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For economical production from a fractured reservoir, a characteristic analysis of the fracture parameters like its density and orientation within the reservoir is essential to improve the fluid flow during extraction. This study deals with the development of a proper anisotropic rock physics model for a media with multiple fracture sets to study the spatial distribution of important fracture parameters i.e., fracture density and orientation in the absence of sophisticated laboratory/wireline and pre-stack seismic data. The crest of hydrocarbon producing fault-bounded Balkassar Anticline in Northern Potwar, Upper Indus Basin, Pakistan is selected as a case study representing a potential zone for development of fractures at reservoir level (Sakesar Limestone). The methodology consists of the interpretation of 3D post-stack seismic and conventional wireline log data to demarcate the reservoir containing fractures. The Ant-tracking discrete fracture network (DFN) attribute is applied on 3D post-stack seismic data to obtain an initial estimate about the presence of fracture corridors and their orientations. Based on this initial estimate, a proper rock physics model has been developed utilizing inverse Gassmann relations, T-matrix approximation, and Brown and Korringa relations. The output from the developed rock physics model has been displayed in the form of 13 effective independent elastic stiffness constants (monoclinic symmetry–representing media comprising of multiple fracture sets) as a function of fracture densities and azimuthal fracture orientations. A clear decreasing trend in effective elastic stiffness constants with increasing fracture densities can be observed. Similarly, a periodic trend of effective elastic stiffness constants with fracture orientations can be observed. These trends are more or less expected, but they would have been difficult to quantify without a proper rock physics model. The use of independent effective elastic constants for the generation of synthetic seismic amplitude versus angle and azimuth (AVAZ) data and its correlation with observed seismic AVAZ data in a geostatistical sense has been discussed.
Keywords: fractured reservoirs, ant-track attribute, anisotropic rock physics model, seismic AVAZ data, bayesian inversion, fracture density, fracture orientation
1 INTRODUCTION
Fractures are commonly found in carbonate reservoir rocks (Zhiqian et al., 2016; Bagni et al., 2020) and hold the key for the extraction of hydrocarbons from the reservoir. Prolific management of the fractured reservoirs involves effectively defining fluid flow pathways during production for which effective characteristic analysis of fracture systems is essential (Ali and Jakobsen, 2011a; Ali and Jakobsen, 2011b). Furthermore, fracture properties such as fracture density and azimuthal fracture orientation, when studied spatially, can assist in the optimization of fractured reservoir production (Sayers, 2009; Ali et al., 2015). However, despite the advancement in methodologies pertaining to subsurface data acquisition and processing, identification and adequate characteristic analysis of fractures crucial to production remain a task yet to be accomplished (Gholipour et al., 2016; Bagni et al., 2020).
The investigation of fractures within a carbonate reservoir can be carried out efficiently through sophisticated subsurface borehole data (Bagni et al., 2020). However, the fracture corridors within the carbonate reservoirs are typically extended over tens to hundreds of meters in terms of height and width while being regionally spread over a kilometer (Huang et al., 2017). Furthermore, the well-based petrophysical analysis used in the characterization of fracture properties (like fracture density) cannot be available throughout the reservoir (Jadoon et al., 2006; Bagni et al., 2020). Therefore, characterizing a fractured reservoir using borehole data may require drilling more wells, which is practically not feasible. In order to tackle this problem, a simple yet practical approach is to develop a proper rock physics model which can be utilized to generate synthetic (calculated) seismic amplitude versus angle and azimuth (AVAZ) data. This synthetic seismic AVAZ data can be correlated with observed seismic AVAZ data, if available, in a geostatistical sense to obtain the spatial distribution of important fracture parameters required to enhance fluid flow.
Rock physics modeling is a vital tool for studying the seismic-based characterization of a reservoir (Misaghi et al., 2010). The focus of rock physics concepts is to link the composition of a rock with its macroscopic properties (Wang et al., 2018). The use of an appropriate rock physics model can, therefore, delineate characteristics of a rock effectively (Wang et al., 2018). In terms of seismic fracture characterization, rock physics modelling offers a reduced number of unknown parameters, thus offering a relative advantage during seismic inversion (Ali and Jakobsen, 2014). Furthermore, a proper rock physics model delivers a better physical description of the subsurface provided that the model is able to relate the fracture parameters with the effective elastic stiffness constants (Ali and Jakobsen, 2014).
The reason for the difficulty in the prediction of subsurface fracture systems from seismic data is the lack of resolution at which these fractures can be mapped (Souque et al., 2019). The accurate prediction of the fracture systems requires sophisticated laboratory/wireline and pre-stack seismic data, including core cuttings, full bore formation micro imager (FMI) logs, and seismic amplitude versus angle and azimuth (AVAZ) data at the reservoir level. However, this data is not easily available. Therefore, it is a challenging task to develop a proper anisotropic rock physics model utilizing conventional wireline log and 3D post-stack seismic data.
This study proposes a practical approach for the development of a proper rock physics model in the case of a reservoir (Sakesar Formation in this study) containing multiple fracture sets in the absence of sophisticated laboratory/wireline data. The crest of the Balkassar anticline has been taken as the case study as it provides a geological advantage of high probability of presence of multiple fracture sets. Balkassar oil field is present in Potwar basin, a north-western part of Himalayan Mountain ranges (Gee and Gee, 1989; Kemal et al., 1991) as depicted in Figure 1. A compressional regime acting on the area led to the development of anticlinal structural traps bounded by reverse faults. Patala Shale and Pre-Cambrian Salt Range Formation are considered to be the main source rocks in the locality (Bender et al., 1995; Masood et al., 2017). The main reservoirs are the fractured carbonates of the Sakesar and Chorgali formations in the Balkassar oil field with the Chorgali Formation also acting as the seal rock (Khan et al., 1986).
[image: Figure 1]FIGURE 1 | Location of Balkassar Area in Kohat-Potwar Plateau on a map depicting regional structures in detail (Gee and Gee, 1989).
The input data for developing the rock physics model is obtained from available conventional wireline log data (three tracks–lithology, resistivity, and porosity) of Well OXY-01 and 3D seismic post-stack data acquired at the Balkassar oil field. The workflow followed for the generation of such a rock physics model in the case of multiple fracture sets is displayed in Figure 2. section 2 of this paper focuses of the methodology followed to achieve the objective of developing a proper rock physics model. section 3 discusses the results obtained from each applied method including the output of the proposed rock physics model. Section 4 deals with the discussion and implication of the applied method, while section 5 concludes the study.
[image: Figure 2]FIGURE 2 | Workflow followed in the study for development of a rock physics model to characterize a medium with multiple fracture sets.
2 METHODOLOGY
2.1 Demarcation of fractured reservoir (Sakesar Limestone)
Interpretation of the 3D seismic line focuses on the extension of the formation as well as the demarcation of regional structures. In this study, 3D seismic data of Balkassar area with a dominant frequency of 35 Hz has been interpreted for the purpose of developing the discrete fracture network (DFN) model at the crest of Balkassar anticline (Figure 3). The important horizons including Chorgali, Sakesar, Patala, and Lockhart formations have been marked. The demarcation has been done with the help of synthetic seismogram (seismic to well tie tool) generated from the well log data of OXY-01 and wavelet extracted from the seismic traces nearest to the well. Faults have been marked on the basis of seismic discontinuities and background geological knowledge (Figure 3).
[image: Figure 3]FIGURE 3 | Interpretation of 3D seismic Inline 235 showing Balkassar Anticline bound by reverse faults. Formations have been marked on the basis of synthetic seismogram tied with OXY-01 well.
2.2 Discrete fracture network modeling
Model development of complete 3D characteristic profiling of fracture networks present within naturally fractured reservoirs (NFR) is essential for improving the supervision of a reservoir and consequently, the rate of recovery (Narr et al., 2006; Bisdom et al., 2014). DFN modeling is a proficient tool used for the depiction of the spatial distribution of fractures as well as the details of properties like location, size, density, orientation, and conductivity of individual fractures within an NFR (Tran et al., 2006). It takes into account the geometry of fractures, their conductive ability, and interconnection to construct a fracture network (Aydin and Akin, 2019). Furthermore, DFN ensures the contribution of each fracture as a separate entity unlike the continuum approach and dual-porosity modeling. It, therefore, establishes a more realistic display of fracture systems and paves a path to study response to the flow impact from properties of individual fractures (Aydin and Akin, 2019). This study makes use of the DFN model for Sakesar Formation in the Balkassar area to ensure the type of fractures present in the subsurface reservoir before proceeding to develop a rock physics model based on this priori information.
The Ant-Tracking algorithm has been utilized for the construction of the DFN model. The ant-tracking algorithm simulates a fracture pattern analogous to ants making pathways optimal for searching food (Hu et al., 2014). During their search for food, ants leave pheromones along the pathways to inform other ants about the possibly shortest passage to any located food (Silva et al., 2005). The same concept is used in the Ant-tracking algorithm for 3D seismic volume (Pedersen et al., 2002). Ant-tracking distributes a vast number of electronic “ants” over a seismic volume with each “ant” moving through a fractured surface-emitting “pheromone” for the rest to follow (Hu et al., 2014). Hence a large number of “ants” will trace planar surfaces like faults and fractures in a 3D seismic volume marked by the “pheromones” that the “ants” left compared to the non-structure element i.e., noise, which will be marked by a smaller number of “pheromones” (Cox and Seitz, 2007; Hu et al., 2014). Furthermore, deviation up to only 15° is allowed to “ants” from their original direction in order to improve and reinforce the tracing of planar structure (faults and fractures) rather than seismic irregularity due to noise (Fang et al., 2017).
Ant-tracking process uses a series of geophysical attributes which are inserted sequentially in a background program for the detection of faults and fractures on a 3D seismic volume (Ouenes, 2000). The general workflow to run the Ant-track volume is given in Figure 4. The final output is an attribute volume that shows faults and fracture zones in detail. In this workflow, amplitude contrast with dip guide has been used as an edge detection attribute. Two attributes have been computed in series from the result of the edge detection i.e., 3D edge enhancement and structural smoothing (Figure 5). Output from edge detection is subtracted from the input seismic data. The edge evidence attribute is computed on the output of edge enhancement which further enhances the discontinuities of interest. The final fault volume is obtained by multiplying the output of edge enhancement (A), with the output of edge evidence (B), by using the following syntax in the seismic calculator: if (A>0, A, 0)B. On Fault Cube, Ant track attribute slice is generated to extract regional faults visible on seismic data. The results obtained from the Ant track attribute applied to the seismic data are given in Figures 5A,B.
[image: Figure 4]FIGURE 4 | Generalized workflow followed for Ant-Tracking DFN model generation used for identification of fracture network system.
[image: Figure 5]FIGURE 5 | (A) Fracture analysis of Sakesar Formation using Ant-tracking attribute developed for 3D seismic volume at Balkassar anticline (B) The time-slice of the Ant-tracking attribute at Sakesar level depicting the presence of multiple fracture sets.
The application of DFN Ant-track algorithm on 3D seismic post-stack data at the crest of Balkassar anticline gives us an initial estimate of fracture distribution. This initial estimate helps in defining the conceptual model for fracture distribution at the reservoir level, within the Sakesar Formation, for which the effective anisotropic elastic properties can be obtained utilizing rock physics algorithms.
2.3 Rock physics modeling
In carbonates rocks, fractures play imperative role in providing a suitable pathway for flow of the hydrocarbons. The primary/secondary migration and alignment of these fractures to preferred orientation lead us towards the anisotropic behavior of subsurface rock formation (Ali and Jakobsen, 2011a; Ali and Jakobsen, 2011b). Therefore, in order to study the characteristics of fractures in fractured media, an anisotropic rock physics model has to be developed.
Multiple fracture sets in Sakesar Formation have been identified by means of a seismic Ant-tracking algorithm. On the basis of this observation, a monoclinic anisotropic rock physics model, taking fracture density and fracture orientation as the variables under observation has been developed. The workflow for rock physics modeling is shown in Figure 6. The monoclinic anisotropic system gives 13 independent effective elastic stiffness constants which have been plotted against the fracture densities and fracture orientations of the fractures sets. These effective elastic constants are required for the computation of AVAZ data at the reservoir level.
[image: Figure 6]FIGURE 6 | Scheme followed in this research for developing a rock physics model in case of multiple fracture sets.
2.3.1 Mineral properties
The Sakesar Formation acting as a reservoir in the study area consists of compact limestone as dominant lithology indicated by the petrophysical analysis of Well OXY-01, with shale volume of 4%, effective porosity of 5%, and water saturation of 27.7% (Table 1; Figure 7). The standard values of bulk and shear modulus of mineral (calcite) along with density is taken from (Mavko et al., 2009) listed in Table 1.
TABLE 1 | Input data for rock physics algorithms obtained from petrophysical analysis of OXY-01 well at reservoir (Sakesar Formation) level (Figure 7). The bulk and shear modulus of mineral (calcite) along with density is taken from (Mavko et al., 2009). The in-situ velocities and density obtained from wireline log data helps to obtain saturated bulk modulus ([image: image]) at reservoir level for computation of dry rock properties.
[image: Table 1][image: Figure 7]FIGURE 7 | Petrophysical analysis of the Well OXY-01 depicting the zone of interest and the overburden zone within the compact Sakesar Formation.
2.3.2 Dry rock matrix properties (without fractures)
The bulk modulus for the frame ([image: image]) of the reservoir can be measured from laboratory experimentation, empirical relation, or formulation using wireline log data (Kumar, 2006). [image: image] can be determined from wireline log data using rephrased Gassmann equation for [image: image] (Zhu and McMechan, 1990; Smith et al., 2003; Kumar, 2006; Mavko et al., 2009) given in Eq. 1 as:
[image: image]
Here, [image: image] is bulk modulus of dry porous rock, [image: image] is the insitu value of the bulk modulus of saturated rock, [image: image] is matrix (mineral) bulk modulus, [image: image] is effective fluid bulk modulus and [image: image] is porosity. The [image: image] is found using the density ([image: image]), P-wave ([image: image]), and S-wave ([image: image]) logs using the relation given in Eq. 2 as:
[image: image]
where, [image: image] is the insitu shear modulus which is equal to [image: image]. [image: image] and [image: image] (in m/s) are estimated by taking inverse of compressional slowness and shear slowness respectively. [image: image] is calculated for a fractured media saturated with oil and water using Wood’s equation for homogenous saturation (Wood, 1955) given in Eq. 3 as:
[image: image]
where, [image: image] and[image: image] are bulk moduli of water and oil, respectively, whereas [image: image] and [image: image] are saturation of water and oil respectively. The [image: image] has been estimated using resistivity and porosity logs of Well OXY-01. The [image: image] can be estimated by subtracting the [image: image] from 1, since the total sum of saturation of the two fluids is equal to 1. In particular, the bulk moduli for fluid phases (water and oil in this case) have been computed using (Batzle and Wang, 1992) relations. The detailed workflow for computing the bulk moduli of fluid phases is provided by Kumar (2006). The values used as input for the determination of [image: image]and [image: image] are given in Table 1.
2.3.3 T-matrix for incorporating the effect of fractures in poroelastic monoclinic model
For the dry case of the fractured porous medium, the dry effective stiffness tensor [image: image] has been estimated using the T-matrix approach shown in Eq. 4, given by (Jakobsen et al., 2003a; Jakobsen et al., 2003b; Ali and Jakobsen, 2011a; Ali and Jakobsen, 2011b; Ali et al., 2015).
[image: image]
where, ‘[image: image]’ implies double scalar product (Auld, 1990), [image: image] adds the matrix properties input into the equation and is termed as the background stiffness tensor, [image: image] is the identity matrix for the fourth-rank tensors, and [image: image] is the fourth rank tensor representing first-order corrections in order to incorporate the effects of isolated fractures. [image: image] is the second-order correction which incorporates the fracture-fracture interaction effect. [image: image] and [image: image] are computed using Eqs 5, 7.
[image: image]
where, [image: image] is the porosity of inclusion, [image: image] incorporates the effects of individual fractures of elastic stiffness [image: image] and is given in Eq. 6 as:
[image: image]
where, [image: image] is a fourth-rank tensor integrated over a characteristic spheroid with shape similar to fractures of type [image: image] presented by strain green’s function (Jakobsen et al., 2003a; Jakobsen et al., 2003b; Ali and Jakobsen, 2011a; Ali and Jakobsen, 2011b; Ali et al., 2015). The second-order correction is given by:
[image: image]
Here, [image: image] is the strain green’s function in the form of a fourth-rank tensor which represents the spatial distribution of fractures over an ellipsoid determining the symmetry of the correlation for fractures (Carcione, 1995; Ali et al., 2015). This function estimates the probability of distribution of the two fracture sets namely [image: image] and [image: image]. The function [image: image] is integrated over an ellipsoid with an aspect ratio equal to [image: image], that calculates the probability density for determining a type [image: image] inclusion at [image: image] provided a type r inclusion is present at the point [image: image] (Jakobsen et al., 2003a; Jakobsen et al., 2003b; Ali and Jakobsen, 2011a; Ali and Jakobsen, 2011b; Ali et al., 2015). The correlation function [image: image] defines how individual fractures are distributed throughout the strata (Nguyen and Nam, 2011; Ali et al., 2015). The symmetry of the correlation function is represented by the aspect ratio. A rough aspect ratio value used in this study was measured to be 1/1,000 from exposed strata of Sakesar Formation in the vicinity of acquired seismic data. The porosity [image: image] of type [image: image] fractures relate to the fracture density [image: image] through the equation [image: image] where [image: image] represents the type [image: image] fracture’s aspect ratio. The modified form of [image: image] for the two sets of fracture parameters can now be written as given in Eq. 8.
[image: image]
where, [image: image] , [image: image] denotes the azimuthal fracture orientations for the two fracture sets while [image: image] , [image: image] are the fracture densities for the respective fracture set. In general, T-matrix gives the initial output in form of VTI (Vertically transversely isotropic) model. This output matrix upon 90° rotation gives HTI (Horizontally transversely isotropic) symmetry. An arbitrary rotation through bond transformation converts the output matrix into monoclinic symmetry representing the multiple fracture sets (Figure 6). The effect of fluid in this anisotropic poroelastic model has been incorporated using an anisotropic form of Gassmann’s equation called Brown-Korringa relation (Brown and Korringa, 1975) which can be written in the symbolic matrix notation given in Eq. 9 as:
[image: image]
Here [image: image] symbolizes the dyadic product of tensor (Auld, 1990), [image: image] is second rank tensor identity, [image: image] represents the compliance tensor for solid mineral constituent (calcite), [image: image] denotes the effective compliance tensor for dry fractured rock and [image: image] inculcates the effective compliance tensor for the saturated fractured porous medium into the equation. Total porosity is represented by [image: image] which is the sum of storage porosity of the homogenous matrix and the fracture porosity.
The final product of rock physics modeling for two mesoscopic fracture sets with different fracture orientations and fracture densities for monoclinic symmetry is 13 independent effective elastic stiffness constants. These 13 independent constants in terms of Voigt index notation are [image: image] , and [image: image]. The 13 independent constants have been varied with fracture orientations of the two fracture sets while keeping their fracture densities constant and vice versa. The Voigt condensed notation in the matrix from for the case of monoclinic assumption having 13 independent stiffness constants is given in Eq. 10 as:
[image: image]
3 RESULTS
3.1 Spatial extension of Sakesar Formation
A synthetic seismogram is generated using sonic and density logs of OXY-01 for the purpose of seismic-to-well-tie. With the help of this, the top and bottom of Sakesar Formation have been marked at 1.37 and 1.475 s respectively, by correlating the seismic (time domain) data to well (depth domain) data. The interpretation of seismic Inline 235 (Figure 3) shows a clear anticlinal structure which is called the Balkassar anticline. Reverse faults formed as a result of slippage caused by compressional regime bounding the anticline have also been interpreted (Figure 3).
3.2 Ant-tracking DFN model analysis
The DFN model effectively delineates the fractures present within the carbonate reservoir. Greater values displayed by Ant-tracking volume shows high fractured zone while low values correspond to the less fractured strata which can be related directly with secondary porosity evolution in carbonates (Figure 5A). Fractures are concentrated more towards the south within the anticline while in general, the highly populated fractures towards the east corresponds to the faulting phenomena towards the east of the anticline (Figure 5A). Two dominant fracture sets, almost orthogonal to one another, oriented in NE-SW and NW-SE direction can be observed in the formation (Figure 5B).
3.3 Rock physics model for monoclinic symmetry
A rock physics model for monoclinic symmetry has been developed for Sakesar Limestone reservoir in Balkassar locality. 13 elastic stiffness constants have been computed and displayed against fracture orientations ([image: image] ,[image: image]) and fracture densities ([image: image]) of two mesoscopic fracture sets observed in the formation using Ant-tracking DFN model (Figure 5B). Elastic stiffness constants as a function of [image: image] and [image: image] have been plotted in Figure 8 keeping [image: image] and [image: image] constant at 35° and 45° respectively. From Figure 8, it is clear that there is a decrease in elastic stiffness constants with increasing fracture densities showing an inverse linear relation.
[image: Figure 8]FIGURE 8 | The 13 elastic stiffness constants from the monoclinic model plotted against the two sets of [image: image] , [image: image] while [image: image] for two sets are fixed at 35° and 45° respectively.
In Figure 9, the 13 elastic stiffness constants have been plotted as a function of [image: image] and [image: image] for the two fracture sets with constant [image: image] and [image: image] at 0.03 and 0.05, respectively. There is a periodic trend of each elastic stiffness constant with [image: image] and [image: image] , thus following the transformation law of the fourth ranked tensor given by (Auld, 1990). There will be no periodic trend if fractures are not present within the formation.
[image: Figure 9]FIGURE 9 | The 13 elastic stiffness constants obtained using monoclinic model plotted as a function of [image: image] for two fracture sets. [image: image] , [image: image] for each set are kept constant in this case at 0.03 and 0.05.
4 DISCUSSION
4.1 Seismic modeling using rock physics model for monoclinic symmetry
Once the saturated effective elastic properties of the porous fracture media have been calculated, the multiple fracture sets can then be characterized on the basis of seismic modeling. The variation of fracture based elastic properties within a rock can be detected based on sophisticated seismic attributes like seismic AVAZ, azimuthal variation of velocity in fractured interval, and shear wave birefringence analysis (Crampin et al., 1980; Lynn et al., 1995; Lynn et al., 1999; Zhu et al., 2004; Will et al., 2005). In this study, a practical method is presented for the development of rock physics model in case of a media containing multiple fracture sets utilizing conventional wireline log and 3D seismic post-stack data. The output from this rock physics model in terms of 13 independent effective elastic stiffness constants can be utilized for determination of monoclinic reflectivity given by Schoenberg and Protazio (1992):
[image: image]
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Here, [image: image] is reflection matrix; [image: image] and [image: image] defines the phase slowness vector (horizontal components), the associated eigenvectors are denoted by [image: image] , [image: image], and [image: image] derived from the Christoffel equations (Mavko et al., 2009), and [image: image] denotes the elastic stiffness constants. For the case, when [image: image] and [image: image] both are not singular and [image: image] can be mathematically inverted, the reflection matrix is given as:
[image: image]
Here, [image: image] and [image: image] are similar to [image: image] and [image: image] with only difference being replacement of unprimed parameters (incidence medium) by primed parameters (transmission medium). Once, reflectivity from above Eqs. (11-14) is obtained, it can be convolved with the seismic wavelet to obtain the synthetic (calculated) seismic AVAZ data at reservoir level.
4.2 Seismic inversion for porous media with multiple fracture sets
Inverse modeling targets the spatial estimation of fracture parameters, which influence the fluid flow during production (Ali et al., 2015). To obtain the modeled fracture parameters on a reservoir scale, the calculated seismic AVAZ data has to be matched with the field based observed seismic AVAZ data in order to minimize the error before the parameters under observation can be studied. The inverse problem in this particular case can be formulated as given in Eq. 15.
[image: image]
Here, [image: image] is a vector of observable quantities (acquired AVAZ data), [image: image] combines the monoclinic rock physics model (as discussed in Rock Physics Modeling for Sakesar Formation) with the seismic model (as discussed in Seismic modeling using rock physics model for monoclinic symmetry), and [image: image] inculcates the fracture parameters, selected for the developed monoclinic model ([image: image] and [image: image] , [image: image]), in the form of a vector. The workflow for inversion of parameters using correlation of synthetic AVAZ data with acquired AVAZ data is given in Figure 10.
[image: Figure 10]FIGURE 10 | Workflow proposed by the study to invert for fracture parameters of multiple fracture sets by developing synthetic AVAZ volume using rock physics model for monoclinic symmetry which can be correlated with observed 3D seismic AVAZ data.
Correlation of the developed synthetic data with the pre-stack 3D seismic AVAZ data will lead to spataial mapping the parameters at reservoir scale, thus immensely assisting in reservoir characterization provided that the synthetic data has been modelled correctly. The plots for these parameters with 13 effective elastic stiffness constants helps to monitor the sensitivity of the forward model. Changing the forward model will change the outcome of the reflectivity. Therefore, the geostatistical correlation helps to select the best possible model to invert for the fracture parameters.
Due to limited availability of borehole data over large areas, a monoclinic rock physics model can be opted to spatially characterize the azimuthal fracture orientations and fracture densities of multiple fracture sets in a fractured reservoir. The challenge however is requirement of accurate priori information regarding petrophysical properties like fluid saturation, porosity, volume of shale etc.; matrix properties like matrix moduli, matrix density, and fracture geometry. The importance of rock physics model lies in its ability to inculcate a large number of input parameters. This however can turn out to be a problem provided an improper priori information is used. It is therefore essential to know the alignment of fracture sets present in a fractured reservoir before a rock physics model can be developed. The Ant-tracking DFN modeling proves to be a good tool for this purpose, however, core data analysis is always preferable. The aspect ratio for fractures used in this study was obtained from outcrop of the studied formation, but core sample analysis for aspect ratio determination is suggested as it affects the results of T-matrix model.
5 CONCLUSION
In the absence of sophisticated laboratory/wireline data, characterization of fracture parameters (like azimuthal orientation and density) of multiple fracture sets in a fractured media can be achieved using a suitable rock physics model. The accuracy of the developed model depends upon the precision of input parameters and awareness of background geological knowledge. The Ant-tracking DFN model gives a potential initial estimate of fractures, which can be used as a priori information for the development of the required rock physics model. Here, in this study, a proper rock physics model for a media comprising of multiple fracture sets (monoclinic symmetry) was developed using T-matrix approach, Wood’s equation, and Brown-Korringa relation. The output in the form of 13 independent effective elastic stiffness coefficients shows an inverse linear trend with [image: image] and [image: image] There is a periodic variation of the effective stiffness coefficients with [image: image] and [image: image] confirming the presence of fractures within the formation. These elastic constants can practically be applied to generate a synthetic pre-stack (calculated) seismic AVAZ data using the Schoenberg and Protazio (1992) solution. Fracture properties can effectively be inverted through geostatistical correlation of this synthetic data with pre-stack (observed) 3D seismic AVAZ data. This research facilitates and provides a practical approach to develop a proper rock physics model applicable to fractured reservoirs in order to study the parameters of existing fractures, thus facilitating in increasing the production from these reservoirs.
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Accurate reconnaissance of Marine oil spill is very important for emergency management of Marine oil spill accidents. Unmanned aerial vehicles (UAV) is a suitable carrier for offshore oil spill reconnaissance because of its fast deployment speed and low cost. Aiming at the identification accuracy of small oil spill accident in offshore port area and the problem of day and night reconnaissance, this study takes thermal infrared remote sensing images of oil leakage captured by UAV as the research object and proposes an oil spill detection method based on a Gray Level Co-occurrence Matrix (GLCM) and Support Vector Machine (SVM) method. Firstly, the extraction steps of image GLCM feature and the basic principle of SVM classification are studied. Then, the thermal infrared image data collected by UAV is preprocessed, including image filtering, clipping and rotation, and the sample database is generated. Subsequently, GLCM features of the samples were extracted, and the energy and correlation in GLCM were selected as classification features and sent to the SVM classifier to complete the oil spill detection of real-time thermal infrared images. The experimental results show that, compared with Classification and Regression Tree algorithm (CART) and Random Forests of Decision Trees (RF) algorithm, the detection accuracy of the method proposed in this paper reaches 95%, which were 10 and 2 percentage points higher than them respectively. The proposed method in this paper has fast recognition speed and high accuracy, and can provide all-weather recognition of oil spills for the detection of small oil spills in the offshore port area.
Keywords: oil spills, infrared image, oil spill identification, gray level co-occurrence matrix, suppo rt vector machine
1 INTRODUCTION
With the rapid development of marine transportation and offshore oil and gas industries, the marine economic industry is given new vitality. However, it brings negative effects which led to the frequent occurrence of marine oil spills. The causes of oil spills at sea are complex, and numerous situations may cause oil spill pollution, such as industrial emissions from coastal factories, seabed oil and gas leakage, ships or tankers hitting reefs during port berthing, collisions causing cargo oil spills, oil spills from sunken ships, and mining oil spills in offshore oil fields and during transportation. As a hub for maritime transport trade, the port may cause serious ecological damage in the event of oil spills. In the past few years, more than 3,000 traffic accidents on maritime transport ships occurred, causing more than 40,000 tons of spilled oil (Bella et al., 2021). A large number of these accidents occurred offshore or even in ports, resulting in a large number of accidents. Oil leakage into the sea caused serious pollution to the marine environment and huge economic losses. Given the suddenness and unpredictability of oil spill accidents and the rapid spread of oil after an accident, the identification and containment of oil spills remain difficult. Hence, methods to identify oil spills, detect oil spill areas, and extract relevant oil spill information quickly to make subsequent cleanup work more accurate and efficient and prevent the secondary spread of oil spills are a major issue that must be solved, with far-reaching research significance.
In order to deal with the oil spill incident scientifically, it is necessary to determine the oil spill information accurately so as to clean up the pollution in time, and several researchers are concerned with how to eliminate or reduce the impact of oil spills [ (Tamis et al., 2012; Helm et al., 2015; Thompson et al., 2015; Bejarano and Michel, 2016; Feng et al., 2017; Raimondi et al., 2017; Bhushan, 2019; Tayeb et al., 2020; Wegeberg et al., 2021)]. However, little research is conducted on the rapid detection of oil spills and the improvement of the real-time performance of oil spill detection. At present, remote sensing monitoring becomes the main technical means for marine oil spill monitoring. Compared with traditional direct monitoring methods, remote sensing monitoring avoids the direct entry of monitors into the oil spill area, thereby reducing the risk of oil spill monitoring. Moreover, it can achieve large-area, real-time monitoring of oil spills, greatly improving the monitoring efficiency. Remote sensing monitoring of oil spills usually uses satellites, airplanes, unmanned aerial vehicles (UAVs), and other aviation equipment to carry optical, infrared, ultraviolet, microwave, and other sensors to collect image and spectrum data. Raimondi et al. (Xu et al., 2021) measured the oil spills in the laboratory by using the laser radar attached to the UAV, and proposed a method for oil identification, but did not indicate the accuracy and speed of detection. However, this method is tested only in the laboratory and did not indicate the accuracy and speed of detection. Taking shipborne radar monitoring data as the object, Xu et al. (Frate et al., 1999) proposed an oil spill detection method based on LBP texture feature and K-means algorithm, which can automatically detect the shipboard radar image of indoor oil spill, providing a guarantee for real-time monitoring of oil spill accidents. However, this means of inspection costs high, and the manned ship needs regular inspection. Indregard et al. (Fiscella et al., 2000) used the constant false alarm rate algorithm to identify spots in an oil spill SAR image, clustered the identified results, and used the Hough transform algorithm to extract linear oil spill edges. Although this method can detect oil spills, edge extraction requires a significant amount of time. Fiscella et al. (Brekke and Solberg, 2008) established a semi-automatic recognition algorithm to extract black spots in the image to determine whether an oil spill exists. Brekke and Solberg (Singha et al., 2013) developed an improved two-step classification procedure for oil spill detection in SAR images, including a regularized statistical classifier and automatic confidence estimation of the detected slick. Singha et al. (Xu et al., 2014) successively implemented the classification of objects as oil spills or similar objects by adopting two different artificial neural networks (ANN). Xu et al. (Andrea et al., 2015) used RADARSAT-1 images to compare classification techniques, such as support vector machines, artificial neural networks, tree-based ensemble classifiers, generalized additive models, and penalized linear discriminant analysis. Pisano et al. (DavidBolon-Canedo and Cotos, 2017) designed an oil spill satellite image recognition method based on the reflective pixel characteristics of the oil and non-oil spill areas. They realized the preliminary recognition of the oil spill satellite image but did not consider the accuracy of the recognition. Wan et al. took the SAR data gathered in the Gulf of Mexico as the object, and completed the detection of the offshore oil slick by preprocessing the image, detecting and analyzing the black spots and combining with the algorithm of support vector machine. However, the accuracy of detection was not considered. Based on SAR remote sensing images, Mera et al. (Tong et al., 2019) proposed a general and systematic method to select a group of concise and related features to improve the accuracy of oil spill detection based on the feature selection method. Their experimental results show that the 6-input finite element vector trained classifier proposed by SVM-RFE achieves the best accuracy. However, the above remote sensing detection method is mainly suitable for the detection of large sea oil spills and the real-time detection is not strong. Tong et al. (Aghaei et al.) proposed an ocean oil spill detection method based on multi-feature polarized SAR data using the random forest method to classify image data. This method combines self-similar parameters and seven other polarization characteristics to distinguish between slick and similar objects. Aghaei et al. (Taravat et al., 2014) put forward a new SAR image segmentation method based on the level set method with application to oil spill detection from the synthetic aperture radar imagery. Compared with other segmentation methods, the method are obtained with high accuracy, less repetition, and less computational volume. As a popular research direction in recent years, deep learning is widely used in numerous fields, and several cases on oil spill detection are produced [ (Nassim et al., 2017; Abpeykar and Ghatee, 2019; Jiao et al., 2019; Wang et al., 2021a; Nieto-Hidalgo et al., 2018; Shaban et al., 2021a; Li et al., 2018; Wu et al., 2018; Xh et al.)]. Huang et al. (Wang et al., 2022) presented a novel deep learning method for marine oil spill detection from SAR imagery based on a Faster Region-based Convolutional Neural Network (Faster R-CNN) model, which enables fast and accurate oil spill detection. An improved deep learning-based oil spill detection model for oil spill detection was proposed from SAR images in the study of Wang et al. (IzemHamoucheneSalihaAouat, 2014). The model has strong general adaptability and robustness, and has high accuracy in identifying oil products. However, the accuracy and rapidity of the oil spill detection method based on deep learning proposed by researchers largely depends on the quantity and quality of the data sets. If the number of samples is not sufficient, the training model does not reach the required complexity, which may easily lead to errors in the results. This study proposed a new method to detect oil spills automatically and evaluate their accuracy by using UAV as an oil spill detection tool, which can robustly manage different lighting intensities and camera angles. If the accuracy of the automatic detection of oil spill images can be improved, the use of UAVs to patrol specific routes and the automatic detection of marine oil spills may be more effective than the manual detection of vessel cruises. The contributions of this study are summarized as follows:
(1) We approached the following research progress of current offshore oil spills monitoring methods, and proposed an automatic detection method of oil spills day and night by using UAV, which deals with the early monitoring of marine oil spill emergency management.
(2) We discussed the use of digital image processing through GLCM to extract features from the thermal infrared remote sensing images. After GLCM features based on statistical parameters were extracted from remote sensing images, the SVM classification method was selected to establish an oil film detection model to automatically detect oil leakage.
(3) The proposed automatic oil spill detection method was more convenient than the traditional manual cruise monitoring method, and the proposed oil spill detection algorithm had higher accuracy than Classification and Regression tree algorithm (CART) and Random Forests of Decision Trees (RF) algorithm.
The rest of this paper is structured as follows: Section 2 introduces the detailed method, including the description of the algorithm, technical route, image pre-processing, feature extraction, gray-scale compression, and SVM classification. Section 3 discusses the development and results of the experiment. Section 4 presents the results, and the conclusions are discussed in Section 5.
2 METHODS
2.1 Data sources
Sensors used for remote sensing monitoring of marine oil spills primarily include optical, laser, and scattered wave sensors. Optical sensors include visible light, infrared, near-infrared, and ultraviolet sensors; microwave sensors include radiometers and radars. At present, the cost of oil spill monitoring equipment is an important factor for users to consider. Owing to the low price of infrared cameras and the ability to distinguish oil films on the sea during the day and night, this study chose a UAV equipped with thermal infrared sensors to collect data during flight. Infrared sensors are activated by thermal radiation. The oil in the sea water absorbs solar radiation and emits part of it along with the solar radiation. As the thermal energy is primarily concentrated in the infrared hot zone (8–14 μm), the emissivity of oil in the thermal infrared zone is lower than that of water. Thus, the oil film on the surface of sea water can be identified. The experimental process lasted for 5 days, from December 20 to 25 December 2021. We conducted an oil spill simulation test in an experimental tank by the beach. During the experiment, the weather conditions were good, and there was no rain or sea fog, and the oil spill experiment was carried out alternately during the day and night. As shown in Figure 1, the location of the experiment is located on the beach in the sea area of Zhanjiang Bay, Zhanjiang City, China. About 15 m to the east of the tank is Zhanjiang Bay, which is convenient to extract the seawater required for each experiment. After each experiment was completed, the waste oil was recovered and treated with linoleum felt, as shown in Figure 2.
[image: Figure 1]FIGURE 1 | Location of the experimental site.
[image: Figure 2]FIGURE 2 | Collection process of oil spill data.
The experimental equipment was photographed by DJI industry-grade UAV. The maximum flight speeds of the UAV under automatic flight and manual operation are 6 ml and 5 m/s, respectively. It is equipped with advanced dual light cameras, including 48-million-pixel visible light and thermal infrared cameras with 640 × 512 resolution, which can complete point and temperature measurements in the temperature area, supporting 16 × zoom and one key switching of visible light, infrared, and split screen. During image shooting, we select the infrared sensor, set the flight altitude of the UAV as 6 m, the ground sample distance as 0.53 cm/pixel, and the Pan/Tilt/Zoom shooting angle as vertical to the ground; the heading overlap rate is 80%, and the lateral overlap rate is 70%. In this study, UAV carrying an infrared camera is used for observation. The principle of infrared imaging is to transform invisible infrared radiation into visible thermal image based on the principle of thermal radiation. Different objects, or even different parts of the same object, have different radiative capacities and their ability to reflect infrared rays. Using the radiation difference between the object and the background environment as well as the radiation difference between each part of the scene itself, the characteristics of the scene are displayed. Because the black tank absorbs heat, it radiates a brighter image, which interferes with the experimental study. In order to reduce the interference of oil film observation, white water tank was used for observation during each experiment. After sprinkling diesel oil and waste lubricating oil in the experimental tank, the UAV was used to perform multi-angle and different altitude cruise shooting to obtain image data, which were collected repeatedly during the day and night.
2.2 Technical route
This section proposes a technical route for UAV-based oil spill detection. As shown in Figure 3, the main steps of the method have two stages: data preparation and data detection. Data preparation includes data collection and preprocessing, while data detection includes the process of building detection models and evaluating results. When making the dataset, image preprocessing is performed on the collected data to eliminate bad data in the sample and obtain more sample data. SVM classification methods are particularly attractive in the field of remote sensing because they have good generalization. Even if the training samples are limited, they can achieve good recognition. In this study, we used the SVM classification algorithm to detect oil spills. After obtaining the preprocessed remote sensing image, the texture feature GLCM of the image was extracted and used to construct the SVM classification model. After preprocessing the image to be detected from the cruise, the sent SVM classifier was compared with the template library. After the oil film image was recognized, the recognition result was saved, and the accuracy was analyzed. The parameters of the SVM classifier were set to obtain the highest possible accuracy.
[image: Figure 3]FIGURE 3 | The technical route of the study.
2.3 Image pre-processing
To improve the accuracy of oil spill detection, the aerial image data collected by the UAV cruise were preprocessed, including image translation, flip, rotation, correction, and filtering, to produce more usable sample data. Image preprocessing is an important step in the identification of marine targets, and it is also a common technique to improve the robustness of SVM classification. Given the phenomenon of noise points and inconspicuous edge boundaries in remote sensing, images can interfere with the subsequent oil spill identification process. Therefore, the image must be preprocessed, and image enhancement algorithms must be used to strengthen the edges of the target and background. Particle noise may be generated owing to the global impact of image enhancement in certain cases. To reduce the distribution of particle noise, filtering and denoising processing were adopted for remote sensing images, allowing the image to filter out noise while retaining the sharpness.
2.4 Feature extraction (GLCM)
The nature of image texture is defined as changing the intensity of gray in the image, and this change is calculated based on the distance between two pixels. The main theme of texture analysis is the performance of the background to present the features of the texture in the simplest format: accurate and powerful object segmentation and classification. GLCM is a well-known texture feature analysis technique (Lerski et al., 1993; Hamouchene et al., 2014). In image recognition, texture features play an important role owing to their simple structure and rapid calculation. In the method proposed in this study, GLCM is applied to extract various statistical features from thermal infrared remote sensing images. The statistical methods of texture features are mainly divided into three categories: first-, second-, and high-order statistics. The second-order statistics are currently the most popular statistical method. With this method, GLCM has been used in various studies in recent years. The idea of GLCM is to calculate the phantom θ of two pixels (Pi, Pj) separated by a distance d and characterized by a direction (Strzelecki, 1996; Dong et al., 2019; Souza et al., 2020). The matrix [image: image] is used for evaluating the joint probability of every two pixels. The mathematical expression of the co-occurrence matrix is as follows, and the calculation method is shown in Figure 4.
[image: image]
where L represents the gray level of the image, i and j represent the gray level of the pixel, 0 ≤ i, and j ≤ L-1.
[image: Figure 4]FIGURE 4 | Calculation of the GLCM from a grayscale image (distance = 1, orientations = 0°).
According to this formula, parameters d and θ of the co-occurrence matrix are very important, and they greatly affect the quality of the results. For the extraction of texture feature images, we must process the calculation results of the GLCM properly. The simplest method takes the offset parameters of different squares (0°, 45°, 90°, and 135°), obtains the characteristic parameters of the GLCM, respectively, and then calculates the mean and variance of these characteristic indexes. Thus, the direction component is suppressed, and the obtained texture feature is independent of the direction (Hu et al., 2020a; Hu et al., 2020b; Shaban et al., 2021b).
The GLCM can be used to analyze the local features and arrangement rules of the image. To describe the texture condition with the GLCM more intuitively, the obtained co-occurrence matrix is generally not used directly (Haralick et al., 1973; Alruzouq et al., 2020). However, the secondary statistics are obtained based on GLCM. Haralick et al. (Conceio et al., 2021) defined 14 characteristic parameters of GLCM for texture analysis: second-order moment, contrast, correlation, difference moment, inverse difference moment, sum average, sum variance, sum entropy, difference variance, difference entropy, correlation measure 1, correlation measure 2, and maximum correlation coefficient. Researchers found that among the 14 texture features based on GLCM, four feature parameters are relevant. These features are easy to calculate and can provide high classification accuracy.
2.5 Grayscale number compression
The first step for calculating image texture features is to convert remote sensing images into grayscale images. In practical applications, the grayscale level of an image is 256 levels. When calculating the texture features derived from the grayscale co-occurrence matrix, the gray level of the image must be less than 256 because the calculation amount of GLCM is determined by the gray level and size of the image. For example, assuming that image I has L gray levels and the image size is M rows and N columns, the calculation amount is approximately M × N × L. Based on the general situation of M = 512, N = 512, and L = 256, the basic calculation must be at least 1.718 × 100 times. Taking the calculation speed of the current microcomputer 200 million times per second as an example, calculating the GLCM of the above-mentioned image takes at least 85 s. Such a long time for image recognition is not practical. The solution is to reduce the resolution of the image while keeping the original shape of the image and the number of grayscale values as much as possible. Therefore, when calculating the GLCM, the gray level is often compressed to a smaller range without affecting the texture characteristics (Liu et al., 2019; Wang et al., 2021b; Li et al., 2021). This study uses 16 levels to reduce the size of the co-occurrence matrix. Given that the grayscale is usually distributed in a narrow range, if the grayscale is directly divided by 16 and rounded, the sharpness of the image decreases. Therefore, when performing grayscale compression on an image, the image must first be histogram equalized to increase the dynamic range of the grayscale value, which subsequently increases the overall contrast effect of the image. Figure 5 shows the effect comparison of a remote sensing image before and after histogram equalization.
[image: Figure 5]FIGURE 5 | Image histogram equalization. (A) Before equalization (B) After equalization (C) Histogram after equalization.
2.6 Support vector machine classification
SVM is a machine learning method proposed in the late 20th century. This method transforms classification and regression into quadratic optimization, and its decision boundary is the maximum boundary distance hyperplane that solves the training set data under the condition of linear separability. It has good classification effect for small samples and multi-class classification. The linear sample classification problem of SVM can be transformed into a problem of finding the optimal solution:
[image: image]
In the above formula, yi is the label of the sample, w represents the weight vector, and b represents the class threshold. The optimal solution can be found by using Lagrange’s theorem. Although no further description is given in this study, the problem can be solved by the formula [image: image].
[image: image]
Not every training point must be used. Only the support vector is required, and the coefficient of non-support vector α is 0. <xi, x > represents the inner product operation.
The previous method is feasible for linearly separable samples. However, it cannot be applied to linearly inseparable samples. If a low-dimensional linearly inseparable sample set can be mapped to a high-dimensional set and made linearly separable, then the SVM can be used to make it functional. If the mapping function is φ(‧), then the spatial classification function after mapping becomes:
[image: image]
However, if the low-dimensional data are directly mapped to the high-dimensional data, the number of dimensions increases exponentially. For this reason, the kernel function is introduced. The kernel function is used to find a function that makes the result of the operation < xi, x> in the low-dimensional space the same as the result of the inner product mapped to the high-dimensional space. Thus, the classification function becomes:
[image: image]
Given the difficulty of determining a suitable mapping from an arbitrary dataset, it is typically selected from a commonly used kernel function.
2.7 Accuracy evaluation
In order to clarify the classification results of UAV oil spill detection and evaluate the accuracy of the classification model, the classification accuracy of oil spill remote sensing images is defined as:
[image: image]
where TP represents true positives, TN represents true negatives, FP represents false positives, and FN represents false negatives.
3 EXPERIMENT
After obtaining the original dataset, if the detection model is directly composed of the original aerial image, the accuracy and stability of the model may be low because the original image consists of the light intensity captured by the camera under the same angle and similar environment. To stabilize the model and eliminate the influence of the camera angle and the lighting intensity, we adopted a method of enriching the data types of the training set (Li et al., 2020). In order to ensure the effectiveness of the image data set, the UAV takes intermittent shots of the study area during aerial photography. To produce more training sample data, image preprocessing is performed on the data set obtained by shooting, and at the same time, every two images are sampled, and the images with poor quality in the samples are eliminated. Finally, a total of 200 infrared images are obtained. In order to improve the detection accuracy, each image in the training set is randomly cropped to a fixed size region, and the training data set is expanded to 2000 images by salt and pepper noise noise, mirror transformation, brightness change, and translation transformation, as shown in Figure 6. After image processing, 1,000 images with improved quality are selected as the training set from the expanded sample database and 100 images are randomly sampled as test set from the UAV reconnaissance database.
[image: Figure 6]FIGURE 6 | Image preprocessing. (A) Original image (B) Random crop (C) Salt and pepper noise (D) Mirror transformation (E) Brightness change (F) Translation transformation.
This study designed a detection system with the goal of detecting oil spills. To obtain a more ideal result, the given picture size is small. The purpose of this decision is to increase the running speed and have a more accurate grasp of the recognition results under ideal conditions. Given the large volume of thermal infrared data, the gray scale conversion of the target image was conducted, reducing the requirements for design complexity and operating efficiency. Although the gray scale conversion can effectively reduce the size of the picture, the 256 gray scale picture still requires significant time consumption. Thus, the gray scale must be reduced greatly while keeping the original image information unchanged. By performing histogram equalization processing on the image, the dynamic range of the gray value is increased, thereby increasing the overall contrast effect of the image (Spanhol et al., 2015). In general, the characteristic parameters must be calculated in each scanning direction as a trade-off to integrate the influencing factors better. This study calculated the characteristic parameters of each direction and averaged them. Then, it used this comprehensive index as a basis for testing. The GLCM has abundant characteristic parameters, which can describe the texture in detail from different angles. This study conducted the following three kinds of sea surface experiments, as shown in Figure 7.
[image: Figure 7]FIGURE 7 | Remote sensing images of different types of oil film. (A) Diesel oil film (B) Lubricating oil film (C) Pure seawater surface.
The GLCM was calculated in four directions, and the distance between pixels was set as 1. Then, the five texture feature quantities required by the GLCM were calculated to obtain the five characteristic parameters of the three sea surfaces. The feature value results in Figure 8 demonstrate that different types of road texture feature parameters have evident differences. Given that these parameters represent the properties of a certain aspect of the image texture feature, the comparison of these parameters can reflect the difference of various image texture features. In the comparison of the differences of various parameters, classifying and recognizing the texture of the seawater surface is feasible, thus, realizing the automatic judgment of the oil spill phenomenon.
[image: Figure 8]FIGURE 8 | The GLCM eigenvalues of oil film observation images.
4 RESULTS
The distribution diagram of the energy characteristic value and the correlation characteristic value demonstrate that the distances of the three curves representing diesel and lubricating oil spills, and pure sea water have significant differences. Thus, we can distinguish between the second-order distance oil spills and no oil spills. In the graphs of contrast, entropy, and moment of inertia, the three curves overlap. In addition, the occurrence of oil spills is difficult to determine. To detect whether oil spills have occurred, the data of the samples are concentrated into two categories: oil spills and pure sea surfaces. Then, they are imported into the SVM model for classification. Then, the energy and correlation were used as the sample for training the classifier. After many experimental tests, the SVM classification model in this study has the best classification effect when the parameter C and parameter gama are set as 0.01 and 1, respectively. The recognition accuracy of the detection model for the samples to be classified in the experiment was 95%, which is defined as the ratio of the number of samples correctly classified by the classifier to the total number of samples in a given data set. As shown in Figure 9, the positive and negative samples are basically evenly distributed on both sides of the hyperplane, with strong generalization ability and no overfitting phenomenon occurred. The model is ideal for the classification and detection of oil film and non-oil film, and is finally determined as the classification model of this study. Taking an offshore oil spill accident as an example, then selecting their energy and correlation as eigenvalues and send them to the classification model of this study, the results obtained after testing the test samples are shown in Figure 10. The method proposed in this study can achieve fast and accurate identification of oil films and non-oil films. Since the SVM classification method is not suitable for directly processing large data sets, it cannot effectively identify the types of oil films.
[image: Figure 9]FIGURE 9 | Classification effect of oil spills detection.
[image: Figure 10]FIGURE 10 | Detection results of oil spills. (A) Grayscale image (B) Binary graph.
5 DISCUSSION
The proposed detection method has been tested and compared with three other detection methods. The results are shown in Table 1. The proposed method is found to be more technical when compared with different methods from the classification accuracy achieved in Table 1. Table 1 also shows that the accuracy of methods proposed by other researchers is 85% and 93% respectively, while our proposed method can achieve an accuracy of 95%, indicating that it has important practical significance. Notably, when using this research method for oil spill detection, the following points must be given attention:
(1) Three variables should be considered when calculating the gray level co-occurrence matrix: image gray level, direction, and distance.
(2) For the selection of the gray level z, the gray level determines the calculation scale of the GLCM. Reducing the gray level can increase the calculation speed and reduce the storage space requirements. Appropriately reducing the gray level can also reduce the effect of noise on the image. However, gray levels that are too small can destroy the useful texture components.
(3) For the selection of distance d, the co-occurrence matrix changes rapidly with the distance in fine texture while changing slowly with the distance in rough texture. Using a larger distance for smooth textures and a smaller distance for rough textures will achieve better results. For the selection of direction 0, generally four values (0°, 45°, 90°, and 135°) exist to examine different textures through different 0 s, and the co-occurrence matrix generated by different 0 s contains different texture information. When considering the directions, the texture feature values determined by the gray-level co-occurrence matrices in the four directions are often calculated separately. Then, the average value of the feature values in each direction is used as the final texture component.
(4) SVM classification method is simple and efficient. Kernel function can be used to map to high-dimensional space and solve non-linear classification problems. However, it should be pointed out that SVM algorithm is difficult to implement large-scale training samples, sensitive to the selection of missing data samples and kernel functions, and has difficulties in solving multi-classification problems. When using SVM for classification, the selection of samples and the selection of kernel function are an important factor influencing whether the classifier is good. Therefore, for a good classifier, it is necessary to fully consider various influencing factors after repeated debugging, and finally select an optimal scheme to achieve the optimal classification effect.
TABLE 1 | Comparison with other detection methods.
[image: Table 1]6 CONCLUSION
In this study, by using a new marine environment cruise detection method combined with UAV and infrared sensors, a method based on the combination of GLCM and SVM was proposed to realize the detection of small oil spill accidents. In remote sensing image data processing, the image was first processed, including image enhancement, filtering, and image rotation. Then, the GLCM of the remote sensing image was calculated and used for feature extraction. Based on the collected texture feature values, energy and correlation were selected as distinguishing indicators, and the SVM classification model was constructed. After repeated experiments and debugging, the parameters of the SVM model were determined. Finally, the detection of oil spill phenomenon was completed, and the recognition accuracy reached 95%.
Compared with other methods, this method optimizes the efficiency of image feature extraction. Moreover, the recognition speed is fast, the efficiency is high, and the detection result is equivalent to human visual interpretation. The proposed method is highly suitable for the initial detection of small oil spills because these oil spills are likely to be ignored by the marine environment supervision department. The application of this method can realize the all-weather detection of small oil spill accidents, which can not only save manpower and material resources, but also find and track offshore oil spill pollution accidents and ensure the safety of patrol personnel at night; making it of great significance to marine environment supervision. It should be indicated that the proposed method is primarily applicable to the detection of diesel and lubricating oil spills and not ideal for the detection effect of crude oil spills is.
Future research includes the following: First, oil spill sample images must be collected over a longer period to improve model stability. Second, when the training set is sufficient, a large training network is required for building a detection model that can perform better than existing models. Third, as the experiment performed in this study simulated oil spill images under calm sea surface conditions in a water tank by the beach, which did not consider that the oil spill accident is affected by sea conditions such as waves and currents, the experimental conditions must be further improved in the follow-up research.
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Downward continuation (DC) of the gravity potential field is an important approach used to understand and interpret the density structure and boundary of anomalous bodies. It is widely used to delineate and highlight local and shallow anomalous sources. However, it is well known that direct DC transformation in the frequency domain is unstable and easily affected by high-frequency noise. Recent deep learning applications have led to the development of image recognition and resolution enhancement using the convolutional neural network technique. A similar deep learning architecture is also suitable for training a model for the DC problem. In this study, to solve the problems in existing DC methods, we constructed a dedicated model called DC-Net for the DC problem. We fully trained the DC-Net model on 38,400 pairs of gravity anomaly data at different altitudes using a convolutional neural network. We conducted several experiments and implemented a real-world example. The results demonstrate the following. First, several validation data subset and test data prediction results indicate that the DC-Net model was sufficiently trained. Moreover, it performed better than the traditional strategy in refining the upscaling of low-resolution images. Second, we performed tests on test datasets with changing levels of noise and demonstrated that the DC-Net model is noise-resistant and robust. Finally, we used the proposed model in a real-world example, which demonstrates that the DC-Net model is suitable for solving the DC problem and delineating the detailed gravity anomaly feature near the field source. For real data processing, noise in the gravity anomaly should be reduced in advance. Additionally, we recommend noise quantification of the gravity anomaly before network training.
Keywords: gravity downward continuation, convolutional neural network, deep learning, upscaling low-resolution images, DC-Net model
1 INTRODUCTION
Downward continuation (DC) of the gravity potential field is an important processing and interpretation approach used to enhance the local and shallow signal of a deep field source. It is widely used in, for example, the exploration of minerals, oil and gas basin analysis, and assisted navigation (Cordell and Grauch, 1985; Blakely, 1996; Adewumi and Salako, 2018). At present, many algorithms exist for the DC problem, which can be roughly divided into three categories: the spatial domain interpolation method (e.g., Cooper, 2004; Luo and Wu, 2016), the wavenumber domain method (e.g., Liu et al., 2009; Zhou et al., 2022), and the integral iterative method (e.g., Ma et al., 2013; Tai et al., 2016; Chen and Yang, 2022). Although many existing methods have achieved certain effects in some geophysical interpretations, two unsolved problems remain in existing methods. One problem is inevitable boundary errors. Because of the limitations of geophysical observations, regardless of whether the DC operator is solved in the space domain or wavenumber domain, the calculated plane cannot be infinite, and the calculation of the Gibbs effect is unavoidable, which results in boundary position errors (Pašteka et al., 2012). The other unsolved problem is unstable calculation. The results derived by the DC operator include more high-frequency characteristics and short wavelength anomaly components than the untransformed data because the result derived by the DC operator is closer to the anomalous sources than the untransformed data. However, the DC operator also significantly increases noise and results in an unstable continuation computation (Zhang et al., 2009; Zeng et al., 2011). Both problems can be attributed to the incorrect solution of the DC operator.
Recent advancements in the development of deep learning (DL) provide a good method for solving the aforementioned problems. The DC operator can be regarded as the mapping relationship between two gravity anomalies. DL can obtain the mapping relationship though a massive data-driven approach, which provides the DL method with the potential to achieve a more accurate predictive effect than conventional approaches (Goodfellow et al., 2016). The convolutional neural network (CNN) is gradually becoming the most widely used computational approach in the DL field (Alzubaidi et al., 2021). In the last few years, the CNN method has been widely adopted in various geophysical scenarios (Bergen et al., 2019), such as exploration geophysics (e.g., Yang and Ma, 2019; Yu et al., 2019; Zhang et al., 2021; Wang et al., 2021), waveform classification and seismic recognition (e.g., Zhao et al., 2019; Zhu et al., 2019), and seismic image enhancement (Halpert, 2018; Wang and Nealon, 2019).
Therefore, in this study, we introduce a dedicated model called DC-Net that uses the U-net network (Ronneberger et al., 2015) for the DC of the gravity anomaly to solve the problems in existing DC methods. We trained the DC-Net model using many high-resolution gravity anomaly maps located at a low altitude, with their low-resolution counterparts at a high altitude. We then conducted extensive experiments on validation datasets and test datasets to illustrate the validity of the DC-Net model. We also used several test datasets with changing levels of noise to test the noise resistance of the model. Finally, we evaluated the method by applying it to a real airborne gravity (AG) anomaly and compared two continuations predicted by different trained models.
2 METHODS
We divide the description of the methodology into two parts: DC theory and the critical components of the DC network (DC-Net).
2.1 DC problem for gravity
The DC of the potential field is used to obtain the potential field [image: image] at point [image: image] from a given potential field [image: image] at point [image: image]. The positive Z-axis is downward and [image: image] < [image: image].
As shown in Figure 1, [image: image] and [image: image] represent one pair of potential anomalies caused by the same set of underground density anomaly bodies, where [image: image] is the far-field anomaly at a high altitude, which only reflects the long wavelength components of the anomaly sources, whereas [image: image] is the near-field potential anomaly located at a low altitude, which reflects more lineated and more detailed potential anomaly features because [image: image] is closer to the potential field sources than [image: image].
[image: Figure 1]FIGURE 1 | Schematic diagram of the DC problem.
Generally, the DC problem refers to the solution of the following boundary value problem (Blakely, 1996):
[image: image]
where h is the given continuation height, h = [image: image]- [image: image], and [image: image] is the measured gravity potential field at [image: image]. This is an incomplete boundary value problem, and a unique solution exists only when [image: image] is known. However, because of the limited gravitational observations at [image: image], the DC problem only has an approximate solution. According to continuation theory in Eq. 1, if the gravity anomaly [image: image] caused by an unknown underground field source is known in the observation plane [image: image], the gravity anomaly [image: image] below the plane can be computed using (Peters, 1949; Chen and Yang, 2022):
[image: image]
where [image: image] is the horizontal coordinate that defines the density of anomaly bodies. Eq. 2 belongs to the first type of Fredholm integral equation. No analytical solution exists for this integral. The DC process for solving numerical solutions is ill-posed, and the solution is usually unstable.
Recent advancements in the development of machine learning (ML) provide a good approach for solving this problem. Different from traditional methods, ML is a type of data-driven approach that trains a regression model through complex nonlinear mapping with adjustable parameters using a training dataset (Goodfellow et al., 2016; Yu et al., 2019). In ML, the aforementioned DC problem can be described as
[image: image]
where [image: image] is the mapping function from [image: image] to [image: image]. This means that if we give one [image: image], the DC [image: image] can be obtained by means of [image: image]. As the first part of Eq. 3 shows, in the DC problem, [image: image] can be taken as the DC operator, which needs to be solved by a certain approach, while, as the second part of Eq. 3 shows, [image: image] can be learned from the training dataset [image: image] based on the ML method. [image: image] represents the specific ML method. In this study, we adopt the CNN method. [image: image] represents Gaussian noise added to the training dataset. The mapping function [image: image] learns from the training dataset with adjustable parameters, which can minimize the deviation between the predicted data and observation data:
[image: image]
where [image: image] is the prediction data and [image: image] is the observation data. Eq. 4 can be referred to as the loss function of the network. In this study, we attempt to establish DC-Net based on the CNN method to perform the continuation calculation for the gravity field. We introduce the critical components of DC-Net in the following subsections.
2.2 DC-Net
2.2.1 Structure of DC-Net
As shown in Figure 2, our DC-Net is primarily composed of four components: pre-processing, encoder, decoder, and post-processing. Pre-processing comprises two identical modules, each of which consists of two convolutional layers and two normalization-activation layers. We use this part to extract and activate the coarse pattern feature from the low-resolution input. The encoder and decoder have three identical modules. Each encoder module is composed of one convolutional layer, followed by one normalization-activation layer and one pooling layer. The role of the encoder is to prevent overfitting while maintaining high sampling rates. Each decoder module is sequentially composed of one deconvolution layer and one convolution layer, each of which is followed by one normalization-activation layer. The function of the decoder is to upsample the feature map size. However, post-processing has two different modules. The first is composed of two convolutional layers, followed by two normalization-activation layers, whereas the second only has a single convolutional layer. This part is used to output the result.
[image: Figure 2]FIGURE 2 | Structure of DC-Net.
The success of DC-Net is attributed to some practical “tricks.” First, rectified linear units (ReLUs) are used as the activation functions, which simply involves the half-wave rectifier function f(x) = max (x, 0), and can significantly accelerate the training phase. Second, the pooling method is maximum pooling, which is an effective approach for reducing overfitting when training a large CNN. Third, we construct several normalization-activation layers, followed by convolution and transposed convolution layers, which could mitigate numerical instability successfully.
The detailed procedure of the DC-Net model is illustrated in Table 1. We further use the PyTorch framework to complement the aforementioned operations and finally achieve the CNN-trained DC-Net model.
TABLE 1 | DC-Net algorithm.
[image: Table 1]2.2.2 Loss function
During CNN training, we update the model parameters according to the definition of the loss function. Therefore, selecting a suitable loss function is critical for optimizing the updating of the model. There are traditional loss functions, such as L1, L2, and perceptual losses. The mean squared error (MSE) is one of the most common L2 loss functions, and it has been widely used in ML (Mao et al., 2017; Ghodrati et al., 2019; Zhang et al., 2020). We use the MSE loss function to express the deviation between the predicted DC gravity anomaly and the true value. Suppose there are [image: image] pairs of gravity anomalies being used for training. The MSE loss function can be expressed as
[image: image]
The aim of DC-Net is to minimize the loss function.
2.2.3 Metrics function
In addition to the loss function, there is another important function: the metrics function. The metrics function is similar to the loss function; both of them can be used to judge the performance of the training model. The only difference between the metrics function and the loss function is that metrics function is not used when training the model. Note that any loss function can be used as a metrics function. Including several kinds of loss functions mentioned before, metrics functions can be divided into several types, for instance, accuracy metrics (Han et al., 2022), probabilistic metrics (Branchaud-Charron et al., 2019), regression metrics (Geng et al., 2020), and so on. Compared to other metrics functions, the relative accurate function has a more intuitive expression and is more sensitive to changes in the accuracy of the predicted results. Therefore, in our DC-Net, we choose to use the relative accurate function to assess model accuracy:
[image: image]
The range of this metrics function is from 0 to 1; the more accurate the model prediction, the larger the value of ε.
3 MODEL TRAINING
3.1 Data generation
To train the DC-Net model, abundant training data need to be used to build the mapping relationship between the input and output. The quality of the training dataset directly determines the DC results of the model. In our DC-Net, we require two subsets of gravity data: one is the high-resolution gravity anomaly [image: image] at a lower observation height, and the other is the low-resolution gravity anomaly [image: image] at a higher observation height.
In this study, we use a rectangular prism as the anomalous density source and present the theoretical gravity anomaly using that density model. The prism is bounded by planes parallel to the coordinate planes and defined by the coordinates [image: image]. Nagy et al. (2000) provided a straightforward analytic relationship between the gravity anomaly and density source:
[image: image]
where [image: image] is the coordinate of the observation point; [image: image] is the coordinate of the density anomalous source; [image: image] is the distance between them; [image: image], [image: image], and [image: image] are the integration ranges, where [image: image] [image: image], [image: image], and [image: image]; [image: image] is the density of the anomalous source; and [image: image] is the gravitational constant.
The size of each rectangular prism is 50 m × 100 m × 100 m. If the given rectangular prism has unit density, Green’s function matrix can be generated to map the discretized density bodies and gravity anomaly at the observation level. To simplify the training process of DC-Net, in our training model, we set [image: image] and [image: image] to fixed height values of 500 m and 0 m, respectively.
During DC-Net training, to ensure the diversity of gravity data samples, we consider the numbers of distinctive dataset distributions. First, the density models are composed of rectangular prisms of different scales and arrangements, with the density contrast varying randomly from 0.1 to 0.5 g/cm3. Second, we also include gravity datasets with boundary features in the training data to improve the prediction accuracy of boundary anomalies. Third, as the high-pass filtering property of the DC operator, we also add changing levels of Gaussian noise to the training dataset.
3.2 Training
For model training, we repeated the aforementioned data generation 76,800 times and finally used a total of 38,400 pairs of gravity anomaly datasets to feed our model. We divided these samples into three datasets: training dataset, validation dataset, and test dataset. The training dataset was composed of 90% of the entire dataset and the validation dataset was composed of a random selection of 10% of the training dataset.
We used the designed CNN as introduced in Section 2.2 to improve the generalization of our model. We set the maximum batch number to 128 for the global enhanced upscaled module. We used a low-resolution gravity image with 64 × 64 patches as single-channel input in each mini batch. Then, we gradually increased the number of channels to 64 during pre-processing and increased it to 1,204 in the encoder using three pooling processes while decreasing the patch number of each image from 64 × 64 to 4 × 4. In the decoder, we reduced the number of channels to 64 again and increased the patch number of each image to 64 × 64 again using three transposed convolution operations. Finally, in the output part, we set one gravity data channel with 64 × 64 patches as the output after two convolution operations.
For our training phase, we set the cutoff condition as the loss function less than 10–4 or the maximum epoch number less than 1,000. Moreover, we used the maximum pooling method in the backpropagation process to verify that the trained model was not overfitted. Our training ended after 600 epochs. The loss function curve and relative accuracy curve for the training dataset and validation dataset are shown in Figures 3A, B, respectively.
[image: Figure 3]FIGURE 3 | (A) Loss curve and (B) accuracy metric curves.
The loss function curves in Figure 3A show that both the training loss curve and validation loss curve decreased smoothly to a steady state as the training epochs increased. They gradually reduced to a small value of approximately 10–4 after 600 epochs, which indicates the successful convergence of our model. Furthermore, the training loss curve (orange curve) shows a slightly higher convergence value than the validation loss curve (blue curve), which means that the prediction fitting precision was affected by the fitting precision of the trained model and limited to a certain value.
The relative accuracy curves in Figure 3B show that the final DC prediction results had an accuracy value of over 0.95. The relative accuracy curve (orange curve) of the validation set shows almost the same accuracy as that of the training dataset (blue curve), which means that our DC-Net model achieved sufficiently accurate predictions, even for input that was not in the training set.
3.2.1 Synthetic test
We conducted several experiments to assess the effectiveness, noise immunity, and usability of our DC-Net model. The experiments and corresponding results are described as follows.
3.3 Validation datasets
We randomly selected a subset of the validation set to determine whether the validation set could be accurately predicted by our DC-Net model. The results are shown in Figure 4. As mentioned in Section 3.1, we set the two observation heights for all the training data to fixed height values of 500 m and 0 m. The same setting is also used in the validation data. Figure 4A is the map of the validation subset composed of several low-resolution gravity anomalies at 500 m, while Figure 4B is the map of the validation subset composed of the corresponding high-resolution gravity anomalies at 0 m, and Figure 4C shows the true value of gravity anomalies at 0 m. The continuation distance between them is a fixed value of 500 m. By comparing of the subset of validation data (Figure 4A), the prediction results of the subset (Figure 4B), and the true value of the prediction results (Figure 4C), we observed that our DC-Net has the ability to recover the shape of all the high-frequency signatures of the gravity anomalies. The predicted results (Figure 4B) are in good agreement with their true values (Figure 4C). Furthermore, complex boundary anomalies and gravity anomalies with significant noise pollution were also well recovered. This fully confirms that our trained DC-Net model has a good ability to avoid the phenomenon of the Gibbs effect and noise contamination.
[image: Figure 4]FIGURE 4 | Validation dataset prediction effect display: (A) subset of the validation data composed of gravity anomalies at 500 m; (B) subset of the prediction results composed of gravity anomalies at 0 m; (C) true value of gravity anomalies at 0 m.
3.4 Test datasets
Subsequently, we conducted a test on a typical gravity dataset to verify the effect of different DC methods: the damped frequency DC (DFDC) method (Blakely, 1996), the Taylor series expansion DC (TEDC) method (Tran and Nguyen, 2020), and our DC-Net model.
The fundamental principles of the DFDC method are follows: for the continuation problem in Eq. 2, we assume that [image: image] Thus, Eq. 4 can be written as
[image: image]
which can be expressed in the form of
[image: image]
where [image: image] represents the convolution operation. Because convolution is a simple multiplication in the frequency domain, Eq. 9 can be written as
[image: image]
where [image: image] are the Fourier transforms of [image: image], and [image: image], respectively, and [image: image], [image: image], and [image: image].
Then, we can obtain the solution of the DC problem as
[image: image]
However, the DC problem is an ill-posed problem, and the solution is usually unstable. To ensure the stability of the DC calculation, the trade-off parameter [image: image] is often introduced in mathematics using the optimized[image: image]:
[image: image]
The TEDC method is a newly published DC method for solve the DC problem of the gravity field. It is proposed based on the combination of the Taylor series expansion and upward continuation methods at different distances. The fundamental principles and computational details can be found in the paper published by Tran and Nguyen (2020).
Based on this, we conducted a simple synthetic gravity data test on two mainstream DC methods (DFDC and TEDC) and our DC-Net model. The synthetic gravity data were not included in the training set, and we conducted the tests independently. The corresponding results are shown in Figure 5.
[image: Figure 5]FIGURE 5 | DC results for different methods: (A) gravity anomaly at 500 m; (B) true value of the gravity anomaly at 0 m; (C) DC gravity anomaly at 0 m using the TEDC method; (D) DC gravity anomaly at 0 m using the DFDC method with a filter equal to 1000; (E) DC gravity anomaly at 0 m using the DC-Net model; (F) error between (B) and (E).
From the comparison of Figures 5B–E, we observed that the gravity anomaly at 0 m derived from the TEDC method (Figure 5C) is better than that from the DFDC method (Figure 5D), but it is still quite fuzzy in comparison with the true value shown in Figure 5B. In contrast, almost all the high-frequency features of the gravity anomalies are recovered successfully by our DC-Net model (Figure 5F). The gravity anomaly predicted by the DC-Net model (Figure 5E) is more consistent with the true value (Figure 5B) than those obtained by the mainstream methods (Figures 5C, D).
Table 2 shows the different errors between the continuation gravity anomaly results at 0 m altitude (Figures 5C–E) and the true gravity anomaly at the same altitude (Figure 5B). By comparing the different errors in Table 2, we can infer that the continuation high-resolution gravity anomaly at 0 m altitude (Figure 5E) using the CNN model is the most reliable by comparing it with the results of the other two methods (Figures 5B, C). The MSE of the different errors for DC-Net predictions is less than 0.0036 mGal.
TABLE 2 | MSE of errors between the continuation gravity anomaly results and the true gravity anomaly using different methods at 0 m altitude.
[image: Table 2]This part of the experiment demonstrates that we obtained reliable prediction results, even for data that were not included in the training dataset, which could be explained as follows: during the training process, our network was not only learning a one-to-one analogical connection from the training sets, but also the DC law between them.
3.5 Noise effect
In practice, the observed gravity anomaly is usually severely contaminated by various amounts of high-frequency noise caused by disturbance factors, such as engine vibration, sensor drifts, environmental noise, and irregular operations (Pajot et al., 2008). An obvious problem with traditional DC algorithms is that they are easily affected by high-frequency noise (Tran and Nguyen, 2020). Therefore, it is necessary to test the robustness to noise of our CNN-based model.
To ensure that the test was comprehensive, we trained the model twice under the same CNN framework. We refer to the CNN model applied to noise-free training sets as NFDC-Net and refer to the model applied to training sets with changing levels of noise as DC-Net. In our test, we set noise to a Gaussian stochastic type with the level randomly selected between 0% and 6%. Using the two well-trained models, we conducted eight experiments with four types of low-resolution gravity anomalies contaminated by Gaussian noise with zero mean and with the variances set to 0%, 2%, 5%, and 10% of the maximum amplitude, as shown in Figures 6A–D, respectively. We predicted all the types of gravity data using the NFDC-Net model and the DC-Net model individually. The corresponding prediction results are presented in Figures 6E–L.
[image: Figure 6]FIGURE 6 | Predicted results at 0 m using the NFDC-Net model and the DC-Net model for different gravity anomalies with different noise levels at 500 m: (A) noise-free gravity anomaly; (B) predicted result using the NFDC-Net model for a noise-free gravity anomaly; (C) predicted result using the DC-Net model for a noise-free gravity anomaly; (D) gravity anomaly with 2% Gaussian noise; (E) predicted result using the NFDC-Net model for a gravity anomaly with 2% Gaussian noise; (F) predicted result using the DC-Net model for a gravity anomaly with 2% Gaussian noise; (G) gravity anomaly with 5% Gaussian noise; (H) predicted result using the NFDC-Net model for a gravity anomaly with 5% Gaussian noise; (I) predicted result using the DC-Net model for a gravity anomaly with 5% Gaussian noise; (J) gravity anomaly with 10% Gaussian noise; (K) predicted result using the NFDC-Net model for a gravity anomaly with 10% Gaussian noise; (L) predicted result using the DC-Net model for a gravity anomaly with 10% Gaussian noise.
The results in Figure 6 illustrate that the noise-free trained NFDC-Net model accurately predicted the gravity anomaly without noise (Figure 6E). However, it could not retrieve any useful information from noise-contaminated input data, even when the contamination level was less than 2% (Figures 6F–H). This means that the noise-free trained model failed for the prediction of noisy input. The DC-Net model, which was trained with changing levels of noise, always successfully recovered the high-resolution gravity anomaly at the lower altitude (0 m) both for noise-free input (Figure 6I) and noise-contaminated input (Figures 6I–K). Although the maximum noise level of the DC-Net training sets was 6%, DC-Net still made an effective prediction, even when the input noise was greater than 10%. From these results, we can infer that model training with noise is necessary and that our noise training strategy is effective. Simultaneously, the noise immunity abilities of our CNN-based models can be controlled by the training datasets to a considerable degree.
Table 3 shows the MSE of the errors between the predicted gravity anomaly and true gravity anomaly at 0 m altitude (Figure 5B). By comparing the error results in Table 3, we can see that the predicted near-field gravity anomalies at 0 m altitude using the DC-Net model are more accurate than those predicted by the NFDC-Net model, and the MSE of the different errors for the DC-Net predictions is less than 0.1338 mGal. Consequently, the DC-Net model has the ability to resist noise and is robust.
TABLE 3 | MSE of errors between the predicted gravity anomaly and the true gravity anomaly at 0 m altitude using different CNN models.
[image: Table 3]3.6 Multi-times DC
Because we trained our CNN model using only one altitude (500 m), it was difficult for the one-time prediction of our CNN model to satisfy DC requirements with longer continuation distances. Therefore, we implemented repeated continuation tests using the DC-Net model. The test results are shown in Figure 7.
[image: Figure 7]FIGURE 7 | Twice DC operation: (A) gravity anomaly at 1,000 m; (B) gravity anomaly at 500 m, calculated by the once DC operation; (C) the error between the predicted gravity anomaly and the true gravity anomaly at 500 m; (D) gravity anomaly at 0 m, calculated by the twice DC operation; (E) error between the predicted gravity anomaly and the true gravity anomaly at 0 m. The true gravity at 500 m is shown in Figure 6A, and the true gravity anomaly at 0 m is shown in Figure 5B.
Figure 7 shows the results and errors of the twice DC operation. First, we calculated the gravity anomaly at 500 m by the once DC operation from the true gravity anomaly at 1,000 m (Figure 7A). The predicted gravity anomaly at 500 m and the error are shown in Figures 7B, C respectively. We then calculated the gravity anomaly at 0 m by another DC operation using the gravity anomaly at 500 m, which was obtained by previous DC operations. The predicted gravity anomaly at 0 m and the error are shown in Figures 7D, E. From the comparison of the predicted gravity anomaly (Figure 7B) and the true value (Figures 6A, 5B) at 500 and 0 m, respectively, we found that the predicted results at different heights are both in good agreement with the true values. However, the predicted error at 500 m, which was obtained by the once DC operation (Figure 7C), is smaller than that at 0 m, which was obtained by the twice DC operation (Figure 7E). The errors could dramatically increase by the accumulation of the DC operation.
This part of the experiment confirmed that our network can be used not only for the continuation distance of 500 m but also longer distances. However, the difference error results (summarized in Table 4) demonstrate an existing accumulative error in the multi-time computation when the continuation distance was increased. It should be noted that a continuation distance that is too long may decrease the prediction accuracy to a certain degree.
TABLE 4 | MSE of errors of repeated DC operations.
[image: Table 4]4 APPLICATION
A test site for AG systems has been established at Kauring, which is approximately 100 km east of Perth, Western Australia. The site was chosen to support AG system tests arranged by the Geological Survey of Western Australia, Geoscience Australia, and Rio Tinto Exploration (Lane et al., 2009). Projects to study different methods to produce terrain correction (Zhdanov and Liu, 2013), to upward continue the ground gravity data (Elieff, 2018), and to separate and interpret vertical gravity data (Liu and Li, 2019) have already commenced.
To verify the validity test of our DC-Net model, we applied the mainstream DC method based on Taylor series expansion (Tran and Nguyen, 2020), which we refer to as the TEDC method, and two CNN-based models (the NFDC-Net model and the DC-Net model) to the gravity anomaly at the Kauring test site at 500 m altitude (Figure 8A). We calculated this gravity anomaly using upward continuation from the observed AG anomaly at the geoid (Figure 8B). We considered the observed gravity anomaly at the geoid as the true value to which the DC predictions should refer.
[image: Figure 8]FIGURE 8 | (A) Observed gravity anomaly of the Kauring test site at the geoid. (B) Calculated gravity anomaly at 500 m altitude (Blakely, 1996). (C) DC gravity anomaly at 0 m using the Taylor series expansion method (Tran and Nguyen, 2020). (D) Error between (C) and (A).
Figure 8C illustrates the gravity anomaly at the geoid derived from the TEDC method. Figures 9A, C show the gravity anomaly at the geoid predicted by the NFDC-Net model and the DC-Net model, respectively. We then comprehensively compared the continuation results with the true value (Figure 8A). From the comparison of Figures 8A, C, 9A, 9C, we can see that gravity anomalies at the geoid predicted by the NFDC-Net model and the DC-Net model (Figures 9A,C) are more consistent with the true value (Figure 8A) than that obtained by the traditional TEDC method (Figure 8C). The error of the DC gravity anomaly at 0 m based on TEDC method (Figure 8D) is larger than those predicted by the NFDC-Net model and the DC-Net model (Figures 9B,D). The CNN-based models can recover more high-frequency features of the gravity anomaly at the geoid than the TEDC method. This high-frequency anomaly signal is useful for increasing the accuracy of the structural interpretation. Although the actual gravity anomaly data were formed by the superposition of many anomaly bodies, the effectiveness of our two trained models was established.
[image: Figure 9]FIGURE 9 | (A) Gravity anomaly at the geoid predicted by the NFDC-Net model. (B) Error between (A) and Figure 8A. (C) Gravity anomaly at the geoid predicted by the DC-Net model. (D) Error between (C) and Figure 8A.
Furthermore, the gravity anomaly at the geoid predicted by the NFDC-Net model (Figure 9A) depicted more local partial anomalies than those predicted by the DC-Net model (Figure 9C). The error of the NFDC-Net model prediction (Figure 9B) was smaller than that of DC-Net model prediction (Figure 9D). This may be because during the prediction process using the DC-Net model, certain high-frequency signals were regarded as noise instead of signals. Therefore, in practical applications, we recommend performing noise quantification to constrain the noise level of the training dataset before network training. We expect that this will prevent high-frequency signals from being dropped as unreal noise in real cases.
5 CONCLUDING REMARKS
In this study, we have proposed DC-Net for the gravity DC problem using DL technology. We introduced the basic theory and critical components of the proposed DC-Net. We performed several synthetic tests and implemented a real application to assess the effectiveness, noise effect, and usability of our DC-Net model. Our main findings are as follows:
(1) The loss function and relative accuracy function curves showed that our network was sufficiently trained. The subset of validation data prediction results showed that a certain number of distinctive boundary and noisy training dataset fed into our DC-Net model ensured that our DC-Net model had a good ability to avoid the Gibbs effect and noise contamination for the DC problem.
(2) We performed DC tests derived from gravity anomaly data that had a different morphological distribution from those in the training dataset using our DC-Net model. The prediction results demonstrated that our DC-Net model learned not only the one-to-one analogical connection from the training sets but also the DC law between them.
(3) DC tests for different gravity anomalies were contaminated with 0%, 2%, 5%, and 10% Gaussian noise successively using different trained models. The prediction results demonstrated that the noise-contaminated trained DC-Net model performed better than the noise-free trained NFDC-Net model. Therefore, noise training is necessary for the DC problem.
(4) The prediction results of repeated DC indicated that our DC-Net model remained valid even for repeated DC. However, there was a cumulative error as the DC distance increased.
(5) The real-world application results demonstrated that the noise-free trained NFDC-Net model predicted more local partial anomalies than the noise-contaminated trained model. Therefore, in a practical scenario, it is necessary to use noise quantification to constrain the noise level of the training dataset. This could prevent high-frequency signals from being dropped as unreal noise.
(6) It is noteworthy that gravity anomalies caused by real geological bodies are not in the training set, but our DC-Net model could still have good DC predictions for real-world data. It may be the case that CNN can provide not only the simple mapping from [image: image] to [image: image], but also the inherent physical relationship between them. However, the adaptability of our DC-Net model for more practical geological DC problems needs to be verified by more applications in the future.
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The basin effects alter the frequency content, amplitude and duration of seismic waves with different depth and shape basin. In this paper, we selected 2-D geophysical profiles spanning the Weihe Basin with large area and the Luoquanli Basin with small area. Based on the velocity structure data of the two geophysical profiles, 2-D finite element models were established to analyze the influences of the sedimentary layer in a broad basin and the basement geometry of a small basin on the basin effects using the spectral element method. The results showed that the sedimentary deposits in the basin could significantly amplify the ground motion, and the diffraction waves generated by the lateral inhomogeneity of the basin could prolong the duration of the ground motion. The highlight of this paper, our results showed that the amplification characteristics were controlled by the velocity mean in the vertical direction of sedimentary deposits (vp < 4.5 km/s) for a broad basin with small depth-to-width ratio as Weihe Basin, while the amplification characteristics were dominated by basement geometry of the small basin with large depth-to-width ratio as Luoquanli Basin. In this study, a high-resolution 2-D geophysical refraction profile was directly used to construct a finite element model to study the basin effects, which provided a new method of studying the basin effects.
Keywords: geophysical prospecting profile, ground motion simulation, spectral ratio, the thickness of the basin sedimentary layer, basement geometry
1 INTRODUCTION
Typically, a basin is an area where the crystalline basement has been depressed for a long (geologic) period with respect to sea level, and sedimentary deposition and filling have occurred. Compared to the surrounding terrain, the interior of a basin is relatively flat and is protected by scenic mountains, so many human settlements have been constructed in the interior of basins, such as Beijing, Chengdu, Taipei, Mexico City, Tokyo, and Los Angeles. When a basin is affected by an earthquake, the basin’s structure exhibits special basin effects, which tend to aggravate earthquake damage. The earthquake damages to the corresponding basins caused by the Mexico earthquake, the Northridge earthquake, and the Hyogo-ken Nambu earthquake are well known to everyone, and as a special site effect, the basin effects are receiving more and more attention from seismologists (e.g., Kawase, 1996; Graves et al., 1998; Olsen, 2000; Komatitsch et al., 2004; Lee et al., 2008a; Lee et al., 2008b, Lee et al., 2009; Iyisan and Khanbabazadeh, 2013; Chaljub et al., 2015; Maufroy et al., 2017; Zhang et al., 2019; Zhang et al., 2020). The results of existing studies have shown that the factors affecting the basin effects are mainly the structure of the sedimentary layer, the geometry of the basin’s basement strata, and the seismic wave input orientation or source location, among which, the sediment structure (Field, 2000; Frankel et al., 2001, 2002; Fletcher and Wen, 2005; Roten et al., 2006; Hartzell et al., 2016) and geometry of the basin’s basement strata (Gao et al., 1996; Alex and Olsen, 1998; Davis et al., 2000; Baher and Davis, 2003; Stephenson et al., 2006; Shani-Kadmiel et al., 2012; Riga et al., 2016; Sahar and Narayan, 2016; Zhu, 2018) have the most significant effects on the ground motion.
Three methods are usually used to investigate basin effects. The first is to analyze the strong-motion records for the basin region. The second is to combine the information about the basin’s stratigraphic structure with strong-motion records to statistically derive the ground-motion prediction equations (GMPEs) of the basin region. The third is to construct a numerical model of the basin to simulate the basin effects. All three methods require an accurate velocity model as supporting data. The accurate velocity model can determine the thickness of the sedimentary layer, the burial depth of the basin’s basement, the geometry of the basement strata, and the structural heterogeneity of the subsurface, which are crucial to the seismic response of the basin.
The strong-motion records for a basin area can directly reflect the basin effects, for example, the amplification of low-frequency ground motions by sedimentary layers in the basin, the focusing effect, the edge effect and the resonance effect of the basin, and such records have shown that the amplification of ground motion by a basin is closely related to the burial depth of the basement in the basin. Lee and Anderson (2000) and Steidl and Lee (2000) investigated the amplification effect of the Southern California basin on ground motion using strong-motion records, and they concluded that the variation in the thickness of the sediments in the basin caused the error between GMPEs and the basin effects at the soil site. Fletcher and Wen (2005) analyzed the strong-motion records of the 1999 Mw7.6 magnitude earthquake in Jiji, Taiwan, and found that the peak value and duration of the ground motion were related to the basin’s basement depth. By analyzing the records from the San Jose array in California, Frankel et al. (2001) found that the seismic amplitude and the spectral ratios between the receivers inside the basin and a weakly weathered bedrock site receiver at the edge of the basin were higher in the western region of the Evergreen Basin than in the eastern region; they concluded that this was related to the deeper burial depth of the basement in the western region. Hartzell et al. (2016) found that the amplification factors for the longer periods (≥1 s) in the Livermore Valley were generally consistent with the variations in the depth of the basement in this basin.
To consider basin effects in GMPEs, the empirical relationship between the ground motion parameters and the thickness of the sedimentary layer in the basin is mostly established, but the determination of the thickness of the sedimentary layer in the basin varies. In determining the long-period portion of the GMPE, Campbell (1997) defined the depth to the crystalline rocks or metamorphic rocks as the sediment thickness. In calibrating the GMPE for Southern California, Field (2000) considered the basin amplification factor to be positively correlated with the basin depth and took the depth to the vs = 2.5 km/s horizon beneath the site as the basin depth. Several models of NGA-West2 consider basin terms, for example, the ASK14 (Abrahamson et al., 2014), BSSA14 (Boore et al., 2014), and CY14 (Chiou and Youngs, 2014) GMPEs use the depth to the vs = 1.0 km/s horizon beneath the site to model sediment-depth and basin effects, while CB14 (Campbell and Bozorgnia, 2014) uses the depth to the vs = 2.5 km/s horizon beneath the site. When Denolle et al. (2014) determined the relationship between the peak ground motion and the depth of the Kanto Basin in Japan, the depth to the vs = 3.2 km/s horizon beneath the site was taken as the depth of the basin. Therefore, the sediment thickness or basement burial depth of the basin is important basic data for building GMPEs.
The resolution of the velocity model can determine the accuracy of the numerical simulation. Theoretically, the finer the velocity structure of the subsurface geological body is, the higher the accuracy of the numerical simulation is. When using the spectral element method (SEM) to simulate 3-D ground motion in mountainous areas, He et al. (2015) combined fine meshes with a high-resolution velocity model, the frequency band of the ground motions simulated could be up to 8 Hz, and the simulation results were close to the seismic record. He et al. (2015) believed that the resolution of the velocity model directly determines the simulation accuracy of the wave propagation. Most researchers have come to the same conclusion through 3-D ground motion simulation studies (e.g., Lee et al., 2009; Bielak et al., 2010; Chaljub et al., 2015). A velocity structure with a high resolution more accurately represents the heterogeneity of the subsurface structure, which directly affects the distribution of the ground motion at the surface.
To simulate the basin effects reasonably, it is an effective approach to construct a finite element (FE) model to simulate the ground motion using geophysical profile data. From the above discussion, we can see that accurate velocity structure data are important to studying basin effects. The 2-D numerical simulation technique has also been used to study basin effects, but these studies tended to over-simplify the basin model, and over-simplification can be detrimental to the practicality and applicability of the research results since the homogeneous assumption is far from reality (Zhu, 2018). To obtain an accurate 2-D velocity model, direct drilling tests can be conducted to obtain more accurate data, but it is quite expensive to obtain the velocity structure of the entire cross-section of a broad basin. It is also impossible to obtain the velocity structure of the entire Cenozoic and deeper strata due to the limitation of the drilling depth. In contrast, the high-resolution refraction exploration method is a feasible and relatively cost-efficient approach. For basins that have large length/width ratios, V-shaped valleys, and U-shaped paleochannels, from the perspective of the long axis of the structure, they are approximately 2-D bodies, and high-resolution refraction exploration has been implemented across most of these areas, so accurate velocity models can be obtained. Therefore, it is acceptable to directly use these geophysical prospecting data to build a 2-D FE model to simulate the general characteristics of the ground motion. The direct use of 2-D geophysical prospecting profiles to construct FE models can accurately represent the real depositional environment and stratigraphic heterogeneity of the basin, and this approach can reflect the influence of the heterogeneity of the velocity structure on the ground motion well. Based on previous studies, it is clear that the basin’s basement depth and resolution of the velocity model have the most significant influence on the basin effects. Therefore, we chose two geophysical profiles across the basin. One of the profiles had a long span and large basement depth variations. Based on this profile, the influences of the basement depth and vertical velocity structure on the ground motion characteristics were studied. The other profile spanned a small-scale basin with a high-resolution velocity structure, and the arc-shaped basement of the basin could be identified. Based on this profile, the influences of the heterogeneity of the velocity structure and the geometric features of the basement on ground motion were studied.
2 NUMERICAL TECHNIQUE
In this paper, we use the SEM (Komatitsch and Vilotte, 1998), which is popular for ground motion simulations. The SEM combines the advantages of the pseudo-spectral method and the FE method. It not only has the flexibility of the FE method in dealing with irregular structures, but it also has the high accuracy and fast convergence characteristics of the pseudo-spectral method. In this paper, the Ricker wavelet is used as the source time function. The Ricker wavelet is a narrow-band signal. Using the Ricker wavelet as the input motion can identify the main characteristics of the seismic response of the basin. It is an effective method that can be used to determine the causes and results of complex engineering problems (Bard and Bouchon, 1985; Gelagoti et al., 2012).
The expressions of the Ricker wavelet in the time domain and frequency domain are as follows:
[image: image]
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where fp is the central or predominant frequency.
In studying the seismic response of a 2-D trapezoidal basin, Zhu (2018) found that only when the wavelength of the input seismic wave is equal to or smaller than the maximum thickness of the sedimentary layer in the basin will the basin have a 2-D seismic response. Therefore, for the wide Weihe Basin, which contains a thick sedimentary layer, the Ricker wavelet with a dominant frequency of 1 Hz was selected as the source time function; while for the Luoquanli Basin, which is a small basin with a thin sedimentary layer, the Ricker wavelet with a predominant frequency of 4 Hz was selected as the source time function. The two source time functions are shown in Figure 1.
[image: Figure 1]FIGURE 1 | Ricker wavelets: (A) time history of Ricker pulse and (B) corresponding Fourier amplitude spectrum.
3 BASIN MODEL
3.1 Two geophysical prospecting profiles
The first profile selected in this paper is a high-resolution refraction detection section across the Weihe Basin in China. The Weihe Basin lies in the middle and lower reaches of the Weihe River between latitudes 34°00′ and 35°10′ N and longitudes 107°00′ and 110°20′ E. It adjoins the Ordos basin in the north, Qinling Mountains in the south and west, Yellow river in the east. The total area of the Weihe Basin is 3.9 × 104 km2, with a length of 360 km from west to east and a width of 30–85 km from north to south. Sedimentary within the region are generally between 1,000 and 5,000 m in thickness, but maxima exceeds 7,000 m. The bottom to top strata are continuously deposited from the Paleogene through the Neogene to the Quaternary, and the strata have sedimentary characteristics such as large formation thickness, obvious north-south differentiation of the phase zone, and rapid change of lithological composition (Li et al., 2021). The geologic map and the location of the prospecting profile are shown in Figure 2. This study only focused on the amplification effect of the basin’s structure on the ground motion without considering the topographic effect. The data above the elevation of the credible velocity structure data of the profile were removed, and only the data below an elevation of 0.5 km were retained. The velocity structure of the geophysical profile is shown in Figure 3. The profile shows that the velocity contour line between 50 and 160 km is concave, forming a basin structure. The velocity value in the basin is significantly lower than the velocity values on both sides. The depth of the basin’s basement is about 8.0 km, and the basin structure corresponds to the depression of the Pre-Sinian crystalline basement in this region, this is consistent with the geological profile. The geophysical profile shows that the velocity structure and sedimentary thickness of the profile vary greatly laterally, and the bedrock is exposed near 40 km. However, in the Weihe Basin, the deposition of the strata above −2 km is relatively stable, and the strata below −2 km exhibit obvious anisotropy.
[image: Figure 2]FIGURE 2 | The geologic map of Weihe basin (Li et al., 2021).
[image: Figure 3]FIGURE 3 | The velocity structures of geophysical profile of Weihe basin.
To study the response of the ground motion in small basins, the second profile selected in this paper is a high-resolution refraction detection section passing through the Luoquanli meteorite crater, with a section length of 3.0 km. The crater is located at 40°21′55″ N, 123°27′34″ E in the northern part of Liaodong Peninsula of northern China. It is a simple bowl-shaped crater located in a low mountain-hill region, which was formed in the Early Proterozoic metamorphic rockseries composed of leucoleptite, hornblendite, gneiss, and marble (Qin et al., 2001). The crater is an approximately pentagonal structure with a rim-to-rim diameter of about 1800 m. The rim crest and both sides of rim are mostly covered with weathering soil, eluvial and diluvial deposits up to several meters thick. A few spots with exposed basement rocks (mainly leucoleptite) emerge from the rim walls (Chen et al., 2010). The crater floor is covered with Quaternary lacustrine sediments, with organic-rich lacustrine sediments in the upper part and loose brecciated rock debris and shock breccia accumulation in the lower part. The geologic map is shown in Figure 4, and the sketch of geological profile of the crater is shown in Figure 5. This basin exhibited an obvious seismic intensity anomaly during the Haicheng earthquake in 1975. The seismic intensity around the basin was 6 degree, while the seismic intensity inside the basin was 8 degree. The classification standard of the seismic intensity is consistent with the standard of the United States.
[image: Figure 4]FIGURE 4 | The geologic map of Luoquanli basin (Qin et al., 2001).
[image: Figure 5]FIGURE 5 | The sketch of geological profile of Luoquanli basin (Chen et al., 2010).
The location of the profile is shown in Figure 4, and the velocity structure of the geophysical profile is shown in Figure 6. It can be seen that in the lateral direction of the profile, the upper part of the profile shows that the velocity in the middle of the basin is low (minimum of approximately 1.4 km/s), and the velocity at the edge of the basin is high (up to 4.3 km/s), this corresponds to the weakly weathered bedrock surrounding the basin, as shown in Figure 4. In the vertical direction, the velocity variation range in the middle of the basin is larger (from 1.4 to 7.0 km/s), and the velocity variation range at the edge of the basin is smaller (from 4.3 to 7.0 km/s). The profile reveals the bowl shape of the basin, this is consistent with the sketch of geological profile, as shown in Figure 5. The deepest depth of the basement in the basin is approximately 830 m, with a velocity of approximately 7.0 km/s, which is rare in the stratum at the same depth. Is it the typical bowl-shaped structure that caused the anomalous intensity in the Luoquanli Basin? In this paper, we conduct related research to answer this question.
[image: Figure 6]FIGURE 6 | The velocity structures of geophysical profile of Luoquanli basin.
3.2 Finite element model
For the Weihe Basin profile, to reflect the inhomogeneity of the geophysical profile and save computational time, we divided the mesh by setting the mesh size of the deep homogeneous high-wave-speed structure to 400 m and the mesh size of the low-wave-speed structure with strong heterogeneity at shallow depths to 50 m. For the Luoquanli Basin profile, we set the mesh size to 10 m.
In the numerical simulation using the SEM, to ensure the accuracy of the simulation results, it is required that at least five Gauss-Lobatto-Legendre integration points be contained in each seismic wave wavelength, which means that the relationship between the mesh size of the model, the order of the Lagrange polynomial, and the shortest wavelength of the seismic waves is satisfied by the following condition:
[image: image]
where d is the mesh size, n is the order of the Lagrange polynomial, 4≤n≤8, and λm is the shortest wavelength of seismic waves.
For the Ricker wavelet source time function, we can obtain λm using the following equation, in which vs is the S-wave velocity in the medium, and fp is the predominant frequency of the Ricker wavelet:
[image: image]
The empirical relationship between the S-wave velocity (vs), P-wave velocity (vp), and Poisson’s ratio (σ) is as follows:
[image: image]
The geophysical profile reveals that the minimum P-wave velocity in the basin is approximately 1,500 m/s. According to experience, Poisson’s ratio of the sedimentary soil in this layer is approximately 0.33. According to Eq. 5, the minimum S-wave velocity is approximately 750 m/s. When the predominant frequency of the input Ricker wavelet is 1 and 4 Hz, the S-wave wavelength is approximately 300 and 75 m, respectively. Based on Eq. 3, the mesh size meets the computational accuracy requirements.
When conducting a ground motion simulation, many researchers usually deliberately divide the stratum into several layers, with obvious boundaries between each layer, and the medium properties of each layer adopt equivalent values or values that gradually increase with depth. However, the former technique artificially causes abrupt changes in the properties of the different strata, and the latter technique ideally assumes a gradual increase in the properties of the strata with depth, both of which are inconsistent with the real depositional processes in basins. The deposition of sedimentary layers in a basin is complex, that is, the strata are crisscrossed, and there may be interlayers or lenticular bodies. As is shown in the geophysical profiles in Figures 3, 6, there is generally no obvious medium interface. Therefore, in this paper, based on the velocity structure characteristics of the refraction profile, when we assign the medium parameters to the model, we assign the nearest velocity value of each mesh to the corresponding mesh. This approach can reflect the influence of the heterogeneity of the subsurface structure on the ground motion well.
The velocity value in the velocity structure of the geophysical profile is the P-wave velocity value, and the S-wave velocity value can be obtained using Eq. 5. The Poisson’s ratio of the soil layer can be set as 0.33 according to the empirical value. The Poisson’s ratio of the deep rock structure is determined according to Eq. 6, and the density is determined according to Eq. 7 based on previous research results (Brocher, 2005):
[image: image]
[image: image]
For the Weihe Basin profile, we directly construct the FE model according to the size of the profile. When studying the basin amplification effect, we construct a homogeneous model with the same size as a comparison to eliminate the influence of the boundary effect. For the Luoquanli Basin profile, we place the boundaries of the FE model far away from the basin to eliminate the influence of the boundary effect.
4 DISCUSSION
For the Weihe Basin profile model, the time step is set as 0.0005 s. To simulate the basin effects completely, 200,000 steps are calculated, and the total calculation time is 100 s. For the Luoquanli profile model, the time step is set as 0.0001 s, 100,000 steps are calculated, and the calculation time is 10 s.
4.1 Seismic response characteristics of the Weihe Basin profile
4.1.1 Time history characteristics
In this paper, 401 receivers are set on the surface of the 200 km long geophysical profile model. To facilitate the analysis of the impact of the velocity structure on the ground motion, the geophysical profile is also drawn under the time history arrangement diagram (Figure 7). It can be seen from Figure 7 that the initial arrival time of the seismic waves in the 3–15 and 38–48 km sections where bedrock is exposed at the surface is earlier than at the other receivers, and the time history of seismic waves in these two sections shows that the high frequency of the ground motion is predominant, especially in the 38–48 km section where the bedrock penetrates from the bottom of the profile to the surface. The sections with low-wave-speed sedimentary layers exert a filtering effect on the high-frequency ground motion, such as the 16–38 km section and the 50–160 km section in the Weihe Basin. Moreover, the Weihe Basin section exerts a significant amplification effect on the low-frequency ground motion. The lateral heterogeneity of the medium in the Weihe Basin leads to an abundance of surface waves within the basin, and the surface waves generated at the basin’s edge form an X shape in the middle of the basin as they propagate laterally into the interior of the basin, which is consistent with the effects of a simple ideal 2-D basin model (Riga et al., 2016; Zhu, 2018). However, because the basin is wide and the sedimentary layers in the basin are soft, the surface wave attenuates rapidly when it propagates laterally, and there is no back and forth oscillating surface wave in the middle of the basin.
[image: Figure 7]FIGURE 7 | The acceleration time history of the Weihe Basin profile model and the velocity structure profile.
In this paper, the amplitude ratios of the acceleration time history of the receivers at the same location in the geophysical profile model and the homogeneous bedrock model are calculated (red line in Figure 7). The coordinate axis of the amplification factor is shown on the right side of the figure. As can be seen from this curve, the profile section with relatively soft sedimentary layers amplifies the ground motion significantly, and the shape of the amplification factor curve is a mirror image of the velocity structure contour of the geophysical profile, which is consistent with the results of previous studies (Aki and Larner, 1970; Field, 2000; Frankel et al., 2002; Fletcher and Wen 2005). In this paper, we only study the duration of the ground motion in the 50–150 km section in the Weihe Basin (Figure 8), from which we can see that due to the diffraction of the seismic waves off the edge of the basin, the duration of the ground motion at the edge of the basin is relatively long; while in the central part of the basin, the duration of the ground motion is shorter due to the absorption effect of the relatively soft sedimentary layers.
[image: Figure 8]FIGURE 8 | The acceleration time history duration lengthening of the receivers in the Weihe Basin.
4.1.2 Amplifying effect of the Weihe Basin geophysical profile on ground motion
In this paper, we use the spectral ratios of 401 receivers at the same locations in the two models to study the basin’s amplification effect.
It can be seen from the spectral ratio results that the basin section (50–160 km) is mainly used to amplify the spectral value of the period band (0.7–2 s). The spectral ratio results for some of the receivers are shown in Figure 9, and the data in the upper right corner of the graph indicate the receiver location. It can be seen from Figure 9 that the basin section does not produce greater amplification of the spectral value of the long-period section, which may be due to the following three reasons. First, when the periods of the seismic waves propagating vertically upward are greater than the threshold value, the long-period seismic waves are suppressed because their wavelength is greater than the thickness of the basin’s sedimentary layer (Day et al., 2005). Second, in such a wide basin with a small depth/width ratio, the surface waves generated at the edge will decay and disappear after a long distance of lateral propagation, and they cannot form a back and forth oscillating surface wave. Therefore, the surface waves cannot be superimposed many times and thus produce a greater amplification of the long-period ground motion. Third, the wave-speed of the sedimentary layers in the basin section that is revealed by the geophysical profiles is large, and the nonlinear characteristics of the sedimentary layers are not shown.
[image: Figure 9]FIGURE 9 | The spectral ratios of some of the receivers in the Weihe Basin profile model.
According to Field’s method (Field, 2000), the depth to the vs = 2.5 km/s horizon beneath the site is used as the basement depth of the basin. According to Eq. 5, the depth to the vp = 4.5 km/s horizon beneath the site (written as Zvp = 4.5) can be used as the basement depth of the basin. The functional relationship between the spectral ratio y1 and the burial depth x1 of the basement in the basin is established:
[image: image]
The least squares method is used to fit the data from the 401 receivers. The fitting parameters of several periods are presented in Table 1, and the fitting results are shown in Figure 10, from which it can be seen that the correlation between the spectral ratio and the basement burial depth is strong, which is consistent with numerous previous research results (e.g., Frankel et al., 2001; Hartzell et al., 2016). Therefore, for a wide basin, the depth of the basin plays a dominant role in the amplification of the ground motion. From the fitted relationship curve, it can be seen that the value of the spectral ratio increases gradually as the buried depth of the basement increases, and it starts to decrease slowly when the value of the spectral ratio increases to a certain value. It can be concluded that when the burial depth of the basement is relatively shallow, the sedimentary layer plays a leading role in the amplification of the ground motion. When the burial depth of the basement exceeds a certain depth, the relatively soft sedimentary layer will absorb more of the seismic wave energy and increase the attenuation of the ground motion. Therefore, this fitting curve is consistent with the propagation attenuation law of seismic waves, and this fitting curve is reasonable.
TABLE 1 | Parameters of the fitting relationship between the spectral ratio and basement burial depth.
[image: Table 1][image: Figure 10]FIGURE 10 | The relationship between the spectral ratio and basement burial depth.
Based on the distribution of the sample points of the basement burial depth and spectral ratio, the distribution of the sample points is scattered, and the spectral ratios corresponding to some basement burial depths differ greatly (e.g., the spectral ratios corresponding to basement burial depths of 3 and 7 km), which may be due to the differences in the velocity structure in the vertical direction within the same basement burial depth range.
Therefore, in this paper, we also fit the relationship between the average velocity within Zvp = 4.5 x2 and the spectral ratio y2. The following equation is the fitting equation, the fitting parameters for several periods are presented in Table 2, and the fitting results are shown in Figure 11:
[image: image]
TABLE 2 | Parameters of the fitting relationship between the spectral ratio and the velocity value.
[image: Table 2][image: Figure 11]FIGURE 11 | The relationship between the spectral ratio and the velocity.
The fitting relationship shows that the spectral ratio is more strongly correlated with the vertical velocity structure, and the goodness of fit is better than the fit of the previous relationship. The fitted curve shows that the fitted curve value tends to be 1 when the average velocity is greater than 6 km/s. This is consistent with the similar velocity values of the bedrock exposed in the Weihe Basin profile model and the homogeneous model. Therefore, this fitting curve is reasonable. In fact, due to the complexity of the depositional environment, the demarcation of the stratigraphic interface is not very obvious, so it may be more meaningful to statistically analyze the relationship between the spectral ratio and the mean value of the velocity in the vertical direction within a certain depth range when an accurate velocity structure profile is available.
4.2 Seismic response characteristics of the Luoquanli Basin profile
4.2.1 Time history characteristics
The time history arrangement diagram and geophysical profile are shown in Figure 12. It can be seen from the figure that the Luoquanli Basin has an obvious amplification effect on the ground motion, and the heterogeneity inside the basin produces obvious diffraction waves. The diffraction waves generated at the edge of the basin often appear as surface waves propagating toward the center of the basin. However, because the refraction geophysical profile can only reveal the high-wave-speed values in the basin, and the thickness of the sedimentary layers and the horizontal size of the basin are small, the surface waves and body waves are nearly completely mixed. Unlike in the wide Weihe Basin, the surface waves and body waves are slowly separated as they propagate toward the center of the basin, so the surface waves can be distinguished. It can be seen from Figure 12 that the initial arrival of the seismic waves and the lateral velocity structure distribution of the profile are closely related, and the initial arrival of the seismic waves is the latest in the central part of the basin, which has the smallest wave-speed values.
[image: Figure 12]FIGURE 12 | The acceleration time history of the Luoquanli Basin profile model and the velocity structure profile.
The amplitude of the time history of each receiver is normalized based on the amplitude of the receiver at the right edge of the basin (red line in Figure 12). The coordinate axis of the amplification factor is shown on the right side of Figure 12. It can be seen that the amplitude in the right-middle part of the basin is the largest. This abnormal amplification may be caused by the focusing effect of the bowl-shaped basin. In addition, from the time history waveform of the ground motion, we can see that the resolution of the velocity structure is important to the ground motion simulation. A velocity structure with a higher resolution can reveal the small subsurface heterogeneities, and these small heterogeneous geological bodies can diffract the seismic waves, thus prolonging the duration of the ground motion.
4.2.2 Amplifying effect of the Luoquanli Basin geophysical profile on ground motion
Since this paper adopts the vertical incidence of plane waves, the effect of the difference in the propagation path on the distribution of the ground motion can be ignored. We adopt the standard spectral ratio method to study the amplification effect in the Luoquanli Basin and investigate the cause of the seismic intensity anomaly in the center of the Luoquanli Basin by calculating the spectral ratio between the receivers inside the basin and a weakly weathered bedrock site receiver at the edge of the basin.
From the spectral ratio results, it can be seen that the profile section (0–1,500 m) amplifies the spectral value of the period band (0.2–0.5 s) more significantly. The spectral ratios of some of the receivers are shown in Figure 13, and the data in the upper right corner represents the locations of the receivers. There may be two reasons for this. First, this special bowl-shaped structure tends to produce a focusing effect on the seismic waves, and this focusing effect amplifies the high-frequency ground motion more significantly (Davis et al., 2000; Sahar and Narayan, 2016). Second, when the vertical upward propagating seismic wave period is greater than the threshold value, the long-period seismic wave is suppressed because the wavelength is larger than the thickness of the sedimentary layer in the basin.
[image: Figure 13]FIGURE 13 | The spectral ratios of some of the receivers in the Luoquanli Basin profile model.
The relationship between the spectral ratio and Zvp = 4.5 is shown in Figure 14. It can be seen from Figure 14 that there is a tendency for the spectral ratios to increase as the basement depth increases when the basement depth is less than 500 m, but the increase is relatively slow. When the basement depth is greater than 500 m, that is, mainly near the center of the basin, the spectral ratios of the receivers above the bottom of the bowl with a burial depth of approximately 600 m vary greatly (from 2.06 to 6.59). It can be seen that the spectral ratios at the center of this small basin have little to do with the burial depth of the basin’s basement, and the amplification of the ground motion is mainly related to the lateral velocity structure of the basin or the geometric characteristics of the basin’s basement. For this basin, the anomalous amplification of the ground motion by the center of the basin may be due to the focusing effect of this bowl-like structure on the seismic waves, which is consistent with the results of previous studies (Aki and Larner, 1970; Gao et al., 1996; Alex and Olsen, 1998; Davis et al., 2000; Baher and Davis, 2003; Stephenson et al., 2006; Sahar and Narayan, 2016). This may be the reason for the anomaly in seismic intensity in the Luoquanli Basin.
[image: Figure 14]FIGURE 14 | The relationship between the spectral ratio and the burial depth of the basement.
5 CONCLUSION AND PERSPECTIVES
Based on two 2-D geophysical profiles for two basins with different structures, in this study, we analyzed the seismic response characteristics of a broad 2-D basin model and a small bowl-shaped basin model. For the wide Weihe Basin, compared with Zvp = 4.5, the average velocity within Zvp = 4.5 in the vertical direction is more closely related to the amplification factor of the response spectrum. Therefore, the thickness of the sedimentary layer and the mean velocity value in the vertical direction tend to dominate the basin effects and play a dominant role in the amplification of the basin in wide basins. For the small Luoquanli Basin, the arc-shaped basement produces additional amplification of the ground motion. In the case of small basins, the special geometry of the basin’s basement tends to dominate the basin amplification effect.
This study is the first attempt to simulate ground motion based on 2-D geophysical profiles, and there are many shortcomings. For example, only the vertical incidence of the plane wave was considered, and the influence of the loose soft soil layer on the ground motion was not considered. The results obtained do not have strong engineering significance. Therefore, these factors should be considered in the next stage of this research.
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As an airborne electromagnetic method induced by natural sources, the Z-axis tipper electromagnetic (ZTEM) system can primarily recover near-surface shallow structures, due to band-limited frequencies (usually 30–720 Hz) of the airborne survey and high sample rate acquisition along the terrain. In contrast, traditional ground magnetotellurics (MT) allows better recovery of deep structures as the data acquired are typical of large site intervals (usually higher than 1 km) and lower frequencies (usually lower than 400 Hz). High-resolution MT surveys allow for shallow small and deep large anomalies to be adequately interpreted but need large site intervals and broadband frequency range, which are seldom used as they are quite costly and laborious. ZTEM data are tippers that relate local vertical to orthogonal horizontal fields, measured at a reference station on the ground. As the 1D structures produce zero vertical magnetic fields, ZTEM is not sensitive to background resistivity. Thus, in general, ZTEM can only reveal relative resistivities and not real resistivities. A combination of the ZTEM and MT methods can be an effective technique, alleviating the shortcomings of the individual methods. At present, complex underground structures and topography introduce difficulties for data inversion and interpretation, as conventional ZTEM and MT forward modeling are generally used on structured grids with limited accuracy. To effectively recover complex underground structures with topography, we developed a 3D framework for joint MT and ZTEM inversion with unstructured tetrahedral grids. The finite element method is used for the forward problem because of its flexibility with unstructured tetrahedral meshes. The limited-memory quasi-Newton algorithm (L-BFGS) for optimization is used to solve the joint inverse problem, which saves memory and computational time by avoiding the explicit calculation of the Hessian matrix. To validate our joint inversion algorithm, we run numerical experiments on two synthetic models. The first synthetic model uses two conductive anomalous bodies of different sizes and depths. At the same time, a simple quadrangular is used for comparing the inversions with and without topography. In contrast, the second synthetic model represents a realistic topography with two different conductivities and the same depth. Both single-domain and joint inversions of the ZTEM and MT data are carried out for the two synthetic models to demonstrate the complementary advantages of joint inversion, while the second model is also used to test the adaptability of the joint inversion to complex topography. The results demonstrate the effectiveness of the finite element method with unstructured tetrahedral grids and the L-BFGS method for joint MT and ZTEM inversion. In addition, the inversion results prove that joint MT and ZTEM inversion can recover deep structures from the MT data and small near-surface structures from the ZTEM data by alleviating the weaknesses of the individual methods.
Keywords: ZTEM, MT, unstructured grids, 3D joint inversion, topography
1 INTRODUCTION
As an effective geophysical technique, the electromagnetic (EM) method plays an essential role in understanding the electrical conductivity of the Earth (Haldar, 2013). EM methods can be divided, according to the type of source, into active-source EM methods and natural-source EM methods. Natural source EM (NSEM) methods include magnetotellurics (MT) and various airborne adaptation systems. These methods use natural sources, such as lighting and solar events, which have exploration capability from shallow Earth to the upper crust. Due to plane wave excitation, the investigation depth of NSEM compared to active-source EM methods is much deeper. Generally, NSEM data can be collected on the ground or in the air. Ground MT surveys can provide high-quality datasets and can be used to give a detailed electrical conductivity distribution of the Earth at depth by optimally planning the survey parameters. However, in areas with rugged topography, such as western China, the deployment of this method can be very difficult, especially when exploring a large area where high spatial resolution is required (Smiarowski and Konieczny, 2019). However, a practical limitation of the ground MT method is that the surveys are costly and time-consuming, as they are increasingly being planned in areas that are difficult to access (Holtham, 2012). In contrast, airborne NSEM surveys can efficiently collect data over large areas, though the datasets are of lower quality than ground MT datasets at lower frequencies.
In recent years, several airborne MT methods have been developed: the Z-axis tipper electromagnetic (ZTEM), AirMt, and MoblieMT methods (Legault, 2009; Legault et al., 2012; Sattel et al., 2019). ZTEM uses airborne measurements of the vertical magnetic field, while horizontal magnetic fields are recorded at the base station. Due to flight speed and sampling rate, the frequency range of the ZTEM survey is nominal, 22–720 Hz, which allows deeper depth detection than AirMt and MoblieMT. AirMt measures three-component airborne magnetic fields and records three-component magnetic fields at the base station, and MoblieMT measures three-component airborne magnetic fields while monitoring the horizontal electric field at the base station (Sattel and Witherly, 2021). The detection depth of ZTEM can reach beyond 1 km, affording a greater depth of investigation than active source airborne EM methods (generally, several hundred meters) and most active source ground EM methods. Thus, ZTEM has become an important tool in environmental engineering and in mineral and hydrocarbon explorations (Legault et al., 2009; Holtham and Oldenburg, 2010; Cao et al., 2022). Sampson and William (2021) combined ZTEM and Helitem (a time-domain active source AEM method) for camp-scale carlin-type deposit exploration, showing that ZTEM can add significant value by providing deeper penetration. Although the ZTEM method gains a greater depth of investigation than active-source airborne EM methods by using the natural plane wave, it lacks information about background resistivity (Lo and Zang, 2008; Holtham, 2010). Whereas active-source AEM can give more background information and is mainly sensitive to conductive structures, the joint inversion of ZTEM and Dighem (a frequency-domain active source AEM method) are discussed by Sattel and Witherly (2021), who demonstrated that joint inversion combines the depth of the former and the shallow high resolution of the latter. However, for a deep investigation of more than 2 km, particularly in conductive environments, the depth of investigation by joint ZTEM and other AEM methods may not be adequate. Thus, the study of the joint inversion of AEM and ground EM data has been the subject of much research in recent decades (Sasaki et al., 2014). One way to improve the depth and calibrate background resistivity information is to add a ground MT survey to develop the joint inversion of ZTEM and MT data.
The sensor location creates a noticeable difference between ZTEM and the ground MT. To address this, one can follow a similar procedure for joint inversion of MT and ZTEM data, as is conducted for ground MT or airborne ZTEM, meaning that the forward modeling of the ZTEM and MT responses is computationally efficient and straightforward. With the advent of the ZTEM system, it is now possible to collect and invert ZTEM and MT data simultaneously. Sasaki (2014) has developed a 2D joint inversion of audio magnetotelluric (AMT) and ZTEM data, which shows that simultaneously inverting both data sets led to better results than the sequential approach by enabling the identification of structural features that were difficult to resolve from the individual datasets. Soyer and Mackie (2018) analyzed the separate and joint inversion of MT and ZTEM data. They concluded that joint MT-ZTEM inversion benefits from a similar acquisition and workflow and that only sparse MT station spacing can benefit from joint MT-ZTEM. For 3D MT and ZTEM modeling, the finite difference (FD) method and finite volume (FV) method are most popularly used, generally on structured hexahedral grids. However, precision is heavily dependent on the mesh quality of the structured grids, especially for complex structures and topography. Unfortunately, in areas with rugged topography, it is difficult to handle complex underground structures and topographic Earth surfaces. Kaminski et al. (2013) have shown that ZTEM data are very sensitive to topography and, if ignored, can lead to false structures being obtained. Unstructured tetrahedral mesh can readily fit an undulating Earth surface and complex underground structures with fewer cells (Jahandari and Farquharson, 2018). It has been used increasingly widely in 3D electromagnetic modeling and inversions with the finite element method (Ren et al., 2013; Jahandari and Farquharson, 2018; Wang et al., 2018). Although the 3D joint inversion of MT and ZTEM data considering topography have not been well-studied to date, it is ideal for developing a robust 3D joint inversion MT and ZTEM data using the finite element method with unstructured tetrahedral grids.
In this paper, we use the finite element method with unstructured tetrahedral grids to calculate 3D MT and ZTEM responses. For the joint inversion, we use the limited-memory quasi-Newton algorithm (L-BFGS) for large-scale 3D joint MT and ZTEM inversion, avoiding the costly explicit calculation of Hessian and Jacobian matrices and reducing memory requirements. Our joint MT and ZTEM inversion is an extension of the MT inversion algorithm (Cao et al., 2018a) and the ZTEM inversion algorithm (Cao et al., 2022). In the following, we first revisit the finite element method with unstructured tetrahedral grids used for 3D MT and ZTEM forward modeling. Then we establish equations for the joint MT and ZTEM inverse problem based on the L-BFGS algorithm. Finally, we validate our inversion algorithm by inverting two synthetic models, one with multiple anomalous bodies and one with rugged topography.
2 3D FORWARD METHOD
To solve the 3D MT and ZTEM forward problem, the source-free Helmholtz equation for the electric field and a time-dependent of [image: image] are used, which takes the form:
[image: image]
where for a separated system, [image: image], i, [image: image], [image: image] and [image: image] are the electric field, the imaginary unit, the angular frequency, the magnetic permeability of the free-space, and the conductivity, respectively. The forward method in this paper is based on FEM with unstructured grids as described by Cao et al. (2018a), which is solved by the Galerkin method of weighted residuals with an inhomogeneous Dirichlet boundary condition on the outside boundary [image: image]. The model domain is discretized into tetrahedral elements, and the electrical fields at the edges of the elements are interpolated using the vector basis function [image: image] from Jin (2014). Taking the vector inner product of Eq. 1 by [image: image], we obtain the weighted residual of Eq. 1. Subsequently, integrating the weighted residual over the model domain [image: image] gives
[image: image]
With a Gaussian step integral to Eq. 2, we obtain the weak form of Eq. 1:
[image: image]
where [image: image] is the outer normal vector on the outside boundary [image: image]. Taking the integration in Eq. 3 to each element and subsequently assembling the integrations for all elements with the Dirichlet boundary condition on [image: image] gives the following large system of a linear complex equation,
[image: image]
where [image: image] is the total coefficient matrix, and [image: image] denotes the boundary. Eq. 4 is solved using PARDISO, an efficient parallel sparse direct solver. The electrical field and the magnetic field components at any position are calculated using [image: image] on the edges of the corresponding element and Faraday’s law. After obtaining the electrical and magnetic fields, we can calculate the MT impedance tensor at the observation by solving the following equations:
[image: image]
where 1 and 2 represent the conjugated polarization mode in the x- and y-directions, respectively. The ZTEM response, namely tipper, is a transfer function that relates the vertical magnetic field observed in the air to the horizontal magnetic fields recorded at the fixed reference station. The relation between the tipper and the magnetic fields takes the form:
[image: image]
where [image: image] and [image: image] are the ZTEM tippers, r denotes the location of the vertical magnetic sensor in the air, and [image: image] denotes the location of the ground-based reference station. The same two polarization modes as Eq. 6 are used to calculate the tippers in the following equation:
[image: image]
Solving Eq. 7 yields the following ZTEM tippers:
[image: image]
The modeling accuracy of the above unstructured FE method has been verified by Cao et al. (2018b, 2022).
3 3D L-BFGS ALGORITHM
3.1 L-BFGS algorithm
In the typical BFGS method for inversions, the following iterative process calculates the inverse Hessian matrix:
[image: image]
where [image: image], [image: image], [image: image], [image: image], [image: image], and [image: image] is a unit matrix. The BFGS method needs to store the M × N elements of the Hessian matrix (N is the number of inversion data points), which is unsuitable for 3D large-scale MT and ZTEM inversion. Nocedal (1980) has further proposed a limited-memory BFGS (L-BFGS) method for the solution of large-scale inversion problems. As L-BFGS stores the last [image: image] (a same number, generally less than 10) pairs of [image: image] and s vectors of length M, where M denotes the number of unknown, only [image: image] values need to be stored. For our 3D joint MT and inversion, N (a large number, generally more than 1,000) is much larger than [image: image]. This leads to a much smaller memory cost than the typical BFGS method, which is suitable for large-scale 3D inversions. Table 1 outlines the L-BFGS algorithm used in this paper.
TABLE 1 | Outline of L-BFGS algorithm.
[image: Table 1]3.2 Objective function and its gradient
In the L-BFGS algorithm for 3D joint MT and ZTEM inversion (Table 1), only the objective function and its gradient are needed. For that purpose, we first parametrize the conductivity model into tetrahedral elements and allocate each element a conductivity [image: image]. Logarithmic values are used to ensure that the inverted conductivities are positive and finite in the joint inversion, so the ith element takes the form
[image: image]
where [image: image] denotes the low boundary of [image: image]. Then, we reconstruct the conductivity model as [image: image], where M denotes the number of elements. Based on Tikhonov and Arsenin (1977), the objective function for our 3D ZTEM inversion can be defined as
[image: image]
where [image: image] denotes the data misfit, while [image: image] denotes the model constraint, and [image: image] is the regularization factor that balances [image: image] and [image: image]. In our joint inversion, we use a linear cooling schedule to set [image: image]. We assume a large [image: image] initially and then reduce it by decreasing linearly by a constant factor ([image: image] = [image: image] c, we use c=0.9) when step size [image: image] in Table 1 is too small. The data misfit term [image: image] is defined as
[image: image]
where [image: image] and [image: image] are the values for observed data impedance and tipper. [image: image] and [image: image] are, respectively, the observed and calculated data (impedance components), which are split into real and imaginary parts and put into an array with all imaginary parts staying behind the real parts. Similarly, [image: image] and [image: image] are those of tipper components. [image: image] denotes the error for MT or ZTEM data. The model structure [image: image] is composed of the roughness measure [image: image] and the closeness measure [image: image] (Jahandari and Farquharson, 2018), i.e.,
[image: image]
where [image: image] and [image: image] are used to balance [image: image] and [image: image]. The roughness measure [image: image] is defined as
[image: image]
where [image: image] denotes the model roughness operator used to stabilize the joint inversion. The following weighted sum is used to define the roughness:
[image: image]
where
[image: image]
The term in curly brackets in Eq. 15 approximates the L2-norm of the parameter gradient in a ball surrounding the ith element. In the above equations, [image: image] is the volume of the jth element, [image: image] is the number of the elements sharing nodes with the jth element, and [image: image] is the weighting coefficient for the jth element. [image: image] is the distance between the ith and jth elements, which is computed using the coordinates of the centroid of each element. In Eq. 13, [image: image] is a measure of the closeness of the current model [image: image] to a reference model [image: image] that is defined as
[image: image]
where [image: image] denotes the weight to control the closeness. The following weighted sum is used to define the closeness, namely,
[image: image]
where [image: image] is the corresponding model of model [image: image].From Eq. 12, the gradient of the objective function can be written as
[image: image]
where, according to Eqs 15–19, [image: image] can be directly calculated, while [image: image] can be written as
[image: image]
To calculate Eq. 20, the observed and predicted data and their weighted difference in Eq. 12 are redefined to be complex quantities, i.e.,
[image: image]
and
[image: image]
Hence, for the kth model parameter and MT impedance data, we have
[image: image]
where * denotes the complex conjugate. Similarly, for ZTEM tipper data we have
[image: image]
The model updates are given by [image: image]. The sensitivity elements for impedance [image: image] are given by
[image: image]
where the two vectors [image: image] and [image: image] (i, j=x, y) are linear combinations of the vectors that interpolate electrical and magnetic fields for two conjugated polarizations. [image: image] denotes the inverse of the FEM matrix employed in Eq. 4. The two electric fields [image: image] and [image: image] in Eq. 25 are the solutions from two polarizations for the definition of tippers at each frequency. Similarly, we can obtain the sensitivity elements for the tipper as
[image: image]
These sensitivities quantify small changes in the tipper elements at the receiver location due to small changes in the kth model parameter. The four vectors ([image: image], [image: image], [image: image], and [image: image]) are specified in Appendix A (Cao et al. 2022). They denote the linear combinations of vectors that interpolate electrical and magnetic fields for two conjugated polarizations from the forward modeling grids to the receiver site at its location. Eqs 25, 26 can be solved by two adjoint forward models, as in the ground MT (Newman and Alumbaugh, 2010).
4 SYNTHETIC EXPERIMENTS
4.1 Synthetic data inversion with two anomalous bodies of different depths
We demonstrate the effectiveness of the joint inversion of ground MT and airborne ZTEM data compared with single-domain inversion of MT and ZTEM data by examining the synthetic models in Figure 1 with and without a quadrangular platform terrain. The regular quadrangular platform is 300 m long above, 3000 m long below, and 300 m high and is located in the center of the survey area. Referring to Figures 1A,C, the MT survey was simulated with 49 stations in total with 1-km station and line intervals, while the subsampled ZTEM survey had 256 stations (ZTEM Hz coils locations) in total with 500-m station and line intervals. The horizontal magnetic fields were calculated at a ground-based reference station (ZTEM horizontal coil location) located at x=3750 m, y=3750 m. The models had a shallow small block and a deep block, and all intruded in a background host. The half-space had a resistivity of 100 Ω·m. The shallow body had a resistivity of 10 Ω·m with dimensions of 500 m ×500 m ×300m in the x-, y-, and z-directions, respectively, and the center of the body was located at (1750 m, 0 m, 450 m). The deep conductive body had the same resistivity of 10 Ω·m with dimensions of 2000 m × 2000 m × 1000 m in the x-, y-, and z-directions, respectively, and the center of the conductive body was located at (−1500 m, 0 m, 1500 m).
[image: Figure 1]FIGURE 1 | Survey grids for the synthetic models. (A) Synthetic model without topography on xy plane; (B) synthetic model without topography on yz plane; (C) synthetic model with topography on xy plane; (D) synthetic model with topography on yz plane. The three grids are MT sites (red squares), ZTEM sites (black circles), and ZTEM base site (yellow square).
The ZTEM vertical magnetic fields at frequencies of 30, 45, 90, 180, 360, and 720 Hz were computed both at a fixed altitude of 100 m over the plat and for a quadrangular platform Earth surface. To complement the ZTEM survey, the MT survey data of 0.04, 0.1, 0.4, 1, 3.5, 7, 45, 70, 90, 180, and 360 Hz were simulated. We used TetGen (Si, 2013) to generate the unstructured tetrahedral grids. As shown in Figure 2A, the computational domain for the model without topography was discretized into 272,798 elements for the forward modeling, while for the inversion in Figure 2A we divided the model into 265,981 elements. As shown in Figure 2C, the computational domain for the model with topography was discretized into 471,203 elements for the forward modeling, while for the inversion in Figure 2D we divided the model into 487,828 elements. We added 2% Gaussian noise to the synthetic ZTEM transfer functions tipper data MT and impedance data and set [image: image] in Eq. 12 to 0.002 for ZTEM and 2% times |ZxyZyx|1/2 for MT, respectively. Both the initial and reference models for the inversions were chosen to be a half-space as in Figures 2B,D with a given resistivity. Determining a reasonable starting model is critical for any inversion. We chose different resistivities of the initial models for four different test inversions, as shown in Table 2, to evaluate our joint inversions.
[image: Figure 2]FIGURE 2 | Model discretization for (A) forward modeling without topography, (B) inversion without topography, (C) forward modeling with topography, and (D) inversion without topography.
TABLE 2 | Initial model settings.
[image: Table 2]Figures 3, 4 show the slices of the results from our test inversions on the horizontal and vertical planes, respectively. The rectangles indicate the outlines of the anomalous bodies. The results of the MT inversions with and without topography for start model 1 shown in Figures 3A, 4A, 5A, 6A only recover the lower conductive body but have a poor revolution for the shallow small body. This is expected, as MT is used with site intervals and lower frequency. For this reason, MT is mainly used to study the conductivities of large and deep structures in the Earth. Start model 3 uses an accurate initial model. The results of the ZTEM inversion for start model 2 in Figures 3B, 4B, 5B, and 6B recovered the shallow body and deep body. However, the deep body is vertically compressed compared to the real model, indicating that ZTEM has a poor resolution for deep structures below 1,500 m. As ZTEM is sensitive to upper structures, which have significant relative resistivity to the background medium [2–3], traditional methods that are used to determine a best-fitting half-space resistivity model cannot be used for ZTEM inversion. Start model 1 and start model 3 use inaccurate initial models. The results of the joint inversion in Figures 3C, 4C, 5C, 6C for Model 3 show that the joint inversion recovers both bodies. In addition, the recovered resistivities of the abnormal bodies and the background are approximate to those of the real model. This indicates that combining coarse MT and ZTEM inversion is effective in alleviating the shortcomings of the single MT and ZTEM inversion and has improved the model in the near-surface and at depth. The results of the ZTMT inversion for start model 4 in Figures 3D, 4D, 5D, 6D also recover anomalies with relatively correct positions. However, the lower part of the true body is not clearly displayed in the case without topography. As a comparison, the lower part of the true body is lost for the case with topography, as topography adds the depth of the deep structure. Comparing start model 2 and start model 4, it can be found that ZTEM inversion can give a reasonable resistivity model only when the initial models are close to the real background, while joint inversion does not depend on an accurate initial model and eliminates the redundant structures in ZTEM inversion. At the same time, joint inversion can combine the advantages of MT and ZTEM, which can provide a good revolution on shallow and deep structures.
[image: Figure 3]FIGURE 3 | Inversion results for the synthetic model without topography respectively at the xz section for y=0 m. (A,D) and (C) are MT inversion, ZTEM inversion, and joint MT and ZTEM inversion with initial model and a 200 Ω·m half-space, respectively. (B) is the ZTEM inversion with a 100 Ω·m half-space.
[image: Figure 4]FIGURE 4 | Inversion results for the synthetic model with topography at the xz section for y=0 m. (A,D) and (C) are the MT inversion, ZTEM inversion, and joint MT and ZTEM inversion with initial model and a 200 Ω·m half-space, respectively. (B) is the ZTEM inversion with a 100 Ω·m half-space.
[image: Figure 5]FIGURE 5 | Inversion results for the synthetic model without topography at xy section for z=−450 m. (A,D) and (C) are the MT inversion, ZTEM inversion, and joint MT and ZTEM inversion with initial model and a 200 Ω·m half-space, respectively. (B) is the ZTEM inversion with a 100 Ω·m half-space.
[image: Figure 6]FIGURE 6 | Inversion results for the synthetic model with topography at xy section for z=−450 m. (A,D) and (C) are the MT inversion, ZTEM inversion, and joint MT and ZTEM inversion with initial model and a 200 Ω·m half-space, respectively. (B) is the ZTEM inversion with a 100 Ω·m half-space.
Figure 7A shows that the fastest convergence of the model without topography is the ZTEM inversion with an accurate initial model. The slowest convergence is the MT inversion with an inaccurate initial model of 200 Ω·m. The convergence of an accurate initial model for ZTEM is faster than the inexact model inversion with 200 iterations, and it is similar to that of the model with topography in Figure 7B. This indicates that different initial models can result in variations in inversion result models, even if the data are sufficiently fit. The convergence of the joint inversion is between the MT and ZTEM, even if the initial model is inexact. Figures 7C,D show [image: image] to increase rapidly at first and finally to decrease slightly to convergence for all inversions, with and without topography. For the ZTEM inversions with and without topography, [image: image] converges to approximately the same value. At the same time, for MT inversions and joint ZTEM and MT inversion without topography, [image: image] converges to approximately the same value. For MT inversions and joint ZTEM and MT inversion with topography, [image: image] converges to a larger value for MT inversion than the joint inversion. Figures 7E,F show [image: image] to converge to different values for inversions with and without topography. In general, [image: image] for inversions with topography are greater than without topography.
[image: Figure 7]FIGURE 7 | (A,B) Data misfit [image: image], (C,D) model roughness measures [image: image], and (E,F) smallness measures [image: image] versus iterations.
4.2 Synthetic data inversion with topography
In this section, we demonstrate the effectiveness of our joint inversion algorithm for a topographical Earth, as shown in Figure 8. The elevation varies from 230 m to −10 m (Figure 6A). Referring to Figures 8A,B, the model consists of an Earth with a conductive body and a resistive body embedded. The half-space has a resistivity of 100 Ω·m. The conductive body has a resistivity of 10 Ω·m with dimensions of 2000 m × 2000 m × 1,000 m, respectively, in the x-, y-, and z-directions. The center of the conductive body is located at (1,500 m, 0 m, 750 m). The resistive body has a resistivity of 500 Ω·m with dimensions of 2000 m × 2000 m × 1,000 m, respectively, in the x-, y-, and z-directions. The center of the conductive body is located at (−1,500 m, 0 m, 750 m). The ZTEM vertical magnetic fields at frequencies of 30, 45, 90, 180, 360, and 720 Hz are computed at a fixed altitude of 100 m over the topographical surface. In addition, the MT survey data of 0.04, 0.1, 0.4, 1, 3.5, 7, 45, 70, 90, 180, and 360 Hz are simulated. Three different survey configurations over an 8 km × 8 km area were used, as shown in Figure 8A. The first survey has sparse MT stations, with only five stations, with 3-km station and line intervals, which could not be used for any 3D exploration projects due to their poor resolution. The second survey is a finer MT survey with 49 stations on the topographical surface in total, with 1-km station and line intervals. The third survey is a fine ZTEM survey with 256 stations (ZTEM Hz coils’ locations) at a fixed altitude of 100 m over the total topographical surface, with 500-m station and line intervals. The horizontal magnetic fields are calculated at a ground-based reference station (ZTEM horizontal coil location) located at x=3,750 m, y=3,750 m.
[image: Figure 8]FIGURE 8 | Survey grids for the synthetic model. The three grids are coarse MT (red squares), fine MT (blue diamonds), and ZTEM (black circles). The blue square is the ZTEM base.
Since the ZTEM data are very sensitive to topography, it is important to finely discretize them. The computational domain was discretized into 414,394 elements for the forward modeling (Figure 9). We added the Gaussian noise, as in the previous section, to the synthetic ZTEM transfer functions tipper data and MT impedance data before inversion. Both the initial and reference models for the inversions were chosen to be a half-space, which was divided into 362,745 elements with the same topography as Figure 9A. Four inversions with different initial model and survey configurations were tested, as shown in Table 3. Start model 1 is a ZTEM inversion with a 200 Ω·m initial model. Start model 2 is a ZTEM inversion with a 100 Ω·m initial model. Start model 3 is the joint MT and ZTEM inversion with the sparse MT survey and a 200 Ω·m initial model. Start model 4 is the joint MT and ZTEM inversion with the fine MT survey and a 200 Ω·m initial model.
[image: Figure 9]FIGURE 9 | Model discretization for the forward modeling. (A) 3-D view of the models. (B) Side view of the model (y=0 m). (C) Plane view of the model (z=−1100 m).
TABLE 3 | Inversion settings.
[image: Table 3]Figures 10, 11 show the slices of the results of the four test inversions at the xz-section for y=0 m and the xy-section for z=−500 m. The rectangles indicate the outline of the true abnormal bodies. In Figures 8A, 9A for start model 1, the average resistivities for the revealed anomalous bodies and the background were higher than the real model. The inversion depth for the resistive body is beyond the real model, as shown in Figure 8A, while the conductive body has low resolution. In contrast, as shown in Figures 10B, 11B for start model 2, the average resistivities for revealed anomalous bodies and the background approximate the real model, which indicates that single-ZTEM inversion depends on an adequate initial model, like the first synthetic data inversion in the previous section. The inversion depth for the conductive body is lower than in the real model, as shown in Figure 10B, and the conductive body has good resolution, as shown in Figure 11B. In Figures 10C, 11C for start model 3, the average resistivities for the revealed anomalous conductive body and the background approximate the real model, but the resistive body also has a moderate resolution. In Figures 10D and 11D for start model 4, the average resistivities for the revealed anomalous conductive and resistive bodies and the background approximate the real model, and the resistive body has good resolution, which indicates that adding MT data calibrates the resistivity of ZTEM inversion. However, that of the sparse MT survey is much higher than the real model. As expected, the inverted depth of Model 4 for the fine MT survey is much lower, nearly the same as the real model; by increasing the number of MT stations, the shapes of the anomaly bodies are better resolved. Models 3 and 4 indicate that adding MT data, even if a sparse MT survey is used, can calibrate the resistivities of ZTEM inversion, and MT data can increase the detection depth of ZTEM inversion.
[image: Figure 10]FIGURE 10 | Inversion results for the synthetic model at the xz section for y=0 m. (A,B) and (C) are the MT inversion, ZTEM inversion, and joint MT and ZTEM inversion with initial model and a 200 Ω·m half-space, respectively. (D) is the ZTEM inversion with a 100 Ω·m half-space.
[image: Figure 11]FIGURE 11 | Inversion results for the synthetic model at the xy section for z=500 m. (A,B) and (C) are the MT inversion, ZTEM inversion, and joint MT and ZTEM inversion with initial model and a 200 Ω·m half-space, respectively. (D) is the ZTEM inversion with a 100 Ω·m half-space.
Figure 12A shows that [image: image] decreases during the iterations for four start model inversions, which shows that the joint inversions converge faster than a single ZTEM inversion; however, the single ZTEM inversion with an inadequate initial model converges the slowest. Figures 12B and C show how the [image: image] and [image: image] change during convergence. Overall, [image: image] increases sharply at first then increases slowly, finally decreasing slowly to convergence. For the joint inversions and the single ZTEM inversion with an adequate initial model, [image: image] increases sharply at first, then increases steadily before a slight decrease and finally decreases to convergence with a once small increase. However, the single ZTEM with the inadequate initial model increases sharply first, then decreases significantly before increasing to the maximum and finally decreasing to convergence. Figure 12 indicates that the L-BFGS inversions are stable and convergent even with the condition of the topography and adequate initial model and the addition of spare MT data can improve the ZTEM inversion.
[image: Figure 12]FIGURE 12 | (A) Data misfit [image: image], (B) model roughness measures [image: image], and (C) smallness measures [image: image] versus iterations.
6 CONCLUSION
In this study, based on the finite element method with unstructured tetrahedral grids and the L-BFGS method, we successfully developed a 3D inversion framework for joint MT and ZTEM data with topography. The unstructured grids can simulate complex underground structures and rugged topography, while the L-BFGS method avoids storing a large matrix; thus, the method is suitable for large-scale 3D MT and ZTEM inversions for complex geologies. An adequate MT survey, which may be inadequate for many exploration projects, can significantly enhance ZTEM inversion and adds significant information about deep structures. Joint inversion of MT and ZTEM data is a typical example of using the complementarity of ground and airborne EM data. Both synthetic data inversions verified the effectiveness of our algorithm. The inversion results showed that joint MT and ZTEM inversion can recover deep structures from the MT data and fine near-surface structures from the ZTEM data by alleviating the weaknesses of the individual methods, which calibrates the resistivities, rendering a correct a priori model unnecessary.
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Thin sandstone reservoirs of the fan delta front sub-facies occur in the early Neogene (Miocene) series of the Aketao (Akto) structural belt within the Kunlun piedmont zone of the Tarim Basin. Oil and gas reservoirs in this area correspond to stratigraphic traps. However, owing to the low density of the 2D seismic survey grid deployed in the Aketao belt, inferior seismic data quality, and lack of well logging data, reservoir prediction in this area suffers from a multiplicity of problems and it is difficult to effectively identify sand bodies. Here, a new research approach is proposed involving the use of 3D seismic, well logging, and drilling data from a neighboring highly-explored 3D seismic survey area as a reference for the 2D seismic interpretation of the non-drilled Aketao survey area. Moreover, this approach is integrated with forward modeling and the inversion of post-stack seismic data to identify sand bodies. A comparison of the seismic reflection characteristics clarifies that these 3D and 2D seismic survey areas share similar sedimentary environments. Forward modeling confirms their similar reservoir characteristics, while the reservoir distribution in the 2D seismic survey area is effectively mapped via the inversion. The results show that for a 2D seismic survey area characterized by a low degree of hydrocarbon exploration and appraisal, and a lack of well logging data, the proposed approach can confirm the sedimentary characteristics that correspond to the seismic reflection characteristics, and can quantitatively map the reservoir thickness.
Keywords: Tarim basin, sand body, reservoir inversion, forward modeling, quantitative prediction
INTRODUCTION
The Aketao structural belt is a localized structure located at the front of the Qimugen uplift, adjacent to the western part of the Yingjisha structural belt in Xinjiang Uygur Autonomous Prefecture of China (Liu et al., 2018; Li W et al., 2019). It lies to the southwest of the nose-like Qimugen uplift in the piedmont zone of the Kunlun Mountains within the Southwest Depression of the Tarim Basin. The Aketao structural belt is rather small and the main targets for exploration are rocks of early Neogene (Miocene) age (Chen et al., 2018; Yang et al., 2021). Since the discovery of the Kekeya condensate gas field in the Kunlun piedmont zone in the 1970s, exploration targeting Miocene rocks of the southwestern Tarim Basin (Southwest Tarim) has failed on multiple occasions, and no breakthrough in hydrocarbon exploration has yet been made in this area since the enrichment degree of oil and gas in the study area is affected by the reservoir development and the reservoir physical properties (Du et al., 2011; Mo et al., 2013). Fan delta deposition are present on the periphery of the Qimugen uplift in Southwest Tarim, these are analogous to those in the Kekeya condensate gas field, which is considered the main reservoir. Owing to the rapid variation in lithofacies and deep burial, great difficulties have been encountered in sand body identification and reservoir prediction in this region. The Miocene rocks of the Aketao structural belt have great potential for the discovery of reservoirs according to their known structural background. However, Miocene strata here are composed of thin interbedded sandstone and mudstone layers. Such strata are characterized by considerable vertical and horizontal variability, and no clear understanding of the characteristics of these sedimentary facies belts or the distribution of favorable sand bodies has yet been achieved; this has resulted in considerable difficulty in identifying the stratigraphic‒lithologic trap and determining the exploration target (Cheng et al., 2012; Mo et al., 2013; Chen et al., 2018; Yang et al., 2021).
Numerous studies have been carried out previously, focusing on the hydrocarbon accumulation, sedimentary facies distribution, and geologic structure of the Kunlun piedmont zone (Jin et al., 2003; Suotang et al., 2015; Wang et al., 2016; You et al., 2018). A comprehensive analysis of that work indicates that the reservoir rock is one of the main factors controlling hydrocarbon accumulation in these Miocene strata. This has been confirmed by the findings of GT1 and YS1 Wells, which were drilled in 2019 (Zhang et al., 2014; Chen et al., 2018; Yang et al., 2021). The main target of Well GT1 was the Miocene Anjuan Formation, in which the reservoir average porosity and permeability of the Xi-VI and -VII Members were 8.9% and 1.01 mD, respectively. Although this well was found to have good evidence of oil and gas, the reservoirs failed to form owing to the tight reservoir rock. The Well YS1 target of the Miocene Keziluoyi Formation showed fine-grained sediments from a lithological perspective. Accordingly, it is important to find high-quality sandstone reservoirs equivalent to those found in the Kekeya area to improved exploration outcomes in Miocene strata of this area (Xie et al., 2019).
The study area in the Aketao structural belt is covered by 19 two-dimensional (2D) seismic lines, comprising 11 south-north lines and eight east-west lines. The density of the 2D seismic survey grid is 2 × 2 km and the dominant frequency band is 15–30 Hz. Although the data quality from these seismic lines can be somewhat improved after multiple rounds of post-stack time-migration processing, the following issues remain problematical: 1) The geomorphology of the study area is that of a typical mountainous area, with associated low-velocity zones and rapid lateral variations in thickness and wave velocity leading to severe static correction issues; 2) The surface conditions of the study area (like deserts and thick loess layers) are not conducive to the excitation and reception of seismic waves, and the seismic data generally have a low signal-to-noise ratio (SNR), owing to the high energy of various sources of noise, such as surface waves, linear noise, and multiple refractions; 3) The seismic lines deployed in different years have different frequencies and amplitudes (energy), which leads to an expanded closure error between seismic lines. In addition, no well has yet been drilled in the study area; thus, it is difficult to investigate the petrophysics of these rocks.
To overcome the above issues exist in sparsely explored areas, two approaches are commonly used to identify sand bodies: 1) Perform wave impedance inversion for each 2D seismic line in the survey area and then obtain the data volume of the full-area wave impedance using spatial interpolation; 2) Perform three-dimensional (3D) fitting of 2D seismic data and then carry out the full-area wave impedance inversion based on the pseudo-3D data volume (Tao et al., 2007; Sun et al., 2010; Zhang D. H et al., 2012; Liu and Zhang, 2014). Although these two approaches can relatively effectively identify thin sand bodies in a 2D seismic survey area, they can only qualitatively delineate the seismic facies features of a profile and are seldom used for quantitative vertical (across profiles) and planar prediction, owing to a lack of drilling data and the resolution limits of seismic data. This limited prediction precision leads to a failure to quantitatively determine the thickness of sand bodies. Thus, prediction results suffer a multiplicity of solutions. Moreover, the sedimentary characteristics and sand body distribution of the study area remain insufficiently investigated (Li J et al., 2019; Chen, 2021; Li et al., 2021).
Given the above-mentioned issues, this study aims to perform seismic facies analysis based on knowledge of previous studies on the sedimentology and reservoir characteristics of the Kekeya area, combined with forward modeling based on the elastic wave equation, to clarify the seismic reflection features of fluvial channel sands in this area. Moreover, a petrophysical approach and wave impedance inversion are then introduced to ultimately demarcate the reservoir distribution across the 2D seismic survey area.
OVERVIEW OF THE STUDY AREA
The Qimugen uplift forms a large arc between Yingjisha and Yecheng in the piedmont zone of the Kunlun Mountains, within the Southwest Depression of the Tarim Basin. It is a concealed blind strike-slip fault structural belt, jointly controlled by strike-slip and thrusting (Tian et al., 2020). Two high-quality source rocks comprising Carboniferous and Permian mudstone, respectively, occur within the Qimugen uplift; these have a constant planar distribution across the study area and can be traced seismically. The source rocks are thick (>100 m) with high contents of organic matter (total organic carbon (TOC) > 1.0%), and are now at the mature stage, with hydrocarbon generation dominated by light oil. Three sets of reservoir-cap combinations are developed here. The first set comprises Upper Cretaceous mudstone and Paleogene gypsum rock, with sandstone of the Lower Cretaceous Kezilesu Group. The second set comprises mudstone of the Paleogene Bashilake Formation, and Wulagen Formation, with carbonate rock of the Later Formation. The last set comprises Miocene sandstone and siltstone interbedded by mudstone and gypsum rock. Miocene strata house the reservoir sand body that is composed of fan delta depositional system, which has rapid lateral variations in lithology (Yuan et al., 2002; Tang et al., 2012).
The Aketao structural belt, located on the northwest margin of the Qimugen uplift, is a localized structure with an area of approximately 500 km2 (Figure 1). The belt was gradually uplifted after deposition of the Neogene Atushi Formation and, owing to its weak tectonic deformation, it presents as an anticline in a stable state that has not been structurally altered during the Cenozoic Era. Moreover, it shares a structural setting and sedimentary environment similar to that of the adjacent Kekeya, Yingjisha and Qibei structural belts (Mo et al., 2013).
[image: Figure 1]FIGURE 1 | Location and seismic line distribution of the Aketao structural belt in the piedmont zone of Southwest Tarim.
The Neogene Miocene in Yingjisha structural belt respectively is Keziluoyi, Anjuan and Pakabulake formations from bottom to top (Figure 2). According to the well drilled data such as WI and W2, as well as the outcrop data, it is clear that the fan delta depositional system is developed in the area of the Neogene Miocene strata, but the sedimentary microfacies and sand body distribution law are not clear (Figure 3).
[image: Figure 2]FIGURE 2 | Comprehensive bar chart of well W1.
[image: Figure 3]FIGURE 3 | Comparison of sedimentary connected Wells of Keziluyi Formation in Well W5-W2.
Currently, no wells have been drilled in the Aketao study area, but four wells have been drilled in the adjacent Yingjisha and Qibei structural belts. Well W1 showed good gas-bearing capability from the Miocene Keziluoyi Formation, but the seismic data quality of the piedmont zone was too low to clarify the geologic structure. Well W1 also revealed good gas-bearing capability in the Keziluoyi Formation, but failed to produce an industrial oil and gas stream, owing to the relatively tight reservoir. Well W3 showed active gas-bearing capability in the Paleogene Kalataer Formation. Finally, Well W4 showed good gas-bearing capability in the Neogene Atushi and Anjuan formations. However, owing to insufficient trap occlusion conditions and the Miocene Keziluoyi Formation showed many fine-grained sediments from a lithological perspective, this Well failed to emerge as an exploration breakthrough. In general, drilling in the Cenozoic of the Aketao structural belt has shown the active hydrocarbon-bearing capability, indicating the potential to explore stratigraphic‒lithologic oil and gas reservoirs in a desirable structural setting.
SEISMIC RESPONSE CHARACTERISTICS
A seismic facies is a representation of a specific sedimentary facies or the seismic response characteristics of a geo-body (Roksandić, 1978; Coléou et al., 2003; Su et al., 2019). Seismic waves have different propagation characteristics in different types of sedimentary systems; the lithology, physical properties, and fluid properties of different geologic bodies often result in changes in seismic waves, with respect to their amplitude, frequency, and phase, and ultimately changes in their spatial reflection characteristics (Duan et al., 2011; Gao and Yuan, 2016). For a 2D seismic survey area lacking data from either hydrocarbon exploration or drilling, this contribution aims to investigate seismic facies parameters, such as the reflection amplitude and frequency of the seismic facies unit, together with the configuration, continuity, and geometry of reflections, and perform clustering analysis of seismic waveform features to obtain seismic facies data that have relatively deterministic geologic implications of the Aketao study area.
Previous studies have probed deep into the sedimentary reservoir rocks of the Kekeya structural belt and its periphery, and have clarified the characteristics of its 3D seismic facies. It has been shown that the seismic facies of the Miocene is characterized by facies change features, such as a strong‒weak variation, intermittent connectivity, distortion, and dislocation of events (Cheng et al., 2012; Zhang et al., 2014). It can be seen from the seismic profile of Kekeya 3D seismic survey area that the seismic amplitude in Xihefu Formation (from Xi-IV to Xi-VIII Members) changes from strong to weak and the stratum changes from thick to thin along the provenance direction, and there also obvious layering characteristics in the forwards direction (Figures 4A). The amplitude variation of the seismic event is alternately strong and weak in the direction perpendicular to the provenance (Figures 4B).
[image: Figure 4]FIGURE 4 | Seismic profile of the kky-line1 and kky-line2 in the Kekeya survey area.
From SW to NE, the Pakabulake Formation in the profile of the NE‒SW 2D seismic line in the Aketao structural belt presents a seismic facies variation feature similar to the “high amplitude‒medium high amplitude‒low amplitude” feature of the Xihefu Formation in the Kekeya structural belt, this phenomenon may be due to the change of seismic reflection characteristics caused by sedimentary phase transition (Figures 5A). And from SE to NW, the Pakabulake Formation in the 2D seismic profile presents a reflection characteristic of riverbed undercutting, which may be the reflection characteristic of channel deposition (The area circled by the red dotted line in Figures 5B). Based on the understanding of sedimentary facies and sand body changes in the whole area and Well drilled data, it is speculated that the Aktao area may also develop fan delta plain, front and then shallow lacustrine deposits. In order to verify whether this understanding is correct, further forward modeling is carried out.
[image: Figure 5]FIGURE 5 | Seismic profile of the akt-line1 and akt-line2 in the Akatao survey area.
FORWARD MODELING
Geophysical forward modeling is an effective approach to validate the seismic response characteristics of channel sand bodies (Butler and Sinha, 2012; Hansen et al., 2014; Butler and Zhang, 2016; Sun et al., 2018). Herein, the distribution pattern of the sand body boundary of the plain and front of fan delta facies was analyzed and the reservoir geologic model of the target layer was constructed, in accordance with the sedimentary characteristics and evolution pattern of fan delta deposition; this was done using seismic survey data from the area of interest and drilling and well logging data from the adjacent area. Based on seismic wave kinetics and kinematics, the elastic wave equation was solved using the finite difference method, and forward modeling of the wave equation was carried out to determine the main seismic facies pattern of sand bodies and improve the reliability of identifying thin sand bodies from seismic data.
Building the reservoir geologic model
Previous studies on the seismic reflection characteristics of sand bodies related to fan delta deposition have generally been limited to qualitative analysis (Liu et al., 2008). No quantitative work has been reported in terms of the seismic reflection characteristics of sand bodies with different thicknesses, where there is interbedding between thin sandstone and mudstone and diverse sand/formation thickness ratios (Li et al., 2014; Wang and Li., 2015). Under the premise that forward modeling can truly capture the seismic response characteristics and sand body distribution patterns of sand bodies in the study area, this research incorporated interbedding between thin sandstone and mudstone layers and different sand/formation thickness ratios, together with the regional sedimentary pattern and actual 2D seismic profile of the study area (the direction of the constructed model was consistent with that of the actual seismic profile. The model for forward modeling was developed by drawing polygons in an interactive manual way. The assignment of model parameters strictly followed the actual seismic data obtained from the study area, the drilling and well logging data obtained from the adjacent area. In so doing, a reservoir geologic model of the sand body of the fan delta deposition was constructed by the software Tesseral v6.0. (Figure 6).
[image: Figure 6]FIGURE 6 | Geologic model of the Miocene Atushi and Keziluoyi formations.
The interval transit time and density logs of well logging data can effectively and directly reflect reservoir physical properties and, in most cases, they can be used as critical references for determining the physical properties of each layer in forward modeling (Meyer and Nederlof, 1984). The interval transit time and density logs of four wells (Wells W1‒W4) in the area adjacent to the study area that encounters the Miocene Keziluoyi Formation were summarized to determine the average P-wave velocity and density of the sandstone‒mudstone strata (Table 1). The formation P-wave velocity at each depth section through the calculation method (1/P-sonic)*106.
TABLE 1 | Formation parameters of the reservoir geologic model.
[image: Table 1]According to seismic data from the study area, the lateral width of the reservoir geologic model was set as −4,000 to 8,000 m, and the vertical depth as 2000–6,000 m. In addition, the following parameters were determined in accordance with the seismic parameters of the target layer in the study area; the dominant frequency of the seismic waves was set as 25 Hz, with a zero-phase Ricker wavelet and time sampling rate of 2 m; single-source excitation was adopted and data acquisition was performed via an approach in which receivers were placed on either side of the middle shot. Based on the field data acquisition approach in the study area, the shot spacing was 50 m, geophone spacing was 25 m, and the maximum offset was 12,000 m. These satisfied the stretching distortion limit of normal movement correction (NMO) during seismic data processing and the precision requirement of the velocity analysis.
Forward modeling computation
Numerical simulation based on the elastic wave equation in essence simulates the propagation pattern of seismic waves through the given subsurface media, calculates measurements at each surface observation point, and ultimately mimics the seismic response of the geologic model of interest. It does this by solving a hyperbolic partial differential equation (wave equation), on the basis of Newtonian mechanics, elasticity or viscoelasticity theory, and the structures of the subsurface media and relevant physical parameters that are assumed to be known (Zhang W et al., 2012; Favorskaya et al., 2018; Sun et al., 2018; Ma et al., 2019). Because this approach considers both the kinetics and kinematics of the propagation of seismic waves, the simulated seismic wave field contains abundant seismic wave propagation information, which provides increased evidence to enable the investigation of the seismic wave propagation mechanism and interpretation of complex geology. This is an important method in the numerical simulation of seismic wave fields.
The study area has complex geology. For the reservoir geologic model, the quality factor (Q) was estimated using the empirical correlation between it and the wave velocity. To truly mimic the structural shape of the subsurface strata and their internal seismic response characteristics, and produce forward modeling results that correspond as closely as possible to the acquired seismic data, the original shot gather records were obtained via forward modeling based on the viscoelastic wave equation. Since the forward modeling results are very close to those of the seismic data, this study used a process flow similar to the actual Kirchhoff prestack time migration method to process the data: the shot gathered of the forward modeling was extracted and set as the common mid-point (CMP) gather, then the direct wave was eliminated and inverse Q filtering based on Q was performed to compensate for the energy that was absorbed. After the above processing, velocity analysis was carried out, and the trace gather data and velocity spectrum data were interpreted in an integrated manner. The stacked velocity was put through NMO and horizontal stacking to obtain the stacked profile. Finally, post-stack Kirchhoff migration was conducted to produce the final migration profile for subsequent analysis.
Analysis of forward modeling results
The geologic model was assigned variable sand/formation thickness ratios. The fan root was close to the provenance area, so the sandstone thickness was typically higher than the mudstone thickness. In contrast, the distal fan was far away from the provenance area, and thus the sandstone/thickness ratio was often small. The pre-stack Kirchhoff time-migration record (having a direction consistent with that of the actual seismic profile. As shown in Figure 7, the seismic response of the mudstone band is characterized by a high-amplitude crest reflection, while the sandstone band features a high-amplitude valley reflection. Moreover, the characteristics of wave impedance are independent of reservoir type. Following the provenance direction, the sand body gradually thinned and the sand/formation ratio dropped. A thicker sand body was not necessarily associated with intense seismic reflection; the energy of seismic reflection reached a peak in the case of interbedding between sandstone and mudstone together with an optimal sand/formation thickness ratio.
[image: Figure 7]FIGURE 7 | Pre-stack Kirchhoff time-migration profile of the geologic model of the Miocene reservoir in the Aketao structural belt.
PETROPHYSICAL ANALYSIS AND WAVE IMPEDANCE INVERSION
Petrophysics bridges seismic data and reservoir characteristics and parameters (Tiab and Donaldson, 2015; Shi, 2016). We can perform P- and S-wave velocity analysis and conversion of elastic parameters based on well logs in a petrophysical approach to effectively characterize variations in the lithology, porosity, and fluid content of strata. Petrophysics is also a critical method used to evaluate whether or not the inversion results of elastic parameters of a given area can effectively identify reservoirs and fluids (Vedanti et al., 2018; Garia et al., 2019; Zhang et al., 2020; Ma et al., 2021). Wave impedance inversion was carried out following the petrophysical analysis of well logs in this study because the study area was lacking in drilling, well logging, and seismic data. Multiple inversion methods were tested, among which the Inver Trace Plus module of Jason was finally adopted. This is a constrained sparse spike inversion method based on post-stack seismic data, in which post-stack seismic data are converted into high-quality data of P-wave impedance by reducing wavelet side lobes and their tuning effects; hence, the true reservoir thickness can be restored for the quantitative prediction of reservoirs.
Petrophysical analysis
Based on the well logging data and sandstone reservoir characteristics from an adjacent area of the Aketao structural belt, petrophysical analysis was performed via single-parameter statistics and cross-plotting of sensitive parameters to provide references for the subsequent task, namely reservoir inversion. After sensitive curve qualitative analysis of Wells W1–W4 in the adjacent area, template charts for petrophysical parameters were developed. Moreover, the triple-parameter cross plot analysis of wave impedance, natural gamma, and porosity indicated that the wave impedance curve can successfully distinguish sandstone and mudstone; the wave impedance of sandstone (mostly 9,000–12,000 g/cm3 m/s) was smaller than that of mudstone, and the threshold wave impedance of effective reservoirs was 11,715 g/cm3 m/s. The well logging response of the reservoir was characterized by low wave impedance and low natural gamma (Figure 8).
[image: Figure 8]FIGURE 8 | Analysis of well logs of sensitive parameters for four wells in an area adjacent to the study area. (A) Triple-parameter cross plot of wave impedance, natural gamma, and porosity. (B) Triple-parameter cross plot of interval transit time, natural gamma, and porosity.
Reservoir inversion and sand body prediction
Constrained sparse spike wave impedance inversion is a recurrence inversion method based on spiking deconvolution; its basic principles are as follows. Strong reflection coefficients of strata are assumed to be sparse and discrete (Yunita and Haris, 2018; Duan et al., 2020; Wang et al., 2020). Then, the accurate reflection coefficient of the near-well seismic trace is extracted, in accordance with the sparse principle, and is used to produce a synthetic seismogram via wavelet convolution. Moreover, the number of reflection coefficients participating in the convolution is changed, according to the residual error between the synthetic seismogram and the original seismic trace, which produces a modified synthetic seismogram. The above process is repeated to finally obtain a reflection coefficient series that represents the optimal approximation of the original seismic trace, under the constraint of both the well logging data and framework model (Wang and Guo, 2008; Wang and Lu, 2011). For areas that have low degrees of exploration, low resolutions of seismic data, and sparsely deployed exploration wells, constrained sparse spike wave impedance inversion can generate broadband reflection coefficients and thus solve the solution multiplicity issue of the seismic inversion to obtain inversion results that more closely represent geologic reality. In addition, this method can compensate for the frequency band limitation of seismic data by introducing high-frequency information contained in well logs, and can therefore quantitatively delineate the thickness and physical properties of a reservoir (Sa et al., 2015; Qiao and Du, 2016).
The seismic wave impedance inversion profile of Miocene strata in the Aketao area (Figure 9) shows that sand bodies characterized by low impedance are present in both the Pakabulake and Keziluoyi formations. The upper member of the Pakabulake Formation shows the highest number of sand bodies, which occur in a discontinuous layered form; the high positions of the slope and two flanks of the anticline have extremely well-developed sand bodies. In the Keziluoyi Formation, sand bodies are relatively well-developed, and also have a layered discontinuous distribution. The scale of sand bodies in the Anjuan Formation is considerably smaller than that in either the Keziluoyi or Pakabulake formations. The inversion profile clearly presents a shape that corresponds well to the forward modeling results of the reservoir geologic model; furthermore, their waveform characteristics and amplitude energies can be successfully correlated. In addition, the sand body thickness identified by the seismic inversion is comparable to the designed thickness of the model, which indicates good performance in quantitatively determining the thickness of thin sand bodies.
[image: Figure 9]FIGURE 9 | Wave impedance inversion profile of Miocene strata in the Aketao area.
The development and evolution of Miocene sand bodies are characterized in the wave impedance inversion map of Miocene strata in the Aketao area (Figure 10). During deposition of the Keziluoyi Formation, the hydrodynamic energy of the aqueous environment was high (Figure 10A). Then, during deposition of the Anjuan Formation, the water depth increased and the hydrodynamic energy decreased (Figure 10B). Finally, as is made evident in Figure 10C, deposition of the Pakabulake Formation was associated with a regressive aqueous sedimentary environment. As the hydrodynamic energy of water gradually increased, its capacity to transport clastic particles from the provenance area also increased. Moreover, indicating extended transportation, before ultimately being deposited in the fan delta and shore-shallow lake settings in areas far away from the source region.
[image: Figure 10]FIGURE 10 | Wave impedance inversion maps of Miocene strata in the Aketao area. (A) Wave impedance inversion map of the Keziluoyi Formation. (B) Wave impedance inversion map of the Anjuan Formation. (C) Wave impedance inversion map of the Pakabulake Formation.
ANALYSIS OF APPLICATION PERFORMANCE
The Miocene Keziluoyi and Atushi formations of the Aketao structural belt represent fan delta deposition in a piedmont zone, and the reservoir is mainly composed of fine-grained sandstone and siltstone of the braided river channel sub-facies. In this study, the sedimentary facies distribution in the study area was investigated based on seismic attributes and facies. The Aketao and Kekeya structural belts share similar seismic reflection characteristics; hence, theoretically, their sedimentary facies characteristics should also be similar. Owing to the fact that the Aketao area lacks drilling and well logging data, Well kky in the Kekeya area was projected onto the 2D seismic profile of the Aketao survey area and the lithology within the well was correlated with the sedimentary micro-facies in the Aketao area. The seismic facies characteristics corresponding to the sedimentary facies characteristics are shown below. The main source of sediment in the Aketao structural belt was from the southeast. During deposition of the Keziluoyi Formation, the water carrying sediment was relatively highly hydrodynamic. Under such circumstances, the area near to the source experienced fan delta plain and front deposition, while the area far from the source experienced shore-shallow lake deposition (Figure 11A). An overall transgression occurred during the Juanju period, with increased water depth accompanied by a drop in hydrodynamic energy. Correspondingly, the southeastern part of the study area near the sediment source was associated with the development of fan delta front deposition, while shore-shallow lake deposition occurred far away from the source (Figure 11B). Subsequently, deposition of the Pakabulake Formation was accompanied by a regression and intensified hydrodynamics within the sedimentary environment. Both the upper and lower members of the Pakabulake Formation in the study area mainly consist of fan delta plain deposits, while shore-shallow lake deposition occurred some distance away from the source area (Figure 11C).
[image: Figure 11]FIGURE 11 | Sedimentary facies distribution maps of the Miocene target layers in the Aketao structural belt. (A) Sedimentary facies distribution map of the Keziluoyi Formation. (B) Sedimentary facies distribution map of the Juanju Formation. (C) Sedimentary facies distribution map of the Pakabulake Formation.
On the basis of the analysis presented above, a clarified sedimentary model of the Miocene Pakabulake Formation in the Aketao structural belt was constructed (Figure 12). Furthermore, under the joint constraints of the seismic response characteristics, forward modeling, and reservoir seismic inversion, seismic reflection and facies belt characteristics were quantitatively investigated, for cases where thin sandstone and mudstone layers are interbedded and there are diverse sand/formation thickness ratios (Table 2).
[image: Figure 12]FIGURE 12 | Sedimentary model profile of the Pakabulake Formation in the Aketao structural belt.
TABLE 2 | Sand/formation thickness ratios, seismic response characteristics, and facies belt characteristics in the Aketao area.
[image: Table 2]CONCLUSION

(1) To investigate the sand body distribution regularity in less-explored areas with sparse 2D seismic survey grids, inferior seismic data quality, and a lack of drilled wells, this study proposed an approach involving the use of 3D seismic data from an adjacent area to guide 2D seismic data processing and interpretation in the area of interest, while offsetting the lack of wells in the study area by referring to well data from an adjacent area—in other words, to exploit the research findings and drilling and well logging data of an adjacent highly-explored 3D seismic survey area. Furthermore, I integrated forward modeling based on the elastic wave equation and constrained sparse spike inversion of post-stack seismic data to identify sand bodies.
(2) Seismic reflection characteristics (e.g., wave group correlations and event characteristics) were compared, and the clustering characteristics of seismic waveform features were analyzed. The results demonstrate that the northeastern profile of the 2D survey line of the Pakabulake Formation in the Aketao area is associated with an SW‒NE-oriented seismic facies variation of “high amplitude‒mid-high amplitude‒ low amplitude”. This illustrates that a set of sand bodies, prograding and gradually thinning towards the basin interior, have developed following the provenance direction; these occur as an internal wedge-shaped sedimentary unit of the progradational reflection configuration on the seismic profile.
(3) Based on forward modeling using the elastic wave equation, the seismic reflection characteristics of sand bodies with different thicknesses were quantitatively investigated, for cases where thin sandstone and mudstone layers are interbedded and have variable sand/formation thickness ratios. When the sand/formation thickness ratio was .5–.6, the reflection response feature of the mudstone band took the form of a high-amplitude crest reflection, while that of the sandstone band took the form of a high-amplitude valley reflection. Moreover, the wave group characteristics were independent of reservoir type. Following the provenance direction, the sand bodies gradually thinned and the sand/formation thickness ratio decreased. A thicker sand body was necessarily associated with a stronger seismic reflection. The seismic reflection energy showed a peak when there was interbedding of sandstone and mudstone with a moderate sand/formation thickness ratio.
(4) For a study area that lacked drilling and 3D seismic data, constrained sparse spike inversion of post-stack seismic data was performed to reduce wavelet side lobes and the tuning effects of wavelets, and truly restore sand body thickness. In so doing, the stratigraphic‒lithologic trap of the Miocene Pakabulake Formation was identified. Moreover, the sand body thickness identified by the seismic inversion was comparable to the designed thickness of the model; hence, the sand body thickness was quantitatively estimated.
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Oil and gas exploration professionals have begun to focus more on unconventional oil and gas reserves in recent years as a result of their increased efforts. Fractures have a significant impact on the permeability and connectivity of reservoirs as a crucial component of rock mechanics and hydraulics, which directly affects the production of oil and gas. The identification of fracture development zones or micro faults, as well as how to adequately define the fracturing model, have thus become crucial and pressing issues in the forecast of oil and gas reservoirs. In this study, we decompose the three-dimensional seismic data volume in a site in order to obtain the single frequency data volume that can be calculated using the ant tracking technique. We do this by taking advantage of the synchronous extrusion improvement of short time Fourier transform in time-frequency focusing. Coupled with the advanced DFN model, the extracted data are calibrated in various rock attributes to restore the morphology and characteristics of fractures. The findings demonstrate that this method is capable of providing not only a precise outline of micro fractures but also a reflection of the characteristics of fractures at various scales, including structure and associated properties. The precision and applicability of this method are confirmed in this paper, which is significant as a reference for the oil and gas exploration industry.
Keywords: micro fractures, SSTFT, advanced DFN, fracture identification and characterization, oil and gas exploration
INTRODUCTION
Oil and gas exploration professionals are favoring unconventional and deep oil and gas reservoirs more and more as the amount of oil and gas exploration increases worldwide. Fractures play a crucial role as they affect the permeability and connectivity of the reservoir and directly determine the production of oil and gas. The complex fracture network is frequently generated in the underground rock due to rock mechanics and fracturing, combined with the development and interaction after the formation. According to the available research, the complexity of fracture systems frequently displays the traditional traits of a complex system with a power-law scale relationship (L Barabási and Albert, 1999) and is well acknowledged and accepted in geological study (Bonnet et al., 2001; Bour et al., 2002; Davy et al., 2010). Seismic treatment is very helpful for geological interpretation. In addition to the method in this paper, many researchers mentioned the practicability of edge detection filters in the potential field method of interpreting structural trends in structural research, which has similar purposes with the method in this paper, and is also worthy of relevant work.
Since Bahorich and Farmer (Bahorich and Farmer, 1995) proposed the seismic coherence data method in 1995, there have been many years of development and research into fracture and fault detection techniques. Amoco company applied the seismic coherence technology to the fault system detection of seismic data and saw positive results. Marfurt et al. (1998) (Marfurt et al., 1999; Satinder and Marfurt, 2008) introduced the second generation coherent volume algorithm in 1998, which can represent faults better than the first generation coherent algorithm, based on the similarity algorithm; To achieve the correlation between multi-channel seismic data, Gersztenkorn and Marfurt, 1999 introduced the third generation coherence algorithm based on the intrinsic structure and covariance matrix in 1999; The third generation coherent algorithm expands the technique to three-dimensional seismic data volume without horizon limits and enhances the vertical and horizontal resolution of seismic data compared to the first and second generations of coherent algorithms. It is unable to adequately describe the numerous small faults and secondary fractures, though. Wang et al. (2002) integrated the wavelet transforms and a coherent method. Although this method has a higher resolution than a conventional coherent algorithm, the way it depicts small fractures is still not perfect. Dorigo et al. (1996) introduced an ant tracking system based on the ant colony algorithm in 1999. This system mimics the pheromones generated by ants foraging barriers to track faults and fractures. Ant tracking technology is currently acknowledged as a technology that can accurately show faults and fractures. However, in practical uses, the ant tracking system still has drawbacks, such as the accuracy with which micro fractures caused by large faults are carved.
In order to reflect the geological information that cannot be highlighted in full band seismic data, Partyka et al. (1999) proposed the spectrum decomposition technology in 1999. This technique decomposed the full band seismic data volume into a single frequency data volume. Utilizing spectrum decomposition technology, Zeng et al. (2009) acquired seismic data volumes at various frequencies in 2009. The findings indicate that single frequency seismic data volumes are more detailed and can more clearly portray the spatial extent of subterranean aberrant bodies than full band data volumes. All of the aforementioned academics have significantly influenced how data are interpreted in the frequency domain.
Daubechies et al. (2011) squeezed and rearranged the spectrum values after wavelet transform in the time-frequency domain, and proposed a synchronous squeezing algorithm to improve the time-frequency focusing ability. In order to get a result with a greater resolution than that of the short-time Fourier transform, Yu et al. (2017) extended the window function of the short-time Fourier transform in 2017. However, the precision of time-frequency analysis will still be severely constrained by the Heisenberg principle’s restriction and the cross-terms’ interference.
Therefore, according to the principle of the synchronous extrusion algorithm, the synchronous extrusion improvement of short-time Fourier transform is developed through the time-frequency spectrum extrusion rearrangement after the improved short-time Fourier transform. The theoretical signal shows that this method has higher time-frequency resolution than the traditional time-frequency analysis method.
Combined with the research results of previous scholars (L Barabási and Albert, 1999; Bonnet et al., 2001; Bour et al., 2002; Davy et al., 2010; Bahorich and Farmer, 1995; Satinder and Marfurt, 2008; Marfurt et al., 1999; Marfurt et al., 1998; Gersztenkorn and Marfurt, 1999; Wang et al., 2002; Dorigo et al., 1996; Partyka et al., 1999; Zeng et al., 2009; Daubechies et al., 2011; Yu et al., 2017), this paper uses the advantage of synchronous extrusion improvement of short-time Fourier transform in time-frequency focusing to perform spectral decomposition on the three-dimensional seismic data volume of a site to obtain the single frequency data volume; Then the ant tracking technique is applied to calculate the single frequency data volume. At the same time, an advanced DFN model is established based on the obtained data volume. The results show that this method can give a fine outline of micro fractures, and can better reflect the characteristics of fractures in different scales, including structure and related properties. The results proved its accuracy and feasibility in practical application.
METHOD AND PRINCIPLE OF FOURIER TRANSFORM
Fourier transform can be regarded as the originator of time-frequency analysis, but it cannot describe non-stationary signals well; In reality, signals are almost non-stationary signals, especially seismic signals. Fourier transform has long been unable to meet people’s requirements for accuracy. The short-time Fourier transform truncates the non-stationary signal by adding a window function, and divides the whole non-stationary signal into several small segments. At this time, each segment of the signal in the window function can be regarded as a stationary signal, and then Fourier transform each small segment of signal to obtain a two-dimensional time-frequency spectrum.
Assuming the signal [image: image], then the expression of short-time Fourier transforms [image: image] of signal [image: image] is:
[image: image]
Where: [image: image] is frequency, Hz; τ is the time window length, constant; [image: image] is the imaginary number; [image: image] is the window function moving along the time axis with the change of τ. However, the window function of short-time Fourier transform is fixed and unique, which means that the position of signal truncation and the length of time window have a great impact on the calculation results.
Discretize Eq. 2 to obtain the expression of discrete Fourier transform [image: image]:
[image: image]
Improved short-time fourier transform
Because the time window of short-time Fourier transform cannot be changed, this method is limited to improve the time-frequency focusing. In order to overcome this defect, we must improve the time window function. From Eq. 2, the complex conjugate of signal and window function can be obtained:
[image: image]
[image: image]
[image: image]
Where: [image: image] is complex conjugate; [image: image] is the Fourier transform of [image: image], [image: image] is the Fourier transform of [image: image]; If [image: image], then [image: image] can be expressed as:
[image: image]
Let [image: image], then there is
[image: image]
Where: [image: image] is the representation of [image: image] in the frequency domain, and [image: image] is the length of the time window; [image: image] is the Fourier transform of the window function [image: image].
If we put the window function [image: image] into the short-time Fourier transformation, we get:
[image: image]
The expression for the original [image: image] is Eq. 2, and the expression for the improved short time Fourier transform [image: image] is:
[image: image]
Improved short time fourier transform by synchronous extrusion
According to the improved formula for the short time Fourier transform, first of all, calculating the derivative of [image: image] to time [image: image] as:
[image: image]
Then the instantaneous frequency expression of the signal can be obtained:
[image: image]
According to the instantaneous frequency obtained from Eq. 9, the improved short-time Fourier transform for synchronous extrusion can be obtained. The [image: image] value is expressed as follows:
[image: image]
Where: [image: image] is the time spectrum frequency value after synchronous extrusion transformation, Hz.
The improved short time Fourier transform is to extrude and rearrange the time and frequency spectrum of the improved short time Fourier transform in the time and frequency domain, so as to improve the time and frequency focusing of the signal.
Model validation
In this section, the model test of the synthetic narrowband signal is carried out. The original signal [image: image], shown in Figure 1A, was synthesized and a random white Gaussian noise with a mean of 0 and a variance of 0.5 was added to obtain the noised signal shown in Figure 2A. After being processed by different time-frequency analysis methods, both 30 and 60 Hz frequency components have been characterized to varying degrees in the time spectrum. The specific signal [image: image] and the corresponding analysis are as follows:
[image: image]
[image: Figure 1]FIGURE 1 | Results of time-frequency analysis of non-noisy narrowband signals (A) The original signal [image: image] (B) STFT (C) GSTFT (D) SSTFT.
[image: Figure 2]FIGURE 2 | Results of time-frequency analysis of noisy narrowband signal (A) Noised signal (B) STFT (C) GSTFT (D) SSTFT.
The time-frequency spectrum as shown in Figures 1B–D is obtained by performing the short-time Fourier transform (STFT), the improved Short-time Fourier transform (GSTFT) and the improved synchronous extrusion Short-time Fourier transform (SSTFT) on the simulation signal [image: image]. STFT (b), GSTFT (c), SSTFT (d) can recognize the components of two different frequencies by comparing the results of three time-frequency analysis methods. However, the energy distribution in the time-frequency spectrum of STFT is rather divergent, and the overlapping signals near 60 hz cannot be separated completely; The frequency energy of GSTFT is more concentrated than that of STFT, but it still has to be affected by the Heisenberg uncertainty principle and cross terms, and still cannot achieve the best time-frequency resolution. On the time-frequency spectrum of SSTFT, the energy spectrum of the simulated signals is more concentrated and clearer in the direction of frequency and time, and the overlapping parts of the two signals are separated successfully; SSTFT has higher time-frequency focusing ability than STFT and GSTFT, and can clearly and accurately depict the instantaneous frequency of the signal.
Noise resistance
According to the principle of SSTFT, we can know that SSTFT algorithm has certain anti-noise performance. Random white Gaussian noise with a mean of 0 and a variance of 0.5 (Figure 2A) is added to the simulation signal [image: image] in Figure 1 and the signal added with random noise is subjected to short-time Fourier transform, improved short-time Fourier transform and synchronous extrusion improvement of short-time Fourier transform. The noise resistance of the algorithm is verified by comparing and analyzing the time-frequency spectrum.
Figure 2B shows the time spectrum of the noisy signal after STFT, and Figure 2C is a time spectrogram after GSTFT. By comparing STFT and GSTFT, it can be seen that STFT is very sensitive to noise, and the time spectrum of the signal is greatly affected by noise and is relatively fuzzy. Compared with STFT, the time-frequency tuning of GSTFT is almost unaffected, but it is still unable to completely eliminate the influence of noise on the time spectrum of signal; GSTFT has a certain immunity to noise, but due to the limitation of Heisenberg uncertainty principle and the influence of cross terms, the time-frequency resolution of GSTFT is low, while the time-frequency resolution of SSTFT is significantly higher than STFT and GSTFT, and SSTFT can effectively suppress noise interference, as shown in Figure 2D. Therefore, SSTFT has a certain degree of noise control.
Ant tracking technology
Ant tracking technology is developed on the basis of ant colony algorithm. It simulates the pheromone released by ant foraging to guide other ants to track. It has a very strong ability to identify fracture information. However, for many associated folds and secondary fractures, ant tracking based on original data cannot effectively describe them. In order to avoid damaging the vertical and horizontal resolution of the actual seismic data, the actual seismic data processing requires high time-frequency resolution. The traditional time-frequency analysis methods, such as short-time Fourier transform, S-transform, WVD, etc., are restricted by their own window function, so the time-frequency resolution cannot reach the best, and even produce a lot of false information; In particular, WVD method will produce unexpected cross terms in calculation, resulting in great errors in the results. The synchronous extrusion algorithm makes use of the advantages of suppressing Heisenberg uncertainty and the influence of cross terms to make the results have high resolution, which has been well verified in practical applications.
Based on this, this research employs distinct frequency information to carve the fault system of the seismic data by combining ant tracking technology with the synchronous extrusion improvement of short time Fourier transform in time-frequency analysis. The following are the primary operational steps (Figure 3):
1) The synchronous extrusion improvement of short time Fourier transform is used to decompose the frequency spectrum of three-dimensional seismic data, yielding data at low, medium, and high frequencies, respectively.
2) Execute edge detection and edge enhancement for single frequency data volumes, including extracting variance, chaos, coherence, and curvature attributes; These attribute volumes are smoothed and enhanced to highlight the data volumes’ discontinuities.
3) The aforesaid attribute body is then subjected to the ant tracking technology to produce a single frequency ant attribute body.
[image: Figure 3]FIGURE 3 | Improved ant tracing process framework of short-time Fourier transform based on synchronous extrusion. ① Conventional method steps. ② Method steps in this paper.
Advanced DFN model
In industrial production, such as the deep storage of nuclear waste, the exploitation of unconventional oil and gas, the development of geothermal resources, and so forth, the study of fractured systems is extensively applied. Research on fractures is frequently crucial to the in-depth study of these domains, as fractures are one of the major variables influencing both the mechanical characteristics of rocks and the properties of how fluids flow through them. In subsurface rocks, complex fracture networks frequently occur as a result of the evolution of fractures and their interaction after they form. As was already indicated, substantial study has demonstrated that complex fracture networks in subsurface rocks frequently exhibit the traditional traits of a complex system with a power-law scale relationship.
The DFN model can define the fracture density according to the variable fracture size and direction, and form a statistical model. In the modeling process, different data can be extracted from different scales, geometric characteristics and dimensions (1D and 2D). The problem of data extraction in the modeling process can be solved by merging these available data. Based on the DFN scaling model, the fracture characteristics from wellbore scale (centimeters) to reservoir scale (kilometers) are defined through stereological rules and assumptions. Furthermore, an improved DFN model is established by considering the mechanical characteristics of the interaction between fractures. The improved DFN model can be calibrated with several simple parameters according to various rock attributes, and can better restore the shape and characteristics of fractures.
At present, it is generally believed that the fault system is often defined according to the statistical law, especially the observation and research of local interpolation within the site scale. The accurate study of these statistical distribution laws is the key to establish the discrete fracture network model.
DFN model characterization parameters
The discrete fracture network model reveals the relevant statistical laws of the size, direction and spatial distribution of fractures in a certain range. The core of DFN model is its density distribution law [image: image], which can reflect quantitative distribution characteristics of different fracture sizes [image: image] and fracture angles [image: image] in domain [image: image]. At the same time, in the process of modeling, problems such as transmittance flow modeling and aperture will be considered to make the model more comprehensive, more accurate and more widely applicable.
Although the three-dimensional fracture network model composed of two-dimensional structure can be established, in terms of dimension and size, especially dimension, such as two-dimensional surface of field outcrop and tunnel, one-dimensional line of borehole, data acquisition is often limited, involving stereology and scale problems. Stereology rules are often determined by the established model, while the scale function is usually determined by [image: image] and [image: image], so as to extrapolate the data measurement to the appropriate scale range. Power law models are usually used for this (Bonnet et al., 2001; Bour et al., 2002; Davy et al., 2010), so:
[image: image]
Among them, the density function is [image: image], determined by the direction of the fracture. Where [image: image] is the topological dimension of the fracture set, [image: image] is the power-law scaling exponent of the fracture size. The definition of distribution depends on the situation, usually from the minimum fracture length [image: image] to the maximum fracture length [image: image], which can also be determined in other cases or with the site area under study.
Davy et al. (2013) showed that when the DFN model is a two power-law model with [image: image] as the transition scale, the model can be considered as a universal fracture model. When DFN model is considered as a universal fracture model, it can not only simplify the mechanical rules of the single fracture generation and extension, but also consider the interaction between fractures. The model is usually composed of two power-law regions, which restricts the number of free parameters in the model. The corresponding fracture density distribution is as follows:
[image: image]
From Eq. 13, [image: image] and [image: image] can be obtained from the universal fracture model. It has been shown that, in general, [image: image] = 4, [image: image] and [image: image] [see (Davy et al., 2010; Yu et al., 2017)] are taken from the model.
Under such conditions, if the mass density of the model is defined as the total fracture surface per unit volume, the mass density of the model can be written as the following expression:
[image: image]
In the above formula, considering all fracture length scales, the DFN model density [image: image] is obtained and controlled by the minimum boundary of the system. From the above conditions, it is obvious that [image: image] and [image: image] are the core parameters of DFN model density.
Generally, fracture sampling can be carried out through core observation, surface mapping, tunnel wall mapping and other methods. Building stereological relationship can better change and transform DFN model.
Stereology for cores
In (Davy et al., 2006), the sampling of fractures larger than the core in the wellbore is described in detail. Considering the fractures intersecting with the core, the three-dimensional relationship between DFN model and core related data is established. Based on the classical Terzaghi correction in the power-law model (Terzaghi, 1965), the three-dimensional relationship established further explains the finite size effect. If the length of the core sample is [image: image] and the diameter is [image: image], the fracture intercept of the core sample can be given according to Eq. 14. Among them, [image: image] is the included angle between core and fracture pole:
[image: image]
The last two terms [image: image] and [image: image] are long and complex mathematical expressions. See (Terzaghi, 1965) for details. The angle of [image: image] can be changed by correcting [image: image]. By combining Eqs 14, 15, we can define the mass density, two of which are key parameters [image: image] and [image: image] can be obtained from UFM framework or correlation analysis, and the mass density can be determined according to the conditions obtained from the analysis to determine [image: image]
APPLICATION EXAMPLES
Based on the above contents, in the 3D seismic fault interpretation, this paper combines the ant tracking technology with the advantages of synchronous extrusion improvement of short-time Fourier transform in time-frequency analysis, and uses different frequency information to carve the fault system of seismic data, as shown in the Figure 4.
[image: Figure 4]FIGURE 4 | Ant fracture identification based on synchronous extrusion improvement of short-time Fourier transform (A) 3D seismic data volume of a site (B) Visualized extracted ant volume (C) Visual interception of a fracture plane.
The data used in this paper belongs to the 3D seismic data volume of a site. Spectrum decomposition technology first needs to determine the size of the frequency value, which directly determines whether the effective information in the single frequency profile can be accurately depicted; Therefore, the selection of frequency value occupies a very important position in the whole process. In this paper, the actual seismic data are processed by time-frequency transform. By determining the dominant frequency band range of the seismic data, the size of the frequency value can be selected to highlight the required effective information of the seismic data.
In this paper, 30 and 60 Hz are selected as the frequency values of the single frequency data volume within the dominant frequency band of the site, and then the edge of the single frequency data volume is enhanced to calculate the single frequency of the ant. The specific steps have been described in Chapter 1.5 above.
In the dominant frequency band range, as shown in Figure 5, after the above steps, the geological information in the coherent attribute profile obtained by method of this paper will be different from that obtained by conventional methods, which can be obviously obtained in the calibration area of Figure 5. In the coherent attribute profile obtained by traditional methods, larger scale faults can be identified, as shown in Figure 5A; In the profile of this method, not only the overall distribution characteristics of faults, but also micro fractures and fracture development areas can be seen, as shown in Figure 5B.
[image: Figure 5]FIGURE 5 | Slice of single frequency coherent attributes along layers (A) Results from conventional methods (B) Results obtained by this paper.
The slice along the layer is extracted from the single frequency coherent data volume, and the result is shown in Figure 6. Figure 6A is a coherent slice obtained by conventional methods, which is more sensitive to the information of large fractures, as shown in the calibration area; As shown in Figure 6B, the method in this paper can not only highlight micro fractures, but also identify associated fracture development areas, reflecting more abundant information.
[image: Figure 6]FIGURE 6 | Single frequency coherent attribute profile (A) Results from conventional methods (B) Results obtained by this paper.
Figure 7A shows the original amplitude slice along the layer, Figure 7B shows the full band ant slice along the layer, Figure 7C,D respectively show the 30 and 60 Hz single frequency ant slice along the layer. In the single frequency ant, micro fracture information is well carved. Both the 30 Hz single frequency ant and the full band ant describe the large fracture information in detail, while relatively high frequency 60 Hz ant clearly depicts micro fracture information. Full band ant can clearly depict large faults; In the single frequency ant, with the increase of frequency, some subtle fracture information in the profile is highlighted; However, with the increase of frequency, the noise information will also be amplified. Therefore, some interference information such as collected footprints will appear in the high-frequency profile; However, the single frequency ant technique can identify the small fractures that cannot be characterized by the full frequency band ant, and has high practical value. In combination with the above, the medium and high frequency ant obtained based on the synchronous extrusion short-time Fourier transform have a strong ability to depict the micro fracture information, and the low-frequency ant bodies can engrave the large faults in detail.
[image: Figure 7]FIGURE 7 | Ant slice along the layer (A) Amplitude slice along the layer (B) Full-band ant slice along the layer. (C) 30 Hz ant slice along the layer. (D) 60 Hz ant slice along the layer.
Combined with the advanced DFN model, the extracted data are calibrated in the model to restore the fracture morphology and characteristics. The results show that the complexity of fracture system often presents the classical characteristics of complex system with power-law scale relationship, as shown in the Figure 8. The blue trace line in the figure represents the information with smaller scale such as fractures, while the red trace line represents the features with larger scale such as faults. At the same time, it is normalized according to the advanced DFN model, and the overall fractal dimension of the model in the figure is obtained, which is represented by a black trace line. The results prove the accuracy and practicability of the method in practical application.
[image: Figure 8]FIGURE 8 | Distribution law of fracture system with different scales based on model.
The method in this paper is related to the geological research of relevant work sites. As shown in Figure 9, the base map is the contour map of gas content in the work site, and the arrow direction is the growth trend of micro fracture development areas obtained by this paper. It can be clearly and intuitively concluded from Figure 9 that the more microfractures are developed, the higher the gas content is. The correlation between the two is significant, which is of great significance for oil and gas prediction and exploration. The result also shows the feasibility and importance of the method in this paper.
[image: Figure 9]FIGURE 9 | Microfracture development area and its growth trend. And gas content contour map.
CONCLUSION
In this paper, the frequency spectrum of seismic data is decomposed by using the synchronous extrusion improvement of short time Fourier transform, which can effectively suppress the influence of noise, and provide a data volume with high signal-to-noise ratio for the subsequent ant calculation; Moreover, the high frequency ant data volume can depict the micro faults and associated folds that the full band ant cannot depict; Especially in the fracture development zone, this method can accurately carve its distribution area and characteristics. Combined with the advanced DFN model, the extracted data are calibrated in various rock attributes, and the power function analysis is carried out by using the fracture trace map data of different scales, and the normalization processing is carried out to determine the fracture size distribution parameters, which is the key to reflect the characteristics of fractures under different scales, including the structure and its related properties, in the process of geological and engineering modeling. In this paper, the information obtained by this method provides a practical basis for subsequent reservoir production prediction and well location determination.
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The prediction of reservoir parameters is the most important part of reservoir evaluation, and porosity is very important among many reservoir parameters. In order to accurately measure the porosity of the core, it is necessary to take cores for indoor experiments, which is tedious and difficult. To solve this problem, this paper introduces machine learning models to estimate porosity through logging parameters. In this paper, gated recurrent unit neural network based on quantile regression method is introduced to predict porosity. Porosity measurement is implemented by taking cores for indoor experiments. The data is divided into training set and test set. The logging parameters are used as the input parameters of the prediction model, and the porosity parameters measured in the laboratory are used as the output parameters. Experimental results show that the quantile regression method improves the accuracy of the gated recurrent unit neural network, and the RMSE (Root Mean Square Error) of the unoptimized GRU neural network is 0.1774, after optimization, the RMSE is 0.1061. By comparing with the most widely used BP neural network, the accuracy of the method proposed in this paper is much higher than that of BP neural network. This shows that the gated recurrent neural network method based on quantile regression is excellent in predicting reservoir parameters.
Keywords: QRGRU, quantile regression, gated recurrent unit network, reservoir parameter prediction, gated recurrent unit neural network
1 INTRODUCTION
Nowadays, with the development of oil and gas exploration to deep layers, oil and gas exploration is becoming more and more complex (Tao et al., 2010). Using new technologies to study reservoir identification and prediction has become more and more important (Sun et al., 2011). As an important reservoir parameter, porosity (Sun, 1995) is the basis and key to interpret the reservoir. Therefore, it is very important to accurately predict porosity. The determination of porosity can be divided into direct determination methods [core analysis (Yakimchuk et al., 2019) and cuttings analysis (Siddiqui et al., 2005)] and indirect interpretation methods [seismic data (Angeleri and Carpi, 1982), logging data (Zhang et al., 2019)]. Among them, logging data is the geological data with the highest resolution (Serra and Serra, 2004). Under the circumstances of less coring and the resolution of seismic data cannot meet the requirements, it is very necessary and important to use logging data to predict reservoir parameters such as porosity, permeability and saturation, which has always been an important topic for researchers (Serra and Abbott, 1982).
In terms of porosity prediction using logging data, conventional methods mainly include inversion method (Leite and Vidal, 2011), empirical formula method (Li et al., 2004), multiple regression (Adegbite et al., 2021) and other linear methods. Although these methods are simple in principle and easy to operate, interpretation results are poor. Machine learning methods such as artificial neural networks (Gamal and Elkatatny, 2021), support vector machines (Varol et al., 2008), decision trees (Erofeev et al., 2019) and so on cannot only solve complex non-linear problems, but also have stronger learning ability, adaptive ability and information processing ability than conventional methods, and the accuracy of interpretation results is higher, so they are widely used in prediction.
Fuzzy logic and neural network technology were used to determine reservoir physical properties from logging data (Lim and Kim, 2004; El-Shahat et al., 2010). Porosity and permeability predication could be carried out by feedforward back propagation artificial neural network optimized by imperialist competition algorithm (ICA). The results showed that this model was superior to the traditional neural network in accuracy and efficiency (Jamshidian et al., 2015). Singh et al. (2016) used back propagation artificial neural network (BP-ANN) to predict porosity, setting acoustic, density and resistivity logging data as input and porosity as output. The results showed that there was a good correlation between the calculation results of empirical formula and predication results of neural network.
In this paper, GRU network is used for porosity prediction, GRU as a powerful tool for time series forecasting, and the logging curve of the formation has relatively good time series characteristics, which has strong advantages in predicting porosity. This network has a relatively good improvement in prediction accuracy.
2 METHODOLOGY
2.1 GRU
GRU (Gated Recursive Unit) network (Fu et al., 2016) is a special kind of recurrent neural network, which solves the problem of gradient explosion and gradient vanishing in the training process of traditional recurrent neural network with unique threshold strategy and state memory, and has excellent generalization performance when analyzing and processing time series data. Compared with the long short-term memory network structure, GRU combines the cell state and gate structure to realize data transmission and state memory. The internal structure of the GRU is shown in Figure 1.
[image: Figure 1]FIGURE 1 | Internal structure of GRU.
Figure 1 shows two important gate structures, namely the update gate and the reset gate. GRU forward transmission is:
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where: [image: image] and [image: image] are the inputs and outputs of the GRU at the current t-moment, respectively; [image: image] and [image: image] are the outputs of the update gate and reset gate, respectively; [image: image] is the output of the hidden state; [image: image] is an activation function; [image: image] is Hadamard product. W and U are the trainable network weights. z, r, and h are the corresponding update gates, reset gates, and candidate hidden states, respectively.
2.2 QRGRU
QRGRU (Quantile Regression Gated Recursive Unit) retains the original network structure and function of GRU, aiming to achieve non-linear quantile regression by optimizing the objective function.
The objective function is:
[image: image]
where: [image: image] is the number of samples; [image: image] is the actual value of sample; [image: image] is the output of QRGRU under quantile condition, [image: image] is a sample input.
Indicator function [image: image] is:
[image: image]
where: [image: image]
QRGRU combines the advantages of neural network and quantile regression, and gives conditional quantiles of corresponding variables at different quantiles by adjusting the value of [image: image].
2.3 Improved QRGRU principle
The GRU network structure has the function of state memory of data flowing to itself, which is more sensitive to the information feedback of historical moments. Compared with traditional machine learning, GRU strengthens the feedback adjustment ability of the intrinsic features of the data, but due to its own sensitivity, it will inevitably be affected by noise during the training process, reducing the generalization of the model. In order to overcome the above problems, the network structure constraint is used as the penalty term of the objective function, and the deviation degree of network weights in the iterative correction process is smoothed according to the correlation between variables, so as to improve the robustness of prediction. The network structure constraint is a non-negative quadratic form based on graph theory of the Laplace matrix L, as shown in Eq. 7.
[image: image]
where: [image: image] is an element of the adjacency matrix [image: image] represented by a network structure, [image: image], [image: image] is used to measure the correlation between variables; [image: image], [image: image] is the vector form of the network weights [image: image] and [image: image] conversion.
Adding this penalty to the objective function to construct an improved QRGRU network with network structure constraints, then Eq. 5 is rewritten as:
[image: image]
2.4 Non-parametric kernel density estimation
Non-parametric kernel density estimation estimates probability density distributions from observations of a set of random variables without any prior assumptions. If the QRGRU output is improved, the conditional quantile estimate is [image: image], substitution Eq. 9 estimates the kernel density to obtain the probability density function of y.
[image: image]
where: [image: image] is the number of quantiles; [image: image] is a kernel function. Gaussian kernel functions are used in this paper; [image: image] is the window width, and a rule of thumb is used to select the appropriate window width value. After the kernel density estimation is completed, the upper and lower bounds of a certain confidence interval are calculated according to the obtained probability density function.
[image: image]
where: [image: image] and [image: image] are the upper and lower limits of porosity, respectively; [image: image] and [image: image] are the upper and lower limits of the adjusted confidence interval, respectively.
3 DATA INTERPRETATION AND ANALYSIS
The logging data comes from oilfield in western China, the cores are taken from the data of three wells, the cores are subjected to indoor porosity experiments, and the accurate porosity values are obtained, and then it is related to the logging parameters (acoustic AC, gamma GR, resistivity RD, resistivity RS, resistivity RL, resistivity RN, spontaneous potential SP, neutron CNL, resistivity RT, resistivity RXO). The number of sample points for porosity experiments in this paper is 315 (Due to the porosity chamber experiment consuming a lot of manpower and material resources, only these samples were used in the sample points used in this paper). Of these, 200 sample points were used to train machine learning models and 115 sample points were used to test machine learning models. The data of the three wells are all in the same formation, the lithology of the formation is mainly mudstone, some of the rock is mixed with sandstone, the color of the formation in this section is mainly gray and gray-purple, and the sandstone development of this section of the formation is general. The thickness of the single layer is up to 8.00 m, the sedimentary environment is a weak oxidation environment, and combined with the results of regional sedimentary facies division, it is believed that the stratigraphic sedimentary facies in this section belong to the coastal shallow Lagophase sedimentation. Figure 2 shows the QRGRU optimization flow chart. Figure 3 shows a photo of the cores from the three wells, which are those used for porosity experiments. Figure 4 shows a picture taken by a scanning electron microscope of the core, and it can be observed that the main type of porosity in the core is intergranular pores. Figure 5 shows the graph of logging parameters and porosity values. In order to further explore whether the output parameters are sensitive to the input parameters, the Pearson (Benesty et al., 2009) and Spearman (Myers and Sirois, 2004) correlation coefficients are selected in this paper. Figure 6 is a heat map of the correlation, and it can be seen from the figure that the correlation between porosity and AC is the best and the correlation with CNL is the worst. Table 1 shows the statistics of logging data.
[image: Figure 2]FIGURE 2 | Flow of gated recurrent unit neural network based on quantile regression.
[image: Figure 3]FIGURE 3 | Partial photos of the cores.
[image: Figure 4]FIGURE 4 | Pictures of cores scanning electron microscope.
[image: Figure 5]FIGURE 5 | Logging parameters and porosity logging curve.
[image: Figure 6]FIGURE 6 | (A) is algorithm correlation heat map based on Pearson between the various parameters (B) is algorithm correlation heat map based on Spearman between the various parameters.
TABLE 1 | Statistical values of various logging parameters.
[image: Table 1]4 RESULT ANALYSIS
First, initialize the parameters of the QRGRU, GRU and BP neural networks, and set the values as shown in Table 2. After the model parameter setting is completed, the model is tested, and the sample is divided into the training set and the test set, and the experimental results are shown in Figure 7.
TABLE 2 | Model and model parameter setting table.
[image: Table 2][image: Figure 7]FIGURE 7 | (A) is a scatter plot of the prediction results of QRGRU model (B) is a scatter plot of the prediction results of GRU model (C) is a scatter plot of the prediction results of BP model (D) is a scatter plot of the prediction results of LR model.
The model used in this article runs on the processor of the machine that is Inter Core i5-7200U, the running memory is 24G, and the system type is a 64-bit operating system.
In this paper, R2 and RMSE evaluation criteria were used. R2 represents the percentage of variance in the model that the dependent variable can be explained by the independent variable, and the closer the value of R2 is to 1, the better the model performs. RMSE is the root mean square error, representing the error of the model, the smaller RMSE is, the smaller the error is, the higher the model accuracy is.
Figure 7 shows a scatter plot of the true and predicted values of the four prediction models, where the closer the scatter points are to the center line, the better the prediction accuracy of the model is. It can be clearly seen from Figure 7 that the scatters predicted by the gated recurrent unit neural network based on quantile regression are basically distributed near the center line, indicating that the effect of the model is better in the four prediction models. R2 and RMSE are also introduced to evaluate the effect of prediction. The higher R2 is, the better the quality of the model is. The quality of QRGRU is the highest of the four prediction models and the R2 is 0.9669, followed by GRU (R2 = 0.9168). The worst is the LR model, with R2 only 0.7385. RMSE can reflect the prediction accuracy of the model, and the smaller RMSE is, the higher the accuracy is. Among them, the model accuracy of QRGRU is the highest among the four models, and RMSE is only 0.1061. LR’s model accuracy is the lowest (RMSE = 0.6028). It can be seen from the results that the quantile regression method introduced in this paper improves the accuracy of GRU. By comparing with traditional predictive models (BP neural networks and linear regression methods), QRGRU outperforms traditional predictive models.
Figure 8 shows boxplots of the distribution of predicted and true data. It can be seen from the figure that the distribution of the predicted data of the QRGRU method is consistent with the true data, and the agreement degree of other models is not as good as that of QRGRU. Figure 9 shows the bar chart of four predictive model evaluation indicators, from which it can be clearly seen that the R2 of QRGRU is the highest and RMSE is the lowest.
[image: Figure 8]FIGURE 8 | Boxplot of the distribution of predicted and true value data of four predictive models.
[image: Figure 9]FIGURE 9 | Forecast model evaluation index histogram.
5 CONCLUSION
In this paper, the prediction model is tested based on real logging data and porosity data measured in the laboratory, and a new method (gated recurrent unit neural network based on quantile regression) is proposed to predict the parameters of the reservoir. By comparing the new method with the traditional gated recurrent unit neural network, it is shown that the introduction of the quantile regression method greatly improves the prediction accuracy of the traditional gated recurrent unit neural network. In the test set, the model accuracy of QRGRU is the highest of the four models, and the RMSE is only 0.1061. The model accuracy of GRU is lower than that of QRGRU, and RMSE reaches 0.1774. This paper also introduces two of the most widely used prediction models (BP neural network and linear regression), which can be compared with QRGRU to show that the QRGRU method is superior to BP neural networks and linear regression.
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Borehole strain observations are widely used to research slow earthquakes, volcanic activity and seismic precursors. Due to the high resolution and sensitivity, borehole strain monitoring records not only tectonic signals, but also signals from environmental disturbances. Based on the analytical solution of the displacement caused by the punctate load model, this paper derives the equation of the peripheral strain field, which provides a theoretical basis for the quantitative calculation of the load effect of borehole strain observation, and proposes a method for calculating the strain effect of two-dimensional and three-dimensional irregularly shaped loads. The results show that, 1) For the two-dimensional irregular shape load model, we can calculate it by vector superposition after load scattering. 2) For the three-dimensional irregular shape load model, we can calculate by assigning different weights to the scattering points after load scattering using two-dimensional irregular shape load method. The convergence process during the vector superposition shows the correctness and feasibility of the method, and the study can provide a research basis for the quantitative analysis of the influence of peripheral load disturbance in borehole strain observation.
Keywords: borehole strain observation, punctate load model, irregular shape load, superposition principle, scattering
1 INTRODUCTION
Borehole strain observation is one of the most important observations for obtaining information on crustal stress changes prior to earthquakes. A borehole strain observation network has been established in the Plate Boundary Observation (PBO) project in the United States (David et al., 2002). The main advantage of drilling strain observation is its high accuracy and the fact that the data can be self-checked (Chi, 1993; Li et al., 2004; Ouyang et al., 2009). Since 1990, more than 100 strain observation points have been built in Chinese earthquake precursor observation system, providing a large amount of data support for crustal deformation monitoring. Many researchers have explored the deformation characteristics before earthquakes (Zhang et al., 2009; Qiu et al., 2010; Niu et al., 2012; Qiu, 2014). In addition, the borehole strain observations provide important data support for volcano monitoring, volcanic process detection and eruption modeling (Bonaccorso et al., 2016; Linde et al., 2016; Currenti et al., 2017; Laiolo et al., 2019). However, the observation data are greatly disturbed by the economic construction around the observatory, such as the construction of buildings, reservoir storage, and the accumulation of rocks.
Theoretical analysis of the influence of load on the observation of surrounding deformation is of great research significance in the observation of earthquake precursors monitoring (Yang et al., 2002; Huang, 2005; Zhang, 2013). Since the actual loads are mostly irregular in shape, many researchers use numerical analysis to discuss the displacements and strains in the near field around the loads (Wang, 2000; Wang et al., 2002; Du et al., 2004). Some other researchers have obtained an approximate analytical solution to this problem by reducing the model to a punctate load model (Hu et al., 2002; Qiu, 2004; Li et al., 2007; Luo et al., 2008). Since the simplified model can only provide approximate solutions in the near field, this paper focuses on the exact solution of the strain field due to irregularly shaped loads. This paper gives the calculation of the strain field around the point load based on the analytical solution of the displacement caused by the point load model, and provides the calculation of the strain field caused by irregularly shaped loads in two and three dimensions. The strain sign obeys the elasticity rule, i.e., the tension is positive and the pressure is negative.
2 ANALYTICAL SOLUTION OF STRAIN AND ITS DISTRIBUTION CHARACTERISTICS FOR PUNCTATE LOAD MODEL
When a vertical force P is applied to the surface of a uniform, isotropic semi-infinite elastomer (Figure 1), the vertical normal stress and horizontal displacement at any point M(x,y,z) can be calculated using the Boussinesq (Boussinesq, 1885) solution.
[image: Figure 1]FIGURE 1 | The sketch map of punctate load model’s coordination system.
The x-direction linear stress σx, y-direction linear stress σy, x-direction displacement u and y-direction horizontal displacement v of point M(x,y,z) can be expressed as follows.
[image: image]
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Among them, R is the distance from point M to point P, E is Young's modulus and μ is Poisson's ratio, and the relationship between R and the coordination can be described as Eq. 5.
[image: image]
According to the relationship between displacement and linear strain, the linear strain in the x and y directions can be calculated from the first-order derivatives of the displacements u and v, respectively.
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According to the relationship between area strain and two orthogonal linear strains, the area strain εs can be expressed as Eq. 8.
[image: image]
Eqs. 6–8 are analytical solutions for the strain field around the punctate load model, and we can use them to solve for the strain parameters at any point around the location of the force P.
Taking sandy soil (Capar and Ishibashi, 2010) as an example, Young's modulus E=4×107Pa, Poisson's ratio μ=0.25 and load force P=2×104N, the spatial distribution of strain field of horizontal slices at depth of 0.1m can be calculated. The results are shown in Figure 2.
[image: Figure 2]FIGURE 2 | The strain field distribution around the punctate load model of horizontal slices at depth of 0.1 m (A) The linear strain εx; (B) The linear strain εy; (C) The area strain εs.
As can be seen in Figure 2, the linear strain distribution exhibits tensile strain (positive values) in a small area close to the load center, while it exhibits compressive strain (negative values) far from the load center (Figures 2A,B). The regional strain distribution shows the phenomenon of expansive strain close to the load center and compressive strain far from the load center (Figure 2C).
3 ANALYTICAL SOLUTION OF STRAIN AND ITS DISTRIBUTION CHARACTERISTICS FOR IRREGULAR LOAD MODEL
Since point load is an ideal simplified model, and the actual load is often irregular in shape, it is necessary to discuss the calculation method of irregular shape load model when analyzing the actual model. In this paper, the irregular loads are classified as two-dimensional irregular and three-dimensional irregular shape loads.
3.1 Two-dimensional model
According to the superposition principle, for the two-dimensional irregularly shaped load model, the total force P can be dispersed as Pi assuming that the number of scattered meshes is n. The analytical solution of the scattered strain for the two-dimensional irregular load model can be calculated using Eqs. 6, 7, and the relationship between the variables is as follows.
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The process of scattering the irregular load is shown in Figure 3. In the calculation of the actual load, the linear strains εxi, εyi at each scattering point of M can be calculated using Eqs. 6, 7, respectively, and then the vector superposition strains εx, εy can be calculated using Eqs. 10, 11.
[image: Figure 3]FIGURE 3 | The scattering process diagram of two dimensional irregular load model. (A) Original irregular load shape; (B) the irregular Load shape after scattering.
Because of the scattered processing, it is necessary to verify the convergence characteristics of the calculated results with the change of number of grids n. Figure 4 shows the horizontal displacements and linear strains at point M (1.5m, -1.5m, -0.2m) versus the number of grids n for Young's modulus E=4×107Pa, Poisson's ratio μ=0.25, and total load force P=2×104N.
[image: Figure 4]FIGURE 4 | The relationship between the horizontal displacement and linear strain and the change of grid count n in the point of M(1.5 m, −1.5 m, −0.2 m) using the model of two dimensional irregular load (A) the relationship between displacement u and number of grids n; (C) the relationship between displacement v and number of grids n; (E) the relationship between linear strain εx and number of grids n; (G) the relationship between linear strain εy and number of grids n; (B),(D),(F),(H) are the first-order differences of data of (A),(C),(E),(G) respectively.
It can be seen from Figure 4 that the displacements u and v converge to 1.159 × 10-5 m and -1.2244 × 10-5 m, respectively, as the grid number n increases (Figures 4A,C). The linear strains εx and εy converge to 1.8997×10-6 and 1.2401×10-6, respectively (Figures 4E,G). The first-order differences of the above parameters all converge to 0, indicating that the scattering method is correct and feasible for calculating the load model with two-dimensional irregular shapes.
For the two-dimensional irregular shape load shown in figure 3, taking sand-rock as an example (Young's modulus E = 107 Pa, Poisson's ratio μ = 0.25, load force P = 10 N), the spatial distribution of horizontal strain field at 0.2m depth is shown in Figure 5.
[image: Figure 5]FIGURE 5 | The strain field displacement around the 2D irregular load model in the depth of 0.2 m (A) The linear strain εx; (B) The linear strain εy; (C) The area strain εs; the white polygon represents the shape of irregular load.
As can be seen in Figure 5, the strain field around the two-dimensional irregular load is compressed (negative values). In the near field, the regional strain εs is related to the shape of the load. In the far field, the strain field is almost circular, which indicates that in the far field, the irregular load can be reduced to a point-like load model. In other words, when the irregular load is close to the borehole strain gauge, we cannot reduce the whole load to a point-like load model for calculation.
3.2 Three-dimensional model
The method for solving the effects of 3D irregular loads is essentially similar to that of the 2D load model. It is also based on the scattering of irregularly shaped loads (Figure 6). The differences between the two are as follows. 1) for 3D irregular shape loads with uniform density, the height Hi of the scattered points is redistributed to the total load P as weights (Figure 7); 2) for 3D irregular shape loads with non-uniform density, the scattered height Hi and density ρi can be used as weights to redistribute the load.
[image: image]
[image: Figure 6]FIGURE 6 | The scatter process diagram of three dimensional irregular load model in different grid count n. (A) n = 30; (B) n = 40; (C) n = 50; (D) n = 60.
[image: Figure 7]FIGURE 7 | The height distribution of three dimensional irregular load model.
Since there is no obvious difference between the inhomogeneous and homogeneous densities in the processing, in order to illustrate the method of load modeling clearly, this paper focuses on the method of establishing the 3D load model with homogeneous density. Similar to the two-dimensional irregular shape load model, due to the existence of the scattering process, the convergence characteristics of the computational results with the number of grids n need to be verified, and the computational results are shown in Figure 8.
[image: Figure 8]FIGURE 8 | The relationship between the horizontal displacement and linear strain and the change of number of grids n in the point of M(1.5 m, −1.5 m, −0.1 m) using the model of three dimensional irregular load (A) the relationship between displacement u and number of grids n; (C) the relationship between displacement v and number of grids n; (E) the relationship between linear strain εx and number of grids n; (G) the relationship between linear strain εy and number of grids n; (B),(D),(F),(H) are the first-order differences of data of (A),(C),(E),(G) respectively.
Figure 8 shows the horizontal displacements and strains at point M (1.5m, -1.5m, -0.1m) versus the number of grids n using a three-dimensional irregular load model with Young's modulus E=4×107 Pa, Poisson's ratio u=0.25, and total load P=2×104 N. It can be seen that the displacements u and v converge to 1.7132×10-5m and -1.8394×10-5m, respectively, as the number of grids n increases (Figure 6a, c). The linear strains εx and εy converge to 5.3573×10-7 and -1.2242×10-7, respectively (Fig. 6e,g). The first-order differences of the above parameters all converge to 0, indicating that it is correct and feasible to calculate the three-dimensional irregular shape load model by the scattering method.
For the three-dimensional irregular shape load shown in Figure 6, the spatial distribution of the horizontal strain field at a depth of 0.2 m for sandstone, for example, is shown in Figure 9.
[image: Figure 9]FIGURE 9 | The strain field displacement around the 3D irregular load model in the depth of 0.2 m (A) The linear strain εx; (B) The linear strain εy; (C) The area strain εs; the white polygon represents the shape of irregular load.
As can be seen from Figure 9, the spatial distribution of the strain field in the 3D irregular load model is more complex than that in the 2D irregular load model. This inhomogeneity is not only related to the irregular distribution of the planar projection shape of the irregular load, but also to the inhomogeneity of its elevation distribution.
We summarize the procedure for calculating the strain field around irregular loads in two and three dimensions (Figure 10). First, we spread out the irregularly shaped loads. Using the point load model (Eqs. 6, 7), we calculated the strains in the x and y directions caused by each scattered point to the point of calculation. After vector superposition, the strain value of the irregular load model at that point can be obtained.
[image: Figure 10]FIGURE 10 | The calculation process of the strain field around the irregular loads.
4 CONCLUSION
Quantitative analysis of the effect of load is important for the analysis of high-precision borehole strain observation data. Different from the previous methods of simplifying the irregular load model to a punctate model, this paper proposes a method to obtain the exact solution of the strain field around the irregular load. In fact, we can simplify the irregularly shaped load to a punctate load only under the assumption that the distance is long enough. However, when the distance is long, the magnitude of the load effect also decreases nonlinearly. Therefore, the point-like simplified model cannot accurately solve the effect of short-distance loads on the observed strain in the borehole.
This paper gives quantitative calculation methods and analytical solution examples for borehole strain observations due to irregular loads in two and three dimensions. The work is carried out to provide a theoretical analysis of the effect of peripheral loads on borehole strain observations. The in-hole strain observation includes both volumetric and line strains, and this work is targeted to quantitatively analyze the load-on-line strain observation data caused by environmental factors.
Through the above calculation and analysis, we can get the following conclusions.
1) The effect of the punctate load on the observed strain in the borehole can be calculated by Eqs. 6, 7. The characteristics of the strain field around the point-like load can be described as follows. Tensile strain occurs in a small area at the center of the compressive load, compressive strain occurs away from this area, and the strain value decreases rapidly with increasing distance.
2) The calculation process of the strain field around irregular loads in two and three dimensions can be described as follows. Based on the dispersed irregularly shaped loads, using the point load model, we can calculate the strains in the x and y directions. After vector superposition, we can get the strain values of the irregular load model.
3) The relationship between horizontal displacement, linear strain and grids number variation shows that it is correct and feasible to calculate two-dimensional and three-dimensional irregular shape load models by scattering method.
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The groundwater potential zones in the Rapigh-Yanbu area, on the west coast of Saudi Arabia, were evaluated using remote sensing and geographic information system data leading to the establishment of major watershed development and management strategies. Many factors, including slope, drainage density, land use, geology, lineament density, elevation, yearly precipitation, and soil type distribution, affect the hydrogeological characteristics of coastal aquifers. The Rabigh-Yanbu coastline groundwater potential zones were located and mapped using these characteristics. The annual precipitation rate is categorized into 2–28 mm, 29–52 mm, 53–76 mm,77–107 mm, and 108–164 mm within the study area. The highest elevation was ordered with the lowest rank of 1, while the lowest elevation was given the highest rank of 5. Slopes of 0°–9° were present in the majority of the study region, while slopes of 9°–63° were present in the northwest. Based on the slope, the research area was separated into five classes; 0-3o; 4-9o; 10–16o; 17–25o; 26–63o. Based on the drainage density map; 0–0.36 km2, 0.37–0.53 km2, 0.54–0.73 km2, 0.74–1.32 km2, 1.33–3.31 km2. The majority of the fractures trended NE–SW and NW–SE. A map of lineament density was made using the line density method. This map makes it obvious that the region was divided into five classes; 0–0.02 km2, 0.03–0.08 km2, 0.09–0.13 km2, 0.14–0.2 km2, and 0.21–0.34 km2. The classification of soil types in the study region into four classes such as clay loam, clay, sandy clay, and loam. Accordingly, the clay soil was ranked 1, while the loam soil was given the highest rank of 4. The Precambrian rocks had low groundwater potential because of their reduced porosity and were ranked 1, while Quaternary deposits had a high porosity and good groundwater potential and were given a high rank of 3. According to the likelihood of groundwater supply, the area is divided into four categories: very good, good, moderate, and poor. The area with very good groundwater potential covered 1,384 km2, while the area with good groundwater potential covered 30,498 km2, according to the findings. The study area had 34,412 km2 of somewhat appropriate land for groundwater development. In contrast, 1,734 km2 of the study area is scarce. The best zones featured the lowest slopes, the least number of lineaments, and the most drainage. The lineaments, which serve as the main conduits for groundwater flow and storage, have significant levels of groundwater recharge capacity in the study area. Managing groundwater according to these identified potential zones will maximize their benefits and increase the groundwater yield. This will help in creating new agricultural, urban, and industrial communities in this strategic area and contribute toward achieving the goals of Saudi Vision 2030.
Keywords: Groundwater potential zones, remote sensing, GIS, Rabigh-Yanbu, Saudi Arabia
1 INTRODUCTION
One of the most significant and essential natural resources is groundwater and exists in the subsurface geological formations (Fitts, 2002; Dailey et al., 2015). It is the main water source for home, commercial, industrial, agricultural, and other development projects (Pradhan, 2009; Ayazi et al., 2010; Manap et al., 2013; Nampak et al., 2014). Groundwater occurs naturally and is distributed based on various anthropogenic and natural factors (Banks et al., 2002; Greenbaum, 1992; Lee et al., 2012; Mukherjee 1996; Oh et al., 2011; Shahid et al., 2000; Saraf and Choudhury, 1998). Ground surveys utilizing geophysical, geological, and hydrogeological tools-which are typically pricy and time-consuming-are the mainstay of traditional methods used to identify, delineate, and map the groundwater potential zones (Changnon et al., 1988; Sander et al., 1996; Sturchio et al., 2004; Kumar et al., 2005; Mall et al., 2006; Jha et al., 2007; Singh et al., 2013; Senanayake et al., 2016; Asoka et al., 2018; Echogdali et al., 2022a; Mondal et al., 2022a; Echogdali et al., 2022b; Mondal et al., 2022b). On the other hand, geospatial technologies can quickly and affordably produce and model useful data in a variety of geoscience fields (Ganapuram et al., 2009; Oh et al., 2011; Adiat et al., 2012; Moghaddam et al., 2015; Russo et al., 2015). From documented reports, the groundwater potential zones have been defined and mapped using various techniques. For instance, some researchers have used probabilistic models like the frequency ratio (Ozdemir 2011; Razandi et al., 2015), logistic regression (Ozdemir 2011; Pourtaghi and Pourghasemi 2014; Pourghasemi and Beheshtirad, 2015), weights of evidence (Corsini et al., 2009; Ozdemir 2011; Lee et al., 2012; Echogdali et al., 2023), evidential belief function (Mogaji et al., 2015; Pourghasemi and Beheshtirad, 2015), certainty factor (Razandi et al., 2015), decision tree (Chenini and Mammou 2010), artificial neural network model (Lee et al., 2012), Shannon’s entropy (Naghibi et al., 2015), on the whole, remote sensing and GIS are powerful tools that can quickly estimate natural resources. The methods are affordable and can be utilized to successfully explore groundwater (Faust et al., 1991; Hinton 1996; Jha et al., 2010; Benjmel et al., 2022) before utilizing more involved and expensive surveying techniques. The success of the application of remote sensing and geographic information system (GIS) techniques for mapping groundwater potential zones in various regions of the world has been reported (Madrucci et al., 2003; Jaiswal et al., 2003; Solomon and Quiel, 2006; Madrucci et al., 2008; Prasad et al., 2008; Chowdhury et al., 2009; Yeh et al., 2009; Dar et al., 2010; Dar et al., 2010; Saha et al., 2010).
The demand for water resources has grown dramatically over time in Saudi Arabia. Between 2011 and 2015, the overall water demand in Saudi Arabia increased from 19.2 BCM to 24.6 BCM, with an average annual growth of 7%. The demand decreased to 17.4 BCM in 2019, but the demand has increased since then (Owuor et al., 2016). The key sectors with high demands are agriculture (84% of the demand), urban (13%), and industrial (3%). Although almost everyone in the nation has access to fresh water, numerous major concerns persist, including excessive per capita water use, lack of reliable renewable water sources, depleted groundwater supplies, and unsustainable use in agriculture (Jat et al., 2017). This has led Saudi Arabia to use additional water harvesting techniques such as seawater desalination. However, this strategy costs much and is not environmentally friendly, as it uses 10%–20% of the country’s energy (Scott, 2018). The nation’s population is expected to increase along the Red Sea coast due to a number of development projects that aim to draw people and foreign investment. One of the most ambitious projects in the Middle East is the Red Sea Development, which is anticipated to make Saudi Arabia one of the world’s most popular tourist destinations (Samanta, 2012). The Saudi Arabian government fully backs it, and the Red Sea Development Company runs it. Because of their strategic placement, Rabigh and Yanbu are significant industrial cities for the Red Sea Development (Alyusuf, 2021). At present, these cities have a combined population of over 250,000, but they are anticipated to accommodate up to 4.5 million people and provide around 1.3 million new jobs.
Studies of water resources have taken a new direction because of the use of remote sensing and geographic information systems (GIS). Generating the baseline data for groundwater targeting involves analyzing remote sensing data along with topographical maps, auxiliary data, and collateral information with essential field verifications. Based on an indirect study of directly observable terrain features such as geological formations, geomorphology, and their hydrologic characteristics, groundwater potential zones can be identified using remote sensing data. Similarly, lineaments are crucial for finding groundwater in all kinds of terrain. For multi-criteria analysis in resource appraisal and hydrogeomorphological mapping for water resource management, GIS and RS applications can also be taken into consideration. As a result, the primary goal of this study is to create a digital database and thematic maps that consider the variables (Slope, Lineament Density, Lithology, Elevation, Soil, Land Use/Land Cover, Precipitation, and Drainage Density) that affect groundwater potential and use GIS software to delineate groundwater potential zones in the Rapigh-Yanbu area. Decision-makers, government agencies, stakeholders, and the host community will be able to use the research’s findings to design sustainable groundwater management strategies and determine the best places to dig boreholes.
2 STUDY AREA
2.1 Geographic location
The study area was set to Rabigh and Yanbu and extends between latitudes 22.80489o–24.31324oN, and longitudes 38.48264o–40.88616oE (Figure 1). The city of Rabigh is 13 m above sea level and close to Madinah Province. Because of its advantageous location along the coastline of the Red Sea, it is the home of various high-profile projects such as King Abdullah Economic City and Petro Rabigh. Furthermore, Aramco, the Saudi Oil Company, chose the city as the location for the new port and refinery, while the city of Yanbu belongs to Al Madinah Province in western Saudi Arabia. The distance from Jeddah to it is about 300 km. Yanbu is the second-largest Saudi Arabian city within the coastline of the Red Sea. Three oil refineries, a plastics plant, and other petrochemical facilities are located in Yanbu, which also serves as a significant petroleum shipping terminal.
[image: Figure 1]FIGURE 1 | Location map for the Rapigh-Yanbu study area.
2.2 Geologic setting
Geological mapping and delineation of the depth, viscosity, parallel and perpendicular continuities of the rock layer, layers of superimposing deposits, and seawater penetration have all been done in the research region (Alyousef et al., 2015). Tertiary and Quaternary deposits are anticipated in the region. The Red Sea floor, a thin plain with a consistent width of 5–10 km, has deposited varying thicknesses of 2.0–5.0 m (Kahil et al., 2015). Syn-depositional tectonic activities in the Red Sea were used to gauge the dispersion of the deposits. The region’s coastal lowlands comprise coralline reef terraces several meters in length that were primarily produced by marine Quaternary deposits. The lowest zones are characterized by alluvial deposits, particularly silt, loose sand, gravel, and mud (Fnais et al., 2010; Almadani et al., 2015). Under the discernible projection in Yanbu’s metropolitan area, the vault is abruptly faulted in wedges (Alyousef et al., 2015). The Red Sea’s formation and growth are related to the surrounding landscape. Most of the boreholes dug in the area are between 20 and 60 m deep. The shallowest layer, filled with silty sand, has revealed a shallow groundwater table that is often less than 1 m deep (Nofal and Abboud, 2016). This confirms that deposits were penetrated by seawater from Yanbu Port, which is more than 100 m to the west.
2.3 Topography, climate, and hydrology
The Rabigh–Yanbu area is distinguished by a low-lying, flat coastal plain constrained by a string of tall, craggy mountains to the east. The Arabian Shield has a slope that goes from north to south. Most valleys receive water from these western mountains, which travel across the coastal plain to its final destination which is the Red Sea (Harris et al., 2014). Most of the towns and cities in the coastal plain are lateral to or near the mouths of these valleys. Because of the dryness of the area and lack of long-term planning, most of the population clusters along the trails and margins of the valley.
3 MATERIALS AND METHODS
Remote sensing (RS) is a favored technique for quickly collecting spatiotemporal data of large areas based on analysis of specific and consistently perceptible ground topographies (Alesheikh et al., 2007). RS can deliver substantial hydrogeological monitoring data in the spatial and temporal domains to develop and validate water resource models. The ability of satellite imagery to capture enormous spatial scales is essential to describing physiographic elements of basins, such as the slope, land cover, and drainage mass, as well as geologic structures like fractures, cleavages, and faults (Subyani et al., 2009; Visalatchi and Padmanaban, 2012). Such information is essential for assessing and investigating groundwater resources.
In this study, the following spatial products and datasets were created. A 30-m-resolution digital elevation model (DEM) was obtained to extract the study area’s primary watersheds, slope distribution, and drainage density. Such a DEM and resolution are crucial for mapping and evaluating disaster risks as well as for preparing for, responding to, and preventing disasters. Each pixel in the DEM was used to represent an elevation value (Al-Djazouli et al., 2020). In addition, the Copernicus DEM was used, which is an updated digital surface model that perfectly captures Earth’s surface with vegetation, infrastructure, and buildings (Green and Cruise, 2005; Petry et al., 2005). The Copernicus DEM GLO-30 provides complete topographical data at a 30-m resolution.
Subsequently, 10-m-resolution land-cover maps from the Environmental Services Research Institute (ESRI) were obtained for the study area. The most recent land-cover map from ESRI uses Sentinel-2 imagery from 2020 and is publicly available through an online portal (Hantson and Chuvieco, 2011). The Food and Agriculture Organization (FAO), which until recently was one of the only worldwide overviews of soil resources for continents and significant regions, provided digital soil maps at a scale of 1:5,000,000 (Heyns, 2020). Because North and Central Asia was the main area of this investigation, the FAO digital soil maps were studied. The Ministry of Environment, Water, and Agriculture provided information on precipitation for the research area.
ArcGIS was used to create the essential features for analysis. A geodatabase was built to house the datasets created for spatial analysis. The geodatabase collected datasets on several types of geographic information. It was with numerous sophisticated capabilities so GIS behavior in the study area could be modeled with networks and topographies (Sankar, 2012). Raster datasets were created for the slope, drainage density, and watersheds. The raster datasets included numerical data and pictures. Raster datasets describe any raster data model kept on a disk or in a geodatabase (Al-Djazouli et al., 2020). The information was stored in a matrix with rows and columns, where each cell represented the data (slope, drainage density, and watersheds). Thematic and continuous data were used to depict elements, including satellite photos, soil data, and data on land use.
After the precipitation data were reclassified and converted to a raster format, vectors were created from the data. The soil and land cover data were converted from vector to raster format in two phases. The first phase was to create a standard grid frame using the FISHNET module in ArcGIS, with each grid having a length and breadth of 1 km and being identified by a single ID. Then, the grid frame was georeferenced at a scale of 1:10,000 to the sink border map. In the second phase, the land usage data were connected to the grid frame, and the input data was assembled into each cell (Wilk and Anderson, 2012). To identify and reinforce the conversion path, the area ratio vector data were finally transformed into a grid raster. The Universal Transverse Mercator projection was used to create the products for spatial analysis. The spatial datasets were weighted based on their significance to identify the desired phenomena.
These thematic layers were then subjected to a weighted overlay analysis. The area ratio vector data were finally transformed into a grid raster to identify and reinforce the conversion path. Then, groundwater potential zones were located using the overlay analysis tool in ArcGIS (Figure 2). Areas on the map were classified into five types depending on potential: very good, good, moderate, poor, and very poor.
[image: Figure 2]FIGURE 2 | Flowchart of the methodology of this study.
4 RESULTS
The description of various thematic maps generated for groundwater potential zone mapping is given below. The number of theme layers utilized in this investigation affected the quality of the findings. This study was limited to the yearly precipitation, slope, drainage density, land use/land cover, geology, lineament density, and geomorphological parameters based on the information and resources available. The following spatial products and datasets were obtained.
4.1 Annual precipitation
The climate of Saudi Arabia varies widely depending on the region and time of year where Saudi Arabia has a desert climate. The highest intensity of rainfall is in the spring and winter. Saudi Arabia has sporadic, infrequent rainfall, usually from October to April (Ministry of Agriculture and Water, 1984). Figure 3 displays the annual precipitation rate for the research area (Ministry of Environment, Water, and Agriculture, 1984). The annual precipitation rate is categorized into 2–28 mm, 29–52 mm, 53–76 mm, 77–107 mm, and 108–164 mm within the study area. Accordingly, the lower rate of precipitation was given the lowest rank of 1, while the highest rate of precipitation was given the highest rank of 5 (Table 1).
[image: Figure 3]FIGURE 3 | The annual rate of precipitation map in the area.
TABLE 1 | Ranks and weights for conditioning and triggering factors and their classes in accordance with their relative impacts on groundwater potential zones.
[image: Table 1]4.2 Elevation
The research area’s elevation ranges from 2348 m above mean sea level to a minimum of 13 m (Figure 4). Generally, the ground’s surface slopes toward the Red Sea. The study area’s elevation was divided into five categories (Table 1). Accordingly, the highest elevation was ordered with the lowest rank of 1, while the lowest elevation was given the highest rank of 5.
[image: Figure 4]FIGURE 4 | The digital elevation model map for the area.
4.3 Slope
The slope degree greatly impacts how much surface water infiltrates into the ground. When it comes to groundwater, the regions with low slopes may hold the rainwater and allow it to percolate into the subsurface, replenishing the groundwater. However, a steep slope causes runoff to travel more quickly, allowing less time for water to settle on the ground surface and consequently lowering the capacity for groundwater recharge. Because the slope depends on the elevation, this information requires recognizing topographic features. In the study area, the slope ranged from 0° to 63° (Figure 5). Slopes of 0°–9° were present in the majority of the study region, while slopes of 9°–63° were present in the northwest. Based on the slope, the research area was separated into five classes; 0–3°; 4–9°; 10–16°; 17–25°; 26–63°. According to Lone et al. (2013), the category with a lower slope (0°–3°) was given the highest rank of 5, whereas the range with a higher slope (26°–63°) was given the lowest rank of 1 (Bagyaraj et al., 2013). These groups have thus been given ratings of very good, good, moderate, poor, and very poor.
[image: Figure 5]FIGURE 5 | The slope variation map of the study area.
4.4 Drainage density
Groundwater occurrence in the area is greatly influenced by drainage and drainage density. The amounts of surface water runoff and infiltration into the subsurface increased with the drainage density. If drainage density is higher, they will be less infiltration of water into the subsurface (Horton, 1945). Moreover, the topography and slope affect a region’s drainage. Figure 6 shows the drainage density as determined by the kernel density approach to help visualize the watershed’s ability to collect groundwater. Five categories are used to categorize the area based on the drainage density map; 0–0.36 km2, 0.37–0.53 km2; 0.54–0.73 km2; 0.74–1.32 km2; 1.33–3.31 km2. Accordingly, these classes have been assigned very good, good, moderate, poor, and very poor categories, respectively.
[image: Figure 6]FIGURE 6 | Drainage density map of Rapigh-Yanbu area.
4.5 Lineament density
The porosity and permeability of the underlying materials are reflected by lineaments, which are the surface manifestation of subsurface geologic structures (Subba Rao, 2006). Around the world, the main channels for groundwater flow and storage are joints and faults in impermeable rocks (Preeja et al., 2011). This study used a geological map, satellite photos, and on-site observations to identify the lineaments in the studied area. The majority of the fractures trended NE–SW and NW–SE. A map of lineament density was made using the line density method (Figure 7). This map makes it obvious that the region was divided into five classes; 0–0.02 km2; 0.03–0.08 km2; 0.09–0.13 km2; 0.14–0.2 km2, and 0.21–0.34 km2. Accordingly, the lowest class was given the lowest rank of 1, while the highest class was given the highest rank of 5.
[image: Figure 7]FIGURE 7 | Lineament density map of the Rapigh-Yanbu area.
4.6 Lithology
The groundwater conditions in an area can be studied by geological mapping. The geological units that influence groundwater’s occurrence, flow, and quality should receive extra consideration. Precambrian, Tertiary rocks, and Quaternary deposits were the three primary types of lithological units in the study area (Figure 8). The Precambrian rocks had low groundwater potential because of their reduced porosity and were ranked 1. Generally, consolidated rock lacks porosity, and groundwater can only penetrate because of secondary porosity formed by fractures and weathering (Vittala et al., 2005). The Quaternary deposits (Table 1) had a high porosity and good groundwater potential and were given a high rank of 3.
[image: Figure 8]FIGURE 8 | Lithology map of the Rapigh-Yanbu area.
4.7 Soil
Figure 9 illustrates the classification of soil types in the study region into four classes such as clay loam, clay, sandy clay, and loam. Accordingly, the clay soil was ranked 1, while the loam soil was given the highest rank of 4 (Table 1).
[image: Figure 9]FIGURE 9 | Soil types map of the Rapigh-Yanbu area.
4.8 Land use/land cover
In terms of how much water seeps into the ground, land use and land cover of an area reflect its reliance on groundwater. Present Land use/land cover (LU/LC) is assessed for suitability for groundwater prospects. LU/LC controls many hydrological processes like; evapotranspiration, runoff, and recharge of the groundwater system (Chaudhary and Kumar, 2018). The climate and accessibility of water sources affect crop patterns, where the main source of income is agriculture and related activities. The study area is primarily divided into three classes, as shown in Figure 10; barren land, residential areas, and agricultural land. Accordingly, the barren land was ordered the lowest rank of 1, the residential land had a moderate rank of 2, and the agricultural land was given the highest rank of 3.
[image: Figure 10]FIGURE 10 | Land use/Land cover map of the Rapigh-Yanbu area.
5 GROUNDWATER POTENTIAL ZONATION
Several factors can be used to determine groundwater potential. Based on RS data and GIS methods, five features were used in this study to evaluate the groundwater potential. For computational simplicity, each thematic layer’s unique features and sub-features were ranked. The groundwater potential zones were determined after a weighted overlay of the thematic layers (as shown in Table 1). There were weightings and rankings assigned to each parameter. Lineament density and soil received lower weights, while drainage density and lithology received higher weights. After assigning weight to different parameters, individual ranks were assigned to classes within those parameters. The highest possibility is that groundwater will be rated at a maximum of 5. The minimum rank is assigned to the lowest potential of groundwater. Table 1 shows the category-wise description of rank and weightage. The final groundwater potential zone map is created and may be seen in Figure 11 once all criteria have been given weight and rank. The details of the category are shown in Table 2.
[image: Figure 11]FIGURE 11 | Groundwater Potential zones (GWPZ) map of the Rapigh-Yanbu area.
TABLE 2 | Groundwater Potential zones are based on Table 1.
[image: Table 2]According to Figure 11, the study area can be subdivided into four categories based on groundwater potential: bad, moderate, good, and very good. Both the very good and good groundwater potential areas were 1,384 km2 and 30,498 km2, respectively. The study area had 34,412 km2 of appropriate land for groundwater development. In contrast, 1,734 km2 of the study area was in scarcity. Areas with shallow slopes had high groundwater potential. However, the groundwater potential was unaffected by lineaments. Groundwater was only present in the geomorphological pediplains, valleys, and pediments. Precambrian rocks could primarily identify areas with low groundwater potential zones. The study area’s complex geology, geomorphology, and land use were thus represented in the area’s different levels of groundwater potential.
5.1 Validation of the results
The research results were verified by conducting a field trip to the study area to compare the potential groundwater zones resulting from the study with the presence of farms and groundwater wells on the ground. The field trip was focused on two regions, southeast of Rabigh and east of Yanbu, due to their accessibility, while the other regions were found to be located in hard-to-reach areas. During the trip, it was found that the two areas contain farms and groundwater wells, where groundwater levels range from 30 m to about 190 m below the earth’s surface (Figure 12).
[image: Figure 12]FIGURE 12 | Field Verification for the results.
6 CONCLUSION
Mapping the potential groundwater zones in the Rabigh-Yanbu region was constructed using slope, drainage density, precipitation, elevation, land use, geology, lineament density, and soil type. The assessment shows that zones with very good groundwater potential are 1384 km2, while areas with good groundwater potential are 30,498 km2. In addition, about 34,412 km2 of land was appropriate for groundwater development, whereas around 1,734 km2 was in poverty. The assessment revealed that appropriate locations for groundwater development had minor slopes, low lineament density, and high drainage density, which are common characteristics of agricultural areas with high groundwater potential, whereas areas with low potential concentrate in Precambrian rock areas. The majority of the research region has a significant capacity for groundwater recharge. The research’s outcome was validated in the field by farms and groundwater wells in the suggested areas.
Such investigations will significantly benefit the area’s agronomists in terms of further targeting sites under various zones for groundwater exploration. Municipalities and decision-makers can also use the findings of this study to streamline planning and management. In addition, this study will assist the community in general, and farmers in particular, by providing them with other probable locations for the presence of groundwater, particularly in remote areas that have not previously been used.
Future work is required to confirm the potential groundwater zones found in the present study in remote areas using electrical and magnetic geophysical surveys. Also, it is essential to investigate the possibility of saltwater intrusion that may occur if the shallow coastal aquifer is exploited.
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Evidencing subtle faults in deep seismic reflection profiles: Data pre-conditioning and seismic attribute analysis of the legacy CROP-04 profile
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Legacy seismic reflection data constitute infrastructure of tremendous value for basic research. This is especially relevant in seismically hazardous areas, as such datasets can significantly contribute to the seismotectonic characterization of the region. The quality of the data and the resulting image can be effectively improved by using modern tools, such as pre-conditioning techniques and seismic attributes. The latter are extensively used by the hydrocarbon exploration industry, but are still only poorly applied to the study of active faults. Pre-conditioning filters are effective in removing random noise, which hampers the detection of subtle geologic structures (i.e., normal faults). In this study, a workflow including pre-conditioning and extraction of seismic attributes is used to improve the quality of the CROP-04 deep seismic reflection profile. CROP-04 was acquired in the 1980s across the Southern Apennines mountain range, one of the most hazardous seismically active regions in Italy. The results show the capacity of this method to extract, from low-resolution legacy data, subtle seismic fabrics that correspond to a dense network of fault sets. These seismic signatures and the enhanced discontinuities disrupting the reflections, which were invisible in the original data, correlate well with the main regional normal faults outcropping at the surface. Moreover, the data reveal higher structural complexity, due to many secondary synthetic and antithetic structures, knowledge of which is useful in modeling of the local and regional distribution of the deformation and potentially in guiding future field mapping of active faults. This proposed approach and workflow can be extended to seismotectonic studies of other high-hazard regions worldwide, where seismic reflection data are available.
Keywords: seismic reflection, legacy data, pre-conditioning filters, seismic attributes, normal faults, earthquakes, seismotectonics, Irpinia 1980 earthquake
1 INTRODUCTION
Seismically active regions are struck by strong earthquakes, which, in densely populated areas, may cause widespread and intense damage as well as loss of human lives. To better define the seismic hazard of a region, seismotectonic studies are fundamental in providing the foundational knowledge establishing the link between active faults at the surface and the hypocentral source; such studies aim to image the deep geometry and kinematics of the region (Allen et al., 1965; Schwartz and Coppersmith, 1984; Barchi and Mirabella, 2008). Reconstructing the geological and structural framework of seismogenic areas requires the integration of several methodologies and datasets. This process may encompass conventional fieldwork (e.g., geological–structural mapping) and the analysis and interpretation of subsurface data, such as borehole data and geophysical datasets. Undoubtedly, seismic reflection is the most powerful geophysical tool, providing high-resolution images of the subsurface and effectively constraining the subsurface structural settings. In urban or protected areas, drilling of new boreholes and acquisition of novel seismic reflection data can be complex or hampered by high costs, complex logistics, and environmental limitations. In the past several decades, several research projects have successfully acquired deep seismic profiles, which have been used to build up regional and/or relatively large-scale crustal models (e.g., LITHOPROBE, Clowes et al., 1968; Clowes et al., 1999; Hope et al., 1999; COCORP; Cook et al., 1979; BIRPS; Brewer et al., 1983; ECORS; Roure et al., 1989; DEKORP; Meissner and Bortfeld, 1990; TAICRUST; Nakamura et al., 1998; CROP; Barchi et al., 1998; Pialli et al., 1998; Finetti et al., 2001; Pauselli et al., 2006; IBERSEIS; Simancas et al., 2003; TRANSALP; Castellarin et al., 2004; FIRE; Kukkonen et al., 2006; Korja et al., 2018; ALCUDIA; Ehsan et al., 2014;Ehsan et al., 2015). Data corresponding to these unique large-scale crustal and lithospheric research programs are currently available through open seismic data repositories such as LITHOPROBE (Clowes, 2010), OPENFIRE (Heinonen et al., 2017, https://helda.helsinki.fi/handle/10138/225858), and SEISDARE (Deng and Stauffer, 2006). Higher-resolution seismic reflection data provided by the energy industry or national archives have also been used in local and/or regional geological studies of upper crust structures (e.g., Wu, 1986; William-Keach et al., 1989; Boncio et al., 2000; Clowes and Hyndman, 2002; Carvalho et al., 2008; Beidinger et al., 2011; Percival, et al., 2012; Bonini et al., 2014; Maesano et al., 2015; Porreca et al., 2018; Barchi et al., 2021). As shown by Ercoli et al. (2020), more information can be extracted from this type of data for seismotectonic research through seismic attribute analysis. A similar approach can also be applied to deep seismic reflection profiles, which are acquired in regional studies (i.e., longer transects with larger spacing between recording stations) and thus generally targeted for exploration of the deep crust (Torvela et al., 2013). For these reasons, although data with such characteristics are theoretically not ideal for high-resolution imaging of faults, fault zones, and fracture networks, they can contain subtle seismic signatures and/or seismic fabrics, which provide very valuable information on structural features and tectonic lineaments located at shallower levels, in the upper crust.
In Italy, in early 2000, a national effort resulted in a very significant deep crustal characterization project involving the acquisition of deep seismic reflection transects known as CROP (Morelli, 2003; Scrocca et al., 2003; Finetti, 2005; http://www.crop.cnr.it/ last accessed 17 August 2022). The goal of CROP was to provide foundational knowledge of the deep geological structure of both on-shore and off-shore areas of the Italian Peninsula. The resolution of these data is relatively limited (∼100 m), mostly due to the configurations used in acquisition and the limits of the available technology at that time. The resulting images provided critical results unveiling the deep crustal structure of the Italian Peninsula (e.g., for the Central and Southern Apennines, see Pauselli et al., 2006; Patacca and Scandone, 2007). The signal-to-noise ratio (SNR) of these seismic profiles is generally considered to be low due to the generalized low fold and high level of random noise content obscuring the reflectivity of the subsurface. These drawbacks place limitations on the interpretation of the seismic images, which is always affected by a degree of uncertainty and subjectivity, depending largely on the data quality and the interpreter’s experience, thus giving rise to contrasting geological models. In addition, seismic interpretation is always a time-consuming task, particularly without the use of modern and efficient semi-automatic or automatic tools for extraction of the most prominent structural features (e.g., faults; Tingdahl and de Rooij, 2005; Zhao and Sun, 2013; Acuña-Uribe, 2021). Nonetheless, these techniques should be used with care, as they may fail or produce artifacts when applied to noisy data; for this reason, all processing strategies that can be used to improve data quality are an asset in reducing and minimizing errors, while also enhancing embedded features and speeding up the seismic interpretation process. It is also known that application of a full and modern reprocessing workflow increases the value of old datasets (e.g., Stucchi et al., 2003; Tognarelli et al., 2011; Giustiniani et al., 2015; Meffre et al., 2022); however, this solution is typically time-consuming and expensive, and it requires access to the original raw shot-gathers, observers’ logs, and careful and detailed positioning information on sources and receivers.
When only stack images are available, alternative procedures based on advanced post-stack processing schemes are needed to extract more information from seismic data (e.g., information on fault patterns and clearer seismic fabrics); these may include, for example, seismic attribute analysis (Sheriff, 2002; Tingdahl, 2003). This method was developed for studies involving the characterization of hydrocarbon reservoirs (Chopra and Marfurt, 2007; Marfurt, 2018), and the tool is still under rapid development (using machine learning techniques; Wrona et al., 2018; Naeini and Prindle, 2019; Ashraf et al., 2020; DeFelipe et al., 2021; Yu and Ma, 2021). Seismic attributes are rarely used in seismotectonic studies (i.e., those involving earthquakes), either in studies at the scale of legacy seismic reflection profiles (Ercoli et al., 2020; Barchi et al., 2021) or those involving high-resolution near-surface imaging (e.g., ground-penetrating radar; McClymont et al., 2008; Forte et al., 2012; Ercoli et al., 2015; De Lima et al., 2018; Zhao et al., 2018; Ercoli et al., 2021). As far as we are aware, there is still no study applying this technique to deep, regional seismic reflection profiles, such as the aforementioned Italian CROP transect, with the aim of imaging relatively shallow and seismogenic faults. Therefore, this paper presents the first application of seismic attribute analysis to pre-conditioned deep seismic reflection data, aiming to improve the resolution and interpretability of CROP-04 NVR (Mazzotti et al., 2000; Mazzotti et al., 2007a). This profile crosses the Southern Apennines mountain range (Figure 1). This zone is one of the most important seismogenic regions of the Italian peninsula. It was affected by the strongest seismic event (Mw 6.9, 23rd November 1980) to have occurred in Italy in the last 100 years (the Irpinia earthquake; e.g., Del Pezzo et al., 1983; Pantosti and Valensise, 1990; Valensise, 1993; Amoruso et al., 2011; Galli, 2020 and references therein; Matano et al., 2020; Rovida et al., 2020; Bello et al., 2021; 2022; Lombardi, 2021).
[image: Figure 1]FIGURE 1 | Map indicating the study area, which is located in the Southern Apennines (Italy). (A) Geological map of the study area, with simplified geology, thrusts, and normal faults (from Bello et al., 2021), earthquake hypocenters (black dots), and the CROP-04 trace (black line). (B) Inset with the trace of the CROP-04 profile from Agropoli city to Barletta city, with several representative CDP numbers (yellow dots) related to its westernmost reprocessed sector (Mazzotti et al., 2000; 2007a). The segment crossing the Irpinia area, highlighted in yellow, is re-interpreted in this article.
The processing workflow designed in this study aims to remove or attenuate the high amplitude of random noise, thus extracting additional embedded information on the locations of the main active faults of this region outcrop (Figure 1). The workflow aims to enhance the imaging of not only the master (seismic) faults but also possible patterns of minor networks of fractures (“sub-seismic scale faults”; Adigun and Ayolabi et al., 2013; Odoh et al., 2014; Cohen et al., 2006; Chopra and Marfurt, 2007; Iacopini et al., 2016), thereby reviving the CROP-04 NVR profile in light of seismotectonic studies. Such faults at a local scale represent important structures, which can be seismically active and which are fundamental in fully reconstructing the extent of the fault zones and deformations occurring within this study area.
Following an overview of pre-conditioning techniques for seismic reflection data and seismic attribute analysis, we present an application of the proposed workflow customized for structural interpretation. We first test the efficiency of a pre-conditioning technique on synthetic 2D data, generated from a simple model featuring dipping beds and multi-scale faults; this is followed by an attribute analysis. Then, we apply this workflow to the CROP-04 NVR transect crossing the Southern Apennines (Figure 1, profile track in the inset b). The results provide data with a higher signal-to-noise ratio and improved lateral continuity of reflections, and reveal the presence of complex seismic signature patterns, which are consistent with the seismic signature provided by the systems of faults. Finally, we focus our seismic interpretation on the seismically active sector across the Southern Apennines mountain range. We present, for the first time, a clear image of a complex system of fractures characterizing this area, displaying the main zones of the most pervasive deformation, in which the faults are clearly visualized in terms of their spatial organization, distribution, and relationships, down to a depth of at least 4–5 km. These results are fundamental from a seismotectonic perspective, since faults and fracture areas can play a key role as conduits for or barriers to fluid flow. An increase in pressure is recognized as one of the main factors triggering strong earthquakes (e.g., Knipe et al., 1998; Scholz, 1998; Improta et al., 2014; Mulargia and Bizzarri, 2015; Chiarabba et al., 2020a; 2020b). This article proposes a processing flow combining data pre-conditioning with seismic attribute analysis, showing the strong potential for revived legacy seismic reflection images to contribute to seismotectonic research and to support assessments of the seismic hazard of active regions worldwide.
2 GEOLOGICAL FRAMEWORK
The study area is located in the Campania–Lucania arc (Figure 1), forming the western part of the Southern Apennines. It consists of a complex stack of tectonic units, derived from the deformation of sedimentary successions and originally deposited on the Paleo-Tethys oceanic floor and/or on the adjacent western margin of the Adriatic Plate. The main tectonic units, related to the four main paleogeographic domains (e.g., Patacca and Scandone, 2007; Bonardi et al., 2009; Hussein et al., 2021), are (from uppermost to lowermost):
1) the Liguride and Sicilide nappe units (Lower Cretaceous–Lower Miocene), made of basinal sediments (e.g., Ogniben, 1969; Knott, 1987; Bonardi et al., 1988; Monaco and Tortorici, 1995; Lentini et al., 2002; Cavalcante et al., 2012) originally deposited on the Tethys Ocean and/or on the distal continental margin;
2) the Apennine Platform Unit (Upper Triassic–Middle Miocene), made of internally deformed, thick carbonate shelf succession (D'Argenio et al., 1975; D’argenio et al., 1973; Palladino et al., 2008; Merlini and Mostardini, 1986; Menardi Noguera and Rea, 2000);
3) the Lagonegro Unit (Middle Triassic–Early Tertiary), made of deep-sea pelagic and turbiditic deposits (Marsella et al., 1995); and
4) the Apulian Platform (Mesozoic Early Tertiary), made of thick shallow-water carbonates (Lentini et al., 2002; Patacca and Scandone, 2007) lying on top of a crystalline basement succession (Lower Paleozoic–Permian–Early Triassic).
A phase of NE-SW Quaternary extension generated a series of normal fault systems (Figure 1A), which displaced the pre-existing internal contractional structures (migrating from west to east), synchronous with the contraction affecting the front of the belt (e.g., Elter et al., 1975; Lavecchia et al., 1994; Doglioni et al., 1999). The still-active extension is mainly responsible for the present-day earthquake hazard in the study area (Amato and Montone, 1997; D’Agostino et al., 2008; Brozzetti, 2011; Ferranti et al., 2014).
In 1980, this area was struck by a strong earthquake (Mw 6.9; Bernard and Zollo, 1989; Pantosti and Valensise, 1990), followed by several subevents that activated, in sequence, three distinct fault segments (Westaway and Jackson, 1984; Bernard and Zollo, 1989). In recent decades, the subsurface geological and structural status of the seismogenic sources (and, in particular, the current attitude and geometry of the activated fault segments, their structural hierarchy, and their link with seismicity) has been targeted in depth in relevant scientific debates (Ascione et al., 2003; Improta et al., 2003a; b; 2014; Maschio et al., 2005; Brozzetti, 2011; Bello et al., 2021; De Landro et al., 2022). The CROP-04 NVR deep seismic reflection profile partially covers the epicentral area with an SW-NE trend, which is orthogonal to the average strike of the extensional structures (Alburni, Inner Irpinia, Irpinia, Monticello, and other antithetic faults; Bello et al., 2021) (Figure 1A).
3 DATA, MATERIALS, AND METHODS
3.1 The CROP-04 NVR seismic reflection profile
The deep seismic reflection line CROP-04 NVR (Mazzotti et al., 2000, 2007a), hereafter CROP-04, runs from the south-western sector of the Campania region (near the town of Agropoli) to the city of Barletta in the Puglia Region (Cippitelli, 2007; https://www.videpi.com/videpi/crop/crop.asp, last accessed 17 August 2022). In this study, we worked on the westernmost portion of this seismic line, the limit of which is located ∼ 6 km northeast of the city of Venosa (CDP 2620, Mazzotti et al., 2000, 2007a) in the Basilicata region (Figure 1). The acquisition of the CROP-04 profile was funded by C.N.R., AGIP (now known as Eni S.p.A.) in collaboration with ENEL, and it was acquired between 1989 and 1990. As in other Italian areas, during the 1980s–1990s, the Southern Apennines were the object of hydrocarbon exploration, and the oil industry collected new data and reprocessed available industrial seismic lines (Cippitelli, 2007). Therefore, the acquisition and analysis of these reflection profiles, collected at a depth range of ∼6,000 m for hydrocarbon exploration, aided in the discovery of important oil fields in Val d’Agri, which are currently still operational. On average, these seismic reflection profiles achieved a higher resolution than the deep CROP-04, since the latter targeted the crustal structure of the mountain range and the foreland (Cippitelli, 2007). This consideration is supported by examination of several of the main acquisition parameters of the CROP-04: this stack line, acquired using a combination of both dynamite and vibroseis sources, shows a fold of 120%, a CDP distance of 40 m, and a time window of 10 s TWT (Figure 2), but Patacca and Scandone (2001) report continuous and well-structured reflections visible until ∼9 s TWT.
[image: Figure 2]FIGURE 2 | CROP-04 normal incidence deep seismic reflection lines (stack) displayed over the entire length of the profile. The left (west) side, dominated by W-dipping reflections, is the central sector and focus of this work, characterized by investigation depth limited to ∼6 s TWT; the right (east) side also exhibits steep W-dipping reflections. Note that the entire seismic line is widely contaminated by high-frequency random noise, hampering accurate seismic interpretation (see spectrum in Table 1).
The average amplitude spectrum shows a bandwidth ranging from 5 to 45 Hz, with a dominant frequency of ∼11 Hz (Table 1). Assuming an average velocity of 5,000 m/s for the subsurface, a value of ∼110 m is estimated for the vertical resolution. Based on the acquisition parameters, processing difficulties can be anticipated: one is the combination of zero and minimum phase sources (dynamite and vibroseis), each most probably differing in frequency content; spatial aliasing (Steeples and Miller, 1998) is also critical, meaning that spatial sampling might not be sufficient to image sub-vertical structures such as normal faults and/or fractures.
TABLE 1 | Parameters of deep seismic line CROP-04. The amplitude vs. frequency spectrum shows a narrow bandwidth with a frequency range close to 50 Hz, mostly dominated by random noise components (all details of the processing workflow can be found in Mazzotti et al., 2007a).
[image: Table 1]The availability of this deep profile, as well as all the other commercial data that have been released, has favored important improvements in the understanding of the geological frameworks and the evolution of the Southern Apennines region. The seismic interpretation and re-interpretation of such data (Mazzoli et al., 2000; 2001; Menardi Noguera and Rea, 2000; Patacca and Scandone, 2001; Scrocca et al., 2005), including full reprocessing of CROP-04 (Mazzotti et al., 2000; Scrocca et al., 2003; Stucchi et al., 2003; Mazzotti et al., 2007a), has contributed to the definition of a variety of contrasting geological models (.e.g.,Menardi Noguera and Rea, 2000; Butler et al., 2004; Shiner et al., 2004; Finetti, 2005; Cippitelli, 2007; Patacca and Scandone, 2007; Scrocca et al., 2007; Scrocca, 2010; Vezzani et al., 2010; Mazzoli et al., 2013; Savastano and Piana Agostinetti, 2019). Controversies in this domain are nearly always attributable to the relatively low S/N ratio in the data, which hampers the application of more sophisticated processing techniques, as reported by Mazzotti et al. (2000; 2007b), and thus a clear mapping of the fault architecture within the subsurface of the region is still not well defined. For this reason, any achievements in improving noise reduction and increasing the lateral resolution will help with re-interpretation of the data, especially if further information can be extracted from the seismic fabrics and their patterns.
3.2 Background on data pre-conditioning techniques and seismic attributes
Geophysical features in seismic reflection data can be considerably enhanced with the application of seismic attribute analysis, which can be used to extract qualitative and quantitative information from data and to emphasize the display of structural features and relationships. A seismic attribute is a descriptive and quantifiable parameter (e.g., time or dip) that can be calculated from a single seismic trace within 3D cubes (Taner et al., 1979; Barnes, 1996; 1999; Chen and Sidney, 1997; Taner, 2001; Chopra and Marfurt, 2007; Iacopini, 2011; Forte et al., 2016; Dewett et al., 2021; Iacopini and Butler, 2021). Seismic attributes can be computed over pre-stack or post-stack seismic data and, nowadays, over 3D seismic volumes. The latter guarantees more efficient applicability of the proposed analysis by allowing the identification of stratigraphic and tectonic structures along time slices or depth horizons (Chopra and Marfurt, 2005; Marfurt et al., 2011; Hale, 2013; Torvela et al., 2013; Barnes, 2016; Wu and Hale, 2016; Di and AlRegib, 2019). Currently, the extraction of seismic attributes represents a fundamental tool for the exploration industry, as it speeds up the seismic interpretation process, reduces interpretation bias (Alcalde et al., 2019), and improves quantitative results (Chopra and Marfurt, 2007; Marfurt, 2018). Nevertheless, attribute analysis of a 2D seismic transect has some limitations, even when the tools are applied proficiently (e.g., “apparent dip”; Ha et al., 2019).
In the 80s and 90s, the acquisition of sparse 2D seismic reflection data was the operative standard, and nowadays, many such datasets are released by industry for research purposes. Therefore, the re-evaluation of these data can contribute to energy (geothermal) and mineral exploration research, as well as work on characterization of the subsurface for geological storage and seismotectonic studies (Malehmir et al., 2016; Schmelzbach et al., 2016; Ercoli et al., 2020; Malehmir et al., 2021; Pertuz et al., 2022), together with additional novel high-resolution data acquired using modern technologies (Manning et al., 2019; Dieulangard et al., 2021; Strobbia et al., 2022). For this reason, it is worth attempting any available strategy to extract as much information as possible from legacy data, which are typically characterized by both advantages and disadvantages (Ercoli et al., 2020). Conventional seismic interpretation is based on analysis of the amplitudes, geometry, and lateral continuity or discontinuity of reflections; thus, any successful reduction of random noise and increase in signal quality might represent a major step forward for re-evaluation of legacy data. For example, seismic discontinuities interpreted as faults, possibly not visible or unclear in conventionally processed profiles, can be strongly enhanced with relatively quick and cheap data treatment strategies like attribute analysis, without the need to fully reprocess everything from the pre-stack raw data. However, seismic attributes can be extremely sensitive to incoherent noise (Marfurt and Alves, 2015; Ercoli et al., 2020 and references therein), so it is necessary to hamper or reduce the generation of seismic artifacts by suppressing random noise and improving the linear features using pre-conditioning techniques (e.g., Tingdahl and de Groot, 2003; Acuña-Uribe et al., 2021). The latter can be operated via conventional frequency filtering or via structural filters and statistical attributes (Barnes, 2016), based on the extraction of reflections dip and azimuth (Chopra and Marfurt, 2007; Qayyum and de Groot, 2012). After this step, the use of geometric or structural attributes based on the determination of reflector geometry, dip and trace coherence, similarity, variance, and curvature (Bahorich and Farmer, 1995; Gersztenkorn and Marfurt, 1999; Marfurt et al., 1999; Randen et al., 2000; Roberts, 2001; Al-Dossary and Marfurt, 2006; Marfurt, 2006; Chopra and Marfurt, 2008; Dewett and Henza, 2016) might favor the identification and enhancement of the amplitude and phase of seismic events (Acuña-Uribe et al., 2021 and references therein). It must also be noted that during the last few years, the detection of fault structures has been optimized using various techniques (Meldahl et al., 2001; Pedersen et al., 2002; Pepper and Bejarano, 2005; Vasudevan et al., 2005; Aqwari and Boe, 2011; Aqwari et al., 2012; Babangida et al., 2013; Hale, 2013; Di and Gao, 2017; Qi and Marfurt, 2018). On unconditioned legacy profiles, the main faults and related splays can be masked or complicated by several factors, including random noise, dispersion effects, and geological complexities due to intense deformation, which, in unmigrated data, might generate many diffractions.
The detection of faults in seismic data can be considerably improved and refined through use of pre-conditioning filters such as a dip-steered median filter (DSMF; Tingdahl, 1999; Tingdahl and de Groot, 2003), a dip-steered fault-enhancement filter like the structure-oriented filter (SOF; Fehmers and Höcker, 2003), edge-preserving smoothing (EPS; Luo et al., 2002; AlBinHassan et al., 2006), and structural smoothing (SS; Iske and Randen, 2005; D'Argenio et al., 1992). Some seismic attributes are typically sensitive to sharp variations in wave geometry and amplitude among traces or sectors of traces. The attribute response across faults is also quite sensitive to the dip of traces. The dip-steering technique allows seismic reflections to be followed by auto-tracking of the pre-calculated dip-field from a given starting position (Tingdahl and de Rooij, 2005), so that a sample-to-sample analysis clearly improves the lateral correlation of events across seismic traces and along tracks. Attributes such as (geological) dip, azimuth, and curvature are computed directly from steering data; auto-tracker tools, conventional amplitude, and similarity trackers, which can include dip-field, are used to constrain horizon-tracking and fill in any gaps. Steering cubes are typically calculated over 3D seismic volumes, and these require dip values in both the inline and the crossline directions at each seismic sample position. Dip-steering can also be calculated over 2D seismic profiles by storing the dip at every sample position only in the line direction (Ha et al., 2019). Conventionally, at least two steering outputs are generated. The “Detailed-Steering” (DS) form of output includes dips as calculated by the dip-computation algorithm (central-steering or full-steering, as in Figure 3; dGB Earth Sciences, 2021), and this is used to preserve details in the data (e.g., detection of fractures through computation of curvature attributes). The “Background Steering” (BS) output is a smoothed version of DS obtained through the application of a median filter. As BS is less noisy and includes dips relating to larger (regional) structural trends, it is suitable for dip-steered filtering operations. Dip-steering filters can dramatically improve the output of attributes such as similarity, coherence, texture, and volume statistics, and are also critical in neural network-based “probability” cubes (e.g., chimney cubes and fault cubes; dGB Earth Sciences, 2021).
[image: Figure 3]FIGURE 3 | Simplified scheme for the steering concept. (A) No steering algorithm is applied during the filter or attribute computation; (B) application of full steering across the seismic traces: dip/azimuth is updated at every trace position (redrawn from dGB Earth Sciences, 2021).
3.3 2D forward modeling: Synthetic profile of a normal fault set
To define an efficient pre-conditioning strategy for application of the seismic attribute analysis, we tested a workflow, including DSMF, on a synthetic seismic profile (Botter et al., 2014; Iacopini et al., 2016), to which we artificially added statistical noise to perturb the reflections resulting from the Vp velocity contrasts. The reflectors built in the model were dislocated by a set of simulated high-angle faults (70° dip angle), including a master fault on the left side and two progressively closer secondary splays (at a distance of ∼400 and 800 m); the three displaced reflectors showed a few hundred meters of vertical offset, which increased with depth and decreased across the splays (Figure 4). The synthetic profile was obtained through forward modeling of the seismic wavefield using finite-difference time-domain (FDTD) numerical simulations, with two main goals: 1) to verify the capacity to image and resolve subtle tectonic structures using a dominant frequency wavelet of 11 Hz, comparable to that of CROP-04, which is lower than that of wavelets typically observed in vintage commercial seismic lines (Ercoli et al., 2020); and 2) to test the efficiency of the proposed workflow on this synthetic image. The aim was to reveal subtle seismic features in order to improve data interpretability through attribute analysis of pre-conditioned data (i.e., with noise removed). The model in Figure 4 was designed using the modeling package of the Reflex-Win software tool (v. 9.1.3; Sandmaier, 2022). A model was designed based on a multilayer sequence, with thicknesses increasing with depth. The assigned media properties (Vp) generated impedance contrast, which also increased with depth (Figure 4A). The simulation was executed using a finite-difference acoustic-wave propagator and the exploding reflector source approximation. The main fault was designed to be sub-vertical (e.g., 70° dip angle), inspired by preliminary interpretations of the CROP-04 profile (e.g., Brozzetti, 2011). Similarly, Vp reference value ranges and parameters (Table 2) were derived from the literature and from borehole stratigraphic information across the area (e.g., Improta et al., 2000; Adigun and Ayolabi, 2013). The synthetic profile obtained, illustrated in Figure 4B, showed criss-crossing diffraction patterns across the faults and several displaced events of variable amplitude. The synthetic profile was migrated using a 2D diffraction (post-stack) algorithm based on the input 2D velocity model. The migration operator collapsed the hyperbolic diffractions and restored a reliable geometry of the events (Figure 4C). The synthetic stack profile was migrated and overlaid over the depth-to-time conversion of the velocity model (Figure 4D). Subsequently, 10% high-frequency noise was added to the data. This noise was characterized by an exponential distribution and by a dominant frequency centered at 30 Hz (Figure 4E). The image illustrates the fact that imaging of the faulted zones was hampered by the random noise, particularly in the case of the shallower section characterized by smaller fault throws.
[image: Figure 4]FIGURE 4 | Seismic modeling of a set of normal faults: (A) multi-layer acoustic model (Vp velocity values reported on the right side) reproducing displacements by three simulated faults (master fault on the left side); (B) synthetic image generated using exploding reflector approximation, with clear diffraction patterns across the simulated faults and displaced reflections; (C) migrated line (2D diffraction stack) using the velocity model in (A); (D) migrated line of (B) with overlying red picks in TWT derived by velocity conversion of the model; (E) migrated line in (C) with the addition of 10% high-frequency noise (with a dominant frequency of 30 Hz and exponential distribution).
TABLE 2 | Parameters for synthetic data generation using a multilayer model to simulate a normal fault set.
[image: Table 2]3.4 Seismic attribute analysis workflow
The synthetic profile was exported to the SEGY format and imported into the OpendTect software package, with the aim of setting up and testing the proposed workflow based on data pre-conditioning and seismic attribute analysis. After working on the seismic lines using a combination of a dip-steered median filter and a convolve low-pass filter (CLP) to clean up most of the random noise, several attributes were tested on the synthetic profile and on the experimental CROP-04 profile. Attributes ranging from instantaneous ones, like the cosine of instantaneous phase (Taner et al., 1979), up to multi-trace attributes (e.g., similarity), were applied over CROP-04 and displayed using multi-attribute co-rendering (Chopra and Marfurt, 2005; 2011). Among the attributes tested, we selected those that were most effective in enhancing the lateral discontinuities, namely the following.
1) Cosine of instantaneous phase (CIP). This is a frequency-based instantaneous attribute, representing the sample-by-sample instantaneous variation in phase (derivative of the instantaneous amplitude or “envelope”), determined from complex traces (the imaginary part of the complex trace is computed by Hilbert transform; Taner et al., 1979). This is an amplitude-independent algorithm that emphasizes the spatial continuity or discontinuity of reflections. It is continually smoothed, and therefore, it is not plagued by the 180° discontinuity characterizing the instantaneous phase. Another benefit is that amplitude peaks and troughs maintain the same position, but both strong and weak events are displayed at equal strength, thus enhancing thin events and subtle seismic fabrics (which can, for example, correspond to subtle faults) (Forte et al., 2012; Ercoli et al., 2015).
2) Energy (EN). This is an amplitude-based attribute, corresponding to the ratio between the squared sum of the amplitude (sample) values in a selected time window and the number of samples in the gate. A time-windowed measurement of reflectivity is provided, so that the higher the energy is, the higher the amplitude of reflection. EN is always positive (polarity-independent), avoiding the zero-crossing problem of seismic amplitude (Forte et al., 2012; Ercoli et al., 2015). This attribute is very effective to emphasize the most reflective zones (e.g., those with high-impedance properties) and to enhance lateral signal discontinuities attributable to fractures and faults (Ercoli et al., 2020 and references therein). We used a time window of 10 ms, as this produced the optimal display of main events while enhancing lateral discontinuities at the same time.
3) Pseudo-relief (PR). This is obtained by first computing the energy in a short time window and then applying a phase rotation of −90° (via Hilbert transform). This attribute generates an “outcrop-like” image, which is typically appreciated by interpreters for easy detection of both faults and horizons (Bulhões, 1999; Bulhões and de Amorin, 2005; Vernengo et al., 2015; 2017; De Lima et al., 2018; Barnes, 2016; Ercoli et al., 2020). We used a time window of 10 ms as an input parameter to improve both the main and the thinner reflections. This process considerably enhanced the visualization of normal fault sets, as well as the overall reflection patterns and bedding trends, and indirectly improved the mapping of low-dipping structural features (e.g., regional thrust faults).
4) Similarity (SM). This is a multi-trace attribute that characterizes trace-to-trace similarity (de Rooij and Tingdahl, 2002; Tingdahl and de Rooij, 2005; Brouwer and Huck, 2011). It represents a form of “coherence,” returning the degree of similarity between two or more trace segments. If the value is close to 1, the traces are nearly identical, close to 0 they are totally dis-similar. For values between 0 and 1, the lower the value, the more different are the trace segments compared (in terms of waveforms and amplitudes; dGB Earth Sciences, 2021). In this study, we computed similarity for CROP-04 by exploiting a combination of parameters and finally selecting the background-steered output computed using a time window of −28 +28 ms.
The pre-conditioning procedure on the synthetic profile is based on a first generation of a dip profile and on the application of a median filter (MF). Then, a DSMF was applied on the noisy synthetic line to obtain an improved steered profile (SP) with a reduced amount of random noise. This output was again filtered using a CLP by further smoothing the random noise (filtered steered profile, FSP). We have finally computed the selected attributes (CIP, EN, PR, SM, and workflow summarized in Figure 5, whose parametrization can be found in Table 3), using both the unfiltered and pre-conditioned data for comparison (Figure 6).
[image: Figure 5]FIGURE 5 | Full processing workflow scheme used to improve the quality of the synthetic data. This workflow was also applied to the deep reflection seismic line CROP-04, including data pre-conditioning and attribute analysis for fault detection.
TABLE 3 | Workflow applied to the synthetic profile, including a pre-conditioning strategy to attenuate random noise and analysis of selected seismic attributes.
[image: Table 3][image: Figure 6]FIGURE 6 | Testing of the pre-conditioning workflow and selected seismic attributes on the synthetic profile. (A) Noisy profile of Figure 4E in the seismic color scale. (B) Profile filtered after pre-conditioning, reducing the amount of random noise. (C) Pseudo-relief (PR) attribute computed on the profile of (A), with artifacts clearly visible, hampering the detection of minor faults within 1 s (TWT). (D) Pre-conditioned PR attribute computed on the profile of (B): imaged enhancement of the minor faults. (E) Energy attribute (red color palette) overlaid on both pre-conditioned synthetic profile (B) and PR attributes (70% transparency), enhancing the simulated tectonic discontinuities. (F) Pre-conditioned cos-phase attribute with (B) in transparency (70%), also effective in enhancing subtle/faint seismic fabrics generated by the fault structures.
A similar workflow based on a DSMF and a series of post-stack attributes was customized and applied, after an extensive phase of parametrization, to the vintage deep seismic profile CROP-04 (Figure 7, parameters in Table 3).
[image: Figure 7]FIGURE 7 | Workflow applied to the CROP-04 profile. (A) Original data, strongly contaminated by random noise, which hampers detailed visualization of both reflections and discontinuities. (B) Median filtered DP profiles computed via dip-steering phase-gradient (BG) algorithm. (C) Noise removed after the application of a dip-steered median filter (DSMF) using profile in (B) as input. (D) The result of the application of DSMF, removing the random noise shown in (C). (E) Convolve filter applied on (D) with application of additional smoothing of the random noise, thus improving the display of reflections and discontinuities.
The pre-conditioning data treatment included a structural filter operated via a DSMF and a BG algorithm [1:1], used compute a raw-steering (RS) profile, filtered using an MF [5:9] to obtain a background-steering output (BS). The DSMF noise-reduced profile obtained was then used as the input data, following application of an additional CLP filter, for computation of the same seismic attributes as performed for the synthetic line, using a co-rendered display. A pure methodological comparison between the two results (based on conditioned and un-preconditioned outputs) is presented in Figure 8.
[image: Figure 8]FIGURE 8 | Original vs. pre-conditioned outputs computed over the entire CROP-04 profile. (A) PR attribute (co-rendered with the original amplitude profile, 70% transparency) obtained without any pre-conditioning. (B) The same output, but obtained over the pre-conditioned profile, showing significant improvement of its interpretability. (C) Blue box in (A), magnifying the easternmost area of the profile, with clear artifacts to an extent hampering the visualization of structures. (D) Green box in (B), showing detail of the improved continuity (and discontinuity) of reflections, with a significant amount of information recovered in comparison to the original profile in (C).
This procedure was customized to maximize the structural information derivable from the data through advanced seismic interpretation, which benefited from enhanced display of the subtle fabric pattern. These fabrics can be attributed to subtle faults. The results are discussed in detail in the next section.
4 RESULTS
The proposed workflow described in the previous section produced various outputs, which were carefully compared, and the results are discussed in the following sections.
4.1 Synthetic data
The synthetic profile (Figure 4E) was imported into the OpendTect software package (displayed on a color scale as illustrated in Figure 6A), along with the DSMF and the CLF shown in Figure 6B, as inputs for computation of the PR attribute (Figures 6C, D). The result illustrates the benefits provided by the pre-conditioned profile, which produced a higher-quality image with a reduced number of artifacts. The pre-conditioned PR attribute also showed better resolution and an overall improved display of the thin, weak reflections located at shallow depth. This workflow effectively reduced random noise and improved the performance of seismic attribute computation to reveal main (deeper) and weak/subtle (shallower) lateral discontinuities, interpreted as faults. Figure 6C clearly shows the random noise present in the shallow sector hampering the detection of subtle fabrics/discontinuities/faults, while in Figure 6D, the profile is cleaner, meaning that the vertical displacements across the first three layers can be better interpreted in comparison to the unfiltered PR result.
The same operations were repeated for computation of the EN and CIP attributes, for which we report only the pre-conditioned results in Figure 6E (red “Energy” palette, co-rendered in transparency with the images in Figures 6B, D) and Figure 6F, respectively.
The EN envelope (Figure 6E) is useful to highlight the main (deeper) reflective contrasts as higher amplitude reflections, although it does not enhance the minor contrasts located at shallow depth. However, the attribute aids the visualization and detection of the main lateral amplitude discontinuities originating from the simulated faults. This output is particularly effective when co-rendered together with the PR attribute in the background (optionally, the conditioned seismic line FSP can be overlapped in slight transparency, as shown in Figure 6E). Finally, the CIP also enhances the detection of faults in comparison to the source data shown in Figure 6B.
4.2 Seismic profile CROP-04 NVR
The customized workflow applied to the CROP-04 NVR profile is reported and illustrated in extensive detail in Figures 7, 8, 9, and 10. The pre-conditioning steps produced several outputs, illustrated in Figure 7. Starting from the original, noisy CROP-04 profile (Figure 7A), we computed the median filtered profile, shown in Figure 7B, which was then used as input for the DSMF. This filtering operation removed a consistent amount of random noise, illustrated in Figure 7C (“net” profile). Following this process, the steered profile (SP) presented in Figure 7D clearly shows the benefits obtained after application of the DSMF, which reduced the noise and improved the lateral continuity of the events that could be associated with geologic structures. Figure 7E represents our final output (FSP) after an additional application of the convolve LP filter, which further smoothed the random noise, significantly improving the S/N ratio of the profile. Following this phase, we computed the above-described seismic attributes, over both the original CROP-04 profile and the novel noise-reduced version, as shown in Figure 8. Here, we report only one example for comparison (analogous to the synthetic data comparison of Figures 6C, D), showing the results obtained by computing the PR attribute over the entire seismic line (co-rendered with the FSP of Figure 7E). Figure 8A shows the unconditioned result, in which the visualization of the continuity of the reflections is greatly reduced by numerous random noise-generated artifacts, which particularly hamper the extraction of the signal (structural information). A pure methodological comparison with the cleaner profile of Figure 8B shows that the latter offers a much clearer display of the regional events along the CROP-04, and a significantly larger number of details can be locally extracted. An example is displayed in the magnified area on the easternmost side of the seismic line (without introducing, in this work, any geological considerations relating to the area), delimited by the blue and green boxes of Figures 8C, D (representing the unconditioned and pre-conditioned versions, respectively), where the difference between the two images is apparent.
[image: Figure 9]FIGURE 9 | Seismic attribute analysis applied to the CROP-04 profile. (A) PR attributes providing an “outcrop-like” profile, enhancing the discontinuities and aiding structural interpretation. (B) EN attribute (red palette) overlaid on the PR attribute of (A), with conditioned line of Figure 7E in transparency (70%), identifying the most reflective sectors and indirectly enhancing the discontinuities. (C) CP attribute overlaid on Figure 7E in transparency (70%); this is fundamental for structural interpretation, as it strongly enhances the lateral discontinuity of reflected signals (image shown up to 5 s, vertical exaggeration ×2). (D) SL attribute co-rendered with Figure 7E, which despite still suffering from residual noise contamination, provides an alternative display of the main discontinuities, supporting the interpretation of the fault patterns (vertical exaggeration ×2).
[image: Figure 10]FIGURE 10 | Pseudo-3D visualization of the central CROP-04 area selected for seismic interpretation across the study area, with lines on the top representing the surface-mapped fault by Bello et al. (2021). (A) PR attribute in grayscale, displayed with EN in transparency, with red and blue arrows suggesting, respectively, some synthetic (W-dip) and antithetic (E-dip), steep, structural lineaments extending in depth; and low-angle W-dipping regional features arising eastward. (B) The same display, but with the conditioned line on a color scale, enhancing these features. (C) CF attribute focused on the same area. (D) SI attribute, drawing the main faults in agreement with lateral discontinuities enhanced by the EN attribute (red color palette).
In Figure 9, from top to bottom, the computed seismic attributes represent consistent improvement in the visualization of the continuity of the reflection and, at the same time, visualization of the discontinuity patterns. The PR attribute is shown in grayscale in Figure 9A. The co-rendered display in Figure 9B consists of PR (again in transparency with the FSP of Figure 7E) plus the EN attribute, which effectively enhances the main reflective areas and, at the same time, the lateral signal discontinuities. The attribute analysis also encompassed other two outputs, namely, the cosine phase (CP, in grayscale) and the similarity (SI) attributes presented in Figures 9C, D (again, both with the FSP of Figure 7E in transparency). These attributes represent another two alternative outputs supporting advanced seismic interpretation of the network of fractures by strongly enhancing the lateral discontinuities.
A sector of CROP-04, on which we focus our structural interpretation and discussion, is magnified in Figure 10 to show the considerable improvements obtained through the combination of pre-conditioning filters with seismic attributes. Figures 10A, B show the PR + EN attributes and the PR + FSP of Figure 7E, respectively. Figures 10C, D show the CP + FSP and the PR + FSP + SL + EN attributes, respectively. All these images strongly enhance the visualization and continuity of shallow and deeper reflections, such as W-dipping regional events (indicated by blue arrows) as well as the identification of several major and minor discontinuities disrupting them (indicated by red arrows from the surface). An interpretation of these geophysical features is presented in the following section, in light of the regional tectonic framework of the study area, with a focus on the extensional structures.
4.3 Structural interpretation
In order to illustrate the benefits of the proposed processing flow, an interpretation is presented here of the central sector of the CROP-04 transect within the distance range ∼34–76 km (corresponding to ∼ CDPs 620 - 2620, Figure 1B), for a total length of ∼42 km. This region is characterized by the presence of numerous major normal faults, which are critical in assessing the seismogenesis of the area (Brozzetti, 2011; Ascione et al., 2020 and references therein; Bello et al., 2021). The improved quality of the “revived” CROP-04 elucidates several major stratigraphic and structural features, as shown in Figure 11, which can be summarized as follows: 1) several high-amplitude reflection packages down to a depth of ∼3 s (TWT, Figure 11A), whose lateral continuity is interrupted by a series of small-scale sub-vertical discontinuities interpreted as minor sub-vertical faults (Figure 11B); 2) these bright reflection packages are separated by relatively “transparent” areas, characterized by low-amplitude reflectivity and localized, in particular, where the most relevant normal faults have been recently mapped at the surface with high accuracy (following Bello et al., 2021; indicated with black arrows in Figure 11B); and 3) several continuous or semi-continuous low-angle reflections represent subparallel SW-dipping discontinuities at different depths, among which the basal one is strongly enhanced (laterally continuous up to 10 km eastward of the outcropping Monticello fault, at ∼2 s TWT; Figure 10). Such features, despite not being the focus of this work, may represent, respectively, shallow local thrusts and a deeper regional thrust, the latter rising up to ∼22 km in Figure 11 (corresponding to CDP 1405 in Patacca and Scandone, 2007).
[image: Figure 11]FIGURE 11 | Sector of the CROP-04 profile covering the studied area. (A) Detail from results obtained after the customized workflow, including pre-conditioning filters and seismic attributes, increasing the interpretability of the seismic line. (B) Interpretation superimposed on (A), reporting sets of normal (synthetic and antithetic) faults in the shallower sector, matching the surface structures mapped in the field, but suggesting a considerable degree of structural complexity due to several secondary splays and densely fractured areas. (C) Magnification [white-dashed box in (A)] of the CROP-04 sector on the east side of the Irpinia fault (IF), showing the dense network of west- and east-dipping discontinuities. (D) Multiscale accurate interpretation of image (B) with steep discontinuities overlaying the magnified image (C), representing main and secondary normal tectonic structures and characterizing the area surrounding the Monte Paratiello (Pa) and Monticello (Mo) faults.
In the following material, the main geophysical features along the profile are described, starting from its western side (profile distance: ∼34 km) and moving toward its eastern end (profile distance: 76 km). In Figure 11, a package of high-amplitude reflections (between ∼34–40 km) are characterized by a general dip toward the SW and are clearly segmented by a series of NE-dipping minor faults/fractures that reach down to ∼3 s (∼9 km using an apparent Vav = 5 km/s). Further to the east, a series of high-amplitude reflections appear to be dislocated by a main NE-dipping structure (marked as AT, at surface) and faint antithetic events interpreted as fractures/faults (between ∼40–46 km). To the NE, the package of reflections is again interrupted by a NE-dipping feature, corresponding to the Inner Irpinia Fault (InF, at surface; Bello et al., 2021). Moving to the east, another area characterized by prominent, laterally discontinuous events and underlying semi-transparent units (corresponding to the Lagonegro basinal deposits and Apulia shallow water carbonates, respectively; Patacca and Scandone, 2007) is visible up to ∼72 km; this appears to be displaced by synthetic and antithetic normal faults (thick red and blue thick in Figure 11B), as well as by a series of subtle minor structures. At ∼51 km, the Irpinia Fault (IF) mapped at the surface (Improta et al, 2003a; b; Brozzetti, 2011; Ascione et al., 2020; Bello et al., 2021, 2022 and all references therein) has been traced to depth, together with parallel structures (e.g., the Paratiello fault - Pa) and some antithetic faults (e.g., the Monticello fault - Mo, Bello et al., 2021), and faint fault splays are particularly readily visible in the easternmost sector of the line (∼60 - 72 km, magnifications of Figures 11C, D). Here, a package of upward convex (antiform-shaped), very bright high-amplitude reflections with opposite dip (∼1 s TWT, Figure 11B) are densely disrupted by several faults, up to the shallower and transparent seismic facies, representing intra-mountain basins characterized by Quaternary fills. In this case, the application of pre-conditioning and attribute analysis was an asset in better visualizing the dense network of subtle, small-scale faults not visible in the original seismic profile. These tectonic structures clearly disrupt the very high-amplitude reflections, although the latter possibly tend to “saturate” the smaller offset associated with the minor faults. Such steep alignments dissect the reflections down to 3 s and are very closely spaced. The average distance between the minor faults is ∼600 m, which is a shorter distance than in the remainder of the profile. The area intersected by this dense network of minor faults extends to almost 8 km in width.
Below ∼3 s (TWT), the seismic image shows low-amplitude reflectivity fabric with limited lateral continuity. However, from ∼2.8 s to 5.5 s (TWT), in the westernmost side of the seismic profile, we identified a narrow package of gently SW-dipping sub-parallel events. The latter are characterized by the extent of their lateral continuity, with only a few main discontinuities, which seems to propagate to depth, and they are enhanced by its complex geometry, which is difficult to interpret. Multiple interpretations of this package of reflections (which, in the original profile (Figure 2), is visible mostly in the westernmost sector) can be found in the literature, such as a possible Moho discontinuity, a regional thrust, very deep deformed sedimentary layers incorporated into the thrust belt, near-bottom Apulian carbonates, and the top of the crystalline basement (Mazzotti et al., 2000; D’Argenio et al., 1973; Cippitelli, 2007; Patacca and Scandone, 2007; Scrocca et al., 2007; Scrocca, 2010).
5 DISCUSSION
The proposed post-stack processing workflow considerably enhances the quality and interpretability of the seismic reflection normal incidence seismic profile, which is characterized by high levels of random noise, as in the case of the CROP-04 profile. Similar processing flows are applied to modern, higher-resolution commercial seismic reflection data reaching a maximum depth of 5–6 s (TWT). The research presented in this paper reveals an attempt to adapt a customized processing flow integrating pre-conditioning filters and seismic attributes for use with a deep seismic reflection profile imaging crustal-scale features. This is, to our knowledge, one of the first studies appearing in the literature that has aimed to revive legacy data by enhancing relatively shallow faults to support seismotectonic studies.
It should be considered that the acquisition, configuration, and parameters of the CROP-04 profile were focused on revealing deep regional-scale structures. For this reason, the resolution of this deep profile is intrinsically limited in comparison to that of conventional commercial seismic reflection profiles; in addition, the CROP-04 profile also suffers from several problems causing a low S/N ratio, as already highlighted in the literature (Mazzotti et al., 2000). Application of a second round of customized and more accurate processing, incorporating a priori geological information, improved the data quality, but it left a visible amount of random noise (Mazzotti et al., 2007a). Nevertheless, through the proposed workflow, we were able to make noticeable reductions to this noise, thereby further enhancing the reflective patterns and the embedded discontinuities, which were interpreted as faults. The proposed methodological approach produced clear images, providing new insight into the structural features along the entire CROP-04 profile (Figure 7), including the easternmost and westernmost sectors (Figure 8). This contribution focuses on interpretation and discussion only in relation to the central sector, this being the main subject of this study due to its relevance for the study of earthquakes. Thus, the more external sectors of this relatively long seismic profile (over 100 km) require additional detailed analysis, description, and discussion, as the transect crosses very different geological domains (Figure 8), which might be an objective for further research and collaborations.
Across the newly processed and analyzed central sector, it is now possible to identify very closely spaced sets of subtle normal faults, which were originally not visible at all or only partially detectable. The synthetic seismic profile illustrates the fact that the extent and geometry of the high-amplitude reflections resulting from high-impedance contrasts are well-enhanced by seismic attributes, and that the reduction of random noise improves the detection of the sub-vertical seismic signatures associated with discontinuities. However, it is notable that a small amount of smoothing of the edges of the events can be generated across the sharp lateral truncation of structures (i.e., the simulated faults), displacing high-amplitude reflection events. Thus, to avoid misinterpretation of the dip and kinematics of faults, it is necessary to evaluate and interpret the entire package of reflections and (possibly small) related displacements rather than looking at a single, local discontinuity.
Given these considerations, it is fundamentally important, in the case of relatively old or legacy normal incidence seismic profiles such as the CROP-04 profile, to integrate the enhanced reflections and fault patterns with other available information on the regional and local structural frameworks and with the fault tracks mapped across the study area; only this process can better enable the unraveling of complex structural sectors, such as the sector between the range of 24–36 km (Figure 11), which achieves only partial outcropping at the surface. Here, although the shallower part (∼0–2 s TWT) appears to be dominated by high-angle SW-dipping structures, in the deeper sector (between ∼ 2 and 4 s TWT), the fault patterns appear to be extremely complex, with a few visible NE-dipping discontinuities. This portion is characterized by many faint features interpreted as subtle faults, fragmenting the reflections within deep anticlines in a densely deformed pattern of discontinuities characterized by very small displacements (Figure 12).
[image: Figure 12]FIGURE 12 | Tridimensional view encompassing surface and subsurface data. Digital elevation model (DEM, by Deng and Stauffer, 2006) plotted along a WNW–ESE view along the entire track of the CROP-04 profile; this includes the surface geometry of the normal faults recently mapped by Bello et al. (2021), (2022). The epicenter of the mainshock Mw 6.8 Irpinia earthquake (23/1/1980) is indicated by a yellow star. The fault tracks have been qualitatively linked to their subsurface signature, visible on the seismic line, which shows excellent general correspondence with the master faults. The visualization additionally shows the structural complexity of the area due to the presence of broadly faulted and fractured zones. These are characterized by subtle/faint sets of secondary faults revealed by the seismic attributes (pseudo-relief and energy co-rendered in transparency with the deep-steered seismic line), which were not clearly visible in the original data. The black box magnifies the central sector, where the master faults of the Irpinia area crop out with co-seismic faulting that is still visible at the surface after ∼40 years (Bello et al., 2021).
Despite the greater number of details enhanced by the proposed processing flow, the cross-cutting relationships between such subtle seismic faults are not always clear on examination at a detailed scale. Moreover, as suggested by the synthetic seismic modeling example, by zooming in and out to look at the enhanced reflective patterns and at the entire reflection package and/or all discontinuities, it can be observed that the NE-dipping alignments are the most predominant, particularly in the westernmost sector (Irpinia faults), while in the easternmost part, the SW-dipping faults (e.g., the Monticello area) become more relevant. The proposed interpretation of the main seismic discontinuities is in agreement with field observations of the structural context of the area, and it correlates well with the main normal faults mapped at the surface and with the landscape morphologically controlled by extensional tectonics. For this reason, at the same time, this form of interpretation may be driven or supported by surface geological data when structural complexity increases in the shallower sectors. In this case, the main seismic discontinuities, which are interpreted as master faults, are better imaged (i.e., InIF, IF, and MO); and the secondary and/or minor structures building up complex fracture zones arebetter imaged, after processing, up to very shallow levels. A series of closely spaced sub-vertical fractures, localized in an area of strong deformation, are located between and surrounding two main normal faults that outcrop at the surface, known as the Monte Paratiello (PA) and Monticello (MO). Following previous interpretations and well data on the studied area (Shiner et al., 2004; Patacca and Scandone, 2007), the higher number of closely spaced, minor fractures can be localized in this sector within the Lagonegro Units, which are composed of Middle Triassic–Lower Cretaceous basin deposits, such as marly limestones and clastic deposits. Toward the area of pervasive deformation, we observe a network of minor sub-vertical fractures. These are spaced about 600 m apart on average and locally dissect the possible low-angle thrust faults.
In conclusion, the analysis performed and described here can provide a more exhaustive structural framework, which is extremely important in terms of its seismotectonic implications and in accounting for the location of surface ruptures. Master faults are usually interpreted and modeled as single planes, but it is clear that deformation frequently occurs across wider damage zones characterized by complex geometry and architecture that need to be taken into account. The processing flow proposed in this article is critical in providing an improved understanding of the structural framework of an active seismogenic area. This approach aids better reconstruction of the fault geometry down to a seismogenic depth, as well as the segmentation and spatial distribution of faults, which are spread across sets of minor and subtle or faint structures that are rarely visible in the original low S/N seismic data and are complex to decipher at the surface. The proposed interpretation focuses mainly on tectonic structures, which are the most debated features across the study area (see the tridimensional views and a movie within the Supplementary Material). It should be noted that our workflow is particularly effective in improving the shallow portion of the deep reflection line CROP-04 NVR, while for the deeper portion, a full reprocessing with up-to-date pre-stack processing tools can be further carried out to achieve even more benefits. However, as the normal faults are better displayed nowadays, overall, we believe that most of the structural features and models previously reported by other authors (e.g., Scrocca et al., 2007; Brozzetti, 2011; Bello et al., 2021) might be considerably refined using our results and images along the entire transect.
6 CONCLUSION
The research carried out here represents an innovative application of a customized processing flow encompassing pre-conditioning filters and attribute analysis, which are commonly used by the hydrocarbon exploration industry. This workflow was applied to a legacy deep seismic reflection line across the Southern Apennines, aiming to help with seismotectonic assessment. Despite the low data quality of the CROP-04 deep normal incidence seismic reflection image, mainly due to high levels of random noise, the post-stack processing flow considerably improved the stacked image, enhancing the shallow and deep reflections all along the seismic line. The improved resolution of the seismic images reveals the existence of a dense network of subtle faults that are faint or even indistinguishable in the original stack. We highlight the excellent correlation between the main tectonic structures mapped at the surface and their specific and complex seismic signatures as enhanced by the pre-conditioned attribute analysis. Seismic attributes represent a cheaper technique in comparison to a full data reprocessing sequence; however, the evaluation and parameterization of seismic attributes are strongly data-dependent, requiring accurate customization to avoid generation of artifacts. Furthermore, a pre-conditioned attribute analysis represents an efficient aid for interpreters, enabling them to shed new light on the deep continuation of tectonic structures of regional and local seismogenic importance in high-hazard regions. To our knowledge, the current contribution is the first attempt to experiment on deep, legacy seismic data, with the aim of supporting earthquake studies; the results of this work encourage the application of our proposed workflow and of advanced pre-conditioned seismic attributes [e.g., thinned fault likelihood (Hale, 2013) and/or machine learning tools (Yu and Ma, 2021)] in other geological contexts and areas worldwide. Legacy data are in fact unique, may no longer be easy to collect, and nor are they repeatable in such regional configurations. This type of workflow enables an affordable approach to re-evaluation/re-processing/re-assessment of vintage data, revealing high-resolution structural details of the subsurface in a manner that would not be achievable otherwise, but which is extremely important for seismotectonic studies. The workflow may favor better seismic interpretation and integration with the available surface and seismological data, and the results can be also used to drive and support the field activities of geologists devoted to detecting long- and short-term field evidence of faulting at the surface. In addition, beyond our specific objective focused on seismogenic faults, our work aims to promote the use of seismic tools borrowed from the energy industry in many other geoscience applications, encompassing different scales and study goals.
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The Wadi Fatimah area suffers from a lack of freshwater resources, so this study aimed to analyze the groundwater in this region and evaluate its quality for irrigation and drinking purposes. Eleven water quality parameters, including pH, total dissolved solids (TDS), Ca2+, HCO−3, NO−3, F−, Cl−, K+, Mg2+, SO2−4, and Na+, were utilized to evaluate the quality of the water and produce a water quality index (WQI). These parameters were measured at 100 different chosen locations. The spatial distribution map revealed that all parameters are high in the southern part except K+. Using the correlation matrix, a high positive correlation is obtained among TDS, Cl−, Mg2+, and Ca2+ in addition to a high correlation among TDS with Cl− and Na+. From PCA analysis, PCA1, PCA2, and PCA3 represent about 52%, 12%, and 10% of all components along the study area, respectively. PCA1 has low variance than PCA2 and PCA3. The majority of the Southern region’s sites went from having extremely poor to poor water classifications and from poor to unsuitable water. However, the center part possesses exceptionally high-quality groundwater. According to the results from the current study’s water quality index, the presence of nitrate and fluoride in the groundwater samples was primarily responsible for their high WQI values. The statistics showed that a higher percentage of the population had poor drinking water due to direct pollutant release, agricultural effects, and excessive groundwater resource use. The study offers a groundwater quality modeling technique that is both affordable and replicable in other areas.
Keywords: groundwater, Wadi Fatimah, remote sensing, physiochemical parameters, IDW, WQI
1 INTRODUCTION
Less frequent rainfall and high evaporation rates in arid regions, like Saudi Arabia’s dry soil, can lead to fractionation processes that have a big impact on the chemistry of shallow groundwater (Reddy et al., 2012; Verma et al., 2020). This is true of the alluvium deposits in the Kingdom’s western region (Sharaf and Hussein, 1996). Certain hydrochemical processes may have an impact on the ionic composition of groundwater as it moves from recharge areas to discharge areas and interacts with rock minerals. The majority of earlier studies on the major wadis in the Western Region noted that the main determinants of groundwater salinity are rock types and agricultural practices. Actually, the middle and lower reaches of the wadis were the focus of this research (e.g., Memon et al., 1984; A1-Kabir, 1985; Sharaf et al., 1988; Jamman, 1978; A1-Khatib, 1977; Alyamani and Hussain, 1995; Sharaf, 2013). However, studies on these locations have generally focused on evaluating the hydrochemical conditions, paying little attention to the groundwater chemistry or the main source of recharge in the higher catchment areas, where processes and products can be recognized with the greatest ease (Sharaf and Hussein, 1996). The groundwater composition in upstream regions would resemble that of rain that falls on recharge zones (Abdel-Sattar et al., 2017). Such investigations, which are essential, can offer extra valuable information regarding the chemistry of groundwater’s evolution.
Due to the rapid urbanization process, population growth, and increase in anthropogenic activities, groundwater represents the most important freshwater for human drinking purposes. Agricultural, industrial, and domestic activities are major sources of groundwater pollution worldwide (Bi et al., 2021). Groundwater degradation is mostly caused by changes in its quality parameters beyond normal variations brought on by the addition or removal of various contaminants (Todd, 2001). Unfortunately, this resource is under threat from urban, modern agricultural, and industrial operations, as well as from the rising amount of soluble chemical input they produce (Aydi et al., 2013). As a result, the quality of the water is determined socially based on its intended or desired use. The continual monitoring of water quality is the most important phase in the management of water resources not only for human survival but also for the integrity of entire ecosystems. Different water quality requirements are established for various uses, and these standards are upheld through ongoing water quality monitoring (Shabbir and Ahmad, 2015). Determining the quality of the groundwater has become essential for the long-term development of fresh groundwater aquifers in Faisalabad because of the city’s numerous enterprises. Understanding the spatial distribution of environmental characteristics is essential for assessing the water quality (Solangi et al., 2018). In order to support such monitoring efforts, accurate and flexible instruments are required because monitoring is expensive, especially for large groundwater areas (Wong et al., 2021). The potential cost is further reduced by using modular technologies, like a geographic information system (GIS), because fewer observation wells are needed to evaluate the groundwater quality throughout the entire region (Verma et al., 2020). One of the most often used methods for classifying and reflecting the condition of water quality in a particular location (WQI) is the GIS-based water quality index (Mahmood et al., 2011). A helpful method for maintaining water quality is the mapping of water quality indices within the GIS. It is useful to provide three-dimensional patterns in water quality variation in order to better comprehend the current situation regarding the numerous parameters of the water quality studied. Several researchers from different countries have utilized the WQI to evaluate the water quality in that area (Arkoç, 2016).
Facilitating the unified environmental simulation models using the GIS requires more effective data processing and specialized solutions. The internet, global positioning systems, and remote sensing, among other techniques for obtaining and producing data, have all advanced (Sweeney, 1997). In arid and semiarid regions of the world where the populace and industry are strongly dependent on this irreplaceable resource, the groundwater quality evaluation for public health is crucial. The study’s objective is to assess the groundwater quality in the Wadi Fatimah area using various physiochemical indicators and then to use the WQI to produce a distributed-scale geospatial water quality map. The objectives of this work are to 1) conduct a laboratory-scale assessment of the groundwater quality by gathering physiochemical data for a few parameters and 2) weighted overlay the physiochemical features in ArcGIS to obtain the WQI.
Together with population growth, groundwater demand is rapidly increasing and climate change is further taxing water resources. Notwithstanding the importance of drinking water to the local population’s health in underdeveloped countries and the fact that groundwater is frequently the main source of drinking water, it is important to consider the water’s chemical purity (Alsuhaimi et al., 2019; Ahmed et al., 2020; Metta et al., 2020; Nwankwo et al., 2020; Panneerselvam et al., 2020; Singh et al., 2020; Salem et al., 2022). The groundwater monitoring network provides data on potential measures and when to adjust the settings for our water management system. Comparative studies should highlight the various components of groundwater and their effects on human health. The study’s objectives are to comprehend the existing groundwater quality conditions in the relevant locations, including the sources of pollution, and to develop a particular dataset for chemometric-based future research. The study also intends to grasp the ecological circumstances of the close-by regions while comprehending groundwater’s appropriateness for irrigation and understanding its household and commercial application utilizing certain water quality indices. The results of the study will serve as a baseline for further research in Wadi Fatimah and surrounding areas, including the strengthening of groundwater management standards, leading to more sustainable decision-making and a reduction in the region’s groundwater and environmental pollution issues.
2 MATERIALS AND METHODS
2.1 Study area
The western portion of Saudi Arabia’s Makkah region is where Wadi Fatimah is located. The recharge zones are close to Taif province. Two examples of cities that are next to a wadi are Jamoum and Bahrah. Figure 1 illustrates the general area, which is approximately 4,050 km2 in size and spans a distance of 250 km from the Taif mountains to the Red Sea coastal plain. According to Walter et al. (1975), Harnickell, and Mueller-Dombois, the study location is in a region with a subtropical dry climate, which is distinguished by hot summers and mild winters (1975). The maximum average temperature for the year is 31.2°C, with July being the hottest month with a maximum average temperature of 36.25°C. January is the coldest winter month with a maximum average temperature of 24.12°C. With an average annual precipitation of 84 mm/year and a monthly mean that varies from 0 mm in June to 25.5 mm in November, rainfall is scarce and unreliable. The Precambrian plutonic rocks that make up Wadi Fatimah are found inside the Makkah Quadrangle, along with some Tertiary volcanic rocks and Quaternary clastic deposits.
[image: Figure 1]FIGURE 1 | Geographical location of Wadi Fatimah, KSA, and sampling locations.
2.2 Hydrogeological settings
Since geology governs how aquifers recharge, geology is regarded as a key determinant of their hydrogeological properties (Ganapuram et al., 2009). Figure 2 shows the geology map of Wadi Fatimah. According to the thoroughly studied geological map, Wadi Fatimah is a sedimentary basin with a diversity of geological components, spanning from Quaternary to Jurassic formations with a predominance of Tertiary formations. The study area’s center is taken up by granite. The Fatimah basin’s Quaternary wadi fill deposits range in thickness from 10 to 20 m upstream to roughly 80 m downstream. These deposits are made up of mudstones, sandstones, and conglomerates. Another good location for groundwater preservation is Wadi Fatimah, whose bedrock is made up of severely worn, fractured Arabian Shield igneous and metamorphic rocks (Sharaf et al., 2004). Additionally, the porosity of this shallow aquifer ranges from 14% to 30%, and its average transmissivity is 140 m2/day. Its average storativity is similarly 0.1 (Jamman, 1978; Es-Saeed et al., 2004). These characteristics collectively show that the aquifer is unconfined and shows moderate potential. As the geology affects groundwater penetration, the ranks were assigned accordingly. Quaternary, thus, obtained the best rating, whereas Jurassic received the worst.
[image: Figure 2]FIGURE 2 | Geology map of Wadi Fatimah.
The Fatimah catchment’s entire surface area is approximately 4,650 km2, and it almost perfectly parallels the Red Sea from east to west. Jado and Zotl (1984) claimed that following the intense rains that fall on the higher portions of the Arabian Shield, the deeply cut gorges serve as the gathering pathways for greater floods. In the southwest corner of this wadi, these chasms (deep fissures) rise to elevations of more than 2,000 m above sea level. Groundwater recharge spots can be found in main and sub-catchments because surface characteristics are among the most crucial controlling variables for rainwater dispersion across the catchment. The Fatimah catchment area is seen on the topographic map in Figure 3, and it is clear that the catchment’s highest peaks are in its northeastern region, close to the Hijaz Escarpment. Different lithologies, tectonic movements, weathering, erosion, climatic influences, and geological formations are what determine the surface features. Additional elevational variations have been caused by the Harrat Rahat basalt explosions, particularly in the northeastern catchment zones.
[image: Figure 3]FIGURE 3 | Box diagram of all parameter concentrations in groundwater.
In general, the catchment area can be thought of as having three distinct elevations: the coastal area, which has elevations less than 100 m; the middle area, which has elevations between 100 m and 600 m; and finally, higher elevations, which include the edges of the Hijaz Escarpment, which have elevations greater than 600 m. Groundwater flow routes also follow a similar pattern based on this classification. According to this structure, the shallowest alluvium fills are found at high elevations and include relatively coarse grains, whereas the alluvium thickness increases toward the lower reaches and contains smaller grains.
The sub-basins of the Fatimah catchment exhibit typical characteristics of arid or semiarid environments, including multiple segments of ephemeral flow systems that are shallow and narrow and have irregular recharges. In the region of the Harrat Rahat basaltic area in the northeast and close to the Hijaz Escarpment in the east, this catchment contains steep slopes with significant running water energy, which reduces toward the lowlands where thick silt accumulations occur. Since higher places are predicted to have larger values of hydraulic conductivity than other locations, these locations are predicted to have high groundwater seepages in the longitudinal direction. Along the whole wadi, the aquifer thickness in this location is the thinnest.
3 DATA COLLECTION AND ANALYSIS
A total of 100 sampling locations were selected to map the groundwater quality (Figure 1). A variety of wells were used to collect samples of the groundwater used for agriculture, drinking water, and other domestic and industrial uses. Prior to collecting the samples, polypropylene containers were thoroughly washed multiple times with the sample water. All of the water samples were kept in a cooler filled with ice while the fieldwork was being performed. The samples were stored in a refrigerator in the lab, which was kept at a temperature of 2°C–4°C. The increased temperature of the circulation, which causes a greater degree of mineral breakdown, and the mixing of fresh, shallow groundwater with deeper saline water, as can be observed on Piper and Durov plots, can be linked to the high TDS of the geothermal samples (Alshehri et al., 2022). All reasonable measures were made to reduce contamination during sample collection and processing. According to the American Public Health Association, these samples were collected and examined for several physiochemical factors (APHA, 1998) using standard methods. The parameters which were analyzed included pH, total dissolved solids (TDS), Ca2+, HCO−3, NO−3, F−, Cl−, K+, Mg2+, Na+, and SO2−4. K+ and Na+ were determined using a flame photometer. Ca2+, Mg2+, Cl−, and HCO−3 were analyzed by the titrimetric method. SO2−4 was determined using a digital spectrophotometer.
3.1 Data analysis using the GIS
The sampling sites were taken using portable GPS. Through a point layer, the various sampling sites were loaded into GIS software. A unique code was given to each sample point and entered into the point attribute table. All chemical parameter values and sample codes for each sampling site were separated into separate columns in the database file. The geodatabase was used to construct the spatial distribution maps for a number of water quality metrics, including the water quality index (WQI) for drinking water. Using the inverse distance weighted (IDW) raster interpolation method, the spatial analyst module of ArcGIS 10.8 was used to depict the spatial distribution of various water pollutants (Kumar et al., 2007).
3.2 Water quality index
The water quality index (WQI) has been calculated in three steps using weighed arithmetic index techniques (Ramakrishnaiah et al., 2009; Akter et al., 2016). First, as shown in Table 1, the water quality parameters that have been selected and given weights are essential for establishing the quality of drinking water. The metrics MPN and nitrate both received the maximum weight of five because of their significant roles in the WQI. When calculated with a minimum weight of 1, it was found that potassium and total hardness cannot be damaging to people’s health. The next step involves calculating Wi (relative weight) using the following formula.
[image: image]
TABLE 1 | Relative weight for the chosen parameters and the weight assigned.
[image: Table 1]In this case, Wi denotes relative weight, Wi denotes the weight of each chosen water quality parameter, and n is the total number of water quality parameters. Table 1 displays the computed Wi (relative weight) values for each water quality indicator. In the third stage, the qi (quality rating scale) for each specific water quality parameter is computed by dividing the observed value in the relevant water sample by the standard specified in the (BIS, 2012) drinking water guidelines and then multiplying the result by 100.
[image: image]
Quality rating is determined by qi, and the concentration of specific chemical (Ci) traits in each sample of water measured in mg/L, as well as SI, is based on the WHO standard (BIS, 2012) recommendations. First, SI is calculated for each chemical parameter in order to calculate the WQI by multiplying the quality rating by the relative weight. Next, the sum of the sub-indices is used to calculate the WQI using the following formula:
[image: image]
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Here, the ith water quality parameter is the sub-index (SIi) and the rating qi is based on the concentration of the ith parameter and the total number of water quality parameters (n) used to calculate the GWQI. According to Table 2, the GWQI values are divided into five categories, from “Excellent water” to “Water unsuitable for drinking.”
TABLE 2 | Groundwater classification using the water quality index.
[image: Table 2]3.3 Statistical analysis
In environmental studies, multivariate statistics are typically used to categorize and evaluate soil characteristics. The data can be condensed, unified, and categorized using multivariate approaches in order to extract meaningful information. The method can also be used to explain temporal and spatial variations caused by connections between seasonality and outside factors, both natural and artificial. The data gathered for the groundwater samples were evaluated using principal component analysis. The most popular method for converting the original variables into new, uncorrelated variables (axes), or principal components is principal component analysis (PCA). PCA allows for the straightforward accounting of data variations (Pop et al., 2009). PCA has been used to evaluate the salinity and alkalinity of soil (Mohamedou et al., 1999). The relationships in the original data are maintained while providing essential information for the entire data set.
4 RESULTS AND DISCUSSION
4.1 Physicochemical parameters
According to the physicochemical analysis of major groundwater quality parameters of the 100 groundwater samples in Wadi Fatimah, the WQI was calculated, as shown in Table 3. The value of pH ranges from 7 to 8.11 with a mean value of 7.2. The pH level was largely constant due to the low S.D. value (0.2). The groundwater quality is important because it is the main factor in determining whether it is suitable for drinking (Kumar et al., 2007). Although it has no direct impact on consumers, one of the most important indicators of water quality is often its pH. Typically, the needed optimal pH ranges from 7.0 to 8.5 (World Health Organization, 2004). The value of Ca2+ ranges from 36.4 to 750.2 with a mean value of 202. The value of Mg2+ ranges from 7.8 to 334 with a mean value of 58. The value of Na+ ranges from 50 to 2,520 mg/L with a mean value of 281 mg/L. The value of K+ ranges from 2.7 to 22 mg/L with a mean value of 9.7 mg/L. The value of HCO3− ranges from 47.8 to 295.5 with a mean value of 175.6. The value of Cl− ranges from 41.8 to 3,180 mg/L with a mean value of 482.03 mg/L. The value of SO42− ranges from 18.5 to 3,264 mg/L with a mean value of 385.85 mg/L. The value of TDS ranges from 411 to 9,488 mg/L with a mean value of 1714.29 mg/L. The value of NO−3 ranges from 2.04 to 690 mg/L with a mean value of 137.14 mg/L. The value of F− ranges from 0.004 to 0.295 mg/L with a mean value of 0.03 mg/L. The box diagram of all parameters in the groundwater of Wadi Fatimah water is shown in Figure 3. Based on Figure 4, there is a high positive correlation among TDS, Cl−, Mg2+, and Ca2+ in addition to a high correlation among TDS with Cl− and Na+.
TABLE 3 | Physico-chemical parameter statistics for groundwater samples.
[image: Table 3][image: Figure 4]FIGURE 4 | Correlation among all parameter concentrations in groundwater.
4.2 Principal component analysis
From PCA analysis, PCA1, PCA2, and PCA3 represent about 52, 12, and 10% of all components along the study area, respectively. PCA 1 has low variance than PCA2 and PCA3. Based on these data, three components were selected for further analysis, as shown in Figure 5. In addition, it was shown that TDS, Cl−, Mg2+, Na+, and Ca2 are correlated with each other and less correlated with K+.in the present study; seawater intrusion is the source of high release of cations and anions in Wadi Fatimah.
[image: Figure 5]FIGURE 5 | PCA components of all parameters in the groundwater of Wadi Fatimah.
4.3 Spatial analysis of groundwater quality
Figures 6A–C present the spatial distributions of pH, total dissolved solids (TDS), Ca2+, HCO−3, NO−3, Cl−, K+, Mg2+, Na+, and SO2−4. The pH values are very spatially heterogeneous in the present study as it tends to increase in the southern part of Wadi Fatimah. The southern portion of Wadi Fatimah was mostly home to regions with high TDS, Mg2+, Na+, and SO2−4 concentrations; on the other hand, K+ concentrations were low. It was shown that chloride concentrations exceeded the standard limit in some sampling locations. Cl− contamination from anthropogenic sources like industrial discharge may also be related to the high concentration of Cl− in water samples. Furthermore, nitrate exceeded the standard limit in some locations. Anthropogenic pollution is shown by the greater NO−3 content. Additionally, agricultural practices add NO−3 to groundwater, which lowers its quality (Cardona et al., 2004). Regular fertilizer applications on crop fields and a process that causes the nutrients to build up in groundwater are the two main causes of agricultural contamination of groundwater (Chae et al., 2004). Finally, due to greater groundwater extraction near the shore, seawater intrusion is more prevalent and a source of high cations and anions.
[image: Figure 6]FIGURE 6 | (A–C) Spatial distribution of physico-chemical parameters along the study area.
4.4 Water quality index
The quality of groundwater characteristics has been utilized to forecast the irrigation and drinking water quality (Subba Rao, 2006). In the current study in Wadi Fatimah, KSA, the WQI was chosen to ascertain whether the water is fit for drinking. For the computation of the WQI, many parameters were chosen and weights were assigned to each parameter based on the perceived influence on human health (Saeedi et al., 2010). Nitrate and fluoride have been assigned a maximum weight of 5 in accordance with WHO regulations (Srinivasamoorthy et al., 2008). According to how important they were in influencing the water quality, many other criteria were assigned a weight between 1 and 5. The groundwater samples’ computed WQI values were categorized, as stated in Table 2. As indicated in Figure 7, none of the groundwater samples were “excellent water,” only 33% were “good water,” and the remainder were “poor, extremely poor, and unsuitable for drinking water.” the spread of polluted water in Wadi Fatimah’s southern section. Groundwater quality is at risk due to industrial and municipal waste, according to Haq and Cheema (2011). The administration and authorities of Makkah City might utilize the created map to supervise a plan for discharging sewage water into Wadi Fatimah.
[image: Figure 7]FIGURE 7 | Water quality index spatial distribution.
Hydrologically, Wadi Fatimah and the nearby lands get sporadic rainfall, with the uppermost part of the wadi receiving a significant amount (170 mm/year) and the average annual rainfall not exceeding 60 mm. The Wadi Fatimah basin is filled with Quaternary sediments, whose thickness varies from 10 to 20 m upstream to roughly 80 m downstream (Sharaf, 2013). Both the underlying weathered Precambrian bedrock and the shallow Quaternary alluvial layers contain Wadi Fatimah’s groundwater. According to Hem (1970), Drever (1982), Appelo and Postma (1993), and Sharaf and Subyani (2011) found that the distribution of trace elements in the groundwater of Wadi Fatimah is primarily regulated by various processes and the groundwater has a wide range of chemical compositions. Wadi Fatima’s southern part was made up of areas with high concentrations of TDS, Mg2+, Na+, and SO2−4; on the other hand, K+ concentrations were low. The high content of Cl− in water samples may also be attributed to Cl− contamination from anthropogenic sources like industrial effluent. Because of the impending seawater intrusions, these samples show significantly salinized water (Sharaf et al., 2001). The groundwater in the Wadi Fatimah upstream sections has a normal salinity and is acceptable for irrigation purposes. The primary mechanisms changing the chemical composition of groundwater include evaporation, irrigation water recycling, and chemical weathering reactions of silicate minerals.
5 CONCLUSION
Most of the components of general water chemistry are somewhat provided by rainfall chemistry, which is also thought to be a significant source of Cl− and SO42− ions. The primary rock-forming minerals’ chemical weathering reactions can be a substantial long-term neutralizing process of the groundwater’s chemical composition, resulting in Mg2+, Ca2+, Na+, K+, and HCO3− ions and being significant for Mg2+ and Ca2+ ions. For irrigation and other human uses, groundwater is a significant source of freshwater. However, recently, the socioeconomic and health effects of groundwater contamination brought on by human activities from both point and non-point sources have gotten worse. The WQI is particularly effective and efficient when it comes to summarizing and reporting observed effects to policy authorities so they may better understand the state of groundwater quality today and have the chance to use it in the future in a more advantageous way. The results and analysis demonstrated the value of using the GIS to produce digital thematic layers and maps that display the spatial distribution of various water quality parameters. In the study area, the quality of the drinking water has significantly declined. The continuous discharge of industrial effluents from various firms, especially those without sewage treatment facilities, is thought to be the main reason for the prevalence of nitrate and fluoride. As a result, proper planning is necessary. A variety of treatment techniques should be utilized to get rid of heavy metals and other contaminants before releasing effluents into the environment. The current focus of the study is mostly on the groundwater quality; additional investigation is needed to examine the consequences for socioeconomics and health. The study’s conclusions can serve as a roadmap for groundwater management and pollution control in the study area and other places, according to water system operators and authorities.
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This study combined gravity data from the Earth Gravitational Model (EGM2008) with other data to better understand the spatial variations of the sedimentary cover and the structural trends that affect groundwater flow in the Nubian Sandstone Aquifer System. Our findings were verified and evidenced by geological, geochronological, geochemical data, and earthquake records: 1) The Uweinat-Aswan basement uplift, which runs east-west, partially isolates the Dakhla subbasin from the shallower northern Sudan subbasin, and thereby impeding the south-to-north groundwater flow from northern Sudan platform to the Dakhla subbasin; 2) A thickening of the sedimentary cover in the NE-SW direction from the southern Kufra through the northern Kufra to the Dakhla subbasin; 3) The sedimentary cover was found to increase from less than 500 m in the south (Northern Sudan and Uweinat region) to more than 6 km in the north (Mediterranean coast); 4) A number of structural trends (NE-SW, N-S, E-W, and NW-SE) affecting the region; 5) A large Pelusium megashear system that runs northeast to southwest makes it easier for groundwater to flow from the Kufra subbasin to the Dakhla subbasin; 6) Along the paths that groundwater takes, like from Siwa to Qattara and from northwest Farafra to north Bahariya, and along structures that run in the same direction as the flow, a progressive increase in 36Cl groundwater ages were observed; 7) It is a better way to learn about the hydrogeological context of large aquifers and figure out how to best manage these underground water sources.
Keywords: EGM2008, field data, Nubian sandstone aquifer system, sedimentary cover, structural trends, uplift, groundwater resources, chlorine-36
1 INTRODUCTION
Water scarcity has affected parts of the Middle East, and it is widely known that disputes over the limited resources are frequent (Wolf, 1998; Amery and Wolf, 2000; Wolf and Newton, 2007). One of these areas that demands immediate and global attention is northeast Africa. Given the significance of water for both people and ecosystems, water sustainability is a crucial issue on a worldwide scale (United Nations, 2013; Bernauer and Böhmelt, 2020). Climate change and human-caused water use have an impact on water sustainability (Wada et al., 2010; United Nations World Water Assessment Programme, 2014).
Four countries in northeast Africa share the largest groundwater aquifer in the Sahara, known as the Nubian Sandstone Aquifer System (NSAS) (Figure 1). The transboundary Nubian aquifer, which covers an area of 2 × 106 km2, is shared by Egypt (38%), Libya (34%), Sudan (17%), and Chad (11%), with Egypt and Libya possessing the majority of the aquifer’s water resources, whereas Chad and Sudan having a smaller amount (Thorweihe and Heinl, 2002). Future infrastructure projects in these countries may have access to a steady supply of water from the NSAS. The Dakhla, Kufra, and Northern Sudan Platform subbasins comprise the NSAS (Figure 1).
[image: Figure 1]FIGURE 1 | Location map showing the distribution of the NSAS, sub-basins, and basement uplifts within the aquifer.
Sediment thickness and structural trends are important parameters in mapping subsurface geology, investigating geotectonic environments, modeling groundwater flow in sedimentary basins, and gaining a better understanding of the behavior of groundwater flow for large aquifers. Due to fault systems that act as impediments to horizontal fluid flow, offshore hydrocarbon reservoirs may become more separated from others (Bredehoeft et al., 1992; Darby et al., 1996; Knott et al., 1996), as well as in sedimentary basin systems on land (e.g., Bense and Van Balen, 2004). Regional groundwater flow patterns can also be affected by major fault systems and uplift structures, which can either serve as passageways for groundwater flow or as impediments to its movement (Schaefer, 1983; Annecchione et al., 2001; Bense and Person, 2006). There are indications that faults behave as conduits, such as widespread mineralization zones (Mozley and Goodwin, 1995; Garven et al., 1999) and the seepage of polluted groundwater along them (e.g., Ofoegbu et al., 2001; Mal’kovskii and Pek, 2001).
Geophysical data can be used to trace the boundaries of hidden basement structures in order to identify subsurface structures that may regulate groundwater flow. Magnetic and gravity data are the most prevalent techniques for mapping and delineating non-horizontal contacts between rocks of distinct physical properties (density, magnetics susceptibility). The anomalies caused by the physical property differences can cause lineaments that reflect a disruption in the contour patterns at several places along the opposite sides of the lineaments. There have been numerous studies on the analysis of the lineaments in delineating basement and basin structures deduced from magnetic and gravity data (Berendsen et al., 1983; Johnsgard, 1983; Al Fasatwi and van Dijk, 1989; Fichler et al., 1999; Lyatsky et al., 2004; Hassan and Peirce, 2008; Aydogan, 2011; Davy et al., 2012; Feumoe and Ndougsa-Mbarga, 2012; Yutsis et al., 2012). Due to the fact that gravity anomalies can be caused by varying mass distributions at different depths, interpreting them is not a unique problem involving subsurface density structures (Blakely, 1996; Senosy et al., 2013). However, borehole data can be used as constraints to lessen the non-uniqueness problem.
The Gravity Recovery and Climate Experiment (GRACE) mission’s Gravity measurements, together with other pertinent data, have been widely used in several study regions to estimate regional changes in groundwater storage (e.g., Mohamed et al., 2017; 2019; 2020a; 2020b; 2020c; Taha et al., 2021; Mohamed and Gonçalvès, 2021; Mohamed et al., 2021; Mohamed et al., 2022a; Mohamed et al., 2022b; Mohamed et al., 2023a; Mohamed et al., 2023b; Alshehri and Mohamed, 2023). Moreover, regional gravity and magnetic data are employed to study heat flow in various regions (Mohamed and Al Deep, 2021; Mohamed et al., 2022d). Furthermore, investigations of groundwater and subsurface geology (Al Deep et al., 2021; Mohamed and Ella, 2021), as well as groundwater withdrawal-related land subsidence (Othman, 2019), have all been studied using geophysical data.
Mohamed et al. (2017) showed that from January 2003 to December 2012, the Nubian aquifer in Sudan and Chad experienced an average yearly recharge of 0.78 ± 0.49 and 1.44 ± 0.42 km3/year, respectively. Comparatively, the Nubian aquifer in Egypt and Libya experiences groundwater depletion rates of 4.44 ± 0.42 and 0.48 ± 0.32 km3/year, respectively. Ahmed and Abdelmohsen (2018) have improved estimates of the Nubian aquifer’s recharge and depletion rates and studied its relationship with artificial lakes using temporal (04/2002 to 06/2016) GRACE data and outputs from land surface models. Their findings indicate that the aquifer received a total recharge of 20.27 ± 1.95 km3 througout the periods of 04/2002 to 02/2006 and from 04/2008 to 6/2016. In contrast, the aquifert’s groundwater storage decreased by 13.45 ± 0.82 km3/year througout the period of 3/2006 to 3/2008. They reported that the recharge events may only occur when there is an abnormally high amount of precipitation over the Nubian recharge domains and/or when Lake Nasser levels significantly rise. Mohammed et al. (2022c) have studied the groundwater flow behavior and the replenishment in the Nubian aquifer during wet and dry periods.
Although similar studies might be conducted in many small African regions, no prior research employing the geophysical methodology we propose has been done for the whole study area. The current study uses gravity data from the Earth Gravitational Model (Pavlis et al., 2012), along with constraints from geologic mapping and borehole data, to find out how subsurface structures affect the NSAS’s groundwater resources. The configuration of the delineated structural trends may be related to groundwater management in the aquifer. These structural patterns have an impact on groundwater flow, both facilitating and/or impeding it. The gravity datasets’ results and outputs were validated using field, seismic, geochemical, and isotopic data.
2 GEOLOGICAL AND HYDROLOGICAL SETTINGS OF THE AQUIFER
The NSAS is a massive freshwater aquifer beneath the Eastern Libyan Desert, Northern Sudan, and Northeastern Chad (Heinl and Thorweihe, 1993). This is primarily a fossil groundwater reservoir with a low recharge rate. The NSAS includes the Dakhla, the Northern Sudan Platform, and the Kufra subbasins (Figure 1).
The Precambrian basement complex underlies the sedimentary cover and outcrops along the marginal areas of the NSAS (Himida, 1970; Bellini and Massa, 1980). The Precambrian lithologies crop out to the south, east, southwest, and west of the study area. Minor exposures are also found at the Uweinat area, Bir Terfawi, and northwestern Sudan (Figure 1). These rocks are composed mainly of granites and granodiorites, with smaller amounts of metasediments, metavolacanics, metagabros, and serpentines. High-grade metamorphic rocks, with occasional granite intrusions, make up the basement complexes of the Nubian-Arabian Shield (El Ramly and Hussein, 1985; El Gaby et al., 1990). Alkaline, ring-structured granites and metamorphic rocks make up the bulk of the Gebel Uweinat massif, with some younger volcanic units contributing to the overall composition (Klitzsch and Wycisk, 1987; Meneisy, 1990). Sequences of volcanic rocks are typical of the Tibesti highlands. Meta-gneisses, granites, and some younger volcanic activities make up the Kordofan and Darfur massifs. To the north, the groundwater flow in the aquifer is restricted by the saline-freshwater interface at about 29° north latitude (Figure 1).
The NSAS is located mainly within Paleozoic-Mesozoic sandstones with minor units of shallow marine to deltaic Tertiary shale and clays (Hesse et al., 1987). It is unrestricted south of 25° latitude. North of about 25° latitude in Egypt, it is buried by the Eocene limestone that lies above the thick Campanian marine shales and clays of the Mut Formation and the Campanian-Lower Paleocene Dakhla Formation. This latitude is roughly in the middle of the transition zone between the NSAS and the Sirte Basin in Libya (Hesse et al., 1987).
3 POTENTIAL FIELD DATA
In the absence of a full coverage of the airborned and ground gravity data over the NSAS, we adopted using of the EGM 2008. The EGM2008 was generated using satellite, land, and marine gravity data, and long wavelength gravity variations derived from the satellite GRACE data. Accepted in our regional study of the NSAS, the resulting gravity model is computed to have a spherical harmonic degree of 2160 with a spatial resolution of 9.3 km, which is 6 times higher than that of EGM96. Figure 2 shows the Bouguer gravity anomaly map, which was extracted from the EGM2008 data.
[image: Figure 2]FIGURE 2 | Bouguer gravity anomaly map generated from the EGM2008 data (Pavlis et al., 2012) over the study area.
4 POTENTIAL FIELD DATA PROCESSING AND ANALYSIS
The processing techniques of this study included five steps. We first extracted the Bouguer gravity anomaly map from the EGM2008 and then extracted the high-pass filtered gravity anomaly map (Step I). The regional structural trends were delineated using the upward continuation technique (Step II), and the shallow trends were delineated using the separation technique (Step III). Calculating the loading and gravitational effects of the sediments (Step IV). Hydrogeological prospection was developed to discuss the major structural trends and uplifts affecting the groundwater flow across the NSAS sub-basins (Step V). Finally, the prospection was verified and tested against isotopic, chronologic, geochemical, and earthquake data (Step VI).
5 RESULTS AND DISCUSSION
5.1 Extraction of the high-pass filtered gravity map
Given that we are interested in analyzing the NSAS’s sedimentary cover, basement relief, and associated structures, we filtered the EGM2008 gravity data using a high-pass filter with a 1,000-km cut off wavelength to eliminate the longer wavelength components associated with large and deep sources derived from the deep mantle (Obenson, 1974; Block et al., 2009). The high-pass filtered gravity anomaly map (Figure 3) which was used as a source data, shows a negative anomaly trend extending in a NE–SW direction from the southern Kufra subbasin (NE Chad) through the northern Kufra subbasin (SE Libya) to the Dakhla subbasin at the area between north Gilf Kebir and Siwa. There is a strong positive gravity anomaly in the southeastern part of the study area, up to southern Egypt, and in some northeasterly-extended areas in northeastern Libya and northwest Egypt (Figure 3). According to Riad et al. (1983), higher gravity anomalies can only be juxtaposed with low gravity anomaly features and vice versa along zones of high gravity gradients if shear movements are acting on previously faulted formations.
[image: Figure 3]FIGURE 3 | High-pass filtered gravity anomaly map (λ < 1,000 km) of the Bouguer gravity anomaly map (Figure 2). Also shown are the locations of AA’ gravity profile and BB’ cross section (Figure 18).
5.2 Highlighting regional structural tendencies with the upward continuation method
The Earth’s surface, a flight path, or a satellite’s orbit can all be used to calculate or observe gravity. However, gravity information is frequently unavailable at the location where measurements are made. This necessitates a subsequent upward movement to a new height level. Continuation filters can transform measured data into new forms by isolating, amplifying, and projecting the gravity anomaly onto a level above the original observation surface (Pawlowski, 1995; Blakely, 1996).
The large wavelength anomalies were most visible on the upward continued gravity map (Z = 5 km; Figure 4). The continuation distance influences how the anomalies appear and how far they travel. When comparing Figure 4 to the source data in Figure 3, you can see that as the height of the continuation increased to 5 km, the anomalies from nearby sources began to overlap more and more. As a result, shallow sources and noises have less effect. Figure 4 depicts positive gravity anomalies in the southeastern part of the study area (NE Sudan and S Egypt) as well as along a zone near the northwestern part of the study area in Libya and Egypt. On the other hand, negative NE-SE directed gravity anomalies were discovered in NE Chad, SE Libya, and their extension in Egypt. The anomalies visible on the high-pass filtered gravity map (Figure 3) are manifestations of deeper gravity anomalies, as demonstrated by the regional gravity anomaly map (Figure 4).
[image: Figure 4]FIGURE 4 | Regional gravity anomaly map (Upward contiuation: 5 km) of the high-pass filtered bouguer gravity map shown in Figure 3.
5.3 Delineation of the shallow structural trends using the separation technique
As well as being a helpful tool for outlining regional structures, the upward continuation technique is frequently employed to isolate the regional field component from the observed field. The residual component is created by subtracting the upward continuation anomaly from the total field anomaly. The upward continuation height was chosen as 5 km to be used in the separation.
The residual anomaly map (Figure 5) shows different anomalies of different amplitudes, which were used to delineate the local trends that are related to the shallow zones. The structural trends interpreted from the residual gravity map show that the NE–SW and E–W directions are the main trends affecting the shallow zones. These results are indicative of aligned faults in a general NE–SW direction, which continue upward from the deep-seated zone into the shallow depths, especially in the northern part of the study region.
[image: Figure 5]FIGURE 5 | Residual gravity anomaly map after removing of the regional component.
The tectonic trends can be inferred from the reported alignments of magnetic anomalies in northern Egypt along clear and preferred axes (Meshref, 1990). The Pelusium megashear system (PMS) is responsible for a number of these tendencies, particularly in the northeastern direction.
5.4 The depth to basement rocks
The sedimentary cover of the NSAS was reported in Mohamed et al. (2017), where they mapped the thickness variations of the sediments using the gravity data, and the connectivity of its subbasins was studied. Based on the slope of the graph (Figure 6) in the high and low frequency parts of the power spectrum curve, the depth (h) to shallow gravity sources with a wavenumber ranging from 0.03 to 0.27/km is about 0.8 km, and for the deep sources with a wavenumber varying between 0.0 and 0.03/km is about 6 km. The noise sources with the highest wavenumbers at the very shallow depths were not conceded. Mohamed (2016) and Mohamed et al. (2017) have used 2D models to figure out how thick the sedimentary cover is and used more than 2000 borehole data as control points (Figure 7). Towards the southern edge of the Dakhla subbasin, close to the Uweinat-Aswan uplift, the basement level has shallowed, as seen in Figure 8. Under the sedimentary cover, the basement rocks are exposed or extend to the surface at relatively shallow depths, forming a partial dividing line between the Dakhla subbasin and the shallow northern Sudan platform. Thickening of the sediments is observed in a northeasterly direction from the Kufra subbasin in Chad and Libya into the Dakhla subbasin in Egypt. Along this zone the thickness of sediments ranges from 3 to more than 4 km, which was primarily occupied by Paleozoic-Lower Upper Cretaceous Sandstone in the Kufra subbasin and by Paleozoic Lower Upper Cretaceous Sandstone, which is capped by Upper Cretaceous and Tertiary sediments in the northern and western parts of the Dakhla subbasin (Thorweihe and Heinl, 2002).
[image: Figure 6]FIGURE 6 | Power spectrum for gravity data.
[image: Figure 7]FIGURE 7 | Wells used by Mohamed (2016), and Mohamed et al. (2017) to constrain the gravity profiles and the cross sections.
[image: Figure 8]FIGURE 8 | Basement relief 3D map extracted over the NSAS showing thickening of the sedimentary sequences to the north and along the northeast trending PMS (After Mohamed, 2016; Mohamed et al., 2017).
5.5 Volume of the sediments
The volume of sediments was calculated in the aquifer between the southern basement boundary in Sudan and Chad and the northern boundary at the saline-fresh water interface in Egypt and Libya. Based on the total area (∼2.01 × 106 km2) of the aquifer, the average sediments volume was estimated to be 247.5 × 104 km3. The aquifer has an area of 691 × 103 km2 in Egypt, with average volume of 1.03 × 106 km3. In Libya, it has an area of 397.44 × 103 km2, with average volume of 807.5 × 103 km3. In Chad, it has an area of 227 × 103 km2, with average sediment volume of 369.421 × 03 km3. The aquifer has an area of 746.7 × 103 km2 in Sudan, with average sediment volume of 270.61 × 103 km3.
5.6 Gravity effect of the sedimentary cover
In the study region, sandstones, shales, and limestones are the most common forms of rock. Large sand dunes and sheets cover much of the southern region, making it difficult to recognize the underlying geological structures. Calculating the 3D gravitational and loading effect of the sediments was carried out using the exponential density-depth curve of Cowie and Karner (1990). We used this method to compute the gravitational effect of a sedimentary basin in which compaction causes sediment density to change continuously with depth. Although there are large uncertainties in the relationship between density and depth for depths greater than 5 km, the exponential function fits the log data in a number of sediment basins well. The density-depth function of Cowie and Karner (1990) has been successfully applied for calculating the exponential increase in sediment density downward to the surface of the basement, as given by Weissel et al. (1990).
The gravitational and loading effect of the sediments was also calculated by taking the average density of the common rock types in El Kharga region (density: ∼2.60 g/cm3; Senosy et al., 2013). The gravitational effect in gal of the sedimentary sequence was determined using Eq. 1, which is described by Nedelkon and Burney, (1962) and Skeels, (1965).
[image: image]
Where Δg is the gravity value in gal, G is the international gravitational constant, which is equal to 6.672 × 10−8 cm3·g−1·s−2, ρ is the density contrast between the rock unit density and the base density of the crustal rocks (2.67 gm/cm3). h is the thickness in cm.
The average of the gravitational effects of the sediments using the two techniques was calculated and removed to obtain the gravity map (Figure 9) on the surface of the basement.
[image: Figure 9]FIGURE 9 | Gravity map on the surface of the basement after removing the gravity effect of sedimentary cover.
5.7 Analysis of structural trends
In the current study, the structural trends (Figures 10–13) delineated from the high-pass filtered gravity, regional, residual maps and gravity map on the basement surface can be recognized in various directions. The primary structural trends influencing the research area were displayed using a rose diagram (Figure 14). These tectonic patterns are thought to be a result of the cumulative effects of tectonic stress over a period of time spanning multiple epochs in Earth’s history. Various structural trends, including those running in the NE-SW, N-S, E-W, NW-SE directions, are all apparent in the data. These trends may be attributed to the Pelusium–Qattara trends, Nubian trend, Tethyan trend, and Gulf of Suez trend, respectively. It cuts the basement and extends upward in the sedimentary cover. These trends are more characteristic of some parts in the study area, and some trends show more strength in some parts than others (Meshref, 1990). Some trend lines show variations of 10°–20° direction. The NE-SW direction, associated with the Pelusium and Qattara trends, is the dominant structural trend in the region, in addition to the shallowing E–W basement features of the Uweinat–Aswan uplift in southern Egypt.
[image: Figure 10]FIGURE 10 | Gravity structural trends delineated from the high-pass filtered gravity map.
[image: Figure 11]FIGURE 11 | Gravity structural trends delineated from the regional gravity map.
[image: Figure 12]FIGURE 12 | Gravity structural trends delineated from the residual gravity map.
[image: Figure 13]FIGURE 13 | Gravity structural trends delineated from the gravity map on the surface of the basement rocks.
[image: Figure 14]FIGURE 14 | Rose diagram for the structural trends interpreted from the: (A) high-pass filtered gravity map, (B) regional gravity map, (C) residual gravity map, (D) gravity map on the basement surface, and (E) basement and Jurassic rocks in north Western Desert, showing the NE–SW trend is the main structural trend affecting the area and minor trends in the E–W, N–S, and NW–SE directions.
5.7.1 NE–SW trend (Pelusium and Qattara trends)
The dominant trend affecting the basement rocks and overlying sediments in the study region is NE-SW. This pattern is associated with the PMS (Neev, 1975; Neev, 1977), which spreads from Turkey to the south Atlantic. It runs parallel to the Mediterranean Sea’s eastern margin, then curves NE-SW across central Africa from the Nile delta to the delta of Niger in the Gulf of Guinea (Figure 15). It is assumed that it has been acting as an en echelon left-lateral megashear system since Precambrian times (Neev et al., 1982).
[image: Figure 15]FIGURE 15 | Distribution pattern of the faults of the PMS across Africa (Modified after Neev et al., 1982).
It is most likely that the Kufra subbasin in Chad and Libya and its extension in Egypt were formed by deposition in the lowlands of the Pelusium megashear structures (Figure 16). A broad and elongated southwest-trending deposition trough stretches between the Pelusium structures and the Qattara depression (Said, 1962; Chubert, 1968). It is suggested that an additional en echelon transcurrent fault exists to the west of the Pelusium line. It extends from the Qattara depression in the southwest through El Alamein and along the western flanks of the Nile cone and the Eratosthenes Seamount to join the Pelusium line at the divide of the eastern and western Anatolian zones (Neev, 1975). The Qattara-Eratosthenes, Pelusium, and Dead Sea megashears in the Levant are all part of this system. The border zone between eastern and western Anatolia is where all of these ancient faults converge (Neev, 1975; Ambraseys, 1978; Neev and Friedman, 1978).
[image: Figure 16]FIGURE 16 | Locations of dated (Kr-81: Sturchio et al., 2004; Cl-36: Patterson et al., 2005; C-14: Froehlich et al., 2007; C-14: Haynes and Haas, 1980; Cl-36: Current Study; C-14: Froehlich et al., 2007), Noble gases (3He/4He: Al Faitouri, 2013) witthin or proximal to the shear system and isotopically (O, H) analyzed groundwater samples north and south of the Uweinat–Aswan uplift. Red box shows studies in Figure 17A.
5.7.2 Uweinat–Bir Safsaf–Aswan uplift
Africa is identified as a land of broad basins ringed by irregular uplifts (Holmes, 1965). Egypt is isolated from the Sudan to the south by one of these uplifts (Figure 16). This uplift forms the southern edge of the Dakhla subbasin and is the transition zone to the northern Sudan platform. The Precambrian and younger crystalline rocks cover an area of some 40,000 km2 in southwest Egypt (Said, 1990). Near the Gebel Uweinat-Gebel Kamil region, where the borders of Sudan, Egypt, and Libya converge, the majority of these rocks are exposed. The Bir Safsaf, Gebel El Asr, and Gebel Umm Shaghir complexes, as well as other smaller basement inliers, are exposed between Bir Safsaf and Lake Nasser. Between Gebel Uweinat and Lake Nasser, the basement is close to the surface everywhere except between Gebel Kamil and Bir Safsaf, where there is a down-faulted graben (Bir Misaha trough is occupied with up to 700 m of Cretaceous sediments; Schneider and Sonntag, 1985). The Uweinat-Bir Safaf-Aswan uplift is the basement high that isolates the deep intracratonic Dakhla subbasin from the shallow subbasins of northern Sudan (Schandelmeier et al., 1983), that obstructs the northward groundwater flow from the Northern Sudan Platform into the Dakhla subbasin. At the end of the Paleozoic, the area between Gebel Uweinat and Aswan was subjected to an up-lifting, accompanied by magmatic intrusions and tectonic events. After erosion of the Paleozoic cover, the vertical movement tendency was reversed during the Jurassic time, and sedimentation began probably in the Late Jurassic or Early Cretaceous time (Klitzsch, 1984).
6 EVIDENCE FOR THE STRUCTURES (NOBLE GASES; GEOCHRONOLOGIC AND ISOTOPIC; SEISMIC, EARTHQUAKE, AND FIELD DATA)
6.1 Noble gases data
Noble gases are excellent tracers in groundwater-related studies due to their inert nature and unique isotopic and soluble characteristics. Their usefulness is not limited to one specific field of study but rather can be applied to a wide variety of fields, including but not limited to groundwater dating, recharge, paleoclimatology, mantle and seismic studies (Scarsi and Craig, 1996; Kipfer et al., 2002; Kulongoski et al., 2003).
The helium (3He/4He) isotope ratio of aquifer water is measured to identify its origins. Helium produced on-site through the radioactive decay of U and Th series and other sources from outside the aquifer, perhaps from the crust and/or the mantle along deep-seated faults, are possible major contributors. According to a study of the helium content of groundwater in the Kufra, Tazerbo, and Sarir subbasins (Figure 16; Al Faitouri, 2013), crustal helium makes up 95% of the total helium at Kufra, while helium from the mantle makes up 3.3% and helium produced in situ makes up 1.7%. 85% of the Sarir subbasin is crustal, 14.6% is mantle, and 0.4% is in situ. Tazerbo has crustal value of 90%, mantle value of 9.7%, and in situ value of 0.3%. Given that the PMS extends upward into the sedimentary cover, helium from the crust and mantle should move into the aquifer along deep structures that cut the crust under these subbasins.
6.2 Geochronologic and isotopic data
The NE–SW trending PMS zone cuts the basement and intersects the Libyan–Egyptian border at the western part of the Dakhla subbasin in the area bwtween north Gilf Kebir and Siwa, with a sediment thickness of more than 3,500 m. This trend formed lowland zones, which were mostly filled later by high permeable sandstones especially at the lower zones. The Kufra subbasin with thick sediments of about 4,000 m is situated inside that trend (Figure 8).
Chlorine-36 ages for groundwater samples from the Nubian aquifer at depths varying between 1,000 and 1,500 m show a progressive increase northeastward from Siwa (Age: 444 kyr) to Qattara (Gara; Age: 558 kyr), and from Dalla area in west Farafra (Age: 395 kyr) to north Bahariya (Age: 1,035 kyr; Figure 16). These samples were found within the hydraulically conductive sandstones of the megashear system, which have enhanced porosity and permeability within and proximal to the shear compared to its surroundings. These results suggest that the PMS is providing a favorable groundwater flow conduit from the Kufra to the Dakhla subbasin.
North of the Uweinat-Bir Safsaf-Aswan uplift, groundwater samples have a depleted isotopic composition (average ±1 Standard deviation of 37 samples: δ18O: −10.7‰ ± 0.9‰; δD: −80.8‰ ± 3.9‰) than those to the south of the uplift (average of 7 samples: δ18O: −8.6‰ ± 1.4‰; δD: −40.8‰ ± 5.6‰, Sultan et al., 2013; Ahmed et al., 2014; Figure 16). It is possible that the uplift is obstructing the flow of groundwater from the south to the north, and that is why the north side of the uplift isn’t showing signs of replenishment. Groundwater age differences on either side of the uplift give support to this concept. South of the uplift in East Uweinat, groundwater samples show young Cl-36 ages (<30 kyr) and young C-14 ages (∼1.8–11 kyr; Haynes and Haas, 1980). Young C-14 ages (∼50 kyr) were reported from northern Sudan (Froehlich et al., 2007; Figure 16). To the north of the uplift, the groundwater ages show a progressive northward increase from the Dakhla (∼210 kyr) Farafra (∼330), and eastward to Kharga (∼490–680 kyr; Sturchio et al., 2004; Patterson et al., 2005).
6.3 Seismic, earthquake, and field data
Over 100 well logs, 700 well tops, and several hundred kilometers of 2D and 3D seismic profiles were used by the El Paso exploration and production company (Wescott et al., 2011) to better define the structures of the basement and Jurassic sediments in the northern region of the Western Desert. They indicated that the northeast-southwest trend is inherited from the basement map derived from potential fields. The integration of well control and seismic data has produced a much more accurate representation of the structural architecture, including east-west trending deep areas (Figures 16, Figure 17A).
[image: Figure 17]FIGURE 17 | (A)Structural architecture of the basement and Jurassic rocks in north Western. Desert by the El Paso exploration and production company (Wescott et al., 2011). (B) Historical and important earthquakes triggered by the PMS in the time period 2800 BC-1995 AD. (PMS = PMS as detected from this study, Thin lines = shear faults detected from gravity). (Compiled by Gamal, 2013 from, Maamoun, 1979; Maamoun et al., 1984; Ben-Menahem, 1979; Riad et al., 1983 and (Woodward-Clyde, 1985).
The distribution of earthquake epicenters (Kebeasy, 1990) indicates that the activity occurs along three major seismically active trends. The Northern Red Sea–Gulf of Suez–Cairo–Alexandria Clysmic trend, the Levant–Aqaba trend, and the East Mediterranean–Cairo–Faiyum Pelusiac trend are these three trends. The Pelusiac trend extends from the eastern Mediterranean to Cairo and the Fayum region to the east of the Nile Delta. Along this trend, small to moderate earthquakes have occurred historically and recently (Kebeasy, 1990), and the earthquake foci are contained within the crust. The moderate and first instrumentally recorded event in the Gilf Kebir region in 1978 may indicate the spread of this trend into the southwestern regions of the Western Desert. Using the available tectonic data, new magnetic tilt derivative map, recent fault plane solution map, and the available compiled earthquake catalogue (Figure 17B) for historical and recent occurrences in and around the Pelusium. Gamal (2013) has provided evidence for the extension of the PMS near Egypt’s capital (Cairo), indicating the activity of this structure in northern Egypt. The Cairo-Bahariya uplift isolates the Dakhla subbasin in the south from the northwest Egyptian subbasin and may continue along the northwest corner of the Farafra Oasis (Figure 16). The PMS zone, which runs NE-SW, is where this uplift probably originated.
7 HYDROLOGICAL PROSPECTION
7.1 Uweinat–Bir Safsaf–Aswan uplift
The groundwater resources in the southern part of the Egyptian Western Desert depend exclusively on the subsurface inflow across the Egyptian-Sudanese border. The occurrence of the Uweinat–Aswan uplift made the sediments lessen in this zone (Figure 18 BB'), with cross sectional areas of ∼130 and ∼85 km2 below the ground surface and the water table, respectively. These few thick sediments strongly impede the northward groundwater flow from northern Sudan into Egypt. The sediments are composed of shaley sandstones in the area between Bir Safsaf and Aswan, with shale increasing towards the north; and composed of sandstones up to 700 m thick in the area between Bir Safsaf and Uweinat, where the Bir Misaha trough occurs. This trough may act as a small passage from north Sudan into Egypt. However, the heavy extraction rate of groundwater (47.56 m3/s; 1.5 km3/year; Mohamed, 2016; Mohamed et al., 2022c) in East Uweinat area may not be compensated for by groundwater flow from north Sudan. This is demonstrated by the east-west trending Uweinat-Awan basement uplift, which is obstructing groundwater flow from north Sudan. Moreover, sediment thickness in the Bir Misaha trough decreases southward due to the shallowing of the basement level in west Selima area (−63 m-amsl in west Selima well).
[image: Figure 18]FIGURE 18 | Two-dimensional gravity inversion model along profile AA' (plotted on Figure 3). Also shown are the locations of the wells along or proximal to this profile. And a schematic geological west–east cross-section along the Uweinat–Aswan uplift [Profile BB'; Figure 3] was generated from well data (Figure 7) and the basement relief map (Figure 8).
According to data from the Tropical Rainfall Measuring Mission, the sandstone outcrops of the aquifer in northern Sudan receive an average annual precipitation of 91 mm [32.8 km3; Mohamed, 2016; Mohamed et al. (2017)]. However, the northern part of the aquifer does not exhibit the effect of rechrging of groundwater flow from the Sudanese recharge areas. It is also hindered by the east-west trending Uweinat-Awan basement uplift, as evidenced by the differences in the isotopic compositions of groundwater on either side of the uplift (Sultan et al., 2013; Ahmed et al., 2014; Mohamed et al., 2017).
The sediment cross-sectional areas for the north-south-trending Uweinat-Howar uplift are approximately 170 and 110 Km2 below ground surface and water table, respectively (Figure 18 AA'). This uplift has not prevented water from flowing toward the Northern Sudan Platform [Mohamed et al. (2017)]. This is corroborated by the lack of significant GRACE anomaly variations across the uplift as a result of the low extraction rates from both the NE Chad and NW Sudan, as well as the estimated high rates of precipitation at 54.8 and 32.8 km3/yr for the Southern Kufra and Northern Sudan Platform subbasins, respectively. Consequent recharge rates were estimated at 0.78 ± 0.49 and 1.44 ± 0.42 km3/year over the recharge areas in Sudan and Chad, respectively (Mohamed, 2016; Mohamed et al., 2017).
7.2 NE–SW megashear system (Pelusium and Qattara trends)
Regional flow was first talked about in terms of the NSAS by Ball (1927) and Sandford (1935). The surface of groundwater was found to have a southwest-to-northeast gradient, and it was thought that groundwater flows from unnamed “intake beds” in the southwest to Egyptian oasis regions in the northeast along this gradient (Figure 19).
[image: Figure 19]FIGURE 19 | Groundwater contour lines of Ball (1927) and Sandford (1935). Also shown is the groundwater level and flow direction in the Kufra and Sirte Basins after Wright et al. (1982).
The PMS provides a preferred pathway for groundwater flow from the Kufra to the Dakhla subbasin due to its northeast-southwest orientation. This is evident based on the regional groundwater flow (Ball, 1927; Sandford, 1935) and piezometric contour trend of the Nubian aquifer in the Kufra and Sirte subbasins used by Wright et al. (1982). Figure 19 suggests a north-northeast flow in the Kufra and Sirte subbasins, while the NSAS flow is northeasterly. This suggests a rerouting of groundwater flow from the Kufra subbasin to the Nubian artesian aquifer system in Egypt along that trend.
7.3 Geothermal activity
The Red Sea and the Gulf of Suez are where most of Egypt’s geothermal resources are found, where the surface temperature ranges from 40°C to 76°C. According to Boulos (1989), other locations were discovered in the Egyptian Western Desert near the Qattara depression and the oasis (Bahariya and Dakhla). The majority of greenhouses in Bahariya Oasis are entirely dependent on thermal waters; the Kifar-1 well is a prime example of this. This is one of the most productive flowing water wells in this region. It is located in the Qattara depression. Under a high pressure of 5 kg/cm2, the well releases a vast quantity of warm, pure, and fresh water (T = 57°C and TDS = 464 ppm). The well discharges water from the 8 m (1,166–1,174 m) thick interval at a rate of 406 m3/h. The difference between the temperature of the water discharged from the Kifar well and the nighttime air temperature reaches 47°C in the winter, and 37°C in the summer. The water from the well is used for heating, greenhouses, and drinking (Boulos, 1989). The geothermal activity in the northwestern Desert is most likely due to the combined effect of the thick sedimentary cover and geothermal fluids along the NE–SW trending Qattara and Pelusium shear zones, which cut the crust in the most active region of northern Egypt. Mohamed and Al Deep (2021) have studied the crustal thickness, and heat flow in Africa using global gravity and magnetic data. They have shown that the crust and upper mantle could be more thoroughly penetrated by the PMS (Mohamed et al., 2017; Mohamed, 2019; Mohamed and Al Deep, 2021). In the Egyptian Western Desert, areas with higher geothermal anomalies and heat flow values between 40 and 56 mW/m2 are important proof that the PMS exists in Libya and Egypt. Higher geothermal anomalies in Egypt and Libya, especially the 1,000-m-deep thermal wells with groundwater that is hotter than 60°C, may be able to provide alternative energy sources (Mohamed and Al Deep, 2021).
8 CONCLUSION
According to our findings, the area of the NSAS was influenced by a number of structural trends in different directions; the most prominent directions are NE–SW, N–S, E–W, and NW–SE. The NE–SW trend is associated with the Pelusium and Qattara mega shear; the Pelusium megashear cuts the Precambrian rocks and runs from Turkey to the Gulf of Ghana. The N–S, E–W, and NW–SE structural trends correspond to the Nubian, Tethyan, and Gulf of Suez trends, respectively.
The sedimentary cover has increased from less than ∼0.5 km in northern Sudan and southern Egypt to more than 6 km along the Mediterranean coast. The sediment thickness along the Uweinat-Aswan basement uplift demonstrates a shallowing of the basement rocks. The PMS has created deep structural lowlands that were later filled with sediments to form a thick sedimentary zone extending from the Kufra subbasin in Libya and Chad to the Dakhla subbasin in Egypt.
Most groundwater moves along the northeast-southwest-trending PMS zone from the Kufra subbasin to the Dakhla subbasin. The Uweinat-Aswan basement uplift impedes the flow and recharging of groundwater from southern recharge areas.
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The frequency of mudflow disasters induced by rainfall in the Loess Plateau is increasing with the occurrence of global warming. The initial water content is one of the basic properties of soil, which affects the initiation of loess mudflow. In this work, the field study of the debris flow gullies in Yan’an City, Shaanxi Province, China, was conducted, and the main factors that induce gully loess mudflow were summarized. Based on the investigation results, a flume model was designed to carry out flume tests with different initial soil water contents. The experimental results demonstrate the following. (1) Different initial soil water contents lead to different soil failure models. The damage of soil by water flow when the soil water content is in the range of 0−5% is mainly gully erosion; that within the range of 10−15% is mainly rill surface erosion; that within the range of 20−25% is mainly dam breach failure. (2) When the water content of loess is equal to or less than 5% or equal to or greater than 20%, soil can promote the formation of loess mudflow, and the destruction of soil is more likely to cause mudflow disasters. In contrast, when the water content is within 10−15%, loess mudflow is not easily produced. The research results of the initial water content provide not only theoretical support for the study of loess mudflow disasters, but also a reference for the prevention and control of loess mudflow disasters in the Loess Plateau.
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1. Introduction

The Loess Plateau is one of the most fragile geological environments in China (Xin et al., 2015). The frequency of extreme rainfall in this region is increasing with the occurrence of global warming (He, 2008; Shi et al., 2012; Jia et al., 2014; Zhao A. Z. et al., 2017; Zhang et al., 2019). Rainstorm disaster is one of the natural disasters that usually occur on a global scale, and it is the main cause of soil erosion (Zhou and Wang, 1992; Li et al., 2010; Yang et al., 2023a), and are also an important factor in the occurrence of landslides, debris flows, and other geological disasters (Liu et al., 2023; Yang et al., 2023b; Zhao et al., 2023). Loess mudflow is a common geological disaster in the Loess Plateau. The content of sand in the composition of solid material is between 10 and 20%, and more than 98% of the particles are smaller than 2 mm (Wu, 2014). Compared with debris flow, loess mudflow is characterized by some particularities. However, it also erupted suddenly and violently, which greatly threatens the personal and property safety of the people. For example, in July 2013, Yan’an City in Shaanxi Province suffered continuous rainstorms and triggered mudflow disasters, which resulted in more than 10 casualties (Huang et al., 2014a,b).

Many studies have been conducted to investigate the initiation mechanism of loess mudflow. Research shows that rainfall (Jiang et al., 2002; Chen and Wang, 2013), agricultural irrigation (Wu et al., 2011; Lin, 2013; Zhao, 2013; Zhao J. F. et al., 2017), and groundwater (Xi et al., 2017) are important reasons for the development of loess mudflow. However, there are no definitive conclusions regarding the initial conditions of the development of loess mudflow. Iverson et al. (2000) and Hu et al. (2014, 2015a,b) found that different initial conditions have a very important impact on the development of debris flows. Therefore, it is necessary to study the influence of differences in initial conditions on the development of loess mudflow.

The initial soil water content is one of the basic properties of soil, and affects the initiation of loess mudflow. The research shows that soil erosion is affected by many aspects, among which water is the most important factor leading to soil erosion (Meshram et al., 2022). Soil with different initial water contents exhibits different erosion phenomena under other related factors, which leads to different types of debris flow disasters. Cui et al. (2003) found that the change in the soil water content caused by early rainfall plays an important role in the formation of debris flow. Zhou carried out experiments on debris flow induced by artificial rainfall with a self-made flume model. The relationship between the rainfall intensity and water content was analyzed, and the effects of different initial soil water contents on the initiation of sand debris flow were studied (Zhou et al., 2012, 2016). Hu et al. (2015b) carried out flume experiments and found that the initial soil water content can affect the permeability coefficient and internal mechanical properties of soil, which led to significantly different types in the initiation of debris flow. The effect of antecedent rainfall on the initiation of debris flow was then simulated by different initial soil water contents (Xu, 2014; Zhu, 2014). Pan et al. (2017) carried out the glacial debris flow initiation test of natural moraine soil with different initial water content, and approximately simulated the initiation process of debris flow formed by melting water scouring moraine under different early rainfall, and studied the influence of initial water content on the initiation of glacial debris flow.

In summary, the initial soil water content is an important initial condition for studying the initiation mechanism of debris flow. However, there are no definitive conclusions on the initiation of loess mudflow. Therefore, in the present research, the gully loess mudflow test under different initial water contents is carried out, and the failure characteristics of soil under different initial soil water contents were analyzed. The research results will provide theoretical support for the prevention and control of loess mudflow disasters.



2. Experimental design


2.1. Experimental device

The test takes the loess mudflow channel in Yan’an City, Shaanxi Province as the research object. The main parameters of mudflow disasters in the Yan’an area are obtained based on a field investigation and report (Huang, 2015). The gullies of debris flow in Yan’an are small watershed gullies with an average watershed area of 4.08 km2, an average gully length of 3.03 km (0.34−7.1 km), an elevation difference of 54−349 m, and an average gradient of 21.2% (1.94−32.83%). According to the similarity principle, a scale of 1:850 was selected to design the flume model, the main parameters of which are reported in Table 1. The flume model (Figure 1) is a channel model composed of transparent materials with a length of 3.6 m and a trapezoidal cross-sectional area (with a bottom width of 0.1 m, an upper floor width of 1.02 m, and a height of 0.39 m). The slope is 21.2%. The channel is divided into three parts, namely the catchment area, soil accumulation area, and running area. Moreover, in order to increase the friction between the transparent material and the test soil, sandpaper is pasted at the contact area between the sink and the pile soil to increase the friction between the bottom groove and the side (Hu et al., 2014, 2015a,b). A flow pump is used to supply water during the experiments, and the water supply rate is 0.3 ± 0.01 L/s. The design of the water flow rate is scaled according to the flow rate in the Yan’an small watershed with a design frequency of 2%.


TABLE 1    The main parameters of the flume model.

[image: Table 1]
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FIGURE 1
The flume model.




2.2. Experimental materials

The materials used in the experiments were sourced from a watershed in Baota District, Yan’an City, Shaanxi Province (109°31′07 ′′E, 36°29′58′′N). The basic physical and mechanical parameters were measured, and were reported in Table 2 (Yang et al., 2019). The grading curve was obtained by screening the test materials (Figure 2). The flume model was scaled proportionally to the field conditions. The test materials were then similarly translated in the flume experiments to avoid the influence of the larger particle size of the accumulated soil on the experimental result. However, the particle size of loess is small, and the content of particles smaller than 0.075 cm was found to reach 53.97% (Figure 2). Therefore, the field loess soil samples were used directly in the experiments (Yuan et al., 2015).


TABLE 2    The basic physical properties of loess.
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FIGURE 2
The gradation curve of the experimental materials.




2.3. Experimental scheme

The measured dry bulk density of the loess sample was 11.6 kN/m3. The water content of the experimental soil samples was changed with a gradient of 5% to ensure that the water content was not affected by the bulk density. The soil initial water content of each group is reported in Table 3. The soil water content of the samples in different positions was measured before the experiments to ensure that the soil water content and bulk density of the soil samples met the experimental requirements. When the soil water content met the requirements, the soil layering step was carried out. During laying, the piled soil was successively divided into layers of 5, 10, 10, and 5 cm. After each layer of soil was laid, a cutting ring was used to sample the soil to ensure that the soil water content and bulk density met the requirements. After all the soil was laid and the other parameters were found to have met the requirements, the experiments were immediately initiated and carried out within 20 min to avoid water evaporation.


TABLE 3    The experimental parameters.

[image: Table 3]

During the experiments, the fluid produced was collected in plastic containers. The time interval of the fluid collection in each container was recorded by a stopwatch, and the volume and mass of the fluid in the container were then measured.




3. Experimental results


3.1. Repeated experiments

The experimental phenomenon of the development of loess mudflow under different soil water contents was determined via flume model experiments. To ensure the accuracy and repeatability of the experiments, three repeated experiments were carried out. The water content of the repeated experiments was 10%, which was close to the field sampling data. The volume concentration measured during the repeated experiments is presented in Figure 3.


[image: image]

FIGURE 3
Volume concentration of parallel experiments.


Based on the comparison of volume concentration in the repeated experiments, the change rules in each group were found to be roughly the same, but there were some minor differences. The differences between repeated experiments were mainly caused by the comprehensive action of many factors involved in the occurrence of debris flow. Moreover, experimental error may also have affected the experimental results. Based on the comparison of the experimental parameters, the volume concentration in the repeated experiments fluctuated within the range of 2.61−7.02%, and the volume concentration decreased with time, the overall fluctuation range is not large. In summation, some differences were found in the sequence and process of the experiments under the same conditions. However, from the perspective of the movement process, the changes in the parameters of the experimental products met certain conditions. These findings all demonstrate that the experimental results obtained by using the indoor flume model have certain reliability.



3.2. Failure law of soil under different initial soil water contents

Different initial soil water contents led to different types of soil failure. The failure of the experimental soil can be roughly divided into three types, namely gully erosion, rill surface erosion, and dam breach failure.

When the water content of the soil was between 0 and 5%, the damage caused to the soil by the water flow was primarily gully erosion. When the water flowed over the soil, the water could not infiltrate quickly. Most of the water flow on the soil surface formed a flow similar to surface runoff, which constantly eroded the surface of the soil, and then formed deeper undercut gullies. With the continuation of undercutting erosion, headward erosion occurred. The undercut gullies extended to the back and eventually formed narrow erosion gullies. The entire process of the experiment with the initial water content of 0% is presented in Figure 4 and lasted for 400 s. After the start of the experiment, the water flow accumulated continuously behind the piled soil and overflowed from the upper part of the soil at 109 s (Figure 4B). The loess particles were carried out by the overflowing water flow, and obvious gullies were formed on the free surface of the soil in a short period (Figure 4C). Then, the obvious under erosion of the soil occurred. It was then found that headward erosion occurred in the backward direction of the soil (Figure 4D). Under the effects of undercutting erosion and headward erosion, the soil developed from small gullies to large gullies. The soil on the right side of the gullies collapsed at 387 s (Figure 4E). It was obvious that the soil on the collapse surface was still dry, indicating that the permeability of dry loess was very poor. At the end of the experiment at 400 s, the soil did not change greatly.


[image: image]

FIGURE 4
The experimental process with the initial water content of 0%. In this figure describes the test process when the water content is 0%. For (A,F), it is the beginning and result node of the test, and (B–E) is the important node in the test process.


The rill surface erosion damage mainly occurred in the soil water content of 10 ∼ 15%. When the water flowed through the piled soil, the water still could not infiltrate in time. The sediment carrying capacity of the water was low. Thus, a flow channel could not be formed rapidly, which contributed to a large area of water flowing through the soil surface (Figure 5). Numerous small gullies were then formed on the soil surface with the continuation of the experiment.


[image: image]

FIGURE 5
Rill surface erosion.


Collapse damage occurred when the water content was between 20 and 25%. Due to the high water content of the soil, the strength of the soil was relatively low. The loess flocculated into clusters with a high water content, which led to the development of a large number of cracks between the soils. A large amount of water then flowed into the soil, and the soil water content further increased. Therefore, the strength of the soil continued to decline. When the strength was below a certain threshold, dam breach failure occurred (Figure 6).


[image: image]

FIGURE 6
Dam breach failure.





4. Effect of the initial soil water content on the bulk density

To further explore the effect of the soil water content on the development of mudflow, the bulk density of the experimental products was measured. The relationship between the bulk density and the water content in each experiment is exhibited in Figure 7, from which it can be seen that the bulk density decreased gradually with the continuation of time. The maximum bulk density in each experiment is presented in Figure 8.
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FIGURE 7
The variation of the bulk density in each experiment.
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FIGURE 8
The relationship between the water content and the maximum bulk density.


It can be seen from Figure 8 that with the increase of the soil water content, the effect of the water content on the initiation of mudflow was first restrained and then promoted. When the soil water content was low, there was a lack of water cohesion between the soil, resulting in low soil strength. Thus, the soil could easily be lost under the action of water flow. When the soil water content was high, the matrix suction of the soil was low, which led to the decrease of soil cohesion. Thus, the soil could easily be destroyed. To further explore the relationship between the soil water content and the maximum bulk density, the data were fitted and analyzed by Origin software. The optimal fitting model given by Eq. (1) was then obtained.

[image: image]

In Table 4, SS and MS are, respectively, the regression square sum and the mean square deviation, and F is the F-test distribution value. Moreover, P is a coefficient used to determine whether the regression fitting model has significant statistical significance, and is usually compared with α = 0.05; if the P-value is less than 0.05, the correlation of the fitting model is determined to be statistically significant. Finally, R2 and R2 (adj) are, respectively, the unadjusted and adjusted correlation coefficients. In general, R2 (adj) should be greater than 80%. The larger the value of R2 (adj), the higher the goodness of the model fitting data.


TABLE 4    The variance of the water content and the maximum bulk density.

[image: Table 4]

Based on the theoretical analysis of the mathematical statistics, it can be determined from Table 4 that the correlation coefficients R2 and R2 (adj) of the fitting model were both more than 95%, indicating that the relationship between the model and the experimental results was good. Therefore, the fitting model was found to meet the requirements of statistical theory.

The values of two groups of parallel experiments were substituted into Eq. (1) to validate its effectiveness. The comparative analysis results with the measured values are reported in Table 5, from which it can be seen that there was little difference between the theoretical values of the maximum bulk density of the parallel experiments and the measured values, the relative error was less than 5%. Therefore, Eq. (1) can be used to better predict and calculate the maximum bulk density values that may occur at different initial water contents.


TABLE 5    The verification results of the model of the relationship between the soil water content and the maximum bulk density.

[image: Table 5]



5. Conclusion

The loess mudflow gullies in Yan’an City, Shaanxi Province, China, were selected as the research object of this study. Based on the field investigation and the survey data, the flume model was designed to carry out flume experiments with different initial soil water contents, and the following conclusions were obtained.


(1)Different initial soil water contents led to different soil failure modes. The failure of the experimental soil can be roughly divided into three types, namely gully erosion (within the soil water content range of 0−5%), rill surface erosion (within the soil water content range of 10−15%), and dam breach (within the soil water content range of 20−25%).

(2)When the water content of loess was equal to or less than 5% or equal to or greater than 20%, the maximum bulk density of the experimental products was found to be relatively high, and mudflow occurred in some instances, indicating that the soil has a promoting effect on the formation of loess mud flow. When the soil water content was between 10 and 15%, the maximum bulk density of the experimental products was low, and mudflow was not obviously formed. Therefore, loess mudflow cannot easily occur when the soil is damaged.

(3)A quantitative analysis demonstrated that the relationship between the maximum bulk density of each experiment and the soil water content was as follows: γm max = 0.019w2−0.084w+12.98. This model was verified by parallel experiments, and the error was less than 5%.



This research explored the influence of the initial soil water content on the failure mode of soil in the development of loess mudflow. The results revealed that the initial soil water content has an obvious influence on the formation process of loess mudflow. However, while the failure types of soil were found to be distinguished, the critical water content of these failure types was not determined. Therefore, further research on the critical soil water content for soil failure should be carried out. The research results provide not only technical support for the study of loess mudflow in Yan’an, but also a theoretical reference for the prevention and control of mudflow disasters in this area.



Data availability statement

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.



Author contributions

ZY contributed to the all aspects of this work, wrote the manuscript text, and revised and finalized it. MC processed and analyzed the data. JZ collected the data and samples in the field. PD, NH, and YY reviewed the manuscript and revised and finalized it. All authors contributed to the article and approved the submitted version.



Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 41861134008), the Muhammad Asif Khan Academician Workstation of Yunnan Province (Grant No. 202105AF150076), the Key R&D Program of Yunnan Province (Grant No. 202003AC100002), and the General Program of Basic Research plan of Yunnan Province (Grant No. 202001AT070043).



Conflict of interest

PD was employed by China Construction Science and Technology Group Co., Ltd.

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.



Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.



References

Chen, H. X., and Wang, J. D. (2013). Experimental research about the rainfall’s effects on mudflow initiation. J. North. Univ. Nat. Sci. Edit. 43, 447–450. doi: 10.16152/j.cnki.xdxbzr.2013.03.014

Cui, P., Yang, K., and Chen, J. (2003). Contribution of early rainfall to debris flow formation: taking Jiangjiagou debris flow formation as an example. China Soil Water Conserv. Sci. 2003, 11–15. doi: 10.16843/j.sswc.2003.01.006

He, X. B. (2008). Clay illuviation in a holocene palaeosol -sequence in the chinese loess plateau. Berlin Heidelberg: Springer.

Hu, W., Xu, Q., Rui, C., Huang, R. Q., Van Asch, T. W. J., Zhu, X., et al. (2015a). An instrumented flume to investigate the initiation mechanism of the post-earthquake huge debris flow in the southwest of China. Bull. Eng. Geol. Environ. 74, 393–404. doi: 10.1007/s10064-014-0627-3

Hu, W., Xu, Q., Van Asch, T. W. J., Zhu, X., and Xu, Q. Q. (2014). Flume tests to study the initiation of huge debris flows after the wenchuan earthquake in S-W China. Eng. Geol. 182, 121–129. doi: 10.1016/j.enggeo.2014.04.006

Hu, W., Xu, Q., Wang, G. H., Van Asch, T. W. J., and Hicher, P.-Y. (2015b). Sensitivity of the initiation of debris flow to initial soil moisture. Landslides 12, 1139–1145. doi: 10.1007/s10346-014-0529-2

Huang, Y. H. (2015). Detailed survey and comprehensive research report of geological hazards in Yan’an.

Huang, Y. H., Feng, W., and Li, Z. G. (2014a). Characteristics and geological disaster mode of the rainstorm happened on July 3. 2013 in Yanan area of Shaanxi province. J. Catastrophol. 29, 54–59.

Huang, Y. H., Wu, W. Y., Feng, W., and Li, Z. G. (2014b). Main types and characteristics of the geo-hazards triggered by heavy rain on July 3 in Yan’an,Shaanxi. Northwest. Geol. 47, 140–146.

Iverson, R., Reid, M., Iverson, N., LaHusen, R., Logan, M., Mann, J., et al. (2000). Acute sensitivity of landslide rates to initial soil porosity. Science 290, 513–516. doi: 10.1126/science.290.5491.513

Jia, W. X., Zhang, Y. S., and Li, Z. S. (2014). Spatial and temporal change of precipitation extremes in Qilian mountains and Hexi corridor in recent fifty years. Sci. Geogr. Sin. 34, 1002–1009. doi: 10.13249/j.cnki.sgs.2014.08.002

Jiang, X. W., Zhang, J., Zou, Y. Q., and Liu, Y. J. (2002). Discussion on the dynamic features and dynamic mechanism of storm debris flow in loess area. Chin. J. Geol. Hazard Control 13, 29–33.

Li, Z., Zheng, F. L., and Liu, W. Z. (2010). Analysis on the spatiotemporal changes of extreme precipitation events on the loess plateau from 1961 to 2007. J. Nat. Res. 25, 291–299.

Lin, X. Y. (2013). Study on formation mechanism of loess landslide and mud flow In heifangtai irrigation area, gansu. Ph. D, thesis. Yan’an, Shanxi, China: Chang’an University.

Liu, Z. Q., Yang, Z. Q., Chen, M., Xu, H. H., Yang, Y., Zhang, J., et al. (2023). Research hotspots and frontiers of mountain flood disaster: bibliometric and visual analysis. Water 15:673. doi: 10.3390/w15040673

Meshram, S. G., Ilderomi, A. R., Sepehri, M., and Santos, C. A. G. (2022). Flood prioritization based on fuzzy best worse multi-criteria decision-making method. Arab J. Geosci. 15:1374. doi: 10.1007/s12517-022-10570-z

Pan, L., Wei, X. L., Zhang, Y. F., Li, B., and Yang, X. L. (2017). Influence of initial water content on glacial debris flow triggering process. J. Soil Water Conservat. 31, 116–122. doi: 10.13870/j.cnki.stbcxb.2017.06.020

Shi, J. S., Wu, S. R., Zhang, Y. S., and Wang, T. (2012). Integrated landslide mitigation strategies study for global change in China. Geol. Rev. 58, 309–318. doi: 10.16509/j.georeview.2012.02.018

Wu, C. X., Xu, L., Dai, F. C., Min, H., Tan, G. H., Qi, G. L., et al. (2011). Topographic features and initiation of earth flows on heifangtai loess plateau. Rock Soil Mechan. 32, 1767–1773. doi: 10.16285/j.rsm.2011.06.019

Wu, X. J. (2014). Study on the formation mechanism of debris flow (mud flow) in Yan’an. Ph. D, thesis. Yan’an, Shanxi, China: Northwest University.

Xi, Y., Li, T. L., and Xing, X. L. (2017). Analysis of triggering mechanism of loess landslide mudflow induced by seepage of irrigation channels. J. Earth Sci. Environ. 39, 135–142.

Xin, P., Wu, S. R., Shi, J. S., Wang, T., and Shi, L. (2015). Comment on the progress in, problems and countermeasure on mudflow induced by rainfall. Geol. Rev. 61, 485–493. doi: 10.16509/j.georeview.2015.03.002

Xu, Q. Q. (2014). Exploration on the cause of the formation of loose debris after the earthquake—considering the effects of slope, discharge and initial water content. Ph. D, thesis. Chengdu, Sichuan, China: Chengdu University of Technology.

Yang, Z. Q., Ding, P., Yu, D. C., Yang, Y., Zhu, Y. Y., and Han, Y. S. (2019). Shear strength of Yan’an loess interpreted by porosity. Mount. Res. 37, 392–399. doi: 10.16089/j.cnki.1008-2786.000432

Yang, Z. Q., Wei, L., Liu, Y. Q., He, N., Zhang, J., and Xu, H. H. (2023a). Discussion on the relationship between debris flow provenance particle characteristics, gully slope, and debris flow types along the Karakoram Highway. Sustainability 15:5998. doi: 10.3390/su15075998

Yang, Z. Q., Zhao, X. G., Chen, M., Zhang, J., Yang, Y., Chen, W. T., et al. (2023b). Characteristics, dynamic analyses and hazard assessment of debris flows in Niumiangou Valley of Wenchuan County. Appl. Sci. 13:1161. doi: 10.3390/app13021161

Yuan, B., Chen, W. W., Tang, Y. Q., Li, J. P., and Yang, Q. (2015). Experimental study on gully-shaped mud flow in the loess area. Environ. Earth Sci. 74, 759–769. doi: 10.1007/s12665-015-4080-9

Zhang, F. Y., Yan, B. B., Feng, X. M., Lan, H. X., Kang, C., Lin, X. S., et al. (2019). A rapid loess mudflow triggered by the check dam failure in a bulldoze mountain area, Lanzhou, China. Landslides 16, 1981–1992. doi: 10.1007/s10346-019-01219-2

Zhao, A. Z., Zhu, X. F., and Pan, Y. Z. (2017). Spatiotemporal variations of extreme precipitation events in the loess plateau from 1965 to 2013. J. Beijing Normal Univ. Nat. Sci. 53, 43–50. doi: 10.16360/j.cnki.jbnuns.2017.01.009

Zhao, J. F. (2013). Heifangtai loess landslide-muddy flow formation mechanism caused by irrigation. Ph. D, thesis. Xi’an, Shanxi, China: Chang’an University.

Zhao, J. F., Huang, J. Y., Hou, X. K., Li, T. L., and Lin, X. Y. (2017). Analysis of a flow-slide in heifangtai induced by irrigation. J. Catastrophol. 32, 60–66.

Zhao, X. G., Yang, Z. Q., Meng, X. R., Wang, S. B., Li, R., Xu, H. H., et al. (2023). Study on mechanism and verification of columnar penetration grouting of time-varying Newtonian fluids. Processes 11:1151. doi: 10.3390/pr11041151

Zhou, J., Du, Q., and Li, C. N. (2016). Model test of rainfall intensity influence on debris flow starting. J. Nat. Dis. 25, 104–113. doi: 10.13577/j.jnd.2016.0312

Zhou, J., Gao, B., Zhang, J., and Jia, M. C. (2012). Influence of initial water content on sandy debris flow starting process. Chin. J. Rock Mechan. Eng. 31, 1042–1048.

Zhou, P. H., and Wang, Z. L. (1992). Study on rainstorm of soil erosion on the loess plateau. J. Soil Water Conservat. 1992, 1–5. doi: 10.13870/j.cnki.stbcxb.1992.03.001

Zhu, X. (2014). Study on the impact of previous rainfall on the debris flow initiation mode in strong earthquake areas. Ph. D, thesis. Chengdu, Sichuan, China: Chengdu University of Technology.


		ORIGINAL RESEARCH
published: 09 May 2023
doi: 10.3389/feart.2023.1150954


[image: image2]
Accuracy assessment of various supervised machine learning algorithms in litho-facies classification from seismic data in the Penobscot field, Scotian Basin
Satya Narayan1, Suresh Konka1, Akash Chandra1, Kamal Abdelrahman2, Peter Andráš3 and Ahmed M. Eldosouky4*†
1Oil and Natural Gas Corporation (ONGC), Dehradun, India
2Department of Geology and Geophysics, College of Science, King Saud University, Riyadh, Saudi Arabia
3Faculty of Natural Sciences, Matej Bel University in Banska Bystrica, Banska Bystrica, Slovakia
4Geology Department, Faculty of Science, Suez University, Suez, Egypt
Edited by:
Aydın Büyüksaraç, Çanakkale Onsekiz Mart University, Türkiye
Reviewed by:
Hakan Karslı, Karadeniz Technical University, Türkiye
Sayed Elkhateeb, South Valley University, Egypt
* Correspondence: Ahmed M. Eldosouky, dr_a.eldosoky@yahoo.com
†ORCID: Ahmed M. Eldosouky, orcid.org/0000-0003-1928-9775
Received: 25 January 2023
Accepted: 25 April 2023
Published: 09 May 2023
Citation: Narayan S, Konka S, Chandra A, Abdelrahman K, Andráš P and Eldosouky AM (2023) Accuracy assessment of various supervised machine learning algorithms in litho-facies classification from seismic data in the Penobscot field, Scotian Basin. Front. Earth Sci. 11:1150954. doi: 10.3389/feart.2023.1150954

Litho-facies classification is an essential task in characterizing the complex reservoirs in petroleum exploration and subsequent field development. The lithofacies classification at borehole locations is detailed but lacks in providing larger coverage areas. The acquired 3D seismic data provides global coverage for studying the reservoir facies heterogeneities in the study area. This study applies six supervised machine learning techniques (Random Forest, Support Vector Machine, Artificial Neural Network, Adaptive Boosting, Xtreme Gradient Boosting, and Multilayer Perceptron) to 3D post-stack seismic data to accurately estimate different litho-facies in inter-well regions and compares their performance. Initially, the efficacy of the said models was critically examined via the confusion matrix (accuracy and misclass) and evaluation matrix (precision, recall, F1-score) on the test data. It was found that all the machine learning models performed best in classifying the shale facies (87%–94%) followed by the sand (65%–79%) and carbonate facies (60%–78%) in the Penobscot field, Scotian Basin. On an overall accuracy scale, we found the multilayer perceptron method the best-performing tool, whereas the adaptive boosting method was the least-performing tool in classifying all three litho-facies in the current analysis. While other methods also performed moderately good for the classification of all three litho-facies. The predicted litho-facies using seismic attributes matched well with the log data interpreted facies on the borehole locations. It indicates that the facies estimated in inter-well regions are accurate and reliable. Furthermore, we validated the estimated results with the other seismic attributes to ascertain the accuracy and reliability of the predicted litho-facies between the borehole locations. This study recommends machine learning applications for litho-facies classification to reduce the risk associated with reservoir characterization.
Keywords: machine learning, litho-facies classification, validation, hydrocarbon exploration, Penobscot field
1 INTRODUCTION
Accurate identification of the lithological types is essential in discriminating the reservoir facies (sand and carbonate) from the background (shale facies). It can also be done through advanced high-resolution image logs as well as laboratory investigations of drilled core samples. However, such high-resolution field measurement data is commonly limited (available only at well positions) and expensive (Kumar et al., 2022; Srivardhan, 2022). On the other hand, seismic data interpretation provides global coverage but has lower vertical resolution and non-unique solutions. In seismic data interpretation, geoscientists always strive to determine the connection between geophysical datasets and reservoir properties in order to forecast lithological distributions. It has been found that obtaining a reliable lithological model, particularly seismic data, is one of the most challenging tasks in reservoir studies. In recent years, machine learning (ML) techniques have emerged as an effective tool in dealing with geophysical data (MacLeod, 2019; Dramsch, 2020). As a result, integrating ML algorithms with the inputs of existing petrophysical and geophysical data enables geoscientists to categorize the different lithologies precisely. Several studies have successfully identified litho-facies on geophysical logs using statistical approaches, and supervised and unsupervised ML algorithms (Wang and Carr, 2012; Schmitt et al., 2013; Bhattacharya et al., 2016; Bressan et al., 2020; Xu et al., 2021), and reservoir characterization in petroleum exploration (Keynejad et al., 2019; Liu et al., 2021). On the other hand, only a few research works have been done to determine the various litho-facies and reservoir properties using seismic data (Zhang and Zhan, 2017; Chevitarese et al., 2018; Babu et al., 2022).
The supervised ML technique structure primarily consists of input, hidden, and output layers. Among all, Random Forest (RF), Artificial Neural Network (ANN), Adaptive Boosting (ADB), Extreme Gradient Boosting (XGB), Support Vector Machine (SVM), and Multilayer Perceptron (MLP), etc., are a few supervised regression and classification algorithms. These methods use forward and backward propagation to reduce error between the predicted and original values. In classification problems, the classifier’s accuracy between the original and predicted values depends on the confusion matrix (accuracy and misclass) and evaluation matrix (precession, recall, and F1-score) (Xu et al., 2021). The seismic-derived attributes listed in Table 2 are input features, whereas the litho-facies interpreted at wells (log-scale) is the target feature during the model training (Babu et al., 2022). Initially, all the input data were randomized and standardized to avoid bias. ML algorithms have been trained to classify the different litho-facies on 75% of total data samples, and the left out 25% of data samples were used for validation purposes. We classified these facies into three categories which are coded as shale facies (1), sand facies (2) and carbonate facies (3). We performed six popular classification algorithms in the current work to predict the litho-facies from the Penobscot field, Scotian Basin.
The primary objective of the current research work is to evaluate the performance of the applied ML models (RF, ANN, ADB, XGB, SVM and MLP) in litho-facies (shale, sand, and carbonate) prediction away from borehole locations using seismic data. Secondly, to delineate and characterize the reservoir facies from Mississauga and Abenaki Formation based on interpreted litho-facies. Moreover, these predicted litho-facies require further validation using other seismic attributes to ascertain the models’ predictions in inter-well regions. The present study explained the practical approach in litho-facies discrimination and provides a reliable lithological model for hydrocarbon exploration from Mississauga and Abenaki Formation using seismic data.
2 GEOLOGICAL SETTINGS
The Penobscot field is located on the Scotian Shelf (Figure 1). It has a large-scale carbonate bank that originated during the Jurassic era as the Sable Delta prograde into the basin (Eliuk and Crevello, 1985). It is approximately 1,200 km south-westward from the Yarmouth Arch to the north-eastward Avalon Uplift on Newfoundland’s Grand Banks and contains numerous structural and stratigraphic features (Jansa et al., 1989; Weissenberger et al., 2006). Scotian Basin development started after the breakup and rifting of the North American continent from the African continent at the end of Triassic period. The study area contains numerous complex structural and stratigraphic features in the subsurface. Several minors but two NW-SE and E-W trending major faults have been identified in the study area (Campbell et al., 2015; Bhatnagar et al., 2017; Maurya, 2019). Early Jurassic (Mid-Sinemurian) tectonic activity in the central rift basin led to complex faulting, erosion of Late Triassic and Early Jurassic sediments and older deposits. Generalized stratigraphic chart for Scotian Basin is shown in Figure 2. The region’s sediment distribution has been greatly influenced by the network of platforms and subbasins. An initial transition (Anisian to Toarcian) from terrestrial rift sediments to shallow marine carbonates and clastic, followed by an initial post-rift carbonate-dominated phase (Aalenian-Tithonian), characterizes early deposition in the area (NSDE, 2011). The second post-rift sequence (Berriasian-Turonian) consists of a thick, rapidly deposited deltaic wedge (Mississauga Formation) and a series of thinner, backstepping deltaic lobes (Logan Canyon Formation). Overall, a vast history of passive-margin deposition dominates the stratigraphic framework in the region, which is episodic. A detailed workflow adopted in this work is shown in Figure 3.
[image: Figure 1]FIGURE 1 | Location map of the study area in the Scotian Basin, Canada Offshore.
[image: Figure 2]FIGURE 2 | (A) Stratigraphy chart of the Scotian Basin (after MacLean and Wade, 1993; Wade et al., 1995; NSDE, 2011), and (B) Eustatic curve indicating the sea-level changes during different geological stages (Haq et al., 1987).
[image: Figure 3]FIGURE 3 | Flow chart for the adopted methodology in litho-facies prediction in the present study.
3 DATA
The study area have two drilled wells (L-30 and B-41). These wells consist recorded conventional logs viz., gamma-ray (GR), compressional wave (DT), density (RHOB), spontaneous potential (SP) and density-porosity (DPHI) and neutron-porosity (NPHI) logs (Kidston et al., 2005). We interpreted the three different litho-facies (shale, sand, and carbonate) based on electro-log interpretation (Figures 4A, B). Manual litho-facies interpretation is tedious but has the least chance of error. The obtained result was validated with available core data from well L-30 at 2167 ms (Jansa et al., 1989), corresponding to the Abenaki Formation. The core data suggests the presence of Thrombolites, Stromatolites, Mudstone, and Wackestone, a typical signature of carbonate facies. The seismic and log data and formation tops and horizons obtained from the publicly available Canada-Nova Scotia offshore petroleum board directory have been downloaded from the OpendTect data portal. 3D seismic data acquired during the year 1992 over the Penobscot field in the Scotian Shelf, Nova Scotia, Canada, has been used in this study (Figure 5A). The seismic data were recorded over a 90.27 km2 area in a bin size of 12.5 m (inline) × 25 m (crossline). The data was recorded up to 6s with a sampling interval of 4 ms with good frequency bandwidth (6–50 Hz) up to 3 s. The seismic signal below 3s (5 km) is poor (Maurya, 2019; Ray et al., 2022). We performed well-to-seismic-tie for both wells to establish a time-depth relationship in the study area (Figure 5B). Table 1 summarises the specifics of the seismic and well-log data.
[image: Figure 4]FIGURE 4 | Well panel showing the different logs and interpreted litho-facies from wells (A) B-41 and (B) L-30.
[image: Figure 5]FIGURE 5 | (A) An arbitrary line section extracted from the seismic data passing through both wells in the study area (basemap in inset). Frequency bandwidth (6–50 Hz) found for this seismic data, and (B) well-to-seismic tie at L-30.
TABLE 1 | 3D seismic and well log data available in the study area.
[image: Table 1]4 DIFFERENT ML ALGORITHMS
4.1 Random forest (RF)
A supervised ensemble learning method based on the random subspace methodology, the RF algorithm was first proposed by Ho (1995). Later, based on the bagging strategy, Breiman (1996) updated this method. With this approach, sample subsets are taken from the main database, and decision trees are generated for each sample space to classify patterns. The majority of the forest’s trees’ output is chosen via a vote process. The bagging approach of RF enhances overall accuracy and reduces overfitting problems since it uses the mean of predictions generated from numerous choices’ trees (Breiman, 2001).
4.2 Artificial neural network (ANN)
Finding the ideal collection of weight parameter values is the goal of the neural network procedure. Use of the backpropagation technique is common in layered feed-forward ANNs. This algorithm adjusts weights to decrease system error within network.
It may be organized into four basic steps: a) Set random values as the connection weights’ initial values. b) Calculate the ANN’s output by forward propagating each input pattern through the network:
[image: image]
(c) Eq. 1 used to calculate the Mean Square Error ([image: image]) between the desired output ([image: image]) and what was actually produced ([image: image]) by the ANN.
[image: image]
(d) Eq. 2, where [image: image] is weight, [image: image] is the gradient and [image: image] is the learning rate, should be used to adjust the connection weights. This procedure is continued until the desired minimum error is achieved.
4.3 Adaptive boosting (ADB)
Freund and Schapire (1997) introduced the AdaBoost or Adaptive Boosting method after first discussing it in 1995. Through the multiplicative-weight update technique, weaker ML “algorithms” performance can be enhanced without any prior knowledge. Taking into account that the output of a weak learning algorithm f′ is represented as OP′1, OP′2 ….OP′m and that the goal of the weak learner is to fit a function f′ between TR and OP by least square error, which is (OP- f′ (x′))2, where x′ € TR. The error function for adaptive boosting is [image: image], which only considers the final result’s sign. The final error is the multiplicative addition of all of the previous errors, that is [image: image]. The method updates the weights at each stage and segment of the iteration to identify segments that tend to increase the error and alter the weights in order to reduce the error.
4.4 Extreme gradient boosting (XGB)
According to Chen and Guestrin (2016), the supervised machine learning algorithm XGB uses gradient boosting to handle massive data series. This ensemble technique continuously builds new predictors (decision trees) until the error introduced by its early predictors is eliminated. XGB uses residual values to create a series of weak learners before producing a strong one at the end. For preventing overfitting difficulties and punishing the problem’s complexity (Sun et al., 2020), a regularisation term is added to the loss function, which is provided by,
[image: image]
Where L, which stands for the loss function, expresses the discrepancy between the prediction ([image: image]) and of the target yi. The second term ([image: image]) penalizes the model’s complexity. The regularisation term prevents overfitting and reduces the problem’s complexity. These terms for regularisation are provided as follows:
[image: image]
The regularisation parameters in this case, denoting the leaf number and weight. Whereas w and T, respectively, represent the leaf node’s value and the number of leaves in the tree.
4.5 Support vector machine (SVM)
For classification and regression issues, the supervised machine learning method SVM is frequently utilized (Vapnik, 1995). A hyperplane is built in the SVM method to divide the datasets into several classes. The support vectors are the data points that are closer to hyperplane on either side, and the street is separation between support vectors. A hyperplane with a wide margin or street is seen to be a decent classification, while one with a narrow margin is unsatisfactory and requires further parameter adjustment.
Consider a situation where the data are linearly separable: y = sign([image: image]).
D = (x1, y1), (x2, y2), (xn, yn) for training data with n points, where yiℰ = (1, 1).
Given by is the Euclidean distance from xi to the hyperplane:
[image: image]
SVM seeks to maximize [image: image] and offers the optimal optimization for the issue as:
[image: image]
Where w and b stand for the hyperplane’s normal vector and intercept, respectively. The penalty and slack parameters, represented by C and [image: image] control the trade-off between accurate data classification and smooth decision boundaries. SVM uses kernel trickery, which is non-linearly separable data points from the existing dimension to a higher, linearly separable dimension, for a model where the separation of the data points is non-linear. The classification problem’s radial basis function kernel is defined as follows:
[image: image]
Where, [image: image] determines the degree of bending required for the decision boundary.
4.6 Multilayer perceptron (MLP)
A perceptron is a popular neural network approach for binary issue solving through monotonically rising activation functions (Dixit and Mandal, 2020). A basic perceptron model is a mathematical representation of how the human brain works. It takes input data from the input layer, weights it, adds it all up, sends it to the activation function, and then outputs it through the output layer. Assume that the input vectors are x1, x2, . . . . . . . xn and the weights are w1, w2, . . . . . . . wn. A perceptron’s output is represented by,
[image: image]
which is also written as,
[image: image]
The performance of the network is determined by the number of hidden layers. The neural network performs poorly when there are few layers in between, and when there are many layers, the neural network memorizes the training data and fails on the unknown datasets (McCormack, 1991). In order to create a better MLP model, the number of neurons in the hidden layers between the input and output layers should be modified together through appropriately updated weights (Van der Baan and Jutten, 2000).
5 RESULTS
5.1 Evaluation of ML methods in litho-facies prediction
In this research work, 6 ML classification models (RF, ANN, ADB, XGB, SVM, and MLP) were trained to predict the clastic (shale and sand) and non-clastic (carbonate) litho-facies from seismic data in Penobscot field, Scotian Basin. Initially, these models were trained on 75% of the datasets (termed training data). Further, the trained models were validated on left out 25% of the datasets (termed as test data). The seismic-derived attributes utilized in litho-facies prediction are listed in Table 2. We calculated the evaluation matrix, such as Precision, Recall, and F1-score of each predictive method for each litho-type, to assess the model performance on the test data (Figure 6; Table 3). Additionally, a normalized confusion matrix (accuracy and misclass) was computed to evaluate each applied ML technique in this study (Figures 7, 8; Table 4). The maximum attainable value for the above parameters is 1.
TABLE 2 | Input 3D seismic attributes used in litho-facies prediction.
[image: Table 2][image: Figure 6]FIGURE 6 | Outputs of each predictive model’s evaluation metrics (A) precision, (B) recall, and (C) F1 score, computed for each litho-facies.
TABLE 3 | Statistics, i.e., Precision, Recall and F1-score estimated in classification of shale sand and carbonate facies from different machine learning classifier algorithms.
[image: Table 3][image: Figure 7]FIGURE 7 | Normalized Confusion matrix of ML classifiers methods (A) RF, (B) ANN, (C) ADB, (D) XGB, (E) SVM, and (F) MLP used in the present study. The color variation represents the degree of normalisation and non-normalization as indicated by the data points on the color scale. Lithology code 1 indicates to shale, 2 indicates to sand, 3 indicates carbonate facies.
[image: Figure 8]FIGURE 8 | Outputs of each predictive model’s confusion matrix (A) accuracy and (B) misclass, computed for each litho-facies and overall, as well.
TABLE 4 | Statistics, i.e., accuracy and misclass estimated in classification of shale sand and carbonate facies from different machine learning classifier algorithms.
[image: Table 4]Precision is the measure of correctly predicted litho-facies out of all litho-facies present in the log data. It also aids in measuring the model’s ability to classify true/actual litho-facies. It is found that the precision value ranges between 0.84 and 0.92 for shale facies, 0.65 to 0.78 for sand facies, and 0.82%–0.87% for the carbonate facies for all the models (Table 3). It is also noticed that the MLP, RF, ANN and XGB algorithms calculate considerably higher precision than the ADB and SVM in shale facies classification (Figure 6A). The MLP, RF and ANN algorithms calculate higher precision than the XGB, SVM and ADB in sand facies classification (Figure 6A). The MLP, SVM and XGB algorithms calculate higher precision than ADB, ANN and RF in carbonate facies classification (Figure 6A). Based on precision, the MLP method is the best-performing model, followed by the RF, ANN, XGB, SVM, and ADB methods in categorizing all three litho-facies.
Recall is the measure of the model correctly identifying the actual litho-facies as present in the log data. The recall tells us how many litho-facies we accurately predicted out of all of them. It is found that the recall value ranges between 0.87 and 0.93 for shale facies, 0.65 to 0.79 for sand facies, and 0.68 to 0.78 for the carbonate facies for all the models (Table 3). It is found that the RF, MLP, ANN, and SVM algorithms calculate higher recall values than the XGB and ADB in shale facies classification (Figure 6B). The MLP, RF, ANN, and XGB algorithms calculate higher precision than the ADB and SVM in sand facies classification (Figure 6B). The MLP, ANN, XGB, and RF algorithms calculate higher recall than the ADB and SVM in carbonate facies classification (Figure 6B). Based on recall, the MLP method is the best-performing method, followed by the ANN, XGB, RF, ADB, and SVM methods in categorizing all three litho-facies.
F1-score is the harmonic mean of the precision and recall value. High F1-score would indicate a high precision and recall value and can be used as a direct measure of the model’s efficacy in litho-facies classification. The F1-score value ranges between 0.86 and 0.93 for shale facies, 0.66 to 0.79 for sand facies, and 0.70 to 0.82 for the carbonate facies considering all the models (Table 3). It is found that the MLP, RF and ANN methods calculate a higher F1-score than the XGB, SVM and ADB methods in shale facies classification (Figure 6C). The MLP, RF and ANN methods calculate higher F1-score than the XGB, SVM and ADB in shale facies classification (Figure 6C). The MLP algorithm calculates a higher F1-score than the XGB, ANN, SVM, ADB and RF in carbonate facies classification (Figure 6C). Based on F1-score, the MLP method is the best-performing model, followed by the RF, ANN, XGB, SVM and ADB methods in determining all three litho-facies.
The confusion matrix (Figures 7A–F; Figures 8A,B) is a chart of actual and predicted results for an ML classifier determined by statistical parameters that are true positives, true negatives, false positives, and false negatives (Navin and Pankaja, 2016). The diagonal values of the confusion matrix indicate the true positives for each litho-facies. Accuracy and misclass are the most important parameters used in classification problems. Accuracy is calculated as the ratio of the correctly predicted and total records, whereas misclass is calculated by the one minus accuracy. The high accuracy value hints at a good agreement between the predicted and actual lithofacies. Accuracy values ranged between 0.871 and 0.934 for shale facies, 0.648 to 0.785 for sand facies, and 0.600 to 0.779 for the carbonate facies considering all the models (Table 4). It is found that the RF, MLP ANN, and SVM algorithms calculate higher accuracy in shale facies classification than the XGB and ADB methods (Figure 7A–F; Figure 8A, B). The MLP, RF, ANN, and XGB algorithms calculate higher accuracy than the ADB and SVM in sand facies classification (Figure 7A–F; Figure 8A, B). The MLP algorithm calculates considerably high accuracy in carbonate facies classification than the ANN, XGB, RF ADB, and SVM (Figure 7A–F; Figure 8A, B). Overall, the MLP model estimates maximum accuracy, followed by the RF, ANN, XGB, SVM, and ADB methods in classifying all three facies. Subsequently, the lowest misclass values were recorded for the MLP method, followed by the RF, ANN, XGB, SVM, and ADB methods. Based on accuracy and misclass values, the MLP method is again the best-performing method, followed by the RF, ANN, XGB, SVM, and ADB methods.
5.2 Lithological characterization of Mississauga and Abenaki Formation
We generated the facies volumes by applying the above-discussed ML methods on 3D seismic data. Figures 9A–F demonstrate the arbitrary line of litho-facies with three lithologies, essentially shale (1-grey), sand (2-yellow) and carbonate (3-pink), passing through both wells (B-41 and L-30). We noticed a good correlation between the predicted litho-facies and the overlaid well litho-facies strips. The arbitrary section determines the spatial and temporal distributions of the different litho-facies from time equivalent depth of 1,800 ms–3,000 ms (Figures 9A–F). The entire vertical succession considered in this study was deposited during Middle Jurassic to Middle Cretaceous geological period. Abenaki top, a broad carbonate platform formed, is the boundary of the Jurassic to the Cretaceous period.
[image: Figure 9]FIGURE 9 | An arbitrary line section is passing through both wells as indicated extracted from the (A) RF, (B) ANN, (C) ADB, (D) XGB, (E) SVM, and (F) MLP facies volumes. Notice the good correlation between the predicted litho-facies and the well litho-facies strips overlaid.
Mississauga Formation mainly consists of sand facies with alternating shale and carbonate facies. All six methods’ results were in good agreement throughout the Mississauga Formation (Figures 9A–F). These sand facies were deposited in a deltaic environment and are widespread throughout the Scotian Basin. A change in tectonism most likely caused the altered Mississauga sedimentation during the separation of European and North American plates and regional sea-level rise (Jansa and Wade, 1975). Due to this reason, shale and carbonate facies were also found deposited in alternation. Previous researchers subdivided Abenaki Formation into four members, i.e., Scatarie, Misaine, Baccaro, and Artimon (McIver, 1972; Given, 1977; Eliuk, 1978; MacLean and Wade, 1993). The Artimon member is the top part of the Abenaki Formation, mainly characterized by carbonate and argillaceous facies. Baccaro member is dominated by carbonate facies deposited in the shallow marine environment. Below this member, Misaine member is dominated by the transgressive shale up to 200 m (Eliuk, 1978). Below Misaine member, Scatarie mainly consists of carbonate and shale facies. In the present study, carbonate facies from Artimon, Baccaro and Scatarie members, and shale facies from Misaine member were precisely delineated. Our results (Figures 9A–F) also agree with litho-facies away from the boreholes expected to be deposited in different depositional environments in the Penobscot field (refer to Figure 2).
We also noticed a few significant discrepancies from the arbitrary sections. First, we found the problem-related resolving capability of different methods; as a result, some methods estimate the litho-facies in chunks. Second, an anomalous zone (blue oval) was identified, showing different litho-facies in different methods. These discrepancies arise away from borehole locations, suggesting the validation of the predicted results.
6 VALIDATION
Validation is an integral part of increasing confidence in a study’s findings. It can be done by comparing the findings of other complementary methods or using existing records. In the present research work, the estimated results from ML methods are validated by comparing them to the findings of the frequency and polarity attributes (Figures 10A, B), as explained below.
[image: Figure 10]FIGURE 10 | The results estimated from predicted litho-facies were validated with (A) Instantaneous frequency and (B) apparent polarity attributes.
6.1 Instantaneous frequency
Instantaneous frequency is a proven useful qualitative seismic attribute for determining stratigraphic terminations, thickness, and litho-facies changes (Taner et al., 1994; Castagna et al., 2003; Sukmono et al., 2006; Tai et al., 2009; Lu and Zhang, 2011). It is calculated as the time change rate of the instantaneous phase divided by 2π. In general, high-frequency responses signify dense formation (here, carbonate facies), while low-frequency responses signify loose formation (here, shale facies). Frequency values are also affected due to the intergranular pores (high-porosity) and the nature of the fluid present within them. Figure 10A depicts the arbitrary instantaneous frequency section passing through both wells. The entire section shows a significant frequency variation ranging between 7 and 50 Hz. It is found that chaotic and low (8 Hz) to high (42 Hz) frequency responses from the anomalous zone highlighted in Figures 9A–F. Based on frequency responses, the presence of all three litho-facies of thin and discrete nature is expected.
6.2 Apparent polarity
Polarity characteristics are a helpful tool in subsurface litho-facies delineation. Change in polarity value occurs due to change in impedance with depth (Brown, 1999; Barnes, 2006; Sukmono et al., 2006; Sukmono, 2010). The change in impedance indicates the change in litho-facies in the subsurface. Figure 10B depicts the arbitrary instantaneous frequency section passing through both wells. A constant apparent polarity marks the Abenaki top. As highlighted in Figure 6A–F; Figure 7A, the anomalous zone is characterized by a random apparent polarity response. It indicates the termination of Abenaki carbonate facies due to the possible inclusion of clastic facies (Figures 9A–F). The inferences drawn based on the polarity attribute are well corroborated with the observations from the frequency attribute (Figure 9A).
7 DISCUSSION
A qualitative and quantitative attempt has been made to assess the accuracy of various ML classifier techniques in litho-facies discrimination. Calculated statistics (precision, recall, F1-score, accuracy and misclass) provide numerical inputs in the comparative evaluation of each ML model (Dixit and Mandal, 2020; Kumar et al., 2022; Srivardhan, 2022). Initially, three different litho-facies (shale, sand, and carbonate facies) were interpreted by analyzing different wireline logs from both wells. Further, these litho-facies were predicted throughout the 3D volume using seismic attributes as input features (Table 2) and litho-log from wells as target features. Previously, various scientists have successfully applied supervised and unsupervised ML methods on well logs and seismic data for litho-facies prediction (Wang and Carr, 2012; Bhattacharya et al., 2016; Zhang and Zhan, 2017; Chevitarese et al., 2018; Bressan et al., 2020; Liu et al., 2021; Xu et al., 2021; Babu et al., 2022). These studies were mostly applied two- or three-ML methods to interpret the lithological distribution in hydrocarbon and coal explorations. Here, we performed comparative assessment of 6 ML methods viz., RF, ANN, ADB, XGB, SVM, and MLP methods and evaluated their performance in litho-facies classifications in hydrocarbon exploration purposes.
To assess the model’s efficacy, we examined all the parameters (evaluation and confusion matrices) together. However, precision and recall are often in tension (precision increases, then recall decreases and vice-versa). Therefore, F1-score, the harmonic mean of the precision and recall, can be a reliable indicator of the model’s performance in various litho-facies classifications (Table 3; Figure 6C). Higher F1-score (0.86–0.92) values found on test data suggest that all six methods performed well in shale facies prediction. Relatively lower F1-score values were found in the estimation of carbonate facies (0.70–0.82) and sand facies (0.66–0.79). Accuracy and misclassification are the second major parameters to examine the models’ performance in litho-facies classification (Table 4; Figure 7A–F; Figure 8A, B). Relatively higher accuracy and lower misclass values were found for shale facies (0.87–0.94 and 0.06–0.13), followed by the sand facies (0.65–0.79 and 0.21–0.35) and the carbonate facies (0.60–0.78 and 0.22–0.40) considering all the models. Comparatively, the ML models’ accuracy score for specific lithologies varies significantly (Kumar et al., 2022). All the models efficiently classify the shale facies compared to the sand and carbonate facies. It indicates that the accuracy scores depend upon the number of samples (facies thickness) of shale, sand, and carbonate litho-facies used in test data.
In the current analysis, the ML models’ performance was found in order of MLP > RF > ANN > XGB > SVM > ADB for shale facies classification, MLP > RF > ANN > XGB > SVM > ADB for sand facies classification, and MLP >ANN >XGB >RF >SVM > ADB for carbonate facies classification. On an overall scale, the performance of ML models is in order of MLP > RF > ANN > XGB > SVM > ADB in the classification of all three litho-facies. A similar model performance order was also found from overall accuracy and misclass values in classifying all three litho-facies. Incorporating tuned regularization/penalty parameters in the MLP method is primarily responsible for improved results (Van der Baan and Jutten, 2000; Dixit and Mandal, 2020; Kumar et al., 2022). Due to a large number of trees, RF is an ensemble-based method that avoids overfitting and emerged as a powerful tool for classification. Xtreme Gradient Boosting emerged as a highly effective and accurate model by adding numerous trees in succession and focusing on the errors from the preceding one. Adaptive boosting algorithm uses empirical evidence and is highly susceptible to uniform noise, possibly making the model poorly performed in the present analysis. SVM classifiers are accurate, perform well in high-dimensional spaces, and need relatively less memory. However, the major problem associated with the SVM classifier is poorly handling the overlapping classes. On the other hand, several other factors affect the accuracy of the models. Relatively lower frequency bandwidth in seismic data caused the overlapping responses from different litho-facies, which caused the misclassification problem in facies estimation (Narayan et al., 2023). Models’ performance was also affected by delineating thin and discrete inter-bedded facies. Therefore, validation of estimated results is necessary to ascertain the accuracy of the prediction model. Our results agree with the results of comparative study from Srivardhan, (2022) and Kumar et al. (2022).
8 CONCLUSION
The present study highlights the efficacy of the machine learning methods, namely, RF, ANN, ADB, XGB, SVM, and MLP, in classifying the shale, sand and carbonate facies from the Penobscot field, Scotian Basin. These ML models were trained and validated on well-based interpreted litho-facies data. The performance of the ML models was examined on test data through the confusion matrix (accuracy and misclass) and evaluation matrix (precision, recall, F1-score). On the overall scale, the accuracy score suggests that all the models performed best in classifying the shale facies (87%–94%), followed by the sand (65%–79%) and carbonate facies (60%–78%), respectively. The accuracy scores found for different litho-facies also depend on the thickness of the litho-facies present in the subsurface. Different ML models’ performances were found in order of MLP > RF >ANN > XGB > SVM > ADB for shale facies, MLP > RF > ANN > XGB >SVM > ADB for sand facies and MLP > ANN > XGB > RF > SVM > ADB for carbonate facies classifications. In the current analysis, the MLP method emerged as the best-performing model, whereas the ADB method was the least-performing tool in classifying all three litho-facies from Late Jurassic to Cretaceous deposits in the Penobscot field. The estimated distribution of the different litho-facies was found to be in good agreement with the previous geological understandings and eustatic curve (sea-level changes) from Jurassic to Cretaceous period in this region.
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In recent years, debris flow disasters have occurred frequently along the highway, causing river blockages and road interruptions, which seriously threaten the safety of people's lives and property. Highway G318 is an important throat project linking Sichuan and Tibet; at the same time, it is an important channel for the economic development of Sichuan and Tibet and the transportation of national defense materials. Taking the Linzhi–Lhasa Section of Highway G318 as an example, this study analyses the distribution law and characteristics of coupling factors of debris flows in the study area (under its topographical, hydrometeorological, geological, and structural conditions) using remote sensing interpretation, field surveys, and mathematical statistics. The research shows that: (1) The types and quantity of debris flows in the region show statistical laws under the factors of the slope, slope aspect, drainage area, and gradient of the gully. The vegetation coverage in the upper reaches of the Nyang River valley gradually decreases, and the average debris flow disaster density is 0.529/km, which is the most densely distributed area of debris flow. (2) The distribution density of regional debris flows in narrow valleys is greater than that in wide valleys, and those in the Nyang River basin are greater than those in the Lhasa River basin. (3) By comparing the tectonic geological map and the debris flow distribution map, it was found that the debris flow distribution is controlled by faults, and 71% of the debris flow basins have faults. (4) There is a significant positive correlation between the gradient of the material source area and the gradient of the debris flow gully, as well as a close positive correlation between the rainfall and the fault density, and a close negative correlation between the average gradient and the drainage area. Due to the unique topography and geomorphology of different regions, a difference in meteorology and hydrology occurred. This further affected the topography, geomorphology, and distribution of debris flow disasters. Based on the study of the distribution law of regional debris flow and geological environmental factors, this study provides strong support for regional debris flow prevention and related research.

KEYWORDS
debris flow, distribution law, coupling factors, debris flow density, fault density


1. Introduction

The Sichuan–Tibet Highway is the most important land route from Sichuan to Tibet, passing through three major mountain ranges (the Hengduan Mountains, Nyainqentanglha Mountains, and the Himalayas) and four major water systems (the Yangtze River tributaries, Lancang River, Nujiang River, and Yarlung Zangbo River) (Lu and Cai, 2019; Yang et al., 2023a). The region is being squeezed by the Eurasian plate, with obvious mountain uplift and valley undercutting. The complicated geological tectonic movements have formed unique topography and climatic conditions, which makes the terrain gap of the Sichuan–Tibet Highway large, the regional climate difference obvious, and debris flow disasters frequently occur. Taking Peilonggou and Guxianggou as examples, the debris flow in Peilonggou was formed by ice avalanches. After blocking the Palong Zangbu River many times, the river weir dam was formed. After the dam broke, great harm was caused. As a result of massive debris flows in 1984 and 1985, the weir dam was formed and flooded 7 km upstream of the Sichuan–Tibet Highway, causing 79 vehicles to be destroyed. After the dam broke, 2 km of the downstream road and bridge were destroyed; several people died, and the economic loss was estimated at over 100 million yuan (Shang et al., 2003; Cheng and Wu, 2011; Zou et al., 2018; Emery et al., 2019; Chen et al., 2020; Liu et al., 2023; Yang et al., 2023b). The Guxianggou first broke out in 1953, with a huge viscous debris flow caused by the gully being blocked by the natural weir dam, formed by the accumulation of loose materials and landslide collapse caused by the Chayu earthquake (with a magnitude of 8.5) in 1950. Furthermore, due to the interaction between a rainstorm and high temperatures, the debris flow broke out, causing a large number of casualties and property damage. In the following years, several debris flows broke out, causing a huge loss of life and property. In 1953, a huge viscous glacial debris flow broke out in Guxianggou, causing more than 140 deaths and destroying a large number of highway subgrades, bridges, and cultivated lands (Zeng et al., 2007; Zou et al., 2018; Cui et al., 2022; Yang et al., 2023a). Large-scale viscous mud rock flows broke out in Tianmogou many times (e.g., in September 2007, July 2010, and September 2010), blocking the Palong Zangbu River many times, forming a barrier lake, and then, the G318 subgrade and bridge were destroyed after the breach (Wei et al., 2018). In September 2016, the Bitonggou, Chidan Nongbagou, and Jiaolonggou (in the Guxiang section of the Palong Zangbu basin) simultaneously broke out as a debris flow, silting up G318 and damaging the construction camp (Rappengluck, 2022).

There has been a large amount of research conducted by Chinese scholars as a result of a large number of debris flows along the Sichuan–Tibet Highway. Chen Hongkai analyzed the disaster-prone environment and formation mechanism of debris flow in the Sichuan section of the Sichuan–Tibet Highway through field investigations. The formation mechanism of a debris flow along the highway can be summarized into four categories: rainfall impact mechanism, intensity attenuation mechanism, scour cutting mechanism, and gully bed dragging mechanism (Shi et al., 2021; Zhao et al., 2023). Ye Tangjin used information entropy and FLAC numerical simulation to analyze the influencing factors of debris stability and the correlation of slope stability in the eastern part of the Sichuan–Tibet Highway. They established a debris slope stability evaluation model based on a support vector machine (Shang et al., 2003). Liu Xin studied the development environment, distribution characteristics, and laws of debris flow in the Bangda–Linzhi section of the Sichuan–Tibet Highway through field investigations and remote sensing. Previous studies revealed that topography, tectonic movement, stratigraphic lithology, and rainfall affect the scale and distribution of debris flows (Ye et al., 2022). Yuan Guangxiang, He Yiping, Jiang Zhongxin, and Zeng Qingli studied the characteristics of debris flow in the Palong Zangbo River Basin of the Sichuan–Tibet Highway. Yuan Guangxiang counted and classified the debris flow gullies along this section and analyzed the distribution law of debris flows. He Yiping believed that the debris flow source in this section is Quaternary deposits (debris flow deposits, landslide deposits, and avalanche deposits). The differential distribution law of landslides and debris flows was revealed by Jiang Zhongxin using quantitative methods, such as optimal segmentation and variance of ordered samples. Zeng Qingli thought that the geomorphological features of water systems are related to the development of debris flow groups and revealed the disaster mode of super-large debris flows (Shang et al., 2005; Kaczmarek and Popielski, 2019; Gao et al., 2021; Tang et al., 2022). Qi Yunlong put forward two kinds of action mechanisms at Jiuronggou, in the Bomi section of the Sichuan–Tibet Highway, affected by the combination of precipitation and temperature when debris flow starts (Zhou et al., 2014). Sun Yan used ETM+, Quickbird, and 30 m DEM (digital elevation model) data to interpret the geological disasters in the section of Highway G318 from Lhasa to Shigatse, by remote sensing via man–machine interaction (Xie et al., 2021).

As the main part of the Sichuan–Tibet Highway, Highway G318 is an important channel for Sichuan and Tibet's economic development and the transportation of national defense materials. The Linzhi–Lhasa section is characterized by undulating terrain, an elevation difference of about 2,000 m, and abundant rainfall; as a result, the disaster types in the study area are more diverse (Shen et al., 2019). However, there is little research on debris flow disasters in this section. Therefore, this study takes the Linzhi–Lhasa section as an example, based on detailed investigations, and uses ArcGIS and satellite images to extract statistical natural geological conditions. To explore the distribution law of debris flow under topography and geomorphology (slope of source area, slope direction, watershed area, gulf–bed ratio, and vegetation coverage rate), hydrometeorology (temperature and rainfall), and tectonic movement (fault), the correlation analysis method was used to discuss the distribution law of debris flow disasters under the coupling effect of factors such as slope, slope direction, watershed area, gully bed ratio, vegetation coverage, rainfall, and fault density and judge the main factors controlling the development of debris flow disasters. The aim is to provide a reference for disaster prevention and reduction in the operation and maintenance of this section of the highway.



2. Study area profile


2.1. Topographic and geomorphic conditions

The study area is located in the suture zone between the Eurasian plate and the Indian Ocean plate, which is surrounded by mountains: the Nyainqentanglha Mountain in the west, the eastern Himalayan Mountains in the south, and the Hengduan Mountains in the east.

The Linzhi–Lhasa section of Highway G318 starts from Linzhi Town in the east and ends in Lhasa in the west, passing through the Bayi District, Gongbujiangda County, and Mozhugongka County, with a total length of 420 km (Figure 1). The terrain is undulating, from Milla Mountain (elevated to about 5,000 m) to the Bayi District (elevation 2,900 m), passing through the source of the Nyang River and the Lhasa River. The valley in the Nyang River basin narrows from wide to narrow (upstream), while the valley in the Lhasa River basin is relatively wide (downstream). With the increase in altitude, the vegetation is less, the external forces are strong, and the rock mass is severely weathered. The loose deposits on Milla Mountain are mainly sand slopes, and some of them contain moraines. On the left-hand side of Milla is the Linzhi section, which has good vegetation and abundant rainfall. On the right-hand side is the Lhasa section, with little vegetation coverage (mainly alpine meadows) and rich material sources in ditches and bank slopes (Figure 2).


[image: Figure 1]
FIGURE 1
 Geographical location map of the study area.
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FIGURE 2
 Rendering map of topography and geomorphology and section location map.




2.2. Geological conditions

The study area is located in the Lhasa–Bomi fold belt, which is an east–west structural system; it is the east wing of the Pamir–Himalayan structure. Its structural features are a series of nearly east–west faults and folds, and the structural unit belongs to the Gangdise–Tengchong micro-land block. Under neotectonic movement, there is a strong vertical uplift and horizontal sliding of the block (Mikos, 2011; Zhang et al., 2011; He et al., 2022). Under this complex geological activity and structure, the regional seismic activity is relatively strong. The area is located in the seismic belt of central Tibet, with a peak acceleration of ground motion of 0.1~0.3 g (g = 9.8m/s2), a characteristic period of ground motion response spectrum of 0.45 s, and an upper limit of potential earthquake source magnitude of 6.9 (Figure 3).


[image: Figure 3]
FIGURE 3
 Peak acceleration and epicenter distribution of earthquakes.




2.3. Hydrometeorological conditions

The study area is located in an area of strong and uplifted neotectonic movement. The climate in the area is complicated and changeable due to the influence of the Himalayan Mountains, Nyainqentanglha Mountains, and Hengduan Mountains. The Nyang River and Lhasa River are well-developed in the area. The Nyang River originates from Milla Mountain and joins the Yarlung Zangbo River in the Bayi District. The Lhasa River originates at the southern foot of Nyainqentanglha Mountain, passes through Lhasa, and finally joins the Yarlung Zangbo River. The climate of the Linzhi section on the left-hand side of Milla is formed by the convergence of hot and humid Indian Ocean airflow along the Yarlung Zangbo River and dry and cold continental airflow, which forms the unique climatic conditions of Linzhi. It is warm and rainy in the summer. The annual rainfall in most areas ranges from about 600 mm to 1,000 mm; the snow line elevation is between 4,500 m and 4,700 m; and the annual rainfall can reach 2,500 to 3,000 mm (Zhang et al., 2011). The temperature difference is large, and the ice and snowmelt are serious (Paul, 2019; Jia et al., 2020; Zeng et al., 2023). The winter is dry and cold, and the climate is slightly different at higher elevations. The climate of the Lhasa section on the right-hand side of Milla is mainly controlled by the semi-arid monsoon climate in the temperate zone of the plateau. The annual average rainfall is about 200–510 mm, mainly concentrated from June to September (Ma et al., 2021), and the vegetation is scarce, mainly comprising alpine meadows.

According to the data statistics of the meteorological stations in the study area (Bayi Station and Mozhugongka Station in Figures 4, 5, respectively) from the last 30 years (1992–2021), the regional rainfall distribution law can be analyzed. The annual average temperature of Bayi Station is 9.2°C; the average temperature of the coldest month (January) is 1.2°C, and the average temperature of the hottest month (July) is 16.4°C. The extreme maximum temperature is 31.4°C, and the extreme minimum temperature is −13.6°C. The average annual precipitation is 690.5 mm, and the precipitation from March to October accounts for about 98.4% of the whole year; the precipitation from November to February only accounts for 1.6% of the whole year. The annual relative humidity is 66%. The annual average temperature in the urban area of Mozhugongka County is 6.7°C; the average temperature in the coldest month (January) is −2.55°C, and the average temperature in the hottest month (June) is 14.3°C; the extreme maximum temperature is 53°C; the average annual precipitation is 583.4 mm, and the precipitation from March to October accounts for about 98.5% of the whole year; the precipitation from November to February only accounts for 1.5% of the whole year.


[image: Figure 4]
FIGURE 4
 Average annual temperature and rainfall in Bayi Station from 1992 to 2021.
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FIGURE 5
 Average annual temperature and rainfall in Mozhugongka Station from 1992 to 2021.





3. Methods and data sources

Temperature and rainfall, formation lithology, geological structure, and fault distribution in the study area were identified based on the collected meteorological, hydrological, and geological environment data. According to the characteristics of the debris flow basin, 119 debris flow gullies were identified along Highway G318 using remote sensing images. Through field investigations (supplemented and verified by the results of remote sensing), it was found that there are 164 debris flow gullies in the area, of which the distribution of debris flow along G318 is shown in Figure 6.


[image: Figure 6]
FIGURE 6
 Satellite images and debris flow distribution.


According to China's Second Glacier Catalog, the glaciers in the study area cover an area of 1560.86 km2, accounting for 6% of the study area. The glaciers are primarily distributed at the source area of high-altitude valleys in the middle and lower reaches of the Nyang River, and the largest distribution in the Zhulaqu basin is located in the middle reaches of the Nyang River (including 42 debris flow ditches created by glaciers). Glacier meltwater is one of the water source conditions (Figure 2). Remote sensing interpretation and satellite images show 36 glacial lakes in the debris flow basin. The largest area of a single glacial lake is 0.55 km2, and those smaller than 0.1 km2 are less likely to cause debris flow. The debris flow basin in the statistics area contains 11 glacial lakes with an area larger than 0.1 km2, which may trigger debris flow due to the influences of glacial lake outbursts. In the study area, the altitude is high and the terrain fluctuates greatly. The perennial glaciers and seasonal snowmelt become one of the water sources of debris flow. According to the distribution of temperature, precipitation, glaciers, and seasonal snow and ice, the debris flow is classified according to the water source conditions of the debris flow, with Milla Mountain as the boundary (Table 1).


TABLE 1 Classification of debris flow types in the study area.

[image: Table 1]

First, based on ASTER GDEM 30 m elevation data and ArcGIS spatial analysis platform, data such as boundary, gully elevation, topographic relief, slope, and slope direction of the study area are extracted. Second, the normalized index NDVI was synthesized using Landsat 8-9 OLI/TIRS C2 L2 remote sensing data. Finally, the geological map of the study area was registered, and the measured faults were vectorized to analyze the spatial distribution of debris flows under various factors. In order to explore the disaster environment of debris flow, Pearson's linear correlation and Spearman's correlation analysis are used to analyzing the correlation characteristics of gully slope degree, slope direction, basin area, gully bed ratio, vegetation coverage, rainfall, and fault density in the debris flow basin.


3.1. Distribution of debris flow along G318

As a result of a combination of internal and external forces, debris flow gullies are formed. Under the action of internal forces, plates drift, squeeze, and separate to form mountain valleys, which determine the location, elevation, distribution, and source of faults and solid loose materials in the debris flow gully. Under the action of external forces, temperature, and rainfall affect the area of the debris flow basin, the weathering degree of solid materials, and the change in topography in the area.

Located in the Himalayan tectonic region, the study area is squeezed between the Indian Ocean plate and the Eurasian plate. The climate is jointly controlled by continental cold and dry air flow and hot and humid air flow from the Indian Ocean. There are all types of debris flow disasters in the area. According to the field survey, combined with the regional characteristics, the debris flow distribution is bounded by Milla Mountain. The average disaster density along G318 in the east of Milla Mountain is 0.490/km, and the average disaster density in the west of Milla Mountain is 0.275/km.



3.2. Distribution characteristics of debris flow under topographic conditions
 
3.2.1. Gradient of debris flow source area

The gradient of the source area directly affects the scale of debris flow and the mode and quantity of solid material supply (Cui et al., 2022). ArcGIS was used to extract the gradient of the source area of 164 debris flow gullies in the study area; mathematical statistics were then used to analyze the differential distribution rule of the gradient of debris flow gullies in the source area (Figure 7A). The number of debris flow gullies with a gradient of <30° in the source area accounts for 79%, and the number of rainfall-induced, glacial meltwater, and mixed debris flow gullies (rainfall-induced, glacial meltwater, and glacial lake break-caused debris flow gullies) accounts for 91% of non-rainfall-induced debris flow gullies. This indicates that the main mode of supply for the debris flow sources in the area is landslides with a relatively gentle slope and loose solid materials accumulating in valleys. The main types of debris flow source areas with a relatively larger gradient are debris flow deposits, sand slide deposits, landslide deposits, collapse, etc. In addition, the gradient of the source areas of debris flows associated with glacial meltwater and glacial lake outbursts is generally small.
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FIGURE 7
 Distribution characteristics of debris flow gullies under different topography conditions. (A) The relationship between debris flow initiation and slope of the source area. (B) The relationship between debris flow initiation and slope aspect of the provenance area. (C) The relationship between debris flow initiation and drainage area. (D) The relationship between debris flow initiation and gradient of debris flow gullies.




3.2.2. Slope aspect of the material source area

The slope aspect has a significant influence on the formation, distribution, and activity intensity of debris flow (Cui et al., 2022). North-facing slopes in the northern hemisphere (shady slopes) have the least sunshine hours and solar radiation intensity, which is conducive to the accumulation and storage of snow and ice. The south-facing slopes (sunny slopes) have the most sunshine hours and higher solar radiation intensity, which is conducive to creating meltwater from ice and snow glaciers and stratum weathering; they are prone to debris flows. According to the statistics of the slope aspect of 164 debris flow gullies in the formation area, the analysis shows that most of the debris flow gullies on the north slope (0.0–22.5° and 337.5–360.0°) are rainfall-induced, and the probability of glacier meltwater and ice lake outburst-caused debris flows is low, accounting for 16% of the debris flow gullies on the north slope and 12% of the non-rainfall-induced debris flows. From the east slope to the south slope (45–225°), the probability of glacier meltwater and ice lake outburst-caused debris flow is high, accounting for 53% of non-rainfall-induced debris flow (Figure 7B).



3.2.3. Drainage area

The differential distribution characteristics of debris flow gullies under different drainage areas were analyzed according to the drainage area statistics of 164 debris flow gullies in the study area (Figure 7C). The analysis shows that about 13% of the debris flow gullies have a drainage area of <2 km2, about 15% of the debris flow gullies have a drainage area of more than 100 km2, and about 72% of the debris flow gullies have a drainage area of 2–100 km2. The number of debris flow gullies increases at first but then decreases, with a gradual increase in the drainage area. About 91% of the rainfall-induced debris flows have a drainage area of <30 km2, and the glacial meltwater debris flows and glacial lake outburst debris flows have a drainage area of more than 10 km2. This indicates that the rainfall-induced debris flows mostly occur in the gullies with smaller drainage areas, while the glacial meltwater debris flows and glacial lake outburst debris flows have larger drainage areas.



3.2.4. Gradient of debris flow gullies

The gradient of a gully is the bottom-bed condition for fluid to change from potential energy to kinetic energy, and it is an important condition that affects the formation and movement of debris flow (Cui et al., 2022). The greater the gradient of a debris flow gully, the greater the potential energy conditions for the debris flow, which facilitates its initiation. The statistical analysis of the gradient of the 164 debris flow gullies in the study area established the relationship between the gradient and its distribution (Figure 7D). The analysis shows that ~9% of debris flows have ditch bed ratio drops <100‰, ~7% of debris flows have ditch bed ratio drops more than 500, and 87% of debris flows have ditch bed ratio drops between 100 and 500‰. The debris flow gully gradually increases and then decreases with increasing gradient, similar to the distribution characteristics of the debris flow gully under the drainage area. The reason for this is that the debris flow gully gradient has a linear relationship with the drainage area. Approximately 88% of glacial meltwater and glacial lake outburst-caused debris flows have gully gradients <200‰ and ~74% of rainfall-induced debris flows have gully gradients >200‰. Generally, glacial meltwater and mixed debris flows have smaller gully gradients, while rainfall-induced debris flows have larger gully gradients.



3.2.5. Vegetation coverage (NDVI: normalized difference vegetation index)

Surface vegetation coverage affects the occurrence and development of geological disasters. Trees and shrubs with high vegetation coverage and well-developed roots have strong soil and water conservation abilities, and the frequency of geological disasters caused by precipitation is extremely low (Lara and Sepulveda, 2010). The analysis shows that the valley vegetation coverage is high in the middle and lower reaches of the Nyang River in the study area (Figure 8). The top of the mountain is covered with snow and glaciers all year round, with low vegetation coverage. The average density of the debris flow is 0.426/km, and the distribution is relatively dense. The vegetation coverage of the valley in the upper reaches of the Nyang River has gradually been reduced, the weathering and erosion of rocks on the mountain slope are strong, the rocks in the valley have piled up, and the average density of debris flow is 0.529 /km, which is the most densely distributed area of debris flow. The vegetation in the Lhasa River basin is generally an alpine meadow, with gentle terrain and low distribution of debris flow.


[image: Figure 8]
FIGURE 8
 Vegetation coverage of the study area.





3.3. Distribution characteristics of debris flow under different hydrometeorological conditions

Regional topography affects regional hydrometeorology, and hydrometeorology reshapes topography. The unique topographic and geomorphological conditions in the study area make temperature and precipitation change significantly, which leads to obvious differences in surface vegetation coverage, weathering, and denudation of the rock mass, the water source, and the material source of debris flow. Both temperature and rainfall have important influences on the development and distribution of debris flows.

Mozhu Maqu, a tributary of the Lhasa River and Nyang River, originates from glacial meltwater and widens along the river valley. The rainfall in the Nyang River basin is abundant, while that in the Lhasa River basin is small. According to the change in valley topography, the study selects nodes to draw the river's geological section. The locations of the sections are shown in Figure 2. As a result of the analysis, topography complexity can be summarized as follows: 2-2 section > 1-1 section > 3-3 section > 4-4 section (Figure 9). According to the change in the valley landform and the difference in temperature and rainfall conditions, the area is divided into four parts: cross-section 1-1 to cross-section 2-2 (wide section of the Nyang River), cross-section 2-2 to Milla Mountain (narrow valley cross-section of the Nyang River), Milla to cross-section 3-3 (narrow valley section of Mozhu Maqu), and cross-section 3-3 to cross-section 4-4 (wide valley cross-section of the Lhasa River) (Figure 2). A combination of highway debris flow distribution characteristics and the disaster density indicates that the regional debris flow distribution density from section 2-2 to Milla Mountain (0.528/km) > from section 1-1 to section 2-2 (0.429/km) > from Milla Mountain to section 3-3 (0.417/km) > from section 3-3 to section 4-4 (0.136/km). This means that the regional debris flow distribution density in the narrow valley section is greater than that in the wide part, and the Nyang River basin (with large rainfall) is greater than that in the Lhasa River basin (with less rainfall).


[image: Figure 9]
FIGURE 9
 Characteristics of the cross-sections in the main river. (A) 1-1 Cross-section in the lower reaches of the Niyang River. (B) 2-2 Cross-section in the upper reaches of the Niyang River. (C) 3-3 Cross-section of Mozhu Maqu River. (D) 4-4 Cross-section of Lhasa River.




3.4. Distribution characteristics of debris flow under the influences of geological tectonic activities

Under the compression of the Indian Ocean and Eurasian plates, the Qinghai-Tibet Plateau rises as a whole, ignoring the influence of local stratum uplift and the reduced distribution of regional debris flows. In the study area, faults are mostly developed in an east–west direction. Several faults per unit area (fault density) were used to analyze debris flow distribution (Figure 10). The faults in this area are concentrated in the Nyang River basin, and the north bank has more faults than the south bank. About 71% of debris flow gullies are affected by faults, with fault strikes generally perpendicular to the debris flow gullies. The density and distribution of faults show that, in areas with strong geological tectonic action (the east side of Milla and the north bank of the middle and lower reaches of the Nyang River), the rock mass structure is easily destroyed under the action of faults, forming numerous of broken rock masses and loose accumulations, which provide abundant materials for debris flow initiation. The degree of development of debris flow in the fault region is strong, and debris flow gullies are mostly distributed in areas with high fault density.


[image: Figure 10]
FIGURE 10
 Faults and their density in the study area.





4. Discussion

The disaster-prone environment of debris flows arises from the coupling of natural and geological conditions, so analyzing the distribution of debris flows under a single factor seems very limited. The coupling effect of natural environmental factors determines debris flow development and distribution. Factors such as slope, slope aspect, drainage area, gully gradient, vegetation coverage, rainfall, and fault density in the debris flow watershed were selected. Pearson's and Spearman's correlation analysis (Chia, 1999) was used to evaluate the significance and analyze the correlation characteristics of each factor.

Pearson's correlation analysis must meet the following conditions: (a) Data are continuous variables and appear in pairs; (b) Data are normal. (c) Data are normally distributed. The slope, slope direction, drainage area, gully bed gradient, vegetation coverage, rainfall, and fault density of the study area all appear in pairs, among which rainfall and fault density are discontinuous variables. The box diagram can determine whether the sample data have outliers. If there are outliers, the mean value of the sample can be used to replace them. After analysis, the data from Nos. 21, 49, and 62 watersheds in the samples were abnormal, thus, the mean value of the data was used to replace the abnormal value in the analysis. By analyzing the gully bed gradient data, it was found that the data of Nos. 40, 42, and 70 watersheds were abnormal, and the mean value of the data was used in this study. Through the analysis of the descriptive statistics results, it can be seen that the slope direction does not obey a normal distribution. Therefore, Pearson's correlation analysis was used for slope, average gradient, vegetation coverage, and drainage area (Table 2). Spearman's correlation analysis is suitable for detecting variables with monotone relationships. The graph builder in the SPSS software is used to test the monotonicity of slope direction, rainfall, and fault density, and the test results show that the sample data have significant monotonicity, thus, slope direction, fault density, and rainfall are analyzed by Spearman's correlation analysis (Table 3). The measurement standard for correlation coefficients is shown in Table 4.


TABLE 2 Pearson's correlation of coupling factors in disaster-prone environment of debris flow.
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TABLE 3 Spearman's correlation of coupling factors in the disaster-prone environment of debris flow.
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TABLE 4 Measurement standard of the correlation coefficient.
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The study results indicate a strong positive correlation between slope and average gradient, a relatively negative correlation between slope and drainage area, and a relatively positive correlation between slope and vegetation coverage. Furthermore, there is a very strong positive correlation between rainfall and fault density. The average gradient has a close negative correlation with drainage area and an overall positive correlation with vegetation coverage. Moreover, there is a generally negative correlation between drainage area and vegetation coverage. The reason for this lies in the unique topography of the study area, which leads to regional differences in meteorology and hydrology. Regional differences in meteorology and hydrology reshape topography and geomorphology, coupling natural geological and environmental factors. As the regional terrain slope becomes more complex, the average gradient within debris flow basins increases, resulting in a smaller average gradient within the debris flow basin as the debris flow area increases. As a result of intensive geological activity and high fault density, regional elevations are raised, which blocks flow cases convection of airflow, resulting in variations in rainfall across the region. As the formation condition and excitation factor of debris flow, rainfall controls debris flow activity characteristics. Different rainfall patterns in different regions contribute to the spatial distribution differences of debris flows in the east and west of the study area and affect the development characteristics, frequency, and scale of debris flows.



5. Conclusion

In this study, field surveys, remote sensing interpretation, laboratory testing, and model calculations were used to study the distribution law and coupling factor characteristics of debris flow along Highway G318, from Linzhi to Lhasa, considering topography, meteorology, hydrology, and geological structure. The following conclusions are drawn:

(1) The main sources of debris flow in the study area are landslides with a gentle slope and loose deposits accumulated in gullies; the debris flow gullies on the north slope are mostly rainfall-induced debris flow; and the probability of glacial meltwater and glacial lake outburst debris flow is higher from the east slope to the south slope. The gradient of the debris flow gully is normally distributed. Generally, the gradient of a glacial meltwater and mixed debris flow gully is small, and the gradient of a rainfall-induced debris flow gully is large. The lower the vegetation coverage, the greater the debris flow gully density.

(2) The distribution density of debris flow in a narrow valley is greater than that in a wide valley, and the Nyang River basin (with large rainfall) is larger than the Lhasa River basin (with less rainfall).

(3) The degree of development of debris flow in the fault area is strong, and debris flow gullies are mostly distributed in areas with high fault density.

(4) The unique topography leads to regional meteorological and hydrological variations, which reshape the topography, resulting in a coupling effect between the natural and geological conditions. The regional terrain slope becomes more complex, and the average gradient of the debris flow basin becomes larger; the larger the debris flow area is, the smaller the average gradient is. A combination of intensive geological activities and relatively high fault density causes regional elevation rise, which blocks the flow and convection of airflow, leading to variations in rainfall patterns.

These research conclusions have important scientific value for the analysis of the cause of debris flow and the establishment of monitoring and warning in the later stage.
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One hundred seventy geotechnical boreholes, two geo-seismic profiles of multichannel analyses of surface waves (MASW), and two geoelectrical cross-sections of electrical resistivity tomography (ERT) were carried out in the historical Diriyah urban zone. The borehole samples were analyzed for the geotechnical parameters of the standard penetration test (SPT N-value), the rock quality designation (RQD), and compressive strength (CS). Moreover, P- and S-wave velocities have been calculated. The measured SPT N-value has been corrected to amend the N60 parameter. According to the corrected N60, type, lithological, and soil profiles were divided into five distinct subsurface layers. It is indicated, for all recorded depths, these sediments become denser with depth where the values of N60 increase from 5 to 88 downward. According to grain size distribution, the major part of soil sites is composed of sand and varies from low to medium compressibility. The estimated RQD values range from 5 to 100 indicating rocks with significant variations in their geotechnical and physio-chemical characteristics. Furthermore, the compressive strength varies widely between 152.3 and 1,104.2 kg/cm2, which represents diverse geodynamic behavior under civil engineering constructions. Besides, the range of soil stiffness is indicated by the Shear-wave velocity (Vs) for soil layers, which varies from 171.3 to 456.2 m/s. According to the findings of the MASW profiles, the shear wave velocity is shown to be decreasing in MASW profile 1 between depths of 8 and 14 m, where the values range from 1,000 to 1,500 m/s, indicating a weak zone filled with secondary materials. But line 2 shows how the shear wave velocity decreased from depths of 5 m–11 m, where values ranged from 1,000 to 1,500 m/s, thus indicating a weak zone. The low resistivity zones in ERT cross-sections, which are found at the same depths in MASW profiles, are well associated with these findings. It can be concluded that there are a number of weak zones with varying depths, shapes, and dimensions found in the historical Diriyah urban zone’s near-surface deposits that civil engineers, urban planners, and urban developers should consider before undertaking any construction or developmental work involving civil engineering.
Keywords: SPT-N, compressive strength, RQD, MASW, ert, historical Diriyah, Riyadh, Saudi Arabia
1 INTRODUCTION
Historical Diriyah is located 11 km from the city center and 20 km northwest of Riyadh on the banks of Wadi Hanifa. Traditional homes are made of local mud brick and frequently have one or two stories. The current size of historical Diriyah is 7 km2. The historical city of Diriyah is located in the blistering desert, like most other Saudi Arabian cities. Historical Diriyah, also known as the nation’s symbolic birthplace, was home to the first Saudi capital and served as an inspiration for many of the Kingdom’s leaders throughout its history. The medieval city of Diriyah, which also contains the UNESCO World Heritage Site At-Turaif, is home to magnificent mud-brick buildings of the Najdi architectural style. In the 7 square kilometer Diriyah Gate project, a multitude of tourist and recreation destinations are planned that are expected to cost 75 billion Saudi riyals. The Diriyah Gate project helps Saudi Vision 2030 by assisting in bringing in 27 million local and foreign tourists by the year 2030. This will aid the National Tourism Plan, which aims to welcome 100 million visitors from all over the world into the Kingdom. Geotechnical measurements are used in building design laws to define deposits and establish their properties, which has lately become a very important study of deposits close to the surface and an essential function in the design ground motions of the structure’s design codes (Alhumimidi, 2020).
Evaluating the Historical Diriyah site requires assessing the geotechnical properties of geological rock units, and numerous investigations of this kind have been carried out in all major urban areas worldwide (Abdelrahman et al., 2017a; Abdelrahman et al.2017b; Abdelrahman et al.2019a; Abdelrahman et al.2019b; Abdelrahman et al.2020; Abdelrahman et al.2021a; Abdelrahman et al.2021b; Abdelrahman et al.2021c), Stiros and Kontogianni 2009, and Stiros and Pytharouli 2018). Avoiding geotechnical risks and designing appropriate surface and subsurface foundation systems with the help of the determined geotechnical characteristics are both important. And creating a safe environment free from underground threats to buildings. In the future, this will be a useful guide for assessing the area’s near-surface dangers. The main objectives of this study are to evaluate the near-surface rock quality and identify weak spots that should be avoided during construction. The idea of soil site classes was first forth by Borcherdt et al., in 1994.
Masoud and Abdel Aal (2019) used three-dimensional geotechnical modeling to analyze the soils in Riyadh City. The foundation for calculating geotechnical parameters was a variety of comprehensive and factual research that was used to produce conceptual geotechnical models. An assessment of rock mass characteristics and geotechnical variables will enable a reliable, safe, and effective design, and many such studies have been carried out globally (Almajed et al., 2021). Western Riyadh City and southern Khamis Mushait City in southwest Saudi Arabia’s Almadani, et al. (2015) analysis of geotechnical characteristics for the urban site (Almadani, et al., 2021). The Historical Diriyah area is bounded by latitudes of 24.743225° N and 24.705413° N, and longitudes of 46.556310° E and 46.590642° E, respectively (Figure 1).
[image: Figure 1]FIGURE 1 | Locations of the geotechnical boreholes, MASW, and ERT profiles in the historical Diriyah urban zone.
The research team faced many challenges represented from the beginning including the difficulty of entering and working in the study area due to the presence of a lot of field activities and construction works. We also encountered difficulties during conducting ground surveys, taking field samples, preserving them, wrapping them, and protecting them from weather conditions. We also faced challenges in collecting the many geophysical profiles, which require specific conditions and specifications in order to preserve the quality of the data. In addition to painstaking efforts during the analysis, interpretation, and discussion of the results integrated.
This study has represented the integration of geological, geotechnical, and geophysical datasets that is applied to the study area for the first time. Where the geological dataset is illustrated by a detailed geological map showing the lithological variations, whereas the geophysical data will do through seismic shear wave velocity models, and geoelectrical cross-sections of electrical resistivity tomography (ERT).
1.1 Riyadh’s geotechnical problems with rock and soil
The majority of the Quaternary Wadi deposits in Riyadh’s eastern and central zones make up about 30% of the city. These deposits, which contain clay, silt, sand, and gravel, are of fluvial or aeolian origin. Under Banban, there are 1 m of interbedded gravels with weathered limestone and solution-collapse breccia that gradually climb to 9 m at the third industrial zone to the southeast. Fragments of limestone are frequently observed. The less resilient soft and porous breccia of the collapsing carbonate layers has collapsed due to the near-surface anhydrite’s dissolution (Rahim, 1981). The channel courses were subject to many changes over time during the late Tertiary and Quaternary wet eras, and these were deposited as a conflux of various Wadi channels coming in from the west and north. This type of soil presents various construction challenges because of its high permeability, especially in areas where a sound rock bed is present beneath the soil (Masoud, and Aal, 2019). Other frequently troublesome soil types in the Riyadh area include loessal, collapsing, and shrinking soils. Collapsing soils are alluvial wadi deposits with a majority of sand and varying quantities of gravel, silt, and clay.
2 GEOLOGICAL SETTING OF THE STUDY AREA
Geologically, the region around Riyadh is underlain by Mesozoic to Cenozoic sedimentary rocks from the Arabian shelf, which is often covered by Quaternary deposits of gravel, sand, silt, and clay (Al-Othman, 2002). Mostly cryptocrystalline limestone and calcareous limestone are interspersed in these strata. Depending on the amount of weathering, rocks fracture to varying degrees, and later dissolution inside the rock causes the production of small voids as well as some larger voids. Northwest of Riyadh, the historical Diriyah region is part of the Jubaila, Hanifa, Sheet Gravel, Alluvium, and Arab formations (Steineke and Bramkamp, 1952; Vaslet et al., 1991a; Figure 2). A massive lime mudstone lower unit and a smaller top granular rock unit make up each of the lower, middle, and upper portions of the Jubaila Formation (Upper Jurassic) in central Saudi Arabia (Basyoni et al., 2013). The Jubaila limestone is a very hard limestone that lies between two softer strata. The Jubaila limestone is divided between upper and lower units with a thickness of 116 m to the east and west of Wadi Hanifa (Manivit et al., 1985).
[image: Figure 2]FIGURE 2 | Geologic map of the historical Diriyah (modified after Vaslet et al., 1991).
A prominent scarp that is frequently over 75 m high and produced by lower beds tops the Hanifa Formation (Powers et al., 1966). Although the limestone is mainly aphanitic and calcarenitic, there are some exceptionally durable layers of clean-washed lime sand (calcarenite) in the center and northern portions. In the Jubaila to the south, there are notable lateral changes that include an abrupt switch from limestone to dolomite in the formation’s highest part, followed by a switch from limestone to sandstone, and finally a return to limestone in the lower portion. To the north, limestone changes to dolomite and sandstone at a comparable but slower rate. However, dolomite does flow stratigraphically downhill along strike, often with interbeds of calcarenite and calcarenitic limestone, replacing the upper Jubaila in the north and the bottom part of the sequence in the south (Powers et al., 1966). Due to the loss of anhydrite, the Upper Jurassic Arab Formation comprises four carbonate-evaporite members; nevertheless, the middle and higher Arab Members (Arab C, B, and A) are difficult to differentiate from one another (Sharief et al., 1991). When the formation shifted from tan aphanitic limestone below to massive anhydrite of the Hith above, the anhydrite separators were identifiable because the carbonates and their underlying anhydrite comprise four major deposition cycles, which closely correlate to a time-stratigraphic unit (Powers et al., 1966).
The fill material depth in the area under investigation is close to 3 m. The study location is south of a valley deposit that contains diverse sediments down to a depth of 35 m, and the research region is home to a diversity of rock formations (sandy lean clay, silty sand, silty gravel with, poorly graded sand, silty gravel with sand and silty sand with gravel). The study area is largely composed of limestone, which helps to create the Jubaila and Arab formations. The study region also features a valley deposit in the northwest that is 35 m deep and made up of a variety of sediments. The sediments in this valley deposit are very similar to those found in the valley in the southern part of the study area (Figure 3). The fence diagram includes several details that show the thickness and types of the deposit as well as how the sediments spread deeper. Also, it divided the region into little squares so that we could identify and learn about the rocks from the shown sediments (Figure 4).
[image: Figure 3]FIGURE 3 | 3D diagram showing the lateral variations of lithology in the historical Diriyah urban zone.
[image: Figure 4]FIGURE 4 | 3D Fence diagram showing vertical variations of the lithological setting of the historical Diriyah zone.
3 MATERIALS AND METHODS
The Standard Penetration Test (SPT) is widely used to determine the properties of soil in the field. At the historical Diriyah, a standard penetration test (SPT) was performed on 300 samples from 30 boreholes, a rock quality designation test (RQD) on 477 samples from 140 boreholes, and a compression strength test on 129 samples from 115 boreholes (CS). Two-dimensional (2D) models of the SPT, RQD, and CS were produced using the Surfer software. A borehole measuring 100 mm in diameter will be used to place a split spoon sampler into the soil between the depths of 15 and 35 m. The action involves dropping a 63.5 kg hammer onto a drill rod from a height of 750 mm. The number of hits N required to penetrate 300 mm is known as the penetration resistance. Not considered are the blows for the first 150 mm of penetration. It is important to remember that the standard penetration number “N” differs for similar soil profiles at a given depth depending on a number of different factors. Among these crucial variables are the SPT hammer efficiency, drill diameter, sample approach, rod length, water table, and overburden pressure. Usually, SPT is carried out every 1.5 m or anytime the strata shift. If the N number is found to be larger than 100 when evaluating hard formations, the test is terminated.
For field procedures (Energy Correction), the use of the SPT correction factor is always suitable. For cohesive soil, field procedure corrections are sufficient in place of overburden pressure correction (Rahman, 2020). It is appropriate, based on field observations, to standardize the field SPT number as a function of the driving energy input and its dissipation around the sampler and in the surrounding soil. By converting the measured N to N60 as shown below, the discrepancies in testing methods may be at least somewhat accounted for (Skempton, 1986);
[image: image]
Where, EH = Hammer efficiency; CB = Borehole diameter correction; CS = Sampler correction; CR = Rod length correction; N60 = Corrected SPT N-value for field procedures; N = Field-Measured SPT N-Value.
3.1 Rock quality designation (RQD)
The most popular techniques for classifying rock masses rely heavily on RQD. Deere et al. (1967) invented the RQD in order to offer a quantitative assessment of the rock mass quality using drill core logs. The proportion of unbroken core fragments greater than 100 mm (4 in) in length in the entire core is known as RQD. The core should be drilled using a double-tube core barrel and should be at least NW size (54.7 mm or 2.15 in diameter). Eq. 2 summarizes the proper formula for measuring the length of core pieces and calculating RQD (Deere, 1964; Deere, 1989).
[image: image]
RQD is a directionally dependent metric, and depending on the borehole orientation, its value may alter dramatically. It is meant to depict the in-situ character of the rock pile. Care must be taken when employing diamond core drilling to make sure that fractures brought on by handling or the drilling process are noted and excluded when figuring out the value of RQD. Table 1 lists the classification of rocks according to Deere. In this study, 460 samples were collected and logged to show the RQD index during the coring process.
TABLE 1 | RQD classification index (Deere, 1989).
[image: Table 1]3.2 Compressive strength
Compressive strength is a constrained level of compressive stress that causes ductile failure (infinite theoretical yield) or brittle failure in a material (rupture as the result of crack propagation, or sliding along a weak plane). On materials, parts, and structures, compressive strength is measured. The degree of uniaxial compressive stress that a material reaches when it totally fails is, by definition, its ultimate compressive strength. The particular test procedures and measurement conditions have an impact on compressive strength measurements. Typically, compression strengths are provided in accordance with a particular technical standard.
[image: image]
A is the initial cross-sectional surface area, and F is the force or load at the point of failure.
3.3 P- and S wave velocities
An essential input factor for dynamic ground analysis is shear wave velocity. Vs and N60 for all types of soil (Tsiambaos and Sabatakakis, 2011); 
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In this study, the equation of Bery and Saad (2012) has been used to determine the P-wave velocity from the borehole for the four layers, with a regression coefficient of 0.8377 (83.77%) as follows:
[image: image]
3.4 Grain size distribution
Determine the sizes of the many particles that make up a specific unconsolidated sedimentary deposit, sedimentary rock, archaeological locus, or soil unit using a sedimentological analysis known as grain size. By drawing conclusions from the sizes of the sediment particles studied and their distributions, the major objective of this approach is to identify the type of environment and energy associated with the transport mechanism at the time of deposition. Grain size analysis is a fundamental tool for classifying unconsolidated materials and sediments, sedimentary rocks, and sedimentary environments. Quantitative analysis of the percentages of different particulate sizes yields one of the most fundamental physical properties of clastic sediments and sedimentary rocks (Udden, 1914; Wentworth, 1922).
3.5 Liquid limit (LL) and plasticity index (PI)
The moisture level at which soil starts to flow and behave like a liquid is known as the liquid limit. In order to determine the liquid limit of soils, it is customary to conduct at least three random tests, each with a different moisture content. Use one of the following formulae to get the liquid limit for each specimen with water content (US Army Engineer Waterways Experiment Station, & United States. Army. Corps of Engineers, 1958):
[image: image]
where N = number of blows WN = Moisture content at N blows tan β = Slope of the flow curve when plotted on logarithmic paper.
3.6 Plasticity index (PI)
Plasticity is an inherent property of fine-grained soil. Conventionally, the plasticity of soil is represented through an index called the plasticity index. The plasticity index is the magnitude of the water content range over which the soil remains plastic. PI is the difference between LL and PL (Wroth and Wood, 1978);
[image: image]
where, PL is Plastic Limit defined as the moisture content in percentage, at which a cohesive Soil will change from a plastic state to a semisolid state; LL= Liquid limit.
3.7 Multi-channel analysis of surface waves (MASW)
The seismic exploration method known as MASW was originally used in geophysics by (Park et al., 1999). One of the seismic survey techniques for determining the elastic condition (stiffness) of the ground for geotechnical engineering purposes is the multichannel analysis of surface waves (MASW) approach. For a variety of geotechnical investigations, using surface wave propagation to get shear wave velocities (Vs) profiles have proven to be a promising technique (Soupois et al., 2007; Almalki et al., 2011; Busato et al., 2016; Liu et al., 2016; Shen et al., 2016; Aldahri et al., 2017; Rahimi et al., 2018; Cardarelli et al., 2018; Hu and Liu, 2019; Mogren et al., 2020; Sena Lozoya et al., 2020; Alamri et al., 2020; Alzahrani et al., 2021a; Alzahrani et al., 2021b; Alzahrani M. et al., 2022; Abd El-Raouf et al., 2021 and; Abd El-Raouf et al. 2022). These investigations mainly include building-ground studies, site assessment, determination of the physical properties of rocks and delineating subsurface cavities and weak zones, etc.
3.8 Electrical resistivity tomography (ERT)
ERT is now mainly carried out with a multi-electrode resistivity meter system. Such surveys use a number of electrodes laid out in a straight line with constant spacing. A computer-controlled system is then used automatically to select the active electrodes for each measure (Griffith and Barker, 1993; Dahlin, 1996). Successful case studies demonstrating cavity detection using ERT conducted in a karst area in Muan-gun, Jeollanam-do, Korea were reported by Kim et al. (2007), Song et al. (2011), and Yi et al. (2011). In this region, over-pumping of water from underground cavities formed by limestone dissolution resulted in a decline in the water table and in the frequent occurrence of ground subsidence. The general methodological chart is illustrated in Figure 5. Arc Map is used to create the location and Geological Maps, Rockworks is used to create a Fence diagram, and Surfer Golden software is used to create Geotechnical maps. Moreover, the software of RES2DINV and Prosys ll are used for ERT processing. In addition, ParkSEIS software is used for MASW Processing.
[image: Figure 5]FIGURE 5 | The general methodological chart illustrating the workflow in this study.
4 RESULTS AND DISCUSSION
The soil and rocks were separated in each of the five layers shown in Figure 5; the black dashed line separating them shows a structure based on SPT values, where the soil values range from 5 to 50 and the rocks from 50 to 90. Figure 6 shows that the two layers at a depth of 3 m and 4.5 m include a substantial amount of sedimentation, which causes the values of SPT to fall, where the values of SPT vary from 5 to 44. This is due to the presence of two wades, one in the northwest and the other in the south. While sediments are still present in the northwest and south, where SPT values vary from 18 to 46, the third layer, which is at a depth of 6 m, shows a drop in the amount of soil and the emergence of rocks. The fourth and fifth layers, which are found at depths of 7.5 m and 9 m, respectively, and where the values of SPT vary from 23 to 48, provide a clearer picture of the rocks’ appearance. A rise in SPT levels is the reason for this.
[image: Figure 6]FIGURE 6 | Variations of the standard penetration test (SPT) for soil layers at different depths.
The ratio of the length of the core run to the total length of sound core pieces that are 4 inches (10.16 cm) or longer is known as the rock quality designation (RQD). At a depth of 3 m southeast of the research location, low rock quality values were discovered; the values varied from 5% to 25%, suggesting that the rocks in that direction are inferior (very poor). Moreover, low rock quality values of 25%–50% were discovered at various depths in the northeast of the research zone, indicating that the rocks in that direction are of poor quality (poor). When working in low RQD soils, precautions against instability should be considered. Although there are good concentrations of rock quality in the bulk of the analyzed areas, the favorability for construction is highest in places with high RQD values, as shown in Figure 7. The layers demonstrate a southern gradient in rock quality, pointing to the presence of fractures and voids in the rocks. In addition, towards the northeast and southeast of the study zone, all rock layers are of lower quality.
[image: Figure 7]FIGURE 7 | Distribution of the Rock quality designation (RQD) for rock at different depths.
According to Deere 1989, Figure 8 displays low compressive strength values. It is noticeable that CS 400 kg/cm2, which denotes poor rock quality, was found in the research area’s middle region (RQD). The eastern and northeastern zones showed high values where CS > 750 kg/cm2, indicating good to exceptional rock quality categorization (RQD). In the remaining portions, intermediate values of 400–CS-750 kg/cm2 were found, reflecting a medium rock grade rating (RQD). It is observed that weak zones are present across the area, as shown by the low compressive strength values found at various depths (cavities, sinkholes). The depth of the dissolving soil can go as deep as 16 m in the northwest of the research area and as high as 11 m in the south to southeast, according to a correction process N to N60 for the existence of a sedimentary valley, as illustrated in Figure 9.
[image: Figure 8]FIGURE 8 | Distribution of the compressive strength for rock at different depths. (A) at 3-meters depth; (B) at 4.5 meters depth; (C) at 6.0 meters depth; (D) at 7.5 meters depth; (E) at 9.0 meters depth.
[image: Figure 9]FIGURE 9 | Variations of the thickness of soil (where N60< 50), (the red overturned triangles show the locations of boreholes in the soil striping zones).
Shear wave velocities are measured in the range of 170–470 m/sec. Sediments are noticeable in the northwest of the study area, where shear wave velocities vary from 170 to 330 m/s, as well as in the far south of the study area. The equation above is used to compute the shear velocity from N60. As a depth, shear wave velocities rise while those in the first 3 m fell. The shear wave velocity is shown to increase with depth through the strata in Figure 10 until it reaches a value of 470 m/s, suggesting that the sediments have solidified and are about to become rock. The northern portion of the land is covered with Vs 180 m/s (class E) and extends to 4.5 m deep, indicating soft soil, according to NEHRP recommendations from 2003. At a depth of 6 m, stiff soil emerged as 180 Vs 360 m/s (class D). At a depth of >6 m, the soil of 360 Vs 470 m/s (class C) became visible, exposing very dense soil and soft rock.
[image: Figure 10]FIGURE 10 | Shear wave velocity variations (Vs) for soil layers at different depths.
The area of interest, generally, has ground fissures, some of which extend 12 m below the surface. The fact that the P -wave velocity falls in a southeast direction, with a value of 100 at a depth of 3 m that indicating the rock quality is very poor, while in a northeasterly direction, with a value of 500, and this decrease lasts until a depth of 12 m shows that the rock quality is poor. In the first 3 m of the study area, the P-wave velocity falls in a southern direction, reaching 700. The occurrence of these fractures throughout all levels generally denotes that the limestone rock in the area was dissolved by the infiltrated water between the layers as depicted in Figure 11.
[image: Figure 11]FIGURE 11 | Variations of P-wave velocities (Vp) for rock layers at different depths.
According to the classification of soil types by Garcia and Frankenstein (2015), the study area is made up of fine-grain soil (clay and silt), where the grain size is less than 0.4 mm, and sand soil, where the grain size ranges from 0.4 to 4.75 mm. Figure 12A depicts the locations of grain size distribution in the study area. Gravels with a grain size of more than 4.75 mm. Sand is therefore the primary component, as shown in Figure 12B. Figure 13A depicts the distribution of liquid limit and plasticity index sample locations across the research area; the corresponding ranges of values for these variables are 24.0%–37.0% and 10.0%–17.0%, respectively. According to Figure 13B, the study area’s soil behavior ranges from low to medium compressibility.
[image: Figure 12]FIGURE 12 | (A) Locations of grain size distribution to study area in the historical Diriyah urban zone. (B) Variations of grain size of soil at depth 4 m.
[image: Figure 13]FIGURE 13 | (A) Locations of liquid limit and plasticity index samples distribution in the historical Diriyah urban zone. (B) Variations of liquid limit and plasticity index of soil at depth 4 m.
Shear wave velocity from seismic is decreasing at depths 8 m–14 m in MASW profile No. 1 where the values varied from 1,000 to 1,500 m/s indicating a weak zone (cavities, sinkholes, fractures, fissures, etc.), filled with less competent materials. Although shear wave velocity is increasing at depths 15 m–30 m where the results ranged from 1,500 to 2,700 m/s that indicated compact limestone. Moreover, the MASW profile No. 2 the shear wave velocity is decreasing from depths 5 m–11 m where, the values varied from 1,000 to 1,500 m/s indicating a weak zone (Cavities, Sinkholes), filled with secondary materials. Although shear wave velocity increases at depths 11 m–30 m where the values ranged from 1,500 to 2,400 m/s that suggests compact limestone illustrated in Figure 14. The RES2DINV resistivity inversion software (Loke, 2002) was utilized in the investigation to invert the apparent resistivity data automatically. The least-square fitting technique (Loke and Barker, 1996) was utilized to find the best fit for the resistivity model through iterations. Three iterations were made in each case, with RMS errors of less than 5%. In addition to each profile, the findings of the inverse models are shown as cross-sections showing the real resistivity distribution of the subsurface with depth. The models display a variety of zones with low and relatively high resistivities.
[image: Figure 14]FIGURE 14 | MASW Geoseismic cross-sections of historical Diriyah urban zone.
A modest region of low resistivity (less than 110 m) is spread over the entire profile in ERT cross-section No. 1 (Figure 15). They start at 10 m below ground level and descend to 33 m, whereas the principal potential zone covers the center portion of this profile. These zones have different depths, forms, and connections and might be circular, oval, or triangular in shape. The high resistivity sites in this profile keep the low resistivity zones apart, preventing them from joining. Cross-section No. 2 (Figure 15) contains many sites with low resistivity (110 m), although they are spread out over a wide range of depths and sizes. It should be noted that the eastern region’s low resistivity zones extend 10 m below the surface. All throughout the structure are these zones of low resistivity, which first show in the center at a depth of 10 m and continue to a depth of 33 m on either side of a region of high resistivity (>1,000 m). Zones with low resistivities cover the compacted limestone in the western part, starting at ground level and extending up to 10 m.
[image: Figure 15]FIGURE 15 | ERT geoelectric cross-sections of historical Diriyah urban zone (after Alzahrani H. et al., 2022).
The numerous tests of great soil samples of near-surface in the study area through several ground investigations showed that the nature of the land changes sideways and vertically, which reflects the presence of cavities or weakness zones throughout the study area at various depths and with different characterizations. These features naturally occur in such types of limestone rocks and calcareous soils (Alharbi et al., 2015; Al-Malki et al., 2015; Fnais et al., 2015; Alyousef et al., 2015a and; 2015b).
5 CONCLUSION
The majority of the historical Diriyah urban zone is composed mainly of limestone rocks. While there are two zones of low-land strips (branches of wadi Hanifah) bordering the northwestern and southeastern edges of the development area. Both strips are filled with a variety of deposits with soil that descends to a depth of 35 m. The results of the standard penetration test (SPT) show that the lowest values in soil strips are around 5 and extend downward to 10 m in depth. In spite of that, the general values increased with depth until they reached limestone rocks, SPT values range for the soil from 5 to 48, increasing with depth, and weak zones are recorded at various depths. Moreover, the SPT values rise with depth, reaching values between N60 and 87. The relationship between the designation of rock quality and the compressive strength of rocks is directly proportional, i.e., the better the quality of the rocks, the higher the compressive strength, as shown in Figures 6, 7, which show compressive strength and rock quality, respectively. At various depths, low RQD values were observed, indicating weak zones (sinkholes, fractures, fissures, etc.). The central zone of the study area was encompassed by the low compressive strength values at various depths. Low shear wave values are obtained at various depths exposing weak zones, whereas the shear wave velocities range from 170 to 470 m/s. Fines, sand, and gravel are among the three forms of soil, with sand having the biggest share. Low to medium compressibility range for liquid limit and plasticity index.
In depths of 8–14 m in line 1, shear wave velocity from seismic is decreasing, with values ranging from 1,000 to 1,500 m/s, indicating a weak zone (Cavities, Sinkholes) filled with secondary materials. At depths between 15 and 30 m, shear wave velocities increased and ranged from 1,500 to 2,700 m/s, indicating compact limestone. The shear wave velocity is decreasing along line 2 at depths of 5–11 m, which indicates the presence of a weak zone (Cavities, Sinkholes) packed with secondary materials. Figure 15 demonstrates that shear wave velocity is rising between 11 and 30 m below the surface, where values ranged from 1,500 to 2,400 m/s, indicating compact limestone. These zones have different depths, forms, and connections and might be circular, oval, or triangular in shape. The high resistivity sites in this profile keep the low resistivity zones apart, preventing them from joining. Line 2 in Figure 15 shows a dense pattern of the low resistivity (110 m) sites, however, these sites can be found at other depths and in different configurations. It should be noted that the eastern region’s low resistivity zones extend 10 m below the surface. All throughout the structure are these zones of low resistivity, which first show in the center at a depth of 10 m and continue to a depth of 33 m on either side of a region of high resistivity (>1,000 m). In the western part, areas of compacted limestone are covered with low resistivity zones that start at ground level and last up to 10 m. At varied depths and extensions, numerous weak zones are found in distinct places. Sinkholes, fractures, and fissures in the limestone rocks could be these weak zones. Before beginning civil engineering work at the historic Diriyah Gate region, civil engineers, urban developers, and planners should take these results into consideration Deere, 1964; Safety, 2003; Borcherdt et al., 2012; Aldahri et al., 2018.
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This paper presents a novel Bayesian-based method for predicting brittleness. The method involves synthesizing petrophysical data from multiple well cores to establish a joint Gaussian distribution function for shale facies and non-shale facies. Furthermore, Bayesian facies classification is applied to seismic data. The proposed method combines non-shale facies data with Rickman brittleness data to obtain a new brittleness index. The joint Gaussian distribution function and Bayesian classification are utilized to enhance the differentiation of brittleness among different geological bodies. Practical data analysis demonstrates that the new brittleness index effectively increases the contrast in brittleness values between various geological bodies, highlighting target areas of interest. The presented method offers a promising approach for brittleness prediction, leveraging the integration of petrophysical and seismic data through Bayesian techniques. The results suggest its potential applicability in enhancing the characterization and understanding of geological formations.
Keywords: brittleness, Bayesian analysis, seismic inversion, seismic facies, rock physics
1 INTRODUCTION
Rock brittleness is a crucial factor in unconventional oil and gas exploration. Elasticity parameters, such as elastic modulus and Poisson’s ratio, are commonly used to characterize rock brittleness. Highly brittle rocks exhibit complex mesh fractures, while low brittleness formations tend to have simple fractures. Several factors influence rock brittleness, including rock components, pore fluids and pressures, surrounding pressures, temperatures, and force evolution processes (QIN et al., 2016; MAKOWITZ and MILLIKEN, 2003; RICKMAN et al., 2008; ZHANG et al., 2017; CAO et al., 2021).
Seismic data inversion is the primary method used to guide practical production. It can be subdivided into three approaches: pre-stack inversion for wave velocity and density, direct inversion of brittleness-related elastic impedance, and inversion of elastic parameters using an anisotropic rock physics equivalent medium theory model. The normalized modulus of elasticity and Poisson’s ratio are widely used to calculate the brittleness index.
However, the definition and measurement of rock brittleness still require further research and new proposals. The lithology and mineral composition of rocks significantly influence brittleness, with minerals like dolomite, quartz, and feldspar exhibiting brittleness, while clays, rock fragments, and organic matter exhibit plasticity. The relationship between brittle mineral content and rock brittleness in different rocks remains an open question.
Although various methods exist to study brittleness, seismic data inversion is the primary method for practical applications. It can be performed through pre-stack inversion, which simultaneously obtains wave velocities, densities, and other parameters. The Aki–Richards approximation and the BI-Zoeppritz equation have been developed to extract the brittleness index directly from seismic data. Empirical formulas based on Young’s modulus and Poisson’s ratio, such as Eqs 1, 2, are commonly used for brittleness calculations, but they have limitations (Luan et al., 2014; LIU and SUN, 2015).
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Researchers have proposed alternative approaches integrating the mineralogy-based brittleness index (BIM) and elastic parameters (BIE) to interpret rock facies from elastic parameters in seismic inversion. Statistical petrophysical techniques and spatial constraints, such as Markov random fields and Markov chains, have been employed to enhance the accuracy and continuity of interpretation results.
In conclusion, rock brittleness plays a vital role in unconventional oil and gas exploration. It is necessary to develop more accurate methods to evaluate rock brittleness and better understand underground reservoir information. Seismic data inversion and the integration of different parameters show promise in improving the characterization of rock brittleness and facilitating practical applications (Mukerji et al., 2001; Avseth et al., 2005; Wang et al., 2019).
2 GEOLOGICAL BACKGROUND
The southeastern part of the Junggar Basin (Zhundong area) is located east of Urumqi, west of Mulei, south of Jimsar and Qitai, and north of Irinhebirgen Mountain. It is about 200 km long from east to west and 30 km–50 km wide from north to south (Sun, 2015). The research area is separated into two major blocks by the Bogda Mountains, located at the West Bogda perimeter and north of the East Bogda Mountains. The research area of Zhundong includes three seismic working areas: Qian 1 area, Mucan area and Qi 1 area.
The seismic data used in this thesis are from the Qian1 workings (Figure 1). It is located in the eastern part of the Shiqiantan Depression, with an area of 190 km2, and is a newly developed area with only one drilled well.
[image: Figure 1]FIGURE 1 | The distribution range of the Zhundong area.
There are 200–300 m high-quality hydrocarbon source rocks interspersed with dolomitic siltstone and siltstone in the middle and lower part of the Upper Permian Pingdiquan Formation in the northern part of the Zhundong area. The lithology is dense, with an average porosity of 5%–6% and permeability lower than 0.01 mD, and has long been regarded as a low-efficiency formation for exploration. In recent years, the industrial oil flow has been obtained in Huobei 2 well, Huobei 021 well, Huodong 1 well, and Shishu 1 well, which reveals the rich tight oil resources in the area with broad exploration prospects. The rock physical characteristics of Permian in the Zhundong area need to be clarified. The traditional brittleness prediction methods are weak, so new brittleness methods need to be developed by applying pre-stack information (Xiao, 2015).
3 BAYESIAN-BASED BRITTLENESS CALCULATION METHOD
Both the mean and covariance values were derived from petrophysical experimental data. Additionally, the samples obtained from these experiments were manually classified into two categories: shale and non-shale (Figure 2). To calculate the probability of shale and non-shale, we assign a brittleness value of 0 to shale and 1 to non-shale. The probability equations for non-shale and shale are as follows:
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[image: Figure 2]FIGURE 2 | Gaussian joint distribution of Young’s modulus and Poisson’s ratio for cores from the Zhundong area (A) and their marginal distribution (non-shale facies samples in the upper left; shale facies samples in the lower right) (B).
Here, the mean for the non-shale facies is [image: image], and the mean for the shale facies is [image: image]. The covariance matrix for the non-shale facies is [image: image], and the covariance matrix for the shale facies is [image: image].
In the Zhundong area, there are 29 petrophysical samples, with 21 classified as shale facies. Therefore, [image: image], and [image: image], based on the counts of samples.
Brittleness is calculated using the equation proposed by Rickman et al. (2008).
[image: image]
In Eq. 4, BI represents the brittleness index, [image: image] denotes Young’s modulus. [image: image] denotes Poisson’s ratio. [image: image] and [image: image] are the minimum and maximum values of Young’s modulus, and [image: image] and [image: image] are the minimum and maximum values of Poisson’s ratio. The equation normalizes Young’s modulus and Poisson’s ratio, assigning equal weight of 50% to each, to define brittleness. A higher value indicates greater brittleness and a higher likelihood of rock fracturing.
We propose a new brittleness equation:
[image: image]
where [image: image] denotes the newly defined brittleness. [image: image] denotes the normalization operator. [image: image] denotes the posterior probability of the non-shale facies. By adding one to both [image: image] and BI, we amplify the brittleness difference, as multiplication of values between 0 and 1 tends to reduce their product.
While seismic data-based assessments of Young’s modulus and Poisson’s ratio may lack accuracy, the petrophysical data obtained from laboratory cores is highly precise. However, as the Qian1 survey encompasses a new exploration area with only one well and six sampled cores, the obtained petrophysical parameters may not be comprehensive. To address this, we can consider using exploratory cores from other surveys in the same Zhundong area, such as the Mucan survey and the Qi1 survey, as reference. Integrating and cross-correcting petrophysical and seismic data through the Bayesian method enhances credibility and accuracy.
4 ACTUAL SEISMIC DATA APPLICATION
The integrated analysis of the data revealed that the main reservoir in the study area exhibits a distinctive “Double sweet spots” characteristic. This characteristic indicates the presence of two distinct zones within the reservoir that offer favorable conditions for hydrocarbon accumulation. The identification of these double sweet spots has significant implications for reservoir evaluation, production optimization, and resource management in the study area.
Figure 3 presents the application of a new brittleness value that exhibits the characteristics of a double sweet spots in the Qian1 survey, in contrast to the conventional Rickman brittleness measure. This new brittleness value offers improved insights into the rock formation under investigation. By comparing the slices depicted in Figure 4, the enhanced brittleness measure highlights a significant increase in differentiation between highly brittle rocks and less brittle rocks within the target horizon, surpassing the capabilities of the Rickman brittleness measure. Consequently, the new brittleness measure enables a more pronounced visualization of the target geology and provides a means to discern finer details within the horizon.
[image: Figure 3]FIGURE 3 | Comparison of conventional brittleness and new brittleness sections. (A) Qian1 well Rickman formula brittleness values at Inline1210. (B) Qian1 well non-shale facies values at Inline1210. (C) New brittleness values at Inline1210 Qian1 well. (D) Inline1210 Rickman formula brittleness value. (E) Inline1210 non-shale values. (F) Inline1210 new brittleness value.
[image: Figure 4]FIGURE 4 | Comparison of conventional brittleness and new brittleness slices. (A) Upper sweet spot Rickman brittleness maximum amplitude slice; (B) upper sweet spot new brittleness maximum amplitude slice; (C) lower sweet spot Rickman brittleness maximum amplitude slice; (D) lower sweet spot new brittleness maximum amplitude slice.
The utilization of the new brittleness value in the Qian1 survey is noteworthy due to its ability to identify a double sweet spots. A double sweet spots refers to a geological phenomenon where two distinct regions within a formation exhibit an increased likelihood of hydraulic fracturing success. By incorporating this feature into the brittleness value, the new measure assists in identifying and characterizing these favorable zones more effectively. This enhanced understanding of the formation’s double sweet spots distribution can be crucial in optimizing hydraulic fracturing operations and maximizing production.
The comparison of slices in Figure 4 further illustrates the advantages of the new brittleness measure over the conventional Rickman approach. The enhanced differentiation between highly brittle rocks and less brittle rocks within the target horizon allows for better identification and delineation of rock layers with varying degrees of brittleness. As a result, the new measure facilitates a more accurate representation of the target geology and enables geoscientists and engineers to make more informed decisions regarding well placement, fracture design, and overall reservoir management.
The improved visualization of details within the horizon provided by the new brittleness measure can have significant implications for reservoir characterization and production optimization. It allows for a more precise understanding of the geological heterogeneity within the formation, aiding in the identification of potential flow barriers, fracture network connectivity, and overall reservoir quality assessment. Furthermore, the increased resolution offered by the new measure aids in the interpretation of the depositional environment, lithology changes, and structural features, enabling a more comprehensive evaluation of the subsurface reservoir.
In summary, the introduction of the new brittleness value in the Qian1 survey demonstrates its ability to capture the characteristics of a double sweet spots, effectively highlighting favorable zones for hydraulic fracturing. Additionally, the enhanced differentiation between highly brittle and less brittle rocks within the target horizon, compared to the Rickman brittleness measure, enables a more prominent representation of the target geology and enhances the visualization of details within the formation. The improved understanding of the reservoir’s geological heterogeneity and enhanced characterization of the subsurface can significantly impact decision-making processes related to well placement, fracture design, and reservoir management strategies.
5 CONCLUSION
In this study, we have proposed a novel brittleness calculation formula by combining the Rickman brittleness formula with seismic data. This approach addresses the limitations of the Rickman formula, which solely relies on Young’s modulus and Poisson’s ratio. The research survey focused on a new zone with limited data, including only one exploratory well and scarce core data. To overcome this data scarcity, we leveraged existing well data from other surveys located in the southeast of Junggar Basin to determine the distribution patterns of shale and non-shale facies.
By utilizing a Gaussian joint distribution function, we successfully classified the seismic facies based on the determined patterns of shale and non-shale facies. The integration of facies classification with the Rickman brittleness results allowed us to obtain the new brittleness value, which provides a more comprehensive assessment of the target reservoir’s brittleness characteristics.
Importantly, we enhanced the reliability of the data by incorporating the core data from several wells located in the southeast of Junggar Basin. By processing the inverse performance of Young’s modulus and Poisson’s ratio using this extended dataset, we ensured the accuracy and reliability of the new brittleness formula.
The processing of actual seismic data demonstrated the superior performance of the new brittleness equation compared to the Rickman brittleness formula. The new approach effectively highlighted the target reservoir, enabling a more precise characterization and visualization of the brittleness distribution.
Overall, our findings emphasize the significance of integrating seismic data, facies classification, and reliable core data to improve brittleness analysis in exploration and production activities. The proposed method offers a valuable contribution to the field of reservoir characterization and decision-making processes. Its application has the potential to enhance hydraulic fracturing operations, optimize well placement, and maximize hydrocarbon production in similar geological contexts.
DATA AVAILABILITY STATEMENT
The original contributions presented in the study are included in the article/Supplementary Materials; further inquiries can be directed to the corresponding author.
AUTHOR CONTRIBUTIONS
ZL, JZ, YS, ZY, and RR contributed to the conception and design of the study. ZL processed the data, analyzed the results, and wrote the article. JZ statistically analyzed the data and wrote the paper. YS interpreted the seismic data and proofread the article. ZY and RR collected and processed seismic data. All authors contributed to the article and approved the submitted version.
FUNDING
This research is supported by the National Natural Science Foundation of China (NSFC) under the project “The Development Characteristics of the Low-order Fault System and its Genetic Relationship with the High-order Faults in Petroliferous basin—A case study of Jiyang Depression in Bohai Bay basin” (42072169).
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors, and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
REFERENCES
 Avseth, P., Mukerji, T., and Mavko, G. (2005). Quantitative seismic interpre-tation. Cambridge University Press. 
 Cao, D., Zeng, L., Lyu, W., Xiang, X., and Tian, H. (2021). Progress in brittleness evaluation and prediction methods in un-conventional reservoirs. Petroleum Sci. Bull. 01, 31–45. 
 Dai, R., Zhang, F., and Liu, H. (2016). Seismic inversion based on proximal objective function optimization algorithm. Geophysics 81 (5), R237–R246. doi:10.1190/geo2014-0590.1
 Liu, Z. S., and Sun, Z. D. (2015). New brittleness indexes and their application in shale/clay gas reservoir prediction[J]. Petroleum Explor. Dev. 42 (1), 117–124.
 Luan, X., Di, B., Wei, J., Li, X., Qian, K., Xie, J., et al. (2014). Laboratory measurements of brittleness anisotropy in synthetic shale with different cementation[C] in Proceeding of the 2014 SEG Annual Meeting (Denver: Society of Exploration Geophysicists), 3005–3009.
 Makowitz, A., and Milliken, K. L. (2003). Quantification of brittle deformation in burial compaction, frio and mount simon formation sandstones. J. Sediment. Res. 73 (6), 1007–1021. doi:10.1306/051003731007
 Mukerji, T., Avseth, P., Mavko, G., Takahashi, I., and González, E. F. (2001). Statistical rock physics: Combining rock physics, information theory, andgeostatistics to reduce uncertainty in seismic reservoir characterization. Lead. Edge 20, 313–319. doi:10.1190/1.1438938
 Qin, X. Y., Wang, Z. L., and Yu, H. Y. (2016). A new shale brittleness evaluation method based on rock physics and mineral compositions[J]. Nat. Gas. Geosci. , 27(10): 1924–1932. 
 Rickman, R., Mullen, M. J., and Petre, J. E. (2008). “A practical use of shale petrophysics for stimulation design optimization: All shale plays are not clones of the Barnett Shale[C],” in Proceeding of the SPE Technical Conference and Exhibition (Denver: Society of Petroleum Engineers). 
 Sun, Z. (2015). Structural features and Petroleum exploration prospective in dalongkou area of the northern Bogda mountain, xinjiang[J]. Geoscience (01), 45–53. 
 Wang, L., Zhang, F., Li, X-Y., Bang-Rang, D., and Zeng, L-B. (2019). Quantitative seismic interpretation of rock brittleness based on statistical rock physics. GEOPHYSICS 84, IM63–IM75. doi:10.1190/geo2018-0094.1
 Xiao, H. (2015). Study on High-resolution Sequence Stratigraphy of the Permian in the South and East Margin of the Junggar Basin[D]. Beijing: China University of Geosciences. 
 Yin, X., and Zhang, S. (2014). Bayesian inversion for effective pore-fluid bulk modulus based on fluid-matrix decoupled amplitude variation with offset approximation. Geophysics 79 (5), R221–R232. –R232. doi:10.1190/geo2013-0372.1
 Zhang, F. Q., Jin, Z. J., and Sheng, X. J. (2017). A direct inversion for brittleness index based on GLI with basic-pursuit decomposition. Chin. J. Geophys. 60 (10), 3954–3968. 
 Zhang, F., and Dai, R. (2016). Nonlinear inversion of pre-stack seismic data using variable metric method. J. Appl. Geophys. 129, 111–125. doi:10.1016/j.jappgeo.2016.03.035
APPENDIX
The basic Bayesian formula is
[image: image]
where m is the model parameter. d is the actual seismic data. [image: image] is the posterior probability. [image: image] is the likelihood function, usually Gaussian distribution (Yin and Zhang, 2014; Dai et al., 2016; Zhang and Dai, 2016). [image: image] is the prior distribution of the model variables. [image: image] corresponds to the probability of the data, which is normalized using a constant.
The Gaussian distribution equation is given by:
[image: image]
Assume that Young’s modulus E and Poisson’s ratio σ obey a joint Gaussian distribution, i.e.,
[image: image]
where [image: image] represents the covariance function, which must be symmetric and have positive terms. The symbol “∼” indicates that the variables are distributed accordingly.
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Ultra-deep carbonate fault-controlled reservoirs are characterized by large burial depths, low dissolution degrees, strong heterogeneity, and limited effective well data. Accurate 3D characterization based on seismic data is essential for efficient development of this type of reservoir. However, traditional seismic prediction methods are insufficient to accurately characterize different reservoir levels in the exploration and development of fault-controlled ultra-deep reservoirs. We propose a set of improved multi-level characterization methods for fault-controlled reservoirs. The improved methods could recover seismic information obscured by strong reflections and reduce the uncertainty of seismic interpretation. This study combined seismic strong reflection suppression and sedimentary strata seismic reflection interference elimination, proposed improved inversion methods, and advanced attribute calculation methods to improve the identification accuracy of reservoirs. In particular, we proposed the karst cave carving method based on improved inversion method and karst cave enhancement algorithm, the dissolved pore zone identification method based on optimization energy envelope algorithm, and the fault-fracture zone characterization method based on optimized atomic decomposition texture contrast. These methods were thoroughly validated by theoretical 3D models and field data. The proposed multi-level characterization methods can effectively improve the identification accuracy of fault-controlled karst reservoirs, provide a benchmark for predicting similar strong heterogeneous carbonate reservoirs, and provide reliable support for further facies modeling.
Keywords: fault-controlled karst, ultra-deep carbonate reservoirs, multi-level identification methods, Shunbei field, strike-slip fault
1 INTRODUCTION
Carbonate fault-controlled reservoirs are a type of reservoir formed by multi-stage tectonic evolution and fluid dissolution, characterized by caverns, dissolution pores, and fractures of different stages and levels (McDonnell et al., 2007; Jhosnella et al., 2012; Li et al., 2016). Although carbonate karst reservoirs are rare worldwide, they hold a significant amount of oil and gas resources (Soudet et al., 1994; Dembicki and Machel, 1996; Loucks et al., 2004; Chen et al., 2005; Janson et al., 2010; Ning et al., 2022). For example, in the Tarim Basin in western China, Ordovician paleokarst oil and gas resources account for 72.84% of the total basin resources (Yang et al., 2007). In addition, numerous carbonate karst oilfields such as Tahe, Lunnan, and Tazhong have been discovered in the Tarim Basin (Liang, 2008; Zhai and Yun, 2008). Many significant oil and gas discoveries in the Tarim Basin in recent years have been fault-controlled karst reservoirs, emphasizing the need to explore ultra-deep fault-controlled karst reservoirs. Due to continuous exploration and research in geology, geophysics, drilling, logging, testing and other relevant theories and technologies, remarkable exploration progress has been made in the deep and ultra-deep (7,200–8,000 m buried depth) Ordovician carbonate system in the Tarim Basin and similar other geological provinces (Khan et al., 2020a; Khan et al., 2020b). Ordovician oil and gas resources in the Shunbei field are estimated to have a total of 1.7 billion tons (Ma et al., 2022).
Well data in the target zone of fault-controlled karst reservoirs are limited due to technical factors such as drilling fluid leakage or drilling tool loss, and drilling depth is often limited to the surface layer. Nevertheless, these reservoirs usually exhibit significant vertical extent and diversity (Smosna et al., 2005; Qi and Yun, 2010; Deng et al., 2018; Li et al., 2019). Therefore, characterization methods based on 3D seismic data are crucial for understanding fault-controlled karst reservoirs. In the exploration and development of fault-controlled karst reservoirs, emphasis is now placed on accurately characterizing the spatial location and quantitatively describing the different reservoir types, which is a challenging task. Several studies have been conducted to investigate the techniques for characterizing these reservoirs, including the use of seismic properties such as amplitude variation rate, peak frequency amplitude, P-impedance, waveform classification, coherent volume, and curvature, among others (Hardage t al., 1996; McMechan et al., 2002; Han et al., 2006; Zhao et al., 2010; Wang et al., 2014; Burberry et al., 2016). However, in locations with significant epigenic dissolution, such as the Tahe field, these strategies are most effective. Recent studies have also investigated the characterization of ultra-deep fault-controlled karst reservoirs in the Shunbei field, describing large caves with facies-controlled P-impedance or instantaneous energy, describing dissolution pores with amplitude variance and discontinuous properties (such as coherence and semblance), and identifying fault and fracture zones with gradient structure tensor or fault-likelihood (Li et al., 2020; Liu et al., 2020; Wen et al., 2020; Liu et al., 2021).
3D seismic characterization methods for ultra-deep karst reservoirs in Shunbei are now showing potential. However, current approaches still have drawbacks. The reservoirs are often buried very deeply and the accuracy of seismic reflection imaging of the target layer is limited. Additionally, due to weak epigenic karstification, the seismic reflection of the reservoir is susceptible to interference from strong seismic reflection and the sedimentary stratigraphic reflection, resulting in a high degree of multi-solution. In order to solve the above problems, our research has innovated the methods of identifying the ultra-deep fault-controlled reservoirs, which includes the following points: We have constructed a new inversion objective function based on an optimized low-frequency model, which improves the accuracy of P-impedance inversion and provides a high-quality database for subsequent large cave identification; In order to further improve the accuracy of cave identification, we created a three-dimensional sedimentary strata parameter calculation method as well as a nonlinear expression, which led to another very significant improvement in the accuracy of cave identification; Based on the energy envelope algorithm, phase transformation processing and sedimentary strata suppression algorithm, we constructed an expression to find the dissolved pore and fracture zones, which effectively reduces the interference effect of sedimentary strata on the identification of the dissolved pore and fracture zone and makes the calculation results describe the real location of the target; Through the study, we proposed to use the matching pursuit algorithm in the wave decomposition process, which can effectively suppress the interference of strong seismic reflections, and combined with the improved texture attributes and PCA optimization processing method to effectively improve the identification of the fracture zone. The efficiency of the proposed methods has been demonstrated through forward modeling studies and field applications in the Shunbei area.
2 GEOLOGY AND STRATIGRAPHY
The Shunbei area is located in the hinterland of the Tarim Basin to the northwest of the Shuntuogole Low Uplift (Qi, 2020) (Figure 1A). The Shunbei field is a typical ultra-deep oil and gas reservoir. The main target formation is located at a depth of more than 7,800 m. The Tarim Basin is located on the northwest side of China’s Qinghai-Tibet Plateau, south of the Junggar Basin. It is a large kratonic basin in western China. The overall topography of the Tarim Basin is high in the west and low in the east, with an area of 56 × 104 km2, making it the largest inland basin in China. The Shunbei field is bounded to the east and west by the Manjiar and Awati depressions. It is bounded to the south and north by the Tazhong and the Tabei uplifts. Apart from the absence of Jurassic deposits, the stratigraphy of the area is well developed. The Cambrian-Middle Ordovician has stable shallow-water carbonate platforms that provide the basis for the formation of fault-controlled reservoirs. In the Shunbei field, the oil and gas exploration and development targets are the Yijianfang and Yingshan formations of the Ordovician strata. The Ordovician strata are divided from bottom to top into the Penglaiba (dolomite), Yingshan (sandy dolomite), Yijianfang (sandy dolomite), Qiaerbake (sandy dolomite), LiangliTahe (sandy dolomite), Santamu (sandstone) and Kepingtage (mudstone) formations (Figures 1B, D).
[image: Figure 1]FIGURE 1 | Geological and tectonic background. (A) Main tectonic units in the Tarim Basin (modified from Deng et al., 2019); (B) Stratigraphic succession, seismic horizon and lithology of the Shunbei Oilfield; (C) Location and structural setting of the Shunbei area; (D) Typical seismic profile and seismic horizon.
The Shunbei field has undergone multi-stage tectonic evolution and karstification stages (Figure 1C). At the end of the Middle Ordovician, the Tabei and Tazhong uplifts began to rise, the stable carbonate platform in the Tarim Basin began to diverge, and the ShuntuoguoLe Low Uplift began to form; At the end of the Late Ordovician, the Tabei and Tazhong uplifts were again strongly uplifted, and the ShuntogoLe Low uplift was again strongly subsided and finally formed. Small to medium scale strike-slip faults of different levels and orientations are developed in the ShuntuoguoLe Low Uplift. Subsequently, the ShuntuoguoLe Low Uplift has long been located in a stable tectonic part of the Tarim Basin hinterland, maintaining long-term stable overall subsidence. Pre-existing strike-slip faults have undergone multiple phases of inherited strike-slip resurgence, but the overall tectonics has not changed. As a result, the reservoir characteristics and reservoir types in the Shunbei field are extremely diverse. In contrast to the Tabei uplift, the structural position of the Shunbei field has long been relatively low. Both the degree of regional unconformity and epigenetic karst are both relatively underdeveloped. Large-scale strike-slip faults significantly control the distribution of oil and gas reservoirs. The reservoir space consists primarily of a fracture-cave system formed by structural faults (including large caves, structural fractures and structural breccia fractures). There are also secondary reservoirs such as dissolution cavities and pores developed along faults and fractures. Most of the reservoirs are distributed along the main strike-slip fault zone (Qi, 2020; Yun, 2021; Ma et al., 2022).
3 RESERVOIR SPACE TYPES OF FAULT-CONTROLLED KARST RESERVOIRS
During the formation of strike-slip faults, the stress field and fluid dissolution are mainly responsible for the formation of the reservoir space of the Shunbei target layers. The most severe rock damage occurs in the core of the main fault under the influence of stress. As the fault expands from its center to its sides, the breccia zone eventually changes into the fracture fragmentation zone, followed by the tight surrounding rock. Under the effects of stress and fluid dissolution, the breccia and fracture spaces can further expand to form additional reservoir spaces, including large caves, fault cavities, and fracture cavities.
Based on typical outcrops (Figure 2A), well data, and seismic characteristics (Figure 2B), reservoirs in the study area can be divided into three categories: large cave zone (red area in Figure 2C), dissolved pore and fracture zone (yellow area in Figure 2C), and fault-fracture zone consisting of inter-gravel fracture, intra-gravel fracture, and tectonic fractures (pink area in Figure 2C) (Li et al., 2019). According to drilling and geological studies, high-quality fault-controlled reservoirs are typically developed along main faults. Different reservoir types are combined and superimposed. Due to engineering reasons, it is often difficult to obtain logging curves of fault-controlled reservoirs. Consequently, drilling fluid leakage and the tool loss are often used as important indicators of reservoir quality. The large cave zone is characterized by a large decrease in P-wave velocity, a significant change in the drilling time curve, and a predominance of “beaded reflection” or “cluttered weak reflection” in the seismic reflection. The dissolved pore and fracture zone is characterized by a modest drop in P-wave velocity, an anomalous drilling time, and a predominance of “chaotic reflection” in the seismic reflection. As for the fault-fracture zone, it is typically characterized by an anomalous discrepancy in resistivity values between deep and shallow curves, minor changes in drilling time curves, and a more chaotic seismic reflection with a wider spatial spread. The goal of this research is to develop effective and reliable new methods for fault-controlled karst reservoir identification that will increase precision and reduce uncertainty. The faults in Figure 2 are calculated using deep learning and are not the focus of the methods addressed in this research.
[image: Figure 2]FIGURE 2 | Outcrops and geological model cross-section of the fault-controlled karst reservoir in the Shunbei field. (A) Outcrops; (B) Seismic data; (C) Different reservoir zones in the Shunbei field.
4 DATA AND IMPROVED METHODS
This research investigates the identification of ultra-deep fault-controlled karst reservoirs by integrating outcrop, logging, drilling, and seismic data. The 1 Zone and 5 Zone in Shunbei are selected for case study. The Ordovician Yijianfang Formation and Yingshan Formation are the target strata, with burial depths exceeding 7,800 m. By utilizing the obtained high-precision 3D seismic data and guided by well data and geological knowledge, this study establishes combined well-seismic methods for the identification of multi-level fault-controlled karst reservoirs.
4.1 Well and seismic data
In the Shunbei 1 and 5 zones of the study area, the Yijianfang Formation and the Yingshan Formation have 3 wells with conventional logging curves, such as density, P-wave velocity, gamma and resistivity curves, which can be used to analyze reservoir properties. Moreover, 31 wells provide information on the location of drilling fluid leakage or lost drilling tool, a critical factor for effective reservoir identification (Duan et al., 2020).
The observed seismic data in the study area has a bin size of 25 m × 25 m, a sample interval of 1 ms, and a dominant seismic frequency of 19 Hz. The seismic frequency is mainly distributed between 7 and 40 Hz. In order to more accurately depict the distribution of the reservoirs, this study applied a deep learning algorithm to interpret the faults. The main geological horizons are T74, T76, T78, T80, and T81 (Figures 1B, D). In order to effectively identify the Shunbei fault-controlled karst reservoirs, a variety of reservoir identification methods have been improved and applied with satisfying results. In this section, the optimization methods are elaborated.
4.2 Identification method of large cave zones
Generally, large caves form at the end of the dissolution process, as a result of the dissolution of tight limestone by surface water or deep hydrothermal fluids along faults. The longer the period of dissolution, the greater the potential for the formation of large caves. During tectonic evolution, some of these cavern reservoirs may be subsequently filled. Depending on the amount of filling, caverns can be further categorized as either unfilled or filled. Unfilled caves provide a high-quality reservoir space. When drilling this type of reservoir, drilling fluid leakage and drilling tools loss are possible. Under the influence of flowing water and gravity, certain caverns frequently fill with sediments, typically a complex mixture of sand and mud. The intergranular pore is the primary reservoir of the cave.
There are generally two types of seismic identification methods for large karst caves. The first is an attribute calculation-based identification method (Cheng et al., 2020), which directly extracts attributes from observed seismic data. This method is simple and convenient, and it fully respects the seismic reflection. However, it is also prone to errors in the location, number, and volume of identified caves due to the influence of the wavelet. The second method is an inversion of geological parameters, which can eliminate the wavelet effect to restore the cave position and achieve a more accurate cave volume (Hamid, et al., 2018; Li et al., 2020; Liu et al., 2020). However, for the Shunbei karst reservoirs with low dissolution degree, the conventional inversion of the karst cave reflection is easily confused with the strong stratigraphic reflection, resulting in low imaging accuracy (Figure 3). The inverted P-impedance in Figure 3B is obtained from the seismic data in Figure 3A. In Figure 3B, the bright yellow color indicates low impedance. Because karst caves are more porous than the surrounding rocks, their velocity and density are lower, resulting in a drop in P-impedance. The arrows in Figure 3B show that the caves are submerged due to the low impedance interference from the stratigraphic reflection, making it difficult to distinguish their shapes.
[image: Figure 3]FIGURE 3 | Conventional P-impedance inversion result profile. (A) Seismic reflection amplitude; (B) Inverted P-impedance obtained by conventional inversion.
To solve the problem that conventional inversion methods are difficult to accurately characterize large caves, a new cave identification method is proposed in this study. The improvements cover three aspects. First, a low-pass filter term is constructed using the Hanning window function and Fourier transform. The new term can optimize the objective function of the inversion, thus improving the accuracy of the inversion results. Second, based on the joint constraint of well logging and seismic attributes, an improved low-frequency model is constructed to ensure accuracy and characterize the lateral heterogeneity features. This provides an optimization constraint for the improved inversion method. Third, a background interference reflection suppression calculation method is established to realize the extraction of background interference reflection based on the dynamic window, on which the nonlinear transformation equation is constructed to obtain high accuracy identification results of large caves.
4.2.1 Improved impedance inversion method
Impedance inversion methods can be classified into two categories: stochastic statistical inversion and deterministic inversion. The accuracy of the former is highly dependent on the quantity and quality of logging data. However, there are few P-impedance curves in fault-controlled reservoir target layers. Stochastic statistical inversion tends to generate high-frequency deviations, making it difficult to achieve ideal results. In this study, the deterministic inversion method was chosen for P-impedance inversion, and the traditional inversion objective function is as follows:
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In Eq. 1, [image: image] is the inversion objective function; [image: image], [image: image] and [image: image] are seismic data constraint, sparse constraint and low-frequency information constraint terms, respectively; [image: image], [image: image] and [image: image] are hyper parameters of three constraint terms, respectively. Eq. 2 is the low-frequency constraint term, [image: image] is the low-frequency P-impedance model, [image: image] is inverted P-impedance, and [image: image] is the hyper parameter of the low-frequency P-impedance model. The mathematical meaning of Eq. 2 is to minimize the two norms of the inverted parameters and the low-frequency model. This method allows the inverted parameters to be obtained directly with low-frequency information, without the need for additional low-frequency compensation steps. The hyper parameter [image: image] controls the weight of low-frequency model component compensation. When the value of [image: image] is high, low-frequency compensation is increased. Conversely, when the value of [image: image] is modest, it indicates a reduction in low-frequency compensation. This method is very sensitive to the value of [image: image]. Usually, the selection of [image: image] depends mainly on the interpreter’s experience and continuous iterative debugging (Ma and Sun, 2018). This method is not only susceptible to human factors, but also has inefficient. To address this issue, this paper proposes an improved low frequency constraint term [image: image] for the construction of low-frequency constraints. The expression is:
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In Eq. 3, [image: image] is a diagonal matrix composed of Hanning window functions; [image: image] and [image: image] are positive and negative Fourier transforms, respectively; [image: image] and [image: image] are matrices that extend the inversion window in reverse, which can reduce truncation artifacts. The product of these items acts as a filter for the inverted parameters, making the low-frequency model to constrain the low-frequency components of the inverted parameter. The modified constraint can reduce sensitivity of the hyperparameters to the objective function. The remaining parameters are identical to those in Eq. 2. The low-frequency model is based on the logging data and seismic data. Specifically, it is achieved by analyzing the mid-low frequency components of the logging data and the relative impedance data obtained from the seismic data. It is then possible to compute the mapping relationship between the well and the seismic. Using this mapping relationship, the relative impedance data can be converted to the low frequency model.
4.2.2 Enhancement and optimization of cave characterization
The heterogeneity of the reservoirs can be highlighted by the new P-impedance inversion method. However, there are still low-impedance anomalous disturbances from sedimentary strata near the reflections from karst caves. The use of a single threshold value in cave detection can lead to an illusion. To further improve the accuracy of karst cave detection, a background interference reflection suppression calculation is proposed to eliminate the interference.
First, mathematical methods are employed to obtain the background trend of a 3D data volume. The karst cave reflection can be obtained by separating the P-impedance background trend from the inverted P-impedance. The calculation of background trend analysis has been applied to coal seam contours mapping, surface chemical exploration, and structural horizon trend calculation, etc. These situations all focus on processing 2d horizons. Typically, 2D trend horizons are fitted using polynomials. However, the 2d trend horizon fitting polynomials cannot be directly used to obtain the 3D background trend. To address this issue, this paper proposes a 3D background trend calculation method. The specific methodologies of calculation are as follows:
Under the constraints of the stratigraphic framework, point [image: image] is picked as the 3D window’s center. The X-axis, Y-axis and Z-axis directions of the 3D matrix are set with [image: image], [image: image], and [image: image] samples respectively. [image: image] is the entire number of samples contained in the 3D window. The [image: image] samples contained within the 3D window are then rearranged according to their values [image: image]. The window’s median value is [image: image], and the background trend value of point [image: image] is [image: image].
Using the above method, the background trend data ([image: image]) of the inverted P-impedance ([image: image]) can be calculated. Karst cave reflection can be calculated by subtracting [image: image] from [image: image]. To further highlight the karst cave reflection, an exponential operation is used to optimize the cave identification. Specifically, the equation is as follows:
[image: image]
In Eq. 4, [image: image] is the predicted caves. [image: image] is the scaling factor, which can be debugged according to the study field.
4.3 Identification method of dissolved pore and fracture zones
Around caves and faults, it can be seen from the outcrop that there are associated dissolved pore and fracture zones. These zones are formed primarily by the dissolution and widening of small-to medium-sized fractures on either side of strike-slip faults. This type of reservoir consists of dissolved pore and fracture networks. Its distribution is controlled by strike-slip faults, which serve as both reservoir space and communication channel (Cheng et al., 2020). Therefore, for a comprehensive analysis of fault-controlled reservoirs, it is crucial to correctly identify this reservoir type. This section focuses on the identification of this type of reservoir and proposes a modified method to improve the accuracy of the identification.
Due to the influence of pores and fractures, the seismic reflection of dissolved pore and fracture zones typically displays anomalies. These anomalous responses can be amplified by the energy envelope ([image: image]). The equation is as follows:
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In Eq. 5, [image: image] is the real part obtained by Hilbert transformation of seismic data, and [image: image] is the imaginary part.
Due to the strong influence of the sedimentary strata and the unconformity surface, it is impossible to precisely define the boundary of the dissolved pore and fracture zones. This can lead to interference responses, which may result in overestimation of the volume of this type of reservoir. In order to diminish the interference caused by the sedimentary strata and the unconformity surface, the background trend suppression method proposed in Section 4.2 is still utilized to optimize the seismic data and eliminate the interference. The phase shift transformation is then applied to restore the exact location of the characteristic reservoir. Based on Eq. 5, the energy envelope ([image: image]) reflecting the dissolved pore and fracture zone is then calculated. The exact expression is:
[image: image]
In Eq. 6, [image: image] is the seismic background trend derived from seismic data [image: image]. [image: image] stands for the phase transformation calculation. [image: image] and [image: image] represent the real and imaginary components of the seismic data after background suppression, which is attained using Hilbert transform.
4.4 Identification method of fault and fracture zones
During the formation of strike-slip faults, tectonic stress and fluid dissolution result in the formation of fault-fracture zones consisting of micro-fractures. These percolation-capable zones form primarily around the main faults. The fault-fracture zones serve as vital flow channels for reservoirs. Their distribution characteristics have a significant impact on the extent of karst reservoirs. The seismic events of the fault-fracture zones are often chaotic and irregular (Figure 2). By precisely characterizing the fault-fracture zone, one can not only determine the extent of the fault-controlled reservoir, but also effectively constrain its interior description and reservoir modeling.
Interior fault characteristics of fault-controlled reservoirs are typically described using conventional fault attributes (e.g., coherence, curvature, etc.). For instance, the eigenvalue coherent is sensitive to discontinuous seismic events, and its recognition results are often linearly distributed, which is insufficient to accurately describe the distribution of fault-fracture zones. The structural tensor algorithm is extensively used to address the problem of fault-fracture zone identification in the Shunbei field (Li et al., 2020; Liu et al., 2020). In the case of high degree of dissolution, the detection performance of the gradient structure tensor is better. However, the region of the Shunbei field with low degree of dissolution is strongly influenced by strong seismic reflection events. The structural tensor data can only partially describe large karst caves with low dissolution, as demonstrated by the practical application. To address the problem of fault-fracture zone identification, this study proposes a method that improves the detection accuracy of fault-fracture zones and is applicable to fault-fracture bodies with different degrees of dissolution.
Figure 2 clearly demonstrates that the seismic reflection of the fault-fracture zone is disorganized. Texture is a measure that reflects the uniformity or smoothness of the target. Texture roughness can characterize disorganized features in terms of texture feature analysis. The coarser the texture, the more developed the fracture zone. In characterizing the spatial relationship and amplitude pattern of seismic data, the gray level co-occurrence matrix algorithm (Gao, 2011) can extract texture features from seismic data. In this research, this algorithm has been applied to the detection of fault-fracture zones.
The gray level co-occurrence matrix texture feature algorithm considers the seismic amplitude as the gray level of the image, and various amplitude values correspond to pixels of different gray levels (Gao, 2003). If the amplitude of seismic data with a given window range is divided into [image: image] different grades, it can be considered to have [image: image] different gray levels. The selection of [image: image] is primarily determined by the numerical distribution of the seismic amplitude and the required resolution. Consequently, each amplitude unit in 3D seismic data [image: image] ([image: image] are the spatial positions of the data point in the 3D seismic amplitude matrix) can be mapped to one of [image: image] different gray levels, each of which has a unique digital representation. For example, the gray level ranges from 0 to 15 when [image: image] is 16, allowing digitization of the grayscale matrix and generation of the 3D grayscale texture matrix [image: image].
Based on the grayscale texture matrix [image: image], the gray level co-occurrence matrix [image: image] can be obtained along the [image: image], [image: image], and [image: image] axes. The size of the gray level co-occurrence matrix is [image: image]. For example, in the x-axis direction, the data in the [image: image] th row and [image: image] th column of [image: image] represent the number of times in the x-axis direction that a grayscale sample point [image: image] and a grayscale sample point [image: image] in the [image: image] are adjacent. In other words, the gray level co-occurrence matrix records the adjacent frequency of each pair of grayscale data. The gray co-occurrence matrix [image: image] along the x-axis can be calculated using this method. Since the data points are adjacent, the calculated gray level co-occurrence matrix is axisymmetric, and the matrices [image: image] and [image: image] along the y-axis and z-axis can be obtained in the same way.
When the difference between [image: image] and [image: image] is larger, it implies that the heterogeneity of the seismic is more heterogeneous and the fault-fracture zone is more developed. In the principal diagonal of [image: image], the ability to characterize heterogeneity is weakest. The ability to characterize heterogeneity increases progressively from the principal diagonal to both.
In order to further optimize the ability of gray-level co-occurrence matrix to characterize heterogeneity, a grayscale texture contrast algorithm is presented in this research. On the basis of the calculated gray level co-occurrence matrix [image: image], the contrast weight coefficient [image: image] is multiplied by each item at different positions in the matrix. In particular, at the principal diagonal position [image: image], which represents adjacent sample points with the same gray level, the contrast weight coefficient is 0, indicating that there is no contrast. If the difference between [image: image] and [image: image] is 1, the contrast weight is 1. If the difference between [image: image] and [image: image] is 2, the contrast weight is 4. As the value of [image: image] increases, the contrast weight increases exponentially. The specific equations of the grayscale texture contrast [image: image] are:
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In above equations, [image: image], [image: image], and [image: image] are the numbers of seismic data sampling points along the [image: image], [image: image], and [image: image] axes, respectively. [image: image] denotes the maximum probability of obtaining a specific data pair in the 3D grayscale texture matrix. The grayscale texture contrast value at the center point of the 3D seismic data can be obtained using Eq. 7.
There are still issues, although the fact that the grayscale texture contrast method can effectively characterize the distribution of fault-fracture zones. The interference is caused by the strong seismic reflection shielding effect of the T74 unconformity surface. Typically, the observed seismic reflection events consist of a group of compound harmonics. The effective reflection in the lower part of the reservoir is obscured by the strong seismic reflection of the unconformity interface. Consequently, it is challenging to identify the fault-fracture zone. In order to extract effective data from seismic data and suppress the shielding effect, we explored a set of methods for optimizing the observed seismic. Wavelet decomposition is a seismic attribute analysis technique based on waveform characteristics. It can transform seismic data into the frequency domain and decompose the original seismic data into a series of wavelets with varying shapes and dominant frequencies (Zhu et al., 2016). These series of wavelets can be considered as atoms of seismic data. Their equations are as follows:
[image: image]
In Eq. 11, [image: image] denotes the amplitude of the [image: image] th atom [image: image]; [image: image], [image: image], [image: image] are the frequency, central position and phase of each atom, respectively; [image: image] represents the interference noise.
Atoms can be extracted using Morlet wavelet, Gaussian function, Hamming window function, Hanning window function, etc. This paper employs the matching pursuit method (Sinha, et al., 2005; Yang et al., 2021). The matching pursuit method not only improves the resolution in the frequency domain, but also in the time domain. It is able to perform the atomic decomposition of seismic waves and extract the effective information from them, thereby reducing the shielding effect of strong reflection events. Texture contrast attribute for fault-fracture zone identification can be calculated based on strong seismic reflection suppression. However, due to a certain amount of noise interference after the strong seismic reflection suppression, the subsequent predictions still contain anomalous responses. The reason is that these interference noises are confused with fractures when calculating the fault-fracture zone, which leads to errors. To solve this problem, the interference noise was reduced using the Principal Component Analysis (PCA) algorithm after strong seismic reflection suppression. The fault-fracture zone was then calculated using the data that after strong seismic reflection suppression, PCA denoising and texture contract calculation.
5 RESULTS
In order to verify the effectiveness and applicability of the new method developed in this study, it was tested and applied based on the forward numerical model as well as the field observation data of the Shunbei area. This section is divided into four parts, the first to third subsections include the comparison of the results obtained by our proposed new method for the identification of large cave zones, dissolved pore and fracture zones, and fault-fracture zones with those calculated by conventional methods. The last subsection shows the effect of applying the new method of comprehensive use of multi-scale identification to the field data in Shunbei area. In each of these sections, the application effect of each method is discussed in detail.
5.1 Large cave zones
To evaluate the effectiveness of the P-impedance inversion method proposed in Section 4.2.1, data from a research area in the Shunbei 1 Zone were selected (Figure 4A). Figures 4B, C compare P-impedance inversion results before and after improvement. The well point in Figure 4 is the measured P-impedance curve. In comparison, the conventional inversion results show obvious low-frequency banding effects (black circles in Figure 4B). However, for fault-controlled reservoirs with strong heterogeneity and few well data, this method reduces the ability to characterize reservoir heterogeneity and easily obscures details of lateral changes. If the reservoirs are identified based on these inversion results, there will be a significant error in reserve estimation. In contrast, the new method can more accurately reflect the characteristics of caves (Figure 4C). The new inversion results are more consistent with geological understanding. To quantify the new inversion method, a cross plot analysis of the measured P-impedance (y-axis data in Figures 4D, E) and the inverted P-impedance (x-axis data in Figures 4D, E) was performed. The measured data in Figures 4D, E are the logging data after filtering and resampling to the seismic frequency range. The inverted P-impedance is extracted from the pseudo wells. It can be seen that the distribution of the two is basically in the range of the 45° slope in Figure 4E. The correlation coefficient between measured and inverted data based on the new method is 0.86971 (Figure 4E), while the correlation coefficient based on the conventional method is 0.582894 (Figure 4D). The new inversion method provides reliable data for subsequent characterization of karst caves.
[image: Figure 4]FIGURE 4 | Comparison of P-impedance inversion results before and after improvement. (A) Seismic; (B) Inverted P-impedance by conventional inversion; (C) Inverted P-impedance by the improved method; (D) Crossplot of the measured logging data and the conventional P-impedance inversion results; (E) Crossplot of the measured logging data and the improved P-impedance inversion results.
To verify the effectiveness of the proposed cave identification method, we constructed a 3D karst cave model based on the observed data from the Shunbei field (Figure 5A). The model includes feathers of karst caves and sedimentary strata. The arrows in Figure 5A indicate the locations of the karst caves. To create the synthetic seismic records, the reflection coefficient was calculated using this geological model and convolved with a wavelet with a dominant frequency of 25 Hz (Figure 5B). According to the synthetic records, caves developing at the top of the target layer are easily obscured by sedimentary strata (inside the black ellipse). Figure 5C illustrates the inverted P-impedance derived from the seismic in Figure 5B. The inverted results improve the resolution of the caves compared to the seismic reflection, but are still affected by the low impedance of the sedimentary strata. For instance, as shown in Figure 5C, the shallow low impedance stripe response interferes with the reflection of the caves within the red ellipse, making it difficult to discern the contour of the caves. When carving the cave with the threshold value, the response of the cave inside the yellow ellipse is more susceptible to removal than that of the shallow low-impedance strip. This problem may cause the following cave identification to be incorrect. Figure 5D presents the [image: image] as determined by the method described in Section 4.2.2. Figure 5E is the difference between the inverted [image: image] (Figure 5C) and [image: image] (Figure 5D). The region of low-impedance in the figure indicates the karst caves. Figure 5F shows the caves ([image: image]) predicted by Eq. 4. Comparing Figures 5C, E, it is clear that the accuracy of cave identification in Figure 5E has been significantly improved, especially for the cave zones marked in the figure. Comparing Figures 5A, F, it is clear that the method proposed in this paper can accurately characterize the location of caves.
[image: Figure 5]FIGURE 5 | 3D model cross-section of karst caves. (A) Geological model; (B) Synthetic seismic data; (C) Inverted P-impedance; (D) P-impedance background trend; (E) P-impedance with background interference suppression; (F) Predicated karst caves.
To further verify the applicability of the proposed method, an application area in the Shunbei field was selected. The Shunbei field has a lower degree of dissolution than the Tahe field, and its fault-controlled reservoirs are more developed. In addition, the cave reflection in the Shunbei field is weaker than that in the Tahe field, making it more susceptible to being confused with the reflection of sedimentary strata. Figure 6 shows a cross section of the Shunbei 5 Zone through a well. In the figure, the black curve represents the well trajectory. The green markers indicate the location of drilling fluid leakage, indicating the presence of reservoirs. Figure 6A shows the seismic reflection amplitude data. Figure 3B shows the conventional inverted results. Figure 6B shows the P-impedance obtained with the new inversion method. Comparing Figure 6B to Figure 3B, the new method provides more information and can more accurately represent horizontal heterogeneity. The bright red color in Figure 6B indicates a low-impedance value, revealing that the response of the caves is obscured by the low-impedance of the sedimentary strata (as indicated by the arrows in Figure 6B). And the exterior contours of the caves are difficult to identify. Figure 6C shows the cave results predicted by the new identification method. The results are in excellent agreement with the reservoir position revealed by the drilling data. In addition, the caves are concentrated around the main faults, and their size gradually decreases from the shallow to the deep target layer, which is consistent with geological theory.
[image: Figure 6]FIGURE 6 | Comparison of the application effect of karst caves identification method in field data. (A) Seismic amplitude reflection; (B) Inverted P-impedance obtained by the improved method; (C) Predicated caves by new method.
The theoretical model test and the field case demonstrate that the novel method effectively suppresses background interference and more accurately describes the boundaries of caves. The characteristics of the cave distribution are consistent with geological knowledge, thus validating the feasibility and effectiveness of the proposed method.
5.2 Dissolved pore and fracture zones
A 3D dissolved pore and fracture equivalent model was added to the model in Figure 5A with reference to the measured data (Figure 7A). The red dashed line indicates the extent of the dissolved pore and fracture zone. Figure 7B shows the synthetic seismic. A comparison of Figure 7B and Figure 5B shows that when the dissolved pore and fracture zones are added, the seismic events become more chaotic and the amplitude energy varies to different degrees. Figure 7C shows the energy envelope derived from the seismic data in Figure 7B. Figure 7C shows that although the non-optimized energy envelope can identify the spatial location of the dissolved pore and fracture zones to some extent, there are still errors in the identification results (white arrows in Figure 7). For instance, the reservoir near 4,600 ms is affected by the upper lithologic interface and its boundary cannot be accurately characterized. In addition, the response of the reservoir near 4,650 ms is obscured by the interference of the sedimentary strata. In addition, the reservoir response near 4,700 ms is comparable to the energy level of the sedimentary strata near 4,650 ms. If a single threshold is used, these errors would lead to an inaccurate description of the distribution of dissolved pore and fracture zones in subsequent modeling. Figure 7D shows the results of the improved energy envelope. The range of dissolved pore and fracture zones derived by the new method is consistent with the theoretical model in Figure 7A, effectively reducing the interference of the lithologic interface and sedimentary strata. Thus, it is possible to characterize the spatial distribution range of 3D dissolved pore and fracture zones using a single threshold.
[image: Figure 7]FIGURE 7 | Comparison of the dissolved pore and fracture zone identification results based on theoretical models. (A) Theoretical model; (B) Synthetic seismic; (C) Non-modified Energy envelope; (D) Modified energy envelope.
Figure 8A shows the seismic data of the Shunbei field, and the black part of the figure is the strike-slip fault identified based on the deep learning algorithm. Figure 8B shows the non-improved energy envelope derived from the seismic data shown in Figure 8A. Figure 8C shows the improved energy envelope. As shown in Figures 8B, C, it is obvious that the improved method can more accurately identify the distribution of cavity belts. In addition, the upper part of the reservoir has a higher degree of dissolution than the lower part. The longitudinal zonal distribution indicates that faults control the distribution of dissolved pore and fracture zones. Two leakage points are marked on the trajectory of Well C in Figure 8 (green lines), which is consistent with the predication results. The comparison shows that there is a good match between the dissolved pore and fracture zones and the location of the strike-slip fault in the study area, which is consistent with geological knowledge and validates the applicability of the proposed identification method.
[image: Figure 8]FIGURE 8 | Comparison of the application effect of the dissolved pore and fracture zone identification method in field data. (A) Seismic data and deep fault. (B) Non-modified Energy envelope; (C) Modified energy envelope.
5.3 Fault and fracture zones
Figure 9A shows the seismic amplitude reflection, while Figure 9B shows the identification results of the fault-fracture zone based on Eq. 7. Comparing the two figures, it can be seen that the proposed method can accurately delineate the fracture-damaged zone around the main faults. In the figure, the bright red color indicates areas where fractures are developed, while the blue color indicates areas where the fractures are not developed. Figure 9 demonstrates that the fracture-damaged zone has a typical funnel shape and that the intensity of the fractures progressively decreases from the main fault to the sides. However, there is till a problem, as shown in Figure 9B, interference is caused by the strong seismic reflection shielding effect of the unconformity surface (inside the black dashed circle in Figure 9B).
[image: Figure 9]FIGURE 9 | Grayscale texture contrast results. (A) Seismic amplitude; (B) Texture contrast.
Based on the matched pursuit algorithm, we implemented a wave decomposition optimization process for seismic data, which is used to eliminate the interference of the strong seismic reflection. Figure 10 compares seismic data before and after processing to suppress the strong seismic reflection. An enlarge view of the unconformity interface is shown at the bottom of the figure. The comparison shows that the strong seismic reflection at the unconformity interface has been effectively suppressed and the precision of the target reservoir details has been effectively improved (at the yellow arrows in Figure 10).
[image: Figure 10]FIGURE 10 | Comparison of suppression effect of strong seismic reflection. (A) Original seismic data; (B) Seismic reflection with suppression processing.
The anomalous information resulting from the strong seismic reflection can be effectively suppressed (Figure 11A). However, the subsequent predictions still contain anomalous responses due to some interference noise after the strong seismic reflection suppression (indicated by yellow arrows in Figure 11B). The reason is that these interference noises are confused with fractures in the calculation of the fault-fracture zone, which leads to errors. To address this issue, the interference noise was reduced using the Principal Component Analysis (PCA) algorithm after strong seismic reflection suppression (Figure 11C). The fault-fracture zone (Figure 11D) was then calculated using the data that after strong seismic reflection suppression, PCA denoising and texture contract calculation.
[image: Figure 11]FIGURE 11 | Texture contrast results. (A) Seismic data with strong reflection suppression; (B) Calculated texture contrast based the seismic data with strong reflection suppression; (C) Seismic data with strong reflection suppression and PCA optimization; (D) Calculated texture contrast based on the final optimization seismic from figure (C).
Comparing Figures 11A, C, it is clear that PCA processing has successfully suppressed the noise. Similarly, Figures 11B, D show that the artifacts have been significantly reduced after PCA optimization (as indicated by the yellow arrows in the figures). In addition, a comparison of Figures 9B, 11D reveals that the method proposed in this study not only effectively weakens the shielding effect of strong seismic reflections, thereby improving the accuracy of the target characterization, but also preserves the true response of the fault-fracture zone.
To further verify the effectiveness of the fault-fracture zone identification method, a new model was created by adding the fault-fracture zone information (Figure 12A) to the model in Figure 7A, as shown in Figure 12B. Figure 12C shows the synthetic seismic. Comparing Figures 7B, 12C, it can be seen that the addition of fracture information makes the seismic events appear more chaotic. Figure 12D is a superimposed profile of the faults, predicted caves and fault-fracture zone. The seismic data in Figure 12C are used to predict fault-fracture zone. Figure 12E shows the synthetic seismic with optimization of the strong reflection suppression and PCA processing. By comparing Figures 12C, E, it can be seen that the optimized seismic effectively suppresses the effect of the strong reflection, thereby improving the accuracy of reservoir characterization (as indicated by the arrows in Figures 12C, E). Figure 12F is an overlay profile of the faults, identified caves and fault-fracture zone. The predicted fault-fracture zone is derived from the optimized seismic data of Figure 12E. The light purple color indicates the developed part of the fault-fracture zone, while the blue color indicates the undeveloped part. Comparative analysis reveals that the optimized method eliminates the influence of the interface (in the red dashed boxes in Figure 12). The detection results show a strong correlation with faults and karst caves, demonstrating that the new method accurately describes the extent of fault-fracture zones.
[image: Figure 12]FIGURE 12 | Comparison of the effect of the fault-fracture zone recognition method. (A) Added fault and fracture. (B) Theoretical model. (C) The synthetic seismic data. (D) The calculated fracture zone based on the synthetic seismic. (E) Optimized seismic data. (F) Calculated fracture zone based on the optimized seismic.
To further support the applicability of the fault-fracture zone identification method presented in this study, we select another field data set for testing. Figure 13 illustrates the results in a cross section that extends over 6 wells in a northeast to southwest orientation. Figure 13A shows the original seismic data. Figure 13B shows the predicted fault-fracture zone based on the modified method. The results can accurately capture the spatial distribution range of fault-fracture zones. The predicted fracture body is consistent with the geological comprehension and reservoirs indicated by the drilling data.
[image: Figure 13]FIGURE 13 | Recognition effect of fault-fracture zone based on the ShunBei field data. (A) Original seismic; (B) Recognition of fault-fracture zone based proposed method.
5.4 Comprehensive application and results of multi-level characterization methods
The fine identification of multi-level fracture-controlled karst reservoirs can be facilitated by the proposed integrated methods. Using multi-level characterization methods, the spatial distribution of the fracture-controlled karst reservoirs in the Shunbei field can be effectively analyzed in three dimensions. A series of optimization processing, inversion and interpretation techniques are applied to the seismic data (Figure 14A) to identify different levels of fault-controlled karst reservoir zones, such as large cave zones, dissolved pore and fracture zones, and fault-fracture zones (Figure 14B). As shown in the profile of the characterization results (Figure 14B), the reservoirs are mainly developed around the main fault zones (Figure 14C), which are significantly controlled by strike-slip faults. The shallow parts of the reservoirs are more developed in terms of faults and fractures.
[image: Figure 14]FIGURE 14 | Comparison between seismic data and the results of multi-level integrated identification of reservoirs. (A) Seismic data; (B) Results of multi-level integrated identification of fault-controlled karst reservoirs; (C) Identified multi-level fault-controlled karst reservoirs overlaid the faults interpretation results.
It is clear from the map diagram (Figure 15) that the karst caves have a relatively limited extent and were formed mainly around the main faults. The dissolution pore and fracture zones are mainly present in the area surrounding karst caves and extent in the direction of the faults. The fault-fracture zones are the most developed, allowing the main faults and their associated fractures to be clearly characterized, as well as the extent of the reservoirs.
[image: Figure 15]FIGURE 15 | Comparison of the seismic data map and the maps of multi-level integrated identification of reservoirs. (A) Seismic data; (B) Predicted fault and fracture zones; (C) Predicted dissolved pore and fracture zones; (D) Predicted large cave zones.
6 DISCUSSION
Ultra-deep fault-controlled carbonate reservoir, as a special type of reservoir, have attracted in-depth research by many scholars. The formation of fault-controlled karst reservoirs is controlled by various factors such as sedimentation, tectonics and dissolution. For reservoirs, such as the Shunbei oilfield, which have strong heterogeneity characteristics and little effective well information. Accurate identification of effective reservoir information in 3D seismic data and comprehensive characterization of different reservoir types are essential for efficient field development. The resolution and signal-to-noise ratio of the seismic data for the target reservoir are low. At the same time, the influence of the unconformity surface and sedimentary strata reflections makes high-precision reservoir identification challenging. To analyze the heterogeneity of the target reservoir, we first resolved the different reservoir types and their characteristics by combining outcrop, logging and a priori geological understanding. The different reservoir types in fault-controlled karst reservoirs are both independent and interrelated. Their independence is reflected in the fact that strike-slip faults and their associated fracture zones are structural reservoirs, while dissolved pores and caves are dissolution reformation reservoirs. The main controlling factors of different reservoir types are different. Their interrelationship is reflected in the fact that the formation of dissolution pores requires fractures and fractures to provide fluid transport channels and reaction space. The areas with high degree of dissolution are mostly the areas where faults and fractures are more developed.
Large cave zones tend to have high porosity and low P-impedance characteristics. The conventional method for identifying large caves consists of two steps: first, inversion is performed to obtain the P-impedance, and then the threshold value is selected to predict the cave location based on the inversion results. However, the influence of low-impedance interference reflection limits the accuracy of the conventional identification method. Therefore, to improve the accuracy of cave identification, each step of the conventional method is improved in this study, and a cave enhancement algorithm is proposed. The impedance inversion method is improved, specifically, the construction method of the low-frequency model and the objective function of the inversion are improved, and the inversion accuracy of the P-impedance and the ability to characterize heterogeneity are improved. The improved inversion method can be applied to the P-impedance calculation of any type of reservoir, which can effectively improve the accuracy of inversion, not only for fault-controlled carbonate reservoirs. Eq. 4 is the cave enhancement algorithm, based on which the difference between different values can be further increased, making the selection of the threshold value more accurate and thus improving the accuracy of cave identification. The method can effectively highlight the range of targets identified. The equation can be adapted by scaling factors to identify other high or low impedance targets, such as high impedance volcanic rock or low impedance fluid in sand. The equation can also be extended to calculate other sensitive elastic parameters, i.e., the impedance in the equation can be replaced by other elastic parameters. In the application, the scaling factor can be based on the calibration results of the log interpretation.
The seismic reflection of the dissolved pore and fracture zone is more chaotic and its response is easily disturbed by the sedimentary strata reflection. Therefore, a sedimentary strata suppression method is proposed in this study. Based on this method, the phase transformation and energy envelope calculation can realize the accurate identification of the dissolved pore and fracture zone. In the sedimentary strata reflection interference suppression method, the time window step is at least twice larger than the identification target when the sedimentary strata reflection is sought. The sedimentary strata interference suppression method can effectively enhance the heterogeneity of the identification target, and the method can be extended to the identification of channel deposits.
The method of identifying the fracture zones is a new set of calculations different from the conventional methods. The method combines strong seismic reflection suppression and a texture optimization algorithm. The strong seismic reflection suppression method can well suppress the strong seismic reflection events and present the effective reflection information masked by the strong reflection interference. This method can be used not only in fault-controlled reservoirs, but also in thin sand identification. The texture optimization algorithm can be extended to the calculation of fractures in other lithologies, and we have applied the method to the prediction of fractures in tight-sandstone with promising results. Fracture density can also be calculated based on the fracture data obtained from this calculation to provide more references for reservoir description.
This research proposes a multi-level optimal identification method, which makes it more credible to investigate the complex characterization of ultra-deep fault-controlled karst reservoirs and achieve a detailed description of the reservoirs. However, there are still some issues that require additional focus, especially in the following aspects:
How to further improve the resolution of seismic characterization. Accurate identification of fault-controlled karst reservoirs is difficult due to the complex geology, deep burial depth, low resolution of seismic data, lack of well information, and insufficient geological knowledge. This poses a significant challenge to the efficient development of oil and gas reservoirs. A set of 3D identification methods has been developed to address these challenges. These methods have been successfully implemented in the Shunbei Oilfield and have significantly improved the accuracy of reservoir identification. However, due to the resolution limitations of seismic data, accurate identification of karst reservoirs remains difficult. Further research is required to improve the resolution, as the scale of the currently identified reservoir zones is basically an average of a group of reservoir zones of the same type.
It is necessary to further dissect the fillings of large caves in order to understand them. However, most of the current physical property inversion methods are qualitative, which makes it challenging to achieve a quantitative identification. Therefore, investigating a variety of quantitative physical parameter inversion methods can provide a pathway for later analysis of karst cave fillings and improve the precision of reservoir description. Due to the lack of logging data, there are limited means to validate the accuracy of the predicted dissolved pore-fracture zone, and fracture zone. Future advances in drilling and logging technology are expected to provide more accurate data for evaluating reservoir predictions.
7 CONCLUSION
The ultra-deep fault-controlled reservoirs in the Shunbei field are easily covered by strong seismic and sedimentary strata reflections, making accurate reservoir characterization a challenge. To achieve accurate reservoir prediction, seismic data must be characterized at multiple levels. Different reservoir characteristics should be constrained together, effectively reducing the likelihood of multiple interpretation solutions. The strong reflection interface of the fault-controlled karst reservoir has a strong shielding effect on the internal details of the reservoir. Therefore, effective strong reflection suppression processing is required to reveal the reservoir details obscured by strong interference. Sedimentary strata can significantly interfere with the volume prediction of fault-controlled reservoirs, potentially leading to significant errors in the subsequent reserve calculations. To ensure the accuracy of reservoir interpretation and analysis, it is essential to highlight strong heterogeneous zones.
Seismic data is a comprehensive response consisting of numerous categories of information. The method proposed in this study can effectively extract target information, classify attributes, analyze level-by-level, and characterize fault-controlled reservoirs at multiple levels. This is an effective way to reduce the likelihood of multiple solutions in predicating fault-controlled reservoirs and improve the accuracy of reservoir identification, providing a new approach for the exploration and development of similar reservoirs.
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Gravity-based imaging of the subsurface has increased worldwide recently. Improvements in the processing and analysis of gravity data have allowed us to locate the basement surface, map geologic basins, and define structural patterns. In this study, gravity data were analyzed to study the Bahira basin’s underlying geology. The Bahira basin is very important economically. The Ganntour plateau is distinctive due to the importance of the phosphate mining resources. Using gravity data, we mapped the subsurface and determined the underlying structural patterns that affect the study area. In this study, we used several techniques to edge detection including Total horizontal derivative (THDR), first vertical derivative (FVD), tilt derivative (TDR), and its horizontal derivative (THDR_TDR) methods. Accordingly, the geological history of the Bahira basin suggests that the main lineaments/faults trends are NE-SW, NW-SE, ENE-WSW, and WNW-ESE. The 3D Euler deconvolution showed the depth and location of lineaments/faults, and matched edge detection results. The eastern Bahira basin’s sedimentary layer is 2–8 km deeper according to the Euler technique. Two-dimensional forward modeling along three profiles in the Bahira basin revealed a horst-graben basement structure. The outcomes of this study improved the subsurface topographical variations of the Bahira Basin. The information collected so far can help future studies in the area.
Keywords: enhanced methods, 3D euler deconvolution, 2D forward modeling, gravity data, bahira basin
1 INTRODUCTION
When dealing with a sedimentary basin that lacks geological and structural information, exploring and understanding the subsurface of the basin can be challenging. However, there are several approaches that can be employed to overcome this limitation and gain insights into the basin’s geology. The exploration of sedimentary basins is a critical endeavor in understanding the geological subsurface and unlocking its vast resources. Geoscientists and geophysicists use a wide array of tools and techniques to unravel the complex geological structures and stratigraphy hidden beneath the surface. Among these tools, gravity has emerged as a valuable geophysical method for investigating sedimentary basins. By integrating gravity data with geological and others geophysical information, we can estimate the thickness and depth of sedimentary sequences, identify fault systems and basement structures (Ekwok SE. et al., 2022; Frifita et al., 2020; Saada et al., 2022; Nzeuga et al., 2022; El-Sehamy et al., 2022; Eldosouky et al., 2022b).
Under sedimentary basins and structural frameworks, the gravity method is ideally suited for basement mapping (Saleh et al., 2018; Frifita et al., 2020; Araffa et al., 2021; Kebede et al., 2021; Pham LT. et al., 2022; Zaghdoudi et al., 2020; Elabouyi et al., 2022; Mohamed et al., 2022a; Eldosouky et al., 2022b; Saada et al., 2021). Several field studies estimated sediment thickness and geological and stratigraphical structure. Using magnetic and gravity data analysis, Saleh et al. (2018) investigated the basement complex beneath the Barramiya region in Egypt’s Eastern Desert. Frifita et al. (2020) analyzed a sedimentary basin (Mejerda, Tunisia) using gravity and seismic reflection to establish the foundation form. Gravity data showed subsurface structures and basement depth in El Moghra, Egypt by Araffa et al. (2021). Using gravity and magnetic data, Kebede et al. (2021) created a 2D/3D model for groundwater implication in the Ziway-Shala Lakes Basin in Ethiopia. Pham LT. et al. (2022) conducted research to evaluate filtering methods’ contributions to mapping Phu Khanh basin, Vietnam’s subsurface features using gravity data. Zaghdoudi et al. (2021) employed gravity and seismic data to map Tunisia’s Bizerte geology. Elabouyi et al. (2022) examined buried granite masses and structures in Morocco’s High Moulouya basin using gravity measurements. Alqahtani et al. (2023a) performed a study to identify the potential geothermal resources in Rahat Volcanic field (kingdom of Saudi Arabia) using gravity and magnetic data. The finding showed that, in the western part, three geothermal anomalies associated with high density and magnetic susceptibility are located. These geothermal anomalies are identified beneath the historical eruption, fissure eruption and north of the swarm area. Ikirri et al. (2023) used gravity measurements to characterize Morocco’s Western Anti-Atlas Ifni Inlier. Alqahtani et al. (2023b) employed remote sensing, surface temperature and geophysical data for geothermal exploration in Lunayyir Volcanic Field (Saudi Arabia). The analysis of gravity and magnetic data show subsurface geologic structures that may be interpreted as potentially geothermal system. The land surface temperature indicates a volcanic activity in the subsurface. This study improves the assessment of the Lunayyir volcanic field in the western part of Saudi Arabia for geothermal energy.
Over the last few years, there has been a growing interest in potential field data analysis using edge detection methods. The application of edge detection methods in gravity and magnetic data plays a crucial role in geophysical exploration and geological mapping. Moreover, the application of edge detection methods has witnessed a significant expansion in specific studies encompassing subsurface geological structure, mining exploration, geothermal investigations and hydrogeological studies (Melouah et al., 2021; Eldosouky et al., 2022a; Ekwok SE. et al., 2022; Mohamed et al., 2022b; El-Sehamy et al., 2022; Kharbish et al., 2022; Mahdi et al., 2022; Saada et al., 2022; Abdelrahman et al., 2023).
Different and efficient upgraded approaches have been employed for mapping the subsurface geological structure. A more accurate geological model and stronger visualization of data are two goals of using enhancement approaches. 3D Euler deconvolution locates anomalies and estimates depth, phase derivatives locate source body edges (contact/fault), and power spectrum analysis separates regional and residual potential field components. Rabii et al. (2018) used these methods to study the upper crustal structure of the Utica-Mateur area in northern Tunisia. Horizontal gravity gradients, 2D power spectrum analysis, and Euler deconvolution determined the depths of major density discrepancies and structural lineaments. Okpolin and Akingboye (2019) used gravity data to characterize the lithostructural and depth properties of Igabi (Northwestern Nigeria). Satyakumar et al. (2022) used improved gravity data to map structural and tectonic features in the Mahanadi basin (eastern India). Ayoola and Osinowo (2022) interpreted potential field data for hydrocarbon development (Southern Nigeria) to create a novel structure that better understood the research region’s tectonic and structural outline. According to enhanced gravity and magnetic data used to assess petroleum potential, the basement beneath the sedimentary basin is 10–15 km deep. Pham et al. (2023) applied gravity data to map the western Gulf of Guinea’s structural framework.
Recently, new improved edge detection methods have been introduced to accurately highlight the geological underground and to delineate structural lineaments originating from both shallow and deep geological sources (Pham L. T. et al., 2021; Pham L. T. et al., 2021; Ekwok S. E. et al., 2022; Ekwok et al., 2022a; Pham L. T. et al., 2022; Eldosouky et al., 2022b; 2022c; 2022d; Eldosouky et al., 2022 A. M.; 2022f; Pham LT. et al., 2022; Nzeuga et al., 2022; Prasad et al., 2022; Pham et al., 2023). The use of high-precision filters, such as the enhanced horizontal gradient amplitude, improved tilt angle, tilt angle of total horizontal gradient, improved theta map, softsign function, logistic function, have emerged (Pham L. T. et al., 2021; Pham et al., 2021 L. T.; Ekwok S. E. et al., 2022; Eldosouky et al., 2022c; 2022d). Through the application of these filters on potential field data, their remarkable efficiency and precision in qualitatively delineating and interpreting geological structures have been demonstrated (Ekwok S. E. et al., 2022; Eldosouky et al., 2022c; 2022d; Nzeuga et al., 2022; Prasad et al., 2022; Pham et al., 2023).
The Bahira basin is one of the most important sedimentary basins in western Moroccan Meseta (Michard, 1996). It has been noticed that limited research has been performed to assess the whole Bahira basin, they are some works mainly focused on the western part of the basin where Ganntour phosphatic plateau is located. Er-rouane (1996) offered hydrogeological attention to the Bahira basin’s subsurface structure using electrical resistivity tomography and gravity techniques. Karroum et al. (2014) explored the Bahira basin. Findings agree with those of Er-rouane (1996) research and provided data for outlining the plain’s many significant geological formations. Jaffal et al. (2022) used gravity data to study the western Bahira basin geology.
Due to the limited availability of geological data and restricted drilling that provide only shallower geological information, we resorted to analyzing gravity data as a valuable resource to gain a deeper understanding of the internal structure of the Bahira basin. The primary aim of this ongoing research is to offer new insights into the subsurface geological structure of the Bahira basin through the utilization of diverse gravity data analysis methods. To that end, a new strategy with better techniques was implemented. Bahira Basin’s key features and structural trends were characterized utilizing power spectrum analysis, total horizontal derivatives, first vertical derivative, tilt derivative, and its horizontal derivative. To estimate the properties of these structures, the 3D Euler deconvolution was used. Two-dimensional forward modeling was developed using three intersecting profiles to identify the Bahira basin’s form and structure. The finding of this study allowed to illuminate the Bahira Basin’s structure and essential features.
2 MATERIALS AND METHODS
2.1 Description of the study area
The Bahira basin is a huge syncline depression between the southern Jebilet Paleozoic basement and the northern Rehamna basement. It covers 5,000 square kilometers in northern Morocco, 30 km from Marrakech (Figure 1). Specifically, it is located between 31° 55′ and 32° 20′ North and between 7°15′ and 8°50’ West. The western Ganntour plateau rises to heights of 531 m above sea level, while the eastern Bahira region features lower elevations of 404 m. The climate is classified as semi-arid. The predicted potential evapotranspiration is greater than 1000 mm/year (Er-rouane, 1996; Karroum et al., 2014), while annual precipitation averages 206 mm.
[image: Figure 1]FIGURE 1 | Geographic situation and elevation map of Bahira basin.
2.2 Geological setting
The Bahira basin is situated within the Western Meseta domain (Michard, 1996) and represents an expansive closed depression oriented in an Est-West direction. It lies between two Hercynian massifs, namely, the Jbilet and Rehamna. The primary massif of Rehamna forms its northern boundary, while the Jbilet defines the southern limit. The Tessaout river serves as its eastern boundary, and the secondary plateau of Mouissate marks its western extent (Figure 2). Geologically, the Bahira basin is a synclinal trough characterized by a Paleozoic basement overlain by secondary and tertiary formations. The sedimentary units comprising the basin extend from the Permo-Triassic to the Quaternary periods, with a particular emphasis on the Maastrichtian to Eocene phosphatic layers of Ganntour (Figure 2) (Er-rouane, 1996; Michard, 1996). These formations are exposed in the northern part of the plain, dip and taper off towards the south, and are covered by continental Neogene sedimentary infill. The majority of the plain’s surface is occupied by Quaternary deposits.
[image: Figure 2]FIGURE 2 | Geological map of Bahira basin.
The Palaeozoic basement has a significant thickness spanning several thousand meters. It outcrops in the Rehamna massif to the North and the Jbilet massifs to the South. In the Rehamna massif, the Paleozoic section comprises Cambrian schists, sandstones, micaschists, Hercynian granites, and Westphalo-Autunian molasse conglomerates. The Jbilet massif exhibits massive limestones, shales with intercalated sandstones, and carbonate shales of Middle Cambrian age (Huvelin, 1977). The entire region is characterized by folding and fracturing, resulting in north-south trending folds. Small outcrops of the Hercynian basement consisting of Sarhlef schists can also be observed in the study area near of Rhirat Village (Figure 2) (Er-rouane, 1996).
The Bahira basin is part of the western Moroccan Meseta, which is one of the five structural domains in Morocco. This domain has been affected by various deformation events related to different orogenies that have occurred over time, including the Hercynian orogeny and the Atlasic (alpine) orogeny. During the Hercynian orogeny, the Cretaceous terrains were extensively covered by secondary, tertiary, and Plio-Quaternary deposits. Recognizing pre-Cretaceous tectonic movements is only feasible along the edges, particularly in the Jbilet massif. Studies conducted by Huvelin (1977) indicated that the primary basement experienced extensive folding and undulation, characterized by highly curved folds, faults in multiple orientations, and localized schistosity near Hercynian granite intrusions. The Triassic movements followed the Hercynian orogeny, controlling the Permo-Triassic deposits preserved in grabens bounded by NE-SW faults. Post-Triassic movements involved reactivation of Hercynian faults, following the vertical movements initiated during the Triassic period (Huvelin, 1977). During the Atlas orogeny, faults with varying degrees of displacement affected the Eo-Cretaceous formations. The main phase occurred during the Eocene, resulting in large ENE-WSW-oriented flexures observed in the Jurassic cover of the Mouissate region, along with low-amplitude undulations (Er-rouane, 1996). The most recent tectonic movements encompass post-Miocene and Plio-Villafranchian deformations, which have resulted in the formation of significant faults. These faults are particularly prominent along the Jbilet-Bahira boundary and are manifested by fault planes with a displacement of approximately a thousand meters.
Following the Hercynian orogeny, the Paleozoic basement experienced an extended period of continental conditions. During this phase, the basement was strongly leveled, and the Triassic deposits were preserved in pull-apart basins formed due to Triassic movements. In the Jurassic period, marine sedimentation resumed with the transgression. In the Lower Cretaceous, marine conditions returned, particularly in the Youssoufia region. The end of the Lower Cretaceous is characterized by the presence of red clay layers, indicative of sea regression. The transgressions of the Middle Cretaceous (Cenomanian, Turonian, Senonian) appear to be limited to the eastern part of the region. However, the most significant transgressions occurred during the Maastrichtian-Eocene period. These transgressions affected almost the entire basin and are characterized by the deposition of phosphate series.
2.3 Methodology
The Department of Mines and Geology created a Bouguer anomaly map used in this investigation. The Italian firm “Fondazione Lerici” launched the gravity prospection mission in 1964. Good coverage of the investigated region was achieved by the gravimetric density measurements, which included 2372 locations with an average of roughly 0.5 station/km2. The lower density of 2.2 g/cc was used to create the Bouguer anomaly map. The Geosoft Oasis Montaj software is applied to process and analyze gravity data.
By interpolating, filtering, and modeling the gravity data, we are able to gain comprehensive information on the underlying geology. Several steps of interpretation make use of data processing to give the results a structural and geological context. Figure 3 gravitational data has been analyzed intuitively and quantitatively. Power spectrum analysis and FFT were used to differentiate deep and shallow anomalies. Maximum Total Horizontal Derivatives (THDR), First Vertical Derivatives (FVD), Tilt Derivatives (TDR), and Total Horizontal Derivatives of Tilt Derivatives (THDR_TDR) were all used to identify edges. The three-dimensional Euler deconvolution was utilized for the purpose of depth estimation of sources. 2D gravity forward modeling was used to perform the quantitative interpretation.
[image: Figure 3]FIGURE 3 | Flow chart of the adopted methodology.
2.3.1 The fast fourier transform (FFT)
To examine the residual (shallow) and regional (deep) sources, as well as to compute the energy spectrum curves, the FFT was used for the gravity data. Several researchers, including Spector and Grant (1970), Bhattacharyya (1996), and others, have applied this technique to the study of gravity data. The strategy depends on how the frequential energy created by the differences between the densities of surface and subsurface materials is distributed. This filter can either pass or reject a range of frequencies based on its cut-off frequencies. It varies with wavelengths in both the X and Y-axes. The Fourier transform of the periodic function f () is given by (Bhattacharyya, 1996):
[image: image]
where (x) and (y) are the spatial coordinates in the x and y directions respectively. [image: image] and [image: image] are the angular frequencies in the x and y directions respectively.
2.3.2 The edge detection methods
2.3.2.1 Total horizontal derivatives (THDR)
Potential field data edges can be created using the THDR technique. Finding the highest point of the sum of the horizontal derivatives allows one to identify the steepest gradient. The THDR establishes the limit on the number of structural boundaries (contacts and faults). THDR is defined as follows (Cordell & Grauch, 1985):
[image: image]
where the orthogonal coordinates of the gravity field (f) are represented by x and y.
Automatically locating the maximum of the horizontal gradient was first proposed by Blakely and Simpson (1986). When applied to a gravity map, this method reveals that the local maximum of horizontal gradients creates ripples and constricts above sudden changes in density. Inflection spots can also be identified by the horizontal gradient modulus’s highest magnitude. Bouguer’s map shows contact/fault dip directions as it rises. The horizontal gradient and upward continuation of faults can define their location and dip (Archibald and Bochetti, 1999). Whereas faults are represented by linear contacts, the borders of intrusive bodies are represented by circular contacts. Each successive level-up topographies a maximum horizontal gradient. The biggest overlap occurs in vertical constructions. When the extension is made upwards, however, the maximum shifts, revealing the slope’s orientation.
2.3.2.2 First vertical derivative (FVD)
If you take the FFT transformation of the potential field signal with height, you get the first-order vertical derivative (FVD), which acts as an enhancement filter (Milligan and Gunn, 1997). The FVD filter emphasized anomalies at shorter wavelengths. It is a crucial filter for distinguishing subsurface features and boundaries. The FVD can be expressed mathematically as:
[image: image]
2.3.2.3 Tilt angle derivative (TDR) and the total horizontal derivative of the tilt derivative (THDR_TDR)
Miller and Singh (1994), followed by Verduzco et al. (2004), Salem et al. (2008), and Fairhead et al. (2004), all contributed to the advancement of the tilt derivative (TDR) filter. Salem et al. (2008) and Fairhead et al. (2004) provide the following definition for this filter:
[image: image]
Where; FVD is the vertical derivative, while THDR is the total horizontal derivative.
Tilt derivative amplitudes range from - π/2 to π/2 (radians). Salem et al. (2008) used TDR map contours to estimate source depth. Miller and Singh (1994) find that the zero-contour tilt derivative (TDR) defines structure limits. The total horizontal derivative of tilt angle provides a well-defined maximum centered over the source boundaries (Verduzco et al., 2004). The total horizontal derivative of tilt angle (THDR_TDR) can measure the body source’s uppermost edge depth. THDRTDR amplitude is inversely related to source top depth.
TDR in the x and y directions is equal to the square root of the sum square (Fairhead et al., 2004).
[image: image]
2.3.3 3D-euler deconvolution (ED)
The Euler deconvolution technique generates automated localization and depth estimation of potential field data sources. According to Al-Badani and Al-Wathaf (2018); Thompson (1982), we can write the Euler equation as follows:
[image: image]
As defined by (Reid et al., 1990), where B is the overall field, f is the measured field at a specific position (x, y, z), and SI is the structural index. The structural index (SI) characterizes source type and the rate at which field amplitude falls with distance from the source. Finding the values for x0, y0, z0 (the origin’s coordinates), and B in the above-mentioned equation.
Grid spacing, structural index, and window size help solve the Euler equation. To find the thin sheet’s edge, the Euler solutions used a structural index of SI=0; to find the horizontal cylinders/faults, SI=1; and to find the sphere’s shape, Supporting Material=2 (Reid, et al., 2013). Selecting an appropriate structural index and window size is crucial to accurate depth estimation. In this study, we employed a grid size of 500 m × 500 m, a window size of 10 × 10, and a structural index of SI = 1.
2.3.4 2D forward modeling
Potential field data is subjected to 2D forward modeling in order to obtain a geological image of the basement, integrating depth and density. There have been a number of research (Mickus, 2008; Sayed and Aboud, 2012; Beshr et al., 2021; Alencar et al., 2022) that demonstrate the significance of two-dimensional modeling in the establishment of basement structures. 2D gravity modeling visualizes the Bahira basin structure in the current research. GM-SYS-2D/Oasis Montaj, which implements Talwani and Heirtzler (1964), analyzed three profiles (P1, P2, and P3) (Figure 5B). The models’ setups have been tweaked iteratively in order to obtain the best possible match between the computed and the observed gravity data.
Paleozoic schists and mica-schists make up the models’ basics, while Cretaceous and Eocene sedimentary rocks (containing rich phosphate layers) and Pliocene-Quaternary sediments make up the models’ sediment cover. Previous geological and geophysical studies (Er-rouane, 1996; Karroum et al., 2014) have given a density value of 2.67 g/cm3 to the Paleozoic basement. However, the density is calculated to be 2.45 g/cm3 for the sediment cover, which is less than that of the basement rocks.
3 RESULTS
Our qualitative and quantitative gravity data analysis is presented here. Power spectral analysis, derivatives, 3D Euler deconvolution, and 2D forward modelling contribute to these results. Data will be evaluated to create a geological model of the Bahira basin’s structure.
3.1 An examination of the power spectrum
The FFT power spectrum curve of gravity data exhibits local, residual, and noise signals (Figure 4). The deep sources (regional component) have a frequency of zero to four cycles per unit grid. In contrast, the frequencies of the shallow sources (residual component) shift between 0.05 and 0.2 cycle/unit grid. A tangent was drawn for each component segment. Archibald and Bochetti (1999) propose using the tangent’s slope as a proxy for the mean depth. The average depth of the regional sources was found to be 7.3 km (blue line), whereas the average depth of the shallow sources was found to be 3 km (red line).
[image: Figure 4]FIGURE 4 | Radially averaged power spectrum of the Bouguer anomalies showing the averaging regional and residual depths of the Bahira basin.
3.2 Bouguer and residual anomaly maps
The gravity values range laterally from −45 to 15.6 mGal, as seen on the Bouguer anomaly map (Figure 5A). West of the studied region, the Bouguer value gradient is increasing. The center and eastern regions are home to a sharps-negative anomaly. These irregularities may be low-density blocks or sedimentary basins. High-density blocks are associated with the positive anomalies seen in the west, south, and north. Different short wavelength anomalies associated with shallow causal sources can be seen in the Bahira basin’s residual gravity map (Figure 5B). The anomalies tend to move in two broad orientations: NW-SE, ENE-WSW, and WNW-ESE. The residual gravity anomaly values vary between −15 and 15 mGal. These changes are linked to underlying density shifts caused by underlying geological features. Negative anomalies trend NW-SE and NE-SW in the east. Deep sedimentary basins explain these abnormalities. The major NW-SE anomaly is the Benguerir granite intrusion beneath the cretaceous layer. A negative anomaly reflects the northern Rehamna mountain’s Hercynian granite. The northwest’s Valanginian limestones (Lower Cretaceous) has a negative anomaly.
[image: Figure 5]FIGURE 5 | Gravity maps of the study area: (A) Bouguer anomaly, and (B) residual anomaly.
Positive anomalies have also been spotted. Both the southeast and the northeast have the highest concentrations of positive anomalies. They align with the north Hercynian basement outcrop at Rehamana and the south Paleozoic basement (schist) uplift at Jebilet. The center of the Bahira basin has an NW-SE-oriented positive anomaly. The Paleozoic massif’s Rhirat threshold causes this oddity. The deposit of secondary formations was impeded by this critical threshold. The elevation of the Hercynian massif of Rehamna is reflected by a positive anomaly in the region’s northwestern corner. A WNW-ESE positive anomaly in the southern portion of the study region indicates Paleozoic basement uplift (Jebilet massif).
3.3 Total horizontal derivatives (THDR)
Figure 6 shows the map of the horizontal gradient, highlighting various lineaments with prominent amplitudes. The local maximum horizontal gradient obtained via a series of upward continuation levels (0.250, 0.5, 1, 2, 3, 5, 8, 10, and 20 km) is superimposed on the THDR map to emphasize the lineament trend. These findings reveal the most significant structural lineament/faults trend in NE-SW, NW-SE, WSW-ENE, and ENE-WSW. The orientations of the Hercynian structure fall along these directions.
[image: Figure 6]FIGURE 6 | Total horizontal derivative (THDR) map with superposed upward continuation maximum.
3.4 First vertical derivative (FVD)
The first vertical derivative maps show short-wavelength sources, horizontal extensions, and anomaly geometry. Figure 7 shows Bouguer gravity map FVD anomalies that match those in residual gravity map (5b). ENE-WSW, NE-SW, and NW-SE local anomaly trends match the THDR maximum.
[image: Figure 7]FIGURE 7 | First vertical derivative map of the study area with displayed zero contour line.
3.5 Tilt angle derivative (TDR) and its total horizontal derivative (THDR_TDR)
Figure 8 shows the TDR map created by filtering the Bouguer anomaly map. It is clear where the negative anomaly (sedimentary basin) contacts the positive anomaly (basement). Similarities between the TDR and FVD maps may be seen in the positioning of contacts and edge features, and both are well suited for distinguishing shallow source structures. This map shows that the amplitude of Bouguer anomaly tilt derivative anomalies ranges from 1.3 to 1.2 rad. Figure 8 shows the total horizontal derivative maximum above the Tilt derivative zero outlines. The THDR maximum and zero contours often overlap, but not always. Where the maximum and zero contours intersect is where you’ll find the faults (Fairhead, 2015). The most common fault lines run in the NW–SE and ENE–WSW directions, respectively.
[image: Figure 8]FIGURE 8 | Tilt derivative map of the study area (top). The bold lines show contour: the 0 radians (black color). The map at the bottom presents the overlaying of the zero contours and maximum of the THDR.
With a peak over the bodies’ edges, THDR_TDR provides the shaped anomaly (Verduzco et al., 2004; Fairhead, 2015). In Figure 9, edges retain the THDR and FVD maps’ trend. The scale of the coloured bars estimates the source’s depth at 1.66–10 km. Bottomless source bodies east of the research region cause it. The basement uplift occurs in the central and eastern basins, while shallow cause bodies are in the southern, western, and northern basins.
[image: Figure 9]FIGURE 9 | Total horizontal derivative of the Tilt derivative map.
3.6 3D-euler deconvolution (ED)
The outcomes of edge detection methods are seen to be very close to the 3D Euler deconvolution solutions (Figure 10). The Euler solution closely follows the zero contour of the Tilt derivative (TDR). NWSE, ENEWSW, and NESW are the most common tectonic directions seen in ED output. Euler’s calculated depths extent a range of two to 8 km.
[image: Figure 10]FIGURE 10 | 3D-Euler Deconvolution solutions plotted on the residual gravity map. The black contour corresponds to the 0 radians of the tilt angle.
3.7 2D forward modeling
The depth to the Paleozoic basement decreases from about 1.3 km in the southwest to 0.8 km in the middle part, as seen in profile P1 (Figure 11A). It is also clear that the depth increases in the northeastern region, maintaining a consistent 1.5 km depth elsewhere. The model displays a sub-tabular basement with a raised part in the center. As demonstrated in Profile P2 (Figure 11B), the basement surface is at 0.5 km in the southwest, 3.3 km in the central area, and 0.5 km again in the northeast. Faults may cause steep residual gravity anomaly fluctuations. The simulated blocks show uplifted Paleozoic basement (horsts) in the southwest and northeast and down-faulted blocks (graben) in the center.
[image: Figure 11]FIGURE 11 | Two-dimensional interpreted gravity model along the profiles P1 (A), P2 (B), and P3 (C).
Profile P3 (Figure 11C) shows the longitudinal basement plan. The western section’s basement has a subtabulaire structure and an outcropping at the Rhirat threshold. The basement deepens towards the east. An inverted fault on the western flank of the Benguerir granite intrusion connects the two zones. Diot (1989) suggests that this structure is connected to the transformation of a westward thrusting of the Eastern Rehamna into an EW compression.
4 DISCUSSION
The analysis of the gravity field of the Bahira basin revealed the structures of the basin that occurs under the sequence of Cretaceous and Quaternary deposits. The various findings highlight the influence of the Paleozoic basement topography. The Hercynian substratum is exposed in the southern region of the study area in the Jebilet massif, as well as in the northern part, represented by the Rehamna massif. Total horizontal derivative (THDR) was used to identify the structural framework of the study area. The finding shows two main group of faults, oriented NE-SW and ENE–WSW direction. The first group consists of shallow faults that have the same trending as the Hercynian structures. The second group of faults is characterized by major faults that are believed to have played a crucial role in shaping the structure of the study area and may be associated with the Atlas orogeny. The overlapping of the 0 contour of Tilt derivative on the THDR map confirmed the localization of these faults.
The horizontal derivative of the tilt derivative evidenced the same major trend as showing by the THDR, FVD and TDR. Furthermore, the THDR_TDR map indicates that the uplift of the basement shallow source bodies is present in the southern, western, and northern basins. This finding matched with the Paleozoic basement topography where the major fault bounding the basin in the north and south. The Euler deconvolution (ED) was applied to enable the mapping of geological structures and to provide insights into the depth of the highlighted features. The clustering of ED solutions around the majority of the identified faults confirms the obtain results. The fault system responsible for the basin structure extends to varying depths, ranging from two to 8 km. According the ED solutions results, the source bodies are deeper in the eastern unit of the basin. These findings confirm previous research work and suggest that the basement deepens eastward (Er-rounae 1996; Karroum et al., 2014).
The structural context of the Bahira basin described by the use of the various upgraded techniques reveals distinct basement blocks, indicating a compartmentalization of the underlying geological formation. Two distinct units, eastern and western, are identified. A glacis zone gently sloping from the SSE to the north of the basin defines the eastern unit. Deep sedimentary rock forms the Paleozoic basement. The northern boundary is a locally major fault, while the southern boundary is a big bordered coincidence trending ENE-WSW. The western unit has a broad, sub-tabular Paleozoic basement. The Rhirat threshold breaks the sedimentary cover’s southerly dip towards the Jebilet from the north of the basin. Southern border accidents are far lower than Eastern ones. The estimated basement depth makes the eastern Bahira Basin more noticeable. The Hecynien orogeny was overthrust to the west in a major tectonic setting (Diot, 1989). The techniques identified the Bahira basin’s horst-graben basement structure.
The application of gravity modeling enables the determination of the trough’s geometry along three profiles. Through a 2D forward modeling approach, it is revealed that the basin corresponds to an asymmetrical syncline marked by a gradual increase in the depth of the Paleozoic basement towards eastern part of the study area. The structure reveled by the profiles agree with previous techniques result’s, they identified a Bahira basin’s horst-graben basement structure.
This study’s enhanced methods confirmed many undescribed lineaments. Our results map and model the basement structure, unlike prior 2D studies that primarily examined the western basin.
5 CONCLUSION
The subsurface structure, tectonic framework, and basement structure of the Bahira basin have all been mapped using gravity measurements collected in the area of interest. Incorporating the power spectrum, edge detection methods, 3D Euler deconvolution, and a gravity model, this analysis was carried out. The density and sediment thickness variations below the surface are reflected in the Bouguer gravity anomaly. The results unveiled a correlation between observed anomalies and surface geology. New subsurface structures in the study area, previously unknown, has been described with the use of upgraded techniques applied to gravity data. The FFT method was first used to isolate the remaining regional components, which allowed us to pinpoint the source’s periphery and depths. According to the power spectrum study, the average depth of the regional sources is roughly 7.3 km. Alternatively, the typical depth of shallow sources is only 3 km. Multiple structural trends (NE-SW, NW-SE, ENE-WSW, and WNW-ESE directions) were detected by the majority of the used edge detection methods (THDR, FVD, TDR, and HD_TDR). The analysis of structural lineaments reveals the presence of two predominant sets of trends, namely, NE-SW and ENE-WSW. These trends have a significant influence on the tectonic activity within the region. The fault trending in the NE-SW direction is attributed to the Hercynian orogeny, whereas the ENE-WSW fault trend is linked to the Atlasic orogeny comprising major boarded faults. These faults play a significant role in shaping the study area’s structural configuration and bedrock topography. The Euler deconvolution verified that the eastern unit’s basement depth is greater, confirming edge detection’s subsurface features. The structure of the Bahira basin may be visualized synthetically thanks to 2D forward modeling. The western half of the Bahira basin has a sub-tabular structure with a shallow basement, whereas the eastern portion has a deep sedimentary layer. The structure is attributed to a compressive phase that affecting the western Moroccan Meseta characterized by faults trending in the NE-SW and ENE-WSW directions. The grabens structuring of the study area could have resulted from this deformation.
The combining of gravity and geological data allows for the construction of a comprehensive picture of the basin structure. New techniques (improved methodologies and 2D modelling) for analyzing gravity data have revealed previously unknown aspects of the Bahira basin’s geological and structural framework. The new study provides final data, completing the work of earlier researchers, and can serve as a roadmap for future studies.
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The Abakaliki Anticlinorium and its adjoining areas were appraised with the object of delineating high geothermal potential zones. Spectral depth analysis involving an improved centroid technique was used to analyze high-quality magnetic data. The obtained geothermal parameters were gridded to map various geothermal features within the investigated area. The obtained results varied from 4.99–9.35 km, 2.31–6.15 km, 6.11–16.28 km, 35.63°C–94.93°C/km, and 89.07–237.32 mW/m2 for centroid depth, top depth, Curie point depth, geothermal gradient, and heat flow values, respectively. The delineated semioval structure in the central zone of the investigated region characterized by a shallow Curie point depth (< 8.5 km) correlates with the location of the high-heat flow (>191.0 mW/m2) and geothermal gradient (>74.0°C/km) region. The high geothermal potential of the region is triggered by the massive post-rift tectonic event of the Santonian period related to the Abakaliki Anticlinorium. Further geophysical exploration programs should be carried out before exploitation activities at anomalous geothermal regions.
Keywords: Abakaliki Anticlinorium, Southeast Nigeria, magnetic method, spectral analysis, geothermal potential, heat flow
1 INTRODUCTION
Due to challenging energy difficulties in Nigeria, where the demand for electrical power generated from hydropower and hydrocarbon plants exceeds the supply, alternative energy sources (preferentially renewable) are being extensively explored. On the whole, researchers (Nwachukwu, 1976; Avbovbo, 1978; Babalola, 1984) have previous reported the imprints of geothermal resources in the form of warm springs in Nigeria. The Abakaliki Anticlinorium, which is the main constituent unit of the Lower Benue Trough (LBT) like the Anambra Basin, Calabar Flank, and the Afikpo Syncline, is dominated by Santonian intrusions, hydrothermal modification, geologic features, brine fields, and related rift mineralization (Adewumi and Oladoyin, 2015; Ekwok et al., 2020a; Ekwok et al., 2020b; Ephraim et al., 2022).
For some decades, intense geophysical and geological investigations have been carried out in the LBT (Ofoegbu and Onuoha, 1991; Ekwok et al., 2019). Previous studies in the Abakaliki Anticlinorium and contiguous inland basins focused on the exploration for lead–zinc (Mackay, 1946; Bogue and Reynolds, 1951; Farrington, 1952; Dim, 2021; Ani et al., 2023), coal (Simpson, 1955; De Swardt and Casey, 1963), barites (Akpan et al., 2014), brine fields (Eseme et al., 2002; Tijani, 2004; Ekwok et al., 2022a), limestone (Akpan et al., 2004), and hydrocarbon (Ofoegbu and Onuoha, 1991). Recent studies in the Nigerian Benue Trough focused on reconnaissance exploration activities for geothermal energy (Abraham et al., 2015; Nwankwo, 2015; Abraham and Nkitnam, 2017; Chukwu et al., 2018; Abraham et al., 2019; Abdullahi and Kumar, 2020; Ejiga et al., 2022; Alfaifi et al., 2023; Ekwok et al., 2023). These contemporary geoscience studies involved the use of the magnetic surveying technique (Essa et al., 2021; Mehanee et al., 2021). Other geophysical procedures (such as electrical resistivity, gravity, bottom-hole temperature (BHT), seismic, transient electromagnetic, and magnetotelluric processes) are also applied in geothermal energy research and monitoring (Nwachukwu, 1975; Nwachukwu, 1976; Ndombi, 1981; Simiyu and Keller, 1997; Mariita, 2010; Coppo et al., 2015; Ars et al., 2019; Saibi et al., 2021). Nevertheless, high-resolution magnetic data and good geologic knowledge are frequently used in tandem to address uncertainties during the interpretation (Mariita, 2010). Largely, magnetic technology is the most cost-effective geophysical method for acquiring an adequate model for a geothermal structure (Mohammadzadeh-Moghaddam et al., 2016). Yet, this model can be nonunique, which is unexpected in the exploration of geophysics (Mehanee, 2022). Nevertheless, an inverse problem usually connected with magnetic data is often ill-posed, thus making the solution nonunique and unstable (Essa and Elhussein, 2017). However, a reliable solution for an ill-posed problem can be realized by having prior geologic knowledge or the application of some cutting-edge enhancement methods (Essa and Elhussein, 2018).
In this study, magnetic data, which probe different rock properties (Ross et al., 2013; Ekwok et al., 2019; Jackish et al., 2019; Ekwok et al., 2022b), were applied to obtain useful information on buried geothermal anomalies (Abraham et al., 2019) related to the Santonian Abakaliki Anticlinorium and surrounding regions. This geophysical method has been effective in locating faults and fracture zones related to geothermal reservoirs, defining a basement framework in a geothermal region (Nishijimaa and Naritomi, 2017; Witter et al., 2017), and intrusive bodies (Ekwok et al., 2021a) and magma chambers related to the heat source of a geothermal system (Represas et al., 2013). Moreover, the magnetic technique can be used in the mapping of zones with reduced magnetization caused by thermal activities (Georgsson, 2009). It is also a suitable method for hydrothermal system assessment and mapping of buried anomalies caused by magmatic and granitic bodies including geologic features (Ekwok et al., 2022c). Such regions are characterized by different magnetizations from the unaltered host rocks (Abraham et al., 2019). The power spectrum involving the improved centroid technique (Bhattacharyya and Morley, 1965; Lazarian and Esquivel, 2003; Bansal et al., 2011) was employed in the magnetic data to obtain the Curie point depth (CPD), geothermal gradient, and heat flow gridded maps. The computation of these three spectral parameters from the same magnetic data will considerably enhance the dependability of geothermal results. In regions like the Abakaliki Anticlinorium, where deep borehole data are lacking, Curie depth results from magnetic data can be used to map geothermal anomalies (Bansal et al., 2011; Bansal et al., 2013; Salem et al., 2014; Bansal et al., 2016; Abdullahi and Kumar, 2020).
Curie depth is commonly estimated from magnetic data using a spectral analysis approach based on randomly uncorrelated and fractal source distributions (Bansal et al., 2011; Bansal et al., 2016; Ravat et al., 2016). Bansal et al. (2011) presented a robust method for Curie depth estimation by incorporating a fractal parameter into the traditional method proposed by Bhattacharyya and Leu (1977). The improved centroid procedure involves the approximation of the top to the buried magnetic source and estimating the centroid depth to the magnetic anomaly (Bansal et al., 2011). This technique, which has a comparative advantage over conventional techniques (Bansal et al., 2016), allowed the calculation of the depth to the bottom of the magnetic sources. It provides better estimates from the power spectrum plots (log) (Lazarian and Esquivel, 2003; Bansal et al., 2011).
2 LOCATION AND GEOLOGIC SETTING OF THE INVESTIGATED AREA
The investigated area, which is part of the LBT, covers some parts of the Tertiary-Recent Benin Formation, and Abakaliki Anticlinorium (Figure 1). The study area is bordered in the west, southwest, and south by the Tertiary-Recent Benin Formation. The study location is positioned between longitudes 6,030′E and 8,000′E and latitudes 5,000′N and 7,000′N.
[image: Figure 1]FIGURE 1 | Geologic map of the study area.
The sequence of events that resulted in the development of the Benue Trough and its component units has been previously reported (Onuoha and Ofoegbu, 1988). A thick Cretaceous sedimentary sequence occupies the LBT and sits on the granitic and magmatic rocks of the Precambrian basement (Akpan et al., 2014; Akpan et al., 2018). The Albian Asu River Group (ARG), which is composed of bluish–black sandstone units, sits on the Precambrian basement. Overlying the ARG is the Eze-Aku Formation (EAF) composed of sandy and shelly limestones, calcareous shales and siltstones, and calcareous sandstones (Reyment, 1965). The Awgu Shales are marine fossiliferous, gray–bluish shales, limestones, and calcareous sandstones of the Coniacian age. They are covered by the Nkporo Shales (Campanian), which are mostly marine, with some arenaceous sandstone members. Generally, the sedimentary sequences are severely affected by large-scale tectonic events, which occurred in two stages and culminated in the folding of the sediments (Nwachukwu, 1972). The folding episode that occurred in the Santonian period is the main cause of the development of the Abakaliki Anticlinorium. The asymmetry and reversed faults relating to the folds that were formed during this period reveal that they were primarily compressional. Benkhelil (1988) described the Abakaliki Anticlinorium events as a complete orogenic cycle involving sedimentation, magmatism, metamorphism, and compressive tectonics. The associated magmatic events cause the injection of several intrusive bodies into the EAF and ARG.
The sediments of the Abakaliki Anticlinorium (that is, the folded EAF and the ARG) are unconformably placed on top by the Nkporo Shale (Whiteman, 1982). Overlying the Nkporo Shale is the Benin Formation, which consists primarily of porous sands and gravels of varying grain sizes intercalated with thin clay and shale beds (Akpabio and Eyenaka, 2008). Deposits of recent alluvium and beach ridge sands can be found along the shores and estuaries of the Imo and Kwa Ibo rivers, including the flood plains of the creeks (Akpabio and Ekanem, 2009).
3 MATERIALS AND METHODS
3.1 Data acquisition
Fugro Airborne Surveys, Canada, acquired high-quality aeromagnetic data between 2005 and 2010. The data were acquired using a Flux Adjusting Surface Data Assimilation System with a flight-line space of 0.1 km, tie-line space of 0.5 km, and terrain clearance ranging from 0.08 to 0.1 km. Moreover, Fugro Airborne Surveys, Canada, subtracted the regional field from the magnetic data using the 10th (10th) generation of the International Geomagnetic Reference Field (IGRF). The main benefit of the IGRF is the consistency they provide in magnetic field survey practice, which began when the IGRF was made available and widely accepted (Reeves et al., 1997). The data employed in this research were processed into total magnetic intensity (TMI) gridded data. Since the data were collected at low latitude, the magnetic data were reduced to the equator (RTE) (Figure 2). Jain (1988) and Leu (1981) reported that RTE creates more dependable results, particularly at the middle and lower latitudes. The high-quality data were characterized by mean inclination, declination, and total field values of −16.40°, −2.57°, and 32,865.96 nT, respectively.
[image: Figure 2]FIGURE 2 | Total magnetic intensity data reduced to the equator.
3.2 Spectral analysis involving the centroid depth method
Spectral analysis using the centroid method (or spectral peak technique) is an effective tool used in the determination of CPD all over the world (Tanaka et al., 1999; Tanaka, 2017). It is often applied using the azimuthally mean power spectrum of magnetic anomalies (Tanaka, 2017; Wang and Liu, 2018). At low wavenumbers, the spectral peak method is based on determining the precise wavenumber of the spectral peak (Ross et al., 2006). In practice, however, most logarithmic power spectra of magnetic anomalies do not exhibit spectral peaks (Bouligand et al., 2009). The centroid technique applied in this research, rather than locating the spectral peak, is based on fitting the slope of the high- and low-wavenumber bands to calculate the top and bottom depths of the magnetic layer (Tanaka et al., 1999). The technique applied here is similar to the technique proposed by Spector and Grant (1970). The top bound and the centroid of a magnetic source, Zt and Z0, respectively, are computed from the power spectrum of magnetic anomalies and applied to approximate the basal depth of a magnetic source Zb.
Assuming that the layer extends infinitely in all horizontal directions, the depth to the top bound of a magnetic source is small compared with the horizontal scale of a magnetic source, and magnetization M(x,y) is a random function of x and y, Spector and Grant (1970) introduced the power–density spectra of the total field anomaly Φ∆T:
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where [image: image] is the power–density spectra of magnetization, Cm is a proportionality constant, and [image: image] and [image: image] are factors for the magnetization direction and geomagnetic field direction, respectively. This equation can be simplified by noting that all terms, except [image: image] and [image: image], are radially symmetric. Moreover, the radial averages of [image: image] and [image: image] are constant. If [image: image] is completely random and uncorrelated, then [image: image] is a constant. Hence, the radial average of [image: image] is
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where A is a constant. For wavelengths less than about twice the thickness of the layer, Eq. 3 approximately becomes
[image: image]
where B is a constant. We could estimate the top bound of a magnetic source by the slope of the power spectrum of the total filed anomaly. On the other hand, Eq. 3 can be rewritten as
[image: image]
where C is a constant. At long wavelengths, Eq. 5 becomes
[image: image]
where 2days is the thickness of the magnetic source. From Eq. 6,
[image: image]
where D is a constant. We could estimate the top bound and the centroid of the magnetic source by fitting a straight line through the high-wavenumber and low-wavenumber parts of the radially averaged spectrum of [image: image] and [image: image] from Eqs 4–7, respectively. From the slope of the power spectrum, the top bound and the centroid of a magnetic layer composed of a horizontal (equivalent) layer are estimated. The basal depth of the magnetic source is
[image: image]
The obtained basal depth of the magnetic source is assumed to be the Curie point depth. The obtained Curie point depth reflects the average value of the area. If magnetization in Earth’s crust is arbitrarily and uncorrelatedly distributed, the mean azimuthal power spectrum can be employed to compute Zt and Zb by Eqs 6–8.
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Fourier’s law is a central relationship when considering conductive heat conveyance [53]. Fourier’s law assumes the following form in the 1D case, supposing a vertical direction for temperature disparity and a constant temperature gradient dT/dz, where q is the heat flux and k is the coefficient of thermal conductivity.
The Curie temperature (θ) can be well defined as
[image: image]
where Zb is the CPD, supposing there are no heat sources or heat sinks between Earth’s surface and the CPD, dT/dz is constant, and the surface temperature is 0°C. Spector and Grant (1970) proved that any particular depth to a thermal isotherm is in reverse proportion to heat flow. Eqs 9, 10 were used to calculate HF and GG values, which were based on CPD estimates derived from magnetic computations. We utilize the Curie point (h) for magnetite (580°C) with an average thermal conductivity of 1.80 and 2.5 Wm-1 k−1 for regions of sedimentary shale formation and igneous rock/older granite (Abraham et al., 2019), respectively.
4 RESULTS
Some geophysical techniques are powerful tools in mapping geological structures (Pham et al., 2022; Kamto et al., 2023; Pham and Prasad, 2023; Xayavong et al., 2023) and in the appraisal of the lateral extent of several high-temperature geothermal anomalies in young volcanic rocks (Ben et al., 2022a; Ben et al., 2022b). Analysis of magnetic data can offer models that indicate concealed paleo-permeability structures (that is, ancient geologic structures that have influenced the permeability of subsurface formations relating to the geological past) and the magnitude of hydrothermally demagnetized rocks (Ejiga et al., 2022). These paleo-permeable structures, such as fault zones, karst systems, fractures, joints, and shear zones, play a vital role in subsurface fluid migration and resource distribution (Johnson et al., 2016; Smith et al., 2018), as well as serve as weak zones for igneous intrusions (Alfaifi et al., 2023). To ensure that large and small geothermal anomalies are properly mapped, the magnetic data (Figure 2) of the investigated area were divided into 266 spectral blocks with a 50% overlap of each block. The power–spectrum plot was generated for each block, and the associated parameters like Zc, Zot, Zb, GG, and HF were obtained (Table 1), which were then gridded.
TABLE 1 | Geothermal parameters obtained from magnetic data.
[image: Table 1]Table 1 shows that the result of the centroid depth (Zc) varies from 4.99–9.35 km, with an average value of 6.49 km, whereas the top depth (Zot) ranged from 2.31 to 6.15 km, with a mean of 4.00 km. The Zot (2.31–6.15 km), which is like the depth to the basement (Lawal and Nwankwo, 2017), lies within the range of depth solutions reported by previous studies in the LBT (Ekwok et al., 2021b; Ekwok et al., 2021c). The CPD (or Zb) of the investigated area ranged from 6.0 to 15.28 km, and mean values were 8.96 km. The gridded results (Figure 3) indicate low CPD dominance (red) in the central area with a somewhat E–W trend. The geothermal gradient result (Table 1) varied from 35.63°C to 94.93°C/km, and the mean was 67.17°C/km. Furthermore, heat flow varied from 89.09–237.32 mW/m2 with a mean of 168.94 mW/m2. Semioval structures in the central part of the investigated area (Figure 4; Figure 5) reveal a region of high geothermal gradient and heat flow. In general, it was stated by previous research that CPD and other associated parameters rely on geological events (Lawal and Nwankwo, 2017; Ejiga et al., 2022).
[image: Figure 3]FIGURE 3 | Curie point depth map.
[image: Figure 4]FIGURE 4 | Geothermal gradient map.
[image: Figure 5]FIGURE 5 | Heat flow map.
5 DISCUSSION
Potential field methods are effective procedures in mapping geothermal reservoirs (Nishijimaa and Naritomi, 2017; Abdelrahman et al., 2023; Ekwok et al., 2023) and related geothermal systems (Represas et al., 2013). One of the great advantages of the spectral analysis technique is that it does not require the average interface depth, magnetization vector, and low-pass filter compared with the magnetic inversion (Hang et al., 2019; Pham et al., 2019; Pham et al., 2020). The range of the CPD (6.11–16.28 km) obtained from the investigated area was detected to be lower than the CPD range (9–20 km) stated by Abraham et al. (2019). The GG result of 35.63°C–94.93°C/km observed in this study area is somewhat higher than the previous result (29.0°C–45.8°C/km) of the area (Onuoha and Ekine, 1999; Abraham et al., 2019). The shallow CPD region (Figure 3), which has somewhat E–W orientation, divides the investigated area into sections. The northwestern and northeastern flanks match with the Anambra Basin and Ogoja Syncline (Ekwok et al., 2022a), respectively, whereas the southern part correlates with the Afikpo Syncline. These regions are depocenters (Abraham et al., 2019) characterized by some pockets of relatively low GG and HF (Figure 4; Figure 5). Furthermore, the observed HF values (89.07–237.32 mW/m2) are considerably higher than the results obtained by Abraham et al. (2019) and Onuoha and Ekine (1999). Abraham et al. (2015) and Sharma (2004) reported that areas with HF values >80 mW/m2 reveal a geothermal anomaly in the subsurface. The mapped semioval structure (Figure 4; Figure 5), which coincides with shallow CPD, corresponds to the high-HF (>195 mW/m2) and -GG (>80°C/km) region (red color). It shows the prolific nature of the geothermal resources (Abraham et al., 2019) of the investigated area triggered by Santonian intrusions associated with the Santonian AA (Ekwok et al., 2020b; Ekwok et al., 2021a; Ekwok et al., 2021b; Ekwok et al., 2022a). The 3D evaluations of CPD, GG, and HF (Figure 6) show spike regions dominated by high geothermal potentials. The shallow CPD zones (< 8 km) characterized by spikes (Figure 6A) coincide fairly well with the positions of high-GG (Figure 6B) and -HF regions (Figure 6C). According to Bansal et al. (2011), potential geothermal areas are dominated by high-temperature gradient, high HF, and shallow CPD. Additionally, the igneous-related hydrothermal fluids of the area are believed to be the main source of brine fields (Ekwok et al., 2022b; 2021c; 2020a; 2019) and lead–zinc mineralization of the LBT (Farrington, 1952; Akpan et al., 2014; Ekwok et al., 2022a).
[image: Figure 6]FIGURE 6 | (A) 3D Curie point depth, (B) geothermal gradient, and (C) heat flow models obtained from magnetic and gravity data, respectively.
Further investigations in the delineated high geothermal zone involving bottom-hole temperature (BHT), seismic, transient electromagnetic (TEM), or magnetotelluric methods should be carried out.
6 CONCLUSION
Magnetic data involving spectral depth analysis procedures were analyzed to delineate the geothermal resources of the Abakaliki Anticlinorium and surrounding zones. The centroid depth, top depth, Curie point depth, geothermal gradient, and heat flow values varied from 4.99 to 9.35 km, 2.31 to 6.15 km, 6.11 to 16.28 km, 35.63°C to 94.93°C/km, and 89.07 to 237.32 mW/m2, respectively. The delineated geothermal anomalous zone (Figures 3–6) dominated by a semioval shape reveals the position of shallow-CPD (< 8.5 km), high-HF (>191 mW/m2), and high-GG (>74°C/km) areas. The CPD values are slightly lower, while GG and HF values are relatively higher than those in previous studies carried out in the Benue Trough. However, the top depth result matches very well with previous depth solutions of the studied area. On the whole, the shallow CPD zone is bordered by low geothermal areas of the Anambra Basin, Ogoja Syncline, and Afikpo Syncline in the northwest, northeast, and southern portions, respectively, of the investigated area.
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The nuclear magnetic resonance (NMR) response is known to deviate from the true value for the volcanic reservoirs, particularly when the pore throat size is ultralow. Consequently, the related petrophysical parameters such as porosity, permeability, and pore size distribution from NMR measurements are greatly influenced. An empirical method to correct the NMR calibrated porosity for the tight volcanic rocks is proposed after comprehensive investigations of influential factors combined with mineralogical and petrophysical analyses. The laboratory result indicates that the relative porosity deviation is negatively correlated with the geometric mean of the transversal relaxation time (T2) but positively correlated with the clay content. Moreover, both the paramagnetic materials, such as the manganese (Mn) content, and the diamagnetic materials, such as the magnesium (Mg) content, contribute to the NMR relaxation intensity reduction but with different mechanisms. The NMR calibrated porosity can be compensated through multiple regressions with these controlling factors, which can be generalized to other tight volcanic reservoirs.
Keywords: tight volcanic reservoir, paramagnetic and diamagnetic elements, nuclear magnetic resonance calibrated porosity, relative porosity deviation, mineral composition, transversal relaxation time geometric mean
1 INTRODUCTION
The low-field nuclear magnetic resonance (NMR) technique has been widely used in geological studies to characterize pore size distribution fluid transportation and rock mechanical properties in recent decades, owning to its ‘only fluid-related’ superiority (Coates et al., 1999; Dunn et al., 2002; Rezaee et al., 2012; Bauer et al., 2015; Tan et al., 2015; Xiao et al., 2015; Xu et al., 2018; Li et al., 2019). However, most models are valid for sedimentary rocks such as clean sandstone or carbonate with relatively large pore sizes and porosity. In the tight volcanic reservoir, the measured relaxation signals and the derived parameters are inadequate to characterize the porosity and the pore size distribution precisely due to the small pore size and the presence of paramagnetic substances (Kleinberg et al., 2003; Djafarov et al., 2004; Chen et al., 2011; Daigle and Dugan, 2011; Xie et al., 2013; Abouzaid et al., 2016; Fleury and Romero-Sarmiento, 2016; Mehana and El-monier 2016; Osterman et al., 2016; Testamanti and Rezaee, 2019; Yuan Rezaee, 2019).
Abundant studies have been conducted to investigate influential factors on the relaxation mechanism and NMR response of the volcanic reservoirs, attempting a better characterization of petrophysical properties (Anand and Hirasaki, 2008; Kock et al., 2018; Holthausen and Raupach, 2019; Sun et al., 2019; Tan et al., 2019). It is generally accepted that the amount of paramagnetic substance of high magnetic susceptibility is positively correlated with the transversal surface relaxivity, whereas negatively correlated with the relaxation intensity (Li et al., 2014). The internal gradient strength and the spin relaxation are greatly enhanced by the paramagnetic substance, resulting in the spectrum shift of transversal relaxation time (T2) obviously. However, a recent study revealed that there are no clear correlations between the magnetic susceptibility and the mass of paramagnetic substance (Tan et al., 2019). There are no uniform regulations to account for all influential factors due to distinctions of the geological structure and sedimentary environment, mineralogical constitution, and element composition. Moreover, some theoretical equations are physically feasible but require too much data to remove the diffusion term (Liao et al., 2009; Chen et al., 2011; Xie et al., 2013). Furthermore, some experiment-based methods can be easily implemented but may not be suitable to other regions due to large NMR porosity errors (Sun et al., 2011; Zhou et al., 2011; Li et al., 2014).
It is particularly difficult to eliminate the influences on the T2 spectrum of volcanic rocks, but it is practical to recover the relaxation intensity and the NMR calibrated porosity through experiments and empirical equations. This paper presents a case study to correct the NMR calibrated porosity of a tight volcanic reservoir based on the laboratory observations incorporating mineralogical and petrophysical measurements. The main aim of this work is to get a comprehensive knowledge on the influencing factors and main controlling factors of NMR relaxation intensity, and to put forward an empirical model to compensate the NMR porosity deviation of the tight volcanic rocks. The remainder of the paper is organized as follows. In section 2, we introduce the geological background and the experimental details of the target area. Mineralogical and petrophysical properties, as well as their influences on porosity deviation, are discussed in section 3. Furthermore, the empirical porosity correction method is also presented in this section. The conclusion and discussion part is shown in section 4.
2 MATERIALS AND METHODS
2.1 Geological settings
Malang–Tiaohu Sag is a typical tight reservoir located in the Santanghu Basin, northeastern Xinjiang autonomous region of China. It is a small intermountain basin sandwiched between the Dahafutike–Suhaitu and Moqin Ural Mountains, covering a total area of 2.3 × 104 km2 (Ge et al., 2015). The major oil beds in this region come from the Karagang Formation and the Hargau Formation of the Upper Carboniferous series. As shown in Figure 1 (Yu, 2013), the lithology can be divided into volcanic lavas consisting basalt, basaltic andesite and andesite, and pyroclastic rocks including tuff, shale, and volcanic breccia. Figure 2 shows thin sections and scanning electron microscope (SEM) images of typical rock samples from the research area. It is observed that they are very tight, and only a small number of pores are visible.
[image: Figure 1]FIGURE 1 | Comprehensive stratigraphic column of the Santanghu Basin.
[image: Figure 2]FIGURE 2 | Typical thin sections and SEM images of volcanic rock samples (A–H) from the research area (these samples were collcted at the depths indicated in the subcaptions).
2.2 Experimental details
To investigate influencing factors on the NMR response, the X-ray diffraction (XRD) analysis is performed for crushed samples to collect the quantitative mineralogical information using Bruker D8 advanced XRD equipment, under the standard of ‘clay minerals in sedimentary rocks and common method X-ray diffraction analysis of clay minerals’ (Wu et al., 2015). In addition, the elemental analysis and the oxide content analysis are conducted using the Xios X-ray fluorescence (XRF) machine, produced by PANalytical B.V. Therefore, the element contents such as silicon (Si), aluminum (Al), iron (Fe), manganese (Mn), calcium (Ca), sodium (Na), magnesium (Mg), and potassium (K) can be obtained. We use the helium-filled and the brine-saturated methods to obtain the porosity before the NMR measurement. The low-field NMR measurements are carried out by the 2-MHz NMR benchtop prototype system ‘MARAN DRX2’, under the standard of ‘specification for laboratory measurement of magnetic resonance parameters for rock samples’ (Li et al., 2018; Ren et al., 2019). The waiting time (TW), echo spacing (TE), and the number of echoes (NECH) are 6000 ms, 0.2 ms, and 4096, respectively. The receiving gain and the number of scans (NS) are 0.8 and 512, respectively. The recorded echo trains are inverted to the T2 spectra by the Butler–Reeds–Dawson (BRD) algorithm. According to the petrophysical theory, NMR basically detects the signals of the hydrogen nucleus of the fluids saturating the rock pores. Consequently, the NMR signal can be calibrated to the porosity when the rock is occupied with a single fluid (Elsayed et al., 2022). To obtain the porosity of the core samples, we first measured the NMR signals of standard samples with the given porosity and bulk volume to establish the relationship between the porosity and the normalized NMR signal. Therefore, we can predict the NMR porosity of the measured samples using this relationship under the same acquisition parameters.
The helium-filled porosity, brine-saturated porosity, and NMR measurements are performed for 51 plug samples simultaneously. The helium-filled porosity is measured using the AP-608 automated permeameter–porosimeter. The physical fundamental of this method is the Boyle–Marriote Gas Law. It is carried out at the room temperature. Details on the experimental flowchart and data manipulation methods are elaborated in the literature (Tiab and Donaldson, 2011). In addition, the brine-saturated porosity is calculated by the ratio of the pore volume and the total rock volume. It also called as the imbibition method. We first measured the weight of the dry sample, and then, the sample is immersed in an autosaturater container for 48 h under a confining pressure of 30 MPa. After that, the saturated sample is weighted. It is easy to obtain the imbibed fluid volume utilizing the density of the brine and, subsequently, the effective porosity. Details on the experiments are shown in many literature studies (Tiab and Donaldson, 2011; Ge et al., 2015; Pi et al., 2022). The basic parameters measured are listed in Table.1.
TABLE 1 | Basic petrophysical parameters and mineral contents of the samples.
[image: Table 1]To quantify the difference between the NMR calibrated porosity and the brine-filled porosity, the relative porosity deviation is defined as
[image: image]
where [image: image] is the relative porosity deviation; [image: image] is the brine-filled porosity; and [image: image] and [image: image] are NMR porosity for brine-saturated and dry samples, respectively. The deviations can be divided into slight ([image: image]), low ([image: image]), moderate ([image: image]), and high deviation ([image: image]).
It is easy to establish the empirical equation to compensate the porosity reduction through multiple regressions. It is better to include the manganese content, magnesium content, and the T2 geometrical mean in the regression, which is expressed as
[image: image]
where [image: image] is the geometric mean of the transversal relaxation time; [image: image] and [image: image] are the manganese and magnesium contents; and [image: image], [image: image], [image: image], and [image: image] are fitting parameters, respectively.
The geometrical mean of the transversal relaxation time is expressed as
[image: image]
where [image: image] and [image: image] are the transversal relaxation time and the corresponding amplitude for the ith component and [image: image] is the total number of components in the spectrum, respectively.
However, if the quantitative elements data are not available, a simplified equation can be used to get the relative porosity deviation combined with [image: image] and the clay content
[image: image]
where [image: image] is the clay content, and [image: image], [image: image] and [image: image] are fitting parameters.
Therefore, the NMR calibrated porosity can be corrected by
[image: image]
3 RESULTS AND DISCUSSIONS
3.1 The porosity deviations
Figure 3 compares the porosity obtained by these methods. The helium-filled porosity agrees well with the brine-saturated porosity, indicating that nearly all pore spaces are occupied by the brine. However, the NMR calibrated porosity for many samples deviates from the brine-filled porosity heavily, indicating that the NMR calibrated porosity distorts from the truth due to some reasons. It is also noted that the NMR calibrated porosity for some samples is higher than the brine-saturated porosity, due to the influences of background relaxation signals. These background signals may come from the fluids residing in unconnected nanopores, and crystal water residing in laumontite, analcite, and zeolites. The relaxation signal of dry samples should be measured and be subtracted to get the effective porosity. After subtraction, the NMR calibrated porosity is lower than the brine-filled porosity, which is in accordance with the published results.
[image: Figure 3]FIGURE 3 | Comparisons of porosity under different measurements and different saturations (A–D).
3.2 Influences of relaxation time
Figure 4 shows the background-subtracted T2 spectra for volcanic rocks according to different relative porosity deviation extents. It is seen that most spectra are unimodal or irregular bimodal distributed, with the geometric mean ranges from 0.5 ms to 18 ms, indicating that the pore size is relatively small. However, there is no clear correlation between the T2 distribution and relative porosity deviation. Interestingly, the relative deviation seems to decay exponentially with the T2 geometric mean and the peak value, as shown in Figure 5. It is interpreted that larger pores with high T2 values tend to be less affected by the diffusion relaxation contributed by the internal field gradient, which is generally introduced by the magnetic susceptibility difference between the rock matrix and the pore fluid.
[image: Figure 4]FIGURE 4 | T2 spectra of volcanic core samples according to the porosity deviation degree (A–D).
[image: Figure 5]FIGURE 5 | Relationships of the relative porosity deviation and the relaxation time (A,B).
3.3 Influences of minerals
Figure 6 shows the mineral constitutions and their average values from the XRD analysis. There are as many as 14 minerals, but the main minerals are plagioclase, quartz, and clay. Moreover, notorious paramagnetic materials such as pyrite and ferrodolomite also account for a certain percentage, bringing in great impacts on the NMR relaxation. Unitary analyses were carried out for four main minerals to investigate their contributions to the relative porosity deviation, as shown in Figure 7. It is observed that the quartz content and the plagioclase content are not correlated with the relative porosity deviation since they are nonmagnetic and hydrogen-free, contributing nearly zero relaxations at low field magnetic strengths. The relative porosity deviation is positively correlated with the clay content since it is associated with micropores occupied by the clay-bound water that the measurement may be insufficient to catch these fast relaxation components, resulting in porosity reduction. Furthermore, some clay minerals such as illite and chlorite where strong magnetic susceptibility can enhance the internal gradient, resulting in diffusion relaxation, cannot be ignored. Moreover, we found that there is also no clear correlation between the relative porosity deviation and the pyrite content, as shown in Figure 7D. It is controversial with many publications since pyrite is composed by iron, a well-known paramagnetic element with high magnetic susceptibility. The intrinsic mechanism and explanation are difficult to uncover.
[image: Figure 6]FIGURE 6 | Mineral composition (A,B).
[image: Figure 7]FIGURE 7 | Mineral composition influences on the relative porosity deviation (A–D).
3.4 Influences of elements
XRF analyses are conducted since they provide quantitative element contents, and the types and contents of oxidizing materials. Figures 8 and 9 shows the constitution of oxidizing materials and the element contents for 16 volcanic samples. It is seen that the major oxidizing substances are silicon dioxide (SiO2), aluminum trioxide (Al2O3), calcium oxide (CaO), and iron oxides (including TFe2O3, Fe2O3, and FeO), which agrees well with the XRD analyses. We found that the relative porosity deviation is decreased with the increase in the silicon and phosphorus contents, whereas increased with the increase in the contents of iron, magnesium, calcium, and manganese. Moreover, the influence of manganese and magnesium is larger than that of other elements such as sodium, potassium, phosphorus, and calcium, which are considered as the controlling factors of the signal reduction of the NMR measurements. As is known, magnesium is diamagnetic and can develop weak magnetization in a direction opposite to the direction of the magnetizing field, reducing the macroscopic magnetic intensity.
[image: Figure 8]FIGURE 8 | Element distributions (A,B).
[image: Figure 9]FIGURE 9 | Element distributions’ influences on the relative porosity deviation (A–J).
3.5 Porosity correction methods
Based on the aforementioned analysis, it observed that it is meaningful to conduct the XRF test since it can provide quantitative element information, which is helpful for us to investigate the mechanism of the NMR response in volcanic rocks. Figure 10 shows the comparisons of the brine-saturated porosity, NMR calibrated porosity, and the NMR calibrated porosity after the correction. It is seen that the corrected NMR calibrated porosity is more consistent with the brine-saturated porosity. However, there is no obvious difference between the relative porosity deviation from Eqs 2–4, revealing that both methods are effective. Actually, the correction method through the clay content is easier and simpler than the correction method through elements.
[image: Figure 10]FIGURE 10 | Comparison between the brine-filled and NMR calibrated porosity (A,B).
4 CONCLUSION
We conducted a comprehensive study on the NMR calibrated porosity deviation and put forward an empirical method to correct the porosity based on the mineralogical and petrophysical analyses. Influences such as the pore structure, mineral compositions, and the element constitutions are investigated to explore the controlling factors on the porosity deviation. Based on the findings, the main following conclusions can be drawn.
(1) The background relaxation signals should not be ignored for the tight volcanic rock since it will enhance the NMR calibrated porosity.
(2) The relative porosity deviation is negatively correlated with the transversal relaxation time, whereas positively correlated with the clay content. Strangely, pyrite seems to not bring much contribution to porosity reduction.
(3) Both the paramagnetic elements, such as manganese, and diamagnetic elements, such as magnesium, contribute to the NMR calibrated porosity reduction but in different ways. The paramagnetic element enhances the internal magnetic field and diffusion relaxation, whereas the diamagnetic element reduces the macroscopic magnetic intensity.
(4) The relative porosity deviation and NMR calibrated porosity can be compensated by multiple regressions with element contents, geometric T2 mean, and the clay content.
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Water scarcity is developing in the Middle East as a result of the region’s growing population and tremendously advanced agricultural and industrial sectors. Saudi Arabia is the Middle East country with the highest water consumption, so there is an urgent need to take action, and new technology advancements in geophysical measurements allow for the monitoring of groundwater. Wadi Ar-Ramah is one region that has witnessed significant agricultural expansion as well as a serious over-exploitation of the groundwater resources that are available there. Depletion rate in groundwater of the Wadi Ar-Ramah basin at eastern Saudi Arabia was determined for the time interval of 04/2002 to 12/2021 using a combination of gravity data from the Gravity Recovery and Climate Experiment (GRACE) mission and results of land surface models. The findings are: 1) the average yearly rainfall rate was computed at 87.7 mm yr−1 over the Wadi Ar-Ramah; 2) the terrestrial water storage variation (ΔTWS) was computed at −1.216 ± 0.013 cm yr−1; 3) the GLDAS-derived soil moisture (ΔSMS) was minimal at −0.32 ± 0.025 mm yr−1; 4) the GRACE-derievd groundwater decreasing rate was calculated at 1.212 ± 0.012 cm yr−1; 5) the relief of the ground surface is producing northeasterly streams that carry the minimal surface water to the east; 6) our integrated method provides a repeatable and cost-effective approach.
Keywords: geophysical data, GLDAS, groundwater depletion, Wadi Ar-Ramah, Saudi Arabia
1 INTRODUCTION
At least 2 billion people rely on groundwater as the world’s largest and most dependable source of freshwater, with the majority of them living in arid and dry zones (Taylor et al., 2013; Jasechko et al., 2017; Sun et al., 2022). Globally, groundwater is the source of one-third of all freshwater exploitation, supplying an estimated 36%, 42%, and 27% of the water used for domestic, agricultural, and industrial purposes, respectively (Döll et al., 2012). In recent decades, the increased use of groundwater for human consumption and agriculture has led to a decline in groundwater levels in many regions of the globe (Castellazzi et al., 2016; Narany et al., 2017; Cui et al., 2020). As a result, aquifers have been depleting, which has caused a number of environmental and geological problems, including land subsidence and the destruction of wetlands (Dalin et al., 2017). Improving groundwater management is necessary to ensure its sustainable usage and reasonable expansion. Saudi Arabia is regarded as one of the driest countries in the world, despite the fact that 99.84% of the country’s population have access to drinkable water (General Authority of Statistics, 2019). Saudi Arabia only has 89 m3/cap./year of absolute water scarcity, compared to 500 m3/cap./year worldwide. (Water Challenges in KSA, 2021).
In arid and semiarid regions, it is crucial to evaluate groundwater resources, hydrogeologic settings of aquifers, and recharge and/or discharge (natural or anthropogenic) of these systems in order to establish effective management scenarios for these resources and the economic development of such locations (Simmers, 1997). Much of the groundwater in dry regions is used for irrigation, which accounts for roughly 70% of the world’s water withdrawal and 90% of its consumption (Siebert et al., 2010; Gerten et al., 2020).
Groundwater, surface water (dams, reservoirs, rivers, and lakes), snow, soil moisture, plant canopy water, and glaciers all contribute to the total amount of water stored on and below the land’s surface, which is referred to as “terrestrial water storage” (TWS) (Zhu et al., 2021). Changes in the TWS can efficiently indicate the equilibrium or imbalance of water fluxes that are substantially impacted by regional climate conditions (Zhu et al., 2021). Recent global warming has increased TWS variability in many dry and semi arid settings (Wang et al., 2018; Chang et al., 2020; Shugar et al., 2021; Yang, et al., 2022). As a result, correct TWS calculation is critical for understanding regional hydrological processes, which allow effective basin-scale water resource allocation and management.
The goal of groundwater management (Ahamed, et al., 2021) is to develop methods for accurately estimating and monitoring changes in GWS across temporal and spatial scales. Several huge aquifers have been significantly depleted in several regions throughout the world as a result of human activity; these regions include North Africa, South and Central Asia, the Middle East, North China, Australia, and North America (Rodell, et al., 2009; Sun et al., 2022). Historically, scientists have attempted to predict GWS changes using in situ observation (such as monitoring changes in groundwater level), the water balance approach, and hydrological modeling techniques (Ahamed et al., 2021; Sun et al., 2022). Although these techniques have been employed in a number of earlier research, they are constrained by real-world constraints including the dispersed nature of observation wells. Therefore, it remains a significant problem on a global scale to manage refined groundwater resources in a reliable and timely manner, as required.
Several strategies, including physical and chemical methods, in situ measuring, satellite remote sensing, and modeling techniques, have been used to estimate the TWS and assess the recharge, discharge, and depletion rates of aquifer systems, as well as to investigate the connectivity of their subbasins (Cox and Chao, 2002; de Vries and Simmers, 2002; Cazenave and Nerem, 2002; Scanlon et al., 2016; Ramillien et al., 2005; Rodell et al., 2009). These methods are difficult to use on a regional scale, and their results are sometimes suspicious due to the scarcity of datasets required for implementation, as well as the substantial efforts and resources required to obtain them. Satellite remote sensing only captures information on surface water bodies, and the precision of model parameters influences numerical modeling. Fortunately, the implementation of the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GRACE-FO) can address these shortcomings and limitations by providing a new remote sensing technique for monitoring monthly TWS (Chen et al., 2016).
As a twin satellite-to-satellite monitoring mission, the GRACE mission started in March 2002 enables us to compute the average and time-varying components of the Earth’s gravitational field (Tapley et al., 2004). Hydrological signals dominate the gravitational field’s change, hence GRACE data can be used to correctly quantify TWS fluctuations (Ahmed, et al., 2014; Tapley et al., 2019). GRACE can detect water storage changes to within 1–1.5 cm worldwide (Wahr et al., 2004), despite having a poorer spatial resolution (300 km). The GRACE mission terminated in October of 2017, however the mission that replaced it, which began operations in May 2018, is still delivering consistent data for hydrological uses (Landerer et al., 2020).
Because GRACE can be utilized to fill in the gaps in hydrological monitoring data, some studies have combined GRACE with other data to estimate depletion and/or recharge rates caused by climate and/or human activities in Saudi Arabia and other regions (e.g., Fallatah et al., 2017; 2019; Mohamed, 2019; Mohamed, 2020a; Mohamed, 2020b; Mohamed, 2020c; Mohamed et al., 2021; Mohamed and Gonçalvès, 2021; Taha et al., 2021; Mohamed, 2022a; Mohamed, 2022b; Mohamed, 2022c; Mohamed, 2023a; Mohamed, 2023b; Othman et al., 2022; Alshehri and Mohamed, 2023). Other satellite and aerial geophysical field datasets have been utilized to explore continental crustal properties (Mohamed and Al Deep. 2021), Curie point depth and magma chamber geometry (Mohamed et al., 2022d), and subsurface structures controlling the mineralization zones (Mohamed et al., 2022e; Mohamed et al., 2023).
More accurate estimate of the depletion rate of the Wadi Ar-Ramah basin was obtained in this work by combining GRACE data with results from land surface models (LSMs) for the time period of 04/2002 to 12/2021. The objectives of this study are to: 1) use improved state-of-the-art solutions, the global mass concentration solutions (mascons) covering the time of April 2002 to December 2021; 2) using outputs from three versions of the Global Land Data Assimilation System (GLDAS) to estimate the groundwater storage (ΔGWS) from the GARCE-derived ΔTWS, and define its controlling factors; and 3) assess if the basin is in steady-state conditions or is being exhausted, and, if the latter, whether this depletion is due to natural and/or anthropogenic factors.
2 STUDY AREA
With a length of about 600 km, Wadi Ar-Ramah is a long river valley on the Arabian Peninsula (370 mi; Figure 1). The wadi begins near Medina in Jibl al Abyad (the White Mountain), where it is mostly dry and partially dammed by expanding sand dunes. A number of smaller wadis, including Murghala Wadi, Mohalla Wadi, Jarir Wadi, and Jifn Wadi, are connected to it as it flows towards the north-east. In Al-Qassim Province close to Buraidah, it comes to an end in the Thuayrat Dunes of the ad-Dahna Desert. After there, the wadi disappears beneath the sand dunes, where it is known as Mistewy Wadi. It appears as Wadi al-Batin on the other side of the sand dunes, which runs about 425 km north to define Kuwait’s western boundary. It finally drains into the Arabiani Gulf (Edwards, et al., 1970; Helen Chapin Metz, 1992; Wadi al-Ramah, 2011).
[image: Figure 1]FIGURE 1 | A location map of Wadi Ar-Ramah in Saudi Arabia (A) and its geology (B).
The valley is wide because it was previously a prominent river valley. It was originally a 1,200-km-long river that flowed from Medina to the Arabian Gulf roughly 10,000 years ago (according to Dr. Abdullah Al-Musnad). Drought conditions and sand migration at Althwairat and Dahna caused the valley’s route to be divided into three sections: Wadi al-Ramah, the longest at 600 km, Wadi Aloddi, at 45 km, and Wadi al-Batin, at 450 km. According to geological studies, the Wadi Ar-Ramah flows fully three times per hundred years. Recently, it flowed in the years of (1945, 1982, 1987, 2004, 2008, and 2018). The river valley flooded for afew days in 1818, 1838, 1987, and 2008. The wadi overflowed in 1838, generating a lake with an area of 520 km2 that continued 2 years and attracted rare water birds to the region (alriyadh.com; Wadi al-Ramah, 2011).
The research region contains two surface rock units representing different geologic time periods, namely, the Cambro-Ordovician and Quaternary. Except for the eastern and northeastern parts of the study area, which are covered by sand dunes, the Saq Sandstone aquifer outcrops on both sides of the wadi. This Cambrian-Ordovician sandstone has several colors and is interbedded with jointed quartz (Bramkamp et al., 1963; Sowayan and Allayla, 1989). This Sandstone outcrop stretches 170 kilometers south of the wadi and north across the Syrina border. It has a surface area of around 65,000 km2. The Saq Sandstone is the country’s oldest sedimantary unit, and it unconfromably overlies the underlying crystalline rocks. The Tabuk Formation, which is represented by alternating sandstone and shale elements, is likewise an important water-bearing reservoir. Eolian and fluvial deposits make up the more recent Quaternary sediments. Eolian sediments are made up of many forms of undulating sand sheets. These sands impact the width of the wadi, which is around 1 km in the eastern part near the downstrem compared to nearly 14 km in the western poerion of the study area (Sowayan and Allayla, 1989). The wadi channed and its floodplain are occupied by fluvial deposits. The Saq Sandstone is the main imprtnat aquifer in the research area, spreading for long distances north and south. This aquifer becomes cofined to the east with good water quality, however higher salinity values occur locally in the study region (Sowayan and Allayla, 1989).
3 DATA AND METHODS
3.1 GRACE mascon data
After the success of the GRACE mission, the National Aeronautics and Space Administration (NASA) and the German Research Centre for Geosciences (GFZ) decided to launch a new project to continue the research (Watkins et al., 2015). This new mission is called GRACE Follow-On (GRACE-FO). It was the follow-up to the original mission, which was in orbit from 2002 to 2017. It refines the previous model’s successes and pilots cutting-edge technology that significantly enhances the accuracy of the measuring apparatus. High-resolution, monthly global models of the Earth’s gravitational field were initiated during GRACE, and this adds data to those models.
However, besides mass concentration (Mascon) solutions, spherical harmonics (SH) solutions are also available for the GRACE/GRACE-FO data (Soltani et al., 2021). For the first 10 years of GRACE data, the SH solutions were the gold standard since they were used to parameterize the earth’s gravity field model using global SH basis functions (Landerer and Swenson, 2012; Wei et al., 2021). The GRACE/GRACE-FO SH solutions are made public every month by the Scientific Data System, which is made up of three centers: the Jet Propulsion Laboratory (JPL), the Center for Space Research at the University of Texas (CSR), and the GFZ. Parameterizing the earth gravity field model using mass concentration blocks in mascon solutions makes it much simpler to incorporate geophysical constraints and has the potential to enhance the gravity information for research into Earth’s surface processes (Scanlon et al., 2016; Save et al., 2016; Yang et al., 2022). This research makes use of three different time-variable gravity mascon solutions from the three processing centers. Datasets from the JPL, the CSR, and the Goddard Space Flight Center (GSFC) at NASA feature mascon products. All these mascon products were utilized to calculate the changes in TWS for the Wadi Ar-Ramah basin. Data was available from April 2002 through December 2021. This included 175 months from GRACE (01/2002 through 06/2017) and 41 months from GRACE-FO (06/2018 to 12/2021). Data gap between GRACE and GRACE-FO of 11 months could not be filled because of the satellites’ termination. This research evaluated the TWSA measurements taken between 2002 and 2021 using data from the mascon CSR, GSFC, and JPL solutions. The spatial averaging was used to create a monthly TWS time series of within the basin. By averaging the TWSA from three solutions to generate the TWSA, the signal-to-noise ratio was improved (Sakumura et al., 2014; Wang et al., 2021). The TWS trend were determined using the slope. In the next step, the errors in the trend values were then estimated.
3.2 GLDAS
We have used the most recent GLDAS-2.1 (Rodell et al., 2004) Community Land Model (CLM), the Variable Infiltration Capacity, and Noah model results (https://disc.gsfc.nasa.gov) to determine SWE, CWS, and SMS for the period of 2002–2021 with a spatial resolution of 1° degree. The SMS refers to the total amount of water present in all soil profiles, including those amount in 0–0.1 m, 0.1–0.4 cm, 0.4–1 m, and 1-2 m underground, and root zone SM. Based on the deviation from the 2004–2009 mean, we converted the GLDAS data into an anomalous format.
3.3 Rainfall data
The mass fluctuations within geological formations are influenced by a number of reasons, one of which is rainfall. Precise point rainfall readings can be obtained using rain gauges, but there is a lack of continuous monitoring stations in the sparsely populated desert regions of Wadi Ar-Ramah. So, this research made use of satellite monitoring of the rainfall. The Tropical Rainfall Measuring Project (TRMM) is a cooperative space mission designed to measure rainfall for climate research (Kummerow, 1998; Huffman et al., 2007).
Using precipitation records, monthly total precipitation images were generated. Second, we averaged the rainfall rates at each grid point within the research area to produce a monthly rainfall time series. Finally, the region’s AAR (average annual rainfall; see Figure 3) was calculated. Finally, the impact of rainfall on GWS variations over the research area was analyzed using the TRMM data.
3.4 Landsat images
Landsat 4, 5, 7, 8, and 9 multi-temporal satellite images were downloaded and processed for the study region to assess land-use changes caused by human activities across the research period. The images were also used to demonstrate agricultural expansion and community growth in the Wadi Ar-Ramah.
4 RESULT AND DISCUSSION
In this study, we integrate GRACE and GLDAS data to get a comprehensive understanding of the groundwater potentialities of Wadi Ar-Ramah in Saudi Arabia’s eastern region.
4.1 Water storage changes from GRACE
An examination of Figure 2 reveals a decline in AAR started in 2006 and continues till 2017 with AAR values varying between 48.38 and 93.3 mm/yr and a general decrease trend of −0.89 mm/yr throughout the time interval 2006–2017. The AAR rate increases to 193.3 mm/yr withing the year 2018 and decreases to 83.89 mm/yr in the year 2019. The average spatial distribution of the AAR-derived TRMM data over the study region shows increasing in the rainfall from low values of ∼40.6 mm/yr at the southwestern part of the Wadi to higher values at the eastern part of it reaching up to 147.3 at its downstream. The study area has an AAR rate of 87.7 mm/yr throughout the study period. The decreasing trend of rainfall between the years of 2006 and 2017 might be one of the causes of the higher TWS depletion for the Wadi. We cannot compare 2018 due to the absence of TWS anomalies induced by the termination of GRACE observations between July 2017 and May 2018.
[image: Figure 2]FIGURE 2 | Monthly rainfall time series (A), Temporal AAR variation time series (B), and the spatial variation of the AAR (C) over the study area.
Here, we describe the spatial distributions of GRACE’s detected signals of changes in ΔTWS. The spatial distribution of ΔTWS trends between 2002 and 2021, as computed from CSR and GSFC solutions, is shown in Figure 3. Witnessing of this Figure 3 shows that high decreasing trends of TWS to about −2.05 cm/yr using CSR mascon solution; and −2.68 cm/yr using GSFC mascon solution were mainly found in the middle and northwestern regions of the Wadi. The TWS trend values increase northeast and southwestwards, attaining values ranging from −0.07 to + 0.009 cm/yr when employing the GSFC and CSR mascon solutions, respectively.
[image: Figure 3]FIGURE 3 | GRACE-derived TWS spatiotemporal fluctuations for the research area utilizing CSR (A) and GSFC (B) mascon solutions.
Figure 4 depicts the variability in monthly average storage anomalies of GRACE-estimated ΔTWS over the Wadi. The degree to which two variables are linearly related is measured by a statistic called the correlation coefficient. The higher the correlation coefficient R among the different three solutions, the stronger the averaging will be. The correlation coefficients for the three mascon solutions range from 0.97 to 0.99, indicating that they share similar patterns (Figure 4). Based on the monthly TWS estimates, the annual mean ΔTWS fluctuations were examined in further detail. The ΔTWS was decreased at rate of −1.216 ± 0.013 cm/year in equivalent water height over the entire Wadi Ar-Ramah between 2002 and 2021.
[image: Figure 4]FIGURE 4 | Time series of the TWS (A) and averaging TWS trend (B) from 04/2002 to 12/2021 for the Wadi.
Three different GLDAS models were utilized to calculate the ΔSMS; Figure 5 displays the average of these estimates for Wadi Ar-Ramah. The amplitude of seasonal SM anomalies is around 10 cm. SMS values from the three models vary from 0.2 to 0.5 mm/yr, with an average of −0.32 ± 0.025 mm/yr due to the relatively low rainfall rates experienced by the Wadi Ar-Ramah over the research period. Consequently, the contribution of SMS to the variability of terrestrial water storage is often minimal on a regional scale.
[image: Figure 5]FIGURE 5 | Temporal variations of the GLDAS-derived SMS for the Wadi Ar-Ramah from 04/2002 to 12/2021.
As was already mentioned, however, GRACE can’t tell the difference between anomalies brought on by distinct TWS compartments. Consequently, GLDAS models were used to determine the non-groundwater components reflected in SMS fluctuations.
Several authors have used Eq. 1 to determine groundwater storage fluctuations (e.g., Rodell et al., 2009; Tiwari et al., 2009; Mohamed et al., 2017). Estimates ΔGWS were obtained by deducting the variations in ΔSMS, from GRACE-derived ΔTWS.
As can be seen in the following formula, TWS is comprised of two distinct parts:
[image: image]
Variations in the other components represnted by CWS, SWS, and SWE are ignored due to the absence of trends in their respective time series.
The time series of GRACE-derived GWS reach their peaks in May and June, and their troughs in October and November. Their temporal variations show similar patterns as those of the TWS, due to the minimal contribution from the non-groundwater components in Wari Ramah (Figure 6). The calculated groundwater depletion of Wadi Ar-Ramah varying between −1.418 ± 0.019 and −0.978 ± 0.018 cm/yr using the three mascon solutions with an average value of −1.212 ± 0.012 cm/yr during the entire period (Table 1).
[image: Figure 6]FIGURE 6 | Time series of the GWS (A) and averaging GWS trend (B) from 04/2002 to 12/2021 for the Wadi.
TABLE 1 | ΔTWS components for Wadi Ar-Ramah and the surrounding zone at a 95% level of confidence.
[image: Table 1]4.2 Sediment thickness
NOAA’s National Geophysical Data Center provided data on sediment thickness (Divins, 2003). In the southwestern part of the Wadi Ar-Ramah, the sedimentary cover reaches a thickness of less than 10 m (Figure 7) in the lowlands of the streams that dissect the basement crystalline and volcanic rocks. Northeastwards, the sediment thickness increases to reach higher sediment thickness of more than 3,500 m at the confluence of the streams that continues to more 4,000–6,000 m at the main channel in the downstream of the Wadi. This may provide evidence for the existence of a large fluid reserve in the Wadi around its main long channel.
[image: Figure 7]FIGURE 7 | Thickness of the sedimentary succession (m) in Wadi Ar-Ramah.
4.3 Watershed analysis
Figure 8 is a topographic map generated from the ETOPO1 Global Relief Model depicting the stream networks of Wadi Ar-Ramah. The elevation varies dramatically from more than 1,000 m at the southwestern parts of the Wadi over the mountainous region of the Arabian Nubian Shield to less than 500 m at the beginning of the sedimentary region close to the shield. It continues down to less than 300 m northeast of the Hafar Al Batin region, close to the mainstream. Streams arise in the southwestern portion of the Wadi and flow downstream toward the east. Given the Wadi’s low average annual precipitation rate of 87.8 mm, the Wadi may receive a minimum recharge rate. This is demonstrated by the Wadi’s heavy groundwater extraction rate of −1.216 ± 0.013 cm/year during the study period.
[image: Figure 8]FIGURE 8 | The drainage pattern and stream networks of the studies area.
4.4 Anthropogenic activities
Human activity has been found to induce changes in land/land cover, as shown by the outputs of Landsat datasets that contained satellite imagery from multiple historical periods (Figure 9). Landsat’s 1984 view of the Wadi Ar-Ramah region shows signs of farming and aqricultural activities that increses across the time to large areas occupied by the these activities. In addition, the building of new communities has consumed more water and adding a stress on the groundwater potential. Deserts of the wadi are gradually becoming dotted with green in later images. A center-pivot irrigation system waters each green dot, which represents a farm field. For the purpose of watering the fruit, vegetable, and wheat crops, water is piped up from a deep underground reservoir. The reservoir is known as Al Sag. Water in this aquifer is estimated to have been gathered between 12,000 and 30,000 years ago, with just a small amount being replenished in the present day. Mohamed et al. (2022a) assessed the groundwater depletion of the Saq aquifer to be −10.16 ± 0.39 mm/yr between 04/2006 and 06/2016 as a result of intensive groundwater withdrawal for residential and agricultural purposes.
[image: Figure 9]FIGURE 9 | Landsat images from 1985 to 2011 depicting the area’s land usage and land cover.
5 CONCLUSION
Based on an analysis of rainfall data for the Wadi Ar-Ramah between April 2002 and December 2021, the annual precipitation rate is 87.7 mm. Wadi Ar-Ramah Basin has been subjected to extensive groundwater extraction since 1990. The integrated results from GRACE and GLDAS indicate that the groundwater resource is declining at a rate of −1.212 ± 0.012 cm/year. The identification of change from Landsat images has revealed significant land use/land cover changes since 1985. The substantial rate of groundwater extraction is not mitigated by the small amount of surface water derived from precipitation. In the aquifer’s downstream section, the higher sediment succession of 4,000–6,000 m is preserving vast quantities of groundwater. Using the Wadi Ar-Ramah Basin, we demonstrated that GRACE data can be used to estimate mass variations across enormous hydrologic basins, a normally challenging endeavor. Despite the unavoidable challenges, the current research advances our knowledge of the groundwater variability from both a present and a future perspective. Policymakers may use this information to increase groundwater-dependent agriculture and community development. A continuous monitoring program using the most recent GARCE data, meteorological models, and ground-based data should be carried out to evaluate the water storage dynamics in the future.
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The analysis of sedimentary deposits influenced by bottom currents in glaciated continental margins provides crucial insights into paleo-depositional and oceanographic conditions. These reconstructions enable the assessment of interactions between advance and retreat of grounded ice sheets and past ocean circulation patterns. However, questions regarding these interactions and their specific mechanisms remain largely unanswered due to a lack of data in this remote area. In this study, we conducted a comprehensive analysis by integrating marine geophysical data, surficial sediment cores, oceanographic measurements, and ocean circulation models. Our aim was to understand spatial and temporal variations in sedimentary and oceanographic conditions during the past glacial and interglacial periods in combination with the long-term stratigraphic evolution. By integrating and cross-referencing diverse datasets, we were able to infer how bottom-current-controlled deposits (i.e., contourites) developed along the western bathymetric high of the Central Basin in the northwestern Ross Sea margin, Antarctica. Contouritic deposits lying over and along the flanks of bathymetric highs were identified through their mound-shaped external geometry and acoustically stratified facies, characterized by reflectors pinching toward the moat. Acoustic facies and multi-beam backscatter results, in conjunction with sedimentary core data, revealed contrasting patterns. Bathymetric highs exhibited thin (<10 m thick) coarser-grained sedimentary layers with higher backscatter, while the lower slope and rise displayed thick (>10 m thick), finer-grained stratified sediments with lower backscatter. These findings indicate that seabed winnowing occurred by strong bottom current during past glacial periods as supported by sedimentological analysis. The pathways of the westward-deflected dense shelf water outflow and the westward-flowing along-slope current, as simulated by oceanographic models, explain the distinctive development of contourites influenced by bottom-current processes. Moreover, the large accumulations of sediment in the contourites, resulting from bathymetric barriers in the north of the Central Basin, may contribute to submarine slope failures.
Keywords: contourite, bottom current, Antarctica, Ross Sea, seismic stratigraphy, seafloor morphology
1 INTRODUCTION
The glaciated continental margins display geomorphic and sedimentary features that contain invaluable records, shedding light on variations in intensity and shifts in the locations of ocean bottom currents influenced by ice sheet dynamics (Rebesco et al., 1996; Dowdeswell et al., 2006; Uenzelmann-Neben, 2006; 2018; Pérez et al., 2015; Lasabuda et al., 2018; Le Heron et al., 2019; Rydningen et al., 2020; Mosher and Boggild, 2021; Bjordal-Olsen et al., 2023). Among these regions, the Ross Sea continental margin, positioned between East and West Antarctica, has evolved stratigraphically and geomorphologically over a long duration, shaped by the Antarctic Ice Sheet since the earliest Oligocene (Brancolini et al., 1995; De Santis et al., 1995; 1999; Bart and De Santis, 2012; Anderson et al., 2014; Halberstadt et al., 2016; McKay et al., 2016; Bart et al., 2017). The Ross Sea plays a significant role in global ocean circulation by contributing cold and dense shelf water (DSW) through its outflow (Jacobs et al., 1970; Bergamasco et al., 2002; Budillon et al., 2002; 2011; Rivaro et al., 2003; Orsi and Wiederwohl, 2009). Additionally, the influx of warm Circumpolar Deep Water (CDW) and the westward-flowing Antarctic Slope Current (ASC) have been observed at the outer Ross Sea continental margin (Gordon et al., 2009; 2015; Smith et al., 2012; Carter et al., 2022) (Figure 1).
[image: Figure 1]FIGURE 1 | The regional bathymetry and elevation extracted from the International Bathymetric Chart of the Southern Ocean Version 2 (IBCSO v2; Dorschel et al., 2022) and oceanographic setting (modified from Smith et al., 2012) of Ross Sea region in Antarctica. The red rectangle in the upper right inset locates the Ross Sea in the Antarctica. In the upper right inset figure, the white thick and thin arrows represent the flow direction of the Antarctic Circumpolar Current (ACC) and the circulation of Ross Gyre, respectively. The black rectangle in the main figure locates the Central Basin. The main water masses in the Ross Sea are indicated by color-coded arrows, with labels and abbreviations provided in the upper right. The black dashed line is the reconstructed grounding line at the Last Glacial Maximum (Halberstadt et al., 2016).
Given the close association between cryospheric and paleoceanographic changes in polar continental margins (Kennett, 1977; Uenzelmann-Neben and Gohl, 2012; Huang et al., 2014; Hochmuth et al., 2020; Kim et al., 2020), the outer continental margin of the Ross Sea is a key area for reconstructing the evolution of oceanographic and depositional conditions during the late Cenozoic, characterized by repeated ice-sheet advances and retreats. Despite the Ross Sea having a crucial influence on global ocean circulation through ocean–cryosphere interactions, our understanding of bottom-current-controlled sedimentary deposits (i.e., contourites) and the associated environmental conditions remains insufficient due to data limitations.
Previous seismostratigraphic studies in the Ross Sea embayment revealed the acoustic basement structure and stratal geometry affected by subglacial processes of grounded ice sheets, using single and multi-channel seismic (SCS and MCS) reflection profiles (Anderson and Bartek, 1992; Brancolini et al., 1995; De Santis et al., 1995; 1999; Bart and De Santis, 2012). However, recent acquisitions of SCS/MCS data and scientific drilling results (Granot et al., 2010; Gordon et al., 2015; Bart et al., 2017; Kim et al., 2018; McKay et al., 2019; Conte et al., 2021; Gales et al., 2021; King et al., 2022) have expanded our seismic coverage to the outer continental shelf, slope, and rise, enabling a better understanding of variations in depositional and oceanographic settings through continuous sedimentary records. Recent sedimentological studies in the northwestern Ross Sea have suggested that sedimentation on the continental slope is controlled by bottom-current activity coupled with DSW export and glacial meltwater pulses (Khim et al., 2021; Torricella et al., 2021; Bollen et al., 2022). Furthermore, strong bottom-current activity during glacial periods has been suggested through coarser sediment recovered from the Iselin Bank, which is an eastern boundary of the Central Basin (Kim et al., 2020).
Combining geomorphic and seismostratigraphic mapping results with sediment core data offers valuable insights into spatial variations in modern depositional and oceanographic environments, contourite development, and the reconstruction of past environmental settings (e.g., López-Quirós et al., 2020; Mosher and Boggild, 2021; Rodrigues et al., 2022). Bottom-current-controlled sedimentary processes along the continental slope can significantly impact sedimentation rates and slope stability, potentially leading to submarine landslides (Laberg and Camerlenghi, 2008; Miramontes et al., 2018). Therefore, understanding how bottom currents are influenced by climate change is crucial for assessing the potential risk of submarine geohazards (e.g., Gales et al., 2023).
This study focused on the Central Basin in the northwestern Ross Sea and mainly used seismic profiles and morpho-bathymetric data to identify bottom-current-controlled deposits. The primary objective was to understand the sedimentary and geomorphic processes that occurred in the Central Basin during previous glacial-interglacial periods. This investigation included the identification and mapping of acoustic facies of surficial sediments and seafloor morphology within the basin floor and surrounding bathymetric highs. The results of seabed mapping were compared with grain-size and water-content data extracted from sediment cores to validate the geophysical interpretations. Physical oceanographic measurements and ocean circulation models were used to assess the distributions of bottom-current features, the pathway and velocity of DSW cascading, and along-slope bottom currents under recent oceanographic conditions (e.g., Thran et al., 2018). This research can contribute to our comprehensive understanding of the environmental conditions influencing the interplay between bottom currents and ice sheets in both modern and Quaternary periods, bridging the gap between paleoclimatic, paleo-oceanographic interpretations, and sparsely distributed sediment cores (McKay et al., 2019; Conte et al., 2021; King et al., 2022).
2 REGIONAL SETTING
2.1 Geological and morphological setting
The Ross Sea continental shelf, which lies between ∼70°S and ∼78°S latitude and ∼160°E and ∼150°W longitude (Figure 1), consists of rift basins and half-grabens formed by the West Antarctic Rift System since the Early-mid Cretaceous (Lawver et al., 1992; Davey and Brancolini, 1995). The Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES) Trough and Central Basin in the western Ross Sea were formed by a rifting episode that involved a NE–SW extension of ∼100 km, occurring from ∼61 to 53 Ma (Cande et al., 2000; Cande and Stock, 2004; Wilson and Luyendyk, 2009). A recent preliminary crustal model by marine gravity and seismic data suggests that the Central Basin was formed by the same extension episode with the JOIDES Trough (Davey et al., 2021). The Central Basin was actively infilled by sediments transported under a temperate climate in the early phase and wet-based glaciers since ∼34 Ma (Brancolini et al., 1995). In this study, the target sedimentary units are positioned above the Ross Sea Unconformity (RSU) 4 (middle Miocene, ∼14.7 Ma) (Savage and Ciesielski, 1983; Pérez et al., 2021) can be considered as post-rift sedimentary deposits and they developed in a relatively stable tectonic setting according to the tectonic history and stratigraphic evolution of the northwestern Ross Sea (Brancolini et al., 1995; Davey et al., 2021).
The JOIDES Trough, characterized by water depths of 500–600 m in the outer shelf and 600–800 m in the inner shelf, exhibits gently over-deepened (landward dipping) seafloor morphology (Figure 1). The JOIDES Trough is believed to have been one of the main drainage pathways of the East Antarctic Ice Sheet sourced ice feeding into the Ross Sea during the Last Glacial Maximum (LGM) (Anderson and Bartek, 1992; Shipp et al., 1999; Livingstone et al., 2012; Anderson et al., 2014; Harris et al., 2014; Halberstadt et al., 2016) and most of the glaciogenic sediment delivered to the Central Basin (Brancolini et al., 1995; Bart et al., 2000; Kim et al., 2018).
The Central Basin, located beyond the JOIDES Trough, is bounded to the east by the Iselin Bank, to the west by the Hallett Ridge, and to the north by the eastern branch of the Hallett Ridge named as Bank B (Kim et al., 2018) (Figure 2A). The regional bathymetry data show that a relatively gentle slope extending beyond the western part of JOIDES Trough mouth, characterized by an inclination of ∼1.2° within the water depth range of 500–1,400 m. Subsequently, the middle to lower slope exhibits a lesser inclination of ∼0.7° within the depth range of 1,400–2000 m. Finally, the Central Basin floor demonstrates a nearly flat topography, with a slight inclination of ∼0.2° from 2000 to 2,200 m, representing the lower slope transitioning to the basin floor (Figure 2A). In contrast, the eastern continental slope beyond the JOIDES Trough features a bounding bathymetric high named as Bank A (Kim et al., 2018), which is associated with a steeper gradient ranging ∼4.1°–6.7° between 1,000 and 1,600 m (Figure 2A). Unlike the deeply incised submarine canyons observed at the Pennell and Glomar Challenger Trough mouths in the eastern Ross Sea (Hillary Canyon) and the western Ross Sea (Bowers Canyon), respectively, the gently sloping area beyond the mouth of the JOIDES Trough does not have any deeply incised submarine canyon (Figures 1, 2A). The Central Basin is connected to the deeper and smaller basin through a narrow gateway, ∼30 km wide, referred to informally as the Scott Canyon Basin and the northeastern gap (NE Gap), respectively (Figure 2A). According to the International Bathymetric Chart of the Southern Ocean Version 2 (IBCSO v2; Dorschel et al., 2022), the average water depth reveals a relatively shallow bathymetry in the NE Gap. This area is ∼180 m higher than the adjacent Central Basin floor (upper left inset of Figure 2). The Scott Canyon, a deeply incised submarine canyon, extends from the NE Gap to the continental rise in the Scott Canyon Basin floor (Davey, 2004). In contrast to the Bowers and Hillary Canyons, which originate from the shelf edge and upper slope, respectively, the Scott Canyon exhibits unique characteristics in its distinctive positioning within the deeper environment of the continental rise.
[image: Figure 2]FIGURE 2 | (A) Bathymetric map of the Central Basin extracted from IBCSO v2 (Dorschel et al., 2022). The thick black solid line with numbers represents the measured slope gradient beyond the JOIDES Trough. Blue translucent areas with dashed outlines indicate the distribution of dense shelf water (DSW) outflow thicker than 240 m, as given in the oceanographic modeling of Morrison et al. (2020). Black rectangles locate enlarged MBES bathymetry and backscatter images (Figures 5–8). The upper left inset is a median stacked bathymetric profile at the northeastern gap (NE Gap) of the Central Basin. The black solid line shows a stacked bathymetric profile and the gray area representing the 2σ confidence bounds on the stacked median profile. (B) Map showing locations of sub-bottom profiler (SBP) and multi-channel seismic (MCS) data, multi-beam echosounder (MBES) bathymetry, sediment core sites, and expandable conductivity-temperature-depth (XCTD) data in the Central Basin and over its surrounding bathymetric highs. The MBES bathymetry data (color-coded grid) is superimposed on the regional bathymetry of IBCSO v2 (gray-color grid).
2.2 Oceanographic setting
The Antarctic Circumpolar Current (ACC), which is the most prominent oceanographic feature in the Southern Ocean, flows eastward around Antarctica (Whitworth, 1988; Cunningham et al., 2003; Carter et al., 2022) (upper right inset of Figure 1). Located south of the ACC, the Ross Gyre is a clockwise circulation element influenced by the advance and retreat of the Antarctic ice sheets (Kennedy et al., 2015; Carter et al., 2022). The Ross Gyre can entrain the CDW to the Ross Sea outer continental margin (Orsi and Wiederwohl, 2009). The CDW transports heat and salt to the Ross Sea continental margin (Jacobs et al., 2002; Jacobs, 2004). In the Ross Sea, ASC is a bottom water current that is located further south of Ross Gyre. The ASC flows westward along the Antarctic margin slope, driven by the easterly polar winds (Chavanne et al., 2010; Armitage et al., 2018; Carter et al., 2022).
DSW forms on the continental shelf through brine rejection in the Drygalski and JOIDES Troughs in the western Ross Sea (Jacobs et al., 1985; Budillon et al., 2002; Gordon et al., 2009; 2015; Orsi and Wiederwohl, 2009; Budillon et al., 2011). DSW is also generated by heat loss in the eastern Ross Sea (Bergamasco et al., 2002; Rivaro et al., 2003) (Figure 1). This dense water mixes with surrounding waters and subsequently sinks to the bottom of the ocean, forming Antarctic Bottom Water (AABW) (Orsi and Wiederwohl, 2009).
3 MATERIALS AND METHODS
3.1 Reflection seismic data
A total of 5,400 L-km of sub-bottom profiler (SBP) data were acquired in the Central Basin region using the Kongsberg SBP120 system during three separate R/V Araon Antarctic Expeditions–ANA03B, ANA05B, and ANA09C–conducted in the years 2013, 2015, and 2019, respectively (Figure 2B). The SBP data were simultaneously recorded together with MCS surveys and during transits at variable ship speeds from 5 to 12 knots. The SBP data have a lateral sampling interval of ∼2.6 m when the ship was travelling at 5 knots and with a ping rate of 1 s. A chirp pulse with a linearly swept frequency was used, with a frequency range of 2.5–7.0 kHz and a pulse length of 20 ms. This configuration allowed for a maximum vertical resolution of about 0.3 ms, equivalent to ∼23 cm at a sound speed of 1,500 m/s. The depth of penetration of SBP signal varies depending on the subsurface characteristics, such as lithology and physical properties. In most cases, it ranges from tens of meters to less than 100 m.
The original data recorded in the Topas Raw format were converted to the SEG-Y format to enable conventional seismic data processing. This processing included gain correction, delay time-shifting, and signal enveloping. These tasks were performed using the Seismic Unix software (https://wiki.seismic-unix.org).
During the ANA09C expedition in 2019, a basin-crossing MCS profile, ANA09C-MCS-01, was acquired to fill a gap in the existing MCS grid in the Central Basin (Figure 2B). The MCS data were acquired using eight airguns, specifically the Sercel G-Gun II, which had a combined volume of 1,200 in3 and operated at a working pressure of 2000 psi. To ensure appropriate data coverage, the shot point interval was set at 50 m. A 1.5 km-long 120-channel solid-type streamer (Sercel Sentinel) was towed at a depth of 6 m below sea level during the MCS data acquisition. The MCS data were recorded with a length of 10 s and a sampling rate of 1 ms. Considering the shot interval and streamer geometry, each common mid-point (CMP) gather in the dataset provided a 15-fold coverage and featured a CMP spacing of 6.25 m.
The ANA09C MCS data underwent a standard seismic data processing workflow, using Schlumberger OMEGA 2017 software, which included deconvolution, trace editing, multiple attenuations, velocity analysis, and Kirchhoff pre-stack time migration. The resulting processed seismic profiles from ANA09C were combined with the existing MCS datasets (KSL12 in 2013 and KSL14 in 2015) sourced from the Korea Polar Data Center (KPDC, https://kpdc.kopri.re.kr) of the Korea Polar Research Institute (KOPRI) and legacy seismic data from the Antarctic Seismic Data Library System (SDLS, https://sdls.ogs.trieste.it). This compilation of the seismic dataset allowed the extension of previous seismic stratigraphic interpretations in the northwestern Ross Sea outer continental margin (Brancolini et al., 1995; Granot et al., 2010; Kim et al., 2018) into the ANA09C MCS data in the Central Basin region.
The processed SBP and MCS data were imported into Schlumberger Petrel software for seismic stratigraphic interpretation and seismic facies mapping. The acoustic facies of the subsurface sediments, as delineated by the SBP data, were classified into two distinct types (Table 1): acoustically stratified (Facies S) and acoustically transparent (Facies T). This classification was based on an analysis of their internal configuration, external geometry, stacking patterns, and stratigraphic relationships (Veeken and van Moerkerken, 2013). The thickness of Facies S and Facies T for creating the isopach map was determined based on the penetration depth of the SBP data, which is influenced by the seabed morphology and geological conditions. Facies S can be further subdivided into two sub-types, namely, Facies Sh and Sw, based on the resolvable thickness, as outlined in Table 1. The resolvable depth of the SBP data provide a crucial information about the physical characteristics of the seafloor and the subsurface sedimentary layers, such as seafloor roughness (smooth vs. undulated), grain-size composition (finer vs. coarser), and sediment compaction (soft vs. hard) (e.g., Neto et al., 2013; Kim et al., 2021). Therefore, the thickness and distribution of these facies were mapped to show their spatial variability within the Central Basin and along the surrounding bathymetric highs.
TABLE 1 | Classification of acoustic facies of the surficial sedimentary strata in the sub-bottom profiler (SBP) data.
[image: Table 1]3.1.1 Seismic stratigraphic framework
The seismostratigraphic unit boundaries of RSU4 (∼14.7 Ma), RSU3-CB (∼5.5–8.5 or ∼10.5 Ma), and RSU2 (∼2.8–4.0 or ∼2.0 Ma) delineated in previous seismic stratigraphy and sediment core studies conducted on the western Ross Sea continental margin (Savage and Ciesielski, 1983; Brancolini et al., 1995; Granot et al., 2010; Bart et al., 2011; Kim et al., 2018; McKay et al., 2019; Pérez et al., 2021) were extended to the ANA09C-MCS-01 profile (Figure 3A). RSU1-CB (∼0.7 Ma) cannot be correlated with deeper sedimentary layers due to its termination and merging with the seafloor reflection at the upper-mid slope beyond the JOIDES Trough mouth (Kim et al., 2018). However, establishing accurate correlations between the basin and bathymetric highs proved challenging. Therefore, the major unit boundaries were tentatively determined in the sedimentary deposits on the basement highs of the Hallett Ridge and western Iselin Bank, with consideration given to recent drilling results and seismostratigraphic findings from the eastern flank of the Iselin Bank (McKay et al., 2019; Conte et al., 2021).
[image: Figure 3]FIGURE 3 | (A) The cross-basin multi-channel seismic (MCS) profile ANA09C-MCS-01, showing the acoustic basement structure and seismic stratigraphic setting in the Central Basin, Hallett Ridge, and Iselin Bank. Color-coded lines in the MCS profile indicate seismostratigraphic boundaries. Dashed lines in the sedimentary deposits on the basement highs of the Hallett Ridge and western Iselin Bank are tentatively identified seismostratigraphic boundaries. Black double arrows represent the locations of corresponding sub-bottom profiler (SBP) images shown in (B–D). Red arrows mark the termination of internal reflections against scarps, suggesting slope failures or erosional surfaces. (B) SBP image shows thin (<10 m) stratified sedimentary layer of Facies Sw (orange-shaded area) on the crest of Hallett Ridge. The red icon pointing down indicates a location of sediment core. (C) Thin stratified sedimentary layer on the upper slope and moats, thickening in the down-slope direction. (D) Thick stratified sedimentary layer of Facies Sh (orange-shaded area) on the lower slope of the western Central Basin, overlain by an irregular-shaped sediment body of Facies T (green-shaded area) in the northwestern part of the Central Basin.
3.2 Multibeam echosounder data
Simultaneous recording of multi-beam echosounder (MBES) bathymetry and backscatter data was conducted during the SBP and MCS surveys aboard the R/V Araon. The MBES data were processed using Caris HIPS and SIPS software and subsequently gridded at a lateral cell spacing of 50 m × 50 m using the nearneighbor module in GMT 6.3 software. The recently acquired MBES grid was then integrated with existing datasets from the IT17RS expedition by the RV OGS Explora in 2017 and the Global Multi-Resolution Topography synthesis (GMRT; Ryan et al., 2009). The GMRT data provides a maximum lateral resolution of ∼61 m. The compilation of MBES bathymetry data encompasses ∼40% of the Central Basin and its surrounding banks (Figure 2B). To address data gaps, the IBCSO v2 regional bathymetric data (Dorschel et al., 2022), with a resolution of 500 m × 500 m, were incorporated to fill in data gaps.
The MBES backscatter data encompass the seafloor extending from the outer shelf and slope beyond the JOIDES Trough to the Central Basin and the surrounding bathymetric highs. To ensure accuracy, selections of the MBES backscatter data exhibiting poor quality (e.g., over the northern Iselin Bank and eastern Central Basin) were excluded.
3.3 Sediment core data
During the ANA03B and ANA05B expeditions, sediment core samples were retrieved from the northern part of the Central Basin (KI13-BC2, KI13-C1, and RS15-LC42), the northeastern flank of Hallett Ridge (KI13-BC3 and KI13-C2), the lower slope beyond the JOIDES Trough (KI13-BC4), and the northern tip of the Iselin Bank (RS15-GC40 and RS15GC41) (Figure 2B; Table 2). Additionally, as part of the Italian Antarctic Research Program (PNRA) expedition in 2016, a 240-cm-long piston core (HLF16-3PC) and two 27-cm-long box cores (HLF16-4BC and HLF16-5BC) were recovered from the crest and upper slope of Hallett Ridge. To encompass a wide range of depositional environments, four legacy sediment cores (ANTA91-4C, ANTA95-98C, ANTA95-99C1, and ANTA99-23C) collected during previous PNRA programs were also re-analyzed. Details regarding the sediment cores used in this study, such as location and recovered length, can be found in Table 2 and are further described in relevant studies (Tolotti et al., 2013; Ohneiser et al., 2019; Kim et al., 2020; Khim et al., 2021; Melis et al., 2021; Torricella et al., 2021; Bollen et al., 2022; McKay et al., 2022), as well as the Museo Nazionale dell'Antartide (http://www.mna.it) and the Italian Antarctic Data Center (https://iandc.pnra.aq).
TABLE 2 | Sediment cores retrieved in the northwestern Ross Sea margin.
[image: Table 2]Sediment grain sizes were derived using a laser diffraction instrument (Malvern Mastersizer) at multiple institutions: RS15-GC40 and RS15-GC41 were analyzed at KOPRI, RS15-LC40 at Victoria University of Wellington, and HLF16, ANTA91, ANTA95, ANTA99, and KI13 cores at the University of Trieste. Sediments with grain sizes larger than 2 mm were removed through sieving. For particles smaller than 2 mm, laser particle size analysis was conducted at intervals of 1 cm (KI13-BC2, KI13-BC3, KI13-BC4, and HLF16-5BC) or 2 cm (HLF16-4BC) for box core samples, at intervals of 2, 4, 6, or 8 cm for gravity core samples (KI13-C1, KI13-C2, HLF16-3PC, ANTA95-98C, ANTA95-99C1, RS15-GC40, RS15-GC41), at 10 cm intervals for a jumbo gravity core (RS15-LC42), and ∼20 or 30 cm intervals for the legacy cores (ANTA91-4C and ANTA99-23C). The sand (>63 μm), silt (63–2 μm), and clay (<2 μm) fractions were determined using the grain-size classification of Friedman and Sanders (1978) and Blott and Pye (2001).
The water content (WC) was calculated using the following equation, assuming a seawater salinity of 0.035 (Kim et al., 2020):
[image: image]
Water content values of the RS15 cores were calculated at KOPRI, while all other cores were analyzed at the University of Trieste. Water content data for KI13-C2 is unavailable due to a poor state of preservation (Table 2).
3.4 General ocean circulation model and oceanographic measurements
The Regional Ocean Modeling System (ROMS; Shchepetkin and McWilliams, 2005) was used to simulate bottom current conditions in the northwestern Ross Sea, specifically the Central Basin, for two distinct periods: 15-year periods of Austral winter spanning from 1999 to 2013 and 15-year periods of Austral summer spanning from 2000 to 2014. The model’s lateral resolution is 5 km by 5 km, while the vertical resolution varies according to water depth, with a vertical grid comprising 32 cells uniformly distributed across all depths (e.g., 50-m vertical resolution at 1,600 m water depth). In this study, the lowest layer of the model was used to depict the speed and direction of bottom currents, which play a significant role in influencing sedimentary processes.
The expandable conductivity-temperature-depth (XCTD) data collected during the ANA05B expedition in 2015 were used to produce potential temperature-salinity (θ/S) diagrams using the Seawater 3.3 package in Python. These oceanographic measurements serve as valuable inputs to represent the contemporary thermohaline structure of the Central Basin region in this study.
4 RESULTS
4.1 Seismic stratigraphic analysis
4.1.1 MCS data
The basin-crossing MCS profile reveals that the Central Basin has infilled with sediment layers reaching a thickness of ∼2–3 km (Figure 3A). On the crest of the Hallett Ridge, there is a mounded sedimentary deposit with continuous internal reflections, ranging in thickness from 200 to 350 m (CMP No. 5500–9,500 in Figure 3A). Contrasting the eastern basement of the Hallett Ridge, which exhibits a series of tilted blocks, the western side of the Iselin Bank features a broad bathymetric bench spanning ∼23 km. This bathymetric bench is covered by sheet-like, stratified sediments without distinct mounded stacking patterns (CMP No. 25000–29000 in Figure 3A).
The deposition of small patches of sediments was initiated above RSU4 on the eastern slope of Hallett Ridge (CMP 10000–12000 in Figure 3A), and the undulated sedimentary deposits developed until the time of RSU2. Above RSU2, the subparallel internal reflections of the undulating sediments are more laterally continuous, and have distinctive trough and mound features on the slope. The crests of the small mound features exhibit a migration pattern towards higher elevations along the mid-lower slope of the Hallett Ridge (lower left inset of Figure 3A). Additionally, the seismostratigraphic unit above RSU2 is characterized by higher thickness than the underlying unit located between RSU2 and RSU3-CB, both on the lower slope of the northern Hallett Ridge and within the western part of the Central Basin (CMP 12000–17000 in Figure 3A).
Irregular-shaped sediment body, characterized by indistinct internal reflections, is evident in the shallow subsurface strata on the lower slope of the Hallett Ridge and in the northwestern portion of the Central Basin (CMP 12000–18000 in Figure 3A). The base of this sediment body truncates the underlying wavy, stratified sedimentary succession (lower right inset of Figure 3A).
4.1.2 SBP data
The acoustically stratified facies (Facies S) is distinguished by its subparallel internal reflections, which align with the lower strata in a conformable manner. Within Facies S, a relatively thin sedimentary deposit (Facies Sw) exhibits a strong seafloor reflection and faint subparallel internal layers, less than 10 m in thickness at a sound speed of 1,500 m/s (Figure 3B; Table 1). On the other hand, a thicker deposit of Facies S (Facies Sh), surpassing 10 m in thickness, displays a weaker seafloor reflection and greater penetration depth (Figures 3C, D; Table 1). In contrast to Facies S, the acoustically transparent facies (Facies T) is identified by its poorly defined internal reflections and a lens-shaped or irregular external geometry (Table 1). Acoustically transparent subunits of Facies T exhibit lower boundaries that truncate the underlying strata, while their upper boundaries align subparallel to the internal reflections of the overlying stratified subunits (Figure 3D).
Isopach maps derived from the SBP data provide the spatial distribution and depocenters of Facies S and T (Figures 4A, B). Facies Sh, characterized by relatively thick and stratified subunits, mainly developed along the mid-lower slope of the eastern flank of Hallett Ridge, the northeastern sector of the Central Basin floor, as well as the Scott Canyon Basin floor (orange to yellow areas in Figure 4A). Smaller patches of Facies Sh are observed on the lower slope of the southwestern part of the Central Basin facing the eastern slope of Hallett Ridge (red line labeled X–X’ in Figure 4C). In contrast, the thinner stratified subunits of Facies Sw are primarily distributed along the crests and upper slopes of both the Hallett Ridge and Iselin Bank (Figures 3B, C, purple to navy-blue areas in Figure 4A). Additionally, Facies Sw can be found on the lower slope extending beyond the JOIDES Trough mouth and within the southern region of the Central Basin floor (Figure 4A).
[image: Figure 4]FIGURE 4 | (A) Sediment thickness map showing acoustically stratified facies (Facies S) resolved from SBP data in the study area. Thin black lines represent the SBP data used for acoustic facies mapping. The red lines locate SBP profiles shown in (C, D). The red dots represent the locations of sediment cores used in this study (Figures 2, 9; Table 2). (B) Sediment thickness map showing acoustically transparent facies (Facies T). (C) The SBP profile imaging the presence of a submarine channel-levee feature in the southwestern part of the Central Basin. (D) The SBP profile displaying the side scarps of slope failures on the lower slope of northeastern Hallett Ridge. The red icon pointing down indicates a location of sediment core. (E) The SBP profile showing the grounding zone wedge on the outer shelf of the JOIDES Trough. The dashed red icon pointing down indicates a projected location of sediment core.
Facies T occurs on the outer continental shelf and the gentle slope, extending beyond the JOIDES Trough mouth (Figure 4B). A notable occurrence within the northwestern sector of the Central Basin is the presence of a considerable deposit of Facies T, distinguished by its thickness surpassing 10 m (Figure 4B). This deposit has an estimated volume of ∼9.7 km3.
4.2 Multibeam bathymetry and backscatter intensity analyses
The MBES bathymetry grid obtained from the southwestern part of the Central Basin shows the presence of undulations oriented parallel to the lower slope of southern Hallett Ridge in deeper waters ranging from ∼1700 to 1900 m. These undulations deviate the slope by crest amplitudes of ∼45 and ∼78 m (upper right inset of Figure 5A). The southern crest of Hallett Ridge near the JOIDES Trough mouth is asymmetric, with a slope gradient of ∼2.1° towards the west and ∼4.0° towards the east, extending from the crest at 1,000 m to the upper slope at 1,150 m (upper right inset of Figure 5B). On the crest of the Hallett Ridge, high backscatter intensities are observed, while the elongated mounds parallel to the slope exhibit varying intensities ranging from moderate to high (Figure 5B). The low backscatter stripes observed near the undulations (Figure 5B) exhibit a notable association with the 40-m-deep trough and mound features (Figures 4A, C).
[image: Figure 5]FIGURE 5 | (A) Detailed submarine morphology of the southeastern Hallett Ridge and the western part of the Central Basin captured in an enlarged mosaic of MBES bathymetric data. The red line locates of the SBP data shown in the upper right inset. (B) MBES backscatter data illustrating high and low backscatter intensities depicted in bright and dark green colors, respectively.
Furthermore, the MBES data acquired from the northeastern Hallett Ridge region show a trapezoid-shaped bathymetric depression with an area of >220 km2 on the middle to lower slope (Figure 6). The depression is almost flat and is bounded by scarps measuring ∼12 km in length towards the southwest and ∼18 km in length towards the northeast (Figure 6B). These scarps displayed a relief ranging from ∼40 to 50 m (Figure 4D). The backscatter intensity within this depression generally remains at a low to moderate level compared to the crest and upper slope of the Hallett Ridge (Figure 6B). At the downslope end of the northeastern scarp, wrinkled or hummocky seafloor features are observed, exhibiting moderate to high backscatter intensities in comparison to the low backscatter levels observed in the surrounding flat morphology (purple dashed ellipses in the right inset of Figure 6B).
[image: Figure 6]FIGURE 6 | (A) Enlarged mosaic of the MBES bathymetry showing the northwestern sector of the Central Basin. Black and gray lines locate the SBP data crossing eastern slope of Hallett Ridge and northwestern part of Central Basin (Figures 3B–D). The red dots represent the locations of sediment cores. (B) MBES backscatter data of the northwestern sector of the Central Basin. Relatively moderate to high backscatter intensities observed on the wrinkled or undulated seafloor features in front of northern side scarp of the slope failure feature. The black line locates the SBP data crossing the slope failure feature (Figure 4D).
The southern part of Hallett Ridge is asymmetric (Figure 5), becoming more symmetric towards the northern part (Figures 3A, B, 6A). The slope gradient in this region measures ∼2.9° towards the west and ∼2.4° towards the east, extending from the crest to the upper slope. Higher backscatter intensities are observed on the northern crest of the Hallett Ridge, while the northwestern Central Basin floor displays relatively lower intensities (Figure 6B).
Similar to the southwestern portion of the Central Basin, the northern part of the eastern flank of the Hallett Ridge displays slope-parallel elongated seafloor undulations at ∼1,300–1850 m (Figure 6A). Additionally, the subsurface stratal patterns of these undulations can be observed in the MCS (Figure 3A) and SBP data (Figure 3C). The northward-elongated undulations with a crest amplitude of ∼130 m (lower left inset of Figure 3A) exhibit moderate to low backscatter intensities (Figure 6B).
The Scott Canyon, developed north of Bank B, exhibits deep incisions exceeding 100 m in depth, initiating at ∼2,200 m from the NE Gap of the Central Basin (Figure 7). This canyon features a sinuous thalweg that extends in a northwestward direction, characterized by side-scarps. However, the thalweg becomes unclear at ∼3,300 m in the northern region of the Scott Canyon Basin (Figure 7A). The northeastern levee of the Scott Canyon shows a relatively smooth seafloor (upper right inset of Figure 7A) characterized by low backscatter intensity (Figure 7B). In contrast, the southwestern part of the levee displays a relatively steeper morphology, facing the northern slope of Bank B (Figure 7A). Bank B stands over 1,500 m higher than the northern Central Basin floor, is separated from the western side of the Iselin Bank by the NE Gap (Figures 2, 7). Small conical-shaped mounds are observed around the 1500-m-high mount (purple dashed ellipses in Figure 7B). The bathymetric high located between the Hallett Ridge and Bank B displays linear seafloor features trending in a SE–NW or SSE–NNW direction (Figure 7A) with moderate to high backscatter intensity (Figure 7B).
[image: Figure 7]FIGURE 7 | (A) Enlarged mosaic of the MBES bathymetry showing the northern sector of the Central Basin including Bank B, northeastern gap, and Scott Canyon Basin. The red line indicates the locations of the SBP data shown in the upper right inset. (B) Corresponding MBES backscatter data. The purple dashed ellipses indicate groups of small conical-shaped mounds. The SBP profile, depicted in the upper right inset, illustrates the shallow subsurface strata of contourites on Bank B. The MCS profile, corresponding to the SBP data (black double arrow in the right inset), illustrates the subsurface seismostratigraphic units and acoustic basement of Bank B (modified from Kim et al., 2018).
The southeastern region of the Central Basin is bounded by a relatively steep slope of Bank A and the southwestern side of the Iselin Bank (Figure 8). Small conical-shaped mounds can be observed in front of the steep slopes of Bank A and the western slope of the Iselin Bank, exhibiting small-scale slope failures similar to those found along the fringe of Bank B. Additionally, distinctive downslope incisions are apparent on the southwestern slope of Iselin Bank (Figure 8A). Moderate intensities are present over the stacked acoustically transparent lenses (Facies T) and stratified surficial sedimentary layer (Facies Sw) located on the southern portion of the Central Basin floor (lower right inset of Figures 8A, B). There is no distinctive difference in backscatter intensity between the top of Facies T and Facies Sw. Meanwhile, higher backscatter intensities are observed on the bathymetric high of Bank A and on the top of small conical mounds (purple dashed ellipses in Figure 8B).
[image: Figure 8]FIGURE 8 | (A) Enlarged mosaic of the MBES bathymetry showing the southeastern sector of the Central Basin. The red line indicates the locations of the SBP data shown in the lower right inset. (B) Corresponding MBES backscatter data.
4.3 Grain-size and water-content analyses of surficial sediments
Sediment cores were acquired from the crest and upper slope of bounding bathymetric highs, as well as the middle to lower slope and the Central Basin floor (Figure 9; Table 2). Longer sediment cores were collected in the lower slope and basin floor regions than in the upper slope and crests of bathymetric highs (Figure 9; Table 2).
[image: Figure 9]FIGURE 9 | Grain size (GS) and water content (WC) analysis of all sediment cores in the Central Basin. Dark gray, light gray, and black indicate sand, silt, and clay contents of the surficial sediments, respectively. Blue dots are water content values in the sediment cores. The color-coded grid indicates MBES backscatter intensity. Red dots are the locations of the sediment cores.
Box core HLF16-5BC was retrieved from the crest of Hallett Ridge, measuring 26 cm in length. This core has an average sand content of 49.9%. Another box core, HLF16-4BC, also 26 cm in length and collected from Hallett Ridge, exhibits an average sand content of 41.0%. Additionally, a piston core, HLF16-3PC, extending to a length of 240 cm on Hallett Ridge, displays a sand content 44.3% (Table 2). Core RS15-GC40 on the northern shallow region of the Iselin Bank exhibits an average sand content of 65.2%. On the outer shelf of the JOIDES Trough, core ANTA95-99C1, measuring 71 cm in length, shows an average sand content of 29.5%. This core is characterized by a relatively shallow penetration depth, distinguishing it from other piston or gravity cores. The mean water contents of HLF16-3PC, HLF16-4BC, HLF16-5BC, RS15-GC40, and ANTA95-99C1 range from 21.5% to 25.8% (Table 2).
In contrast, sediment cores collected from deeper areas generally exhibit lower average sand content values. The 35-cm-long box core, KI13-BC3 and the 232-cm-long gravity core, KI13-C2, exhibit lower average sand contents of 19.6% and 31.2%, respectively. Similarly, the 1186-cm-long gravity core, RS15-LC42, displays a low average sand content of 16.1%. Core ANTA99-23C shows an average sand content of 13.4% over its 548 cm length. On the mid-slope and small basin of the northern Iselin Bank, core RS15-GC41, displays an average sand content of 30.2%. The remaining cores, obtained at greater depths, exhibit average sand content ranging from 11.4% to 17.8% (KI13-BC4: 14.1%, KI13-C1: 16.7%, KI13-BC2: 17.8%, ANTA91-4C: 13.3%, and ANTA95-98C: 11.4%). Regarding water content, the majority of sediment cores retrieved from the mid-lower slope and basin floor exhibit high average water contents, surpassing 30%, with some cores even exceeding 40% (KI13-BC3 and KI13-BC4). However, two cores, ANTA95-98C (27.7%) and KI13-C1 (29.5%), deviate slightly with relatively lower water content less than 30%. Nevertheless, these two cores still exhibit higher water content in comparison to the sediment cores obtained from shallower depths.
4.4 Oceanographic measurements and circulation model
The 15-year mean of ROMS ocean circulation models for austral winters (1999–2013) and summers (2000–2014) shows a clockwise circulation of bottom current flow in the Central Basin (Figures 10A, B). The model predictions suggest both flow speed and direction were similar for austral winters and summers, with slightly higher speeds observed during the austral summer. However, the difference in speed between the two seasons is relatively small.
[image: Figure 10]FIGURE 10 | (A) Average austral winter bottom current speed and direction (1999–2013) obtained from the ocean circulation model. Arrows represent direction, and colors indicate velocity magnitude. Red dots indicate sediment core locations. (B) Average austral summer bottom current speed and direction (2000–2014). (C) Standard deviation of bottom current speed during austral winter (1999–2013). (D) Standard deviation of bottom current speed during austral summer (1999–2014).
On the upper slope, seaward of the JOIDES Trough mouth, a faster westward-flowing bottom current stream is observed parallel to the shelf edge at water depths ranging from 400 to 800 m, with an average speed of 15 cm/s. Certain areas within it exhibit velocities exceeding 20 cm/s (Figures 10A, B). The eastern flank of southern Hallett Ridge, at water depths of ∼1,300–1900 m, is characterized by a northward branch of the bottom current stream, with speeds ranging from 15 to 20 cm/s. The northward flow along the northeastern flank of Hallett Ridge and the southern slope of Bank B slows down to speeds of 8–15 cm/s. As the current flows around Bank B to the west of the NE Gap, its velocity increases to ∼20 cm/s. In contrast, the bottom along the western flank of Iselin Bank is characterized by a contour-parallel southward flow with speeds ranging from 8 to 15 cm/s, and in some areas exceeding 15 cm/s. This southward flow contributes to a clockwise circulation within the Central Basin. On the other hand, the crests of the northern Hallett Ridge and Iselin Bank exhibit very slow bottom current speeds, estimated to be less than 5 cm/s based on the circulation models.
The annual variabilities of bottom current speed of austral winter and summer are generally pronounced along the slopes of the surrounding bathymetric highs as indicated by the standard deviation (Figures 10C, D). In contrast, it is comparatively lower in the central section of the basin, the shallow region of the south Iselin Bank, and the northern crest of Hallett Ridge. The distribution of high standard deviation values (>2 cm/s) of the bottom current speeds shows a similar trend to the distribution of moderate to fast-flowing (>8 cm/s) along-slope currents. Significant levels of variability (>5 cm/s) are observed along the southeastern slope of the Hallett Ridge, especially during the austral winter (Figure 10C).
The analysis of XCTD data reveals the presence of three distinct water masses within the Central Basin (Figures 11A–F). These water masses comprise the cold and fresh surface water (Antarctic Surface Water: AASW), the less cold and salty deep water (CDW), and the cold and dense bottom water (DSW). This is evident from the temperature-salinity-density profiles obtained by obliquely crossing the mid-slope to the outer shelf beyond the JOIDES Trough mouth (Figure 11G). Additionally, the XCTD data collected in the deeper water depths along the southern and northern slopes of Hallett Ridge demonstrate the extension of cold and dense bottom water further northward (Figures 11E, F, H).
[image: Figure 11]FIGURE 11 | (A–F) Expandable conductivity-temperature-depth (XCTD) profiles acquired in February 2015 illustrating the cascading of DSW into the Central Basin along the eastern slope of Hallett Ridge. XCTD locations are represented by blue squares in Figure 2B. (G) Temperature-salinity-density structures obliquely crossing from the mid-slope to the outer shelf beyond the JOIDES Trough mouth using the ANA05B-XCTD-01 to 04 (A–D). (H) Temperature-salinity-density structures from the outer shelf of the JOIDES Trough to Bank B in the northern Central Basin using the ANA05B-XCTD-01, −16, and −08 (A,E,F).
5 INTERPRETATION AND DISCUSSION
5.1 Bottom-current-controlled sedimentary architecture in MCS data
The large mound deposit developed on the crest of Hallett Ridge (Figure 3A) can be interpreted as a detached-type of elongated, mounded contourite influenced by along-slope bottom currents based on its geometric and acoustic characteristics (Rebesco et al., 2014; Rodrigues et al., 2022). The presence of the similar scale sedimentary deposit, as reported in a previous study on the southern Hallett Ridge (Kim et al., 2018) (KSL14-08 in Figure 12), indicates that the mound likely extends along the Hallett Ridge. The asymmetric stacking pattern of the mound on the southern Hallett Ridge, characterized by a thinner stratified unit above RSU2 on its steeper eastern flank, can be attributed to the influence of fast-flowing bottom currents (Figure 12). Moreover, the relatively low topography of a saddle-like feature (Figure 2A) serves as a preferred pathway for the along-slope bottom current, allowing it to flow towards the Adare Basin when encountering the bathymetric barrier presented by the crest of Hallett Ridge. The concentrated and fast-flowing bottom current passing through the saddle of the southern Hallett Ridge contributes to an asymmetric stacking pattern and external morphology. The contouritic mound in the northern sector of Hallett Ridge displays a more symmetrical, aggradational stacking pattern in comparison with the one in the southern sector (Figures 3A, 12). This implies that the along-slope current weakens farther north, creating a less energetic and more uniform environment on both flanks of Hallett Ridge, consistent with the model of modern bottom current circulation (Figures 10A, B).
[image: Figure 12]FIGURE 12 | Fence diagram of three MCS lines showing the multi-crested mound-and-moat system along the middle to lower slope of Hallett Ridge. Seismic line locations are represented by red lines in the lower right inset and Figure 2B. Pink line indicates the mid–late Pliocene or early Pleistocene boundary, RSU2. Red icons indicate the projected locations of sediment cores. Dark gray, light gray, and black on the pie charts indicate the mean sand, silt, and clay contents of the sediment cores, respectively. Blue numbers near the pie charts are the mean water contents of the sediment cores (Table 2).
The elongated and parallel undulating sedimentary features along the northeastern slope contour of Hallett Ridge (Figures 3A, C, 6A) are interpreted as a multi-crested mound-and-moat system. This interpretation is consistent with previous work in this region (Kim et al., 2018) (Figure 5A) and is supported by analogies drawn from similar features observed in other regions (Howe et al., 2002; Lu et al., 2003; Verdicchio and Trincardi, 2008; Martorelli et al., 2011; García et al., 2016; Miramontes et al., 2016). We interpret the long-term development of these elongated features as suggesting that the currents have persisted throughout their development with similar magnitudes to today. The migration pattern of internal reflectors (lower left inset of Figure 3A), which show an up-slope migration and onlap onto older reflectors within the multi-crested mound, further supports the influence of slope-parallel bottom currents in the formation of these features. This migration pattern distinguishes them from deformations caused by soft-sediment mechanisms such as creep folds, which lack true lateral migration (e.g., up-slope or up-current movement) and exhibit broader crests and narrower troughs (Wynn and Stow, 2002 and references therein).
The thicker development of the multi-crested mounds since the middle to late Pliocene (above RSU2), which formed over a shorter period (∼4.0 Myr) compared to the underlying depositional layers between RSU4 to RSU2 (lower left inset of Figure 3A), indicates a higher influx of sediment towards the north than the previous period during the middle Miocene to middle Pliocene (∼10.0 Myr). This interpretation, based on a single 2-D seismic profile, is consistent with previous regional sediment thickness mapping results in the Central Basin (Kim et al., 2018), which revealed a distinct depocenter along the northeastern lower slope of Hallett Ridge above RSU2, deviating from the trend observed in the underlying units between RSU4 to RSU2.
5.2 Acoustic facies in the SBP data
The acoustically stratified character of Facies S in the SBP data can be attributed to the presence of alternating intervals characterized by higher acoustic impedance, consisting of coarse-grained material, and intervals with lower acoustic impedance, comprising fine-grained sediment (Neto et al., 2013). The coarse-grained intervals within Facies S are likely the result of iceberg rafting (Joe et al., 2020) and/or winnowing by bottom currents (Kim et al., 2020) commonly found in glaciated continental margins. In contrast, the fine-grained intervals are likely formed by hemipelagic settling (hemipelagic drape), turbid meltwater plumes (post-glacial mud), or sedimentation influenced by bottom currents (contourites), as documented in previously studies conducted in glaciated continental margins (Anderson et al., 1979; Taylor et al., 2002; Ó Cofaigh et al., 2003; Matthiessen et al., 2010; Lucchi et al., 2013). These depositional processes have been occurred on the lower slope and in the northern part of the Central Basin for an extended period, spanning multiple glacial-interglacial cycles over at least the past 1.34 million years, as inferred from the analysis of core RS15-LC42 (Bollen et al., 2022).
As described in Section 3.1, Facies S can be subdivided into two sub-types based on its resolvable thickness in the SBP data. The presence of large thicknesses of Facies Sh and moderate to low backscatter intensities from MBES data suggests the deposition of less compacted sediment and hence a smaller acoustic impedance contrast at the seabed, allowing deeper penetration (e.g., Fransner et al., 2018; Huang et al., 2018). This interpretation is supported by the sediment cores recovered from Facies Sh, which exhibit relatively low average sand contents with high water contents (KI13-BC3, KI13-C2, RS15-LC42, and ANTA99-23C in Figures 9, 12; Table 1). In contrast to Facies Sh, the weakly stratified nature of Facies Sw is relatively thin (<10 m), suggesting a shallower penetration into the seafloor. We attribute this observation to the presence of a denser and/or coarser sediment layer within Facies Sw. Supporting this interpretation, we note the high backscatter intensity observed in the seafloor’s MBES data, as well as the high sand contents and low water contents found in cores HLF16-3PC, HLF16-4BC, and HLF16-5BC (Figures 9, 12).
The absence of internal structure, coupled with the irregular external geometry and truncation of underlying strata exhibited by Facies T can be related with rapid deposition, internal deformation, and basal erosion (Veeken and van Moerkerken, 2013). In the glaciated continental margins, these characteristics of Facies T are consistent with the presence of subglacial tills on the continental shelf (Ó Cofaigh et al., 2005; Dove et al., 2014; Halberstadt et al., 2016; Bart et al., 2017; Kim et al., 2021), as well as mass transport deposits formed by submarine slides, slumps, or glaciogenic debris flows on slopes (Vorren and Laberg, 1997; Ó Cofaigh et al., 2003; Donda et al., 2008; Joe et al., 2020; Kim et al., 2021). The gravity-driven downslope sedimentary processes that form these massive deposits are significantly influenced by the advance and retreat of grounded ice masses.
5.3 Surficial sedimentary and geomorphic features
The surficial sediments on the elongated contourite mound along the Hallett Ridge (Figures 3B, 5B) exhibit distinctive characteristics, including the presence of Facies Sw (Figure 4A), high backscatter intensity (Figures 5B, 6B), and high sand contents (Figures 9, 12; Table 1). Furthermore, the significantly high sand content (65.2%) observed in core RS15-GC40, obtained from shallow depth of the northern part of the Iselin Bank, in conjunction with the formation of a thinly developed sedimentary layer, provides support for the hypothesis that the bathymetric highs surrounding the Central Basin were subjected to winnowing effects caused by the fast-flowing along-slope bottom currents. However, the modeled present-day current speed in this region indicates relatively low, with values below 5 cm/s (Figures 10A, B) and low variabilities (Figures 10C, D). This suggests that the present-day open marine or ice distal oceanographic condition differs from the past ice marginal or glaciomarine environments which experienced significant influence from vigorous bottom current-induced winnowing of fine-grained sediments (e.g., Conte et al., 2021). One potential explanation for the high sand content observed on the crest of Hallett Ridge is that the preferential deposition of fine-grained sediments on the lower slope, rather than on the shallow ridge crest, can be attributed to the downslope sediment-gravity flows (such as debris flows and turbidity currents) and meltwater discharge from the advanced ice sheet during the past glacial periods. This may occur due to the presence of the bathymetric high, which acts as a barrier and restricts the flow of relatively dense sediment-laden bottom currents over the Hallett Ridge. Consequently, the crest of the Hallett Ridge exhibits a relatively high sand content due to the scarcity of fine-grained sediments in comparison to the lower slope, where a significant accumulation of fine-grained sediment occurs in a low-energy deep-sea depositional environment. Another possibility is that winnowing may have occurred, supported by the intensified along-slope bottom currents (i.e., ASC in Figure 1) during the windier glacial period (Thompson et al., 2018; Kim et al., 2020). The wind-driven ASC likely played a significant role in these winnowing processes. Furthermore, in conjunction with the advancement of ice sheets during that time, there would have been an increased supply of coarser fractions (e.g., McKay et al., 2019; Conte et al., 2021; Gales et al., 2023). These combined processes likely contributed to the current low proportion of fine-grained sediments and the thin unconsolidated deposits found in the upper sections of Hallett Ridge and Iselin Bank.
The contrasting thickness of Facies S on the multi-crested mound and moat system on the northeastern and southeastern part of Hallett ridge indicate that the accumulation of fine-grained sediment is highly affected by bottom currents (McCave and Swift, 1976; McCave and Hall, 2006) in the northern part than southern part. The spatial distribution of Facies Sh (Figure 4A) generally corresponds to regions characterized by moderately-flowing bottom currents (∼8–15 cm/s) along the lower slope of the northern Hallett Ridge and Bank B (Figures 4A, 10A, B). These bottom currents possess the capacity to entrain, transport, and selectively release fine-grained sediments on the seafloor, aligning with the bedform-velocity matrix for deep-water bottom-current systems (Rebesco et al., 2014). These environmental conditions create favorable circumstances for the accumulation of fine-grained sediment, as evident in the recorded characteristics of Facies Sh. Whereas, the southeastern flank of the Hallett Ridge, characterized by Facies Sw and higher backscatter intensity, is influenced by the northward flowing fast bottom current (>15 cm/s) with higher fluctuation as shown in the ROMS model (Figure 10). Based on the findings from geophysical, sedimentological, and oceanographic analyses, it can be inferred that Facies Sh originated within a moderate to low energy conditions. This environment is situated in a deep-water slope setting. This trend is consistent with long-term development of multi-crested mounds depicted in the MCS data (Figure 12). In addition, the amplitude of undulation also increased northward, indicating that the active sedimentation of the mound increases the relief from the moat to the crest of the mound.
The presence of isolated sediment bodies characterized as Facies T in the northwestern region of the Central Basin (Figures 3D, 4B) can be interpreted as mass transport deposit resulting from slope failures. The absence of internal structure, erosional basal boundary, and irregular-shaped external geometry observed in both MCS and SBP data indicate this mass transport deposit were formed by short-lived sedimentary processes. This interpretation can be supported by the identification of side scarps associated with slope failures in the MBES bathymetric data (Figure 6A), as well as similar seismic and geomorphic characteristics of mass transport deposits from previous studies conducted in the eastern Ross Sea margin and Arctic Ocean (e.g., Conte et al., 2021; Schlager et al., 2021; Gales et al., 2023). Westward thickening of the seismostratigraphic unit above RSU2 in the MCS profile (Figure 3A) is partly attributed by this mass transport deposit on the lower slope of Hallett Ridge.
The estimated volume of the mass transport deposit, derived from sparse seismic grids, is ∼9.7 km3. This volume falls within the simply calculated range of ∼8.8–11 km3, which is determined based on the area of the trapezoid-shaped depression (∼220 km2) and the relief of the side scarps (∼40–50 m) (Figures 3D, 4D, 6). Based on this observation, we can infer that the mass transport deposit originated from the failure of the slope of the well-developed multi-crested mound. In addition, moderate to low backscatter intensity in the area of the trapezoid-shaped depression (Figure 6B) consistent with occurrence of Facies Sh (Figure 4D), indicate that fine-grained sediment accumulation within the depression was continued after the major slope failure occurred. The presence of wrinkled or hummocky seafloor features with moderate backscatter intensity observed in proximity to the side scarps (right inset of Figure 6B) can be considered to be indicative of sedimentary blocks generated by mass transport processes. Furthermore, similar seafloor features, such as a group of small conical mounds around the steep slopes of Bank A, Bank B, and the western slope of Iselin Bank (Figures 7, 8), are also likely associated with mass wasting by smaller scale slope failures. These rough seafloor features and inhomogeneous subsurface sedimentary deposits tend to increase the backscatter intensity (Jackson et al., 1986; Mitchell, 1993).
The widespread Facies T deposits near the JOIDES Trough mouth (Figure 4B) suggests their origin from subglacial or ice-marginal sedimentation during the advancement of the grounded ice sheet near the paleo-shelf break (Ó Cofaigh et al., 2003; e.g.; Batchelor and Dowdeswell, 2014). These deposits exhibit distinct characteristics compared to the slope failure deposits found on the lower slope of northeastern Hallett Ridge. On the lower slope and the southern Central Basin floor, stacked debris flow deposits with moderated backscatter intensity can be observed (Figures 4C, 5B, 8A, B). However, the stacked debris flow deposits observed on the upper slope and the grounding zone wedge on the outer shelf show higher backscatter intensity (Figures 4B, E, 9), which can be attributed to the roughness of seafloor and inhomogeneities of subsurface sediments (Jackson et al., 1986; Mitchell, 1993). According to the ROMS model (Figures 10A, B), we identified vigorous, fast-flowing bottom currents (>20 cm/s) traversing the outer shelf and upper slope beyond the JOIDES Trough mouth and the southeastern flank of the Hallett Ridge. These areas with elevated current speeds correspond to the regions displaying Facies T (Figure 4B) and relatively high MBES backscatter intensity (Figure 9). The unusually short penetration depth observed in the nearest gravity core ANTA95-99C1 (∼71 cm, Table 2; Figure 9) suggests the presence of relatively coarser sediments that hinders deep sampling. Based on these results, we infer the glaciogenic sedimentary deposits on the outer shelf and upper slope beyond the JOIDES Trough mouth as mainly composed of coarse-grained sediment, contrasting with the stacked debris flow deposits on the lower slope. These deposits are largely influenced by the winnowing process induced by fast-flowing bottom currents, which hinders the accumulation of fine-grained particles within the surface sediment layer (Stow, 2002; Conte et al., 2021; Bollen et al., 2022).
The elongated stripes of low backscatter intensities, observed near the undulations of the southern Hallett Ridge (Figure 5B), coincide with the presence of ∼15–17 m thick deposits of Facies Sh, which are separated by a sediment-starved trough (Figure 4C). These features, characterized by their northward elongation as observed in the 7.5 km-width MBES bathymetry and backscatter grids, along with well-developed sediment accumulation on both sides of the trough, suggest the presence of a submarine channel-levee system (e.g., Fransner et al., 2018; Boggild and Mosher, 2021). Unlike larger-scale, deeply incised submarine canyons such as the Hillary Canyon and Bowers Canyon beyond the Pennell Trough and Drygalski Trough, this submarine channel exhibits smaller dimensions and lacks distinct side scarps. This indicates that the gravity flows responsible for forming the submarine channel in the JOIDES Trough and Central Basin region were less erosive than those occurring in the Hillary and Bowers Canyons. The westward-deflected outflow of DSW along the eastern flank of Hallett Ridge, influenced by the Coriolis effect, may encounter reduced overall speeds due to the semi-closed geometry of the Central Basin, attributed to bathymetric obstacles and narrow gateways (Figures 10A, B). This is evident from the confined path of DSW spreading widely in the northern part of the basin as shown in a recently published modeling result, which demonstrated the presence of dense shelf water exceeding 200 m in thickness in the Central Basin (Morrison et al., 2020) (Figure 2A). The existence of Bank B and the narrow gateway of the NE Gap (Figure 2A), serves as an effective obstruction that blocks the northward flow of DSW from the northern Central Basin toward the Scott Canyon Basin. These bathymetric barriers functions in a manner similar to a low dam or weir, impeding the northward movement of water. As a result, the denser water accumulated in the northern part of the Central Basin can be reaccelerated at the NE Gap due to the steep gradient, leading to the erosion of underlying strata and the subsequent formation of the Scott Canyon, characterized by its deeply incised nature. The distinctive bathymetric features of the Central Basin provide an explanation for the presence of smaller-scale channel-levee systems on the lower slope beyond the JOIDES Trough, as well as the initiation of the Scott Canyon in deeper environments.
5.4 Influence of ice sheet dynamics and ocean circulation on contourite development
Previous studies have documented multiple advances of a grounded ice sheet in the vicinity of the JOIDES Trough near the continental shelf edge during Quaternary glacial cycles (Brancolini et al., 1995; Bart et al., 2011; Kim et al., 2018; Bollen et al., 2022). Based on the seismostratigraphic interpretation in the Central Basin (Kim et al., 2018), the contourites developed simultaneously with the formation of the topset-truncated trough-mouth fan beyond the mouth of the JOIDES Trough since the time of RSU2 (the mid–late Pliocene or early Pleistocene). The sediments deposited beyond the shelf edge by grounded ice during glacial maxima were influenced by down-slope debris and turbidity flows during deglacial and interglacial periods, together with the sediment-starved submarine channel thalweg and the formation of levee systems in the southwestern Central Basin (Figures 4C, 12). We propose that the suspended fine-grained components of such flows, remobilized by bottom currents, have contributed to the formation of contourites on the crest and flanks of Hallett Ridge after the time of formation of RSU2. RSU2 marks the major transition to the modern cold dry-based Antarctic ice sheet (Rebesco et al., 2006; McKay et al., 2012), and the observed northward thickening of the multi-crested mounds in the MCS data (above RSU2, Figures 3A, 12) can be explained by an advanced grounding line further north. This interpretation aligns with previous studies suggesting active sedimentation controlled by bottom currents on the middle to lower slope of northern Hallett Ridge (Khim et al., 2021; Torricella et al., 2021; Bollen et al., 2022).
As the interpretation of Facies S in Section 5.2, the subparallel internal reflections observed in the stratified sedimentary deposits are indicative of changes in the sedimentary processes, which may be attributed to variations in bottom current strength, potentially influenced by processes such as DSW export during glacial and interglacial periods. As the grounded ice sheet approached the shelf break, it is likely that DSW cascading diminished or ceased due to the absence of factors that promote the production of dense water, such as large ice shelves, coastal polynyas, and large cross-shelf depressions (Amblas and Dowdeswell, 2018; Bollen et al., 2022). In contrast, DSW export was most vigorous during interglacial periods (Bollen et al., 2022; Kim et al., 2023), creating an oceanographic setting conductive to the formation of contourites (Thran et al., 2018). During the LGM, the grounding line of the ice sheet at the JOIDES Trough mouth is believed to have been located more than 100 km landward of the shelf break (Anderson et al., 2014; Halberstadt et al., 2016; Prothro et al., 2020). A recent investigation of sediment core RS15-LC42 has suggested that partial advances of grounded ice in the JOIDES Trough may have occurred during “mild” glacial periods within the past 0.3 Myr and during 1.4–1.2 Ma (Bollen et al., 2022). In addition, the partial advances of the grounded ice can explain the lack of the deep incisions (e.g., submarine canyon and gullies) on the gentle upper slope beyond the JOIDES Trough mouth similar to the Pennell Trough mouth in the eastern Ross Sea (e.g., Gales et al., 2021). If the well-developed contourites along the Hallett Ridge above RSU2 primarily formed due to active bottom-current processes intensified by DSW export, it can be inferred that DSW export sustained by the partial advance of the ice sheet during mild glaciations and the over-deepened morphology of the outer shelf (Figure 2A) significantly contributed to the development of the contourites. Pleo-circulation modelling and deep drilling is needed to verify this hypothesis.
The occurrence of slope failures on the eastern flank of northern Hallett Ridge can be attributed to the high accumulation of sediment caused by the advancement of the grounded ice sheet near the shelf break, as indicated by previous studies (e.g., Lucchi et al., 2002; McKay et al., 2019; Conte et al., 2021). The preferential deposition of fine-grained sediments on the northern Hallett Ridge, due to the slowed northward-flowing DSW caused by the semi-closed geometry of the Central Basin, may have resulted in an elevation of pore pressure within the weak, water-rich interglacial sediments interbedded with low permeable glaciogenic sediments (e.g., Gales et al., 2023). This increase in pore pressure likely contributes to slope instability and serves as a causal factor for the observed slope failures (e.g., Long et al., 2003; Laberg and Camerlenghi, 2008; Miramontes et al., 2018). Glacio-isostatic rebound associated with the retreat of the grounded ice sheet could have triggered slope failure in inherently vulnerable contourite deposits (Kaufmann et al., 2005; Whitehouse et al., 2019; Gales et al., 2023), as observed in the northwestern part of the Central Basin.
6 CONCLUSION
The mutually reinforcing evidence of the geophysical, sedimentological, and oceanographic analyses presented in this study lead to a reliable inference of past and modern sedimentary and geomorphic processes in the northwestern Ross Sea margin. The combined results indicate that the westward-deflected DSW cascading in the northwestern Ross Sea margin likely contributed to the formation of the well-developed contourite deposits lying on and along the Hallett Ridge. The northward thickening of multi-crested mounds above RSU2 and of the stratified surficial sediments of Facies S reflects a progressive northward shift of the sediment source from the advanced grounded ice sheet since Late Pliocene global cooling. Active bottom-current processes enhanced by DSW export during interglacial periods and mild glaciations with partial advance of the grounded ice sheet may have contributed substantially to the development of contourites on and along Hallett Ridge. The preferential accumulation of fine-grained sediments on northern Hallett Ridge as a result of slowed DSW due to the semi-closed basin geometry may have increased slope instability and caused slope failures. This study demonstrates the high potential for multidisciplinary studies to find geological archives that are critical to ice sheet and circulation reconstructions.
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The current work aims to describe the physico-mechanical characteristics and shielding efficiency with reference to the mineralogical and geochemical compositions of the Neoproterozoic Um Had composite granitoid pluton in order to deduce their favorability as dimension stones. The Um Had granitoid pluton has an elliptical outline with a mean diameter of about 10 km. This pluton is a composite (ranging from white to reddish pink color), hard, massive, and medium- to coarse-grained granitoid body. It is classified as syenogranite according to their modal and bulk chemical compositions. Geochemically, the granitoid pluton is a highly calc-alkaline, peraluminous granite, formed by low degree partial melting of tonalitic source rock in a post-collisional tectonic setting. The physico-mechanical properties of the granitoid pluton under study satisfy the requirements of dimension stone in terms of their bulk density (from 2561 to 2564 kg/m3), and to some extent water absorption capacity (from 0.38% to 0.55%). However, their compressive strength values (50.4–113.4 MPa) do not achieve the minimum requirement for interior use and light duty exterior use. This study delves into the potential of some of our syenogranite samples (I, IIA, IIS, and 10) as gamma radiation shielding materials. We have assessed the mass attenuation coefficient (GMAC), effective atomic number (Zeff), exposure build-up factor (EBF), and energy absorption build-up factor (EABF) for each of these samples. The GMAC and Zeff calculations were performed using the Phy-X online software, across a photon energy range of 0.015–15 MeV. Our findings suggest an inverse relationship between photon energy and GMAC, with the highest values observed for the (I) granite sample (∼18). This study shows the promising radiation shielding capacity of our samples. The insights derived from GMAC, Zeff, EBF, and EABF can serve as a guide for the development of effective, naturally sourced radiation shielding materials.
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1 INTRODUCTION
Granitoid of variable sizes, shapes, chemical compositions, colors, and ages are abundant in south Sinai and the northern (in particular), central, and southern parts of the Egyptian Eastern Desert (e.g., Azer et al., 2020; Abdel-Karim et al., 2021; Lasheen et al., 2022a; Saleh et al., 2022a; Khaleal et al., 2023a; Khaleal et al., 2023b). They have grey, pink, and white (leucogranites) colors and range from calc alkaline (syn-collision) to alkaline (post-collision) as well as from metaluminous to strongly peraluminous in composition (Gharib, 2012; Abuamarah et al., 2022; Lasheen et al., 2022a). Notably, they are abundant, straddle about sixty percent of the total crystalline rocks in Egypt, and have high economic significance due to their high durability and aesthetic appearance (Alzahrani et al., 2022; Lasheen et al., 2023). Their distribution percent increases from the South to the North-Eastern Desert of Egypt (Stern and Hedge, 1985).
Recent studies show that some of these granitoids are rare-metal (Ta, Nb, Sn, Li, F, U, Th, and Zr), gemstone, and REE-bearing granitoid rocks (Khaleal et al., 2023a) and others can be utilized in the construction sector as decorative stones due to their high resistance and strength (Rashwan et al., 2019; 2023b; Alzahrani et al., 2022).
Worldwide, Egypt occupies the seventh place in the production of dimension stones (Mashaly et al., 2016), with a production volume of about 5.25 Million tons with 4% global sharing (Ericsson, 2019; Rashwan et al., 2023a). These rocks are widely used as decorative stones worldwide for construction of paving, flooring, cladding, and statues due to their great variety and high resistance and strength (Fort et al., 2013; Alzahrani et al., 2022; Rashwan et al., 2023a). Selected Igneous (granitoid of different types, basalt, gabbro, and ultramafic), metamorphic (marble and quartzite), and sedimentary (limestone) rocks represent the dominant natural industrial materials used as decorative stones in construction and building sectors (Gomes et al., 2020; Eroğlu and Çalik, 2023). Granitoid is a versatile natural material with a wide range of applications due to its excellent mechanical strength, durability, and radiation-shielding properties. With an impressive combination of high density, structural integrity, and low permeability, it offers excellent radiation protection and is often used in industries and facilities dealing with radioactive materials.
In the present work, we assess the ability of Um Had granitoid pluton for its use in the construction sector as a decorative stone. We reported new petrography and whole-rock chemical analyses (major oxides and trace elements) as well as mechanical and physical characteristics of Um Had granitoid. In addition, this study focuses on the utilization of the Um Had granitoid pluton as a radiation-shielding material. Granitoid, such as the one found in Um Had, possess unique geochemical characteristics that make them particularly suited to radiation-shielding applications.
2 GEOLOGIC SETTING
Egyptian Neoproterozoic rocks straddle the northern sector of the Arabian Nubian Shield (ANS), which represents the northern extension of the highly deformed Mozambique Belt. ANS makes up the eastern limb of the U-shaped Pan African Orogenic belt, one of the best examples of juvenile continental crust in the world (e.g., Lasheen et al., 2021; Khaleal et al., 2022a; Alharshan et al., 2022; Lasheen et al., 2022b; Hamdy et al., 2022; Kamar et al., 2022; Sami et al., 2023). The ANS encompasses both sides of the Red Sea: the Nubian Shield (western sector) and the Arabian Shield (Eastern sector) (e.g., Khaleal et al., 2022b; Saleh et al., 2022b; Sami et al., 2023).
The Um Had area lies in the Central Eastern Desert of Egypt, northwest to the intersection of Wadi Attala and Quseir—Qift asphaltic road (Figure 1A). Based on field observations, the main units exposed in the study area include gneiss, amphibolites, serpentinites, metavolcanics, ophiolitic mélange (metasediments), Hammamat metasedimentary rocks, Dokhan Volcanics, Attalla Felsite, and younger granitoid rocks (Figure 1B). Hammamat metasedimentary rocks (metaconglomerate, metagraywake, and metasiltstone) cover the greatest part of the study area, which are intruded by Attala felsite and the Um Had granitoid. The Um Had granitoid has a circular outline with a mean diameter of about 10 km. This pluton is hard, massive, and with a medium- to coarse-grained with buff, white to reddish pink in color (Figure 2A). It has an elevation point about 595 m above sea level. The southern part of the pluton has a sharp intrusive contact with Hammamat metasedimentary rocks, whereas the eastern part of the pluton lies against the Dokhan Volcanics. In addition, the Um Had granitoid is intruded by variable felsic (pegmatite and quartz), dikes, and veins. Some felsite and mafic xenoliths are recorded within the Um Had granitoid in the central and the northern parts. Some parts are intensively jointed in several trends, yielding small- to large-scale block weathering and exfoliation features (Figure 2B).
[image: Figure 1]FIGURE 1 | (A) Landsat image showing the location of Um Had area and (B) Geologic map of the area under investigation (Qaoud, 2014).
[image: Figure 2]FIGURE 2 | Field photographs exhibiting: (A) Variations in color of Um Had composite granitoid, and (B) Several joints, block weathering, and exfoliation features of Um Had granitoid. One of the authors is displayed for scale.
3 MATERIALS AND METHODS
Twenty-one samples were collected from the composite Um Had granitic pluton for our analyses. Twelve representative samples were examined in thin sections for the identification of preliminary mineral composition and textural relationships of rocks under investigation by using a polarizing microscope. The chemical (major oxides and trace elements) analyses of twelve samples were done using XRF (X-Ray Fluorescence technique) at the National Research Centre (NRC), Egypt. The samples were prepared as a bead with a 1 gm sample/10 gm flux ratio at 1150°C in an electroconductive furnace. ASTM E-1621 and ASTM D-7348 represent the dominant standard guides for analysis. The accuracy and precision of our analyses were better than ± 5% for major oxides and ±10% for trace elements.
The physical and mechanical characteristics of our studied samples were tested on cubic specimens of each Um Had granitoid sample (50 x 50 x 50 mm) (Figure 3). The water absorption, dry and wet bulk density, and apparent porosity were the main physical properties, which were measured following the international standard specifications (ASTM C97/C97M, 2015; EN, 1936) based on Archimedes’ method (Mosch and Siegesmund, 2007; Siegesmund and Snethlage, 2014; Rashwan et al., 2022; 2020). The mechanical tests including compressive strength with a rate of 0.5 MPa/s were also measured following the international standard specification (ASTM C170/C170M, 2015). The physical and mechanical tests were performed at the Marble and Granite Testing Laboratory (MGTL), National Research Centre, Egypt.
[image: Figure 3]FIGURE 3 | Cubic dimension of Um Had granitoid rocks for mechanical and physical tests.
The examined samples were dried at 60°C until a constant mass was reached. Then, the weight was recorded to the nearest 0.01 gm. They were immersed in a tap water bath until complete saturation. The saturated samples were removed from the water bath, and the saturated-surface dry (SSD) weight was recorded to the nearest 0.01 gm. After that they were suspended in water and their suspended weight was then recorded to the nearest 0.01 gm. The physical properties were estimated through the following:
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A cubic specimen of each sample (50 × 50 × 50 mm) was prepared for the measurements of mechanical properties (compressive strength) following the requirements of the international standard test method (ASTM C170/C170M, 2015). According to this method, the investigated samples were completely dried at about 60°C. The loading area of the samples were then calculated to the nearest 0.1 mm2, after which the load was applied at a rate of 0.5 MPa/s using a compressive testing machine (SOILTEST Model: CT-6200-8) with a maximum capacity of 3,000 kN, until sample failure (Mashaly et al., 2018). The compressive strength was then calculated according to the equation:
[image: image]
The mass attenuation coefficient (GMAC) measured the probability of gamma ray or X-ray interaction per unit mass of a material and was therefore essential in assessing a material’s potential for radiation shielding. The shielding parameters were computed using the platform Phy-X (Şakar et al., 2020).
4 RESULTS AND DISCUSSION
4.1 Petrographical investigation
On the basis of modal analysis, the examined Um Had composite granitoid with different colors were classified as syenogranites. They revealed a hypidiomorphic texture with medium- to coarse-grained crystals. Quartz, K-feldspars, plagioclase(An4-13), and muscovite were the dominant minerals with minor biotite, hornblende, and muscovite. Kaolinite, sericite, and epidote were the predominant secondary minerals, while iron oxides and zircon represented the main accessories. Quartz (22%-32%) occurred as anhedral crystals, revealing wavy extinction and sometimes present as small interstitial crystals. The dominant mineral was K-feldspar (microcline and orthoclase perthite) at 35%-42%. Perthite presented as flamey and string types (Figures 4A, B) with a clear to dusty surface and subhedral to anhedral crystals (Figure 4C). Occasionally, some fine-grained albitic plagioclase were enclosed in microcline megacryst (Figure 4A). Locally, they formed a micrographic texture due to intergrowths with quartz. Albite of medium- to coarse-graine ranged from 8% to 20%. In some samples, the albite exhibited a weak to strong saussurtization effect (Figure 4D). Biotite occurred as the main mafic mineral as fine flakes in the different granites. It was partially altered to chlorite along its periphery (Figure 4E). Minor hornblende occurred as fine-grained crystals with a clear set of two cleavages at an angle of ∼120° (Figure 4F). Zircon was the main accessory mineral, which presented as very fine crystals commonly enclosed in microcline (Figure 4B).
[image: Figure 4]FIGURE 4 | Photomicrographs exhibit: (A) Flamey orthoclase perthite (Pr) engulfing fine-grained plagioclase (Pl); (B) String orthoclase perthite enclosing euhedral zircon (Zr) crystal; (C) Pristine microcline (Mc) crystal associated with foliated muscovite (Ms) flakes; (D) Twisted plagioclase that reveals extensive saussurtization; (E) Partially chloritized biotite (Bt); and (F) Aggregated perfect carlsbad hornblende (Hb). Abbreviation of minerals after Whitney and Evans (2010).
4.2 Bulk rock geochemistry
The examined samples collected from the Um Had granitoid exhibit marginal variations in their chemical composition and normative values (Table 1). They have SiO2 (71.58%–73.88%; av. 72.91%), Na2O+K2O (7.09–8.68; av. 7.88%), Al2O3 (13.01%–15.15%; av. 13.6%), and Fe2O3 (1.89–3.46; av. 2.53%), and minor concentrations (<1%) of TiO2, MnO, MgO, Cr2O3, and P2O5. In addition, they possess K2O/Na2O > 1 (av. 1.1) in mean reflecting potassic nature. The main normative values are quartz (av. 32.72%), albite (av. 31.90%), and orthoclase (av. 24.31%). The Um Had granitoid are classified using variable discrimination diagrams. They are subalkaline in nature (after Middlemost, 1994) (Figure 5A). In addition, the examined rocks are classified as syenogranites based on their Ab, Or, and An normative values (after Streckeisen, 1976), (Figure 5B). Notably, these rocks have a peraluminous nature on the basis of their A/CNK (av. 1.51) (after Maniar and Piccoli, 1989) (Figure 5C). The studied rocks are high calc alkaline, with their agpaitic index ranging from 0.71 to 0.84 (<0.87). This is indicated by the SiO2-K2O binary diagram after Rickwood (1989) (Figure 5D).
TABLE 1 | Bulk rock (major and trace elements) and normative minerals of the Um Had composite granitoid.
[image: Table 1][image: Figure 5]FIGURE 5 | Bulk rock geochemistry of Um Had granitoid rocks: (A) SiO2 (wt.%) vs. Na2O+K2O (wt.%) diagram (Middlemost, 1994); (B) Ab-Or-An diagram (Streckeisen, 1976); (C) Al/(Ca+Na+K) vs. Al/(Na+K) diagram (Shand, 1951); and (D) SiO2 (wt.%) vs. K2O (wt.%) diagram of (Rickwood, 1989).
The studied granitoid samples match well with A-type granitoid, as indicated by the Ga/Al versus Zr binary diagram after Whalen et al. (1987) (Figure 6A). The investigated granitoid rocks are of calc-alkaline in composition and of late to post-collisional type (III field) (Figure 6B) (after Hassan and Hashad, 1990). Um Had granitoid source can be inferred by some geochemical diagrams (after Laurent et al., 2014). They can by developed by the low partial melting degree of crustal tonalitic rocks (after Laurent et al., 2014), (Figure 6C). On the other hand, the distribution of trace elements was normalized to primitive mantle (after Sun and McDonough, 1989) of the studied Um Had granitoid rocks, as shown in Figure 6D. It is obvious from this pattern that the spider diagram shows positive anomalies of Cs, Rb, and Pb, and pronounced Ba, Sr, and Ti negative anomalies.
[image: Figure 6]FIGURE 6 | Bulk rock geochemistry of Um Had granitoid rocks: (A) 104 Ga/Al- Zr (ppm) (Whalen et al., 1987); (B) Na2O-K2O-CaO (wt.%) (Hassan and Hashad, 1990), I = granodiotite and metagabbro, II = early subphase of younger granites, and III = late phase of younger granites; (C) Al2O3/(FeO+MgO)-3 CaO- 5 K2O/Na2O (wt.%) (Laurent et al., 2014), and (D) Spider diagram normalized to primitive mantle (Sun and McDonough, 1989).
4.3 Physical and mechanical tests
Natural rocks used for decorative purposes in the interior (indoor) and exterior (outdoor) should undergo some physical and mechanical evaluations. The studied granitoid were tested for water absorption, bulk density, apparent porosity, and compressive strength. The main physico-mechanical properties of the studied granitoid are given in Supplementary Table S1 and illustrated in (Figures 7, 8 and Figure 9). The water absorption results (Figure 7A) ranged from 0.38% to 0.55%. The minimum value was recorded in granite (sample no. 10) with an average value of 0.41%, which corresponded with their porosity (Figure 7B) with an average value of 1.05%. On the other hand, the maximum water absorption value was recorded in granite (sample no. I) with an average value of 0.54% that matches their average porosity value (1.39%). These values indicate that the water absorption increases with increasing apparent porosity, exhibiting a significant positive correlation coefficient (r = 1), as shown in (Figure 7C).
[image: Figure 7]FIGURE 7 | Physical properties of Um Had granitoid rocks: (A) water absorption, (B) porosity, and (C) water absorption vs. porosity relationships.
[image: Figure 8]FIGURE 8 | Physical properties of Um Had granitoid rocks: (A) dry bulk density, (B) wet bulk density, and (C) bulk density vs. apparent porosity relationship.
[image: Figure 9]FIGURE 9 | Mechanical properties (compressive strength) of UmHad granitoid.
The dry and wet bulk densities of the granitoid rocks, as illustrated in Figures 8A, B, revealed that the granite sample (no. 10) recorded the maximum dry bulk density with average values of 2564.03 kg/m3 and the minimum apparent porosity. On the other hand, the minimum bulk densities were achieved in the granitoid (no. I) with average values of 2561.45 kg/m3 with the maximum apparent porosities. These results exhibit a relationship between the bulk density and apparent porosity (Figure 8C) with a significant negative correlation coefficient (r = −0.74).
Regarding the compressive strength results of the studied granites, there is a notable variation in the compressive strength values as shown in Figure 9. This figure shows that the granitoid rock sample of a minimum average normative quartz content (28.84%) and maximum average normative albite content (35.1%) (Table 1) records high strength values ranging from 1098.95 kg/cm2 to 1207.18 kg/cm2 with an average value of 1156.76 kg/cm2. On the contrary, the lowest strength with an average value of 514.42 kg/cm2 is recorded in the granitoid rock sample of a lowest average normative albite content (29.13%) and a highest average normative orthoclase content (27.36%) (Table 1). As mentioned above, the variations in the physical and mechanical strength may be attributed to the variations in the mineralogical composition of the studied granitoid rock samples as shown in Figures 10A–C. A negative variation in water absorption values with the total normative feldspar content (Figure 10A) with a correlation coefficient of r = −0.67 was observed, while a positive variation with normative hematite content (Figure 10B) with a correlation coefficient of r = 0.77 was also seen. Moreover, a positive variation in compressive strength values with the normative albite content (Figure 10C) with a correlation coefficient of r = 0.85 was also observed.
[image: Figure 10]FIGURE 10 | Relationship between physical properties of the Um Had granitoid and their mineralogical composition: (A) normative feldspar vs. water absorption and apparent porosity; (B) normative hematite vs. water absorption, and (C) normative albite vs. compressive strength.
Comparing the results of the physical and mechanical data of the studied granites with the standard specification limits of the granite dimension stones (ASTM C615), it is found that all studied samples comply with the requirements of bulk density of a minimum limit (2560 kg/m3). The determination of density is an important parameter for evaluating the compactness of rocks and consequently its hardness and resistance to abrasion. Regarding the water absorption results, the average value of the studied granitoid rock samples is 0.48%, which is slightly higher than the maximum specification limit (0.40%) and considered insignificant in countries with arid conditions. Although the compressive strength data of the studied granite does not achieve the minimum requirement of the same specification (131 MPa), making them suitable for exterior and heavy duty uses such as paving and landscape, these rocks could be acceptable for interior use and the light-duty purposes of exterior use as facades and cladding.
4.4 Radiation shielding
This research showed that among the examined Um Had granitoid, I, IIA, IIS, and 10, sample I exhibit the highest GMAC values at 2.108 (at 15 keV), implying that this granite sample may offer superior radiation-shielding capabilities (Madbouly et al., 2022). However, it is important to consider that GMAC decreases as the photon energy increases due to multiple types of photon-matter interactions, including the photoelectric effect, Compton scattering, and pair creation (Figure 11). This implies that while sample I exhibits superior shielding at lower photon energies, its performance may diminish with higher energy gamma rays. Moreover, another significant parameter in radiation shielding is the effective atomic number (Zeff). This quantity gives insights into a material’s capability to block incoming photons; a higher Zeff suggests better shielding efficiency (sample I). For the examined granitoid, Zeff reached its peak value at 15 MeV, with sample (I) having the highest Zeff at 10.76 (Figure 12). This further indicates that the Um Had granite pluton (sample I) can offer better gamma radiation shielding than the other natural samples. In this investigation, we utilized the Geometry Progressive (G-P) approach to calculate these factors for the granitic samples (I, IIA, IIS, and 10) (Singh and Badiger, 2014). This method, elaborated upon in a previous publication, enabled us to map out the correlation between the energy of the incoming photons and the variation in the EBF and EABF for these rock samples. The results (Figure 13; Supplementary Tables S2–S5) reveal an inverse relationship between the penetration depth and the incident photon energy. As the energy of the photons decreases, the depth-dependent absorbance increases, reaching its maximum in the medium energy range before starting to decline. This indicates that the granite rock samples (I, IIA, IIS, and 10) may offer better shielding for lower energy gamma rays but may lose effectiveness for higher energy gamma rays due to the decrease in depth-dependent absorbance.
[image: Figure 11]FIGURE 11 | Depiction of the fluctuation in the mass attenuation coefficient relative to photon energy for the Um Had granitoid.
[image: Figure 12]FIGURE 12 | A three-dimensional plot illustrating the relationship between the effective atomic number (Zeff) and Fast neutron removal cross section (1/cm) as a function of energy for the Um Had granitoid.
[image: Figure 13]FIGURE 13 | Illustration of the variation in: (A) exposure buildup factor (EBF) and (B) energy absorption buildup factor (EBF) in relation to photon energy in Um Had granitoid.
5 CONCLUSION
The present article studied the physico-mechanical characteristics and shielding efficiency of the Neoproterozoic granitoid of Um Had Area, Central Eastern Desert, Egypt with reference to their mineralogical and geochemical compositions. The main findings of this study are as follows:
• The studied granitoid rocks are characterized by their medium- to coarse-grained texture. They are classified as syenogranite based on their modal analyses and bulk rock chemistry.
• The main mineral composition of our studied granite samples includes quartz (22%-32%), microcline and orthoclase (35%-42%), and albite (8%-20%), in addition to minor amounts of biotite and hornblende. The predominant secondary minerals are kaolinite, sericite and epidote while iron oxides and zircon represent the main accessory minerals.
• The physical test data revealed that the water absorption and bulk density are significantly influenced by the percentages of apparent porosity. The water absorption ranges from 0.38% to 0.55% with an average value of 0.41%. The bulk density ranges from 2559 to 2565 kg/m3 with an average value of 2562 kg/m3. At the same time, a negative variation in water absorption values is observed with the total normative feldspar content with a correlation coefficient of r = −0.67, while a positive variation with normative hematite content is observed with a correlation coefficient of r = 0.77.
• The mechanical properties of the studied granitoid rocks show that the compressive strength ranged from 509 to 1207 kg/cm2 with an average value of 880 kg/cm2. The results also exhibit a positive variation in compressive strength values with the normative albite content with a correlation coefficient (r = 0.85).
• The studied granitoid rocks satisfy the bulk density requirements of dimension stones and, to some extent, water absorption. Although the compressive strength values do not achieve the minimum requirements, they could be acceptable for interior use and light-duty purposes for exterior uses.
• This comprehensive analysis provides strong evidence of the granitoid capabilities as a radiation-shielding material. However, this study is but a small step forward in our understanding and application of geological samples for radiation protection.
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Agriculture is considered one of the primary elements for socioeconomic stability in most parts of Sudan. Consequently, the irrigation water should be properly managed to achieve sustainable crop yield and soil fertility. This research aims to predict the irrigation indices of sodium adsorption ratio (SAR), sodium percentage (Na%), permeability index (PI), and potential salinity (PS) using innovative machine learning (ML) techniques, including K-nearest neighbor (KNN), random forest (RF), support vector regression (SVR), and Gaussian process regression (GPR). Thirty-seven groundwater samples are collected and analyzed for twelve physiochemical parameters (TDS, pH, EC, TH, Ca+2, Mg+2, Na+, HCO3−, Cl, SO4−2, and NO3−) to assess the hydrochemical characteristics of groundwater and its suitability for irrigation purposes. The primary investigation indicated that the samples are dominated by Ca-Mg-HCO3 and Na-HCO3 water types resulted from groundwater recharge and ion exchange reactions. The observed irrigation indices of SAR, Na%, PI, and PS showed average values of 7, 42.5%, 64.7%, and 0.5, respectively. The ML modeling is based on the ion’s concentration as input and the observed values of the indices as output. The data is divided into two sets for training (70%) and validation (30%), and the models are validated using a 10-fold cross-validation technique. The models are tested with three statistical criteria, including mean square error (MSE), root means square error (RMSE), and correlation coefficient (R2). The SVR algorithm showed the best performance in predicting the irrigation indices, with the lowest RMSE value of 1.45 for SAR. The RMSE values for the other indices, Na%, PI, and PS, were 6.70, 7.10, and 0.55, respectively. The models were applied to digital predictive data in the Nile River area of Khartoum state, and the uncertainty of the maps was estimated by running the models 10 times iteratively. The standard deviation maps were generated to assess the model’s sensitivity to the data, and the uncertainty of the model can be used to identify areas where a denser sampling is needed to improve the accuracy of the irrigation indices estimates.
Keywords: Nubian aquifer system, artificial intelligence, spatial uncertainty, irrigation, groundwater quality, Khartoum, Sudan
1 INTRODUCTION
Groundwater is one of the primary providers of irrigation water for agriculture, offering a dependable and sustainable source of irrigation water (Li et al., 2022). The utilization of groundwater for irrigation offers various benefits, including dependability and regularity. Unlike surface water, which can be impacted by floods and droughts, groundwater is generally consistent and can ensure a continuous supply of irrigation water (Mohammed et al., 2022c). This is crucial in areas with insufficient or unstable surface water supplies (Osta et al., 2022). Additionally, groundwater can be used in combination with surface water to create a more dependable and long-lasting source of irrigation water (Mohamed et al., 2023). Farmers can lessen their reliance on surface water and improve the effectiveness of their irrigation systems by employing both surface water and groundwater. However, aquifers need to be managed and protected to ensure the long-term sustainability of groundwater as a source of irrigation water (Docheshmeh Gorgij et al., 2022). The eastern Nile River region is mostly dependent on groundwater for irrigation because it is agricultural terrain (Mohammed et al., 2023d). The high reliance on groundwater for irrigation is due to the absence of surface water transporting systems and the high cost of delivering Nile water to agricultural lands (Farah et al., 2000). As a result, and due to the expanding agricultural lands and over-pumping of groundwater aquifers, the groundwater quality for domestic and agricultural purposes is declining (Eyankware et al., 2022). The quality of groundwater for irrigation purposes is crucial since it determines crop yields, soil fertility and permeability (El Bilali et al., 2021). In order to produce crops sustainably, this project aims to assess the suitability of groundwater for irrigation using advanced computational artificial intelligence (AI) systems.
Irrigational water quality might vary greatly based on the quantity and quality of soluble salts. Other parameters, such as variations in climatic conditions, may significantly influence the irrigational groundwater (Sattari et al., 2018). For instance, groundwater quality is poorer during the dry seasons compared to rainy seasons due to delusion by groundwater recharge. Therefore, water quality evaluations should be made during each irrigation cycle. Some physiochemical parameters are present in all irrigation water, which can have major impacts even with tiny concentrations. The type of salt present in the water and its overall concentration affects the suitability of the irrigation water. Salt can harm soil and plants regardless of its form or quantity. Consequently, several water quality indices were proposed considering different physiochemical parameters on groundwater or the impact of the irrigational water on the soil (Wilcox, 1948; Richards, 1954; Doneen, 1964; Kelly and Reiter, 1984). For instance, sodium percentage (Na%) and sodium adsorption ratio (SAR) determine the amount of sodium relative to the other cations and thus detect the effect of the cation exchange process on soil permeability (Chidambaram et al., 2022). Permeability index (PI) directly measures the influence of a particular water quality type on the soil (Kouadra and Demdoum, 2020), while potential salinity (PS) indicates the suitability of irrigational water for particular plants (Masoud et al., 2022). Usually, in assessing irrigational water quality, these parameters are combined for comprehensive evaluation. Irrigation indices are effective instruments for determining whether groundwater is suitable for agricultural use. However, the calculation of these indices is often lengthy and time-consuming (Nouraki et al., 2021); therefore, AI techniques are proposed to reduce the calculation time and avoid calculation errors (Nabiollahi et al., 2021). Because AI models can evaluate vast amounts of data and produce precise forecasts, their usage in irrigation water management has increased recently (Yu et al., 2022; Masoudi et al., 2023).
Groundwater and/or water quality studies have extensively used AI and machine learning (ML) approaches (Ahmed et al., 2019; Abdel-Fattah et al., 2021; Mohammed et al., 2022b, 2022a; Docheshmeh Gorgij et al., 2022; Najafzadeh et al., 2022; Nasir et al., 2022; Nong et al., 2023). This paper aims to introduce the application of AI techniques in irrigation water management, with a focus on the prediction of irrigation water indices. Recently, the use of AI techniques for the prediction of irrigation indices has been growing due to the high non-linearity and complexity of these indices (Pipia et al., 2019; Rahnama et al., 2020; Sattari et al., 2020; Dimple et al., 2022; Trabelsi and Ali, 2022). For instance, Mokhtar et al. (2022) used support vector regression (SVR) and random forest (RF) to model the irrigation water quality of potential salinity, sodium percentage and permeability index in Bahr El-Baqr, Egypt. They indicated the robustness of these algorithms to support the decision-making process for sustainable crop yield. Yahyaoui et al. (2023) conducted a comparative study to examine the capabilities of several ML algorithms, including K-nearest neighbor (KNN), support vector machine (SVM) and decision trees in predicting irrigational water quality indices (IWQI) in Cap-Bon, Tunisia. Their study revealed the efficiency of KNN techniques over the others. Singh (2020) employed SVM and Gaussian process regression (GPR) for the simulation of SAR in three sub-watersheds in Iran. These studies demonstrated the potential of AI and ML as a tool for predicting various water quality indices in irrigation systems and highlighted the importance of such predictions in improving water management practices and ensuring sustainable agriculture. However, these studies rely only on the prediction of the observed values without examining the capabilities of AI techniques in detecting the spatial distribution of the predicted indices. In this research, we proposed a geospatial prediction methodology based on integrating geographical information systems (GIS) with ML algorithms. Other techniques, such as Remote sensing and geostatistics, are widely used for monitoring urban water supplies and assessing their potential for future advancements (Liu et al., 2023). In addition, an adaptive model was constructed for the purpose of correcting water depth bias correction (Zhou et al., 2023).
This paper aims to examine the capability of several geospatial AI algorithms, including KNN, RF, SVR, and GPR integrated with GIS to predict the spatial distribution of irrigational water quality indices of Na %, SAR, PS and PI. The results of this research improve irrigation water management and the efficiency and sustainability of agricultural production.
2 MATERIALS AND METHODS
2.1 Study area
This study explores the suitability of groundwater for irrigation purposes in the eastern Nile River area, Khartoum state, Sudan. The study area lies between longitude 32° 30′ and 32° 47′ and latitude 15° 34′ and 15° 55′ (Figure 1). The area is characterized by a hot climate in summer, cold and dry in winter, and associated with an annual average precipitation of 115.7 mm/year in the fall season. The main geomorphological features are the Nile and Blue Nile Rivers, which bound the study area from the west. In general, the topography of the study area is flat, with an elevation range from 227 m above mean sea level (a.m.s.l) in the western and central parts to more than 497 m in the eastern part of the area (Figure 1).
[image: Figure 1]FIGURE 1 | The primary geomorphological features are depicted by the research area’s location.
Geologically, the area is located in the Blue Nile rift basin, where three geological units dominate. Figure 2 illustrates the primary geological units observed in the study area. The Pan African basement rocks of the Precambrian age form the bottom of the Blue Nile basin (Idriss et al., 2011; Mohammed et al., 2023e). These rocks are dominated by biotite granite, gneiss, and schist mainly observed near Khartoum’s northern and eastern boundaries (Awad, 1994). The Precambrian basement rocks are overlain by mudstone, sandy mudstone, conglomerates, and sandstone, which have been consolidated by limestone, siliceous, and ferrous minerals (Mohammed et al., 2023a). This rock accumulation is known as Cretaceous Nubian Formation (Mohammed et al., 2023f). This formation also comprises evaporite deposits formed in a braided environment and dispersed throughout the Nile and Blue Nile Rivers (Hussein, 1992). The recent deposit of Quaternary age is observed in the surroundings of the Blue and Nile Rivers and the eastern part of the study area. This geological unit is also known as the Gezira formation and comprises unconsolidated sand, gravel, and silts (Whiteman, 1971).
[image: Figure 2]FIGURE 2 | Geological map illustrates the main geological units in the study area.
The Nubian sandstone, with an average thickness of 300 m, serves as a primary groundwater aquifer in the study area (Köhnke et al., 2017). This aquifer is classified as highly productive, with an average transmissivity of 700 m2/day (Elkrail and Adlan, 2019; Mohammed M. et al., 2023). Given that there is relatively minimal recharge from rainfall, the Nile River and ephemeral streams are the primary sources of groundwater recharge to the Nubian formation (Mohammed et al., 2023c). As a result, groundwater levels range from 366.6 m in the western parts near Nile River to 294 m in the eastern part (Figure 3). Consequently, groundwater flows mainly from the western to the eastern part of the region.
[image: Figure 3]FIGURE 3 | The groundwater flow map shows the areal variation in groundwater levels.
2.2 Groundwater sampling
As part of the “zero thirsty” program administered by the Sudanese government, the Khartoum State Water Corporation collected 37 groundwater samples in December 2020. The aim of the zero thirsty project was to avail a clean and sustainable water supply in the Sudanese states. Khartoum state, as the most populated, was part of this project in which the suitability of groundwater for drinking purposes needs to be determined. The groundwater samples were collected from public and privately owned groundwater wells with a depth ranging from 100 to 250 m (Mohammed et al., 2023f). The sampling protocol is followed during the data collection. The groundwater wells are pumped for 30 min before the sample collection, and the samples are preserved in a polyethylene bottle washed with deionized water. The containers were transferred to the lab in an ice-filled box after being packed securely. The groundwater samples were analyzed in the labs of Groundwater and Wadies Directorate for eleven (11) physiochemical parameters. The parameters include total dissolved solids (TDS), hydrogen ion activity (pH), electrical conductivity (EC), total hardness (TH), calcium (Ca), magnesium (Mg), sodium (Na), bicarbonate (HCO3), chloride (Cl), sulfate (SO4), and nitrate (NO3). EC, TDS, and pH was determined shortly after sample collection using a portable multi-parameter equipment. While for Cl, SO4, NO3, Ca, Mg, Na, ion chromatography (IC) is used to analyze these parameters by separating ions based on their charge and affinity to the stationary phase.
Since groundwater fulfills the principle of electrical equilibrium, the electrical balance (EB) between the major cations and anions in meq/L is calculated using Appelo and Postma (2005) formula (Eq. 1) to examine the accuracy of the hydrochemical analysis. In this investigation, the EB for all the analyzed samples ranged between +10 and −10, which indicates acceptable accuracy.
[image: image]
2.3 Irrigation indices
The quality of irrigation water and its suitability for various crops are assessed using irrigation water quality indices (Mallik et al., 2022). There are several different irrigation water indicators; however, in this research, four indices are used for the management of irrigation water, including sodium adsorption ratio (SAR), sodium percentage (Na%), permeability index (PI), and potential salinity (PS). The sodium adsorption ratio (SAR) indicates the amount of sodium in water and how it could impact crops and soil (Richards, 1954). Low SAR levels are often regarded as acceptable for irrigation, whereas high SAR values can cause soil dispersion and poor crop development. The overall amount of sodium in the water is also determined by the sodium percentage (Na %) (Wilcox, 1948). The capacity of irrigation water to infiltrate into the soil is measured by the permeability index (PI), which highly influences plant growth by affecting the absorption of water by plants (Falowo et al., 2017). The total amount of dissolved salts in the water is measured by potential salinity (PS) (Doneen, 1964). High PS values can cause the soil to become salinized, which can harm crop development. The following formulas with the physiochemical parameters measured in meq/L can be used to determine the irrigation indices.
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2.4 Machine learning models
Four machine learning models were used in this study to predict irrigation indices: KNN, GPR, SVR, and RF. The dataset was separated into two parts: 70% for calibrating the machine learning models and 30% for validating the models. The analysis of the ML algorithms was conducted using the R Core Environment version 4.2.1 (Team, 2009). Evaluations specific to each algorithm are presented in separate sections, and the parameters used in the model application process are presented in tables in the following part.
2.4.1 K-nearest neighbors (KNN)
The KNN tries to identify the k-nearest instances in the training set and assigns the instance to the label that occurs most frequently within that k-subset. If the values are continuous, the target can be calculated by computing the mean. Nearest-neighbor methods utilize the observations in the calibration set that is closest in input space to [image: image] to form [image: image] (Hastie et al., 2009). The k-nearest neighbor fit for [image: image] is specifically defined as
[image: image]
where [image: image] is the neighborhood of [image: image], defined as the k closest points [image: image] in the training sample. The concept of closeness is predicated on a metric, which is considered to be the Euclidean distance in this example. As a result, we locate the k observations closest to x in input space and average their responses. For a more in-depth explanation of the KNN method, please refer to Hastie et al. (2009). In this study, the “train” function in the “caret” package (Kuhn et al., 2020) of the R Core Environment software (Version 4.2.1) was utilized to implement the KNN algorithm. The optimal number of k was determined through a parameter searching process, and the results for the irrigation indices models are presented in Table 1.
TABLE 1 | Machine learning algorithm parameters used to model irrigation indices.
[image: Table 1]2.4.2 Random forest (RF)
The RF (Breiman, 2001) is an enhanced version of bagging that involves constructing a large number of uncorrelated trees and combining their predictions. For a more detailed understanding of the Random Forest method, one can consult Biau and Scornet, (2016). The “randomForest” package by Liaw et al. (2002) was used in this study. The optimal value of the parameter “mtry” was determined through a parameter tuning process using the “train” function in the “caret” package in the R Core Environment software (Version 4.2.1). In this study, the default settings were used for the other parameters (etc., ntree) in the “randomForest” package. The optimal number of mtry was determined through a parameter searching process and the results for the irrigation indices models are presented in Table 1.
2.4.3 Gaussian process regression (GPR)
In this study, GPR (Rasmussen et al., 2006) was employed to examine the relationship between water quality parameters and spatial distribution of irrigation indices. GPR was used for both inference and mapping purposes. GPR aims to reconstruct the underlying signal f by removing the contaminating noise ε. For a deeper understanding of the GPR method, can refer to the publication by Rasmussen et al. (2006) and Ballabio et al. (2019). The Gaussian radial basis function (RBF) kernel is one of the most popular kernels used in Gaussian Process Regression, and it can model non-linear relationships between the input variables and the target variable. By using the “gaussprRadial” method in the “train” function of the “caret” package, the GPR algorithm was implemented using the Gaussian RBF kernel in the R Core Environment software (Version 4.2.1). The parameter of the GPR models were optimized by using a repeated 10-fold cross-validation method to prevent overfitting and presented in Table 1.
2.4.4 Support vector regression (SVR)
The SVR is a machine-learning technique that utilizes kernels to map the input space to a high-dimensional feature space, allowing for non-linear mapping (Drucker et al., 1996). The goal of SVR is to reduce both prediction errors and model complexity simultaneously. The optimization problem is solved using Lagrange multipliers and results in a set of support vectors that define the boundary. The prediction for a new data point is then made based on the support vectors and their weights. In this study, the SVR method was implemented using the “e1071” package (Meyer et al., 2020) in the R Core Environment software (Version 4.2.1). The model’s parameters, including the choice of kernel function and the value of parameter c, were determined through a parameter tuning process using a random search method. The optimal values for these parameters are reported in Table 1. For a more detailed understanding of the SVR method, one can consult Hastie et al. (2009).
2.4.5 Parameter optimization of the models
The KNN, GPR, SVR, and RF algorithms require the setting of several user-defined hyper-parameters. To find the optimal values for these parameters, the “caret” package (Kuhn et al., 2020) via R software (Team, 2009) was employed in this study. This tuning process computed a 10-fold cross-validation and random search method to determine the optimal values (Table 1). Subsequently, Kriging method is used to visualize and model the predicted parameters. It offers a valuable tool for generating spatially continuous maps that accurately represent the distribution of a irrigational indices across an area. It is particularly effective when data is sparse or irregularly distributed and when capturing spatial trends and correlations is crucial for analysis.
2.5 Models performance and spatial uncertainty
In this study, the accuracy of the predicted and observed data was evaluated using three widely metrics: root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (R2). To accurately reflect the overall accuracy of the machine learning models, only the evaluation metrics for the validation set are calculated.
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where Oi and Pi are, respectively, the observed and predicted values, with their average values represented by Oave and Pave, respectively, and n is the sample size in validation set. Most previous studies have aimed to enhance the performance of data-based models in estimating irrigation indices. However, the overall spatial uncertainty of the models used for modeling irrigation indices has not been assessed yet. Therefore, uncertainty was calculated as the standard deviation of the predictions of irrigation indices in each pixel over 10 iterations, which represents the spread of predicted values around the mean in each pixel (Yigini et al., 2018).
3 RESULTS AND DISCUSSION
3.1 Hydrochemical investigation
A number of eleven parameters are used to investigate the hydrochemical characteristics of the groundwater samples. The concentration of the parameters resulting from the hydrochemical analysis is illustrated in Table 2, while Table 3 summarizes the descriptive statistics of the analyzed parameters. The comparison of between the concentration of the parameters and the standard of the World Health Organization (WHO) (Edition, 2011) indicated that the maximum concentration of most parameters exceeded the permissible limit. The amount of the TDS ranged from 190.2 to 1742 mg/L, with the highest concentration observed in S27. TDS is considered the most important parameter in studying groundwater salinity (Freeze and Cherry, 1979; Mohammed et al., 2022c). Since groundwater with TDS higher than 1,000 mg/L is considered as brackish water (Carroll, 1962), 8% of the samples were classified as brackish, while the remaining percentage is considered freshwater. The pH of groundwater samples varied between 6.5 and 8.59 with a mean value of 7.6, denoting that most of the groundwater samples are neutral to alkaline, with one sample (S17) above the acceptable limit of WHO (Edition, 2011). The range of the EC content in groundwater samples is from 317 to 2,620 μS/cm. Three samples, including S2, S6, and S27, exceeded the EC standard limit of 1,500 μS/cm. The concentration of TH ranged from 124 to 890 mg/L. The maximum concentration is recorded in S6, and the minimum is in S29. According to Sawyer and McCarty (1967) classification, 78.3% of the groundwater samples are considered hard water (TH 150–300 mg/L), while the remaining 21.6% are very hard water (TH > 300). With an average value of 47 mg/L, the Ca+2 concentration ranged from 11 to 101 mg/L. while for Mg+2 concentrations ranged from 5.8 mg/L in the S12 location to 82.6 mg/L in the S16. Na+ concentration varied between 10 and 640 mg/L, with S1 showing the lowest concentration and S27 the highest. Only 5.4% (S16 and S27) exceeded the WHO-allowable level (Edition, 2011). The HCO3− concentration ranges from 98 to 620 mg/L, with an average of 302. Eleven samples had HCO3− concentration higher than the WHO recommendations. Since the Cl− concentration ranges from 4 to 193 mg/L, all groundwater samples exhibit Cl− contents below guidelines. The concentration of SO4−2 in groundwater samples ranges from 3 mg/L in S31 to 650 mg/L in S27. Samples in the study area had NO3− contents ranging from 0.0012 to 70 mg/L. S34 shows the highest concentration, whereas S10 shows the lowest. Only one sample (S34) had NO3− levels that were above WHO standards.
TABLE 2 | The findings derived from the hydrochemical study conducted on the gathered groundwater samples.
[image: Table 2]TABLE 3 | The descriptive statistics of the measured parameters compared to WHO guidelines (Edition, 2011).
[image: Table 3]The regional distribution of these factors is depicted in Figure 4. The majority of the parameters demonstrate a consistent pattern as the concentration progressively increases from the western to the eastern region of the research area. Unlike most of the parameters HCO3− and Ca+2, the most significant concentration is situated in the western region of the research area, which is likely an indication of the impact of Nile water infiltration, which is likely to be highly concentrated with HCO3− and Ca+2 (Mohammed et al., 2022b). The change in the hydrochemical facies is also studied with the aid of Chadha (1999) diagram. In this diagram, the difference between major cations (Ca+2 + Mg+2) - (Na+ + K+) and anions [HCO3 - (SO4−2 + Cl−)] is used to detect the groundwater types (Figure 5). Consequently, four groundwater facies are revealed as Na-Cl, Ca-Mg-SO4/Cl, Na-HCO3, and Ca-Mg-HCO3. Most of the groundwater samples (67.5%) fall in Ca-Mg-HCO3 water type, which indicates the influence of groundwater recharge on groundwater chemistry. The locations of these samples are within the influence of the Nile River, which is 12 km (Farah et al., 2000). The groundwater type gradually changes from the western to the eastern parts of the study area from Ca-Mg-HCO3 to Na-HCO3 water type. This change is likely due to ion exchange or the replacement of Ca+2 and Mg+2 with Na+. As a result, 16.2% of groundwater samples are identified as Na-HCO3 water type. 8.1% of the samples are classified as Ca-Mg-SO4/Cl resulting from reverse anion exchange in which HCO3− is replaced by Cl− in groundwater. The continuation of cation and reverse anion exchange leads to the Na-Cl facies (Abdelsalam et al., 2016). In this study, 8.1% are classified as saline water. The hydrochemical attributes of groundwater in the eastern Nile River region are predominantly governed by the processes of groundwater recharge and ion exchanges.
[image: Figure 4]FIGURE 4 | The areal variation of the analyzed parameters used for groundwater quality evaluation.
[image: Figure 5]FIGURE 5 | Chadha diagram showing the hydrochemical facies of the groundwater samples.
3.2 Irrigation indices
Agricultural activities are one of the primary proficient in central Sudan, and groundwater is considered a primary source for irrigation. The quality of groundwater used for irrigation is highly influencing soil fertility and crop growth; as a result, the suitability of irrigational water must be assessed. In this research, four indices are used to evaluate the quality of groundwater for irrigation, including SAR, Na+ %, PI and PS. The estimated indices of the groundwater samples utilized in this study are presented in Table 4.
TABLE 4 | The observed irrigation indices of the groundwater samples used in this study.
[image: Table 4]3.2.1 SAR
The SAR ranged from 0.27 to 13.8. The classification of groundwater samples is represented in Figure 6A (USSL diagram). Groundwater is divided into four groups based on SAR: excellent with SAR < 10 (S1); good [SAR ranges from 10 to 18 (S2)]; doubtful, in which SAR ranges from 18 to 26 (S3); and unsuitable with SAR > 26 (S4) (Richards, 1954). In general, SAR is influenced by the concentration of Na+ relative to the other cations such as Ca+2, Mg+2 and K+ (Rawat et al., 2018). In practice, groundwater is usually classified by conjugation of SAR with EC, since irrigation water with high salinity stimulates the ion exchange process and thus affects the adsorption of water by plants. Salinity. Based on EC, groundwater is classified as water with low (C1), medium (C2), high (C3), and very high (C4) salinity hazard. As a result, 59.4% of the groundwater samples are associated with low SAR (S1) and medium salinity hazard (C2). This class is considered excellent for irrigation purposes. 35% of the samples are projected in S1C3 class with low alkali and high salinity hazard. This class might not affect the soil permeability however, high salinity may influence the growth of salinity-sensitive plants and thus reduces the crops yield. One sample (S16) is plotted in S2C3 class with medium alkali and high salinity hazards. S27 is classified as unsuitable for irrigation since it is associated with high alkali and high salinity hazards (S4C4). This persistent use of this sample for irrigation will damage the soil permeability by incorporating Na+ within the soil particles and affect the growth of plants.
[image: Figure 6]FIGURE 6 | Classification of groundwater samples based on (A) SAR and (B) Na+%.
3.2.2 Na+%
The principle of Na% is almost similar to that of SAR in which the percentage of Na+ relative to the cations of Ca+2 and Mg+2 is measured. Na+ is incorporated into the clay minerals sheets while the other cations are removed, which affects the infiltration of water to the plants root. The exchange results in two types of soils, saline soils formed when Na+ reacted with Cl− while the alkaline soil when Na+ reacted with HCO3− in the irrigation water (Eyankware et al., 2022). In this study, Na+%varied between 7.8% and 77.3%. On the basis of Na+%, groundwater is classified as excellent for irrigation (Na+% less than 20%), good (20%–40%), acceptable (40%–60%), doubtful (60%–80%), and unsuitable (Na+% greater than 80%) (Khodapanah et al., 2009). The groundwater samples are plotted in Wilcox (1948) diagram (Figure 6B). Accordingly, 64.8% of the groundwater samples are projected in the excellent class zone. This class is associated with low salinity and alkali hazard. 21.6% of the samples are classified as good for irrigation with relatively high salinity and low alkali hazard. The permissible water class included 10.8% of the groundwater samples with high alkali hazard and relatively low salinity. The groundwater in this class is mostly influenced by the rock type. Only one sample is described as doubtful for irrigation purposes, and this sample is highly influenced by salinity.
3.2.3 PI %
PI is used to show the influence of irrigation water on the soil and thus evaluate the suitability of water for irrigation. PI is based on the concentrations of the alkali ions in the groundwater. In this research, PI ranged from 35.9% to 93.5%. Generally, based on PI, groundwater is categorized into three classes as class I (PI greater than 75%), class II (PI ranges from 25% to 75%), and class III (PI less than 25%) (Singh et al., 2020). The groundwater samples in class I and Class II are excellent and good, while in class III are unsuitable for irrigation. In this investigation, 18% of the groundwater samples are projected in class I and classified as excellent for irrigation, while 82% of the samples are classified as good for irrigation.
3.2.4 PS
PS varied from −2.4 to 3.4, with a mean value of 0.5. In general, groundwater with PS greater than 5 is considered injurious to unsuitable for irrigation, PS between 3 and 5 is regarded as good, while PS less than 3 considered excellent for agricultural purposes (Raghunath, 1987). The negative values of PS have resulted from high concentration of SO4−2 compared to Cl−. This situation is mainly due to the dissolution of sulphate minerals along the groundwater flow path. Mohammed et al. (2022b) calculated the saturation indices of groundwater in the study area and indicated that gypsum (CaSO4) is precipitated in most groundwater samples. This is likely to be the cause of high SO4−2. Based on the obtained values of PS, most groundwater samples are classified as excellent to good for irrigation, with some samples exhibiting negative values of PS. Even though the PS rated the majority of the samples as satisfactory for irrigation, a thorough examination of the water quality parameters is necessary to determine the suitability for irrigation. In some cases, some ions might have greater than reference values which leads to changing soil characteristics or influencing plant growth (Maia and Rodriguesda, 2012). As a result, it can be indicated that the groundwater samples with too low negative values can be considered injurious for irrigation since a high concentration of SO4−2 is remarkably affecting plant growth (Papadopoulos, 1986).
In conclusion, evaluating groundwater use for agricultural purposes is comprehensively achieved by considering several combined indices. It can also be said that the use of a certain type of water depends on the type of plant and its tolerance to salinity or its sensitivity to a certain parameter. The type of soil, whether it is acidic or alkaline, is also influencing plant growth. The quantity of water that a particular plant needs for growth may be related to one index rather than the other. For example, a low permeability index reduces the amount of water that can be absorbed by the plant and thus may affect the growth of plants.
3.3 Computational intelligence results
3.3.1 Model performance in prediction of irrigation indices
In this study, the SAR, Na%, PI, and PS values were estimated using the KNN, GPR, RF, and SVR models, and the performance of each model was evaluated based on the R2, MAE, RMSE, and testing stages, as shown in Table 5. In general, the developed models, except for SVR did not provide adequate modeling of the SAR parameter in groundwater and did not produce satisfactory SAR estimates based on the performance criteria used. However, the results for SAR estimation showed that the SVR model was the best performer, with the highest R2 value of 0.83 and the lowest error performance values, including MAE=0.76 and RMSE = 1.45, in the validation phase (Table 5). For clarity, the prediction of SAR parameter by the best-performing model, which is the SVR, will be shown in scatter plots as seen in Figure 7. The results of the modeling for the Na% parameter in groundwater showed that the SVR model was the best performer among the models tested, with the highest R2 value of 0.84 and the lowest error performance values including MAE = 5.16 and RMSE = 6.70 in the validation phase. The RF model was the second-best performer, with an R2 value of 0.79 and error performance values of MAE = 4.72 and RMSE = 7.71 in the validation phase. The scatter plots of the Na% parameter prediction by the best-performing models, the SVR and RF, are shown in Figure 7. The other models tested did not provide adequate modeling of the Na% parameter and did not produce satisfactory Na% estimates based on the performance criteria used.
TABLE 5 | Machine Learning Algorithms assessments criteria of validation set for water quality parameters, root mean square error (RMSE), mean absolute error (MAE), and r squared (R2) values.
[image: Table 5][image: Figure 7]FIGURE 7 | Scatter plots of observed irrigation indices and estimated irrigation indices by different machine learning models for the validation period. Abbreviations: KNN, k-nearest neighbors; GPR, Gaussian process regression; SVR, support vector regression; RF, random forest.
The results of the analysis showed that all the machine learning algorithms used in the modeling process performed below an R2 value of 0.70 for the PI indicator in the validation set. The SVR algorithm was found to be the best performer for the PI parameter, with the lowest values for both RMSE (7.10) and MAE (5.33) in the validation phase. The results indicate that the SVR algorithm performed best in predicting the PS parameter in groundwater, with the highest R2 value of 0.73 and the lowest error performance values, including RMSE = 0.55, in the validation phase. Other developed models did not perform well in modeling the PS parameter and did not produce satisfactory PS estimates based on the performance criteria used. The prediction of the PS parameter by the best performing SVR model will be shown in scatter plots in Figure 7. The box plots of the predicted irrigation indices using different machine learning models are shown in Figure 8. According to the one-way ANOVA analysis performed in the validation set and the results of the Tukey’s test (with a significance level of p < 0.05), there was no statistically significant difference in the estimation of irrigation indices among the different models. However, this suggests that among the compared models, the SVR model provides the best performance in terms of the estimation of irrigation indices (Table 5 and Figure 7).
[image: Figure 8]FIGURE 8 | Box plot showing the distribution of the predicted indices using different ML algorithms.
3.3.2 Spatial prediction of irrigation indices
A continuous digital map of SAR (Figure 9), Na % (Figure 10), PI (Figure 11) and PS (Figure 12) for the study area was produced from the results of the four different machine learning models using the predictor variables raster stack of the training dataset.
[image: Figure 9]FIGURE 9 | Mean and standard deviation maps of the predicted SAR derived from 10 times different machine learning models on a 100 m × 100 m grid-map.
[image: Figure 10]FIGURE 10 | Mean and standard deviation maps of the predicted Na (%) derived from 10 times different machine learning models on a 100 m × 100 m grid-map.
[image: Figure 11]FIGURE 11 | Mean and standard deviation maps of the predicted PI derived from 10 times different machine learning models on a 100 m × 100 m grid-map.
[image: Figure 12]FIGURE 12 | Mean and standard deviation maps of the predicted PS derived from 10 times different machine learning models on a 100 m × 100 m grid-map.
The spatial distribution of SAR concentrations in groundwater are predicted with all four models for the eastern Nile River region, Khartoum state, Sudan (Figure 9). In general, all four models show similar patterns for the spatial SAR distribution that only differ locally from each other. The western parts of the study area are associated with low values of SAR, likely due to the influence of groundwater recharge on groundwater samples. The highest values in the southern and central parts are generally due to the high mineralization of groundwater samples due to the dissolution of halite minerals within the Nubian formations (Abdelsalam et al., 2016; Mohammed et al., 2023b). The values of predicted SAR recorded in the KNN model ranged from 0.71 to 7.98, while in the SVR model they ranged from 0.61 to 9.40. The GPR model had a range of 1.08–6.51, and the RF model had a range of 0.56–7.42 (Figure 9). Overall, the minimum estimated SAR values were comparable among all models, except for the GPR. However, the maximum values varied among the models. The maximum uncertainty was the smallest in the RF model, ranging from 0.004 to 0.31, while in all other models, the uncertainty varied from 0.01 to 3.71. Uncertainty in the SAR estimation was particularly high in areas with low sampling density, but SAR prediction uncertainty was higher in the southeast of the study area.
The results of the spatial distribution prediction for Na % using all four models in the eastern Nile River area, Khartoum state, Sudan, are presented in Figure 10. The performance of each model in predicting the Na % concentrations in groundwater can be compared based on the accuracy and uncertainty of the maps produced. The maps can be used to identify areas where the concentrations are high or low and to understand the spatial distribution patterns of Na % in groundwater. The variation of Na+ % shows a similar trend to that of SAR as the central and southern parts depict high concentrations relative to the rest of the study area. The results of the predicted sodium percentage (Na%) from the KNN, SVR, GPR, and RF models are presented in Figure 10. The range of Na% values predicted by the KNN model was between 22.21 and 56.83, while the SVR model had a range of 22.48–71.24. The GPR model had a range of 29.45–57.40 and the RF model had a range of 18.10–61.72. Overall, the highest estimated Na% values were similar across all models, except for the SVR model. The minimum values, however, differed among the models. The RF model had the smallest uncertainty range, between 0.05 and 2.12, while in all other models, the uncertainty varied between 0.05 and 27.60. The uncertainty of Na% estimation was particularly high in areas with low sample density, with higher uncertainty observed in the southeast, east, and northwest regions of the study area.
We employed four models (KNN, SVR, GPR, and RF) to predict the spatial distribution of PI concentrations in groundwater in the Eastern Nile River area of Khartoum state, Sudan (Figure 11). Results indicated that all four models generated similar patterns of PI distribution, albeit with some local differences. The lowest PI is indicated in S33 location in the southwestern part of the study area however these samples showed low SAR and Na+%. This can be explained by two factors. The groundwater recharge from Nile River which increase the HCO3− concentration in the groundwater samples and therefore reduce the PI. Alternatively, it might be affected by clay nature of the quaternary deposits. The soil properties including compaction and organic contents may also influence the soil permeability (Khalaf and Hassan, 2013). In this case, the SAR and Na+ will eventually be increased due to the ongoing ion exchange reactions. The predicted values of PI obtained from the four models ranged from 53.34 to 85.50, with the highest estimated values being recorded in the SVR model and the lowest in the RF model (Figure 11). The RF model exhibited the lowest level of uncertainty in its predictions, with a range of 0.07–2.25, while in the other models, the uncertainty ranged from 0.06 to 14.75. The uncertainty in PI predictions was higher in areas with low sampling density and in the central and northwest regions of the study area.
The prediction of PS concentrations in groundwater using four models (KNN, SVR, GPR, and RF) in the eastern Nile River area, Khartoum state, Sudan is presented in Figure 12. In general, all models show similar spatial patterns of PS distribution, with only minor differences in some areas. The values of predicted PS recorded by the KNN model range from −0.17 to 2.16, by the SVR model from −1.30 to 2.11, by the GPR model from −0.38 to 1.60, and by the RF model from −0.36 to 2.09. Although the maximum estimated PS values are comparable among all models, the minimum estimated values vary, with the exception of the GPR model. The maximum uncertainty was the lowest in the RF model, ranging from 0.004 to 0.10, while in all other models, the uncertainty varies from 0.006 to 1.66. Areas with low sampling density had high uncertainty in PS estimation, and areas in the central, southeast, and northeast had higher PS prediction uncertainty.
Overall findings indicate that the four models have similar capabilities in predicting the spatial distribution of irrigation indices in groundwater. However, as these models use different mathematical basis, small differences in their predictions can still exist. These differences may be due to the different weightings given to the input variables, the type of algorithm used, and other factors. In this study, the GPR model had difficulty accurately spatially predicting the minimum and maximum values for all irrigation indices. This means that the GPR model, which is based on a normal distribution, may have trouble accurately representing data points that are significantly different from the average or have extreme values, known as outliers. This suggests that in datasets with outliers, the GPR model may not perform as well compared to other models. This suggests that the GPR model might not be suitable for modeling datasets with outliers or data that do not follow a Gaussian distribution. As supported by our results, it could be beneficial to consider other models such as RF or SVR, that can handle these types of datasets better. The findings of this study support the difficulty of the GPR model in representing the minimum and maximum values in the data set when outliers are present. This highlights the limitations of the GPR model, especially in the context of datasets with varying data distribution and outliers, such as the groundwater data in the eastern Nile River region, Khartoum state, Sudan. Additionally, it might be worth exploring ways to transform the data to make it more Gaussian-like before using the GPR model to see if this improves the model’s performance. Overall, the models can provide useful information for understanding the spatial distribution of irrigation indices in groundwater, but further validation and analysis are needed to determine the most accurate and reliable model for this purpose. This means that the overall distribution of irrigation indices in the study area, as predicted by the four models, is similar but with some slight variations in specific locations. Overall, the models produce similar results, indicating that the distribution of irrigation indices values in the study area is relatively consistent.
In this study, an approach was presented to assess the sensitivity of the model to the available data (rasters of predicted variables) and the uncertainty of the model (Figures 9–12). Complex areas like the study area, with deltas and adjacent uplifting regions, often have strong multifactor interactions, non-linearity, and non-stationary relationships, leading to highly heterogeneous groundwater properties spatially. However, the uncertainty maps (Figures 9–12) present some conflicting results in revealing the spatial variation of irrigation indices with limited predictive variables and several water samples. To provide insight into the reliability of the irrigation indices estimates, areas with high standard deviation values should be emphasized. Other researchers have also noted the significance of uncertainty maps in mapping irrigation indices for local areas with high groundwater heterogeneity or small sample sizes (Taşan et al., 2022). It should be acknowledged that the representation and application of uncertainty maps in machine learning predictions still require improvement.
4 CONCLUSION
In this research, four computational machine learning (ML) algorithms (KNN, SVR, GPR, and RF) integrated with GIS were used to evaluate the suitability of groundwater for irrigation purposes based on four irrigational indices (SAR, Na%, PI, and PS). This approach is followed to overcome the limitations of the conventional assessment of groundwater quality parameters. Based on the modeling results, the conclusions can be summarized as follows:
• The initial analysis revealed that the groundwater samples are dominated by Ca-Mg-HCO3 and Na-HCO3 water types resulted from groundwater recharge and ion exchange processes.
• The observed irrigational indices indicated that the majority of the groundwater samples (60%) are excellent agricultural purposes. The remaining samples are mostly influenced by high salinity resulted from rock-water interactions.
• The GIS-based statistical approach allows the estimation of groundwater irrigation indices derived only from spatially mapped physiochemical parameters. The use of machine learning models is trained with a point data set of groundwater physiochemical parameters with exclusively spatial predictors.
• All four model types resulted in reasonable to good predictions for the spatial distribution of irrigation indices in groundwater. However, the SVR algorithm showed the best performance in predicting the irrigation indices, with the lowest RMSE value of 1.45 for SAR. The RMSE values for the other indices, Na%, PI, and PS, were 6.70, 7.10, and 0.55 in the test data set, respectively.
• The determination of the actual contributing area of the monitoring sites through a process-based representation of the groundwater flow conditions could probably improve the predictive performance of the models. However, the inclusion of locally specific groundwater flow conditions is challenging on even larger scales due to a lack of information.
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Many people are killed by landslides due to earthquakes or severe rain, and structures and facilities built on or near slopes sustain significant damage. Such landslides on naturally occurring slopes can be large enough to utterly destroy towns or communities. Based on remote sensing and microtremor data, the area around Al Taif has been evaluated for its susceptibility to landslides. Digital elevation model (DEM), slope angle, and slope aspect thematic layers were used to depict remote sensing data. The landslide susceptibility was extracted from remote sensing thematic data. The elevations of the Al Taif area, which range from 832 to 2,594 m amsl, were identified based on the DEM. Al Taif’s slope angles range from 0° to 67.3° degrees. Nearly flat (0° to 4.75°), moderate (4.75° to 11.1°), steep (11.2° to 29.1°), and very steep slope (≤29.1°) are the different classifications for the slope. Additionally, measurements of the microtremor have been taken at 42 locations throughout the region. The horizontal-to-vertical spectral ratio (HVSR) approach was used to process and analyze microtremor data in order to determine the resonance frequency and H/V amplification factor. The findings show that, while the amplification factor varies from 1.17 to 9.28, the dominant frequency values fall between 0.3 and 12.75 Hz. To determine the frequency, amplitude, and azimuthal site response, 11 sites were eventually chosen. Furthermore, the direction of the site response in the sliding areas was parallel to the landslide directional response, indicating that the site response direction tracked the landslide direction. Practical approval of the study’s findings has been given at a number of locations by field measurements at some of the Taif urban area’s most recent landslide occurrence areas. These findings show that the integration between remote sensing and microtremor measurements is a useful tool for pinpointing landslide-prone areas, which helps to lessen the danger to people’s lives and property. This susceptibility zonation applied to the Al Taif area has produced a good match between the distribution of the reported landslides and the zones of high susceptibility. To define the general trend and geographic distribution of potentially unstable slopes and landslide potential zones, this study’s findings must be used as a guide.
Keywords: remote sensing, microtremors, directional resonance, landslide susceptibility, Al Taif, Saudi Arabia
1 INTRODUCTION
The most dangerous natural instability processes, including landslides, cause significant socioeconomic losses and property destruction each year throughout the world (Heersink, 2005; Petley, 2012; Froude and Petley, 2018; Haque et al., 2019). One of the main sources of damage to buildings and infrastructure, as well as injuries and fatalities in mountainous and hilly areas, are shallow landslides and debris flows, which are typically brought on by brief but intense rainstorms. Unlike debris flows, shallow landslides often include tiny quantities. However, due to their extensive spatial distribution over territories, quick development, and high velocity of dissemination, both can cause a great deal of harm (Hungr et al., 2014; Roccati et al., 2021). Accordingly, landslide susceptibility assessment and mapping are crucial tools in landslide risk management, assisting authorities, practitioners, and decision-makers in developing risk mitigation strategies that are more appropriate and sustainable, including the implementation of monitoring and warning systems (Dai et al., 2002; Cascini et al., 2005; Corominas et al., 2014).
Landslides have been studied using a variety of techniques to define their geometry and gather data on their stability conditions and state of activity (Petley, 2012; Al-Otaibi, 2019; Kahal et al., 2021). These techniques can typically be divided into two groups: intrusive techniques, such as boreholes, soil samples, and laboratory testing, and non-intrusive techniques, such as geophysical techniques. The latter’s use for subsurface characterization, localizing sliding surfaces, assessing the formation and evolution of cracks, comprehending water dynamics, and potential reactivation by rains has expanded rapidly (Pazzi et al., 2019). In order to define landslide ground models and afterward perform slope stability evaluation, the data from geophysical surveys are used as input (Whiteley et al., 2019).
Slope instabilities (landslides or rock falls) can be caused by a wide range of occurrences, including heavy rain, quick snowmelt, human-caused activities, and seismic events (Cruden and Varnes, 1996). Due to their enormous potential for destruction, these phenomena-especially those brought on by earthquakes-affect many parts of the world and are quite noteworthy. The losses resulting from earthquake damage are currently difficult to estimate. Traditional techniques rely on their estimates of the cost of such damage on the repair and restoration of buildings, without accounting for economic losses resulting from the loss of economic activity and human lives (Cardone et al., 2019). Therefore, seismic hazards in inhabited areas need to minimize the consequences and phenomena linked to strong ground vibrations. This is done so that the inherent seismic hazard may be calculated by looking at historical events as well as the geological and geotechnical conditions of regions that are likely to suffer a seismic event (Abdel-Rahman et al., 2010; Fat-Helbary et al., 2012; Harutoonian, 2015; Abdelrahman et al., 2017; Abdelrahman et al., 2021a; Abdelrahman et al., 2021b; Alamri et al., 2020; Almadani et al., 2020). Co-seismic landslides, which are aftershocks of earthquakes, are essential for pinpointing prior seismic occurrences and enhancing seismic hazard forecasts (Jibson, 1996). These landslides offer significant real-time geological evidence that enables researchers to recreate a region’s seismic catalog and better comprehend previous seismic activity (Rodrguez-Peces et al., 2011). The accuracy of seismic hazard predictions can be improved by increasing the dataset available for seismic analysis, which in turn helps to increase community resilience against seismic occurrences in the future.
Landslides are extremely damaging natural disasters that have a negative impact on social and economic development, as well as the safety of human life and property (Hungr et al., 2014; Wang et al., 2020). According to Gokceoglu et al. (2005) and Fang et al. (2023), landslides make up about 9% of all-natural disasters that occur worldwide, and China is one of the nations that is most seriously and extensively affected by landslide catastrophes. Landslides typically occur in mountainous and hilly areas. According to Hong et al. (2016) and Lacroix et al. (2020), landslide susceptibility mapping (LSM) is a technique for quantitatively predicting the spatial distribution of landslide susceptibility in a region by combining regional topography, geological structures, hydro-meteorology, and other characteristics. Statistical models, such as entropy, have been mostly used in earlier studies on LSM (Lee et al., 2014; Guo et al., 2019; Sun et al., 2021; Sun et al., 2023).
It is crucial to assess and identify landslide-prone locations using various landslide susceptibility mapping techniques for proper and strategic land use planning. As it demonstrates the level of susceptibility of a region to the occurrence of landslides, creating a map of a specific area’s landslide susceptibility is a useful tool in managing landslide hazards. The assumption that future landslides would occur under the same circumstances as in the past allows for the generation of landslide susceptibility maps (Pham et al., 2015). Understanding the circumstances and mechanisms that govern landslides in the research area is necessary for interpreting their likely future occurrence. By integrating these conditioning elements and past landslides in a GIS context, the essential characteristics to measure and evaluate landslide susceptibility include past landslides and other conditioning factors, such as slope morphology, hydrogeology, and geology of the area. Several researchers have employed GIS-based landslip susceptibility mapping techniques, which may be divided into qualitative and quantitative ones (Yalcin et al., 2011; Felicisimo et al., 2012; Peng et al., 2014; Wang and Li, 2017). Geomorphological analysis and inventory techniques are examples of qualitative methodologies. These rely more on expert opinion and are more individualized than quantitative approaches. In order to build and execute mathematical models, expertise is still required (Aleotti and Chowdhury, 1999; Kanungo et al., 2009). Quantitative methods such as deterministic analysis, probabilistic approaches, and statistical procedures heavily rely on these models because they have considerably less human bias.
Landslides and their dynamics can be mapped using HVSR, which is both economical and logistically effective (D'Amico et al., 2019). It offers details on the geomorphological, engineering, and geological aspects' resonance behaviors. It has been used widely in the assessment of landslide hazards and vulnerability to various triggering variables, such as earthquakes and rainfalls (Hussain et al., 2019). But as is the situation with a clayey landslide, rainfall-induced saturation lowers impedance contrast by causing changes in the rheology of the overlying unconsolidated material. The investigation of the seasonal dynamics of rainfall-triggered landslides using HVSR is based on this (Imposa et al., 2017; Bertello et al., 2018). Other environmental studies that have used HVSR include monitoring of fluvial systems (Anthony et al., 2018), estimation of changes in ice thickness (Martino, 2016; D'Amico et al., 2019; Picotti et al., 2017) and its dynamics (Köhler et al., 2015). As shown in numerous research (Burjánek et al., 2010; Del Gaudio and Wasowski, 2011; Panzera et al., 2012; Galea et al., 2014; Iannucci et al., 2017; Imposa et al., 2017; Iannucci et al., 2018), HVSR can indicate the directional influence for landslide-affected areas. Additionally, HVSR has been used for a number of purposes, such as site effect response and microzonation, seismic vulnerability assessment, and soil-structure response (Fnais et al., 2010; Fnais et al., 2015a; Fnais et al., 2015b; Alyousef et al., 2015a; Alyousef et al., 2015b; Almadani et al., 2015; Alharbi et al., 2015; Al-Malki et al., 2015; Aldahri et al., 2018.
Al Taif area lies in the southwest of Saudi Arabia and is surrounded by arid terrain and high mountains with steep slopes (Figure 1). In Saudi Arabia, Makkah City is located around 80 km to southeast of Al Taif City. The study area is bounded by longitudes 40° 00′ and 40° 30′E and latitudes 21° 00′ to 21° 30′ N. The city’s recent growth has been determined by this mountainous area. Low-land zones are where urban infrastructure and communities are extended. The native rock is used to construct traditional dwellings. Taif receives rain from the higher edges along the terrain’s slopes. These slopes will be more exposed if they are close to the main roadways. Permanent people who reside along the City’s natural slopes live in areas with a high population density. The Al-Sharai’a earthquake on 8 October 1992, the non-tectonic seismic shock on 12 September 2005, and most recently the earthquake on 28 November 2019, have had a huge impact on Makkah. These earthquakes had a dangerous impact and were felt throughout the majority of the region (Abdelrahman et al., 2019a; Abdelrahman et al., 2019b). Additionally, the city’s proximity to possibly active tectonic structures will make it more susceptible to the landslide phenomenon because it will operate as a more vulnerable place. The disastrous impacts of landslides are readily acknowledged and intensively investigated by several authors worldwide (Mora and Vahrson, 1994; Aleotti and Chowdhury, 1999; Mora-Castro et al., 2012; Somos-Valenzuela et al., 2018; Al-Saud, 2015; Youssef et al., 2015a; Youssef et al., 2015b; Shanmugam and Wang, 2015; Berov et al., 2016; Saputra et al., 2016; Keskinsezer and Ersin, 2019). Gaudio and Wasowski (2007), Rezaei et al. (2018), and Zul Bahrum and Sugianto (2018) have all given their approval for microtremor measurements at some locations around the world.
[image: Figure 1]FIGURE 1 | Location map of Al Taif area including Microtremor measuring sites.
For the city of Al Taif, where soft soil, even with little thickness, will expedite landslide occurrences and cause significant harm to the populace, soil response effects, such as resonance frequency and amplification characteristics, are crucial. Al Taif can effectively transmit the earthquake’s ground shaking because of its proximity to the Red Sea earthquake source zone. The susceptibility of landslides will be increased by soft sediments and weathered, broken blocks. Therefore, assessing Al Taif’s landslide susceptibility is essential given the area’s growing population, buildings, and impressive economic activity. The study area has never been investigated before, especially in terms of the environmental risks associated with landslides, which makes this study novel. Additionally, integration between two of the most recent techniques for mitigation of landslide hazards, namely, the two remote sensing techniques with the ambient seismic noise measurements, microtremors, in the area. With the help of this innovative technique, we hope to pinpoint Al Taif region’s landslide-prone areas so that they can be avoided in future plans of developmental projects in the area and its surrounding with the best land-use and urban planning.
2 MATERIALS AND METHODS
The data used in this study will be integrated through a GIS-based approach and the methodology carried out through this study as in Figure 2.
[image: Figure 2]FIGURE 2 | The flowchart methodology carried out through the current study.
2.1 Geological setting of Al Taif area
The Proterozoic Arabian Shield is where the inquiry region is located geologically. The earliest radiometrically dated rocks in the study area are syn-tectonic granites and granodiorites with many inclusions and xenoliths (Johnson, 1982). These mostly come from the granitization of volcanic and schist rocks. These rocks' age determinations point to a plutonic phase that was contemporaneous with or somewhat earlier than the African Kibaran Orogeny. Andesites, diabases, and amphibolite schists of an even older provenance are separated from these rocks by an unconformity and frequently encroach upon them. The latter amphibolite schists are found in sections of Taft, the northeastern zones around Wadi Hawrah, and the southeast side of Wadi Fatimah (Johnson, 1982). The so-called Wadi Fatimah Formation, which is comprised of smaller outcrops of newer Upper Proterozoic layered rocks, is also present in the Wadi Fatimah. Unmetamorphosed granites intrude into these series as stocks, elliptical plugs, and ring dykes. The Hijaz and Najd orogeneses, each with more than one phase of folding and igneous activity, have had an impact on the basement series. The Hijaz orogeny, which is the oldest of the two, is more extensive and intense in terms of age and space. According to Alwash and Zakir. (1992), the orogeny was characterized by east-west compression, with the severely folded, faulted, and locally overthrust beds emerging in meridian or north-northeast oriented bands and lineaments.
The younger period of mountain-building and canonization is associated with the Najd orogeny. A sequence of left-lateral faults that are northwest-trending best illustrates the effects of the younger and shallower motions. The Arabian plate (Brown, 1972), a relatively small lithospheric plate whose limits indicate several types of plate boundaries according to the terminology of plate tectonics, became significant for the geological evolution after a period of rather stable geology (Barazangi, 1981). The Red Sea rift system is relevant to the study area. The many basalt plateaus, including Harrat Rahat, with the widest extension on the Saudi Arabian subcontinent, came into being as a result of the spreading along this line throughout Tertiary to Quaternary, even in historic times. Numerous seismic events that were recorded in recent years provide evidence of the recent displacement in the Red Sea Graben (Moore and Al-Rehaili, 1989).
The escarpment west of the city of Al Taif is the most noticeable geomorphologic feature of the investigation area. Within the Hijaz mountains, it is a key geomorphological stage that is influenced by tectonic forces. As a result, although those around Taif are 2000 m or higher, the mountain peaks of the coastal ridges near Jeddah and Makkah have an average elevation of 300–500 m. The Al Taif region is mountainous and is divided by some rivers that go west. Precambrian metasediments and intrusive igneous rocks from the Arabian Shield were present in the study area, and these rocks were buried by quaternary sediments (Figure 3). Asir, Al-Hijaz, Madyan, Afif, and Ar-Rayan are the five terranes that make up the Arabian Shield. Bir-Omq, Yanbu, Nabitah, and Al-Amar are the four suture zones that divide them (Al-Shanti, 1993; Bishta et al., 2015). The study location is situated in Asir Terrane’s northwest region. Diorite, Granodiorite, and Monzogranite make up the majority of the plutonic rocks in the examined region. Joints and small faults are the most prevalent geological structural characteristics in the study area (Sharaf, 2010).
[image: Figure 3]FIGURE 3 | Geological setting of Al Taif area (modified after Al-Shanti, 1993; Bishta et al., 2015).
A stunning characteristic in the nearby Wadi Fatimah is the horst-graben and step-faulting nature of Red Sea Rift fracturing (Al Shanti, 1966; Nebert et al., 1974). Along these faults, strike-slip and oblique movements also happened. In the Shumaysi region, a thorough inventory of regional and local faults by Al Shanti. (1966) revealed that horst-graben structures with an NW-NNW trend and a range of steepness from mild to extreme predominate. These, according to Al-Shanti (1966), are separated from NNW trending Red Sea Rift fractures by N 15°E − N 40°E moving faults. However, a few distinctive gabbroic dykes in the region that cut through all other mafic and felsic dykes are tentatively thought to be connected to late volcanism. Some E-W cracks seem to have occurred simultaneously. They might be cross Joints associated with the longitudinal N-S set. Hot springs are found along N-S cracks at A1 Lith, south of the catchment region (Loupoukhine and Stieltjes, 1974).
Andesite dykes were reported by Al Subai. (1984) along N-S and E-W trending fractures. Rift volcanism is typical of Andesites. Therefore, these dykes might be a part of a Precambrian swarm. The lack of analysis leaves opens the possibility that the dykes are from Tertiary basalt volcanism. In the Al Hara region, Abo Saada. (1982); reported in Al Saifi et al., (1983) assessed 2400 Joints and found that they were ENE/dip SE; NW/SW and NE; EW/gentle to subhorizontal; and NS/vertical. In the Taif area, granites exhibited a prevalence of NS and EW orientations, according to Andreasson et al. (1977) who conducted a comprehensive fracture survey over a 1 km2 area.
2.2 Seismicity and seismotectonic setting of Al Taif area
According to Merghelani and Gallanthine. (1981), Al Taif area lies close to the seismically active tectonic environment of the Red Sea (Figure 4). There have been earthquakes near Al Taif that were both historical and useful. According to Ambraseys et al. (2005), there were numerous earthquakes in 873, 1121, 1269, 1408, and 1426 AD. An incident that occurred on 28 September 1993 (12/4/1413H), which occurred 30 km northeast of the Holy Mosque in the Al-Sharai’a district, proved Makkah Al-Mukarramah’s earthquake sensitivity. A series of minor earthquakes are reported by the Saudi Geological Survey’s seismic network after the 3.6 magnitude shock. On 3 October 1993, an earthquake swarm with a magnitude of 4.1 ML occurred at Al-Sharai’a (Al Furaih et al., 1994; Wolfs, 1994). On 18 June 1994, an earthquake with a magnitude of 3.6 was recorded nearby in the Al Utaibiyya District on 8/8/1426H. The shallowness and predictability of this earthquake are indicated by its limited geographic possibility.
[image: Figure 4]FIGURE 4 | Seismicity around Al Taif area (after Fnais et al., 2015b).
The seismicity and seismotectonic context of the Jeddah-Makkah region are discussed by Fnais et al. (2015a). They compiled historical and scientifically verified information about earthquakes that occurred in the Jeddah-Makkah region from a variety of sources and organized it into a single earthquake catalog. In the Makkah region, five seismotectonic source zones were found (Figure 3). Three zones-the northwest, western, and southwest of Jeddah-are along the Red Sea axial trend, while the Thuwal-Rebigh and Jeddah-Makkah zones are located inland. Wherever the zone incorporates tectonic trends, it may be said that the Jeddah-Makkah source zone is the most vulnerable source of the investigated region. The first one is Wadi Fatima, which is 50 km long and 10 km wide and represents the primary fault-bounded graben. The main graben’s NE-SW faulting trend, which is divided by a number of faults from the Red Sea’s primary tectonics in the NW-SE, is preexisting (Al-Garni, 2009). The location is part of a conjugate set of tertiary ruptures, according to the NNE fractures. To the south of Jeddah, the Wadi Fatima route extends ENE-WSW. Due to active faults, it abruptly turns northward (Azzedine et al., 1998). The Ad-Damm active fault, a significant fault trend located in the Jeddah-Makkah region, is the secondary trend.
2.3 Remote sensing data
2.3.1 Digital elevation model
The elevation data that are geographically referenced are the most critical and crucial data used in morphometric investigations. Topographic maps or their digital equivalents are the most commonly used data sets as a result. In a basic sense (DEMs) are topographic analogs and are useful for researching spatially distributed events and processes on the earth’s surface. DEMs provide a 3D picture of the earth’s surface topography at a local and smaller scale. Similar to the present landslide inventory, the geographical evaluation of the landslide danger necessitates rigorous mapping of the regulating components. One of the most well-known and frequently used methods for obtaining the characteristics of landslides is the use of remote sensing techniques with multi-spectral, spatial, and radiometric solutions. The final, highest-resolution DEM of Earth was created by the Shuttle Radar Topography Mission (SRTM). In order to obtain advanced topographic information with a 1 arc-sec precision, it used double radar aerials to acquire interferometric radar data (Farr et al., 2007). The primary dataset used to create topographic derivative maps is the high resolution (DEMs). Higher-resolution data may make it easier to discover future landslides and provide more information on existing landslides.
A Digital Elevation Model (DEM) is crucial to the current study’s ability to anticipate a model of landslide susceptibility and to determine the elevation, slope aspect, and slope angle thematic layers. The nonlinear regression graph created by the DEM model created by Gao and Los (1995) depicts the correlation between elevations and landslides. To assess the likelihood of landslides, an elevation map was created based on the Gao and Lo model using map algebra in ArcMap 10.2. The elevations of the Al Taif area, which range from 832 to 2,594 m AMSL, were identified based on the DEM (Figure 5).
[image: Figure 5]FIGURE 5 | Digital elevation model (DEM) for the mapped area.
2.3.2 Slope angles map
A land region that forms the vertical landscape at a specific angle is called a slope. Slope units make up the geomorphology landscape. The slope is commonly represented in degrees, stands with the horizontal line, and can be thought of as the vertical inclination between the top of the hill and the bottom of the valley. Slope gradient is one of the key parameters for slope stability, but slope angle is also important when assessing landslide stability. Because they have lower shear stresses than steep slopes (Dai et al., 2002), gentle slopes are less likely to slide, whereas steep slopes have larger shear stresses. Many writers (Çevikevik and Topal, 2003; Lee et al., 2014; Yalcin et al., 2011; Pourghasemi et al., 2013a; Pourghasemi et al., 2013b; Regmi et al., 2014) use the slope angle factor for landslide susceptibility mapping. According to Varnes (1984), the rising the slope gradient, the more gravity-induced shear pressure there is in colluvial soils, which leads to the development of landslides (2012) Mora-Castro et al. Therefore, the slope’s angle is a key element that causes landslides and needs to be mapped (Anbalagan, 1992). According to Varnes. (1984), the slope is the key determining element in the development of landslides. According to Mora-Castro et al. (2012), as the gravity-induced shear pressure in colluvial soils increases, so does the slope gradient. The kind of rock in the mapped area and its control over the makeup of superficial deposits have a direct impact on the slope angle. Relief impacts were noted by the alternating compacted layers of sedimentary rocks. The initial extraction of elevation is the slope gradient, which was therefore also retrieved from the (DEM) at a 30-m resolution.
In this study, the slope gradient ranges from 0o to 67.3o, and the slope angle map for Al Taif area has been determined (Figure 6). Nearly flat (0o to 4.75o), moderate (4.75o to 11.1o), steep (11.2o to 29.1o), and very steep slope (≤29.1o) are the different classifications for the slope.
[image: Figure 6]FIGURE 6 | The slope angle distribution within the area of study.
2.3.3 Slope aspect map
Another feature that was retrieved from the DEM with a 10-m spatial resolution was the slope aspect, which describes the horizontal direction of mountain slope faces. The slope aspect was considered a contributing element in landslides in several research (Saha et al., 2005; Lee et al., 2014; Yalcin et al., 2011). According to Deng et al. (2007), aspect is the direction of the steepest descending line and is expressed in degrees. It is commonly calculated clockwise from the north. The slope-facing direction is referred to as the aspect. It establishes the slope direction of the area’s sharpest downslope on any surface. It could be seen as the slope orientation or the compass’s facing-hill orientation. Every unit in rasters has its aspect measured (Wilson and Gallant, 2000; Deng et al., 2007). The predicted direction is clockwise, going from zero (directly north) to 360 (further, directly north, making a full circle). In an aspect of data collection, each cell’s value represents the direction that confronts the slope of the cell (Wilson and Gallant, 2000; Deng et al., 2007). Figure 7 shows the aspect map that was created using the zone’s gridded DEM. The morphologic and meteorological characteristics of the site are influenced by this layer. The most frequent landslides are found on slopes that face north (N), northwest (NW), and northeast (NE), according to the field survey and literature research. As a result, the aspect slope was divided into five categories: very high (N and NE), high (NW and SW), moderate (S and SE), low (W and E), and very low (flat surface) in accordance with the directions prone to landslides.
[image: Figure 7]FIGURE 7 | Extracted slope aspect map from gridded DEM of the area.
2.3.4 HVSR approach
Nogoshi and Igarashi. (1970) claim that in order to accurately estimate the soil resonance frequency, which is here predicated on the fundamentally Rayleigh-wave character of microtremors, a few minutes of seismic background noise must be recorded. For a single station, the researchers calculate the spectral ratio of the horizontal and vertical components of the microtremor measurement. The generated curves identify a frequency that is thought to fit remarkably with the place under study’s S-wave resonance frequency. Later, Nakamura. (1989) improved this method, arguing that due to the main body wave character of the noise, this HVSR is a trustworthy evaluation of the site transfer function for S-waves with regard to bedrock. Numerous studies conducted in recent years have demonstrated that the H/V ratio of a microtremor is much more stable than the raw noise spectrum and that it displays a distinct peak that is closely correlated with the fundamental resonance frequency when there is a large impedance difference between the surface and deep materials (Field and Jacob, 1993; Duval et al., 1994; Duval et al., 1995). We examine recent studies that have looked into this technique (Bard, 1994; Kudo, 1995; Bard, 1998; Duval et al., 2001).
3 MICROTREMOR DATA COLLECTION
Forty-two locations were used to measure the microtremors throughout the study area (Figure 1). The SESAME team’s recommendations were followed when setting up the data collection experimental parameters (SESAME, 2004). Using the STA/LTA anti-trigger algorithm, microtremors were measured for at least 1 hour at each site to ensure long records free from transient conflicts (such as moving vehicles and wind gusts). Data were monitored using a sample rate of 100 sps and filtered using a 0.2–20 Hz bandpass filter. The seismometers were calibrated before recording, installed in good coupling with the surficial soil, orientated horizontally (N–S and E–W), and leveled vertically. The quality and precision of the findings attained with this method depend on the processing sequence. Records in this study were processed using Geopsy software (Wathelet et al., 2006). The accuracy of the microtremor measurements has been confirmed using SESAME team reliability standards. Additionally, the azimuthal rotation of the horizontal-to-vertical spectral ratio with intervals of 10° azimuth was used to determine the direction of the site response.
4 RESULTS AND DISCUSSION
4.1 The slope map
One of the most important factors in landslide occurrences is slopes. Shear resistance in unconsolidated materials (rocks and soils) reduces as the slope angle rises. In this work, slope angles are used as a measure of slope stability and are spatially represented in (Figure 5) using numerical estimates from the mapped area’s Digital Elevation Model (DEM). In the plotted area, rock types have a direct impact on slope angle through their control over the makeup of superficial deposits. Moreover, layered sedimentary rocks of other resistivity indicated the relief effects.
Results of slope values analysis are introduced on the distribution map of slope clusters. Therefore, the resulting categorized slope map establishes slope categories based on the occurrence frequency of various slope angles. Generally speaking, the likelihood of a landslide occurring increases with slope steepness. On the other hand, landslides typically occur seldom on slopes that are far less steep. The frequency distribution pattern based on the slope categories of the intended area shows a striking similarity. To clearly show the slope distribution pattern in the area under study, slope values are divided into five categories on the slope distribution map: flat or nearly flat areas with very low slope angles, areas with low slope values, areas with moderate slope values, steep areas with a high slope angle, and steeper areas of greater than 29.1° slope angle. This classification is used to highlight the locations of sharp changes in slope values, which correspond to the positions of active tectonic structures. The slope spatial distribution in the surveyed area (Figure 5) demonstrates that slope angles between 18.8° and 67.3° have the highest landslide susceptibility.
4.2 Predominant frequency and H/V amplitude estimation
Following the procedures outlined above, microtremor data were analyzed, and their H/V spectral ratios were determined (Figure 8). The spectral ratios of the H/V data were used to estimate the dominant frequency and H/V amplitude. Table 1 displays the resonance frequency and H/V amplitude values for various stations, where f0 and A0 stand for the observed predominant frequency and H/V amplitude, respectively, for each station. At 42 sites, the H/V spectral ratios were evaluated using the SESAME criteria in the processing order. The SESAME recommendations do not explain these factors in detail (SESAME, 2004).
[image: Figure 8]FIGURE 8 | Examples of H/V spectral ratio at ambient noise measurement stations.
TABLE 1 | Direction of site response at microtremor measurement sites.
[image: Table 1]These findings were confirmed by examining the state of the ground. So, at these locations, the accuracy of the results was approved. The maximum and minimum prevalent frequencies for the Al Taif area were found to be 0.3 and 12.75°Hz, respectively. Measurements were repeated at these locations to validate this conclusion. The amplitudes at the greatest and minimum were 1.17 and 9.28, respectively. The high fundamental frequency readings point to a shallow contact with a seismic impedance contrast. A zonation map was used to illustrate the results of the microtremor measurement for further analysis. The maps were created with ArcGIS software. Measurements of the ambient noise were used to interpolate the results. The zone map for predominant frequency is shown in Figure 9. The zonation map for H/V amplitude is shown in Figure 10.
[image: Figure 9]FIGURE 9 | Fundamental frequency zonation map.
[image: Figure 10]FIGURE 10 | The H/V amplitude zonation map.
4.3 Prediction of the site response’s direction
As previously stated, the rotation of the H/V spectral ratio at azimuth intervals of 10° has been used to determine the response direction. Utilizing the three variables of frequency, amplitude, and azimuth, the site response direction was assessed. The H/V spectral rotation ratio at several stations is shown in Figure 11. This statistic demonstrates that 34 stations exhibit directivity. It has been observed that for certain stations, the H/V amplification develops in a particular direction, reflecting the influence of the integration between the localized site response, as well as geometrical and geologic constraints. The directivity is also noticeable at stations near the landslide areas. These theories are consistent with those offered by Panzera et al. (2011), Del Gaudio and Wasowski. (2011), and Pilz et al. (2014). Table 1 displays the direction of the site response for 42 stations.
[image: Figure 11]FIGURE 11 | Examples of H/V spectral ratio rotation at microtremor measurement stations.
At a few Taif landslide areas, numerous field tests and measurements were made. In order to properly interpret the results, great effort was required to identify all slide pathways and historic landslides through the field survey. In order to demonstrate that the stations demonstrating directivity were on landslide locations, Figure 12 provides examples from this field survey. The results of a more thorough investigation show that stations with directivity tracked the landslide direction. In the sliding areas, it is observed that the maximal slope corresponds to the landslide direction. The findings of Burjanek et al. (2010), Panzera et al. (2011), Del Gaudio et al. (2014), and Pilz et al. (2014) all agreed with these findings.
[image: Figure 12]FIGURE 12 | Landslide field verification sites. These labels (A–D) show field examples of landslide hazard sites that occurred in Al Taif area.
5 CONCLUSION
Land use planning, hazard management, and decision-making about regions vulnerable to landslides are all aided by the spatial prediction of landslides. These maps were created using a variety of techniques in different parts of the world. Areas that are likely to experience a landslide can be predicted based on physical criteria such as bedrock, previous landslide history, slope steepness, and hydrology. Clarifying the significance of early consideration of landslides in planning studies and introducing a method that could be used at all planning phases were the two main goals. All of the aforementioned information aids decision-makers and planners in gaining a practical understanding of ideas and terminology in addition to the crucial factors relating to landslides and landslide hazard mapping.
In this study, 42 sites had microtremor tests done to determine Taif’s susceptibility to landslides. The Nakamura technique was used to process the data in order to determine the dominant frequency and H/V amplitude. Following that, these factors were mapped through Al Taif research area. The rotation of the H/V spectral ratios at azimuth intervals of 10° was used to verify the phenomena of directional site response. The accuracy of the microtremor data was then assessed using a field survey to confirm the directivity results. These findings showed that the greatest and least prominent frequencies in Al Taif were, respectively, 0.3 and 12.75 Hz. The H/V amplitudes were 9.28 at the maximum and 1.17 at the lowest. The high fundamental frequency readings point to a shallow contact with a seismic impedance contrast. At stations near the landslide, there was a clear sense of directionality. The site reaction directions were parallel to the primary direction of the landslide, according to a thorough examination of microtremor stations. These findings show that the microtremor measurements offer a thorough method for assessing landslides. It expedites landslide analyses and lowers the initial expenses of numerical computations.
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Ensuring the safety of coal mine production requires accurate forecasting of coal road heading faces in advance. Because of its high resistance to electromagnetic interference, the mine direct current (DC) method has been widely utilized in the advanced detection and prediction of coal mines. The layout of the field source significantly influences the detection outcomes obtained through this method. In this study, a variety of full-space three-dimensional geoelectric models were established based on the fundamental principle of DC resistivity, and the response features of geological anomalies located in various positions in front of a roadway were studied under different field source conditions using finite element numerical simulation. The electrical response characteristics were analyzed with the electrodes positioned in different directions and two-point to seven-point current sources located on the floor and side of the roadway, respectively. The electrical response of the geological anomalies was characterized with varying positions of the multi-point current source in the roadway and the pole distance of the power supply electrode. Furthermore, the electrical response characteristics of the mine DC method in advanced detection were compared for geological anomalies placed differently across the entire space. The results indicate that the response effect of the geological anomaly in front of the roadway is greater when the field source is placed on the shorter side of the roadway cross-section, with the number of field sources showing a positive correlation with the product of the pole distance and low-resistance amplitude. In advanced detection by DC method, the existence of geological anomalies on the side will affect the recognition of anomalies in front of the roadway.
Keywords: mine direct current method, multi-point current source, advanced detection, finite element method, forward modeling
1 INTRODUCTION
Worldwide energy consumption has been rising steadily each year, driven by rapid advancements in industrial technology. Consequently, coal continues to serve as the primary energy source in most developing countries. Currently, the coal resources in some of these countries have been extensively mined, leading to more complicated geological and hydrogeological conditions. In the coal mine production process, a critical concern is determining the location of hidden water-bearing geological anomalies ahead of the roadway (Li, 2021). Moreover, with the advancement of coal mine production techniques, comprehensive mechanized mining has replaced the original blast mining technique, greatly improving the working face development and recovery rate. Thus, the application of mine geophysical techniques to predict geological anomalies has risen in prominence (Xue et al., 2019).
Since the 1990s, mine electrical prospecting has undergone various stages of evolution, including coal seam roof and floor detection, small structure detection, advanced prediction of tunneling working face, and dynamic monitoring of stopes. Eventually, it has developed into a detection system primarily relying on mine resistivity, DC (Cao et al., 2017; Taha et al., 2021), transient electromagnetic method (Chang et al., 2019; Chen et al., 2020), frequency domain electromagnetic method (Xue et al., 2018), induced polarization method (Liu et al., 2022) and electromagnetic wave tomography (Yue et al., 2023). However, during the during the detection process, the limited underground space makes it challenging to avoid interference sources that affect the detection distance and accuracy (Liu, 2014), such as energized cables, anchor rods, anchor nets, rails, and road headers. In this regard, the DC method—widely employed in mines (Luo, 2017) owing to its excellent resistance to alternating current (AC) interference—has emerged as a major technique for advanced detection of mine roadways (Qiu, 2022; Mohamed et al., 2023).
Notably, the DC method is one of the earliest geophysical approaches for water-rich exploration (Xie et al., 2022; Mohamed et al., 2023). This technique is advantageous in terms of offering a wide range of choices on the construction and layout devices (Yu et al., 2023), making it suitable for anomaly detection under various geological conditions (Epov et al., 2016; Jerbeson and Walter, 2016). However, a notable drawback of the commonly used DC method is its low signal-to-noise ratio for deep detection, which impacts detection accuracy (Qiang et al., 2004; Xie et al., 2021). Researchers have found potential solutions to enhance the performance of this technique. Switching from a single-electrode to a multi-electrode power supply, or even to a limited long-line current source (Lu and Lv, 2014), has proven effective in improving signal intensity and compensating for the drawbacks of the typical electrical technique (Jamal et al., 2020). Moreover, Han et al. (2010) proposed a DC method for the advanced detection of water-conducting structures in coal mine excavation roadways by using the geometric intersection method; their approach improved the interpretation accuracy of the mine DC method for advanced detection.
Furthermore, numerical simulations using the DC method have also been instrumental in exploring the spatial distribution characteristics of the potential (Yang et al., 2013; Liu and Wu, 2016), thereby providing valuable guidance for practical fieldwork (Barker, 1989). In this regard, Li et al. (2019) compared the distribution characteristics of potential changes between the long-electrode and the point power supplies through numerical simulation, concluding that the long-electrode power supply is more conducive to detecting the location of low-resistance anomalies. Moreover, Liu (2014) simulated the impact of anomaly position changes on its response characteristics when the mine DC method is used for three-dimensional advanced detection. The side effect can be reduced by employing multiple point sources in the processing. However, the position of the electrodes in the roadway remains unexplored. Additionally, Ruan et al. (2010) simulated the advanced detection model by adding a shielding electrode adjacent to the original point power supply, thereby allowing the electric field to be focused and distributed in front of the roadway. Based on this concept, they proposed an advanced focusing detection device with the mine DC method and analyzed the anomalies in front of the roadway under different focusing strategies. Their results suggest that the anomalies can be better identified, regardless of whether a shielding electrode is used or not.
In the tunneling process involved in coal mines, sudden water-bearing geological anomalies will endanger the lives of miners. However, advanced geophysical prospecting technologies offer preventive measures against such accidents. Deng (2013) systematically analyzed the characteristics of geological anomalies and inversion interpretation methods by investigating the DC advanced detection technology of the focused electrode system. Moreover, Cheng et al. (2000) thoroughly described the acquisition and processing methods of the three-pole device in advanced detection and studied the resistivity response characteristics in the presence of a low-resistance anomaly in front of the roadway. Additionally, Li et al. (2020) simulated the electric field with the anomaly and the measuring electrode located at the opposite sides of the roadway in the point source field of the full space model; they discussed the resolution of the DC advanced detection. In particular, this detection technology has been extended beyond coal mining to tunnel engineering. Li et al. (2015) utilized the advanced detection technology of the homogeneous source array-focused resistivity method in tunnel engineering to predict the geological anomaly in front of the tunnel. Additionally, they analyzed the applicability of the advanced detection technology of the mine DC method in tunnel engineering.
Presently, the power supply used in the mine DC method for advanced detection typically comprises three power supply current sources. If the current source is improperly located in the roadway, the overall signal will be weak, and the collected signal at far advanced prediction distance will be severely distorted and cannot be interpreted accurately (Grigorev et al., 2021). In this study, we applied numerical simulations to evaluate the response characteristics of the geological anomaly in front when applying the multi-point power supply of the mine DC method for advanced detection at different points in the roadway. The influence of the number of power supply electrodes and the spacing of power supply electrodes on the detection accuracy was studied, and the resolution ability of mine DC method to the abnormal body was analyzed when the number of field sources was different.
2 BASIC PRINCIPLE OF STEADY CURRENT FIELD
Based on the field theory, the differential form of Ohm’s law, and the current continuity equation, the relationship between the potential and the charge distribution density in the space steady current field can be defined as follows (Gao, 2021; Huang, 2021):
[image: image]
where [image: image] is the conductivity and [image: image] is the charge density.
As the charge density is difficult to measure, the Dirac function and the current intensity are introduced to obtain the differential relationship between the potential and the current, thereby transforming Eq. 1 into
[image: image]
Where [image: image] is the electric voltage, [image: image] is the current intensity, [image: image] is the position of the power supply point, and [image: image] is the position of any point in space.
The aforementioned formula represents the relationship between potential and current in DC prospecting, serving as the foundation for numerical simulation. Given that the studied space is a homogeneous medium, σ is a constant and Eq. 2 can be simplified to Poisson’s equation. If the space is a passive field, Eq. 2 can be simplified to Laplace’s equation (Li, 1986).
Based on the field theory, the potential of a point power supply at any point in a homogenous space (U) is determined as
[image: image]
where x, y, and z are the coordinates of the observation point.
For an electric field with multiple point current sources, the potential at any point (UM) is the scalar sum of the potentials of multiple point sources at this point based on the field source superposition principle, as follows:
[image: image]
where [image: image] is the number of point power sources and [image: image] is the distance from the power source to the observation point.
3 FINITE ELEMENT FORWARD MODELING THEORY OF MULTI-POINT SOURCE MINE DC METHOD
According to the potential field superposition theory, the potential variation under the multi-point source electric field can be equivalent to the accumulation of multi-point power source potential variations. The variation of multi-point source anomalous potential is defined as (Dai et al., 2012; Biswas and Sharma, 2020)
[image: image]
where [image: image] is the anomalous potential [image: image], [image: image] is the overall area, [image: image] is the normal potential, [image: image] is the conductivity of the homogeneous medium, and [image: image] is the variation of [image: image].
To solve the equations through the finite element method, we start by discretizing the three-dimensional research area into small units (Wang et al., 2022). As the tetrahedral subdivision yields a better performance compared to the hexahedral subdivision within the boundary range, we implemented a free tetrahedral element to subdivide the research area by meshing, as shown in Figure 1.
[image: Figure 1]FIGURE 1 | Sketch of the free tetrahedral element.
After meshing, the potential at any point in the free tetrahedral element was calculated by an interpolation function. The linear interpolation function used in this work is
[image: image]
The interpolation function was introduced to integrate and solve the functional terms in each free tetrahedral element. Followed by a complete synthesis, the function was extended to a matrix composed of all nodes in the entire space, as follows:
[image: image]
where [image: image] is every tetrahedral element, [image: image] and [image: image] are the column vectors composed of [image: image] and [image: image] on each node, respectively, and [image: image] and [image: image] are the expansion matrices of [image: image] and [image: image], respectively. The sum of all units yields the following expression:
[image: image]
Upon defining the variation of Eq. 8 as 0, the linear equation is obtained as follows:
[image: image]
The anomalous potential [image: image] of all nodes in the space can be obtained by solving Eq. 9. The total potential on each node is the sum of the anomalous potential and the normal potential ([image: image]) calculated using the analytical formula.
4 RESPONSE CHARACTERISTICS OF MULTI-POINT SOURCE DC METHOD IN ADVANCED DETECTION
The background field of Model 1 is a sphere measuring 100 m in radius [image: image]. The roadway cavity ([image: image]) is located on the negative X-axis, with a cross-sectional area of 6 m (width) × 3 m (height). The anomaly is a cube of 10 m in diameter ([image: image]), with a center-to-center distance of 20 m from the sphere. The receiving electrodes are distributed on the negative X-axis, starting at the symmetrical center of the power supply electrode group. The power supply electrode group consists of three-point sources separated by a distance of 1 m. The schematic diagram of the model is shown in Figure 2 and Table 1 depicts the placements of the power supply electrodes.
[image: Figure 2]FIGURE 2 | Schematic diagram of the full-space roadway model.
TABLE 1 | Placement of power supply electrode in Model 1.
[image: Table 1]Figure 3 presents the apparent resistivity curves generated based on the forward modeling results. When the power supply electrode group is placed on the side of the roadway, the amplitude of the apparent resistivity curve near the low-resistance anomaly is relatively large, and the position of the apparent resistivity extremum matches with the position of the low-resistance anomaly. However, when the power supply electrode group is at the angle between the roadway side and floor, the amplitude of the apparent resistivity is weakened. The lowest amplitude of the apparent resistivity line graph is observed near the low-resistance anomaly when the power supply electrode group is located on the roadway floor. This investigation reveals that the power supply electrode group on the shorter side of the roadway can better identify and discriminate low-resistance anomaly compared to that on the longer side of the roadway cross-section.
[image: Figure 3]FIGURE 3 | Comparison of the response characteristics of three-point sources in advanced detection.
Model 2 is established based on the different response laws of the field source position to the anomaly shown in Figure 3, in which the power supply electrode group is positioned along the Z-axis direction of the roadway side and along the Y-axis direction of the floor, with an altered number and distance of the electrodes. The Table 2 depicts the placements of the power supply electrodes.
TABLE 2 | Placement of power supply electrode in Model 2.
[image: Table 2]Figure 4 illustrates the apparent resistivity curves plotted using the forward modeling results of Model 2. The dashed lines indicate the field source along the Z-axis side, whereas the solid lines indicate the field source along the Y-axis floor. Different colors indicate a difference in the number of point sources and the pole distance of the power supply electrodes. Notably, the power supply electrode group along the Z direction of the roadway side performs better at identifying anomalies compared to the group along the Y direction of the roadway floor. This feature is evidenced by the apparent resistivity minimum value closely matching the position of the anomaly, and the amplitude of the curve near the low-resistance anomaly is consistent with the resistivity value of the model. Presumably, the difference in response to the low-resistance anomaly is attributed to the variable length and width of the roadway cross-section. When the power supply electrode group is on the shorter side of the roadway, the electric field distribution is less impacted by the roadway. We developed Model 3 to investigate the response characteristics of the mine DC method in the advanced detection of geological anomalies at various points in front of the roadway, as shown in Figure 5.
[image: Figure 4]FIGURE 4 | Comparison of the response characteristics of multi-point source advanced detection in Y- and Z-directions.
[image: Figure 5]FIGURE 5 | Schematic diagram of the anomaly locations in Model 3.
The roadway cavity ([image: image]) is located on the negative X-axis, with a cross-sectional area of 3 × 3 m. The anomalies are cubes measuring 10 m in diameter ([image: image]), with their center coordinates at the front (20,0,0), left (0,20,0), top (0,0,20), and bottom (0,0,-20). The receiving electrodes are located on the negative X-axis of the roadway floor, starting from the symmetrical center of the power supply electrode group, and their positions listed in Table 3.
TABLE 3 | Placement of power supply electrode in Model 3.
[image: Table 3]Figure 6 depicts the apparent resistivity curve plotted based on the forward modeling results of Model 3, with the abscissa representing the advanced detection distance and the ordinate representing the apparent resistivity. Figures 6A–C depict the apparent resistivity curves of the single-point current source located in the center of the roadway floor, the angle between the floor and the side, and the center of the roadway side, respectively. When the point source is at the center of the roadway floor, the response to the bottom anomaly is the strongest, followed by the response to the left anomaly, with the responses to the upper and front anomalies being the weakest. Moreover, when the point source is located at the angle between the roadway floor and side, the responses to the left and bottom anomalies are the strongest, followed by the top and the front anomalies. The left anomaly responds most strongly when the point source is at the center of the roadway side, followed by the bottom and top anomalies, with the front one eliciting the weakest response.
[image: Figure 6]FIGURE 6 | (A–E) Apparent resistivity of Model 3.
Figures 6D, E exhibit the apparent resistivity curves of the two-point and three-point current sources, respectively. The response amplitude to the anomaly is greater when the power supply electrode group is along the Y-axis of the floor (perpendicular to the roadway side roadway) than when it is along the angle between the roadway side and floor. Furthermore, when the power supply electrode group is positioned along the roadway angle, the response amplitude to the bottom and left anomaly is stronger, whereas the front anomaly generates a weaker response. Similarly, when the power supply electrode group is positioned along the Y-axis of the roadway floor, the bottom anomaly elicits the strongest response amplitude, with the left and the front responses being the weakest. This is similar to the response under the single-point current source.
The discrepancy in response to anomalies, generated by the varied placements of the field source, is speculated to be caused by the high-resistance shielding of the tunnel cavity. When the field source on the floor is influenced by the high-resistance shielding of the roadway, the current density along the bottom and both sides of the roadway is greater than that in other directions, leading to a stronger response to the bottom and left anomalies. Similarly, when the field source is at the angle between the roadway side and floor, the responses to the left and bottom anomalies are the strongest. Ultimately, the field source at the roadway side exhibits the strongest response to the left anomaly.
Through the above research, it can be found that the closer the field source is to the anomalous body, the more drastic the field intensity change and the better the detection effect. The response of the power supply electrode to the abnormal body is more obvious when the electrode is arranged in the vertical position of the side than in the horizontal position of the floor. If the distance between the power supply electrodes is fixed, the number of field sources determines the detection frequency of the target position. The more times of detection, the more obvious the physical properties of the target abnormal body are in the field intensity distribution, and the higher the accuracy of the delineated abnormal position. When the number of field sources is constant, the larger the electrode distance is within a reasonable range, the better the detection effect. When the mode of field source is fixed, the response of geological anomaly body under the floor of tunnel head is the most obvious.
5 CONCLUSION
In this study, we employed the finite element method to perform three-dimensional forward modeling of the multi-point source mine DC method, investigating the influences of different geoelectric models and roadways on the response characteristics of the DC method in advanced detection. The key findings of our research are as follows:
(1) The geometry of the roadway cross-section significantly influences the electric field distribution when using the mine DC method for advanced detection. The power supply electrodes located on the shorter side of the roadway cross-section can better distinguish the front anomalies.
(2) In the presence of the roadway, increasing the number and distance of power supply electrodes enhances the amplitude of the apparent resistivity near the low-resistance anomalies. This observation indicates a positive correlation between the low-resistance amplitude and the product of the number and the pole distance of power supply electrodes. Moreover, enhancing both the number and pole distance of power supply electrodes improves the positioning accuracy of anomalies.
(3) Optimization of field source parameters, including the number, position, and pole distance of the power supply electrodes, facilitates enhanced identification of low-resistance anomalies in front. However, the presence of low-resistance anomalies on the side will interfere with this identification process.
The insights obtained from this study hold potential practical implications for the field of geophysical exploration in mines. Researchers and practitioners can leverage this knowledge to develop more effective and efficient advanced detection techniques, leading to safer and more reliable mining operations. As the field of geophysics continues to evolve, further investigations could be undertaken to explore additional aspects and refine the application of the multi-point source DC method in real-world scenarios.
DATA AVAILABILITY STATEMENT
The raw data supporting the conclusion of this article will be made available by the authors, without undue reservation.
AUTHOR CONTRIBUTIONS
HX: Writing–original draft, Conceptualization, Data curation, Funding acquisition, Project administration, Resources, Supervision. WL: Writing–original draft, Formal Analysis, Writing–review and editing. JL: Project administration, Software, Supervision, Visualization, Writing–review and editing. YG: Formal Analysis, Writing–review and editing. YY: Writing–review and editing. RL: Investigation, Writing–review and editing. JC: Methodology, Project administration, Writing–review and editing.
FUNDING
The authors declare financial support was received for the research, authorship, and/or publication of this article. Foundation item: Natural Science Basic Research Plan in Shaanxi Province of China (2021JLM-11) (Shaanxi Province of China).
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
REFERENCES
 Barker, R. D. (1989). Depth of investigation of collinear symmetrical four-electrode arrays. J. Geophys. 54 (8), 1031–1037. doi:10.1190/1.1442728
 Biswas, A., and Sharma, S. (2020). Advances in modeling and interpretation in near surface geohysics. M. Springer International Publishing. 
 Cao, Q., Yan, S., Xue, G., and Zhu, N. (2017). High resolution resistivity detecting and remote internet monitoring of coalfield fire. J. Chin. J. Geophys. 60 (1), 424–429. doi:10.ssss/j.issn.0001-5733.2017.1.034
 Chang, J., Xue, G., and Malekian, R. (2019). A comparison of surface-to-coal mine roadway TEM and surface TEM responses to water-enriched bodies. R. IEEE Access. 7, 167320–167328. doi:10.1109/ACCESS.2019.2953844
 Chen, W., Han, S., Muhammad, Y. K., Chen, W., He, Y., Zhang, L., et al. (2020). A surface-to-borehole TEM system based on grounded-wire sources: synthetic modeling and data inversion. J. Pure Appl. Geophys. 177, 4207–4216. doi:10.1007/s00024-020-02477-1
 Cheng, J., Wang, Y., Yu, S., and Li, D. (2000). The principle and application of advance surveying in roadway excavation by resistivity method. J. Coal Geol. Explor. 28 (04), 60–62. doi:10.3969/j.issn.1001-1986.2000.04.019
 Dai, Q., Chai, X., and Chen, D. (2012). 3D DC resistivity inversion based on damped gauss-Newton method. J. Chin. J. Eng. Geophys. 9 (04), 375–379. doi:10.3969/j.issn.1672-7940.2012.04.001
 Deng, X. (2013). Research of DC focusing resistivity advanced detection in tunnel. D. Central South University. 
 Epov, M. I., Molodin, V. I., Manshtein, A. K., Balkov, E. V., Dyad’Kov, P. G., Matasova, G. G., et al. (2016). Integrated archeological and geophysical studies in West Siberia. J. Russ. Geol. Geophys. 57 (03), 473–482. doi:10.1016/j.rgg.2016.03.009
 Gao, S. (2021). Three-dimensional forward and inversion of direct current resistivity method for finite volume target. D. China University of Geosciences. doi:10.27493/d.cnki.gzdzy.2021.000973
 Grigorev, G. S., Salishchev, M. V., and Senchina, N. P. (2021). On the applicability of electromagnetic monitoring of hydraulic fracturing. J. Min. Inst. 250, 492–500. doi:10.31897/PMI.2021.4.2
 Han, D., Li, D., Cheng, J., and Wang, P. (2010). DC method of advanced detecting disastrous water-conductingor water-bearing geological structures along same layer. J. J. China Coal Soc. 35 (04), 635–639. doi:10.13225/j.cnki.Jccs
 Huang, C. (2021). Application of resistivity CPTU technology in soil and water pollution investigation in soft soil area. J. Chin. J. Eng. Geophys. 18 (3), 330–335. doi:10.3969/j.issn.1672-7940
 Jerbeson, M., and Walter, E. (2016). Automatic approximate mapping of the subsurface resistivity from apparent resistivity data using geostatistics. J. Geophys. 81 (02), 177–186. doi:10.1190/GEO2015-0189.1
 Li, F., Zhang, Y., Lian, H., Wang, S., Qi, L., and Zheng, G. (2020). Discussion on problems of direct current advance detection method in roadway driving face. J. Coal Sci. Technol. 48 (12), 250–256. doi:10.13199/j.cnki.cst.2020.12.032
 Li, J. (2021). Numerical simulation of finite element forward madeling of multi-point current source mine with direct current method for advanced detection. D. Xi’an university of science technology. doi:10.27397/d.cnki.gxaku.2021.000518
 Li, S., Nie, L., Liu, B., Tian, M., Wang, C., Song, J., et al. (2015). Advanced detection and physical model test based on multi−electrode sources array resistivity method in tunnel. J. Chin. J. Geophys. 58 (4), 1434–1446. doi:10.6038/cjg20150429
 Li, X., Bi, Z. Q., and Huang, Q. Y. (1986). Discussion on verticat linear sonrce resistivity method. J. Oil Geophys. Prospect. 21 (02), 197–199, 252. doi:10.13810/j.cnki.issn.1000-7210.1986.02.011
 Li, X., Yang, Z., Yun, M., and Liu, Y. (2019). FEM numerical simulation of long electrode DC geophysical method for landslide monitoring. J. J. Henan Polytech. Univ. Nat. Sci. 38 (1), 61–67. doi:10.16186/j.cnki.1673-9787.2019.1.9
 Liu, Y. (2014). Study on the application effect of mine transient electromagnetic technology under the metal interference. D. Xuzhou: China University of Mining and Technology. 
 Liu, Y., and Wu, X. (2016). Parallel Monte Carlo method for advanced detection in tunnel incorporating anisotropic resistivity effect. J. Chin. J. Geophys. Chin. 59 (11), 4297–4309. doi:10.6038/cjg20161130
 Liu, Z., Xue, G., and Zhang, X. (2022). The feasibility of monitoring lagging water inrush by using parameter of polarizability. J. Chin. J. Geophys. 65 (08), 3186–3197. doi:10.6038/cjg2022P0280
 Lu, J., and Lv, Y. (2014). The 3D FEM of vertical line source borehole-ground resistivity method. J. Chin. J. Eng. Geophys. 11 (03), 406–411. doi:10.3969/j.issn.1672-7940.2014.03.024
 Luo, G. (2017). Effectiveness of DC resistivity trielectrode advanced prospecting. J. Coal Geol. China 29 (03), 72–75. doi:10.3969/j.issn.1674-1803.2017.03.15
 Mohamed, A., Othman, A., Galal, W. F., and Abdelrady, A. (2023). Integrated geophysical approach of groundwater potential in wadi ranyah, Saudi arabia, using gravity, electrical resistivity, and remote-sensing techniques. J. Remote Sens. 15, 1808. doi:10.3390/rs15071808
 Mohamed, Z. A., Abdellatif, Y., Hany, S., and Mahmoud, I.I.M (2021). Integration of geophysical methods for groundwater exploration: A case study of el sheikh marzouq area. Farafra Oasis, Egypt. J. Egypt. J. Aquatic Res . doi:10.1016/j.ejar.2021.03.001
 Naziya, J., and Nagendra, P. S. (2020). Electrical resistivity in the delineation of groundwater potential zones: A case study from kota, Rajasthan, India. J. Arabian J. Geosciences 13 (15), 697–698. doi:10.1007/s12517-020-05464-x
 Qiang, J., Ruan, B., Xiong, B., and Mao, Y. D. (2004). The influence of shallow inhomogeneous body on object resistivity anomoly. J. Chin. J. Geophys. 47 (03), 619–626. doi:10.1002/cjg2.528
 Qiu, S. (2022). Research on joint processing technology of mine seismic and transient electromagnetic advanced detection data. D. Huainan: Anhui University of Science and Technology. doi:10.26918/d.cnki.ghngc.2022.000191
 Rasskazova, Yu. I., Shkabarnyab, N. G., and Shkabarnya, G. N. (2013). Electrical tomography exploration of sliding-hazardous pitwall rock masses. J. J. Min. Sci. 49 (05), 772–778. doi:10.1134/S1062739149050110
 Ruan, B., Deng, X., Liu, H., Zhou, L., and Zhang, L. (2010). Influential factors and optimum survey method of advanced focus detection with DC resistivity in tunnels. J. Prog. Geophys. 25 (04), 1380–1386. doi:10.3969/j.issn.1004-2903.2010.04.029
 Taha, A. I., Al Deep, M., and Mohamed, A. (2021). Investigation of groundwater occurrence using gravity and electrical resistivity methods: A case study from wadi sar, hijaz mountains, Saudi arabia. J. Arabian J. Geosciences 14, 334. doi:10.1007/S12517-021-06628-Z
 Wang, Z., Fang, S., Jiang, K., Ma, W., and Lu, X. (2022). Research on 3D hole-to-surface resistivity forward modeling and anomaly based on unstructured meshes. J. Prog. Geophys. (Chin.) 37 (4), 1620–1630. doi:10.6038/pg2022FF0237
 Xie, H., Li, J., Dong, Y., Li, G., and Han, Z. (2021). Fast Fisher discrimination of water-rich burnt rock based on DC electrical sounding data. J. Mine Water Environ. 40 (02), 539–546. doi:10.1007/s10230-020-00747-x
 Xie, H., Li, L., Li, Z., Li, J., Li, G., and Li, W. (2022). Comparison of terrain corrections based on the point source and line source DC methods. J. Front. Earth Sci. 10. doi:10.3389/feart.2022.1004442
 Xue, G., Chen, K., Chen, W., and Tian, Z. (2018). The determination of the burial depth of coal measure strata using electromagnetic data. J. J. Environ. Eng. Geophys. 23 (1), 125–134. doi:10.2113/JEEG23.1.125
 Xue, G., Chen, W., Cheng, J., Liu, S., Yu, J., Lei, K., et al. (2019). A review of electrical and electromagnetic methods for coal mine exploration in China. R. IEEE Access. 7, 177332–177341. doi:10.1109/ACCESS.2019.2951774
 Yang, H., Hu, X., and Zhang, P. (2013). Numerical simulation of advanced detection by direct current electrical method in tunnel. J. Chin. J. Eng. Geophys. 10 (02), 200–204. doi:10.3969/i.issn.1672-7940.2013.02.015
 Yue, J., Yang, H., and Ran, H. (2023). Research status and development trend of mine electrical prospecting. J. Coal Geol. Explor. 51 (1), 259–276. doi:10.12363/issn.1001-1986.23.01.0031
Conflict of interest: Author JL was employed by Xi’an Research Institute China Coal Technology and Engineering Group Corp.
The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2023 Xie, Li, Li, Guo, Yan, Liu and Cheng. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
		ORIGINAL RESEARCH
published: 18 October 2023
doi: 10.3389/feart.2023.1217384


[image: image2]
Interpretable machine learning model for shear wave estimation in a carbonate reservoir using LightGBM and SHAP: a case study in the Amu Darya right bank
Tianze Zhang1, Hui Chai2*, Hongjun Wang1, Tongcui Guo1, Liangjie Zhang1 and Wenqi Zhang1
1China National Petroleum Corporation, Research Institute of Petroleum Exploration and Development, Beijing, China
2China National Petroleum Corporation International Ltd., Ashgabat, Turkmenistan
Edited by:
Saulo Oliveira, Federal University of Paraná, Brazil
Reviewed by:
Sadegh Karimpouli, GFZ German Research Centre for Geosciences, Germany
Tengyuan Zhao, Xi’an Jiaotong University, China
* Correspondence: Hui Chai, chaihui@cnpcag.com
Received: 05 May 2023
Accepted: 26 September 2023
Published: 18 October 2023
Citation: Zhang T, Chai H, Wang H, Guo T, Zhang L and Zhang W (2023) Interpretable machine learning model for shear wave estimation in a carbonate reservoir using LightGBM and SHAP: a case study in the Amu Darya right bank. Front. Earth Sci. 11:1217384. doi: 10.3389/feart.2023.1217384

The shear wave velocity (Vs) is significant for quantitative seismic interpretation. Although numerous studies have proved the effectiveness of the machine learning method in estimating the Vs using well-logging parameters, the real-world application is still hindered because of the black-box nature of machine learning models. With the rapid development of the interpretable machine learning (ML) technique, the drawback of ML can be overcome by various interpretation methods. This study applies the Light Gradient Boosting Machine (LightGBM) to predict the Vs of a carbonate reservoir and uses the Shapley Additive Explanations (SHAP) to interpret the model. The application of ML in Vs estimation normally involves using conventional well-log data that are highly correlated with Vs to train the model. To expand the model’s applicability in wells that lack essential logs, such as the density and neutron logs, we introduce three geologically important features, temperature, pressure, and formation, into the model. The LightGBM model is tuned by the automatic hyperparameter optimization framework; the result is compared with the Xu-Payne rock physics model and four machine learning models tuned with the same process. The results show that the LightGBM model can fit the training data and provide accurate predictions in the test well. The model outperforms the rock physics model and other ML models in both accuracy and training time. The SHAP analysis provides a detailed explanation of the contribution of each input variable to the model and demonstrates the variation of feature contribution in different reservoir conditions. Moreover, the validity of the LightGBM model is further proved by the consistency of the deduced information from feature dependency with the geological understanding of the carbonate formation. The study demonstrates that the newly added features can effectively improve model performance, and the importance of the input feature is not necessarily related to its correlation with Vs
Keywords: carbonate reservoir, S-wave velocity estimation, machine learning, lightgbm, shap
1 INTRODUCTION
Shear wave velocity (Vs) is one of the most crucial elastic parameters for quantitative seismic interpretation as it provides useful petrophysical, lithological, and geomechanical information (Greenberg and Castagna, 1992; Rezaee et al., 2007; Anemangely et al., 2017; Olayiwola and Sanuade, 2021). Sonic logging is the most accurate way to measure the shear velocity in subsurface formations, while due to the high cost and time constraints, Vs logging is often unavailable in most fields (Wang et al., 2020; Miah, 2021). Consequently, attempts with various approaches have been made in estimating the Vs using petrophysical loggings.
The empirical formula method is the most common approach to first estimate the shear wave velocity by constructing a linear relationship between logging parameters and Vs (Castagna et al., 1985; Han et al., 1986; Dvorkin, 2008; Parvizi et al., 2015). However, the empirical relationship is highly lithology- and region-specific (Tamunobereton-Ari et al., 2010). In carbonate formation, which has a complex pore structure and strong heterogeneity, the variation of shear wave velocity in carbonate is the result of an interaction between lithofacies, diagenetic process, and porosity (Rafavich et al., 1984; Anselmetti and Eberli, 1993; Tamunobereton-Ari et al., 2010; Qabany et al., 2011; Wang et al., 2011; Kittridge, 2015; Garia et al., 2019). Thus, simple linear approximation is insufficient for accurately estimating the Vs The rock physics modeling technique for carbonate has being extensively studied by considering different mineral types, pore structures, and fluid conditions, and the studies have shown promising results (Xu and Payne, 2009; Sun et al., 2012; Zhang et al., 2013; Azadpour et al., 2020; Seifi et al., 2020). However, the modeling process requires pore structure quantification and the accurate interpretation of petrophysical parameters and lithofacies, which needs to be calibrated by vast amounts of laboratory tests from rock samples before use. However, the conditions are not always met, causing the instability of predictions from the rock physics model.
The data-driven approach, such as machine learning (ML), has received great attention due to its strong ability in building non-linear relationships between input variables and the target. ML has been prevalently used in well logging interpretation of petrophysical and geomechanical parameters. Numerous studies have demonstrated the reliable application in shear wave velocity estimation in carbonate formation using different algorithms, e.g., neural-network based model (Hadi and Nygaard, 2018; Alkinani et al., 2019; Mehrgini et al., 2019; Zhang et al., 2020; 2022; Ebrahimi, 2022; Mehrad et al., 2022; Rajabi et al., 2022; Taheri et al., 2022), support vector machine (Bagheripour et al., 2015; Anemangely et al., 2019), tree-based model (Zhong et al., 2021), fuzzy inference system (Nourafkan and Kadkhodaie-Ilkhchi, 2015), and clustering algorithm (Alameedy et al., 2022). Despite the plentiful research on this subject, the use of machine learning is still hindered by its black box nature, which makes it difficult to understand how the output is achieved. The reason is that the machine learning models are usually trained by a vast amount of data and they can be highly complex to interpret (Du et al., 2019; Murdoch et al., 2019; Roscher et al., 2020; Belle and Papantonis, 2021; Molnar et al., 2021). In a regression task like shear wave estimation, such a drawback limits the choices of input features during the training process, i.e., only loggings that are considered geologically meaningful or highly correlated with shear wave velocity, like compressional wave velocity (Vp), are chosen to build the model. New features that can increase the model performance can hardly be introduced into the model without explaining the feature importance and contribution by reliable interpretation tools.
Interpretable or explainable machine learning (IML) has received great attention nowadays in response to the booming complexity of machine learning models; the method can be employed for model validation, model debugging, or knowledge discovery (Du et al., 2019; Rudin et al., 2022). Numerous interpretation approaches have been proposed, which can fall into two categories: model-specific and model-agnostic. Model-specific methods are specifically designed for different methods, such as weights for explaining the feature importance in generalized linear models (Nelder and Wedderburn, 1972), while model-agnostic methods are general schemes that can be applied to various models to provide insight into feature importance, e.g., permutation feature importance for evaluating the contribution of certain features to the overall model performance (Altmann et al., 2010). Both types of IML have been widely utilized in areas such as the prevention of geological hazards (Dikshit et al., 2021; Ma et al., 2022), biochemistry (Vellido, 2020; Esterhuizen et al., 2022), and civil engineering (Feng et al., 2021).
In this study, we train a LightGBM regression model to predict the shear wave velocity, and the model can be applied in the development wells where logging type is limited. To compensate the model performance reduction caused by the lack of crucial loggings, we added three new features into the model and adopted the model-specific TreeSHAP method to quantitatively demonstrate the effectiveness and reliability of the newly added features (Lundberg and Lee, 2017; Lundberg et al., 2018). We targeted the low permeability porous carbonate reservoir in a gas field located on the right bank of the Amu Darya river. The gas field is covered by three appraisal wells with a comprehensive well-logging set and three development wells with density and neutron logs missing. To increase the prediction accuracy, we conducted the feature engineering technique and added three more features into the model, namely, temperature, pressure, and formation information. With the help of the automatic hyperparameter optimization technique, the LightGBM model is compared with four classic machine learning models that are frequently used in the regression task and the Xu-Payne rock physics model. Moreover, we fully analyze the model output using TreeSHAP, both globally and locally, to demonstrate how the predictions are made, how each feature contributes to the final prediction, and the usefulness of the newly added features. The results show that new features can compensate for the loss of crucial loggings and effectively increase the model accuracy and generalization ability. Compared with other machine learning and rock physics modeling methods, the LightGBM model can provide accurate results efficiently, especially in areas that have complex lithology, high clay content, and high porosity, which often cause unreliable predictions in the Xu-Payne model.
2 RESERVOIR CHARACTERISTICS
The right bank of Amu Darya is located at the eastern border of Turkmenistan, closely adjacent to Uzbekistan (Figure 1). After a series of tectonic evolutions from the Permian to the Holocene, the current geological framework can be separated into six structure belts: the Chardzhou step, Kennedykiddskurt uplift, Carlabekaul depression, Sandykly uplift, Bieshikent depression, and Gissar predominant thrust belt (Tian et al., 2016; Shan et al., 2022; Wu et al., 2022). The gas field D, which geologically belongs to the Chardzhou step, is located at the northwestern part of the block (Figure 1).
[image: Figure 1]FIGURE 1 | Location of the Amu Darya Right Bank. The study area (gas field D) is indicated by the red rectangle.
The Callovian-Oxfordian carbonate formation, which has a thickness of approximately 400 m, is divided into eight layers, labeled XVac, XVp, XVm, XVhp, XVa1, Z, XVa2, and XVI. It is considered as a major hydrocarbon reservoir that is controlled by depositional and diagenetic processes (Liu et al., 2013; Xing et al., 2022). In the early Callovian, a major transgression occurred and formed the mixed shelf sedimentary environment (Wu et al., 2019). Then a series of argillaceous limestone interlayered with thin calcareous mudstone that has high Gamma Ray (GR) values were deposited at the inner ramp. The low energy environment in the inner ramp has little hydrodynamic differentiation effect on the sediments and causes the formation of the mound-beach complexes on the geomorphological high point. During the Oxfordian, the ramp went through a transgression and being submerged, constructed a rimmed platform in the middle of the Kennedykiddskurt uplift. After the deposition of the XVhp formation, the aggradation of reef-shoal complex continues on top of the previously deposited mound-beach complexes. The deposition of carbonates ends with a large-scale regression during the late Oxfordian and early Tithonian; then, the increasing brine concentration leads to a long period of precipitation of gypsum and salt (Figure 2).
[image: Figure 2]FIGURE 2 | The stratigraphy of the Callovian-Oxfordian formation and well logs of JE1.
The dominating lithofacies in the Callovian-Oxfordian carbonates are bioclast limestone, oolitic limestone, and micrite limestone, which associated with characteristic shoal facies within the platform. The reservoir lithofacies are mainly composed of microcrystalline sandy oolitic limestone, sparry oolitic limestone, pellet microcrystalline limestone, and powder crystalline limestone (Figures 3A–C). The sedimentary environment variation during the deposition of XVac caused the layer to become interfingered with thin gypsum and dolomite, which can be observed in the mudlog in Figure 2.
[image: Figure 3]FIGURE 3 | Core and thin-section observation of samples from upper three layers (A) JE1, 2128.40 m, XVm, light grey fine-grained limestone. (B) JE1, 2106 m, XVp, powder crystalline limestone with fracture, half-filling by mud. (C) JE2, 2184 m, XVp, brown-gray micrite limestone with a developed cave. (D) BJE1, 2167.4 m, XVac, gastropod micrite limestone. (E) BJE1, 2147.61 m, XVac, deformed micrite sandy oolitic limestone. (F) JE1, 2131 m, XVm, sparry oolitic limestone.
The major storage space for the hydrocarbon are secondary and residual primary pores; only a small proportion of fractures and dissolution caves are developed. The dissolved and residual primary pores can be found in grainstone and bioclastic limestone, and the grain surface is often covered with sparry calcite (Figures 3D–F). The dissolved pores inside grains are often developed in microcrystalline sandy limestone; sometimes the grain is totally dissolved and leaves a moldic pore. The small number of fractures developed in XVp and XVm often have high angles and are partially cemented with mud (Figure 3B). The distribution of dissolving caves is heterogeneous and mostly associated with fractures; the maximum width of caves is 3 mm (Figure 3C).
3 DATA
Gas field D consists of two low-amplitude anticlines separated by a normal fault, and the logging data we used for this study comes from three appraisal wells, JE1, JE2, and BJE1, that drilled in different structures (Figure 1). Seven types of loggings are sampled through the whole Callovian-Oxfordian carbonates for all three wells, which are GR (gamma ray), SP (spontaneous potential), DT (delta time for compressional wave), RHOB (density), CNL (compensated neutron log), LLD (laterolog deep), LLS (laterolog shallow), and DTSM (delta time for shear wave, which is the reciprocal of Vs), while the RHOB and CNL are missing in the development wells. The dataset includes 5,902 data instances that cover eight formations from XVac to XVI, vertically. Figure 4 demonstrates the linear correlation between each logging parameter and the target DTSM. It can be observed that the DT has the closest correlation with DTSM with the coefficient of 0.87, while no other loggings had correlations exceeding 0.7. The RHOB, CNL, LLD, and LLS show moderate correlation with the DTSM with a coefficient value of approximately 0.5. The correlation coefficient of GR and SP is even lower, and the TEMP and PRES show the least correlation with DTSM. The RHOB, LLD, LLS, TEMP, and PRES are negatively correlated with DTSM, meaning the DTSM value drops as the value of these features increases.
[image: Figure 4]FIGURE 4 | Correlation between well logging parameters.
Data is conditioned before training the machine learning model. First, we calibrated the anomalies in the RHOB and DT curves, which are caused by the drilling hole enlargement. Then, we conducted the data normalization to the GR, SP, DT, RHOB, and CNL curves to eliminate the systematic error caused by the differences in logging tools and scales. The JE2 well is chosen as the standard well because of its good logging quality, and the XVa1 is chosen as the standard formation for its consistency in lithology. Finally, the additional features are extracted by the feature engineering technique to further improve the model accuracy. Two numerical features and one categorical feature are introduced, namely, TEMP (Temperature), PRES (Pressure), and FORM (Formation). The TEMP and PRES curves are calculated by the corresponding gradient and measured depth; both parameters are critically related to the fluid properties and also utilized in the rock physics modeling. The categorical feature FORM is the layer information that represents different sets that have distinct lithological and electrical characteristics. The layers are often accurately assigned in wells and can be compared laterally through the whole block. For instance, the XVa1 layer is a pure limestone formation that is evenly distributed across the gas block with a small amount of clay and high porosity. The categorical feature FORM is handled by the feature engineering technique; therefore, it can be applied in machine learning. It is transformed into a numerical feature by One-Hot-Encoding, which replaces the original categorical values with the binary values of 0 and 1 (Figure 5).
[image: Figure 5]FIGURE 5 | Illustration of the data type transformation of FORM by One-Hot-Encoding.
The dataset is divided into three subsets for training, validation, and test purposes. The JE1 and JE2 wells are merged and randomly split into training and validation sets at a ratio of 70% and 30%. The data in the BJE1 well is held for testing and is not involved in the model training and optimization process. The ratio of data instances for training, validation, and testing is 3,126:1734:1042.
4 METHODS
4.1 Light Gradient Boosting Machine (LightGBM)
The LightGBM is a gradient boosting framework that is widely used in machine learning competitions and real-world applications. The algorithm is designed to be efficient, scalable, and accurate, and can handle large-scale data and requires less memory than other boosting frameworks. The LightGBM shares a similar objective function as the Extreme Gradient Boosting machine, which introduced a loss function Ω to let the model take a smaller prediction step and prevent overfitting (Chen and Guestrin, 2016; Ke et al., 2017). The objective function for the tth tree is:
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where L is the loss function, N is the total number of samples, yi is the true value of the ith label, [image: image] is the predicted value from the previous tree, p is the predicted value of the tth tree, λ is a penalty hyper parameter for which larger values can shrink the prediction step. γ is another penalty hyperparameter that is used to avoid overfitting by setting a threshold for pruning the branches. T is the total number of nodes in the tth tree.
The objective is to minimize the loss function to find the lower value for the objective function. The term γT can be omitted as it is a constant. The framework provides a general solution for minimizing any loss function that can be differentiated by approximating the loss function using the second order Taylor polynomial expansion:
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where the first and second order derivatives are the gradient and hessian information for the loss function, which are represented by g and h, respectively. The objective function can be written as:
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The optimal predicted value for the tth tree is when:
[image: image]
For the regression task we presented in this study, the loss function is:
[image: image]
G in (5) becomes the sum of all the residuals in a node, and H in (5) is the number of residuals.
The LightGBM model utilizes different sample selection and a tree building strategy to greatly improve the training speed while maintaining accurate predictions.
4.1.1 Histogram algorithm
To find the best splitting point of a leaf, instead of presorting and traversing each value of every feature to calculate the best gain, the histogram algorithm separates the continuous values into bins and greatly reduces the calculation time.
4.1.2 Gradient-based one-side sampling
The LightGBM uses the gradient-based one-side sampling technique to reduce the sample amount for each training without jeopardizing the model performance. The technique is achieved by calculating the gradient of the loss function of each instance in the training dataset; then, the data with larger gradient gain more weight while the smaller instances are downsampled. It allows the LightGBM to concentrate on the most informative and valuable instances, which increase the training speed and model performance.
4.1.3 Exclusive feature bundling
The exclusive features, by definition, are features that seldom take non-zero values simultaneously. For instance, the one-hot-encoded feature FORM in this study assigned value one only in the corresponding layer. Thus, bundling these exclusive features together can effectively reduce the feature dimensionality to improve efficiency while allowing the model to maintain the predicting performance.
4.1.4 Leaf-wise tree growing
Leaf-wise tree growing is a tree building algorithm utilized by gradient boosting frameworks. Compared with the depth-wise tree growing technique, which is an alternative tree building algorithm, the leaf-wise algorithm builds the tree node-by-node instead of level-by-level. It chooses the largest gain node as the foundation of the next node until the maximum tree depth is reached. The algorithm can capture the complex interaction between features and achieve accurate results with fewer trees, thus resulting in a faster training speed.
4.2 Evaluation metrics
Evaluation of the machine learning model is essential before deployment, and the evaluation methods often vary with the specific tasks. For the regression task in this study, we adopted the root mean squared error (RMSE) and coefficient of determination (R2) to evaluate the fitting and predicting performance of the trained machine learning models. The RMSE is an absolute value that represents the dispersion degree from the true value in a dataset; the lower the RMSE, the better performance of the model prediction. R2 indicates the proportion of variance in the predicted value that can be explained by the variance in true value. The model performs well when R2 is close to 1. The metrics are expressed as:
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where m is the number of data instances, [image: image] is the measure value, [image: image] is the prediction from the model, and [image: image] is the average of prediction. It should be noted that the value of R2 could be negative based on the definition (Equation 9), and the negative value occurs when the model fits poorly to the data and makes worse predictions.
4.3 Optuna automatic hyperparameter optimization
Hyperparameter tuning is a crucial step for creating a stable and accurate model. Normally, the step involves manually testing each hyperparameter by grid-search and n-fold cross-validation; the process is considered both time consuming and resource-intensive, and highly affected by experience. Automating the tuning process can greatly expand the searching parameter and the range and improve the model generalization capability. Moreover, it ensures the models are optimized for the task and dataset at hand so it can provide an impartial comparison between different machine learning models.
In this study, we adopt Optuna, an open-source automatic hyperparameter optimization framework (Akiba et al., 2019). The basic workflow of Optuna involves three steps: 1. define the search space for the hyperparameters being optimized and their value ranges; 2. define the objective function and use the validation set for measuring the model performance; and 3. run the optimization algorithm for the search space and find the best value combination for the predefined parameters. The optimized model is then ready for implementation on the test set.
4.4 Shapley Additive Explanations
The Shapley value originated from game theory and was invented by Lloyd Shapley to quantify a player’s contribution in a team (Shapley, 1952; Strumbelj and Kononenko, 2014). Lundberg and Lee (2017) adapted this method to machine learning to explain how each feature contributes to the model outputs. They defined that for a set of features X and simplified features X′, if x≈x', then the model f(x) can approximate the explanatory model g (x’). The explanatory model can be expressed as:
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where xi is the binary version of input feature x, M is the total number of feature inputs, φ0 is the average output of the model, and φi is the Shapley value that measures the contribution of the feature i to the model output, which is expressed as:
[image: image]
where S is the combination of all possible subsets of features that excluded xi.
It has been proven that the Shapley value is satisfied for three properties of the additive feature attribution of the explanatory model: local accuracy, missingness, and consistency.
Local accuracy claims the explanatory model can approximate to the original machine learning model when the simplified feature of x’ approximates input feature x.
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Missingness defines that the Shapley value should be zero when feature xi’ is missing, i.e., if x’=0, then φi=0. For our study, xi’=1 as all the features in the tabular dataset exist. Consistency shows that if feature x’s contribution changes as the original model changes, then the attribution of the explanatory model should change in the same direction.
In practice, the computation time to calculate the Shapley value for a tree-ensemble can be overwhelming, as indicated by the computational complexity:
[image: image]
where T and L are the maximum number of base learners and leaves in the model, and 2M is all the possible subsets for M features. Hence, the computational time will increase exponentially for data with numerous features. In our study, an approximation method named TreeSHAP is adopted, which designated for tree structure machine learning models to provide consistent attribute feature importance and greatly accelerate the computational speed (Lundberg and Lee, 2017; Lundberg et al., 2018).
5 RESULTS AND COMPARISON
To demonstrate the effectiveness of the TEMP, PRES, and FORM in estimating the shear wave velocity, we built and evaluated four LightGBM models with different feature combinations using the default hyperparameter value (Table 1). The baseline score was calculated using the fivefold cross validation method based on the data from JE1 and JE2. The ‘Full_log plus’ model, which uses the complete seven logging with three additional features, achieved the highest score, with 2.54 for RMSE and 0.93 for R2. The lowest score was achieved by the ‘Five_log’ model, which lacks RHOB and CNL loggings parameters. It was shown that the added features in the ‘Five_log plus’ model compensated for the missing logs and improved the ‘Five_log’ model to a score that was close to the ‘Full_log plus’ model. For future use of the model in development wells, the feature combination in ‘Five_log plus’ was chosen for the following hyperparameter tuning and model implementation.
TABLE 1 | Model evaluation with different input feature combinations.
[image: Table 1]Data from JEI and JE2 was randomly split into training (70%) and validation (30%) subsets for the hyperparameter tuning process. The LightGBM hyperparameters that are crucial for the prediction performance were chosen (Table 2). During the tuning practice, we found that the optimal hyperparameter value combinations were often found at approximately 300–700 rounds. Hence, a 1,000 iteration time was set for the tuning process in this study instead of setting an early stopping criterion; therefore, the best model can be built for each machine learning algorithm and equitable comparison between models are possible.
TABLE 2 | Optimal hyperparameter values of machine learning models and the evaluation results.
[image: Table 2]The optimization process using the Optuna package starts from a random combination with an objective value of 3.7; then, after several attempts, the best value soon drops to 2.4. Hyperparameters with different value combinations are tested 1,000 times; during the process the objective value jumps between 2.3 and 4. As the best value tends to stabilize after 20 trials, several subtle drops of values like descending steps can be observed on the red line, which records the best value, at approximate trial positions of 100, 210, and 700 (Figure 6). Finally, the best value of 2.32 is found at trial position 721.
[image: Figure 6]FIGURE 6 | Optimization history of the LightGBM model with 1,000 iterations.
The Optuna optimization framework also provides visualization of the tuning process of each individual hyperparameter, which supplements the analysis of the optimization progress. Figure 7 illustrates how the objective value varies during the tuning; the y-axis is the objective value and the x-axis shows the search range for each parameter. Each circle represents a trial; as the trial time increases the color darkens. The figure demonstrates that the trial numbers are sufficient for the search algorithm to fully cover the search range and test for every possible combination. In the first few hundred trials, the algorithm already covers most of the values, and as the number of trials increases, the search range shrinks down to a narrow range and continues to test for the optimal combination. The ‘max_depth’ parameter shows a different pattern than the others because it is set to discrete integer values, whereas others are continuous.
[image: Figure 7]FIGURE 7 | The optimization history of each hyperparameter of the LightGBM model.
After each hyperparameter is assigned with the optimal value (Table 2), the LightGBM model is then implemented on the test set, which is the well BJE1. Figure 8 shows predictions for all subsets in which the x-axis is the predicted DTSM value and the y-axis indicates the true DTSM values. It clearly demonstrates that the model has a high accuracy in predicting the shear wave velocity in the study field. The scattered points of all sets are distributed closely to the black dashed diagonal line, indicating that the prediction and true value are nearly the same and have a high degree of correlation. The evaluation metrics of the model are RMSE = 1.0 and R2 = 0.99 for the training set, RMSE = 2.40 and R2 = 0.94 for the validation set, and RMSE = 3.47 and R2 = 0.79 for the test set. The results quantitatively demonstrate that the model is not only well tuned to fit the training data but also has a strong generalization capability to predict shear velocity in other wells.
[image: Figure 8]FIGURE 8 | The results of the training and implementation of the LightGBM model.
To further demonstrate the accuracy and efficiency of the LightGBM model, four classical supervised machine learning models were introduced and compared with the LightGBM model, namely, Support Vector Regressor (SVR), Deep Neural Network (DNN), Random Forest (RF) and Extreme Gradient Boosting (XGB). Note that RF and XGB are both tree-based models but with different ensemble strategies. All models were trained using the same dataset and tested on the BJE1 and tuned by the Optuna hyperparameter optimization framework.
Table 2 shows the hyperparameters that were used to tune the models and their best value, and Figure 9 demonstrates the prediction results for different subsets. The results show that the tree-based methods overall perform better than the SVR and neural-net based machine learning models. Both RF and XGB had a good performance in fitting the training data and predicting the validation and test data (Table 2). The SVR model has the same accuracy as XGB in fitting the training data, whereas the generalization capability is the worst among all models (RMSE=7.35 and R2=0.08 for the test set by SVR). The scatter plot of the SVR model for the test dataset shows a clear bias from the diagonal line, indicating that the SVR tends to overfit the training data and is insufficient in predicting the shear wave velocity from other wells (Figure 9A). The DNN performs moderately among all on both the validation and test datasets but the generalization capability is stronger than SVR (Figure 9B). The RF showed a more dispersive pattern of the scatter points than XGB (Figures 10C,D).
[image: Figure 9]FIGURE 9 | Shear velocity predictions from different ML models. (A) SVR. (B) DNN. (C) RF. (D) XGBoost.
[image: Figure 10]FIGURE 10 | Well loggings of BJE1 wells and the comparison between the Xu-Payne model and LightGBM model. (A) Well loggings of BJE1. (B) Crossplot of predictions from the Xu-Payne model versus the true DTSM value. (C) Crossplot of predictions from the LightGBM model versus the true DTSM value.
Training efficiency is another important aspect for model comparison, which has normally been ignored in previous studies. Among the tree-based models, RF spent the most time in the hyperparameter tuning process and costs 2.173 s per training in 1,000 iterations, while XGBoost and LightGBM cost 1.603 s and 1.166 s per training, respectively (Table 2). Time differences are mainly caused by tree assembling strategy. RF uses a bagging strategy, meaning each tree is trained separately with the whole data or a subset of the data. XGBoost and LightGBM use a boosting technique that trains each tree by the residuals from the previous tree and vastly improves the speed. Benefit from the sampling strategy and feature reduction techniques, the LightGBM model is 37% faster than the XGBoost model. As our study only contains three wells, the improvement in training time will be greater when more wells are included.
Another effective approach for the rock elastic property estimation is rock physics modeling. This study employed the Xu-Payne model to calculate the carbonate shear wave velocity in the Callovian-Oxfordian formation and compared it with the prediction from LightGBM model. The modeling process of the Xu-Payne model starts with forming the rock matrix by mixing various mineral components, including limestone, anhydrite, dolomite, and clay content using the Reuss-Voigt-Hill average. Then, pores of different types and shapes are introduced into the matrix according to the Differential Effective Media theory and Kuster–Toksoz theory. The fluid is modeled by considering the reservoir temperature, pressure, water saturation, salinity, and gas-specific gravity. Finally, the rock frame is saturated with the fluid based on the Gassmann theory (Xu and Payne, 2009).
Figure 10A demonstrates the loggings and lithology interpretations that are crucial for the rock physics modeling process. The comparison between the results estimated from the Xu-Payne model (blue curve) and LGBM model (green curve) with original DTSM (red curve) are shown in the last two columns of Figure 10A and in the scatter plots of Figures 10B,C. Evidently, compared with the prediction from LGBM, the Xu-Payne model’s result has a high dispersion degree (RMSE = 8.22) and low accuracy (R2 = −0.15). The rock physics model only provides credible results in the XVp and XVm formations, whereas in other formations, the predictions are shifted from the true value, which may be caused by the complex lithology, high clay content, and high porosity. The XVac formation has more lithology types than others as it went through a variation in sedimentary environment; it includes limestone, clay, dolomite, and gypsum. At a depth of 2,123 m, all four lithofacies can be observed, and the Xu-Payne model provides a lower velocity value than the logging. At a depth of 2,163 m in XVac and a depth of 2,264 m in XVhp, the high clay content is the main reason that causes the Xu-Payne model to miscalculate the shear velocity. At a depth of 2,312 m, where limestone is the main lithology type and porosity is approximately 15%, the Xu-Payne model overly estimates the velocity. By contrast, the LGBM model prediction is unaffected by the above factors and predicts the true value accurately.
The prediction error caused by the rock physics model is that the modeling progress relies heavily on the accurate well logging interpretation of petrophysical properties and lithological facies. The interpretation can be strongly biased from the true value without sufficient calibration from the rock sample tests. In our study, only the upper three formations are tested for porosity (Figure 10). Consequently, predictions in the upper three formations are generally more stable than the lower formations. Specifically, the shear velocity at the high porosity area at approximate depths of 2,155 m and 2,195 m is correctly predicted by the Xu-Payne model, whereas the model fails at a depth of 2,312 m where porosity interpretation is not adjusted. However, the machine learning algorithm can skip the well log interpretation procedure and directly establish the non-linear relationship between the loggings and the target value. The following section explains how the output from LightGBM is achieved in detail.
6 MODEL INTERPRETATION
The SHAP analysis is conducted for the LightGBM model trained by five logging parameters and three added features. Both global and individual interpretations are provided for the model. The global interpretation presents an overview and ranking of the contributions of each feature in a quantitative manner, while the individual interpretation dives into a single data instance and demonstrates how each prediction is generated. An explanation of machine learning model is significant for the shear wave velocity regression task, as it can provide valuable insights into the feature selection.
6.1 Global interpretation
Global interpretation from SHAP is first introduced to provide an overview of feature importance. The importance of each input variable is calculated by averaging the absolute Shapley value, which quantitatively represents the general impact of each feature on the model output. Figure 11A displays the sorted mean absolute SHAP value of all the input features in the LightGBM model. It shows that DT has the most significant influence on the model, which consists of the high correlation with DTSM (correlation = 0.87). Additionally, the LLS has a major influence, while its impact on the model is less than half of that as DT. The contribution of the rest features shows a small variation, while the ranking is inconsistent with the correlation in Figure 4. Although the LLD has a higher correlation with DTSM than the SP, the contribution of SP ranks higher; even the TEMP has a greater impact than the LLD. The SP log is used to differentiate the formations with different permeability, which is the result of the interaction between the connected pores and the fine-grained sediments that block the channel. The higher impact of SP on the model may infer that the porosity and lithology significantly contribute to the shear wave velocity of the formation. The added categorical feature FORM ranks behind the LLD and contributes more to the model than the GR. The impact of PRES may be affected by its correlation with TEMP. Despite PRES having the lowest influence on the model output, the importance is as much as 60% of GR.
[image: Figure 11]FIGURE 11 | Global interpretation of the LightGBM model. (A) SHAP feature importance. (B) SHAP summary plot. (C) SHAP value of the categorical feature FORM.
Figure 11B illustrates the SHAP value distribution of each input variable and the trend of the corresponding feature. The y-axis indicates the input variables in order of importance (same as Figure 11A), and the corresponding SHAP value can be found on the x-axis. Each circle represents a sampling point of the feature, and the color gradient of the variable follows the varying trend from small (blue) to large (red). It should be noted that the negative SHAP value of the feature does not equal to negative influence but to a lower-than-average output from the model. For instance, DT has a wide distribution on the SHAP value where a high DT value has a greater impact on the model and can lead to a higher output, while the low value has a relatively smaller impact and tends to generate lower than average outputs. It can be observed that the LLD and LLS have a reverse trend similar to DT, meaning large resistivity values can lead to small DTSM outputs, agreeing with the negative correlation of these features with the DTSM (Figure 4). Both the SP and GR are used as lithology indicators in well-logging interpretation; the value of the SP is unrelated to the SHAP value, whereas the GR has a trend like DT, indicating that a high gamma value corresponds to a large DTSM output. The TEMP and PRES show a reverse trend similar to the LLD and LLS, which is intuitive as the deeper formation normally has a higher velocity.
The FORM value is discrete and non-numerical; hence, the feature value is colored grey in Figure 11B. The SHAP value of categorical feature FORM is calculated and presented separately in a boxplot, where the formation name is shown on the x-axis and the SHAP value is presented on the y-axis (Figure 11C). It shows that XVhp has the greatest influence on the model, which indicates that the FORM value is most useful in the XVhp layer. Additionally, the XVac, XVp, XVm, XVa1, and Z layers make a positive contribution to the model but are less influential. The lowest two layers XVa2 and XVI hardly make any contribution.
6.2 Local interpretation
Local interpretation by SHAP is provided for individual data instances to examine the contribution and the interaction between the input variables. Four predictions at various depths that represent different reservoir characteristics were chosen for the local interpretation. The individual predictions are at depths of 2,123 m, 2,163 m, 2,264 m, and 2,312 m, which correspond to the places where LightGBM outperforms the rock physics model in Figure 10. The value of each feature is shown on the y-axis, and the x-axis is the prediction. The E [f(X)] is the base value, which is the mean value of the DTSM in the validation subset. The final prediction expressed by f(x) is the summation of the contributions from all the features plus the base value.
A depth of 2,123 m in the XVac layer represents a reservoir condition where four lithofacies co-exist (Figure 12A). Here, the GR=39.965 and contributes the most to the LightGBM model given by the SHAP value of +3.97, followed by LLS=0.815 and LLD=−0.857, for which the SHAP values are +1.98 and +1.38, respectively. The absolute SHAP value for the rest features is smaller than 1. The added feature FORM=XVac and PRES=23.529 has greater significance than DT=55.01, for which the SHAP value is −0.6. The summation of all the features drives the base value toward the final prediction (112.14 us/ft), which is close to the true value (125.161 us/ft).
[image: Figure 12]FIGURE 12 | Individual interpretation for data instances at various depths. (A) 2,123 m. (B) 2,163 m. (C) 2,264 m. (D) 2,312 m.
Figures 12B,C display the data at depths of 2163 m and 2264 m, where the rock physics model tends to overestimate the DTSM value. Both places have a high clay content (GR>70), and the LightGBM model chose DT=65.797 as the dominating feature, which contributes twice as much as GR=70.52. The other features have a relatively small impact on the model but still manage to influence the precision of the output. The final predictions for both places (116.847 us/ft and 118.15 us/ft) are close to the DTSM logging value (117.640 us/ft and 129.102 us/ft).
Figure 12D demonstrates a typical high porosity region at a depth of 2312 m, where the rock physics model failed to provide an accurate result. The feature DT=64.024 continues to dominate the ranking in feature importance. The contribution of the rest logging features follows the ranking of correlation with DTSM (Figure 4), and the added features have the smallest impacts. The final prediction (115.356) is also close to the measure value (116.262 us/ft).
The individual interpretations demonstrate that the LightGBM model can adapt to different reservoir conditions and provide accurate and stable estimations of the target value. Moreover, the results indicate that the importance of each feature does not necessarily correspond to its linear correlation with DTSM. It is also worth noting that the contribution of each feature varies with data instances, and it does not strictly coincide with the ranking in global interpretation. For instance, DT has the greatest general impact on the model while it contributes less than FORM and PRES at a depth of 2123 m (Figure 12A); the correlation between LLD and DTSM is 0.50, while its importance ranks the lowest among all features at a depth of 2264 m (Figure 12C). The result shows that each feature in the model has a positive influence on the final output. The newly added features are proven to be useful to the prediction and can effectively compensate for the decrease in model accuracy caused by the absence of RHOB and CNL.
In addition to the evaluation metric from testing the model on a test well, the SHAP analysis offers another approach for verifying the reliability and effectiveness of a model by checking whether the feature dependency with the target value conforms to the geological background. Figure 13 displays the dependency plot of each feature, with the x-axis showing the feature value and y-axis representing the SHAP value. Each plot is colored with a feature that has the largest interaction effect.
[image: Figure 13]FIGURE 13 | Dependency plot of input variables for the LightGBM model. (A) GR. (B) SP. (C) DT. (D) TEMP. (E) LLS. (F) LLD. (G) PRES. (H) FORM.
The result shows that the increasing value of DT, SP, and GR leads to the elevation of their SHAP value, which corresponds with their positive relationship with DTSM. It is clear that DT has the best correlation with DTSM, and its interaction with PRES indicates the formation at a greater depth, which has a larger PRES value and tends to have a greater velocity; the GR and SP logs are normally used to calculate the shale volume, and larger values mean a greater clay content. In Figures 13A,B, the large values of the GR and SP lead to an increase in DTSM values, which agrees with the fact that a greater clay content can cause a drop in Vs velocity. Additionally, the SP log performs worse than the GR in calculating the shale volume in a carbonate formation; hence, the correlation trend in SP is not as clear as in the GR. The increase in SHAP is followed by decreasing LLD, LLS, TEMP, and PRES values, indicating that the features are negatively correlated with the DTSM. The negative trend of LLD and LLS with DTSM agrees with the fact that Vs decreases with the increasing gas saturation, as the gas bearing formation can cause larger resistivity than the water bearing formation. The negative trend of TEMP and PRES is also rational, as both features are directly related to depth and the deeper formation tends to have a larger velocity caused by mechanical and chemical compaction. The results correspond well with the complex carbonate reservoir condition in most layers. It corresponds with the complex carbonate reservoir condition in most layers, e.g., XVac has the most complex lithofacies, XVam and XVa1 have high porosity, and the XVhp layer has a high clay volume; XVI and XVa2 are interpreted as pure limestone formations with a small amount of clay and pore volume. The result indicates that the categorical feature FORM can be helpful to the machine learning model, especially for the complex carbonate formations.
7 CONCLUSION
Machine learning methods have been prevalently utilized in the well-logging estimation of shear wave velocity. However, owing to the black-box nature of the machine learning model, most research emphasizes the effectiveness of new algorithms, and the input features are limited to the traditional logging parameters. This study adopts the LightGBM model to estimate the shear wave velocity in a complex carbonate formation. To expand the usability of the model in development wells that normally lack essential loggings, we introduced three new features into the model, including two numerical features (temperature and pressure) and one categorical feature (formation). The model is best tuned with the automatic hyperparameter optimization framework Optuna, and the result is compared with four regression machine learning models that were optimized with the same process. The Xu-Payne rock physics model is also applied for calculating the Vs and compared with the LightGBM model. Furthermore, we use the Shapley Additive Explanations (SHAP) to interpret the LightGBM model and quantitatively demonstrate the contribution of each feature and validate the reliability of the trained model.
The following conclusions can be drawn from this study.
1. The newly added features are proved effective prior to the application of the model. Four combinations of different features are tested using the LightGBM model with default hyperparameters. Both RMSE and R2 are decreased with the absence of RHOB and CNL log, while adding the new features can compensate the loss of important logs and improve the model performance.
2. The application of the automatic hyperparameter optimization framework is essential and can provide a fair comparison between different machine learning algorithms. As the hyperparameter tuning is crucial for building a model, the artificial tuning process that normally involves grid-search and k-fold cross validation can be inaccurate and time consuming. Utilizing the Optuna framework can greatly expand the searching area and guarantee a stable result, which ensures the equitable comparison between different machine learning models.
3. The LightGBM model outperforms the other machine learning models in both accuracy and efficiency. The comparison between different models shows the tree-ensemble-based methods perform better than SVR and DNN, and the LightGBM outperforms other tree-ensemble methods, such as RF and XGBoost. Other than SVR, which shows little generalization capability, the LightGBM has the shortest training time. Additionally, time efficiency is a significant factor to be considered for model selection, as numerous wells could be included when performing the Vs estimation at a larger scale.
4. The LightGBM model performs better than the rock physics modeling approach. The construction of the rock physics model requires the accurate interpretation of petrophysical parameters and lithofacies, while the condition is often unsatisfied without sufficient laboratory tests of rock samples. The LightGBM model can directly establish the non-linear relationship between input variables and Vs without performing the intermediate interpretation step. Thus, the model can generate more accurate results, especially in regions with complex lithofacies, a high clay content, and a high porosity.
5. The importance of input features is not necessarily related to their relationship with Vs The global interpretation provided by the SHAP analysis indicates that the ranking of the contributions of each feature is unrelated to their correlation with Vs, except for DT and LLS. The individual interpretation at different depths further proves that the contribution of each feature varies with their values and the reservoir condition. Moreover, the newly added features can impact the model more than traditional logging parameters, such as LLD and GR.
6. The quantitative interpretation of the model also provides additional evidence on the applicability and effectiveness of the LightGBM model. The dependency between the input features and the SHAP value and the deduced results correspond well with the geological understanding of the target carbonate formation, greatly improving confidence in the further application of machine learning models for shear wave estimation.
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The accurate mapping of seafloor substrate types plays a major role in understanding the distribution of benthic marine communities and planning a sustainable exploitation of marine resources. Traditionally, this activity has relied on the efforts of marine geology experts, who accomplish it manually by examining information from acoustic data along with the available ground-truth samples. However, this approach is challenging and time-consuming. Hence, it is important to explore automatic methods to replace this manual process. In this study, we investigated the potential of deep learning (U-Net) for classifying the seabed as either “bedrock” or “non-bedrock” using bathymetry and/or backscatter data, acquired with multibeam echosounders (MBES). Slope and hillshade data, derived from the bathymetry, were also included in the experiment. Several U-Net models, taking as input either one of these datasets or a combination of them, were trained using an expert delineated map as reference. The analysis revealed that U-Net has the ability to map bedrock and non-bedrock areas reliably. On our test set, the models using either bathymetry or slope data showed the highest performance metrics and the best visual match with the reference map. We also observed that they often identified topographically rough features as bedrock, which were not interpreted as such by the human expert. While such discrepancy would typically be considered an error of the model, the scale of the expert annotations as well as the different methods used by the experts to manually generate maps must be considered when evaluating the predictions quality. While encouraging results were obtained here, further research is necessary to explore the potential of deep learning in mapping other seabed types and evaluating the models’ generalization capabilities on similar datasets but different geographical locations.
Keywords: deep-learning, seabed, segmentation, multibeam, backscatter, bathymetry, classification
1 INTRODUCTION
Seafloor sediment mapping is a requirement in various applications (e.g., defence/naval, environmental, maritime industry) (Mayer et al., 2018). Specifically, the delineation of seafloor sediment types is crucial to the definition of the spatial distribution of benthic marine communities (Siwabessy et al., 2018) and to the sustainable exploitation of marine resources and infrastructures planning (Li et al., 2016). Creating sediment maps relies on two types of data: acoustic remote-sensing data (most often, bathymetry and backscatter from multibeam echosounders, or MBES) and in situ ground-truthing (photo, video, or physical sampling). Traditionally, this task is performed by expert geologists, who use their experience to interpret and combine information from the available data. However, since seabed sediment mapping demands a significant investment of time from highly specialised experts, many methods have been proposed to automate this process. Promising results have been reported using unsupervised methods (e.g., clustering techniques) (Lathrop et al., 2006; Brown and Collier, 2008; Brown et al., 2012), and supervised methods (e.g., Bayesian decision rules, k-Nearest neighbour, decision trees, Random Forest, artificial Neural Networks) (Brown et al., 2011; Ierodiaconou et al., 2011; Stephens and Diesing, 2014). In particular, the machine learning algorithm Random Forest is widely used as it has often been found to outperform other algorithms in comparative studies (Li et al., 2016; Diesing et al., 2020). Despite this, the routine production of seabed sediments maps is still often performed manually by geosciences experts, indicating that there is still much progress to be made to design alternative automated methods (Diesing et al., 2014; Buhl-Mortensen et al., 2015).
Machine learning methods have evolved significantly in recent years. In particular, deep learning networks such as convolutional neural networks (CNNs), have proven to greatly outperform traditional machine learning approaches in common computer vision tasks, including the semantic segmentation of images (Lateef and Ruichek, 2019). This has sparked interest in the marine scientific community to explore the potential of CNNs for marine habitat mapping (Cui et al., 2021; Qin et al., 2021; Anokye et al., 2023). The most-commonly used CNN for semantic segmentation in many fields is the U-Net network (Ronneberger et al., 2015; Leclerc et al., 2019) and its modified versions. In the marine environment it has been successfully applied to underwater images for the study of the behaviour of marine sponges (Harrison et al., 2021), for the segmentation of fish species (Nezla et al., 2021), underwater mineral images (Wang et al., 2022) and underwater litter (Wei et al., 2022). Notably, recent research has demonstrated the potential of U-Net for deriving seabed morphological classes, including a hard-substrate class comprising bedrock outcrops, using high-resolution bathymetric data alone and a limited amount of labelled data (Arosio et al., 2023). This network has also been tested for onshore bedrock mapping using a digital elevation model (DEM) and cloud-based Landsat 8 data (Ganerød et al., 2023). Given the promising outcomes, it is logical to investigate further the capability of U-Net for the task of seabed sediments classification.
A crucial difference between traditional machine learning algorithms (e.g., Random Forests), and deep learning networks (e.g., U-Net) is that the former relies on a manual feature engineering process to ensure the extraction of relevant features from the data (Janiesch et al., 2021), while the latter does not. Deep learning minimizes the need for extensive feature engineering by automatically learning hierarchical representations from raw data. The trade-off is that training a CNN will often require a much larger dataset (typically of the order of 103 training instances or more) compared to traditional machine learning methods (typically using 101–102 training instances). As a result, while traditional machine learning methods can use in situ data as ground-truth, such an amount of data may be insufficient for training a complex network like U-Net. Given that the objective is to generate seafloor sediment maps that closely resemble those produced by human experts, we suggest that it is possible to use such expert-created maps as ground-truth. This approach ensures that the Deep learning model has access to a sufficiently large and diverse training dataset. Despite these maps are manually generated and might encompass inaccuracies arising from the personal assessments of the experts, they still provide the most accurate representation of the seabed sediments for specific study areas.
In this article, we evaluate the potential of U-Net for the purpose of mapping seabed sediments from MBES data, using maps produced by geoscience experts as a reference. As a first step we classify the seabed sediment types as either bedrock or non-bedrock with the objective to assess the effectiveness of U-Net in replicating the sediment classification performed by an expert geologist. To our knowledge, the use of a human generated map as a ground-truth for training DL models has only been explored in remote sensing applications for onshore bedrock mapping (Ganerød et al., 2023), therefore we present a potentially novel method for sediment classification in offshore settings. With this work we aim to support development of automated tools for seafloor classification and ocean exploration which can provide rapid, accurate and consistent maps of the seabed to be incorporated into seabed mapping routines to support geology and geophysics specialists.
2 MATERIALS AND METHODS
2.1 Area of study and source dataset
The study site is a 576 km2 area spanning over five nearshore marine municipalities in the Søre Sunnmøre region of Norway: Hareid, Ulstein, Herøy, Sande and Vanylven (Figure 1). The experimental data consists of high-resolution bathymetry grids and backscatter mosaics, obtained from multiple MBES surveys, as well as a multi-class seabed sediment map of the area. The map used for this project was created by the Geological Survey of Norway (NGU) in 2019, and shows details at a 1:20,000 scale (Elvenes et al., 2019). At the time of our study, this map was the most accurate one published for the area. However, a revised version of it was published in late 2021. The updated map, focusing mainly on improving the representation of non-bedrock areas, can be freely downloaded or viewed online1,2.
[image: Figure 1]FIGURE 1 | Overview of the study site and experimental data in the Søre Sunnmøre region of Norway. (A) MBES backscatter mosaic, (B) MBES bathymetry grid.
The MBES data was collected over 38 surveys taking place between 2006 and 2012 using four different MBES systems (Kongsberg Maritime models EM 710, EM1002, EM 3000 and EM 3002D), which covered a depth range of 0–636 m (Elvenes et al., 2019). The acoustic data were processed and gridded into a single digital bathymetry model (DBM) and a single backscatter mosaic, both of 1 m x 1 m horizontal resolution. A seabed sediment-type map of 25 classes was generated by a marine geology expert using manual digitization. The interpretation was based on the bathymetry grid (with overlaid hillshade), a slope raster (derived from the bathymetry grid), the backscatter mosaic, and shapefiles representing the classified sediment samples and towed video footage acquired over the area (Elvenes et al., 2019).
2.2 Data pre-processing
Since the marine geology expert also used the hillshade and slope for their interpretation, we also included these bathymetry derivatives to quantify their relevance. Slope and hillshade are related variables that emphasize the local morphology, while bathymetry display only allows visualizing the general depth trend. Slope is the measure (in degree units) of the maximum steepness for each cell of the bathymetry raster relative to its neighbour cells, while hillshade is a grayscale 3D representation of the morphology resulting from the simulation of a light source located at a given azimuth and direction relative to the site. We derived these two layers from the bathymetry grid using the “Slope”3 and “Hillshade”4 tools available in ArcGIS Pro (Figure 2). We utilized the “Hillshade” tool in ArcGIS Pro with its default parameters, configuring the “azimuth” to 315° from the northwest and “the altitude” to 45° above the horizon. The backscatter mosaic, the bathymetry, hillshade and slope layers were normalized to the 0–1 range and used as input features to the U-Net (Figure 3). The original 25-classes seabed map was simplified into “bedrock” and “non-bedrock” as described in Table 1 (Figure 4). This modified reference map was used as the U-Net’s target variable.
[image: Figure 2]FIGURE 2 | Illustration of the input features in our dateset: (A) Bathymetry grid (m) shown over the hillshade layer to highligth seabed topography, (B) Backscatter mosaic (dB), (C) Slope layer, (D) Hillshade layer.
[image: Figure 3]FIGURE 3 | Input data layers: backscatter mosaic, bathymetry grid, and the hillshade and slope layers derived from the bathymetry grid.
TABLE 1 | Sediment classes conversion from the original NGU map for DL network training purposes.
[image: Table 1][image: Figure 4]FIGURE 4 | Extract of the original 25-classes seafloor sediment map, and the simplified binary bedrock/non-bedrock map. (A) Original multi-class sediment map, (B) Simplified sediment map.
For the generation of the training, validation and test datasets, we sampled the entire source dataset ensuring to spatially cover as much data as possible while also reducing the amount of no-data locations. This process resulted in 24 manually generated rectangular regions of variable dimensions (Figure 5). The regions without rectangles indicate locations where either some of the input data was missing, the expert map was unavailable, or the quality of the input data was inadequate. Figure 6A shows an area omitted from training due to local lack of data in the backscatter mosaic. Artifacts appeared frequently in our backscatter data, and although efforts were made to remove them from the training and validation dataset, a few still remained within the rectangular regions. Examples of typical artifacts characterizing our data are visible in Figures 6B, C.
[image: Figure 5]FIGURE 5 | Location of the sampling rectangles over the study area overlaid on the backscatter mosaic. Rectangles labeled with “Test” were used as testing rectangles, rectangles labeled as “Val” were used as validation rectangles.
[image: Figure 6]FIGURE 6 | Examples of artifacts in the backscatter mosaic. (A) In the red rectangle is displayed an area of the mosaic excluded from training due to local lack of data, (B) Example of backscatter artifacts indicated by the red arrows, (C) The yellow frame include linear artifacts visible across the backscatter data, the orange frame shows the result of merging backscatter data acquired along different directions.
Each of the 24 rectangles was allocated either for training, validation or testing, with the split realized to ensure that the class frequencies across the three subsets were comparable and representative of the entire dataset (Figure 7). Across all subsets, the bedrock and the non-bedrock classes made up respectively 20%–25% and 55%–60% of all pixels, while the rest of the pixels belonged to the no-data/background class, which was used as a third class in models training but excluded from the network’s inferring and evaluation.
[image: Figure 7]FIGURE 7 | Class frequencies for the training, validation and test subsets.
To avoid artificially-improved classification performance, poor model generalization, and biased predictions due to spatial autocorrelation (Roberts et al., 2017; Schratz et al., 2019; Karasiak et al., 2022), we calculated the covariance function for both our testing and training data using ArcGIS Pro. By measuring the strength of statistical correlation as a function of distance, the covariance function quantifies the concept that close objects are more similar compared to those at greater distances5. Hence, by evaluating the covariance function we ensured a 1,000 m buffer distance between the training and the testing rectangles. This distance was selected according to the point at which the covariance function approached a value of 0 for all our data.
2.3 Models training, inferring and evaluation
Once the study area was sampled by extracting rectangles of data (bathymetry, backscatter, hillshade and slope), each rectangle was further divided into patches of 256 m x 256 m, with a 50% overlap between consecutive patches both along the X-axis and Y-axis. This resulted in approximately 22,000 patches of each MBES data type for training. We used the modified light-weight U-Net network described in Leclerc et al. (2019). U-Net is a convolutional neural network architecture known for its U-shaped architecture that combines contracting and expanding pathways by the mean of skip connections, the key component of the network aimed to merge encoder and decoder features (Ronneberger et al., 2015). The encoder consists of a contracting patch compressing the input data for feature extraction. The decoder involves an expanding path which uses upsampling and convolutional layers that, by recovering spatial details potentially lost during the downsampling, generate the segmented output map (Ronneberger et al., 2015; Leclerc et al., 2019).
We trained four models using a single data source in input (single-input models): either backscatter (MB), depth (MD), slope (MS), or hillshade (MH), and six models using two data sources (multiple-input models): backscatter and depth (MBD), backscatter and hillshade (MBH), backscatter and slope (MBS), depth and slope (MDS), depth and hillshade (MDH), and slope and hillshade (MSH) (Figure 8).
[image: Figure 8]FIGURE 8 | Summary of the U-Net models generated. Single feature models are models trained using single inputs (e.g., backscatter data, or slope data, or bathymetry data, etc.). Two-layers models were generated by inputting the network with two layers at the same time (e.g., backscatter + slope data, or depth data + hillshade data, etc.).
The trained models were used to infer predictions on the 50% overlapping consecutive 256 m x 256 m patches produced from the testing rectangles. In order to obtain a cohesive and smooth prediction for any given testing rectangle, the prediction patches were merged back together using an algorithm6 that blends overlapping data with a window function. This function assigns different weights to the pixels according to their position within each overlapping patch (pixels at the edge of a patch are given less weight than the pixels located at the centre of a patch).
The generalization performance of the trained models was evaluated by calculating the Dice Score (DS) coefficient (Milletari et al., 2016), the overall accuracy (Acc), the Kappa coefficient (Kappa) and the user’s and the producer’s accuracy for each class (class UAcc and PAcc) (Congalton, 1991). All these metrics, derived from the models’ confusion matrices and available as Supplemental Material, were calculated on the testing dataset for the predicted classes bedrock/non-bedrock and excluding the no-data class. The DS, is the most commonly used performance metric for semantic segmentation using Deep Learning (Bertels et al., 2019), the remaining metrics were added to encompass global and class-specific accuracy measurements, as suggested by Strahler et al. (2006). These represent the most common metrics used in the seabed classification literature (Li et al., 2016; Siwabessy et al., 2018; Turner et al., 2018), specifically, Liu et al. (2007) emphasize the importance of UAcc, PAcc and Acc as primary accuracy measures. The DS, Acc and Kappa are global metrics. The DS is a quantity ranging between 0 and 1 which measures the overlap among the models’ predictions and the reference annotations. The Acc metric is the ratio between the number of pixels correctly classified and the total number of classified pixels (Devaram et al., 2019). The kappa metric quantifies the level of agreement between two sets of categorical data by taking into account the agreement that could arise by chance, beyond what would be expected due to random concordance (Congalton, 1991; Warrens, 2015). PAcc and UAcc are both class-specific metrics, the first provides a measure of the pixels correctly classified in a particular category, as a percentage of the total number of pixels actually belonging to that category, the second informs that for all the areas classified as a certain category, a certain percentage are actually correct (Congalton, 1991).
In a post-processing stage, we also tested various values for the “decision threshold” parameter. Deep learning trained models provide the user with a measure of the certainty or uncertainty of the predictions in term of probabilities and sometimes the default threshold parameter (0.5) might be not optimal to represent correctly the distribution of the segmented classes of interest and the model might commit an error of misclassification towards certain classes (Fernández et al., 2018).
Finally, to gain insight in the sources of discrepancies between the model predictions and the reference map in the testing dataset, we calculated the percentage of pixels predicted as bedrock. This analysis was conducted to evaluate the accuracy of the predictions in relation to the original sediment classifications outlined in the reference map.
3 RESULTS
Based on their inference on the test set, the models scored DS values ranging in 0.69–0.80 and Acc values ranging in 0.77–0.85 (Table 2). Among the single-input models, MD and MS consistently displayed the highest values for the majority of the metrics, while MB exhibited the lowest performance. The results for the multiple-input models confirmed the higher predictive power of the depth and slope over backscatter, as all the multiple-input models incorporating backscatter data (M BD, M BH and M BS) consistently showed lower performance metrics than the corresponding single-input models without backscatter data (respectively, M D, M H, and M S). Noticeably, no multiple-input models outperformed the best single-input models.
TABLE 2 | Overview of the metrics calculated for both the single-layer and two-layers models.
[image: Table 2]Figure 9 illustrates the differences between the expert annotations and the predictions of the models which consistently scored high metrics (MD and MS) or low metrics values (MB, MBD), over a portion of the test set representative of topographically complex areas in our dataset. Overall, Figures 9B–E demonstrates that predictions from MD and MS more closely resemble the human interpretations, while MB and MBD deviates more. Furthermore, models trained using inputs from the same data source resulted in similar predictions (e.g.,.MD and MS or MB and MBD). This can be observed in Figure 10 where predictions from MD and MS are compared and almost perfectly overlap both for the bedrock class (Figure 10A) and for the non-bedrock class (Figure 10B). This figure shows that predictions from MD and MS overlap in almost every region of the seabed. Only a few differences between the models occur, and these are highlighted by the green areas, corresponding to pixels predicted as bedrock by the MD model and by the orange areas, corresponding to pixels predicted as bedrock by the MS model.
[image: Figure 9]FIGURE 9 | Comparison among the DL outputs and the original expert annotation. The area chosen to visualize the predictions belongs to one of the test rectangles used as test dataset. Red and yellow rectangles highlight areas of interest (see text). To better enhance the underling topography, predictions/annotations are shown over the hillshade layer. (A) Expert annotations, (B) MB predictions, (C) MD predictions, (D) MS predictions, (E) MBD predictions.
[image: Figure 10]FIGURE 10 | Comparison among the best performing DL outputs: the depth and the slope models. Both predictions are superimposed on the hillshade layer, which was selected for its ability to accentuate the topography. The area chosen to visualize the predictions belongs to one of the test rectangles used as test dataset. (A) The figure shows the slope and depth models’ predictions for the bedrock class. Here the background class encompasses the no-data and the non-bedrock areas. (B) The figure shows the slope and depth models’ predictions for the non-bedrock class. Here the background class encompasses the no-data and the bedrock areas.
An in-depth comparison of the maps in Figures 9B–E shows that all models tend to predict any seafloor area showing a complex bathymetric relief as bedrock, whether or not it was annotated as such by the expert. This observation is confirmed by the results listed in Table 2 where the PAcc values for the bedrock class for all the models are higher than the corresponding UAcc ones. This indicates an over-prediction of the bedrock class compared to the expert’s interpretation. Moreover, Figures 9B–E shows that both MB and MBD appear to have a more pronounced tendency to predict the bedrock class in flat areas compared to MD and MS.
While the models generally over-predict the bedrock class, as seen from the higher PAcc values compared to the corresponding UAcc values (Table 2) and from Figure 9, instances of underprediction are also evident. In Figure 11, model MD, taken here as an example, fails to recognize expert-annotated bedrock regions in flat seabed areas. The tendency of locally failing to predict the bedrock class in flat seafloor areas, compared to the expert annotations, is a trend observed not just in MD, but across all models.
[image: Figure 11]FIGURE 11 | Example of under-prediction of the bedrock class for the model MD. The predictions from the DL model MD, are overlaid onto the expert annotations for a selected test rectangle. This illustration emphasizes the discrepancy between the expert annotations and the model predictions. While the expert includes flat areas of the seabed in their definition of bedrock, the DL model predominantly identifies bedrock in regions of the seafloor characterized by rough topographic features.
To gain insight into the relationship between the DL bedrock predictions and the original expert-annotated sediment classes within the testing rectangles, we conducted an analysis focusing on quantifying the degree of over-prediction for the bedrock class. The over-prediction, expressed as percentage, was calculated by dividing the number of pixels of each original class predicted as bedrock, by the total number of pixels predicted as bedrock. The findings are summarized in Table 3, which includes results from the models that consistently achieved high metrics or low metric values (MD and MS), MB, and MBD, and whose predictions were visualized in Figure 9. This table presents the original expert-annotated sediment classes, their corresponding converted classes used for the DL network training, and a column that shows the percentage of pixels for each of the original expert-annotated sediment classes in the testing dataset. In addition, for each considered model, we included a column showing the percentage of pixels from the original classes that were predicted as bedrock, out of the total number of pixels predicted as bedrock. As an example of the table interpretation, for the original class “exposed bedrock” and for the model MD, 19.95% of the totality of pixels predicted as bedrock, corresponds to the original class “exposed bedrock”. The largest group of pixels misclassified as bedrock occurs for the original class “Sand, gravel, cobbles and boulders”, which is also the non-bedrock class most frequently mapped by the expert (11.66% of all pixels). Other pixels misclassified as bedrock belong to the classes “Sand, gravel, and cobbles” for MD, MS, and MBD (over 3.68% of pixels misclassified as bedrock) and “Cobbles and boulders” for MBD (2.82% of pixels misclassified as bedrock). These two classes are also among the most frequent non-bedrock classes in the expert map (respectively 6.76% and 6.66% of all pixels in the testing rectangles). While pixels from finer-grained sediment classes are also predicted as bedrock across the considered models, the percentage of such misclassified pixels is relatively lower. For instance, “Sandy mud” (the second most frequent non-bedrock class constituting 8.90% of all pixels) accounts for the 0.72%–0.78% of pixels predicted as bedrock by models MD, MS, and MBD, and the 0.98% of pixels predicted as bedrock by model MB.
TABLE 3 | The table analyzes the over-prediction of the bedrock class resulting in pixels predicted as bedrock even if belonging to a different original sediment class. The over-prediction of the bedrock was quantified by dividing the number of pixels of each original class predicted as bedrock, by the total number of pixels predicted as bedrock. These results are displayed respectively for the backscatter, depth, slope and the backscatter and depth models in the column “Fraction of original class in the bedrock prediction (%)”. A column showing the fraction of original sediment classes in the test dataset (%) has also been added. To be noted that the sum of percentages in this column adds up to 80.37%, the remaining 19.63% belongs the background class, not included in the calculation.
[image: Table 3]In an effort to mitigate the bedrock over-prediction, we tried increasing the ‘decision threshold’ parameter from its default value of 0.5. Threshold values between 0.7 and 0.8 yielded predictions similar to the default threshold. Threshold value of 0.9 marginally improved bedrock delineation in specific areas. Since we did not observe any consistent improvement with higher threshold values, we decided to use the default one of 0.5.
4 DISCUSSION
The analysis conducted on the trained models reveals valuable insights about the DL models’ ability to classify the bedrock/non-bedrock classes from MBES data. The backscatter model shows the lowest performance metrics compared to the rest of the trained models. Conversely, all the models trained with bathymetry/bathymetry-derived data demonstrate consistently high comparable metrics. The visual assessment of the models’ predictions aligns with these findings. Predictions from MD and MS tend to follow the rough bathymetric relief more closely than MB and MBD. This is evident from the clear boundaries and sharp edges observed in the topographically rough areas mapped as bedrock (red and yellow rectangles in Figures 9C, D). In contrast, predictions from MB and MBD (Figure 9B, E) often lacked precision in delineating with detail bedrock areas that often appeared clustered together. The superior performance of models trained using bathymetry data can be attributed to their ability to recognize the locally complex morphology of the seabed as a distinctive feature of bedrock areas. This mirrors the practice of marine geology experts, who mainly rely on bathymetry data when delineating bedrock outcrops, while they use backscatter data primarily for distinguishing between several finer grained-sediment types (Elvenes et al., 2019). A likely factor contributing to the lower performance of backscatter models compared to bathymetry models, is the heterogeneous nature of the MBES data in our study, since it was collected across 38 surveys using 4 different MBES systems. In this heterogeneous dataset, different acquisition and processing parameters may have been applied, introducing misfits when generating a composite backscatter mosaic (Figure 6). These artifacts might have affected the recognizability of relevant backscatter acoustic patterns, making it difficult for the network to reliably predict the classes of interest. An attempt to re-process the available data might help unveil whether the low performances can be mainly attributed to the nature of the data. Another possible reason for the weak performance of the models using backscatter is that the backscatter strength from bedrock may vary considerable, due to variations in roughness both on micro and macro scale. Furthermore, MBES systems with different frequencies may respond differently. The MBES system EM710 uses frequencies between 70 and 100 kHz, while the EM 3000 and EM3002D systems use frequencies in the 300 kHz band. These findings strongly indicate that for this particular experiment, backscatter data might have limited relevance, compared to the bathymetry data, for effectively classifying bedrock/non-bedrock classes.
Our results also showed that the combination of two data sources for training did not enhance the seabed classification quality compared to the use of any single data source. In general, combining different data sources is expected to enhance deep learning models’ predictive capability by capturing complementary information and patterns within the data. However, we found that multiple-input models using depth and depth derived data (MDH, MDS, MSH) did not achieve a higher performance than the single-input models (Table 2). All these models share the common characteristics of learning features from the same data source, namely, the bathymetry. It can be thus inferred that U-Net can effectively generate all the necessary data representations from the bathymetry data alone. These findings differ from those presented in the study conducted by (Arosio et al., 2023) where a combination of bathymetry and hillshade data sources yielded DL models with the best performance. This difference in results may stem from the specific classification tasks of each study, in fact while Arosio et al. (2023) aimed to identify various seabed morphological classes, including distinct rock textures, we focused solely on bedrock/non-bedrock separation. Furthermore, our study utilized a high-resolution, expert-generated map for annotation, in contrast to the limited annotated data employed by Arosio et al. (2023). Although the disparities in our classification objectives and available data may account for our differing results, further research is essential to fully unravel the underlying causes of these discrepancies.
Despite the different nature of the backscatter and depth/depth derivatives data, the combination of these data sources did not improve our DL models’ performance either. MBD, MBH and MBS showed a varied range of performance, but it was in each case lower compared to the corresponding single-layer model without the backscatter layer (Table 2). Apart from the already discussed backscatter data limitations, the observed performance degradation may indicate that the available data might not be sufficient for effectively training the combined-layers models. Further research aimed to test the use of augmentation techniques to artificially increase the size of the training data, might enable the models to learn more efficiently the backscatter acoustic patterns that characterise bedrock/non-bedrock and improve their generalization performance.
The over-prediction of the bedrock class plays an important role in our experiment as it results in pixels predicted as bedrock even if belonging to a different original sediment class. For all the models, the largest group of pixels misclassified as bedrock occurs for the original classes “Sand, gravel, cobbles and boulders”, “Sand, gravel, and cobbles”, and “Cobbles and boulders” (Table 3). For these classes, the seabed surface characteristics from bathymetry data may resemble those of bedrock, making it difficult for the network to differentiate between these sediments and the bedrock classes. Similarly, the backscatter response of these sediments can, under specific circumstances, show similarities to the backscatter response of bedrock. One such scenario might occur when the “Sand, gravel, and cobbles” class is found in close proximity to bedrock outcrops, resulting in a highly complex seabed surface. The presence of transitional features in the backscatter data can lead to ambiguous acoustic patterns that can be challenging to distinguish. Hence, this can lead to errors of misclassifications or less accurate predictions for both the “Sand, gravel, and cobbles” class and bedrock class in such areas. Finally, it can be observed that pixels belonging to finer grained sediments fractions are also misclassified as bedrock. Factors contributing to pixels’ misclassifications for these classes might include variability within the sediment classes (making it difficult for the network to differentiate among similar classes), quality of the training samples, and potential limitations in data resolution. The latter, in particular, can affect the ability of the models to capture subtle differences between sediment types. Overall, despite the error in overpredicting the bedrock class, when occurring for well-performing models such as MD and MS, the over-prediction could provide valuable insights for advancing research in seabed classification using deep learning. Indeed, areas where over-prediction occurs could be considered indicators of geologically heterogeneous/complex areas of the seabed that necessitate further investigations to gain a deeper understanding of the factors contributing to the models’ errors.
While the over-prediction of bedrock is a significant factor, it is important to note that under-prediction of the bedrock class also plays a crucial role in our experiment. We observed instances where the expert-annotated bedrock extended beyond areas characterized by topographic roughness, as shown in Figure 11. Conversely, the DL network predominantly predicted bedrock in seabed areas with distinct rough topographic features. While it may be challenging to definitively determine whether the DL model or the annotator’s interpretation is correct for the areas in which under-prediction occurs, several factors such as the scale at which the interpretation is performed and the subjective nature of manual mapping could contribute to the differences between expert annotations and DL predictions. To address these disparities, for example, collaborative efforts involving expert geologists in establishing annotation guidelines for sediment classes, including bedrock, could lead to the creation of standardized criteria for identifying bedrock, potentially improving the accuracy of DL predictions.
The decision threshold experiment, aimed to minimize the bedrock’s over-prediction, showed no consistently improved performance metrics over the test set. Future research might reveal if the manual tuning of this parameter could be a valuable technique for expert users that could leverage their interpretative skills and understanding of the data to arbitrarily match predictions with the seabed topography when desired. This prospect of combining DL predictions and human input, as the research in this field progresses, could enable a faster and more efficient approach to seabed sediment mapping than simply relying on either one.
Overall, the misclassification error should also be analysed by considering the inherent nature of manual and automatic methods for seabed mapping. When manually generating maps of the seabed, the experts leverage their experience of sediment characteristics for identifying and extracting relevant seabed features to be used for seabed classification (Diesing et al., 2014; Janiesch et al., 2021). Therefore, experts generated maps provide us with a wide comprehension of the spatial distribution of sediments and the best representation of the seabed sediments distribution. This stands in contrast to situations where sediments information is only limited to sparse ground-truth locations, resulting in an incomplete representation of the sediment distribution across the seabed. However, different experts may interpret the data in different ways and factors such as sparse ground-truth samples locations might affect the quality of the interpreted map. As a consequence, the process of manual mapping unavoidably introduces a certain level of uncertainty. In comparison, DL algorithms, if trained with sufficient amount of data and reliable annotations, can automatically learn relevant seabed features from the data. This reduces subjectivity in feature engineering and can yield predictions that are potentially more reliable and consistent than those generated by humans.
As briefly introduced when discussing the under-prediction of the bedrock class, the scale of interpretation at which the mapping is conducted, is another factor posing a challenge for the DL models. During the manual generation of seabed sediments maps, expert geologists can contextualize any pixel using its neighboring region, at any desirable scale. In comparison, our models operated on a fixed scale, 256 m x 256 m patches of data, which limits the geological and geographical context of the pixels. Further investigations aimed to explore the limitations of the geographical scale and methods to incorporate information among overlapping patches would contribute to improving the reliability and performance of our models. In addition, the scale also contributes to the misclassification error. The reference map was generated at a 1:20,000 scale (Elvenes et al., 2019). Consequently, given the MBES data resolution of 1 m x 1 m, the DL models could have generated predictions with a higher level of detail compared to the reference map. As a result, the mismatch between the predictions and the ground truth led to a misclassification error.
Finally, it is important to consider that our DL models were both trained and assessed using a manually delineated map as the ground-truth. However, using experts’ generated maps as a reference for training, even though they provide the most accurate representation of seabed sediments, introduces the risk of inheriting limitations and biases present in the manual interpretation process. As a consequence, the quality of the models’ predictions might be affected. All the metrics were evaluated based on the comparison between the DL and the human generated maps disregarding any potential sources of error or subjectivity that could be inherent to the latter. This is also true for the visual assessment of our DL predictions. In summary, we used an evaluation approach that focused on assessing how closely our DL models resembled the expert-generated map, rather than directly measuring the models accuracy in predicting seafloor types.
We currently cannot assess whether our models outperform human interpreters and whether the predicted maps are more accurate than the manually annotated ones. In fact, while we can evaluate the goodness of our predictions by comparing them to the human-generated map, this method leaves us with uncertainties regarding the objective performance of our models. To gain a more comprehensive understanding of their accuracy in predicting seafloor types, further investigations are necessary. Further evaluations comparing predictions against additional ground-truth data or maps produced by other experts could be conducted. Additionally, seeking opinions from third-party expert evaluators could provide valuable insights and support in discerning the potential strengths and limitations of both our approach and human interpretation. Such efforts would contribute to a more robust assessment of our models’ performance and their capabilities in predicting seafloor types accurately.
Utilizing a human-generated map as the ground truth for training deep learning models represents a novel approach. To our knowledge, this technique has solely been tested in remote-sensing applications to map the bedrock in onshore areas (Ganerød et al., 2023). Therefore, we could not directly compare the outcome of our research to other studies. Nevertheless, the promising results achieved through this technique underscore its potential to provide a novel perspective for conducting seabed classification in both onshore and offshore settings.
4.1 Final remarks and future directions
This study evaluated the potential of the Deep Learning network U-Net in classifying the seabed sediments into either bedrock and non-bedrock, using MBES bathymetry and backscatter data. Deep learning models showed great promise in seabed sediments classification. Results showed that the models utilizing bathymetry and bathymetry-derived data achieved better separation of the classes and were able to reliably generate predicted seabed sediment maps comparable to a manually-generated seabed map. Noticeably, all the generated models showed the tendency to overpredict the bedrock class. As they were all trained and evaluated using a manually generated map, it could not be determined whether the models yielded more accurate predictions of the seafloor sediments than the expert ones. Further work should include an inter-observer analysis to shed light on the level of subjectiveness of an expert map, and to evaluate the maps produced by the models against the ground-truth (e.g., video footage). Until then, the models with the highest accuracy could represent a valuable aid to the human experts who could use the predicted maps and modify them according to their discretion and expertise.
Although a widely-accepted standard of automatic method for seabed classification has not been established yet, the findings in this paper offer assistance in expediting the process. In future research, it would be valuable to produce models trained over more than the two classes used in the current study. In addition, as a requirement for establishing a model for actual use, it would be necessary to test the best-performing models on a new, independent set of MBES data, acquired in a distinct geographical area, yet characterized by similar geological properties. A positive outcome from these analyses would help to understand if U-Net models have the ability to leverage the acquired knowledge to predict comparable datasets with limited or no re-training. This finding has the potential to be a significant advancement that could also make the way for real-time mapping applications.
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In the published article, there were minor inaccuracies, specifically concerning the metrics values for multiple-input models (Table 2) and misclassification values in Table 3. The corrections also extend to the corresponding confusion matrices in the Supplementary Material.
TABLE 2 | Overview of the metrics calculated for both the single-layer and two-layers models.
[image: Table 2]TABLE 3 | The table analyzes the over-prediction of the bedrock class resulting in pixels predicted as bedrock even if belonging to a different original sediment class. The over-prediction of the bedrock was quantified by dividing the number of pixels of each original class predicted as bedrock, by the total number of pixels predicted as bedrock. These results are displayed respectively for the backscatter, depth, slope and the backscatter and depth models in the column “Fraction of original class in the bedrock prediction (%)”. A column showing the fraction of original sediment classes in the test dataset (%) has also been added. To be noted that the sum of percentages in this column adds up to 80.37%, the remaining 19.63% belongs the background class, not included in the calculation.
[image: Table 3]In Table 2, the sub-headers PAcc and UAcc were interchanged. In addition, the metrics for the multiple-input models have been re-evaluated to reflect minor miscalculations in the code. The corrected Table 2 and its caption appear below.
In Table 3, there was a slight miscalculation of some of the statistical values in the columns under “Fraction of original class in the bedrock prediction (%)”, and a transcription error in the value for the original class “Sand, gravel and cobbles” for the model MB. The corrected Table 3 and its caption appear below.
In 3 Results, paragraph 1, it was stated: “The results for the multiple-input models confirmed the higher predictive power of the depth and slope over backscatter, as all the models incorporating backscatter data (MBD, MBH and MBS) consistently showed lower performance metrics. Noticeably, while MDS displayed the highest metrics among the multiple-input models, it did not outperform the single-input models MD and MS.” The corrected paragraph is as follows:
“The results for the multiple-input models confirmed the higher predictive power of the depth and slope over backscatter, as all the multiple-input models incorporating backscatter data (MBD, MBH and MBS) consistently showed lower performance metrics than the corresponding single-input models without backscatter data (respectively, MD, MH, and MS). Noticeably, no multiple-input models outperformed the best single-input models.”
In 3 Results, paragraph 3, it was stated: “This observation is confirmed by the results listed in Table 2 where the UAcc values for the bedrock class for all the models are higher than the corresponding PAcc ones”. To address the mislabeling of “PAcc” and “UAcc”, the sentence has been corrected as follows:
“This observation is confirmed by the results listed in Table 2 where the PAcc values for the bedrock class for all the models are higher than the corresponding UAcc ones.”
In 3 Results, paragraph 4, it was stated: “While the models generally over-predict the bedrock class, as seen from the higher UAcc values compared to the corresponding PAcc values (Table 2) and from Figure 9, instances of under-prediction are also evident.” To address the mislabeling of “PAcc” and “UAcc”, the sentence has been corrected as follows:
“While the models generally over-predict the bedrock class, as seen from the higher PAcc values compared to the corresponding UAcc values (Table 2) and from Figure 9, instances of under-prediction are also evident.”
In 3 Results, paragraph 5, it was stated: ‘As an example of the table interpretation, for the original class “exposed bedrock” and for the model [image: image], the 19.92% of the totality of pixels predicted as bedrock, corresponds to the original class “exposed bedrock”.’ Modifying a percentage value as per Table 3, the sentence has been corrected as follows:
‘As an example of the table interpretation, for the original class “exposed bedrock” and for the model [image: image], 19.95% of the totality of pixels predicted as bedrock, corresponds to the original class “exposed bedrock”.’
In 4 Discussion, paragraph 3, it was stated: “MBD, MBH and MBS showed comparable performance to one another but a lower performance compared to the single-layer depth models (Table 2).” The sentence has been corrected as follows:
“MBD, MBH and MBS showed a varied range of performance, but it was in each case lower compared to the corresponding single-layer model without the backscatter layer (Table 2).”
To reflect the updated metric values for the multiple-input models, Supplementary Figures S5–S10 have been updated.
The authors apologize for these errors and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.
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Geothermal reservoirs are highly anisotropic and heterogeneous, and thus require a variety of structural geology, geomechanical, remote sensing, geophysical and hydraulic techniques to inform Discrete Fracture Network flow models. Following the Paris Agreement on reduction of carbon emissions, such reservoirs have received more attention and new techniques that support Discrete Fracture Network models were developed. A comprehensive review is therefore needed to merge innovative and traditional technical approaches into a coherent framework to enhance the extraction of geothermal energy from the deep subsurface. Traditionally, statistics extracted from structural scanlines and unmanned aerial vehicle surveys on analogues represent optimum ways to constrain the length of joints, bedding planes, and faults, thereby generating a model of the network of fractures. Combining borehole images with seismic attributes has also proven to be an excellent approach that supports the stochastic generation of Discrete Fracture Network models by detecting the orientation, density, and dominant trends of the fractures in the reservoirs. However, to move forward to flow modelling, computation of transmissivities from pumping tests, and the determination of hydraulically active fractures allow the computation of the hydraulic aperture in permeable sedimentary rocks. The latter parameter is fundamental to simulating flow in a network of discrete fractures. The mechanical aperture can also be estimated based on the characterization of geomechanical parameters (Poisson’s ratio, and Young’s modulus) in Hot Dry Rocks of igneous-metamorphic origin. Compared with previous review studies, this paper will be the first to describe all the geological and hydro-geophysical techniques that inform Discrete Fracture Network development in geothermal frameworks. We therefore envisage that this paper represents a useful and holistic guide for future projects on preparing DFN models.
Keywords: geothermal reservoirs, discrete fractures, geophysics, hydraulic data, structural geology
1 INTRODUCTION
The exponential advances in geo-modelling of the last 30 years have yielded new approaches for representing fluid flow in the aquifers that are exploited for drinkable water, conventional oil and gas, shale gas and geothermal reservoirs of both hydrothermal and Hot Dry Rock (HDR) nature (Bigi et al., 2013; Hartmann et al., 2014; Przybycin et al., 2017; Lancia et al., 2018; Doran et al., 2021; Dorhjie et al., 2022; Hering et al., 2023; Medici and West, 2023; Melouah et al., 2023). Many researchers have pointed out that these advances in modelling have not been followed by adequate attention to the experimental and technical components that are necessary to represent the complexity of porous and fractured geological media (Aydin, 2000; Frosch et al., 2000; Kristensen et al., 2016; Colombera et al., 2019). However, in the last 5 years, some new structural (LiDAR scan tests, and UAV surveys) and geophysical (Ultra Sonic Borehole Imager, Active Line Source temperature logging, and fibre optic sensing for fluid temperature) techniques have been developed to inform the discrete fracture network (DFN) flow models used in the production of geothermal energy (e.g., Aabø et al., 2005; Lima et al., 2019; Tavani et al., 2022; Welch, 2023). This renewed interest has occurred to meet the ambitious targets set by the Paris Agreement. According to this agreement, the reduction of greenhouse gas emission is imperative, and it can be reduced by the decarbonisation of our energy grid. In their attempts to reduce such emissions, researchers have recognized the importance of geothermal resources, which are essential in view of their direct application to sustainable heating and electricity production (Rubio-Maya et al., 2015; Salazar et al., 2017; Ciapala et al., 2021; Rybach, 2022).
As a consequence of the exigencies of a sustainable society, a review of the techniques necessary to generate robust flow models in geothermal reservoirs is needed to (i) approximate the anisotropic and heterogeneous nature of geological media, (ii) account for the exponential proliferation of numerical solutions in the last 30 years, and (iii) integrate established and new experimental approaches. The most recent technical approaches incorporate the use of UAV surveys/LiDAR tablets in the field of remote sensing and seismic attributes from the field of geophysics (Aabø et al., 2005; Smeraglia et al., 2021; Welch et al., 2022). These new techniques also need to be integrated with the more traditional ones (structural scanline surveys, fullbore formation microimager logging, acoustic and optical televiewer logs), for reconstruction of the 3D network of fractures. The techniques mentioned above allow the generation of 3D discrete fractures with more realistic geometry that can be used to characterize geothermal reservoirs. Notably, other traditional methodologies are necessary when the purpose of the modelling is to eventually understand the dynamics of flow. In the latter case, the hydraulic aperture is also fundamental to characterize Discrete Fracture Network (DFN) models (Quinn et al., 2020; Romano et al., 2020; Hale et al., 2021).
To determine the applicability of the techniques reviewed in this paper, models of fluid flow in a DFN framework are necessary for medium (fluid temperature ranging from 90°C to 150°C) and high enthalpy (fluid temperature equal or higher than 150°C) hydrothermal reservoirs for fractured rocks of sedimentary nature (see conceptual scheme in Figure 1). Here, such geothermal resources are buried in the depth range of approximately 0.15–5.0 km (Busby, 2014; Medici et al., 2019a; De Franco et al., 2019; Melouah et al., 2021a; Melouah et al., 2021b; Zheng et al., 2021; Xu et al., 2022; Zuo et al., 2022; Eldosouky et al., 2023). In this depth range, the permeability of the rocks is relatively low due to processes of groundwater dissolution which are minimal, and DFN is needed to unravel the amount of heat that can be extracted, and economically feasible by studying the rock mass at a scale small enough (cubes of 0–3 km of length) (Müller et al., 2010; Medici et al., 2018). The DFN approach (Figure 1) is also fundamental in Enhanced Geothermal Systems (EGS) to produce geothermal fluids from igneous and metamorphic HDR that are characterized by particularly low permeability due to a reduced hydraulic connectivity of the natural fracturing network (Lu et al., 2023). In this framework, fluids are injected at a pressure that could reactivate pre-existing fractures or create new ones. EGS allows to (i) rise the fracture connectivity and hence the permeability of the reservoir, and (ii) increase the flow-surface contacts to favour heat exchange between rock and injected fluid (Breede et al., 2013; Kong et al., 2014; Jain et al., 2015; Wu and Li, 2020). By contrast, the Equivalent Porous Medium (EPM) is more commonly used to model flow and heating at much shallower depths to manage low-enthalpy geothermal resources (Figure 1). EPM models can be used to model transfer of heat plumes. Such EPM models allow reproducing both the conductive and advective heat transport by groundwater in the shallow subsurface for the planning of heat pumps (García-Gil et al., 2020; Abesser et al., 2021). EPM and DFN approaches shown in Figure 1 can also be used in the same geothermal project. In fact, in a variety of EGS projects, a DFN is used to estimate the permeability in three dimensions by defining the tensor. Then, this information on the permeability tensor can be transferred to EPM models that will be anisotropic for flow applications in geothermal reservoirs of medium and high enthalpy nature (Janiga et al., 2022; Ma et al., 2022).
[image: Figure 1]FIGURE 1 | EPM vs. DFN modelling in low, medium and high enthalpy geothermal energy.
Some of the techniques described in this research to inform DFN models are common to the rock mechanics sector due to the importance of rock discontinuities on the stability of rock engineering infrastructures (Shang et al., 2016; Schilirò et al., 2022), the excavation of rock caverns for the storage of liquefied natural gas (Xiao et al., 2019), and the mining and oilandgas sectors where fractures play a role in the extraction of fluids (Bauer and Tóth, 2017). Therefore, this review is primarily addressed to a public of experts in geothermal energy, although a wider range of geoscientists may also find it of interest.
A look at recent literature that summarizes current knowledge of DFN with a focus on geothermal resources reveals a special issue (Mazzoli, 2022) with nine contributions that examine the link between structural geology and extraction of fluids. All nine contributions describe the tectonic structures of reservoir analogues (Filipovich et al., 2020; Bossennec et al., 2022; Dragoni and Santini, 2022), the fluid-rock interaction (Liotta et al., 2021; Gudmundsson, 2022), and heat flow computing and mapping (Santini et al., 2020; 2021; Majorowicz, 2021; Majorowicz and Grasby, 2021). Previous reviews in the field of geothermal energy have focused on the exploration of specific regions characterized by elevated geothermal gradients (e.g., Minissale, 1991; Breede et al., 2013; Manzella et al., 2018; Majorowicz, 2021). Other attempts to review the literature on geothermics have focused on numerical modelling of single and dual porosity systems, and description of machine learning techniques (Hayashi et al., 1999; Axelsson, 2010; Okoroafor et al., 2022) or combining different approaches to flow modelling (discrete fracture network, equivalent porous medium, and conduit) in specific lithologies (Selroos et al., 2002; Medici et al., 2021). By contrast, this review will be the first one to describe exclusively technological and experimental techniques that inform DFN in geothermal frameworks in a variety of lithologies with cut-off to the end of the year 2023 (Figures 2, 3).
[image: Figure 2]FIGURE 2 | Outcrop exposures of fractured rocks at cliffs. (A) Cretaceous Limestone on the Tyrrhenian Sea in southern Latium, Italy, (B) Miocene volcanic rocks of the Columbia River Basalt Group at the Palouse Falls, Washington, United States.
[image: Figure 3]FIGURE 3 | Outcrop exposures suitable for scanline surveys along orthogonal axes in different lithologies. (A) Triassic Sandstone on a disused quarry at the Fleswick Bay in NW England, (B) Creteceous Limestone at Terracina in Central Italy along a road cut, and (C) Dolostone and shale at the Reformatory Quarry at Guelph, Ontario, Canada.
In summary, analysing structural, remote sensing, geomechanical, hydro-geophysical methods, this review provides guidelines for defining the physical parameters used to inform DFN flow models of geothermal reservoirs discerning advantages/limitations and conditions of application of the methods. Specific research objectives are to provide descriptions of: (i) scanline and Unmanned Aerial Vehicles surveys to determine orientation, density, and length of fractures, (ii) combinations of Acoustic Televiewer logging and seismic attributes to guide stochastic generation of a DFN, (iii) hydro-geophysical techniques for determination of hydraulically active fractures and hydraulic apertures, and (iv) collection of geomechanical parameters for generation of a DFN.
2 FRACTURE NETWORK CHARACTERIZATION
2.1 Scanline survey
Scanline surveys are used to characterise the network of rock discontinuities in outcrops (e.g., road cuts, quarries) that represent an analogue of the reservoir. The geometries of the fractures are measured in outcrop assuming a tectonic history sufficiently similar to enable comparison in terms of fracture density and persistence (Bauer et al., 2017). The methodology consists of recording dip angle and direction, position along the line, length, mechanical aperture and tortuosity of the rock discontinuities. The tortuosity is defined as the ratio between the length of the curve and the distance between its ends and is rarely measured by surveyors. Instead, surveyors record this parameter by assigning an index, and therefore the measurement is semi-quantitative (Tsang, 1984; Hitchmough et al., 2007).
Using scanline surveys to determine geometrical characteristics of joints, fractures, stylolites and bedding plane discontinuities has many advantages (Billi et al., 2003; Lemieux et al., 2009; Lancia et al., 2020). Firstly, by performing the survey on orthogonal rock walls measurements can be performed in the three dimentions (two horizontal lines, and one vertical) which match fracture network models that incorporate the third spatial axis. The performance of a single horizontal scanline on a vertical face may fail to detect small size discontinuities or those that are roughly parallel to the scanline or concealed, resulting in bias during sampling (Shang et al., 2018). To avoid bias, the condition of having orthogonal walls is commonly chosen at quarries (Figures 3A–C), and under this condition the majority of literature on this specific topic has been produced (e.g., Wealthall et al., 2001; Hitchmough et al., 2007; Lemieux et al., 2009; Agosta et al., 2010; Medici et al., 2016). Secondly, the potential to record parameters along both vertical, and horizontal lines reduces or eliminates bias by sampling discontinuities that are characterized by a range of dipping angles (see conceptual scheme in Figures 4A, B). Thirdly, this methodology allows the measurement of the length of the rock discontinuities that cannot be measured directly in boreholes (Aydin, 2000; Bauer et al., 2017; Lepillier et al., 2019; 2020).
[image: Figure 4]FIGURE 4 | Proportion peaked (thick lines) and un-peaked (thin lines) fractures as function of the methodology and the orientation of the borehole or scanline. (A) sub-horizontal scanlines, (B) vertical boreholes or scanlines, and (C) inclined borehole.
However, scanline surveys that are performed to represent the fracture network of geothermal reservoirs have some limitations. The mechanical aperture does not fit the aperture of the reservoirs. This issue occurs for the enhancement of the aperture due to an unconfined free face at quarries and road cuts (Kana et al., 2013). Weathering can also enlarge the mechanical aperture. The lithostatic load is much higher in reservoirs buried at depths between 0.5 and 5 km. The tectonic history of outcropping rock can differ from the same rock buried in the subsurface, therefore the outcropping rock might show a different pattern of rock discontinuities (Aydin, 2000; Guerriero et al., 2011; Vitale et al., 2012). Scanline surveys are also characterized by a degree of subjectivity. Indeed, surveyors that performed a scanline in the same position multiple times produced each time different results (Hitchmough et al., 2007).
Of note, some authors have introduced a simplified approach named “fast scanline” that exclusively incorporates information on dip angle and direction, and position along the line, thereby reducing the scan time (Carminati et al., 2014). This fast approach should be discarded for scanline surveys used to reconstruct of the three dimensional pattern of rock discontinuities. The length of rock discontinuities is a fundamental parameter that must be recorded in an outcrop in a DFN research project. By contrast, neglecting the mechanical aperture may be acceptable due to the non representativity of that parameter in the outcrop (Bauer et al., 2017). The tortuosity can also be neglected by choosing to build DFN flow models in three dimensions with tabular discontinuities.
Dip angle and directions, position and length of the fracture can also be extrapolated from LiDAR scan tests using tablets in the field (Apple iPAD, iPAD Pro and iPhone 12 Pro). This method is faster than traditional scanline tests and provide accurate geometrical data (Tavani et al., 2022; Allmendinger and Karabinos, 2023). However, the limitation of technologically scanning an outcrop without measuring each rock discontinuity consists on loosing detail on recognizing geological nature (e.g., bedding planes vs. stylolites).
2.2 Unmanned aerial vehicle
In practice, substantial parts of rock outcrops are not accessible for structural scanlines. To sidestep this issue, unmanned aerial vehicles (UAV; Figure 5) are used to acquire information on the geometries of the fractures at cliffs such as those shown in Figure 2, where surveyors either cannot walk or transport equipment on top. UAVs are characterized by their megapixel photosensors, and are therefore capable of collecting numerous (∼102–103) photos of the outcrop with a certain percentage (e.g., 70%) of spatial overlap. After the photos have been taken, the next step is to extract information on the geometry of rock discontinuities by manual digitalization of joints, bedding planes, and faults (Binda et al., 2021). The UAV for applications in geosciences are characterized by different airframes polystyrene, plastic, aluminum, and carbon fiber for the most modern (Giordan et al., 2020). All the rock discontinuities are rigorously georeferenced, and the described approach allows for the collection of information on dip angle and direction, and the density of fractures. This information is equivalent to data obtained from structural scanlines acquired in road cuts and quarries. Consequently, the statistics on the fracturing network obtained from structural scanlines and from UAV can be integrated as proposed by Smeraglia et al. (2021). These authors combined information from scanline surveys on road cuts with fracture statistics from UAV photos of the unaccessible portion of a cliff that is characterized by Cretaceous limestones. The information acquired by combining structural surveys on road cuts and UAV photogrammetry was used to generate DFN models of faulted and host-rock blocks using the MOVE Software Suite. Using the same suite, DFN models of fractured Mesozoic limestones in southern Italy were generated by Giuffrida et al. (2020), combining structural analysis in the field with the extraction of geometrical fracture data from an UAV as the one shown in Figure 5.
[image: Figure 5]FIGURE 5 | UAV survey to extract fracture statistics on the pavement of fractured dolostone at Guelph, Ontario, Canada.
Furthermore, statistics on fracture geometry extracted using UAV has been recently used by a variety of authors on different lithologies. Francioni et al. (2020) extracted fracture statistics from a UAV survey to generate a 3D DFN model of marls and limestone of the Jurassic Age in the Abruzzi region in the area of Scanno Lake. A DFN model in three dimensions has also been generated using a UAV survey in the Triassic granites of the Gonghe Basin in China in the framework of a high enthalpy geothermal project for the development of an EGS system (Zhang B. et al., 2022).
UAV surveys for the generation of 3D DFN models have also been used on the Cretaceous limestones of the Sorrento Peninsula in southern Italy (Schilirò et al., 2022), the Jurassic marble of the Apuan Alps in central-western Italy (Salvini et al., 2017), the Cretaceous sandstone in northern Togo (Akara et al., 2020), and the Triassic sandstone near Sydney in Australia (Tuckey, 2022). Of note, UAV surveys similarly to LiDAR tablets show a limitation on discerning the geological nature of the rock discontinuity.
2.3 Borehole images
Optical (OTV), Acoustic televiewer (ATV) and Fullbore formation microimager (FMI) images show continuous views of the borehole wall, and allow to record dip direction and angle, and position along the borehole in fractured rocks. Dip direction and angle can be determined by structure peaking after acquisition and processing of the dataset (Williams and Johnson, 2004). The position of the rock discontinuities along the borehole allows determining the fracturing intensity that is a required parameter to build DFN models in three dimensions (Guo et al., 2022; Xiao and He, 2022).
Notably, OTV and ATV logs provide the same information, although differences have been detected by applying the two methods. Fractures are more clearly defined under a wider range of conditions on ATV images than on OTV images including dark-coloured rocks, cloudy borehole water, and coated borehole walls. Hence, the most important dataset to build DFN models is the one from ATV. A high resolution example of ATV is the Schlumberger Ultra Sonic Borehole Imager (UBI) that is commonly used in medium and high enthalpy geothermal systems. This type of ATV is characterized by an azimuthal resolution of 2°, vertical resolution from 0.2′ to 1.0′ depending on the pulse frequency (Genter et al., 1997; Gaillot et al., 2007). However, OTV images allow for the direct viewing of the type of fracture, and relation between lithology, fractures, foliation, and bedding (Williams and Johnson, 2004; Medici et al., 2016; Medici et al., 2019b). Therefore, the most powerful approach is the combined application of imaging, by using ATV to determine the orientation of the fractures and OTV to interpret its nature (e.g., distinguish a stylolite from an open bedding plane fracture). The FMI tool is also used in geothermal fields to determine the orientation of the fractures. This wireline tool works by emitting a focused current from the four pads of the logging tool into the geological formations. The intensity variations of the electrical resistivity are measured and provide an image of the rock walls. The FMI provide the same output of OTV and ATV logs, but it is preferred in water based mud wells that can occur in fluivial and turbidite deposits (Bauer et al., 2017).
The principal advantage of OTV, ATV, and FMI logs with respect to traditional scanlines, LiDAR scan tests and UAV surveys is the opportunity to acquire the dataset directly in the geothermal reservoir. The ATV log also provides the value of mechanical aperture due to the fact that open discontinuities are characterized by low amplitude and travel times of the acoustic waves. However, the aperture highlighted by the acoustic televiewer is much higher than the real hydraulic aperture (the necessary parameter for DFN flow models) as demonstrated by Maldaner et al. (2018) in a Silurian fractured aquifer of carbonate origin in Ontario.
Data on the fracturing intensity are affected by bias especially when only vertical wells are used in the geothermal projects (Terzaghi, 1965; Lato et al., 2010; Andrews et al., 2019). In fact, vertical wells tend to pick low (0°–30°) angle discontinuities if the stratigraphy is characterized by sub-horizontal beds as illustrated in Figure 4A. To address this issue, the presence of inclined (or deviated) wells with a plunge of 60° from horizontal allows picking a higher proportion of sub-vertical joints (Figure 4C; Munn et al., 2020). The inclined boreholes have on average, a 20% proportion of sub-vertical (50°–90°). This proportion is lower, 6% by arithmetic average, in the vertical boreholes that are biased towards the sub-horizontal discontinuities (Figure 4A). Therefore, the presence of vertical and inclined wells provide more robust statistics on fracturing intensity to build Discrete Fracture Network (DFN) models.
2.4 Seismic attributes
The use of seismic attributes is used to generated 3D DFN models due to their capability to detect the principal trends, and presence of faults that can represent preferential flow pathways for the geothermal fluids (Bense et al., 2013; 2016; Schneider et al., 2016; Cho et al., 2019; Marchesini et al., 2019; Cho, 2021; Fadel et al., 2022; Huang et al., 2022; Xing et al., 2022; Zhang E. Y. et al., 2022; Chiodini et al., 2023).
An integrative workflow to the characterization of the 3D network of fractures have been recently developed in the Cretaceous Danish Chalk in the North Sea (Aabø et al., 2005; Aabø et al., 2023; Smith and Welch, 2023). This approach is based on reservoir data from ATV borehole images, cores and seismic attributes (Aabø et al., 2005). ATV and core data provide information on fracture orientation from a variety of wells. Seismic attributes are capable to detect the principal trends of fractures and faults of the reservoirs. The scale-gap between the data sets is bridged by the introduction of two antracked attribute volumes, which display structural trends below the resolution of amplitude seismic. Further insight into the geometries of subsurface fracture systems is obtained from fracture density logs from ATV/OTV/FMI and cores, which provide an opportunity to study spatial distribution of fractures as well as a qualitative measure of fracture clustering. Cumulative density distribution plots and calculation of the variation coefficient of fracture spacing provide a more quantitative analysis of the fracture distribution (Aabø et al., 2005). These results have served as inputs into discrete fracture network models that have been then stochastically generated using the new DFN Generator v2.0 now available as a plugin in Petrel (Welch et al., 2022; Welch, 2023).
3 HYDRAULIC CHARACTERIZATION
3.1 Cubic law
DFN models that are used to simulate flow require input values from fracture intensity, length and orientation from outcrop and borehole image (ATV, OTV, and FMI) logs and the apertures of the rock discontinuities. The latter parameter, which represents the aperture of a parallel walled fracture, is the most important parameter when simulating flow in a DFN framework, and is directly proportional to the permeability of the rocks. Indeed, highly permeable rocks are characterized by an elevated number of fractures with large hydraulic aperture (Oron and Berkowitz, 1998; Dijk et al., 1999; Berkowitz, 2002). The hydraulic aperture (see conceptual scheme in Figure 6A) is assumed to be a smoothed parallel plate in DFN flow modelling in a variety of numerical codes such as dfnWorks, TOUGH2, MAFIC, and PFLOTRAN (Zhang and Yin, 2014; Hyman et al., 2015; Ji and Koh, 2017; Romano et al., 2020). This assumption is related to the fact that two straight lines represent the lower and upper bounds of the modelled fracture. The straight lines average the peaks and valleys of rough real walls of joints and bedding plane fractures (Figures 6A, B; Renshaw, 1995). Hence, given this assumption, the hydraulic aperture (b) is expressed by Eq. 1 based on the implementation of the cubic law assuming a laminar flow (Romm, 1966).
[image: image]
where T is the screened interval transmissivity, g is the gravitational acceleration, v the kinematic viscosity of hot water in the geothermal reservoir, and N the number of flowing fractures intersecting the screened interval. Screened interval transmissivity (T) is determined by a well test, and is the product of the rock hydraulic conductivity and the packer screen length. Given the fact that there is no need to experimentally determine g and v, geophysically determining “b” means characterizing the transmissivity of the fractured rock using well tests, and detecting the number of hydraulically active fractures using either standard fluid logging or more advanced techniques (Romm, 1966; Haffen et al., 2013). In a DFN framework for geothermal energy production, all the rock discontinuities need to be represented in the 3D domain even though not all of them are hydraulically active. In fact, inactive fractures can represent either boundaries that can influence the flow, or surfaces of mechanical weakness that play a role in the development of EGS systems of igneous and metamorphic origin (Caulk and Tomac, 2017; Förster et al., 2018; Freitag et al., 2022). Reliable models of 3D networks of fractures are fundamental in EGS systems to predict the new framework of rock discontinuities after the injecting of fluids at high pressure. This engineering process changes the pre-existing fractures by enhancing their (i) length, (ii) degree of connectivity, (iii) transmissivity, and (iv) storativity as geothermal reservoirs (Lepillier et al., 2019; Abe and Horne, 2023).
[image: Figure 6]FIGURE 6 | Hydraulic aperture in fractured rocks. (A) Smooth parallel plate vs. rough walled models, and (B) real mechanical aperture.
3.2 Well tests
A variety of well tests are used to determine the transmissivity of deep saline aquifers that host medium and high enthalpy geothermal resources in lithified sedimentary rocks. Boreholes are typically characterized by multiple packers in deep (∼0.15–∼2.0 km) saline aquifers, and the Westbay technologies proposed by Schlumberger can be used at such elevated depths in hydrothermal reservoirs (Streetly et al., 2000; Streetly et al., 2006; Senel et al., 2014; Streetly and Heathcote, 2018).
Constant flow rate pumping tests provides T by analysing the drawdown, which is a fundamental parameter in the determination of the hydraulic aperture using Eq. 1. The recovery phase (flow rate equal to zero after shutting off the pump) can also provide an estimate of T that should approximate the result of the drawdown in a reliable test (Hantush, 1966; Saleem, 1970; Medici et al., 2016). Additionally, constant head step tests accurately identify the extent of the Darcian flow and are also used to determine T by analysing the drawdown. Therefore, “b” can be extrapolated by analysing the drowdown. Such tests are characterized by raising the flow rate in at least four steps, before shutting off the pump (Clark, 1977; Birsoy and Summers, 1980; Kawecki, 1995; Lennox, 1996). The T value from the step test analysis can also be crossed with the T value from the recovery. Additionally, in this case, reliable tests are characterized by very similar T values from the drawdown step and the recovery phase. Notably, T values from the recovery phase neglect the well loss correction, and can therefore be 20% lower than T values obtained from the more reliable step recovery analysis (Eden and Hazel, 1973; Clark, 1977; Mathias and Todman, 2010). A correction that accounts for the density changes due to the temperatures, and viscosities of geothermal fluids has recently been proposed to determine transmissivity from constant flow rate, recovery and step tests (Klinka and Gutierrez, 2020). The correction arises from the fact that traditional methods for analysis of pumping tests (e.g., Hantush, 1966; Eden and Hazel, 1973; Clark, 1977; Birsoy and Summers, 1980) are suitable in shallow aquifers which are characterized by lower temperatures and different density with respect to geothermal fluids.
3.3 Borehole geophysical logging for fluids
Borehole geophysical logging techniques are used to determine the number of hydraulically active fractures (N) in a packer interval to determine the hydraulic aperture using Eq. 1, which is derived using the cubic law (Romm, 1966). The most common approach is to combine fluid temperature, electrical conductivity and velocity logs to detect either inflow or outflow points using flow meters (Hicks and Berry, 1956; Paillet and Pedler, 1996; Paillet et al., 2002; Bixley et al., 2009; Massiot et al., 2015; Wight and Bennett, 2015; Blöcher et al., 2016). By crossing this information with optical and acoustic televiewer images that show the fractures at flowing points the number (N in Eq. 1) of hydraulically active rock discontinuities that enable fluid flow is determined. The transmissivity is known from well tests performed in Westbay packers that are located at different depths. Hence, the hydraulic aperture is determined by using Eq. 1 at a variety of depths in the subsurface, and DFN flow models can be rigorously informed.
A more innovative approach that can be used to determine the number of hydraulically active fractures in deep saline aquifers is Active Line Source (ALS) temperature logging. The ALS temperature logging data from inside a FLUTe™ lined borehole must be collected and processed as described by Pehme et al. (2013) to generate thermal deviation logs where each aberration in the deviation log represents a change in temperature that suggests a fracture with active flow. After the addition of heat along a cable deployed into the static water column inside the liner, a high-resolution temperature probe with a specific resolution of 10−4°C is used to measure temperature variability. The ALS temperature logging method is considered a qualitative log that identifies very small temperature deviations that have been shown to correspond to active flow (Pehme et al., 2007; 2013). This methodology is highly sensitive, and capable of detecting all the flowing fractures needed to determine N, and therefore the hydraulic aperture using the derivation of the cubic law expressed in Eq. 1. Fibre optic sensing-based solutions produced by Silixa are also suitable for temperature monitoring and detection of the number (N) of hydraulically active fractures in geothermal reservoirs (Stork et al., 2020).
Aside from the technology used for detection of hydraulically active rock discontinuities, a percentage (approximately 100%) of flowing fractures characterize the geothermal reservoirs of igneous and metamorphic origin under pumped conditions. These types of rocks show a low permeability intergranular porosity in the un-fractured blocks (Szanyi, J. and Kovács, B., 2010; Randolph and Saar, 2011; Agemar et al., 2014; Medici et al., 2018). In the latter case, the hydraulic conductivity of the intergranular pores can be neglected in DFN (single permeability geothermal reservoirs), but all the fractures of the network are active and need to be included in the flow model. In contrast, geothermal reservoirs of sedimentary origin (e.g., porous carbonates, not tight sandstone) are characterized by a relatively permeable matrix (dual permeability geothermal reservoirs), and the percentage of hydraulically active fractures range from 20% to 80% of the total under pumped conditions (Tellam and Barker, 2006; Quinn et al., 2015; Goupil et al., 2022). Therefore, the permeability of the matrix blocks should not be neglected in the latter case by embedding the discrete fractures in a porous matrix. The permeability of the matrix can be measured in the laboratory by using a mini-permeameter to test rock samples from cores (Shafiq and Mahmud, 2017; Cant et al., 2018; Bohnsack et al., 2020; Fazio et al., 2021).
4 GEOMECHANICAL CHARACTERIZATION
Collection of geomechanical parameters is also needed to build DFN models in EGS systems in igneous and metamorphic rocks. Uniaxial Compressive Strength, Poisson’s ratio, and Young’s modulus need to be determined in the laboratory by using either analogous outcropping rocks, or core samples (Bozzano et al., 2012; Torabi et al., 2018; Shang, 2020; Fiorucci et al., 2020; Marmoni et al., 2020). Of note, outcropping rocks provide different Uniaxial Compressive Strength and Young’s modulus values respect to the same geological formations cored from the geothermal reservoir. The discrepancy can be up to 50%; the samples from the outcrop are mechanically weaker than those of the reservoir due to the weathering effects on cliffs, quarry walls and road cuts (Bauer et al., 2017). The above mentioned mechanical parameters (compressive strength, Young’s modulus, and Poisson’s ratio) ideally need to be determined using triaxial compressive tests. These mechanical tests are characterized by lateral confinement and a longer duration than uniaxial tests. Such conditions induce the samples to be either more ductile or closer of the mechanical behaviour of the subsurface under triaxial forces (Mogi, 1971; Li et al., 1999; Sari and Karpuz, 2006).
The most reliable approach to the geomechanical characterization of a geothermal reservoir is therefore characterize compressive strength, Young’s Modulus and Poisson’s ratio running mechanical tests with lateral confinement of samples cored from the reservoir. These geomechanical parameters must be determined on both intact and fractured samples. An intensively fractured geothermal reservoir is assumed being characterized by geomechanical parameters closer to the fissured samples selected from the core cuts (Villeneuve et al., 2018; Rosberg and Erlström, 2021; Freitag et al., 2022).
Determining representative Young’s Modulus and Poisson’s ratio values for an high enthalpy reservoir is fundamental to estimate the mechanical aperture as function of the stress field under natural conditions. Following this geomechanical approach, the hydraulic aperture is also function of the orientation of the fractures with respect to the principal stress tensor, σ1. Indeed, more elevated angles between the direction of the σ1 and the fractures provide lower values of mechanical apertures due to interplays of dilatational and shear forces (Bisdom et al., 2016; 2017). This information on the mechanical aperture need to inform DFN models (Romano et al., 2020; Rosberg and Erlström, 2021; Freitag et al., 2022). Recent and promising research focuses on determining the Young’s modulus value directly from the reservoir studying the acoustic impedance from ATV logs; this approach is either alternative or integrative to geomechanical testing in the laboratory of cored samples (Raef et al., 2015; Roshan et al., 2023).
Fractures in DFN models are typically assumed smoothed (Figure 6B), although the roughness can reduce the permeability at least in systems characterized by a low degree of mechanical connectivity (Berkowitz, 2002). Joint Roughness Coefficient (JRC) also needs to be characterized in the laboratory on cored samples to inform DFN models in geothermal reservoirs using laser profilometers (Lee and Ahn, 2004; MŁynarczuk, 2010). Alternatively, some authors build DFN models (Figure 1) of geothermal reservoirs reducing the aperture of smoothed fractures that was previously estimated from either hydraulic or geomechanical methods. This correction is not rigorous, but can be a straightforward solution accounting for the roughness of the fractures that reduce either the permeability of the reservoir, or favour heat dispersion in EGS (Fox et al., 2015; Lima et al., 2019; Kittilä et al., 2020a; b).
5 DISCUSSION
5.1 Fracturing network reconstruction
A variety of structural (scanline surveys), remote sensing (UAV), and geophysical (OTV/ATV/FMI images, seismic attributes) methods have been recently developed to generate reliable DFN models (Aabø et al., 2005; Antonellini et al., 2014; Giuffrida et al., 2020). Here, we discuss all together these geological and geophysical techniques for geothermal reservoir characterization. Note that, a summary table (Table 1) has been proposed to summarize the characteristics of scanline surveys, borehole images, and seismic attributes.
TABLE 1 | Summary of the techniques used for construction of the fracturing network with information of the object characterized, depth of investigation and the spatial scale.
[image: Table 1]Scanline and UAV surveys have recently been combined to generate DFN models in the outcropping fractured limestone in Central and Southern Italy. These carbonate rocks represent excellent analogues for the geothermal and hydrocarbon reservoirs buried in the subsurface (Giuffrida et al., 2020; Smeraglia et al., 2021). In northern Europe, other researchers propose to combine core data, seismic attributes and acoustic/resistivity images to stochastically generate a DFN afterwards (Aabø et al., 2005; Welch et al., 2022; Smit and Welch, 2023). Of note, once again a holistic approach to a DFN project has been proposed by the geoscience community.
Scanline and UAV surveys of reservoir analogues and the seismic attributes of the effective reservoir make a DFN stochastic generation more reliable. Scanline and UAV surveys provide information on the length of the fractures, and seismic attributes have the unique advantage to bridge the gap between borehole and reservoir scales (Table 1; Salvini et al., 2017; Lepillier et al., 2020; Aabø et al., 2005Aabø et al., 2005; Smeraglia et al., 2021). Acoustic and resistivity image logs acquire data directly from the reservoir (Table 1), and therefore provide the effective orientation of the fractures. Geophysical logging and seismic attributes should be used to determine the orientation of the fracture sets; meanwhile scanline and UAV surveys are needed to determine the length of the principal and secondary sets.
Overall, this paper envisions a future in which researchers combine geophysical techniques, and structural geology surveys in the field to build robust models of the fracturing network. The above described spatial representation of the discrete fractures also supports a rigorous determination of the hydraulic aperture. In fact, this aperture (Figure 6A) depends upon multiple factors including the orientation of the fractures with respect to the stress field tensors σ1, σ2, and σ3 (Bisdom et al., 2016; 2017; Turner et al., 2017; Boersma et al., 2021).
5.2 Hydraulic aperture determination
The ATV logs have also been taken into account by researchers to either determine the Young’s modulus of the reservoir rock, or detect the number of hydraulically active fractures in geothermal reservoirs. The latter information needs to be combined with pumping tests in discrete packers to determine the values of the hydraulic apertures that are necessary to move forward to flow modelling (Romano et al., 2020; Medici et al., 2021). Therefore, the efforts in terms of data collection to support flow modelling in a DFN framework also involve ATV/OTV/FMI borehole logging, fluid logging, and pumping tests. Hydraulic testing is more feasible in medium and high enthalpy reservoirs in lithified sedimentary rocks, since such highly layered and fractured rocks tend to be more permeable than igneous and metamorphic lithologies (Clauser, 1992; Younger et al., 2012; Zhang, 2013). The latter two types of rocks characterize EGS-HDR systems; in these geothermal reservoirs, the apertures of the fractures are estimated by the mechanical properties (Poisson’s ratio, and Young’s modulus), and they vary as functions of the lithostatic load (Bisdom et al., 2016; 2017). This approach arises from the low permeabilities of basement rocks that impede pumping tests during the exploration phase before the injection of fluids to increase the connectivity of the fractures (Abe and Horne, 2023).
Hence, all the described structural, remote sensing, geophysical, geomechanical and hydraulic datasets seem fundamental to generating reliable models of the fracturing network and then moving forward to simulating flow by introducing the hydraulic aperture (Figure 6A). To the authors’ knowledge, the techniques described in this review have been combined exclusively in small groups with few components (e.g., outcrop scan lines with fracture statistics from UAV, OTV/ATV/FMI images with seismic attributes, and fluid logging with ATV images). This review therefore points the geothermal community towards a larger combination of the discussed techniques in future E&P projects to optimize recovery of hot fluids by using DFN to either (i) represent the fracturing network in three dimensions, or (ii) estimate the hydraulic aperture.
5.3 Workflow and future research scenarios
The proposed research has described a variety of geological, geophysical, hydraulic and geomechanical techniques that can be used to investigate geothermal reservoirs at a variety of scales to inform DFN models of permeability and flow. These techniques can be summarized in two workflows for hydrothermal systems (Figure 7A) and enhanced geothermal systems for the extraction from HDR (Figure 7B). The workflows are different because some techniques cannot support extraction of fluids from both types of geothermal systems. Fluid logs and pumping tests cannot be applied to HDR due to the particularly low hydraulic conductivity of igneous and metamorphic rocks at depths (∼0.5–2 km) accessed during this investigation (Kittilä et al., 2020a; b). Therefore, the cubic law cannot be applied to estimate the hyadraulic aperture of a DFN in such reservoirs (Figure 7B). Another key difference is that the above described techniques can be directly transferred into the DFN flow models that guide the production of fluids in hydrothermal reservoirs. Such models are highly reliable because they integrate all the structural geology, geophysical and hydraulic tests shown in Figure 7A. Therefore, the need to fund research focused on data collection appears to be crucial to support geothermal production in naturally fractured sedimentary rocks that host hydrothermal reservoirs.
[image: Figure 7]FIGURE 7 | Workflows to build a DFN for flow in a geothermal framework. (A) Hydrothermal, and (B) HDR reservoirs.
A different scenario and area for future research appear from the workflow shown in Figure 7B for HDR of igneous and metamorphic origin. Three steps of modelling are necessary after collection of fracture data in the field, borehole geophysical logging, and geomechanical data to determine the hydraulic parameters needed to move forward to production of geothermal fluids. Researchers need to build a DFN for flow determining the mechanical aperture through numerical medelling (Figure 7B; Bisdom et al., 2016; 2017). Additionally, either before fluid injection, or after by accounting for the enhanced fracturing pattern modelling is involved in the workflow. This review therefore shows that several datasets need to be collected to enable production of fluids in HDR systems. In these reservoirs (Figure 7B), collection of data need to be more heavily integrated with numerical modelling research that can be funded by governments and agencies.
6 CONCLUSION
Geothermal reservoirs modelling is challenging in a DFN framework due to the complexity of the structural geology, and the range of geomechanical and hydro-geophysical techniques required to represent fluid flow in heterogeneous geological media. This review for the first time summarizes different datasets while also discussing advantages/limitations and the potentialities of their combinations. The findings in this paper for DFN characterization will support models for the production of geothermal fluids, and can be summarized in the following five key points:
1. Structural scanlines and fracture statistics extracted from UAV surveys on outcropping analogues of reservoirs are the only approaches that provide the length of joints, bedding planes, and faults; these parameters guide and facilitate the stochastic generation of DFN models in lithified sedimentary, igneous, and metamorphic rocks.
2. The combination of ATV/FMI images and seismic attributes has also been proven to be an excellent approach that supports the stochastic generation of DFN models. The ATV/FMI images provide the only way to acquire orientation and the density of the fractures in the reservoirs, and the seismic attributes reveal the dominant trends of the joints and faults. Authors therefore envisage researchers to combine ATV logs images and seismic attributes with information from outcrop scanlines to acquire information on either the orientation or length of the fractures.
3. Computation of transmissivities from pumping tests and the number of hydraulically active fractures allows the hydraulic aperture to be determined; the aperture is a fundamental parameter that is needed to simulate flow in a network of discrete fractures. Pumping tests are used to compute the transmissvities in hydrothermal reservoirs, and the combinations of ATV logs and fluid temperature, and of electrical conductivities and velocity logs, determine the number of hydraulically active fractures.
4. Researchers need to determine geomechanical parameters (roughness, Young’s modulus, Poisson’s ratio, and compressive strength) and estimate the apertures of rock discontinuities to inform DFN models in EGS/HDR. This information needs to be determined by laboratory testing on either intact or fractured samples of igneous and methamorphic rocks cored from the geothermal reservoir, and transferred to fractures that are correctly oriented with respect to the stress field.
5. Combinations of scanline surveys, fracture statistics from UAV, seismic attributes, geomechanical surveys, fluid logging and pumping tests still need to be evaluated by researchers before the parameters obtained from these techniques can be used for DFN flow modelling. This combination of technique has the potential to significantly improve fluid recovery in geothermal reservoirs.
Overall, networks of joints, bedding planes, and faults highly control fluid flow in deep saline aquifers and Hot Dry Rocks that host critical geothermal resources worldwide. Structural geologists, hydrogeologists, and reservoir engineers can find information in this review article on all the techniques used to characterize geothermal reservoirs as part of the preparation process for developing robust DFN flow models.
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The present work used the electrical resistivity approach to conduct a three-dimensional modeling and initial volume estimation of the limestone layer in the Mintom region located in southern Cameroon. In order to achieve the objectives of the study, a total of 21 electrical soundings spaced 250 m were first collected in the field using the Schlumberger array. These soundings were conducted along three profiles oriented in an east–west direction, spaced 500 m. Additionally, a geological survey was conducted to identify and emphasize the presence of limestone formations within the designated study region. The interpretation of the sounding data was conducted based on the analysis of the sounding curves. The interpretation outcomes, specifically resistivity and thickness, were compared with the geological field data, resulting in the development of lithostratigraphic logs for each sounding. The geological sections were constructed using the logs of the designated profile. The lithological logs were utilized to establish a lithological interface model and calculate the volume of the limestone layer at 260 ± 13 × 106 m3, utilizing the inverse distance method built into RockWorks software. A resistivity value is assigned to each geological layer in a sounding curve, allowing for the development of a resistivity variation model specific to the limestone layer. The proposed model facilitates the categorization of limestone layers based on their resistivity variations, thus serving as a fundamental reference for prospective exploratory activities within the designated study region. Our integrated approach provides a replicable model for a better understanding of the limestone reserve and effective management of this valuable resource.
Keywords: electrical sounding, modeling, estimation, inverse distance, limestone layer
1 INTRODUCTION
Limestone serves as a primary constituent in the production of cement. Additionally, it has the potential for utilization in the production of asphalt filler, ceramics, flux in glass manufacturing, fertilizer filler, and various other applications (Fatoye and Gideon, 2013). Generally, carbonate rocks are well recognized as significant host rocks for hydrocarbon reserves on a regional scale. According to the work of Carrera et al. (2018), carbonate reservoirs are estimated to have approximately 60% of the global oil reserves and 40% of the gas reserves. Furthermore, it should be noted that carbonates, specifically limestone, are known to constitute some of the most highly productive groundwater aquifers found on earth. The unusually high transmissivity of the phenomenon can be attributed to the development of secondary porosity and permeability, as discussed by Fryar (2021). Limestone and marble serve as primary constituents to produce cement and represent vital resources for nations experiencing rapid growth (Anakwuba et al., 2018). Several African countries are making positive efforts to promote the rapid growth in the mineral and non-oil sectors and expand agricultural activities. Many research investigations have been conducted to examine the reserves, purity, engineering characteristics, and economic importance of limestone, owing to its significant global economic significance. According to the work of Gusman et al. (2019), limestone is a primary and predominant constituent in the cement manufacturing process, requiring appropriate quality to ensure the production of high-quality cement products. In another recent study, Osman et al. (2022) employed a comprehensive approach that incorporated many datasets and methodologies to investigate the detailed structural, petrophysical, and facies properties of the Brown Limestone formation located in the Geisum oil field of the Gulf of Suez. Their aim was to precisely determine the complicated geometry of these features in a three-dimensional context. Mallick et al. (2020) employed the inverse square distance weighting and standard kriging techniques to estimate the limestone reserve for the mining business. Hassan (2022) made an assessment to determine the limestone reserve in the Nfayil Formation, with the purpose of evaluating its potential utilization in engineering projects, construction, and industrial applications. Hence, the research collectively demonstrates the significant economic value associated with limestone deposits worldwide.
The Mintom limestone basin, also known as the upper Dja series, holds significant importance as a valuable reservoir of raw materials, particularly for enterprises specializing in the manufacturing of cement and other derivatives derived from limestone. Nevertheless, there is a lack of documentation or reports that provide an estimation of the quantity of limestone resources present in the study region. Considering the significant commercial importance of the mining sector, it is important to conduct an initial assessment of the quantity of this resource. This evaluation is crucial not only to facilitate the accessibility of limestone, a vital raw material for various industries, but also to promote the further exploration and exploitation of the mining potential in this specific region of the country. However, the assessment of this occurrence cannot be simply dependent on geological field work; it requires the incorporation of modern methodologies like geophysics. Geological field observations, in reality, rely mostly on exposed geological formations, making them inadequate for an initial evaluation of resources due to their inability to provide insights into the resource’s continuity at depth or in places with significant alteration or overgrowth. The integration of the geophysical methodology with geological observations offers valuable additional information through the examination of geophysical responses at various depths. Geophysical exploration is employed within the mining industry to locate zones characterized by substantial concentrations of mineral substances and quarries (Šumanovac and Weisser, 2001; Hodlur et al., 2006; Sikandar et al., 2010; Abraham et al., 2013; Akpan et al., 2014; Aizebeokhai and Oyeyemi, 2015; Adebiyi et al., 2018; Rusydy et al., 2020; Hibi et al., 2021; Taha et al., 2021; Yu et al., 2021; Ren et al., 2022; Peng et al., 2022; Liu et al., 2023; Mohamed et al., 2023; Liu et al., 2023; Chen et al., 2023). Various geophysical methods, such as gravity, magnetometry, electrical, and seismic techniques, are accessible for exploration purposes. The selection of a specific method is dependent on various factors, including the project’s objectives, the characteristics and depth of the mineralization zone, the project’s environmental conditions, and the available resources (Akpan et al., 2015a; Ekwok et al., 2020, 2021; Ebong, 2021a., 2021b; Melouah et al., 2021; Zhou et al., 2021). The study region is situated within a sedimentary basin characterized by predominantly horizontal layers comprising the terrain. In light of this reason, the present study employed the vertical electrical sounding (VES) approach. Indeed, Chouteau (2006) and Marescot (2008) indicate that this method (VES) is only really useful for studying geological levels that are close to each other in sedimentary areas where geological layers can be continuous over several meters or kilometers. The utilization of this technique is regarded as beneficial owing to its cost efficiency in carrying out studies and its straightforward implementation (Ebong et al., 2014; Akpan et al., 2016; Ebong et al., 2021b). The methodology involves measuring the apparent resistivity of the subsurface in relation to depth by systematically changing the distance between the electrodes during each measurement. This methodology is frequently employed in several studies to estimate the thickness of geological formations within sedimentary regions and for the investigation and evaluation of hydrogeological resources (Song et al., 2007; Balkaya et al., 2009; Sikandar et al., 2010; Asfahani, 2013; Ndougsa-Mbarga et al., 2014; Asfahani, 2016; Njueya et al., 2016; Arsène et al., 2018; Hu et al., 2023). The objective of this work is to establish the feasibility of utilizing the vertical electrical sounding approach for three-dimensional modeling and initial volume estimation of a resource within a sedimentary region characterized by horizontal and relatively homogeneous strata. The scope of this study will encompass a specific region inside the Mintom limestone basin, namely, Dja-et-Lobo in southern Cameroon.
1.1 Location, geology, and tectonic settings
1.1.1 Location of the study area
The geographical location of the study area is situated in Mintom, which is within the Dja-et-Lobo division in southern Cameroon. It lies between meridians 13°20′-13°26′ East and parallels 02°42′-02°46′ North. The study site covers approximately 11 km2 and exhibits a gently sloping topography with varying altitudes ranging from 560 to 605 m (Figure 1). These altitudes are typical of the minimal topographical fluctuations commonly reported in the Mintom region as a whole (Figure 2). The analysis of prior research indicates that the geographical region under investigation is situated within the Mintom limestone basin (Figure 3). This basin is delimited to the north by the Pan-African nappe and to the south by the Congo Craton (Lassere, 1961; Viguier, 1990; Vicat, 1998; Toteu et al., 2008; Caron et al., 2010; Caron et al., 2011; Philémon et al., 2016; Engon et al., 2017; Sadrac et al., 2021).
[image: Figure 1]FIGURE 1 | Topographic variation in the study area and distribution of electrical sounding points.
[image: Figure 2]FIGURE 2 | Orohydrographic model showing the location of the study area in the large Mintom watershed.
[image: Figure 3]FIGURE 3 | Geological map of Mintom (modified according to the work of Viguier 1990).
1.1.2 Geology and tectonic settings
The Mintom sedimentary basin was initially observed and documented in Cameroon by an Anonyme (1939). In Bruet 1951 made an attempt to establish the boundaries of this particular sedimentary basin. The upper Dja series, which refers to the basin under investigation in this geological study, has been further examined by other scientists. Their findings indicate that the basin is bounded to the north by the Pan-African nappe and to the south by the Congo Craton (Lassere, 1961; Viguier, 1990; Vicat, 1998; Toteu et al., 2008; Caron et al., 2010; Caron et al., 2011) (see Figure 3). Based on the findings of these studies, it has been determined that the upper Dja series has an unconformable nature. Furthermore, in its northern region, it is observed to be overlapped by the Pan-African Yaoundé nappe. The southward movement of the Yaoundé nappe is believed to have impacted the succession, resulting in deformation along its northern boundary (Caron et al., 2011). The correlation can be observed with the schisto-limestone formation of the West Congolian Supergroup, which has been dated to the Neoproterozoic period spanning from 650 to 630 Ma, as indicated by Caron et al. (2011).
Vanhoutte et al. (1986) conducted a study to assess the Mintom limestone. The study reveals that the Mintom sedimentary basin mostly consists of limestones, dolomites, and pelites, which are the prominent rock formations. The basin exhibits a maximum thickness of 183 m. The evaporitic succession exhibits a distinctive feature in the form of reddish-purple pelites. The pelites are situated in an unconformable relationship with the underlying granitic basement. This contact is characterized by a silicified aureole. The transition from pelites to limestones is progressive and passes to marl-clay facies, then marl-limestone, and finally, limestone. Studies carried out by Caron et al. (2011) led to the upper Dja series being divided into four lithological units, which are, from bottom to top, Kol unit, which is made of diamictite at the bottom and pelite at the top; Metou unit, which is formed of massive dolomite; Mominbolé unit, which is composed of alternating layers of pelitic limestone and clay; and Atog Adjap unit, which is made up of light limestone and a yellowish gray band. Other sedimentological and paleoenvironmental studies have been carried out in this basin (Caron et al., 2010, 2011; Ekomane, 2010); petrological and physico-mechanical characterizations of the rocks in this basin have also been studied with a view toward industrial use (Anonyme, 2008; Anonymous, 2012; Moussango et al., 2012; Zo’o Zame, 2013). According to these authors and based on various observations made at outcrops and interpretations of data from boreholes and wells, the sedimentary basin of Mintom presents the following stratigraphic succession from top to bottom: a detrital ± clayey layer, friable and sticky; a layer of carbonate rocks, followed by a pelitic layer; and the granodioritic basement.
The carbonate layers exhibit three primary facies: a dense limestone abundant in CaO, which has potential as a raw material for cement or hydraulic lime production; a stratified limestone characterized by alternating light and dark beds, commonly employed in ceramics; and lastly, a dolomite variant utilized as a soil amendment for the purpose of fertilizing acidic soils. The observed geological formations consist of many manifestations, including escarpments and slabs located along the banks and within the riverbed, as well as isolated blocks that have been colonized by mosses. According to the studies conducted by Bekoa (1994), Bitom (1998), and Nyeck (2005), it has been observed that the predominant geological formations within this basin consist of shales, dolomites, and limestones. These formations are found to be covered by clays and laterites. According to Viguier’s (1990) findings, the primary geological formations observed in the research region predominantly comprise clays, laterites, and limestones, which are situated above a granito-gneissic basement (Figure 3).
The Mintom limestone basin has been attributed to tectonic subsidence, as shown by Lassere (1961), Viguier (1990), Vicat (1998), and Toteu et al. (2008). This subsidence is believed to be related to two fault systems: one aligned between N0°E and N45°E and the other between N90°E and N150°E. The observed deformation on the basin scale is indicative of block collapse, which is accompanied by significant displacements that are preserved by the creation of sigmoidal bands and soil erosion processes (Figure 3). An analysis of the structural connections between the two fault systems reveals that the geodynamic development of the Mintom limestone basin has experienced two distinct deformation patterns. These include a distensional strike–slip regime occurring in the later stages of Pan-African tectonic events and a compressional strike–slip regime observed during the reactivation phases in the Late Cretaceous and Tertiary periods. This observation matches the findings of Vicat (1998).
2 MATERIALS AND METHODS
The vertical electrical sounding technique is a method of electrical sounding that relies on the measurement of electrical resistivity (ρ) in Ohm.m (Ω.m). This parameter represents the material’s capacity to impede the flow of electrical current. The resistivity, denoted as the inverse of the electrical conductivity σ (measured in Siemens/m), is derived from the principles of Ohm’s law (Telford et al., 1990). The process of electrical prospecting involves the injection of an electric current into the subsurface using two electrodes, namely, A and B, which are referred to as current electrodes. This current induces the formation of an electric field, the characteristics of which are dependent on the spatial arrangement of the subterranean topography (Figure 4A). Two additional electrodes, M and N, referred to as potential electrodes, are utilized to measure the voltage difference (∆V) generated by the electric field. By utilizing the known current intensity (I) and measuring the potential difference (∆V), it becomes possible to determine the apparent resistivity (ρa) of the soil. The resistivity (ρa), which is dependent on the specific measurement array employed, can be computed using Eq. 1 (Telford et al., 1990). The resistivity values acquired will consequently be dependent on the geological formations encountered, while the depth of investigation achieved by the current networks will be dependent on the electrode design and quadripole dimension (Chouteau, 2006; Marescot, 2008; Akpan et al., 2015b; Ebong et al., 2017; Akpan et al., 2018; Geotomo, 2018; Ndubueze et al., 2019).
[image: image]
where ρa is expressed in Ω.m and K (in m) refers to the geometric or form factor, depending on the array used. K can be calculated using the following equation:
[image: image]
[image: Figure 4]FIGURE 4 | (A) Electrode configuration in the Schlumberger array (Abraham et al., 2013); (B) implementation of electrical soundings using the Schlumberger array (Chouteau, 2006).
The VES method is a specific approach employed in the field of electrical prospecting. During electrical sounding implementation, an examination is conducted to determine the vertical variation of subsoil resistivity at a certain location on Earth’s surface. In order to accomplish this, a series of measurements is conducted at a fixed location, progressively expanding the array’s dimensions with each iteration. Consequently, the depth of research also increases proportionally, as depicted in Figure 4B. At this point, a more substantial section of the ground is being examined, allowing for the identification of variations in geological composition along the vertical axis. Various types of classical arrays, such as Schlumberger, Wenner, and dipole–dipole, can be employed for conducting measurements. However, for the purposes of this investigation, the Schlumberger array was specifically employed (Figure 4B). It is important to acknowledge that the VES method is typically employed with precision only in cases where the topography comprises predominantly horizontal and laterally consistent strata (Chouteau, 2006; Marescot, 2008; Egbai, 2011; Mahammed, 2012; Ndougsa-Mbarga et al., 2014; Almeida et al., 2021). In order to accurately capture the depth-dependent fluctuations in resistivity during an electrical survey, it is imperative to ensure that the results remain unaffected by horizontal variations. This approach is particularly well suited for sedimentary terrain, as sedimentary layers can maintain a consistent uniformity across extended horizontal distances, as observed in this study.
The resistivity data used in this investigation were acquired using geophysical surveys that employed electrical sounding techniques conducted in the subject area. The measurements were performed along three profiles oriented in the east–west direction and separated at regular intervals of 500 m (see Figure 1). The decision to choose a 250-m spacing between sounding stations was made after significant consideration, taking into account the distinctive features of the research area, predominantly composed of sedimentary terrain. The data collection process was conducted utilizing the Abem SAS 300 resistivity meter along with a Schlumberger array. A total of 21 soundings were performed, wherein each profile encompassed seven sounding stations (Figure 1). The geographical coordinates, including longitude, latitude, and elevation, for each sounding point were documented using a Garmin GPS device.
Concurrently with the acquisition of electrical survey data, a geological survey was conducted both within and in the neighboring region of the designated research area. The primary aim was to collect an extensive range of geological data to provide an adequate basis for the analysis and interpretation of various geophysical observations.
The processing and analysis of the electrical sounding data were conducted using “IPI2win” software. The underlying principle of this software lies in the observation that the characteristics of curves derived from electrical sounding across stratified layers are influenced by the resistivity, thickness of the layers, and configuration of the measuring array. The fundamental strategy involves graphing the observed apparent resistivity (ρa) against the half distance between the current electrodes (AB/2) on a bi-logarithmic paper and then analyzing the resulting curve using several interpretive methods. These interpretative approaches are based on the geological context and existing resistivity charts (Chouteau, 2006; Marescot, 2008). The application of quantitative interpretation allows for the reconstruction of a geoelectric section of the subsurface based on the provided sounding curve. In this process, each formation is defined by its thickness and resistivity. The nomenclature assigned to each layer will be established by careful analysis of geological field observations. The generation of lithostratigraphic logs will be conducted using the data obtained from the interpretation of sounding curves. Geological sections were built for each profile utilizing the logs acquired from the selected profile in August 2004. A three-dimensional model was created to depict the interfaces of lithological layers. This model was developed by correlating the boundaries of geological formations using several interpreted logs. The modeling procedure will be executed using the deterministic inverse distance technique, which will be integrated into the RockWorks program. The application of this methodology will enable RockWorks to generate an approximation of the volume associated with the specified limestone layer. The software program automatically provides the estimation error. It employs a calculation method that determines inaccuracy by comparing the true and estimated values at a certain point X. The resistivity values entered into the database are regarded as accurate representations of the real resistivity values at each specified point X, as per the software’s interpretation. The inverse distance procedure is utilized by the software to estimate a new resistivity value for each point X. The estimation error at point X is determined by calculating the difference between the actual and estimated values at point X. The estimation error for the volume under consideration is determined by calculating the average error. A three-dimensional resistivity model was constructed to represent the limestone layer under study, wherein each layer inside the model was assigned a unique resistivity value. The implementation of a discretization technique to partition the model into distinct resistivity zones will significantly improve the feasibility of forthcoming limestone exploration efforts within the designated study area.
3 RESULTS AND DISCUSSION
3.1 Geological field observation
The main limestone outcrops encountered during field work were observed approximately 650 m downstream of the study area at the confluence of the Dja and Ebe rivers (Figure 5A). These massive outcrops have a gray color and are sometimes laminated (Figure 5B). In the study area, only clays (Figure 5C) and laterites (Figure 5D) were observed, along with a thick layer of soil that was darkened by dead plants. Both structures are covered with a layer of black soil, so you have to dig to get a sample. The absence of limestone outcrops within the study area can be justified by its location (upstream) from the main outcrops identified downstream. This seems to show that the main layers above the limestone layer in the study area are clays and laterites. Based on the subdivisions of the upper Dja series by Caron et al. (2011), this analysis shows that the study area is in the Mominbolé unit. All of these facts were important in deciphering the information revealed by the electrical sounding shapes.
[image: Figure 5]FIGURE 5 | (A) Limestone outcrop; (B) laminated facies; (C) solid clay sample; and (D) laterite sample.
3.2 Lithostratigraphic section derived from electrical resistivity sounding data
After recognizing the existence of the limestone formations on the surface and in order to understand their vertical and horizontal extensions, the sounding data were processed using IPI2win software. The processing consisted mainly in elaborating the different sounding curves by representing in the bi-logarithmic space proposed by this program the various values of resistivity according to the half distance between the current electrodes (AB/2). In reality, the resistivity measured in the field is not the real resistivity but corresponds to the combination of the resistivities of the different layers investigated according to the depth of investigation. The sounding curve was the base data used to determine the terrain model associated with each of the 21 soundings by incremental adjustment of a fixed initial model. The result of figuring out how each sounding curve should be interpreted is a resistivity/thickness (or depth) model (Figures 6A, B). Each thickness layer was named based on the existing resistivity charts and geological observations made in the field.
[image: Figure 6]FIGURE 6 | Example of interpreted resistivity/depth model for S1A8 (A) and S1C2 (B) electrical soundings corresponding to a succession of five layers (S1A8) and four layers (S1C2).
By integrating the findings from the interpretation of the 21 sounding curves with geological field observations, we were able to develop two sequential models of geological formations in the study area. These models, depicted in Figure 7, illustrate the vertical arrangement of the formations. The first model demonstrates the limestone layer overlaying a fractured bedrock (Figure 7A), while the second model depicts the limestone layer resting on an unchanged bedrock (Figure 7B). In each of these models, the limestone substrate is covered by a comprehensive layer of clays and lateritic shells, in addition to a layer of weathered limestone (Figure 7). The geometry of each of the interpreted sounding curves, as depicted in Figures 6A, B, has a distinct pattern resembling stair steps. This shape is indicative of sedimentary zones. The fractured bedrock exhibits a notable decline in resistivity following the limestone layer, as depicted in Figures 6A, 7A. The interpretation outcomes are aligned with either of the two geological layer succession scenarios depicted in Figure 7. By acquiring knowledge of the vertical arrangement of geological formations associated with each of the 21 sounding points, it becomes possible to generate a choice of alternative models.
[image: Figure 7]FIGURE 7 | Succession of layers in the study area obtained from the interpretation of the sounding curves: (A) five-layer model; (B) four-layer model.
Based on the analysis of the sounding curves, the vertical arrangement of the geological formations at each sounding location has been determined, enabling the development of distinct lithostratigraphic logs (Figures 8–10). A careful methodology was employed to perform a lateral correlation of the lithostratigraphic logs for each sounding profile, taking into account the georeferenced location and known topography of each sounding point (Figures 8–10). In the context of analyzing survey data, it is essential to adhere to the two fundamental principles outlined in the August 2004 logs. These principles govern the relationships between various components and are crucial for accurate interpretation. First, within a model, a horizon (representing a lithological layer) cannot have a free edge, whereas a fault can. Second, it is essential to ensure that the boundaries of lithological layers do not intersect with each other. While analyzing the isolated sounding data, it is not possible to definitively interpret the many interfaces between the formations that were crossed. The principle of interpretation employed in this work for delineating the various geological horizons depends on two distinct criteria:
[image: Figure 8]FIGURE 8 | Lithostratigraphic section of line A.
[image: Figure 9]FIGURE 9 | Lithostratigraphic section of line B.
[image: Figure 10]FIGURE 10 | Lithostratigraphic section of line C.
The sequential arrangement of geological strata as inferred from the sounding curves.
The study focuses on the topological relationships among the different components comprising the stratigraphic sequence.
Two distinct types of surfaces are identified in this context: the erosional surface (EROD) and the overlaying or depositional surface (ONLAP). To achieve a comprehensive interpretation of the lithologic pile, it is essential to initially establish the boundaries outlining the uppermost surfaces of the erosion surfaces (EROD). Subsequently, the placement of the overlying layers (ONLAP) should be carefully executed, ensuring strict adherence to the principle that the ONLAP and EROD formations must not intersect (as stated by rule number 2, as previously mentioned).
3.3 3D modeling and volume estimation of the limestone layer
By georeferencing the sounding curves and analyzing their 3D distribution (Figure 11), the lithostratigraphic logs can be interpreted to provide a 3D correlation of the boundaries between different lithological layers. Therefore, the utilization of this volumetric model enables the estimation of the volume of the required limestone layer. The RockWorks program was utilized to apply the modeling approach to all the logs within the research region. The volume model obtained is depicted in Figure 12, and the limestone layer’s volume, determined using the deterministic inverse distance technique integrated into this software, is estimated to be 260 ± 13 × 106 m3. This is based on an average error of 5% between the true and estimated resistivity values at each point X. Furthermore, by analyzing the sounding curves, a resistivity value was attributed to every fresh limestone layer in each sounding. This enabled the creation of a model that represents the fluctuation in resistivity corresponding to the fresh limestone layer (Figure 13). The final model holds significant importance as it can be utilized for the classification of limestone compartments based on the desired minimum composition of the limestone, particularly during the sampling and analysis stages. The modeling approach employed in this work demonstrates the utility of electrical soundings in investigating geological environments of this nature. When there is minimal lateral variation of geological formations in sedimentary terrain, the survey technique developed in this study can be utilized effectively. The primary benefits are the reduction of fieldwork expenses, the rapid identification of potential drilling targets, and the estimation of the volume of these targets. This technique can be applied to similar geological and lithological conditions worldwide. This methodology has the potential to be utilized in comparable geological and lithological environments on a global scale. The availability of borehole data will facilitate the validation and verification of the resistivity measurements’ outcomes.
[image: Figure 11]FIGURE 11 | 3D distribution of lithostratigraphic logs in the study area.
[image: Figure 12]FIGURE 12 | 3D model of lithostratigraphic interfaces in the study area.
[image: Figure 13]FIGURE 13 | Model of resistivity variation associated with the limestone layer.
4 CONCLUSION
The present work integrates geological survey data with vertical electrical sounding data to perform 3D modeling and provide an initial calculation of the volume of the limestone layer inside a specific portion of the Mintom limestone domain. In the present investigation, a total of 21 electrical soundings were conducted along three E–W profiles in order to collect data. Simultaneously with the collection of the sounding data, a geological survey was conducted within and in the surrounding area of the research region, which revealed the presence of limestone formations. The sounding curves were utilized to analyze the collected sounding data. Analyzing each sounding curve results in the development of a resistivity/thickness model. The names for each thickness layer were determined by referencing existing resistivity charts and incorporating geological observations conducted in the field. The lithological sections of each profile were subsequently constructed based on the lithographic logs of the respective profile. A volume model of the lithological interfaces was constructed based on the 3D distribution of the various logs. Utilizing the inverse distance approach, the estimated volume of the limestone layer was determined to be 260 ± 13 × 106 m3. A 3D model depicting the fluctuation of resistivity associated with the fresh limestone layer has been constructed, utilizing the sounding curves to assign a resistivity value to each layer of sounding. The presented model illustrates the distinct compartments of limestone and can, therefore, serve as a reference model for sampling missions. This research demonstrates the success of the electrical sounding technique for conducting geological surveys in sedimentary zones in general, with a specific focus on limestone terrains. The acquired results have significantly enhanced our understanding of the limestone horizons in the studied area. The developed model could potentially serve as a foundational point of reference for future research efforts in the Mintom region. Additionally, it could contribute to the creation of reproducible models that can be easily implemented in similar regions across the globe.
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The recent research aims to investigate the petrophysical and hydrogeological parameters of the Nubian aquifer system (NAS) in Northern Khartoum State, Sudan, using integrated geophysical methods, including surface electrical resistivity and geophysical well-logging. The Nubian aquifer is a transboundary regional aquifer that covers vast areas in Sudan, Egypt, Libya and Chad. The well-logs, including self-potential (SP), natural gamma ray (GR), and long normal resistivity (RS), are integrated with Vertical Electrical Sounding (VES) measurements to delineate the hydrostratigraphical units. As a result, two aquifers are detected. An upper aquifer comprises coarse sand with an average thickness of 50 m and a lower aquifer of sandstone with more than 200 m thickness. For a thorough evaluation of the aquifers, in the first stage, the petrophysical and hydrogeological parameters, including formation factor, total and effective porosity, shale volume, hydraulic conductivity, and transmissivity, are measured solely from geophysical well-logs. In the second step, the results of geophysical well logs are combined with VES and pumping test data to detect the spatial variation of the measured parameters over the study area. As a result, the hydraulic conductivity of the Nubian aquifers ranged from 1.9 to 7.8 m/day, while the transmissivity varied between 120 and 733 m2/day. These results indicated that the potentiality of the Nubian formation is high; however, in some regions, due to the sediment heterogeneity, the aquifers have intermediate to high potential. According to the obtained results, it can be concluded that the Nubian Aquifer in Khartoum state is ideal for groundwater development. This research discovered that geophysical approaches can be used to characterize moderately heterogeneous groundwater systems by comparing the Nubian aquifer with similar aquifer systems that have similar hydrogeological settings. This study emphasized the application of universal principles in extrapolating hydraulic parameters in hydrogeophysical surveys. This approach aims to reduce the costs and efforts associated with traditional hydrogeological approaches.
Keywords: well logs, vertical electrical sounding, pumping test, hydraulic conductivity, transmissivity
1 INTRODUCTION
The escalation of water investigation research is attributed to its growing significance in shaping developmental strategies across various domains, including industry and agriculture (Aliou et al., 2022; Zhou et al., 2022; Liu et al., 2023). The rapid population growth has led to the evolution of groundwater exploration methodologies for the characterization of local and regional aquifer systems (Adagunodo et al., 2018; Rabeh et al., 2019). Characterizing transboundary regional aquifers is a complex task in hydrogeological research to comprehend and effectively manage shared groundwater resources (Puri and Aureli, 2005; Sindico et al., 2018; Yin H. et al., 2023; Yuan et al., 2023). This distinctive problem requires extensive cross-border investigations to identify subsurface structures, lithological variations (Tie et al., 2023), and hydrogeological features (Nijsten et al., 2018). The Nubian Aquifer System (NAS) is a significant transboundary aquifer that serves as a crucial groundwater reservoir. It covers the dry areas of Egypt, Libya, Chad, and Sudan, making it one of the largest in the world (Sultan Araffa et al., 2009; Mohamed et al., 2017; Mohamed, 2019; Mohammed et al., 2023c). The aquifers in question are of great importance in maintaining water resources and supporting the lifestyles of people in the nations mentioned (Voss and Soliman, 2014). The significance of the NAS resides in its transboundary nature, highlighting the necessity for accurate evaluation of its attributes to ensure the sustainable exploitation of groundwater.
Petrophysical and hydraulic parameters of groundwater aquifers are crucial elements that must be considered for managing groundwater extraction (Yusuf and Abiye, 2019; Ugbaja et al., 2021; Abbas et al., 2022; Römhild et al., 2022; Yin L. et al., 2023). The evaluation of these parameters is essential for enhancing the accuracy of hydraulic stress prediction (Szűcs et al., 2013; Amiri et al., 2022; Zhu et al., 2022). Furthermore, it gives dependable data inputs for simulating groundwater flow and contaminant transport (Mathon et al., 2008; Khadri and Pande, 2016; Amiri et al., 2022). The ideal manner for estimating the hydraulic and petrophysical parameters is by taking core samples from groundwater aquifers during well drilling (Szabó et al., 2015; Khalil et al., 2022; Li et al., 2023; Sang et al., 2023; Yuan et al., 2023). Another approach is pumping tests, which depend on a series of assumptions that occasionally may not be valid (De Clercq et al., 2020; Römhild et al., 2022). It assumes that the aquifer is homogenous, isotropic, and has an infinite extent and neglects groundwater storage during the test (Misstear, 2001). Moreover, in heterogeneous aquifer systems, the estimation of these parameters is restricted to the measurement point; therefore, error is inevitable during the generalization of the results (Avci et al., 2010; Mohammed et al., 2023c; Flores et al., 2023; Yang et al., 2023). To address these drawbacks, geophysical methods are widely applied for groundwater exploration and aquifer characterization since they provide a continuous estimate of hydrogeological and petrophysical parameters (Szabó et al., 2015; Fejes et al., 2021; Mohammed et al., 2023e). The primary purpose of open-hole wireline logging is to identify variations in petrophysical and hydrogeological parameters along groundwater wells and correlate them with the surrounding wellbores (Szabó, 2018; Gouasmia et al., 2022; Mohammed et al., 2023a). Non-focused resistivity tools are often suited for hydrogeological problems (Szabó, 2015). (Ebong et al., 2014; Madun et al., 2018; Oudeika et al., 2021; Alao et al., 2022; Mohamed et al., 2022; Mohamed et al., 2023a; Taha et al., 2021). These methods are typically implemented in exploratory studies to install groundwater wells (Hezzi et al., 2021). VES is the most popular resistivity technique for defining potential groundwater zones and calculating hydraulic parameters such as transmissivity and hydraulic conductivity (Arétouyap et al., 2019; Mohammed et al., 2023e; Omeiza et al., 2023). This technique was efficiently used to quickly and affordably determine the depth of the water table, aquifer thickness, and vertical and horizontal geological variation (Szűcs et al., 2021).
Due to urbanization and population growth in Khartoum State, a severe freshwater supply shortage has been faced. As a result, the Water resources agencies are currently focusing on improving groundwater reserves to cover the water supply deficit (Li et al., 2023; Wu et al., 2023; Yin et al., 2023). Several works have been conducted to evaluate the hydraulic parameters of the Nubian aquifer (Elkrail et al., 2004; Abdalla, 2009; Algafar et al., 2011; Mohamed et al., 2023a); nevertheless, these studies rely solely on pumping test analysis. The main objective of the present study is to investigate the potentiality of the transboundary Nubian Aquifer System (NAS) and ascertain its petrophysical and hydrogeological characteristics through the integration of surface and subsurface geophysical techniques. The NAS can be used as a framework for comprehending the hydrogeological dynamics of aquifers that span across multiple borders. The recent study aims to examine the characteristics of the NAS and establish general guidelines that may be utilized to evaluate shared aquifer systems globally. The implemented approach will function as a valuable tool for assessing analogous aquifers with similar hydrogeological conditions.
2 STUDY AREA
2.1 Geography and geology
The study area is part of the Khartoum sub-basin, which is located in the Northern periphery of the Nile rift basin and covers more than 288 km2 (Figure 1B). The region has a semi-arid to arid climate, with temperatures exceeding 40°C from May to September (Mohammed et al., 2023b). The rainy season, however, is limited to the remaining few weeks of summer. Khartoum state is a component of the Pan-African series that supervised the genesis of various rock units and geological structures. The Pan-African Basement Complex limits the Khartoum sub-basin to the Northeast and Southwest and confines its bottom boundary at a depth of more than 500 m (Köhnke et al., 2017). Figure 1C shows the geological map of the study area. The Northern Khartoum state is in a transition zone between the basement igneous complex to the North and the sedimentary basin to the South (Zeinelabdein and Elsheikh, 2014). The main geological units in the study area are the Precambrian basement rocks, Cretaceous Nubian Formation, and recent deposits. The basement complex consists of gneisses, schists, and granites, and the depth varies between zero, mainly to the North and Eastern sides of the area, and reaches up to 500 m in the Southern parts (Hussein and Awad, 2006). The Cretaceous Nubian formation consists of conglomerates, sandstone, and mudstone intruded by basaltic volcanic rocks that overlie the Precambrian basement rocks (Schrank and Awad, 1990). The recent deposits in the study area include windblown and alluvium wadi deposits, and the lithology comprises sand, gravel, and silt of depths ranging from 3 up to 15 m (Haggaz and Kheirallah, 1988).
[image: Figure 1]FIGURE 1 | (A) Geography of the Republic of the Sudan. (B) Map of the Khartoum state showing the location of the study area. (C) The lithological (Hussein and Awad, 2006) and piezometric map of the study area.
2.2 Hydrogeology
The Nubian aquifer is a transboundary system that covers 2.2*106 km2 distributed in Sudan, Libya, Tchad, and Egypt (Mohamed et al., 2023). The Nubian aquifer is the primary groundwater supply source in the Khartoum basin that covers more than 30% of the landmass of Sudan. Groundwater occurs in the unconsolidated sand and weakly cemented sandstone beds of the Nubian formation under leaky confined to non-leaky confined conditions (Mohammed et al., 2023f). This condition is due to thin to relatively thick aquitards and aquicludes composed of silts and clays (Abdelsalam et al., 2016). The thickness of the Nubian aquifer varied between 10 m to more than 450 m (Algafar et al., 2011). The groundwater levels in the Nubian aquifer vary between 19 and 32 m. The water table is close to the surface in the Western part near the Nile River, and the depth of the water level reaches its maximum in the Eastern regions. Consequently, the general direction of groundwater flow is from the Eastern to the Western part of the study area (Figure 1C). Nilotic and meteoric waters are the two primary types of recharged water that can be distinguished in the study region (Farah et al., 2000). Nilotic groundwater leaked from the Nile River to the groundwater aquifer (Mohamed et al., 2023), and meteoric groundwater in areas outside the influence of the Nile River due to the water infiltration from wadies and ephemeral streams (Farah et al., 2000; Mohammed et al., 2023d).
3 MATERIALS AND METHODS
In this research, an innovative approach that integrates surface geophysics, well logging, and hydrogeological data is followed to explore the geometry, petrophysical, and hydrogeological parameters of the Nubian aquifer system. The workflow of the study is illustrated in Figure 2, and the description of the applied methods is indicated in the following subsections.
[image: Figure 2]FIGURE 2 | The workflow of the study that involves the integration of geophysical and hydrogeological data.
3.1 Surface geophysical method
Electrical resistivity method employing vertical electrical sounding (VES) using Schlumberger array. The measurements were taken using SAS 100 resistivity meter. The electrical (ΔV) is measured using potential electrodes (MN) because of current (I) injection into the subsurface using current electrodes (AB). This potential difference measurement provides information about the apparent electrical resistivity with depth. In the Schlumberger configuration, the current and potential electrode are placed close together with the measurement point at the center of the array. These electrodes are symmetrically arranged along a profile, with outward increasing distances of electrode spacing from the central point (Omeiza et al., 2023). This arrangement allows for a wide range of electrode spacings. In this study, the maximum current electrode spacing reached 750 m and 200 m for the potential electrodes. Schlumberger protocol offers flexibility in electrode spacing, making it suitable for a wide range of subsurface investigations as it allows for better coverage and depth penetration compared to the other configurations, such as Wenner and dipole-dipole.
The apparent resistivity (ρa) is acquired by multiplying the resistance of geological formation (R) by the Schlumberger configuration factor (K). Eqs 1, 2 are frequently used to measure ρa as
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IPI2WIN software is used to analyze the apparent resistivity to determine the layer properties, including resistivity and thickness (Bobachev, 2002). The actual curve of the recorded apparent resistivities is matched to the synthesized curves, and the model performance criteria determined the resulting model’s validity. Like other potential field methods, the electrical method is deterred by the problem of ambiguity. To address this issue and ensure a realistic evaluation of the geophysical model, priori information about the studied area must be gathered. This study uses parametric wells to validate the resulting geoelectrical models. Eight lithological logs obtained from boreholes drilled for groundwater exploitation at a depth range from 100 to 270 m are employed. The geological samples were taken in these logs at a depth interval of 1 m.
3.2 Geophysical well-logging
The geophysical well-logging data employed in this investigation has been sourced from the Khartoum State Water Corporation (KSWC) and was initially acquired in physical, hard-copy format. Subsequently, the data was digitized to conform to the requisite standard format using Didger software (Geosoft). The data was collected in October 2018 as part of the Zero Thirsty project. The Sudanese government supervised this project to sustain the water supply in Sudan. In this research, spontaneous potential (SP), natural gamma ray (GR), and long normal resistivity (RS) logs were used.
The petrophysical and hydrogeological parameters are estimated based on the geophysical logging data, namely, GR and RS logs. The estimated parameters are the formation factor, total and effective porosity, shale volume, and hydraulic conductivity. The concept of formation factor (F) has been demonstrated through empirical tests (Archie, 1942). It is defined as the ratio between the resistivity of the clean and saturated aquifer (R0) and the resistivity of the pore water (Rw) (Eq. 3). In this study, Rw is obtained from hydrochemical analysis of the groundwater samples.
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The higher the porosity (φ) of a formation, the smaller its resistivity and formation factor for a particular aquifer saturated with brine. As a result, porosity and the formation factor are mutually contradictory. Additionally, it depends on the distribution of pore sizes and pore structure. Archie (1942) suggested a formula between porosity and formation factor (Eq. 4). The main disadvantage of this formula is that it is highly sensitive to the presence of shale; as a result, it gives an overestimated value of porosity. However, it is useful in sandy formations with low shale content.
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Formation porosity is the percentage of the pores volume to the total volume of rocks. Geological formations may exhibit a wide range of porosities. Porosity can range from almost zero in hard rocks to 60% or more in shales and clays. For accurate estimation of porosity, zone parameters, including cementation exponent (m) and tortuosity factor (a), are evaluated. Total porosity (φt) includes all the pores, while effective porosity (φe) is the proportion of the interconnected pores to the total volume of rock, excluding the shale volume (Vsh). In this study, the effective porosity is calculated using (Eq. 5) proposed by Schlumberger (1991).
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Estimation of shale volume is necessary as it affects most of the petrophysical parameters, such as total and effective porosity. In this research, Vsh is estimated following a non-linear relationship proposed by Larionov (1969) (Eq. 6). It is an empirical formula suggested to reduce the over-estimation of Vsh based on gamma-ray index (Iγ) of the geological formation.
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The Iγ is calculated following a linear formulation (Eq. 7) proposed by Schlumberger (1984) between the natural gamma-ray reading of the point of measurement (GRlog), gamma-ray reading for clean sand (GRmin), and shaly layers (GRmax).
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The hydraulic conductivity is estimated to evaluate groundwater aquifer productivity. In this study, hydraulic conductivity (K) is measured based on an empirical relationship using the resistivity of the water-bearing formation (Raq) (Eq. 8) suggested by Heigold et al. (1979).
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3.3 Pumping test analysis
Pumping tests are regulated field investigations intended to gather data on groundwater yield and hydraulic parameters. Pumping test data for five groundwater wells is evaluated to determine the hydraulic parameters of the aquifers, including transmissivity (T), storativity (S), and hydraulic conductivity (K). In this study, the measured hydraulic parameters obtained from geophysical Well logging are validated with those of the pumping test to ensure the uniqueness of the geophysics-based method. The test duration varied between 100 and 300 min, and T, S, and K are estimated using Cooper Jr and Jacob (1946), and it is designed for leaky confined aquifers under transient flow conditions. This method operates by fitting a straight line in a time plot since the pumping started against its corresponding drawdown in a semi-logarithmic paper. The slope of the line in one logarithmic cycle is measured to give the average drawdown (∆s) and transmissivity (Eq. 9).
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Since hydraulic conductivity describes the rate of flow in the unit width of the aquifer and transmissivity defines the rate of flow in the full width (b) of the aquifer, Eq. 10 is used for the determination of K.
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The estimated T, the well radius (r), and the intercept of the Cooper-Jacob straight line (t0) are then used to measure the storativity (S) of the aquifer. It is defined as a volume of water that can be released for storage per unit surface area of the aquifer per unit change in hydraulic gradient (Pongmanda and Suprapti, 2020). The S is dimensionless, and by using Cooper Jr and Jacob (1946) assumptions, it can be calculated using Eq. 11
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4 RESULTS
4.1 Delineation of aquifers geometry
The results of well-logging are shown in Figures 3–5. LOG 1 (Figure 3) of a total depth of 133 m combined with the lithology description of the borehole shows that the top of the study area is made up of superficial deposits of a thickness of 10 m. The second layer is indicated by GR and RS logs since it shows low resistivity and high gamma radiation. This layer of 25 m thickness is described as a clay layer. The clay layer is followed by a saturated sand layer of 35 m thickness. The sand layer is likely to be the upper aquifer of the study area. A mudstone layer is observed from a 70–95 m depth. This layer is followed by a relatively high resistivity saturated sandstone layer of thickness range from 95 to 133 m. This layer is probably the primary aquifer in the study area.
[image: Figure 3]FIGURE 3 | Borehole logs of LOG 1 location and its correspondent lithology. SP is the spontaneous potential, GR is the natural gamma ray, and RS is the deep resistivity log.
LOG 2 is located in the southern part of the study area and is connected to a total depth of 220 m (Figure 4). According to this log, the topsoil of 10 m thickness is followed by a low resistivity layer with thickness of 25 m. This layer is described as a clay layer. The third layer is made up of sand and extends from 30 to 55 m. This layer is separated from the sandstone aquifer with a mudstone layer of 20 m thickness. The primary sandstone aquifer lies over a highly resistive layer of silicified sandstone.
[image: Figure 4]FIGURE 4 | Borehole logs of LOG 2 location and its correspondent lithology. SP is the spontaneous potential, GR is the natural gamma ray, and RS is the deep resistivity log.
LOG 3, with a total depth of 270 m, is situated in the southeastern part of the study area and is illustrated in Figure 5. It revealed that the superficial deposits composed of sand and silt of thickness of 7 m are the region’s top layer, followed by a clay layer of 35 m thickness. The sand layer, with a thickness of 40 m, lies below the clay layer. As suggested by GR and RS logs, the sand layer is likely to be a secondary aquifer in the study area. This layer is followed by a mudstone layer of 10 m thickness. In LOG 3, an exchange between mudstone and sandstone is observed from a depth of 60–170 m. All these layers rest over a relatively high resistivity layer of thickness of more than 100 m. This layer is interpreted as saturated sandstone and described as the primary groundwater aquifer in the study area.
[image: Figure 5]FIGURE 5 | Borehole logs of LOG 3 location and its correspondent lithology. GR is the natural gamma ray, and RS is the deep resistivity log.
The vertical electrical sounding (VES) technique is employed to extrapolate the result obtained from geophysical well-logging. The resulting electrical curves obtained from the 1D least damped square inversion of the VES measurement are illustrated in Figure 6. Most VES stations revealed that the area mainly comprises 4 to 5 geoelectrical layers. The top layer of average resistivity (ρ) and thickness of 160 Ωm and 6 m, respectively, are correlated to the superficial deposits indicated by well-logging methods. The second layer is associated with resistivity ranging between 8.5 and 28 Ωm and thickness range between 14.7 and 48.3 m. This layer is interpreted as clay. The third layer of average resistivity of 120 Ωm is indicated as saturated sand of average thickness of 60 m. The fourth layer, which correlated to mudstone of an average thickness of 30 m, disappeared in some VES stations, such as S11 and S12. The bottom layer of resistivity ranges from 120 to 292 Ωm is interpreted as saturated sandstone. From the high resistivity values of this aquifer, it can be deduced that the pore water is of low salinity.
[image: Figure 6]FIGURE 6 | Examples of the 1D least damped square inversion of the VES data for (A) S4, (B) S5, (C) S8, and (D) S9.
For the delineation of groundwater aquifers, two hydrogeological profiles are constructed based on the data obtained from geophysical well logs, VES measurements, and lithological logs. The integrated approach results revealed that the study area consists of two aquifers (Figure 7 a, b, and c). An upper aquifer comprises sand with a thickness range from 20 to 50 m, and a lower aquifer with a thickness of more than 200 m is composed of sandstone. The lower aquifer is non-leaky confined due to the presence of a relatively thick mudstone layer with an average thickness of 25 m. Vertical flow components hydraulically connect the upper and lower aquifers. Furthermore, combining the wells logging and VES measurement aided in detecting the spatial variation in the depth to the upper and lower aquifers. The minimal depth to the upper aquifer is 20 m, which is recorded in S5 in the central part of the study area. The depth increases to the Northern and Southern parts to reach its maximum (55 m) in the S13 location. The depth to the lower aquifer varies between 66 and 165 m, which was recorded in S12 and S1, respectively. The thickness of the upper aquifer ranged from 20 to 95 m. The highest thickness is observed in S5 in the Eastern part, while the lowest thickness is in S12 in the North.
[image: Figure 7]FIGURE 7 | Hydrogeological cross sections obtained from the interpretation of (A) profile 1, (B) profile 2, and (C) profile 3.
4.2 Petrophysical and hydrogeological parameters
The results of the estimated petrophysical and hydrogeological parameters are summarized in Table 1. For LOG 1, the average formation resistivity of the upper and lower aquifer is 83 and 120 Ωm, and pore water resistivity is 20 and 25 Ωm. Thus, for the upper aquifer, the average formation factor is 4.3, while for the lower aquifer is 4.8. Since the formation factor is inversely proportional to porosity, the upper aquifer is associated with higher porosity (33%) than the lower aquifer (27%). This is likely due to the high pore-water resistivity. The average shale volume of shallow and deep aquifers is 22% and 19%. As a result, the effective porosities are 24% and 22%. The average hydraulic conductivity of the deep aquifer is 4.9 m/day, while for the shallow aquifer, the hydraulic conductivity is 5.8 m/day. However, the transmissivity of the deep aquifer (490 m2/day) is much higher than that of the shallow aquifer (120 m2/day). This is due to the high thickness of the deep aquifer compared to the shallow.
TABLE 1 | The average estimated petrophysical and hydrogeological parameters for the Nubian aquifers were obtained from geophysical well logs.
[image: Table 1]The average formation resistivity of the upper and lower aquifers for LOG 2 is 94 and 180 Ωm, while the pore water resistivity is 40 Ωm. Due to this, the average formation factor for the upper aquifer is 2.3 and 4.5 for the lower aquifer. The upper aquifer is associated with 42% porosity, while the porosity of the lower aquifer is 32%. In shallow and deep aquifers, there are 6% and 10% of shale volume. It follows that the effective porosities are 39% and 29%. The hydraulic conductivity and transmissivity for the shallow and deep aquifers are 5.5 and 3.5 m/day and 192 and 683 m2/day.
For LOG 3, the pore water resistivity is 27 Ωm, while the average formation resistivity of the above and lower aquifers is 72 and 107 Ωm. As a result, the lower aquifer’s average formation factor is 3.9, and the upper aquifer’s average formation factor is 2.6. The lower aquifer has a porosity of 34%, whereas the higher aquifer has a porosity of 47%. Shale volume is present in shallow and deep aquifers at 6% and 10%. The effective porosities are therefore 31% and 20%. The shallow and deep aquifers’ respective hydraulic conductivity is 7.8 and 5.7 m/day, while the transmissivity values are 199 and 733 m2/day.
4.3 Interpolation of estimated parameters
4.3.1 Petrophysical parameters
Vertical electrical sounding (VES) employed the geophysical well logging results to reveal the geographic variation of electrical resistivity, formation factor, porosity, hydraulic conductivity, and transmissivity. In this study, the areal distribution of the resistivity of aquifers is detected. The maximum resistivity for the upper aquifer, 195 Ωm, is recorded in S1, and the minimum 72 Ωm is observed in LOG 3 (Figure 8A). For the lower aquifer, the lowest resistivity of 120 Ωm is detected in LOG 1, and the highest of 292 Ωm is recorded in S9 in the central part of the study area (Figure 8B).
[image: Figure 8]FIGURE 8 | The spatial variation of the electrical resistivity for the (A) upper and (B) lower aquifers.
Accordingly, the spatial variation of formation factor in the shallow and deep aquifers is illustrated in Figures 9A, B, respectively. The formation factor for the upper aquifer ranges from 2.3 in the southern part of the study area to 8 in the eastern part of the study area. For the lower aquifer, the formation factor varies between 3.9 and 8.9. The highest value is observed in the S1 location in the eastern part of the study, while the lowest is detected in the LOG3 location in the western part. Consequently, the areal variation of total porosity is revealed. The geographic distribution is shown in Figures 9C, D for the shallow and deep aquifers, respectively. The range of porosity for the upper aquifer is between 20% and 47%, while the lower aquifer is between 17% and 34%. The upper aquifer has a higher porosity than the lower aquifer because it is made up of coarse sand, which is less compact than the sandstone that makes up the deep aquifer.
[image: Figure 9]FIGURE 9 | Contour maps showing the spatial variation in the formation factor of the (A) upper and (B) lower aquifers and the porosity of (C) upper and (D) lower Nubian aquifers (Contours are shown in blue lines while the Nile River in blue polygons).
4.3.2 Hydrogeological parameters
The interpolation of hydrogeological parameters of hydraulic conductivity and transmissivity is performed with geophysical and pumping test methods. Figure 10 shows an example of the pumping data analysis using Cooper Jr and Jacob (1946) method. The hydraulic conductivity of the upper aquifer is between 2.8 and 7.8 m/day. The highest conductivity is observed in the LOG3 location and the lowest in S1 location in the eastern part of the study area. Figure 11A shows the variation of the hydraulic conductivity of the shallow aquifer over the study area. Generally, the values increase in the Southeastern part of the study area. For the lower aquifer, the hydraulic conductivity ranges from 1.93 m/day in S9 to 5.7 m/day in LOG3. The geographic distribution in Figure 11B shows an almost similar trend to that of the upper aquifer.
[image: Figure 10]FIGURE 10 | The result of pumping test analysis for LOG3 groundwater well using Cooper-Jacob method.
[image: Figure 11]FIGURE 11 | The spatial variation in hydraulic conductivity of (A) upper and (B) lower aquifers and the transmissivity of (C) upper and (D) lower Nubian aquifers (The Nile River is shown in blue polygons).
The transmissivity for the upper aquifer ranges from 120 in LOG1 to 220 in S12. The spatial variation shown in Figure 11C revealed the central part of the area is of high transmissivity, and the values decrease toward the North, South, and Eastern parts of the research area. For the lower aquifer, the transmissivity is measured by analyzing pumping test data using Cooper Jr and Jacob (1946) method. Figure 8 shows an example of pumping data analysis for LOG3 locations. The estimated transmissivity for the lower aquifer varies between 370 in the Northern part and 733 in LOG3 in the Southwestern part. The areal distribution is illustrated in Figure 11D. The Southern parts of the area are associated with high transmissivity compared to the. Furthermore, the storativity (S) of the leaky confined aquifer is estimated, and it ranged between 5.8e-5 to 2.09e-6. The lowest value of S is likely due to the low compressibility of the Nubian formation in the study area in response to the pressure change. This is also supported by the slight change in drawdown during groundwater pumping.
5 DISCUSSION
The integration of the geophysical well logging with VES data has provided a comprehensive understanding of the geological and hydrogeological frameworks within the study area, enabling the delineation of distinct hydrostratigraphical units. Across the study area, the consistent identification of superficial deposits highlights the uniformity of the uppermost layers (Haggaz and Kheirallah, 1988). This uniformity is important for evaluating recharge mechanisms (Farah et al., 2000). On the other hand, aquitards identified at varying depths serve as geological barriers influencing vertical groundwater flow (Zeinelabdein and Elsheikh, 2014). The delineated aquifers are affected by these aquitards, which impact their connectivity and facilitate direct groundwater infiltration due to hydraulic gradient differences (Hussein and Awad, 2006). Furthermore, the spatial disparities in the distribution of aquifer depth and thickness underscore the subsurface heterogeneity, indicating varying groundwater potential throughout the study area (Abdelsalam et al., 2016). However, limitations in the exploration depth, especially for identifying the thickness of the lower aquifer, highlight the necessity for more extensive investigations using more profound exploration techniques like deep resistivity sounding or gravity surveys (Mohamed, 2020).
The petrophysical and hydrogeological parameters derived from the well logs provide crucial insights into the characteristics and potential productivity of the identified aquifers within the study area. The variation in formation resistivity and pore water resistivity among the upper and lower aquifers across different logs contributes to the differences in porosity and storativity (Farrag et al., 2019). Accordingly, the differences in the distribution of hydraulic conductivity and transmissivity values between the upper and lower aquifers reflect varying permeabilities and thicknesses, with the deeper aquifers exhibiting higher transmissivity due to their substantial thicknesses (Zeinelabdein and Elsheikh, 2014). In general, the obtained values showed a close agreement with the results of (Elkrail and Adlan, 2019). According to (Krásný, 1993) classification, the upper and lower aquifers are defined as high transmissivity aquifers that can be ideal for groundwater development to fulfill the water supply. However, optimizing the pumping rate to suit the measured parameters is advisable for the sustainable management of groundwater resources.
The investigation of the NAS has uncovered crucial patterns of petrophysical and hydrogeological parameters. This complete assessment provides a dataset that may be used as a basis for creating precise hydrogeological conceptual models to simulate the movement of groundwater and the spread of contaminants within the systems (Geng et al., 2020). The NAS acts as a model for interpreting comparable aquifer systems globally, allowing the extension of current findings to other analogous hydrogeological environments. An example of an aquifer system with comparable hydrogeological characteristics is the Taoudeni Basin Aquifer System (TAS), which extends across Algeria, Mali, and Mauritania (Nijsten et al., 2018). Our study promotes a wider viewpoint in comprehending and handling crucial groundwater resources by acknowledging the similarities between the NAS and other aquifers.
6 CONCLUSION
The integrated approach using geophysical well-logging, vertical electrical sounding, and pumping test data is employed to delineate and characterize the Cretaceous Nubian Aquifer System in Khartoum state, Sudan. The research area encompasses two hydraulically connected aquifers. These aquifers comprise shallow and deep aquifers that transition from being leaky confined to non-leaky confined due to intercalated clayey and mudstone layers. These layers restrict the vertical movement of groundwater and establish a high hydrostatic pressure that exceeds atmospheric pressure. The actual thickness of the deep aquifer was not determined in the recent investigation since the depth of the sounding cannot detect the top of the Precambrian basement rocks.
The petrophysical analysis of the aquifer materials revealed distinct differences between the shallow and deep aquifers. The deep aquifer exhibits a greater degree of cementation and consolidation. Conversely, the shallow aquifer is characterized by a higher shale volume, resulting in reduced hydraulic conductivity. The estimation of hydraulic parameters, including hydraulic conductivity and transmissivity, demonstrated the considerable groundwater potential within the study area. Consequently, the aquifers can serve as a reliable source of groundwater supply in Khartoum State. Nonetheless, the study highlights the necessity of optimizing groundwater extraction to align with the hydraulic properties of the aquifers.
The integrated approach successfully delineated and characterized the Nubian Aquifer System in Khartoum State; however, this study recommended applying deep electrical methods to determine the thickness of the deep aquifer for the accurate estimation of petrophysical and hydrogeological parameters. The most recent study of the NAS greatly enhances our comprehension of transboundary aquifer systems. In addition to the specific qualities emphasized in the NAS, the findings of this study have prospective implications that can be extrapolated and implemented in aquifer systems that have a heterogeneous lithological and hydrogeological nature.
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Transient electromagnetic method (TEM) is widely used in coalfield hydrogeological exploration and goaf investigation. However, given the limitations of the method, the vertical resolution of ground TEM is somewhat low for effectively detecting water-bearing coal goaf. Compared with ground TEM, ground-borehole TEM is characterized by a relatively better ability for detecting low-resistivity target bodies. In this study, a low-resistivity thin plate model was established, and the ground-borehole TEM electromagnetic responses of different points (within and without of the plate) were numerically simulated. We considered an exploration project in Datong City (Shanxi Province, China) as a study case, to conduct the field investigation, examine the characteristics of ground-borehole TEM electromagnetic responses under different situations, and validate the numerical model as well, including (a) water-bearing coal goaf and (b) solid coal. The result showed that, (a) the longer the sampling time is, the weaker the electromagnetic response of ground-borehole TEM will be; (2) ground-borehole TEM stands out with a high vertical resolution for water-bearing coal goaf; (c) the extreme points of the Z component and the polarity changing points of the X and Y components can indicate the interface where the physical properties alternated.
Keywords: ground-borehole transient electromagnetic method, coal goaf, numerical simulation, resolution, geophysical exploration
1 INTRODUCTION
The ongoing socio-economic development has triggered the demand for efficient restoration and management of the mining environment practices. Such demand, in turn, has strongly promoted the exploration and management of goaf, thereby bringing the existing techniques to a new level. In particular, a fine detection of goaf is critical for rational planning of routes or targeted governance, especially in the locations, where roads and railways pass through the goaf.
To date, the detection of coal goaf is mainly based on geophysical exploration methods, where each method has its own advantages and disadvantages. For instance, the high-density resistivity method is characterized by speed and convenience in the data collecting process, while its results are notably intuitive. However, its detection depth is shallow, while the requirements for data collection conditions are strict (Lei et al., 2009). Liu et al. (2012) predetermine the low resolution of processing and inversion results of this method, thereby critically hindering the suppression of noise interference needed to meet the requirements of data interpretation. The seismic exploration method provides high resolution, but the goaf site environments are generally complex, the exploration depth of low-energy sources is limited, and the cost of high-energy sources is high (Wang, et al., 1998; Ezersky, 2011; Wei et al., 2014; Bai et al., 2019; Bai, 2022). Ground penetrating radar is highly effective and accurate for interpreting the results, but its detection depth is limited under the technical limitations of the method itself, for example, the transmitting power is relatively small compared to the MT method. As a result, one cannot address the goaf with the depth of >100 m by using GPR (Cheng et al., 2010; Klotzsche et al., 2019; Ozkaya et al., 2021). Compared with other methods, transient electromagnetic method (TEM) is notably advantageous for detecting water-bearing coal goaf. In particular, (a) the pure anomaly field of TEM is especially sensitive to low-resistivity targets, and (b) the network of surveying points is relatively dense. Thus, TEM can be used to control the boundary of the coal goaf effectively, while the rock layer on surface can be penetrated. As a result, the data of the deep coal goaf can be accurately collected by the receivers (Yang and Oldenburg, 2012; Xue and Yu, 2017; Bai et al., 2020; Bai et al., 2021; Cui et al., 2022).
In general, TEM can be divided into aerial TEM, ground TEM, and ground-borehole TEM depending on the location of the receiver. Notably, the work efficiency of TEM is high, its detection cost of ground is low, and it is less affected by the terrain. This allows penetrating the high-resistivity covering layers on the surface, thereby providing peculiar benefits for coal goaf exploration. Overall, these characteristics make TEM beneficial for the exploration of deep ore bodies. Numerous researchers have focused on processing and interpreting ground-borehole TEM. For instance, Meng and Pan (2012) examined the forward modeling characteristics of ground-borehole TEM under the influence of the earth medium. Zhang et al. (2014) studied the acquisition technology of transient electromagnetic data in the borehole and the technology from qualitative analysis to semi-quantitative interpretation and proposed the rapid positioning technology of abnormal vector intersection. Furthermore, Wu et al. (2017) analyzed the three-component response characteristics of electrical source ground-borehole TEM. In the Sudbury copper mine in Canada, a Linsley ore body and aVictoria copper-nickel deposit at a depth of 2400 m were discovered by the ground-well TEM (Ben, 2000). In addition, a high-grade floor deposit was found by using ground-borehole TEM below the mined deposit, making a significant contribution to the development of mine resources (King, 1996; Spicer, 2016). However, studies addressing the data processing of ground-borehole TEM by using the numerical simulation and electrical response characteristics are scarce.
To examine the effect of ground-borehole TEM on the detection for coal goaf, we introduced a geophysical model of low-resistivity thin plate to simulate the simplified model of a water-bearing coal goaf, and obtained the ground-borehole TEM responses of different points (within and without of the plate). The main objectives are to (a) construct electromagnetic response curves based on simulations and (b) determine the location and size of the anomalies, thereby providing theoretical fundament for the exploration of coal goaf by ground-borehole TEM. Carrying out an exploration project in Datong City (Shanxi Province, China) as a study case, the field investigation has been done, the characteristics of ground-borehole TEM electromagnetic responses under different situations (including water-bearing coal goaf and solid coal) were examined, and the numerical model was validated as well. The results showed that using ground-borehole TEM to detect the water-bearing coal goaf has an ideal effect.
2 METHODOLOGY
For the ground-borehole TEM, the transmitting loop is normally organized on the ground, while a receiving probe collects data at fixed intervals in the borehole (Figure 1). During the data acquisition, the receiving probe in the ground-borehole TEM is located close to the geological body, thus producing anomalous response and potentially acquiring more useful information in the vertical direction than that in ground TEM (Zhang et al., 2015).
[image: Figure 1]FIGURE 1 | Schematic diagram of ground-borehole TEM working device.
To study the distribution characteristics of ground-borehole TEM electromagnetic responses under different coal goaf conditions, numerical simulations were performed using the finite difference method.
2.1 Theoretical basis of finite difference time domain
2.1.1 Control formula
In a homogeneous isotropic medium, by neglecting the displacement current, the active Maxborehole Formulas can be formalized according to Xu et al. (2015) as follows:
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where [image: image] is the electric field intensity, [image: image] is the magnetic field intensity, [image: image] is the magnetic induction intensity, [image: image] is the current density, [image: image] is the magnetic current density, and [image: image] and [image: image] are the permeability and conductivity of the homogeneous half-space medium, respectively.
Taking the curl on both sides of Eq. 1 and by substituting Eqs (2) and (3) into it, one can use the vector identity: [image: image]. Thus, the quadratic magnetic field diffusion formula is simplified and deduced as follows:
[image: image]
where [image: image] is the primary magnetic field, [image: image] is the secondary fields, and [image: image] is the conductivity of anomaly body.
In the Cartesian coordinate system, the area, calculated by the forward modeling model is divided into several small cuboids using a non-uniform grid (Figure 2). In this way, the problem of solving the spatially continuous magnetic field in an infinite area can be transformed to the following task. One needs to solve the field value of each small cuboid discrete node in only a limited area.
[image: Figure 2]FIGURE 2 | Finite-difference network model in 3D half-space.
Thus, by taking the volume fraction on both sides of Eq. 7, we can get the following equation:
[image: image]
Furthermore, Eq. 8 can be simplified using the Gauss formula. The partial derivative of the magnetic field with respect to space and time is replaced by the intermediate difference quotient approximation, and the stable and convergent Dufort-Frankel method is used for differential discretization by getting the following expressions:
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where [image: image], [image: image], [image: image],
[image: image]
2.1.2 Initial and boundary conditions
In the forward calculation, the initial conditions are generally substituted into the analytical solution of the field source in the uniform half-space. Thus, the form of the field source can be selected according to the actual needs. To this end, the loop source was selected as the initial condition to be substituted. The analytical solution of the loop source in the time domain in the uniform half-space can be obtained by inverse Laplace transformation of the analytical solution in the frequency domain. The analytical solution of the vertical component of the loop source magnetic field in the frequency domain is expressed as follows (Xu et al., 2015):
[image: image]
where [image: image] is the power supply current, [image: image] is the wave number, and [image: image] is the radius of the transmitting loop. According to the inverse Laplace transform formula, by transforming the harmonic field expression into the transient field, we can get the following equation:
[image: image]
where [image: image] is the error function, [image: image], and the initial time step should satisfy the following formula:
[image: image]
where [image: image] is the minimum grid step size in the calculation model. On the ground-air boundary, the boundary area is approximately regarded as infinity, and the upward continuation method is used for processing; while selecting side and bottom boundary conditions, the modified Liao’s absorption boundary conditions are used for calculation (Liao et al., 2002). This boundary condition handles the magnetic field at the boundary well and does not produce magnetic field distortion in the calculation area.
2.2 Model calculation
To study the electromagnetic response characteristics of ground-borehole TEM to the coal goaf, a simple uniform half-space model is established in the Cartesian coordinate system, and the numerical simulation is carried out using this model. In the model, the resistivity of the uniform half space is set to 100 Om, representing the surrounding rock of the coal seam. A horizontal thin plate with a side length of 100 m and a thickness of 20 m is set at a depth of 300 m, with a resistivity of 10 Om, representing a water-bearing coal goaf (Figure 3).
[image: Figure 3]FIGURE 3 | Schematic diagram of the numerical simulation model.
Furthermore, numerical simulations of ground-borehole TEM were performed using the geological model shown in Figure 3. The transmitting device was a square single-turn loop with the side length of 200 m with the center, located directly above the center of the plate (Figure 4). The receiving probe featured an axial coil (Z direction) with the equivalent area of 10,000 m2. The equivalent area of the radial coils (X and Y directions) was 2,500 m2, while the simulated borehole depth was 600 m, which virtually represented a straight hole. The receiving points were measured along the borehole, and the surveying point distance was 1 m.
[image: Figure 4]FIGURE 4 | Schematic diagram of the transmitting and receiving devices.
The primary field and secondary field generated in the underground space were both vector fields. The ground-borehole TEM used a fixed transmitting source and a movable receiving probe to monitor the electromagnetic responses at different depths. Therefore, the directions of the electromagnetic responses, namely, the “positive” and “negative” signs of the response values, are the key parameters to be investigated.
Figures 5–7 illustrate the electromagnetic response curves of Z-component, Y-component, and X-component, respectively, at different positions. Note that different colors of the response curves in these figures represent different sampling times.
[image: Figure 5]FIGURE 5 | Electromagnetic responses of Z component under different offsets. Different colored lines in part labels represent responses at different times.
[image: Figure 6]FIGURE 6 | Electromagnetic responses of Y component under different offsets. Different colored lines in part labels represent responses at different times.
[image: Figure 7]FIGURE 7 | Electromagnetic responses of X component under different offsets. Different colored lines in part labels represent responses at different times.
Z-component: When the borehole is drilled through the thin plate, the electromagnetic response generally emerges as a single-peak positive anomaly, with the extreme value appearing near the center of the thin plate (Figure 5A). As the borehole offset increased, three-peak symmetrical positive and negative anomalies (one negative anomaly, two positive anomalies) were generated near the edge of the thin plate. Moreover, the anomaly peak exhibited a negative anomaly, precisely associated with the center of the sheet, located on the side close to the thin plate (Figure 5B). As the borehole offset continued increasing, the amplitude of the electromagnetic response gradually decreased. At the position far from the thin plate, the positive anomaly became nearly zero, and the electromagnetic response revealed a single-peak negative anomaly (Figure 5C).
Y component: In general, the electromagnetic response curves of the Y component are “s-shaped,” while the curves exhibit “double-peak anomaly,” and the positive and negative polarity transitions of the curves correspond to the center of the thin plate. The magnitude of the electromagnetic response curve was large when the borehole passes through the thin plate, indicating that the abnormal features were most dramatic at this location (Figure 6A). As the borehole offset increased, the amplitude of the curve exhibited stronger attenuation, compared to the borehole at the edge of the plate (Figure 6B). As the borehole offset continued increasing, the amplitude of the curve gradually decreased. At certain position, far from the thin plate, the amplitude nearly completely disappeared, showing that the abnormal features caused by the thin plate were not obvious (Figure 6C).
X component: In general, the electromagnetic response curve of the X component is “inverse s-type,” thereby signifying a totally opposite pattern to that of Y component. The curve exhibited a “double-peak anomaly” and the positive and negative polarity transition of the curve was attributed to the center of the thin plate. When the borehole passed through the thin plate, the magnitude of the electromagnetic response curve was large and nearly equal to that of the Y component (Figure 7A). As the borehole offset increased, the amplitude of the curve was slightly attenuated. However, its amplitude was larger than that of the Y component when the borehole was at the edge of the thin plate (Figure 7B). When the borehole offset continued increasing, the amplitude of the curve gradually decreased, showing that the electromagnetic response anomaly caused by thin plate was decreasing accordingly. At this moment, a relatively distinct amplitude was identified at the position far from the thin plate (Figure 7C). The electromagnetic response of the X component was larger than that of the Y component when the borehole was out of the plate. Hence, the decaying speed of the X component electromagnetic response was slower than that of the Y component.
2.3 Summary of numerical modeling
The numerical simulations for electromagnetic response shows that, for a certain scale of low-resistivity horizontal thin plate, the earlier the sampling time is, the greater the amplitude of the abnormal response will be. Moreover, as time passes, the electromagnetic response gradually decays; on the other hand, with the offset between the borehole and the center of the thin plate increasing, the electromagnetic response gradually decreases, and the amplitude of the curve reduces accordingly. Importantly, the ground-borehole TEM is characterized by a high degree of recognition for low-resistivity horizontal thin plate.
The water-bearing coal goaf can be simplified as a low-resistivity thin plate. In this context, it is reasonable to suggest that the ground-borehole TEM can potentially allow the effective detection of the water-bearing coal goaf.
3 CASE STUDY
To evaluate the accuracy of ground-borehole TEM for detecting water-bearing coal goaf, we conducted TEM experiments near a working zone of the Tongxin Coal Mine (Shanxi, China).
3.1 Geological setting
The Tongxin Coal Mine is located on the northeast edge of the Datong Coalfield of the Shanxi Province, China (Figure 8). The basement stratum in this area is the Jining Formation of upper Archean, and all subsequent layers are successively deposited on this basis (Table 1). The main coal measure stratum of the region is the Permian Shiqianfeng Formation (including coal seams Nos. 3, 8, 9, 11 and 14). At present, coal seam No. 3 is being mined, with the depth of 280–350 m and thickness of 0–8.5 m.
[image: Figure 8]FIGURE 8 | Location of Tongxin coal mine.
TABLE 1 | Generalized stratigraphy of the study area.
[image: Table 1]The characteristics of the geological data indicate that the Quaternary stratum was 0–250 m, mainly containing sandy clay, silty sand, and sand layers. Moreover, there were gravel and gravel layers containing limestone in the Neogene stratum. The total thickness of the Neogene was estimated to be 0–200 m. Below the Neogene strata, the Permian strata, including Shiqianfeng Formation and some others, and the target coal seam No. 3, were in the Shiqianfeng Formation. Lastly, the lowest part was the Carboniferous coal-bearing strata.
3.2 Working procedures
The working procedures are described in detail in this section. First, ground TEM work was carried out in the study area using 18 TEM surveying lines and 1,980 surveying points. The dimensions of the working network was 20 × 20 m, implying that the line distance was 20 m, and the point distance was 20 m (Figure 10). After the inversion of the measured data, the resistivity profile of the testing line (Figure 9) and the resistivity slice map of the No. 3 coal seam, both, were drawn (Figure 10).
[image: Figure 9]FIGURE 9 | Resistivity profile of the testing line.
[image: Figure 10]FIGURE 10 | Resistivity slice map of the No. 3 coal seam.
Figure 9 shows the resistivity profile of the testing line. As seen, the 1,440–1,620 section, a prominent low-resistivity anomaly near the No. 3 coal seam was identified. The anomaly was signified by the resistivity value of <170 Ω m, as indicated in magenta range of Figure 8. This finding indicates that this section can be inferred as a low-resistivity anomaly area.
Figure 10 demonstrates the resistivity slice map of coal seam No. 3. We combined the resistivity characteristics of the No. 3 coal seam with the resistivity profile of the testing line. The combination yielded the three low-resistivity abnormal areas, as shown in the magenta range of Figure 10. Three boreholes B1, B2, and B3 were arranged near the low-resistivity anomaly area in the southeast of the study area. Interestingly, the borehole data revealed a goaf the B1 borehole, while solid coal was identified at the B2 and B3 boreholes.
3.3 Verification scenario
Ground-borehole TEM measurements were conducted in boreholes B1, B2, and B3 using the ProTEM system by the receiving probe of BH43 and the measurement distance in the borehole of 1 m. The transmitting device was a square ungrounded loop with a side length of 100 × 100 m.
Figure 11A illustrates the simple filtered electromagnetic response curves for borehole B1. At the depth of 270–320, the X, Y, and Z components exhibited distinct electromagnetic response anomalies. Moreover, the Z component exhibited significant high-value distortion, and the X and Y components showed the polarity changing points near the depth of 285 m. All the electromagnetic responses were generally consistent with the anomalous characteristics of the point in the low-resistivity plate in the numerical simulation (borehole D1 in Figure 3, as described in Section 2.2). This finding confirms that the point was located in the water-bearing coal goaf.
[image: Figure 11]FIGURE 11 | Electromagnetic responses of boreholes B1, B2, and B3. Different colored lines in part labels represent responses at different times.
Figure 11B displays the electromagnetic response curves of borehole B2. At the depth of 330–340 m, the X, Y, and Z components exhibited prominent electromagnetic response anomalies. The electromagnetic response of the Z component exhibited a negative extreme value near the depth of 335 m. At the same time, the X and Y components exhibited polarity changing points at this depth. Each component was consistent with the anomalous characteristics of the point on the outer edge of the low-resistivity plate in the numerical simulation (borehole D2 in Figure 3, as described in Section 2.2). This finding points outs that this point was located at the edge of the water-bearing coal goaf.
Figure 11C shows the electromagnetic response curves of borehole B3. At the depth of 350–360 m, the X, Y, and Z components somewhat experienced electromagnetic response anomalies. In particular, the Z component exhibited a small magnitude of negative electromagnetic response, and the X and Y components both exhibited a polarity changing point near the depth of 355 m. This finding is in line with the anomalous characteristics of the point far away from the low-resistivity plate (borehole D3 in Figure 3, as described in Section 2.2) in numerical simulation, thereby confirming that this point was out of the goaf and was, therefore, less affected.
4 DISCUSSION
Numerous studies have previously exerted substantial efforts to explore the principle and inversion problem of ground TEM (Hou and Xu, 2013; Li et al., 2015; Li et al., 2016; Chen et al., 2017; Yang et al., 2018; Zhou et al., 2018; Yang et al., 2022). Essentially, the ground TEM can accurately delineate the horizontal distribution range of the water-bearing coal goaf, thereby ensuring the safe production of coal mines. However, the detection accuracy of the ground TEM in the vertical direction needs to be improved.
We used the numerical simulations and demonstrated that the ground-borehole TEM is advantageous, compared to the ground TEM.
Simulations of low-resistivity thin plate model showed that the electromagnetic response curves of the X, Y, and Z components of the ground-borehole TEM were complex. Moreover, the signal of the vertical component (Z component) was stronger than that of the horizontal components (X and Y components), and the electromagnetic response amplitude of the Z component of the same surveying point was stronger than that of the X and Y components.
The ground-borehole TEM detection analysis indicated that the electromagnetic response curves of different time channels yield different shapes. Namely, the longer the sampling time, the weaker the electromagnetic response. However, as the sampling time increases, the attenuation of the Z component dwindles below that of the X and Y components, and the attenuation of X component is, therefore, smaller than that of the Y component.
The electromagnetic response of the ground-borehole TEM stands out with a high vertical resolution, which allows effective description of the changes of the layers in the vertical direction. The extreme points of the Z component, as well as the positive-negative polarity changing points of the X and Y components, can be used to identify the interface where the physical properties experienced significant alternations. Given this advantageous feature, the ground-borehole TEM can effectively identify low-resistivity thin plates such as water-bearing coal goaf in the vertical direction. This, in turn, alleviates the existing state-of-the-art shortcomings of ground TEM.
5 CONCLUSION
This study used numerical simulations for ground-borehole TEM response of the low-resistivity thin plate. Some conclusions can be drawn:
(1) Under the same transmitting and receiving conditions, the abnormal response characteristics of the three components (X, Y, and Z components) of the ground-borehole TEM are highly correlated with the position relationship of the anomalous body. Simultaneous observation of the three components in practical work will help to infer and interpret the anomalous location near the well.
(2) By analyzing the characteristics and amplitude of the anomaly response curve of the horizontal component, the approximate orientation of the anomaly center can be inferred. If the curved line is “S-type”, the anomaly center is located on the positive side of the component; if the curve is of the “inverse S-type”, it is located on the negative side of the component.
(3) The vertical component anomaly response curve can reflect the distance between the anomaly center and the borehole, and the borehole passes through the middle of the anomaly, and the vertical component anomaly curve is a positive anomaly; After passing through the edge of anomalous body, the trace reflected as positive anomaly in early stage and negative anomaly in middle and late stage. The anomaly curve is negative, and the anomaly half width is equal to the distance between the anomaly body and the borehole.
(4) The characteristics of ground-borehole TEM response are very complex, and the root cause of the change of response characteristics can be clearly understood by analyzing the coupling relationship between the primary field and the conductor. Therefore, the use of the primary field distribution diagram is helpful for the inference and interpretation of the complex model.
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nal upscale module

Tnput: batch size:64; channel: I; the size of input image: 64X 64
Train: Pre-processing

forj = 1:5:
Conv2d(data)

BatchNorm2d(data)
Relu(data)
Conv2d(data)
BatchNorm2d(data)

data = Relu(data)

Encoder

fork=1:5:
data = Conv2d(data)
data = BatchNorm2d (data)
Relu(data)

data = Max_pool2d (data)
Downli] = data
Decoder
forz=1:5:
ConvTranspose2d(data)
BatchNorm2d (data)
Relu(data)
Conv2d(data)
ConvTranspose2d(data)
Relu(data)
ifzin [14]:
data = Cat(data, Down[6-i])
Post-processing
forq=1:2:
data = Conv2d(data)
BatchNorm2d (data)
Relu(data)
Result = Conv2d(data)
Backward
Loss = Loss_function(Result, True)
Loss.backward()
Predict: Predict = GV-Net(Input)
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Model no. Field source Power supply electrode point Power supply electrode Power supply electrode pole

position source coordinates distance (m)
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14 7.550 5075 663 290 1036 55.98 13096
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19 7.925 5075 e 431 873 6644 16609
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27 7100 5225 603 531 e 85.93 s
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32 7475 5225 634 427 841 68.97 17241
33 7,550 5225 8.12 396 1228 4723 11808
3 7.625 5225 772 367 um 4928 s
35 7.700 5225 6 374 Lom 5835 s
36 7.775 5225 912 516 1308 4434 11086
37 7.850 5225 |62t 389 853 68.00 16999
38 7005 5225 37 560 e 5206 1016
39 s 5375 668 544 I 7323 15308
40 6.650 5375 767 612 922 6291 157.27
a1 6725 5375 845 142 1248 4647 11619
42 6800 5375 588 27 [o0s 64.09 102
13 6875 5375 s 336 ies 1066 nau
4 650 5375 741 373 1o 5230 1075
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46 7100 5375 [ 444 s 5263 s
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48 | 7250 5375 752 41 1093 53.06 15266
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54 7.700 5375 601 410 792 7323 183.08
55 s 5375 591 383 ) s s
56 | 7850 5375 [s3s 276 £ 73.05 w6
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58 6575 5525 797 615 979 5924 s
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P 7175 5525 763 449 1077 5385 e
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7 | 7625 5525 587 415 ) 7642 191.04
73 7.700 5525 882 360 1404 4131 10328
74 7.775 5525 8.09 419 1199 4837 12093
75 7.850 5525 850 329 1371 4230 10576
76 7005 5525 671 419 Lo 6284 is7a0
77 6575 5675 536 384 ™ 8430 076
78 6650 5675 509 231 7.87 |67 a7
79 6725 5675 632 387 877 66.13 16534
80 6800 5675 499 357 Lo 9048 2621
81 6875 5675 661 462 8.60 67.44 168.60
8 6950 5675 526 385 6.67 86.96 21739
8 7ons 5675 570 391 749 7744 19359
84 7100 5675 592 270 om 6216 s
8 s 5675 563 308 s 70.90 e
86 7.250 5675 640 325 9.5 6073 s
87 7.325 5675 590 471 7.09 8181 20451
88 7400 5675 602 488 N 8101 s
89 7475 5675 550 356 744 77.98 19494
90 7.550 5675 607 496 7.18 8078 20195
91 7.625 5675 604 452 7.56 7672 19180
92 7.700 5675 575 386 e 7592 )
9 7.775 5675 607 438 B 7475 1s6ss
9 7.850 5675 569 400 7.38 7859 196.48
9 7.925 5675 641 431 851 68.16 17039
9% 6575 5825 671 426 Lot 6332 158.30
97 6650 5825 684 466 Lo 6430 607
98 6725 5825 614 297 931 6230 15575
99 6800 5825 541 396 686 8455 21137
100 6875 5825 630 375 885 6554 s
101 6950 5825 600 467 73 79.13 s
102 7.025 5825 646 463 829 69.96 17491
103 7.100 5825 577 426 7.28 79.67 199.18
104 s 5825 646 428 Lsa 67.13 s
105 7250 5825 601 488 ou 8123 20308
106 7.325 5825 557 409 7.05 8227 205.67
107 | 7400 5825 550 407 693 83.69 20924
108 7475 5825 521 350 6.92 8382 20954
109 7.550 5825 535 379 oo 83.94 20084
110 s 5825 505 399 611 9493 23732
1 7.700 5825 ['ss1 429 673 86.18 Lasas
12 | 7725 5825 601 429 7.73 7503 18758
13 | ss0 5825 581 379 7 7407 s
114 7.925 5975 592 445 7.39 7848 19621
115 6575 5975 567 411 7.23 8022 20055
116 6650 5975 o 400 s 68.88 i
17 oms 5975 610 286 om 62.10 s
18 6800 5975 652 379 925 6270 15676
19 6875 5975 663 380 946 6131 15328
120 6950 5975 613 331 895 64.80 16201
121 7.025 5975 71 457 Lo 60.10 15026
122 7.100 5975 562 364 7.60 7632 19079
123 7175 5975 543 327 759 7642 19104
124 a0 5975 524 a6 lon 85.04 e
125 75 5975 s 393 s 8492 s
126 7.400 5975 623 547 699 8298 207.44
127 7.475 5975 546 384 7.08 8192 20480
128 | 7550 5975 543 405 681 8517 21292
129 765 5975 564 337 B 7332 s
130 | 7700 5975 647 461 e o0 17407
131 7.775 5975 632 484 7.80 7436 15590
132 7.850 5975 631 457 8.05 7205 180.12
133 7005 5975 621 401 sa 68.97 im
134 6575 6125 606 496 716 s st
135 6650 6125 605 453 757 76.62 19155
136 6725 6125 611 i 7.60 7632 1907
137 600 6125 601 459 s 78.06 195.15
138 |75 6125 549 359 |73 78.48 19621
139 | 6950 6125 5.16 342 690 8406 21014
140 7.025 6125 514 350 678 85.55 21386
141 7100 6125 s 485 s 87.22 1805
142 |77 6125 574 487 | 6e1 | s775 21936
143 7.250 6125 ) 386 om | 8631 s
144 | 7325 6125 | 520 359 681 8517 21292
145 7400 6125 515 368 ea 8761 200
146 |75 6125 655 582 S | 7067 1991
147 7.550 6125 636 396 876 6621 16553
148 7.625 6125 664 414 9.14 6346 15864
149 770 6125 633 353 o3 6353 s
150 |75 6125 650 418 sm 6576 16440
151 | 7850 6125 547 362 o 7923 198.09
152 7.925 6125 594 404 784 7398 18495
153 6575 6275 663 451 875 6629 16571
154 6650 6275 618 285 Los1 6099 1527
155 oms 6275 780 318 s 4670 ners
156 6,800 6275 752 336 1168 49.66 12414
157 6875 6275 648 530 7.66 7572 18930
158 6550 6275 628 470 | 786 7379 s
159 7.025 6275 652 280 1024 5664 14160
160 7.100 6275 690 337 1043 5561 139.02
161 7175 6275 596 370 822 7056 17640
162 | 7250 6275 536 367 [ 705 8227 20567
163 s 6275 L3 318 Lo | ooa2 510
164 7.400 6275 593 400 7.86 7379 18448
165 7475 6275 581 442 7.20 80.56 20139
166 7.550 6275 7.16 301 1131 5128 12821
167 7.625 6275 621 302 Lo 61.70 saze
168 7.700 6275 5.60 263 857 67.68 169.19
169 7.775 6275 548 357 7.39 7848 19621
170 750 6275 571 394 s 7754 oass
171 7.925 6275 s 427 s 6 15
172 6575 6425 594 460 7.28 79.67 199.18
173 6650 6425 633 337 9.29 6243 156.08
74 6725 6425 579 414 L 77.96 oaso
175 600 6425 s 358 s s oass
176 6875 6425 636 451 821 7065 17661
177 6950 6425 594 433 755 7682 19205
178 | 7025 6425 631 480 m 7417 18542
179 7.100 6425 670 459 s e ez
180 7.175 6425 Leot 413 9.69 59.86 14964
181 7.250 6425 552 396 7.08 8192 20480
182 735 6425 684 376 Lom 5847 e
183 7400 6425 642 462 e 7056 17640
184 7475 6425 on 450 816 7108 177.70
185 7.550 6425 594 368 820 7073 17683
186 7.625 6425 7.00 441 ) 60.48 15120
187 L7700 6425 o4 380 I 7005 i
188 7.775 6425 682 343 1021 5681 14202
189 7.850 6425 637 282 9.92 5847 14617
190 7.925 6425 656 395 9.17 6325 158.12
191 L6575 6575 623 400 546 856 )
192 | 6650 6575 609 349 8.69 6674 16686
193 6725 6575 594 426 7.62 7612 19029
194 6800 6575 605 |52 686 8455 Ly
195 s 6575 633 406 80 67.44 168.60
196 6.950 6575 640 3.87 8.93 64.95 16237
197 | 7025 6575 647 360 9.34 62.10 15525
198 7.100 6575 645 345 9.45 6138 15344
199 s 6575 727 392 0s 5461 e
200 7250 6575 693 344 1042 55.66 139.16
201 7.325 6575 590 355 825 7030 1rs7e
202 7.400 6575 578 i 843 68.80 1200
203 s 6575 626 305 Lo o1z 153.12
204 7.550 6575 671 390 9.52 6092 15231
205 7.625 6575 686 427 9.45 6138 15344
206 7.700 6575 876 390 1362 4258 10646
207 s 6575 7.0 500 Lo 61.70 sane
208 7.850 6575 830 415 1245 4659 11647
209 7.925 6575 935 401 1469 3948 s
210 6575 6725 618 367 8.69 6674 166,86
an 50 6725 850 342 s 271 0677
212 |65 6725 e 400 L9s | s0s0 15199
213 6800 6725 7.79 427 1131 5128 12821
214 6875 6725 557 480 634 9148 22871
215 6950 6725 618 431 805 705 o2
216 |70 6725 650 441 |85 6752 16880
27 7.100 6725 7.85 396 1174 49.40 12351
218 7175 6725 710 376 1044 55.56 138.89
219 7250 6725 663 462 sa e e
220 |73 6725 606 450 |76 7612 19029
o 7400 6725 646 36 Lom 6277 1569
22 7.475 6725 721 441 oo 57.94 14486
23 | 7550 6725 611 380 s 68.88 17221
224 | 7.625 6725 6.52 343 [ 9.61 60.35 150.88
25 7.700 6725 693 282 1104 5254 13134
226 7.775 6725 590 395 7.85 73.89 18471
27 750 6725 648 400 89 6473 e
228 7005 6725 e 349 593 6495 ey
29 6575 6875 658 a2 L850 65.17 g
230 6,650 6875 691 524 8.58 67.60 169.00
231 6725 6875 599 406 ™ 7323 a0
232 6.800 ews s 387 o7 5924 usu
233 6875 6875 748 360 1136 5106 12764
234 6950 6875 7.14 345 1083 5355 13389
235 7ons 6875 s 392 ) 7532 s
236 7.100 6875 568 344 B 7323 18308
237 7175 6875 634 355 L3 6353 e
238 7.250 6875 8.12 313 1311 4424 11060
239 7.325 6875 772 305 1239 4681 11703
240 | 7400 6875 684 390 Loz 59.30 1826
241 s 6875 912 427 e 4152 a7
242 7.550 6875 o 390 852 68.08 1709
243 7.625 6875 837 500 174 4940 12351
244 7.700 6875 668 415 921 6298 15744
25 7‘ 7.775 6875 | 767 401 s 5119 7o
246 7.850 6875 845 367 1323 4384 109.60
247 7.925 6875 588 342 834 6954 17386
248 | 6575 7025 752 400 1nos 5254 11
249 s 7.025 B 427 05 54.98 v
250 6725 7.025 |89 480 1298 44.68 171
251 6300 7.025 773 431 1115 5202 13004
252 6875 7.025 795 441 s 5048 12620
253 650 7025 752 396 1108 5235 13087
254 7.025 7.025 571 376 7.66 7572 18930
255 7.100 7.025 |67 462 886 6546 163.66
256 7.175 7.025 559 450 668 86.83 707
257 7250 7025 580 368 I 7323 18308
258 7.325 7.025 655 441 8.69 6674 166.86
259 7.400 7.025 521 330 7.12 8146 036
260 s 7025 600 Lan 7.9 |75 18148
261 7.550 7025 535 282 s 73.60 1801
262 7.625 7.025 583 395 7.71 75.23 188.07
263 7.700 7.025 697 400 9.94 5835 145,88
264 7.775 7025 907 349 1465 3959 98.98
265 750 7025 605 426 om 73.98 1sass
266 7.925 7025 600 524 676 85.80 21450
MINIMUM 499 231 611 3563 8007
MAXIMUM 935 615 1628 9493 wn
MEAN L 401 836 67.17 eso
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**Indicates that it is at the level of 0.01 (two-tailed) and the correlation is significant.
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**Indicates that it is at the level of 0.01 (two-tailed) and the correlation is significant.
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pH 65-85 3 0.09
TDS (mg/L) 1,000 3 0.09
SO, (mg/L) | 250 3 0.09
I (mg/L) 250 3 0.09
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Ca® (mg/L) | 75 2 0.06
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Na* (mg/L) 200 4 012
HCO™ (mg/L) 120 3 0.09
- Nov (mg/L) | 45 [ 5 015
F(mg/L) 15 5 ‘ 015
Ywi=33
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ETEE Water | Maximum bulk density | Relative
experiment| content — (B error

w (%) er (%)

Measured Theoretical
value value

10.01 10.93 11.190 2.38%
10.19 10.72 11.193 4.41%
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Parameters Source

Maximum bulk density ymmax (kN-m™ 2) Regression

Degrees of freedom SS
2 0.013 0.0065 | 1269.46 97.61% | 97.53%
Residual error 62 0.0032 0.00
Total 64 0.013
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Experiment| Designed |Measured| Designed | Measured
number water water dry bulk dry bulk

content | content | density py | density py
ws (%) | w(%) | (kN-m~=3) (kN.m~3)

1 0 0.47 £0.17 11.6 11.54+0.1
2 5 4.62+0.15 11.8+0.2
3 10 10.20 +0.20 11.5+0.1
4 10 10.01 +£0.27 11.6 +£0.1
5 10 10.194+0.14 11.5+0.1
6 15 15.314+0.24 11.6 £ 0.1
7 20 20.19 £ 0.63 114+0.1
8 25 2474 £0.71 11.8+0.2
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volumetric water  gravity (G)| limit wp | limit w,
weight p content w (%) (%)

(kN-m=3) (%)

11.3—=13:5 7.47—13.51 16.21 28.35
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5-6 Parallel high amplitude | Fan delta plain distributary channel
6-7 Parallel or sub-parallel mid-high amplitude ‘ Fan delta front distributary channel
7-8 Parallel or sub-parallel mid-low amplitude | Fan delta diverges between channels

33 Sub—parallel low amplitude  Shallow lacustrine
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Water quality parameters Model MAE RMSE

KNN 0.86 182 073
SVR 0.76 145 0.83
SAR T . -
GPR L14 231 057
RF 0.82 2.00 0.67
KNN 7.02 974 0.6
SVR 5.16 670 0.84
Na % ERLEES e
GPR 9.01 1133 054
RF 472 7.71 079
KNN 7.05 938 041
SVR 5.33 7.10 0.66
Pl
GPR 7.05 9.67 038
RE 6.04 8.67 050
KNN 0.43 085 037
SVR 0.43 055 073
PS
GPR 0.54 0.82 041
RE 043 071 055
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Parameter Unit Min Mean WHO guidelines
DS mg/L 1902 536.7 1742 1,000
pH - 65 7.6 859 65-85
EC uS/em 317 842 2,620 1,500
TH mg/L 124 272 890 500
Ca*? mg/L 11 47 101 200
Mg mg/L 58 315 826 150
Nat mg/L 10 103 640 200
HCO; mg/L 98 302 620 350
ar mg/L 4 537 193 250
50,7 mg/L 3 99.9 650 200
NO,~ mg/L 0.0012 87 70 50
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SAR

NI 027 7.8 446

s2 33 487 68.9 -04
s3 4.8 65.3 935 -0.15
s4 14 34. 717 043
s5 25 356 525 ~0.66
6 37 50.5 735 151
s7 36 57.1 83.9 154
S8 33 50.5 712 i
$9 075 204 517 062
s10 11 265 55 0.13
si1 26 523 823 0.12
s12 39 58.7 857 143
s13 25 45.3 753 ~0.06
S14 37 516 70.6 234
S15 18 386 63.5 055
s16 73 65.3 77 21
s17 14 316 60.1 0.06
S18 11 255 64.8 061
s19 13 303 622 0.08
$20 082 27 617 ~0.04
s21 11 281 63.1 -0.06
$22 14 337 67.2 0.04
$23 1 239 627 ~0.65
24 14 327 66.1 -0.01
$25 1 258 563 01
$26 19 386 635 055
827 138 77.3 84.6 -24
$28 074 243 67.4 01
$29 094 297 71 042
$30 055 169 60.1 34
$31 049 163 62 0.08
$32 16 354 63 123
$33 07 15 359 322
$34 26 22 65.7 047
$35 26 50 837 023
$36 3 48.4 71 -0.007
837 14 36.8 625 191
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Classifier machine learning algorithms Facies type Acc

cy Misclass Overall ac

acy Overall misclass

Random Forest (RF) 1-Shale 09337 0.0663 0.8605 01395
2-Sand 07616 02384
3-Carbonate 06515 03485
Artificial Neural Network (ANN) 1-Shale 09266 00734 0.8534 0.1466
2-Sand 07594 02406
3-Carbonate 06792 03308
Adaptive Boosting (ADB) 1-Shale 0.8709 0.1291 07920 02080
2-Sand 0.6677 03323
3-Carbonate 06503 03497
Xtreme Gradient Boosting (XGB) | 1-Shale 09162 0.0838 0.8487 01513
2-Sand 07535 02482
3-Carbonate 06728 03272
Support Vector Machine (SVM) 1-Shale 09203 00797 0.8140 01860
2-Sand 06478 03522
3-Carbonate 0.6000 a0 |
Multilayer Perceptron (MLP) | 1-Shale 09332 0.0668 0.8771 01229
2-Sand | oms0 omso
3-Carbonate 07798 02202
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Classifier machine learning algorithms Facies type Precision Recall

Random Forest (RF) 1-Shale 0903 0934 0918
2-Sand 0783 0762 0772

3-Carbonate [ 0.761 0652 0702

Artificial Neural Network (ANN) 1-Shale 0897 0927 0912
2-Sand 0779 0759 0769

3-Carbonate 0.766 0679 0720

Adaptive Boosting (ADB) 1-Shale 0849 0871 0.860
2-Sand [ 0.653 0.668 0.660

3-Carbonate 0779 0650 0709

Xtreme Gradient Boosting (XGB) [ 1-Shale [ 0892 0916 0904
2-Sand | 0735 0.754 0.744

3-Carbonate 0.820 0673 0739

Support Vector Machine (SVM) 1-Shale | 0840 0920 0878
2-Sand 0.709 0648 0677

3-Carbonate 0868 7 0600 i 0710

Multilayer Perceptron (MLP) | 1-Shale 0915 0933 0924
2-Sand 0782 0785 0784

3-Carbonate 0.868 0780 0821
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Different seismic attributes

1 Raw seismic
2 Dominant frequency (DF)

3 Instantaneous average amplitude (IAA)

4 Average frequency (AF)

5 Amplitude weightage frequency (AWF)

6 Amplitude envelope (AE)

7 Derivative (DER)

8 Second derivative (SD)

9 Integrate (INT)

10 Dominant instantaneous amplitude (DIA)
11 Instantaneous phase

12 Quadrature trace (QT)

13 Amplitude weightage cosine phase (AWCP)
14 Cosine instantaneous phase (CIP)

15 Amplitude weightage phase (AWP)

16 Acoustic impedance (P-imp)
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Data type: 3D post-stack seismic data Data type: Well-log data

| Total area 8662 Sq. km Log-type () L-30 B-41
‘ Survey size 12,03 km*7.2 km [ Gamma-ray v | v
‘ Processing Pre-stack time migrated (PSTM) Density v v
‘ Seismic polarity SEG Normal P-Sonic v i
‘ Inline/crossline (1,000-1,600)/(1,000-1,481) Volumetric v v
| Bin size 12m*25 m Neutron Porosity N v
‘ Time range/Sample rate 0-6000 ms/4 ms Effective Porosity v v
‘ Horizon(s) Five levels Litho-facies v v
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50, nn 7261 nu 75 7346 761 775 760 738 768 7388 B0 s 768 794 773
Tio, 032 031 034 032 020 027 04 023 020 016 ou 017 018 019 o018 019
ALO, 1344 1310 1315 123 1309 110 1313 B 1302 101 1308 1302 1506 1515 198 1506
0, - - o010 010 o on - . < E
Fe.0 340 346 345 344 265 208 270 248 225 217 i 228 189 205 194 196
Na.0 32 356 356 351 359 353 3 314 410 399 389 399 430 420 395 415
K0 367 386 391 381 4z 475 an 16 3 375 37 378 38 a2 408 a2
o 13 140 149 11 088 105 093 095 095 104 100 100 099 106 098 101
Mgo 01 046 051 046 021 02 023 02 02 02 024 023 051 052 056 053
Mn0 006 005 008 006 o007 o010 010 009 006 o007 008 o007 008 009 on 009
(X 021 026 021 023 008 006 006 007 on 009 009 o010 o1 o o o
o1 043 043 043 043 037 037 037 037 117 17 117 045 045 045 045
Total 941 950 937 9943 9001 923 9966 930 973 935 %972 o6 | 955 %972 w28 w82

Normative values.
Q 592 3420 n2 3045 3108 250 Hay 6 328 58 357 B w30 2845 3079 881
c 193 L4 086 131 L0 038 109 086 067 o071 053 077 176 20 258 213
or 26 28 21 25 255 507 2549 236 26 216 228 36 | 58 288 P 296
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Trace elements
sc 250 270 299 286 50 160 a3 48 750 731 756 747 350 386 07 391
v 860 840 875 858 190 178 189 186 270 268 279 w2 730 77 735 731
o 280 243 286 70 3660 3621 3671 3651 910 908 9037 18 280 275 281 279
N 280 27 283 27 030 042 o 044 130 108 136 125 380 381 37 380
cu 70 460 81 a0 400 374 398 391 480 476 st 479 350 395 389 391
I 6430 o2 o443 o3 5020 s 043 4091 6160 6146 6158 655 | sz 5069 7088 042
Ga 1890 1588 1899 1592 1590 1883 1900 1891 220 201 22 218 | 2080 2085 23 206
R 5210 5233 5243 5229 6840 o2 w2 6830 8400 5389 368 8 1300 1072 1957 13010
se e | s | s 032 5071 s054 920 913 952 1660 16547 16537 16548
¥ 210 236 298 215 330 321 333 3528 570 566 573 4570 4900 | 4909 26 w12
7 39300 3200 | 39890 39297 | 24100 | 2000 | 24166 | 2089 | 28850 | 28830 | 288d6 | 2882 | 780 17779 1743 17767
No 1810 1800 783 1798 230 2n 243 22 220 2610 %32 2621 2040 2030 235 235
o n20 22 | st s 840 8214 s 528 710 706 708 708 390 398 391 39
Ba 68530 68523 | 68600 | GNSSI | 28530 2522 28I 2521 39200 9100 3200 WL 3600 W00 W60 38647
La 240 P uz 254 440 “e e 55 9360 9328 961 950 | 3080 3059 086 2075
ce 720 5743 5732 5732 9840 w4 | omal sl 1800 1580 1818 | 18120 | 7170 768 739 75
N 260 22 200 230 4440 un | ue a2 8440 un 8470 a7 a0 3508 21 513
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s
Facies Sh
Facies Sw
Facies
i

Thick (>10 m), highly stratified units with
laterally continuous, low-to-medium
amplitude subparalle internal reflections;
weak-to-moderate amplitude seafloor
reflection

Thin (<10 m), weaKly stratified units
ccomposed of most internal reflections with low
amplitude and a few high-amplitude
reflections; high amplitude seafloor reflection

acoustically transparent unit with erosional
lower boundary and irregular- or lens-shaped
external geometry

Interpretation

Contourite deposits affected by relatively slow-
flowing downslope and along-slope bottom-
current processes in deep water settings;
hemipelagic settling or suspension settling from
turbid meltwater plumes in the ice-distal
environments

Contourite deposits affected by bottom current
winnowing processes in shallow water settings

Subglacial till o glaciogenic debris flow deposits
in the subglacial or ice-proximal settings; mass
transport deposits in the deep water and ice-
distal settings

Occurrence

Mid-lower slope of western Hallett Ridge,
northern and castern part of the Central
Basin, on the Scott Canyon Basin,
southwestern part of the Central Basin

Crests and upper slopes of the Hallett Ridge,
northern and eastern slope of Iselin Bank

Outer shelf and slope beyond the JOIDES
Trough, eastern lower slope of the Hallett

Ridge
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Expedition

Latitude

Longitude

Recovery
(cm)

Average sand/
silt/clay
content (%)

Average water
content (%)

ANA03B KII3-BC2 | Box 2013 | 2246 71°52's 179°30'E 37 17.8/76.3/5.9 373

ANA03B KI13-C1 Gravity | 2013 | 2256 71°52'S 179°30'E 326 16.7/73.3/10.0 295

ANAO3B KII3-BC3 | Box 2013 1,800 71°52'S 177°48'E 35 19.6/73.5/6.9 411

ANA03B KI13-C2 Gravity | 2013 | 1,797 71°52'S 177°48'E 232 312/62.3/65 -

ANAO3B KII3-BC4 | Box 2013 | 1772 72°34's 177°33'E 44 14.1/79.2/6.7 411

ANAO5B RSI5-GC40 | Gravity | 2015 | 1,083 71°37's 178°17'W 257 65.2/32.9/1.8 239

ANAO5B RSI5-GCAL | Gravity | 2015 | 1,557 71°23's 178°59'W 540 302/64.9/5.0 344

ANAO3B RSIS-LC42 | Gravity | 2015 | 2,084 71°49'S 178°35'E, 1,186 16.3/79.8/3.9 363

PNRA ANTA91- | Gravity | 1991 | 2815 71°10'S 178°28'E 630 13.3/75.2/115 36.6
4C

PNRA ANTA95- | Gravity | 1995 | 1788 72°33's 177°34'E 376 114/75.5/13.1 277
98C

PNRA ANTA95- | Gravity | 1995 | 532 7322's 177°02'E 71 29.5/64.3/6.2 215
99C1

PNRA ANTA99- | Gravity | 1999 | 2,158 72°05'S 179°04'E, 548 13.4/62.3/11.0 36.9
23C

PNRA HLF16- Piston 2016 | 1320 71°50'S 177°26'E 240 44.3/51.3/4.4 255
3PC

PNRA HLF16- Box 2016 | 1,320 71°50'S 177°26'E 26 41.0/52.3/6.7 236
4BC

PNRA HLF16- Box 2016 | 800 71°50'S 177°03'E 2 49.9/46.0/4.1 258

5BC
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Period (s)

@

3.2667
3.4968
32375
32804
3.4002
33797
33948
34270

1.0092
0.9585
1.0076
0.9984
0.9833
0.9875
0.9861
0.9797

34745
3.3701
3.4079
33933
3.3547
33593
3.3557
33469

73328
62605
6.6471
64776
6.1681
62343
62024
6.0771

Residual
sum of squares

0.0492
0.0495
0.0369
00383
00420
00411
0.0420
00435

Goodness of fit

0.8612
0.8548
0.8712
0.8674
0.8588
0.8612
0.8590
0.8547

Standard error (o)

05943
05831
05349
05368
05450
05432
05450
05464
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Period (s)

10127
1.0145
1.0400
1.0406
1.0449
1.0432
1.0444
1.0481

0.4007
03960
03641
03645
03672
03669
03672
03674

-0.0255
-0.0254
-0.0233
-0.0232
-0.0234
~0.0234
-0.0234
-0.0234

Residual sum
of squares

0.1017
0.0968
0.0796
0.0804
0.0859
0.0846
0.0858
0.0872

Goodness of
fit

07126
07159
07223
07217
07115
07139
07118
07086

Standard error

(0)

05943
05831
05349
05368
05450
05432
05450
05464
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Ca*? Mg*? Na* HCO;™ c- S0,
(mg/L) (mg/L) (mg/L)  (mg/L)
s 329 74 479 269 65 2 10 260 128 33 835
s2 988 78 1648 316 536 37 1379 382 50 174 3
3 w75 618 166 1 335 1447 4514 14 46 088
s4 3626 74 518 185 384 24 459 2816 239 23 6.16
s5 o | 75 1,253 545 875 783 1388 500 60 27 44
s6 1,267 72 1810 890 52 51 161 620 866 897 0.04
7 959 75 1,370 310 40 b3 2 115 335 119 174 242
s8 6944 77 929 260 576 282 123 2928 915 152 7.48
9 303 7 552 220 60 163 258 180 36 38 15
s10 330 7 o 24 60 29 45 270 16 30 00012
S11 359 74 598 148 304 17.3 747 212 24 53 s
s12 6006 78 858 190 664 58 1243 3782 825 86 572
s13 4116 75 588 2306 48.64 265 884 395 114 37 1364
14 7249 77 1318 300 44 1456 1475 340 120 100 28
s15 483 74 690 232 272 398 679 219 6 12 145
si6 wso | 79 1,500 380 16 826 3328 4148 193 3205 0.07
s17 w2 8| o6 256 544 292 549 2806 163 38 132
s18 4382 | 714 626 26 208 23 36.1 3538 355 37 0.88
s19 375 75 650 232 528 2 465 276 18 a 14
520 331 85 474 192 43 175 262 231 14 35 352
s21 4| 74 590 208 403 254 372 248 8 28 12
522 322 72 585 200 384 2 468 250 12 279 3
523 3395 74 485 254 56 277 37 4148 128 98 924
24 326 76 593 216 13 2 484 280 12 34 1
525 3308 73 6015 234 352 35 376 26 23 52 32
526 w74 690 232 272 398 679 219 6 12 145
527 1742 83 2,620 404 752 525 640 4148 1534 650 924
528 2144 8 3573 134 2 178 198 142 9 14 53
529 1902 79 317 124 272 1344 241 130 20 13 37
30 292 83 417 186 2 258 176 2318 1207 4 o1
s31 2 74 370 160 392 1488 144 186 4 3 73
532 265 74 540 150 35 36 60 260 62 50 0.003
533 569 77 1,036 400 101 35 324 235 136 588 45
s34 529 79 757 319 949 199 107.7 416 355 51 70
35 413 72 590 186 32 214 78.1 317 256 47 3.96
36 590 758 | 1071 264 L6 384 1143 326 a4 120 6.16
537 3049 65 5544 156 384 144 419 98 80 3 105
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perparameter

SAR k=2
Na % k=8
K nearest neighbors (KNN)

Pl k=4
s k=8

SAR sigma = 0.061

Na % sigma = 0.049

Gaussian process regression (GPR)

I sigma = 0395
PS sigma = 0.119

SAR mtry = 6

Na % mtry = 6

Random forest (RF)

PI mtry = 6
S miry = 6

SAR epsilon = 0.1, sigma = 0.003, cost (C) = 18.86

Na% epsilon = 0.1, sigma = 0.07, cost (C) = 18.27

Support vector regression (SVR)

Pl epsilon = 0.1, sigma = 0015, cost (C) = 767.97
s epsilon = 0.1, sigma = 0.07, cost (C) = 539.10
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Compressive strength, MPa = Total load (N)/Loading area (mm°)
(5)
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L-BFGS algorithm for
joint MT and
ZTEM inversion

Input starting model my, integer g, precision £>0, and let k=1, a; =

1. While no convergence happens

2.

Calculate the objective function ¢ (my) and its gradient Vg (m;)

3. Compute the search step dy using the two-loop recursive procedure (Liu and
Nocedal, 1989)

4. Update the model with my.; = my +aydy, where a satisfies the Wolfe
conditions
5. 1fk>q, then

ol ol o

Discard vector pairs ., and Si.,, from memory
end
Update s = my; —my and yy = Vo, - Vo, k=k+1

end





OPS/images/feart-11-1295213/feart-11-1295213-g009.gif





OPS/images/feart-11-1154767/math_4.gif
ex Tl xVu, +g,

(4)





OPS/images/feart-11-1295213/math_2.gif
2)






OPS/images/feart-11-1154767/math_5.gif
Lmg
A TET ]

©





OPS/images/feart-11-1295213/math_3.gif
o





OPS/images/feart-11-1154767/math_2.gif
Ora

T % (bxMn+cx Mg+d),

(2)





OPS/images/feart-11-1295213/math_10.gif





OPS/images/feart-11-1154767/math_3.gif
o





OPS/images/feart-11-1295213/math_11.gif
2H516Q )






OPS/images/feart-11-1154767/inline_9.gif
10% < ¢, ; <20%





OPS/images/feart-11-1295213/feart-11-1295213-t001.jpg
Parameter LOG 1 LOG 2 LOG 3

Upper Nubian  Lower Nubian Upper Nubian  Lower Nubian Upper Nubian  Lower Nubian

Aquifer Aquifer Aquifer Aquifer Aquifer Aquifer
Lithology Coarse sand Sandstone Coarse sand Sandstone Coarse sand Sandstone
Ryq (Qm) 83 120 9% 180 72 107
b (m) ) 140 25 132 20 160
| R, (Qm) 20 25 40 40 | 27 | 27
F a2 s 23 l4s |26 |39
9 (%) 33 27 2 32 47 4
e (%) [ 24 | 22 39 29 31 20
K (m/d) 58 49 55 35 7 7
| T (m?/d) | 120 [ 490 192 | 683 199 733
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Syst¢ Formatiol Rock descriptiol
Quaternary 0-150 Alluvial layers composed of sandy clay and silty
Jingle Formation 0-120 Gravel and limestone
Neogene
Hannuoba Formation 0-80 Coarse sandstone
Shigianfeng Formation 0-60 Sandstone and Siltstone. Coal seam No. 3
Permian Upper Shihezi Formation 0-90 Sandstone and sandy mudstone
Lower Shihezi Formation 0-70 Sandstone, siltstone, and mudstone
Shanxi Formation 0-110 Sandstone, sandy mudstone, mudstone, and coal; the main
p coal seam is contained in this formation
Carboniferous
‘Taiyuan Formation 0-50 Sandstone, mudstone, and limestone at the bottom
Archean Jining Formation 0-650 Metamorphic rock
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Test inversions Start model 1 Start model 2 Start model 3 Start model 4

Inversion type ZTMT ZTEM MT and ZTEM MT and ZTEM
Resistivity (€-m) 200 100 200 200
MT Survey type E . Sparse MT Fine MT
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Inversion type MT ZTEM MT and ZTEM ZTEM
Resistivity (€m) 200 100 200 200
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Component Uni Wadi Ar-Rai
GRACE total (ATWS) | CSR cmiyr 101 £ 0018
‘ GSFC ~145 £ 0019
‘ JPL -121 £ 0011
‘ AVG ~1216 £ 0013
‘ ASMS mm/yr 032 £ 0025
‘ AGWS cmlyr -1212 £ 0012
‘ AAR mm 87.7
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