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marijan.palmovic@erf.unizg.hr

RECEIVED 23 October 2023
ACCEPTED 13 November 2023
PUBLISHED 28 November 2023

CITATION
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Editorial on the Research Topic

Eye-tracking while reading for psycholinguistic and computational
models of language comprehension

1 Aim of this Research Topic

Eye-tracking is a powerful technology for studying language processing. In recent

years, it has been employed increasingly for reading studies based on collecting and

analyzing reading corpora obtained in a natural setting, i.e., based on texts not

experimentally manipulated as stimuli in minimal pairs. Typically, these texts are tagged

with fixation and saccades data and some linguistic or psycholinguistic parameters. The

large amount of the corpus data allows for new analytical techniques, resulting in new

insights into psycholinguistic accounts of reading and, more generally, in psycholinguistic

and computational models of language comprehension. Finally, collecting and sharing

such corpora in various languages facilitates cross-linguistic studies of psycholinguistic

phenomena, bilingual or multilingual studies, and research into individual differences

among readers.

The creation of reading corpora allows for new directions in psycholinguistics research.

It is the aim of this Research Topics to provide a platform for a discussion on this

development in several directions:

1. The theoretical implications of large eye-tracking reading data in psycholinguistics;

2. Opportunities for comparative (cross-linguistic) and bilingual (multilingual) studies of

psycholinguistic phenomena relevant to the formulation or evaluation of psycholinguistic

or computational models of language comprehension;

3. The inclusion of languages other than English in order to alleviate the English language

bias in psycholinguistic research.

In addition, methodological considerations within the eye-tracking research (e.g.,

corpus vs. experimental data) and between eye-tracking and similar methods (e.g., self-

paced reading) reflect many issues in contemporary psycholinguistic modeling of language

comprehension such as the interpretation of the processes captured by some dependent
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variable obtained by eye-tracking or discussion about the

arguments corroborating or refuting a particular psycholinguistic

model. Finally, one expects that the reading corpora would allow

for a more comprehensive study of the individual differences

among readers, an issue that has recently attracted considerable

attention in eye-tracking research.

2 Statistics of this Research Topic

The Research Topic was open from 27/06/2022 and the

extended deadline concluded on 16/01/2023. Seventeen articles

were submitted within this period, of which 11 were accepted after

careful peer-reviewing.

3 Summary of this Research Topic

This Research Topic includes studies of a wide range of

languages, including multiple language families (Sino-Tibetan,

Indo-European, and Nortwest-Caucasian), various scripts (Latin

and Cyrillic alphabets, Chinese characters), and modalities (written

and signed languages). From a methodological perspective, the

studies accepted in this Research Topic can be split into

works concerning the computational modeling of reading and

psycholinguistics investigations of language comprehension.

The computational articles focus on a diverse range of topics

from predicting reading tasks (Hollenstein et al.), predicting

metrics extracted from eye-tracking data (Salicchi et al.), to the

acceptability ofmachine translation technology (Kasperė et al.), and

using machine learning to extract neural components during rapid

automatized naming (RAN) tests (Christoforou et al.).

The psycholinguistic articles in this Research Topic study a

number of factors relevant to improving our understanding of

reading comprehension, including lexical access (Chang et al.),

grammatical errors (Søby et al.), individual differences (Gong and

Shuai), typological differences (Zdorova et al.), text formatting

(Medved et al.), and exposure to sign language (Ziubanova et al.). In

the following, we briefly describe the contributions of each article.

Firstly, on the computational side, Christoforou et al. propose

a novel machine-learning-based algorithm that extracts neural

components from EEG and eye-tracking recordings of children

with and without dyslexia during serial rapid automatized naming

(RAN) tests. The authors show that these components capture the

neural activity of cognitive processes associated with naming speed

and are informative of group differences.

The ZuCo corpus contains eye-tracking and EEG data during

normal reading and information-searching reading in English. The

benchmark provides a new hidden testset for machine learning

models trained to distinguish these two tasks (Hollenstein et al.).

Improving the performance of reading task classification will be

useful in identifying the relevant features and can advance models

of reading.

Previous research in computational linguistics has investigated

whether distributional language models can predict metrics

extracted from eye-tracking data. In their study, Salicchi et al.

propose a regression experiment for estimating different eye-

tracking metrics on two English corpora, contrasting the quality of

the predictions with and without the surprisal and the relatedness

components. Their results suggest that both components play

a role in the prediction, with semantic relatedness surprisingly

contributing also to the prediction of function words.

Between the realms of computational language processing

and psycholinguistics, Kasperė et al. leverage eye-tracking to

investigate the acceptability of machine translation technology

between professional translators and non-professionals. In a study

in which participants read an English text machine-translated into

Lithuanian, the authors analyze whether raw machine translation

output is processed in the same way by both groups. In terms

of acceptability overall, professional translators critically assess

machine translation on all components, which confirms the

findings of previous similar research. However, the current study

draws attention to the lower awareness of non-professionals

regarding machine translation quality.

On the side of psycholinguistic reading research, Chang et al.

employ an eye-tracking experiment to corroborate the “graded pre-

activation” account of lexical access in explaining the predictions of

the coming words in a sentence.

Grammar errors are a natural part of everyday written

communication and come in different forms, e.g., syntactic errors,

morphological agreement errors, and orthographic errors. Søby et

al. examine whether some types of naturally occurring errors attract

more attention than others during the reading of Danish texts,

measured by detection rates. While this study did not measure

eye movements, the differences in error detection patterns point to

shortcomings of existing eye-tracking models.

Furthermore, in a sentence reading eye-tracking study,

Gong and Shuai assess participants’ reading skills on a number

of language and cognitive measures while manipulating the

lexical properties of the words in the stimulus sentences.

The interactions between text properties and reading skills

proved to be significant on early and late eye-tracking

measures.

Tywoniw analyzes reading strategies in English as L2 with

participants of varying native language backgrounds. Their

individual differences and the differences across experimental

conditions (close reading, multiple-choice, and reading-to-

summarize) are studied to identify the predictors of reading

behavior.

Zdorova et al. study how typological differences impact reading

behavior of Adyghe-Russian bilinguals. A robust frequency effect

was found in Adyghe, while the words of the same length in Adyghe

and Russian were read slower in Adyghe due to their complex

morphological structure.

Not only linguistic characteristics but also visual aspects

influence reading comprehension. More and more educational

material is delivered to students through digital screens. Therefore,

the text format in which these materials are presented is

an important aspect to consider. Medved et al. investigate

the effect of letter shape on readers’ feelings of pleasantness

during reading, reading fluency, and text comprehension

and memorization of Slovenian texts. They find that softer

typefaces of rounder shapes should be used in educational

materials for a more pleasant reading experience and improved

learning process.
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Finally, Ziubanova et al. study the benefits of early exposure

to spoken and sign language for deaf adults and adults with

severe hearing impairments in an eye-tracking sentence reading

experiment. The benefits of early exposure were confirmed for

adults with severe hearing impairments.
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Purpose: To investigate relations between abilities of readers and properties

of words during online sentence reading, we conducted a sentence reading

eye-movements study on young adults of English monolinguals from the US,

who exhibited a wide scope of individual differences in standard measures of

language and literacy skills.

Method: We adopted mixed-effects regression models of gaze measures of

early and late print processing stages from sentence onset to investigate

possible associations between gaze measures, text properties, and skill

measures. We also applied segmented linear regressions to detect the

dynamics of identified associations.

Results: Our study reported significant associations between (a) gaze

measures (first-pass reading time, total reading times, and first-pass regression

probability) and (b) interactions of lexical properties (word length or position)

and skill measures (vocabulary, oral reading fluency, decoding, and verbal

working memory), and confirmed a segmented linear dynamics between gaze

measures and lexical properties, which was influenced by skill measures.

Conclusion: This study extends the previous work on predictive effects of

individual language and literacy skills on online reading behavior, enriches

the existing methodology exploring the dynamics of associations between

lexical properties and eye-movement measures, and stimulates future work

investigating factors that shape such dynamics.

KEYWORDS

eye-movement, lexical properties, individual differences, mixed-effects regression,
segmented linear regression
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1. Introduction

Contemporary views of reading highlight connections
among cognitive abilities of readers, properties of texts, reading
comprehension, and online reading behavior. The simple view
of reading (SVR) proposes that reading comprehension is a
function of visual word recognition, decoding, and language
comprehension, the first two of which are print-specific aspects
of reading skill (Gough and Tunmer, 1986), and the latter is
construed as an amodal (not limited to a particular module
like reading or listening) aspect of language. However, how
language and literacy skills relate to lexical properties (e.g.,
word frequency, length, predictability, and position in sentence)
and online reading behavior remains implied, at best, in
SVR. In addition, the self-teaching hypothesis (STH) (Share,
1995) proposes that decoding allows developing readers to
transform unfamiliar printed letter strings into recognizable
sounds from their spoken language. This process helps readers
to internalize the orthographic features of new words. Although
highlighting that decoding skill predicts development of reading
comprehension, thus being necessary for a reader to learn all
words, orthographically regular or not, STH does not state
explicitly how decoding helps comprehension during online
sentence reading. Furthermore, the lexical quality hypothesis
(LQH) (Perfetti, 2007) and the verbal efficiency theory (VET)
(Perfetti, 1985) advocate that what distinguishes good and poor
readers is the ability to efficiently map orthographic forms
to phonological representations, and ultimately to semantics.
However, it is unclear how different aspects or levels of language
and literacy skills influence reading processes.

Existing studies of individual differences in reading often
focus on offline outcomes (e.g., reading comprehension), and
these outcomes are in fact cumulative end products of various
processes involved in meaning construction (Snow, 2002).
Recent studies have begun to shift their attentions from reading
outcomes to reading processes, as in moment-to-moment
measures (e.g., eye-movements) of reading behavior (e.g.,
Traxler, 2007; Rayner, 2009b; Kuperman and Van Dyke, 2011;
Radach and Kennedy, 2012; Rayner et al., 2012, 2015; Kuperman
et al., 2018). Eye-movement patterns during reading are found
to vary with lexical properties (Rayner and Duffy, 1986; Rayner,
1998; Joseph et al., 2013). In addition, eye-movement patterns
also rely on cognitive capacities that support reading. The
dynamics of information processing during reading is governed
not only by lexical properties of the text (Radach and Kennedy,
2012), but also by knowledge and cognitive resources of the
reader (Beck et al., 1982; Gough and Tunmer, 1986; Hoover
and Gough, 1990; Catts et al., 2006). Reading comprehension
emerges as a juxtaposition of the lexical properties and the skills,
knowledge, and experience of the reader (Perfetti and Lesgold,
1977; Nelson Taylor and Perfetti, 2016; Kuperman et al., 2018).

Many previous studies have reported the “direct” roles of
language and literacy skills in reading outcomes or predicting

online reading behavior, but there lack enough investigations
on whether those skills could also “indirectly” influence reading
behavior through interactions with lexical properties, given that
lexical properties are central to regulation of gaze behavior
during connected text reading and influence of effortful lexical,
syntactic, semantic, and pragmatic processing (Duffy et al.,
1988; Rayner, 2009a). In addition, many studies have focused
selectively on university students (there are exceptions though,
e.g., one on participants of similar age and skill to those in our
study (Kuperman and Van Dyke, 2011), and two on readers
younger than those in our study (Joseph et al., 2013; Valle
et al., 2013). University students often have a narrow range of
language and literacy skills centered above average, which makes
them insufficient to reveal the potentially much wider scope
of individual differences in those skills and the general effects
of such differences on online reading behavior (Henrich et al.,
2010). Furthermore, through simple regression analyses, many
existing studies only reported whether or not an online reading
behavior is correlated with certain lexical properties and/or
individual skills, yet there lack investigations on the dynamics
of identified relations, e.g., does an identified correlation follow
a simple linear relation, a nonlinear relation, or else? Given that
there has been accumulated evidence informing us about what
lexical properties or individual skills may or may not influence
or be correlated with online reading behavior, it is time to
further examine the dynamics of such causal or correlational
relations concerning lexical properties, individual skills, and
online reading behavior.

Noting these and given the dearth of research on how
differences in basic reading skills and vocabulary exert influence
on online reading at a sentence level, this study was designed
to yield empirical data and inform relevant theories. Based on
eye-movement measures and online reading process, this study
aimed to investigate two research questions:

(a) Can interactions between language and literacy skills and
lexical properties influence online reading behavior?

(b) What is the dynamics of the correlation between online
reading behavior and lexical properties?

Answers to these questions will bring an intimate view of
reading process at the levels of words, phrases, and larger units,
and contribute to the research on how lexical properties and
individual differences in language and literacy skills jointly affect
online reading behavior.

Following a data-driven approach, this study centered
on the skills concerned with reading process as gauged by
online reading behaviors, and investigated how these skills
interact with lexical properties during online reading. In view
of the existing theories (e.g., SVR, STH, LQH, and VET),
we focused on four skills: decoding, reading fluency, word
knowledge (vocabulary), and working memory (see next section
for details). Some of them were omitted in early studies [e.g.,
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working memory was not included by Kuperman and Van
Dyke (2011)]. In our study, all these skills were assessed by
a battery of standard tests. In addition, as part of a general
research program aimed at developing profiles of adolescent
and young adult readers (aged from 16 to 25 years), especially
those whose educational and occupational prospects might
be constrained by their limited language and literacy skills,
our study targeted on non-university students, who possess a
much wider range of individual differences in these skills than
would typically be found in university students (Braze et al.,
2007). This enables a more detailed examination of the role
of individual differences in reading behavior than would be
possible with a more restricted range of differences (Peterson,
2001). Furthermore, after identifying significant interactions
between lexical properties and individual skills on online
reading behavior gauged by eye-movement measures, we further
quantified the dynamics between the aspects involved in the
significant interactions, i.e., the lexical properties and the eye-
movement measures in participants with high and low levels of
the skills. This data-driven analysis helps reveal how the skills
influence online reading behavior via interactions with lexical
properties.

In terms of methodology, we applied mixed-effects
regression models on rich observations, and carefully controlled
the family-wise errors, collinearity, and overfitting. This type
of models can simultaneously address the main effects of the
skill measures and their interactions with lexical properties
in one model, and collectively reveal the key interactions
with lexical properties. In addition, we designed a way to
visualize the correlations between eye-movement measures and
lexical properties under different levels of skills, and selected
among popular regression models the “best” one to reflect the
dynamics. A similar method was practiced to detect quantitative
relations between decoding skills and comprehension scores in
reading assessment (Wang et al., 2019).

Our study did not find significant effects attributable to
individual skill differences, due primarily to the wider spans
of the abilities in our participants than those of university
students recruited in previous studies. Nonetheless, we
identified significant interactions between lexical properties and
individual skills, including: interactions between word length
and verbal working memory and oral comprehension plus
vocabulary in regulating first-pass reading time, interactions
between word position and oral reading fluency and verbal
working memory in shaping total reading times, and interaction
between word position and decoding in adjusting first-pass
regression probability. Our analysis revealed a segmented
linear dynamics between lexical properties and eye-movement
measures, which could be further manipulated by individual
skills. All these findings reveal important predictability of those
skills on online reading behavior, and contribute to theoretical
discussions on how those skills regulate reading behavior at a
sentence level through interactions with lexical properties. Note

that more research is needed to better understand what factors
shape the pivot points in the segmented linear curves.

2. Target skills and recent studies
on them

Among various language and literacy skills, we focused
on four of them.

Decoding is the ability to apply the orthography-to-
phonology correspondence rules to pronounce written words.
It is essential to translating print to spoken language, and
includes, at least, the knowledge of letter patterns and letter-
sound relationships, upon which all other reading skills are
built (Share, 1995). SVH claims that decoding, together with
listening comprehension, makes substantial contributions to
variation in reading comprehension. Studies have revealed that
reading comprehension differences are associated with decoding
skill differences in children and adolescent readers (Shankweiler
et al., 1999) and that the ability to retrieve phonological cues
can predict individual differences in reading fluency (Barth
et al., 2009). Studies of online reading processes have discovered
that a high decoding skill enables a rapid access to a word’s
orthographic form and its meaning, thus accelerating word
naming speed (Manis and Freedman, 2001) and reflecting high
text-level reading fluency and word-level recognition during
connected text reading (Wolf et al., 2002).

Reading fluency is the ability to read connected text quickly,
accurately, and with expression. Conventional measures like
the Gray Oral Reading Test (Wiederholt and Bryant, 2001)
assess oral reading fluency. Recent tests measure this skill
through silent reading, e.g., the Silent Reading Efficiency
and Comprehension Test (Wagner et al., 2010). Regardless
of modality, reading fluency measures draw on important
capacities to lexical access (Perfetti, 1985) and mediate reading
comprehension (e.g., Tilstra et al., 2009; Macaruso and
Shankweiler, 2010; Silverman et al., 2012). Longitudinal and
corpus-based studies have shown that reading fluency is a
reliable index of reading comprehension in students (Fuchs
et al., 2001; Miller and Schwanenflugel, 2008; Reschly et al.,
2009; Petscher and Kim, 2011) and it performs as well as or
better than other reading comprehension tests as a predictor for
higher stakes comprehension tasks (Baker et al., 2008; Marcotte
and Hintze, 2009). Eye-movement studies have also revealed
that phonemic awareness, a known predictor for early word
recognition and decoding, contributes to reading fluency (Ashby
et al., 2013).

Vocabulary is another key component of reading skills.
Orally assessed vocabulary knowledge captures variance in
reading comprehension, even if comprehension and decoding
skill are accounted for (Braze et al., 2007; Tunmer and
Chapman, 2012). Vocabulary breadth and depth, as well
as semantic relatedness can predict individual differences in
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reading comprehension of fourth-grade students (Swart et al.,
2016). Oral vocabulary makes an independent contribution
to reading comprehension in grade school children (Ouellette
and Beers, 2010) and young adult readers (Braze et al., 2007),
and serves as a strong predictor for reading comprehension in
typically developing Grades 1–3 students and dyslexic readers
of Grades 4–5 (Chik et al., 2010). During sentence reading,
high-vocabulary readers are found more likely to make online
elaborative inferences than low-vocabulary ones (Calvo et al.,
2003). Nelson Taylor and Perfetti (2016) report that: readers
with greater knowledge of less common words tend to read
faster and with greater accuracy in paragraph reading, and the
amount of exposure to phonological and semantic constituents
of words during training modulates re-reading behavior in this
process.

Verbal working memory enables readers to hold on to verbal
cues to comprehend lengthy or complex sentences, and thus
facilitates readers’ abilities to derive compositional meanings of
sentences. High working memory capacity can accelerate the
time course of predictive inferences during sentence reading
(Estevez and Calvo, 2000). Compared to readers with higher
working memory capacity, those with lower capacity exhibit
more difficulties (in terms of longer regression and total fixation
time) in associating relative clauses with preceding fragments
(Traxler, 2007), and spend more time re-reading ambiguous
regions of texts (Clifton et al., 2003). Higher working memory
capacity is also associated with higher reading fluency (with
lower gaze durations and fewer look-backs from the final word
of a sentence) (Calvo, 2004).

Motivated by previous studies on those skills, our study
attempted to explore how reader-text interaction predicts
reading patterns between good and poor readers differing
in those skills.

In this line of research, existing studies often focus on
identifying (by mixed-effects or generalized regression models,
or machine learning models) the language and literacy skills
that directly or indirectly (via interaction with lexical properties)
cast important effects on reading process, but rarely touch upon
the dynamics of any identified correlations between lexical or
individual properties and reading process, e.g., whether and
how the correlation between target skills and lexical properties
change alongside the levels of the skills. For example, a
recent study (Kuperman and Van Dyke, 2011) has shown that
individual scores in rapid automatized letter naming (RAN)
and word identification tests can supersede the effects of word
length and frequency at early processing stages, and serve as
stronger predictors than word frequency across eye-movement
measures. However, family-wise Type-I error was not carefully
controlled in the analyses (e.g., the same critical p value of 0.05
was used over 150 models involving multiple predictors that are
correlated with each other), which weakens the claims that those
skill measures are reliable predictors for online reading behavior.

Another study from the same group (Kuperman et al.,
2018) incorporated more cognitive and linguistic skills, used
sentence stimuli with increasing lexical, syntactic, and discourse
complexity, and adopted random forest models to detect key
predictors for eye-movement measures. This work analyzed
the effects of lexical properties, individual skills, interactions
between word length and those skills, and sentence complexity
on eye-movements around words inside sentences, at the
end of sentences, and whole passages. The analyses reported
reading habit, vocabulary size, reading efficiency, vocabulary IQ,
and rapid naming scores as key predictors on eye-movement
patterns during online reading.

This data-driven approach fails to identify multiple factors
having dominant and comparatively small yet still important
effects. In a random forest model, extremely-high relative
importance score of a predictor could mask the roles of
other predictors. Since importance scores are relative to
predictors, one random forest model cannot address all possible
interactions between lexical properties and skill measures.
In addition, the work indirectly examined the effects of
interactions with word length: word length was segmented
into long and short groups, and two random forest models
were fitted respectively on the two groups to detect important
skill measures whose effects exhibited different tendencies
between the two models. The arbitrary, binary segmentation
of word length groups presumes that if a skill measure
has an influence on word length, the tendencies of the
effect should be different on short and long words. This
is not always the case; some factors may take effect on
very long words, and others may trigger different reading
patterns on very short words. A question on whether reading
processes differ between individuals with high and low levels
of skills is more meaningful than whether such processes differ
between long and short words; in this sense, segmentation
on skill levels is more informative than segmentation on
lexical properties.

3. Materials and methods

The data in this study consisted of: (a) participants’ skill
measure data obtained from a battery of standard psycho-
educational tests; and (b) their eye-movement data gathered
in a sentence reading experiment. The data were collected
by trained research assistants. Informed consent was obtained
from the participants of at least 18 years old; for those
under 18, the participants provided assent and their parents
or guardians signed written permissions. All participants were
paid a proper remuneration for completing the protocols
reported here together with the fMRI protocols reported
elsewhere (Shankweiler et al., 2008; Braze et al., 2011). The
procedures described here took ∼3.5 h; breaks were provided
as needed.
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3.1. Participants

Forty-five participants (age in 16–25 years, 27 females) were
recruited from adult education centers, community college,
and neighborhood-gathering places. Some participants had
their secondary schooling interrupted but were then seeking a
high school equivalency certificate or resuming work toward
a regular high school diploma. At the time of experiment,
most participants were enrolled in education programs (e.g.,
high school, adult school, or community college) (Braze
et al., 2007, 2016). All participants were English monolinguals,
and had normal or corrected-to-normal vision. They were
prescreened to ensure the ability of reading simple sentences
with comprehension. Data from one participant were excluded
due to not completing all study components.

According to the power analysis in mixed-effects models
(Brysbaert and Stevens, 2018), this number of sample size,
together with the rich amount of eye-movement observations
obtained during reading of multiple (72) sentences containing
numerous (358) word types (see section 3.3 Materials and
design), is sufficient to detect reliable significant factors.

3.2. Skill measures

Each participant was assessed in six domains of language
and literacy skills, which served as the bases for analysis. Table 1
shows the raw (and normative wherever available) scores of each
measure and a key to the labels of them. The domains and the
tests used to measure them were:

(1) Vocabulary, assessed by the Peabody Picture Vocabulary
Test-Revised (ppvt) (Dunn and Dunn, 1997) and the
Wechsler Abbreviated Scales of Intelligence Expressive
Vocabulary Test (wasi.v) (Psychological Corporation,
1999). Table 1 shows both raw and standard scores
(normative sample mean = 100, SD = 15) of ppvt and both
raw and t-scores (normative sample mean = 50, SD = 10)
of wasi.v. Differences in word knowledge stem from (a)
variations in language experience (in speech or print) and
(b) differences in the ability to profit from it. Vocabulary
is a good proxy for general, amodal, language ability of
the community sample recruited in our study (Braze et al.,
2016).

(2) Listening comprehension, assessed by the even-numbered
items from the Reading Comprehension subtest of the
Peabody Individual Achievement Test-Revised (piat.l)
(Markwardt, 1998). Using the odd numbered items
from this test for reading comprehension and the even
numbered items for listening comprehension gives us a
pair of tests well matched in task demand for both input
modalities. Table 1 shows both raw and grade equivalent
scores, the latter of which were calculated following

Markwardt (1998) (see Braze et al., 2007 for details).
Knowledge of vocabulary, compositional semantics, and
syntax constitute the bases of oral language comprehension
(Birch and Rayner, 1997; Frisson and McElree, 2008).
The ability to understand language presented to the
ear is a good indicator of general, amodal, language
comprehension ability.

(3) Decoding, assessed by the Woodcock-Johnson-III Word
Identification subtest (wid) (Woodcock et al., 2001) and
the Woodcock-Johnson-III Test of Achievement Word
Attack subtest (watt) (Woodcock et al., 2001). These are
untimed tests for the ability to accurately pronounce
printed words and non-words. Table 1 contains both raw
and grade equivalent scores of the two measures.

(4) Reading comprehension, assessed by the odd numbered
items from the Reading Comprehension subtest of the
Peabody Individual Achievement Test-Revised (piat.r)
(Markwardt, 1998) and the accuracies of the Passages 5,
7, and 9 from the Gray Oral Reading Test (gort.comp)
(Wiederholt and Bryant, 2001). Calculation of grade
equivalent scores of piat.r followed Braze et al. (2007).
There were no standard scores of gort.comp, due to using
only a subset of passages. Reading comprehension has been
usefully thought of as the product of an individual’s facility
with language and decoding skill (Gough and Tunmer,
1986).

(5) Oral reading fluency, assessed as the reading speed (words
per minute) for Passages 5, 7, and 9 from the Gray Oral
Reading Test (gort.wpm); the total number of words in
these passages is 361 (Wiederholt and Bryant, 2001). There
were no standard scores, since the measure was based on
an abbreviated form of the Gray Oral Reading Test. Oral
reading fluency consists of visual scanning, decoding, and
high level language processing (Silverman et al., 2012).

(6) Verbal working memory, assessed by a listening version
of the Sentence Span task (sspan.corr) (Daneman and
Carpenter, 1980). This ensures non-confoundness with
reading skills. Verbal working memory has been shown to
account for differences in vocabulary growth independent
of language exposure (Gathercole and Baddeley, 1989;
Gathercole et al., 1999; Gupta, 2006).

These individual difference measures can be grouped into
two sets: those explicitly linked to reading ability (reading
comprehension, decoding skill, and oral reading fluency), and
those not (listening comprehension, vocabulary, and verbal
working memory) (Gough and Tunmer, 1986; Hoover and
Gough, 1990). They tap into abilities equally important to
comprehension, no matter whether the language input arrives
by ear or by eye.

In addition to these domains, we also assessed print
experience by a magazine title recognition checklist
(MRT) and an author recognition checklist (ART) (cf.,
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TABLE 1 Raw scores and keys of the skill measures over 44 participants.

Name Label Mean SD Min. 25% 50% 75% Max. Skew Kurtosis Lambda

Age – 20.61 2.27 16.6 18.73 20.16 22.41 25.49 0.30 −0.96

Vocabulary ppvt 172.41 17.64 132.00 160.50 176.50 187.00 196.00 −0.60 −0.71 1.18

std.-score 103.39 14.65 78.00 92.00 102.00 115.00 132.00 0.12 −0.99

wasi.v 57.36 8.33 39.00 49.00 57.50 62.50 76.00 0.22 −0.73

t-score 53.25 9.73 36.00 44.00 52.50 60.00 74.00 0.38 −0.77

Listening comprehension piat.l 93.95 6.16 76.00 92.00 96.00 98.50 100.00 −1.34 0.95 2.08

grade equiv. 12.00 1.84 6.90 11.60 13.00 13.00 13.00 −1.78 1.82 3.50

Decoding wid 67.61 5.38 56.00 63.00 68.00 72.00 76.00 −0.19 −1.12

grade equiv. 13.18 4.81 5.60 8.50 12.70 19.00 19.00 0.05 −1.62

watt 27.23 3.06 20.00 25.50 28.00 30.00 32.00 −0.55 −0.66 1.38

grade equiv. 10.83 4.67 4.30 7.10 10.20 15.40 19.00 0.40 −1.17

Reading Comprehension piat.r 89.48 10.25 68.00 83.50 95.00 97.50 99.00 −0.92 −0.57 1.34

grade equiv. 10.79 2.86 5.00 8.50 13.00 13.00 13.00 −0.83 −0.92 1.62

gort.comp 11.75 2.47 4.00 10.00 12.00 14.00 15.00 −0.68 0.38 1.57

Oral Reading Fluency gort.wpm 177.01 39.04 87.34 149.91 176.82 197.81 288.80 0.39 0.31

Verbal Working Memory sspan.corr 31.88 5.78 20.00 27.00 33.00 36.50 42.00 −0.30 −1.04

“Lambda” is for Box-Cox transformation for highly skewed scores; ppvt, Peabody Picture Vocabulary Test-Revised; wasi.v, Wechsler Abbreviated Scales of Intelligence Expressive Vocabulary Test; wid, Woodcock-Johnson-III Word Identification subtest;
piat.l, even-numbered items in the Reading Comprehension subtest of the Peabody Individual Achievement Test-Revised; watt, Woodcock-Johnson-III Test of Achievement Word Attack subtest; piat.r, Peabody Individual Achievement Test-Revised;
gort.comp, Gray Oral Reading Tests; gort.wpm, reading speed (words per minute) for Passages 5, 7, and 9 from the Gray Oral Reading Test; sspan.corr, listening version of the Sentence Span task.
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Stanovich and Cunningham, 1992) to gauge a person’s
experience with language in printed form, which for literate
individuals may well be a substantial part of their overall
language experience, and visual working memory based on a
computerized version of the Corsi Blocks task (corsi) (Corkin,
1974) implemented in Psyscope (Cohen et al., 1993). Given the
fact ART and MRT only show high validity and reliability in
proficient readers (e.g., university students) in their dominant
language (McCarron and Kuperman, 2021), whereas our study
is based upon participants having a wide span of reading skills,
we excluded print experience in the regression analyses. In
addition, compared to visual working memory, verbal working
memory is more relevant to our sentence reading experiment,
so we also excluded visual working memory in the regression
analyses.

Prior to regression modeling, we examined the distributions
of raw scores for deviations from normality. Several scores
showed high skewness (absolute values over .5). To them, we
applied Box-Cox transformations (Box and Cox, 1964) using
the bcpower function in the R package car (Fox and Weisberg,
2011). All variables, transformed or not, were standardized by
converting to Z-scores. Table 2 is the correlation table of the
transformed and standardized measures (cf., Braze et al., 2007,
2016).

To reduce collinearity and the total number of predictors
in the regression models, we combined measures tapping into
common latent constructs. This was done by (a) taking the
average of the transformed and standardized scores, and then
(b) converting the average scores back to Z-scores. Measures of
vocabulary and listening comprehension were combined into
a composite measure of oral comprehension plus vocabulary
(oral.comp) (Tunmer and Chapman, 2012; Braze et al., 2016;
Kukona et al., 2016). Composites were also derived for decoding
(decod.comp) and reading comprehension (readcomp.comp).
Table 3 shows the correlation table of the centered and
transformed skill measures.

It is not surprising that the correlation between reading
comprehension and oral comprehension plus vocabulary is
high, since oral knowledge is an important indicator of reading
comprehension (see section 2. Target skills and recent studies
on them). Table 4 shows the statistics of the regression models
between reading comprehension and oral comprehension plus
vocabulary, decoding, and both, respectively. Consistent with
early findings (Braze et al., 2007), a combination of both
skills largely explains the variation of reading comprehension:
R2 of the model using decoding is .370, R2 of the model
using oral comprehension plus vocabulary is .712, and multiple
R2 of the regression model using both decoding and oral
comprehension plus vocabulary is .738. Notably, we exclude
reading comprehension from the list of predictors in the
regression models.

After these preprocessing stapes, the skill measures used
in our regression analyses are: (a) oral comprehension

plus vocabulary (oral.comp); (b) decoding (decod.comp); (c)
oral reading fluency (gort.wpm); and (d) verbal working
memory (sspan.corr).

3.3. Materials and design

Participants were asked to read 72 individual sentences
while their eye-movements were recorded. Presentation order
was pseudo-random across participants. These sentences were
filler items in a study of comprehension process in young
adults with limited literacy skills (Braze et al., 2006). All of the
sentences were grammatical and transparent in meaning. The
word types in them were carefully selected among high frequent
words, and common names for persons, states, or holidays. The
linguistic aspects of these sentences, such as part of speech or
syntactic complexity, were carefully controlled. Supplementary
Table 1 shows the complete list of the sentences. Many of these
sentences were simple in terms of structure; forty-six stimuli
sentences (over 79%) had no embedding structures, e.g., “Most
of the students will be going to the class picnic next month.”;
and the other 26 had one dependent clause, e.g., “The waiter
had told the customer that the pies were fresh.” There were
503 unique word types (819 word tokens) in these sentences,
an average of 11.375 word tokens per sentence (range = 11–
16). Note that previous studies on university students involved
sentences with increasing complexity in semantics and syntax
(e.g., Kuperman and Van Dyke, 2011; Kuperman et al., 2018)),
we leave the investigation of the relations between sentence
complexity, reading skills, and online reading behavior for
future work.

Before the experiment, we asked some individuals to
evaluate the understandability of these sentences, based on a
scale of 5, from “easy to understand” to “hard understand”.
These individuals were recruited similarly as the experiment
participants, but did not participate the experiment. All of them
marked the filler sentences as “easy to understand”.

For each word in a sentence, we recorded its ordinal
position in the sentence (note that the sentence initial and
final words were excluded), its length in characters (LenW ),
and its frequency of occurrence per million words (FreqW ).
Word position is a context-dependent property, but word
length and frequency are independent of sentence. Lexical
frequencies were obtained from the Corpus of Contemporary
American English (COCA).1 Frequency summaries for our
materials exclude contractions (n = 2) and proper nouns
(n = 23), both having no COCA frequencies. Possessive forms
(n = 6) used the COCA frequencies of their uninflected
forms. Analyses otherwise included all the remaining
words found in the sentences. Most of the type frequencies
showed skewed distributions, and thus log-transformed

1 http://corpus.byu.edu/coca/

Frontiers in Psychology 07 frontiersin.org

14

https://doi.org/10.3389/fpsyg.2022.1006662
http://corpus.byu.edu/coca/
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/


fpsyg-13-1006662 January 10, 2023 Time: 7:57 # 8

Gong and Shuai 10.3389/fpsyg.2022.1006662

(base e). Following Kuperman and Van Dyke (2011, 2013)
and other standard practice, we excluded words with a high
likelihood of being skipped (i.e., highly-frequent and very
short words).

Table 5 shows the lexical properties of the words contained
in the sentences. Regression models targeting online reading

indicators (gaze measures) at a word also included parameters
for length and frequency of the previous and subsequent words.
Differences between LenW and LenW−1 (or LenW+1) are due to
the exclusion of sentence initial and final words in the current
word set (see Eye-movement measures), so are differences
between FreqW and FreqW−1 (or FreqW+1).

TABLE 2 Correlations between the age and the 9 skill measures, after Box-Cox transformation (for ppvt, watt, piat.r, and gort.comp) and
standardization.

Measures 1 2 3 4 5 6 7 8 9

1. Age

2. ppvt 0.591

3. wasi.v 0.378 0.829

4. piat.l 0.408 0.638 0.541

5. wid 0.487 0.816 0.716 0.441

6. watt 0.075 0.376 0.354 −0.025 0.613

7. piat.r 0.550 0.798 0.718 0.634 0.714 0.317

8. gort.comp 0.351 0.673 0.610 0.625 0.586 0.367 0.648

9. gort.wpm 0.374 0.577 0.577 0.177 0.617 0.347 0.481 0.348

10. sspan.corr 0.319 0.626 0.669 0.380 0.601 0.392 0.573 0.557 0.474

n = 44, | r|≥ 0.24 corresponds to p < 0.05; | r|≥ 0.31 to p < 0.01; | r|≥ 0.39 to p < 0.001. ppvt, Peabody Picture Vocabulary Test-Revised; wasi.v, Wechsler Abbreviated Scales of Intelligence
Expressive Vocabulary Test; piat.l, even-numbered items in the Reading Comprehension subtest of the Peabody Individual Achievement Test-Revised; wid, Woodcock-Johnson-III Word
Identification subtest; watt, Woodcock-Johnson-III Test of Achievement Word Attack subtest; piat.r, Peabody Individual Achievement Test-Revised; gort.comp, Gray Oral Reading Tests;
gort.wpm, reading speed (words per minute) for Passages 5, 7, and 9 from the Gray Oral Reading Test; sspan.corr, listening version of the Sentence Span task.

TABLE 3 Correlations between the age and the 5 composite or independent measures.

Measures 1 2 3 4 5

1. Age

2. oral.comp 0.520

3. decod.comp 0.313 0.231

4. readcomp.comp 0.497 0.844 0.608

5. gort.wpm 0.374 0.503 0.536 0.457

6. sspan.corr 0.319 0.632 0.553 0.622 0.474

n = 44, | r| ≥ 0.24 corresponds to p < 0.05; | r| ≥ 0.31 to p < 0.01; | r| ≥ 0.39 to p < 0.001. oral.comp, oral comprehension plus vocabulary, a composite variable of ppvt (Peabody
Picture Vocabulary Test-Revised), wasi.v (Wechsler Abbreviated Scales of Intelligence Expressive Vocabulary Test) and piat.l (even-numbered items in the Reading Comprehension
subtest of the Peabody Individual Achievement Test-Revised); decod.comp, decoding skill, a composite variable of wid (Woodcock-Johnson-III Word Identification subtest) and watt
(Woodcock-Johnson-III Test of Achievement Word Attack subtest); readcomp.comp, reading comprehension skill, a composite variable of piat.r (Peabody Individual Achievement Test-
Revised) and gort.comp (Gray Oral Reading Tests); gort.wpm, reading speed (words per minute) for Passages 5, 7, 9 from the Gray Oral Reading Test; sspan.corr, listening version of the
Sentence Span task.

TABLE 4 Regression models targeting reading comprehension.

Model A: Est. SE t p R2

Decoding 0.608 0.123 4.964 0.00001 0.370

Model B:

Oral comprehension plus vocabulary 0.844 0.083 10.190 <0.00001 0.712

Model C:

Decoding 0.195 0.097 2.016 0.0503 0.738

Oral comprehension plus vocabulary 0.743 0.097 7.593 <0.00001

Model A: Using decoding to predict reading comprehension; Model B: Using oral comprehension plus vocabulary to predict reading comprehension; Model C: Using both decoding and
oral comprehension plus vocabulary to predict reading comprehension. R2 is the proportion of variance captured by a given variable after considering all other predictors in the model.
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Prior to the analyses, we mean-centered lexical properties.
Word length was measured in terms of number of characters.
Log-transformed word frequency was standardized. Word
frequencies were highly correlated with lengths of respective
words: Pearson’s r between current word length and current
word frequency was −0.731 (p < 0.001), −0.775 (p < 0.001)
between previous word length and previous word frequency,
and −0.752 (p < 0.001) between next word length and next
word frequency. Following Kuperman and Van Dyke (2011),
we residualized word frequencies against lengths of respective
words. This was done by fitting a regression model for each
of the three properties (previous, current, and next words)
in which the frequency of the relevant word was predicted
by its length. We took the residuals (distances between the
observed and fitted values) of these models as the values of
word frequency. The residualized frequencies remained strongly
correlated with the original frequencies but orthogonal to the
lengths of respective words: Pearson’s r between residualized
and original frequencies was 0.697 (p < 0.001) for current
word frequencies, 0.643 (p < 0.001) for previous word
frequencies, and 0.665 (p < 0.001) for next word frequencies.
The residualization (or orthogonalization) procedure does not
change the result for the residualized variable, the overall
explanatory power of the model, and any indices of model
fit. Some scholars pointed out that such orthogonalization
(Wurm and Fisicaro, 2014) could not be a useful remedy for
collinearity; note that in our experiment, the significant factors
reported by the regression analyses using the orthogonalized or
unorthogonalized word frequency and word length values are
the same.

3.4. Apparatus and procedure

During the test session, participants were instructed to read,
one by one, a number of sentences, and to answer yes/no
comprehension questions about the contents of the sentences
just read (see Supplementary Table 1). Comprehension
questions occurred immediately after some sentences on about
a sixth of trials to ensure that participants stayed focused on
the reading comprehension task throughout the session. The

mean response accuracy to the comprehension questions was
0.913 (SD = 0.067).

Each sentence was presented on a single line vertically
centered on a monitor, which was positioned approximately
64 centimeters from the participants’ eyes. The sentences
were displayed in a monospace font (Bitstream MonoSpace
821) in black with a light background, at a screen resolution
1,280 × 1,024 and a refresh rate 85 Hz. Font size was set
such that each character subtended about 17 minutes of visual
arc. Participants wore an EyeLink II head-mounted eye tracker
(SR Research), the sampling rate of which was set to 250 Hz.
Before the test session, the accuracy of the eye tracker was
calibrated based on a 9-point full-screen calibration. Over the
course of the session, measurement accuracy was monitored,
and if needed, the device was re-calibrated (this was rarely
necessary). Data were collected binocularly. Our analyses were
based primarily on the right eye data. The right eye data of one
participant was problematic, and therefore, the left eye data of
the participant were used.

In each trial, a fixation point appeared first at the position of
the second character of the first word of the sentence (vertically
centered on the screen and about 1.5 inches from the left edge).
After fixating on this point, participants pressed a button to
bring up a sentence and started to read it. Sentences would
not show up if participants were not fixating on this point.
After reading the whole sentence, participants clicked the button
again. This prompted either the next trial or the display of
a comprehension question. Participants gave answers to the
comprehension questions by pressing the buttons denoting
“yes” and “no,” respectively.

3.5. Eye-movement measures

We calculated the eye-movement measures using the in-
house software (Braze, 2005), which served to tally gaze
measures for each word. We removed fixations shorter than
50 ms, as well as blinks and instances of track-loss. We also
excluded the sentence initial and final words from analysis, as
a common practice (Kliegl et al., 2004). There remained a total
of 15,733 eye-movement observations, covering 358 word types

TABLE 5 Lexical properties of the words in the sentence stimuli.

Name Label Mean SD Min. 25% 50% 75% Max. Skew Kurtosis

Current word length LenW 6.03 2.03 2 4 6 7 14 0.66 0.37

Current word frequency FreqW 10.16 1.85 3.33 9.03 10.35 11.48 13.91 −0.75 1.03

Previous word length LenW−1 4.15 2.12 1 3 3 6 13 0.96 0.68

Previous word frequency FreqW−1 13.50 2.93 4.53 11.15 14.03 16.28 17.04 −0.52 −0.59

Next word length LenW+1 4.19 2.19 1 2 4 5 13 0.99 0.57

Next word frequency FreqW+1 13.09 2.78 3.66 11.00 13.56 15.28 17.04 −0.55 −0.48

Word positions in sentences are excluded here. Word lengths are raw values before mean-centered. Word frequencies are log-transformed type frequencies from the COCA database.
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in 72 sentences. The volume of the data is comparable to other
eye-tracking studies of individual differences. We focused on
five informative, widely-used eye-movement measures (Rayner,
1998):

(1) First fixation duration, the duration of the initial fixation a
reader makes on a region (word) during first-pass reading.
It is typically considered to reflect early stage processes
during lexical access (Inhoff, 1984).

(2) First-pass reading time (a.k.a. gaze duration), the summed
duration of all fixations a reader makes on a word before
fixating any subsequent word, and before gaze leaves the
word for the first time, whether advancing to the next word
or regressing to an earlier word. It is often considered
to reflect sentence structure, parsing decisions (Rayner
et al., 1983; Ferreira and Clifton, 1986), or predictability
of words in context (Boston et al., 2008). First fixation
duration and first-pass reading time are conditional upon
a word receiving a first-pass reading. If a word was initially
skipped and thus nominally accrued a zero value for these
measures, then that data point was omitted from the
following analyses, because we do not wish to infer from
word-skipping that a word is not processed at all, or that
its processing load is zero (Rayner and Pollatsek, 1989).

(3) Total reading time, the sum of all fixations falling again into
the current word region. It reflects the integrative effect of
both early and late stage processes during lexical access.

(4) Incidence of first-pass regression, coding for whether the
eye-movement at the end of first pass reading moved back
to a previous part of the sentence (= 1), or advanced to a
subsequent word (= 0).

(5) Refixation incidence, being 1 if a word is refixated after the
first-pass, or 0 otherwise.

Measures (1) – (3) are continuous, and (4) and (5) are binary
(0/1) to capture possible effects on late stage of processing.
Measures (4) and (5) are generally treated as indices of
processing load associated with integration difficulty (Rayner
et al., 1983, 1989).

Table 6 summarizes the gaze measures, which reflect
different, but perhaps overlapping stages of word recognition,

text comprehension, and integration during online sentence
reading. First fixation duration and first-pass reading time
reflect the early stages of print processing involving first
encounter of a word by the reader following the default reading
direction (left to right in English). By contrast, incidence of first-
pass regression and refixation incidence reflect the later stages of
print processing involving integration of word information with
syntactic and/or discourse context or resolution of ambiguity
whenever necessary (Vasishth et al., 2013). Total reading time
is a cumulative index of “early” and “late” stages of processing.
Individual differences in several components of skilled reading
(e.g., decoding, oral reading fluency, vocabulary knowledge,
working memory) may have different effects as gauged by
these eye-movement measures (Kuperman and Van Dyke, 2011;
Nelson Taylor and Perfetti, 2016).

In our dataset, 11,965 out of the total 15,733 eye-movement
observations (76.050%) were first-pass eye-movements, and
only 3,768 had distinct first fixation durations and first-pass
reading times. This indicates that during first-pass reading, most
words were fixated exactly once (many words in our simple
stimuli sentences were short; see Table 5, over half of the words
are shorter than 6 characters). Therefore, it is expected that if
any factors can exert significant effects during first-pass reading,
they might be captured mainly by first-pass reading time, not by
first fixation duration. In addition, our stimuli sentences were
simple in structure, which might not trigger many regressive
eye-movements or second-pass reading in our participants.
Therefore, incidence of first-pass regression and refixation
incidence might not capture many significant effects, unlike
previous studies involving more complex sentence stimuli
(Kuperman and Van Dyke, 2011; Kuperman et al., 2018)).

3.6. Analytic approach

We conducted two types of statistical analysis.
First, we used linear and logistic mixed-effects regression

models (Baayen, 2008; Quené and van den Bergh, 2008)
with crossed random effects to analyze respectively the
continuous and categorical eye-movement measures and
identify interactions between lexical properties and reading
related skills. Mixed-effects models allow for simultaneous

TABLE 6 Summary of the eye-movement measures.

Name Mean SD Min. 25% 50% 75% Max. Skew Kurtosis

First fixation duration 236.98 96.79 52 176 216 272 996 1.92 6.54

First-pass reading time 293.54 145.47 52 192 252 360 1000 1.50 2.73

Total reading time 378.07 237.39 52 212 312 464 3080 2.28 9.39

Incidence of first-pass
regression

0.16 0.37 0 1 1.80 1.25

Refixation incidence 0.25 0.43 0 1 1.14 −0.70

The first three measures are continuous, and the other two are binary (0/1).

Frontiers in Psychology 10 frontiersin.org

17

https://doi.org/10.3389/fpsyg.2022.1006662
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/


fpsyg-13-1006662 January 10, 2023 Time: 7:57 # 11

Gong and Shuai 10.3389/fpsyg.2022.1006662

consideration of multiple covariates, while keeping the between-
participants and between-items variance under statistical
control (Pinheiro and Bates, 2000; Baayen et al., 2008). Unlike
the random forest models used in Kuperman et al. (2018),
mixed-effects models can simultaneously address multiple
factors having different scales of effect sizes and directly report
significance of main effects and/or interactions.

We fit five mixed-effects regression models (Quené and van
den Bergh, 2008) targeting the five eye-movement measures,
respectively. To reflect the collinearity of a model, we reported
the condition number kappa of the model and the maximum
variance inflation factor (VIF) of all predictors in the model.
A condition number kappa smaller than 10 and a VIF smaller
than 5 typically indicate a low degree of collinearity (Kutner
et al., 2004).

Each of the five models included 23 fixed effects, consisting
of seven lexical properties, four composite and single skill
measures, and 12 interactions between each of the skill measures
and each of the lexical properties, namely word position in
a sentence, word frequency and word length. This approach
provides an integrative picture of the effects of multiple skill
measures on eye-movement patterns. We controlled the family-
wise Type I error probability by setting the critical p value
for identifying significance as 0.05/23 ≈0.00217. Given this
extremely strict setting of critical p value, we focused on both the
significant (p < 0.00217) and marginally significant (p is close to
0.00217) factors.

Each model included the same random effect structure,
consisting of two intercepts respectively for subject and for word
nested under sentence, and one slope of word frequency for
subject. In principle, the slope of word length for subject should
also be added in each model. However, as shown above, word
length was negatively correlated with word frequency, and post-
hoc analyses revealed that the separate contributions of word
length to the variation in the dependent variables was <1%.
Therefore, we excluded this slope in the regression models.
In addition, maximal random effect structures involving other
types of slopes are theoretically desirable (Barr et al., 2013)
and have been applied in recent individual difference studies
(e.g., Protopapas and Kapnoula, 2016). However, we did not
pursue such complicated models in consideration of practical
constraints on model convergence (Bates et al., 2015a).

All the mixed-effects models were implemented using the
R packages lme4 (Bates et al., 2015b) and lmerTest (Kuznetsova
et al., 2017).

Second, after identifying significant interactions, we
continued examining the dynamics of lexical properties and
eye-movement measures in individuals having different levels
of target skills. Very few existing studies have investigated such
dynamics. Our approach proceeded as follows. Given a two-way
interaction between a lexical property and a skill measure, we
first divided the participants into a high and a low group based
on the medium value of the skill measure to ensure the same

number of participants in each group. Then, we plotted the eye-
movement measure in each group against the lexical property.
A cross-group comparation of the correlations between lexical
properties and eye-movement measures could reveal the effects
of individual skill on online reading behavior. Instead of
binary groups, quartile or quintile groups were used in some
studies (e.g., Protopapas and Kapnoula, 2016), given enough
participants in each group for statistical analysis. To identify
correlation, we first fit a nonlinear polynomial regression (loess)
between the lexical property and the eye-movement measure as
the baseline, and then, used widely-adopted regression models
in psychological and educational research to quantify the
pattern of the correlation. For simplicity, the current study only
compared simple linear regression (or logistic regression) and
segmented linear regression. For each model, lexical property
was treated as an independent variable, and eye-movement
measure a dependent one.

Models were compared based on Akaike information
criterion (AIC) and mean squared error (MSE). AIC deals with
the trade-off between the simplicity and goodness of fit of a
model (Akaike, 1974), but AIC alone is less informative when
multiple models have similarly high or low AICs (Burnham and
Anderson, 2002). In this situation, MSE is referred to, which
compromises variance and bias to minimize both (see Equation
1, where obsi is the observed essay score, prei is the predicted
score from a model, and n is the number of data points). The best
model that appropriately reflects the correlation between lexical
property and eye-movement measure is the one having smaller
AIC and MSE.

MSE =
1
n

n∑
i = 1

(obsi − prei)
2 (1)

A recent study examining the correlation between typing speed
and writing essay score has used a similar method to identify the
dynamics of such correlation (Gong et al., 2022). In that study,
additional models like logistic regression and ordinal categorical
regression were used for model fitting, but the segmented linear
regression remained the best fitting model.

In our study, the segmented regression was implemented
using the R package segmented (Muggeo, 2008).

4. Results

The analyses were carried out in R 3.2.4 (R Core Team,
2013). The raw data, R codes, and the results can be found at:
https://github.com/gtojty/IndDiff_EM.

All the regression models showed a low degree of
collinearity; the kappas of these models were all below 10
and the VIFs of the independent factors in these models were
all below 5. The significant main effects of lexical properties
reported in these models are shown in Supplementary Table 2
and discussed in Supplementary material. No skill measures
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showed significant main effects on any eye-movement measures
(their p values were all above. 00217), due primarily to the wide
spans of the skill measures in our study.

Our study focuses on the interactions whose p values are
smaller than (significant) or close to (marginally significant)
the threshold. 00217. For the sake of completeness, Tables 7–
10 list all the interactions between lexical properties and
skill measures having p values below 0.05/5 = 0.01. Effect
size (Cohen’s d) of each interaction was measured using the
lme.dscore function in the R package EMAtools.2 Significant
(and marginally significant) interactions are visualized in
Figures 1–3. For each interaction, the correlation between
the involved lexical property and eye-movement measure in
the participants having high and low levels of the involved
skill measure can be best described as a segmented linear
relation. Below, we discuss these interactions identified in the
regression models.

4.1. First fixation duration

Table 7 lists one interaction between word frequency and
decoding skill in determining first fixation duration. Its p value
is over .00217, so it is not marked as a significant interaction.

2 https://cran.r-project.org/web/packages/EMAtools/index.html

4.2. First-pass reading time

Table 8 shows two interactions on first-pass reading time
whose p values are below .01. Given their p values are smaller
than (or close to) .00217, they are marked significant (or
marginally significant). Figure 1 illustrates these interactions
by showing that the correlation between word length and first-
pass reading time is contingent on oral comprehension plus
vocabulary and verbal working memory.

Figure 1 shows that the sensitivity of first-pass reading
time to word length is better described as a segmented linear
relation than a simple linear relation: the segmented linear
curves well match the baseline loess curve and have smaller AIC
and MSE than the linear curve (see Supplementary Table 2). In
each panel, the segmented linear curve shows a pivot value of
word length, below which the slop of the fitting curve remains
small, whereas above which the slope increases, indicating that
the participants showed longer first-pass reading time when
reading longer words. Between the two panels in each figure,
the sensitivity of first-pass reading time to word length exhibits
different tendencies.

In Figure 1A, compared to the poor readers having low
levels of oral comprehension plus vocabulary (the right panel),
for words of the same length, the good readers having high levels
of that skill (the left panel) had shorter first-pass reading time.
Also, the good readers showed smaller slopes in the segmented
linear curve than the poor readers (i.e., 5.585 vs. 8.938 and 19.39

TABLE 7 Interaction on first fixation duration.

Factor Est. SE t p d

Decoding× word frequency 3.995 1.480 2.699 0.009 0.744

Its p value is below 0.01 but over 0.00217.

TABLE 8 Interactions on first-pass reading time.

Factor Est. SE t p d

Oral comprehension plus vocabulary× word length −2.513 0.846 −2.970 0.002 −0.045

Verbal working memory× word length 2.890 0.831 3.480 0.001 0.058

All listed interactions have p values below 0.01. Interactions having p values below or close to 0.00217 are bolded.

TABLE 9 Interactions on total reading time.

Factor Est. SE t p d

Oral reading fluency× word position 2.013 0.661 3.040 0.002 0.051

Verbal working memory× word position −2.196 0.732 −3.000 0.002 −0.050

Verbal working memory× word length 3.885 1.353 2.870 0.004 0.048

All these interactions have p values below 0.01. Interactions having p values below or close to 0.00217 are bolded.

TABLE 10 Interaction on incidence of first-pass regression.

Factor Est. SE z p d

Decoding× word position 0.031 0.009 3.276 0.001 0.055

Its p value is below 0.00217. Statistically significant factors are shown in bold.
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FIGURE 1

Interactions between word length and oral comprehension plus vocabulary (A) and verbal working memory (B) on first-pass reading time. Word
length is mean-centered. The two panels in each figure represent the high and low skill groups. The titles of the panels show the level ranges
(within round or square brackets) of the skill measure in the two groups and the numbers of participants in these groups. In each panel, the blue
line is the loess fitting curve and the shaded area is standard error. The black line is the linear regression fitting curve (“Lm”). “Int.” shows the
interception (β0), and “Slope” the slope (β1). Numbers in square brackets are 95% confidence interval of the slope. The red line is the segmented
linear regression fitting curve (“SegLm”). “Seg.Point” shows the pivot point at word length, below and above which the slopes of the curve are
distinct (see “Slopes”). See Supplementary Table 3A for AIC and MSE of these models. The segmented linear models have the smallest AIC and
MSE closest to that of the loess regressions.

vs. 29.757), indicating that the good readers were less sensitive
to word length. Finally, the pivot points of word length were
similar in the poor (1.652) and good (1.276) readers.

In Figure 1B, similarly, compared to the good readers
having high levels of verbal working memory, the poor readers
having low levels of that skill spent relatively more time in
reading long words, and for both long and short words, their
first-pass reading times remained more sensitive to word length
(shown by the slopes of the segmented linear curves, 26.938 vs.
21.662 and 8.051 vs. 5.974). Nonetheless, the pivot points of
word length in the poor and good readers were similar (1.435
vs. 1.418).

4.3. Total reading time

Table 9 shows three interactions on total reading time whose
p values are below .01, two of which are marked as marginally
significant and visualized in Figure 2.

Figure 2 illustrates a segmented linear relation between total
reading time and word position in a sentence. Total reading
time drops when the participants read the first few words in a
sentence, and then, increases when they read the latter words in
a sentence. The negative and positive slopes of the segmented
linear fitting curves clearly reflect this bifurcating tendency.

In Figure 2A, compared to the good readers having high
levels of oral reading fluency, the total reading time of the poor
readers having low levels of that skill is generally longer, and
it is more sensitive to the beginning words in a sentence, as
shown by the more negative slopes (−27.098 vs.−11.428) below
the pivot points of word position. However, the smaller positive
slopes (3.008 vs. 17.01) above the pivot points suggest that the
total reading time of the poor readers is less sensitive to the
latter words in a sentence. In addition, the pivot points of word
position increases from −0.715 in the poor readers to 1.375 in
the good readers.

In Figure 2B, compared to the good readers having high
levels of verbal working memory, the total reading time of the
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FIGURE 2

Interactions between word position and oral fluency (A) and verbal working memory (B) on total reading time. Word position is mean-centered.
The two panels in each figure represent the high and low skill groups. See Supplementary Table 3B for AIC and MSE of different models, which
shows the segmented linear models have the smallest AIC and MSE closest to that of the loess regressions.

poor readers having low levels of that skill is less sensitive to
word position in a sentence, as shown by the smaller absolute
slopes both below (−15.694 vs. −19.821) and above (8.387 vs.
10.615) the pivot points of word position. In addition, the pivot
points in the two panels drop from 0.684 in the poor readers to
0.250 in the good readers.

A comparison of Figures 1, 2 reveals that verbal working
memory casts its influence on first-pass reading time via
interaction with word length and total reading time via
interaction with word position. To be specific, compared to the
poor readers having low levels of verbal working memory, the
first-pass reading time of the good readers is less sensitive to
word length, but their total reading time is more sensitive to
word position.

4.4. Incidence of first-pass regression

Table 10 shows that the interaction between decoding and
word position had a p value below .00217. Figure 3 visualizes
this significant interaction.

Figure 3 shows a segmented linear relation between first-
pass regression and word position in a sentence. The probability
of regression during the first-pass reading starts to increase
when the participants read the latter words in a sentence.
Compared to the poor readers having low levels of decoding,
the probability of regression during the first-pass reading of the
good readers increases a lot on the latter words in a sentence, as
shown by bigger slopes (.042 vs. .016) above the pivot points of
word position. The pivot points of word position are similar in
the poor (2.108) and good (2.537) readers.
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FIGURE 3

Interaction between word position and decoding on incidence of first-pass regression. Word position is mean-centered. The two panels
represent the high and low decoding groups. See Supplementary Table 3C for AIC and MSE of different models, which shows the segmented
linear models have the smallest AIC and MSE closest to that of the loess regressions. “Lm” here is logistic regression. Note that in the left panel,
it seems that the loess regression fitting curve also has a pivot point near the lower bound of word position. Since it is much closer to the
boundary, there are insufficient data points for the segmented linear model to identify it as a pivot point.

4.5. Refixation incidence

No interactions on refixation incidence have p
values below .01.

5. Discussion

5.1. Effects of interactions between
language and literacy skills and lexical
properties on online reading behavior

Previous studies have reported significant main effects of
some of the language and literacy skills discussed in this
paper, or bigger effect sizes of these skills than those of lexical
properties (e.g., Kuperman and Van Dyke, 2011). However,
in our analyses, main effects of skill measures never reach
statistical significance, though those of lexical properties often
do. The effect sizes of the skill measures are also smaller
than those of lexical properties. This is because that our
study focused on individuals with a much wider range of
language and literacy skills; only those having the highest
scores of the skill measures were comparable to university
students (cf. Braze et al., 2007). Such wide range of individual
differences in the skill measures could result in insignificance
and low effect sizes of the measures on online reading
behavior. These findings can enrich existing evidence and
trigger revisits on the theoretical discussions of individual
differences and their roles in reading process and outcome

(comprehension) (Bennink and Spoelstra, 1979; Bleckley et al.,
2003).

Although lacking direct influence on online reading
behavior, some of the language and literacy related skills
could significantly influence online reading behavior via
interactions with lexical properties. Our study showed that
oral comprehension, vocabulary, verbal working memory, oral
reading fluency, and decoding could predict online reading
patterns via interactions with word length or position in a
sentence. We also compared the effects of the interactions
involving these skills on online reading patterns between the
good and poor readers with respect to these skills.

To be specific, oral comprehension and vocabulary interact
with word length to predict first-pass reading time (see
Figure 1A); readers with good oral comprehension skill
and vocabulary knowledge could efficiently process words
with various lengths, thus being less troubled by long
words during first-pass reading. First-pass reading time
arguably reflects the duration of lexical processing, including
recognition of orthographic or phonological features of a
word and retrieval of semantic information from memory
once attention is allocated to the word (Inhoff, 1984).
This finding contributes to recent discussions on whether
vocabulary knowledge could influence reading comprehension
over and above the effect of language comprehension including
listening comprehension (Braze et al., 2007, 2016; Tunmer
and Chapman, 2012; Protopapas et al., 2013). At the early stage
of print processing vocabulary knowledge already helps good
readers efficiently reduce first-pass reading time on words of
various lengths.
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Verbal working memory presumably affects the rate at
which word information is assimilated during first-pass reading,
especially on long words. As shown in Figure 1B, the first-
pass reading time of the good readers with high levels of verbal
working memory are less sensitive to word length than the poor
readers. In addition, verbal working memory helps predict total
reading time via interaction with word position (see Figure 2B).
Total reading time reflects the integration of early and late
processing during lexical access. Word position in a sentence is a
context-dependent property. A general increase in total reading
time on words toward the end of a sentence reflects so-called
wrap-up effects (Rayner et al., 2000; Warren et al., 2009). In
our study, such effects became more explicit in readers having
high levels of verbal working memory; efficient verbal working
memory reduces the processing time for the first few words of a
sentence but induces more wrap-up effects towards the end of a
sentence.

Oral reading fluency interacts with word position to
predict total reading time (see Figure 2A); a high level of
this skill is associated with a less sensitivity to the first
few words in a sentence, but more sensitivity to latter
words in a sentence, in line with the wrap-up effects. In
addition, less fluent readers generally have more difficulty in
processing individual words and integrating word semantics
with context, and hence spend more time reading a few words
of a sentence; by contrast, more fluent readers spend less
time reading words in a sentence, especially those near the
beginning or in the middle of a sentence. These findings
are in line with and complement the existing theories on
oral and/or silent reading fluency (Fuchs et al., 2001; Tilstra
et al., 2009; Kim et al., 2011; Silverman et al., 2012; Ashby
et al., 2013). Furthermore, as shown in Figure 2, there is no
monotonic change of the correlation between word position
and total reading time. This indicates that the effects of oral
reading fluency and verbal working memory on regulating
online reading patterns are complex, possibly also subject to
other factors.

Decoding skill interacts with word position to predict
probability of first-pass regression (see Figure 3); good decoders
tended to have more regressive reading when reading words
towards the end of a sentence, reflecting their sentence decoding
processes. Early studies have reported the effects of decoding
on early (first-pass reading time) and overall (total reading
time) reading and re-reading probability (Kuperman and Van
Dyke, 2011; Nash and Heath, 2011; Kuperman et al., 2018).
In our study, the effect of decoding on re-reading probability
was fulfilled via an interaction with word position. All these
are in line with the claims that decoding skill is among the
key factors in lexical access (Barth et al., 2009; Hulme and
Snowling, 2012) and provide evidence for VET (Perfetti, 1985;
Shankweiler and Crain, 1986) and LQH (Perfetti and Hart,
2002; Perfetti, 2007) by showing how decoding influences
reading processes.

5.2. Segmented linear dynamics of the
correlation between lexical properties
and eye-movement measures

In addition to confirming that language and literacy skills
can influence online reading behavior indirectly via interactions
with lexical properties, our study further investigated the
dynamics of the correlation between lexical properties and eye-
movement measures regulated by particular individual skills.
Our quantitative analyses revealed that such dynamics cannot
be simply described as a linear relation; instead, many of the
correlations follow a segmented linear relation, with at least
two distinct slopes throughout the values of the relevant lexical
properties. Some of the dynamics are monotonic (see Figure 1),
with positive and increasing slopes around long words, whereas
others are not (see Figures 2, 3), with a transition from a
negative to a positive slope. The observed segmented linear
relations suggest a complex effect of key language and literacy
skills on regulating reading patterns via interactions with word
length or position. Between the good and poor readers based
on some skills, the durations of reading time are different, so
are the sensitivity of reading time or regression probability to
word length or position. In addition, the pivot values of word
length or position in the segmented linear correlations indicate
a transition of the degree of correlation. Note that in many
cases, the pivot points are not close to the mean value 0, so
arbitrary binary segmentation based on word length or position
(Kuperman et al., 2018) cannot clearly reveal such dynamics.
This dynamics echoes the effects of interactions between lexical
properties and skill measures on online reading behavior:
due to individual skills, the unimodal associations between
eye-movement patterns and lexical properties are broken, the
degrees of associations become different when the values of
lexical properties are below or above the pivot points, and the
high and low levels of the skills further influence the pivot lexical
property values and the degrees of associations below and above
the pivot values.

The observed dynamics in all these aspects can lead to
more comprehensive theories on the dynamic relations between
individual skills, text properties, and reading process. For
example, some theories of reading (Perfetti and Hart, 2002)
and empirical studies (Johnston and Kirby, 2006; Savage, 2006)
have challenged the linear assumption between decoding and
reading outcomes like reading comprehension. For example,
Johnston and Kirby (2006) showed that naming speed, a
measure of decoding skill, had its primary effect on less able
readers. A recent study of reading assessment has shown
distinct relations between decoding skill and comprehension
scores between good and poor decoders in Grades 5 to 10
(Wang et al., 2019). Some eye-movement studies have revealed
close relations between components of decoding (e.g., phonemic
awareness) and other skills (e.g., reading fluency) (Barth et al.,
2009; Ashby et al., 2013). Our study enriched the findings in
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this line of research by visualizing the segmented linear relations
between lexical properties and online reading behavior, which
are manipulated by individual differences in individual language
and literacy skills. This study can also inspire more empirical
studies to further investigate what factors help shape the slopes
and pivot values in the segmented linear models.

6. Conclusion

This study investigated the eye-movement data of simple
sentence reading from 44 young adults in high schools,
adult education centers, community colleges, or neighborhood
communities. A total of six domains of individual differences,
plus age, were tested to assess their effects via themselves
and interactions with lexical properties on online reading
behavior. Three of these domains tap into components of
reading ability: reading comprehension, decoding skill, and
oral reading fluency. The other three tap into domains not
reading specific: listening comprehension, vocabulary, and
verbal working memory. By evaluating the effect of each
domain while controlling for the others, we identified a
series of interactions between properties of text (length and
position) and skills of readers (oral comprehension, vocabulary,
verbal working memory, oral reading fluency, and decoding),
which manipulated both the early and late stages of online
reading process as gauged by eye-movement measures (first-
pass reading time, total reading time, and first-pass regression).
We also visualize segmented linear dynamics of the effects of
these interactions on online reading patterns. All these findings
speak to the necessity of incorporating interactions between
lexical properties and reading-related skills to enrich empirical
evidence, extend and refine theories about reading outcomes
and processes, and trigger new theories or hypotheses on how
language and literacy skills interact with lexical properties to
influence reading process.
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We present a new machine learning benchmark for reading task classification

with the goal of advancing EEG and eye-tracking research at the intersection

between computational language processing and cognitive neuroscience.

The benchmark task consists of a cross-subject classification to distinguish

between two reading paradigms: normal reading and task-specific reading.

The data for the benchmark is based on the Zurich Cognitive Language

Processing Corpus (ZuCo 2.0), which provides simultaneous eye-tracking

and EEG signals from natural reading of English sentences. The training

dataset is publicly available, and we present a newly recorded hidden testset.

We provide multiple solid baseline methods for this task and discuss future

improvements. We release our code and provide an easy-to-use interface

to evaluate new approaches with an accompanying public leaderboard:

www.zuco-benchmark.com.

KEYWORDS

reading task classification, eye-tracking, EEG, machine learning, reading research,

cross-subject evaluation

1. Introduction

Reading plays a fundamental role in the acquisition of information (e.g.,

encyclopedias) and communication (e.g., emails). As we read, our eyes gaze through

the written sentences in a sequence of fixations and high-velocity saccades to extract

visual information which are forwarded to the brain to obtain meaning. Thus, assessing

where a person looks during reading while recording brain activity non-invasively with

electroencephalography (EEG) provides powerful behavioral and physiological measures

for cognitive neuroscience to further the understanding of human language processing.

Most previous experimental reading research has used hand-picked reading materials

in highly controlled experimental settings (Brennan, 2016; Nastase et al., 2020). The

neural correlates of reading have traditionally been studied with serial word-by-word

presentation with a fixed presentation time, which eliminates important aspects of the

natural reading process and precludes direct comparisons between neural activity and
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oculomotor behavior (Dimigen et al., 2011; Kliegl et al., 2012).

The electrical neural correlates of normal reading of naturally

occurring real-world sentences have been investigated less

frequently due to a number of methodological challenges related

to identifying the exact timing and type of visual stimuli

presented during reading.

Because of recent methodological progress in stimulus

presentation and data preprocessing (Dimigen et al., 2011;

Ehinger and Dimigen, 2019), an excellent temporal resolution,

and low costs, co-registered EEG, and eye-tracking have

become important tools for studying the temporal dynamics

of naturalistic reading (Frey et al., 2018; Hollenstein et al.,

2018). Fixation-related potentials (FRPs), the evoked electrical

responses time-locked to the onset of fixations, have become

important tools for researchers to study various topics including

free-viewing visual perception (e.g., Rämä and Baccino, 2010),

brain-computer interfaces (e.g., Finke et al., 2016), and natural

reading (e.g., Degno et al., 2019). In naturalistic reading

paradigms, FRPs allow the study of the neural dynamics of

how new information from a currently fixated word affects the

ongoing language comprehension process.

In this work, we leverage these novel methodological

advances to offer amachine learning (ML) benchmark challenge,

formulated as a cross-subject classification task, to identify

two reading tasks as accurately as possible. Specifically, the

challenge is to discriminate between normal reading (with the

only task of reading comprehension) and task-specific reading

(TSR; with the purpose of finding specific information in

the text) from eye-tracking and EEG data. Decoding mental

states and detecting specific cognitive processes occurring in

the brain during different reading tasks (i.e., reading task

classification) are important challenges in cognitive neuroscience

as well as in natural language processing (NLP). Applications

of reading task classification include measuring attention and

engagement (Miller, 2015; Abdelrahman et al., 2019), detecting

proper reading vs. skimming (Biedert et al., 2012), as well as

applications related to intent recognition within brain computer

interfaces (Schalk et al., 2008). Other studies have demonstrated

that recognizing reading patterns for estimating reading effort

can improve the diagnosis of reading impairments such as

dyslexia (Rello and Ballesteros, 2015; Raatikainen et al., 2021)

and attention deficit disorder (Tor et al., 2021). Furthermore,

it has been shown that using EEG and eye-tracking signals

facilitates the prediction workload (Lobo et al., 2016) and

investigation of language learning (Notaro and Diamond, 2018).

The accurate distinction of the cognitive processes occurring

in different reading tasks is also important for ML and NLP.

Identifying specific reading patterns can improve models of

human reading and provide insights into human language

understanding and how we perform linguistic tasks. This

knowledge can then be applied to ML algorithms for NLP (e.g.,

information extraction applications). Computational models of

language understanding can be adapted based on the insights

from different reading and language processing tasks. Therefore,

the identification of reading intents can be beneficial for

computational methods of language understanding, but also

for applications such as digital assistant tools, e.g., supporting

translation processes, understanding how learners approach

tasks in adaptive e-learning, and inferring document relevance.

A crucial potential of human physiological data in the

context of NLP is that it can be leveraged to understand and

to improve the manual labeling process required for generating

training samples for supervised ML. For instance, Tokunaga

et al. (2017) analyze eye-tracking data during the annotation

of text to find effective gaze features for a specific NLP task

and Tomanek et al. (2010) build cost models for active learning

scenarios based on insights from eye-tracking data.

Reading task classification can help to improve the labeling

processes by detecting tiredness from brain activity data and

eye-tracking data, and subsequently to suggest breaks or task

switching, or by using cognitive data directly to (pre-)annotate

samples used for training ML models. If we can find and

extract the relevant aspects of text understanding and annotation

directly from the source, i.e., eye-tracking and brain activity

signals during reading, we can potentially replace this expensive

manual labeling work with ML models trained on physiological

activity data recorded from humans while reading. Therefore,

successful reading task classification could support the reduction

of manual labor, improving label quality in ML systems as well

as the job quality of annotators.

Essential for using neurophysiological signals to advance

NLP is the availability of a large dataset providing concurrent

measures of eye-tracking and EEG data, as well as ground truth

labels for ML tasks. For the present benchmark, this is possible

by leveraging a naturalistic dataset of reading English sentences,

the Zurich Cognitive Language Processing Corpus (Hollenstein

et al., 2018, 2020). The ZuCo dataset is publicly available and

has recently been used in a variety of applications including

leveraging EEG and eye-tracking data to improve NLP tasks

(Barrett et al., 2018; Mathias et al., 2020; McGuire and Tomuro,

2021), evaluating the cognitive plausibility of computational

language models (Hollenstein et al., 2019b; Hollenstein and

Beinborn, 2021), investigating the neural dynamics of reading

(Pfeiffer et al., 2020), developing models of human reading

(Bautista and Naval, 2020; Bestgen, 2021).

Recently, ZuCo has also been leveraged for an ML

competition on eye-tracking prediction (Hollenstein et al.,

2021a).This competition revolves around a different task with

a focus on computational language models in the field of natural

language processing. The goal was to predict word-level eye-

tracking features from normal reading such as mean fixation

duration and fixation probability in a regression task. This shows

that the ZuCo dataset has been used successfully for a wide range

of ML tasks.

Moreover, the results of previous single-subject models

for reading task classification (Hollenstein et al., 2021c;
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Mathur et al., 2021) emphasize the potential of this task, but

also highlight the performance gap between research-oriented

single-subject models and more realistic cross-subject scenarios.

The proposed benchmark therefore addresses this gap by

focusing on the latter to improve the inter-subject generalization

capabilities of these machine learning models. The recording of

a new hidden testset with additional participants enables us to

test this task in a suitable manner. Furthermore, by applying

state-of-the-art EEG recording and preprocessing techniques,

we ensure that this benchmark relies on a strong foundation, so

that the resources and efforts of the research community can be

spent wisely.

To conclude, the contributions of our work can be

summarized as follows: First, we formulate a benchmark task

for applying ML techniques to an important problem in

cognitive science, namely, the classification of cognitive tasks.

Second, we provide the data1 and code2 to reproduce our

experiments. We provide a public benchmark and leaderboard

on a new held-out test data. All information can be found here:

www.zuco-benchmark.com. Finally, we propose and discuss

models using various feature sets as baseline models for

this benchmark task. We present detailed analyses of the

results for both eye-tracking and EEG features and discuss the

model performances.

2. Methods

The basis for this ML benchmark task is the Zurich Cognitive

Language Processing Corpus 2.0 (ZuCo 2.0). ZuCo 2.0 was

originally published in Hollenstein et al. (2020). In short,

this corpus contains gaze and brain activity data of 18

participants reading 739 English sentences, 349 in a normal

reading paradigm, and 390 in a task-specific paradigm, in

which the participants actively search for a semantic relation

type in the given sentence as a linguistic annotation task.

This new dataset provides experiments designed to analyze the

differences in cognitive processing between normal reading and

task-specific reading.

In previous work, we recorded a first dataset (i.e., ZuCo

1.0) of simultaneous eye-tracking and EEG during natural

reading (Hollenstein et al., 2018). ZuCo 1.03 consists of three

reading tasks, two of which contain very similar readingmaterial

and experiments as presented in the current work. However,

for ZuCo 1.0 the normal reading and task-specific reading

paradigms were recorded in different sessions on different days.

Therefore, the recorded data from ZuCo 1.0 is not appropriate

1 Benchmark data available here: https://osf.io/d7frw/.

2 Code for baseline methods available here: https://github.com/

norahollenstein/zuco-benchmark.

3 Data available here: https://osf.io/q3zws/.

TABLE 1 Descriptive statistics of reading materials (SD, standard

deviation), including Flesch readibility scores.

NR TSR

Sentences 349 390

Sent. length Mean (SD), range Mean (SD), range

19.6 (8.8), 5–53 21.3 (9.5), 5–53

Total words 6,828 8,310

Word types 2,412 2,437

Word length Mean (SD), range Mean (SD), range

4.9 (2.7), 1–29 4.9 (2.7), 1–21

Flesch score 55.38 50.76

as a means of comparison between normal reading and task-

specific reading, since the differences in the brain activity

data might result mostly from the different sessions due to

the sensitivity of EEG. Therefore, while the data is available

in the same format, it is not recommended to be used for

this benchmark task. In the following section, we describe the

compilation of the ZuCo 2.0 dataset.

2.1. Reading materials

During the recording session, the participants read a total of

739 sentences that were selected from the Wikipedia corpus

provided by (Culotta et al., 2006). This corpus was chosen

because it provides annotations of semantic relations. Relation

detection is a high-level semantic language understanding task

requiring complex cognitive processing. ZuCo 2.0 includes

seven of the originally defined relation types: political_affiliation,

education, founder, wife/husband, job_title, nationality, and

employer. The sentences were chosen with similar sentence

lengths and Flesch reading ease scores (Flesch, 1948) between

the two reading tasks. The Flesch score indicates how difficult

an English text passage is to understand based on its structural

characteristics, i.e., number of words and number of syllables. A

higher Flesch score means the text is easier to read. The dataset

statistics are shown in Table 1.

Of the 739 sentences, the participants read 349 sentences

in a normal reading paradigm and 390 sentences in a task-

specific reading paradigm, in which they had to determine

whether a certain relation type occurred in the sentence or

not. Table 2 shows the distribution of the different relation

types in the sentences of the task-specific annotation paradigm.

Purposefully, there are 63 duplicates between the normal reading

and the task-specific sentences (8% of all sentences). The

intention of these duplicate sentences is to provide a set of

sentences read twice by all participants with a different task in

mind. Hence, this enables the comparison of eye-tracking and
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brain activity data when reading normally and when annotating

specific relations. During both tasks, the participants were able

to read in their own speed, using a control pad to move to

the next sentence and to answer the control questions, which

allowed for natural reading. Since all subject read at their

own personal pace, the reading speed varies between subjects.

Figure 1 shows the average sentence length, reading speed, and

omission rate for each task.The sentence length (i.e., the number

of words per sentence) was controlled in the selection of reading

materials, so that it would not differ significantly between the

two tasks (NR mean = 19.6, SD = 8.8; TSR mean = 21.3, SD =

9.5; p = 0.02 in a two-sided t-test).

2.1.1. Normal reading
In the first task, participants were instructed to read

the sentences naturally, without any specific task other than

comprehension. An example sentence is “He served in the

United Stated Army inWorldWar II, then got a law degree from

Tulane University.” The control condition for this task consisted

of single-choice questions about the content of the previous

TABLE 2 Distribution of relation types in the task-specific reading.

Relation type Sentences

Political affiliation 45 (9)

Education 72 (10)

Wife 54 (12)

Job title 65 (11)

Employer 54 (10)

Nationality 60 (8)

Founder 40 (8)

Total 390 (68)

The right column contains the number of sentences, and the number control sentences

without a relation in brackets.

sentence. Twelve percent of randomly selected sentences were

followed by a comprehension question with three answer

options on a new screen, for example, “Which university did

he get his degree from? (1) Austin University, (2) Tulane

University, (3) Louisiana State University.”

2.1.2. Task-specific reading
In the second task, the participants were instructed to search

for a specific semantic relation in each sentence they read.

Instead of comprehension questions, the participants had to

decide for each sentence whether it contains the relation or not,

i.e., they were actively annotating each sentence. An example

sentence containing the relation founder is “After this initial

success, Ford left Edison Illuminating and, with other investors,

formed the Detroit Automobile Company.” Seventeen percent

of the sentences did not include the particular relation type

and were used as control conditions. All sentences within one

recording block involved the same relation type. Each block was

preceded by a short practice round, which described the relation

type and was followed by three sample sentences, so that the

participants would be familiar with the respective relation type.

2.2. Linguistic assessment

As a linguistic assessment, the vocabulary and language

proficiency of the participants was tested with the LexTALE

test (Lexical Test for Advanced Learners of English, Lemhöfer

and Broersma, 2012). This is an unspeeded lexical decision

task designed for intermediate to highly proficient language

users. The average LexTALE score over all participants was

88.54%. Moreover, we also report the scores the participants

achieved with their answers to the reading comprehension

control questions and their relation annotations. The detailed

scores for all participants are also presented in Table 3.

FIGURE 1

Sentence length (words per sentence), reading speed (seconds per sentence) and omission rate (percentage of words not fixated) comparison
between normal reading (NR) and task-specific reading (TSR) of the sentence in ZuCo 2.0.
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TABLE 3 Subject demographics for ZuCo 2.0, LexTALE scores, scores of the comprehension questions, and individual reading speed (i.e., seconds

per sentence) for each task.

ID Age Gender LexTALE Comp. scores Reading speed

NR TSR NR TSR

YAC 32 female 76.25% 82.61% 83.85% 5.27 4.96

YAG 47 female 93.75% 91.30% 56.92% 7.64 8.73

YAK 31 female 100.00% 74.07% 96.41% 3.83 5.89

YDG 51 male 100.00% 91.30% 96.67% 4.97 3.93

YDR 25 male 85.00% 78.26% 96.92% 4.32 2.32

YFR 27 male 85.00% 89.13% 94.36% 6.48 4.79

YFS 39 male 90.00% 91.30% 96.15% 3.96 2.85

YHS 31 male 90.00% 78.26% 97.69% 3.30 2.40

YIS 52 male 97.50% 89.13% 98.46% 5.82 2.58

YLS 34 female 93.75% 91.30% 92.31% 5.57 5.85

YMD 31 female 100.00% 86.96% 95.64% 7.50 6.24

YRK 29 female 85.00% 97.83% 96.15% 7.35 7.70

YRP 23 female 82.50% 78.26% 90.00% 7.14 8.37

YSD 34 male 95.00% 93.48% 94.36% 5.01 2.87

YSL 32 female 71.25% 84.78% 83.85% 6.73 6.14

YTL* 36 male 81.25% 80.43% 94.10% 7.48 3.23

Mean 34 44%m. 88.54% 86.36% 91.94% 5.84 4.81

The * next to the subject ID marks a bilingual subject.

2.3. Participants

The subjects from ZuCo 2.0 are provided as training data

for the current benchmark. For the ZuCo 2.0, we recorded data

from 19 participants and discarded the data of one of them

due to technical difficulties with the eye-tracking calibration.

Another two subjects were discarded during data cleaning and

preprocessing. Thus, we share the data of these 16 participants.

All participants are healthy adults (between 23 and 52 years

old; 10 females). Details on subject demographics can be found

in Table 3. Their native language is English, originating from

Australia, Canada, UK, USA or South Africa. Two participants

are left-handed and three participants wear glasses for reading.

All participants gave written consent for their participation and

the re-use of the data prior to the start of the experiments. The

study was conducted under approval by the Ethics Commission

of the University of Zurich.

2.3.1. ZuCo 2.0 held-out testset
To provide a true hidden dataset for the current benchmark,

we recorded data from 10 additional participants (i.e., a held-

out testset). They underwent the identical procedure as in the

ZuCo 2.0 dataset. All participants are healthy adults [mean age

= 31.8 (SD = 5.11), four females]. All participants are right-

handed. Their native language is English, originating from UK,

Canada or USA. For an overview on subjects demographics,

comprehension scores and reading speed please refer to Table 4.

All participants gave written consent for their participation and

the re-use of the data prior to the start of the experiments.

2.4. Procedure

Data acquisition took place in a sound-attenuated and dark

experiment room. Participants were seated at a distance of 68

cm from a 24-inch monitor (ASUS ROG, Swift PG248Q, display

dimensions 531× 299mm, resolution 800× 600 pixels resulting

in a display: 400 × 298.9 mm, a vertical refresh rate of 100 Hz).

All sentences were presented at the same position on the screen

and could span multiple lines. The sentences were presented

in black on a light gray background with font size 20-point

Arial, resulting in a letter height of 0.8 mm. The experiment

was programmed in MATLAB 2016b (MathWorks, Inc. 2000),

using PsychToolbox (Brainard, 1997). A stable head position

was ensured via a chin rest. Participants were instructed to

stay as still as possible during the recordings to avoid motor

EEG artifacts. Participants completed the tasks sitting alone in
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TABLE 4 Subject demographics for the new held-out test dataset, LexTALE scores, scores of the comprehension questions, and individual reading

speed (i.e.,seconds per sentence) for each task.

ID Age Gender LexTALE Comp. scores Reading speed

NR TSR NR TSR

XAH 25 female 95.25% 91.30% 93.58% 5.58 3.94

XBB 37 male 95.75% 82.60% 93.84% 6.88 5.67

XBD 32 male 89.00% 91.30% 96.15% 7.31 4.48

XDT 25 male 97.50% 86.95% 93.85% 8.24 8.54

XLS 28 male 85.00% 89.13% 94.87% 7.52 5.68

XPB 29 male 97.50% 86.95% 91.02% 7.87 6.53

XSE 31 female 90.00% 89.13% 96.15% 7.23 3.75

XSS 42 female 97.50% 89.13% 96.67% 7.49 6.21

XTR 34 female 93.75% 89.13% 96.15% 9.18 5.91

XWS 35 male 100.00% 89.13% 95.64% 6.65 4.29

Mean 31.8 60%m. 94.13% 88.48% 94.79% 7.40 5.50

the room, while two research assistants were monitoring their

progress in the adjoining room. All recording scripts including

detailed participant instructions are available alongside the data.

During both tasks, the participants were able to read in their

own speed, using a control pad to move to the next sentence

and to answer the control questions, which allowed for natural

reading. All 739 sentences were recorded in a single session for

each participant. The duration of the recording sessions was

between 100 and 180 min, depending on the time required to set

up and calibrate the devices, and the personal reading speed of

the participants. Participants were also offered snacks and water

during the breaks and were encouraged to rest. We recorded 14

blocks of∼50 sentences, alternating between tasks: 50 sentences

of normal reading, followed by 50 sentences of task-specific

reading. The order of blocks and sentences within blocks was

identical for all subjects. Each sentence block was preceded by a

practice round of three sentences and followed by a short break

to ensure a clear separation between the reading tasks. For the

held-out test dataset, all blocks were merged and the order of the

sentences was shuffled before sharing the data on OSF. This is

done to prohibit the possibility that challenge participants would

simply train a model to identify an experimental block rather

than the type of reading for each sentence.

2.5. Data acquisition

2.5.1. Eye-tracking acquisition
Eye movements and pupil size were recorded with an

infrared video-based eye tracker (EyeLink 1000 Plus, SR

Research) at a sampling rate of 500 Hz and an instrumental

spatial resolution of 0.01◦. The eye tracker was calibrated with a

nine-point grid at the beginning of the session and re-validated

before each block of sentences. Participants were instructed to

keep their gaze on a given point until it disappeared. If the

average error of all points (calibration vs. validation) was below

1◦ of visual angle, the positions were accepted. Otherwise, the

calibration was redone until this criterion was reached.

2.5.2. EEG acquisition
We recorded the high-density EEG data at a sampling rate

of 500 Hz with a bandpass of 0.1–100 Hz, using a 128-channel

EEG Geodesic Hydrocel system (Electrical Geodesics). The Cz

electrode served as a recording reference. The impedance of each

electrode was checked before recording and was kept below 40

k�. Additionally, electrode impedance levels were checked after

every third block of 50 sentences (approximately every 30 min)

and reduced if necessary.

2.6. Data preprocessing and feature
extraction

2.6.1. Eye-tracking preprocessing and feature
extraction
2.6.1.1. Eye-tracking preprocessing

The eye tracker computed eye position data and identified

events such as saccades, fixations, and blinks. Saccade onsets

were detected using the eye-tracking software default settings:

acceleration larger than 8,000◦/s2, a velocity above 30◦/s,

and a deflection above 0.1◦. The eye-tracking data consists

of (x, y) gaze location entries for each individual time point

(Figures 3A, B). Coordinates were given in pixels with respect to
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FIGURE 2

Violin plots showing means, distributions, and ranges of the reading time measures per word for each task and each eye-tracking feature (x-axis)
in milliseconds.

the monitor coordinates [the upper left corner of the screen was

(0, 0) and down/right was positive]. We provide this raw data as

well as various engineered eye-tracking features.

2.6.1.2. Eye-tracking feature extraction

For this feature extraction, only fixations within the

boundaries of each displayed word were extracted. A Gaussian

mixture model was trained on the (y-axis) gaze data for each

sentence to improve the allocation of eye fixations to the

corresponding text lines. The number of text lines determined

the number of Gaussians to be fitted within the model.

Subsequently, each gaze data point was clustered to thematching

Gaussian and the data were realigned. As a result, each gaze

data point is clearly assigned to a specific text line. Data points

distinctly not associated with reading (minimum distance of 50

pixels to the text) were excluded. Additionally, fixations shorter

than 100 ms were excluded from the analyses, because these

are unlikely to reflect fixations relevant for reading (Sereno and

Rayner, 2003). On the basis of previous eye-tracking corpora,

namely the GECO corpus (Cop et al., 2017) and ZuCo 1.0

(Hollenstein et al., 2018), we extracted the following features:

(i) gaze duration (GD), the sum of all fixations on the current

word in the first-pass reading before the eye moves out of

the word; (ii) total reading time (TRT), the sum of all fixation

durations on the current word, including regressions; (iii) first

fixation duration (FFD), the duration of the first fixation on the

prevailing word; (iv) single fixation duration (SFD), the duration

of the first and only fixation on the current word; and (v) go-

past time (GPT), the sum of all fixations prior to progressing to

the right of the current word, including regressions to previous

words that originated from the current word. See Figure 2 for

a visualization of the feature ranges of each reading task. For

each of these eye-tracking features, we additionally computed

the pupil size. Furthermore, we extracted the number of fixations

and mean pupil size for each word and sentence. Additionally,

on the sentence level, we extracted the mean and maximum

saccade velocity, saccade amplitude and saccade duration. On

the word level, saccade velocity, amplitude, and duration were

extracted for in-going, outgoing, as well as saccades within a

word. Finally, on the sentence level, omission rate is calculated,

representing the proportion of words which were not fixated

within each sentence.

2.6.2. EEG preprocessing and feature extraction
2.6.2.1. EEG preprocessing

Before the EEG preprocessing, data from all 14 blocks

(seven NR and seven TSR) were first merged to avoid high

predictive power based on the differences resulting from the

preprocessing itself. To avoid loss of data by the subsequent

automated preprocessing pipeline, the files of each recording

blocked were screened to exclude highly artifactual data.

Therefore, each block was temporarily filtered using a 2 Hz high-

pass filter. Subsequently, outlying data points were removed

Frontiers in Psychology 07 frontiersin.org

34

https://doi.org/10.3389/fpsyg.2022.1028824
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Hollenstein et al. 10.3389/fpsyg.2022.1028824

FIGURE 3

Visualization of eye-tracking and EEG data for a single sentence. (A) Prototypical sentence fixation data. Red crosses indicate fixations; boxes
around the words indicate the wordbounds. (B) Fixation data plotted over time. (C) Raw EEG data during a single sentence. (D) Same data as in
(C) after preprocessing.

if they exceeded a threshold of three standard deviations

above or below the mean of the data. Only if the standard

deviation of this temporarily pre-cleaned data was below a

cut-off of 100 µV, the original corresponding block was used

in the merging process. Applying this criterion, 4.02% of all

blocks were excluded. The EEG preprocessing was conducted

with the open-source MATLAB toolbox preprocessing pipeline

Automagic (Pedroni et al., 2019), which combines state-of-the-

art EEG preprocessing tools into a standardized and automated

pipeline. The EEG preprocessing consisted of the following

steps: First, bad channels were detected by the algorithms

implemented in the EEGlab plugin clean_rawdata.4 A

channel was defined as a bad electrode when recorded data

from that electrode was correlated at <0.85 to an estimate

based on other channels. Furthermore, a channel was defined

as bad if it had more line noise relative to its signal than

all other channels (four standard deviations). Finally, if a

channel had a longer flat-line than 5 s, it was considered

bad. These bad channels were automatically removed and later

interpolated using a spherical spline interpolation (EEGLAB

function eeg_interp.m). The interpolation was performed

as a final step before the automatic quality assessment of

the EEG files. Next, data were filtered using a 2 Hz high-

pass filter and line noise artifacts were removed by applying

Zapline (de Cheveigné, 2020), removing seven power line

components. Subsequently, independent component analysis

(ICA) was performed. Components reflecting artifactual activity

were classified by the pre-trained classifier ICLabel (Pion-

Tonachini et al., 2019). Components that were classified as any

class of artifacts (line noise, channel noise, muscle activity, eye

4 http://sccn.ucsd.edu/wiki/Plugin_list_process

activity, and cardiac artifacts) with a probability higher than

0.8 were removed from the data. Subsequently, residual bad

channels were excluded if their standard deviation exceeded a

threshold of 25 µV. Very high transient artifacts (>100 µV)

were excluded from calculating the standard deviation of each

channel. However, if this resulted in a significant loss of channel

data (>50%), the channel was removed from the data. After this,

the pipeline automatically assessed the quality of the resulting

EEG files based on four criteria: First, a data file was marked

as bad-quality EEG and not included in the analysis if the

proportion of high-amplitude data points in the signals (>30

µV) was larger than 0.20. Second, more than 20% of time points

showed a variance larger than 15µV across channels. Third,

30% of the channels showed high variance (>15 µV). Fourth,

the ratio of bad channels was higher than 0.3. After Automagic

preprocessing, 13 electrodes in the outermost circumference

(chin and neck) were excluded from further processing as they

capture little brain activity and mainly record muscular activity.

The discarded electrode labels were E1, E8, E14, E17, E21,

E25, E32, E48, E49, E56, E63, E68, E73, E81, E88, E94, E99,

E107, E113, E119, E125, E126, E127, and E128. Additionally,

10 EOG electrodes were separated from the data and not

used for further analysis, yielding a total number of 105 EEG

electrodes. Subsequently, the data was converted to a common

average reference.

2.6.2.2. EEG and eye-tracking synchronization

In a next step, the EEG and eye-tracking data were

synchronized using the “EYE-EEG" toolbox (Dimigen et al.,

2011) to enable EEG analyses time-locked to the onsets of

fixations and saccades, and subsequently segment the EEG

data based on the eye-tracking measures. The synchronization
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FIGURE 4

Topographical plots showing the mean EEG activity across all subjects from ZuCo 2.0. Averaged sentence level features are plotted in each
reading condition as well as the di�erence between the tasks (NR minus TSR; scalp viewed from above, nose at the top). Only for the purpose of
this visualization, relative power values are plotted (i.e., power in each frequency band divided by the average power between 1 and 50Hz),
showing the expected typical power distribution across the scalp.

algorithm first identified the “shared" events. Next, a linear

function was fitted to the shared event latencies to refine

the start- and end-event latency estimation in the eye tracker

recording. Finally, the synchronization quality was ensured by

comparing the trigger latencies recorded in the EEG and eye-

tracker data. All synchronization errors did not exceed 2 ms (i.e.,

one data point). Remaining eye artifacts in data were removed

with Unfold toolbox (Ehinger and Dimigen, 2019) according to

a method described in Pfeiffer et al. (2020). The effect of this

preprocessing can be seen from Figures 3C, D.

2.6.2.3. EEG feature extraction

To compute oscillatory power measures, we band-pass

filtered the continuous EEG signals across an entire reading

task for four different frequency bands, resulting in a time-

series for each frequency band. The distinct frequency bands

were determined as follows: theta_1 (4–6 Hz), theta_2 (6.5–

8 Hz), alpha_1 (8.5–10 Hz), alpha_2 (10.5–13 Hz), beta_1

(13.5–18 Hz), beta_2 (18.5–30 Hz), gamma_1 (30.5–40 Hz),

and gamma_2 (40.5–49.5 Hz). Afterwards, we applied a

Hilbert transformation to each of these time-series resulting

in a complex time series. The Hilbert phase and amplitude

estimation method yields results equivalent to sliding window

Fourier transformation and wavelet approaches (Bruns, 2004).

We chose specifically the Hilbert transformation to maintain

temporal information for the amplitude of the frequency bands

to enable the power computation of the different frequencies

for time segments defined through fixations in the eye-tracking

data. Finally, for each sentence as well as for each word within

each sentence, and for each frequency band, the EEG features

consist of a vector of 105 dimensions (one value for each EEG

channel). On the level of individual words, these frequency

band power features were calculated based on fixations of GD,

TRT, FFD, SFD, and GPT (see above). For each EEG feature,

all channels were subject to an artifact rejection criterion of

90 µV to exclude trials with transient noise. To descriptively

compare the EEG activity and the extracted frequency band

power between the NR and TSR sentences, the average of each

condition as well as the differences (NR minus TSR) for the

different sentence-level EEG features are plotted in Figure 4.

2.7. Data access

The raw and preprocessed EEG and eye-tracking data, as

well as the features extracted from the preprocessed EEG and

eye-tracking are provided for this benchmark. For the training

data, the information about the task (normal reading or task-

specific reading) is also available. Please note that for the held-

out test dataset, we can only provide the preprocessed data

and the extracted features. As the raw data were collected in

different blocks of normal reading and task-specific reading, the

participants could otherwise infer the outcome from the block

separation. All the data can be accessed via OSF: https://osf.io/

d7frw/.

3. Benchmark task

3.1. Task definition

We propose an ML benchmark for reading task identification.

As described in Section 2, the ZuCo corpus provides data

from two reading paradigms, normal reading (NR) and task-

specific annotation reading (TSR). Consequently, we frame

the problem as binary classification task with labels Y ∈

{NR, TSR}. The training data consists of sentences labeled
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depending on which reading task they belonged to during the

experiment. Each sentence is represented by a feature set X.

The input features should be eye-tracking or EEG features, or

a combination thereof.

The goal of the benchmark task is to build a binary classifier h to

predict the label Y for each sentence given only the features X:

h :X −→ {NR, TSR}. (1)

Due to the naturalistic experiment design and the co-

registration of EEG and eye movement signals, feature

extraction is possible on various levels. There are no restrictions

to the type and dimension of the input features or the model.

3.2. Performance metrics

The classifier’s performance is evaluated by the classification

accuracy, defined as the number of correct predictions divided

by the total number of predictions. Since previous results

have shown high performance on models trained and tested

within-subject but low performance on cross-subject models

(Hollenstein et al., 2021c), this benchmark aims to address

this gap by focusing on the latter to improve the inter-subject

generalization capabilities of the models. We propose a cross-

subject evaluation, where each subject in the held-out testset

is evaluated by a model trained on all subjects in the training

split (i.e., the original ZuCo 2.0 dataset). Therefore, the main

benchmark metric is defined as the mean classification accuracy

across all subjects in the testset. As a second metric, we choose

the F1-measure. In our classification setup, we do not distinguish

between a positive and a negative class, i.e., there is no clear

majority or minority class. For that reason, we choose to

evaluate our classifier using the macro-averaged F1-scores. The

benchmark task is evaluated on models from the following three

categories: models trained on EEG features, models trained on

eye-tracking features, and models trained on a combination of

EEG and eye-tracking features.

3.3. Benchmark setup

We host the ZuCo benchmark on Eval-AI (Yadav et al.,

2019) – an open source AI challenge platform for evaluating

and comparing machine learning and artificial intelligence

algorithms. The link to the reading task classification challenge

and more information on how to participate is available

here: https://github.com/norahollenstein/zuco-benchmark.

This solution will help other researchers to participate in our

machine learning challenge and enable us to automate the

evaluation of the future submissions.

3.3.1. Evaluation strategy
Researchers that want to participant in the benchmark task

can submit predictions from their models for the hidden testset.

We specified the challenge configuration, evaluation code, and

information about the data splits. Predictions for the testset

labels can be submitted in the JSON file.

3.3.2. Leaderboard
The public leaderboard will include the scores on the

chosen evaluation metrics as well as references to upcoming

publications. Upon submission, the predictions will be handed

over to challenge-specific workers that compare the predictions

against corresponding ground-truth labels using the custom

evaluation script provided by our team.

4. Baseline methods

4.1. Textual baselines

We set three minimal baselines for this benchmark task:

(i) a random baseline, (ii) a word embedding baseline, and

(iii) a text difficulty baseline. We will use the first one as

the basis for model comparison, while the latter two serve

merely as control conditions to validate the dataset and exclude

linguistic properties as a possible confound in the reading task

classification benchmark.

4.1.1. Random baseline
We compute a random baseline to assess the chance level

of predicting the correct class. We randomly sample the labels

according to the distribution of the training data. That means

the label NR is chosen with a probability of pNR = 390
739 ≈ 0.53

and TSR is chosen with pTSR = 1− pNR ≈ 0.47.

4.1.2. Word embedding baseline
Even though the experimental design of ZuCo ensured the

similarilty of the sentences in terms of sentence lengths and

text complexity, we aim to ensure the sentences in the data are

not easily separable merely by their linguistic characteristics.

Therefore, we compare our models to a textual baseline as

a sanity check. For this purpose, we use pre-trained textual

representations, namely, the state-of-the-art contextualized

BERT word embeddings (Devlin et al., 2019). We concatenate

the embeddings of all words in a sentence and feed them into

the LSTMmodel.

4.1.3. Text di�culty baseline
We also provide a baseline based on text readability.

Although the sentences for both reading tasks were chosen to
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FIGURE 5

Flesch reading ease (FRE) scores for the NR and TSR sentences
used in the ZuCo 2.0. dataset.

be of similar length and from the same text genre, we want to

ensure that both tasks are not separable merely by the difficulty

of the sentences. Therefore, we implement a text difficulty

baseline, which classifies the sentences into NR and TSR based

on their Flesch reading ease score (FRE; Flesch, 1948). This score

indicates how difficult an English text passage is to understand

based on the average number of words in a sentence and the

average number of syllables in a word:

FRE = x− y

(

words

sentences

)

− z

(

syllables

words

)

(2)

where x, y and z are language-specific weighting factors (for

English x = 206.835, y = 1.015, z = 84.6). We compute

FRE scores for each of the English sentences in the ZuCo data.

Figure 5 shows the distribution of the FRE across the sentences

of ZuCo 2.0.

4.2. EEG and eye-tracking models

We also present a set of initial models using EEG and eye-

tracking features as a starting point for future models.5 For each

sentence in the dataset, the model input is composed of a vector

of eye-tracking and/or EEG features corresponding to a single

sentence in the dataset. Each sample in the training set is labeled

with the reading task it was recorded in, normal reading (NR) or

task-specific reading (TSR).We investigate the potential of using

sentence-level eye-tracking and EEG features for the reading

task classification. Hollenstein et al. (2021c) compared sentence-

level and word-level features for this task previously and showed

5 The code is available here: https://github.com/norahollenstein/zuco-

benchmark.

that sentence-level features perform better. However, challenge

participants are also invited to use word-level and other features

(see discussion in Section 6 for suggestions). The advantages

of sentence-level features consist of the possibility of using

simpler machine learning models and reduced training times

(Hollenstein et al., 2021c). Sentence-level features are defined as

metrics aggregated over all words in a given sentence.

4.2.1. Eye-tracking features
We include two types of sentence-level eye-tracking

features. The features are summarized in Table 5. First,

the fixation-based features - omission rate, number of

fixations and reading speed - are aggregated metrics

normalized by sentence length, i.e., the number of words

in a sentence. Analogous to the word-level models, we also

include saccade-based features. These include the mean

and maximum duration, velocity and amplitude across all

saccades that occurred within the reading time of a give

sentence. We test these features individually and combined

to investigate the performance increase achieved by adding

more features.

4.2.2. EEG features
The sentence-level EEG features take into account the

EEG activity over the whole sentence duration (even when

no words were fixated). We aggregate over the preprocessed

EEG signals of the full reading duration of a sentence. Each

subfrequency band (e.g., alpha_1 and alpha_2) were averaged

to get one power measure for each frequency band, i.e.,

theta (4–8 Hz), alpha (8.5–13 Hz), beta (13.5–30 Hz), and

gamma (30.5–49.5 Hz). The sentence-level EEG features are

described in Table 6. We experiment with both aggregate

metrics, i.e., the mean across all electrodes, and individual

electrode features.

Examples of these features across all subjects, split by class

(normal reading vs. task-specific reading) are shown in Figure 6

for ZuCo 2.0.

4.2.3. Principal component analysis
We use principal component analysis (PCA) to reduce

the dimensionality of the EEG features. In an initial attempt,

we fitted PCA on all training subjects and applied it to

both the training and test split. This, however, led to no

significant improvements in classification accuracy. Thus, we

fit PCA to each subject individually. To prevent overfitting

to the test subjects, we only consider subjects in the training

data to determine the number of components. We fit PCA

for each subject separately and calculate the number of

components that explain 95% of the variance. We then

choose the number of components of PCA as the median
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TABLE 5 Sentence-level eye-tracking features.

Name Definition Values

Fixation features

omission_rate Percentage of words in a sentence that is not fixated 1

fixation_number Number of fixations in the sentence divided by the number of words 1

reading_speed Sum of the duration of all fixations in the sentence divided by the number of words 1

Saccade features

mean_sacc_dur Sum of the duration of all saccades in the sentence divided by the number of words 1

max_sacc_dur Maximum saccade duration per sentence 1

mean_sacc_velocity Sum of the velocity of all saccades in the sentence divided by the number of saccades 1

max_sacc_velocity Maximum saccade velocity per sentence 1

mean_sacc_amplitude Sum of the amplitude of all saccades in

the sentence divided by the number of saccades

1

max_sacc_amplitude Maximum saccade amplitude per sentence 1

Combined features

Combined ET features Concatenation of all eye-tracking features 9

We use the combination of all features for our models.

TABLE 6 Sentence-level EEG features.

Name Definition Values

Mean features

theta_mean Mean theta band features averaged over all electrodes 1

alpha_mean Mean alpha band features averaged over all electrodes 1

beta_mean Mean beta band features averaged over all electrodes 1

gamma_mean Mean gamma band features averaged over all electrodes 1

eeg_means Mean frequency band features averaged over all electrodes, resulting in 1 feature value for each of the

8 frequency bands

8

Electrode features

electrode_features_theta Mean theta1 and theta2 values of all 105 electrodes 105

electrode_features_alpha Mean alpha_1 and alpha_1 values of all 105 electrodes 105

electrode_features_beta Mean beta_1 and beta_1 values of all 105 electrodes 105

electrode_features_gamma Mean gamma_1 and gamma_1 values of all 105 electrodes 105

electrode_features_all Concatenation of the four features above 420

Combined features

ET & EEG mean features Concatenation of sent_gaze_sacc and eeg_means 17

over all subjects in the training data, which makes it robust

against outlier subjects. The result is a reduced dimensionality

from 105 to 41 of both training and test data. Figure 7

shows that the amount of variance explained by the first

components varies significantly between subjects. The first

component, for instance, accounts for ∼24% of the variance for

subject YTL, whereas it accounts for 49% of the variance for

subject YAC.

To analyze how much the individual electrodes influence

the principal components, we again fit PCA for each subject of

the training data, such that the resulting components explain

95% of the variance. Assuming we have n original features and

m principal components c, where each component is a linear

combination of the original features, i.e., cj =
∑n

i β
j
ixi, j ∈

1 . . .m. We then extract the amount of variance explained (vj)

by each component cj and its weights β
j
i . We sum up all β

j
i
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FIGURE 6

Examples of feature distributions across all subjects for the NR and TSR sentences included in the ZuCo 2.0. dataset.

FIGURE 7

Variance explained with increasing number of PCA components
for the training subjects in ZuCo 2.0.

weighted by vj, such that the resulting βi =
∑m

j vjβ
j
i represents

the relevance of feature xi.

Following this procedure, we split the results into frequency

bands and present the corresponding topography plots averaged

over all training subjects in ZuCo 2.0 in Figure 8.

4.2.4. Model
The input to the sentence-level model is a single vector

representing each sentence. We scale the feature values to a

range between {0, 1}. We train a support vector machine for

FIGURE 8

Topographical distribution of electrode importance for the
principle components, divided into the 4 di�erent frequency
bands. Electrode importance is calculated by determining the
influence of each electrode on the principle components and
weighting them by amount of explained variance.

classification with a linear kernel. We use the scikit-learn

SVC implementation.6 For the cross-subject evaluation, the

models are trained on all samples from all subjects in ZuCo

2.0 and tested on the samples from new subjects in the held-

out testset.

6 https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.

html
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TABLE 7 The mean accuracy and F1-score over all subjects for each

feature-set in the benchmark task.

Feature set Accuracy F1

Random 0.50 0.50

FRE baseline 0.53 0.35

BERT baseline 0.65 0.64

Eye-tracking features 0.69 0.67

Eye-tracking and EEG mean features 0.68 0.66

Concatenated EEG electrode features 0.55 0.46

Concatenated EEG electrode features (with

PCA)

0.58 0.56

5. Results

5.1. Results of textual baselines

As described in the previous section, we set three minimal

baselines for this benchmark task: (i) a random baseline, i.e.,

chance level for binary classification, (ii) a word embedding

baseline, namely BERT word embeddings, and (iii) a text

difficulty baseline, based on the Flesch reading ease score (FRE).

The random baseline for binary classification is at 0.50 accuracy.

The word embedding baseline yield a classification accuracy

of 0.65 for ZuCo 2.0. The text difficulty baseline is also above

random performance with a classification accuracy of 0.53

for ZuCo 2.0. Table 7 shows the accuracy and F1-score for

all baselines.

5.2. Results of EEG and eye-tracking
models

As described in Section 3, we consider three different feature

sets, EEG, eye-tracking, and the combination of all features. For

each feature set and each subject, we report the accuracy and the

F1-score. For each subject in the hidden testset, we compute the

results via bootstrapping, sampling 500 times with replacement,

and using a sample size equal to the original data. For all results,

we report the comparison to the random and textual baselines

as well as the 95% confidence intervals for each subject. Table 7

shows a summary of the results. The corresponding tables with

the detailed numbers for all subjects and feature sets are shown

in Appendix 1.

First, the results for the eye-tracking features are shown in

Figure 9. These results clearly show all subjects outperforming

the random baseline and FRE control model except for one

subject each for accuracy and F1-score. All subjects except one

perform better than the random baseline, and three subjects

perform significantly better than the BERT word embedding

control model. The mean accuracy across all subjects in the

testset is 0.69, and the mean F1-score is 0.67. Furthermore, the

results for the combined eye-tracking and EEG mean feature set

in Figure 10 do not yield an increase in performance compared

to using only the eye-tracking features (mean accuracy: 0.68;

F1-score: 0.66). Interestingly, the best and worst performing

subjects vary between different feature combinations, and

between accuracy and F1-score.

Next, we show the results using the concatenated EEG

electrode features7 in Figure 11. With this feature set, the mean

accuracy across all subjects in the testset is 0.55, and the mean

F1-score is 0.46. The accuracy scores are notably higher than for

the F1-score. Finally, when using the same features but applying

the PCA preprocessing, the models yield the results presented

in Figure 12. The scores for the accuracy are similar but have a

slightly higher mean of 0.58 (compared to 0.55 without PCA).

However, the F1-scores with PCA are significantly higher with a

mean of 0.56 (compared to 0.46 without PCA). While with these

EEG electrode features the models outperform the random and

text difficulty baseline for some test subjects, they do not achieve

to outperform the strong embedding baseline. Additionally, we

experimented with combining the BERT embeddings with the

EEG and eye-tracking feature sets in the SVMmodels. However,

the combination of linguistic and physiological features did not

yield any improvements.

6. Discussion

The present benchmark challenge has the main goal of

advancing reading task classification through eye-tracking and

EEG data. The challenge participants are invited to develop

ML models to identify whether subjects are reading a sentence

with the goal of reading comprehension (i.e., normal reading)

or whether the subjects are reading a sentence to search for

a specific semantic relation in the sentence (i.e., task-specific

reading). The objective is to investigate which eye movement

and brain activity features are most suited to solve this problem.

Understanding the physiological aspects of the reading process

(i.e., the cognitive load and reading intent) can advance our

understanding of human language processing and general

attentional processes. On the other hand, natural language

processing and machine learning would benefit, as classifiers

that outperform current textual baselines could improve the

quality and process of collecting annotated data (e.g., through

gaze-aided unsupervised labeling).

Several previous studies have used ML models to accurately

perform a reading task classification. Cole et al. (2011) used eye-

tracking data to discriminate between a scanning task and a

reading comprehension task. Furthermore, Biedert et al. (2012)

developed a real-time classifier able to distinguish reading from

7 These figures show the results for absolute EEG power. The results for

relative EEG power are depicted in the Appendix 1 in Figure 13.
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FIGURE 9

The mean accuracy (left), mean F1-score (right) with corresponding 95% confidence intervals and textual baselines are plotted for each subject
in the held-out test dataset using the concatenated eye-tracking features.

FIGURE 10

The mean accuracy (left), mean F1-score (right) with corresponding 95% confidence intervals and textual baselines are plotted for each subject
in the held-out test dataset using the eye-tracking and EEG mean features.

FIGURE 11

The mean accuracy (left), mean F1-score (right) with corresponding 95% confidence intervals and textual baselines are plotted for each subject
in the held-out test dataset using the concatenated EEG electrode features without PCA pre-processing.
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FIGURE 12

The mean accuracy (left) mean, F1-score (right) with corresponding 95% confidence intervals and textual baselines are plotted for each subject
in the held-out test dataset using the concatenated EEG electrode features after pre-processing with PCA.

skimming patterns. In a related study, Kelton et al. (2019)

investigated the influence of different content and tasks on

the performance to determine whether subjects are reading or

skimming a news article. Other neuroimaging methods such as

fMRI have been combined with eye-tracking to examine the

neural basis of sentence comprehension (e.g., Bonhage et al.,

2015) or the discrimination between normal and non-word text

(Choi et al., 2014). In another fMRI study, which simultaneously

recorded eye-tracking data, Ceh et al. (2021) observed that

internally and externally directed cognition are characterized

by distinct brain activity. In addition, several research groups

provide publicly available fMRI data to study naturalistic reading

comprehension (Dehghani et al., 2017; Lopopolo et al., 2018;

Pereira et al., 2018; Shain et al., 2020; Nastase et al., 2021).

While functional MRI has a better spatial resolution compared

to EEG, is a very costly method with restricted real-life usability.

Whereas eye-tracking and EEG systems are of lower cost and can

be used in more naturalistic situations. Several other publicly

datasets recorded eye-tracking (e.g., Cop et al., 2017; Luke and

Christianson, 2018; Jäger et al., 2021) or EEG from continuous

speech stimuli (e.g., Broderick et al., 2018; Brennan and Hale,

2019). These datasets provide the possibility to improve and

evaluate machine learning systems for NLP. However, to the

best of our knowledge, the ZuCo dataset is the largest publicly

available dataset that features simultaneous eye movement and

EEG data recorded in a naturalistic reading setup. One recent

addition is the CoCoNUt dataset by Frank and Aumeistere

(2022), which contains 200 Dutch sentences with combined

EEG and eye-tracking recordings. However, the selection of

sentences is not completely natural, as it is guided by sentence

length and word frequency. Thus, ZuCo is specifically tailored

to leverage EEG and eye-tracking data to improve natural

language processing tasks in a naturalistic setting. The field

of machine learning contains a range of tasks on different

modalities such as language (text), computer vision (video,

images), and speech recognition (audio). Recently, Akbari et al.

(2021) have shown superior performance of ML models with

multimodal representations on downstream tasks such as image

classification. Therefore, from an NLP perspective, another

extension to this benchmark could be to investigate whether

leveraging multimodal embeddings is beneficial for reading

task classification.

In a recent study, the ZuCo data has been used already for

reading task identification (Mathur et al., 2021) using a complex

convolutional network, which is evaluated on a fixed cross-

subject scenario on the sentences from ZuCo 2.0. However, the

relatively poor performance of their model evaluated in a fixed

cross-subject scenario, still leaves room for improvement and

opens research questions regarding the selection of features.

Hollenstein et al. (2021c) have recently presented extensive work

on reading task classification, corroborating the advantages of

the ZuCo dataset for this ML task. The authors found that,

while high accuracy can be achieved on within-subject models,

the performance drops for cross-subject evaluations. There

is clearly room for improvement in the performance of the

results presented in this work. However, these are still very

promising results considering the complex nature of human

physiological data.

A current bottleneck in machine learning is the lack

of generalization capabilities of these models, meaning that

the models perform poorly on data from other domains

that are not included in their training data. For instance,

ML models perform less accurately across languages, across

image or text domains, or across subjects. The latter is of

great importance in neuroscientific research which aims at a

principled understanding of human brain activity as a response

to complex stimuli (Nastase et al., 2019), as well as for practical

applications such as brain-computer interfaces (Chiang et al.,

2019). Specifically, when trained on physiological data, the rules

identified by ML models for a given task ideally hold for the

entire population. Considering the ever-increasing complexity

of ML models due to their large number of parameters,

Frontiers in Psychology 16 frontiersin.org

43

https://doi.org/10.3389/fpsyg.2022.1028824
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Hollenstein et al. 10.3389/fpsyg.2022.1028824

they are prone to overfit to their training set (which does

not characterize the entire population), leading to spurious

correlations. Therefore, to validate the gained insights on the

physiological data, ML models need to be evaluated on held-

out subjects as a proxy to the model’s generalization capability.

These results inspired the proposed benchmark based on the

ZuCo dataset. The benchmark task and baseline models follow

the rules suggested by Scheinost et al. (2019) to take into account

subject-specific differences in predictive modeling.

In the current paper, we provide evidence that both eye-

tracking and brain activity data can improve reading task

classification compared to purely text-based baselines. The

best-performing model is based on sentence-level eye-tracking

features. Combining eye-tracking and EEG mean features yields

promising results, but not better than only eye-tracking features.

One explanation for this is that the combination of eye-tracking

and EEG features decreases the signal-to-noise ratio even more

than for only one type of cognitive processing signal. Another

explanation is that the eye-tracking and EEG signals contain

redundant information. This is always a risk when using co-

registered data of EEG and eye-tracking signals within the same

task. Specifically, eye movement artifacts could be contained in

the EEG data. However, in this work, we use state-of-the-art

methods to remove eye movement artifacts in the EEG data

(through ICA and Unfold). In short, there are possible gains in

performance to be achieved bymore sophisticated combinations

of eye movement and brain activity features.

There are various ways to leverage eye-tracking and EEG

data. Currently, we extracted high-level eye-tracking features

based on fixations (e.g, number of fixations and omission rate)

and on saccades (e.g., mean velocity and maximum amplitude).

The ZuCo dataset provides additional reading-related features

such as mean fixation duration, total reading time or go-past

time, but also pupil size information or even the raw data

could be used in future approaches. Using raw data has shown

great promise to model eye-tracking data (e.g., Jäger et al.,

2020), and one of the main advantages of the ZuCo dataset is

that it allows feature extraction on different levels. Moreover,

our EEG features include mean features aggregated over all

electrodes as well as electrode-based frequency measures, which

have been shown to improve NLP tasks in the past (Hollenstein

et al., 2019a, 2021b; Sun et al., 2020; Wang and Ji, 2021).

Nonetheless, we want to highlight that preprocessed EEG data

permits the examination of additional measures, such as source-

level based features (e.g., source-level power estimates) and

functional connectivity measures at the level of the underlying

neuronal generators. Other EEG analysis methods allow the

extract measures of spatio-temporal dynamics of brain activity

(e.g., microstates) (Michel and Koenig, 2018) and event-related

potentials such as N400 components (Frank et al., 2013; Brouwer

et al., 2017). Interestingly, Hollenstein et al. (2021c) found

that gamma band features worked best in a within-subject

setting. However, we found that concatenating all EEG electrode

features is more beneficial in a cross-subject setting. Finally,

the cross-subject performance can be further increased by using

a dimensionality reduction (PCA) on the concatenated EEG

features. Future methods could focus on new approaches for

EEG feature selection and aggregation.

The simultaneous recording of EEG and eye-tracking

allows us to investigate specific feature sets on different levels

of analysis, e.g., sentence level, word level, fixation level.

Nevertheless, one should note that the ZuCo dataset includes

reading individual sentences rather than full document, which

influences the reading behavior. Reading studies with longer

text spans should be considered in future work. Additionally,

the naturalistic setup of the experiments used in this work

are crucial for this benchmark task and for neuroscience in

general (Nastase et al., 2020). Not only does it increase the

ecological validity of the recordings by allowing natural reading

without controlling the individual reading speed, but it also

supports the extraction of signals on various linguistic levels

(Hasson and Egidi, 2015; Brennan, 2016; Alday, 2019; Kandylaki

and Bornkessel-Schlesewsky, 2019; Hamilton and Huth, 2020).

Frey et al. (2018) investigated how two different reading tasks

modulate both eye movements and brain activity. In line with

our findings, their results show that eye movement patterns were

top-downmodulated by different task demands. Moreover, their

brain activity analysis suggests that the decision-making process

during task-specific reading elicits a greater load in working

memory than the one generated in a normal reading task. In

summary, eye-tracking and EEG data offer an immensely diverse

amount of potential measures, which might contain unique

valuable information. Thus, we aim to inspire benchmark

challenge participants to explore and extract alternative features

from the available preprocessed data.

7. Conclusion

We presented a new ML benchmark using eye-tracking and

EEG data to classify reading tasks. The goal of the benchmark

challenge is to distinguish between normal reading and task-

specific reading in a cross-subject evaluation scenario. We

provide multiple initial models for this task and show that

ML models trained on eye-tracking and EEG features can

outperform strong textual baselines.

The standardized Zurich Cognitive Language Processing

Corpus (ZuCo) dataset facilitates the creation of such a machine

learning benchmark. We use the ZuCo 2.0 dataset as training

data. To make our benchmark task more robust, we have

additionally recorded further eye-tracking and EEG data from

natural reading from additional subjects in a hidden testset.

ZuCo’s rich structure and high-density coverage of simultaneous

EEG and eye-tracking signals can also help to advance other

areas that study the combination of gaze position and brain

activity to identify variations in attention, reading patterns and
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reading intents, as well as participants’ compliance with the task

demands and cross-subject variability.

Our dataset and benchmark setup allows us to easily add

additional machine learning tasks to the leaderboard in the

future. For instance, we can add additional NLP tasks since the

ZuCo datasets provide ground truth labels for sentiment analysis

or relation detection from text. Additionally, adding tasks such

as eye movement and ERP prediction would be beneficial for

various research communities. For example, the prediction of

eye movement patterns has gained interest also in the NLP

community (Hollenstein et al., 2021a). The main goal of this

work is to create a platform for discussion and future research

on a common benchmark task for reading task classification

based on eye movement and brain activity data. We hope that

this benchmark allows other researchers to make progress in this

interdisciplinary research field.
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Previous research in computational linguistics dedicated a lot of e�ort to using
language modeling and/or distributional semantic models to predict metrics
extracted from eye-tracking data. However, it is not clear whether the two
components have a distinct contribution, with recent studies claiming that surprisal
scores estimated with large-scale, deep learning-based language models subsume
the semantic relatedness component. In our study, we propose a regression
experiment for estimating di�erent eye-tracking metrics on two English corpora,
contrasting the quality of the predictions with and without the surprisal and the
relatedness components. Di�erent types of relatedness scores derived from both
static and contextual models have also been tested. Our results suggest that both
components play a role in the prediction, with semantic relatedness surprisingly
contributing also to the prediction of function words. Moreover, they show that when
the metric is computed with the contextual embeddings of the BERT model, it is able
to explain a higher amount of variance.

KEYWORDS

cognitive modeling, surprisal, semantic relatedness, cosine similarity, language models,

distributional semantics, eye-tracking

1. Introduction

Eye-tracking data recorded during reading provide important evidence about the factors

influencing language comprehension (Rayner et al., 1989; Rayner, 1998). In the investigation of

potential predictors of human reading patterns, cognitive studies have focused their attention on

two specific factors, among the others: (i) the semantic coherence of a word with the rest of the

sentence (Ehrlich and Rayner, 1981; Pynte et al., 2008; Mitchell et al., 2010), which is typically

assessed via semantic relatednessmetrics (usually the cosine) computed with distributional word

embeddings, and (ii) the predictability of the word from its previous context, as measured by

surprisal (Hale, 2001; Levy, 2008). Initially, the two factors were considered separately, and the

general idea was that words having low semantic coherence and low in-context predictability

(i.e., high surprisal) induce longer reading times. This hypothesis was instead questioned by

Frank (2017), who argued that previous findings had to be attributed to a confound between

semantic relatedness and word predictability and that the effect of the former disappeared once

surprisal was factored out.

Our work aims at providing further evidence about the complex interplay between semantic

relatedness and surprisal as predictors of eye-tracking data. For example, it is unclear whether

the fact that no independent effect of relatedness has been found depends on the specific word

embedding model being used for measuring it. In fact, there is a large variety of Distributional

Semantic Models (DSMs) that are trained with different objectives, and they have been shown to

perform differently depending on the task (Lenci et al., 2022). Moreover, the recent introduction

of contextual embedding models such as ELMo (Peters et al., 2018) and BERT (Devlin et al.,

2019) has also radically changed the way semantic relatedness can be assessed. In particular,
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contextual embeddings now make it possible to compare the

semantic representations of words in specific contexts (token-level

representations), and not just type-level representations that tend to

conflate multiple senses of the same word.

The goals of this paper can thus be summarized as follows:

1. Investigating whether distributional measures of semantic

relatedness between a word and its previous contexts are indeed

made redundant by surprisal, or have instead an autonomous

explanatory role to model eye-tracking data;

2. Looking into different types of word embeddings, to check

whether “classical” static models and contextual ones interact

differently or not with surprisal.

To explore these issues, we implemented four different

linear models to predict three eye-tracking features on two

eye-tracking corpora: i) a baseline with word-level features,

ii) a model with baseline features and the surprisal between

target word and context, iii) a model with baseline features

and the relatedness between the vector representing the target

word and the vector representing the context, and iv) a

model with all the above-mentioned regression features. While

surprisal has been consistently computed using a state-of-the-

art neural language model GPT2-xl (Radford et al., 2019),

the vectors employed in the cosine similarity calculation were

obtained using either SGNS (Mikolov et al., 2013) or BERT

(Devlin et al., 2019), to compare static and contextual word

embedding models.

Our results show that the models including both relatedness

and surprisal perform better than the other three, suggesting that,

despite the overlap between the two, they contribute differently in

explaining the variance in the data. Furthermore, when comparing

the models using only relatedness, we noticed that BERT vectors

outperform SGNS ones, confirming the added value of contextual

embeddings when modeling the relatedness of words in contexts.

Finally, we investigated how our models predict eye-tracking feature

values for different parts of speech, and we found that while

surprisal helps on content words, semantic relatedness contributes

to improving the predictions on both function and content

words.

2. Computational models of human
reading times: Surprisal and semantic
relatedness

Since the cognitive processes of meaning construction involve

the integration of individual word meanings into the syntactic and

semantic context, the literature in natural language processing and

cognitive science got interested in how such contextual effects on

word fixations could be modeled. A first class of computational

models has relied on distributional semantics to assess the relatedness

of a word with its wider semantic context (Section 2.1); another

class of models has explored the connection between the logarithmic

probabilities of words in context and their processing difficulty

(Section 2.2).

2.1. Computational measures for semantic
coherence

A fruitful line of research has been investigating the usage of

cosine similarity between word embeddings for predicting reading

times. The employment of word vectors for modeling reading times

originated from classical DSMs (Lenci and Sahlgren, 2023). Pynte

et al. (2008) and Mitchell et al. (2010) used the semantic distance

between a target word and the context as a predictor, measured as

1 min the traditional cosine similarity metric (Turney and Pantel,

2010; Lenci, 2018). The context was in turn modeled as the sum of

the distributional vectors representing the words before the target.

These studies found strong correlations between semantic distance

and reading times: The more semantically related the words, the

shorter the fixation durations.

Originally, vector spaces were obtained from the extraction and

counting (hence the name of count models) of the co-occurrences

between the target words and the relevant linguistic contexts.

Raw co-occurrences were usually weighted via different types

of statistical association measures [e.g., Mutual Information, log-

likelihood; see Evert (2005) for an overview] and then the vector

space was optionally transformed with some algebraic operation for

dimensionality reduction, such as Singular Value Decomposition

(Landauer and Dumais, 1997; Bullinaria and Levy, 2012). The

contexts could consist either in the words occurring within a window

surrounding the target (Lund and Burgess, 1996; Sahlgren, 2008), or

in the words linked to the target by syntactic (Padó and Lapata, 2007;

Baroni and Lenci, 2010) or semantic relations (Sayeed et al., 2015).

Later, with the increasing success of deep learning techniques in

Natural Language Processing, the so-called predict models established

themselves as a new standard (Mikolov et al., 2013; Bojanowski et al.,

2017). In suchmodels, the learning of word vectors is based on neural

network training and framed as a self-supervised language modeling

task. One of the most popular predict DSMs is Word2Vec (Mikolov

et al., 2013), which includes two main architectures: CBOW, trained

for predicting a target word given the context surrounding it, and

Skip-Gram, whose learning objective is to predict the surrounding

context given a target word. The most common implementation of

Skip-Gram makes use of negative sampling (SGNS), whose objective

is to discriminate between word sequences that are actually occurring

in the data (positive samples) and "corrupted" samples, which are

obtained by randomly replacing a word in a true sequence from the

corpus (negative samples).

One of the main limitations of “traditional” word embeddings,

both count and predict ones, is that they provide static

representations of the semantics of a word. They assign a single

embedding to each word type, thereby conflating the possible senses

of a lexeme and hampering the possibility to address the pervasive

phenomena of polysemy and homography. For example, bank as a

financial agency will have the same vector representation of bank

as the bank of the river. This way, lexical semantic representations

are built at the type level only, and the embedding will be a sort of

distributional summary of all the instances of a word, no matter

how different their senses might be (and probably, the most frequent

senses would obscure the minority ones).

The most recent generation of DSMs is said to be contextual

because they produce a distinct vector for each word instance in

context, that is a token level representation(Peters et al., 2018; Devlin
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et al., 2019; Liu et al., 2019). Contextual DSMs generally rely on a

multi-encoder network and the word vectors are learned as a function

of the internal states, so that a word appearing in different sentence

contexts determines different activation states and, as a consequence,

is represented by a different vector.

Most contextual DSMs are based on Transformers (Vaswani et al.,

2017), which use a self-attention mechanism (Bahdanau et al., 2014)

for getting the most salient elements in a sentence context and assign

them higher weights. BERT (Devlin et al., 2019) is probably the most

popular model for generating contextual word representations. BERT

is trained on amasked languagemodeling objective function: random

words in the input sentences are replaced by a ‘[MASK]’ token

and the model attempts to predict the masked word based on the

surrounding context. Simultaneously, BERT is optimized on a next

sentence prediction task, as the model receives sentence pairs in input

and has to predict whether the second sentence is subsequent to the

first one in the training data. It should be noticed that BERT is defined

as deeply bidirectional as, in fact, it takes into account the left-hand

and the right-hand context of a word to predict the word filling the

masked token. The contextual embeddings produced by BERT have

been shown to improve the state-of-the-art performance in several

Natural Language Processing tasks (Devlin et al., 2019) and it has

been reported that its multilingual versions (i.e., Multilingual BERT,

XLM) are able to predict human fixations in multiple languages

(Hollenstein et al., 2021, 2022a,b). Significantly, it was shown that

it is possible to extract semantic representations at the type level

from BERT just by averaging token vectors of randomly-sampled

sentences, and those can achieve a performance close to traditional

word embeddings on word similarity tasks (Bommasani et al., 2020;

Chronis and Erk, 2020; Lenci et al., 2022) and on word association

modeling (Rodriguez and Merlo, 2020).

2.2. Computational measures for word
predictability

A significant part of the psycholinguistic and computational

studies modeled naturalistic reading data by means of language

model probabilities, being inspired by surprisal theory (Hale, 2001,

2016), with the idea that the predictability of a word is the main factor

determining the reading times. More specifically, the processing

difficulty of a word is considered to be proportional to its surprisal,

that is, the negative logarithm of the probability of the word given the

context. Several studies based on language models adopted surprisal

theory as a reference framework for the prediction of eye-tracking

data (Demberg and Keller, 2008; Frank and Bod, 2011; Fossum

and Levy, 2012; Monsalve et al., 2012; Smith and Levy, 2013). The

predictions were typically evaluated on the Dundee Corpus (Kennedy

et al., 2003), as one of the earliest corpora with gold standard

annotations of eye-tracking measures.

Later research has focused on the quality of the language model

to estimate conditional probabilities, finding that models with lower

perplexity are a better fit to human reading times (Goodkind and

Bicknell, 2018). Following studies confirmed the model perplexity as

a significant determinant, making use of more and more advanced

neural architectures, such as LSTM (van Schijndel and Linzen, 2018),

GRU (Aurnhammer and Frank, 2019), Transformers (Merkx and

Frank, 2021), GPT-2 (Wilcox et al., 2020).

Is contextual predictability, that is surprisal, all we need to

model human reading behavior? Some recent results suggest that

this may not be the case. Goodkind and Bicknell (2021), for

example, investigated the role played on local word statistics, such

as word bigram and trigram probability, in sentence processing,

and consequently their impact on reading times, finding that they

affect processing independently of surprisal. Moreover, Hofmann

et al. (2021) compared different models for computing surprisal

as predictors of eye-tracking fixations and found that they explain

different and independent proportions of variance in the viewing

parameters. For example, classical n-gram-based languagemodels are

better at predicting metrics related to short-range access, while RNN

models better predict the early preprocessing of the next word.

The models of the GPT family are based on Transformer

architectures (Radford et al., 2018, 2019; Brown et al., 2020).

Differently from BERT, GPT is a uni-directional, autoregressive

Transformer languagemodel, whichmeans that the training objective

is to predict the next word, given all of the previous words. GPT-2, in

particular, has been commonly used in eye-tracking studies, as the

surprisal scores computed by this language model have been proved

to be strong predictors of reading times and eye fixations in English

(Hao et al., 2020; Wilcox et al., 2020; Merkx and Frank, 2021) and

in other languages (e.g., Dutch, German, Hindi, Chinese, Russian)

(Salicchi et al., 2022).

The research work on semantic relatedness and surprisal led

Frank (2017) to ask whether these two factors have actually

independent effects in the modeling of reading times. The question

was motivated by the fact that not all the studies on reading times

found effects associated with semantic relatedness (e.g., Traxler et al.,

2000; Gordon et al., 2006), although vector space metrics clearly

proved to be useful for modeling other types of experimental data on

naturalistic reading, such as the N400 amplitude in EEG recordings

(Frank and Willems, 2017). Frank suggested that, since DSMs like

Word2Vec (Mikolov et al., 2013) are based on word co-occurrence

and are optimized for predicting words in context, previous results

were due to a confound between semantic relatedness and word

predictability. Indeed, when surprisal was factored out, the author

showed that the semantic distance effects disappeared. Moreover, the

different results obtained in modeling the N400 component in the

EEG data were attributed to differences in the stimuli presentation

method: while in eye-tracking participants read the text naturally, in

many EEG studies words are presented one at a time with unnaturally

long durations. Following the findings of Wlotko and Federmeier

(2015) and Frank (2017) pointed out that, the more natural the

presentation rates of the words in the experimental setting in EEG,

the smaller the semantic relatedness effects on N400 data tend to be,

with no effects at all for behavioral metrics on naturalistic reading.

Is distributional semantic relatedness really made redundant by

surprisal, or were the results by Frank (2017) also conditioned by the

specific type of embeddings used in the experiments? The analyzes in

Sections 3, 4 aim at clarifying this issue.

3. Materials and methods

3.1. Definition of eye-tracking metrics in
psycholinguistic studies

Several metrics have been defined to describe eye movement

features (Rayner, 1998). In this work, we focus on first fixation
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duration, number of fixations and total reading time. The first fixation

duration (FFD), that is the time spent fixing a word for the first time,

is typically associated with lexical information processing, like lexical

access (Inhoff, 1984), which is heavily affected by word frequency

(Balota and Chumbley, 1984). Fast word recognition is obtained

when a word can be recognized with a single glance. In this sense,

a short FFD reflects a quick and successful lexical access (Hofmann

et al., 2021).

However, several words may not be accessed immediately. Words

may receive multiple fixations before the eyes move to the next word,

and this is reflected by the number of fixations (NF), depending on

the integration of the word within the sentence semantics or syntax

(Frazier and Rayner, 1982). An alternative metric for this “delayed”

lexical access is known as gaze duration, which computes directly the

sum of the duration of individual fixations before moving to the next

word (Inhoff and Radach, 1998; Rayner, 1998).

Finally, the total reading time (TRT), as the sum of all fixation

durations on the word, including regressions, is affected by both

lexical and sentence-level processing. The TRT is likely to indicate

the time required for the full semantic integration of the word in the

sentence context (Radach and Kennedy, 2013).

What are the factors affecting word fixations during reading?

There is a general consensus that word position, word length, and the

number of syllables within the word affect language processing and,

consequently, reading behavior and fixations (Just and Carpenter,

1980). It has also been observed that low-frequency words tend to

have longer gaze durations and, additionally, they lead to longer

gaze on the immediately following words, a phenomenon typically

referred to as spillover effect (Rayner and Duffy, 1986; Rayner et al.,

1989; Remington et al., 2018). A common explanation is that rare

and longer words have a higher cognitive load, as they require more

time for the semantic integration in the sentence context (Pollatsek

et al., 2008), and therefore they may influence the processing of the

following words.

3.2. Eye-tracking corpora

Traditional corpora annotated with eye-tracking data consist

of short isolated sentences (or even single words) with particular

structures or lexemes, in order to investigate specific syntactic

and semantic phenomena. In the present work, we use GECO

(Cop et al., 2017) and Provo (Luke and Christianson, 2018),

two eye-tracking corpora containing long, complete, and coherent

texts.

GECO is a bilingual corpus in English and Dutch

composed of the entire Agatha Christie’s novel The Mysterious

Affair at Styles. The corpus is freely downloadable with a

related dataset containing eye-tracking data of 33 subjects

(19 of them bilingual, 14 English monolingual) reading

the full novel text, presented paragraph-by-paragraph

on a screen1. In total, GECO is composed of 54,364

tokens.

Provo contains 55 short English texts about various topics, with

2.5 sentences and 50 words on average, for a total of 2, 689 tokens,

and a vocabulary of 1,197 words. These texts were read by 84 native

1 https://expsy.ugent.be/downloads/geco/

TABLE 1 Summary of the linear models implemented for the experiments.
m

Model name Features

BL Word frequency

Word length

Word position within the sentence

Previous word frequency

Previous word length

Whether or not the previous word was fixated

BL-cos Baseline features (same as BL)

Cosine similarity (BERT vectors)

Baseline features (same as BL)

Cosine similarity (SGNS vectors)

BL-sur Baseline features (same as BL)

Surprisal (GPT2-xl)

BL-sur-cos Baseline features (same as BL)

Surprisal (GPT2-xl)

Cosine similarity (SGNS vectors)

Baseline features (same as BL)

Surprisal (GPT2-xl)

Cosine similarity (BERT vectors)

English speakers and their eye-tracking measures were collected and

made publicly available online2.

GECO and Provo are particularly interesting for our goals

because they are corpora of naturalistic reading since data have been

recorded from subjects reading real texts, instead of short stimuli

created in vitro. For every word in the corpora, we extracted the mean

total reading time, mean first fixation duration, and mean number of

fixations. Mean values were obtained by averaging over the subjects.

The choice of modeling mean eye-tracking measures is justified by

the high inter-subject consistency of the recorded data.

3.3. Method

We implemented and compared four main types of linear models

(see Table 1):

1. A baseline model with word-related statistics that are known to

influence sentence and word processing (i.e., word frequency,

word length, word position within the sentence, previous word

frequency, previous word length, and whether or not the previous

word was fixated);

2. Two models combining baseline features and cosine similarity,

one using Skip-Gram vectors (SGNS), one using BERT vectors;

3. One model with baseline features + surprisal computed using

GPT2-xl;

4. Two models with baseline features + surprisal computed using

GPT2-xl + cosine similarity, one using SGNS vectors, one using

BERT vectors.

Recent works have cast doubts on the application of cosine in

similarity task while employing contextual vector models. In fact, in

contextual embeddings a small number of dimensions (e.g., 3-5) tend

to dominate the similarity metric, accounting for most of the data

variance (Timkey and van Schijndel, 2021). Moreover, it has been

shown that the removal of the outlier dimensions leads to drastic

2 https://osf.io/sjefs/
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performance drops both in language modeling and in downstream

tasks (Kovaleva et al., 2021).

To address this issue, for similarity tasks it has been suggested to

correct the comparisons by discounting the “rogue” dimensions or to

adopt metrics based on the rank of the dimensions themselves, rather

than on their absolute values (Timkey and van Schijndel, 2021). In

order to take into account the potential effect of rogue dimensions

on computing cosine similarity with BERT, we followed the latter

suggestion and we also implemented two further models, in which

we use Spearman correlation instead of cosine similarity.

Rank-based metrics have been reported to outperform vector

cosine in semantic relatedness tasks (Santus et al., 2016a,b, 2018;

Zhelezniak et al., 2019), and it has been shown that Spearman itself is

more correlated with human judgments than cosine (Timkey and van

Schijndel, 2021). For each of the resulting eight models, the values to

be predicted were first fixation duration (FFD), number of fixations

(NF) and total reading time (TRT). We predicted those metrics on

both GECO and Provo corpus. We also experimented with models

with and without interactions between the features. The models were

implemented using the generalized linear models available in R,

which have also been used for the statistical analysis.

After we fitted the data of the eye-tracking features with each

model, we compared them using the corrected Akaike Information

Criterion (AICc) in order to determine the extent to which the

goodness of fit improves with the addition of semantic relatedness

and surprisal as predictors. Additionally, we also analyzed i) the

correlations between linear model errors (as Mean Absolute Error,

MAE) and word features, and ii) which parts of speech are easier or

harder for each model to predict.

3.4. Regression features

3.4.1. Baseline features
The baseline model includes the following word features: i) the

target word and previous word length, computed as the number

of letters within the word to be predicted; ii) the target word

and previous word frequency, whose values are extracted from

Wikipedia;3 iii) the target word position, as the index of the word

within the current sentence; iv) a Boolean value corresponding to 1

if the word preceding the target word was fixated, 0 otherwise. The

baseline features are the same used by Frank (2017).

3.4.2. Metrics of semantic relatedness
To compute the semantic relatedness between the context and

the target word, we extracted vectors for each word, represented the

sentence context with a vector, and finally computed, alternatively,

the cosine similarity or the Spearman correlation between the context

and the target vectors (the latter metric was used only with the BERT

vectors only).

With SGNS embeddings, we extracted the pre-trained vectors for

each word, and we computed the context vector using an additive

model: We summed the vectors of all the words preceding the

3 The Wikipedia frequencies were extracted from https://github.com/

IlyaSemenov/wikipedia-word-frequency

target and took this as the context representation. For example,

given the sentence The dog chases the cat, if the target word is

chases, the context vector will be
−→
The +

−→
dog, while if the target

word is cat, the context vector will be
−→
The +

−→
dog +

−−−→
chases +

−→
the.

On the other hand, given the bidirectional nature of the BERT

language model, the input to extract the embeddings from this

model required a special preprocessing, since we wanted to avoid the

model to “see the future,” by having the target word vector including

information also from the right-hand context. Therefore, we fed

BERT with sub-sentences. For instance, given the sentence The dog

chases the cat, we generated the following sub-sentences:

S[0] = [The]

S[1] = [The dog]

S[2] = [The dog chases]

S[3] = [The dog chases the]

S[4] = [The dog chases the cat]

For each target word, we extracted its vector, when the lexeme

occurs at the end of a sub-sentence (e.g., The will be extracted in S[0],

dog in S[1], chases in S[2], and so on).

Regarding the context, we used the vector of the special token

[CLS], which is created by BERT as a global representation of

the input sentence, taking into account how salient each word

is for the sentence’s meaning. Again, to avoid a representation

of the target word itself within the [CLS] vector, we computed

the cosine similarity and the Spearman correlation between the

target word embedding, and the [CLS] vector of the previous sub-

sentence. For example, if cat is the target word, we computed

the cosine similarity between
−→
cat from S[4] and

−−−−→
CLSS[3]. In order

to find the optimal layer for the computation of the similarity

scores, we extracted vectors from all the 24 layers of BERT Large

and computed the Spearman correlations with each one of the

target features.

The results can be seen in Figure 1. Consistently

with the findings of Salicchi et al. (2021), the layers

with the highest absolute correlation values are the

ones immediately before the last one. We chose layer

22 as the one with the highest inverse correlation to

our data.

3.4.3. Surprisal
To model the influence of word predictability on eye-

tracking measures, we included in the regression models the

surprisal of the target words given their previous context. For

each target word we computed the surprisal as the negative

logarithm of its probability given all the words preceding the

target:

surprisal(wn) = − log P(wn|w0,w1, ...,wn−1) (1)

The probability P is computed by GPT2-xl, the largest publicly

available version of GPT-2. Similarly to the original model,

GPT2-xl was also trained on the WebText corpus (40 GB

of text data), but it has a larger architecture (48 layers, for

a total of 1542M parameters) and was shown to have the
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FIGURE 1

Spearman correlations between TRT (dot line), FFD (square), and NF (triangle) and the cosine similarity using vectors produced by di�erent layers of BERT
Large, on GECO (left) and Provo (right). Layer 24, whose values are systematically higher than the average, is intentionally left out for plot reading
purposes.

TABLE 2 Average AICc, and AICc for TRT, FFD, and NF on GECO with SGNS vectors.

Avg TRT FFD NF

Model AICc Delta AICc Delta AICc Delta AICc Delta

BL-sur-cos 60,286 0 88,611 0 80,296 0 11,951 0

BL-sur 60,492 206 88,835 224 80,576 280 12,065 115

BL-cos 60,982 696 89,409 798 80,903 607 12,634 683

BL 61,466 1,180 89,948 1,337 81,483 1,186 12,969 1,018

TABLE 3 Average AICc, and AICc for TRT, FFD, and NF on GECO with BERT vectors.

Avg TRT FFD NF

Model AICc Delta AICc Delta AICc Delta AICc Delta

BL-sur-cos 59,566 0 87,758 0 79,232 0 11,709 0

BL-cos 60,151 585 88,413 654 79,697 465 12,346 637

BL-sur-Spearman 60,467 901 88,803 1,045 80,538 1,307 12,060 350

BL-sur 60,492 926 88,835 1,077 80,576 1,345 12,065 356

BL-Spearman 61,430 1,864 89,902 2,145 81,432 2,200 12,957 1,247

BL 61,466 1,900 89,948 2,190 81,483 2,251 12,969 1,259

lowest perplexity on the evaluation corpora of Radford et al.

(2019).

4. Results and discussion

4.1. General analysis

4.1.1. Cosine similarity vs. Spearman correlation
We first checked whether Spearman correlation was a better

similarity metric than cosine with BERT contextual embeddings.

Therefore, we compared BL-cos and BL-Spearman, namely models

with baseline features and the similarity metric only, and we

compared BL-sur-cos and BL-sur-Spearman, which are the models

using baseline features, surprisal, and the similarity metric. The AICc

values reported in Tables 2–5 clearly show that cosine similarity is a

better predictor of eye-tracking features than Spearman correlation:

on GECO, the difference between BL-cos and BL-Spearman is 1,279,

and between BL-sur-cos and BL-sur-Spearman is 901; on Provo

the differences are 333 and 318, respectively. Given these results,

we henceforth focus our analyzes only on cosine similarity and

its relationship with surprisal. Our findings suggest that, within

the linear models we propose, BERT embeddings anisotropy does

not affect the eye movements modeling, and therefore, cosine

similarity is a suitable feature to be used for this eye tracking feature

prediction task.

4.1.2. Linear models comparison
For each implemented model, we used AICc values to determine

which one was the best fit for the data. On both corpora, we

notice that the best predictor of eye-tracking features is BL-sur-cos,
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TABLE 4 Average AICc, and AICc for TRT, FFD, and NF on Provo with SGNS vectors.

Avg TRT FFD NF

Model AICc Delta AICc Delta AICc Delta AICc Delta

BL-sur-cos 279 0 1,309 0 288 0 –762 0

BL-sur 391 112 1,436 127 441 153 –704 58

BL-cos 437 158 1,468 159 406 118 –594 168

BL 619 340 1,683 374 643 354 –470 292

TABLE 5 Average AICc, and AICc for TRT, FFD, and NF on Provo with BERT vectors.

Avg TRT FFD NF

Model AICc Delta AICc Delta AICc Delta AICc Delta

BL-sur-cos 67 0 1,081 0 –88 0 –791 0

BL-cos 196 129 1,216 135 –0.26 87 –627 165

BL-sur-Spearman 385 318 1,429 348 434 521 –707 85

BL-sur 391 324 1,436 355 441 529 –704 88

BL-Spearman 529 462 1,674 593 633 721 –474 315

BL 619 552 1,683 602 643 730 –470 321

including the interactions between baseline features, but with no

interactions between cosine and surprisal. The fact that the regression

model using both surprisal and cosine consistently performs better

than the ones using only one of the two is strong evidence that

they are both explanatory factors of reading times. Furthermore,

while comparing BL-cos-sur with SGNS embeddings, and BL-cos-

sur with BERT embeddings, it is possible to notice how the usage of

the latter set of vectors improves the model (AICc values on GECO:

60,286 with SGNS-59,566 with BERT; AICc values on Provo: 279 with

SGNS-67 with BERT).

Looking at the p-values of the regression features of our BL-sur-

cos model, we observe that both cosine similarity and surprisal are

statistically highly significant at p < 0.001 (for a complete analysis

of regression features significance scores see Appendix 1). Although

the combination of both cosine similarity and surprisal is the best

performing model on both corpora, it is useful to focus also on

the performances of BL-cos, and BL-sur while employing different

vector models for BL-cos, to get further insights on the different

contributions of surprisal and cosine similarity.We performed nested

model comparisons with the R anova function using BL-sur-cos and

three partial models: one excluding the cosine similarity (BL-sur), and

the other two excluding surprisal (BL-cos with BERT vectors and BL-

cos with SGNS vectors), in order to check whether the two features

make independent contributions. We obtained strongly significant p-

values (p < 0.001) on both corpora, regardless of vector type and for

all the eye-tracking features, indicating that both semantic relatedness

and surprisal provide an independent and significant contribution.

Focusing now on BL-cos and BL-sur, the performance on GECO

is reported in Tables 2, 3. BL-cos with BERT vectors: Delta cosine

similarity is 585, Delta surprisal is 926 (surprisal:+341) (Table 3); BL-

cos with SGNS vectors: Delta surprisal is 206, Delta cosine similarity

is 696 (surprisal: −490) (Table 2); On Provo instead BL-cos with

BERT vectors: Delta cosine similarity is 129, Delta surprisal is 324

(surprisal:+195) (Table 5); BL-cos with SGNS vectors: Delta surprisal

is 112, Delta cosine is 158 (surprisal:−46) (Table 4). This first analysis

shows that BL-cos and BL-sur have quantitatively similar behavior,

suggesting that cosine and surprisal help to predict eye-tracking

values to the same extent. A difference in the salience of the two

features is instead highlighted by the Part-of-Speech analysis (see the

related subsection below).

It is also clear that models using SGNS vectors have poorer

performances than the ones relying on BERT. Not only, as

already mentioned, the usage of BERT embeddings improves the

performances of the BL-cos-sur model, but while comparing the

BL-cos models and the BL-sur model, the first shows better

performances than the latter only when BERT vectors are involved.

This difference in the capability of BL-cos models in predicting eye-

tracking features suggests that the findings in Frank (2017) might

be influenced by the specific type of embedding model used for the

experiments (SGNS).

Once confirmed that the model including both surprisal and

cosine similarity is the one performing better, we performed

further analysis focused on BL, BL-sur, and BL-cos only, in

order to understand the individual contribution of the two

computational metrics.

4.1.3. Error analysis
In order to have a more fine-grained view of the performance

differences between models BL-cos and BL-sur, we also analyzed

the correlation between the Mean Absolute Error (MAE) of

the models and word-level features. We tested the following

features: target and previous word length, target and previous word

frequency, target word length, target word position, fixation of the

previous word (a boolean feature), and the reading complexity of

the sentence from the beginning to the target word, which we

computed using the Dale-Chall readability formula (Dale and Chall,

1948).

After we averaged the correlations among all the eye-tracking

features to be predicted (see Appendix 2) we noticed that almost
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TABLE 6 Average MAE on Provo and GECO content and function words

frommodels BL, BL-cos, and BL-sur for the three eye-tracking features and

their mean.

Feature Model Word type

Content Function

Provo GECO Provo GECO

TRT BL 0.228 0.337 0.290 0.457

BL-cos 0.217 0.333 0.281 0.457

BL-sur 0.215 0.330 0.275 0.454

FFD BL 0.180 0.295 0.246 0.425

BL-cos 0.159 0.281 0.216 0.422

BL-sur 0.172 0.289 0.236 0.423

NF BL 0.178 0.228 0.147 0.187

BL-cos 0.177 0.228 0.132 0.184

BL-sur 0.170 0.226 0.140 0.185

Avg BL 0.195 0.287 0.228 0.356

BL-cos 0.185 0.281 0.210 0.354

BL-sur 0.186 0.282 0.217 0.354

The bold formatting indicates the lowest MAE averaged over the 3 eye tracking features.

all the values are negative, suggesting that: (i) longer and more

frequent words are easier to be predicted; (ii) words at the

beginning of the sentence are harder to predict for our models,

plausibly because a wider and richer context benefits both cosine

similarity and surprisal; (iii) sentences with higher readability

make better predictions possible. Even so, the correlations between

MAE and these features are generally low, ranging from 0.002 for

previous word length to 0.1 for target word length. However, it

is possible to use these values for a comparison between models

BL-cos and BL-sur. We notice that surprisal seems to be more

sensitive to target word frequency and previous word fixation

if compared to cosine similarity, while the latter shows slightly

higher correlations with target word length and position within

the sentence.

4.1.4. POS analysis
Both GECO and Provo provide information regarding the

part of speech (POS) of each word in the corpora. We used

this information to check the performances of BL-cos and BL-

sur on different POS. We first checked the average MAE of BL,

BL-cos, and BL-sur for function words (pronouns, conjunctions,

determiners, numeral, existential there’s, prepositions, interjections)

and content words (nouns, verbs, adverbs, adjectives) for each

eye-tracking feature (Table 6). Then for a more detailed analysis,

we ranked the words following the MAE values, and finally,

we focused on the 10, 100, 500, and 1,000 words with the

highest MAE.

We found that for all three models function words are harder

to be predicted than content words, especially coordinating

conjunctions and pronouns. Noticeably, previous research

had already found that the semantics of function words is

difficult to model even for Transformers (Kim et al., 2019),

and that fine-tuned multilingual Transformer model struggle

the most with the prediction of their fixation metrics

(Hollenstein et al., 2022b). Regarding the performances

of BL-cos and BL-sur, even if both cosine similarity and

surprisal help in lowering the average MAE, if compared to

the baseline, cosine similarity employment improves slightly

more the performance of the model for both content words

and function words.

4.2. Eye-tracking features analysis

While comparing the different models, it was clear that some

performance differences were due to the eye-tracking feature the

models had to predict. For example, the data showed in the Avg

column of Tables 2–5 are mean values computed using the AICc

scores of TRT, FFD, and NF, but if we focus on the performances

of models BL-cos and BL-sur, depending on the target eye-tracking

features, we notice some interesting and substantial differences: on

TRT cosine similarity-only and surprisal-only models follow the

general tendency we described in Section 4.1 (i.e., surprisal better

than cosine similarity when BL-cos makes use of SGNS vectors to

compute cosine), but with cosine similarity performing generally

slightly better than surprisal; on FFD the model using baseline

regression features and cosine similarity only performs consistently

better, except when using SGNS on GECO (but not on Provo), while

onNFmodel BL-sur outperforms BL-cos on both corpora, even when

using BERT vectors in BL-cos.

In the analysis of the correlations between models MAE and

word features, we found that for TRT and FFD, the highest

correlation (especially on GECO) is the one between MAE and the

word length. Since it is a negative correlation, we can conclude

that shorter words induce higher MAE: The shorter the word,

the harder for the model to predict the feature value. On the

other hand, with NF, word length has the highest, but positive,

correlation with the MAE, thus suggesting that for this eye-tracking

feature shorter words are easier to be predicted. Finally, for all

the eye-tracking features on both corpora, word frequency is

negatively correlated. As expected, prediction is more difficult for

the rarest words.

When we checked the contribution of BL-cos and BL-

sur in comparison to the baseline for different parts of

speech, we noticed that for FFD cosine similarity generally

decreases the MAE, while for TRT surprisal gives a generally

higher contribution, except for verbs and adjectives (Tables 7,

8). Regarding NF, cosine similarity lowers the MAE for

function words, while surprisal has a major impact on content

words. However, for the NF feature content words are less

easily predicted.

We surmise that the different performances of BL-sur and BL-

cos in predicting these three eye-tracking features might be explained

by taking into account the reading process stage each feature is

related to. On one hand, since FFD is typically associated with

early stages of reading, such as lexical information process, it is not

surprising that the model relying on semantic relatedness between

the context and the target word performs better. On the other hand,
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TABLE 7 Average MAE on Provo content words.

Model TRT FFD NF

N RB V J N RB V J N RB V J

BL 0.243 0.242 0.210 0.209 0.190 0.184 0.171 0.166 0.195 0.180 0.152 0.180

BL-cos 0.231 0.243 0.198 0.199 0.178 0.184 0.157 0.154 0.192 0.178 0.149 0.179

BL-sur 0.228 0.221 0.200 0.205 0.181 0.176 0.163 0.163 0.183 0.171 0.150 0.178

N, nouns; RB, adverbs; V, verbs; J, adjectives-for the three eye-tracking features. The bold formatting indicates the values with the lowest MAE of each POS within each eye-tracking feature.

TABLE 8 Average MAE on GECO content words.

Model TRT FFD NF

N RB V J N RB V J N RB V J

BL 0.335 0.365 0.334 0.309 0.289 0.322 0.294 0.273 0.238 0.226 0.217 0.242

BL-cos 0.328 0.367 0.332 0.301 0.280 0.323 0.292 0.264 0.237 0.226 0.217 0.241

BL-sur 0.323 0.360 0.332 0.299 0.280 0.320 0.292 0.262 0.234 0.225 0.216 0.240

N, nouns; RB, adverbs; V, verbs; J, adjectives-for the three eye-tracking features. The bold formatting indicates the values with the lowest MAE of each POS within each eye-tracking feature.

the performances of BL-cos and BL-sur on TRT and NF, features

that reflect later stages of the reading process, including information-

structural integration, may suggest that predictability is a key factor

in handling syntagmatic relations and integrating semantic and

syntactic information.

5. Conclusion

In this paper, we implemented four different kinds of regression

models to predict three eye-tracking features of two corpora

collecting eye movements data, with the aim of investigating the

role and interplay between distributional measures of target-context

semantic relatedness, and target surprisal, as computed with a state-

of-the-art neural language model. The main research question was

whether semantic relatedness is indeed made redundant by surprisal,

as argued by Frank (2017), or instead plays an independent role in

explaining eye-tracking data. The models include: (i) a baseline with

word-level features, (ii) the same baseline with cosine similarity, (iii)

the baseline with surprisal, iv) the baseline with both cosine similarity

and surprisal.

Our results show that the complete model systematically

outperforms the others for every eye-tracking feature and that both

semantic relatedness and surprisal benefit the prediction of eye-

tracking features, given the performance drop while factoring one

of them out. Surprisal and distributional semantic relatedness clearly

overlap, especially since the latter is nowadays commonly computed

using word embeddings produced by DSMs trained with a prediction

objective, like the one that surprisal formalizes. Yet, they capture

different linguistic dimensions. Surprisal models the syntagmatic

predictability of a word, given the preceding ones. On the other hand,

both static and contextual DSMs use prediction as a distributional

signal to form internal representations of lexical meaning that capture

information more directly pertaining to the paradigmatic dimension,

such as belonging to the same semantic classes and domains or

sharing similar features. For instance, the words pie and cake are

paradigmatically related because they share several salient attributes,

such as being edible, sweet, etc. (Chersoni et al., 2021) showed

that word embeddings encode a vast range of linguistically and

cognitively relevant semantic features. Therefore, the results of our

analyzes suggest that, despite their overlap, corpus-based semantic

relatedness and surprisal capture different dimensions that play

an autonomous role during reading. While surprisal reflects how

predictable the target word is from the previous context, semantic

relatedness models how coherent the meaning of the target is with

respect to the context one (e.g., they belong to the same semantic field

or describe a prototypical situation). Frank andWillems (2017) found

that syntagmatic surprisal and paradigmatic semantic relatedness can

have neurally distinguishable effects during language comprehension.

Our analyzes show that their independent effect can be detected in

eye-tracking data too.

We also analyzed whether the relatedness and surprisal have a

differential effect depending on the target part-of-speech. Comparing

the average MAE of our models, we noticed that surprisal mainly

helps to improve the model’s performances on content words, while

the contribution of semantic relatedness includes function words as

well. Finally, we investigated whether the interplay between surprisal

and relatedness is affected by the type of word embeddings used to

compute the latter, in particular considering the difference between

static DSMs (SGNS) and contextual ones (BERT). The experiments

show that when using BERT vectors, which are inherently able

to account for context-dependent meaning shifts and carry out

an implicit form of word-sense disambiguation, the model BL-cos

performs better than BL-sur, while static vectors make the latter

outrank the model using semantic relatedness only. Overall, our

findings suggest that the kind of word embedding employed for

computing vector distances has a significant impact, which may

explain the differences from the findings by Frank (2017).

The present work admittedly has some limitations. For example,

we employed and compared a restricted pool of language models

and word embedding models, and a possible future direction could

be testing other, more recent models (e.g., XLNet Yang et al.

2019, among others, RoBERTa Liu et al., 2019), or different static

embedding models (e.g., GloVe Pennington et al., 2014, FastText

Bojanowski et al., 2017). A particularly interesting issue, raised by

some recent works, is the relationship between the size of a language

model and its capacity to model human behavioral data (Oh and

Schuler, 2022; Shain et al., 2022). In particular, Oh and Schuler
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(2022) found that larger language models are worse at predicting

human reading times: largermodels tend to be less surprised by open-

class words because they have been trained on many more word

sequences than those available to humans. Moreover, phenomena

of inverse scaling have also been reported for language modeling

of negations (Jang et al., 2022) and quantifiers (Kalouli et al., 2022;

Michaelov and Bergen, 2022). It might be worth testing whether

this increasing lack of alignment with human performance as scale

increases can be observed also at the level of similarity estimation

with the embeddings, or it is an effect limited to language model

predictions. With this purpose, it could be interesting to compare

embedding models of different size with BERT, and see if there are

differences in modeling open class vs. function words.

Another limitation is due to the fact that we used English

materials only, and this leaves open the question whether our

results would apply to other languages. An interesting research

path to pursue is to compare models with cosine similarity and

surprisal using multilingual data. In fact, we plan to extend our

analyzes to the recently-published MECO corpus (Siegelman et al.,

2022), which provides eye-tracking data on comparable texts for 13

different languages.

Finally, if the importance and independence of surprisal and

semantic relatedness are clear, given the results shown in the

present paper, a preliminary feature importance analysis using a

random forest regression model (see Appendix 3) revealed how

target and previous word lengths are the features with the higher

impact, and most importantly, surprisal systematically seems to

have a larger effect on the model compared to cosine similarity.

These preliminary results suggest one further possible research

direction: the employment and comparison of different models and

a consequent feature importance analysis, in order to find even more

generalizable insights regarding the role of semantic relatedness and

predictability in the reading process.
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ramune.kaspere@ktu.lt

SPECIALTY SECTION

This article was submitted to
Language Sciences,
a section of the journal
Frontiers in Psychology

RECEIVED 21 October 2022
ACCEPTED 12 January 2023
PUBLISHED 06 February 2023

CITATION
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Is machine translation a dim
technology for its users? An eye
tracking study
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State-of-the-art research shows that the impact of language technologies on public
awareness and attitudes toward using machine translation has been changing.
As machine translation acceptability is considered to be a multilayered concept,
this paper employs criteria of usability, satisfaction and quality as components
of acceptability measurement. The study seeks to determine whether there are
any di�erences in the machine-translation acceptability between professional
users, i.e., translators and language editors, and non-professional users, i.e.,
ordinary users of machine translation who use it for non-professional everyday
purposes. The main research questions whether non-professional users process
raw machine translation output in the same way as professional users and
whether there is a di�erence in the processing of raw machine-translated output
between users with di�erent levels of machine-translated text acceptability are
analyzed. The results of an eye tracking experiment, measuring fixation time,
dwell time and glance count, indicate a di�erence between professional and
non-professional users’ cognitive processing and acceptability of machine translation
output: translators and language editors spend more time overall reading the
machine-translated texts, possibly because of their deeper critical awareness as
well as professional attitude toward the text. In terms of acceptability overall,
professional translators critically assess machine translation on all components
of which confirms the findings of previous similar research. However, the study
draws attention to non-professional users’ lower awareness regarding machine
translation quality. The study was conducted within a research project that received
funding from the Research Council of Lithuania (LMTLT, agreement No S-MOD-21-2),
seeking to explore and evaluate the impact on society of machine translation
technological solutions.

KEYWORDS

machine translation, acceptability, usability, quality, satisfaction, end-users, professional

translators

1. Introduction

Neural machine translation is more and more frequently used in the translation and

localization market. Following the AI Index Report, artificial intelligence has allowed improving

machine translation in certain language pairs almost to human quality (Perrault et al., 2019).

According to some scores, “[t]he fastest improvement was for Chinese-to-English, followed by

English-to-German and Russian-to-English” (Perrault et al., 2019). However, the performance

varies between different language pairs and that depends on language pair popularity, which

“defines how much investment goes into data acquisition” (Perrault et al., 2019).

For these reasons, researchers and research administrators have recently been paying

attention to the effects that artificial intelligence and developed technologies bring about on

the translation industry, translator’s profession, career and daily tasks, as well as training and
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skills needed, but also in terms of the perceptions within society. In

this perspective, some important research papers have been published

in the past few years where translation scholars have concluded

that, for example, artificial intelligence-powered machine translation

and other language related technologies have fundamentally changed

public awareness and attitudes toward multilingual communication

(Vieira et al., 2021). Such technologies are now increasingly being

used to overcome language barriers not only in situations of

personal use but also in high-risk environments, such as health care

systems, courts, police and so on. The availability and impact of

machine translation accessibility and impact on society, including

the importance of full participation of various social groups in

communication processes, are being analyzed and evaluated (Vieira

et al., 2021). On the other hand, public awareness of the capabilities

as well as the quality ofmachine translation is identified as insufficient

(Kasperė and Motiejūnienė, 2021).

Although machine translation is breaking down language

barriers, and its accuracy and efficiency are getting closer to

human-level translation, human effort is needed to reduce the

negative impact of machine translation in society (Hoi, 2020).

The communication processes supported by machine translation

can be of high quality if the process participants are aware of

the quality shortcomings (Yasuoka and Bjorn, 2011). Studies have

also found that machine translation can help reduce the exclusion

of ethnic minorities in a wide variety of fields (Taylor et al.,

2015).

There is a plethora of research on the quality of machine

translation and use of post editing (see Ueffing, 2018; Ortega

et al., 2019; Vardaro et al., 2019; Nurminen and Koponen, 2020;

Rossi and Carré, 2022, to mention but a few). The benefits of

machine translation post editing in different language pairs have

been acknowledged in multiple studies employing a diversity of

research designs (see Carl et al., 2011, 2015; Moorkens, 2018;

Stasimioti and Sosoni, 2021). Studies have also addressed the

issue of machine translation acceptability (see Castilho, 2016;

Castilho and O’Brien, 2018; Rivera-Trigueros, 2021; Taivalkoski-

Shilov et al., 2022). However, the attitudes and perceptions of

translation students, novice translators, professional translators

and posteditors have been mainly taken into the focus, possibly

due to a somewhat easier access to respondents and more

convenient research design (see Moorkens and O’Brien, 2015; Rossi

and Chevrot, 2019; Ferreira et al., 2021). The acceptability of

machine-translated content by non-professional users has not been

extensively studied. The ordinary users’ perspective is important

because of the variety of purposes for which they take machine

translation for granted and use it daily (Kasperė and Motiejūnienė,

2021).

The study1 seeks to investigate the acceptability of raw machine

translation texts in Lithuanian, a low-resource language. In this

paper, we report the results of an eye tracking experiment with

professional translators and non-professional users of machine

translation with the focus on acceptability. The inter-group and intra-

group comparisons of raw machine-translated text acceptability are

made. The research questions are as follows: do non-professional

1 Approval to conduct this study was obtained from the Research

Ethics Committee of Kaunas University of Technology (No. M6-2021-04 as

of 2021-06-16).

users process raw machine translation output in the same way

as professional users? Is there a difference in the processing

of raw machine-translated output among non-professional users

with different levels of acceptability of machine-translated text? Is

there a difference between professional and non-professional users’

comprehension of the raw machine-translated output?

2. Literature overview

Machine translation acceptability is a multilayered concept.

Criteria of usability, satisfaction and quality have been indicated to

be the components of acceptability. Castilho and O’Brien (2018)

define acceptability as machine translation output quality in terms

of correctness, cohesion and coherence from the reader’s perspective.

Even if the text contains errors, it does not mean that it is considered

unacceptable. If the needs of the readers are satisfied, the text has

served its mission (Castilho and O’Brien, 2016, 2018). In order

to measure acceptability, Castilho (2016) defines the three criteria.

Usability is related to efficiency and effectiveness of the text and

may be measured by exerted cognitive effort; satisfaction, which

is understood as a user’s positive attitude toward the translated

text, may be measured through web surveys, post-task satisfaction

questionnaires or moderators’ ratings; and quality is defined by

fluency, adequacy, syntax and grammar, and style in translated

content or as text easeability, readability, etc. (Castilho, 2016). For

the purposes of this research, acceptability is understood as a notion

combining satisfaction, usability and quality as assumed by the

ordinary readers of the text who have no linguistic background or

related, e.g., translator, training.

Research employing eye tracking methodology is common in

Translation Studies (Carl et al., 2011; Castilho, 2016; Daems et al.,

2017; Moorkens, 2018; Vardaro et al., 2019; Ferreira et al., 2021;

Stasimioti and Sosoni, 2021). Among the existing body of scientific

literature on the acceptability criteria of machine translation,

of particular mention are those published papers that employ

eye tracking experiments. Since acceptability is a vague notion

representing quite subjective understanding and judgement, eye

tracking studies present relevant insights into the readers’ cognitive

processing of the (machine-translated) text they are reading. The

research reveals that the required cognitive load is generally to a

greater or lesser extent higher in cases where machine translation is

provided in comparison with human-translated or post-edited text.

Jakobsen and Jensen (2008) report the results of a translation

process study, focusing on the differences between the reading of

a text with the aim of understanding its meaning and reading the

same text (or a very similar text) with the expectation of having

to translate it next. The authors recorded eye movements of six

translation students and six professional translators who were asked

to perform four tasks at the speed at which they normally work,

namely read a text for comprehension, read a text in preparation for

translating it later on, read a text while performing its oral translation

and read a text while typing a written translation. The researchers

compared task duration, total number of fixations, total gaze time and

average duration of individual fixations for each task and found out

that the purpose of reading had a clear effect on eye movements and

gaze duration. Overall, the increases in the number of fixations from

the first to the last task of the experiment were statistically significant

(Jakobsen and Jensen, 2008).
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In a study by Guerberof Arenas et al. (2021), researching

the effect of different translation modalities on users through

an eye tracking experiment, 79 end users’ (Japanese, German,

Spanish, English) experiences with published translated, machine-

translated and published English versions were compared. The

authors focused on the number of successful tasks performed by end

users, the time necessary for performing successful tasks in different

translation modalities, the satisfaction level of end users in relation

to different translation modalities and the amount of cognitive

effort necessary for carrying out tasks in different translation

modalities (Guerberof Arenas et al., 2021). They measured usability,

i.e., effectiveness (by asking participants to perform some tasks),

efficiency (by measuring the time to complete the tasks and by

measuring cognitive effort using an eye tracker) and satisfaction.

The authors came to the conclusion that the effectiveness variable

was not found to be significantly different when the subjects read

the published translated version, a machine-translated version and

the published English version of the text although efficiency and

satisfaction were significantly different, especially for less experienced

participants. The results of the eye tracking experiment revealed

that end users’ cognitive load was higher for machine-translated and

human translated versions than for the English original. The findings

also indicated that the language and the translation modality played

a significant role in the usability, regardless of whether end users

finished the given tasks and even if they were unaware that MT was

used (Guerberof Arenas et al., 2021).

In a study by Hu et al. (2020), an eye tracking experiment

involving 66 Chinese participants with low proficiency in English

who also had to fill in questionnaires on comprehension testing and

attitudes showed that the quality of raw machine-translated output

was considered somewhat lower, but almost as good as that of a

post-edited machine-translated output, although the research design

involved non-professional post-editing of machine-translated text.

Some earlier user-centered studies where rawmachine translation

was analyzed via eye tracking, screen recording experiments and

post-task questionnaires determined a lower usability of machine-

translated instructions in comparison with post-edited output

(Castilho et al., 2014; Doherty and O’Brien, 2014; Doherty, 2016).

In a study of non-professional users where acceptability of a

machine-translated text from English into Lithuanian was tested,

an eye tracking experiment revealed that the cognitive processing

was greater, i.e., required a longer gaze time and fixation count, on

machine translation errors in comparison with correct segments of

text (Kasperavičienė et al., 2020). The machine-translated segments

with errors required more attention and cognitive effort from the

readers, but the results regarding overall acceptability of the raw

machine-translated text obtained via a post-task survey did not

correlate with the readers’ gaze time spent on segments with errors.

Literary texts have also received some attention with regard to the

differences between human and machine translations from English

into Dutch as perceived by end users. Colman et al. (2021) employed

eye tracking to analyze end users’ reading process and determine the

extent to which machine translation impacts the reading process. An

increased number of eye fixations and increased gaze duration while

reading machine translation segments was found in comparison with

human translation (Colman et al., 2021).

Although scarce, there is some research, based on research

designs employing methodologies other than eye tracking,

determining how the acceptability of machine-translated texts

in various languages is perceived by non-professionals or low

proficiency future professionals. The broad public uses machine

translation for many reasons and purposes and they may not fully

understand or consider how machine translation really works and

what quality it generates. In a study of 400 surveyed participants,

acceptability of the text that had been machine translated from

English to Lithuanian was found to be affected by such factors as

age and education. The less educated and senior participants were

more prone to consider machine translation reliable and satisfactory

(Kasperė et al., 2021).

In a study by Rossetti et al. (2020), 61 participants were surveyed

in order to get insight into the “impact of machine translation and

postediting awareness” on comprehension and trust. The participants

were asked to read and evaluate crisis messages in English and Italian

using ratings and open-ended questions on comprehensibility and

trust. The authors found insignificant differences in the end users’

comprehension and trust between raw machine-translated and post-

edited text (Rossetti et al., 2020). However, users with low proficiency

of English were more positive toward raw machine-translated text in

terms of its comprehension and trust (Rossetti et al., 2020).

In another study with translation agencies, professional

translators and clients/users of professional translation, the level of

user awareness of machine translation was studied through surveys

(García, 2010). Acceptability and evaluation of machine translation

from Chinese into English was at the focus. The researcher found

out that <5% of professional translators considered the quality of

machine translation very high. The translation agencies expressed a

very similar view on machine translation to that of the translators.

The clients/users of professional translations (about 30%) who were

aware of and requested machine translation had an intermediate or

positive assessment of the quality of machine translation (García,

2010).

As the amount of content to be translated is growing, there is a

demand to cut the cost of translation orders, which leads to a growing

need for research and testing how translators work with machine

translation (Moorkens andO’Brien, 2015) and the newly-arising need

to learn how the end users are aware of, perceive, use and accept

machine-translated content.

3. Materials and methods

Machine translation quality overall can be assessed in various

ways: by applying automatic quality estimation metrics, by carrying

out an error analysis by professionals/experts, employing cognitive

experimental methods with human experts or professionals or semi-

experts or non-experts, determining acceptability of the output

of non-experts/non-professionals/amateur users, via qualitative

methods, etc. Recently, cognitive experimental methods for machine

translation quality assessment have been increasingly employed,

e.g., eye tracking, key logging, screen recording, post-performance

(retrospective) interviews, think-aloud protocols, etc. In an eye

tracking experiment, fixation count and time, gaze time, saccades,

pupil dilation, and other variables can be measured, although

researchers have determined that, for example, pupil dilation may

not adequately reflect cognitive effort involved or provide valid and

reliable data. To test the validity of the data, cognitive translation

researchers have employed complementary methods, including

other experimental methods, interviews or surveys. Translation
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research studies employing eye tracking have mostly relied on post-

performance or retrospective interviews/surveys, and the number

of subjects involved in an eye tracking experiment for translation

research varies between 2 and 84 (per language). The most common

eye movement measures taken into account and described in

translation research are fixation time and fixation count (Kasperė and

Motiejūnienė, 2021).

3.1. Experiment

For the current study, we used an eye tracking experiment

along with a questionnaire in order to ensure the validity of results

obtained. Before the experiment, a larger-scale population survey

was conducted to find out the purposes, typical circumstances of

machine translation use and systems employed non-professional

users (Kasperė et al., 2021). In the survey, the respondents were asked

to indicate a machine translation tool that they used most often. The

reported results of the survey revealed that the absolute majority of

the respondents indicated that they used Google Translate as the tool

for machine translation (Kasperė et al., 2021). We, therefore, also

employed it for the machine translation of the text in the research

design of this particular study. Google Translate has over 500 million

users per month and over 140 billion words are translated per day

(Schuster et al., 2016; Hu et al., 2020). The text chosen for a reading

task in the experiment was a recipe of a dish. The motivation behind

selecting the text of a recipe for this experiment lies in the findings of

the above-mentioned study where the respondents indicated various

reasons for using machine translation in their everyday activities, one

of the most common being household purposes (Kasperė et al., 2021).

The text of a recipe, originally in English, was machine translated

using Google Translate to Lithuanian. The translated excerpt given to

the subjects as a reading task contained 371 words and was arranged

on three slides 13–15 lines each.

In the machine-translated excerpt, we selected areas of interest

with errors and areas of interest without errors. According to

scientific literature, the perceptual span in western languages is about

13–15 characters to the right of the center of vision, and 3–4 to the

left (McConkie and Rayner, 1975; Rayner, 1998). Therefore, all our

selected areas of interest (both with and without errors) included 18–

20 characters. In the raw translated text prepared for the experiment,

12 distinct errors were selected as areas of interest. Another 12 areas

of interest without errors were selected as control. To identify the

errors, we used the Multidimensional Quality Metrics, which is a

typology of errors developed for assessment of the quality of human

translated, machine translated and post-edited texts. This system

covers more than 100 error types and can be adapted to all languages

(Lommel et al., 2014). Within this classification, the following

main types of errors are as indicated: terminology; accuracy (for

example, addition, mistranslation, omission, untranslated text, etc.);

linguistic conventions (also called fluency in the previous versions of

the taxonomy, related to errors in grammar, punctuation, spelling,

unintelligible text, etc.), design and markup (errors related to visual

presentation of a translated text, such as text formatting, layout);

locale conventions (errors related to locale-specific content); style

(errors related to inappropriate organizational or language style);

and audience appropriateness (for example, errors related to culture-

specific reference) (MQM Commitee, 2022). The 12 identified errors

fell into two 2 different categories of errors, namely accuracy and

linguistic conventions. Accuracy errors were those of mistranslation,

untranslated text, omission, and addition. Errors that fell within the

linguistic conventions category were those of an incorrect word form

(ending) resulting in inappropriate agreement between the words

in a phrase.

Eye tracking was performed using a commercial non-invasive eye

tracking device SensoMotoric Instruments GmbH Scientific RED-

B.6-1524-6150133939 and SMI BeGaze 3.7.42 software for data

analysis. For each area of interest (AOI), several eye movement

measures were taken into consideration: fixation time (total time

of fixations that happened in the AOI), dwell time (total time of

fixations and saccades that happened in the AOI), and glance count

(the number of times when the gaze entered the AOI).

3.2. Research participants

In total, there were 30 subjects in the experiment: 11 professional

translators, language editors and revisers and 19 non-professional

users of machine translation, who were of different educational

backgrounds, age, occupation. All subjects were native speakers of

Lithuanian. Among the non-professional users, 13 had a university

degree and 6 had secondary education. The subjects gave consent

to participate in the experiment on a voluntary basis. They were

informed that the text they were reading was a machine translation.

The subjects were also told that they would have to answer questions

about the text afterwards filling in a post-task questionnaire. There

were 4 reading comprehension questions, all related to the errors

in the text, including 2 true/false questions and 2 open questions.

The post-task questionnaire also had 9 statements, 3 per each

component of acceptability (i.e., quality, usability and satisfaction).

The statements could be assessed by the subjects on a 5-point Likert

scale, where 1-completely disagree, 2-somewhat disagree, 3-neither

agree nor disagree, 4-somewhat agree, and 5-completely agree. In

total, in this part of the questionnaire, the subjects of the experiment

could accumulate a maximum of 45 points: 15 for quality, 15 for

usability and 15 for satisfaction. The questions and the statements

provided to the subjects in a post-task questionnaire were presented

in their native, i.e., Lithuanian, language.

3.3. Data analysis

IBM SPSS Statistics 27 was used for descriptive and relationship

analysis. Descriptive statistics were calculated for quantitative

nominal and ordinal data. The relationships between data were

investigated using column plots and box plots. Although the

convenience sample was used, limiting the usefulness of hypothesis

testing, several non-parametric tests (one-sample Kolmogorov-

Smirnov test, independent-samples Mann-Whitney U-test,

independent-samples Moses test of extreme reaction) with a

significance level of 0.05 were used to explore what hypotheses would

be more promising for further research.
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4. Results

The findings of our study demonstrate that the average fixation

time on the areas of interest with errors of both groups of the

subjects was longer than on the areas of interest without errors, which

confirms findings of other studies that errors attract more readers’

attention and require more cognitive effort than correct text (see

Figure 1). The average fixation time on the areas of interest with

errors (in percentage from total time of the trial) was 12.6 vs. 11.7%

for professional and non-professional users of machine translation,

respectively. On the other hand, professionals also demonstrated a

longer average fixation time on areas of interest without errors than

non-professionals, i.e., 11.8 vs. 10.4%. The longer average fixation

time on both types of areas of interest within the professionals’ cohort

might be interpreted that professional translators and language

specialists who work with texts on a daily basis have different skills

and a more pronounced critical look at any text. Such a hypothesis

would still have to be tested on a broader scale experiment.

Independent-samples Mann-Whitney U-test would indicate that

the hypothesis that the fixation time of professionals and non-

professionals for AOIs with errors has the same distribution (more

precisely, the hypothesis that the probability of fixation time being

higher for a randomprofessional than for randomnon-professional is

0.5) could not be rejected (p = 0.792). Still, the independent-samples

Moses test of extreme reaction suggests that, while hypothesis about

the distributions having the same range could not be rejected, the

value of p is much closer to the level of significance (p = 0.079).

Similar (although weaker) relationship holds for AOIs without errors

(p = 0.670 and p = 0.180).

As Figure 2 shows, while the median of dwell time for AOIs

with errors was very similar for professionals (17,851 ms) and non-

professionals (18,722 ms), the spread of it was clearly different. That

might be assumed to be rather surprising, for, intuitively, one might

suppose that professionals are going to be more like each other

than non-professionals.

Different eye movement measures, including the fixation time,

were also compared in the groups of the subjects who scored high and

low in the post-task survey for the questions demonstrating quality

and usability of the text and the users’ satisfaction with the text.

On all components of acceptability (see Figure 3 for quality,

Figure 4 for usability, and Figure 5 for satisfaction), non-professional

users scored higher than professionals. The average total quality

scores were 6.2632 for non-professionals and 5.3636 for professionals

(median 6 vs. 5, respectively). The average total usability scores

were 6.6842, i.e., slightly better, for non-professionals compared with

professionals, i.e., 6.0000 (median 7 vs. 6, respectively). In terms of

the average total satisfaction scores, the non-professionals’ scores

were much more increased compared with professionals, i.e., 5.7895

vs. 3.5455 (median 6 vs. 3), respectively. This suggests that non-

professional users were more positive toward the machine-translated

text than professional users, perhaps because professional users are

more aware of features of good translation and are able to notice when

they are not present.

Independent-samples Mann-Whitney U-test would also indicate

that the hypothesis that the total satisfaction score of professionals

and non-professionals has the same distribution (more precisely,

the hypothesis that the probability of this score being higher for a

random professional than for a random non-professional is 0.5) can

be rejected (p < 0.001). On the other hand, the same test does not

suggest rejecting the hypotheses that the total usability score and the

total quality score of professionals and non-professionals have the

same distributions (p = 0.427 and p = 0.381).

One-sample Kolmogorov-Smirnov test suggests that the

hypotheses of total quality score, total usability score and total

satisfaction score having normal distribution could be rejected

(p = 0.020, p = 0.017, p < 0.001), while the hypothesis that their

sum has a normal distribution could not be rejected (p = 0.200).

The subjects from the group of non-professional users who

thought that the quality was low (having scores lower than average;

there were 16 such subjects out of 21) demonstrated a longer average

fixation time both for AOIs with errors and without errors (12.2 vs.

10.7%, respectively) than those subjects who thought that the quality

was high (10.4 vs. 9.4%, respectively) (see Figure 6).

The same pattern was observed for the usability and satisfaction

components. The subjects who thought that the text was barely usable

(having scores lower than average; there were 16 such subjects out of

21) showed a longer fixation time result that those who thought that

the text was usable (12.0 vs. 11.0% and 10.6 vs. 9.6%, respectively) (see

Figure 7).

The non-professional users who were less satisfied with the text

(value lower than average; there were 17 such subjects out of 21)

demonstrated a longer average fixation time result in comparison

with those who were more satisfied with the text (12.0 vs. 10.6%,

respectively) (see Figure 8).

All professional translators, language editors and revisers who

read the raw machine-translated text provided to them in the

experiment thought that the text quality was low, and they scored

low on the questions of satisfaction in the post-task questionnaire

on acceptability components. Only in terms of usability, the subjects

of the professional translators’ group were divided into those who

thought that the text was usable to some extent (usability higher than

average) and those who thought that the text was not usable. The

results for average percentage of fixation time of the two groups of

professional translators - low scorers and high scorers for usability

statements—are shown in Figure 9. The subjects in the group of

low scorers for the usability statements demonstrated a shorter

average fixation time compared with those who scored higher, 12.4

vs. 14.3% for AOIs with errors and 11.7 vs. 12.7% for AOIs without

errors, which also raises questions for further research, discussion

and implications.

As Figure 10 shows, total satisfaction scores for non-professionals

who looked at AOIs with errors for a shorter period of time than

average varied greatly. The higher limit of those scores decreased for

non-professionals who looked at such AOIs longer, while the lower

limit tended to stay the same. On the other hand, the satisfaction

scores for the professionals tended to stay the same, as for non-

professionals who paid more attention to the AOIs with errors.

However, the independent-samples Mann-WhitneyU-test would

indicate that the hypothesis that the total satisfaction score of

professionals and non-professionals has the same distribution

(that the probability of this score being higher for a random

professional than for a random non-professional is 0.5) cannot be

rejected (p = 0.157).

Besides, the subjects’ text comprehension was measured via

a post-task reading comprehension questionnaire, consisting of

4 questions, i.e., 2 true/false questions and 2 open questions.
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FIGURE 1

Average percentage of fixation time on all areas of interest with errors and without errors in the groups of professional and non-professional users of
machine translation.

FIGURE 2

A simple boxplot of dwell time on AOIs with errors in the groups of professional and non-professional users of machine translation.

Figure 11 demonstrates how the subjects scored in both groups. The

professionals scored better in text comprehension compared with

non-professional users (median 2 vs. 3, respectively) (see Figure 11).

Figure 12 shows how fixation times for AOIs with errors correlate

with the number of correctly answered questions. It may be seen

that the pattern differs between professionals and non-professionals,

with professionals having higher spread for more correct answers

and non-professionals having higher spread for average number of

correct answers. It is also interesting that the median dwell time was

mostly the same for non-professionals giving different numbers of

correct answers, while themedian dwell times for professionals giving

the highest and the lowest numbers of correct answers are lower than

for professionals who gave a medium number of correct answers.

Furthermore, both professionals and non-professionals who gave no

correct answers (there were two such professionals and two such non-

professionals) had low dwell times (with themaximum lower than the

medians of every other group).

Figure 13 shows how glance counts for AOIs with errors correlate

with the number of correctly answered questions. The differences

between professionals and non-professionals may be observed, with

professionals having higher spread and non-professionals having

lower spread for the higher number of correct answers. Professionals

tended to reach higher glance counts (for each number of correct

answers, professionals tended to have a higher median glance count,

with the exception of the group of no correct answers, which might

have been an outlier). Furthermore, non-professionals who gave no

correct answers had high glances counts (with median higher than

the medians of every other group of non-professionals). As they also
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FIGURE 3

Total quality scores in the groups of professional and non-professional users of machine translation.

FIGURE 4

Total usability scores in the groups of professional and non-professional users of machine translation.

had low dwell times, this might indicate that the respondents who

gave no correct answers were relatively inattentive.

Figure 14 shows how dwell times for AOIs with errors correlate

with the number of correctly answered questions. The pattern

again differs between professionals and non-professionals, with

professionals having a higher spread for more correct answers and

non-professionals having a higher spread for the average number

of correct answers. Furthermore, both professionals and non-

professionals who gave no correct answers had low fixation times

(with the maximum lower than the medians of every other group),

which may imply that less attention and effort while reading results

in lower comprehension. Of course, such a finding needs to be tested

and proven in a better targeted study, as in this particular case there

might have been other factors like the text type, topic, tiredness,

general absence of interest, etc. that influenced the results.

5. Discussion

Previous studies focusing solely on machine translation

acceptability are few. Even fewer studies apply eye tracking to

test machine translation acceptability. They mainly focus on

the experiments with professional translators and/or translation

students. To the best of our knowledge, there are no reported studies

where machine translation acceptability by non-professional users

was tested via an eye tracking experiment. No such research testing
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FIGURE 5

Total satisfaction scores in the groups of professional and non-professional users of machine translation.

FIGURE 6

Average percentage of fixation time of non-professional users who rated quality of the raw machine-translated text higher and lower than the average.

acceptability of machine-translated text into Lithuanian has been

conducted so far. Lithuanian, like many other smaller languages, is

considered underresourced. It is also amorphologically rich synthetic

language. Consequently, machine translation quality is less adequate

than in other languages where investment into data acquisition and

machine translation development is more substantial. Therefore, the

views of Lithuanian language speakers, or smaller language speakers

overall, toward machine translation might be diverse and involve

many more risks or unexpected threats, if the output is used without

critical awareness and judgment. For these reasons, comparisons

between our results and previous research are only partial or indirect.

This study revolved around three research questions. The

first question was related to comparison between professional

and non-professional users’ processing of raw machine translation

output. The most obvious finding to emerge from this study

is that there is a difference in the machine translation output

cognitive processing and acceptability between professional and

non-professional users. In comparison with non-professional users,
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FIGURE 7

Average percentage of fixation time of non-professional users who rated usability of the raw machine-translated text high and low.

FIGURE 8

Average percentage of fixation time of non-professional users who were more and less satisfied with the raw machine-translated text.

professional users of machine translation, i.e., translators and

language editors, spend more time overall reading the machine-

translated texts, most probably because of their deeper critical

awareness as well as proficient attitude toward the text. They

also demonstrate a longer average fixation time and a greater

average glance count on the machine translation errors. In terms

of acceptability overall, professional users critically assess machine

translation on all components of acceptability. This might possibly

be explained by an assumption that professionals have less tolerance

toward insufficient quality of machine translation, know how to

prepare texts for publishable quality and see mistakes, inaccuracies

and style issues in a text almost instantaneously. On the other hand,

even if the text contains errors, it might still be usable.

The results obtained in this study seem to be to some extent

consistent with the findings obtained in previous studies. García

(2010) who investigated the level of user awareness of machine
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Kasperė et al. 10.3389/fpsyg.2023.1076379

FIGURE 9

Average percentage of fixation time of professional translators who scored low and high regarding the usability with the raw machine-translated text in
the post-task questionnaire.

FIGURE 10

A scatter plot of fixation times for AOIs with errors and total satisfaction scores.

translation among professional translators and clients or users of

translation found out that only a small proportion of professionals

considered the quality of machine translation very high, which is not

surprising since at the time machine translation had lower quality

than the neural machine translation now. However, in the same

study, the clients/users of translations demonstrated more positive

assessment of the quality of machine translation compared to that

of professional users (García, 2010). Our findings are also in line

with the implications revealed by Vieira (2020) who concluded that

there is a clear divide between the perceptions of professionals and

non-professionals toward machine translation and its capabilities.

In his study, Vieira acknowledged that the public coverage of

machine translation veers more toward positive attitudes rather

than negative. In our study, non-professional users—end-users with

no linguistic background—also had more positive attitudes toward

machine translation quality, usability and satisfaction compared with

the professional translators’ attitudes toward the text. However, in

principle, our results may also be indirectly considered to be in
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FIGURE 11

A simple box plot of text comprehension results in the groups of professionals and non-professional users.

FIGURE 12

A simple box plot of fixation times for AOIs with errors by the number of correctly answered questions.

agreement with those obtained in a study by Hu et al. (2020) where

subjects with low proficiency in English considered a raw machine-

translated output quality lower than the post-edited text, i.e., one

containing no errors. Although Hu et al.âĂŹs and our studies have

different designs and purposes, it may be inferred that even non-

professionals who may be expected to be ignorant of or care less

about mistakes in the text are generally aware of drawbacks and

notice them.

Some of our study results may also be to some extent comparable

with those obtained in the investigation by Colman et al. (2021)

where an increased number of eye fixations and increased gaze

duration while reading machine translation segments were found in

comparison with human translation (Colman et al., 2021), which

may imply that less naturalistic and possibly erroneous text segments

require more cognitive load. In our study, all respondents (both

professionals and non-professionals) demonstrated increased values

of all tested eye movement variables on areas of interest with errors

compared with areas of interest without errors.

Other noteworthy findings to emerge from this study relate

to the question whether there is a difference in the processing

of raw machine-translated output between non-professional users

with different levels of acceptability of machine-translated text. The
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FIGURE 13

A simple box plot of glances counts for AOIs with errors by the number of correctly answered questions.

FIGURE 14

A simple box plot of dwell times for AOIs with errors by the number of correctly answered questions.

overall acceptability of machine-translated text was found to be

higher for those non-professional users who spent less time/effort

on areas of interest with errors, which might be an indication that

the participants who did not notice or were more positive or tolerant

about the mistakes were more positive about the machine-translated

text in general. The text comprehension results revealed that the

subjects in the group of professional translators who scored low on

the comprehension questions, demonstrated a greater number of

glance counts, which may imply that the professional background

may influence the level of comprehension. These findings indirectly

support the more positive attitudes toward raw machine-translated

text in terms of its comprehension and trust by users with lower

proficiency of language as reported by Rossetti et al. (2020).

However, with a relatively small sample size, caution must be

applied while interpreting the results within the group of non-

professional users of machine translation as the findings might be

diverse depending on the subject’s background, level of education,

experience, language proficiency and other variables.
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6. Conclusions

The study was aimed at determining the acceptability of

raw machine translation texts in Lithuanian, a low-resource

language. An eye tracking experiment measuring acceptability

via the comparison between professional and non-professional

users of machine translation and via the comparisons between

the respondents who assessed the quality, satisfaction with and

usability of the text differently (either lower or higher than average)

revealed some insightful findings. There is a difference in the

machine translation output cognitive processing and acceptability

between professional and non-professional users. The professional

users scored better in text comprehension compared with non-

professional users. One of the possible reasons for that might

be the experience of professional translators in dealing with

badly written (perhaps also machine-translated) text. Professional

users critically assess machine translation on all components

of acceptability. Non-professional users—end-users with no

linguistic background—have more positive attitudes toward

machine translation quality, usability and satisfaction, which

may imply possible risks if machine translation is used without

critical awareness, judgement and revision. The lower professional

users’ satisfaction with the text, and overall acceptability, may

suggest that they are likely to have higher expectations for the

translated text.

The major general implication of these findings

is the lower awareness of non-professional users

regarding the machine translation output drawbacks

and imperfections, which may result in a variety

of misunderstandings that might go unnoticed

and ignored, as well as risks and threats with

undefined consequences.

The major limitation of this study is the small and

uneven sample sizes of professional and non-professional

users of machine translation. More equal sample sizes of

different groups would help establishing a greater degree of

accuracy on this matter. Besides, the differences within the

non-professionals’ group should be taken into consideration,

as the results may be affected by various individual

characteristics of subjects. Therefore, larger controlled trials

could be focused more on the differences in educational

backgrounds and language proficiency of subjects as well

as the provided stimulus text variety or task description

to give more definitive evidence regarding acceptability of

machine translation.

A further limitation concerns imperfections of eye

tracking equipment. To some extent they have been

mitigated, but those mitigations can also be a cause of

further limitations (for example, padding AOIs by about

1 character to all sides is a common way to mitigate

imprecision of eye tracking leading to failures to notice

the subject looking at the AOI, but it can result in

including cases when the subject is looking at the area

near the AOI).

Notwithstanding these limitations, the study provides a

possibility to understand more deeply the readers’ cognitive

processing and the level of acceptability they exhibit toward

machine-translated texts. Overall, the results of the study

demonstrate diversified and contrasting views of the population

and call for raising public awareness and machine translation

literacy improvement.
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Introduction: The amount of educational material delivered to pupils and students 
through digital screens is increasing. This method of delivering educational materials 
has become even more prevalent during the COVID-19 pandemic. To be as effective 
as possible, educational material must be properly designed not only in terms of 
content, but also in terms of form, e.g., the typeface. The present study investigated 
the effect of letter shape on readers’ feelings of pleasantness during reading, reading 
fluency, and text comprehension and memorisation.

Methods: To find out whether age influences the effects of typeface shape on 
reading measures, we divided the participants into a group of less experienced 
readers (children) and more experienced readers (adults). Both groups read texts in 
eight different typefaces: four of them were round or in rounded shape, and four 
were angular or in pointed shape. With an eye-tracker, the reading speed and the 
number of regressive saccades were recorded as measures of reading fluency and 
changes in pupil size as an indicator of emotional response. After reading each text, 
the participants rated the pleasantness of the typeface, and their comprehension and 
memorisation of texts were checked by asking two questions about the text content.

Results: We found that compared to angular letters or letters in pointed shape, round 
letters or letters in round shape created more pleasant feelings for readers and lead 
to a faster reading speed. Children, as expected, read more slowly due to less reading 
experiences, but, interestingly, had a similar number of regressive saccades and did 
not comprehend or remember the text worse than university students.

Discussion: We concluded that softer typefaces of rounder shapes should be used in 
educational materials, as they make the reading process easier and thus support the 
learning process better for both younger and adult readers. The results of our study 
also showed that a comparison of findings of different studies may depend on the 
differences among the used letter shapes.

KEYWORDS

typeface shape, pleasantness, reading fluency, text comprehension, text memorisation, age 
differences

1. Introduction

The shape of letters and the general typographic design of a text affect the legibility of the text 
(Beier at al., 2017), the transparency of the presentation of information (Brath and Banissi, 2016) 
and, consequently, the fluency of reading (Gasser et al., 2005; Beier and Larson, 2013; Cacali, 2016; 
Bessemans, 2016a,b). The present study examined the effect of letter shape on readers’ feelings of 
pleasantness during reading, pupil size and eye movements during reading, and text comprehension 
and memorisation.

OPEN ACCESS

EDITED BY

Ernest Greene,  
University of Southern California,  
United States

REVIEWED BY

Jiangjie Chen,  
Jiangnan University,  
China
Alex Miklashevsky,  
University of Potsdam,  
Germany

*CORRESPONDENCE

Tanja Medved  
 tanja.medved@ntf.uni-lj.si

SPECIALTY SECTION

This article was submitted to  
Perception Science,  
a section of the journal  
Frontiers in Psychology

RECEIVED 25 November 2022
ACCEPTED 25 January 2023
PUBLISHED 15 February 2023

CITATION

Medved T, Podlesek A and Možina K (2023) 
Influence of letter shape on readers’ emotional 
experience, reading fluency, and text 
comprehension and memorisation.
Front. Psychol. 14:1107839.
doi: 10.3389/fpsyg.2023.1107839

COPYRIGHT

© 2023 Medved, Podlesek and Možina. This is 
an open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic practice. 
No use, distribution or reproduction is 
permitted which does not comply with these 
terms.

74

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2023.1107839&domain=pdf&date_stamp=2023-02-15
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2023.1107839
https://www.frontiersin.org/articles/10.3389/fpsyg.2023.1107839/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2023.1107839/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2023.1107839/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2023.1107839/full
mailto:tanja.medved@ntf.uni-lj.si
https://doi.org/10.3389/fpsyg.2023.1107839
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Medved et al. 10.3389/fpsyg.2023.1107839

Frontiers in Psychology 02 frontiersin.org

1.1. Reading fluency

The concept of reading fluency combines accuracy and speed of 
reading with the ability to comprehend the content being read. Some 
definitions of reading fluency focus more on letter recognition and 
reading speed (Meyer and Felton, 1999), while others include content 
comprehension (Pikulski and Chard, 2005).

Many factors affect reading fluency. Reading fluency is affected by 
the shape or legibility of the typeface (Ali et al., 2013), type size (Mueller 
et al., 2014; Su et al., 2018), and the overall typographic design of the text 
(Koch, 2012). When reading on a screen, reading fluency is also affected 
by the screen resolution, as with a higher resolution, letters and their 
features can be displayed better (Bessemans, 2016a; Bigelow, 2019).

1.2. Text comprehension and memorisation

Several studies showed that the shape of letters and the text can 
influence the comprehension of the read content (Choi et al., 2018) and 
the actual memorisation of the read content (Lewis and Walker, 1989; 
Gasser et  al., 2005). Poorer fluency results in poorer information 
processing and, consequently, poorer comprehension and memorisation 
of the text (Novemsky et  al., 2007; Oppenheimer and Frank, 2008; 
Meyer et al., 2015; Bjork and Yue, 2016; Pieger et al., 2016; Rummer 
et al., 2016; Sanchez and Nayor, 2018; Dressler, 2019; Wu et al., 2019).

Studies examining how using a perceptually difficult-to-process 
typeface with an increased desirable difficulty designed specifically to 
reduce legibility, such as Sans Forgetica, found either no processing or 
memory benefit of such typefaces or even yielded a memory cost (Geller 
et al., 2020; Taylor et al., 2020; Wetzler et al., 2021; Cushing and Bodner, 
2022; Maxwell et al., 2022). However, there is also a whole series of 
studies which showed that poorer fluency of the text or desired difficulty 
in the fluency of the text resulted in better processing of the text and 
consequently in better memorisation of the read content (Diemand-
Yauman et al., 2011; Macdonald and Lavic, 2011; Bjork et al., 2013; 
Halin, 2016; Pieger et al., 2016).

Numerous studies demonstrated that reading fluency affects the 
learning process, more specifically short-term and long-term memory 
(Weissgerber and Reinhard, 2017), as well as metacognition (Yue et al., 
2013; Ilic and Akbulut, 2019). Based on the shape of letters and the text, 
readers can predict how long it will take them to read the text and 
remember the content of the text (Beier and Larson, 2013; Price et al., 
2016). Higher reading fluency should promote a positive attitude 
towards the text, consequently the feeling of better memorability of the 
text, and it should allow for better memorisation and comprehension of 
the text (Song and Schwarz, 2008; Mueller et  al., 2013; Labro and 
Pocheptsova, 2016; Pieger et al., 2016; Mead and Hardesty, 2018). In 
contrast, poorer fluency should promote poorer attitudes toward the text 
and readers should assume that they will spend more time reading and 
memorising the text.

1.3. The role of emotions in the reading 
process

Emotions play a specific role in reading. The typographic design or 
the shape of the typeface has a great impact on the reader’s mood, more 
specifically on their emotional response or feeling of pleasantness that 
the reader experiences when reading certain letterforms (Larson and 

Picard, 2005; Larson et al., 2006; Koch, 2012; Petit et al., 2015). The 
shape of letters and the text can suggest the nature and content of the 
text to the reader (Lewis and Walker, 1989; Ehsen and Lupton, 1998; 
Celhay et al., 2015; Bigelow, 2019; Davis, 2019; Raden and Qeis, 2019).

Several studies have shown that the perception of shapes, tastes and 
sounds evokes various feelings in humans, including the feeling of 
pleasantness (Childers and Jass, 2002; Brumberger, 2003; Mackiewicz, 
2005; Shaikh et  al., 2006; Bar and Neta, 2007; Tsonos and 
Kouroupetroglou, 2011; Amare and Manning, 2012; Crisinel et al., 2012; 
Ngo et al., 2013; Velasco et al., 2014, 2015a,b, 2016, 2018a; Salgado-
Montejo et al., 2015; Jordan, 2017; Davis, 2019; Haenschen and Tamul, 
2019). Round and rounded shapes, as well as symmetric shapes evoke 
more pleasant feelings than angular or pointed and asymmetric shapes 
(Bar and Neta, 2007; Ngo et al., 2013; Turoman et al., 2018; Velasco 
et al., 2018b).

We have not found a study that would examine how these features 
of human perception can be effectively used in the typographic design 
of educational materials, but based on the previous studies we  can 
assume that round typefaces would evoke more pleasant feelings than 
angular ones.

1.4. The influence of letter shape on the 
reading process

The core of typographic design are typefaces, which can be grouped 
based on the shape of the main strokes, and the transitions between the 
strokes and the stroke ends (terminals, serifs). One group of typefaces 
contains round/rounded typefaces and the other group contains 
angular/pointed typefaces. A typical example of typefaces that could 
be classified in the round/rounded group based on their design features 
are typefaces that belong to the group of Venetian, Garalde and 
Transitional typefaces (McLean, 1997; Možina, 2003). Typefaces that 
could be classified in the angular/pointed group based on their design 
characteristics are typefaces that belong to the Didone, Slab-Serif and 
Sans Serif group (McLean, 1997; Možina, 2003).

Previous studies found that rounded, organic shapes of strokes and 
softer transitions between the strokes and stroke ends are perceived as 
more pleasing whereas the letters with more geometric stroke shapes, 
sharp transitions between strokes and finial stroke are found to be less 
pleasant (Spence and Deroy, 2012; Hyndman, 2016). The feeling of 
pleasure we  experience when reading different typefaces influences 
motivation and concentration (Mano, 1997; Koch, 2012), memorisation 
and comprehension of a text (Mano, 1997). However, research 
addressing how the reader’s emotional response to the shape of letters 
affects reading fluency is scarce.

1.5. The effect of age on reading

It has been shown that perception in reading also depends on the 
age of the reader. Children and adult readers differ in the level of 
development of cognitive and physiological abilities until the age of 
four, after which the ability to recognise letters should be the same in 
children and adults (Woods et al., 2005). However, studies reported 
that children from 4 to 11 years old react to different stimuli, e.g., 
colour, shape, taste, smell, differently from adult students (Gollely and 
Guichard, 2011). It has been discovered that reactions to the same 
stimuli are different also in younger adults (under 35 years old) and 
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older adults (over 60 years old) (Piqueras-Fiszman et  al., 2011). In 
younger readers (aged 7 to 9 years), typefaces with serifs and a 
difference in stroke width were found to lead to more fluent reading, 
whereas sans serif typefaces that have no or minor difference in stroke 
width result in fewer reading errors (Wilkins et al., 2009). It is also 
claimed that a larger type size allows faster decoding of information 
and better memory, but only in children (age 9 to 12 years old), not in 
adult students (Abukaber and Lu, 2012). Children (from 7 to 12 years 
old) read letters that are heterogeneous in shape more easily (Wilkins 
et al., 2009; Abukaber and Lu, 2012); especially the heterogeneity in the 
shape of letters seems to greatly aid visually impaired children (age 5 
to 10 years old) in reading (Bessemans, 2016b). In the study conducted 
by Katzir et al. (2013), the increased desirable difficulty of the typeface 
affected reading fluency, demonstrating positive effects in older 
children (11 years old), but negative effects in younger children 
(8 years old).

1.6. The aim of our study

Our study had two aims. The first aim was to determine how the 
shape of the typeface (round/rounded vs. angular/pointed) affects 
reading fluency, subjective reading experience, and reading performance. 
The second aim of our study was to investigate whether the effect of 
typeface shape is the same for younger, less experienced readers and for 
adult, more experienced readers.

We used an eye-movement tracking device as it provides objective 
measures of reading fluency (Piqueras-Fiszman et al., 2013; Franken 
et al., 2015). We monitored the reading speed and regressive saccades as 
measures of reading fluency. We also used this device to observe changes 
in pupil size, which should be  indicative of the reader’s emotional 
response (Hess and Polt, 1960; Margareth et al., 2008; Wang et al., 2018). 
Objective measures of emotional response to different shapes of 
typefaces were complemented with subjective ratings of feelings of 
pleasantness. Text comprehension and memorisation of what was read 
were also observed as indicators of reading performance.

2. Methods and materials

The studies involving human participants were reviewed and 
approved by the Ethics Commission of the Faculty of Arts, University of 
Ljubljana. An informed consent document to participate in this study 
was provided by the participants or their legal guardian/next of kin. All 
studies were performed in accordance with the Declaration of Helsinki.

2.1. Apparatus

To track eye movements, we used a Tobii X120 eye-tracking device 
and Tobii Studio 3.4.8 software (Tobii AB, Sweden). The device tracks 
eye movements by tracking the reflection of the image from the cornea. 
The corneal reflection is generated by infrared emitters on the front of 
the device that create IR light patterns that are then reflected off the 
cornea. The device contains a camera that is sensitive to IR light and 
monitors each movement and fixation of the eye based on the reflection 
of IR light from the cornea (Tobii Pro, 2017).

Before the measurements, each participant had 5 min to adapt to the 
lighting conditions in the test room and to perform a nine-point 

screen-based calibration of the device. We used an LCD screen with a 
resolution of 2,400 × 1900 pixels (pixel size 0.27 mm) and a refresh rate 
of 60 Hz.

2.2. Preliminary studies

Prior to the main study in which we investigated how the shape of 
different typefaces affects the pleasantness ratings and the reading speed, 
memorisation and understanding of a text, we  conducted two 
preliminary studies. The purpose of the first preliminary study was to 
select eight texts comparable in cognitive load and the purpose of the 
second preliminary study was to select eight typefaces.

The measurements were done in a quiet room with walls painted 
with grey matte paint in accordance with the ISO 3664 standard (ISO 
3664, 2009). The letters of the texts that the participants read on the 
screen were dark on a light background (text colour: #000, background 
colour: #eee) according to the ISO 12646 standard (ISO 12646, 2015). 
The participants were located at a distance of 60 cm +/− 1 cm from the 
screen, in line with the recommendations of the ISO 9241-303 standard 
(ISO 9241-303, 2011). Their movements were not restricted, but they 
were asked to remain at a fixed position.

2.2.1. First preliminary study
With the first preliminary study, we selected texts for the main study. 

Thirty-one students and employees of Faculty of Natural Sciences and 
Engineering at the University of Ljubljana participated in the study. 
Their mean age was 44.2 years (SD = 7.4), 22 were female and 9 were 
male. They were not paid for their participation in the study. They 
reported normal or corrected-to-normal vision.

We prepared 45 different texts in Slovenian (participants’ native 
language) with contents of similar complexity. The texts were (i) sample 
texts published as a part of guidelines developed for teachers on how to 
evaluate the reading efficacy in children (Pečjak and Kramarič, 2018) 
and (ii) excerpts from a children’s illustrated encyclopaedia about 
animals (Burnie, 2010). The selected texts had a meaningful beginning 
and end. They had a length of 457 to 510 characters without spaces 
(SD = 13.55). They appeared on the screen in 10 or 11 lines (SD = 0.43) 
in the Verdana typeface, type size 16 pixels. The text was displayed as an 
HTML document using the CSS programming language. In this way, 
we were able to ensure that the text was always displayed in exactly the 
same type size and position on the screen (i.e., in the centre of 
the screen).

After calibration, the 45 texts were presented in the same order to 
all the participants. Consecutive texts were invoked by a mouse click. 
For each text, we  measured the reading speed and the number 
of fixations.

From the 45 texts, we selected 8 texts for the main study that showed 
highest reading speeds. They contained 471–510 characters (M = 492, 
SD = 18). The average reading speed of the selected 8 texts across the 
participants varied between 50.39 ms and 56.30 ms per character 
(M = 52.45 ms, SD = 2.20 ms). We also examined the number of fixations 
for each text as another indicator of reading fluency. The lower the 
number of fixations, the more fluently the participants read the text. The 
average number of fixations per character varied between 0.35 and 0.44 
(M = 0.38, SD = 0.03). The texts seemed comparable in content 
complexity and suitable for fluent reading of the general population, 
including children, and contained no distracting factors such as overly 
long and demanding words and unclear content. The comparable 
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content difficulty, reading speed and relative number of fixations across 
the eight selected texts lead us to believe that the texts will result in a 
similar cognitive load when presented in the main study. The texts and 
their English translations can be found in the Supplementary Materials.

2.2.2. Second preliminary study
With the second preliminary study, we collected different typefaces 

for the main study. Fifty-five participants were included, 34 of whom 
were university students from the same institution as in the first 
preliminary study. They were between 19 and 26 years old, with the 
average age of 20.7 years (SD = 1.3). Twenty-three were female and 11 
were male. The remaining 21 participants were second-triad primary 
school pupils aged 10 to 12 years, with the average age of 10.7 years 
(SD = 0.6). Ten of them were female and 11 were male. All participants 
had normal or corrected-to-normal vision and were not paid for their 
participation in the study.

We checked pleasantness of 15 different typefaces (i.e., Adobe 
Caslon Pro, American Typewriter, Anka, Arial Nova, Birch STD, 
Chaparral Pro, Comic Sans MS, Didot, Erlenmeyergraphy, FG April 
Trial, Matilda, Nogomet, Sans Forgetica, Times New Roman, Verdana). 
The participants read 15 pangrams on the screen. A pangram is a 
sentence or a portion of a text that uses all the letters of the alphabet and 
is typically difficult to read since the content of the sentences formed is 
unusual or senseless. Each pangram was displayed in a different typeface. 
The average length of a pangram was 36.9 characters without spaces 
(SD = 3.7). The pangrams were displayed in the centre of the screen. 
Consecutive texts were invoked by a mouse click.

Using a 5-level hedonic scale, participants rated how pleasant 
they found each typeface (1 – very unpleasant, 2 – unpleasant, 3 – 
neutral, 4 – pleasant, 5 – very pleasant). Based on the results, 
we selected eight final typefaces: four rated as most pleasant and four 
as least pleasant. The four most pleasing typefaces were Chaparral 
Pro, FG April Trial, Matilda and Times New Roman. These typefaces 
all had round/rounded shapes: the transitions between the strokes 
and the stroke ends (terminals, serifs) were soft, just like the 
transitions between the thick and thin strokes. Also, the shape of the 
bowls and counters was round and more convex, which is why 
we considered them as members of the group of round/rounded 
typefaces. The four least pleasing typefaces had the characteristics of 
angular/pointed shapes, i.e., Arial Nova, Nogomet, Sans Forgetica, 
Verdana. These typefaces were all sans serif typefaces, all of them had 
angular or pointed shaped stroke ends (terminals) and none or 
minor difference between the thick and thin strokes. The shape of the 
bowls and counters, especially on the left end right side of the bowl, 
was less convex and more straight, which is why we considered them 
as members of the group of angular/pointed typefaces. Figure  1 
shows examples of all eight typefaces that we selected for use in the 
main study.

2.3. Main study

2.3.1. Participants
Twenty university students (adult readers; 7 male, 13 female) aged 

between 18 and 26 (M = 20.0 years, SD = 1.8 years) and 15 children 
(pupils of grades 4 to 6 of primary school; 9 male, 6 female) aged 10 
through 11 (M = 10.7 years, SD = 0.5 years) participated in the main 
study. All participants had normal or corrected-to-normal vision and 
were not paid for their participation.

2.3.2. Stimuli
For the main study, we  used eight selected texts from the first 

preliminary study and eight selected typefaces from the second 
preliminary study. Each text was set in one of the typefaces. The texts in 
different typefaces are shown in the Supplementary Materials.

The size of the typeface was adjusted to achieve the most uniform 
x-height across typefaces possible, which varied between 0.17 and 0.20 
degrees of visual angle; the average x-height was 0.19 degrees of visual 
angle (SD = 0.016). Due to the different shape of the letters, the number 
of lines of different texts varied between 10 and 11, and the average 
number of lines was 10.13 (SD = 0.35). In all cases, the leading (i.e., line 
spacing) was 140% of the type size.

2.3.3. Procedure
The main study was conducted under the same standardized 

conditions as in the first and second preliminary studies. The exception 
was the lighting in the room, which was now a bright light room, with 
artificial lighting.

To control for the effect of fatigue, each participant read the texts in 
a different order (the so-called Latin square). We measured the reading 
speed, number of saccades, length of fixations, and the size of the pupils 
for each text in all participants during the whole reading time.

After reading the text on the screen, participants answered two 
additional questions to check their understanding and remembering of 
the text content. Text comprehension was checked with a question about 
the text content. Each reader had three answers possible, from which 
they chose the one they thought was correct. Text memorisation was 
checked by presenting the readers with a sentence and asking them 
whether they had read that exact sentence in the text. They also rated 

FIGURE 1

Eight typefaces selected for the main study.
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the pleasantness of the typeface with which the text was displayed, using 
a 5-point rating scale (1 – very unpleasant, 2 – unpleasant, 3 – neutral, 
4 – pleasant, 5 – very pleasant).

2.3.4. Data analysis
We considered the rating of pleasantness as a subjective 

measure of emotional response to typefaces, and pupil size as an 
objective measure of such response. Pupil size should be enlarged 
when a person experiences or perceives something pleasant (Hess 
and Polt, 1960; Margareth et al., 2008; Wang et al., 2018). Although 
pupil size under controlled lighting conditions may reflect factors 
other than the reader’s emotional response, such as surprise 
(Preuschoff et  al., 2011) or cognitive load and metacognitive 
confidence (Gavas et al., 2018), we assume that these effects were 
minimized due to careful selection of texts in the preliminary 
study. We examined left pupil size (pupil diameter measured in 
millimeters). Pupil size changed during reading, but a careful 
examination of how it changed over time did not reveal specific 
patterns that could be generalized across different texts within a 
single participant or across different participants reading the same 
text. The 5-percent trimmed means of pupil diameter during the 
total time of reading a given text, which would eliminate potential 
outliers, were not significantly different from the uncorrected mean 
values (the difference was to the third decimal place), so we decided 
to use an uncorrected mean value of pupil diameter during the 
reading interval in further analyses.

Two objective indicators of reading fluency were analyzed, namely 
the number of regressive saccades and reading speed. Reading speed was 
determined by measuring the time spent per character (excluding 
spaces). Text comprehension and short-term text memory were used as 
measures of reading performance.

Data were analyzed using linear mixed modelling in the GAMLj 
module (Gallucci, 2020) for jamovi (The Jamovi Project, 2019).

To determine the extent to which pupil size actually reflects 
emotional response (typeface pleasantness), we  first examined the 
relationship between subjective and objective indicators of emotional 
response to reading. Pupil size was used as an interval outcome variable, 
and pleasantness ratings centred within subjects were used as an interval 
predictor in the linear mixed model. The data were nested within 
participants. Participants were entered in the model as random 
intercepts and slopes.

Next, six different linear mixed models were developed. In each 
model, one of the six measures (pleasantness ratings, pupil size, number 
of regressive saccades, reading speed, text comprehension score, and text 
memorisation score) served as the outcome variable. Eight texts 
(level-1 units) were nested within 35 participants (level-2 units). 
Typeface shape was used as a level-1 predictor, i.e., as a within-subject 
factor-type variable with two levels describing the shape of the typeface 
(0 – round/rounded vs. 1 – angular/pointed typeface shape). Age was 
used as a level-2 predictor, i.e., a between-subject factor-type variable 
describing the participant (0 – child vs. 1 – university student). Three 
fixed effects were entered in the prediction model: the effect of typeface 
shape, the effect of age, and the interaction between age and typeface 
shape. To account for the inter-individual differences in the measured 
outcome variables, participants were entered in the model as random 
intercepts. Because we expected the effect of typeface shape to differ 
across participants, we also included the random slopes for typeface 
shape in the model. Equation 1 shows the model for predicting the 
outcome variable (Y′).

 

( )
( )

’
0 1 2

3

Y b b • Age b • Typeface shape
 b • Age Typeface shape Intercept|Participant
 Typeface Shape|Participant

= + +
+ × +
+

 (1)

To examine the effect of a factor (typeface shape or age) 
manipulation on each of the six outcome variables, we compared Bayes 
factors (BF) for different models. We used the default settings of the 
BayesFactor package (Morey and Rouder, 2022) to calculate the BFs. The 
package specifies the Jeffrey prior for the grand mean and error variance, 
uses the default setting for the multivariate Cauchy prior distributions 
(scale set to 0.5 and 1 for fixed effects and random effects, respectively), 
and does not explicitly model the correlation between random slopes 
and intercepts (van Doorn et al., 2021). There is a “lack of clarity and 
consensus about how to best conduct Bayesian model comparison when 
considering mixed effects” (van Doorn et  al., 2021, p.  2). Because 
we assume that some inter-individual variability is intrinsically present 
in the level of outcome variables and in the effect of typeface shape, 
we decided to use the model without fixed effects but with random 
intercepts and slopes specific to subjects as a reference model. To test for 
a specific fixed effect, we compared the reference model with a model 
that included the fixed effect under study along with random intercepts 
and slopes for the participants. We first calculated Bayes factors for both 
the reference model (BFr) and the fixed-effect model under test (BFt). 
Both BFs compared the model to the Intercept (b0)-only model (model 
without random or fixed effects). We then calculated the BFt/BFr ratio. 
The ratio obtained (BF) greater than 1 indicated that the fixed-effects 
model was preferred, and BF less than 1 indicated that the reference 
model, i.e., the random-effects-only model, was preferred and that no 
notable fixed effect was present.

3. Results

The aim of our study was to examine the effect of typeface shape and 
age on reading. Table 1 shows the regression parameters for the fixed 
effects in the models tested. Large interindividual differences (large 
ICCs, i.e., intraclass correlation coefficients) were found in the 
eye-tracking measures—pupil size, number of regressive saccades, and 
reading time per character. ICCs were much lower for pleasantness 
ratings, text comprehension score and text memorisation score. For 
these variables, intrapersonal variability (differences between the eight 
typefaces) was much larger than interpersonal variability (differences 
between participants). However, on the legibility measures, 
intraindividual differences were much smaller than interindividual 
differences, suggesting that the reading skills of our participants were 
relatively diverse. Some were less fluent readers in general, i.e., across all 
eight texts, whereas the others were more fluent readers of all texts.

No interaction between age and typeface shape was observed on any 
of the measures examined, so we can next focus on the main effects of 
typeface shape and age on various reading measures.

3.1. Effect of typeface shape and reader age 
on pleasantness ratings and pupil size

First, we  examined the relationship between the subjective and 
objective indicators of the emotional response to reading. We found that 
ratings of pleasantness predicted pupil size (b = 0.01, β = 0.17, SEb = 0.004, 
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t(111.6) = 3.32), with strong support for the alternative hypothesis that 
the two variables are correlated (BF = 51.75). This suggests that readers 
responded emotionally to less or more pleasant typefaces. Pupil size was 
larger when reading typefaces were rated as more pleasant than when 
reading typefaces were rated as less pleasant (see also Figure 2).

Next, we examined the effects of typeface shape, age, and their 
interaction on pleasantness ratings and pupil size. Table 1 shows the 
results of linear mixed modelling and the Bayesian factors for each 
effect. BF values greater than 1 indicate evidence for the tested model, 
i.e., the model with both fixed and random effects, and values less 

TABLE 1 Effect of typeface shape and age group on different reading parameters (pleasantness rating, pupil size, number of regressive saccades, reading 
speed, text comprehension and memorisation).

Corr. figure
Source of 
variability

b SEb

95% CI for b 
lower 
bound

95% CI for b 
upper 
bound

t df BF

3A Pleasantness rating

ICC = 0.028, LRT(2) = 0.397, p = 0.820, BF for the full model = 889.50

Intercept 3.41 0.07 3.27 3.54 47.65 36.6

Typeface shape −0.78 0.13 −1.05 −0.53 −5.96 118.3 5100.71

Age 0.29 0.14 0.01 0.57 2.01 36.6 0.57

Typeface shape × Age 0.23 0.26 −0.28 0.75 0.89 118.3 0.48

3B Pupil size (mm)

ICC = 0.874, LRT(2) = 0.048, p = 0.976, BF for the full model = 0.08

Intercept 2.76 0.03 2.69 2.83 79.28 33.0

Typeface shape −0.02 0.01 −0.04 −0.00 −2.11 238.5 0.66

Age −0.02 0.07 −0.15 0.12 −0.26 33.0 0.74

Typeface shape × Age −0.003 0.02 −0.04 0.03 −0.16 238.5 0.22

4A Reading time per character (ms)

ICC = 0.802, LRT(2) = 13.3, p < 0.001, BF for the full model = 540.71)

Intercept 71.21 3.22 64.90 77.51 22.13 33.0

Typeface shape 4.85 1.72 1.48 8.22 2.82 33.0 5.20

Age 30.98 6.43 18.37 43.59 4.82 33.0 408.44

Typeface shape × Age 0.71 3.44 −6.03 7.45 0.21 33.0 0.29

4B Number of regressive saccades

ICC = 0.587, LRT(2) = 0.412, p = 0.814, BF for the full model = 0.02

Intercept 86.48 7.94 70.93 102.0 10.90 33.0

Typeface shape 1.74 4.54 −7.16 10.6 0.38 207.6 0.18

Age 8.47 15.87 −22.64 39.6 0.53 33.0 0.43

Typeface shape × Age −2.55 9.08 −20.35 15.3 −0.28 207.6 0.22

5A Text comprehension

ICC = 0.135, LRT(2) = 10.00, p = 0.007, BF for the full model = 0.13

Intercept 0.87 0.03 0.82 0.92 32.66 35.2

Typeface shape −0.09 0.04 −0.17 −0.00 −2.02 53.2 0.85

Age −0.09 0.05 −0.20 0.01 −1.76 35.2 0.67

Typeface shape × Age 0.00 0.08 −0.16 0.17 0.05 53.2 0.23

5B Text memorisation

ICC = 0.072, LRT(2) = 0.53, p = 0.764, BF for the full model = 0.02

Intercept 2.62 0.04 2.53 2.70 62.28 33.3

Typeface shape −0.09 0.07 −0.22 0.04 −1.33 123.6 0.28

Age −0.08 0.08 −0.25 0.08 −0.97 33.3 0.28

Typeface shape × Age −0.05 0.13 −0.32 0.21 −0.40 123.6 0.23

Corr. figure = corresponding figure number. LRT shows whether including the random slope in the model (i.e., random effect of typeface shape on the outcome variable, in other words the 
variability of the typeface shape effect across participants) improves the fit of the model, with all other model parameters held constant. BF shows the Bayes factors for the tested models with fixed 
effects and random effects (random slopes and intercepts) against the reference models with random effects only. BF larger than 1 indicates that the model with fixed effects was preferred, that is 
that the examined fixed effect was present, and BF smaller than 1 indicates that the model with random effects only was preferred, i.e., that no notable fixed effect was present.
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than 1 indicate evidence for the reference model without fixed effects. 
In Table 1, we see that our data show very strong evidence for the 
effect of typeface shape on the pleasantness ratings. The extremely 
high BF value for the effect of typeface shape indicates that the model 
with fixed and random effects was preferred to the model with only 
random effects.

Figure 3A shows the pleasantness ratings and Figure 3B shows the 
pupil size under different experimental conditions. Typeface shape, as 
already mentioned, affected the ratings of pleasantness. In general, 
readers rated round/rounded typefaces as more pleasant than the 
angular/pointed ones. No such effect of typeface shape was observed in 
the pupil size data. Pupil size was only slightly larger for round/rounded 
typefaces than for angular/pointed typefaces (Figure 3B). Pleasantness 
ratings and pupil sizes were relatively similar in children and adults.

3.2. Effect of typeface shape and age group 
on reading speed and number of regressive 
saccades

Our data showed no evidence of a fixed effect of typeface shape on 
the number of regressive saccades; however, there was moderate 
evidence that typeface shape affected reading time per character (see 
Table 1; Figure 4A). The round/rounded typefaces had lower reading 
time per character than the angular/pointed typefaces. Thus, we can 
confirm that round/rounded typefaces allow for more fluent reading 
than angular/pointed typefaces.

An interesting discovery was that there was no fixed effect of age on 
the number of regressive saccades (see Table 1; Figure 4B). However, 
there was strong evidence for the effect of age on reading time per 
character (see Table  1; Figure  4A). Children read more slowly 
than adults.

3.3. Effect of typeface shape and reader age 
on text comprehension and text 
memorisation

Figures 5A,B show comprehension and memorisation scores under 
different experimental conditions, respectively. The analysis revealed no 
fixed effects of typeface shape, age, or their interaction on text 
comprehension or memorisation beyond the random effects. The BF 
values were in favour of the models with only random effects.

FIGURE 2

The relationship between pupil size and pleasantness ratings in different participants.

A

B

FIGURE 3

Effect of typeface shape and age group on measures of emotional 
response during reading: (A) Typeface pleasantness ratings and 
(B) pupil size. 95% confidence interval for means in different 
experimental conditions are shown. The same note also applies to 
Figures 4, 5.
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4. Discussion with conclusion

The aim of our study was to (i) determine how the shape of the 
typeface (round/rounded vs. angular/pointed) affects the feelings of 
pleasantness of the typeface and pupil size, reading fluency (reading 
speed and number of regressive saccades), and reading performance 
(text comprehension and memorisation), and to (ii) examine whether 
the effect of the shape of the typeface is the same for younger (less 
experienced) and older (more experienced) readers.

With regard to the second aim of our study, the absence of the 
interaction between age and typeface shape in all models tested showed 
that the effect of the shape of the typeface was the same for both age 
groups. With regard to the first aim of our study, we can conclude that 
the only notable fixed effects were the main effect of typeface shape on 
pleasantness ratings and reading speed and the main effect of age on 
reading speed. Other measures were better explained by the regression 
model which included only random intercepts and slopes. There was a 
great deal of variability in the measures examined between participants, 
either in their average level of the measures or in the effect of typeface 
shape on the measures.

4.1. Effect of typeface shape on examined 
parameters of reading

The pleasantness of the typeface was tested with a hedonic scale in 
which readers rated how pleasant they found the typeface. Both children 
and adults found round/rounded typefaces more pleasing than angular/
pointed typefaces (see Table 1; Figure 3A).

The effect of different typeface shape on subjective experience was 
also tested by measuring pupil size while reading different typefaces. The 

measured pupil size was slightly larger when reading round/rounded 
typefaces (this can also be seen in Figure 3B), which was also perceived 
as more pleasant by the readers. The rated typeface pleasantness 
correlated with pupil size (see Figure 2), supporting the assumption that 
the shape of the typeface influences the reader’s emotional experience 
(Hess and Polt, 1960; Margareth et al., 2008; Wang et al., 2018). However, 
only the fixed effect of typeface shape on pleasantness ratings was 
convincing, whereas the effect of the typeface shape on pupil size was 
less remarkable. The analysis indicated that small differences in pupil 
size when reading round/rounded and angular/pointed typefaces could 
be a consequence of interindividual differences and could be attributed 
to random effects, i.e., to individual differences in pupil size and 
interindividual variability in the effect of typeface shape on pupil size. 
The fact that the effect of typeface shape on pupil size was smaller than 
effect of typeface shape on pleasantness ratings might indicate that 
factors other than the reader’s emotional response, e.g., surprise 
(Preuschoff et al., 2011) or cognitive load (Gavas et al., 2018), influenced 
pupil size, although we tried to control for cognitive load by selecting 
texts with homogeneous difficulty.

We found that the shape of the typeface had an effect on one of 
the measures of reading fluency, i.e., reading speed. Readers read 
round/rounded typefaces faster than angular/pointed typefaces (see 
Table 1; Figure 4B). Typeface shape did not show notable effects on 
other measures of reading fluency and reading performance 
measures. It is possible that our comprehension and memory tests 
were not discriminative enough to detect differences between the 
two typeface shapes. Future studies should use psychometrically 
validated measures of memorisation (and comprehension) for the 
texts used in the study.

Based on the results of our study, we can conclude that the shape of 
the typeface can influence reading speed and feelings of pleasantness 
while reading. Round/rounded typeface shapes may be perceived as 

A

B

FIGURE 4

Effect of typeface shape and age group on measures of reading 
fluency: (A) Reading time per character and (B) number of regressive 
saccades.

A

B

FIGURE 5

Effect of typeface shape and age group on reading performance 
measures: (A) Comprehension and (B) memorisation score.
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more pleasant than angular/pointed shapes. Round/rounded typefaces 
also support reading fluency and allow readers to read faster.

4.2. Differences between age groups

Reading time varied by reader age – as expected, children read more 
slowly than adults, who tend to be  more experienced readers (see 
Table 1; Figure 4B).

A somewhat surprising result was that the number of regressive 
saccades during the reading was not affected by age; that is, children did 
not have, on average, a higher number of regressive saccades than adults, 
as would be  expected given their reading experience (see Table  1; 
Figure 4A). There were also no major differences between children and 
adults in text comprehension and memorisation. This can probably 
be explained by the fact that the texts used were not complex; they were 
easy to read and could be processed easily by both age groups. Future 
studies should examine how different reading parameters change with 
increasing text difficulty and whether age interacts with text difficulty in 
predicting reading performance and emotional and physiological 
responses during reading.

4.3. Limitations

Our study had several limitations. Even though we used texts of 
comparable difficulty, factors other than typeface shape may have 
influenced the results.

First, different participants might have responded differently to 
different texts. Their emotional response might depend on their specific 
interests (e.g., adults might respond differently to descriptions of 
animals than children). This could have increased the between-subject 
variability of the data.

Second, the typefaces we used differed in some characteristics that 
could affect reading parameters, such as typographic tonal density and 
overall character size: for example, we controlled for the x-height, but 
the different typefaces had different sizes of ascenders and descenders. 
As a result, the whiteness in the ascenders and descenders of the 
different typefaces was different, resulting in different line spacing, even 
though the leading was set to the same size (e.g., to 140%). Because of 
the different whiteness in ascenders and descenders, and because of the 
different counter shapes of the letters of different typefaces, the 
typographic tonal density value of texts in different typefaces will always 
be different, even if we unified the size of the x-height. Previous studies 
(Franken et al., 2015; Pušnik et al., 2016) have shown that factors such 
as these can affect reading speed and letter recognition. Future studies 
should investigate how manipulating a single feature of the typeface 
(e.g., only the shape of the strokes, while controlling for all other 
features, if possible) affects reading.

Third, the COVID-19 pandemic made it difficult to include larger 
samples, and the power of our complex statistical tests was low. Future 
studies should include larger samples.

Nevertheless, we  believe that our results, although they should 
be  considered preliminary, are quite informative because different 
measures of text processing were used, and although the fixed effects 
studied did not appear to be salient, all results pointed in the same 
direction – reading was more pleasant and fluent, and reading 
performance was minimally better with round/rounded typefaces 
compared to angular/pointed ones. Further studies will need to 

be conducted to provide more evidence, but our results suggest that it is 
important to consider typeface shape when examining reading or 
comparing findings from different studies.

4.4. Conclusion

Based on the results of our study, the use of round/rounded 
typefaces is recommended for the design of educational materials 
because readers or learners experience more pleasant feelings when 
reading than with angular/pointed typefaces. Using round/rounded 
typefaces also allows learners to read faster, which can have a positive 
impact on the learning process. The effect of typeface shape was similar 
in primary school pupils and university students, showing that the effect 
of typeface shape can be generalised across ages for simple texts. The 
typefaces with round/rounded shapes could be recommended for the 
design of educational materials used on the screen of a digital device for 
less experienced and more experienced readers. Such typefaces could 
make the learning process easier and more enjoyable.
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Objective: Naming speed, behaviorally measured via the serial Rapid automatized

naming (RAN) test, is one of the most examined underlying cognitive factors of

reading development and reading difficulties (RD). However, the unconstrained-

reading format of serial RAN has made it challenging for traditional EEG analysis

methods to extract neural components for studying the neural underpinnings of

naming speed. The present study aims to explore a novel approach to isolate

neural components during the serial RAN task that are (a) informative of group

differences between children with dyslexia (DYS) and chronological age controls

(CAC), (b) improve the power of analysis, and (c) are suitable for deciphering the

neural underpinnings of naming speed.

Methods: We propose a novel machine-learning-based algorithm that extracts

spatiotemporal neural components during serial RAN, termed RAN-related

neural-congruency components. We demonstrate our approach on EEG and

eye-tracking recordings from 60 children (30 DYS and 30 CAC), under

phonologically or visually similar, and dissimilar control tasks.

Results: Results reveal significant differences in the RAN-related neural-

congruency components between DYS and CAC groups in all four conditions.

Conclusion: Rapid automatized naming-related neural-congruency components

capture the neural activity of cognitive processes associated with naming speed

and are informative of group differences between children with dyslexia and

typically developing children.

Significance: We propose the resulting RAN-related neural-components as

a methodological framework to facilitate studying the neural underpinnings

of naming speed and their association with reading performance and

related difficulties.

KEYWORDS

EEG, fixation-related potential (FRP), neural-congruency, machine learning, dyslexia,
rapid automatized naming (RAN), RAN-related neural-congruency, eyetracking
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1. Introduction

Rapid Automatized Naming (RAN), broadly defined as the
ability to name as fast as possible visually presented stimuli
such as colors, objects, digits, and letters (Kirby et al., 2010),
is one of the most examined underlying cognitive factors of
reading development and reading difficulties (RD). Indeed, since
the original work by Denckla (1972), there has been an ongoing
effort to explain the rather complex relationship between RAN
and reading (e.g., Kirby et al., 2010; Araújo et al., 2015) across
different ages (e.g., Landerl and Wimmer, 2008; Moll et al., 2009)
and ability (e.g., Wolf and Bowers, 1999; Papadopoulos et al.,
2009a; Torppa et al., 2013) groups and languages (e.g., Georgiou
et al., 2012; Moll et al., 2014; Papadopoulos et al., 2021), focusing
on group and individual differences. This effort has been based
on behavioral/cognitive and neuroimaging data evidence. With
regard to the former, two research approaches have been used, a
componential (e.g., Georgiou et al., 2014) and a correlational (e.g.,
Papadopoulos et al., 2016) approach. With regard to the latter,
data derived from fMRI studies (e.g., Cummine et al., 2015; Al
Dahhan et al., 2020), electroencephalography (EEG) methods (e.g.,
Bakos et al., 2020) or more recently Fixation-Related Potentials
(FRPs; e.g., Christoforou et al., 2021a). Although the evidence
shows that RAN predicts reading performance and that RAN
taps into universal cognitive mechanisms involved in reading
(Papadopoulos et al., 2021), little is known about which neural
components of RAN could better distinguish children with reading
difficulties from typically developing peers. Thus, the present
study aims to take this research line further: to produce and test
methods that isolate the most informative neural components for
RAN, suitable for deciphering group or individual differences in
naming speed.

Based on correlational data, behavioral or cognitive research
has repeatedly confirmed that RAN relates to reading because both
tasks require serial processing and lexical access (e.g., Georgiou
et al., 2013; Logan and Schatschneider, 2014). Also, it has been
shown that RAN exerts direct effects on reading fluency only when
oral reading fluency is the outcome measure (Georgiou et al., 2013;
van den Boer et al., 2014; Papadopoulos et al., 2016), suggesting
that articulation is essential for the RAN-reading relationship.
Correlational research has also concluded that universal cognitive
mechanisms such as working memory, attention, and processing
speed are distal “common cause” processes to the RAN-reading
relationship (Papadopoulos et al., 2016). Indeed, it is well-
established that processing speed partly mediates the RAN-reading
relationship (e.g., Bowey et al., 2005; Georgiou et al., 2012; Liao
et al., 2015). Also, working memory is necessary because of the
effortful nature of cognitive control required to perform naming
speed tasks successfully, as it also occurs with word reading
(Jacobson et al., 2011) or reading comprehension (e.g., Leong
et al., 2008; Kendeou et al., 2012). Likewise, for serial processing
to occur successfully, attention must be disengaged from naming
a current item and directed to the next (Altani et al., 2017).
Recent studies using eye-tracking methodology have verified the
influential role of attention on RAN performance (e.g., Jones et al.,
2009; Kuperman et al., 2016). Finally, evidence shows that speech
production planning processes are also involved before articulation
(e.g., Araújo et al., 2021).

These findings are further validated through research
examining the unique contribution of articulation and pause
time and what these components share with cognitive mechanisms
such as the above. Since oral reading fluency and rapid naming
require articulation alongside processing speed, the unique
contribution of articulation time is justified (Georgiou et al., 2012).
In turn, attention shifting, required as the participants move from
one stimulus to another in a short time, is encapsulated in pause
time (Wolf and Bowers, 1999; Georgiou et al., 2014), providing
quick access to phonological codes or semantics in long-term
memory (Rijthoven et al., 2018). Developmental data corroborate
this evidence, as the contribution of pause time for typical readers
decreases with time as they rely on larger orthographic units to
read fluently (e.g., Georgiou et al., 2014). In contrast, pause time
continues to explain significant variance in children with reading
difficulties because of the deficits in accessing phonological codes
experienced by this ability group (Ziegler et al., 2003; Araújo
et al., 2011). Likewise, other processes have also been investigated,
including multi-element sequence processing, coordinating rapid
serial eye movements, and speech production planning processes of
successive items (e.g., Gordon and Hoedemaker, 2016; Henry et al.,
2018). However, studying these dimensions of the RAN-reading
relationship was beyond the scope of the present paper to further
explore their contribution.

Neurocognitive research has verified such findings with adults
or typically developing and same-age poor readers, based on
neuroimaging data. For example, Cummine et al. (2015), using
functional magnetic resonance imaging (fMRI) with an adult group
of typical readers, reported that RAN and reading rely on highly
similar neural regions and that the RAN–reading relationship
is driven by motor/serial processing. Likewise, Al Dahhan et al.
(2020), using fMRI and eye-tracking methods, concluded that
compared to typically achieving readers, readers with reading
difficulties performed poorer in naming speed tasks. They had more
extended articulation and pause times, longer fixation durations,
and more regressions, resulting in decreased performance. This
deficient processing was also reflected in greater bilateral activation
and recruited additional regions involved with memory, namely
the amygdala and hippocampus. Moreover, when the RAN-letter
stimuli were visually or phonologically similar, adult readers
showed higher activation in the amygdala and hippocampus,
irrespective of their group (dyslexics vs. controls).

Furthermore, studies using eye-tracking (e.g., Easson et al.,
2020) or electroencephalography (EEG) methods (e.g., Bakos et al.,
2020) have provided additional evidence. Their results have focused
on the RAN’s constituent components or the neurophysiological
differences between children with reading difficulties and typically
developing readers. For example, Easson et al. (2020) revealed
significant contributions of fixation duration and saccade count to
the prediction of naming speed performance. In addition, Bakos
et al. (2020) showed that EEG activity differed between 10-year-olds
with reading difficulties and their counterparts at around 300 ms
after stimulus presentation. This difference was evident in the left-
occipital-temporal P2 component and was statistically significantly
correlated to RAN performance, albeit small r(72) = 0.24, p< 0.04.

More recently, Christoforou et al. (2021a,b) combined EEG
and eye-tracking recordings to examine the underlying factors
elicited during the serial Rapid-Automatized Naming (RAN) task
that may differentiate between children with reading difficulties
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and chronological age controls (CAC). In doing so, the authors
extracted fixation-related potentials (FRPs) under phonologically
similar (rime-confound) or visually similar (resembling lowercase
letters) and dissimilar (non-confounding and discrete uppercase
letters, respectively) RAN tasks. As a result, the authors reported
significant differences in FRP amplitudes between RD and
CAC groups under phonologically similar and non-confounding
conditions. These differences were evident in a cluster emerging
around 128–170 ms in the frontal and occipital channels and
between 80–160 ms for the rime-non-confusable and the rime-
confusable RAN-letter tasks, respectively. However, no differences
were observed in the case of the visual conditions. Moreover,
regression analysis showed that the average amplitude of the
extracted components significantly predicted RAN performance.

That research investigating the RAN-reading relationship
concludes that RAN is a proxy for reading because it exerts similar
processes to the neural reading system in the brain’s left hemisphere
is not a surprise. This system includes a ventral stream that
helps the reader recognize the words and their semantic meaning
(Norton and Wolf, 2012) and a dorsal stream which connects
sub-lexical phonological codes to orthographic representations
(Pugh et al., 2001; Price, 2012). Deficits with the processing of
grapheme-phoneme correspondence, in turn, are reflected in lower
activation in the dorsal stream. Likewise, automatic visual word
recognition deficits are reflected in lower activation in the ventral
occipital-temporal system (Richlan et al., 2011). Consequently,
when performing RAN tasks whose stimuli exhibit phonological or
visual similarities, this network tends to suffer more (Al Dahhan
et al., 2020; Christoforou et al., 2021a).

Despite these efforts to isolate the neural components for RAN,
the findings about the different brain regions identified do not tell
the complete story of the RAN-reading relationship. For example,
the evidence does not tell us why group or individual differences
exist or which are the most informative components that could
help replicate such findings with groups of different ages, varying
cognitive or linguistic abilities, or language. We argue that more
advanced methods are needed to isolate the most informative
components, explain group differences and improve the power of
analysis. FRPs, for example, can be used as markers of ability, but
we need more specific attributes to carry more information about
group differences.

In recent years, machine learning approaches are becoming
more prominent in analyzing EEG signals and studying
neurocognitive processes. Machine learning allows an algorithm
to isolate neural components that “optimally” characterize
group differences under different conditions; therefore having
the potential to detect more informative neural components than
traditional EEG analysis methods (i.e., average ERPs and traditional
frequency-band analysis). Several machine learning approaches
have been proposed to overcome the methodological constraints
of traditional EEG analysis methods. For example, single-trial
correlation analysis (Christoforou et al., 2013) was developed to
identify associations between continuous behavioral measures and
concurrent neuronal activity. It was applied to exploring the neural
underpinnings for the Stimulus Presentation Modality Effects in
Traumatic-Brain-Injury treatment protocols. In the context of
spatial cognition, a Common Spatial Pattern (CSP)-based single-
trial analysis algorithm was proposed (Christoforou et al., 2018) to
disambiguate the neural basis of two spatial-cognition processes,

namely Perspective Taking and Mental Rotation. Machine-
learning-based algorithms have been also proposed for decoding
neural activity during complex interactions, such as consuming
video and music context, toward studying user’s preferences
and affective state (Dmochowski et al., 2012; Christoforou et al.,
2017; Christoforou and Theodorou, 2021), as well as in other
decision making (Philiastides and Sajda, 2005). In the context
of reading and reading disorders, machine learning algorithms
were proposed for detecting informative neural components
during performing a phoneme elision task (Christoforou et al.,
2022a,b), and classifying dyslexic from non-dyslexic participants
during resting EEG (Rezvani et al., 2019). However, most of the
proposed machine-learning approaches assume some prior domain
knowledge of the spatial and temporal characteristics of the sought
EEG components. They also require experimenter-controlled
time-locked events (i.e., stimulus onset), and are typically limited
to within-participant comparisons because of the large inter-
subject variability in the EEG signals (Christoforou et al., 2010).
These methodological requirements do not hold in the case of
the serial RAN task which makes their direct application to RAN
ineffective.

In the present study, we explore a novel machine-learning-
based approach to isolate neural components informative of group
differences between children with dyslexia and controls during
the serial RAN. Our approach overcomes many methodological
challenges of traditional methods which enable us to extract
differential spatiotemporal profiles of neural components among
children with dyslexia and controls during RAN and in the
absence of experimenter-controlled time-locked events. Our
method first formulates an optimization problem for extracting
EEG components based on the Neural-congruency hypothesis.
This relates to the premise that neural activity elicited during a
cognitive task is similar (i.e., congruent) among participants that
have mastered the task but less congruent otherwise (Christoforou
et al., 2021b; Christoforou and Theodorou, 2021). Subsequently,
our approach optimally combines the resulting components to
identify neural differences between children with dyslexia and
controls. We demonstrate the ability of our approach to extract
informative neural components on a real EEG dataset involving
children with dyslexia and controls of ages 9 and 12 (i.e., 3rd
and 6th grade). Moreover, we examine the predictive power
of the resulting components under a set of phonological and
visual confounding RAN tasks. Importantly, our proposed analysis
approach serves as a novel methodological framework for studying
the neural underpinnings of cognitive processing in children under
the serial RAN, on which traditional analysis methods have proven
inadequate.

2. Materials and methods

2.1. Experimental task and data collection

The data we used in this study were collected as part of a
broader project aiming to identify the neural underpinnings of
dyslexia in children. In this section, we briefly describe the key
parameters of the RAN experimental task and the data collection
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procedure relevant to our analysis; we refer to Christoforou et al.
(2021a) for full details on the data collection apparatus.

2.1.1. Participants
Participants were recruited from Grades 3 and 6 from inner-

city public elementary schools in Cyprus. A total of 60 children
(36 boys, 24 girls, age range = 7.6 through 12.1 years) participated
in the study; all children were native Greek speakers. Two groups
were formed from this sample: a group of children with dyslexia
(DYS) and a chronological-age control group (CAC), based on a
stepwise group selection process (see Christoforou et al., 2021a)
using a lenient cutoff threshold on their reading fluency scores.
Particularly, thirty Grade 3 and Grade 6 children (19 males; mean
age = 9.6, SD = 1.5) who scored at least one standard deviation
below their respective age group mean on the reading fluency
tasks (word reading fluency and nonword reading fluency; ERS-
AB; Papadopoulos et al., 2009c) and within the average range
on verbal (Vocabulary Wechsler Intelligence Scale for Children—
Third Edition; Greek standardization: Georgas et al., 1997) and
non-verbal ability tasks (Nonverbal Matrices from the Cognitive
Assessment System; Niglieri and DAS, 1997; Greek standardization:
Papadopoulos et al., 2009b) were included in the DYS group.
Another group of 30 children (17 males; mean age = 9.92 years,
SD = 1.62) were randomly chosen from the same classes and
were matched to the DYS group on chronological age and gender.
Groups did not differ in age, F(1,58) = 0.22, ns, gender, χ2
(1, N = 60) = 0.28, ns, and the verbal and non-verbal ability
measures, Wilks λ = 0.98, F(2,57) = 0.70, ns. Parental consent
and school consent were obtained before to each assessment.
The study was carried out per the Cyprus National Bioethics
Committee recommendations (EEBK/EP/2011/10). It also received
approval from the Ministry of Education and Culture, Cyprus
(#7.15.01.27/17).

2.1.2. Serial RAN task
A computerized version of the serial Rapid Automatized

Naming task was adapted from the work of Jones et al. (2008)
to allow for simultaneous recordings of EEG and eye-tracking
measurements during the experiment. The RAN task comprises
four letter-matrix stimuli each encapsulating one of four conditions
that differed by the degree of visual and phonological confusability
among letters. In particular, the conditions encoded by the
stimuli were rime-confusable (Condition 1), rime non-confusable
(Condition 2), visual confusable (Condition 3) and visual-non-
confusable (Condition 4). In the rime-confusable condition, pairs
of letters that are phonologically confusable in the Greek alphabet
(i.e., β-θ, ε-υ; beta-theta, epsilon-upsilon) were presented adjoining
each other. In the rime non-confusable conditions, the pairs were
disjoined (i.e., β–ε, β–υ, θ–ε, θ–υ, beta-epsilon, beta-upsilon, theta-
epsilon, theta-upsilon). In the visual-confusable condition, pairs of
letters that are visually confusable in the Greek alphabet (i.e., ζ-ξ , ρ-
ϕ; zeta-xi, rho-phi), were presented adjoining each other. The visual
similarity was removed in the visual-non-confusable condition by
using the corresponding capital form of the letters (i.e., Z-4, P-
8). Each letter-matrix stimulus was organized in five rows and ten
columns. Participants were shown the corresponding letter-matrix
for each condition and asked to name each letter aloud, reading
from left to right and from top to bottom, as fast and as accurately

as possible. Before each conditioned stimulus, a fixation cross was
displayed on the screen to prime participants to focus their eye-gaze
at the center. The experimenter monitored the participants during
the experiment and pressed the SPACE bar button the moment
the participants name aloud the last letter of the letter-matrix. The
experimenter also controlled the transition from one condition to
the other. A schematic representation of the experimental task and
example stimuli is shown in Figure 1.

2.1.3. EEG and eye-tracking data collection
during RAN

All participants had to perform the serial RAN task while
simultaneous eye-tracking and EEG measurements were collected
during the session. Eye-tracking data were collected using the
EyeLink 1000 Plus eye-tracker (SR Research, Kanata, ON, Canada)
at a 1,000 Hz sampling rate. Eye fixations and saccade events
were automatically detected and recorded by the EyeLink parser
along with the raw gaze data. The stimuli were presented on a
Dell Precision T5500 workstation with an ASUS VG-236 monitor
(1,920 × 1,080, 120 Hz, 52 × 29 cm) at a viewing distance
of 60 cm. A chin rest was used to maintain the participant’s
head proper positioning and to improve measurement stability.
A nine-point calibration session was performed prior to experiment
to establish a correct mapping to screen coordinates. EEG data
were collected using a BioSemi Active-two system (BioSemi,
Amsterdam, Netherlands) at a sampling rate of 256 Hz. Before
to the experimental session, a 64-electrode cap was fitted to the
participants, following the 10/20 system. The DC offset of all
sensors was kept below 20 mV using electro gel. To align the
stimulus presentation time to the EEG and eye-tracking signal
streams, event markers were sent to each device at the beginning
and ending of each condition. Specifically, the event markers
were sent to the trigger channel of the EEG amplifier via parallel
port TTL signals and to the eye-tracking recorder via direct
ethernet event logs. Eye-tracking data were collected for each
participant in a separate data files; specifically an EDF file format
(default of the eye-link trackers), and the EEG data in a BDF
file format.

2.2. EEG and eye-tracking data
pre-processing

2.2.1. EEG data pre-processing
All EEG data preprocessing was implemented using custom

python code and the MNE python library. Preprocessing of
the EEG signals was performed separately on the recordings of
each participant. First the raw, continuous EEG data and the
corresponding trigger channel were loaded from the data file
(i.e., BDF data format file) using MNE library functions. Once
loaded, all EEG data channels were re-referenced to the average
channel. A 0.5 Hz high pass filter was used to remove DC drifts
and a notch filter at 50 Hz and 100 HZ was used to reduce
the power-line noise interferences. Markers in the EEG trigger
channel were used to identify the timestamp of the beginning
and end of each stimulus trial (i.e., each condition). Four EEG
sub-segments were generated for each condition, each segment
spanning 2 s before each stimulus onset to 2 s after the trial
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FIGURE 1

(Top) The four letter-matrix stimuli used in the serial RAN encapsulating the four experimental conditions, Rime-confusable (top-left),
Rime-non-confusable (bottom-left), Visual-confusable (top-right), and Visual-non-confusable (bottom-right). (Bottom) Schematic representation
of the serial-RAN trials, repeated for each one of the letter-matrix stimuli.

conclusion (i.e., after the participant finished reading all letters in
the letter-matrix). The baseline amplitude of each segment (i.e.,
activity from −200 ms to zero) was subtracted from each segment.
After basic EEG pre-processing, we have an EEG segment EEGp,c
for each participant p and condition c, each representing the entire
EEG recording of that participant reading the entire letter-matrix
of that conditions. It is important to note that the duration of
each EEG segment varies from condition-to-condition and from
participant to participant, as each participant took a different time
to complete the reading of each matrix.

2.2.2. Eye-tracking data preprocessing
Preprocessing of the eye-tracking data was also performed

separately for each participant. The eye-fixation data and the
corresponding event logs were loaded using the PyGaze Analyzer
python library. Information on the event logs was used to
determine the timestamp of the beginning and ending of each
stimulus trial. Each eye-fixation data point comprised an absolute
timestamp, the x-y screen coordinates of the fixation and durations
in milliseconds. The set of eye-fixation points was grouped into
four subsets, one for each of the four conditions. Each fixations
subset comprised those fixations whose timestamp fell within the
time window spanning the beginning and end of the stimulus
presentation of that condition. The timestamp of the stimulus

onset event of each condition (as recorded in the eye-tracking
data) was subtracted from the timestamp of each fixation within
that condition’s fixation subset to achieve temporal alignment
between the fixation data to the EEG data. Therefore, each fixation’s
timestamp is now relative to the onset of the stimulus.

2.3. Generating single-trial
fixation-related potentials

A particular challenge in analyzing EEG signals obtained
during the serial RAN is the lack of experimenter-controlled,
time-locked trials necessary to extract Event-related Potentials.
As such, we opted to explore the neural activity time-locked to
the onset of eye fixations; this activity is referred to as single-
trial Fixation-related Potential (sFRP). To extract the sFRP, we
integrate information from eye-tracking and EEG measurements.
In particular, the onset of each eye-fixation’s timestamp in the
dataset is used as a temporal marker to epoch the EEG segments.
More precisely, given an EEG data segment EEGp,c (i.e., the
segment generated during the EEG pre-processing step above,
which represents the EEG response of participant p while reading
the entire letter-matrix of condition c), and given the corresponding
set of fixations FIXp,c, we epoch the EEGp,c between −200 ms
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to 500 ms of the onset time of each f ∈ FIXp,c and subtract the
baseline amplitude of each epoch. This procedure results in a new
set defined as

FRPp,c = {sFRPi}
|FIXp,c|
i=1

where sFRPi corresponds to the EEG epoch on the onset time of
the i-th fixation of FIXp,c. We note that the two sets have the same
cardinality. The generation of all sFRPs was implemented using
custom python code.

2.4. Reading-related neural-congruency
components

Our objective was to isolate neural components in the extracted
fixation-related potentials that were likely modulated by RAN tasks
and were informative of differences between CAC and DYS. Our
approach was motivated by the hypothesis that the neural activity
of participants that have developed adequate reading skills would
exhibit neural activation patterns congruent with other participants
with adequately developed reading skills. While contrarily,
participants who experienced reading difficulties would have neural
responses that deviated from such stereotypical patterns. Toward
this objective, we formulated an optimization procedure to isolate
neural components congruent among participants with sufficiently
developed reading skills and explore those components as potential
differentiation neuro-markers between CAC and DYS. Here, we
provide details of our approach to isolate such reading-related
neural-congruency components.

We seek to identify components (i.e., spatial projections of
the fixation-related potential) that capture neural activity that
maximally correlates among a group of children with adequately
developed reading skills (i.e., CAC group). For this, we formulate
an optimization problem as follows: for a group of S participants,
S = {s1, s2, . . . , sS} , where si ∈ Z+denotes a participants index,
representing a CAC group, we define the between-subject and
within-subject cross-covariance matrices was :

Rb =
1

S(S− 1)

∑
i∈S

∑
j∈S

(
1− δij

)
Rij

Rw =
1
S

∑
i∈S

Rii

where
Rij =

1
K
XiXT

j

where K is a normalizing scalar, δij is the Kronecker delta 1, and
Xs ∈ RD × S.F is the horizontally concatenated matrix comprised
of the fixation-related potential of a participant s during a given
condition (i.e., reading of a letter-matrix stimulus), defined as:

Xs = [ sFRP1, sFRP2, sFRP3, . . . , sFRPF]

For a spatial projection vector w ∈ RD, the average Pearson
Product Moment Correlation Coefficient between the fixation-
related potentials, projected onto vector w, across every pair of

1 Kronecker delta is defined as: δij = 1 if i = j; delta δij = 0 if delta i 6= j

participants in the group is then defined as:

ρ =
wTRbw
(wTRww)

We consider ρ as a measure of the degree of congruency
in reading-related neural activity (projected onto component w)
among participants with adequately developed reading skills. As
such, we seek to find the component w that maximized ρ. Taking
the derivative of ρ with respect to w and setting it to zero, we get
the solution of the optimization given as the eigenvectors to the
generalized eigenvalue problem:(

R−1
w Rb

)
wk = λkwk (1)

where wk is the k-th eigenvector of the matrix
(
R−1
w Rb

)
and

corresponds to the component (i.e., spatial projection vector)
that captures the k-th largest correlation in neural activity, and
λk is the corresponding eigenvalue and denotes the strength
of the correlation. We note that since

(
R−1
w Rb

)
is a D × D

matrix (D being the number of channels), there are D solutions
to the optimization problem (i.e. the D eigenvectors), each
identifying a component at different correlation strength, with
the first eigenvector (i.e., k = 1) having the strongest correlation,
and subsequent components appearing in descending order of
correlation strength. As such, the vector w1defines a component
(spatial projection) where neural activity is most strongly correlated
among participants in the adequately developed reading skills, w2
defines the component where neural-activity exhibits the second
strongest correlation among the groups, and so on.

To determine the reading-related neural-congruency (RRNC)
score of an individual participant s with respect to the kth
component, we measure the correlation between the fixation-
related potentials of the subject to the fixation-related potentials of
each subject in the group, after projecting both onto the component
wk. Formally, we define the reading-related neural congruency
score for a participant s and a component wk as:

RRNCs,k =
wT
kR

b
swk

wT
kR

b
swk

where

Rb
s =

1
S

∑
i∈S

Rsi + Ris, Rw
s =

1
S

∑
i∈S

Rss + Rii,

We calculate RRNC scores separately for each condition (i.e.,
Rime-confound, Rime-non-confound, Visual-confound, Visual-
non-confound). Moreover, to avoid training bias during the
component extractions, data from the subject to be tested were
excluded from the component extractions step. Finally, we define
the neural-congruency feature vector of each participant s as:

cs =
[
RRNCs,1,RRNCs,2, . . .RRNCs,K

]T (2)

Each RRNCs,k score measures the strength of the congruency
in neural activity between participant s and the CAC group, with
respect to the k-th component. Therefore, the neural-congruency
feature vector cs encapsulates the neural-congruency of participant
s, across all K components. In essence, the feature vector cs
characterizes the overall congruency observed in the participant’s
neural activity for each extracted component. We note that the
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FIGURE 2

Box-plot showing the distribution of the Cumulative RAN-related Neural Congruency scores for each experiment condition, and each group.

dimensions of the vector cs are indexed in descending order,
according to the lambda score of each extracted component.

2.5. Aggregation of RAN-related
neural-congruency components

Our goal was to explore whether information captured in the
feature vector of neural-congruency components cs is predictive
of differentiating between DYS and CAC groups during the RAN
task. Toward this objective, we considered two approaches for
aggregating the RRNC scores into determining markers of dyslexia.
The two approaches are detailed below.

2.5.1. Cumulative RAN-related
neural-congruency metric

The first approach defines a neural metric by simply summing
the RRNC score corresponding to the first K̂ components in
the neural-congruency feature vector (i.e., those with the highest

variance). Formally, given a feature vector cs of a participant s (as
defined in eq. 2), we define the Cumulative RAN-related Neural-
congruency metric (C-RRNN) as follows:

C − RRNNs =

K̂∑
k = 1

cs(k)

where the index k denotes the k-th element of the vector. The
value of K̂ = 3 was selected by identifying the ‘knee’ in the plot of
eigenvalues of equation 1, and was fixed across the calculation of
C-RRNN of all participants.

2.5.2. LASSO-weighted RAN-related
neural-congruency metric

The second approach learns a classifier that optimally
weights the contribution of each of the identified neural
congruency components to best differentiate between typically
developing children and children with dyslexia. In particular,
we employed a sparse Logistic Regression classifier with LASSO
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regularization, using the K = 10 components with the highest
lambda values as independent variables, and an individual’s
group (DYS or CAC) as the dependent variable. We opted
to use a sparse classifier because it minimizes the number of
non-zero parameters, thus, favoring selecting a small subset
of meaningful neural-congruency components. The classifier’s
prediction output corresponds to an optimally weighted-sum
of the individual neural-congruency scores that maximizes the
differentiation between DYS and CAC. Moreover, since the optimal
weights are calculated using the LASSO regularizations, we refer
to the resulting prediction score as LASSO-weighed RAN-related
Neural-congruency metric. In our analysis, a separate classifier was
trained on each of the four conditions (i.e., Rime-confusable; Rime
Non-confusable; Visual-confusable; Visual Non-confusable) using
a leave-one-participant-out cross-validation procedure to avoid
training biases.

2.6. Spatiotemporal profiles of
RAN-related neural-congruency

Given the solutions to the generalized eigenvalue problem,
the temporal profile of each component was calculated as the
product of each component ŵk, with each single-trial response and
taking the grant-average response of the projected components.
Moreover, the topographical profile (i.e., the forward model) of
each component was calculated as follows:

ak =
Rwŵk

ŵT
kRwŵk

The forward model captures the covariance between each
component’s activity as measured by each electrode.

2.7. Statistical analysis

To avoid training bias, all model parameters, including the
extracted neural-congruency components and classifier weights,
are trained using a leave-one-participant-out cross-validation
procedure. The classifier’s generalization performance is calculated
as the area under the Receiver Operator Characteristic curve (AUC)
on cross-validated scores. A permutation test is used to determine
statistical significance levels over AUC scores (10,000 repetitions).
A two-way ANOVA was used for group and grade comparisons,
with the neural congruency metrics as the dependent variable.

3. Results

3.1. Group comparisons using the
RAN-related neural-congruency metrics

For each participant, Cumulative Neural-Congruency scores
were calculated as the sum of the three components with the
highest lambda values, corresponding to the components whose
projection has the highest correlation. To avoid training biases
during the neural-congruency component identification, data from

the participant for whom the Neural-Congruency score was to be
calculated was excluded from the component identification step.
Neural-Congruency scores were obtained and analyzed separately
for each of the four conditions (i.e., Rime-confusable; Rime
Non-confusable; Visual-confusable; Visual Non-confusable). For
each condition, a separate two-way ANOVA was performed to
analyze the effect of group (i.e., CAC vs. DYS) and grade (grade
3 vs grade 6) on the Neural-Congruency scores. A two-way
ANOVA on Rime-confusable Cumulative RAN-related Neural-
Congruency scores shows a significant main effect of grade
(p < 0.04), with grade 6 group showing higher neural-congruency
than the grade 3 group. The analysis also releveled there was
not a significant interaction effect between the group and grade,
F(1,52) = 0.740, p = 0.39, nor a statistically significant effect for
group (p = 0.19). A two-way ANOVA on Rime non-confusable
Neural-Congruency scores revealed a significant main effect of
group (p < 0.01). Participants in the control group showed a
higher Cumulative RAN-Related Neural-Congruency scores than
the participants with dyslexia group. There was no main effect of
grade (p = 0.61), and there was no statistically significant effect
observed between group and grade F(1,52) = 1.67, p = 0.20.
On the Visual Confusable task, a two-way ANOVA revealed a
statistically significant interaction effect between the group and
grade F(1,52) = 4.22, p = 0.04. The analysis also revealed there
was not a statistically significant main effect of either the group
or the grade (p > 0.05). Finally, the Visual non-confusable task
revealed a main effect of the group (p < 0.01), with participants
in the control group showing a higher Neural-congruency scores
than the children with dyslexia group (DYS). No grade or
interaction effect between grade and groups were observed during
the Visual non-confusable. Figure 2, shows the box plots for
the four two-way ANOVA for each condition. Moreover, a two-
factor repeated measures ANOVA was performed to compare the
effect of modality condition (rime vs visual) and confusability
(confusable vs non-confusable). The analysis showed a statistically
significant difference in RAN-related Neural-Congruency scores
between modality conditions (p < 0.001) with the Rime modality
exhibiting higher scores.

3.2. Lasso-weighted RAN-related
neural-congruency as a significant
predictor of group differences across
conditions

We aimed to further explore the characteristics of the
underlying neural activity captured by the neural-congruency
components and determine the degree to which each neural-
congruency component contributes toward inferring an
individual’s group (i.e., DYS or CAC). We hypothesized
that a weighted aggregation of individual neural-congruency
components would carry predictive information about the
participant’s condition. We employed a sparse logistic regression
classifier using the ten components with the highest lambda values
as independent variables, and an individual’s group (DYS or CAC)
as the dependent variable. The classifier was modeled and trained
according to the procedure described in Section “2.5.2. LASSO-
weighted RAN-related neural-congruency metric.” The statistical
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significance levels over AUC scores were established using a
permutation test (10,000 repetitions). In all four conditions, the
cross-validated AUC scores of the classifiers show that the LASSO-
weighted RAN-related Neural-congruency metric predicted an
individual’s group. The prediction accuracy for all conditions,
the Rime-confusable condition (AUC = 0.86, p < 0.00001),
Rime Non-confusable condition (AUC = 0.86, p < 0.00001)
the Visual Non-confusable (AUC = 0.81, p < 0.00001), and the
Visual Confusable condition (AUC = 0.73, p < 0.005) was high
and statistically significant. The ROC curves and corresponding
AUC scores for each condition and the 95th-percentile envelop
of the ROC curve under the null-distribution are depicted in
Figure 3. The boxplot in Figure 4 shows the distribution of the
lasso-weighted RAN-related neural-congruency for each grade and
group and experimental condition.

3.3. Spatio-temporal profile of
neural-congruency components

The spatio-temporal profile of each RAN-related Neural
Congruency for all conditions is shown in Figure 5 and the
Supplementary material. Each spatio-temporal profile comprises
the “Forward model,” which shows the spatial distribution of
the correlated neural activity captured by the corresponding
component, and the temporal profile–the time course of the
FRP’s neural activity when projected onto that neural-congruency
component. Visual inspection of the temporal profile provides
insights into timeframe differences between groups and condition
intensify. Similarly, visual inspection of the forward model alludes
to potential brain areas from which the underlying neural
activity originated from. The weights associated with each channel
in the forward model capture the electrical coupling of the
correlated components. The components are ordered based on
their corresponding lambda scores, with component #1 reflecting
the highest lambda, and component #10 the smallest lambda value.
The LASSO-coefficients associated with each component are shown
over each component’s forward model and indicate the weight used
to aggregate the neural-congruency components.

3.4. Naming speed behavioral data
analysis

Analysis of the behavioral data obtained during the experiment
has been previously reported by Christoforou et al. (2021a) and
it is outside the scope of this papers. However, to provide the
context on our results on neurophysiological data, we include
a summary of the behavioral data analysis of this experiment.
A MANOVA analysis was performed on the behavioral data, with
the naming speed performance time for each of the four RAN
tasks as dependent measures and Group (2) as a fixed factor.
The main group effects was significant, Wilks’ Lambda = 0.754,
F(4,55) = 4.48, p < 0.01, η2 = 0.20. Subsequent univariate analyses
demonstrated that the group’s main effect was significant for all
individual measures after Bonferroni adjustments (Supplementary
Table 1). The DYS group performed significantly poorer than the
chronological age controls in all naming speed measures.

4. Discussion

Methodological difficulties in using traditional
neurophysiological techniques to investigate the neural
underpinning of dyslexia during serial RAN have hindered
the development of studies in that direction (Bakos et al., 2020;
Christoforou et al., 2021a). To help alleviate this problem,
we proposed a novel computational approach for identifying
neural components elicited during the serial RAN task. We
also explore the component’s contribution to characterizing the
underlying neural differences between children with dyslexia and
chronologically age controls in four experimental conditions.
Specifically, we formulated an optimization problem to extract
spatiotemporal components from EEG measures that maximize
the correlation between single-trial fixation-related potentials
during serial RAN. We treated RAN as an additional variable to
the diagnosis of reading difficulties, explaining the shared variance
of the disorder. Based on the resulting components, we defined the
per-subject neural-congruency scores that indicate the degree to
which each participant engaged in neural processes relevant to the
RAN task. Results show that the neural-congruency components
capture the neural activity of cognitive processes associated with
reading and are informative of group differences between children
with dyslexia and typically developing children. Moreover, our
results provide insights into the spatial and temporal characteristics
of the underlying mental process involved in the naming speed and
points to which potential neuro-cognitive mechanisms differentiate
between children with and without dyslexia. These findings are
robust given the careful matching of the participating groups
based on their verbal and non-verbal ability and demographic
variables. Furthermore, the study findings contribute to the
relevant research because previous evidence has overlooked the
contribution of neurophysiological measurements during serial
RAN tasks and their relation to behavioral measures (i.e., naming
speed) that together might explain reading performance and
related difficulties.

4.1. Differences between DYS and CAC in
the cumulative RAN-related
neural-congruency components

Regarding the contribution of the Cumulative RAN-related
neural-congruency components in differentiating between
children with and without dyslexia, the results revealed
significant differences between the groups in the both non-
confusable conditions (i.e., Rime non-confusable, and Visual
non-confusable). Specifically, on the one hand, cumulative RAN-
related neural-congruency scores in typically developing children
were significantly higher than their counterparts in the DYS
groups. This finding denotes an increase in the synchronicity in
neural activity in the CAC groups, which suggests that the CAC
group has developed a more consistent stereotypical response
in neural activations when engaging processes associated with
the execution of the serial RAN task. Breznitz and colleagues
(Breznitz, 2001, 2003; Breznitz and Misra, 2003) have proposed
the ‘synchronization hypothesis’ to describe this phenomenon.
According to this hypothesis, accurate information integration in
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FIGURE 3

Shows the ROC curves of the predictions based on the LASSO-weighted RAN-related Neural-congruency components. The gray area denotes the
ROC score under the null hypothesis (i.e., neural-congruency scores between DYS and CAC groups are indistinguishable). All four graphs show that
the LASSO-weighted RAN-related Neural-congruency scores carry significant predictive information as the condition (i.e., DYS or CAC) of the
participants.

decoding words can occur only when the modalities and brain
systems are synchronized. This synchronization, therefore, requires
that the processing speed and the accuracy with which content
information is processed and transferred within and between the
various activated neural systems are readily available. Our findings
further confirm this hypothesis that this synchronicity in neural
activity is evident in typically developing readers but to a lesser
degree in children with dyslexia.

Indeed, on the other hand, the consistency in the synchronicity
of the responses diminishes across the DYS groups, suggesting
a lack of regularity in the processing the letter stimuli in
the serial RAN. Visual inspection of the time course of the
three neural-congruency components used in calculating the
Cumulative RAN-related neural-congruency score suggests that
the difference in congruency appears between 100 ms–200 ms
following the fixation onset. The analysis also shows that the effect

that emerged in the non-confusable tasks is not present in the
confusable tasks (i.e., Rime-confusable, and Visual-confusable).
That is, there were no significant differences observed in the
Cumulative scores between DYS and CAC. We interpret these
effects in the context of neural efficiency theory. Specifically, we
argue that the CAC group has developed efficient mechanisms
for recognizing, decoding, and reading letters as captured by
the consistency in the neural responses across participants. In
contrast, the DYS group does not show the same regularity in
neural responses, suggesting the corresponding mechanisms for
recognizing, decoding, and reading letters are less fine-tuned in
the DYS group. This latter finding has additive value to Breznitz’s
Asynchrony Theory (Breznitz, 2008) which proposes that dyslexia
is an outcome of the failure to synchronize the various brain
entities activated during reading-related processes. Nevertheless,
this asynchrony is also evident for children with dyslexia and their
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FIGURE 4

Box-plot showing the distribution of the LASSO-weighted RAN-related Neural Congruency scores for each experiment condition, and each group.

typically developing counterparts when the stimulus’ complexity
increases – as occur in the rime or visual confusability. This
finding underscores the need for additional neural resources to
resolve the stimulus’s confounding elements (rime or visual).
To that end, the Cumulative RAN-related neural congruency
components, fail to capture a consistent neural-response across
either of the groups.

4.2. Differences between DYS and CAC is
the lasso-aggregate neural-congruency
components

Although the simple aggregation of the top three neural-
congruency scores revealed significant differences between groups
under the non-confounding conditions, we hypothesized that
an optimally weighted sum over all ten neural-congruency
components would capture additional differences in neural
activations between groups. Indeed, the sparse logistic regression

classification revealed that an optimally weighted aggregation
over the neural-congruency components differentiates between
CAC and DYS across both confounding and non-confounding
conditions. These results suggest that components beyond
the three with the highest lambda values do capture neural
activity relevant to the task. Moreover, the weights associated
with each component differ in both amplitude and sign
(i.e., they can contribute either positively or negatively to
the sum). This finding suggests that the neural activations
captured by each individual component might appear with
different intensity and polarity in each group. For example, one
component that might capture activity associated with character-
disambiguation might exhibit stronger synchronicity in one
group (i.e., contributing positively to the sum); however, another
component might exhibit stronger synchronicity in the other
group. Thus, simple aggregation of components might result in
cancelling out this effect. Overall, our classification model suggests
that individual components must be considered when analyzing
neural activations.
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FIGURE 5

Spatiotemporal profiles of RAN-related Neural-congruency
component for the rime-confusable condition; The corresponding
plots for all conditions are provided in the Supplementary material.

4.3. Interpretation of the spatiotemporal
profiles

Spatial (i.e., the forward model) and temporal profiles
of the extracted components are depicted in Figure 4 for
each condition. The forward model of the neural-congruency
component #1 (i.e., the one with the highest lambda score) exhibits
a similar topography across all four conditions; moreover, their
corresponding temporal profiles show the neural activity is most
strongly modulated at a time window of around 100 ms. The
similarity suggests that component #1 captures neural activity
common to all four conditions, albeit at different intensity levels.

At the very least, this finding confirms previous evidence showing
that processing complex features of textual stimuli is reflected in
the electrophysiological responses around 100 ms after stimulus
presentation (Hauk et al., 2006).

The temporal profile of components #10 shows similarity
in waveform across the four conditions and a peak amplitude
at around 100 ms following the fixations onset. Similarities in
the spatial profiles are observed among some of the remaining
components as well, although the indexing/ordering of those
components varies among conditions. Such similarities suggest
that the matching neural-congruency components likely capture
neural activity originating from the same underlying source. The
variation in the indexing is expected since the ranking of the
components is established independently for each condition and
depends on the relative strength of all the neural-congruency
components in that condition. Interestingly, several projected
temporal profiles in each condition display a stereotypical response
consistent with neural activations often observed in traditional
grant average Event-related Potential analysis (i.e., N/P100 and
N170). For example, the temporal profile of component #9 shows
an N170 waveform response with visible differences in amplitude
at around 170 ms between CAC and DYS. Moreover, the forward
model topography of this component shows it to emerge more
strongly in electrodes over the left posterior-occipital regions.
In the literature, the difference in N170 over the left-posterior
occipital region is regarded as an electrophysiological marker of
visual expertise (Varga et al., 2020). Particularly, children with a
lower letter knowledge, as pre-readers, have shown reduced N170
amplitudes and delayed N170 latency compared to typical readers
during letter-string presentations (Maurer et al., 2005). Therefore,
component #9, extracted by our method, can be interpreted as
potentially indicating a visual precursor to literacy resulting from
familiarity with letter strings. Furthermore, negativity components
at 170 ms have been associated with attention modulation (i.e.,
Kropotov, 2016), and in turn, attention represents a known latent
common cognitive factor of RAN and reading (Papadopoulos
et al., 2016). Therefore, part of the neural activity captured by
the component could also reflect those distal processes. Moreover,
several forward model scalp plots display topographies that often
arise as the “forward problem” solutions to single-source dipole
models, indicating that those components likely capture source-
localized neural activity of different neural processes. Finally,
components with high lasso coefficients (i.e., either positive or
negative) capture underlying neural activity that more strongly
differentiate between DYS and CAC. Thus, group differences
among groups appear in the underlying sources modeled by those
components.

Further studies could investigate these components in more
detail and draw additional conclusions about the neural and
cognitive processes that contribute to these differentiations.
For example, an interesting expansion of these findings relates
to examining the validity of the suggested neural-congruency
components analysis against other more conventional EEG
analyses. Given that the literature has only recently started to
investigate the important information that the FRPs can provide to
studying the RAN-reading relationship or other similar correlates
of reading performance (e.g., Christoforou et al., 2021b; Fella et al.,
2022), the present findings are considered a promising beginning
of this quest. Another interesting expansion would be to examine
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the relationship of the extracted neural congruency components
to eye-tracking-based metrics during RAN, such as the recently
proposed entropy-based gaze time-series analysis on RAN (Wang
et al., 2022).

In conclusion, the RAN-related neural congruency component,
identified by our proposed method, carry information on
the neural basis of naming speed that differentiates between
children with dyslexia and their typically developing counterparts.
The topographies of the resulting components suggest that
each component likely captures source-localized neural activity
corresponding to distinct neural processes. Moreover, neural
differences appear to be distributed across several RAN-related
Neural-congruency components but at different intensity levels.
Therefore, optimally combining the RAN-related components
using machine learning enhanced the power of analysis in
identifying differences in both the confusable and non-confusable
conditions, which have been missed by simple aggregation of the
RAN-related Components. Our findings also support the Neural-
congruency hypothesis (Christoforou et al., 2021b; Christoforou
and Theodorou, 2021), indicating that neural activity elicited
during cognitive tasks is more congruent among participants that
have mastered the cognitive skills but less congruent otherwise.
Finally, our proposed approach opens up new research directions
in studying the neural underpinnings of naming speed and their
association with reading performance and reading difficulties. For
instance, until recently, evidence concluded that individuals with
reading difficulties show increased reliance on inferior frontal
regions of the reading network and right-hemisphere posterior
regions (e.g., Richlan et al., 2011; Norton et al., 2015). The
present findings show that several brain areas contribute to the
execution of naming tasks which show similarities with reading
tasks. Although simple at the surface level, RAN tasks are multi-
componential, as is reading (Papadopoulos et al., 2016). Thus,
we believe that the present method succeeded in better defining
the properties of other processes (including those of reading)
that RAN carries and how these are critical in determining
naming speed’s influential role on reading performance. At the
very least, capturing the RAN performance in the form of neural
components helps us better understand the process involved
in performing RAN tasks and explore some reasons for poor
performance. Next, provided that the generated components will
be further systematically tested against behavioral performance
measures, the likelihood of deciphering issues relevant to the
significant similarity of the RAN and reading measures, such
as seriality, is possible (see Altani et al., 2020). Thus, in
future work, we plan to further explore the spatiotemporal
characteristics and brain sources of the RAN-related Neural-
congruency components and the relationship between the neural
underpinnings of naming speed - as captured by the Neural-
congruency components- and reading difficulties, as well ex
explore eye-tr.
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Previous research has revealed that graded pre-activation rather than specific

lexical prediction is more likely to be the mechanism for the word predictability

effect in English. However, whether graded pre-activation underlies the

predictability effect in Chinese reading is unknown. Accordingly, the present study

tested the generality of the graded pre-activation account in Chinese reading.

We manipulated the contextual constraint of sentences and the predictability of

target words as independent variables. Readers’ eye movement behaviors were

recorded via an eye tracker. We examined whether processing an unpredictable

word in a solid constraining context incurs a prediction error cost when this

unpredictable word has a predictable alternative. The results showed no cues

of prediction error cost on the early eye movement measures, supported by

the Bayes Factor analyses. The current research indicates that graded predictive

pre-activation underlies the predictability effect in Chinese reading.

KEYWORDS

lexical predictability, contextual constraint, graded pre-activation, Chinese reading, eye
movement

Introduction

Prediction is a fundamental principle of language processing (Clark, 2013). Efficient
language comprehension depends on two streams of information, i.e., the top-down
expectation and the bottom-up conceptual input. In speech comprehension, listeners
could predict the content at the end of other speakers’ turns to make efficient turn-
taking using statistical regularities information in speech (Scott et al., 2009). In reading
comprehension, readers could make use of contextual predictability information to
facilitate word identification and semantic integration (for a review see Staub, 2015).
A word’s predictability, as measured by the word’s cloze value, i.e., the proportion of
participants who give this word in a non-speeded sentence completion task (Taylor,
1953), has been shown to influence reading times and saccadic behavior in reading
tasks using the eye-tracking method of English, German, and Chinese (Rayner and
Well, 1996; Kliegl et al., 2004; Rayner et al., 2005; Wang et al., 2010; Staub, 2015; Liu
et al., 2018; Zhao et al., 2019; Chang et al., 2020a,b). Specifically, predictable words
are easier to read, receive fewer and shorter fixations, and elicit longer progressive or
incoming saccade length than unpredictable words, i.e., the word predictability effect.
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However, the mechanisms for the predictability effect in Chinese
reading have not been investigated previously. Thus, the present
study aims to determine how prediction occurs, i.e., the mechanism
of word predictability effect in Chinese reading.

Two competing theoretical accounts explain the mechanisms
for predictability effects, each of which has different predictions
for processing unexpected words (Luke and Christianson, 2016;
for a review see Staub, 2015). First, the word prediction could be
defined as an “all-or-none” process in which readers may maintain
specific, discrete predictions of upcoming perceptual input, also
termed lexical prediction (also see Delong et al., 2014). According
to this lexical prediction account, strong constraining sentences
support expectations for predictable words with much facilitation.
Reading can be facilitative when readers encounter predictable
words but slow down when readers encounter unpredictable words
in a sufficient constraining context, i.e., producing the prediction
error cost (Kutas et al., 2011; Luke and Christianson, 2016).
For example, readers would predict the most probable word
gift in the constraining sentence “Today was Annie’s birthday,
her mother bought her a-.” This predictable word gift would
be processed quickly as it matches readers’ expectations. On
contrary, readers might be surprised when encountering an
unexpected word like book, then they would spend more time
reading this unexpected word (i.e., prediction error cost) as they
must suppress the activated gift. While a neutral constraining
sentence like “When Annie went home, her mother brought
her a-” provides little contextual information to readers. Thus,
processing the unpredictable words would rarely incur prediction
error cost as no predictable word is pre-activated. Therefore,
according to the lexical prediction account, the comparison
of processing unpredictable words between the constraining
context and the neutral context would cause a prediction error
cost.

Second, prediction in language comprehension could also
involve graded pre-activation so readers make diffuse, cost-free,
and ubiquitous pre-activation of likely upcoming input (Luke and
Christianson, 2016; for reviews, see Staub, 2015; Kuperberg and
Jaeger, 2016). Compared to the lexical prediction account, the key
prediction of this account is that processing the unpredictable word
would not incur a prediction error cost when the expected word is
another more possible alternative in a strong constraining sentence.
Because not only the predictable word but also the unpredictable
word would be pre-activated before the perceptual input is
encountered. In the neutral context of the above example, readers
would pre-activate a set of words that suit the context, like book,
hat, skirt, and guitar. Please notice that these words mentioned
above are nouns, which could be pre-activated at syntactic or
semantic representation even if the word identities are not. Readers
may not be able to predict gift, but they can be confident that
the upcoming word will be a noun or something that could be
carried. Thus, even if people do not predict specific words, they
could predict some aspects of future stimuli (Pickering and Gambi,
2018). Therefore, according to the graded pre-activation account,
the comparison of processing unpredictable words between the
constraining context and the neutral context would not cause a
prediction error cost.

The graded pre-activation account has been well-demonstrated
in English reading (for a review see Kuperberg and Jaeger,
2016), as evidenced by the reliable correlation between word

predictability (measured as word surprizal or cloze probability)
and processing times (Monsalve et al., 2012; Smith and Levy,
2013; Goodkind and Bicknell, 2018), N400 amplitude (Delong
et al., 2005; Frank et al., 2015), or neural activity (Henderson
et al., 2016). Specifically, the word predictability was inversely
correlated with reading times (e.g., gaze duration in Goodkind
and Bicknell, 2018), N400 amplitudes of words (Delong et al.,
2005), and changes in brain activation levels in the temporal,
parietal, occipital, cingulate, and frontal regions (Carter et al.,
2019). In addition, Luke and Christianson (2016) conducted a
large-scale survey that provided cloze values for words in the Provo
Corpus. Their results showed that most words had a more-expected
competitor but with no misprediction error cost. Even if the word
identity was rarely predicted, its semantic and morphosyntactic
information was predictable. These findings support the graded
prediction account but not the specific lexical prediction account.
The null prediction error cost (as the key opinion of graded
pre-activation account) also has been demonstrated by Frisson
et al. (2017) using a controlled-experimental design with an
eye-tracking method using a corpus study with high ecological
validity.

Frisson et al. (2017) jointly manipulated the contextual
constraint of sentences and the cloze probability of target words
to explore the cognitive mechanism of predictability effects in
English. They compared the processing of the same unpredictable
word (e.g., chair) in the constraining context (e.g., “The young
nervous paratrooper jumped out of the plane/chair when he heard
the shots”) and the neutral context (e.g., “The tired movie maker
was sleeping in the plane/chair when he was woken up by a
scream”) to test the prediction error cost. Also, the cloze values for
unpredictable words in the constraining and neutral sentences were
comparable. Their results showed significant word predictability
effects and contextual constraint effects, but null prediction error
cost in the early or later eye movement measures. This study
firstly provided evidence from the controlled experimental design
for the absence of a prediction error cost and further supported
that the graded pre-activation but not the lexical prediction account
underlies the mechanism of word predictability effects.

Notably, the null prediction error cost in constraining sentences
might be due to the priming effect from the pre-target word area.
The richer information preceding the target words might facilitate
automatic priming to the target words in the strong constraining
sentences but not the neutral sentences (see Kuperberg and Jaeger,
2016). Although whether there is an interference from the priming
effect in predictive processing is unclear, it is recommendable
to control the pre-target region to investigate the predictive
processing, especially in Chinese such visually denser scripts.

For Chinese reading, there have been several studies
investigating how the word predictability affects eye movement
behaviors or interplays with other linguistic factors (Rayner et al.,
2005; Wang et al., 2010; Liu et al., 2018; Zhao et al., 2019; Chang
et al., 2020a,b). However, studies of Chinese to date have yet to
investigate the mechanism of word predictability effects. Whether
prediction error cost exists in Chinese reading is still being
determined. Chinese scripts lack morphosyntactic information,
which readers use as cues for prediction. Moreover, parafoveal
processing is more efficient in Chinese than English (Vasilev and
Angele, 2017). Thus, readers might heavily rely on bottom-up
perceptual processing in Chinese reading. Such Chinese script
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characteristics might make it hard to produce a specific word
prediction in Chinese reading. Therefore, predictive processing
might rely on graded pre-activation rather than lexical prediction.
The present study aimed to provide experimental evidence for the
graded pre-activation account in Chinese reading.

Accordingly, the present study was a follow-up to a previous
study (Frisson et al., 2017) but further made more rigid control
of the pre-target context. There is no explicit visual marker in
Chinese to demarcate work boundaries (Li et al., 2015). Characters,
the component of words, are created from differing numbers of
strokes. These characteristics, therefore, bring about the increased
visual density in this language and lead to deeper parafoveal
pre-processing, as demonstrated by the well-established semantic
preview effect in Chinese, which is equivocal in English (Zhou
et al., 2013; Rayner et al., 2014). The different content immediately
before the target words might influence the processing of target
words differently (Reichle et al., 2003). Moreover, early eye-tracking
studies have found that transitional probabilities (i.e., the statistical
likelihood that word N will follow word N-1) between word N-1
and word N influence fixation times on word N (McDonald and
Shillcock, 2003; Frisson et al., 2005; Wang et al., 2010). Hence, it
is necessary to control the influence of the pre-target region across
conditions.

Given the above considerations, we manipulated the contextual
constraint and word predictability to address the question using a
natural sentence reading task, consistent with Frisson et al. (2017).
However, we went further by constructing compound sentences,
with the first half-sentences controlling contextual constraint and
the second half-sentences having identical content at least three
characters before the target words to control the possible priming
effect or pre-target influence on the target words. We obtained
the contextual constraint effect, word predictability effect, and
the prediction error cost by three comparisons: (1) constraining
context-unpredictable (CU) vs. constraining context-predictable
(CP), testing the word predictability effect; (2) neutral context–
predictable (NP) vs. constraining context-predictable (CP), testing
the contextual constraining effect, and (3) constraining context-
unpredictable (CU) vs. neutral context-unpredictable word (NU),
testing the prediction error cost. According to the lexical prediction
account, unpredictable word processing in the constraining context
would result in extra prediction error cost but not in the neutral
context. Thus, we compared CU and NU to evaluate the prediction
error cost, as Frisson et al. (2017).

We expected to find the typical word predictability effect,
i.e., predictable words yielding shorter reading times than
unpredictable words. We also expected the significant contextual
constraint effect, i.e., the strong constraining sentences but not the
neutral sentences make target words read faster. The contextual
effects and the standard word predictability effects in the first-
pass reading measures demonstrated that we manipulated the two
factors successfully. However, the two effects mentioned above are
not key evidences to our hypothesis. The prediction error cost (CU
vs. NU) is the primary evidence for distinguishing the two accounts.
Specifically, if readers spent longer time on reading unpredictable
word in CU than in NU (i.e., significant prediction error cost), then
the result supported the lexical prediction account, otherwise (null
prediction error cost) supported the graded pre-activation account.

Materials and methods

Ethics approval

The study was approved by the research ethics committee at
the Tianjin Normal University and conducted according to the
Declaration of Helsinki principles.

Participant

Forty-four undergraduates aged 18–26 years (M = 20.5 years,
34 female) from the author’s university participated in the eye-
tracking experiment for remuneration. The participant number was
the same as Frisson et al. (2017). All were native Chinese readers,
screened for normal acuity (more excellent than 20/40 in Snellen
values) using a Tumbling E eye chart (Taylor, 1978), and naive
to the purpose of the experiment. Informed consent was obtained
from all individual participants in the study.

Design and stimuli

We constructed 48 sets of sentence frames, a number larger
than Frisson et al. (2017). The experiment used a within-subjects
design with the factors of sentence constraint (Constraining,
Neutral) and word predictability (Predictable, Unpredictable) as
independent variables. See Table 1, each sentence frame had a
strong constraining sentence and a neutral sentence. The first half-
sentence was manipulated to control the contextual constraint;
predictable or unpredictable target words were inserted in the
middle of the second half-sentence. At least three characters
before target words were identical in the constraining and neutral
conditions (excluding only five sets of sentences). As stated in
the introduction, we conducted three comparisons to obtain
the contextual constraint effect, word predictability effect, and
prediction error cost. The most crucial comparison was the third
one, i.e., constraining context-unpredictable word (CU) vs. neutral
context-unpredictable word (NU), testing the prediction error cost.
The significant prediction error cost indicates that an unexpected
word in a constraining context with a predictable alternative will
incur a processing cost, which supports the lexical prediction
account.

In the cloze test, students were given the sentences truncated
immediately before the target word and asked to provide the
next word in the sentences. Twenty-two college students who
did not participate in the experiment completed the cloze test.
A predictable or unpredictable word was embedded in the
constraining context (labeled CP and CU, respectively, see Table 1).
The same two words were embedded in the corresponding neutral
context and embedded in the constraining context. Given that the
two target words, such as model/girl in the neutral context, were
the same as targets in the constraining context, we labeled them
as NP and NU, following Frisson et al. (2017). Please note that
NP and NU were unpredictable because the neutral context did
not provide strong word constraints. The mean cloze probability
of the target words in the four conditions (CP, CU, NP, and NU)
were 0.75 (SD = 0.16), 0.02 (SD = 0.04), 0.05 (SD = 0.06), and
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TABLE 1 An example stimulus.

Condition The first
half-sentence

The second
half-sentence

Constraining
context–predictable (CP)

Constraining
context-unpredictable
(CU)

Neutral
context-predictable (NP)

Neutral context
-unpredictable (NU)

Target words are shown in bold. The constraining sentence translates as “Miss Liu Wen on
the runway comes gracefully, and this Chinese model/girl who is famous around the world
shows foreign friends the beauty of the East." The neutral sentence translates as "Miss Deng
Qi on the stage exudes an elegant and intellectual temperament; this Chinese model/girl who
is famous around the world shows foreign friends the beauty of the East." Please note that the
target word, such as (model) in the first condition of neutral context, was the same as in
the CP condition. Thus we labeled it as NP. The NP and NU did not differ in predictability,
word frequency, and complexity.

0.04 (SD = 0.08), respectively. In the constraining context, t-tests
showed that the cloze values for CP were significantly higher than
for CU [t(94) = 30, p < 0.001]. In the neutral context, the two
unpredictable targets had comparable cloze values [t(94) = 1.07,
p = 0.288]. Importantly, the cloze values for the same unpredictable
word (such as girl) in constraining and neutral contexts were
comparable [t(94) = 1.52, p = 0.13].

The two target words in one sentence frame were matched
for word frequency [ Cai and Brysbaert, 2010; Predictable:
M = 64/million, SD = 80; Unpredictable: M = 44/million,
SD = 104; t(94) = 1.06, p = 0.291] and the whole word complexity
in strokes [Predictable: M = 17.41, SD = 5.11; Unpredictable:
M = 15.88, SD = 4.97; t(94) = 1.50, p = 0.137]. Forty participants
evaluated sentences naturalness (using a 7-point scale, ranging
from 1 = entirely unnatural to 7 = entirely natural). The average
ratings were 5.41 (SD = 0.74), 5.31 (SD = 0.71), 5.32 (SD = 0.66),
and 5.20 (SD = 0.7) for each conditions, respectively. The ANOVA
analysis showed that the four conditions were comparable in
naturalness [F(3,188) = 0.85, p = 0.468].

We adopted a counterbalanced design in which the
experimental sentences were divided into four lists, and one
version of each sentence frame was in one list. Each participant
read one list with equal numbers of sentences in each condition.
Each list also included 40 filler sentences and began with six practice
sentences. Eleven participants were randomly allocated to each list.

Apparatus and procedure

An SR Eyelink 1000 plus eye tracker tracked right-eye
movements during binocular viewing at 1000 Hz. Stimuli were
displayed in Song 32-point font as black-on-white text on a high-
resolution (1920 × 1080 pixels) monitor with a fresh rate of 60 Hz.
At 65 cm viewing distance, each character subtended 1◦ and so was
of normal size for reading.

Participant took part individually and was instructed to read
normally and for comprehension. At the start of the experiment,
a 3-point horizontal calibration procedure was performed across

the same line as each sentence presentation (ensuring 0.30◦ or
better spatial accuracy for all participants). Calibration accuracy
was checked before each trial and the eye-tracker recalibrated as
required to maintain high spatial accuracy. At the start of each
trial, a fixation square equal in size to one character was presented
on the left side of the screen. Once the participant fixated on
this location, the first half-sentence was presented with the first
character replacing the square. Participant pressed the space key
once they finished reading the first half-sentence. Then the same
fixation square was presented again at the same position and
disappeared once the participant fixated it, then the second half-
sentence was presented. Participant pressed a response key once
they finished reading the second half-sentence. This was replaced
by a comprehension question requiring a yes/no button-press
response on 25% of trials. The experiment lasted approximately
30 min for each participant.

Data analysis

Accuracy for answering comprehension questions was high for
all participants (M = 84%, SD = 0.06, range = [73%, 95%]). We
output the data of the second half-sentences and thus removed
the data based on the second half-sentences. Following standard
procedures, short (< 80 ms) and long (> 1200 ms) fixations were
removed. Trials with head-movement, tracking-loss, or error were
excluded, which affected seven trials (0.3%), as were trials for
sentences receiving fewer than six fixations, which affected 99 trials
(4.7%). In total, 5% of trials (106) were removed. The remaining
data were analyzed by linear mixed-effects models (LMEs; Baayen
et al., 2008) for continuous variables and generalized mixed-effects
models for binomial variables, using the lme4 package (Version 1.1-
21; Bates et al., 2015) in R (R Development Core Team, 2016). For
all measures, models with the maximum random-effects structure
were used (Barr et al., 2013), with the three comparisons as fixed
factors and participant and stimuli as crossed random effects. If
models did not converge, the random-effects structure was reduced
by first trimming this for stimuli. Log-transformed fixation-time
effects are reported alongside untransformed means. Following
convention, t/z values > 1.96 were considered significant.

Results

We expected significant word predictability effects and
contextual constraint effects on the early eye movement measures
and explored whether unpredictable words in constraining
sentences incur processing costs on early word identification or
later semantic integration. Thus, consistent with Frisson et al.
(2017), we reported four measures of first-pass reading for the
target words, i.e., the word-skipping (SKIP, probability of not
fixating a word during first-pass reading), first-fixation duration
(FFD, duration of the first fixation on a word during first-pass
reading), single-fixation duration (SFD, duration of the first fixation
on a word receiving only one first pass fixation), gaze duration (GD,
sum of all first pass fixations on a word). We also reported three
measures concerning later semantic integration, i.e., regressions-
out rate (RO, probability of first-pass regression from a word),
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TABLE 2 Means and standard errors for target word measures (M ± SE).

Measures Constraining Neutral

Predictable Unpredictable Predictable Unpredictable

Skipping (%) 31 (2) 27 (2) 25 (2) 24 (2)

FFD (ms) 236 (5) 250 (5) 237 (4) 249 (5)

SFD (ms) 235 (5) 246 (5) 238 (4) 245 (5)

GD (ms) 251 (6) 272 (7) 264 (6) 274 (7)

RPD (ms) 307 (14) 333 (12) 307 (11) 361 (16)

RO (%) 10 (2) 14 (2) 11 (2) 16 (2)

TRT (ms) 348 (11) 371 (11) 351 (10) 384 (12)

regression path duration (RPD, the sum of all fixation durations
beginning with the initial fixation on the target word and ending
when the eyes exited the word to the right, including time spent
rereading earlier words and time spent rereading the word itself)
and total reading time (TRT, sum of all fixations on a target word).
Target word means were shown in Table 2, and statistical effects
were summarized in Table 3.

Word predictability effect and contextual
constraining effect

We observed significant word predictability effects (CP vs. CU)
and contextual constraining effects (CP vs. NP) on the first pass
reading measures (see Figure 1). The word predictability effects,
significant on FFD, SFD, and GD, were due to longer reading times
for CU than CP conditions (FFD: b = 0.06, CI = [0.02, 0.11],
SE = 0.02, t = 2.63; SFD: b = 0.05, CI = [0.01, 0.1], SE = 0.02, t = 2.2;
GD: b = 0.08, CI = [0.03, 0.13], SE = 0.03, t = 2.89).1 The comparison
between CP and NP revealed significant contextual constraining
effects on the early skipping rate (b = −0.34, CI = [−0.63, −0.05],
SE = 0.15, z = −2.3) and gaze duration (b = 0.06, CI = [0.01, 0.11],
SE = 0.03, t = 2.16). Readers made more skipping and shorter
first-pass fixation durations on the target word. The clear word
predictability and contextual constraining effects indicated that we
manipulated the two factors successfully.

Prediction error cost

Most crucially, the prediction error cost was not significant
on all the measures (| z/t| s < 1.3), i.e., an unexpected word
did not incur processing cost in the constraining context with a
predictable alternative, compared to the same target word in the
neutral context.

We conducted Bayes factors analyses (Kass and Raftery, 1995)
to determine the strength of the evidence for the null prediction

1 The word predictability effect was also significant on RPD while we did
not mention it in the Results and Discussion. As the results on RPD, RO,
and TRT might represent a mixture of predictability effect and semantic
integrative effect. We want to obtain the clear and genuine predictability
effect. Following the tradition of eye movement research, however, we
reported these later eye movement measures in the table which could be
accessible for other researchers for meta-analysis. Thus, we did not mention
and discuss these later eye movement measures in sections “Results and
Discussion.”

error cost on the first-pass fixation time measures. The analyses were
conducted using the lmBF function within the BayesFactor package
(Version 0.9.12-4.2; Morey et al., 2015; R Development Core Team,
2016). Analyses were conducted with scaling factor for g-priors set
to 0.5, using 10,000 Monte Carlo iterations. We first computed the
Bayes Factor for a model with a fixed effect of prediction error cost
(CU vs. NU) and random participant and item intercepts of FFD,
SFD, and GD, i.e., BF1. Then we computed Bayes Factor for a model
with only random participant and item intercepts, i.e., BF0. The
critical value was the ratio of BF1 and BF0, i.e., BF10, it is itself
a Bayes Factor comparing the model with an effect of prediction
error cost and participant and item intercepts, to a model with the
only participant and item intercepts. According to Vandekerckhove
et al. (2015), Bayes Factors (BF10 < 1/3) were taken to provide
moderate to strong evidence for the null model. Thus, the present
results (FFD, BF10 = 0.11; SFD, BF10 = 0.03; GD, BF10 = 0.27)
provided moderate to strong evidence for the null model, i.e., the
null prediction error cost.

Discussion

In the present experiment, we manipulated the contextual
constraint of sentences and word predictability to investigate
whether there is a prediction error cost in Chinese reading. We
tested the prediction error cost by comparing the processing of
unpredictable words between constraining contexts and neutral
contexts (i.e., CU vs. NU). The results showed significant contextual
effects and standard word predictability effects in the early stage of
word processing, with shorter reading times (FFD, SFD, and GD)
for more predictable words, which is in line with previous findings
from Chinese studies (Rayner et al., 2005; Wang et al., 2010; Liu
et al., 2018; Zhao et al., 2019; Chang et al., 2020a,b). Importantly,
no significant prediction error cost was observed across a wide
range of eye movements, i.e., the reading is not disruptive if the
readers encounter the unpredictable word in a strong constraining
sentence with a predictable alternative, supported by the Bayes
factor analyses. This result resonated with findings from English
studies (Frisson et al., 2005, 2017; Luke and Christianson, 2016).
In particular, the findings suggested that readers make diffuse and
graded pre-activation of likely upcoming input.

The current experiment adopted a similar design as Frisson
et al. (2017). The key comparison between unpredictable words in
the constraining and neutral sentences showed no prediction error
cost on the fixation duration measures both for Frisson et al. and the
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TABLE 3 Summary of statistical effects (continuous variables were log-transformed).

Measures Comparison b CI SE t/z p

SKIP Intercept −1.1 [−1.36, −0.86] 0.12 −8.93 <0.001

Predictability −0.2 [−0.48, 0.09] 0.15 −1.34 0.182

Constraint −0.34 [−0.63, −0.05] 0.15 −2.3 0.022*

Prediction error cost −0.19 [−0.49, 0.10] 0.15 −1.29 0.198

FFD Intercept 5.43 [5.38, 5.47] 0.02 236.02 <0.001

Predictability 0.06 [0.02, 0.11] 0.02 2.63 0.009*

Constraint 0.02 [−0.03,0.06] 0.02 0.73 0.464

Prediction error cost −0.02 [−0.06,0.03] 0.02 −0.68 0.494

SFD Intercept 5.42 [5.37, 5.47] 0.02 228.39 <0.001

Predictability 0.05 [0.01, 0.10] 0.02 2.2 0.028*

Constraint 0.03 [−0.02, 0.08] 0.02 1.32 0.187

Prediction error cost −0.01 [−0.06, 0.03] 0.02 −0.58 0.565

GD Intercept 5.48 [5.43, 5.54] 0.03 209.57 <0.001

Predictability 0.08 [0.03, 0.13] 0.03 2.89 0.004*

Constraint 0.06 [0.01, 0.11] 0.03 2.16 0.031*

Prediction error cost −0.01 [−0.06, 0.04] 0.03 −0.26 0.793

RPD Intercept 5.61 [5.54, 5.68] 0.03 169.17 <0.001

Predictability 0.11 [0.04, 0.19] 0.04 3.11 0.002*

Constraint 0.05 [−0.02,0.12] 0.04 1.28 0.202

Prediction error cost 0.03 [−0.04, 0.10] 0.04 0.94 0.346

RO Intercept −2.05 [−2.32, −1.81] 0.12 −16.37 <0.001

Predictability 0.44 [−0.03, 0.92] 0.24 1.85 0.064

Constraint 0.15 [−0.34, 0.64] 0.25 0.6 0.546

Prediction error cost 0.18 [−0.22, 0.60] 0.21 0.89 0.372

TRT Intercept 5.72 [5.66, 5.79] 0.03 171.51 <0.001

Predictability 0.05 [−0.01, 0.12] 0.04 1.55 0.121

Constraint 0.02 [−0.05, 0.09] 0.03 0.67 0.506

Prediction error cost 0.03 [−0.04, 0.09] 0.03 0.76 0.448

Asterisks indicate significant effects where t/z > 1.96. CI = 95% confidence Interval.

present study. This is what we and Frisson et al. (2017) have found
in common, indicating that the lexical prediction account would not
seem able to account for the predictability effect both in English
and Chinese. Notably, the present study differed from Frisson
et al. (2017) on the numerical trend. They found a numerical
trend in the opposite direction, i.e., the processing advantage
for unpredictable words in constraining sentences compared to
neutral sentences. Although this processing benefit did not reach
significance on reading time measures, this trend was significant
in the first pass regression rate (z = −2.03). The significant benefit
of unpredictable words in constraining sentences might be due to
the semantic priming effect or the transitional probability effect,
i.e., the statistical likelihood that a word preceding the target might
influence target word processing.

Like Frisson et al. (2017) study, the present study provided clear
and strong evidence for null prediction error cost (t/z < 1.29).
Unlike Frisson et al. (2017) we did not find significant benefits for
unpredictable words in constraining sentences when controlling

the pre-target region, providing stronger support for graded pre-
activation account. The characteristics of the Chinese language
could explain this. Chinese lacks overt cues (markers for number,
gender, the tense of verbs, and case) to syntactic structure, which
a reader utilizes to produce predictions about upcoming stimuli in
English (see Kuperberg and Jaeger, 2016 for a review). Furthermore,
the word predictability is lower in Chinese than in English, as
shown by the comparison between cloze probability reported by
Pan et al. (2021) in Beijing Sentence Corpus (BSC) and that by Luke
and Christianson (2016) in Provo Corpus. The grand mean of cloze
scores for the words in BSC is 0.07, far less than that reported in
Luke and Christianson (M = 0.13). Thus, the sentence constraint
in Chinese may be weaker than that in English. It is reasonable
that we found more consistent results on the several eye movement
measures.

The findings are consistent with the multi-representational
hierarchical generative architecture, which views
prediction as a graded and probabilistic phenomenon
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FIGURE 1

Context-predictable (CP), CU, NP, and NU represent constraining
context with predictable word, constraining context with
unpredictable word, neutral context with predictable word, and
neutral context with unpredictable word, respectively. The contrast
between CP and NP represents the contextual constraining effect;
the contrast between CP and CU represents the word predictability
effect; the contrast between CU and NU represents the prediction
error cost. Figure describes the gaze duration in each condition.
Asterisks indicate significant effect where t > 1.96.

(Kuperberg and Jaeger, 2016). Also, this architecture suggests
distinguishing between predictive pre-activation and pre-
activation through priming. The present study attempted to
control interference from the priming effect across conditions by
constructing compound sentences in which the first half-sentences
controlled the contextual constraint and the second half-sentences
were identical at least three characters before the target words.
Thus, the content of the pre-target region was identical in the
constraining and neutral sentences. The null prediction error cost
on the first pass reading measures and the later eye movement
measures suggest that encountering an unexpected word in a
constraining sentence does not interrupt early lexical identification
and later semantic integration. Readers pre-activate not only one
specific item but a range of possible words. The present study
confirmed the graded pre-activation mechanism of predictive
processing in Chinese reading.

Limitations and future directions

The study had one limitation. The number of participants in
the cloze task might influence the cloze value of words. There
is a positive correlation between the number of participants and
the precision of word’s cloze value. Our present study recruited
22 participants for the cloze task. Although we successfully
balanced the cloze values between CU and NU, however, the
sample size might be not big enough provide a precise cloze
value of a word.

Thus, future studies could recruit as many participants
as possible to obtain more precise word cloze value. Besides,
cross-linguistic studies are highly needed to explore how
linguistic characteristics (e.g., word space, word length, and
complexity) influence predictive language processing. In addition,
to improve the external validity, studies about predictive language
comprehension of special readers (e.g., non-native speakers,
children with dyslexia, and older adults) are needed. These studies
will inform us of the mechanism of reading difficulty for non-native
speakers, children with dyslexia, and older adults.

Conclusion

In summary, we conducted an eye-tracking experiment to
investigate whether processing an unpredictable word incurs
prediction error cost when there is a predictable alternative. The
null prediction error cost supports that the graded pre-activation
account underlies the word predictability effect in Chinese reading.
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Compensatory e�ects of
individual di�erences, language
proficiency, and reading behavior:
an eye-tracking study of second
language reading assessment

Rurik Tywoniw*

Department of Linguistics, University of Illinois at Urbana-Champaign, Champaign, IL, United States

Reading in a second language (L2) is a complex process that incorporates linguistic
knowledge and literacy abilities, as well as strategic competence to approach
di�erent types of reading tasks depending on reading goals. However, much of
the previous research was limited to correlational studies and focused on the
relative contribution of broad categories of L2 proficiency and first-language (L1)
literacy to L2 reading comprehension. However, investigations into L2 reading
performance can benefit from advances in real-time, concurrent data collection
methodologies such as eye-tracking. This study utilized eye-tracking methods to
examined L2 reading comprehension of 102 readers across three di�erent reading
tasks [Cloze reading, Multiple-choice (MC) quiz, and reading-to-summarize],
comparing the comprehension scores to L2 proficiency, individual di�erences
(reasoning, working memory, motivation) and reading behavior (eye-tracking
metrics related to attention to reading texts and tasks, length of fixations). Results
indicate that the score on each task could be modeled each using a di�erent
mix of predictors, with the cloze task being most strongly predicted and the
MC task being least predicted. The Summary task was in-between, but with a
highly interpretable model. Interactions between fixation duration and cognitive
abilities were found, showing how e�cient fixation is generally important for
comprehension, but the impact can be compensated for with motivation and
reasoning ability.

KEYWORDS

second language reading, language assessment, eye-tracking, English for academic

purposes (EAP), language learning

Introduction

For multilingual readers and language learners, reading comprehension ability has been

conceptualized as a product of language proficiency: learners reach a threshold of reading

ability and can then transfer first language (L1) literacy skills (including comprehension

monitoring, activating strategies, and integration of information across pieces of texts) into

their second language (L2) reading (Koda, 1988, 1990). Features of reading comprehension

that are not related to linguistic proficiency are often overlooked for multilingual readers.

However, for many academic language learners in the modern era, advanced reading skills

many develop uniquely for an L2 which is the primary language of academic engagement.

As such, it remains unclear how features of reading comprehension processes which play

a role in monolingual readers’ comprehension, such as real-time reading behavior and

individual differences, contribute to reading comprehension for multilingual readers. This
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lack of understanding poses a threat to L2 reading assessment

validity. Bachman and Palmer (1996) in their test-authenticity

argument, state that use of a language test is justified when we can

“demonstrate that performance on language tests corresponds to

language us in specific domains other than the language test itself ”

(p. 23). To better understand the factors which influence reading

comprehension performance for multilingual academic readers,

it is necessary to compare factors of language ability, individual

differences, and real-time reading, as well as comparing these

factors’ influence on performance on varied reading tasks which

may elicit different skills and abilities.

In this study, three measures of reading comprehension

were analyzed: multiple-choice questions (MC), cloze tasks, and

summary tasks. Completion of these tasks was analyzed under

the lens of text-reading behavior. Task differences were examined

using eye-movement behavior (eye-tracking) variables which were

compared with score (described with more specificity in the

methods section). Scores were predicted with statistical modeling

using eye-movement metrics, L2 proficiency and individual

difference variables: reading speed, working memory, reasoning,

and motivation. This research will help the field of reading

comprehension assessment further understand the cognitive and

construct validity of these assessment tasks. Additionally, this

research will shed light on how the influences on reading ability

(individual differences, language proficiency, and real-time reading

behavior) interact with each other and can be used to compensate

for weaknesses.

Literature review

L2 reading and reading assessment

The validity of L2 reading tests hinges on how well tests target

different aspects of the reading process. Models of reading often

include both lower-order and higher-order skills. Key aspects of

lower-level reading processes are grapho-phonemic processing,

morphological awareness, word recognition, and syntactic parsing,

with each lower-level process facilitating the recognition of words

on the page (Perfetti, 2007). Much of the lower-order skills in L2

reading are developed alongside general L2 proficiency. Higher-

level processing is seen as having two levels (Kintsch, 1998; Grabe,

2009): a text base comprehension level, where a reader creates a

model of ideas and propositional content found in a text, and

a situation model level, where the overall meaning of a text is

constructed by the reader through connecting propositions and

relating content to background knowledge and reading context.

L2 research has been more agnostic regarding the development of

higher-order skills, believing much of this to be the recipient of L1

literacy transfer (Koda, 1988).

In general, L2 reading scholars have acknowledged that not

every predictor of successful comprehension needs to be activated

at once during reading. Early conceptions of this phenomenon

considered L2 reading to be broken down into coarse categories

of skills: L1 literacy and L2 language proficiency, and deficits

in one category could be compensated for with strengths in the

other (Bernhardt, 2005). This view was expanded beyond the

broad categories of L1 literacy and L2 language ability to include

other potential compensatory strengths such as reading strategy

knowledge and background knowledge (McNeil, 2011, 2012) in

line with Stanovich’s (1980) postulation that individuals will rely on

multiple top-down and bottom-up resources as needed to achieve

comprehension. Urquhart and Weir (2014) highlight goal-setting

as an important aspect of reading ability, noting that modifying

one’s reading behavior based on the reading purpose is important.

In other words, the type of reading task will influence the skills

and behavior necessary to complete the task. This idea is expanded

in the Reading as Problem Solving Model (RESOLV; Rouet et al.,

2017) wherein a reader constructs a representation of a text with

respect to the reading purpose and task at hand. Readers moderate

the speed of reading and the level of attention to the text depending

on whether the reader is skimming for gist (faster pace, global

attention), scanning for details (faster pace, local attention), reading

for informational purposes (slower pace, global attention), or

having processing difficulty (slower pace, local attention) (Carver,

1997; Grabe, 2009). Understanding these factors and how this

is elicited by reading tasks is important for designing effective

measures of reading comprehension (Alderson, 2000; Borsboom,

2005).

However, it is difficult to observe reading behavior, let alone

strategic reading. Part of why the previous debate about how L2

reading and whether it was more derived from L2 proficiency or

L1 literacy came from this methodological difficulty in observing

reading behavior. Reading abilities of either order have been

difficult to measure directly, and as such, cognitive validity of

reading tests could only be indirectly examined. That is until

more sophisticated methods for tapping into cognitive processes

of reading, such as eye-tracking became available (Conklin et al.,

2018). Now, behavior related to both lower-order and higher-order

reading abilities can be somewhat more directly observed.

Eye-tracking in second language
acquisition

Observing reading processes and their contribution to

successful comprehension has been a goal of Second Language

Acquisition (SLA) research, but historically there have been few

means by which to observe cognition in real time. Investigations

into the processes which lead to successful comprehension have

been usually been post-hoc in nature, but concurrent methods,

such as eye-tracking, have become more commonplace (Godfroid,

2019). The utility of eye-tracking methods in investigating SLA

rests on the assumption of the Eye-Mind Hypothesis (Just and

Carpenter, 1980) stating that “eye movements are over orienting

responses that signal the alignment of attention with the object

at the point of gaze” (Godfroid, 2019, p. 23). Visual attention

can give us insight into how readers allocate cognitive resources

to text. Although eye-tracking in reading is often restricted to

processes related to local word parsing, there has also been

attention paid to how Eye-tracking data can inform us about

high-order reading cognition. For example Yeari et al. (2017)

utilized eye-tracking methods to find that readers pay more

or less attention to peripheral information depending on their

reading purpose. Dirix et al. (2020) found that having readers
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engage with a text for informational purposes elicited shorter

overall reading times and shorter fixations than when readers

engaged with a text for studying purposes, and that these

differences were increased for L2 text-reading. They additionally

found that students could compensate for slower processing

with more overall attention to the text. Huang et al. (2022)

examining Chinese L2 English learners’ reading of texts with

unfamiliar words. They found that working memory and duration

of first fixation affected how readers processed unfamiliar words.

Comprehension performance was affected by the longer duration

of first fixation on unfamiliar words, yet unfamiliar word fixation

affected comprehension less for learners who demonstrated

higher working memory capability. This result demonstrates that

successful reading can involve compensation for one weakness in

reading with another resource.

Less attention has been paid to real-time reading behavior

during L2 reading comprehension assessment. Bax and Chan

(2019) measured second language English readers’ eye-movements

during reading test completion, finding that more successful

readers made shorter fixations on average and paid more

attention to areas of text based on relevance. In studies by

Prichard and Atkins (2016, 2019), L2 English readers were

found to underutilize strategic reading when they had time

pressure to complete a reading task. Readers who were able

to consciously apply strategic reading to their task did better

in their comprehension. Outside of these studies, little research

has been conducted on L2 reading assessment, especially with

the analysis of interactions between components of reading

ability in mind, but it is clear that eye-tracking can provide

an avenue to understanding reading behaviors in relation

to comprehension ability for L2 learners (Conklin et al.,

2018).

Research questions

The goal of this study was to investigate whether differences

in real-time reading behavior, as measured using eye-tracking,

uniquely impacts second language reading comprehension

performance, and to investigate interactions between reading

behavior and other individual differences. Specifically,

(1) To what extent do online reading behaviors predict variance

in reading comprehension scores beyond that predicted by

offline measures of individual cognitive and noncognitive

differences (logic, memory, motivation, proficiency)?

(2) To what extent do linear models reveal compensatory

effects within individual differences impacting

comprehension outcomes?

Methods

The data for this study involved second language English

readers completing three sequential reading comprehension tasks

each while reading one of a pool of six texts. During reading task

completion, an eye-tracker recorded reader behavior. Each of the

aspects of data collection and analysis are described below.

Participants

The data for this study was collected from 102 international

students (graduate and undergraduate, with ages ranging between

19 and 52) at a large university in the southeastern United States

as part of a larger study on second language reading assessment.

The students represented a wide range of language backgrounds,

including Mandarin, Spanish, Korean, Telugu, Cantonese, Urdu,

Vietnamese, and 21 other language groups. Participants had spent

an average of 4.67 years in an English-speaking environment, with

an average of 5.1 years of English classroom experience.

Texts

The reading procedure involved reading three texts from a

pool of six texts. The six texts were all passages from high school

science textbooks on the following topics: “biotechnology and

DNA,” “the compound microscope,” “chemical properties of water,”

“the science of hunger,” “the psychology of making choices,” and

“attitudes and roles.” Texts ranged from 315 to 350 words, and

each consisted of four paragraphs. The texts were selected based on

their similarity in terms of lexical and syntactic complexity, as well

as their intended reading level of US high school grade 10 (Flesch

Kincaid reading level is reported in Supplementary Appendix A).

Although there is an inherent advantage in comprehension for

any examinees with background knowledge on each particular

topic, the texts were selected from introductory writings on the

topic and reviewed by a panel of three applied linguists for

broad approachability.

Tasks

Three reading comprehension tasks were completed by

participants during the eye-tracking procedure. Each task reflected

an oft-used second language reading test format along the spectrum

of selected-response to constructed-response. The tasks were a

multiple-choice (MC) reading task (selected-response, discrete-

point scoring), a cloze task (constructed response, discrete-point

scoring), and a summary task (constructed response, human

scored). The MC task for each text involved answering five

questions: one main-idea question, two detail questions, and two

inferencing questions. Each question had three answer choices.

Questions were presented to the right of the text and participants

could see the text and questions at the same time without scrolling

or leaving the screen.

The cloze task involved reading the text, but with 15 words

replaced by blanks. There was no word bank to fill in the

blanks, and participants needed to use comprehension processes to

reconstruct the text. Words were blanked using a rational deletion

method (Kleijn, 2018) targeting a content word or coherence-

maintaining word every 15 words rather than a random or

systematic deletion method to ensure that the task focused on

comprehension processes as much as possible. Cloze tasks were

scored by human raters so that near synonyms could be accepted
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as correct answers. Scoring was otherwise objectively rated based

on an answer key.

The summary task asked readers to produce a 100-word

summary, or a “brief account” (Seidlhofer, 1990), of the text for a

hypothetical fellow student who did not read the text. The provision

of a specific audience and task encouraged summarizers to focus

on content transmission and not linguistic copying and recall. As

with the MC task, the task pane in which examinees typed their

summaries was presented to the right of the text so the examinees

could navigate between text and task without scrolling or changing

screens. Summaries were scored by human raters for level of detail,

evidence of mental modeling, and adherence to the task. Each text

is presented in Supplementary Appendix A.

Eye-tracking metrics

Readers’ real-time reading behavior was recorded with an

ASL EyeTrac 6 device. Participants were seated two feet from a

computer screen as they completed the reading comprehension

tasks, keeping their head in a stable position using a chin rest.

Each participant was calibrated with a practice exercise to ensure

accuracy of fixations to within 0.2 inches before recording began.

Fixation location and duration data were gathered by the eye-

tracking device, along with length of saccades (jumps between

fixations). Fixations were considered to be any pause in eye-

movement >100ms (Manor and Gordon, 2003). Lines of text and

paragraphs were designated using post-hoc areas of interest (AOIs).

Further AOIs were marked for each task area.

Various metrics were derived from the raw data which are

relevant for understanding text-level reading behavior. The derived

metrics are “late” processing measures, which reflect integrating

of larger portions of text. These contrast with “early” processing

measures, primarily focused on individual words and phrases. The

metrics calculated in this study are average saccade length, total

numbers of text fixations per word in reading text area and task

areas, average fixation durations on the text and in task areas,

and average fixations per word per dwell in AOIs. Unique for the

assessment context, the number of transitions between a fixation on

text and a fixation on a task area was calculated. Metrics related to

rereading were also gathered, but they were largely multicollinear

with total fixations per word, indicating that text level reading in

an assessment setting naturally involves a great deal of rereading.

Eye-tracking metrics were further evaluated for normality and

text topic effects. These analyses are not reported in detail and

were merely performed to ensure the assumptions were met for

subsequent analyses. The metrics utilized in analyses are presented

in Table 1.

Although there was a time limit for the overall data collection

procedure of 90min, there was substantial variance in the amount

of time taken to complete the individual reading tasks, so for each

task, the eye-tracking metrics were checked for multicollinearity

with reading time. The following metrics were found to be

multicollinear (r > 0.7) with reading time and were excluded from

further analysis: transitions in the cloze task (r = 0.739), text

fixations per word in the cloze task (r = 0.896), task fixations per

word in the cloze task (r= 0.729), text fixations per word in theMC

task (r = 0.762), and task area fixations per word in the MC task (r

= 0.744). No fixationmetrics were multicollinear with reading time

for the summary task.

Individual di�erences

Considering the large number of cognitive factors which

impact comprehension aside from eye-movement behavior, data

from individual differences were gathered to understand what

moderating effects might occur on how attention impacts task

performance in reading assessment.

Language proficiency
Academic reading ability in a second language depends heavily

on general grammatical knowledge and vocabulary size. Due to the

diverse background of the participants, no standardized measure

of proficiency could be gathered a priori for all participants, so

an 18-item gap-fill c-test was developed to target morpho-syntax

and academic vocabulary. The test involved 18 sentences with a

word which was left half blank. The test is based on the productive

orthographic vocabulary size tests (Laufer and Nation, 1999) which

have been found to strongly predict reading comprehension in a

second language (Cheng and Matthews, 2018).

Reading speed
Reading fluency is an important lower-order literacy skill

(Grabe, 2009; Gauvin and Hulstijn, 2010; Stoller et al., 2013),

which has been found to be connected to reading behavior in

monolingual data (Taylor and Perfetti, 2016). Reading fluency

was here operationalized as reading speed in words per minute

during a silent reading of a 12th grade-level academic text with 375

words about geology. The participants were asked comprehension

questions afterward to ensure the participants read intentionally

but the questions were not scored.

Reading motivation
Motivation is an important factor in understanding academic

reading comprehension (Wigfield and Guthrie, 1997; Schaffner

and Schiefele, 2013). A survey was developed to measure reading

motivation and was administered before the reading trials. All

items were discrete-point, using a 5-point Likert scale, and

included 10 items. Five items measured intrinsic motivation

to read, and five items measured extrinsic motivation to read.

Intrinsic motivations include personal reasons such as enjoyment

or personal enrichment, and extrinsic motivations include practical

reasons such as career-usefulness of reading texts or social

engagement through reading. These items were derived from

previous surveys of motivation (Wigfield and Guthrie, 1997; Ryan

and Deci, 2000). A confirmatory factor analysis was used to

investigate the two-factor nature of the survey, resulting in a

significant model (χ2 = 58.23, p = 0.006). However, only the

intrinsic motivation questions reliably factored together in a unified

construct, and so the intrinsic motivation metric was featured

subsequent modeling of comprehension. The entire motivation

survey is presented in Supplementary Appendix C.
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TABLE 1 Description and operationalization of eye-tracking measures.

Measure Purpose for
measurement

Target area Operationalization notes

Fixations on text per word Global, careful reading Entire text area Average of all fixations made on the reading text in a given trial

Mean length of saccade Global reading Entire trial area Average absolute distance between sequential fixation coordinates

throughout a trial

Mean fixations per line dwell Linear, local reading Line areas of interest Average count of fixations per dwell across dwells in line AOIs.

Controlled for number of words in AOI

Mean fixations per paragraph

dwell

Local, careful reading Paragraph areas of

interest

Average count of fixations per dwell across dwells in paragraph AOIs.

Controlled for number of words in AOI

Mean duration of fixations on

text

Careful reading Entire text area Average time (ms) of fixations in any text area of interest. Controlled

for size of AOI

Mean duration of fixations on

task

Careful reading, Task

integration

Task areas of interest Average time (ms) of fixations in any task area of interest. Controlled

for size of AOI

Fixations on task per word Task integration Task areas of interest Average of all fixations made on the task areas in a given trial. Size of

the areas in the respective tasks is controlled for

Number of gaze transitions

between text and task

Task integration, global

reading

Text and task areas of

interest

Raw count of saccades which moved from a text area of interest to a

task area of interest

FIGURE 1

Cloze scores plotted against mean fixation duration on text, with groups for L2 proficiency and reasoning. Prof., proficiency; Reas., reasoning.

Reasoning
Logical reasoning, or inductive reasoning, has been predictive

of reading comprehension ability in previous research (Klauer and

Phye, 2008). This facet of reasoning specifically refers to the ability

to extrapolate information from patterns. For this study, inductive

reasoning was measured using a 10-item incomplete series test

where participants saw a pattern of three shapes and selected the

best of four options to complete the sequence.
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TABLE 2 Linear regression model to predict cloze task scores.

Predictor B SE t p-value r2 1r2

Intercept −0.021 0.072 −0.293 0.770

L2 proficiency× reasoning×mean text fixation duration 0.151 0.070 2.150 0.034∗ 0.021

L2 proficiency 0.663 0.074 8.959 <0.001∗ 0.442 0.421

Reasoning 0.278 0.078 3.551 0.001∗ 0.511 0.069

Mean text fixation duration −0.222 0.072 −3.099 0.003∗ 0.559 0.048

B, standardized coefficients.
∗Significant at p < 0.05.

FIGURE 2

MC score plotted against mean task area fixation duration, with groupings for above-median and below-median reasoning.

Working memory
Working memory has been found to contribute to reading

comprehension in monolingual readers (Cain et al., 2001; Calvo,

2005; Carretti et al., 2009) and multilingual readers (Alptekin and

Erçetin, 2010; Lipka and Siegel, 2012; Erçetin and Alptekin, 2013;

Joh and Plakans, 2017). Working memory was measured using a 2-

back test, where participants were shown a series of simple images.

Participants compared the image on screen to the image which they

saw two images previously, deciding if they were the same within

1 s. They saw a total of 35 images, among which 15 2-back matches

were randomly distributed in the sequence of pictures. Participants

were scored by the percent of correct responses.

Scoring

Each participant’s responses were scored in a task-appropriate

manner. MC task responses were scored automatically by key, and

a score of 0 to 5 was assigned to each test-taker. Trained raters

scored the cloze tests with an answer key using an acceptable
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FIGURE 3

MC score plotted against number of transitions, with groupings for above-median and below-median reasoning.

TABLE 3 Linear regression model to predict MC task scores.

Predictor B SE t p-value r2 1r2

Intercept <0.001 0.092 0.000 1.00

Mean fixation

duration

(task)

−0.347 0.092 −3.766 <0.001∗ 0.135

Transitions −0.280 0.092 −3.036 0.003∗ 0.213 0.078

B, standardized coefficients.
∗Significant at p < 0.05.

response scoring method. Each cloze blank had an intended

response based on the source text, but scorers also accepted near-

synonyms. Each correct response to a blank in the passage was

given a point, for a score range of 0 to 15 points. Trained raters

also scored the summary tasks. The raters consisted of a pool of

seven applied linguists. Summaries were rated using an analytic

rubric developed by the researcher (see Supplementary Appendix B

for the full summary rating guidelines). This rubric was developed

based on constructs in Taylor (2013) used for rating summaries.

The constructs include content accuracy, level of modeling

(distinguishing between main ideas and subordinate details), task

completion, and language quality. Only accuracy, modeling, and

task completion were considered as part of the comprehension

score, with the language score being used to control for productive

language ability and ensure raters did not factor linguistic aspects

into their content scores. The language score component was

only included on the rubric to mitigate the effect of raters’

judgments of productive language quality in their assessment of

reading comprehension.

Each summary was given a score out of 4 for each construct,

and each summary was rated by at least two raters. If ratings from

the two raters were misaligned in any category by more than one

point, a third rater was called. Only 8.5% of ratings resulted in

a third rater’s adjudication, and no fourth ratings were necessary.

The summary ratings were analyzed for reliability using Multi-

faceted Rasch Analysis (Linacre and Wright, 2002; Linacre, 2023),

Although the complete results of such an analytic measure are

too voluminous to report here, importantly, the rubric constructs

demonstrated independence with high separation reliability of 0.9,

and the raters each exhibited acceptable fit, ranging from 0.72 to

1.12. This is within the acceptable range of model fit of 0.5 to

1.5 (Linacre, 2023), indicating good internal consistency among

the raters.
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FIGURE 4

Summary score plotted against text fixations per word, with groupings for above-median and below-median motivation and L2 proficiency. IM,
intrinsic motivation; prof., L2 proficiency.

The average of the closest two was used as the final score

for each construct, and an additional Total Comprehension score

was calculated as the sum of the accuracy, modeling, and task

completion ratings. This total score was the score used as the

dependent variable in summary modeling analyses.

Analyses

Three linear models were constructed to predict

comprehension score in each task, using predictors of eye-

tracking metrics along with individual differences which exhibited

meaningful correlation with scores. A separate linear model was

developed for each reading task. Correlations were calculated

between each pair of metrics and with task scores. Eye-tracking

and individual differences metrics which had significant and at

least a weak correlation with score, were included in a linear

regression model to predict score.

Results

This section will cover the results of the analyses described

in the previous section on eye-movement and reading

comprehension. Comprehension scores for each of the different

reading tasks were predicted with unique models, the construction

of which began with examination of correlations. Based on

correlations, eye-tracking metrics with at least a weak significant

correlation with scores were selected for linear regression

modeling. Similarly, individual difference metrics at least weakly

significantly correlated with score were included as well. Text topic

was included as a control variable.

Predicting cloze scores

One eye-tracking metric was found to correlate with cloze

scores: mean fixation duration on text (r = −0.306). The

correlation was negative, implying faster eye-movement via lower

fixation durations was related to higher performance. Two

individual differences were found to significantly correlate with

cloze scores: L2 proficiency (r = 0.630) and logical reasoning (r

= 0.212). The metrics were not correlated with each other or with

average fixation duration on text.

Before constructing the linear model, visual inspection of

the three variables was conducted to ascertain the presence of

interactions. Figure 1 shows cloze scores along the y-axis, with

Frontiers inCommunication 08 frontiersin.org115

https://doi.org/10.3389/fcomm.2023.1176986
https://www.frontiersin.org/journals/communication
https://www.frontiersin.org


Tywoniw 10.3389/fcomm.2023.1176986

FIGURE 5

Summary score plotted against mean text fixation duration, with groupings for above-median and below-median motivation and L2 proficiency. IM,
intrinsic motivation; prof., L2 proficiency.

mean fixation duration on text along the x-axis, and groupings for

L2 proficiency level and reasoning level (each split into two groups

around the median). The different slopes of the mean text fixation

duration fit lines between proficiency levels and reasoning levels

indicate a possible interaction effect. As such, these interactions

were included in the linear modeling.

Variables were standardized for the linear model, and a linear

model with three variables as well as on three-way interaction

was constructed. The model was found to be significant, F(4,94) =

27.64 (p < 0.001), and a description of the model is presented in

Table 2. The model was found to have a large effect size, explaining

55.9% of variance in scores. Average fixation duration on text,

as well as interactions with individual differences, was found to

be uniquely account for variance in the model, though the effect

size is very small. L2 proficiency and reasoning were positive

predictors of score, and average fixation duration was a negative

predictor, implying that shorter fixations related to higher scores.

The interaction variable is more complex, but when interpreted

alongside visual presentation of data in Figure 1, it can be seen

that when both L2 proficiency and reasoning are above average, the

negative impact of fixation duration reverses somewhat, i.e., readers

ability to make fast fixations is less important when reasoning and

L2 proficiency are high. This effect is small, but still indicates that

these metrics may have a compensatory effect between them.

Predicting MC scores

Two eye-tracking metrics were found to correlate with MC

scores: transitions between text and task areas (r = −0.293), and

mean fixation duration on the question area (r = −0.379). Each

of the correlations were negative, implying fewer transitions and

shorter fixations on the question area were related to higher MC

performance. Only a single individual difference metric was found

to significantly correlate with MC scores, logical reasoning (r =

0.221). Reasoning was not significantly correlated with any eye-

tracking metrics.

Before constructing the linear model, visual inspection of

the two variables was conducted to ascertain the presence of

interactions. Figure 2 through Figure 3 show MC scores along

the y-axis, with eye-tracking metrics along the x-axis, and

groupings for reasoning (split into two groups around the median).

The participants were split into groups for above median or

below median in reasoning to make the plots reader friendly,

and this grouping is not used in further analysis. The similar

slopes of the average fixation duration and transitions fit lines

between reasoning levels indicates that higher reasoning scores

trend with higher comprehension scores, and there is likely

little to no interaction effect between the reasoning and eye-

movement behavior.
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FIGURE 6

Summary score plotted against number of transitions, with groupings for above-median and below-median motivation and L2 proficiency. IM,
intrinsic motivation; prof., L2 proficiency.

The linear regression model for MC score included as

predictors reasoning, average duration of fixation on questions, and

transitions. Of the included predictors, mean fixation duration on

questions and transitions were significant predictors, but reasoning

and any interaction variables were not. These effects were thus

removed from the model. The final 2-predictor model was found

to be significant, F(2,96) = 12.583 (p < 0.001) and Table 3 contains

a description of the model. The model had a moderate effect size

in predicting score, with r2 = 0.213. Mean fixation duration on

questions was the most significant predictor, showing that making

shorter fixations on the question area contributed to higher scores.

Transitions was also a significant predictor, with fewer transitions

being predictive of higher score.

Predicting summary scores

Three eye-tracking metrics were found to correlate with

summary scores: transitions between text and task areas, this time

positively correlated (r = 0.302), fixations per word in text area (r

= 0.364), and mean fixation duration on the text (r = −0.214).

As in the cloze data, mean duration of fixations on the text was

negatively correlated with summary score. Fixations per word on

text was significantly correlated with transitions (r = 0.477), but

there were no multicollinear variables. Two individual difference

metrics were found to significantly correlate with summary scores:

L2 Proficiency (r = 0.297) and Intrinsic Motivation (r = 0.345).

Before constructing the linear model, visual inspection of

the three variables was conducted to ascertain the presence of

interactions. Figures 4–6 show Summary scores along the y-axis,

with eye-tracking metrics along the x-axis, and groupings for

individual differences split around the median. The participants

were split into groups for above median or below median in

reasoning to make the plots reader friendly, and this grouping

is not used in further analysis. Each graph reveals interaction

effects between the eye-tracking metrics and the individual

differences, but the most can be found in the graph for

mean fixation duration. Here, mean fixation duration normally

has a negative correlation with summary score, yet at higher

levels of both motivation and L2 proficiency, the relationship

between fixation duration and summary score is positive. These

interactions are further explored for significance in the linear

regression model.

The linear regression model for Summary score included as

predictors intrinsic motivation, L2 proficiency, fixations per word
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TABLE 4 Linear regression model to predict summary task scores.

Predictor B SE t p-value r2 1r2

Intercept 0.004 0.083 0.043 0.966

Intrinsic Mot.× L2 proficiency×mean fix. duration 0.253 0.087 2.902 0.005∗ 0.058

L2Proficiency×mean fix. duration 0.211 0.078 2.707 0.008∗ 0.063 0.005

Intrinsic motivation 0.188 0.086 2.188 0.031∗ 0.149 0.086

L2 proficiency 0.177 0.087 2.044 0.044∗ 0.207 0.058

Fixation per word (Text) 0.385 0.086 4.498 <0.001∗ 0.331 0.124

Mean fixation duration (text) −0.275 0.089 −3.098 0.003∗ 0.397 0.066

B, standardized coefficients.
∗Significant at p < 0.05.

on text, mean fixation duration on text, and number of transitions.

Number of transitions and the interactions with it were not

found to be significant to the model and were removed. The final

model was found to be significant, F(6,92) = 9.641 (p < 0.001).

Table 4 contains a description of the model. The effect size of

the model was large, with about 39.7% of the variance explained

for summary scores (r2 = 0.397). The three-way interaction

with L2 proficiency, motivation, and mean fixation duration was

found to be significant and a positive predictor of summary

scores, where mean fixation duration alone was a significant

negative predictor. The stronger of the two predictors was mean

fixation duration alone, indicating that the positive interaction

does not mean readers with stronger proficiency and motivation

necessarily benefit from longer fixations, but rather mitigate slower

fixations with their other abilities. A positive pairwise interaction

between L2 proficiency was also significant in the model, but

not to the extent of the three-way interaction. This still further

shows the strength of L2 proficiency to compensate for more

rapid fixations.

In addition to mean fixation duration, three other main effects

were found to be significant. Fixations per word on text was the

most meaningful predictor, indicating higher numbers of fixations

predicted higher summary scores with a moderate effect size. High

motivation was a moderate positive predictor as well, and L2

proficiency had a main effect, but it was not as impactful on score

as its interaction effects with text duration.

Discussion

The online reading behavior measured in this study was

used to understand its impact on reading comprehension and

interactions with individual differences across various reading

assessment tasks. Each reading task elicited a different linear model

to predict comprehension scores using individual differences and

eye-tracking metrics. These are briefly summarized below.

Score on the cloze was related to L2 proficiency, reasoning,

and efficiency of fixations. Shorter fixations on text areas was

predictive of cloze score, with a small but meaningful effect size

(1r2= 0.048), though this was not as meaningful as the predictive

effects of L2 Proficiency (to a large extent) and reasoning. The three

way interaction between these variables indicated that at higher

levels of proficiency and reasoning, the effect of fixation efficiency

diminished as other skills could compensate.

The model predicting score on the MC task was much

weaker, with two eye-movement measures related to processing the

question area of the text being meaningful in the model. Having

shorter fixation durations on the questions and fewer transitions

between question and text predicted higher comprehension scores.

Though there was a possible interaction between reasoning and

number of fixations, with higher reasoning scores relating to

lower fixations, neither these main effects nor this interaction was

significant in the score model.

The model predicting summary task scores included multiple

predictors, with motivation, proficiency, and fixations positively

predicting summary scores with at least a weak effect size, and

mean fixation duration negatively predicted scores. There was

again an interaction, with longer fixation durations no longer

having a negative impact on score at higher levels of proficiency

and/or motivation. Readers with higher motivation appear to be

able to compensate for the impact of slower processing ability on

comprehension with more L2 linguistic resources.

To answer the first research question, to what extent do online

reading behaviors predict variance in reading comprehension scores

beyond that predicted by other individual differences, we can look

at the appearance of eye-tracking main effects in the models of

comprehension for each reading task. For each reading task model,

a fixation duration metric was found to predict scores, with shorter

average fixations predicting higher score. This is in line with

previous research which showed that skilled readers make short,

efficient fixations (Ashby et al., 2005; Bax, 2013; Krieber et al.,

2016). The summary task was distinct from the cloze and MC tasks

in that an eye-tracking metric positively predicted scores. For the

summary task, a greater number of fixations on the reading text

was predictive of higher summary scores with a medium effect

size. It is possible that the summary task pushes readers to build

a more detailed mental model of the text and is more cognitively

demanding, so more fixations are necessary. This is attested in Bax

(2013) who found eye-movement behavior related to higher-order

processing in summary comprehension tasks.

In relation to the second research question, to what extent

do linear models reveal compensatory effects within individual

differences impacting comprehension outcomes, interactions were

present in two models of reading comprehension. The results

from this study align with previous research which asserts that
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readers can compensate for certain weaknesses in reading ability

by utilizing other related skills (Stanovich, 1980; McNeil, 2012).

McNeil’s (2012) framework made predictions about how readers

at different levels would rely on strategic, literate, or linguistic

resources. Although the current study did not seek to ascertain

which aspect of skills would impact comprehension most at

different levels of reading, we nonetheless established that L2

language ability, reading behavior, and strategic abilities have

unique contribution to reading comprehension, and readers can

compensate for weaknesses in one skill with strengths in another.

The specific compensations related to reading efficiency, where

efficiency was less critical for comprehension when readers had

higher L2 proficiency and/or another skill (logical reasoning for

the cloze task and motivation for the summary task). This deviates

slightly from previous research which found interaction effects with

eye-tracking metrics on reading comprehension. In Huang et al.

(2022), working memory was found to be a significant predictor

of comprehension, and was able to compensate for the effect of

unfamiliar words which caused slower processing. However, the

Huang et al. (2022) study was looking at smaller texts with shorter

reading times, so the results of the current study extend our

understanding of how measures of efficient processing materialize

at different lengths of text. For longer texts and tasks allowing

simultaneous access to text and task, working memory may not be

themost predictive cognitive measure, andmay not compensate for

late-measure eye-tracking metrics as measured in this study.

Conclusion

This study has taken a novel look at how reading behavior,

measured through eye-tracking, differed across reading tasks in

terms of impact on task performance. Beyond furthering our

understanding of the second-language reading process, there are

implications for language teaching and testing as well. It is worth

acknowledging as teachers that readers benefit from learning

various aspects to reading, from refining language proficiency to

practicing extensive reading for speed to engaging in reasoning and

motivation-enhancing tasks. Since there is variance in how different

abilities contribute to comprehension performance across tasks, it

is also worth teaching developing readers goal-setting strategies

to help them compensate for the demands set by their reading

purpose. For example, reading for discrete information as in the

cloze and MC tasks demands quick, efficient reading, but reading

for global comprehension as in the summary task required more

comprehensive attention to the text. Being able to moderate one’s

approach to reading in different tasks is critical.

These findings must be taken in light of the study’s limitations.

Previous research (Cook and Wei, 2019) has advised against

drawing direct connections between eye-tracking metrics and

underlying processes. This is especially true for the current

study which utilized very coarse-graining eye-tracking metrics.

Fixations per word and average fixation duration are both general

measurements based on participants’ entire trial of reading data.

More attention to areas of interest and phrasal/word-level eye-

tracking information could provide more to the picture of eye-

movement behavior’s contribution to comprehension. Further

research is needed to better understand how finer shades of

measurement of fixation duration impacts comprehension and

relates to other individual differences. It is also necessary to

state that while we observed the impact of reading efficiency

in this study, we were not able to ascertain whether readers

consciously engaged in faster or slower reading as part of an

active reading strategy. More research is needed to connect eye-

movement behaviors to conscious engagement in specific types of

reading strategy activation.
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Not all grammar errors are equally 
noticed: error detection of 
naturally occurring errors and 
implications for eye-tracking 
models of everyday texts
Katrine Falcon Søby *, Byurakn Ishkhanyan  and 
Line Burholt Kristensen 

Department of Nordic Studies and Linguistics, University of Copenhagen, Copenhagen, Denmark

Grammar errors are a natural part of everyday written communication. They are 
not a uniform group, but vary from morphological errors to ungrammatical word 
order and involve different types of word classes. In this study, we examine whether 
some types of naturally occurring errors attract more attention than others during 
reading, measured by detection rates. Data from 211 Danish high school students 
were included in the analysis. They each read texts containing different types 
of errors: syntactic errors (verb-third word order), morphological agreement 
errors (verb conjugations; gender mismatches in NPs) and orthographic errors. 
Participants were asked to underline all errors they detected while reading for 
comprehension. We examined whether there was a link between the type of errors 
that participants did not detect, the type of errors which they produce themselves 
(as measured in a subsequent grammar quiz), and the type of errors that are typical 
of high school students in general (based on error rates in a corpus). If an error 
is infrequent in production, it may cause a larger surprisal effect and be more 
attended to. For the three subtypes of grammar errors (V3 word order, verb errors, 
NP errors), corpus error rates predicted detection rates for most conditions. Yet, 
frequency was not the only possible explanation, as phonological similarity to the 
correct form is entangled with error frequency. Explicit grammatical awareness 
also played a role. The more correct answers participants had in the grammar 
tasks in the quiz, the more errors they detected. Finally, we found that the more 
annoyed with language errors participants reported to be, the more errors they 
detected. Our study did not measure eye movements, but the differences in 
error detection patterns point to shortcomings of existing eye-tracking models. 
Understanding the factors that govern attention and reaction to everyday 
grammar errors is crucial to developing robust eye-tracking processing models 
which can accommodate non-standard variation. Based on our results, we give 
our recommendations for current and future processing models.
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1. Introduction

Everyday texts, whether it is an email to a colleague or a high 
school essay, are rarely edited. Such texts often contain grammar 
errors like anomalous use of word order and lack of agreement 
between verb and subject (Lunsford and Lunsford, 2008). Attention 
to these errors is not uniform. In some cases, readers react to the 
error. In other cases, the error goes by unnoticed. This variation in 
the reader’s attention and response to errors poses a challenge to 
existing models of eye movement control in reading, such as E-Z 
Reader (Reichle et  al., 2003) and SWIFT (Engbert et  al., 2005). 
Enhancing our understanding of the factors that govern attention and 
reaction to everyday grammar errors is necessary for developing 
robust models of eye movement control (Søby et al., 2023). We need 
models that take into account variation in the type of naturally 
occurring grammar anomalies that occur in non-standard language 
and variation in the reader’s grammatical awareness and proficiency, 
as both these factors may modulate attention and eye movements.

Differential attention to language errors has been examined in 
previous studies using different methods. Proofreading studies show 
that attention is not equally distributed between different types of 
language errors (Hacker et al., 1994; Shafto, 2015). Typos like toujousr 
for toujours attract more attention than grammar errors, which again 
attract more attention than orthographic errors with phonological 
similarity to the correct form, e.g., essentiellemment for essentiellement 
(Larigauderie et al., 2020).

Change blindness studies also provide evidence for differential 
attention allocation. In this paradigm, a participant reads two almost 
identical sentences, one after another, and responds to whether the 
two sentences are identical or not. Only one word is changed from the 
first display of the sentence to the second. Change blindness studies 
show that readers attend more to changes in lexical elements (e.g., full 
verbs and demonstrative pronouns) than to changes in grammatical 
elements (e.g., auxiliaries and articles; Christensen et al., 2021) and 
that readers attend more to changes in focused words than in 
non-focused words (Sturt et al., 2004).

Across EEG and eye-tracking studies, the difference between 
syntactic and semantic/pragmatic anomalies is well-documented 
(Ainsworth-Darnell et al., 1998; Ni et al., 1998; Braze et al., 2002; 
Hahne and Friederici, 2002; Hagoort, 2003). Grammar errors, 
however, are usually treated as a homogenous group, although 
grammar errors involve various subtypes (word order errors, verb 
agreement errors, gender mismatch errors etc.) which are not 
necessarily noticed to the same degree or not necessarily processed in 
the same way. With the present study we ask, if sensitivity to different 
kinds of grammar errors differs too, and what the consequences are 
for existing models of eye movement control in reading.

Using an error detection paradigm, we study the differences in 
attention to different types of naturally occurring grammar errors in 
written Danish. Some error types involve attention to confusion of 
large elements (e.g., word order errors), while others involve smaller 
segments at the level of words, suffixes and letters. Some errors appear 
initially in a sentence. Other errors have a medial or final position. 
Some grammar errors have phonological similarity with the correct 

form, and others are distinct. Many of these factors co-vary in 
naturally occurring errors and cannot be completely disentangled. In 
our study, we focus on how error type, error frequency in written 
production and phonological similarity to the correct form affect 
readers’ perception of and attention to grammar errors in Danish. For 
word order errors, we also consider the position of the misplaced word 
in the sentence.

Previous studies of writers’ spelling accuracy show that exposure 
to incorrectly spelled words tends to negatively influence later 
spelling accuracy for those same words (Jacoby and Hollingshead, 
1990). Building on these findings, we propose that previous exposure 
to specific types of incorrectly inflected or misplaced words may also 
affect attention to this specific type of grammar errors during reading. 
We also examine the relationship between the type of errors that 
young readers tend to overlook in texts, the type of errors these 
young readers produce themselves (when performing a grammar 
quiz), and the type of errors that are typical of their age group in 
general (based on corpus studies of naturally occurring texts). Some 
grammar errors in our study represent types of errors that frequently 
occur in Danish high school essays. Other errors are less typical of 
high school students, but characteristic of L2 learners of Danish. 
We  investigate if these typical L2 grammar errors attract more 
attention than the grammar errors typical of high school students. 
Our expectation is that attention to a specific type of grammar error 
is not only a matter of the reader’s explicit grammar awareness (as 
measured in the grammar quiz), but also of whether the specific type 
of error is common in everyday texts by native speakers. If a specific 
type is frequent among the peers of the reader, the reader may have 
more exposure to this type of error and a mental representation of 
the error. The reader may therefore find it less striking and be less 
likely to detect it than errors that are infrequent in texts written 
by peers.

2. Background

Our error detection study does not involve eye-tracking data, but 
in combination with insights from previous eye-tracking studies on 
processing of grammar errors, it can address shortcomings in current 
models of eye movement control during reading. In this section, 
we present previous eye-tracking studies on processing of grammar 
errors (section 2.1), and describe the role of grammar errors in 
existing models of eye movement control in reading (section 2.2). In 
section 2.3, we describe the error detection paradigm, and how this 
may contribute to research in attention during reading. We  also 
present the error types chosen for this study. Finally, in section 2.4, 
we provide an overview of the main factors presumed to influence 
attention to errors.

2.1. Previous eye-tracking studies on 
processing of grammar errors

Previous eye-tracking studies of grammar errors differ with respect 
to language, error types, purpose of the study, and the included reading 
measurements. Therefore, the findings cannot be easily summarized.

First, the eye-tracking studies have been conducted in different 
languages (English, Hebrew and Norwegian), making it difficult to 

Abbreviations: DEF, Definite; INF, Infinitive; N, Neuter; PRS, Present tense; U, Uter 

(common gender).
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compare across studies. For example, it is difficult to compare Hebrew 
subject-verb gender agreement to Norwegian word order.

Second, the ungrammatical items are very different, ranging from 
word order errors such as The white was cat big (Huang and Staub, 
2021), Norwegian *ASV word order instead of AVS (Søby et al., 2023) 
to various morphosyntactic agreement errors such as gender 
agreement (Deutsch and Bentin, 2001; Dank et al., 2015), subject-verb 
agreement (Pearlmutter et al., 1999; Lim and Christianson, 2015) or 
modals followed by a progressive form, e.g., It seems that the cats will 
not usually eating the food we put on the porch (Ni et al., 1998), and/or 
a past tense form (Braze et al., 2002).

Third, previous studies have had different reasons for including 
ungrammatical items. Their experimental contrasts differ and their 
results can be difficult to compare. Huang and Staub (2021) examined 
failure to notice transposition errors to enter a debate about serial vs. 
parallel processing. Other studies focus on the differences between 
pragmatic and syntactic processing (Ni et al., 1998; Braze et al., 2002), 
or the interrelation between semantic and syntactic factors during 
processing of agreement in Hebrew (Deutsch and Bentin, 2001). 
Other studies again have investigated the attraction phenomenon, i.e., 
when a word erroneously agrees with a local distractor noun instead 
of the head noun, e.g., The key to the cabinets were rusty from many 
years of disuse (Pearlmutter et al., 1999), both in English (Lim and 
Christianson, 2015) and for subject-predicate agreement in Hebrew 
(Dank et al., 2015).

Finally, the studies use different reading measurements. While 
some measure very early effects, such as first fixation duration 
(Deutsch and Bentin, 2001; Braze et al., 2002; Dank et al., 2015; Lim 
and Christianson, 2015; Huang and Staub, 2021; Søby et al., 2023); 
others do not (Ni et al., 1998; Pearlmutter et al., 1999).

Taking these reservations into account, it seems that the different 
types of grammar errors elicit similar responses in participants’ eye 
movements across languages, with similar time courses. Most of the 
studies find more regressions out from the error, meaning that 
participants respond immediately. Most studies also find increased 
reading times, but the time course varies (see Søby et al., 2023). Very 
early effects are found on first fixation duration by Deutsch and 
Bentin (2001), Dank et  al. (2015), Huang and Staub (2021), and 
partly by Søby et al. (2023). Other studies only find increased total 
durations on the critical region (Pearlmutter et  al., 1999) or no 
reading time effects at all (Ni et al., 1998). Typically the effects of 
ungrammaticality quickly disappears, either in the critical or 
subsequent regions.

Only one of the previous eye-tracking studies has explicitly 
examined whether readers perceived the ungrammatical items as 
errors or not. Huang and Staub (2021) used readers’ grammaticality 
judgments of each sentence to distinguish between detected and 
undetected errors. None of the studies have made direct 
comparisons between different types of grammar errors to examine 
whether participants elicit stronger or different reactions to some 
errors than others. Therefore, little is known about the factors that 
govern attention and reaction to different types of grammar errors. 
Furthermore, the ecological validity of grammar errors have not 
been the focus of previous studies. Errors such as transposed words 
are constructed for the purpose of the experiment, but infrequent 
in natural language, and therefore may not reflect reading processes 
for naturally occurring language. Understanding the factors that 
govern attention and reaction to different types of naturally 

occurring errors is a necessary prerequisite when developing robust 
eye-tracking models for reading everyday texts (Søby et al., 2023).

2.2. The role of grammar errors in existing 
models of eye movement control in 
reading

Attention to, and processing of, grammar errors have not been a 
focal point in existing models of eye movement control in reading. 
Existing models can be divided into two types. Serial-attention models 
share the assumptions that attention is allocated serially, and only to 
one word at a time, while attention-gradient models assume that 
attention is allocated as a gradient, i.e., to multiple words at a time 
(Warren, 2011, p.  919). The major models are the influential E-Z 
Reader (Reichle et al., 2003, 2009; Reichle, 2011), a serial-attention 
model, and SWIFT, an attention-gradient model (Engbert et al., 2005; 
Engbert and Kliegl, 2011). Serial-attention models are furthermore 
described as cognitive control models, because they assume that 
“lexical processing is the ‘engine’ that determines when the eyes will 
move from one word to the next during reading” (Reichle, 2011, 
p.  768), in contrast to models like SWIFT, in which cognition is 
assumed to play a reduced role for eye movements. For example, the 
signal to move the eyes forward in SWIFT is provided by an 
autonomous random timer.

Both E-Z Reader and SWIFT account for effects of lexical 
processing on eye movements, but a widely acknowledged 
shortcoming of both models is that they cannot account for effects of 
higher-level language processing on eye movements (Clifton and 
Staub, 2011; Warren, 2011). The issue has not been addressed in 
SWIFT, but for E-Z Reader, Reichle et al. (2009) added a post-lexical 
integration stage, which is assumed to reflect all of the postlexical 
processing that is required to integrate a word, n, into the higher-level 
representations which readers construct online. As exemplified by 
Reichle et al. (2009, p. 5f), this could be to link word n into a syntactic 
structure, to generate a context-appropriate semantic representation, 
and to incorporate its meaning into a discourse model. Reichle et al. 
(2009, p. 6) state that “the integration stage […] is a placeholder for a 
deeper theory of postlexical language processing during reading. Our 
goal in including this stage is therefore quite modest: to provide a 
tentative account of how […] postlexical variables might affect readers’ 
eye movements.”

In E-Z Reader ver. 10 (Reichle et al., 2009; Reichle, 2011), lexical 
processing of a word takes place in two stages. First, the early stage of 
lexical processing (or word identification), also known as L1 or the 
familiarity check, takes place. This stage corresponds to the 
identification of the orthographic form of the word, assuming that 
“this is not full lexical access, as the phonological and semantic forms 
of the word are not yet fully activated” (Reichle et al., 2003, p. 452). 
When completed, i.e., when the feeling of familiarity concerning the 
word exceeds a threshold corresponding to the familiarity check, it 
triggers the initiation of the programming of a saccade to move the 
eyes to the next word (Reichle, 2011). The time required to finish the 
familiarity check depends on the frequency of a word and its cloze 
probability, defined as the proportion of subjects who are able to guess 
word n, when shown the rest of the sentence (Reichle et al., 2009:3). 
This predicts that frequent and/or predictable words are processed 
faster than infrequent and/or unpredictable words (Reichle, 2011). 
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We  assume that the same reasoning applies to frequent and/or 
predictable errors, but the E-Z Reader model does not explicitly 
account for input with frequent vs. infrequent errors.

The later stage of lexical processing (L2) involves the 
identification of the word’s phonological and/or semantic forms, 
to enable additional linguistic processing (Reichle et al., 2003). 
This stage corresponds to what is typically referred to as lexical 
access, and with the completion of lexical access, attention shifts 
to the next word, which can now be processed. Simultaneously, 
post-lexical processing (i.e., integration) starts on the identified 
word. This post-lexical processing corresponds to the minimal 
amount of processing necessary to continue to move attention 
(and the eyes) forward through the text (Reichle, 2011, p. 776). In 
most cases, integration is completed without difficulty, meaning 
that post-lexical processing only has minimal effect on readers’ 
eye movements. Reichle et al. (2009, p. 6) assume that complete 
incremental post-lexical processing is not always necessary and 
does not always occur, which is broadly consistent with the “good 
enough” view of language processing (Ferreira and Patson, 2007). 
However, integration difficulty may occur. When integration fails, 
it causes the eyes and attention to pause and/or move backwards 
(Reichle, 2011). Integration failures happen by default when word 
n + 1 is identified before word n is integrated. Rapid integration 
failure can happen due to severe semantic or syntactic violations 
(Reichle et  al., 2009). If the integration of n fails rapidly, the 
forward saccade to n + 1 is canceled, which results in a pause 
(increasing first fixation duration and gaze duration) and/or a 
refixation (increasing gaze duration) or an interword regression 
(Reichle et al., 2009). If the integration failure of n takes place 
after the eyes have moved to n +  1, i.e., fails more slowly, a 
regressive eye movement is made (Clifton and Staub, 2011, 
p. 904). Thus, the model predicts that problems with integration 
can have very rapid effects, influencing first-fixation duration on 
the word that is being integrated. This, however, only happens 
when the integration failure occurs before the labile stage of 
saccadic programming (i.e., the stage which can be canceled) to 
move the eyes forward in the text has completed (Reichle 
et al., 2009).

The assumption that contextual information (besides cloze 
probability) only affects postlexical integration is challenged by 
studies of parafoveal processing, i.e., processing of upcoming words 
that have been attended, but not yet fixated (Warren, 2011). For 
example, Veldre and Andrews (2018) used the gaze-contingent 
boundary paradigm to assess whether parafoveal processing of a 
word contributes to its subsequent identification. In this paradigm, 
a target word in a sentence is replaced with another word, until the 
reader’s eyes cross an invisible boundary (e.g., before the space to 
the left of the target word), after which the word is changed back to 
the target word. Veldre and Andrews (2018) conducted two 
experiments, in which they compared contextually plausible 
previews (which either contained a morphosyntactic agreement 
violation or not) to implausible previews (either containing a 
syntactic word class violation or not). The plausible previews were 
not predictable from the sentence context, as measured in a cloze 
task. Veldre and Andrews (2018) found that the contextual 
plausibility and grammatical correctness of an upcoming word can 
affect processing, early enough to affect skipping of that word. 
According to the authors, the plausibility effects on skipping rates 

are unlikely to be reconciled with E-Z Reader’s current post-lexical 
integration mechanisms.1

Furthermore, the E-Z Reader model does not address what 
happens when readers encounter other types of misspellings or 
grammar errors, besides severe syntactic violations. If the early 
familiarity check identifies the orthographic form of the word, it 
should be able to respond to orthographic errors (e.g., posibility), but 
not anomalous use of existing morphological forms (e.g., eats for eat). 
The model does not answer the question of why some types of errors 
are detected while others are not, nor the question of why readers do 
not always notice the same error.

Finally, Warren (2011) argues that the E-Z Reader model will 
be  incomplete without allowing some role for even higher-level 
influences, based on research on semantic anomalies. Readers 
sometimes fail to notice semantic anomalies, suggesting that 
processing is sometimes shallow (Ferreira et al., 2002). “If different 
readers, reading for different purposes, perform post-lexical 
processing more or less quickly or completely […], the precise 
combination of reader, purpose and motivation will affect the patterns 
of eye movements to semantic violations” (Warren, 2011, p. 922). In 
our study, we examine how error detection differs between readers 
with differences in grammatical awareness and proficiency.

2.3. The error detection paradigm

Both the eye-tracking and error detection paradigms can be used 
to measure attention during reading. Here we assume that eye-tracking 
provides a more sensitive measure than error detection. Yet, the exact 
correlations between the two measures is not well-explored. It may 
be the case that the error detection paradigm treats two events as the 
same, while they involve different eye movements. Although 
we  assume that error detection is more rough, there are several 
advantages to using this paradigm for our purpose. In the previous 
eye-tracking studies of ungrammaticality, sentences were presented 
individually. With error detection, we can introduce participants to 
long, consecutive texts, simulating natural text reading. Furthermore, 
we  can include many different types of grammar errors, unlike 
previous eye-tracking studies which have included relatively few error 
types (e.g., pragmatic vs. syntactic). Having many different types of 
errors in different conditions would result in a long and tiresome 
eye-tracking experiment. Finally, using error detection, we can get 
participants’ feedback on where errors occur, in a fast way, not having 
to ask after every trial. Although, error detection can only provide a 
rough measurement for attention during reading, it can provide 
insights into which types of errors are more noticed than others, and 
which other factors than error type is likely to play a role. The results 
are therefore relevant to future eye-tracking studies and processing 
models. If differences are found using error detection, they are also 
likely to be found using a presumably more sensitive measure such as 
eye-tracking.

1 Veldre and Andrews (2018) also argue that the results cannot be reconciled 

with the alternative forced fixation account of preview effects, proposed by 

Schotter et al. (2014b).
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In our error detection study in Danish, we included one type of 
syntactic error (*ASV for AVS, see below) and two types of 
morphological errors (confusion of infinitive and present tense, and 
gender mismatches between articles or adjectives in NPs), as well as 
various common orthographic errors. These errors were chosen 
because they represent a broad range of error types, and they are all 
attested in natural L1 and/or L2 production, however with different 
frequencies. For example, ungrammatical verb-third word order 
(*ASV) instead of grammatical verb-second word order (AVS) is 
common in L2 Danish (Søby and Kristensen, 2019; Søby and 
Kristensen, to appear), but rare in L1 Danish, apart from multiethnic 
urban vernaculars (Quist, 2008). The three types of grammar errors 
naturally occur in different conditions, varying with respect to error 
frequency (measured as error rates in L1 production), and/or 
phonological similarity to the correct form, or placement in the 
sentence. Since the stimuli is based on naturally occurring errors, 
error frequency and phonological similarity tend to co-vary.

2.4. Attention to errors during reading

Many potential contributing factors besides error type might 
influence whether a reader reacts to an error. In this section, 
we elaborate on why some of the factors we are examining in our study 
are relevant to include, namely error frequency, phonological 
similarity to the correct form, and, for word order, placement in the 
sentence. Finally, we elaborate on the potential role of participants’ 
own production of errors, and individual differences in 
error perception.

Previous letter detection studies and change-blindness studies 
review a wide a range of factors which can influence attention during 
reading (e.g., Smith and Groat, 1979; Sturt et al., 2004; Vinther et al., 
2015; Christensen et al., 2021). For example, Smith and Groat (1979) 
found that the position on the line and in the sentence influenced 
detection of the letter e, so that the outer positions were more 
prominent than the middle. Using V3 errors with a length 
manipulation, we  examine whether position effects within the 
sentence are also found for grammar errors.

The main focus of our study is on the role of error frequency. 
We hypothesize that error frequency, which is tied to the predictability 
of the error, predicts perception patterns. According to prediction-
based approaches to sentence processing, unexpected input attracts 
attention (Kamide, 2008; Levy, 2008; Christiansen and Chater, 2016). 
If a reader sees input with common errors, the model will be updated 
according to the input, meaning that frequent errors should 
be predicted by the model, and thus should attract less attention than 
infrequent errors.

Besides error frequency, we expect that phonological similarity 
to the correct form negatively influences detection rates for 
grammar errors, in line with Larigauderie et  al. (2020) who 
compared spelling errors which were either phonologically similar 
to or distinct from the correct form. One example from our stimuli 
is confusion of homophone verb pairs, such as present tense kører 
and infinitive køre, both pronounced [ˈkʰøːɐ]. We  expect that 
confusion of heterophone verb pairs such as rejser [ˈʁɑjˀsɐ] and 
rejse [ˈʁɑjsə] will have higher detection rates. When the correct 
form is homophone to the error, the error is not grammatical in that 
context, but it is phonologically correct, and may therefore not 

disturb reading. For such silent errors readers may use all available 
cues whether they are phonological or orthographic (cf. Carassco-
Ortiz and Frenck-Mestre, 2014). The E-Z Reader model does not 
account for homophony effects, but it may predict that the 
phonological form is more easily identified for homophone 
compared to heterophone errors in the later stage of lexical 
processing (L2). The error frequency and phonological similarity to 
the correct form tend to co-vary, because L1 speakers of Danish 
produce more errors when for instance present tense and infinitive 
forms are homophone. Thus, effects of phonological similarity and 
frequency are often difficult to disentangle.

On top of that, individual differences are likely to influence error 
detection. If a type of error is frequent in a person’s production, e.g., 
omitting the-r on verbs in present tense: *han køre ‘he drive.inf,’ the 
rules for verbal inflection may not be  fully mastered. It therefore 
seems likely that this person will overlook this type of error in general. 
Individual differences in the perception of what constitutes an error 
in a specific situation could also be a factor: How correct or incorrect 
on a continuum is an error to a specific reader? How do individual 
readers differentiate between unusual language and outright errors? 
And is the perception affected by the context in which it is read, e.g., 
experimental vs. natural? Our study is not equipped to answer these 
questions. Studies show that tolerance for various errors can 
be modulated by participants’ perception of the speaker, so that the 
tolerance and willingness to repair is higher when the speaker is 
perceived as non-native (Konieczny et al., 1994; Hanulíková et al., 
2012; Gibson et al., 2017).

In the public debate and prescriptive literature, some errors are 
pointed out as typical or basic errors, while other errors are much less 
debated or accentuated. Publically debated errors may be  more 
prominent to readers (Blom and Ejstrup, 2019b). In Denmark, missing 
present tense-r is often accentuated in normative discourse. Blom and 
Ejstrup (2019b) found that readers’ intolerance for errors are 
modulated by the type of error. Their participants were more annoyed 
with typical and basic grammar/spelling errors than with atypical and 
complicated errors. The missing present tense -r was the most 
annoying error. The authors also found a correlation between 
participants’ irritation (with a specific item) and the number of errors 
detected, so that the more errors participants detected in general, the 
more irritated they were with that item.

2.5. The current study

The current study examines native speakers’ attendance to 
different types of syntactic, morphological and orthographic errors 
(found in L1 and/or L2 Danish) during reading. We asked Danish 
high school students to read and comprehend two texts, while 
underlining all errors they noticed. We also tested their basic grammar 
skills, using a grammar quiz. The study included one type of syntactic 
error (V3 word order) and two types of morphological errors 
(confusion of infinitive and present tense, and gender mismatches 
between articles or adjectives in NPs), as well as various common 
orthographic errors. V3 errors are the least frequent, and orthographic 
errors the most common. In a corpus of 71 high school essays, 
we found 10 V3 errors, 16 gender mismatches in indefinite articles, 51 
gender mismatches in adjectives, 178 confusions of infinitive and 
present tense, and 1,099 orthographic errors.
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The study is designed as a four-in-one study. Each error type (V3, 
verb, NP, orthographic) constitutes its own subexperiment and 
appears in different conditions, controlled for a number of variables. 
We cannot directly compare attention to the four types, as there are 
too many confound variables, such as their position in the sentences 
and in the text. Thus, we only indirectly compare the detection rates 
for the three overall error categories (syntactic, morphological, 
orthographic) using descriptive statistics.

We examine the relationship between the type of errors that young 
readers tend to overlook in texts, the type of errors these young readers 
produce themselves (in the grammar quiz), and the type of errors that 
are typical of their age group in general (based on corpus studies of 
high school essays). Our expectation is that attention to a specific type 
of grammar error is not only a matter of the reader’s explicit grammar 
awareness (as measured in the grammar quiz), but also of whether the 
specific type of error is common in everyday texts by native speakers. 
If a specific type is frequent among the peers of the reader, the reader 
may have more exposure to this type of anomaly and a mental 
representation of the error, i.e., common errors should be predicted to 
occur in input, based on prediction theory (Kamide, 2008; Christiansen 
and Chater, 2016). The reader may therefore find it less striking and 
be less likely to detect it than errors that are infrequent in texts written 
by peers, e.g., those found in L2 Danish. This means that for the overall 
categories of errors (syntactic, morphological and orthographic), 
we expect that the syntactic errors (V3 errors) have higher detection 
rates than morphological and orthographic errors, because V3 errors 
are rare in L1 writing (and are visually large). We also expect readers 
to overlook orthographic errors the most, because orthographic errors 
are highly frequent in the L1 writing.

Finally, for the two morphological subtypes of grammar errors 
(confusion of infinitive and present tense, and gender mismatches 
between articles or adjectives in NPs), we  examine how error 
frequency and phonological similarity to the correct form may affect 
attention to errors. For the word order errors, we examine position 
effects within the sentence. The specific conditions and hypotheses for 
the three subtypes of grammar errors are presented in the results 
section where they are treated as three subexperiments. The fourth 
subexperiment on different types of orthographic errors is primarily 
included to create variation in the stimuli.

3. Methods

3.1. Participants

The participants were recruited from three different Danish 
upper secondary education programs (STX, HTX, and HHX).2 Data 
were collected in August 2019 at six schools located in and around 
Copenhagen and Roskilde. Two hundred and forty students from 10 
classes participated. We excluded participants with dyslexia (18), with 

2 The three education programs (STX, HTX, and HHX) all prepare for higher 

education, but have different profiles. STX is a general examination program, 

HTX is a technical examination program with a STEM profile and HHX is a 

commercial examination program with a business profile (Ministry of Higher 

Education and Science, 2022).

late acquisition of Danish (>6 years, Hyltenstam and Abrahamsson, 
2003) (2), or participants who misunderstood or did not finish the 
reading task (9). This left 211 participants in the analysis (98 women, 
113 men), 17–20 years of age (M = 18.31 years; SD = 0.67 years). The 
majority were part of the STX Program (130), followed by HHX (43), 
and HTX (38). All participants (or their parents) gave informed 
written consent prior to the experiment. The study was approved by 
local research ethics committee at University of Copenhagen, and 
followed GDPR.

3.2. Experimental tasks and materials

The experimental tasks consisted of a reading task (section 3.2.1) 
which was followed by a grammar quiz and a questionnaire (section 
3.2.2). All test materials are found in Supplementary material 
(section 3).

3.2.1. Reading task
The reading task consisted of two texts, A (689–692 words) and B 

(831–832 words). Every participant read both texts. There were four 
versions of the reading task material to ensure that each participant 
only saw the same item in one condition. That is, when reading the 
same sentence in the text, participants reading version 1 were 
presented with the verb error in one condition, participants reading 
version 2 were presented with it in another condition, etc. Each 
participant was presented with a total of 100 errors in text A and B 
together. Table 1 shows the distribution on subtypes. To avoid priming 
effects, target items did not occur elsewhere in the texts.

A further description of the stimuli is presented in the sections on 
each subexperiment. We varied the order of text A and B, so that half 
of the participants read A before B, and the other half read B before 
A. Thus, there were eight versions of the reading task in print.

3.2.2. Questionnaire and grammar quiz
The questionnaire addressed the participants’ language and 

dialectal background as well as their attitude to language errors. The 
purpose of the grammar quiz was to ensure that the participants had 
the basic grammatical prerequisites to notice errors in the reading 
task. The grammar quiz included tests on all four types of errors, i.e., 
verb-second word order after sentence-initial adverbials, verb 
conjugations in infinitive and present tense, conjugation of adjectives, 
gender of indefinite articles, and spelling of the four types of target 
words. Most of the tasks were forced-choice between two options.

3.3. Procedure

The participants were informed that the study was about speed-
reading and what readers notice when skimming a text. In the reading 
task, their task was to underline language errors. Participants had max. 
7 min to read each text (A and B). Participants were instructed to skim 
as fast as possible and finish reading the whole text so they could answer 
the comprehension questions. Whenever they noticed a language error, 
they should underline it, but they should avoid going back in the text. 
Language errors were defined as different types of spelling and grammar 
errors, but not punctuation. They were instructed to underline the 
whole word containing the error, or multiple words if they were in the 

126

https://doi.org/10.3389/fpsyg.2023.1124227
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Søby et al. 10.3389/fpsyg.2023.1124227

Frontiers in Psychology 07 frontiersin.org

wrong order. Underlinings could be canceled with a vertical line. Use of 
dictionaries and online tools were not allowed.

The researcher registered the starting time and gave statuses 
on remaining time. When the students finished reading the text, 
they wrote the finishing time and put the text away (if they did 
not finish, they marked how far in the text they got). The same 
procedure was repeated for the second text. Finally, the students 
completed the comprehension questions for both texts, the 

questionnaire and the grammar quiz. The whole session lasted 
around 45 min.

4. Analysis

The error detection data were analyzed with general linear mixed 
effects models for binomial data in RStudio (R Core Team, 2022, 

TABLE 1 Error types, conditions and number of target items in the reading task (text A + B).

Error types Items

V3 errors (2 conditions, 8 items per condition) 16a

1) After short adverbial: og kl. 14 han ankommer til Berlin

and o’clock 2 he arrive.prs  in Berlin

‘and at 2 o’clock, he arrives in Berlin’

8

2) After long adverbial: og først ud  på eftermiddagen han ankommer til Berlin

and first  out on afternoon.def he    arrive.prs  in Berlin

‘and first in the afternoon, he arrives in Berlin’

8

Verb errors (4 conditions, 8 items per condition) 32

1) Homophone; Present tense for infinitive: han vil kører [ˈkʰøːɐ]

he will drive.prs

‘he’ll drive’

8

2) Homophone; Infinitive for present tense: han køre [ˈkʰøːɐ]

he drive.inf

‘he drives’

8

3) Heterophone; Present tense for infinitive: han vil rejser [ˈʁɑjˀsɐ]

he will travel.prs

‘he’ll travel’

8

4) Heterophone; Infinitive for present tense: han rejse [ˈʁɑjsə]

he travel.inf

‘he travels’

8

NP errors (4 conditions, 8 items per condition) 32

1) Mismatch ADJ + N; Uter for neuter: et dejlig kæledyr

art.n lovely-u pet.n

‘a lovely pet’

8

2) Mismatch ADJ + N; Neuter for uter: en dejlig-t undulat

art.u lovely-n budgie.u

‘a lovely budgie’

8

3) Mismatch ART + N; Uter for neuter: en dejlig-t kæledyr

art.u lovely-n pet.n

‘a lovely pet’

8

4) Mismatch ART + N; Neuter for uter: et dejlig undulat

art.n lovely-u budgie.u

‘a lovely budgie’

8

Misspellings (4 types — 5 of each type) 20b

1) Missing double consonant, e.g., startskudet for startskuddet ‘the starting signal’ 5

2) Split compounds, e.g., by vandring for byvandring ‘city walk’ 5

3) Missing silent letter, e.g., siste [ˈsisd̥ə]/[ˈsisd̥] for sidste [ˈsisd̥ə]/[ˈsisd ̥] ‘last’ 5

4) Reduction of syllable, e.g., virklig [ˈʋiɐ̯ɡ̊li] for virkelig [ˈʋiɐ̯ɡ̊li] ‘really’ 5

Total 100

aThe V3 errors in version 1 + 2 were identical. The V3 errors in version 3 + 4 were also identical.
bThe 20 spelling errors were identical in all four versions of the reading task.
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version 2022.07.1), using the lme4 package (Bates et al., 2015, ver. 
1.1.30). p-values were obtained using the lmerTest package 
(Kuznetsova et al., 2017, ver. 3.1.3). The dependent variable for all 
models was detection, i.e., whether the error was detected (=1) or not 
(=0). We did not penalize false hits. The conditions for each of the four 
error types were included in the models as fixed effects (p is the 
probability of correctly detecting an error):

 1. Model for V3 errors: log(p/1-p)3  = Adverbial length [short vs. 
long] + Total grammar score + (1|Participant) + (1|Item)  
+ Residuals

 2. Model for Verb errors: log(p/1-p) = Type [infinitive for present 
tense vs. present tense for infinitive]*Homophony [homophone 
vs. heterophone pairs] + Total grammar score + (1|Participant)  
+ (1|Item) + Residuals

 3. Model for NP errors: log(p/1-p) = Type [agreement with article 
vs. adjective]*Gender [uter for neuter vs. neuter for uter] + Total 
grammar score + (1|Participant) + (1|Item) + Residuals

 4. Model for orthographic errors: log(p/1-p) = Type [four 
different] + Spelling score + (1|Participant) + (1|Item) + Residuals

All models included random intercepts for participant and item. All 
models also included the scores from the grammar quiz. Participants 
made few wrong answers in the grammar tasks, so we summarized the 
results from the individual grammar-related tasks and included a total 
grammar score as a fixed effect in the models for detection of the three 
types of grammar errors. The model for orthographic errors included the 
score from the spelling task in the quiz as a fixed effect.

The models for the four error types did not include random 
slopes, presentation order (i.e., placement in the text) or irritation 
scores, as the models failed to converge when they were included. 
Only one subtype, NP errors, showed an uninterpretable effect of 
presentation order.

The output of the regression model was in logodds space. To 
increase interpretability, they were converted back to probabilities and 

3 If p is the probability of detecting an error, 1 − p is the probability of not 

detecting an error. p/1 − p is the odds of detecting an error and log(p/1 − p) 

is the logarithm of the odds (logodds).

plotted. Thus, the plots for the morphological errors show the models’ 
predicted probabilities of detecting the target.

Finally, we made a general model, collapsing all error subtypes, 
with accuracy in percentage as the dependent variable, only including 
irritation scores as a fixed effect (see normal Q-Q plot in 
Supplementary Figure 3):

 5. Model for all errors: accuracy (%) = Irritation score + Residuals.

5. General results

The participants detected 54% of all errors in the two texts 
(Table 2). As expected, the highest detection rate was found for 
syntactic errors (71% of all items were detected), followed by the two 
types of morphological errors (55% detected for NP errors; 59% for 
verb errors), and the lowest rate was found for orthographic errors 
(33%). The study is not designed to directly compare these overall 
categories (syntactic, morphological and orthographic), as there are a 
number of confounds, such as their position in the sentences and in 
the text. We therefore do not conduct any statistical tests between 
them. More detailed results are presented in the sections on each of 
the four error types (subexperiments).

5.1. Individual variation

As seen in Figure 1, there was individual variation among the 
participants, with respect to the number of words they underlined, 
and the share of correct (hits) vs. incorrect underlinings (false 
alarms). Out of 321,145 words, participants underlined 18,041 
words (M = 85,50 words, SD = 31,38 words, range = 9–227 words). 
Of these only 2,565 words were not part of a target, i.e., false alarms 
(M = 12,16 words, SD = 13,59 words, range = 0–108). In total, 11,490 
targets were underlined, i.e., hits (M = 54,45 words, SD  = 21,32 
words, range = 1–92 words). Notice that a target can consist of 
several words (targets are defined in the sections on 
the subexperiments).

In principle, participants could underline all words in the text and 
thus detect all errors, resulting in the highest possible score. This, 
however, was not an issue in general as participants only underlined 

FIGURE 1

Number of underlinings (hits and false alarms) per participant.
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0.8% non-target words in the texts (2,565 out of 321,145 words). 
Figure 1 shows that most participants were relatively exact in their 
underlinings, apart from 10 participants who had more false alarms 
than hits.

In the grammar quiz, participants generally made few errors (see 
sections on subexperiments). In the three grammar tasks (word order, 
NP agreement and verb conjugations), the highest possible score was 
17, one point for each correct answer. Participants’ scores had an average 
of 16.76 (SD = 0.67, range: 11–17). The Supplementary material (section 
1.2) include a plot of the total quiz scores (grammar and spelling tasks) 
and the number of detected errors per participants.

The general model of all error types (5) included the participants’ 
irritation scores (cf. Supplementary Table 13). We found a small effect 
of irritation ( β̂ = 1.82, SE = 0.40, t = 4.57, p < 0.001), so that the more 
annoyed participants state to be with language errors, the more errors 
they detected in the reading task (see plots in Supplementary material, 
section 1.2).

6. Subexperiments

In the following sections, we present the hypotheses, stimuli and 
results for each of the four subtypes of errors. Sections 6.1–6.3 describe 
the three subexperiments on grammar errors. Section 6.4 describes 
the subexperiment on orthographic errors. The Supplementary material 
show all stimuli (section 2) and model results for the orthographic 
errors (section 1.1).

For the grammar errors, we start each section with information 
on error frequencies in L1 production. The error frequencies are 

based on a corpus of 71 high school essays from a final exam (127,957 
words; 71 participants). For the morphological errors, we calculated 
the error rate by dividing the number of incorrect tokens with the 
number of correct and incorrect tokens. As an example, when a 
reader sees a verb in present tense, the error rate reflects how often 
the verb is incorrect. For the orthographic errors, the error rate is 
calculated by dividing the number of errors with the number of 
words in the corpus. For the syntactic errors, we report the absolute 
number of errors. Since there was a limited number of tokens for 
certain types of errors, we  only use descriptive statistics (not 
inferential statistics) when accessing differences in error frequency.

6.1. V3 errors

A common word order error in L2 Danish is placing the verb in 
third position (V3), instead of second (V2; Søby and Kristensen, to 
appear). In (1a), the adverbial nu ‘now’ is placed in first position, 
followed by the subject jeg ‘I’ in second position, and the verb bor ‘live’ 
in third position. In the corrected version of the sentence in (1b), the 
verb is correctly placed in second position (the mandatory position 
for finite verbs in Danish main clauses).

(1) a. [original] *Men nu jeg bor i Denmark

‘but now I live in Denmark’

b. [corrected] Men nu bor jeg i Danmark

‘but now live I in Denmark’

In the L1 corpus of high school essays, we  only found 10 V3 
errors. V3 errors are generally not considered typical L1 errors, but 
may occur in informal texts written by speakers of multiethnic urban 
vernaculars (Quist, 2008).

We expected these errors to be  highly noticed by native 
speakers for two reasons. First, they are rare in L1 production. 
Second, large elements, i.e., entire words, are misplaced. In the 
experiment, the V3 errors were either presented after a short 
sentence-initial adverbial (1–2 words, consisting of 5–12 characters 
including spaces) or a long adverbial (4–6 words, 26–39 
characters). In L2 Danish, V3 word order most frequently occurs 
after adverbials, both short and long (Søby and Kristensen, to 
appear). Examples of the stimuli are shown in Table 3. Previous 
letter detection studies have found position effects, so that elements 
in the start or end of a sentence tend to be more prominent than 

TABLE 2 Number of errors in texts and share of detected errors.

Category 
type

Errors in 
texts (N)

Detected 
targets (N)

Share of 
detected targets 

(%)

Syntax

V3 3,376 2,398 71.03%

Morphology

Verb errors 6,752 3,992 59.12%

NP errors 6,752 3,719 55.08%

Orthography

Misspellings 4,220 1,381 32.73%

Total 21,100 11,490 54.45%

TABLE 3 Conditions, number of V3 errors in texts and share of detected errors.

Conditions Errors in texts 
(N)

Detected targets 
(N)

Share of detected 
targets (%)

Short A

og kl. 14 han ankommer til Berlin  

and o’clock 2 he arrive.prs in Berlin  

‘and at 2 o’clock, he arrives in Berlin’

1,688 1,200 71.09%

Long A

og først ud  på eftermiddagen han ankommer til Berlin  

and first out on afternoon.def he arrive.prs in Berlin  

‘and first in the afternoon, he arrives in Berlin’

1,688 1,198 70.97%
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in the middle (Smith and Groat, 1979). We therefore examined 
whether participants would detect more V3 errors after a short 
adverbial than a long adverbial.

The target verbs were all in present or perfect tense, and subjects 
were either pronouns, proper names or nouns in the definite form, 
with varying lengths. The texts also included 16 similar correct 
constructions with AVS, i.e., V2 word order (8 after short adverbials; 
8 after long). All stimuli can be  seen in Supplementary material 
(section 2).

The V3 errors were considered detected when either the 
adverbial, subject or verb was underlined by a participant, since the 
order of subject and verb would be correct if the adverbial was 
placed elsewhere. In Table 3, the number and share of detected 
targets are seen. There were no effects of adverbial length ( β̂  = 
−0.03, SE = 0.09, z = −0.38, p = 0.70), but there was an effect of total 
grammar score ( β̂  = 0.73, SE = 0.16, z = 4.51, p < 0.001; cf. Table 4). 
The higher grammar score in the quiz, the more V3 errors were 
detected. In the grammar quiz, participants had to place words in 
the correct order after conjunctions and adverbials. Out of 633 
answers, only 3 were wrong (0.5%), confirming that V3 is not a 
typical L1 error.

6.2. Verb errors

Confusion of finite and infinite verb forms is the most frequent 
morphological error in the L1 corpus. More specifically, there are 

181 cases of confusion of infinitive and present tense in the L1 
corpus. When examining these, the error frequency seems 
influenced by phonological similarity (Table  5). L1 speakers 
produce more errors when the two verb forms are homophone (e.g., 
infinitive køre [ˈkʰøːɐ] and present tense kører [ˈkʰøːɐ]) than when 
the verb forms are heterophone (e.g., infinitive rejse [ˈʁɑjsə] and 
present tense rejser [ˈʁɑjˀsɐ]). This is both the case when examining 
the total number of errors and the error rates. For example, the 
error rate for using infinitive for present tense (homophone verb 
pairs) is 25%, i.e., out of all correct verbs in present tense (with the 
same pronunciation in infinitive) plus the cases where infinitive is 
used for a homophone present tense form, 25% are erroneous. L1 
speakers also produce more errors of the type infinitive for present 
tense (132) than present tense for infinitive (49), i.e., they leave out 
an -r in writing. However, the error rates for the two types of 
confusion are both 1%, because there are more verbs in present 
tense in the corpus.

Based on error rates (which are entangled with phonological 
similarity), we expected that participants would detect more errors 
in the heterophone than homophone conditions. We did not expect 
differences between the two types of target forms (whether the 
target was infinitive or present tense), as there was no difference in 
error rates. Finally, the error rates in Table 5 also show a larger 
difference between the homophone and heterophone conditions 
when the target is present tense, compared to when the target form 
is infinitive. This predicts an interaction between homophony 
and type.

Table 6 shows the four experimental conditions for the verb 
errors. We  used a 2 (heterophone vs. homophone) × 2 (target 
infinitive vs. present tense) design. Notice, that there is a visual 
difference between the two types of errors, because in one 
condition (present tense for infinitive), an extra -r is added, while 
an -r is missing in the other condition (infinitive for present 
tense). The heterophone vs. homophone verb pairs were controlled 
for length (number of letters in infinitive) and frequency. T-tests 
(correlated samples) showed no significant differences in length 
or frequency [Det Danske Sprog- og Litteraturselskab (DSL), 
2022] for the homophone vs. heterophone verbs. The texts also 
included a minimum of 32 correct verbs (other lexemes), 8 in each 
condition. All stimuli can be seen in the Supplementary material 
(section 2).

Table 6 also shows the number and share of detected targets. In 
the condition present tense for infinitive, a target is considered 
detected if either the modal and/or the main verb is underlined.

As expected (based on error rates and phonological similarity), 
we found an effect of homophony ( β̂  = −1.21, SE = 0.09, z = −13.38, 
p < 0.001), so that participants detected more errors in heterophone 
than homophone pairs. Counter to the expectation based on error 
rates, we  found an effect of type, so that more errors of the type 
infinitive for present tense were found, than for present tense for 
infinitive ( β̂  = −0.20, SE = 0.09, z = −2.23, p < 0.05). There was no 
interaction, contrary to the predictions based on error rates (cf. 
Table 7).

Figure 2 shows the model’s predicted probability of responding 
correctly (i.e., detecting the error) in the different conditions. The 
probability of a correct answer (a detected error) is much higher in the 
heterophone than homophone conditions. Although, the effect of type 

TABLE 4 Model (1) estimates for V3 errors.

Random 
effects

Variance Std. dev.

Participant (intercept) 1.7076 1.3068

Item (intercept) 0.4177 0.6463

Fixed effects Estimate Std. error z-value p-value

(Intercept) −10.91748 2.70189 −4.041 5.33e-05***

Length −0.03394 0.08865 −0.383 0.702

Total grammar  

score (quiz)

0.72652 0.16094 4.514 6.36e-06***

Dependent variable: detection (1 = error detected, 0 = error not detected). Significance code:  
***p < 0.001.

TABLE 5 Error rates in L1 texts, confusion of present tense and infinitive 
(N = 194).

Type and error 
rates

Homophone Heterophone

e.g., køre(r) 
[ˈkʰøːɐ]

e.g., rejse [ˈʁɑjsə], 
rejser [ˈʁɑjˀsɐ]

Target form: present tense

1% errors (12,764 correct 

present tense verbs1)

25%

(N = 96)

0.30%

(N = 35)

Target form: infinitive

1% errors (4,689 correct 

infinitives1)

8.60%

(N = 37)

1.10%

(N = 10)

1Found using an automatic POS tagger [Centre for Language Technology, University of 
Copenhagen (CST), 2022], manually tagged for homophony.
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was significant, the plot shows that it is small. Also, according to the 
predictions based on error rates, the column with han køre should 
have been the smallest.

Finally, we  found an effect of total grammar score ( β̂ = 0.72, 
SE = 0.18, z = 4.03, p < 0.001), so that the higher total grammar score in 
the quiz, the more verb errors were detected. The grammar quiz 
contained 8 sentences where participants made a forced choice 
between infinitive or present tense for a missing verb. Out of 1.688 
answers, there were only 25 errors (1.5%), made by 16 students. 
Twenty-two of 25 errors were in homophone verb pairs, supporting 
the role of phonological similarity on error production.

6.3. NP errors

In Danish, nouns are either uter (most common) or neuter 
gender. There are two indefinite articles, en (uter) and et (neuter) ‘a.’ 
Adjectives are inflected for gender, definiteness, and number. 
Typically, the suffix -t ‘neuter,’ -e ‘definite,’ or -e ‘plural,’ can be added 
to the uninflected basic form, corresponding to singular, indefinite, 
uter gender (Becker-Christensen, 2010). The most common 
adjective error in the L1 corpus is to leave out a suffix (-t or -e). 
Table 8 shows error rates for gender mismatches in adjectives and 
indefinite articles. Confusing the two indefinite articles is less 
common than missing gender agreement in adjectives, as seen in 
the error rates. Using uter for neuter is slightly more common than 
using neuter for uter.

Based on the error rates, we expected higher detection rates for 
mismatching articles than for mismatching adjectives, and higher 
detection rates for neuter for uter more than uter for neuter. The error 
rates in Table 8 show a slightly larger gender difference for adjectives 
than for articles, and we therefore predicted an interaction between 
word class and gender.

The four experimental conditions for the NP errors are seen in 
Table 9 (2 × 2 design). In continuous speech, there is phonological 
similarity between the correct and incorrect form in the condition 
mismatch with adjective, uter for neuter (where the suffix is missing). 
Notice, that there are also visual differences between the two word 
class conditions: when manipulating the adjectives, an element (-t) is 
either added or left out. When manipulating the articles, a t or an n is 
replaced with each other.

The neuter and uter nouns were controlled for length and 
frequency. The target items did not have the same syntactic function 
(e.g., object, subject complement or part of an adverbial) and thus 
were not in the same position in the sentences. The text also contained 
a minimum of 32 control items (16 uter NPs; 16 neuter NPs), which 
were inflected adjectives not already used as targets.

Table 9 shows the number and share of detected targets. Targets 
were considered detected if min. one of the three words in the NP 
was underlined.

As predicted based on error rates, we found an effect of word class 
( β̂ = 0.90, SE = 0.08, z = 11.30, p < 0.001), so that mismatches with 
articles were detected more than mismatches with adjectives. As 
expected based on error rates, we found an effect of gender ( β̂ = 0.72, 
SE = 0.08, z = 9.08, p < 0.001), so that participants detected more neuter 
for uter than uter for neuter in general (cf. Table 10). We also found the 
expected interaction ( β̂ = −0.70, SE = 0.11, z = −6.23, p < 0.001), which 
can be seen in Figure 3. It shows the model’s predicted probability of 
responding correctly (detecting the error) in the different conditions. 
For the articles, the effect of gender is less pronounced than for the 
adjectives. The lowest detection rates were found for et dejlig kæledyr 
(mismatch with adjective; uter for neuter), as expected. However, the 
interaction might also be explained by the phonological similarity to 
the correct form in this condition, or visual differences between 
conditions. Perhaps, it is harder to spot a missing -t than an extra -t or 
to spot a t which is replaced with an n. Finally, we found an effect of 
total grammar score ( β̂  = 0.42, SE = 0.12, z = 3.38, p < 0.001), so that 
the higher total grammar score in the quiz, the more NP errors were 
detected. In the grammar quiz, participants were given an adjective and 
asked to insert it before both an uter and a neuter noun. The article task 
was forced choice, and participants had to choose between uter or 

TABLE 6 Conditions, number of verb errors in texts and share of detected 
errors.

Conditions Errors in 
texts (N)

Detected 
targets (N)

Share of 
detected 

targets (%)

heterophone pairs 3,376 2,306 68.31%

infinitive for 

present tense:

 han rejse [ˈʁɑjsə]

 he   travel.inf

1,688 1,178 69.79%

present tense for 

infinitive:

 han vil rejser [ˈʁɑjˀsɐ]

 he   will travel.prs

1,688 1,128 66.82%

homophone pairs 3,376 1,686 49.94%

infinitive for 

present tense:

 han køre [ˈkʰøːɐ]

 he   drive.inf

1,688 867 51.36%

present tense for 

infinitive:

 han vil kører [ˈkʰøːɐ]

 he   will drive.prs

1,688 819 48.52%

Total 6,752 3,992 59.12%

TABLE 7 Model (2) estimates for verb errors.

Random 
effects

Variance Std. dev.

Participant 

(intercept)

2.7768 1.6664

Item (intercept) 0.2204 0.4695

Fixed effects Estimate Std. error z-value p-value

(Intercept) −10.75433 2.99431 −3.592 0.000329***

Homophony −1.20594 0.09014 −13.378 <2e-16***

Type −0.20145 0.09025 −2.232 0.025614*

Homophony*type 

(Interaction)

0.01925 0.12440 0.155 0.877033

Total grammar 

score (quiz)

0.71993 0.17850 4.033 5.5e-05***

Dependent variable: detection (1 = error detected, 0 = error not detected). Significance codes:  
***p < 0.001, *p < 0.05.
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neuter indefinite articles for four nouns. There were only 6 errors for 
the 844 articles (0.7%) and no errors for the 422 adjectives.

6.4. Orthographic errors

In general, we expected common types of misspellings to be noticed 
less than syntactic and morphological errors. In the high school corpus, 
orthographic errors are the most common type of error (0.86% of all 
words are misspelled). The 20 target items were created based on four 
types of misspellings which others have found to be common in L1 
writing (e.g., Blom et  al., 2017). Examples can be  seen in Table  11. 
Table 11 also shows the number and shares of detected errors. Most of 
the errors are phonologically similar to the correct form. Some are 
entirely homophone (e.g., the error virklig), while other errors could 
be prosodically different, e.g., with respect to vowel length or stress.

The only significant effect of type was that reduced syllables were 
detected more often than missing double consonants, which were 
noticed the least ( β̂ = 1.40, SE = 0.55, z = 2.56, p < 0.05). Finally, there was 
a significant effect of the score in the spelling task in the quiz, so that the 
more correct answers participants had in the spelling task, the more 
orthographic errors participants found in the reading task  
( β̂ = 0.50, SE = 0.08, z = 6.52, p < 0.001). In the spelling task, participants 
had to determine whether 8 words were spelled correctly. If not, they 
should write the correct form. There were 196 errors out of 1.688 answers 
(12% errors), made by 115 participants (1–5 errors per participant).

7. Discussion

Section 7.1 is a summary and discussion of the general findings of 
the study. In section 7.2, we  discuss the relation between error 
detection rates and two seemingly dominant (and co-varying) factors 
in our study: the frequency of the error and its phonological similarity 
to the correct form. Section 7.3 discusses challenges for current and 
future models of eye movement control in reading and presents our 
recommendations based on the study.

7.1. General findings and effects of explicit 
grammar awareness

The present study examined the relationship between the type of 
errors young readers tend to overlook in texts, the type of errors these 
young readers produce themselves in the grammar quiz, and the type 
of errors that are typical of their age group in general (based on 
corpus error rates). When examining attention to naturally occurring 
grammar anomalies, some factors co-vary. Still, to use ecological 
stimuli is necessary if future models of language processing are to 
be able to accommodate naturally occurring, non-standard grammar.

FIGURE 2

The model’s predicted probabilities of detecting verb errors. Error bars show SDs.

TABLE 8 Error rates in L1 texts, gender mismatch between indefinite 
articles or adjectives with noun.

N errors N correct Error rate (%)

Indefinite articles 16 3,132 0.51%

Uter for neuter (en for et) 6 9841 0.61%

Neuter for uter (et for en) 10 2,178 0.46%

Adjectives 51 27982 1.79%

Uter for neuter (Ø for -t) 29 1,368 2.08%

Neuter for uter (-t for Ø) 22 1,430 1.49%

1Number of correct occurrences of et ‘a’ (neuter), found with a POS tagger [Centre for 
Language Technology, University of Copenhagen (CST), 2022].
2The number of correct adjectives with a correct -Ø or -t suffix. Found with a POS tagger 
[Centre for Language Technology, University of Copenhagen (CST), 2022]. Manually, the 
following were removed: adjectives with no/optional gender conjugations (ending with -sk, 
-vis), indeclinable adjectives (e.g., ekstra ‘extra’), and adjectives ending with a -t (e.g., stolt 
‘proud’).
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In our study, grammar errors seem to attract more attention than 
orthographic errors. This finding is in line with Larigauderie et al. 
(2020) who studied attention to grammatical and orthographic errors 
in French. Their grammar errors were comparable to ours, as they 
related to number and gender agreement and misuse of the past 
participle form in French. Their orthographic errors (like most of 
ours) did not affect the phonology of the word. Previous proofreading 
studies of English (Hacker et al., 1994; Shafto, 2015), however, found 
the opposite pattern, as orthographic errors attracted more attention 
than grammar errors in their studies. It is likely that this discrepancy 
stems from differences in what is understood by a grammar error vs. 
an orthographical error. In Shafto (2015), the grammar errors were 
heterogeneous ranging from errors in verb agreement and number 
agreement to punctuation and capitalization errors, thus grouping 

types of errors which are quite distinct. The orthographic errors also 
included typos such as letter switches which resulted in an incorrect 
phonological form, and which are therefore also qualitatively different 
from the orthographic errors in our study. Larigauderie et al. (2020) 
found that typos were the most frequently detected type of error. In 
Hacker et al. (1994), the error categories were not clearly defined. 
Their grammar errors included errors in verb agreement as well as 
confusion of word classes (e.g., affects for effects). Altogether, these 
differences in the definitions of grammar vs. orthography may explain 
the seemingly contradictory results.

Error detection is not entirely explained by explicit grammar 
awareness. In the grammar quiz, the general performance was almost 
at ceiling with error rates ranging from 0.5% to 1.5% per task. Yet, all 
readers overlooked errors in the proofreading study.

Although there were generally few errors in the responses to the 
grammar quiz, the participants’ total score in the grammar quiz did 
explain some of the variance in the detection rates. For the three types 
of grammar errors (V3 word order, verb errors, NP errors), we found 
an effect of the total grammar score, so that the more correct answers 
participants had in the three grammar tasks in the quiz, the more 
errors they detected. Similarly, the more correct answers participants 
had in the spelling task, the more orthographic errors they detected. 
Finally, we  found that the more annoyed with language errors 
participants reported to be, the more errors they detected.

Unlike most previous psycholinguistic studies which either group 
many different types of grammar errors into one experimental 
condition (Hacker et al., 1994; Shafto, 2015) or only investigate one 
specific type as representative of all grammar errors (often using the 
cover term syntactic violations), our study distinguishes between 
different types of grammar errors. The descriptive statistics showed 
differences in detection rates between syntactic and morphological 
errors in our study, which seems to suggest that not all grammar errors 
are treated alike. Future eye-tracking studies may determine if this 
pattern is not just due to quantitative differences (degree of attention), 
but also due to qualitative differences (differences in how they are 
processed and attended to).

TABLE 9 Number of NP errors in texts and share of detected errors.

Conditions Errors in texts (N) Detected targets (N) Share of detected targets (%)

mismatch art + n 3,376 2034 60.25%

Neuter for uter: et dejlig undulat

art.n lovely-u budgie.u

‘a lovely budgie’

1,688 1,021 60.49%

Uter for neuter: en dejlig-t kæledyr

art.u lovely-n pet.n

‘a lovely pet’

1,688 1,013 60.01%

mismatch adj + n 3,376 1,685 49.91%

Neuter for uter: en dejlig-t undulat

art.u lovely-n budgie.u

‘a lovely budgie’

1,688 959 56.81%

Uter for neuter: et dejlig kæledyr

art.n lovely-u pet.n

‘a lovely pet’

1,688 726 43.01%

Total 6,752 3,719 55.08%

TABLE 10 Model (3) estimates for NP errors.

Random 
effects

Variance Std. 
dev.

Participant 

(intercept)

1.260 1.1226

Item (intercept) 0.192 0.4381

Fixed 
effects

Estimate Std. 
error

z-value p-value

(Intercept) −7.37728 2.07508 −3.555 0.000378***

Word class 0.90480 0.08013 11.292 <2e-16***

Gender 0.72108 0.07945 9.076 <2e-16***

Word 

class*Gender 

(interaction)

−0.70256 0.11276 −6.231 4.64e-10***

Total grammar 

score (quiz)

0.41706 0.12357 3.375 0.000738***

Dependent variable: detection (1 = error detected, 0 = error not detected). Significance code:  
***p < 0.001.
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7.2. The relation between what students 
typically produce and what they notice

Models of natural reading processing must deal with naturally 
occurring errors. Yet, a complication of using naturally occurring 
errors is that several factors co-vary between conditions. In the 
following sections, we discuss two main potential contributing factors 
when it comes to readers’ perception of and attention to grammar 
errors in Danish: the frequency of the error (section 7.2.1) and the 
phonological similarity between the error and the correct form 
(section 7.2.2).

7.2.1. Error frequency
Our study suggests that the frequency of grammar errors is a 

relevant factor to include in future models of eye movements 
during reading. Attention to a specific type of grammar error is 
not only a matter of the reader’s explicit grammar awareness (as 

measured in the grammar quiz). If a specific type is frequent 
among the peers of the reader, the reader may have more exposure 
to this type of error and a mental representation of it. The reader 
may therefore find it less striking and be less likely to detect it 
compared to errors that are infrequent in texts written by peers. 
According to the descriptive statistics in our study, the error 
detection rates for the three overall error categories (syntactic > 
morphological > orthographic) were inversely proportional with 
the error rates in L1 writing. Syntactic errors have the lowest error 
rates in L1 writing and the highest detection rates. Orthographic 
errors have the highest error rates and the lowest detection rates. 
Within the three grammar subexperiments, we also found that 
error types with relatively high error rates (errors in homophone 
verb pairs, mismatching adjectives in NPs, overuse of uter in NPs) 
had lower detection rates than errors with lower error rates (errors 
in heterophone verb pairs, mismatching articles in NPs, overuse 
of neuter in NPs).

FIGURE 3

The model’s predicted probabilities of detecting NP errors. Error bars show SDs.

TABLE 11 Types of orthographic errors, number of errors in texts and share of detected errors.

Types of orthographic errors (four types — five of 
each type)

Errors in texts 
(N)

Detected targets 
(N)

Share of detected 
targets (%)

Missing double consonant,  

e.g., startskudet for startskuddet ‘the starting signal’
1,055 224 21.23%

Split compounds,  

e.g., by vandring for byvandring ‘city walk’
1,055 342 32.42%

Missing silent letter,  

e.g., siste [ˈsisd̥ə]/[ˈsisd̥] for sidste [ˈsisd ̥ə]/[ˈsisd ̥] ‘last’
1,055 359 34.03%

Reduction of syllable,  

e.g., virklig [ˈʋiɐ̯ɡ̊li] for virkelig [ˈʋiɐ̯ɡ̊li] ‘really’
1,055 456 43.22%

Total 4,220 1,381 32.73%
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Yet, frequency is not the only possible explanation to these 
results. The higher share of detected syntactic errors could 
be influenced by differences in size (manipulating word order vs. 
letters). The homophony effect for verb errors is closely tied to the 
phonological similarity to the correct form (section 7.2.2.). In the 
subexperiment on NPs, phonological similarity to the correct form 
may also explain the interaction between word class and gender 
(section 7.2.2). Furthermore, frequency and word class co-varied. 
Also, the effect of word class could be influenced by differences in the 
placement of the error within the NP. It may be that phrase-initial 
errors (such as the article errors) attract more attention than errors 
placed in the middle of a phrase (such as the adjective errors). Thus, 
future studies are needed, in which effects of position in the phrase 
and frequency can be  distinguished — and if possible, in which 
effects of frequency can be distinguished from phonological similarity 
to the correct form.

These reservations aside, it seems likely that frequency plays an 
important part in error detection, and that the role of frequency is 
worth studying in future studies with more controlled and less 
confounded stimuli. Frequency is, as mentioned in the introduction, 
tied to predictability. According to prediction-based approaches to 
sentence processing, unexpected input attracts attention (Kamide, 
2008; Levy, 2008; Christiansen and Chater, 2016). If a reader sees input 
with frequent errors, the model will be updated according to the input, 
meaning that frequent errors should be predicted by the model, and 
thus should attract less attention than infrequent errors. The error 
rates in our study were based on texts written by high school students. 
We do not assume that high school students read each other’s essays, 
but the errors they produce in school essays are likely to occur in their 
writing in general, including informal text directed at their peers. 
Furthermore, we assume that the error production patterns found in 
high school texts to a large extent reflect the error types found in 
the media.

Frequency does not explain all findings and it seems to 
be  interacting with other factors in our study. Not all predictions 
based on error rates were confirmed: we did not expect an effect of 
type for the verb errors, but found higher detection rates for infinitive 
for present tense than vice versa. In the public debate and prescriptive 
literature, missing present tense -r is often accentuated as a typical or 
basic error (Blom and Ejstrup, 2019b), and in the study by Blom and 
Ejstrup (2019a), participants rated the missing present tense -r as the 
most annoying error of all included errors. This special status of the 
missing -r in present tense might explain why this error type was 
noticed more than the superfluous -r on infinitives, although the 
frequency in production (as measured by error rates) does not differ 
between the two. If looking at occurrences per 1,000 words, omitting 
the -r is, in fact, more frequent in written texts. Counter to our 
expectations, we did not find an interaction between homophony and 
type. The surprising result might also be  explained by the great 
prescriptive focus on the most frequent error type (homophone; 
infinitive for present tense).

In our study, frequency measures were based on error rates in 
a small corpus of naturally occurring L1 texts. For erroneous use of 
gender in articles, the error rates were based on only 16 article 
errors, and the distribution between uter and neuter gender in 
errors may well be different in a larger corpus. Future studies with 
a larger corpus may use inferential statistics for a more adequate 

calculation and assessment of differences in error rates. They may 
also consider the pros and cons of using error rates vs. raw 
frequency (errors per 1,000 running words) as the basic measure. 
In most cases, these measures lead to the same predictions, but in 
one case, type for verb errors, our frequency-based predictions 
would have been different if we had based them on occurrences per 
1,000 running words, instead of error rates. Homophony set aside, 
there are more errors per 1,000 words where the target form is 
present tense (1.02) than when it is infinitive (0.37). Thus, infinitive 
for present tense should be least noticed. This was, however, not the 
case, and this frequency measurement therefore does not seem 
better at predicting error detection than error rates.

To conclude, frequency (measured by error rates) in most cases 
predicted detection rates of different types of errors. Due to the 
confounded nature of the highly ecological error types in the stimuli, 
we cannot determine the exact nature of the interplay with other 
contributing factors.

7.2.2. Phonological similarity to the correct form
In naturally occurring language we often find errors that intersect 

grammar and phonology. Since we aimed to study error detection of 
naturally occurring grammar errors, our stimuli included such 
intersectional errors. We  contrasted grammar errors where the 
confused forms were phonologically identical (homophone) with 
errors where the two forms were clearly distinct in pronunciation 
(heterophone). Our study showed significantly lower detection rates 
for verb errors in the homophone condition compared to the 
heterophone condition. These results suggest that phonology interferes 
with grammatical processing during error detection. Yet, the difference 
between homophone and heterophone forms may also be  due to 
differences in frequency, as error rates in L1 writing are higher when 
the present tense and infinitive are homophone. In the verb error 
subexperiment, we  therefore cannot disentangle the effect of 
phonological interference from that of frequency. Still, we  find it 
plausible that phonological interference constitutes a separate effect 
when taking into account the findings from the subexperiment on NP 
errors. For NP errors, detection rates were low when the adjective was 
inflected in uter instead of the correct neuter form (e.g., dejlig instead 
of dejligt). This error with a missing -t is not only visually similar to the 
correct form (cf. section 7.3), but also phonologically similar. In distinct 
speech the final [d̥] in dejligt may be pronounced, but in running 
speech there is usually no audible difference. This similarity between 
forms may explain why we found an interaction between gender and 
word class. Frequency differences in error rates may also account for 
this effect. Yet, the differences in frequency are small. It therefore seems 
more likely that phonological similarity plays a key role in explaining 
the low detection rates for uter for neuter in adjectives.

Errors that intersect the boundary between grammar and 
phonology are not unique to Danish. “Silent suffix” errors with 
confusion of homophone verb forms are also frequent in other 
languages. In Dutch the 1st person verb word and the 3rd person 
verb wordt have the same pronunciation and are commonly 
confused (Sandra et  al., 2004). In French, there is no audible 
difference between the verb forms mange, manges and mangent, and 
ERP studies show that responses to confusion of such homophone 
verb forms differs from responses to confusion of heterophone verb 
forms like mange vs. mangez (Carassco-Ortiz and Frenck-Mestre, 
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2014). This finding is in line with Larigauderie et al. (2020) who 
found that typographical errors (i.e., incorrect successions of letters 
resulting in incorrect phonology) are more frequently detected than 
orthographic errors which did not affect the phonology of the word. 
Potential interference from phonology is not limited to confusion 
of verb forms. The confusion of English its and it’s is a prime 
example. Although our study cannot disentangle effects of 
phonological similarity from error frequency, we recommend that 
future eye-tracking models of reading and sentence processing 
models in general consider the possible role of phonological 
resemblance of errors to correct forms.

7.3. Challenges for current and future 
models of eye movement control in 
reading

Presumably, the error detection measure is less sensitive than 
eye-tracking. Although the degree of correlation between the two 
measures is uncertain, we  assume that the overall results could 
be replicated using eye-tracking, which is a natural next step. More 
fine-grained differences may also be detected using eye-tracking, e.g., 
it may be that eye movements are affected, though errors are not 
underlined by the participant. This was, however, not found in the 
eye-tracking study by Huang and Staub (2021). Disruption in eye 
movement measures caused by transposition errors were only found 
in those sentences participants judged to be ungrammatical. The 
majority of previous eye-tracking studies of ungrammaticality did not 
ask participants whether they noticed and perceived the individual 
errors as ungrammatical or not. Using the error detection paradigm, 
we  collected this information without interrupting participants’ 
reading excessively and found that attention to different types of 
naturally occurring errors is not uniform. This variation in the 
reader’s attention and response to errors poses a challenge to the 
major present models of eye movement control in reading (Reichle 
et al., 2003; Engbert et al., 2005). The E-Z Reader model (Reichle 
et al., 2009) addresses reactions to severe syntactic violations, but 
does not address what happens when readers encounter misspellings 
or other types of grammar errors. Results from previous eye-tracking 
studies of ungrammaticality indicate that different types of grammar 
errors (e.g., V3 and morphological agreement errors) elicit similar 
responses in participants’ eye movements across languages, with 
similar time courses (cf. section 2.1) — including the very early 
effects, which E-Z Reader explicitly predicts for syntactic violations. 
If attention to different types of errors should be integrated in the E-Z 
Reader model, a first step could be  to integrate detection of 
orthographic errors as part of the early familiarity check, and to 
account for both morphological and syntactic errors.

The E-Z Reader model does not explain why some errors are 
detected while others go by unnoticed, and why different readers do 
not always notice the same error. Also, as Warren (2011) points out, 
the model does not consider the precise combination of reader and 
the purpose or motivation for the reading. Our study both shows an 
effect of participants’ explicit grammar awareness and general 
irritation with errors on detection rates.

In our study, we have demonstrated the complexity of measuring 
error frequency and determining when there is phonological 

similarity. It is therefore challenging to integrate these factors in 
models of eye movement control during reading. Still, the two factors 
are entangled, and even a rough measure of error frequency would 
improve current and future models when dealing with reading of 
everyday texts.

Previous letter detection experiments (Smith and Groat, 1979) 
have found position effects, e.g., that elements in the start or end of a 
line or within a sentence tend to be more prominent than elements in 
the middle. Our study on V3 errors manipulated the length of the 
sentence-initial adverbial, but we found no effects of the placement in 
the sentence (close to the start vs. further toward the middle). This 
lack of an effect of position was confirmed in an eye-tracking study 
where Norwegian readers read similar types of V3 with long and short 
adverbials (Søby et al., 2023). Smith and Groat (1979) did not consider 
different sentence structures in their analysis, only numerical order of 
the words, and the position effects varied between items. Further 
studies are needed to test the potential role of error position within 
the sentence.

For the verb and NP errors, there were visual differences between 
elements that were deleted, added and replaced with other elements. 
The NP data suggest that replacing two elements with another (i.e., -t 
and -n in indefinite articles) is noticed more than when an element is 
added or missing (-t in adjectives). However, for verb errors, a missing 
-r was more noticed than an extra -r. It therefore seems that other 
factors than visual differences are more important, e.g., word class or 
error frequency.

In this study, we have examined outright errors which both 
deviated from the norms defined by the Danish Language 
Council and from most participants’ own answers in the 
grammar quiz. Language norms, however, are subject to language 
change and sociolinguistic variation. Natural texts therefore 
both contain outright errors and language anomalies in the gray 
zone between language errors and language variation. For 
instance, the inflection of Danish modal verbs seem to be subject 
to language change. In written production most high school 
students do not inflect the Danish modal verb måtte according 
to the norms defined by the Danish language council (Kristensen 
et  al., 2023). These anomalies should also be  considered in 
future studies.

Our study only included one type of task, i.e., proofreading while 
reading for comprehension. Using eye-tracking, Schotter et al. (2014a) 
found that the task (proofreading for letter transpositions vs. reading 
for comprehension) affected processing patterns. The patterns when 
reading for comprehension may therefore differ from what we find in 
our study. Still, based on our study, we recommend that future models 
take the following factors into account, as they may all modulate 
attention and eye movements:

 1. Variation in the type of naturally occurring grammar errors 
that occur in non-standard language (e.g., syntactic errors 
compared to morphological errors, and different subtypes 
within these categories).

 2. Variation in error frequencies as a general predictor, and 
importantly, when present: phonological similarity with the 
correct form (which tends to be  entangled with 
error frequency).

 3. Variation in the reader’s grammatical awareness and proficiency.
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Eye movement corpora in Adyghe 
and Russian: an eye-tracking 
study of sentence reading in 
bilinguals
Nina Zdorova 1,2*, Olga Parshina 1,3, Bela Ogly 1, Irina Bagirokova 2,4, 
Ekaterina Krasikova 1, Anastasiia Ziubanova 1, 
Shamset Unarokova 5, Susanna Makerova 5 and Olga Dragoy 1,2

1 Center for Language and Brain, HSE University, Moscow, Russia, 2 Institute of Linguistics, Russian 
Academy of Sciences, Moscow, Russia, 3 Department of Psychology,  Middlebury College, Middlebury, 
VT, United States, 4 School of Linguistics, HSE University, Moscow, Russia, 5 Laboratory of Experimental 
Linguistics, Adyghe State University, Maykop, Russia

The present study expands the eye-tracking-while reading research toward 
less studied languages of different typological classes (polysynthetic Adyghe vs. 
synthetic Russian) that use a Cyrillic script. In the corpus reading data from the 
two languages, we confirmed the widely studied effects of word frequency and 
word length on eye movements in Adyghe-Russian bilingual individuals for both 
languages. We also confirmed morphological effects in Adyghe reading (part-of-
speech class and the number of lexical affixes) that were previously shown in some 
morphologically-rich languages. Importantly, we  demonstrated that bilinguals’ 
reading in Adyghe does differ quantitatively (the effect of language on reading 
times) and qualitatively (different effects of landing and previous/upcoming words 
on the eye movements within a current word) from their reading in Russian.

KEYWORDS

eye movement benchmarks, cross-linguistic study, universal patterns of reading, 
minority language, polysynthetic language, West Circassian

Introduction

Recent eye-tracking studies have been specifically investigating universal patterns of reading 
across languages in monolingual (English in Cop et al., 2017; 13 languages in Siegelman et al., 
2022) and bilingual individuals (Dutch-English in Cop et al., 2015; Chinese-English in Sui et al., 
2022) within a corpus-based approach and traditional experimental paradigm [see a comparative 
study of reading in English, Finnish, and Chinese by Liversedge et al., 2016]. Whereas previous 
research has been done on major languages of language families, and on bilingual pairs using 
contrasted orthographies and morphological structures, the present study expands the 
eye-tracking-while-reading research toward less studied languages of different typological 
classes (polysynthetic Adyghe vs. synthetic Russian) with the same (Cyrillic) script.

Decades of eye-tracking research have already established psycholinguistic features that 
affect readers’ eye movements and, consequently, their language processing. The most robust 
lexical effects on eye-movements (i.e., the ones shown consistently across a range of empirical 
studies) are imposed by word frequency, word length and word predictability (Inhoff and 
Rayner, 1986; Rayner, 1998; Staub and Rayner, 2007). They were shown to affect both fixation 
durations and probabilities of skipping, i.e., the probability of a word being skipped and not 
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fixated during the first-pass reading. Frequent words (Schilling et al., 
1998), shorter words (Inhoff and Radach, 1998), and contextually 
more predictable words (Rayner and Well, 1996) are skipped more 
often and fixated for a shorter time (Clifton et al., 2007).

Apart from lexical features, morphological and morphosyntactic 
ones also affect eye movements across languages. For instance, verbs 
were shown to be  read significantly slower than nouns in both 
Russian-speaking adults (Laurinavichyute et al., 2019) and children 
(Lopukhina et  al., 2022). The latter also showed a difference in 
skipping rate based on the part-of-speech (POS) with verbs being less 
likely to be skipped than nouns (Lopukhina et al., 2022). Comparing 
two bigger groups of word classes (content words vs. function words) 
in English, Schmauder et al. (2000) reported that function words had 
a longer total reading time and were reread more frequently than 
content words. The study also found no evidence for a higher skipping 
rate on function words when frequency and length were controlled for.

To embrace a holistic approach to language reading with a range 
of linguistic features taken into account, reading corpora, also known 
as corpora of eye movements, have become a productive tool in the 
last decade [see The Multilingual Eye-tracking Corpus of eye 
movements while reading texts (MECO, Siegelman et  al., 2022); 
Potsdam Sentence Corpus (Kliegl et  al., 2004); Ghent corpus of 
bilingual text reading (Sui et  al., 2022); Russian Sentence Corpus 
(RSC, Laurinavichyute et al., 2019); The child version of the Russian 
Sentence Corpus (ChiRSC, Lopukhina et al., 2022); The Bilingual 
Russian Sentence Corpus (BiRSC, Parshina et  al., 2021) etc.]. 
Importantly, the corpora enable us to establish the basic characteristics 
of eye movements (eye movement benchmarks) and compare them 
across languages.

Crucially, disregarding the core idea of universality and language 
specificity that imply linguistic diversity as a necessary prerequisite, 
the languages in eye-tracking studies (incl. Eye-tracking corpora 
studies) are, so far, mostly Indo-European languages and the biggest 
representatives of Uralic, Sino-Tibetian, and Turkic language families, 
like Finnish, Chinese, Turkish etc. Moreover, the emphasis of the 
cross-linguistic comparison is primarily based on the differences in 
orthographies and scripts (English, Chinese, and Finnish in Liversedge 
et al., 2016; English and Russian in Parshina et al., 2021). Hence, a 
diversity in reading corpora, a focus shift on morphologically-driven 
cross-linguistic comparison of eye movements, and a greater attention 
to smaller representatives of language families, like minority languages 
is proposed.

The present study covers the eye movement benchmarks while 
reading in a polysynthetic minority language, Adyghe (also known as 
Adyghe),1 which has not been done before. Adyghe is one of the West 
Caucasian languages spoken in Russia and some Middle East countries. 
It is an SOV language spoken predominantly in southern Russia, by 
81,294 people with 75,793 people using it on an everyday basis 
(according to the Russian Population Census, 2020).2 Adyghe uses the 
Cyrillic script, but includes some language-specific letters, and its 
orthography is opaque – i.e., the letter-phoneme correspondence is 

1 In this paper, we stick to the term Adyghe that is widely used in typological 

literature, including The World Atlas of Language Structures (WALS, Dryer and 

Haspelmath, 2013).

2 https://eng.rosstat.gov.ru/

inconsistent and not transparent (Daniel and Lander, 2011; 
Polinsky, 2020). Adyghe includes the Bzhedugh, Shapsugh, Abadzekh, 
and Temirgoy dialects (Polinsky, 2020), where the latter is considered 
the standard variety.

As all Adyghe speakers are also Russian speakers (Polinsky, 
2020), their reading data in both languages were collected and 
compared in within-language and within-group analyses. Russian 
is a Slavic synthetic SVO language with some analytic trends. It is 
based on a Cyrillic script, and its phoneme-letter correspondence 
allocates it to the language with medium-shallow orthography 
(Rakhlin et al., 2017; Zhukova and Grigorenko, 2019). The last years 
have seen a major growth in psycholinguistic studies of Russian, 
including three corpus studies of eye movements in different 
Russian-speaking populations (Laurinavichyute et  al., 2019; 
Parshina et al., 2021; Lopukhina et al., 2022), that established eye 
movements benchmarks in Russian (summarized in Table 1) and 
described the contribution of lexical and morphosyntactic features 
into reading in Russian.

To sum up, while there is some knowledge about the lexical, 
morphological, and morphosyntactic effects on eye movements 
during reading in different populations, languages, and orthographies, 
little is still known about the reading behavior of bilinguals in 
understudied, typologically different languages that use the same 
script. The goals of the study were, therefore, twofold. First, we aimed 
to establish benchmarks in eye movements while bilinguals were 
reading in a polysynthetic language (Adyghe) and report the 
psycholinguistic features that affect eye movements while reading in 
it. Second, we aimed to explore the differences between reading in two 
morphologically different languages (polysynthetic Adyghe vs. 
synthetic Russian), which are both Cyrillic-based.

A within-group comparison of reading bilinguals’ data in two 
languages enabled us to disentangle the effect of language, per se, and 
to shift from a common comparison of bilinguals with monolingual 
controls (Rothman et  al., 2022). However, the discussion of the 
findings does rely on a meta-comparison with other Russian-speaking 
groups, like monolinguals (Laurinavichyute et  al., 2019), Russian 
heritage speakers (HSs), and L2 learners of Russian (Parshina 
et al., 2021).

Materials and methods

Participants

Sixty five bilingual adult speakers of Russian and Adyghe took 
part in the study (57 women; Mean age = 30.2, SD = 13.5, range 18–60). 
The mean education level among participants was 14.9 years, SD = 2.3, 
range 11–20. All participants were recruited in Maykop, the capital of 
the Republic of Adygea, and they were primarily students of the 
Adygea State University (N = 32). The recruitment unfolded in 2 years: 
as a first stage of the study in 2021 and the final stage of data collection 
in 2022.

Whereas the majority indicated both Adyghe and Russian as 
their mother languages, 23 participants considered Adyghe as their 
only mother tongue, with Russian as their second language. At the 
same time, most participants’ family languages (i.e., languages 
spoken by their parents) were, again, both Adyghe and Russian 
(N = 57).

140

https://doi.org/10.3389/fpsyg.2023.1212701
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://eng.rosstat.gov.ru/


Zdorova et al. 10.3389/fpsyg.2023.1212701

Frontiers in Psychology 03 frontiersin.org

Fourteen participants indicated speaking more than one Adyghe 
dialect. In this case, we asked them to specify the one mostly used, 
rather preferred, and/or spoken in the family, which we considered as 
the dominant dialect. Hence, the distribution of Adyghe dominant 
dialects among the participants was as follows: Bzhedugh (N = 22), 
Kabardian (N = 12), Temirgoy (N = 11), and Abadzekh (N = 5).

It should be noted that Kabardian is treated among linguists as 
another Circassic language, − East Circassian (Daniel and Lander, 
2011; Polinsky, 2020). At the same time, due to the great proximity and 
similarity to Adyghe, Kabardian speakers living in Maykop tend to 
identify themselves as Adyghe speakers of Kabardian variety, and 
point out that their Kabardian variety differs from the Kabardian 
language in the Republic of Kabardino-Balkaria. Hence, Kabardian 
participants were originally included in the present study, based on 
their self-identification, and on the language of their primary reading 
exposure – Temirgoy dialect in their former school education, with 
the latter being especially relevant for a reading study.

To ensure the homogeneity of the data sample, we checked for the 
differences in reading comprehension accuracy among the speakers 
of the four dialects. The Kruskal Wallis test (applied due to the 
non-normal distribution of residuals) showed that comprehension 
accuracy across the four dialects was different (chi-squared = 173.19, 
df = 2, p < 0.01). A post-hoc pairwise comparison of accuracies with a 
Dunn test confirmed that mean accuracies of Kabardian speakers 
differed significantly from speakers of Bzhedugh (adjusted p < 0.05) 
who represented the great majority of the population in Maykop, and 
of our dataset.

Based on the accuracy data differences, Kabardian speakers 
(N = 15) were excluded from further analysis. The final sample 
consisted, therefore, of 50 participants (44 women; Mean age = 32.7, 
SD = 14.1, range 18–60). The mean education level among participants 
was 15.1 years, SD = 2.1, range 11–20. We  summarized the self-
reported information about participants’ reading acquisition, reading 

skills, and reading exposure in both languages, from the shortened 
version of the Language Experience and Proficiency Questionnaire 
(LEAP-Q, Marian et al., 2007) in Table 1.

All participants had normal or corrected to normal vision. They 
all signed an informed consent form, and their participation was 
voluntary. The study was approved by the HSE Committee on 
Interuniversity Surveys and Ethical Assessment of Empirical Research.

Materials and design

The materials of the study consisted of two corpora of sentences: 
The Russian Sentence Corpus (RSC, Laurinavichyute et al., 2019) and 
The Adyghe Sentence Corpus (ASC), which was compiled in an 
analogous way to the RSC. The first version of the ASC in 2021 
included 60 sentences with word annotation, whereas 40 more 
sentences and target words for a more controlled study design were 
added later in 2022. Hence, the full version of the ASC included 100 
sentences of different syntactic structures typical for Adyghe. Similarly 
to the RSC, all words in ASC were annotated for parts of speech, word 
frequency (retrieved from Adyghe Corpus),3 and word length. Apart 
from that, the ASC included morpheme annotation (the number of 
morphemes, and number of roots, number of grammatical and lexical 
affixes). The parts of speech annotation was performed according to 
the function of a word in a sentence instead of its actual belonging to 
a word class and contained bigger classes of words like VERB for all 
verb-based words including participles, or FUNCTION for all 
non-content words like prepositions, conjunctions, etc. The 
distribution of parts of speech in the ASC was as follows: Nouns 
38.4%, Verbs 32%, Pronouns 6.7%, Function words 2.7%, Adjectives 
8.6%, Adverbs 11.5%.

To enable an experimental design and control data analysis for 
frequency, word length, and parts-of-speech class, the Adyghe 
Sentence corpus included target words in eight conditions. The 
2 × 2 × 2 design consisted of two parts-of-speech classes (nouns and 
verbs), two word length classes (short words of 1–7 characters and 
long words of 8–19 characters), and two word form frequency classes 
(low frequency < 10 items per million (ipm), high frequency > 20 ipm). 
Each condition was represented with eight target words in the middle 
of a sentence (i.e., not the first or the last word), resulting in 64 
sentences with a target word. The description of both sentence corpora 
used in the study is provided in Table 2.

A comprehension question with multiple answer options followed 
33% of Russian sentences and 40% of Adyghe sentences. An example 
of sentences with a question in both languages is provided in Table 3.

Apparatus

Eye movements were recorded using an eye-tracking system 
EyeLink Portable Duo (SR Research, Canada), with sampling rate of 
1,000 Hz. The stimuli were displayed in black Ubuntu Mono font, font 
size 30 pt., on a light-gray background of the ASUS ROG Zephyrus S 
GX701GV-EV006 laptop with 1920×1080 screen resolution and 

3 http://adyghe.web-corpora.net/

TABLE 1 Descriptive statistics of language use according to the 
shortened LEAP-Q form.

Adyghe Russian

Age of reading 

acquisition onset, years, 

Mean (SD)

7.2 (2.6) 5.9 (0.9)

Reading skill score, on 

scale 1 to 5 with 5 as the 

highest, Mean (SD)

4.0 (0.8) 4.8 (0.5)

Language use per day, % 58.6 41.4

Reading exposure per 

day, % of participants

Almost none 4 0

<1 h 64 4

1–2 h 22 16

2–3 h 6 26

3–4 h 2 36

>4 h 2 18

Preferred language to 

read a text for pleasure, 

% of participants

16 84
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144 Hz refresh rate. Participants were seated 52 cm from the screen, 
and 36.5 cm from the camera with their head positioned on a chin rest. 
Only the right eye was recorded.

Procedure

After signing a consent form, participants filled in a short 
questionnaire with their demographic data and their language 
background. Then, they proceeded with an eye-tracking part of the 
study. Participants from 2021 read the first version of the ASC with 60 
sentences, whereas participants from 2022 read both corpora, in 
Russian and in Adyghe, in their final versions (i.e., 144 and 100 
sentences respectively). In their case, the sequence of corpora 
presentations was counterbalanced. Participants were given both an 
oral and a written instruction about the experiment’s procedure. The 
eye-tracking-while-reading task started with a 9-point calibration 
(with an average error < = 0.5 and a maximum error < = 1.0), continued 
with the instruction for the experiment on the screen and was followed 
with the practice trials (5 in the RSC and 3 in ASC). Each trial started 
with a drift correction point on the position of the first letter in the first 
word of the sentence. If no fixation was detected within 500 msec, a 
recalibration was performed. Once a drift correction was successful, a 
sentence appeared in the middle of the screen. Participants were 
instructed to read sentences silently at their normal pace, and fixate on 
a red point in the right lower corner of the screen once they finished 
reading a sentence (see Figure 1 picturing how a trial was unfolding). 
After that, either a comprehension question, or a new trial appeared. 

Participants answered with a mouse click, choosing from the options 
presented. While reading one corpus, short breaks of 1–3 min were 
introduced, whereas a longer, up to 15 min break, was held between the 
two corpora. A re-calibration was performed after each break. 
Experimental procedure with.

Data analysis

Statistical analysis was performed in R (R Core Team, 2020). 
Analysis of eye movements predominantly followed the protocol in 
Kliegl et al. (2006) and Laurinavichyute et al. (2019). Thus, the first 
and the last words in each sentence were removed. First fixation 
durations shorter than 60 ms were excluded from the analysis, as 
they were not likely to reflect lexical processing yet (see Sereno and 
Rayner, 2003). No upper cut-off limits were applied. The following 

TABLE 2 Descriptive statistics of the two corpora: The Russian Sentence 
Corpus (taken from Laurinavichyute et al., 2019) and The Adyghe 
Sentence Corpus.

The Russian 
Sentence Corpus 
(Laurinavichyute 
et al., 2019)

The Adyghe 
Sentence 
Corpus (This 
study)

Total number of 

sentences

144 100

Sentence length 

(in words)

Mean = 9

SD = 1.4

Range: 5–13

Mean = 6.7

SD = 1.8

Range: 2–11

Number of words 1,362 words

1,074 (without first and last 

words)

625 words

425 (without first and 

last words)

Word length

(in characters)

Mean = 5.7

SD = 3

Range: 1–16

Mean = 7.5

SD = 3.8

Range: 1–28

Word form 

frequencies

(item per million - 

ipm)

Class 1 (1–10 ipm) – 404

Class 2 (11–100 ipm) – 340

Class 3 (101–1,000) – 192

Class 4 (1,001 – 10,000) – 151

Class 5 (10,001 – max) – 131

Class 1 (1–10 ipm) – 240

Class 2 (11–100 ipm) 

– 153

Class 3 (101–1,000) – 

128

Class 4 (1,001 – 10,000) 

– 64

Class 5 (10,001 – max) 

– 27

NA - 13

TABLE 3 Examples of stimuli in Russian (from RSC) and Adyghe (from 
ASC).

Stimuli

Russian

Sentence Взяв с собой фотоаппарат, вся семья поехала 

в парк на пикник.

English translation Taking a camera with them, the whole family went 

to a picnic in a park.

Glossing Vsya-v s soboy fotoapparat, vsya semya poexa-l-a v 

park na piknik. Taking with themselves camera, 

the whole family went to park to a picnic.

Question Куда поехала семья на пикник? Where did the 

family go?

Answer options В парк

В лес

В сад

To the park, to the forest, to the garden

Correct answer В парк

To the park

Adyghe

Sentence ЧыжьэкIэ, псыхъом ушъхьэдэплъымэ, ордэ 

унашъхьэр къэлъагъощтыгъ.

far away river if you look across big rooftop could 

be seen

English translation Far away, across the river, the roofs of an ancient 

castle could be seen.

Glossing č-ẑe-č̣ʼje psəxo-m wə-ṣ̂xʰə-də-pʎə-m-ə ordə wənə-

šxʰəxə-r čʼə-ʎa-ʁošʼ-təʁ

Question Сыда къэлъагъощтыгъэр?

What could be seen?

Answer options Ордэ унашъхь

Ежь замокыр

The rooftop of an ancient castle, An ancient castle 

itself

Correct answer Ордэ унашъхь

The rooftop of an ancient castle
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9 measurements of eye movements were chosen as 
dependent variables:

 i. first fixation duration (FFD);
 ii. single fixation duration (SFD);
 iii. Gaze duration (GD);
 iv. total reading time (TT);
 v. probability of skipping the word (P0);
 vi. probability of fixating the word only once (P1);
 vii. Probability of fixating the word more than once (P2+);
 viii. Probability of the word being an origin of a regressive 

saccade (RO);
 ix. probability of the word being a goal of a regressive saccade (RG).

The listed measurements reflect both, early (FFD, SFD, GD, P0, 
P1) and late language processing (TT, P2+, RO, RG) - even though 
the same cognitive processes might overlap in different 
eye-movement measures (Holmqvist et al., 2011), early measures 
tend to be  primarily associated with lexical activation, early 
information integration, and early morphological decomposition 
(Holmqvist et  al., 2011, p.  385; Vasishth et  al., 2013), while late 
measures reflect rather post-lexical processing including syntactic 
integration, and reanalysis (Boston et  al., 2008; Holmqvist 
et al., 2011).

Continuous eye-movement outcome measures (FFD, SFD, GD, 
TT) were log-transformed and were fit with separate linear mixed-
effects models. Binary variables (P0, P1, P2+, RO, RG) were fit 
with separate generalized linear mixed-effects models. Random 
effects for both model types included participants’ id, sentence 
number, and words. For modeling, lme4 package, version 1.1–31 
(Bates et al., 2015) was used. Significant effects were adjusted for 
multiple comparisons with Bonferroni correction. Tables with the 
models’ output were created with sjPlot package, version 2.18.12 

(Lüdecke, 2017), and are provided in the Supplementary materials. 
Figures were plotted with ggplot2 package, version 3.4.0 
(Wickham, 2016).

The full list of independent variables was as follows:

 a. word frequency
 b. word length
 c. part-of-speech class (POS)
 d. word frequency of a previous word
 e. word frequency of a next word
 f. word length of a previous word
 g. word length of a next word
 h. word’s relative position in a sentence
 i. landing position (how far from the word beginning the first 

fixation landed)
 j. number of lexical affixes (for ASC only)
 k. self-reported reading skill score in Adyghe (for ASC only)

Following Laurinavichyute et al. (2019), all word frequencies were 
log-transformed, word length was centered, but not scaled. POS was 
a factor variable with 6 levels [VERB, NOUN, ADJ(ective), ADV(erb), 
PRONOUN, FUNCTION], with verbs being the basis for comparison. 
The number of lexical affixes, as well as the reading skill score were 
centered, but not scaled.

The data analysis of eye movements included two parts in line 
with the aims of the study. First, to establish benchmarks in eye 
movements while reading in Adyghe and report psycholinguistic 
features that affect reading in this language, we performed analysis of 
eye movements in ASC. This analysis included subparts of all-word 
analysis in the final sample of 50 participants, and target-word analysis 
in 38 participants from 2022 data collection (when target words were 
introduced in the final version of the ASC). Second, to disentangle the 
effect of language per se on reading in bilinguals with two 

FIGURE 1

Experimental trial unfolding.
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morphologically different languages, we conducted a within-group 
analysis of eye movements on all words while reading two corpora: 
ASC and RSC (N = 38).

Thus, taking into account the different linear models depending 
on the eye-tracking measure in focus, and on the analysis type (all-
word vs. target-word), there were several model structures. The full 
structure of the models for continuous eye-tracking measures in 
all-word analysis was as follows: continuous eye-tracking 
measure ~ reading skill in Adyghe + word frequency + word length + next 
word’s length + next word’s frequency + previous word’s length + previous 
word’s frequency + word’s relative position + POS + number of lexical 
affixes + landing + (1 | participant) + (1 | sentence number) + (1 | word). 
The full structure of the models for binary eye-tracking measures in 
all-word analysis was as follows: binary eye-tracking measure ~ reading 
skill in Adyghe + word frequency + word length + number of lexical 
affixes + (1 | participant) + (1 | sentence number) + (1 | word).

The full structure of the models in target-word analysis (for both 
continuous and binary eye-tracking measures) was shortened to the 
controlled independent variables only: continuous/binary eye-tracking 
measure ~ word frequency + word length + POS + (1 | participant) + (1 | 
sentence number).

The full structure of the models for continuous eye-tracking 
measures in within-group analysis was as follows: continuous 
eye-tracking measure ~ lang*(reading skill in Adyghe + reading skill in 
Adyghe + word frequency + word length + next word’s length + next 
word’s frequency + previous word’s length + previous word’s 
frequency + word’s relative position + landing) + (1 | participant) + (1 | 
sentence number) + (1 | word). The full structure of the models for 
binary eye-tracking measures in within-group analysis was shortened 
to the very basic word features only: binary eye-tracking 
measure ~ lang*(word frequency + word length) + (1 | participant) + (1 | 
sentence number) + (1 | word).The code is freely available at Open 
Science Framework (OSF) platform, DOI 10.17605/OSF.IO/5UR8D.4

Results

All model outputs with significant effects reported in this section 
(i.e., after Bonferroni correction) are provided in Supplementary Tables 
S1–S6.

The benchmarks of eye movements in 
reading in Adyghe

The descriptive measures are summarized in Table 4 below.

Word frequency
A significant effect of a word form frequency was observed 

across all basic fixation duration measures: in FFD (Est. = −0.01, 
SE = 0.00, t = −3.90, p = 0.002), in SFD (Est. = −0.02, SE = 0.01, 
t = −3.47, p = 0.08), in GD (Est. = −0.03, SE = 0.00, t = −6.01, 
p < 0.001), and in TT (Est. = −0.03, SE = 0.01, t = −6.27, p < 0.001). 
The direction of the effect was as expected: the fixation duration 

4 https://osf.io/5ur8d/?view_only=432e327cd0e64b5ca062be7e7e56b9b3

decreased with a higher word form frequency as illustrated in 
Figure  2. More frequent words were significantly more likely to 
be  fixated only once (P1: Log odds = 0.06, SE = 0.02, t = 3.20, 
p = 0.007), and were less likely to be fixated two or more times (P2+: 
Log odds = −0.07, SE = 0.02, t = −3.93, p < 0.001). Additionally, the 
probability of a word being a goal of regression decreased with higher 
word frequency (RG: Log odds = −0.05, SE = 0.02, t = −3.10, p = 0.01). 
In target word analysis, the more frequent words elicited longer 
fixation durations in TT only (Est. = −0.03, SE = 0.01, t = −3.17, 
p = 0.006).

Word length
Longer words significantly increased GD (Est. = 0.10, SE = 0.00, 

t = 22.53, p < 0.001) and TT (Est. = 0.10, SE = 0.00, t = 20.66, p < 0.001) - 
see Figure 3. Longer words were shown to be less likely skipped (P0: 
Est. = −0.34, SE = 0.03, t = −10.38, p < 0.001) or fixated once only (P1: 
Est. = −0.50, SE = 0.02, t = −23.21, p < 0.001), whereas they were highly 
likely to be  fixated more than twice (P2+: Est. = 0.54, SE = 0.02, 
t = 24.98, p < 0.001). Longer words were also significantly more likely 
to be  a goal of regression (RG: Est. = −0.06, SE = 0.01, t = −4.75, 
p < 0.001).

In target word analysis, the longer words elicited longer fixation 
durations in GD (Est. = 0.10, SE = 0.01, t = 14.91, p < 0.001) and TT 
(Est. = 0.10, SE = 0.01, t = 16.22, p < 0.001). The effects of fixation 
probabilities remained stable: in P0 (Est. = −0.78, SE = 0.13, t = −5.98, 
p < 0.001), in P1 (Est. = −0.57, SE = 0.05, t = −12.33, p < 0.001), in P2+ 
(Est. = 0.60, SE = 0.05, t = 13.14, p < 0.001), and in RG (Est. = −0.08, 
SE = 0.03, t = −2.68, p = 0.029).

Morphological features: POS class and the 
number of lexical affixes

Nouns were read significantly faster than verbs (TT: 
Est. = −0.13, SE = 0.03, t = −4.20, p < 0.001). However, other POS 
did not differ significantly from verb reading. Moreover, the 
target-word analysis with verbs and nouns did not show significant 
effects of POS either. Figure  4 shows predicted values of total 
reading times across all parts of speech. The number of lexical 
affixes significantly increased TT (Est. = 0.20, SE = 0.06, t = 3.17, 
p = 0.025).

TABLE 4 Descriptive statistics of eye-movements in reading ASC, Mean (SD).

Measure Measurement

FFD

msec

282.5 (48.12)

SFD 308 (50.4)

GD 662 (194)

TT 956 (301)

P0

%

1 (0.01)

P1 18 (0.08)

P2+ 80 (0.08)

RO 23 (0.1)

RG 17 (0.08)

Fixation count N 3.74 (1.01)

Landing position % 31 (0.08)
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Word properties of previous and next words
Word length but not word frequency of a previous word 

significantly affected TT of reading a current word (Est. = −0.02, 
SE = 0.00, t = −3.92, p = 0.001). In turn, neither word length, nor word 
frequency of a next word affected eye movements while reading the 
current word.

Relative position and landing
Words in the middle and closer-to-final positions were first fixated 

longer (seen in FFD increase: Est. = 0.08, SE = 0.03, t = 3.13, p = 0.028), 
but they were read significantly faster in total reading time than word 
in the initial positions (TT: Est. = −0.28, SE = 0.06, t = −4.98, p < 0.001 
– see Figure 5). Landing position further from the word beginning 

FIGURE 2

Estimated fixation durations depending on the word frequency.

FIGURE 3

Word length effect on GD and TT in all-word analysis.
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elicited longer FFD (Est. = 0.22, SE = 0.02, t = 12.25, p < 0.001) and SFD 
(Est. = 0.09, SE = 0.03, t = 3.06, p = 0.036), whereas it shortened GD 
(Est. = −0.12, SE = 0.02, t = −5.42, p < 0.001) and TT (Est. = −0.23, 
SE = 0.02, t = −12.22, p < 0.001) (Figure 6).

Reading skill in Adyghe
The self-reported reading skill score in Adyghe significantly 

affected reading, which was seen in late fixation durations measures 
(GD and TT). With an increasing level of reading skills both measures 
decreased: GD with Est. = −0.16, SE = 0.04, t = −4.17, p < 0.001, and TT 
with Est. = −0.19, SE = 0.04, t = −4.52, p < 0.001.

Within-group analysis of reading in two 
languages

To guarantee that a within-group analysis across two languages 
can be run, and reading in two languages is comparable in the group 
under study, we  first analyzed reading comprehension in both 
languages. Comprehension accuracy in Russian was, on average, 0.9, 
SD = 0.07, range 0.69–1, and comprehension accuracy in Adyghe was, 
on average, 0.88, SD = 0.09, range 0.67–0.99. The Shapiro test showed 
that accuracy data distribution departed from normality (p < 0.001), 
which is why a non-parametric test was used. The Wilcoxon signed 

FIGURE 4

The predicted values of TT across parts of speech.

FIGURE 5

The predicted values of TT depending on the word’s relative position in a sentence.
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rank test resulted in non-significant differences between reading 
comprehension in both languages (V = 306, p < 0.5).

These results are essential for further data analysis and 
interpretation, as they validate a within-group comparison of reading 
in two languages, and eliminate the effect of longer reading times, due 
to poorer comprehension. Table 5 summarizes descriptive measures 
of eye movements while reading in two languages.

There were two significant effects observed consistently across all 
basic measures (FFD, SFD, GD, and TT): the effect of language 
(Adyghe), and word frequency. All reading times were higher in 
Adyghe compared to reading times in Russian (p < 0.001). Probability 
measures substantiated more effortful processing in Adyghe with 
lower probabilities of skipping and single fixations on words (both 
p’s < 0.001), and higher probabilities of 2+ fixations (p < 0.001) and 
regressions from the current word (p = 0.023).

A higher word frequency decreased all reading times (FFD, SFD, 
GD, and TT) with p < 0.001, increased skipping rate (p < 0.001), and 

decreased probabilities of more than one fixation (p < 0.001), 
re-fixations (p < 0.001), and regressions from the word (p = 0.012).

Word length and landing position were another two variables with 
consistent significant effects (p < 0.001) in SFD and GD. Additionally, 
an increased word length increased FFD (p = 0.003), TT (p < 0.001), 
and probability of more than one fixation (p < 0.001), whereas it 
decreased the probability of skipping and fixating a word once only 
(both p’s < 0.001). Landing position further from the word’s beginning 
increased not only SFD and GD, but also FFD (p < 0.001).

The main effects of parafoveal words (either frequency or length) 
were not significant. Word’s relative position further from the sentence 
beginning increased FFD (Est. = 0.03, SE = 0.01, t = 3.70, p = 0.005). The 
main effects of reading skills in Adyghe and Russian did not reach 
significance in any measures.

There were some interactions of language with other variables. 
We  are reminded that Russian was taken as a baseline level for 
comparison, and it is, therefore, implied in the models’ intercept. 
Primarily, reading skills in both languages significantly affected 
reading in Adyghe, compared to reading in Russian, with p < 0.001 in 
all duration measures (FFD, SFD, GD, and TT). However, the 
direction of the effect was different. Higher reading skill in Adyghe 
accelerated reading in it compared to reading in Russian, whereas 
higher reading skills in Russian slowed down reading in Adyghe 
compared to reading in Russian.

No significant interaction of language and word frequency was 
found. Significant effects of word length in the interaction with 
language were found in late measures (GD and TT) and in fixation 
probabilities. Namely, longer words were read significantly longer in 
Adyghe (GD: Est. = 0.05, SE = 0.00, t = 10.45, p < 0.001; TT: Est. = 0.04, 
SE = 0.01, t = 7.19, p < 0.001) than words of the same length were read 
in Russian. Compared to Russian, longer words were less likely to 
be fixated only once (P1: Est. = −0.35, SE = 0.03, t = −13.54, p < 0.001), 
and were more likely to be fixated more than twice (P2+: Est. = 0.20, 
SE = 0.03, t = 6.83, p < 0.001).

The effects of the parafoveally located words’ properties (frequency 
and length) and current word’s relative position were not significant 

FIGURE 6

The predicted values of TT depending on the landing position of a first fixation on a word.

TABLE 5 Descriptive statistics of eye-movement measures in two 
languages (N  =  38), Mean (SD).

Measure Measurement Adyghe Russian

FFD

msec

290 (47.6) 211 (23.6)

SFD 317 (50.9) 226 (31.1)

GD 670 (167) 250 (37.7)

TT 936 (292) 300 (53.7)

P0

%

2 (0.02) 43 (0.1)

P1 20 (0.08) 40 (0.06)

P2+ 77 (0.09) 16 (0.08)

RO 19 (0.09) 12 (0.07)

RG 17 (0.08) 12 (0.06)

Fixation count N 3.52 (0.94) 0.82 (0.24)

Landing 

position
% 31 (0.07) 48 (0.04)
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with the exception for the length of a previous word. Longer words on 
the left side decreased the total reading time of a current word 
(Est. = −0.02, SE = 0.00, t = −3.39, p = 0.015). Landing position further 
from the word’s beginning interacted with language in both early 
(FFD) and late measures (GD, TT). Namely, it took more time during 
the first fixation to process the word, and less time to read it in the next 
fixations compared to the same landing position in Russian.

Discussion

The present study aimed to answer two research questions: (1) 
what are the benchmarks of eye movements while reading in a 
polysynthetic language (Adyghe), and (2) how does its reading differ 
from reading in a synthetic language (Russian) that is based on the 
same script? To answer these questions, we collected eye-movement 
data while reading two corpora: the Russian Sentence Corpus (RSC, 
Laurinavichyute et al., 2019) and the Adyghe Sentence Corpus (ASC). 
The analysis of eye movements included two parts in line with the 
research questions. First, an analysis (of all words and target words 
exclusively) in a larger data sample (N = 50) while reading ASC was 
performed. Second, we conducted a within-group analysis (N = 38) of 
eye movements comparing reading in two languages.

Benchmarks of eye movements while 
reading in Adyghe

Overall, the most robust universal effects of word frequency and 
word length on eye movements found in previous research across 
different languages (Inhoff and Rayner, 1986; Rayner, 1998; Staub and 
Rayner, 2007) were confirmed in our study in a polysynthetic 
language. Simultaneously, the finding of word frequency not being a 
significant effect across a range of measures contradicts the previously 
studied effects across languages and might imply some inconsistencies 
in the Adyghe Corpus, which is a constantly developing source of 
word frequencies in Adyghe. Presumably, the word frequencies 
extracted at the moment of the study did not fully reflect actual 
language use and might need to be updated.

On the other hand, this peculiarity brings us to the underlying 
question of the definition of a word and its units in polysynthetic 
languages. Lexical affixes might be confused with roots, and a word 
form reflects not just the form variations of a lemma but new “words” 
in its common notion. The blurred word boundaries (Haspelmath, 
2018) make it possible that we need a shift toward other frequency 
measures. It will likely be  more efficient to include morpheme 
frequency and/or initial bigram frequency similar to the analysis 
conducted in Yan et al. (2014) in Uighur.

We also confirmed another universal effect in eye-tracking-
while-reading research - the effect of word length. It was consistently 
observed in late duration measures, as well as in probability 
measures. Importantly, no effect of word length in early measures 
(FFD and SFD) resembles reading in Russian among monolingual 
adults in Laurinavichyute et al. (2019) and HSs in Parshina et al. 
(2021). No effect in RO and lower probability of regressions to the 
longer word (RG) are compatible with those in German (Kliegl 
et  al., 2006), but not in Russian (Laurinavichyute et  al., 2019; 
Parshina et al., 2021).

The effects of a previous/upcoming word in Adyghe partially 
resemble those in German monolinguals (Kliegl et al., 2006) and in 
high proficient Russian HSs (Parshina et al., 2021) but not in Russian 
monolinguals (Laurinavichyute et  al., 2019). Specifically, longer 
previous words accelerated the total reading time of a current word 
in Adyghe, whereas longer upcoming words did not show any effect. 
This outcome seems logical, taking into account the higher average 
word length in Adyghe (cf. 7.5 letters in ASC vs. 5.7 letters in RSC) 
which does not enable their readers to extract lexical information 
from the right side in the parafoveal processing.

The influence of POS class on eye movements in Adyghe was in 
line with previous research in Russian (Laurinavichyute et al., 2019): 
verbs were read significantly slower than nouns (in TT), whereas other 
POS did not differ significantly from verb reading. This finding 
corresponds to the notion, across different fields of linguistics, that 
verbs are more complex units and are more difficult to acquire and 
process than nouns (Bassano, 2000; Mätzig et  al., 2009; Crepaldi 
et al., 2011).

Finally, we observed a morphological effect of lexical affixes on 
eye movements in a polysynthetic language. Essentially, this finding 
confirmed that a higher number of lexical affixes increases cognitive 
load and is a relevant lexical feature to be controlled for. However, 
we have to acknowledge its limited distribution: only total reading 
times in all-word analysis, but not in target-word analysis, were 
affected. Presumably, either the limited distribution of the effect in a 
sentence or less controlled materials might account for these results.

A limited distribution of the morphological effect 
(monomorphemic vs. inflected words) was earlier observed in 
agglutinative languages (Finnish and Turkish). In Finnish, isolated 
words were affected by morphological complexity, whereas words in 
a sentence context were not (Hyönä et al., 2002). In Turkish, this effect 
in sentence reading was observed in probability measures but not in 
early measures like SFD (Özkan et  al., 2021). Having said that, a 
preserved effect of morphological complexity in a sentence context 
was reported in Yan et  al. (2014) on the materials of a highly 
agglutinative language (Uighur) in both early (FFD) and late (GD) 
measures.

Reading in polysynthetic Adyghe vs. 
reading in synthetic Russian

Whereas reading in both languages seem to be affected similarly 
by word frequency with more frequent words being read faster, it 
seems to be  affected differently by word length. Namely, two 
significant interactions of word length with language while reading 
in Adyghe demonstrated that longer words in Adyghe are read slower 
than words of the same length in Russian. This might account either 
for morphological differences between languages (longer Adyghe 
words might have a more complex morphemic structure which loads 
processing, whereas long Russian words are not necessarily 
polymorphemic) or for differences in participants’ reading skills in 
the two languages.

The opposite effects of reading skills in Adyghe and Russian 
during reading in Adyghe reflect a common debate regarding language 
interference in bilinguals (Kaushanskaya and Marian, 2007; Libben 
and Titone, 2009). A higher reading skill in one language accelerated 
processing in that language but inevitably impeded processing in 
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another one. Hence, participants with a higher self-assessed reading 
skill in Adyghe read Adyghe sentences faster than Russian ones, 
whereas participants with a higher self-assessed reading skill in 
Russian read Adyghe sentences slower than Russian ones.

Non-significant main effects of the neighboring words 
characteristics (frequency and length) together with their 
non-significant interactions with language leads us to conclude that 
speakers of a polysynthetic language do not rely on information about 
neighboring words. On the contrary, different Russian-speaking 
groups (monolinguals in Laurinavichyute et al., 2019; HSs and L2 
learners in Parshina et al., 2021) do extract some information from 
upcoming words, even though it is predominantly observed on late 
measures. Apparently, bilingual speakers of a polysynthetic language 
transfer this processing pattern to their other language (Russian, in 
this case), which distinguishes their reading in Russian from other 
Russian-speaking populations.

Noteworthy are the differences in the preferred landing position 
across the two languages. Statistical analysis showed that a further 
landing position on an Adyghe word will result in more efficient word 
processing (with a longer FFD but shorter GD and TT) compared to 
reading in Russian if landing on the same position. Descriptively, Adyghe 
bilinguals tend to land closer to the word beginning (on the first 31% of 
the word letters) when reading in Adyghe and closer to the word’s center 
(on the first 48% of the word letters) when reading in Russian.

Limitations and further research

We must admit some limitations of the study. A corpus study has 
the pitfall of using less controlled materials, which can lead to 
multicollinearity among predictors. We partially addressed this issue 
in the target-word analysis, where three variables were controlled 
(frequency, length, and POS with verbs and nouns as levels), and in 
the all-word analysis, where the variance of the inflation factor (VIF) 
of the predictors was always less than 2. Most morphemic features in 
our data (except for the number of lexical affixes) were highly 
correlated with word length, which restricted us to one morphemic 
variable in the analysis and limited our investigation of morphological 
effects on reading in Adyghe.

Consequently, the primary suggestion for further research is 
either an orthogonally-designed experimental study on reading in 
Adyghe or a further exploitation of the ASC from a different 
perspective. For instance, the number of morphemes, together with 
the number of lexical and grammatical affixes, could be considered for 
another controlled-condition study. The great variety of dialects in 
Adyghe is an area for further corpus research. Not only was dialectal 
variation not the focus of our study, but we  also had to exclude 
speakers of Kabardian from the analysis to ensure comparability with 
other dialects. Their data are, in turn, freely available together with 
other materials of the study at OSF, DOI 10.17605/OSF.IO/5UR8D 
(see footnote 4) and can be used in further research.

Apart from that, we see a potential to investigate in more detail 
the transfer of reading patterns that bilinguals make from one 
language to another. In our study, we observed this kind of transfer 
regarding the neighboring words: Adyghe-Russian bilinguals do not 
rely on their characteristics while reading in any language, whereas 
other Russian-speaking populations do when they read in Russian. 
The list of independent variables used to study eye movements from 

this perspective could be extended, and a different type of analysis 
(e.g., a scanpath analysis) could shed more light on reading patterns 
in the two languages and their interaction.
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Does early exposure to spoken 
and sign language affect reading 
fluency in deaf and hard-of-
hearing adult signers?
Anastasia A. Ziubanova 1, Anna K. Laurinavichyute 2* and 
Olga Parshina 3

1 Center for Language and Brain, HSE University, Moscow, Russia, 2 Department of Linguistics, University 
of Potsdam, Potsdam, Germany, 3 Psychology Department, Middlebury College, Middlebury, VT, United 
States

Introduction: Early linguistic background, and in particular, access to language, 
lays the foundation of future reading skills in deaf and hard-of-hearing signers. 
The current study aims to estimate the impact of two factors – early access to 
sign and/or spoken language – on reading fluency in deaf and hard-of-hearing 
adult Russian Sign Language speakers.

Methods: In the eye-tracking experiment, 26 deaf and 14 hard-of-hearing native 
Russian Sign Language speakers read 144 sentences from the Russian Sentence 
Corpus. Analysis of global eye-movement trajectories (scanpaths) was used to 
identify clusters of typical reading trajectories. The role of early access to sign 
and spoken language as well as vocabulary size as predictors of the more fluent 
reading pattern was tested.

Results: Hard-of-hearing signers with early access to sign language read more 
fluently than those who were exposed to sign language later in life or deaf signers 
without access to speech sounds. No association between early access to spoken 
language and reading fluency was found.

Discussion: Our results suggest a unique advantage for the hard-of-hearing 
individuals from having early access to both sign and spoken language and 
support the existing claims that early exposure to sign language is beneficial not 
only for deaf but also for hard-of-hearing children.

KEYWORDS

reading fluency, deaf, hard-of-hearing, sign language, multimodal bilingualism, 
scanpaths, eye movements

1. Introduction

Although able to reach high reading proficiency, deaf readers are on average less skilled than 
hearing ones (Goldin-Meadow and Mayberry, 2001; Luckner et al., 2005; Kelly and Barac-
Cikoja, 2007). Poorer reading in deaf individuals was initially attributed to spoken language 
phonology deficit (Hanson, 1989), but later research indicated that phonological activation is 
not necessary for proficient reading (Mayberry et al., 2011; Bélanger et al., 2012, 2013; Clark 
et al., 2016; Thierfelder et al., 2020; cf. Blythe et al. (2018) arguing for phonological recoding and 
Yan et al. (2015) as well as Yan et al. (2021) arguing for phonological preview benefit). More 
recently, reading skills in deaf people have been associated with different social integration 
background and educational methods, personal cognitive and social strengths (Marschark et al., 
2015), exposure to written language (Tomasuolo et al., 2019), silent lipreading (Kyle et al., 2016), 
and, most importantly, early language development (Padden and Ramsey, 2000; Mayberry, 2007; 
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Freel et al., 2011; Lederberg et al., 2013; Clark et al., 2016; Tomasuolo 
et al., 2019).

The foundation of early language development is access to 
language. In deaf and hard-of-hearing people, access to language can 
take different paths, be  that access to sign language, to spoken 
language, or both. The precise role of each route for reading 
proficiency is under debate. Mayberry and Lock (2003; see also Clark 
et al., 2016) claim that it is early sign language acquisition that is 
essential for later reading abilities (based on data from children with 
severe and profound hearing loss, who have no access to the sounds 
of spoken language). Early acquisition of sign language is crucial not 
only for future proficiency in the sign language itself (in particular, for 
grammaticality judgments, Cormier et al., 2012; syntax, Boudreault 
and Mayberry, 2006; Henner et al., 2016; vocabulary, Caselli et al., 
2021; Berger et al., 2023), but also for the later processing of written 
language (Clark et al., 2016). In particular, knowledge of American 
Sign Language syntax is correlated with the knowledge of English 
syntax (Chamberlain and Mayberry, 2008; Pinar et  al., 2017; 
Hoffmeister et al., 2022); large vocabulary in Dutch Sign Language is 
correlated with large vocabulary in written Dutch (Hermans et al., 
2008); better antonym knowledge in American Sign Language is 
correlated with better reading in English (Novogrodsky et al., 2014); 
better knowledge of American Sign Language is correlated with better 
comprehension of written English (Freel et al., 2011). Perhaps most 
convincingly, proficiency in American Sign Language was the single 
significant predictor of performance on nationally standardized 
measures of reading comprehension, English language use, and 
mathematics (Hrastinski and Wilbur, 2016).

However, early acquisition of sign language might be not the only 
road to proficient reading. Tomasuolo et  al. (2019) found that deaf 
children of deaf parents, deaf oral monolinguals, and people with normal 
hearing had similar fixation durations during reading, and all 
outperformed deaf children of hearing parents who learned sign 
language only after the age of six. Tomasuolo and colleagues concluded 
that competence in either sign or spoken language is crucial for skilled 
reading in deaf. In a similar vein, Bertone and Volpato (2009) claim the 
critical role of (partial) access to spoken language: orally-trained children 
with access to speech sounds (cochlear implantation) outperformed all 
other groups of deaf children in a picture-matching task. To summarize, 
there is currently no consensus on whether it is access to sign or spoken 
language, or both that is important for future reading skills.

The first factor – early access to sign language – primarily depends 
on the hearing status of the child’s parents, since deaf parents tend to 
be signers, and hearing parents tend to either learn sign language 
together with their child (which might help children to gain 
age-appropriate SL vocabulary, see Berger et al., 2023) or opt for oral 
communication and education without any use of sign language. Deaf 
children born to deaf parents are likely to have early access to sign 
language and successfully acquire it as their first language. They are 
usually referred to as native signers, defined as having at least one deaf 
parent (here, we follow Tomasuolo et al., 2019; Hoffmeister et al., 
2022, and others). In contrast, deaf children born to hearing parents 
may be deprived of sign language input – in fact, of any language input 
– as infants, which may hinder overall language development (Goldin-
Meadow and Mayberry, 2001; Mayberry, 2007).

The second factor – early access to spoken language – depends on 
the degree of hearing loss of the child assuming other factors such as 
the quality of caretaker-child interactions, socioeconomic status, peer 
socialization, and cultural and individual differences are equal. For 

infants with some level of hearing loss, the severity of their hearing 
loss typically determines the amount of spoken language input they 
receive during infancy. Slight to moderately severe degrees of hearing 
loss correspond to the speech sound range the individuals perceive 
(see Table A2 in Appendix), and individuals with slight to moderate 
hearing loss have partial access to spoken language sounds. Hard-of-
hearing children who have access to speech sounds from birth (e.g., 
from one or both parents, siblings, or other caretakers who use spoken 
language) are likely to acquire spoken language early. Children with 
severe and profound deafness are minimally exposed to spoken 
language sounds (only via lip-reading) and start learning spoken 
language later, already at school or at pre-school correction classes. 
Later exposure to spoken language may lead to lower spoken language 
proficiency (Bertone and Volpato, 2009).

The current study aims to add to the existing evidence on reading 
fluency in deaf and hard-of-hearing (DHH) signers: in addition to the 
early access to sign language, we also consider the access to spoken 
language approximated by the degree of hearing loss as a factor that 
can potentially influence reading fluency. While early access to sign 
language is clearly beneficial for reading skills of deaf individuals, it is 
less clear what role early access to spoken and/or sign language plays 
for hard-of-hearing individuals with partial access to speech sounds.

2. The present study

To investigate global reading fluency in DHH Russian signers, 
we  focus not on the isolated measures related to individual word 
reading, such as fixation durations and skipping rates, but rather on 
the global trajectories of eye movements in reading the entire 
sentences (von der Malsburg and Vasishth, 2011). While the analysis 
of word-level eye movement characteristics is indispensable for 
studying how individual word properties affect reading, the analysis 
of scanpaths (i.e., sequences of eye movements) focuses on the bigger 
picture. Scanpath analysis combines fixation locations and their 
durations during reading the entire sentence into one continuous 
measure and allows the researchers to quantify the similarity between 
eye movement trajectories of different people.

To illustrate the concept of a scanpath, Figure  1 visualizes a 
trajectory of eye movements made while reading a sentence. The 
x-axis marks words in the sentence and the y-axis shows time in 
seconds. In this case, the reader fixated on the first word for about 
400 ms and then continued to read the sentence word by word, 
skipped the 5th and the 6th words, fixated on the 7th and 8th words, 
skipped the 9th word and fixated on the 10th word, then made a 
regression to the 7th word, etc. This trajectory is an example of 
non-fluent reading: the scanpath includes six regressions and one 
atypically long fixation – the last word in the sentence was fixated for 
more than a second.

Utilizing the scanpath method to compare reading strategies in 
English-Russian bilingual and Russian-speaking monolingual speakers, 
Parshina et al. (2021a,b) found that monolingual adult readers followed 
the fluent reading strategy (fast sentence reading times, high word 
skipping rates, and almost no regressions), suggesting no difficulties in 
word recognition or syntactic and semantic information integration. 
Bilingual readers with early exposure to the second language and earlier 
exposure to the print language (e.g., heritage speakers of Russian who 
immigrated to the USA later in childhood) preferred the intermediate 
strategy (longer sentence reading times, lower word skipping rates, and 
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more backward saccades to reread the words), indicative of delays in 
word recognition. Finally, bilingual readers with less exposure to 
spoken and written Russian (e.g., heritage speakers born in the USA) 
read according to the beginner strategy (even longer sentence reading 
times, more word and whole sentence rereadings), which the authors 
suggested reflects challenges not only in word recognition but also in 
the integration of morphosyntactic and semantic information.

In the present study (based on these findings and results in other 
studies, see above), we expect that early exposure to any type of language 
(sign or spoken) should be associated with greater reading fluency in 
DHH signers. That is, we expect higher reading fluency in both deaf and 
hard-of-hearing signers who have deaf parents and, therefore, were 
exposed to sign language from birth, and in hard-of-hearing signers who 
were exposed to spoken language from birth. We hypothesize that these 
readers will adopt a more fluent pattern of reading compared to DHH 
readers with less exposure to language (sign or spoken).

Admittedly, reading fluency per se is not a direct index of reading 
skill or successful comprehension: A text can be skimmed fast but 
poorly understood (Strukelj and Niehorster, 2018). Moreover, eye 
movements while reading depend not only on reading skill but also on 
reading goals and task demands (Mézière et al., 2021, 2022). For these 
reasons, we approximate reading skill through a combination of two 
measures: scanpaths, a combined measure capturing eye movements 
while reading, and questions probing sentence comprehension. A 
combination of skilled eye movement reading patterns and high 
question response accuracy would therefore index a better reading skill.

3. Methods

3.1. Participants

In Russia, deaf individuals are predominantly orally educated: 
they are taught to use monolingual spoken Russian as the primary 

means of production and lipreading for oral comprehension (Bazoev, 
2016). This means that all DHH participants of the present study 
know spoken Russian and Russian print to some degree. Moreover, 
at the time of testing, all participants were daily users of Russian sign 
language (RSL; mean subjective assessment of proficiency = 8.97, 
SD = 1.46)1, which means that all participants were bilingual and 
bimodal in RSL, spoken Russian, and Russian print. Participants 
were recruited from the Head Educational, Research and 
Methodological Center for Vocational Rehabilitation of persons with 
disabilities at Bauman University in Moscow. All participants were 
compensated with 500 Rub. The study was approved by the HSE 
ethics committee.

The study included 40 DHH signers: 26 participants with 
complete hearing loss (Mage = 31, SD = 9) and 14 hard-of-hearing 
participants (Mage = 26, SD = 11). The individual characteristics of 
each participant can be found in Table A1 in Appendix. The group 
of deaf participants included people with severe and profound 
hearing loss. The hard-of-hearing group of participants included 
people whose level of hearing loss ranged from slight to 
moderately severe. The degree of hearing loss was self-reported 
based on the diagnosis by a medical practitioner (established on 
the basis of either otoacoustic emissions testing (OAE) or pure-
tone audiometry).

Fifteen out of twenty-six deaf participants were born to deaf 
parents (recall that such individuals are considered to be native signers) 
and had hereditary deafness, while 11 were born in hearing families 

1 Only subjective assessment of RSL proficiency (How proficient would 

you say you are in RSL on a scale from 1 to 10?) is available because there is 

no standardized proficiency test for RSL. Self-reported proficiency strongly 

correlates with objective proficiency measures (Shameem, 1998; Marian 

et al., 2007).

FIGURE 1

The example of gaze trajectory while sentence reading. The y axis shows sentence reading time in seconds and the x axis shows word position in the 
sentence.
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and had hearing loss due to other causes (see Table 1). Seven out of 
fourteen hard-of-hearing participants had deaf parents, the other seven 
had hearing parents. One participant from the hard-of-hearing group 
had a deaf mother and a hearing father and was classified as having 
deaf family due to access to sign language from birth.

The aim of the present study is to establish whether reading 
fluency of DHH signers is correlated with their parents’ hearing 
status and the individual degree of hearing loss. The mapping from 
these predictors to the main factors of interest, early access to sign 
and spoken language, is as follows: parents’ hearing status maps 
directly onto early access to sign language, which may benefit both 
deaf and hard-of-hearing individuals. In contrast, early access to 
spoken language maps onto the degree of participant’s individual 
hearing loss with more severe loss leading to lesser spoken input the 
individual receives during infancy. We  also hypothesize that the 
degree of hearing loss might interact with the parents’ hearing status: 
the individuals with some access to speech sounds and at least one 
hearing parent are likely to have more early access to spoken sounds 
compared to individuals with deaf primary caretakers.

Materials. As reading materials, we used 144 sentences from the 
Russian Sentence Corpus developed as benchmark set of materials 
for assessing eye movements while reading in Russian 
(Laurinavichyute et al., 2019). The corpus is comprised of natural 
sentences randomly selected from the Russian National Corpus 
(https://Ruscorpora.ru) and normed for acceptability. Sentences had 
different syntactic structures: narratives, exclamations, and 
interrogatives, as well as sentences with non-standard word order. 
Sentences spanned from five to twelve words (with the average 
sentence length of 9 words) and were selected for being syntactically 
and lexically accessible. The Russian Sentence Corpus has been 

successfully read by advanced L2 learners and heritage speakers of 
Russian (Parshina et al., 2021b).

Originally, only 33% of the sentences in the corpus were 
followed by comprehension questions. To assess comprehension of 
DHH signers with higher precision, we introduced more questions: 
in the present study, 58% of sentences were followed by 
comprehension questions with three possible response options, see 
Example (1):

(1) Sentence Дорога ведет в глухой лес, петляя по 

склонам.

‘The road leads into the deep forest, winding along 

the slopes.’

Question Куда ведет дорога?

‘Where does the road lead?’

Correct answer В лес   ‘Into the forest’

Incorrect answer 1 В огород   ‘Into the garden’

Incorrect answer 2 В деревню   ‘Into the village.

In addition, approximate vocabulary size of print Russian was 
measured for each participant using an online computerized 
adaptive testing tool (Golovin, 2014; Andreev et  al., 2016; 
Ashkinazi and Golovin, 2016). During the test, participants see a 
word or a non-word and have to indicate whether they know its 
meaning. If participants indicate that they know the meaning of 
the word, they may with some probability be asked to select a 
correct interpretation of the meaning or a correct synonym out of 
four options. If a participant knows infrequent words, even less 

TABLE 1 Characteristics of participants in each group.

Deaf participants, 
hearing parents

Hard-of-hearing 
participants, 

hearing parents

Deaf 
participants, 
deaf parents

Hard-of-hearing 
participants, deaf 

parents

Stat. 
comparison

Demographics

Total N 11 7 15 7 n.s.

Female participants 7 3 10 4 *

Vocabulary 33,272 (19,652) 52,571 (19,738) 51,466 (34,350) 49,571 (19,518) n.s.

Age 28 (7.63) 25 (4.79) 33 (9.3) 27 (15.4) n.s.

Start of RSL use 6.5 (3.1) 11.28 (5.49) 4 (1.4) 3.7 (2) *

Years of education 16.54 (3.58) 16.42 (2.50) 17 (2.8) 13.6 (1.9) n.s.

RSL proficiency (self-reported) 9.27 (1.55) 7.28 (1.49) 9.6 (0.8) 8.85 (1.2) *

Characteristics of reading

Accuracy 0.69 (0.46) 0.76 (0.43) 0.76 (0.43) 0.80 (0.40) n.s.

Sentence reading times, ms 4,721 (1554) 4,692 (988) 4,611 (2117) 3,368 (979) n.s.

Average fixation duration, ms 246 (128) 229 (118) 240 (122) 221 (106) n.s.

Number of fixations on a 

sentence
19.2 (10) 20.5 (9.12) 19.2 (11) 15.3 (5.52) n.s.

Statistical comparisons are based on the mixed-effects or linear models that the reader can find in the supplementary code. In the Statistical comparison column, n.s. stands for no significant 
differences. The significant differences between groups are as follows: Deaf participants and children of at least one deaf parent reported both earlier start of RSL use and higher RSL 
proficiency. In addition, there were significantly more females among deaf children of hearing parents than in other groups. 
Individuals with at least one deaf parent are considered to be native signers. Numbers without parentheses represent counts or group means, numbers in parenthesis represent standard 
deviations. For the “Start of RSL use,” we encoded the starting age of those participants who said that they use RSL from childhood as 5 years, which is a conservative estimate.
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frequent words are selected for further testing to estimate their 
vocabulary size with more precision.

3.2. Procedure

Stimuli were presented on the ASUS VG248QE monitor 
(resolution: 1,920 × 1,080 pix, response time: 1 ms, frame rate: 144 Hz, 
font face: 22-point Courier New). Eye movements were recorded at 
the rate of 1,000 Hz with desktop eye-tracker EyeLink 1,000+ using a 
chinrest. Eye-to-camera distance was 60 cm, eye-to-screen distance 
was 90 cm.

The experiment started with 9-dot camera calibration. After the 
calibration, a black dot was presented at the position of the first letter of 
the first word in the sentence. After the camera registered a fixation on 
the black dot, the sentence appeared. Participants were asked to read the 
sentence without signing (silent reading). If no fixation was registered on 
the black dot within 2 s, calibration was repeated. After having read the 
sentence, participants had to look at the red dot in the lower right corner 
of the screen. Fixation on the red dot triggered the next trial.

If the sentence was followed by a question, then after a fixation on 
the red dot was detected, the question appeared in place of the 
sentence. The response options were presented below the question. To 
select an answer, participants had to click on the response. The 
experiment started with three practice sentences and continued with 
6 blocks, 24 experimental sentences in each. Between blocks, 
participants could have a break followed by a recalibration. The order 
in which the sentences appeared was randomized.

3.3. Analysis

To answer the main research question of the study, i.e., whether 
more proficient sentence reading trajectories in DHH participants are 
associated with early exposure to language, sign and/or spoken, 
we followed the steps in analysis in Parshina et al. (2021a,b). First, gaze 
trajectories (scanpaths) were recorded for all sentences for each 
participant. Trajectories with similar spatial and temporal 
characteristics (calculated using the Levenshtein distance) were then 
automatically grouped into clusters. To that end, we applied Gaussian 
mixture modeling (using the mclust package for R; Fraley and Raftery, 
2007) that allowed us to identify the optimal number of clusters in 
each sentence. The advantage of using Gaussian mixture modeling 
over other clustering techniques (e.g., k-means clustering) is the 
method’s ability to detect clusters even in the presence of overlapping 
parameters. The median number of clusters for the entire corpus was 
2 clusters, ranging from 1 to 9 clusters in each sentence. To facilitate 
interpretation and to avoid capturing random variation in reading 
patterns we proceeded to fit the models with the fixed number of 2 
Gaussians for all sentences in the corpus. Any participant could read 
some sentences more fluently, and others more effortfully, so the same 
person’s reading trajectories for different sentences could be placed in 
different clusters. However, we expected that for each participant, one 
cluster would be dominant.

To find out whether early exposure to language affects cluster 
placement in DHH participants, we used a generalized mixed-effects 
model with the cluster as a dependent variable and parents’ hearing 
status, participant’s degree of hearing loss as predictors. 

We additionally used participants’ vocabulary size, age, and gender 
as covariates, as these factors are known to affect reading (Baumann, 
2014; von der Malsburg et al., 2015; Reilly et al., 2019). The model 
also included the age at which participants started learning RSL, as 
RSL proficiency might play a role in reading (Hrastinski and Wilbur, 
2016). The model was fit using `lme4` package (Bates et al., 2014), 
with dummy-coded categorical fixed effects (hearing parents coded 
as 0, deaf parents as 1; hard of hearing participants coded as 0, deaf 
participants as 1). Vocabulary size, age, and the age at which 
participants started learning RSL were centered and scaled; gender 
was coded as 1 for female, −1 for male participants. The random 
effects structure included random intercepts for participants and 
sentences, as well as by-sentence random slopes for the fixed effects 
of participants’ hearing status, their parents’ hearing status, and the 
interaction of these effects. Correlations between random slopes were 
not estimated.

The data and analysis code are openly available at: https://osf.io/
je8du/. The readers are encouraged to reproduce our analysis and to 
apply any other analyses they see fit to the data set.

4. Results

Based on the eye-movement characteristics, the two clusters 
earlier identified via Gaussian mixture modeling were labeled as more 
fluent and less fluent reading clusters (see Figure 2 for an example of 
typical gaze trajectories corresponding to the less-fluent and more-
fluent reading clusters).

The less-fluent cluster was characterized by longer sentence 
reading times, longer fixation durations, greater number of fixations 
and regressions, and lower question response accuracy (see Table 2; 
note that in contrast to the eye-tracking measures, response accuracies 
were not used to compute the clusters). Both the less-fluent and the 
more-fluent reading clusters differed from the typical reading pattern 
of fluent monolingual Russian speakers reading the same materials [as 
reported in Parshina et al. (2021a,b)]. For comparison, monolingual 
Russian speakers had, on average, reading time of 2.1 s, and made 1.3 
fixations per word (Parshina et al., 2021a,b).

We now turn to the main question of the study, namely whether 
parents’ hearing status and participants’ degree of hearing loss affect 
the reading patterns of DHH signers. Mixed-effect model 
demonstrated that the participant’s degree of hearing loss did not 
affect cluster membership, whereas parents’ hearing status did, and 
these two factors interacted (see Table 3; Figure 3): reading patterns of 
hard-of-hearing children of deaf parents were more likely (estimated 
87% probability) to belong to the more fluent cluster than those of 
hard-of-hearing children of hearing parents (estimated 52% 
probability) or deaf children of deaf parents (estimated 49% 
probability). In addition, greater vocabulary size was strongly 
associated with placement to the more fluent cluster. Gender, age, and 
the age at which participants started to learn RSL did not affect the 
probability of cluster placement.

5. Discussion

The present study aimed to find out whether early exposure to 
sign and/or spoken language affects reading fluency in deaf and, 
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especially, hard-of-hearing signers. While early access to sign language 
has been shown to benefit the reading skills of deaf individuals, it is 
less clear what role early access to spoken and/or sign language plays 
for hard-of-hearing individuals with partial access to speech sounds.

Our results suggest a unique advantage for the hard-of-hearing 
individuals from having early access to both sign and spoken language: 
native bilingual signers with access to speech sounds were much more 
likely to have more fluent reading patterns than any other group of 
participants. Early access to spoken language in hard-of-hearing signers 
with hearing parents did not correlate with reading fluency. Our results 
partially support the conclusions of Clark et al. (2016) who claimed that 
it is early sign language acquisition that is important for later reading 
fluency. However, early access to sign language seems to affect different 
groups of participants differentially: participants with partial access to 
speech sounds benefit from it the most in terms of reading. It seems that 
hard-of-hearing children born to deaf parents can have the best of both 

worlds: early access to sign language ensures timely language 
development, and on top of that, partial access to speech sounds further 
helps in mastering the spoken and print language system and vocabulary. 
Our results support the existing claims that early exposure to sign 
language is beneficial not only for deaf but also for hard-of-hearing 
children from infancy on (Mayberry, 2007; Freel et al., 2011; Humphries 
et al., 2014; Hall et al., 2019), and are broadly compatible with claims that 
bimodal education is effective for proficiency in written language (Lange 
et al., 2013; Henner et al., 2015).

The role of early access to spoken language is less clear: the lack of 
significant association between reading fluency and early access to 
spoken language does not mean that no link between the two exists. 
Conducting a follow-up study exclusively focused on investigating the 
impact of early access to spoken language on reading fluency in hard-
of-hearing and deaf adult non-signers would provide valuable insights 
into this debate. However, the results of the current study suggest that 
for bilingual signers individuals access to spoken language may play a 
relatively smaller role in reading fluency compared to early access to 
sign language.

6. Conclusion

The current study aimed to evaluate whether and to what degree 
early access to sign language and early access to spoken language affect 
reading fluency in adult signers. We  found that hard-of-hearing 
signers with early access to sign language and partial access to spoken 
language read more fluently than those who were exposed to sign 
language later in life. No association between early access to spoken 
language and reading fluency was found. If future studies confirm the 
greater role of early access to sign language for reading proficiency in 
hard-of-hearing signers, this could have deep impact on the social and 
educational policies ensuring the well-being of DHH individuals.

FIGURE 2

Gaze trajectories for reading the same sentence corresponding to typical reading patterns in the less-fluent (A) and more-fluent (B) clusters.

TABLE 2 Comparison of eye-movement measures and question response 
accuracies in the less-fluent vs. more-fluent cluster.

Less-fluent 
reading

More-fluent 
reading

p-value

Accuracy, M (SD) 0.69 (0.46) 0.79 (0.41) 0.002

Number of fixations/

sentence, M (SD)

35 (15) 23 (10) <0.001

Number of fixations/

word, M (SD)

2.9 (2.2) 1.9 (1.4) <0.001

Sentence reading time, 

M (SD), s

9.1 (4) 5.5 (3) <0.001

Fixation 

duration*, M (SD), ms

260 (174) 245 (156) <0.001

Bold values indicate statistical significance.
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TABLE 3 Parameter estimates for the generalized mixed-effects model 
for the cluster distribution.

Predictors Estimate 
(Log-Odds)

95% CI p-value

(Intercept) 0.10 −0.80–1.01 0.822

Parents’ hearing status (deaf) 1.88 0.54–3.22 0.012

Degree of hearing loss 

(profound)

0.07 −0.95–1.10 0.889

Vocabulary size 0.74 0.42–1.07 <0.001

Gender (female) 0.13 −0.20–0.47 0.435

Age 0.03 −0.31–0.37 0.863

Age of Start of RSL usage −0.09 −0.52–0.34 0.691

Parents’ hearing status × 

degree of hearing loss

−2.03 −3.43– −0.62 0.010

Random effects

σ2 3.29

τ00 item.id 2.01

τ00 participant.id 0.82

τ11 item.id.DeafParents:Deaf 10.95

τ11 item.id.Deaf 1.96

τ11 item.id.DeafParents 10.33

N participants 40

N item.id 144

Observations 155,448

Marginal R2/Conditional R2 0.125/0.656

*p-values in the table are multiplied by two because we adjusted the alpha level by the factor 
of two. The reason for the adjustment is that we have performed the analysis after having 
collected data from 37 participants and then decided to proceed with data collection to have 
data from at least 40 participants.
Intercept corresponds to the baseline probability of placement to the more fluent cluster.
Bold values indicate statistical significance.

FIGURE 3

The estimated probability of placement to the more fluent cluster 
depending on the degree of hearing loss and parents’ hearing status. 
Error bars represent 95% confidence intervals.
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