’ outpatient providers to continue to participate in the

patients’ care. This also eliminates risk associated with transfer.

While the analysis did not show a statistically significant

reduction in transfers, it did show an absolute reduction in

number of transfers and a favorable financial analysis. The study

was under powered and results could vary if examined on a

larger scale. The analysis included provides financial justification

for implementation of poc-EEG systems. Previous studies showed

that transfers to referral centers are associated with higher costs
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to patients and often with no changes in treatment management

(14). Transferred patients hospital cost were on average $9,600

higher compared with non-transfer patients and a recent US

study showed transfer costs of $6,160 plus a $24.64 per mile

charge for ground transport and $11,760 for air transfers, which

excluded billing for other services (14, 21).

The major benefits of adapting poc-EEG include improved

clinical care by addressing a diagnostic deficit (i.e., access to EEG

during off hours). Other benefits, such as promoting patient

satisfaction and minimizing transfer risk, are also notable.

Financial analysis supported the cost of the implementation. This

was done by examining per patient average collection as well as

calculating the amount saved by minimizing transfer costs. While

these savings did not cover the entire cost of the technology

there is additional financial benefit from avoiding transfer. While

this is challenging to calculate retrospectively as it is difficult to

identify which patients would have been transferred if poc-EEG

was not available. We were able to calculate on average how

much each poc-EEG patient collected and from that determine

how many patients needed to avoid transfer to cover the costs of

the poc-EEG. Given the ease of use and absolute reduction in

transfers between the two cohorts, poc-EEG will likely justify its

associated cost and reduce out of hospital transfers.

Poc-EEG demonstrated a very low false negative rate for

patients with minimal electrographic seizure activity on poc-EEG

but confirmed electrographic seizure activity on standard EEG.

Explanation for the false negatives could be attributed to the

time between studies. False positives or those with electrographic

seizure activity on poc-EEG but in fact negative standard EEG

would be hard to identify in our study design. As all patients

with positive poc-EEG would warrant anti-epileptic treatment

and thus an explanation for the follow up negative standard

EEG. There would need to be concurrent poc-EEG and standard

EEG. An understanding of the outcomes of those transferred

would add strength to our data.

Additionally, poc-EEG provide reliable data. As previously

stated, a study showed 88% sensitivity for seizure burden >10%

and 100% sensitivity if >50% but more importantly, a 99%

negative predictive value if seizure activity was not identified by

the device (12). Furthermore, when compared to conventional

EEG, Ceribell® showed equivalent signal quality and durability

(10). This previously published data mirrors our own experience

of a low false negative rate (2.4% in our cohort) and leads to our

determination that the poc-EEG device can be safely

implemented in the community hospital setting.
Limitations

The retrospective nature of the historical cohort makes the data

less granular than desired. Outcome measures, EEG findings, and

reason for transfer can be hard to determine from chart review.

We are confident that the main indication for transfer for both

groups was need for emergent EEG, however there is always room

for potential error. This limits comparison between the groups.
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Given the retrospective design, we were limited in our ability to

capture all drivers of transfer. An understanding of the treatment

plan at the tertiary hospital and the outcomes of the EEGs at

those hospitals is lacking from our data. The use of the poc-EEG

was left to the treating physician’s preference which introduces

selection bias. While we believe the historical and study group

have very similar patient demographics and severity of illness, it

is possible there are seasonal or other changes that occur that are

not recognized. A more robust data collection plan would have

allowed for adjustment of both chronic conditions such as

history of seizure or neurological injury as well as aspects of the

acute illness that may have influenced the decision to transfer.

This would have allowed for a more confident comparison

between the groups. Both groups occurred during the COVID-19

pandemic, and this may have unknown effects. As the pandemic

progressed, practice patterns changed which could influence

decisions on transfer thus effecting our results.

The finances associated with treatment costs vary based on

location, insurance, and many other factors. If more hospitals from

diverse settings participated, the generalizability of the financial

analysis would have increased. The cost cited in this study may not

be replicated exactly by other institutions. In addition, more formal

financial analysis could be implemented on future similar studies.
Conclusion

Our study highlights the continued importance for community

medical centers to develop ways to provide rapid diagnosis and

treatment for patients at risk of status epilepticus. This study is

the largest study that shows the use of poc-EEG in a community

setting and how it can lead to a decrease in unnecessary transfers

with potential reduction in hospital costs.
Prior presentation

A portion of the work will be presented at SCCM Conference

2022; however, this manuscript has not been published elsewhere

and is not under consideration by another journal.
Summary statement

Point-of-care EEG can be implemented in a community

hospital with a high degree of diagnostic accuracy preventing

transfers to tertiary centers with a very favorable financial profile.
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