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Editorial on the Research Topic

Diabetes augmentation on vascular disease, volume II

In 2021, we summarized eight reports addressing how diabetes augments cardiovascular

disease, with a focus primarily on blood sugar and lipid regulation. In this editorial, we

review ten more recent studies that expand upon this topic, incorporating systemic

variables beyond glycemic and lipid control.

The first report, by Lou et al., investigated heart rate responses to exercise in patients

with type 2 diabetes (T2DM), emphasizing autonomic nervous system dynamics.

Typically, exercise induces sympathetic activation and parasympathetic withdrawal,

which reverses during recovery. In a small Chinese cohort, this autonomic response was

blunted both during and after exercise in type 2 diabetics compared to individuals

without T2MD. While the authors adjusted for several confounders, the retrospective

design limited control over factors such as diabetes duration, glycemic control, and

medication use. Though correlative, the findings suggest a potential role for diabetic

autonomic neuropathy. Future prospective studies, including larger and more diverse

ethnic groups, are warranted.

A second retrospective study by Wang et al. examined the triglyceride-glucose (TyG)

index as a predictor of preclinical heart failure with preserved ejection fraction (HFpEF) in

a diabetic Chinese population without history of cardiovascular disease. Similar limitations

as in the Lou et al. study applied, and the generalizability of the findings must be tested in

broader populations.

In a cross-sectional study of 1,973 Chinese patients undergoing coronary angiography,

Dong et al. found a positive correlation between glycemia and the presence of multivessel

coronary artery disease (CAD), defined as >50% stenosis in at least two major coronary

arteries. The association was particularly strong in males over 45 and smokers. For each

unit increase in glycemia, the prevalence of multivessel CAD rose by 4%. Although

cross-sectional in nature, the study underscores the potential value of glycemic

measures as markers of CAD risk in Asian populations, warranting longitudinal

validation in other ethnic groups.

Two Mendelian randomization studies in this Research Topic help address

confounding factors common in observational research. The first by Liu et al.

demonstrated a causal link between obstructive sleep apnea (OSA) and diabetic

microvascular complications, including nephropathy and neuropathy in European

patients. While OSA also appeared linked to diabetic retinopathy overall, the association

was not significant when retinopathy was subclassified into background and
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proliferative forms—likely due to limited sample size. Importantly,

reverse causality was not supported. Reduced lung function, as

measured by forced vital capacity and expiratory volume, was

also associated with increased risk of retinopathy and nephropathy.

The second Mendelian randomization study, by Feng et al.,

used GWAS data from individuals of European descent to

explore the role of very low-density lipoprotein (VLDL) in

diabetic cardiomyopathy and coronary artery disease (CAD).

Type 2 diabetes was associated with a 13% increased risk of

CAD and a 2.5% elevation in VLDL levels. Notably, each

standard deviation increase in VLDL concentration correlated

with a 30% greater likelihood of CAD, implicating VLDL as a

potential mediator of diabetic cardiovascular risk.

Wang et al. conducted a bibliometric analysis of diabetic

cardiomyopathy publications from 2012 to 2021, revealing a

steady increase in research output, with over 250 annual

publications by the decade’s end. While mechanistic insights

were not the focus, hyperglycemia was a recurring theme,

alongside oxidative stress, fibrosis, apoptosis, and autophagy. Six

institutions—primarily in China, the U.S., Australia, and Hong

Kong—accounted for the majority of the contributions.

Therapeutic targets were frequently discussed, highlighting the

urgency of this underdiagnosed but lethal complication.

den Hartigh et al. provided a comprehensive review of serum

amyloid A (SAA) proteins and their role in inflammation-related

diseases, including metabolic diseases such as diabetes, obesity,

and atherosclerosis. Of the five main SAA subtypes, SAA1 and

SAA2 are liver-derived and markedly elevated during acute

inflammation. Chronic inflammation elicits a more modest SAA

response. SAA’s poor solubility leads to its association with high-

density lipoprotein. The review raises the question of whether

SAA serves as a biomarker or a causal agent in these diseases.

Sharma et al. conducted a preclinical study using ApoE-deficient

mice to test modulators of nitric oxide (NO) bioavailability in

diabetic atherosclerosis. The soluble guanylate cyclase activator

BAY 60 and stimulator BAY 41 were compared. BAY 60 proved

more effective in reducing aortic plaque burden and urinary

albuminuria, a marker of renal function, over a 10- to 20-week

treatment course initiated after streptozotocin-induced diabetes.

These findings support NO-pathway targeting as a therapeutic

approach in diabetic vascular and renal disease.

Singh et al. explored phosphorylation changes in NF-κB

signaling in endothelial cells exposed to high glucose and

hypoxia. Using a large panel of phosphorylation-specific

antibodies, they identified 65 modulated phosphorylation sites in

35 proteins. Bioinformatic analysis highlighted increased

phosphorylation in two B-cell–related proteins BLNK1 and

Bruton tyrosine kinase (BTK). Inhibition of BTK led to an

attenuation of glucose induced phosphorylation and activation

of PKC and increased IκBα levels, suggesting previously

underappreciated pathways influenced by diabetic and

hypoxic stress.

Finally, Dai et al. used bioinformatic modeling to analyze co-

expression of hub genes in male and female patients with T2DM

and CAD (defined as >50% stenosis). Among 16 hub genes

associated with immune cell infiltration, NPEPPS (a cytosolic

aminopeptidase) and ABHD17A (a protein export gene) were co-

expressed and upregulated in CD8+ T cells and NK cell, two

immune populations more prevalent in healthy controls. This

suggests a potential role for immune modulation in the

pathogenesis and treatment of both diabetes and CAD.

Together, these ten studies deepen our understanding of the

multifactorial pathways linking diabetes and cardiovascular

disease and emphasize the value of diverse research

methodologies—from molecular biology and bioinformatics

to epidemiology and clinical trials—in unraveling this

complex relationship.
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Research status and trends of
the diabetic cardiomyopathy in
the past 10 years (2012–2021): A
bibliometric analysis
Sicheng Wang1†, Chuanxi Tian1,2†, Zezheng Gao1,2†,
Boxun Zhang1* and Linhua Zhao1*
1Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical
Sciences, Beijing, China, 2Graduate School, Beijing University of Chinese Medicine, Beijing, China

Background: Diabetic cardiomyopathy is one of the most life-threatening

diabetic complications. However, the previous studies only discuss a particular

aspect or characteristic of DCM, the current state and trends were explored

by limited research. We aimed to perform a systemically bibliometric study

of DCM research progress status in the past decade, visualize the internal

conceptual structure and potential associations, and further explore the

prospective study trends.

Methods: Articles related to DCM published from January 2012 to December

2021 were collected in the Web of Science core collection (WoSCC) database

on June 24, 2022. We exported all bibliographic records, including titles,

abstracts, keywords, authorship, institutions, addresses, publishing sources,

references, citation times, and year of publication. In addition, the journal

Impact Factor and Hirsch index were obtained from the Journal Citation

Report. We conducted the data screening, statistical analysis, and visualization

via the Bibliometrix R package. VOS viewer software was employed to

generate the collaboration network map among countries and institutions for

better performance in visualization.

Results: In total, 1,887 original research articles from 2012 to 2021 were

identified. The number of annual publications rapidly increased from 107 to

278, and a drastic increase in citation times was observed in 2017–2019. As for

global contributions, the United States was the most influential country with

the highest international collaboration, while China was the most productive

country. Professor Cai Lu was the most prolific author. Shandong University

published the most articles. Cardiovascular Diabetology journal released the

most DCM-related articles. “Metabolic Stress-induced Activation of FoxO1

Triggers Diabetic Cardiomyopathy in Mice” Battiprolu PK et al., J Clin Invest,

2012. was the most top-cited article regarding local citations. The top three

keywords in terms of frequency were apoptosis, oxidative stress, and fibrosis.

The analysis of future topic trends indicated that “Forkhead box protein O1,”

“Heart failure with preserved ejection fraction,” “Dapagliflozin,” “Thioredoxin,”

“Mitochondria dysfunction,” “Glucose,” “Pyroptosis,” “Cardiac fibroblast” and

“Long non-coding RNA” could be promising hotspots.
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Conclusion: This study provides meaningful insights into DCM, which is

expected to assist cardiologists and endocrinologists in exploring frontiers

and future research directions in the domain through a refined and

concise summary.

KEYWORDS

diabetic cardiomyopathy, cardiomyopathy, diabetic complications, bibliometric
analysis, data visualization

Introduction

Diabetes mellitus (DM) is a prevalent chronic non-
communicable disease and one of the most severe and pressing
health issues worldwide. Globally, the number of diabetic
patients has increased sharply in recent years, it is estimated
that 537 million people live with DM worldwide in 2021, which
will soar to 784 million in 2045 according to current estimates
from International Diabetes Federation (IDF) Diabetes Atlas
(1). Cardiovascular disease (CVD) is the leading cause of death
in patients with DM, and the association between DM and
CVD has been demonstrated for a long time (2, 3). However,
several clinical observations including the Framingham Study
found that there is a high risk of heart failure (HF) in
patients with DM, ranging from 19% to 26% (4–6), and it
even occurs independently of traditional CVD risk factors,
including coronary heart disease (CAD), hypertension (HTN),
etc. In 1972, Rubler and his colleagues observed a unique
myocardial injury, and named it the diabetic cardiomyopathy
(DCM) (7).

DCM initially has a subclinical period that results from
fibrosis, left ventricular hypertrophy (LVH), and myocardial
relaxation abnormality manifesting as asymptomatic in early
phases (8). Still, with the progress of the disease, the
growth of left ventricular mass (LVM) leads to the decline
of diastolic left ventricular filling, it gradually becomes
symptomatic from diastolic dysfunction to systolic dysfunction,
manifesting as cardiac dysfunction eventually characterized
by various metabolic and neurohumoral pathway disorders
(9–11). Studies have shown that the prevalence of cardiac
dysfunction in individuals with type 1 diabetes mellitus
(T1DM) and type 2 diabetes mellitus (T2DM) is 14.5% and
35%, respectively (12, 13). Due to the insidious nature of
DCM onset, the incidence of DCM has been dramatically
underestimated (11, 14), meaning that the number of people
with diabetes and cardiac dysfunction is far more significant
than expected. DCM research is, therefore, of paramount
importance in reducing the global healthcare burden and
mortality among patients with DM. Although numerous
reviews have previously addressed DCM from pathophysiology,

preclinical and clinical perspectives, the previous reviews only
discuss a particular aspect or characteristic of DCM through
subjectively papers summary, conclusion, and extraction by
researchers. Up to now, there is no study to comprehensively
present the current status of DCM research including
scholars, institutions, countries, journals, and research hotspots.
Moreover, the traditional review is difficult to visualize the
internal conceptual structure and potential associations of
abundant literature objectively.

Bibliometrics analysis, proposed in 1969 by Pritchard, is
a quantitative science approach that evaluates the research
characteristics and trends in a specific time frame through
many published academic literature analyses (15). Compared
with traditional systemic reviews, it can be used not only to
trace the historical evolution of a particular field, but also
to predict the future research directions and collaboration
opportunities through visualizing the conceptual, intellectual,
and social structures at different scales from macro and
micro perspectives. In recent years, with the emergence
of an extensive number of medical academic publications,
bibliometrics has played a vital role in the health care
field. Due to the lack of tools to describe and analyze
a massive amount of literature previously, bibliometrics
analysis has not yet been used to systematically summarize
the literature on DCM. Nowadays, multiple scientometric
visualization software are available for bibliometrics analysis.
The R programing language is an open-source software with
robust analysis and visualization capabilities. As an R-package,
Bibliometrix is a widely used science mapping application
(16), and Java-run software VOS viewer (17) performs better
in co-occurrence network visualization, which can help us
track frontier dynamics by exploring core items in relevant
research fields.

In this study, we retrieved DCM-related publications in
the Web of ScienceTM core collection database over the
past decade from 2012 to 2021, conducted an informative
systematic and scientific overview, and predicted potential
development trends by the following steps: (1) Investigate the
output and growth trends of publications and citations; (2)
Describe the distribution and characteristic of core countries,
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authors, institutions, journals, and top-cited publications; (3)
Visualize the collaboration and co-occurrence between core
countries, authors, and institutions; (4) Conduct a network
of core author’s keywords and predict research hotspots and
trends by algorithms. Overall, we aim to summarize issues in
the literature review on DCM in the past decade and predict
future trends. The findings will help academics, including
cardiologists and endocrinologists gain a quick understanding
of the current state of the DCM knowledge domain in the
past decade and help them select journals for publication
and collaborators, as well as guide directions and lay solid
foundations for future studies.

Materials and methods

Dataset establishment

The online DCM literature data are publications collected
from the Science Citation Index Expanded (SCIE) of Clarivate
Analytics’ Web of ScienceTM1 core collection (WoS; WoSCC)
database. As a well-known authoritative citation index database
of research publications and citations (18), The WoSCC
is one of the top sources for bibliometric analysis with a
well-established citation network in different research fields,
including natural sciences, engineering, biomedicine, etc.,
(19, 20). To understand the research status in the field of
DCM in the past decade, we designed a search strategy
to establish our dataset initially: [TS = (diabetic NEAR/0
myocardial) OR TS = (diabetic NEAR/0 cardiomyopathy) OR
TS = (diabetic NEAR/0 myocardiopathy) OR TS = (diabetic
NEAR/0 cardiomyopathies)] AND PY = (2012.1.1–2021.12.31).
We excluded publications in the year of 2022 to obtain
a more accurate annual result. All bibliographic records,
including titles, abstracts, keywords, authors, institutions,
addresses, journals, references, citation times, publication
year, etc., were saved as plain TXT files. Our study data
were obtained from an open database, so there are no
ethical concerns.

Data screening

We integrated all txt files into a zip package and imported
them into the analysis software Biblioshiny for data screening,
which is a partner web interface app version of the Bibliometric
R package Bibliometrix version 3.2.1 (R version 4.2.0, R studio
version 2022.02.2 + 485 “Prairie Trillium” Release) makes the
command line function more intuitive and user-friendly (16).
To more precisely perform the research status in the field of

1 http://isiknowledge.com/

DCM in the past decade, we used Biblioshiny to screen only full-
length original articles that meet the requirement of our study,
and non-article publications were excluded. The language was
restricted to English. Moreover, we conducted a string of codes
by Readxl R package version 1.4.0 (R version 4.2.0, R studio
version 2022.02.2 + 485 “Prairie Trillium” Release) to identify
and delete duplicate publications. The detailed search and screen
procedure is shown in Figure 1. To avoid bias caused by
database updates and subjectivity, two authors (WSC and TCX)
independently performed data identification and screening on
June 24, 2022. The third author (ZBX) made judgments of
discrepancies to reach a consensus. Finally, our DCM research
status dataset was exported as a CSV file.

Data processing

We imported the CSV file for further data processing in
the Biblioshiny R package, which can automatically analyze
all the selected records and generate relative graphs with a
mouse click. In our study, the Biblioshiny was employed to
analyze all publication characteristics, including publication
and citation trends, contributions of authors and journals,
collaborations of institutions and countries, and distribution
and prediction of hotspots, respectively. To perform more
vivid and comprehensible collaboration maps, VOS viewer
(version 1.6.18.0, Leiden University, Netherlands), which is one
of the most widely used visualization software in bibliometric
analysis (17), was employed to visualize collaboration maps
among institutions and countries respectively, according to the
PageRank score calculated from the Biblioshiny of R studio
software interface.

It is worth mentioning that we assessed the journal impact
factor (IF) and journal citation reports (JCR) (2Clarivate
Analytics, Philadelphia, United States) category according to
the 2021 JCRTM. The Hirsch index (H-index) indicates the
academic influence of authors, that is, an author has published
at most h papers that have been cited at least h times (21).
Local citations (LCS) are used to evaluate the number of times
a journal included in this dataset is cited by other journals in
the same data set (22). The PageRank algorithm was invented
to catalog the Internet web page by Larry Page, the Google
company sponsor, becoming a popular and newly emerged
bibliometric method for network citation analysis based on
the structural characteristics of publications nowadays (23–25).
Google used it to embody the relevance and importance of
different web pages (26). Now, as an alternative measurement of
impact for authors, intuitions, journals, etc., PageRank can sort
nodes (Countries and institutions, in our study) by importance
(PageRank score) which depends on the number of being cited
and the score of each citing items themselves (27).

2 http://mjl.clarivate.com/
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FIGURE 1

Flow chart of the data identification and screening results.

Results

Publication and citation trends in the
past decade

As shown in Figure 2A. The number of annual publications
rapidly increased from 107 to 278 in the past decade, with more
than two times the number of publications in 2021 than in
2012, indicating that DCM is an emerging focus of diabetes-
related diseases. The total mean citation per year means the
yearly average number of times each DCM disease-related
publication has been cited. Interestingly, a drastic increase in
citation times was observed in 2017–2019, reaching a peak of
6.09 in 2019 (Figure 2B).

Analysis of countries and institutions

Table 1 lists the top 10 collaborating countries and
institutions in the DCM research field in the past decade
ranked by PageRank value and the number of publications—the
greater the PageRank value, the more significant its importance,
which represents it has more weight in cooperation. The
top 50 countries and institutions ranked by PageRank are
taken for visual analysis via VOS viewer. Circles represent
different countries or institutions, the circle size represents the
PageRank value, the lines signify the countries’ or institutions’
collaboration strength, and each color represents a cluster, which

is a group of items with comparable attributes within a network.
As we expected, related countries and institutions had multi-
dimensional cooperation in the field of DCM.

In Figure 3, the United States (Publications: 235, RankPage:
0.196) ranks first in the PageRank value, connected to
almost all countries in the figure, and China (Publications:
977, RankPage: 0.144) ranks first in the total number of
publications and has the most robust connection with the
United States. Figure 4 shows the institutions’ cooperation
network. The top 5 collaborating institutions in the past
decade are Wenzhou Medicine University (Publications:
144, RankPage: 0.068), University of Louisville (Publications:
114, RankPage: 0.061), Jilin University (Publications: 105,
RankPage: 0.057), University of Melbourne (Publications:
57, RankPage: 0.057), and University of Hong Kong
(Publications: 40, RankPage: 0.346). The network is positioned
in 6 clusters, each represented by Wenzhou Medicine
University, University of Melbourne, University of Hong Kong,
University of Auckland and Monash University, and China
Medicine University.

Contribution of authors

A total of 10,443 authors contributed to DCM-related
research in the past decade, with an average of 5.53 authors
per study. In Table 2, we listed the top 20 contributing authors
of the DCM field in the past decade while each contributed
more than 10 publications. Cai Lu was by far the most prolific
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FIGURE 2

(A) Annual trend chart of publications on DCM in 2012–2021. The dotted line represents linear growth with r2 = 0.941. (B) Growth of the article
cited per year in DCM. The dotted line represents linear growth with r2 = 0.341.

author, with 41 publications and 1,480 citations, followed by
Tan Yi (publications: 26, citations: 1,092) and Ritchie Rebecca
H. (publications: 21, citations: 1,092), respectively, and the top
3 highest h-index authors are the same. It is noted that many
scholars have recognized Lin Jie and Li Yang.

The count of papers and citations per year directly indicates
the author’s activity in this research field. Suppose an author
produces relevant articles every year meanwhile has been cited
by many other scholars. In that case, the author has been active
in this field with particular influence. The result of the top 20
most prolific authors’ annual production and citations from
2012 to 2021 in the field of DCM is shown in Figure 5. It is noted
that Cai Lu, Tan Yi, Ritchie Rebecca H, and Zhang Wei have
been very active in DCM research with higher total citations
per year.

The top 3 corresponding author’s countries are China,
the United States, and Canada, with multiple country
publications ratios of 16.3%, 32.3%, and 48.6%, respectively.
Most countries’ publications with co-authors involved multi-
country cooperation. Among the top 20 corresponding

author’s countries, Germany (18/22) and the United Kingdom
(11/15) have more multiple country publications (MCP)
than single country publications (SCP), while other
countries of corresponding authors lack international
cooperation (Figure 6).

Outstanding journals

In the past decade, 1,887 articles in the DCM field have
been published in 459 different journals. In Table 3, the
top 20 journals in terms of the count of publications are
displayed, Cardiovascular Diabetology (n = 66) was the leading
journal among these and with the highest impact factor
(IF = 9.951), followed by PLoS ONE (n = 47) and American
Journal of Physiology-Heart and Circulatory Physiology (n = 47),
accounting for 2.49% and 2.28% of the overall research output
respectively. The establishment of Cardiovascular Diabetology
also indicates that diabetic cardiomyopathy is an increasingly
severe diabetic complication that deserves more attention.
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FIGURE 3

Top 50 Countries’ collaboration network map in the field of DCM ranked by PageRank.

FIGURE 4

Top 50 Institutions’ collaboration network map in the field of DCM ranked by PageRank.
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TABLE 1 Top 10 countries and institutions in terms of PageRank and publications.

Items PageRank Publications

Ranking Name Value Ranking Name Number

Countries 1 United States 0.196 1 China 977

2 China 0.144 2 United States 235

3 United Kingdom 0.056 3 Canada 72

4 Canada 0.054 4 India 59

5 Italy 0.053 5 Japan 43

6 Germany 0.05 6 Australia 42

7 Australia 0.042 7 Germany 40

8 Japan 0.027 8 Italy 40

9 Saudi Arabia 0.025 9 Egypt 36

10 Egypt 0.025 10 Korea 27

Institutions 1 Wenzhou Med Univ 0.068 1 Shandong Univ 160

2 Univ Louisville 0.061 2 Wenzhou Med Univ 144

3 Jilin Univ 0.057 3 Harbin Med Univ 143

4 Univ Melbourne 0.057 4 Univ Louisville 114

5 Univ Hong Kong 0.046 5 Jilin Univ 105

6 Monash Univ 0.044 6 Fourth Mil Med Univ 97

7 Soochow Univ 0.039 7 China Med Univ 89

8 Univ Alabama Birmingham 0.035 8 Huazhong Univ Sci And Technol 71

9 Huazhong Univ Sci And Technol 0.033 9 WUHAN UNIV 69

10 Baker Heart And Diabet Inst 0.033 10 Univ Melbourne 57

Most of the publishers of these journals are located in
the United States and England. It is worth noting that
Diabetes (LCS = 3,244, IF = 9.461), PLoS ONE (LCS = 1,438,
IF = 3.240), and Cardiovascular and Diabetology (LCS = 1,253,
IF = 9.951) are also among the top 20 journals ranked by local
citations (Figure 7).

Citation analysis

In Supplementary Table 1 (28–37), we listed the top 10
articles ranked by LCS. The higher the LCS value, the greater the
influence of this article in the DCM field. Overall, as branches of
the previous research, LCS were not high for articles in the past
decade, which most are experimental studies of mechanisms.
The top-cited paper is “Metabolic Stress-induced Activation
of FoxO1 Triggers Diabetic Cardiomyopathy in Mice” (28)
(LCS: 54), published in the Journal of Clinical Investigation (IF:
19.386 according to 2021 JCRTM). We further conducted the
historiographic analysis, which can provide the year-by-year
mapping of the historical directly-cited publications, to better
perform the citation connections among influential articles from
a period. Each node represents different influential articles
while lines represent their connections. Notably, articles without
citation connections with others from 2012–2021 will not
appear in Figure 8.

Keywords analysis and future research
direction

We extracted 3,147 Author’s keywords from 1,887 articles.
Deleting “Diabetic cardiomyopathy” and merging synonyms, a
total of 2,774 keywords were obtained, of which 31 keywords
appeared more than 20 times. The frequency results are shown
in Supplementary Figure 1. Then we made a Word Cloud map
using the 31 Author’s keywords to understand better the current
research hotspots (Figure 9).

After exploring the frequency of occurrence of each
keyword, we further investigated the association between them.
Simple correspondence analysis (SCA) is a visual data analysis
method that graphically represents the relationship between
the categorical data in low dimensional space (38). Multiple
correspondence analysis (MCA) is an extension of SCA. Unlike
SCA, the main advantage of MCA is that it is a powerful
multivariate statistical technique dealing with more than one
categorical variable (39). As an unsupervised learning algorithm,
this method can explore, summarize and graphically represent
the association between multi-dimensional categorical data in
large and complex datasets (40). In our case, MCA’s output
produces points clouds of keywords typically represented by
a 2-dimensional graph. The cloud of keywords is constructed
on associations between keywords which can synopses the
expression of relations between the articles with no underlying
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TABLE 2 Top 20 contributing authors of diabetic cardiomyopathy
research in the past decade.

Ranking Author Count
(% of
1887)

h-index Total
citations

1 Cai Lu 41 (2.17%) 22 1480

2 Tan Yi 26 (1.38%) 20 1092

3 Ritchie Rebecca
H

21 (1.11%) 13 645

3 Zhang Wei 21 (1.11%) 13 639

4 Liang Guang 17 (0.90%) 13 631

4 Tang Qizhu 17 (0.90%) 13 576

5 Xu Changqing 16 (0.85%) 13 370

6 Li Xiaokun 15 (0.79%) 14 510

6 Zhang Yun 15 (0.79%) 12 652

7 Li Wei 14 (0.74%) 9 566

7 Sun Dongdong 14 (0.74%) 9 537

8 Wang Haichang 13 (0.69%) 10 298

8 Zheng Yang 13 (0.69%) 10 403

9 Chen Chen 12 (0.64%) 8 592

9 Chen Jing 12 (0.64%) 7 491

9 Huang
Chihyang

12 (0.64%) 8 455

9 Kiriazis Helen 12 (0.64%) 10 428

9 Kuo Weiwen 12 (0.64%) 9 534

9 Lin Jie 12 (0.64%) 9 296

9 Li Yang 12 (0.64%) 9 324

hypotheses. In a word, in the same quadrant, keywords with
the most significant associations were located the closest.
Finally, we utilized the hierarchical clustering method to
cluster different clouds of keywords into five distinct categories,
represented as category 1 (red), category 2 (light blue),
category 3 (green), category 4 (purple), and category 5 (orange)
respectively (Figure 10).

The trend topic analysis is a vital mapping tool that helps
to portray the seed of trend integration rooted in the previous
stream (41). The topic is an induced and summarized concept,
like a bucket filled with keywords with similar meanings or
apparent associations. In our case, we identified the author’s
keywords and examined the keywords that occur at least five
times per year, and the word frequency needs to be more
than five times. As shown in Figure 11, 44 buzz topics of
the year were identified as. The circle represents the topic
that emerged dramatically in the year, and the blue line
denotes the times when the topics frequently occur. Except for
the topics like “Diabetic cardiomyopathy,” “Cardiomyopathy”
and “Diabetes” that we searched for, “Apoptosis,” “Oxidative
stress” and “Fibrosis” have a higher frequency, “Forkhead box
protein O1,” “Heart failure with preserved ejection fraction,”
“Dapagliflozin,” “Thioredoxin,” “Mitochondria dysfunction,”

“Glucose,” “Pyroptosis,” “Cardiac fibroblast” and “Long non-
coding RNA” have potential research prospects. “Tissue Doppler
imaging,” “Arrhythmia” and “Cardiac magnetic resonance
imaging” as hot topics in 2013 have become less popular in the
future, which may be related to the fact that they have been
studied thoroughly.

Discussion

The worldwide surge in individuals suffering from DM
brings a dramatic societal burden on substantial healthcare
costs and poor health outcomes for affected patients (42).
Cardiovascular complications secondary to DM have aroused
great concern. As one of the most common complications of
DM, DCM, which have a twofold greater risk of HF compared
with other complications (43), seriously affects the prognosis
of diabetic patients, triggering a high mortality rate (44).
Although DCM-related preclinical and clinical research have
grown exponentially over the past few decades, the pathogenesis
of DCM remains unclear and without consensus on preventive
or therapeutic strategies to date (11). So, it is vital to sort out
a practical, systematic, and comprehensive review of DCM-
related papers in the past few years to enable researchers quickly
understand the research status, capture the characteristics and
identify the future research direction. Hence, we conducted a
bibliometric analysis of 1,887 DCM-related articles from 2012–
2021 (a decade) in WoSCC to provide an overview of current
knowledge in various categories and potential future hotspots.

We used the Biblioshiny to conduct our bibliometric
analysis. The chronological trends of publications show that
the overall volume of annually published DCM-related original
research has increased globally during the study period, which
can be divided into two stages (Figure 2A). The first stage is
2012–2015, a flat period of the DCM-related original study,
the number of articles fluctuated around 150. The year of
2016 is an important milestone toward the second stage when
DCM research has entered rapid development and reached
its highest level of 278 articles in 2021. In addition, the total
mean article cited per year increased from 4.57 to 6.09 in 2019
(Figure 2B). The poor performance in 2020 may be related to
the fact that the deadline for retrieval was set at the end of
2021. Therefore, the total average citations of articles in 2021
cannot be displayed either, and the mean citations of articles
published in 2020 may be underestimated (19). The linear slope
of publications and citations growth in the past 10 years is
0.941 and 0.341, respectively, indicating that DCM has become
increasingly important as a severe pathological change in the
progression of cardiovascular complications with promising
research prospects.

As for global contributions, China is the most productive
country with 1,232 publications. DM is a global public health
problem, especially in developing countries (45, 46). As the
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FIGURE 5

Publications and citations per year of the top 20 most prolific authors in the field of DCM research in the past decade.

FIGURE 6

Top 20 corresponding author’s countries. SCP-Single Country Publications; MCP- Multiple Country Publications.

largest developing country, China has a vast number of
individuals with DM, which is still rising and underrated (47,
48). Taken together, China would emphasize more on the
study of DM and its complications, including DCM. While the
United States had the highest PageRank score, a novel index
used to evaluate the importance of items in the collaboration
map, implying that it has enormous influence with a high
volume of publications as well as cooperation with many
countries. Interestingly, the United Kingdom (Publications: 26,
RankPage: 0.056) ranks third by PageRank value, but it has only
26 publications, much lower than other countries, which means
the United Kingdom does not publish much but has a lot of

connections with many other countries. Among institutions,
Shandong University ranks first in the number of articles
published. In terms of collaboration and influence, Wenzhou
medical university, the University of Louisville, Jilin University,
and the University of Melbourne have a high clustering density,
showing a significant influence in the past decade in the research
field of the DCM. Although the University of Hong Kong has
40 publications, it ranks fifth place according to the PageRank
value, indicating it has many research partners. Relatively
independent research institutions with low PageRank score need
to further strengthen cooperation in the future to improve
their influence.
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TABLE 3 Top 20 journals contributing to publications in diabetic cardiomyopathy in the past decade.

Journal Count
(% of 1887)

Research area Impact factor Country/Region

Cardiovascular Diabetology 66 (3.50%) Endocrinology and Metabolism
Cardiac and Cardiovascular Systems

8.941 ENGLAND

PLoS ONE 47 (2.49%) Multidisciplinary Sciences 3.752 United States

American Journal of Physiology-Heart and
Circulatory Physiology

43 (2.28%) Peripheral Vascular Disease
Physiology
Cardiac and Cardiovascular Systems

5.125 United States

Scientific Reports 40 (2.12%) Multidisciplinary Sciences 4.996 ENGLAND

Experimental and Therapeutic Medicine 37 (1.96%) Medicine, Research and Experimental 2.751 GREECE

Oxidative Medicine and Cellular Longevity 37 (1.96%) Cell Biology 7.310 United States

Journal Of Cellular and Molecular Medicine 36 (1.91%) Cell Biology
Medicine, Research and Experimental

5.295 ENGLAND

Molecular Medicine Reports 36 (1.91%) Oncology
Medicine, Research and Experimental

3.423 GREECE

Biochemical And Biophysical Research
Communications

33 (1.75%) Biochemistry and Molecular Biology
Biophysics

3.332 United States

Diabetes 29 (1.54%) Endocrinology and Metabolism 9.337 United States

Frontiers In Pharmacology 29 (1.54%) Pharmacology and Pharmacy 5.988 SWITZERLAND

Biomedicine and Pharmacotherapy 28 (1.48%) Pharmacology and Pharmacy
Medicine, Research and Experimental

7.419 FRANCE

Journal Of Molecular and Cellular Cardiology 28 (1.48%) Cell Biology
Cardiac and Cardiovascular Systems

5.763 ENGLAND

Life Sciences 23 (1.22%) Pharmacology and Pharmacy
Medicine, Research and Experimental

6.780 ENGLAND

Frontiers In Physiology 21 (1.11%) Physiology 4.755 SWITZERLAND

Molecular And Cellular Biochemistry 21 (1.11%) Cell Biology 3.842 NETHERLANDS

Biochimica Et Biophysica Acta-Molecular
Basis of Disease

19 (1.01%) Biochemistry and Molecular Biology
Biophysics

6.633 NETHERLANDS

Journal Of Cellular Physiology 19 (1.01%) Cell Biology
Physiology

6.513 United States

BMC Cardiovascular Disorders 18 (0.95%) Cardiac and Cardiovascular Systems 2.174 ENGLAND

European Journal of Pharmacology 18 (0.95%) Pharmacology and Pharmacy 5.195 NETHERLANDS

Professor Cai Lu, from the University of Louisville in the
United States, has the most significant quantity of original full-
length articles (41 articles, 1,480 total citations), publishing 2%
of all publications, with the greatest h-index. In the 1980s,
Metallothionein (MT) was demonstrated as an antioxidant
against reactive oxygen and nitrogen species (ROS, RNS) (49,
50). Later, MT was observed it could improve diabetes-induced
cardiac deficits by inhibiting ROS/RNS (51). Professor Cai Lu
further demonstrated that MT could impede the accumulation
of ROS/RNS and prevent cardiac apoptosis by suppressing
mitochondrial oxidative stress, which significantly prevents
DCM development (52, 53). In general, Cai Lu has made
essential contributions to DCM’s preclinical pharmacological
and pathological mechanism research. Figure 5 shows that,
as one of the high-yielding authors from Monash University
and Baker Heart and Diabetes Institution in Australia, Ritchie
Rebecca H published many papers and got more citations
in the last 3 years. The therapeutic potential of cardiac-
targeted gene therapy, especially the adeno-associated viral

vector (AAV) gene therapy which could limit pathological
remodeling in the diabetic heart and improve cardiac function,
are the main research contributions of Ritchie Rebecca H
(54–56). In addition, corresponding author countries are
primarily domestic. However, a certain amount of international
cooperative research is devoted to exploring the possible
therapeutic direction of DCM. Researchers from the United
Arab Emirates, the United States, Lebanon, Saudi Arabia, and
Australia have discussed the progress made in the mechanism
of phytochemicals’ cardioprotective effect in DM (57), meaning
the treatment of DCM is a topic of global interest and consensus,
and the research on the treatment of DCM with traditional
Chinese medicine may have promising development potential.

Although Asian countries like China lead the area with the
most counts of DCM-related articles in the past decade, most
of these journals’ publishers are located in United States and
England. It suggested that Asian countries should strengthen
the construction of journals. Cardiovascular Diabetology journal
released the most DCM-related articles with a high IF, while
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FIGURE 7

Cleveland dot pot of the top 20 journals cited journals.

FIGURE 8

Historical analysis of direct citation of top-cited articles in DCM field from 2012–2021 generated from R studio Intellectual Structure menu of
Biblioshiny package.

the Diabetes journal had the highest IF according to the 2021
JCRTM. Both journals appeared in the top 20 journals regarding
LCS (Figure 7), reflecting that these two journals have some
authority in the DCM research field.

Despite the fact that the article published in 2012 by
Battiprolu PK et al. has not been cited by other high-quality

papers. The most significant article with the highest LCS in the
past decade has not been cited by the majority of classically-
cited articles. A possible explanation is that this article was cited
by other newly published papers which have not yet shown
their academic impact (high LCS) to date, indicating that it may
have a promising research prospect. This study demonstrated
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FIGURE 9

Word Cloud map regarding the keywords’ frequency of
occurrence generated from R studio Documents menu of
Biblioshiny package.

that the Forkhead box proteins O (FoxO) signaling axis was
persistently activated in DCM development for the first time
(28). Interestingly, we also found that FoxO1 has enormous
developmental potential in our future trend topics analysis
(Figure 11). Unlike other bibliometric studies (19, 58), our
historical analysis does not reflect the inheritance relationship
between classically-cited literature, which may be related to the
selected research period. Figure 7 may show the branches of
previous studies since DCM research has entered a period of
rapid development in the past decade.

We can track the knowledge distribution, association, and
future research directions by analyzing the author’s keywords
which are a scientific article’s most concise and accurate
generalization. We conducted the analysis from two dimensions.
The first dimension is we explored the frequency of keywords
and the possible association between them from a cross-
sectional perspective. The top three keywords in frequency in
the past decade are apoptosis (216 times), oxidative stress (213
times), and fibrosis (192 times), respectively (Figure 9). Diabetes
is characterized by oxidative stress and low-grade inflammation
(59). Under physiological circumstances, a delicate balance
between the production and degradation of ROS resulting an
average steady-state ROS level. as a predilection site of oxidative
stress, the myocardium is vulnerable to a transient or persistent
ROS increment due to the DM, which would result in oxidative
modification of cellular component and eventually induce cell
death via apoptosis (60).

It is worth interpreting the significance of the coordinate
axes in Figure 10. The first coordinate axis (x-axis) emphasizes
the characteristics of the DCM study. Higher values (at the
right of the conceptual structure map) are concepts related to
metabolic, functional, and organ level changes, such as obesity,
left ventricle, heart failure, etc. These factors are undoubtedly
hot issues in clinical research in the field of DCM because the
change in cardiac function and Metabolic problems such as
obesity can be observed directly. Conversely, lower values for

the x-axis indicate the pathological study in the DCM field.
These paramount results say that different characteristics of
the DCM study at the bench and clinical courses exist. The
second coordinate axis (y-axis) can be interpreted as the studies
focusing on some hot issues on the dynamics (61). Overall,
the hotspots of increasing interest in DCM research in the
last decade mainly focused on pathological mechanisms at the
molecular and cellular level.

Considering the findings from MCA results, the
interpretation of the Cluster analysis results is that Category 1,
Category 2, and Category 3 mainly focus on the DCM study
of pathological mechanisms, including autophagy, apoptosis,
fibrosis, signaling pathways, etc. Category 4 represents the
pathophysiology mechanisms and clinical manifestation of
DCM. Interestingly, Category 5 depicts the effects of the
hyperglycemic effect on cardiomyocytes with only two items. As
endogenous non-coding RNA (ncRNA) molecules, microRNAs
(miRNA) can significantly affect different biological processes,
primarily through the suppression of mRNA expression.
However, the synthesis of those molecules is affected by high
glucose levels (62). A recent study found that more than 300
miRNAs are dysregulated in DCM (63), which modulate plenty
of cardiomyocyte pathophysiological processes, including
apoptosis, inflammation, cell growth, pyroptosis, fibrosis, and
response to oxidative stress via different pathways (64–67).
Although there are many different levels of understanding of the
mechanism of DCM, similar to previous studies, hyperglycemia
seems to play an essential role in the pathogenesis of diabetic
cardiomyopathy, activating a series of pathological changes or
processes (68).

The second dimension shows the research trend of DCM
in the past 10 years in combination with the evolution of time.
Overall, these current and promising future research frontiers
reflect that the pathological changes of DCM are diverse.
However, the research topics with promising research potential
in the future are gradually transitioning to drug-based treatment
(Figure 11). As discussed above as well as in previous reviews,
metabolic disturbance, including hyperglycemia, is a central
and essential driver of pathological changes (oxidative stress,
cardiac hypertrophy and fibrosis, inflammation, apoptosis, etc.)
modulated by a wide range of molecules and cells, affecting
the structure and function of the cardiac, particularly the left
ventricle (4, 69). Although a few studies have addressed various
pathological alterations, the causal relationship between these
complex molecular and cellular mechanisms has not been fully
elucidated (70). It has ultimately led to the conclusion that
there is currently no standard pharmacotherapeutic approach
for DCM. Even though diagnostic criteria for pure DCM
are demanding, several drugs still showed the treatment
potential, inspiring future drug-based therapeutic clinical
studies [Supplementary Table 2 (71–77)].

The new class of antidiabetic drugs Dapagliflozin (DAPA)
is a member of sodium-glucose cotransporter-2 (SGLT-2)
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FIGURE 10

Conceptual structure map of author’s keywords based on Multiple correspondence analysis with clustering validation (5 categories identified) in
DCM field generated from R studio Conceptual Structure menu of Biblioshiny package.

FIGURE 11

Trend topic map of author’s keywords in DCM field in the past decade generated from R studio Documents menu of Biblioshiny package.

inhibitors showing promising benefits on DM individuals
with CVD (78). DAPA has been proved that it could suppress
cardiac fibroblast activation and endothelial-to-mesenchymal
transition (EndMT) to protect against myocardial fibrosis
via AMP-activated protein kinaseα (AMPKα)-modulated
inhibition of TGF-β/Smad signaling (79). Previous studies have

reported that DAPA could also protect cardiomyocytes from
inflammation and oxidative stress damage or up-regulating
erythropoietin (EPO) levels to decrease apoptosis (80–82). The
thioredoxin system is a ubiquitous family of cysteine-dependent
antioxidant proteins with a robust ROS scavenging capacity in
the cardiomyocyte antioxidant network (83). Overexpression
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of thioredoxin has been demonstrated to have a momentous
functional implication in mitigating cardiomyocyte dysfunction
from DM-induced oxidative stress, which is expected to become
a key target for the drug-based treatment of DCM (84, 85).

As the most widely studied subtype of the FoxO family,
FoxO1 is commonly involved in the regulation of cell
metabolism, apoptosis, and differentiation, especially in
pancreatic β-cell (86–88). FoxO1 is a critical transcription
factor in insulin cascade affected by different upstream signaling
molecules [e.g., phosphatidylinositol 3-kinase (PI3K)/Akt,
AMP-activated protein kinase (AMPK), and Sirtuin 1 (SIRT
1)], and it can regulate several downstream proteins, including
myocardial pyruvate dehydrogenase (PDH) and peroxisome
proliferator-activated receptor α (PPARγ) coactivator-1α

(PGC-1α) (89–92). In 2021, several studies proved inhibition of
FoxO1 may be an approach to alleviate cardiac fibrosis, diastolic
dysfunction, and left ventricular dysfunction and remodeling in
the mouse model of DCM (93–95). Thus, FoxO1 could be an
attractive target for the pharmacotherapy of DCM.

In addition, ncRNAs have recently played a worthy note
regulatory role in human health and disease (96). As one of
the most promising topics in the field of DCM, long ncRNAs
(LncRNAs) can actively participate in the pathogenesis of
CVD, including DCM especially (97). Moreover, like sponges,
LncRNAs can block the regulatory function of miRNAs by
binding to miRNAs and hindering the interaction with their
target (98). Several studies suggested that LncRNAs could
mediate cardiomyocyte apoptosis induced by high glucose (99,
100), regulate cardiac remodeling via the TGF-β/Smads pathway
(101, 102), and mediate cardiomyocyte injury (e.g., ischemia-
reperfusion damage, lipotoxic injury) (103, 104).

Regarding clinical significance, our research results indicate
that the phenotype of heart failure with preserved ejection
fraction (HFpEF) in DCM is attracting more attention, which is
discussed above as a precursor stage of heart failure with reduced
ejection fraction (HFrEF) phenotype. However, there are also
studies indicating that clinical DCM is a two-sided disease
composed of HFpEF and HFrEF independently with distinct
myocardial effects (10). The occurrence of HFpEF in DCM is
primarily due to left ventricular diastolic dysfunction (LVDD)
through increased cardiomyocyte stiffness and hypertrophy
with high resting tension, which manifests as the left ventricular
ejection fraction (LVEF) being greater than or equal to 50%
(7, 105). Similar hemodynamic effects were also observed
in large clinical studies with a broader range of diabetic
patients, to which cardiovascular risk factors including CVD
may contribute (106, 107). Thus, the mechanism studies of
LVDD in DCM have the potential to provide important insight
into DM augmentation on HFpEF. Microcirculation rarefaction
and AGES microvascular deposition were observed in HFpEF
and HFrEF. However, hyperglycemia, insulin resistance, and
lipotoxicity are more closely related to HFpEF, whereas
inflammation and autoimmune response are more closely

related to HFrEF (108). DCM was proposed and defined over
50 years ago, which characteristics make it challenging to
conduct relevant clinical research. However, its enlightening
significance was not limited to cardiac dysfunction without
CVD and HTN in individuals with DM but expanded to
describe the increased vulnerability of the myocardium to
metabolism dysfunction of diabetic patients when DM acts like
a sole perpetrator (109). In other words, the significance of
the study of DCM is to explore the direct effect of glucose-
related metabolism disorder on cardiac function independently
of other cardiovascular risk factors, which aims to alleviate
diabetes augmentation on cardiovascular disease and further
improve the symptoms and prognosis of cardiovascular
complications of DM.

Our research has two common limitations of bibliometrics
(19, 21). One limitation is that only the WoSCC database
was selected for publications search due to the R package
bibliometrix could not combine other databases to date.
However, we are confident that most authority and DCM-
related publications were retrieved from the WoSCC database,
considered one of the top sources for bibliometric analysis with a
well-established citation network (18). The other one is we only
included original full-length articles. Non-article publications,
including reviews, were excluded from our study, which may
have ignored theoretical research hotspots.

Conclusion

We conducted a bibliometric analysis to comprehensively
perform the current state of the DCM knowledge domain from
2011 to 2021. Overall, the annual quantity of published articles
has increased steadily. China and the United States were found
to be influential in this field. Shandong University, professor
Cai Lu, and the Cardiovascular and Diabetology journal has
the highest volume of articles in terms of institutions, authors,
and journals. The cooperation between authors, institutions,
and countries should be further strengthened in the future. The
mainstream DCM research field mainly focused on pathological
mechanisms, including apoptosis, oxidative stress, and fibrosis
at the molecular and cellular level, and gradually delved into
mechanisms studies of DCM drug-based treatment. We believe
our bibliometric-based study will benefit academics who focus
their work on hotspots reducing outdated research through a
comprehensive developed framework.
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Triglyceride-glucose index for the 
detection of subclinical heart failure 
with preserved ejection fraction in 
patients with type 2 diabetes
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Xiaolin Huang 2*
1 Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China, 
2 Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou, China

Objectives: The triglyceride-glucose (TyG) index has been identified as a reliable 
and simple surrogate of insulin resistance. In this study, we  sought to determine 
the association between TyG index and cardiac function among asymptomatic 
individuals with type 2 diabetes (T2DM) without history of any cardiovascular disease.

Materials and methods: The cross-sectional study enrolled 180 T2DM patients 
without cardiac symptoms. Heart failure with preserved ejection fraction (HFpEF) was 
defined as Heart Failure Association (HFA)-PEFF score ≥ 5 points.

Results: A total of 38 (21.1%) diabetic patients were identified with HFpEF. Compared 
with the low-TyG group (TyG index <9.47), patients in high-TyG group (TyG index 
≥9.47) showed increased risk of metabolic syndrome and diastolic dysfunction 
(p < 0.05 for each). Furthermore, after adjustment of confounding variables, the TyG 
index showed positive correlation with risk factors of metabolic syndrome (including 
BMI, waist circumference, blood pressure, HbA1c, TG, TC, non-HDL-C, and fasting 
blood glucose, p < 0.05 for each) and parameters of diastolic dysfunction (E/e’ ratio, 
p < 0.0001) in patients with T2DM. Moreover, Receiver Operating Characteristic curve 
analysis showed that the TyG index could be better to predict the risk of suspected 
HFpEF than other indicators (AUC: 0.706, 95% CI: 0.612–0.801). According, on 
multiple regression analysis, TyG index was independently correlated with the 
incidence of HFpEF (odds ratio: 0.786, p = 0.0019), indicating that TyG index could 
be a reliable biomarker to predict the risk of HFpEF.

Conclusion: The TyG index showed a positive correlation with the risk of subclinical 
HFpEF in patients with T2DM, providing a new marker to predict and treat HFpEF in 
diabetes.

KEYWORDS

triglyceride-glucose index, heart failure with preserved ejection fraction, type II diabetes, 
insulin resistance, HbA1c - hemoglobin A1c

Introduction

Diabetes mellitus (DM) can contribute to cardiac abnormalities both structurally and functionally, 
predisposing individuals to a heightened risk of cardiovascular disease (CVD) (1, 2). Diabetic 
cardiomyopathy (DCM) was initially described as a human pathological condition in which heart failure 
occurred independent of coronary artery disease (CAD), hypertension, and valvular heart disease (3, 4). 
DCM in early stage is characterized by asymptomatic cardiac dysfunction or described as heart failure (HF) 
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at stage B (subclinical HF). Cardiac disorders include left atrial (LA) 
dilatation, concentric left ventricular (LV) remodeling, LV diastolic 
dysfunction, and reduced global longitudinal strain (5). Regardless of 
concomitant LV systolic dysfunction, mounting evidence from 
epidemiological studies imply that comparing to healthy individuals, patients 
with diastolic dysfunction impart poor prognostic implications, with an 
increased 3-fold risk of death in diabetic patients (6). Thus, in view of the large 
number of diabetic patients and related cardiac complications, it will be of 
great importance to identify high risk individuals prone to cardiac dysfunction 
through effective and simple diagnostic strategy at early stage.

Clinical evidence establishes that glycemic control correlates with 
elevated risk of DCM (7, 8). Moreover, higher glycosylated hemoglobin, 
type A1c (HbA1c) variability is identified to be  correlated with 
heightened risk of all-cause and cardiovascular mortality in diabetic 
patients (9). However, the severity and progression of HF vary in 
diabetic patients with poor glycemic control, and HF may also occur in 
patients with well-controlled blood glucose levels. Therefore, in addition 
to hyperglycemia, other risk factors may also participate in the 
development of clinical manifestation of DCM.

Chronic hyperglycemia and insulin resistance (IR) are the major 
mechanisms involved in the pathology of diabetic complications (10). 
During diabetic and IR states, metabolic, structural, and functional 
alterations in the myocardium and vascular beds or vascular tissues lead 
to coronary artery disease (CAD), myocardial ischemia, and HF (5). 
Previous clinical studies demonstrated that homeostasis model of IR 
(HOMA-IR) was independently correlated with LV diastolic dysfunction 
(11). However, it is not clear whether IR predicts subclinical cardiac 
diastolic dysfunction in patients with diabetes.

At present, no specific methods are available for the accurate detection 
of IR. HOMA-IR is a validated and widely used surrogate by incorporating 
insulin concentrations and serum glucose level, but the clinical practice is 
limited due to atypical assessment of serum insulin levels (12). The 
triglyceride glucose (TyG) index, a product derived from fasting 
triglycerides (TG) and fasting blood pressure (FBG), has been proven to 
be superior to HOMA-IR in evaluating IR in individuals with or without 
diabetes (13). Therefore, the aim of this study was to investigate the 
association between TyG index and the risk of cardiac diastolic dysfunction 
in patients with type 2 diabetes (T2DM) and the predictive value of TyG 
index to provide novel clues for the early recognition and prevention of HF 
in diabetic patients.

Methods

Subject design and recruitment

A retrospective consecutive case series of T2DM patients 
hospitalized in the Department of Endocrinology at the Changzhou First 
People’s Hospital (Changzhou, Jiangsu, China) were recruited from April 
2018 to May 2022. The Inclusion criteria were: (1) diagnosed T2DM 
according to the criteria of World Health Organization (14) and Chinese 
Diabetes Society (15) without cardiac symptoms; (2) aged from 18 to 
70 years old independent of T2DM duration. The exclusion criteria were: 
(1) subjects with hypertension (Hypertension was diagnosed according 
to the following Chinese hypertension guidelines: a mean systolic blood 
pressure ≥ 140 mmHg and/or a mean diastolic blood pressure ≥ 90 mmHg 
and/or self-reported use of antihypertensive medication in the past 
2 weeks) (16, 17), CAD, atrial fibrillation, structural heart disease or 
history of any cardiovascular-related disease; (2) subjects with diabetic 
complications including macro and microvascular diseases such as 
neuropathy, retinopathy, kidney disease, stroke and peripheral vascular 
disease; (3) pregnancy; (4) other serious comorbidities, including 
thyroid disturbances, malignant tumors, liver and renal insufficiency, 
rheumatic diseases or major mental illness. All the subjects signed 
written informed consent forms before the start of this study. The study 
was approved by the Institutional Review Committee and the Ethics 
Committee of the Third Affiliated Hospital of Soochow University.

Clinical and biochemical measurements

Baseline characteristics including age, sex, weight, height, body mass 
index (BMI), waist circumference, diabetic duration and other complete 
medical history were recorded in detail on the day of admission. After 
fasting for at least 8 h, peripheral venous blood was collected before 
administration of hypoglycemic drugs on the morning after admission. 
Briefly, the concentration of HbA1c was evaluated through high 
performance liquid chromatography. Glutamic oxaloacetic transaminase 
(AST), alanine aminotransferase (ALT), creatinine (Cr), blood urea nitrogen 
(BUN), homocysteine, total cholesterol (TC), TG, low-density lipoprotein 
cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), FBG, 
and C peptide (0 min, 30 min, 60 min, 120 min, and 180 min) were analyzed 
by an automatic analyzer. Blood pressure including systolic (SBP) and 
diastolic blood pressure (DBP) were measured three times at 2-min intervals 
following at least 5 min of rest on the morning after admission.

Echocardiographic measurements

The following parameters were measured and analyzed by 
echocardiography: the left atrial diameter (LAD), left ventricular 
end-systolic diameter (LVESD), left ventricular end-diastolic diameter 
(LVEDD), interventricular septal diameter (IVSD), left ventricular 
posterior wall thickness (LVPWT), left ventricular ejection fraction% 
(LVEF%), peak late diastolic trans-mitral flow velocity (MFV A), peak 
early diastolic trans-mitral flow velocity (MFV E), mitral valve septal 
velocity e, mitral valve lateral velocity e, and LA volume. e’ was defined 
as: (ventricular septal velocity e + mitral valve velocity e)/2. Left atrial 
volume index (LAVI) was defined as: LA volume/body surface area, 
where the body surface area was equal to 0.0128*weight 
(kg) + 0.006*height (cm) - 0.1529. Left ventricular mass index (LVMI) 

Abbreviations: TyG, triglyceride-glucose; T2DM, type 2 diabetes; HFpEF, Heart failure 

with preserved ejection fraction; HFA, Heart Failure Association; ROC, receive 

operating characteristic; OR, odds ratio; CI, confidence interval; DM, Diabetes mellitus; 

CVD, cardiovascular disease; HF, heart failure; LA, left atrial; LV, left ventricular; HbA1c, 

Hemoglobin type A1c. IR, insulin resistance; CAD, coronary artery disease; HOMA-IR, 

homeostasis model of insulin resistance; MAP, mean arterial pressure; SBP, systolic 

blood pressure; DBP, diastolic blood pressure; TG, triglycerides; ALT, glutamic 

oxaloacetic transaminase; AST, alanine aminotransferase; Cr, creatinine; BUN, blood 

urea nitrogen; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; 

HDL-C, high-density lipoprotein cholesterol; FBG, fasting blood glucose; eGFR, 

estimated glomerular filtration rate; LAD, left atrial diameter; LVESD, left ventricular 

end-systolic diameter; LVEDD, left ventricular end-diastolic diameter; IVSD, 

interventricular septal diameter; LVPWT, left ventricular posterior wall thickness; 

LVEF, left ventricular ejection fraction; MFV A, peak late diastolic trans-mitral flow 

velocity; MFV E, peak early diastolic trans-mitral flow velocity; LVMI, Left ventricular 

mass index; RWT, Relative ventricular wall thickness; SD, standard deviation; AUC, 

area under curve; CAS, coronary artery stenoses; ABI, ankle-branchial index.
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was defined as: 0.8*10.4 (IVSD+LVPWT+LVEDD). Relative ventricular 
wall thickness (RWT) was defined as: (LVPWT/LVEDD) *2.

TyG index and HFA-PEFF score definition

The TyG index was calculated as: In [fasting TG (mg/dl) x fasting 
glucose (mg/dl)/2]. The Heart Failure Association (HFA)-PEFF score 
was originated from HFA-PEFF diagnostic algorithm, including 
functional, morphological, and biomarker domains (18). Data of the 
peak tricuspid velocity and global longitudinal strain were not available 
in this study. In the HFA-PEFF diagnostic algorithm, a total score ≥ 5 
points was identified to be diagnostic of heart failure with preserved 
ejection fraction (HFpEF), while a score ≤ 1 was considered to be very 
unlikely of HFpEF. Patients with an intermediate PEFF score (2–4 
points) required further functional and etiology assessment (18).

Statistical analysis

All data in this study were analyzed using SPSS statistical software 
26.0. p value <0.05 was defined to be of statistical significance. The 
specific statistical analysis in this study were outlined as follows.

Baseline and echocardiographic data of subjects
The baseline and echocardiographic data of diabetic patients were 

stratified based on binary TyG index. The differences between two 
groups were evaluated, continuous normal distribution variables were 
expressed as mean ± standard deviation (SD) by independent sample 
t-test, nonnormal distribution variables were expressed as median P50 
(P25, P75) by Mann–Whitney U test, and the categorical variables were 
presented as number (percentage) and analyzed by χ2 test.

Correlation analysis
Pearson correlation analysis was used to analysis independent 

variables with the TyG index. Partial correlation analysis was used to 
correct suspicious confounding factors (make it/them a constant).

Logistic regression
A logistic multivariable regression analysis with cardiac diastolic 

dysfunction categorized as HFA-PEFF score (≤1, 2–4, and ≥ 5 points) was 
used to determine the associations between the TyG index and 
HFpEF. The goodness of fit of the regression model was assessed by 
Hosmer-Lemeshow test (p > 0.05). In the logistic regression analysis, 
three models were set up, Model 1: adjusted by age and sex; Model 2: 
adjusted by BMI, waist circumference, and diabetic duration based on 
model 1; Model 3: adjusted by estimated glomerular filtration rate 
(eGFR), mean arterial pressure (MAP), TC and HbA1c based on model 2.

Receiver operating characteristic curve analysis
Receiver operating characteristic curve (ROC) analysis was 

constructed to evaluate the predictive value of TyG index, FBG, 
postprandial blood glucose (PBG), TG, TC, LDL-C, TG/HDL-C, and 
HbA1c for the subclinical HFpEF presence according to the value of the 
area under the ROC curve (AUC).

Subgroup analysis
A stratified analysis was conducted based on sex, age, HbA1c 

and T2DM duration to eliminate the interference of confounding 

factors. Among them, means of age and HbA1c were defined as 
stratification criteria while the median of duration was used for the 
cut-off point since the latter does not conform to the 
normal distribution.

Results

Clinical characteristics of T2DM patients 
stratified by binary TyG index

A total of 180 subjects with T2DM (102 men and 78 women), aged 
53.82 ± 9.20 years old, with a median diabetic duration of 6 years 
(interquartile range 0.75–10 years) were included in this study. According 
to the mean value of TyG index, diabetic patients were separated into two 
groups as low-TyG group (TyG index <9.47, N = 88) and high-TyG group 
(TyG index ≥9.47, N = 92). Compared with the low-TyG group, patients 
in high-TyG group showed higher levels of metabolic syndrome-related 
risk factors, as indicated by elevated BMI, waist circumference, SBP, DBP, 
HbA1c, TG, TC, non-HDL-C, and FBG, and reduced HDL-C (p < 0.05 
for each; Table 1). Accordingly, the TyG index was positively associated 
with these metabolic parameters (including BMI, waist circumference, 
MAP, SBP, DBP, TG, TC, non-HDL, LDL-C, and FBG; p < 0.05 for each) 
and negatively associated with HDL-C and eGFR (p < 0.05; 
Supplementary Table S1) after adjusting for age, sex, and duration of 
diabetes. In addition, Patients in high-TyG group were more likely to use 
biguanides, glucagon-like peptide 1 (GLP-1) receptor agonists, and 
statins (p < 0.05 for each; Table 1).

Echocardiographic characteristics of T2DM 
patients stratified by binary TyG index

Compared with patients in low-TyG group, patients in high-TyG 
group showed cardiac diastolic disorder, as exhibited by elevated E/e’ 
ratio and LA volume (p < 0.05 for each; Table 2). Additionally, correlation 
analysis showed that the TyG index was positively associated with E/e’ 
ratio (r = 0.273, p = 0.0002) and negatively associated with septal e’ 
velocity (r = −0.245, p = 0.0010) and lateral e’ velocity (r = −0.339, 
p < 0.0001; Supplementary Table S2) after adjusting for age, sex, and 
duration of diabetes. However, no differences were detected in the 
systolic function and ventricular remodeling between two groups.

ROC analysis for the identification of 
diabetic patients with risk of HFpEF

To confirm that TyG index is particularly well related to IR in patients 
with diabetes, we evaluated the association between other simultaneously 
measured IR or insulin sensitivity indices and TyG index. Previous studies 
have revealed that the lipid profile in T2DM patients with IR often 
manifested as a TG/HDL-C axis disorder, with elevations of TG and 
reductions of HDL-C. TG/HDL-C ratio was thus identified as one of the 
major risk factors for IR and CVD (19). Additionally, C-peptide is secreted 
from pancreatic β cells at an equimolar ratio to insulin, reflecting 
endogenous insulin secretion (20). In this study, patients with a higher 
TyG index had a higher TG/HDL-C ratio and C-peptide values at 0 min 
and 30 min (Table 3; p < 0.05 for each), suggesting that TyG index could 
be a reliable marker for IR in T2DM patients.
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Next, we compared the significance of TyG index, TG/HDL-C 
ratio, FBG, and HbA1c to identify diabetic patients with subclinical 
cardiac dysfunction. First, previous studies have demonstrated that 
DM-related HF shifted from an asymptomatic stage to HFpEF, 
which was manifested by LV shrinkage but not LV dilatation, and 
finally developed to LV dilatation with reduced EF (HFrEF) (21). 
The HFA-PEFF score was a scoring system for suspected HFpEF 
assessing brain natriuretic peptide (BNP) and echocardiographic 
parameters (18). In this study, among 180 asymptomatic T2DM 

patients, 38 (21.1%) patients were identified with HFpEF as 
calculated by HFA-PEFF score ≥ 5 points, 33 (18,3%) patients were 
identified negative (HFA-PEFF score ≤ 1), and 109 (60.6%) patients 
were suspected to be positive (2 ≤ HFA-PEFF score ≤ 4). Compared 
to the negative group, the TyG index were higher in suspicious 
positive and positive HFpEF group (Figure 1). Furthermore, ROC 
analysis for detecting suspicious or positive HFpEF showed that 
AUC of TyG index was 0.706 (95% confidence interval (CI): 0.612–
0.801), significantly higher than that of FBG, PBG, TG, TC, LDL-C, 

TABLE 1 Clinical and metabolic characteristics in T2DM patients stratified by binary TyG index.

Variables TyG index <9.47 (N = 88) TyG index ≥9.47(N = 92) p-value

Age (years) 54.06 ± 9.62 53.80 ± 8.63 0.9854

Male (n, %) 52 (59.1%) 50 (54.3%) 0.5209

Diabetes duration(years) 6.00 (0.50–10.00) 6.00 (1.00–10.00) 0.5549

BMI (kg/m2) 23.62 ± 3.36 25.22 ± 3.41 0.0013

Waist circumference (cm) 86.95 ± 8.70 90.64 ± 9.94 0.0133

MAP (mmHg) 91.14 ± 9.86 94.57 ± 10.09 0.0224

SBP (mmHg) 122.81 ± 12.70 125.63 ± 12.82 0.0491

DBP (mmHg) 75.79 ± 9.65 78.87 ± 10.08 0.0308

HbA1c (%) 9.00 (7.30–10.70) 10.15 (8.53–11.75) 0.0094

ALT (U/L) 18.00 (12.30–25.70) 22.00 (14.03–32.18) 0.0839

AST (U/L) 18.00 (15.30–23.00) 20.00 (16.00–25.60) 0.1884

TG (mmol/L) 1.29 ± 0.47 3.41 ± 2.65 <0.0001

TC (mmol/L) 4.60 ± 0.98 5.16 ± 1.15 0.0005

HDL-C (mmol/L) 1.18 ± 0.30 0.91 ± 0.19 <0.0001

Non-HDL (mmol/L) 3.41 ± 0.90 4.25 ± 1.15 <0.0001

LDL-C (mmol/L) 2.66 ± 0.79 2.89 ± 0.82 0.0593

Serum creatinine (μmol/L) 59.26 ± 14.06 62.21 ± 16.13 0.1937

eGFR [mL/(min*1.73m2)] 114.28 (99.21–145.34) 112.18 (92.61–135.29) 0.2787

FBG (mmol/L) 6.80 (5.79–8.79) 10.02 (7.83–12.82) <0.0001

Postprandial glucose (mmol/L) 13.67 (10.20–16.86) 14.65 (11.85–17.45) 0.0770

Homocysteine (umol/L) 10.04 (8.63–10.68) 9.98 (9.70–10.80) 0.4915

BNP (pg/mL) 29.00 (18.88–43.33) 28.75 (15.25–49.98) 0.9282

cTnI (ng/mL) 0.0021 (0.0015–0.0037) 0.0019 (0.0010–0.0035) 0.1226

CK-MB (U/L) 1.56 (1.00–1.71) 1.30 (0.80–1.71) 0.0885

Myo (ng/mL) 20.17 (13.73–23.50) 18.75 (12.45–25.80) 0.7053

Medication

Insulin (n, %) 62 (70.5%) 72 (78.3%) 0.2300

Biguanides (n, %) 61 (69.3%) 79 (85.9%) 0.0076

Sulfonylureas (n, %) 13 (14.8%) 12 (13.0%) 0.7374

α-glucosidase inhibitors (n, %) 62 (70.5%) 68 (73.9%) 0.6046

Thiazolidinediones (n, %) 2 (2.3%) 3 (3.3%) 1.0000

SGLT2 inhibitors (n, %) 23 (26.1%) 24 (26.1%) 0.9940

GLP-1 receptor agonists (n, %) 11 (12.5%) 4 (4.3%) 0.0479

DPP4 inhibitors (n, %) 18 (20.5%) 24 (26.1%) 0.3718

Statins (n, %) 43 (48.9%) 59 (64.1%) 0.0388

BMI, body mass index; MAP, mean arterial pressure; SBP, Systolic blood pressure; DBP, Diastolic blood pressure; HbA1c, glycosylated hemoglobin, type A1c; Glutamic oxaloacetic transaminase 
(AST), alanine aminotransferase (ALT); TG, triglycerides; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; eGFR, estimated 
glomerular filtration rate; FBG, fasting blood glucose; BNP, brain natriuretic peptide; cTnI, cardiac tropin I; CK-MB, creatine Kinase-MB; Myo, myoglobin; SGLT2 inhibitors, sodium-glucose 
cotransporter 2 inhibitors; GLP-1 receptor agonists, glucagon-like peptide 1 receptor agonists; dipeptidyl peptidase-4 (DPP4) inhibitors, dipeptidyl peptidase 4 inhibitors.
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TG/HDL-C, and HbA1c (AUC < 0.5 not shown in the Figure 2). 
When the Youden Index reached the maximum, the optimal cut-off 
point of the TyG index was 9.0067. The corresponding sensitivity 
and specificity were 72.8 and 60.6%, respectively.

Multivariate analysis of the correlation 
between TyG index and HFA-PEFF score in 
diabetic patients

To further explore the relationship between TyG index and 
HFpEF in diabetic patients, multivariate logistic stepwise regression 
analysis was performed. Data showed that the TyG index was 
independently correlated with the risk of HFpEF (HFA-PEFF 
score ≥ 5) after adjusting for age, sex, BMI, waist circumference, 
MAP, diabetes duration, TC, eGFR, and HbA1c (Odds Ratio (OR): 
0.786, 95% CI: 0.290–1.282, p = 0.0019; Table 4). Then we performed 
subgroup analyzes to evaluate the impact of other risk factors based 
on the following stratification variables: sex, age, HbA1c, and 
duration of diabetes (Table 5). An increased TyG index remained 
significantly correlated with the risk of HFpEF in the subgroups of 
age, sex, HbA1c, and duration of diabetes (p < 0.05 for each). 
Stronger correlations were found in the subgroups of male (OR: 
0.877, p = 0.0174), age < 54 years (OR: 1.055, p = 0.0078), 
HbA1c ≥ 9.75% (OR: 1.084, p = 0.0032) and duration of diabetes 
after multivariable adjustment. However, no significant association 

was detected in female patients, patients aged ≥54, and patients 
with HbA1c < 9.75%. Clinical and metabolic characteristics 
stratified by HbA1c, and duration of DM were presented in 
Supplementary Tables S3 and S4, respectively.

Discussion

This retrospective study demonstrated that among 180 
asymptomatic patients with T2DM, 38 (21.1%) patients were identified 
with HFpEF as calculated by HFA-PEFF score ≥ 5 points. Elevated TyG 
index was positively corrected with metabolic syndrome-related risk 
factors (BMI, waist circumference, blood pressure, HbA1c, TG, TC, 
non-HDL-C, and FBG, p < 0.05 for each) and parameters of diastolic 
dysfunction (E/e’ ratio, p < 0.0001) after adjustment of confounding 
factors. Importantly, TyG index was independently correlated with 
greater risk of developing HFpEF as evaluated by HFA-PEFF. Our results 
suggested that in diabetic patients, TyG index might be considered as a 
reliable biomarker to identify asymptomatic patients with high 
HFpEF risk.

The TyG index, derived from FBG and TG, was proven to be a 
reliable and simple surrogate for metabolic syndrome and IR (22). 
Mounting evidence has proved the crucial value of TyG index in 
predicting diabetic complications in patients with T2DM (23–25). 
Study by Liu et al. showed a significant association between TyG 
index and the risk of diabetic nephropathy in 682 adult patients 

TABLE 2 Echocardiographic data of in T2DM patients stratified by binary TyG index.

Variables TyG index <9.47 (N = 88) TyG index ≥9.47 (N = 92) p-value

LVEF (%) 64.44 ± 2.80 63.99 ± 2.95 0.0905

LVEDD (mm) 46.53 ± 3.98 47.30 ± 3.40 0.1636

LVESD (mm) 30.15 ± 2.78 30.74 ± 2.43 0.1295

IVSD (mm) 9.00 (8.00–9.00) 9.00 (8.00–9.00) 0.1583

LVPWT (mm) 9.00 (8.00–9.00) 9.00 (8.00–9.00) 0.1751

septal e (cm/s) 7.30 (6.00–8.40) 7.00 (5.63–8.00) 0.0609

lateral e (cm/s) 10.00 (8.60–11.08) 8.55 (7.53–10.10) 0.0031

E/A 0.85 (0.74–1.08) 0.87 (0.75–1.11) 0.6075

E/e’ 8.23 (6.92–10.37) 9.83 (8.22–11.05) 0.0015

LA (mm) 34.40 ± 3.63 34.93 ± 4.15 0.3578

LA volume (mm) 43.67 ± 11.31 47.84 ± 12.72 0.0215

LAVI (mL/m2) 26.57 ± 6.65 28.00 ± 7.89 0.1899

LVEF (%), left ventricular ejection fraction%; LVEDD, left ventricular end-diastolic diameter; LVESD, left ventricular end-systolic diameter; IVSD, interventricular septal diameter; LVPWT, left 
ventricular posterior wall thickness; LA, left atrial; LAVI, left atrial volume index.

TABLE 3 Data of insulin resistance indices in T2DM patients stratified by binary TyG index.

Variables TyG index <9.47 (N = 88) TyG index ≥9.47 (N = 92) p-value

TG/HDL-C 1.04 ± 0.49 3.75 ± 4.42 <0.0001

C peptide 0 min (pmol/L) 452.26 ± 256.93 637.63 ± 285.30 <0.0001

C peptide 30 min (pmol/L) 636.67 ± 351.08 798.57 ± 350.84 0.0019

C peptide 60 min (pmol/L) 861.46 ± 494.17 989.97 ± 457.90 0.0545

C peptide 120 min (pmol/L) 1121.06 ± 705.74 1302.37 ± 727.72 0.0762

C peptide 180 min (pmol/L) 1041.36 ± 588.20 1151.46 ± 633.69 0.2480

TG, triglycerides; HDL-C, high-density lipoprotein cholesterol.
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with T2DM (26). Pan et al. confirmed the predictive value of TyG 
index in distinguishing diabetic patients at an increased risk of 
lower limb vascular stenosis and nephric microvascular disorder 
(18). Furthermore, recent studies suggested that TyG index could 
be  recognized as a risk factor for CVD even in asymptomatic 

patients. Lee et  al. showed that higher level of TyG index was 
correlated with increased risk of coronary artery stenoses (CAS) in 
asymptomatic diabetic patients (27). Thai et  al. confirmed this 
hypothesis and proposed that TyG index was positively associated 
with the number and severity of artery stenoses (28). However, the 
predictive value of TyG index in subclinical HF in diabetic patients 
has not been well evaluated. In accordance with prior studies, our 
findings showed that the TyG index had a strong association with 
metabolic syndrome and HFpEF in subjects with T2DM, including 
BMI, waist circumference, blood pressure, HbA1c, TG, TC, HDL-C, 
non-HDL-C, LDL-C and FBG.

As an indicator of IR, the relationship between TyG index and 
the occurrence of CVD in different groups, including non-diabetic 
and diabetic individuals, has been widely explored (22). However, 
few studies have investigated the association between TyG index 
and cardiac structure and hemodynamics evaluated by 
echocardiography, which may predict the risk of CVD. An 
observational study enrolled 823 general subjects found that high 
TyG index was correlated with elevated LA diameter and decreased 
LVEF (%) and ankle-branchial index (ABI) (29). These results were 
partly consistent with the data by Wang et al., in which TyG index 
was positively associated with cardiac hemodynamics such as 
LVESD, LVEDV, LVPW, IVS, and LV mass and negatively associated 
with LVEF. The latter study was conducted in 201 healthy controls 
and 446 asymptomatic patients with T2DM (30). Nevertheless, our 
results demonstrated that TyG index was positively correlated with 
E/e’ ratio and negatively correlated with septal e’ and lateral e’, but 
not correlated with parameters of cardiac systolic function. Of note, 
high TyG index was significantly positively correlated with 
increased risk of HFA-PEFF score ≥ 5 points, indicating a strong 
association between the TyG index and cardiac diastolic function. 
This inconsistence may be attributed to different recruited subjects, 
diverse diseases of enrolled population, and the potential impacts 
of drugs. Our study focused on exploring the diagnostic value of 
the TyG index to early detection of cardiac structural changes in 
diabetic patients, which may be of special significance for clinical 
cardiovascular risk assessment and secondary prevention.

Moreover, previous studies showed that myocardial dilatation 
defects are reported to be abnormal in patients with hyperglycemia 
and IR. Thus, the factors that determine TyG levels (high TG and 
high glucose at the baseline condition) related to the following 
conditions (1) hypo-insulinemia with hyperglycemia and (2) 
hyperinsulinemia and hyperglycemia with insulin resistance. To 
clarify the relationship between these conditions, we evaluated the 
association between TyG index and IR, or insulin deficiency. Our 
results showed that TyG index was positively related to HG/HDL-C 

TABLE 4 Logistic regression analysis of the association between the TyG 
index and HFA-PEFF score.

EXP (95%CI) p-value

Model 1 0.626 (0.226–1.025) 0.0021

Model 2 0.640 (0.219–1.062) 0.0029

Model 3 0.786 (0.290–1.282) 0.0019

Model 1, Adjusted for age, sex; Model 2, Model 1+ BMI, Waist circumference, DM duration; 
Model 3, Model 2+ eGFR, MAP, TC, HbA1c. BMI, body mass index; eGFR, estimated 
glomerular filtration rate; MAP, mean arterial pressure; TC, total cholesterol; HbA1c, 
glycosylated hemoglobin, type A1c.

FIGURE 1

TyG index in diabetic patients stratified by HFA-PEFF score. **p < 0.05. 
***p < 0.001.

FIGURE 2

ROC analysis for the identification of diabetic patients with risk of 
HFpEF. TyG, triglyceride-glucose; FBG, fasting blood glucose; TG, 
triglycerides; HDL-C, high-density lipoprotein cholesterol; TC, total 
cholesterol.
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value (IR biomarker) and C-peptide at 0 min and 30 min (insulin 
secretion marker). Additionally, subgroup analysis demonstrated 
that there was stronger association between TyG index and 
increased risk of HFpEF in patients with insufficient glycemic 
control (HbA1c ≥ 9.75%), suggesting that TyG index was mainly 
dependent on the second condition. Importantly, ROC analysis 
revealed that compared to sustained hyperglycemia status, TyG 
index preserved a higher predictive value for HFpEF in patients 
with T2DM, confirming the crucial role of IR in diabetic related 
cardiac dysfunction.

There are some limitations need to be emphasized in this study. 
Firstly, parameters evaluating cardiac diastolic function and 
HFA-PEFF score were incomplete, including tricuspid valve 
velocity and global longitudinal strain data. These missing data in 
the HFA-PEFF score may reduce statistical power and cause 
selection bias. More complete echocardiographic data in the future 
may improve the reliability and stability of TyG index in predicting 
diabetic patients with high HF risk. Secondly, HF is a series of 
dynamic and progressive disorders, the calculation of the baseline 
TyG index alone does not represent the longitudinal correlation 
between the TyG index and risk of diabetes-induced HF over time. 
Cumulative TyG index (the summation of average TyG index for 
each pair of consecutive assessments multiplied by the time 
between these two-consecutive inclusion in years) may be better 
than single TyG index at baseline in predicting HF or even other 
CVDs (31). Finally, the number of eligible patients was relatively 
limited, which may be due to the very specific population in this 
study. DM is often accompanied by different subtypes of CVDs 
involving multiple risk factors. Nevertheless, clinical studies of 
diabetic status itself (hyperglycemia with or without IR) on CVDs, 
especially on subclinical CVDs are limited. Thus, to simply the 
impact of diabetes on cardiac structure and function, we screened 
diabetic patients without any other risk factors to confirm the 
predictive value of TyG index in subclinical HF. Therefore, more 
sample size and multi-center studies are warranted to explore the 
crucial role of hyperglycemia and IR in diabetic complications. The 
diagnostic criteria for subclinical diabetic cardiac dysfunction also 
needs to be further refined.

Conclusion

In conclusion, we explored a significant correlation between TyG 
index and an increased risk of HFpEF in asymptomatic patients with 
T2DM. IR plays a crucial role in the pathophysiology of HFpEF and may 
be identified as a novel target for its prevention and treatment. Further 
studies are warranted to explore the correlation between the IR 
parameters, especially TyG index, and the risk of HF in patients with 
T2DM at different stages.
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TABLE 5 Subgroup analysis of odds ratios of the TyG index with HFA-PEFF score in T2DM.

N
Model 1 Model 2 Model 3

OR (95%CI) p-value OR (95%CI) p-value OR (95%CI) p-value

Sex

Female 78 0.574 (−0.016–1.164) 0.0565 0.730 (0.094–1.366) 0.0246 0.542 (−0.216–1.300) 0.1608

Male 102 0.684 (0.131–1.238) 0.0154 0.521 (−0.085–1.128) 0.0918 0.877 (0.154–1.599) 0.0174

Age (year)

<54 78 0.696 (0.118–1.274) 0.0182 0.742 (0.124–1.361) 0.0187 1.055 (0.277–1.832) 0.0078

≥54 102 0.564 (−0.014–1.142) 0.0558 0.566 (−0.047–1.178) 0.0701 0.628 (−0.060–1.316) 0.0736

HbA1c (%)

<9.75% 88 0.573 (−0.041–1.189) 0.0677 0.447 (−0.211–1.104) 0.1827 0.322 (−0.470–1.135) 0.4167

≥9.75% 92 0.674 (0.139–1.208) 0.0135 0.781 (0.203–1.359) 0.0081 1.084 (0.363–1.805) 0.0032

Duration (year)

<6 85 0.647 (0.079–1.216) 0.0255 0.584 (−0.056–1.225) 0.0738 1.008 (0.215–1.802) 0.0127

≥6 95 0.580 (0.005–1.155) 0.0481 0.634 (0.041–1.226) 0.0360 0.752 (0.002–1.502) 0.0494

Model 1, Adjusted for age, sex; Model 2, Model 1+ BMI, Waist circumference, DM duration; Model 3, Model 2+ eGFR, MAP, TC, HbA1c.
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Serum amyloid A and metabolic
disease: evidence for a critical role
in chronic inflammatory
conditions
Laura J. den Hartigh1,2*, Karolline S. May1,2, Xue-Song Zhang3,
Alan Chait1,2 and Martin J. Blaser3

1Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington,
Seattle, WA, United States, 2Diabetes Institute, University of Washington, Seattle, WA, United States,
3Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States

Serum amyloid A (SAA) subtypes 1–3 are well-described acute phase reactants
that are elevated in acute inflammatory conditions such as infection, tissue
injury, and trauma, while SAA4 is constitutively expressed. SAA subtypes also
have been implicated as playing roles in chronic metabolic diseases including
obesity, diabetes, and cardiovascular disease, and possibly in autoimmune
diseases such as systemic lupus erythematosis, rheumatoid arthritis, and
inflammatory bowel disease. Distinctions between the expression kinetics of
SAA in acute inflammatory responses and chronic disease states suggest the
potential for differentiating SAA functions. Although circulating SAA levels can
rise up to 1,000-fold during an acute inflammatory event, elevations are more
glucose transporter 4; GM-CSF, granulocyte-macrophage colony stimulating factor; HbA1c, hemoglobin
A1c; HDL, high density lipoprotein; HFD, high fat diet; HMGB1, high mobility group box 1; HNF,
hepatocyte nuclear factor; HO-1, heme oxygenase type-1; HOMA-IR, homeostatic model assessment for
insulin resistance; hSAA, human serum amyloid A; HUVEC, human umbilical vein endothelial cells; IBD,
inflammatory bowel disease; IBS, irritable bowel syndrome; IκBα, nuclear factor of kappa light polypeptide
gene enhancer in B cells inhibitor alpha; IL-1, interleukin-1; IL-1α, interleukin-1 alpha; IL-1β, interleukin-1
beta; IL-6, interleukin-6; IL-8, interleukin-8; IL-10, interleukin-10; IL-12, interleukin 12; IL-17, interleukin-
17; IL-22, interleukin-22; IL-23, interleukin-23; iNOS, inducible nitric oxide synthase; IP-10, interferon γ-
induced protein 10; JNK, c-Jun N-terminal kinase; LDL, low-density lipoprotein; LDLR, low-density protein
receptor; LFD, low fat diet; LOX-1, oxidized low-density lipoprotein; LPS, lipopolysaccharide; Mɸ,
macrophage; MAPK, mitogen-activated protein kinase; MCP-1, monocyte chemotactic protein-1; M-CSF,
monocyte colony stimulating factor; MDMs, monocyte-derived macrophages; MIP1α, macrophage
inflammatory protein-1 alpha; NAFLD, non-alcoholic fatty liver disease; NFκB, nuclear factor kappa B; NO,
nitric oxide; PAT, pulsed therapeutic-level antibiotic; PBMCs, peripheral blood mononuclear cells; PCOS,
polycystic ovary syndrome; PKA, protein kinase A; PKR, protein kinase R; PLIN, perilipin; PPARγ,
peroxisome proliferator-activated receptor gamma; RA, rheumatoid arthritis; RAGE, receptor for advanced
glycation end-products; RANTES, regulated on activation, normal T cell expressed and secreted; RBP4,
retinol-binding protein 4; rSAA, recombinant serum amyloid A; SAA, serum amyloid A, SAA1, serum
amyloid A1; SAA2, serum amyloid A2; SAA3, serum amyloid A3; SAA4, serum amyloid A4; SAF-1, serum
amyloid A-activating factor 1; SELS, selenoprotein S; SES-CD, simplified endoscopy score for Crohn’s
disease; SLE, Systemic lupus erythematosus; SPF, specific pathogen-free; SRB1, scavenger receptor class B
type 1; STZ, streptozotocin; T1D, type 1 diabetes; T2D, type 2 diabetes; TGFβ, transforming growth factor
β; Th17, T-helper 17 cells; THP-1, human leukemia monocytic cell line; TLR-2, toll-like receptor 2; TLR-4,
toll-like receptor 4; TNBS, trinitrobenzone sulfonic acid; TNFα, tumor necrosis factor alpha; UC, ulcerative
colitis; VCAM-1, vascular cell adhesion molecule 1; VLCD, very low carbohydrate diet; VLDL, very low-
density lipoprotein; WAT, white adipose tissue.
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modest (∼5-fold) in chronic metabolic conditions. The majority of acute-phase SAA derives
from the liver, while in chronic inflammatory conditions SAA also derives from adipose
tissue, the intestine, and elsewhere. In this review, roles for SAA subtypes in chronic
metabolic disease states are contrasted to current knowledge about acute phase SAA.
Investigations show distinct differences between SAA expression and function in human
and animal models of metabolic disease, as well as sexual dimorphism of SAA subtype
responses.

KEYWORDS

obesity, diabetes, cardiovascular disease, SAA, intestine, liver, adipocytes, macrophages
1. Introduction

Members of the serum amyloid A (SAA) family are acute phase

reactants and chemokines that are elevated in acute inflammatory

conditions such as infection (1, 2), as well as chronic inflammatory

conditions including autoimmune disorders (3–8), obesity (9–13),

type 2 diabetes (T2D) (14, 15), and cardiovascular disease (CVD)

(16–19) (reviewed extensively in 20, 21). Several SAA subtypes are

present across diverse animal species (22), including invertebrates

(23), suggesting important conserved functions. Since SAA is

poorly soluble in aqueous solutions, it circulates associated with

lipoproteins, in particular high density lipoprotein (HDL), and is

considered an apolipoprotein (24, 25). Functions of particular SAA

subtypes include roles in host defense (26–30), chemoattraction

(31–34), lipid metabolism (35–37), and inflammation (38). We

now review the emerging knowledge about distinctive functions of

the different SAA subtypes.
1.1. SAA subtypes and receptors

Of the 4 known SAA subtypes, SAA1 and SAA2 are highly

expressed in the liver in mammals including humans in response

to inflammatory stimuli, and can circulate at high concentrations,

usually bound to HDL (39). SAA1 and SAA2 are highly

homologous, differing in only a few amino acids. In contrast,

SAA3 is more highly expressed in extrahepatic tissues in

particular animal species (40, 41). SAA3 is not known to

circulate under most conditions, with the exception of high dose

lipopolysaccharide (LPS) injection (42). SAA3 is considered to be

a pseudogene in humans due to a premature stop codon (43),

leading to a frame shift in codon 31, thereby deleting the last ten

amino acids (44). SAA3 is only ∼40% homologous to SAA1/2.

Since in humans SAA1 and SAA2 are expressed from both liver

and extrahepatic tissues, it has been difficult to conclusively

distinguish hepatic from extrahepatic SAA functions in humans.

However, phenotypic distinctions between hepatic and extra-

hepatic SAA subtypes in mice, due to the predominance of

extrahepatic Saa3, allow sharper definition (18, 38, 44). SAA3

protein has been detected in human mammary gland epithelial

cell lines (45), although its expression is more commonly found

in non-human mammals. SAA4 is constitutively expressed by

most cell types and responds only minimally to inflammatory

stimuli (46, 47). In many prior studies, distinctions between
0234
specific SAA subtypes were not reported, perhaps due to the lack

of available antibodies capable of distinguishing them. This is

unfortunate, as it is possible that different SAA subtypes exert

different functions in the context of metabolic disease. In this

review, we use the term “SAA” to refer to SAA1/2, or to reflect

that the authors of work described did not specify particular

SAA subtypes. In addition, in accordance with scientific

nomenclature standards, “SAA” will refer to humans, while “Saa”

corresponds to mouse.

The major identified SAA receptors are listed in Table 1. SAA

binds to formyl peptide like receptors 1 and 2 (FPLR1 and FPLR2)

in human monocytes, neutrophils, human embryonic kidney

(HEK293) cells, and human umbilical vein endothelial cells

(HUVECs), thus promoting chemotaxis and increased calcium

flux. In response to varied stimuli (Table 1), mitogen-activated

protein kinases (MAPKs) and nuclear factor kappa B (NFκB)

pathways are further activated, which leads to secretion of tumor

necrosis factor alpha (TNFα), interleukin-8 (IL-8), and monocyte

chemotactic protein-1 (MCP-1) (32, 33, 48–51, 69, 70). The

receptor for advanced glycation end products (RAGE) is another

known SAA receptor present on several tissues and cell types.

SAA mediates the activation of the AGE/RAGE axis and NFκB

pathways, with subsequent transcription of interleukin-6 (IL-6),

heme oxygenase type-1 (HO-1) and monocyte colony stimulating

factor (M-CSF) (52–55). Moreover, SAA induces signal

transducer and activator of transcription 1 (STAT1)-mediated

high mobility group box 1 (HMGB1) expression and protein

kinase R (PKR) activation, potentially through RAGE and toll-

like receptors (TLRs) (52). SAA has affinity for TLR2 and TLR4

(56–61, 71, 72), and to the oxidized low-density lipoprotein

receptor (LOX-1) (62) and scavenger receptor class B type 1

(SRB1), thus mainly signaling via the MAPK pathway in both

immune and epithelial cells. A recently described SAA receptor

is Selenoprotein S/Tanis [SELS in humans (63, 65, 67, 68), Tanis

in animal models (68)]. Tanis/SELS is highly expressed in liver,

skeletal muscle, and adipose tissue (68), which may distinguish

SAA effects mediated by this receptor from those found

primarily on immune cells. SELS expression on adipose tissue is

highly correlated to circulating SAA levels, suggesting a potential

feed-forward mechanism (68, 73). Importantly, most of these

potential SAA receptors respond to multiple ligands, with SELS

having the highest degree of SAA-specificity. Collectively, varied

SAA receptor expression patterns on different cell and tissue

types could indicate different SAA functions.
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1197432
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


TABLE 1 SAA receptors and downstream signaling pathways.

SAA
receptors

SAA Host specificity Ligand(s)/stimuli Target tissue/
cell

Signaling
pathways

Outcomes

Human Rodent
FPRL1/
FPRL2

SAA1,
SAA2

(32, 33,
48–51)

(32) SAA (0.01–2 µM)
rhSAA1 (20 µg)
LPS (100 ng/ml)

GM-CSF (100 ng/ml)

Neutrophils
Monocytes
Cell lines:

HEK 293, HUVEC

Calcium signaling
Cell migration

NFκB
MAPK (ERK/
p38/JNK)
AKT

↑ intracellular Ca2+ (32, 33, 51)
↑ chemotaxis (32, 33)

↑ IL-8, CCL2
(Cell media/ plasma) (50, 51)

↑ IL-8, TNFα mRNA/protein (48)
↑ p-ERK, p-p38, p-JNK (48, 50)

↑ p-AKT (48)

RAGE SAA1,
SAA2

(52, 53) (52–55) rSAA1 (0.1–10 µg/ml)
LPS (5 mg/kg)

AgNO3 (0.5 ml of a
2% solution)
AEF (100 µg)
Azocasein (7%)

sRAGE VC1 (100 µg)
peptide 5 (100 µg)

Kidney, Liver,
Spleen
Primary

macrophages
Cell lines:

RAW264.7, THP-1,
U937, BV-2

AGE-RAGE
NFκB
STAT1
PKR

↑ SAA (Tissue distribution) (55)
↑ NO (52)

↑ AGE, CML (plasma) (53)
↑ IL-6, IL-12, HGMB1, MCP-1,

RANTES (Cell media/plasma) (52)
↑ RAGE, IL-6, HO-1,
M-CSF mRNA (53, 54)
↑ p-STAT1, p-PKR (52)

TLR2 SAA1,
SAA2

(56) (56, 57) rhSAA (1 µM)
Concavalin (10 mg/kg)

Liver, Spleen
Cell line:
HeLa

TLR
NFκB

MAPK (ERK/
p38/JNK)

↑ ALT, AST (57)
↑ SAA, SAF-1, IL-6, IFNϒ, TNF-α

(plasma) (56)
↑ SAA1, MCP-1, MIP1α/β, IL-1R, IL-10,
IL-8, IL-18, IL-23, IP-10, eotaxin mRNA

(56, 57)
↑ CD4+, Th17, T-reg, F4/80 + CD11b+

(57)
↓ p-IκBα (57)

↑ p-ERK1/2, p38, JNK (57)

TLR4 SAA1,
SAA2,
SAA3

_ (58–61) SAA3 (0.3–1 µg/ml)
LPS (0.01–1 µg/ml)
Concavalin (10 µg)

S100A8, S100A9 (70–100 µg)

Kidney, Liver, Lungs
Primary

macrophage
Myeloid cells (Mac1

+)
Cell lines:

MCF7, RAW264.7

NFκB
MAPK (ERK/
p38/JNK)
AKT

Rho GTPase

↑ Chemotaxis (58, 60)
↑ NO, iNOS (59)

↑ SAA3, IL-6, TNFα mRNA (58, 60)
↓ TLR4 mRNA (61)

↑p-IkB (58)
↑ p-ERK, p-p38, p-JNK (59, 60)

↑ p-AKT (59)

LOX-1 SAA1,
SAA2,
SAA3

_ (62) hSAA3 (2 µg/ml)
LPS (1 µg/ml)

Cell lines:
LU65, LU99,

MCF7, HUVEC
H292, T47D

MAPK (ERK) ↔ hSAA2, hSAA3 mRNA (62)
↑ p-ERK (62)

↑ IL-6, IL-1β (plasma) (62)

SR-B1/CLA-1 SAA1,
SAA2

(66, 67) (63, 66) SAA (0–10 µg/ml)
Recombinant adenovirus

SAA1/2
LPS (25 µg)

Cell lines:
HeLa, HepG2,
THP-1, CHO

Cholesterol efflux
MAPK (ERK/

p38)

↑ ABCA1- and SR-B1 dependent
cholesterol efflux (64, 65)

↓ Cholesteryl ester uptake (63)
↑ p-ERK1/2, p-38 (63)

SELS/Tanis SAA1,
SAA2

(65, 68, 73) (68) Insulin (6–100 nM)
Glucose (12–35 mM)

Euglycemic-hyperinsulinemic
clamp (40 mU·m−2·min−1)

Adipose tissue,
skeletal muscle, liver

Cell lines:
HepG2, C2C12,

3T3-L1

MAPK (ERK/
p38)

Inflammatory
pathways

↑ SAA (plasma) (68)
↑ IL-8 (Cell media) (66)

↑↓ Tanis/Sels mRNA (67, 68)
↑ p-ERK1/2, p-p38 (66)

↑ cardiometabolic risk factors (67, 68)

ABCA1, ATP-binding cassette A1; AEF, amyloid-enhancing factor; AGE, Advanced glycation end-products; AKT, protein kinase B; AEF, Amyloid-enhancing factor; ApoA1,

apolipoprotein A1; CCL2, C-C Motif Chemokine Ligand 2; CHO, Chinese hamster ovary cells; CML, Carboxy methyl lysine; ERK, extracellular signal-regulated kinase; FPRL1,

formyl peptide receptor-like 1; FPRL2, formyl peptide receptor-like 2; FPRL1, formyl peptide receptor-like 1; GM-CSF1, Granulocyte-macrophage colony-stimulating

factor; HMGB1, high mobility group box 1 protein; HO-1, heme oxygenase 1; hSAA, human serum amyloid A; HUVEC, human umbilical vein endothelial cells; IκBα,

nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha; IL-1β, interleukin 1 beta; IL-6, interleukin 6; IL-8, interleukin-8; IL-10, interleukin 10;

IL12, interleukin 12; IP-10, Interferon gamma-induced protein 10; JNK, c-Jun N-terminal kinase; LOX-1, oxidized low-density lipoprotein receptor 1; MCP-1, monocyte

chemotactic protein 1; M-CSF, macrophage colony-stimulating factor; MIP-1α, macrophage inflammatory protein 1 alpha; NFκB, nuclear factor kappa-light-chain-

enhancer of activated B cells; NO, nitric oxide; PKR, protein kinase R; RAGE, receptor for advanced glycation end-products; RANTES, Regulated upon Activation,

Normal T Cell Expressed and Presumably Secreted; rhSAA, recombinant human serum amyloid A; SAA1, serum amyloid A1; SAA2, serum amyloid A2; SAA3, serum

amyloid A3; SAF-1, Serum amyloid A-activating factor-1; SELS, selenoprotein S; sRAGE, Soluble for advanced glycation end-products; SR-B1, scavenger receptor B1;

TLR2, toll-like receptor 2; TLR4, toll-like receptor 4; TNFα, tumor necrosis factor-alpha.

↑, increased; ↓, decreased; ↔, non-affected.

den Hartigh et al. 10.3389/fcvm.2023.1197432
1.2. SAA regulation in the acute phase
response

Considerable research has been focused on the kinetics of

hepatic SAA expression and secretion during an acute
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inflammatory response [reviewed in (20, 74)]. The mechanics of

SAA expression and secretion vary with the stimulus type.

Systemic levels of SAA can be 1,000-fold higher than baseline

during an acute inflammatory response to sepsis (75, 76), viral

infections including COVID-19 (1, 77, 78), vaccinations (79), or
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tissue trauma (80). The immediate systemic levels of SAA are

primarily hepatic in origin during infection (44), with

contributions from extra-hepatic sources following tissue trauma

(81). Hepatic SAA production is triggered by bacterial products

such as endotoxin or inflammatory cytokines interleukin-1 beta

(IL-1β), interleukin-6 (IL-6), and TNFα that reach the liver (74).

While much prior work has focused on the hepatic acute-phase

SAA1 and SAA2 subtypes, important roles for extra-hepatic SAA

in the chronic inflammatory processes associated with metabolic

diseases are now emerging (82, 83).
1.3. SAA vs. CRP

Since its discovery nearly 100 years ago, C-reactive protein

(CRP) has been used in clinical practice as a marker of acute

inflammation (84). CRP is known to rapidly increase in response

to infection or trauma, and has a short half-life that enables a

rapid decrease when the stimulus ceases (85). However, SAA

rises in parallel with CRP in the same acute inflammatory

conditions, and may be a more sensitive marker for acute events

(19, 86–88). Similar to CRP, hepatic SAA is regulated by the

above inflammatory cytokines (IL-1β, IL-6, and TNFα 89, 90),

although CRP can be induced by pathways related to interleukin-

17 (IL-17) and hepatocyte nuclear factor (HNF), in contrast to

SAA (91). In addition to inflammatory cytokines, hormones

including glucocorticoids, leptin, and thyroid hormone also

regulate SAA expression (92, 93). Indeed, SAA levels may be

better predictors of coronary artery disease (CAD), cancer, and

of related poor outcomes than CRP (19, 94). However, CRP

levels more accurately predict poor outcome in elderly

populations (95). SAA as a biomarker of acute infection or

traumatic injury remains less widely used clinically due to a lack

of robust calibration reagents and routine assays. There would be

great value to developing reliable, robust, and cost-effective SAA

clinical assays.
2. SAA in chronic metabolic diseases

Chronic inflammatory conditions tend to promote much lower

elevations in systemic SAA (∼3 to 10-fold) than acute

inflammatory conditions and may be sustained, deriving from

diverse tissues such as the liver, adipose tissue, lung, small and

large intestines, and hematopoietic cells such as macrophages

(9, 11, 18, 96–100). The markedly different systemic SAA levels

observed in acute vs. chronic inflammatory conditions suggests

the potential for different mechanisms (91), prompting

speculation that SAA is an important concentration-dependent

effector of innate and adaptive immune responses (44). Aging

has been associated with increased SAA levels (83, 101, 102), as

have aging-related metabolic conditions. Evidence for potential

roles of SAA in several metabolic diseases are discussed in the

sections that follow, with an emphasis on obesity, diabetes, non-

alcoholic fatty liver disease (NAFLD), CVD, autoimmune

conditions such as systemic lupus erythematosus (SLE) and
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rheumatoid arthritis (RA), and inflammatory bowel diseases

(IBD) ulcerative colitis (UC) and Crohn’s disease (CD) (Figure 1).
2.1. Obesity and metabolic syndrome

The increased circulating SAA levels observed in individuals

with obesity are highly correlated with body mass index (BMI),

body weight, adiposity, and SAA1 and SAA2 mRNA expression

in white adipose tissue (WAT) (11, 96), and are not related to

hepatic SAA1 or SAA2 expression (9, 97, 98, 103). Circulating

SAA levels have been positively associated with visceral adiposity

(104), suggesting visceral fat as a potential source. However, the

relative contributions of subcutaneous and visceral WAT to SAA

production are not known, nor has it been determined that

WAT-derived SAA contributes to the circulating SAA pool in

obesity (105), or whether WAT-derived SAA induces local

cytokine production that stimulates hepatic SAA expression.

SELS, a major SAA receptor, is expressed in adipose tissue and

directly associates with adiposity and BMI (65), suggesting a

potential feed-forward mechanism that contributes to the

sustained adipose tissue inflammatory state in obesity (71).

Whether increased SAA expression in WAT plays a local or

systemic role in obesity pathogenesis, or whether it is merely a

biomarker of disease severity, is unknown. The extent to which

WAT, liver, or both contribute to systemic SAA levels has not

been resolved.

An initial study of 34 subjects with obesity showed a 6-fold

increase in SAA expression in subcutaneous WAT compared

with 27 lean controls; this was associated with 20-fold higher

expression from adipocytes than the WAT stromal vascular

fraction (96), which contains pre-adipocytes, immune cells, and

vasculature. A meta-analysis confirmed a strong positive

association between BMI and circulating SAA levels (13), and

showed that SAA1 and SAA2 expression was higher in

subcutaneous WAT in people with overweight and/or obesity

(97, 106). In addition, serum SAA levels are positively associated

with adipocyte diameter (106, 107). Distinctions between SAA1

and SAA2 were generally not made in these early studies due to

the lack of distinguishing primers and subtype-specific antibodies

that persists.

Conversely, weight loss can reduce circulating and adipose

tissue-derived SAA levels in humans. A meta-analysis of 10

studies showed that weight loss significantly reduced circulating

SAA levels (13). Weight loss following a low-fat (LFD) (n = 19)

or very low carbohydrate diet (VLCD) (n = 22) led to reduced

circulating SAA levels proportional to the amount of weight lost

and also associated with insulin resistance (88). Several

independent studies showed that weight loss due to a VLCD in

women (n = 33–48) was strongly associated with reduced plasma

SAA and adipocyte-derived SAA (9, 10, 96, 108), while insulin

sensitivity was not consistently affected (9, 108). These divergent

phenotypes could reflect different subject characteristics, with

postmenopausal women showing a metabolic benefit from SAA

reduction (9, 10) while premenopausal women did not (108).

Another study in 439 women reported similar reductions in
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FIGURE 1

Metabolic disease states associated with increased circulating SAA. Obesity, cardiovascular disease (CVD), autoimmune diseases (including systemic lupus
erythematosus (SLE) and rheumatoid arthritis (RA)), diabetes (Type 1, Type 2, and gestational), inflammatory bowel disease (IBD, including Crohn’s disease
(CD) and ulcerative colitis (UC)), and non-alcoholic fatty liver disease (NAFLD) are chronic metabolic conditions that are all associated with increased
circulating SAA levels.

den Hartigh et al. 10.3389/fcvm.2023.1197432
plasma SAA with weight loss due to dietary intervention, but not

exercise (109). Importantly, other inflammatory markers

including MCP1 and CRP also decreased during weight loss

(109). Roux-en-Y gastric bypass significantly reduced circulating

SAA levels in women with obesity (n = 20) (110). Additional

studies are required to determine whether specifically reducing

SAA in the context of weight loss is beneficial.

Mouse studies parallel the observation that SAA levels are

increased in humans with obesity, and that adipose tissue mRNA

expression of Saa is similarly increased in the obese state. Initial

studies identified Saa3 as the specific subtype expressed in

murine adipocytes (111) and macrophages (112, 113), both

essential for development of obesity. Ob/ob mice, which

spontaneously develop obesity due to increased food

consumption subsequent to leptin deficiency, have elevated

circulating and adipose tissue Saa levels (114, 115). Further, diet-

induced obese mice consistently have elevated Saa3 mRNA levels

in adipose tissue (82, 116–121). However, obesity-associated
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adipose-derived Saa3 does not contribute to circulating Saa levels

in mice (105). Mice engineered to express luciferase via the Saa3

promotor only show luciferase activity in adipose tissue following

long-term high fat diet (HFD)-fed conditions, with no detectable

luciferase in any tissue examined after one week of HFD or after

acute injection with LPS, providing temporal data about Saa3

expression kinetics (121). However, using more sensitive mass

spectrometry, we have shown that a single high dose LPS

injection is sufficient to induce Saa3 expression in adipose tissue,

associated with increases circulating Saa (42), an effect supported

by identifying Saa3 in LPS-stimulated plasma using isoelectric

focusing gels and ELISA (122).

Sleep deprivation has been associated with sharp increases in

SAA. Circulating SAA levels increased by more than 4-fold in

mice experiencing paradoxical sleep deprivation for 72 h, an

effect coincident with increased adipose tissue Saa3 mRNA

expression, but not Saa1/2 (123). Circulating Saa and Saa3

mRNA returned to basal levels when sleep was restored.
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Importantly, increased circulating SAA also has been observed in

humans deprived of sleep for either 24 or 48 h (123). In another

study, SAA levels were 2-fold elevated in 17 adults who regularly

experienced obstructive sleep apnea, which disrupts sleep,

compared to weight-matched controls (124). Obstructive sleep

apnea is strongly associated with the metabolic syndrome (125),

also associated with SAA levels, which may confound

interpretation of these studies. Because sleep deprivation and

disrupted sleep schedules increase risk for obesity and its

complications, disrupted sleep-induced SAA could be considered

a novel risk factor for metabolic disease.

Studies in which mouse Saa is perturbed genetically have

yielded ambiguous results. Mice engineered to express human

SAA1 from WAT had elevated circulating human SAA1

mirroring obesity levels even without an obesogenic stimulus

(126), providing evidence that WAT-derived SAA circulates.

However, overexpressing SAA1 from WAT had no observed

effects on body weight, WAT inflammation, or glucose or insulin

tolerance (127). Loss of extrahepatic Saa3 in obese mice led to

improved local WAT inflammation and systemic lipoprotein

profiles and to resistance to high fat diet (HFD)-induced obesity,

particularly in female mice (82). By contrast, subsequent Saa3

knock out mice were more prone to HFD-induced obesity with

increased adiposity (128). Further, triple knock-out mice (Saa1,

Saa2, and Saa3-deficient) showed no effect of a HFD on body

weight or adiposity, but had worsened glucose and insulin

tolerance (129). These divergent results suggest that the distinct

metabolic characteristics of the models used, such as the

inclusion of dietary sucrose/cholesterol, which particular Saa

subtypes are perturbed, or gut microbiota composition and

function, could have major impacts on observed phenotypes

related to Saa.

Despite such phenotypic differences in obesity when SAA

subtypes were perturbed, several studies point towards SAA

promoting adipose tissue expansion. Silencing Saa3 in cultured

pre-adipocytes reduced their adipogenic potential, leading to

smaller adipose tissue depots when injected into NUDE mice

(130). Similarly, targeting Saa using anti-sense oligonucleotides

reduced adipose tissue expansion and inflammation as well as

circulating endotoxin levels in male Swiss Webster mice (131),

suggesting that disrupting Saa signaling also improved intestinal

barrier integrity. Increased Saa3 expression in visceral adipose

tissue from obese mice is highly correlated with macrophage

number and inflammatory expression profile (121), suggesting

that interaction with macrophages may drive adipocyte Saa3

expression. Thus, the crosstalk between adipocytes and

macrophages that promotes adipose tissue inflammation and

subsequent insulin resistance in obesity may require SAA (121).
2.2. Type 2 diabetes and gestational
diabetes

Excess visceral adiposity and increased systemic inflammation

are associated with insulin resistance (132, 133), which is the

reduced capacity for insulin-stimulated glucose uptake in
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metabolically active tissues such as adipose tissue and skeletal

muscle. Pancreatic insulin secretion subsequently increases to

compensate for reduced insulin sensitivity to maintain

euglycemia. If the pancreatic beta cells are unable to secrete

sufficient insulin to compensate for the reduced insulin

sensitivity (termed beta cell dysfunction), hyperglycemia ensues,

leading to glucose intolerance and eventually T2D (134). Cross-

sectional studies in men of European, Asian Indian, and

American descent have shown that total, visceral, and

subcutaneous adiposity, BMI, and waist circumference are all

negatively associated with insulin sensitivity (135, 136). In

addition to its association with obesity, with a key contribution

from adipose tissue, SAA is similarly associated with T2D in

humans and in animal models. In 134 patients with T2D,

circulating SAA levels strongly correlated with hemoglobin A1c

(HbA1c) and homeostatic model assessment for insulin

resistance (HOMA-IR) after controlling for age, sex, and BMI

status (14), suggesting a relationship between SAA and insulin

resistance.

In humans, diabetes and circulating SAA levels are strongly

related (11, 107, 137–140), and a prospective association between

SAA and incident T2D has been reported (15). In a study of 765

older men (mean age 77), 112 with T2D, serum SAA strongly

correlated with diabetes status, an association lost when adjusted

for BMI, waist circumference, or fasting insulin levels (141). In a

small study, omental adipose tissue from subjects with diabetes

(n = 6) had a 3-fold increase in SAA mRNA expression

compared with non-diabetic controls (n = 10), and omental SAA

expression strongly correlated with fasting glucose levels and

total body fat mass (142). In 134 subjects with T2D, HbA1c and

HOMA-IR strongly correlated with circulating SAA levels after

controlling for age, sex, and BMI (14); the effect was reduced

with adjustment for parameters related to glucose metabolism

(15), suggesting linkage between SAA and insulin resistance. In

subjects with both obesity and T2D, SAA is bound to apoB-

containing lipoproteins including very low-density lipoproteins

(VLDL) and low-density lipoproteins (LDL), in addition to HDL

[its usual transport partner in plasma (37)], similar to

observations in mice (143). The mechanism for SAA binding to

these lipoproteins in people with diabetes is unknown. Evidence

exists that a truncated form of SAA1, which is missing an N-

terminal arginine, is reduced in subjects with T2D and is

negatively associated with glycemic control (144). Adipose tissue

SELS was positively associated with measures of glycemic control

in both lean and obese subjects (65, 73), as well as in age- and

weight-matched subjects with diabetes (145). Moreover, insulin

increases SELS expression in cultured adipocytes (65), suggesting

a potential feed-forward mechanism for increased SAA

expression in insulin resistance. SAA disrupts insulin signaling in

cultured adipocytes (120, 146), suggesting a potential mechanism

for its association with T2D. Most T2D subjects also have

abdominal obesity, making it difficult to tease apart obesity-

specific and T2D-specific contributions of SAA.

However, a strong association exists between diabetes and

SAA that is independent of obesity. One study of 182 T2D

subjects showed elevated serum SAA levels compared to healthy
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weight-matched controls (n = 180), with mean BMI of 24 in both

groups (147). A small study similarly showed that SAA levels

were elevated in age- and weight-matched subjects with T2D

compared with normoglycemic controls (73). Controlling for age,

sex, and BMI revealed a sustained correlation between indices of

glucose dysregulation (i.e., HbA1c, HOMA-IR) and SAA,

suggesting an effect specific to the diabetic state (14). However,

another study found no differences in SAA levels between

weight-matched subjects with obesity or T2D (110). To our

knowledge, only a single study has reported no differences in

SAA between healthy insulin-sensitive subjects and those with

T2D (148). Emerging evidence suggests that improving insulin

sensitivity drives the reduction in SAA levels following weight

loss. In a small study in which subjects with overweight or

obesity were given rosiglitazone for 12 weeks, circulating SAA

levels were reduced by 37% despite the absence of weight loss,

and WAT explants from these subjects showed lower SAA

secretion post-treatment (9). Pharmacotherapy for T2D (i.e.,

metformin, glipizide, rosiglitazone, insulin, or acarbose) reduces

serum SAA levels in T2D subjects (9, 139, 149). Thus, while the

diabetic state and SAA levels are directly associated, whether

SAA plays a distinct role in T2D pathology independent of a role

in obesity remains to be determined.

SAA levels are further elevated in subjects with T2D and

nephropathy (147, 150) and retinopathy (151). SAA may be an

important predictor for end-stage renal disease and death in

patients with diabetic kidney disease, with elevated intra-renal

SAA expression (152). SAA is elevated in T2D patients with

proteinuria, with serum SAA levels positively associated with

albumin excretion rate and glomerular membrane thickening

(140, 153), consistent with a potential causal role.

Similar links between Saa and T2D have been observed in

animal models. In mice, a HFD promotes early increases in Saa3

expression in white adipose tissue, with subsequently elevated

hepatic levels of Saa1 and Saa2 (120). In these models, insulin

resistance is highly correlated with circulating Saa levels (120). In

hepatocytes, overexpression of the Saa receptor, Tanis, led to

decreased insulin-stimulated glucose uptake and glycogen

synthesis, indicating increased insulin resistance (73). Db/db

mice, which lack the leptin receptor and spontaneously develop

features resembling obesity and T2D, express high levels of Saa3

from adipocytes, but not the liver (114). In a common rodent

model of T2D in which obesity is initiated by consumption of a

HFD and hyperglycemia is triggered by the administration of

low-dose streptozotocin (STZ), a beta cell toxin that promotes

hyperglycemia, renal Saa3 is increased (154).

Systemic SAA levels are elevated in pregnancy, especially in

women with gestational diabetes (GD) (101). Serum SAA levels

were 14% higher in 39 pregnant women with GD than in 25

healthy controls, and SAA was positively associated with BMI,

age, oral glucose tolerance test, and HbA1c levels (155). It is

unknown whether GD itself increases systemic SAA levels, or

whether increased SAA simply reflects gestational weight gain

(156). While one study did not observe increased SAA levels in

GD patients, decreased variability in SAA levels was observed

(157). Further studies are required to conclusively determine if
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SAA plays a detrimental role in GD. Indeed, a prospective

clinical trial (NCT04238936) aims to compare SAA levels

between women diagnosed with GD and healthy controls.
2.3. Polycystic ovary syndrome (PCOS)

PCOS is a chronic inflammatory condition that impacts ∼5%–
10% of women of reproductive age in industrialized countries and

is associated with an increased incidence of obesity, diabetes, and

atherosclerosis (158, 159). In a study of 83 subjects with PCOS,

serum SAA levels were double those of 39 age-matched controls

(160). Omental and subcutaneous WAT biopsies showed

increased SAA mRNA and protein expression, suggesting that

the circulating SAA derived at least in part from adipose tissue.

Incubation of adipose tissue explants with glucose increased SAA

production, providing evidence that SAA secretion may be

regulated by hyperglycemia. PCOS subjects were insulin-resistant,

and a 6-month treatment regimen with metformin reduced

circulating SAA levels, suggesting a possible link between SAA

and adipose tissue insulin sensitivity (160). Because PCOS is

associated with enhanced WAT lipolysis (161), and WAT-derived

SAA also augments lipolysis (9), we speculate that WAT-derived

SAA may play a causal role in PCOS-mediated metabolic

dysfunction.
2.4. Non-alcoholic fatty liver disease
(NAFLD)

NAFLD is commonly present as part of the metabolic

syndrome (162), a constellation of disorders that increase the risk

for CVD and diabetes, including abdominal obesity,

hyperglycemia/insulin resistance, hypertension, and dyslipidemia

(163). NAFLD is characterized by triglyceride accumulation in

hepatocytes (steatosis), which can progress to steatohepatitis,

characterized by the accumulation of inflammatory cells. SAA

levels often are elevated in patients with the metabolic syndrome

(164, 165). SAA was found to be 2–3-fold higher in patients with

non-alcoholic steatohepatitis relative to age-matched healthy

controls (166). Because liver biopsy, the gold standard diagnostic

test for the presence of NAFLD, is an invasive procedure, non-

invasive biomarkers for this condition would be highly desirable.

However, although SAA could potentially be a useful biomarker

for NAFLD, it is too non-specific to justify its use for this purpose.

Mechanisms linking SAA and NAFLD remain speculative. In

the Cohort on Diabetes and Atherosclerosis Maastricht

(CODAM) study, in which alanine amino transferase (ALT) was

used as a surrogate measure of NAFLD, multiple linear regression

analysis was used to investigate the association between ALT and

several metabolic syndrome components as potential mediators of

the liver disease. Their findings suggest that insulin resistance is

the key pathophysiological mechanism to explain the association

between the metabolic syndrome and NAFLD, with adipose

tissue inflammation, endothelial dysfunction and free fatty acid

levels likely playing lesser roles (167). However, ALT is an
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imperfect biomarker for NAFLD. Cytokines produced by liver-

resident and infiltrating inflammatory cells may play important

roles in liver inflammation and NAFLD. SAA may exacerbate

hepatic steatosis via the TLR4-mediated NFκB signaling

pathway (168). Hepatocyte-derived SAA1 promotes intrahepatic

platelet aggregation and aggravates liver inflammation in

NAFLD (169). Studies using hypercholesterolemic mice deficient

in IL-1α or IL-1β showed the importance of these two cytokines

in transforming steatosis to steatohepatitis and liver fibrosis (170).

Given the well-documented link between SAA and IL-1β, SAA

may also be important for liver disease progression. However,

this requires additional study.
2.5. Cardiovascular disease (CVD)

Inflammation is a hallmark of atherosclerosis (171), and a

recent clinical trial, The Canakinumab Anti-Inflammatory

Thrombosis Outcomes Study (CANTOS), for the first time

showed in a proof-of-concept trial that inhibiting inflammation

using an antibody against Il-1β decreased cardiovascular events

(172). The relationship between inflammation and CVD has been

extensively studied by measurement of the inflammatory marker,

CRP, which consistently has been shown to be modestly and

chronically elevated in CVD patients and to predict the risk of

cardiovascular events in a similar manner to SAA (19, 173, 174),

although SAA has not been studied as extensively as CRP. As

noted earlier, acute phase SAA is a good predictor of coronary

artery disease outcomes (19, 94).

SAA could simply be a biomarker of the chronic inflammatory

state that is present in CVD, similar to CRP; alternatively, it may

play pathogenic roles. As described below, considerable evidence

points to its role as a mediator rather than simply being a

marker of atherosclerotic CVD. In considering its possible

mediating role, potential differences between effects of

lipoprotein-bound SAA and free SAA derived from extrahepatic

cells in the artery wall must be distinguished.

SAA mRNA is present in macrophages, smooth muscle cells

and endothelial cells in human atherosclerotic lesions (18),

findings that suggest an immune response within the

atherosclerotic artery wall, in which locally generated SAA is

unlikely to be associated with lipoproteins. However, other

studies showed immunohistochemical colocalization of Saa

with apolipoproteins, including apoA1, the major

apolipoprotein of HDL, in murine atherosclerotic lesions (175),

consistent with SAA being transported to the artery wall by

plasma lipoproteins.

Several studies in mice provide evidence for Saa being an

atherosclerosis mediator. LDL receptor (Ldlr)-deficient mice fed a

pro-inflammatory diet with or without added cholesterol showed

marked increases in plasma Saa levels, which correlated with

atherosclerosis extent (116). Mice in which Saa was either

overexpressed or silenced suggest Saa roles in atherosclerosis

pathogenesis, although the data are not uniform. Chow-fed

Apoe-deficient mice in whom Saa was overexpressed using a

lentiviral vector had increased en face and aortic root lesions
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compared to control-fed mice, although differences were not

observed with an atherogenic diet (176). Plasma levels of IL-6

and TNFα and expression of vascular cell adhesion molecule 1

(VCAM-1) and monocyte chemotactic protein-1 (MCP-1), and

lesion macrophage content all increased with Saa overexpression

(176). In another experimental approach, a single injection of a

human Saa-containing adenovirus in Apoe-deficient mice

increased plasma Saa levels for ∼10 days, leading to increased

atherosclerosis (177). When repeated injections of the human

SAA-containing adenovirus were administered to immune-

deficient mice to prevent an antibody response to the human

protein, brachiocephalic lesions and aortic lesion area were

markedly increased (177). The authors postulated that the

increase in atherosclerosis was due to SAA-mediated induction of

transforming growth factor-β (TGFβ), which increased vascular

biglycan expression and led to increased LDL retention (see

later). Deficiency of Saa in Ldlr-deficient mice led to reduced

atherosclerosis in the ascending aortic arch but not in the aortic

root or innominate artery at 6 weeks, although this difference

was lost by 12 weeks (178). Parallel findings were observed in

male Ldlr-deficient mice also deficient in FPLR2, one of the

major Saa receptors, although the effect was more prolonged

than in the Saa/Ldlr double knockout mice (179). In both

studies, transplantation of Saa-deficient bone marrow-derived

cells replicated the findings, suggesting that the reduced

atherosclerosis may have resulted from the absence of free Saa in

lesions rather than in the circulation. However, in Apoe/Saa

double knockout mice, no difference in lesion area was observed

at ∼50 weeks (180), although no early time points were

examined. A subsequent study in Apoe-deficient male mice also

lacking Saa1 and Saa2 using Saa3 suppression with an anti-sense

oligonucleotide showed significantly reduced atherosclerosis

(181). These results imply that all acute phase Saa isoforms have

pro-atherogenic properties, and that deficiency/suppression of all

3 acute phase isoforms is required for atheroprotection in mice.

Saa3 effects on atherosclerosis were not reported in female mice,

despite sexually dimorphic Saa3 expression (182) (see below). Saa

transgenic rabbits failed to show an increase in atherosclerotic

lesions (183). Therefore, in summary, while most mouse studies

suggest that Saa contributes to the development of early

atherosclerotic lesions, results in Saa-deficient models are not

consistent, possibly related to the nature of the model and the

timing of observations. Nevertheless, such studies raise the

question of how Saa might affect the atherogenic process. Several

potential mechanisms are plausible.

Since SAA can be expressed by several cells of the artery wall

(18), including perivascular adipocytes (184) and macrophages

(18, 112, 113, 182–187), the locally produced SAA in lesions

unattached to lipoproteins could have signaling functions that

might be atherogenic. These include activation of the NFkB and

MAPK signaling pathways via interaction with receptors such as

class B scavenger receptor CD36, TLR4, TLR2, FPLR2 and

RAGE (176, 188, 189). Activation of monocytes/macrophages

and perivascular adipocytes can generate chemoattractant

molecules such as MCP-1, which could lead to the recruitment

of additional inflammatory cells and vascular smooth muscle
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cells. SAA also can be a direct chemoattractant (190). Moreover,

direct activation of the chemoattractant receptor, FPLR2, by free

SAA could further attract inflammatory cells into developing

vascular lesions. Free SAA also has been shown to induce a

phenotypic switch in vascular smooth muscle cells towards a

more proliferative type of cell that synthesizes more matrix

molecules (188). However, in vitro studies using free SAA should

be interpreted cautiously, since minor contamination with

endotoxin could lead to similar effects.

HDL-bound SAA also may play a role in atherogenesis. When

SAA is secreted by the liver as part of the acute or chronic

inflammatory response, it circulates in plasma bound to HDL,

although it can associate with less dense lipoproteins under

certain circumstances (24, 25, 37, 143). HDL particles that carry

SAA, so-called “inflammatory HDL”, is less atheroprotective than

normal HDL, with reduced inhibition of inflammation in cells

due to its being trapped by cell surface proteoglycans (191),

versican in the case of adipocytes and biglycan produced by

macrophages (118). Trapping of SAA-containing HDL at the cell

surface prevents it from adequately promoting reverse cholesterol

transport (192). HDL derived from inflamed mice devoid of Saa1

and Saa2 functioned normally, as it did when the proteoglycans

were removed from the cell surface either chemically or by

genetic manipulation (118). Humans treated with low levels of

endotoxin also had impaired cholesterol efflux capacity from

macrophages, despite no change in circulating HDL-cholesterol

levels. Proteomic analyses showed that the cholesterol efflux

capacity of HDL correlated inversely with Saa1 and Saa2 content

(193). Binding of SAA-containing HDL by extracellular

proteoglycans such as biglycan in humans (194) and perlecan in

mice (174) may lead to HDL retention in the vascular intima,

increasing susceptibility to oxidative and enzymatic damage

similarly to trapped LDL (195). Retained HDL could thus be

pro-atherogenic, compared to its more widely accepted anti-

atherogenic properties. The products of oxidative and enzymatic

damage to retained lipoproteins may play important roles in

atherogenesis (196).

Finally, SAA might stimulate thrombosis, which often precipitates

clinical events. SAA can induce tissue factor production by monocyte/

macrophages (197) and platelet activation (198). Thus, SAA could

play multiple roles in the atherosclerotic process from monocyte

adhesion, inflammatory and smooth muscle cell chemotaxis,

cellular inflammation, HDL function, retention of atherogenic

lipoproteins in the artery wall, and thrombogenesis. The net effect

is that SAA is likely to play a causative role in atherogenesis,

although the extensive data are not fully consistent.
2.6. Type 1 diabetes

In contrast to T2D, type 1 diabetes (T1D) develops as a result

of autoimmune destruction of pancreatic beta cells, reducing

insulin production capacity; subjects with T1D thus require

exogenous insulin to maintain euglycemia. Little is known

regarding SAA and T1D. One study has shown that SAA levels
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were elevated in 1,139 subjects with T1D compared with 848

healthy controls (199); however, these plasma donors were not

age-matched, and the T1D subjects tended to be older. However,

SAA increased specifically in HDL in subjects with T1D

compared to age-, sex-, and BMI-matched controls, an effect

much stronger when subjects were stratified by HbA1c and was

not observed for CRP (200). A common T1D model can be

generated in mice by injecting them with the pancreatic beta cell

toxin STZ, leading to beta cell apoptosis (201, 202). In such

STZ-treated mice, circulating SAA levels increased (203), with

increased Saa3 expression specifically from adipocytes (114).

Whether hyperglycemia or STZ itself stimulated adipose Saa3

was not determined. However, treating cultured 3T3-L1

adipocytes with 12–25 mM glucose induces Saa3 mRNA

expression (114, 190, 204), an effect replicated by hyperglycemic

clamps in mice (114), suggesting that hyperglycemia is the

critical factor. Whether glucose-stimulated SAA expression

changes systemic SAA levels or performs local functions is not

known. As with studies related to T2M, mechanistic studies are

needed in mice to determine whether SAA is sufficient or

required for the pathology of T1D.
2.7. Autoimmune diseases: systemic lupus
erythematosus (SLE) and rheumatoid
arthritis (RA)

SLE and RA are chronic diseases in which a person’s immune

system attacks its own tissues, resulting in inflammation and tissue

damage in affected organs. While RA can be physically debilitating

but typically is not life-threatening, SLE can lead to severe

complications such as kidney failure, seizures, and increased risk

of thrombosis. SAA may be a biomarker for both conditions

(3, 6, 205–207). SAA promotes T-helper 17 (Th17) differentiation

(208, 209), which plays important immunologic roles. However,

excessive Th17 responses also can promote autoimmune conditions

including SLE and RA (210). In patients with RA, their joints

contain elevated SAA (6, 205), with levels correlating with plasma

SAA levels and disease progression (211, 212). Rather than simply

diffusing into joints from the bloodstream, SAA itself may be

expressed in synoviocytes, macrophages, and endothelial cells

within synovial tissues in RA patients (6, 213). Computational

modeling identified Saa3 as the gene most strongly correlated with

the severity of collagen-induced arthritis (214). Moreover, synovial

fibroblasts isolated and cultured from patients with RA produced

2–4 times more SAA than those from healthy subjects (213).

Whether SAA directly contributes to these autoimmune diseases

remains to be elucidated. A potential mechanism is that in RA

patients, SAA and associated cytokines potently induce matrix

degrading enzymes in synovial fibroblasts (213, 215, 216), which if

left unchecked could contribute to disease pathogenesis and joint

destruction. Treatment with the TNF antagonist etanercept reduces

RA disease severity while simultaneously reducing circulating SAA

levels (217), providing one linkage between SAA and RA, but the

causal direction is unknown.
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2.8. Inflammatory bowel disease (IBD)

The two major types of IBD include ulcerative colitis (UC) and

Crohn’s disease (CD). Both are complex conditions that result from

chronic dysregulated immune function in the gastrointestinal tract

(218). UC is limited to the colon; however, CD can involve any part

of the gastrointestinal tract, but usually affects the distal small

intestine and/or the colon (219). Previous work suggests that

SAA may be a more sensitive biomarker for IBD than CRP (8,

220, 221), as SAA levels remain elevated while CRP disappears in

patients who are in clinical remission (222).

Patients presenting with either UC or CD consistently show

elevated serum SAA levels (220, 223). In humans, intestinal

biopsies from CD patients showed significantly increased colonic

SAA1/2 expression levels (224). From an extensive panel of

inflammatory markers, including CRP, IL-22, and IL-6, SAA had

among the highest positive associations with a Simplified

Endoscopy Score for CD (SES-CD, r = 0.4), fecal calprotectin (r

= 0.39), Crohn’s Disease Activity Index (CDAI, r = 0.14), and

stool frequency (r = 0.18) (223). Such studies link intestinal SAA

to potential roles in disease development or protection. Subjects

with CD without mucosal healing had higher SAA levels than

subjects in clinical remission (225), suggesting SAA as a marker

for CD severity. In patients with UC who were in remission,

consumption of a low-fat, high-fiber diet improved quality of life,

in conjunction with reduced circulating SAA levels (226). In one

clinical trial, SAA was a highly significant predictor of CD

severity, and treatment with filgotinib, a selective JAK1/STAT

inhibitor, improved CD symptoms while simultaneously reducing

circulating SAA levels (223).

Mouse models of IBD similarly display elevated circulating

SAA levels. Systemic SAA as well as local Saa3 expression levels

become elevated within days of administration of dextran sodium

sulfate (DSS) in drinking water in a mouse model of colitis

(227–229), an effect that may function to protect colonic

epithelium from acute injury by recruiting IL-22-producing

neutrophils (228). This does not appear to be specific to that

model, as mice given trinitrobenzone sulfonic acid (TNBS) via

colonic catheter, in another well-studied colitis model, also

responded with increased systemic SAA (230, 231).

Pharmacological treatments including 6-thioguanine and

cyclosporine A, utilized to improve colitis outcomes in mice,

effectively reduced circulating SAA levels (229), as did

administration of Bacillus subtilis spores as a probiotic (230). To

date, only a few studies have indirectly examined IBD

phenotypes with concurrent SAA genetic perturbation. One

study showed that mice concurrently deficient in Saa1, Saa2, and

Saa3 had attenuated colitis as assessed by histology (209).

However, in the proximal colon of the mouse, Saa1 and Saa2

expression is confined to the epithelium, while Saa3 expression is

found in immune cells including monocytes, macrophages, and

dendritic cells (209). These data suggest that Saa1/2 exert system-

wide functions of mucosal sensing and defense, while Saa3 drives

local function, due in part to the differential potentiation of

Th17 responses by these subtypes (209). Similarly, mice that
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were deficient in Saa1 and Saa2 that had colitis-associated colon

cancer showed attenuated weight loss, gut histological damage,

and gut inflammation (232), findings that suggest that Saa1/2

may augment colitis severity. Saa1/2 deficiency resulted in

reduced Saa3 colonic expression (232). Conversely, specific

deletion of only Saa3 rendered mice more susceptible to dextran

sulfate sodium (DSS)-induced colitis (228), implying that Saa3

may be protective against IBD. Collectively, the precise roles for

different SAA subtypes in IBD remain unknown, but emerging

evidence suggests that Saa1/2 and Saa3 have different triggers

and functions.
3. Tissue- and stimulus-specific SAA
effects

Expression kinetics for each SAA subtype varies greatly by

tissue source and stimulus type. While SAA1 and SAA2 are

primary players in the acute phase response, in mice Saa3 may

play a more prominent role in local inflammation. Mice express

Saa3 in many extra-hepatic tissues including adipose tissue, lung,

macrophages, and small/large intestine, with the liver

predominantly producing Saa1 and Saa2 (40). This distinct

division in murine subtype expression patterns enables the study

of extra-hepatic Saa in metabolic disease. Extra-hepatic Saa

expression appears predominant in chronic inflammatory

conditions, while Saa derives largely from the liver in more acute

inflammation (9, 18, 20, 91, 96, 98, 100). In humans, it is much

more difficult to separate the contribution of extra-hepatic SAA

to metabolic disease phenotypes in humans, because SAA1 and

SAA2 are expressed both from liver and extra-hepatic tissues.

Thus, much of our knowledge of extra-hepatic SAA originates

from mouse models. In this section, the various SAA subtypes

and their expression patterns in response to particular stimuli

from various tissue and cell types will be discussed (Table 2).
3.1. Liver

The liver is perhaps the most frequently studied SAA-

expressing tissue, wherein hepatic resident macrophages (i.e.,

Kupffer cells) produce Saa3 (in mice) and hepatocytes make

SAA1/2 (233, 239). As such, an influx of immune cells could

specifically increase Saa3 expression in the liver in mice. In

cultured hepatocytes, particular combinations of cytokines

predictably increase SAA1 and SAA2 gene and protein

expression (234). Hepatocytes secrete high levels of SAA during

an acute inflammatory insult in mice and humans (22). HepG2

cells, a human hepatocyte cell line, can express SAA1 and SAA2

in response to IL-1β and IL-6 in a dose-dependent manner, an

effect augmented by pre-treatment with dexamethasone or TNFα

(89, 248, 250). Primary human Kupffer cells co-cultured with

hepatocytes secrete high levels of SAA2 following treatment with

IL-1β and IL-6 (237), suggesting a potential paracrine signaling

mechanism.
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TABLE 2 Tissue- and stimulus-specific SAA effects in humans and rodents.

Tissue/cell type Model Stimulus SAA subtypesa

Liver
Human HepG2 cells (234)

HepG2 cells (89, 248)

HepG2 cells (252)
Primary hepatocytes (251)
Liver tissue (98)

IL-1β, IL-6
TNFα (10 ng/ml)
IL-6
TNFα, DEX
IL-1 β
LPS (20–500 ng/ml)
Obesity

↑↑ SAA1, SAA2 (15–25-fold)
↔ SAA1, SAA2
↑↑ SAA1, SAA2 (5-fold)
↔ SAA1, SAA2
↑ SAA1
↑↑ SAA1, SAA2
↔ SAA1

Rodent BALB/c mice (40, 238)

Swiss mice (236)
C57Bl6/J mice (122, 233)
Primary hepatocytes (122)
Mouse fibrosis model (239)
Mouse HSCs (239)
C57Bl6/J mice (42)

Ldlr-/-.Leiden mice (244)
FVB mice (114)
db/db mice (114)
C57Bl6/J (121)
Mouse liver (113)
Mink liver (269)
C57Bl6/J (209)

LPS (50 µg)
Casein (0.5 ml 10%)
LPS (100 µg)
LPS (100 µg)
LPS (25 µg)
Ccl4 (0.5 µl/g)
Ccl4 (0.5 µl/g)
LPS (25 µg)
AgNO3 (0.5 ml 1%)
Casein (0.5 ml 5%)
DIO (50 weeks HFD)
STZ- hyperglycemia
Genetic T2D
DIO (16 weeks)
Amyloidosis
LPS (3 mg/kg)
MOG- autoimmune encephalomyelitis

↑↑ Saa1, Saa2, Saa3 (100-fold)
↔ Saa1, Saa2
↑↑ Saa1
↑↑ Saa1, Saa2, Saa3 (2,000–5,000-fold)
↑↑ Saa1, Saa2, Saa3
↑ Saa1, Saa3 (10–40-fold)
↔ Saa1, ↑ Saa3 (40-fold)
↑↑ Saa1–4 (200, 2,000, 1,000-fold)
↑↑ Saa1, Saa2 (400, 10,000-fold)
↔ Saa4, ↑ Saa1–3 (60, 1,000, 8-fold)
↔ Saa1
↔ Saa3
↔ Saa3
↔ Saa3
↓ Saa1, Saa2
↑ Saa1
↑↑ Saa1–2, ↔ Saa3 (10, 20-fold)

Adipocytes/WAT
Human Omental and SQ adipose tissue (9)

SQ adipose tissue (96, 98)

MADS (253)
Primary breast adipocytes (254)

Obesity
DEX, insulin
Rosiglitazone
Obesity
Obesity → weight loss
rSAA (1–30 µg/ml)
DHA (50–100 µM)

↑↑ SAA1
↑ SAA1 (6-fold secretion)
↓ SAA1 (70% reduction in secretion)
↑ SAA1–2, SAA4 (6-fold)
↓ SAA1, SAA2 (1.6–2.2-fold)
↑ SAA1 (7-fold)
↑ SAA1

Rodent C57Bl6/J mice (42)

C57Bl6/J mice (122)
Ldlr-/-.Leiden mice (44)
3T3-L1 adipocytes (114)

FVB mice (114)

ob/ob mice (114, 121)
db/db mice (114, 121)
3T3-L1 adipocytes (190)

3T3-L1 adipocytes (245)
C57Bl6/J (121)
3T3-L1 adipocytes (246)

3T3-L1 adipocytes (242)
Swiss Webster mice (271)

LPS (25 µg/mouse)
AgNO3 (0.5 ml 1%)
Casein (0.5 ml 5%)
LPS (100 µg)
DIO (50 weeks HFD)
TNFα, LPS
Insulin, Rosi, IL-6
Hyperglycemia (25 mM)
LPS (100 ng/g)
STZ- hyperglycemia
Obesity
Genetic T2D
SFA (12:0, 14:0, 16:0)
Hyperglycemia (25 mM)
PUFA (20:4, 20:5, 22:6)
IL-1β
DIO (16 weeks)
LPS
LPS + RAW264.7 cells
rSAA (5 µg/ml)
Presense of microbes

↑↑ Saa1, Saa2, Saa3 (60, 30, 750-fold)
↔ Saa1–3
↔ Saa1–3
↑ Saa1 (100-fold), ↑↑ Saa3 (400-fold)
↓ Saa1
↑↑ Saa3
↔ Saa3
↑ Saa3
↑↑ Saa3 (200-fold)
↑ Saa3
↑↑ Saa3
↑ Saa3 (8-fold)
↑ Saa3 (2-fold)
↑ Saa3 (5-fold)
↓ Saa3
↑ Saa3 (10,000-fold)
↑ Saa3 (11-fold)
↑ Saa1 (2-fold)
↑ Saa1 (2-fold)
↑ Saa3 (3-fold)
↑ Saa3 (10-fold), ↔ Saa1, Saa2

Monocytes
Human PBMC (250)

THP-1 cells (187)
U-937 cells (187)
HL-60 cells (187)

IL-1β, IL-6, TNFα
LPS + DEX, or DEX
LPS, DEX, IL-1, IL-6
LPS, DEX, IL-1, IL-6

↑ SAA2 (7-fold)
↑ SAA1
↔ SAA1
↔ SAA1

Macrophages
Human Coronary artery sections (18)

THP-1 macrophages (187)

U-937 macrophages (187)
HL-60 macrophages (187)

Atherosclerosis
LPS
DEX
DEX
LPS, DEX, IL-1, IL-6

↑ SAA1
↔ SAA1
↑ SAA1
↑ SAA1
↔ SAA1

(continued)
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TABLE 2 Continued

Tissue/cell type Model Stimulus SAA subtypesa

Rodent BALB/c mice (40)
RAW264.7 cells (246)
RAW264.7 cells (271)
Kupffer cells (233)
Peritoneal macrophages (233)
Peritoneal macrophages (113)
Microglia, MDM (209)

LPS (50 µg)
LPS
LPS
LPS
LPS
Amyloidosis
MOG- autoimmune encephalomyelitis

↑↑ Saa3 (100-fold)
↔ Saa1
↑ Saa3
↑ Saa1
↑ Saa1
↑↑ Saa3
↑ Saa3

Intestine
Rodent BALB/c mice (40)

C57Bl6/J (121)
CONV-R vs. GF mice (271)
CONV-R vs. GF mice (278)
CMT-93 colonic epithelial cells (224, 271)
Mink intestine (269)

LPS (50 µg)
Casein (0.5 ml 10%)
DIO (16 weeks)
Presence of microbes
Presence of microbes
LPS
LPS (3 mg/kg)

↑↑ Saa1 (1–4-fold), Saa3 (3–25-fold)
↔ Saa1, Saa3
↔ Saa3
↔ Saa1, Saa2, ↑ Saa3
↑↑ Saa1, Saa2, Saa3 (4-fold)
↑↑ Saa3 (7-fold), ↔ Saa1–2
↑↑ Saa1

12:0, lauric acid; 14:0, myristic acid; 16:0, palmitic acid; 20:4, arachidonic acid; 20:5, eicosapentaenoic acid; 22:6, docosahexaenoic acid; AgNO3, silver nitrate; Ccl4,

tetrachloride; CLA, conjugated linoleic acid; CONV-R, conventionally-reared; DEXv dexamethasone; db/db mice: DIO, diet-induced obesity; leptin receptor-deficient

mice; DEX, dexamethasone; DHA, docohexaenoic acid; GF, germ-free; HepG2, human hepatoma cells; HSC, hepatic stellate cells; IL-1β, interleukin 1 beta; IL-6,

interleukin 6; LPS, lipopolysaccharide; MDM, monocyte-derived macrophage; MOG, myelin oligodendrocyte glycoprotein; ob/ob mice, leptin-deficient mice; PBMCs,

peripheral blood mononuclear cells; PUFA, polyunsaturated fatty acids; rSAA, recombinant SAA; SFA, short chain fatty acids; SQ, subcutaneous; STZ, streptozotocin;

T2D, type 2 diabetes; TNFα, tumor necrosis factor alpha; WAT, white adipose tissue; ↑, modest increase; ↑↑, robust increase; ↔, no change.
aFold-mRNA expression, unless otherwise indicated.
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As discussed above, potent inflammatory stimuli initiate

robust, rapid, but short-lived (∼24 h) SAA1 and SAA2

expression from the liver. LPS at dosages ranging from 0.25 to

100 µg/mouse increases murine hepatic mRNA expression of

Saa1 (up to 2,000-fold), Saa2 (up to 200-fold), and to a lesser

extent Saa3 (up to 40-fold) in an NFκB-dependent manner, with

circulating SAA levels subsequently increasing to 3,000 µg/ml

(42, 236, 238). All three SAA subtypes reach peak hepatic mRNA

expression 12 h after LPS administration (238). Only high-dose

LPS (25 µg) increases circulating Saa3 in mice (42, 122).

Similarly, LPS activates SAA1 and SAA2 mRNA expression and

secretion in human primary hepatocytes (251). Patients with

sepsis have elevated SAA levels (235), which are stronger

predictive markers of sepsis severity (76). SAA was a more

sensitive and earlier predictor of neonatal sepsis than the more

traditional CRP (75).

Other models of sterile inflammation in mice also have been

shown to increase hepatic Saa levels. Silver nitrate (AgNO3),

administered by subcutaneous injection of 0.5 ml of a 1%

solution, increases hepatic Saa1 (40-fold), Saa2 (1,000-fold), and

Saa3 (200-fold), and leads to circulating Saa levels equivalent to

that observed with high doses of LPS (42). However, in contrast

to findings after LPS, we did not find evidence of Saa3 in plasma

following AgNO3 injection (42). Injection with casein

(administered by subcutaneous injection of 0.5 ml of a 5%

solution) modestly increased hepatic Saa1 (6-fold), Saa2 (100-

fold), and Saa3 (5-fold) mRNA expression, resulting in much

smaller increases in plasma Saa levels (42). Collectively, acute

inflammatory stimuli differ in the resulting hepatic expression

levels of SAA1–3, leading to varied systemic SAA concentrations,

suggesting differential regulation.

In metabolic disease states such as obesity and T2D, hepatic

SAA expression likely results from cytokine signaling from extra-

hepatic tissues such as WAT (240, 252). A recent study identified
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SAA1 protein from both WAT and liver as a candidate

biomarker associated with low-grade inflammation. There was a

much stronger correlation of SAA1 with inflammation in the

liver than with WAT inflammation (244), suggesting a more

dominant hepatic role of SAA1. However, this particular study

mined gene ontology datasets using general inflammatory search

terms, so the particular metabolic conditions (i.e., obesity) of the

original study subjects were not indicated.
3.2. Adipocytes

The acute inflammatory studies cited above showed effects on

SAA subtypes expressed in the liver, but there also were strong

SAA responses in adipose tissue. While reported hepatic SAA

responses to LPS in mice are largely due to Saa1 and Saa2,

adipose tissue responds to LPS with massive (∼500-fold)
increases in Saa3 mRNA compared with 40-fold Saa3 increases

in the liver (42). This effect appears to be LPS-specific, as neither

AgNO3 or casein altered Saa1, Saa2, or Saa3 mRNA levels in

adipose tissue (42). Thus, we speculate that LPS can induce

expression of all three Saa subtypes in both liver and adipose

tissue that all contribute to circulating levels, while AgNO3 and

casein primarily target hepatic Saa. In this section, we present

evidence for differential SAA subtype expression in response to

several inflammatory mediators and metabolic factors.

Many stimuli have been shown to increase Saa3 mRNA and

protein expression in cultured adipocytes. These include high

levels of glucose (114, 190, 204), saturated fatty acids (190, 204),

conjugated linoleic acids (204), pro-inflammatory cytokines

including TNFα and IL-1β (114, 190, 245), and LPS (114).

Conversely, anti-inflammatory stimuli such as polyunsaturated

fatty acids (190) and rosiglitazone (114) reduce adipocyte Saa3

expression. In addition to chemical activation, 3T3-L1 adipocytes
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also express Saa3 in response to macrophage-derived components

(121, 246), suggesting an important role in cell-cell

communication, with similar effects observed in cultured human

adipocytes and in mice. Human SGBS cells treated with saturated

fatty acids display increased Saa1 expression, while

polyunsaturated fatty acids decreased glucose-induced Saa1 (190),

suggesting that the major adipose SAA subtype in humans is

SAA1. Mice injected with LPS robustly increased Saa3 expression

in visceral WAT comparable to hepatic Saa1/2 expression levels

in the same mice (42); using mass spectrometry methods, Saa3

was identified in their plasma (42), suggesting that Saa3 can

circulate under particular inflammatory conditions.

Recombinant (i.e., exogenous) SAA can directly impact

adipocyte metabolism. In cultured 3T3-L1 adipocytes,

recombinant SAA (rSAA, 5 µg/ml) reduced adipogenesis,

accompanied by reduced adipogenic transcription factors and

proteins including peroxisome proliferator-activated receptor

gamma (PPARγ), CCAAT enhancer binding protein beta (C/

EBPβ), and GLUT4 (242). rSAA also reduced lipid accumulation,

increased lipolysis, prevented glucose uptake, triggered secretion

of inflammatory cytokines IL6 and TNFα and increased mRNA

expression of Saa3. In multipotent adipose-derived stem (MADS)

cells isolated from human subcutaneous adipose tissue induced

to differentiate into primary adipocytes in vitro, free- and HDL-

associated rSAA increased MCP-1, IL-6, and IL-8 secretion in a

dose-dependent manner (253). This pro-inflammatory phenotype

was dependent on NFkB, not due to endotoxin contamination

(243, 253). Moreover, rSAA treatment reduced mRNA expression

of adiponectin, fatty acid synthase (FAS), C/EBPα, PPARγ, and

GLUT4 (253, 254), suggesting impaired adipogenesis capacity. A

propensity for rSAA to increase lipolysis also has been reported

in human adipose tissue (9). The pro-inflammatory, pro-lipolytic,

and anti-adipogenic effects of SAA also have been shown in

primary porcine adipocytes (243).

Recent technical advances have enabled the study of adipose

tissue down to the single-cell level (255, 256). Spatial

transcriptomics on human subcutaneous abdominal adipose

tissue sections has revealed 3 distinct subsets of adipocytes,

including those rich in genes for leptin (AdipoLEP), the lipid

droplet-associated proteins perilipin1 and −4 (AdipoPLIN), and

SAA1/2 (AdipoSAA) (257). AdipoLEP was enriched in genes

encoding matrix metabolism, AdipoPLIN in genes associated with

lipid and glucose metabolism, and AdipoSAA in multiple retinol-

binding adipokines (i.e., RBP4) (257). These have been linked

with obesity co-morbidities including T2D, hepatic steatosis,

inflammation, and metabolic syndrome (258, 259).

Approximately 8% of the adipocytes examined were AdipoSAA,

with similar proportions in donors with or without obesity, but

there was high variability among donors (from 2%–18% of all

adipocyte populations) (257). Whether or not the proportion of

AdipoSAA cells differs in omental WAT, or is related to sex, is of

interest.

In addition to secreting adipokines and nutrients into the

circulation, adipocytes also secrete extracellular vesicles (EVs),

including microvesicles, exosomes, and apoptotic bodies (260).

EVs are heterogeneous membrane vesicles secreted by many cell
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types, including adipocytes, and function to facilitate intercellular

communication within and between tissues via protein signaling,

immune responses, and nutrient transport (261). EVs contain

diverse cargo including proteins, lipids, and miRNAs. Adipocyte-

derived exosomes can be identified by their adipocyte-specific

protein cargo, chiefly adiponectin and perilipin (262). EVs

differing in cellular origins possess unique biological properties,

enabling cell- or tissue-specific effects. EV production derived

from WAT is increased during obesity (263–266), and is

correlated with insulin resistance in both humans and in animal

models. SAA1 and SAA2 have been identified in EVs isolated

from human adipose tissue (262), and Saa3 observed within

vesicle-like structures within murine adipose tissue (121). These

findings raise the possibility that adipose tissue-derived SAA

communicates systemically with other target tissues, in addition

to its local effects.
3.3. Macrophages

Macrophages are present in all peripheral tissues and

contribute to systemic metabolism. Macrophage classification

schema are emerging, but largely revolve around their functional

potential, including the capacity to elicit an inflammatory

response and ability to phagocytose pathogens and cellular debris

(267). As such, macrophages can either contribute to or resolve

inflammation. Moreover, macrophages that only reside within

particular tissues often receive their own classification, such as

hepatic Kupffer cells or central microglia. All tissues from which

Saa3 expression can be detected have a dynamic macrophage

population, suggesting a potential common source of Saa3.

In obesity, adipose tissue exhibits both increased SAA

expression (SAA1 and SAA2 in humans and Saa3 in mice), as

well as increased macrophage infiltration. Importantly, all SAA

subtypes are expressed from macrophages (187). Initial studies

showed that acute inflammatory stimuli, including LPS and

casein, induced only Saa3 mRNA in murine macrophages (40,

113). Saa3 mRNA also increases in activated RAW264.7

macrophages (121), murine bone marrow-derived macrophages

(121), murine J774.1 macrophages (18, 112), and murine foam

cells within atherosclerotic lesions (18), but not in the human

THP-1 cell line (187). Saa3 protein co-localizes with F4/80+

macrophages in obese adipose tissue (121).

That macrophages express SAA subtypes as well as SAA

receptors, including TLR2, TLR4, RAGE, and SRB1, suggests

autocrine activities that likely contribute to local effects (20, 268).

Deletion of putative SAA receptors yields a blunted macrophage

response to SAA. BMDMs from mice deficient in TLR2 exhibit a

blunted inflammatory response to SAA (1 µM) (56), and

neutralizing antibodies to TLR2 blunted SAA-mediated activation

of THP-1 macrophages (20). Similar effects have been observed

in peritoneal macrophages from TLR4-deficient mice (59). SAAs

may bind to macrophage-produced extracellular matrix (ECM)

components, including proteoglycans and glycoproteins (195).

Collectively, an increasing body of work connects SAA and

macrophages.
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Monocytes freshly isolated from humans or monocytic cell

lines consistently respond to SAA with potent pro-inflammatory

responses. Within an hour of treating with rSAA, peripheral

human blood mononuclear cells (PBMCs), THP-1 monocytic

cells, and monocyte-derived macrophages (MDMs) all exhibit

rapid expression of IL-1β, MCP1, IL-6, IL-8, TNFα, and

macrophage inflammatory protein 1 alpha (MIP-1α), an effect

that is sustained for 8–24 h and is similar to LPS (241). Similar

effects were observed in RAW264 monocytes treated with rSAA,

which yielded a pro-inflammatory phenotype characterized by

increased MCP-1, IL-6, IL-8, and TNFα secretion (9). While a

potent inflammatory stimulus (i.e., LPS or casein) initiates a

robust, rapid, but short-lived (∼24 h) hepatic Saa response, and

from macrophages directly treated in culture, a similarly rapid

but more prolonged Saa3 response (72 h) has been observed in

isolated peripheral macrophages, indicating markedly different

hepatic expression kinetics (40, 113). Whether such different

expression kinetics reflect a more prolonged response that is cell-

type specific or is an effect secondary to the acute phase

response remains to be determined.
3.4. Intestine

Intestinal SAA can be induced by several mechanisms, which

are complicated by the potential for differing SAA subtype

expression from varying intestinal cells. SAA1/2 are highly

expressed in intestinal epithelium and in the endothelium lining

the intestinal submucosal blood vessels in rabbits, rodents, and

humans (224, 269, 270). Conversely, Saa3 has been detected at

low levels in mouse colonic epithelium (224), but is more

prevalent in intestinal immune cells (209). Moreover, in mice,

Saa3 expression is more strongly induced by LPS and microbes

in colonic epithelium than Saa1/2 (224, 247, 271). Induction of

SAA1 and SAA2 in small intestinal epithelial cells by

commensal microbes requires both IL-23 and IL-22 in a STAT3-

dependent manner (272). Male Syrian hamsters injected with

LPS (100 µg/g body weight) also expressed high Saa levels

(unknown subtypes) in the duodenum, jejunum, and ileum

(273). Mouse intestinal Saa3 is most closely related to human

SAA1 with 70% amino acid homology (271), and may serve

local gut functions (247).

SAA expression differs markedly throughout the intestinal

tract, with SAA2 having the most variable expression between

the ileum and rectum in subjects with IBD (274). Germ-free

mice have very low ileal levels of Saa1 and Saa2, but higher

expression in the colon than in conventional mice (275). These

findings are consistent with an anti-bacterial SAA role in relation

to an omnipresent colonic microbiota, and a much more variable

ileal microbiota. As conventional mice mature, intestinal Saa rises

in the ileum, reflecting the increasing bacterial load, but do not

change in the colon. Perturbing early-in-life gut microbiome

affected intestinal Saa expression. With pulsed therapeutic-level

antibiotic (PAT) exposures at early ages after weaning, non-obese

diabetic (NOD) mice have consistently decreased Saa1/2 and

Saa3 expression in the ileum but not in the colon (249, 276,
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277). Younger mice (P12) had significantly increased Saa1/2 and

Saa3 expression in both ileum and colon two days after antibiotic

exposure ended, indicating that intestinal Saa can biphasically

respond to gut microbiome changes in patterns that are both

age- and microbiome context-dependent during this critical

period for host immune development. The early-life antibiotic-

exposed mice showed significantly increased Saa1/2 and Saa3

expression in the ileum but not in the colon at P17 days (277).

These studies further confirmed that early-life intestinal SAA

expression is subject to regulation linked to gut microbiota

composition, potentially reflecting an ancient evolutionary

strategy to regulate the establishment of immune responses or

tolerance in the developing animal.

Mono-colonization of germ-free mice with segmented

filamentous bacteria (SFB) rapidly induces expression of Saa1,

Saa2, and Saa3 in the terminal ileum, consistent with the unique

spatial expression patterns of SAA in the gut. Induction of ileal

Saa is further increased by conventionalization using fecal

microbial transplant (FMT) from specific pathogen-free (SPF)

mice (278). Induction of ileal Saa1 and Saa2 by SFB is mediated

through the IL-23/IL-22 circuit in ileal epithelial cells (272). The

SFB-induced ileal Saa proteins promote Th17 cell differentiation

from ileal lamina propria dendritic cells and contribute to

protective immune responses in the ileal mucosa (278).

Conversely, as anti-bacterial molecules, SAA may modulate gut

bacterial growth and composition either directly or through

downstream intestinal immune responses. Consistent with

observations in mice, in vitro studies showed that overexpression

of Saa1/2 in intestinal epithelial cell lines reduces growth of co-

cultured bacterial cells (224). Similarly, in zebrafish SAA in

intestinal epithelial cells derived via transgene expression

constrains the bactericidal activity of neutrophils, and promotes

neutrophil recruitment to the intestine that is functionally

distinct from hepatic SAA expression (279). In a mouse model of

DSS-induced colitis, Saa induction in the large intestine was

required to dampen local inflammation, while SAA1/2

overexpression in cultured epithelial cells reduced the viability of

co-cultured E.coli (224), suggesting a potential bactericidal

function of SAA that may contribute to barrier integrity.

Transgenic mice engineered to overexpress Saa1 are partially

protected against inflammatory responses to cecal ligation and

puncture (280), suggesting an inverse relationship between gut-

derived SAA and inflammation.

The anti-inflammatory properties of intestinal Saa1 are most

specific to LPS-induced inflammation, an effect that could be

dosage-dependent. Saa1 has the ability to bind LPS and form a

complex, which then facilitates the clearance of LPS by

macrophages (280). The transition of Saa1 from exerting pro-

inflammatory effects to anti-inflammatory effects may reflect the

proteolysis of the Saa1 protein. The N-terminal and C-terminal

domains of Saa1 are crucial for its pro-inflammatory activity, and

their removal via proteolysis can transform Saa1 into an

anti-inflammatory agent (280, 281). Whether other SAA proteins

also are capable of switching from pro-inflammatory to

anti-inflammatory functions is unknown. The precise functions

of intestinal SAAs deserve further investigation.
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4. Sexual dimorphism of SAA

Circulating SAA is positively associated with BMI and

adiposity, with a propensity to also associate with fasting glucose,

insulin, HbA1C, and HOMA-IR. An emerging literature

describes unique sexual dimorphic relationships between SAA

and several metabolic disease states. Fully characterizing sex

differences in SAA expression kinetics and functional potential is

thus of great importance.

Large-scale RNA-sequencing studies of healthy humans

showed that adipose tissue contains ∼3,000 sexually differentiated

genes, one of the highest levels of all tissues examined (282).

There was higher expression in women of all known SAA

subtypes (SAA1, SAA2, and SAA3(p) (the SAA3 pseudogene)),

which were among the most highly sex-differential genes (283).

In contrast, with the exception of breast and skin, no other SAA-

expressing tissues (i.e., liver, lung, blood) show SAA subtypes in

their lists of sex-biased genes (283). These findings have been

replicated in several large-scale sequencing studies spanning

dozens of tissues in healthy men and women (284, 285), and in

mice (286). SELS, a major SAA receptor, is elevated in the

adipose tissue of subjects with T2DM and correlated with

measures of glycemic control (73), but sex was not investigated

in these studies. Collectively, many studies indicate that adipose

tissue from female mice and humans expresses higher SAA than

tissue from males, but the involvement of sex differences in the

pathophysiology of obesity or associated metabolic disorders is

not known.

Healthy women (with BMI < 25) have higher circulating SAA

than age-matched men, despite the men having a slightly higher

average BMI (287). SAA positively correlates with BMI, waist

circumference, waist-to-hip ratio, insulin, and HOMA-IR in both

sexes. After adjusting for BMI, only the correlations with insulin

and HOMA-IR remained significant for men, but not women.

One of the first studies to address potential sex differences in

SAA kinetics characterized the association between adipocyte size

and circulating SAA levels in men and women over a large range

in BMIs, with the additional aim to examine potential

associations with measures of glycemic control (107). Women

generally had higher circulating SAA levels than men, and

stronger correlations with BMI, adiposity, subcutaneous

adipocyte diameter, fasting insulin, HOMA-IR, and leptin (107).

This could relate to the higher proportion of subcutaneous WAT

in women than men.

By contrast, the liver, the source of most acute-phase SAA, has

rarely been implicated in sex differential SAA expression. In

contrast to several studies that have not found SAA to be

differentially expressed by sex in the liver (282, 283), one study

has shown that males tend to express slightly higher levels of

SAA subtypes than female mice. Male CD-1 mice have modestly

higher hepatic mRNA expression levels of Saa1, Saa2, and Saa3

than females (288). Adipose tissue-derived SAA may be impacted

by sex steroids, as WAT is highly enriched in these molecules

(289), with levels widely varying in metabolic disease. In

experiments using cultured murine peritoneal macrophages and
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BMDMs, testosterone and 17β-estradiol directly impacted Saa3

gene expression (182). Saa3-deleted macrophages show sexually

dimorphic responses to sex steroids. After estradiol exposure,

Saa3-deficient BMDMs harvested from male mice showed a

massive increase in inflammatory gene expression compared to

wild-type macrophages, with concurrent elevation of the estrogen

receptor (182). Thus, a relationship between macrophages, sex

steroid signaling, SAA, and metabolic disease is present but

needs further definition.

Our prior studies have supported a potential sexual dimorphic

role of Saa3 in a mouse model with global Saa3 deficiency (82).

When given a high fat high sucrose (HFHS) diet, female mice,

but not male mice, were protected from body weight gain and

associated insulin resistance. To determine whether there was

similar sexually dimorphic protection against atherosclerosis in

female mice, we crossed our global Saa3-KO mice with mice

deficient in LDLR, which promotes hypercholesterolemia and is a

common model for studying atherosclerosis. In that study, male

Saa3−/− Ldlr−/− mice were protected from atherosclerosis, while

female Saa3−/− Ldlr−/− mice were not (182). We speculate that

in these models, Saa3 modulates effects via pathways that could

be tissue-specific. In the obese state, Saa3 is expressed primarily

from hypertrophic adipocytes, and also expressed from adipose

tissue macrophages (96). Conversely, in the setting of

hypercholesterolemic atherosclerosis, Saa3 expression likely

originates from aortic and/or hepatic macrophages in addition to

adipose tissue. Thus, in these different models, Saa3 deficiency

leads to divergent phenotypes in males and females.

Other studies also suggest a potential interaction between sex

hormones and SAA. Women with RA had higher SAA levels than

men with RA (211, 212, 290). In a linear regression model

involving the ratio of estradiol to testosterone (E2:T), sex and the

E2:T ratio were highly significant and independent predictors of

circulating SAA (290). Women with BMI < 25 have also been

reported to have higher SAA levels than men (287), and SAA

correlates more strongly with BMI and adiposity in women than in

men (11). These observations suggest that sex hormones play roles

in regulating SAA expression. Circulating SAA is higher in women

taking oral estrogen-containing contraceptives (291, 292) and in

women undergoing estrogen replacement therapy (287, 293). The

apparent estradiol-mediated increase in SAA observed in these

studies was secondary to elevations in CRP. More work is required

to determine the mechanisms linking sex hormones and SAA.

Phenotypic responses to pro-inflammatory stimuli have

differed in macrophages harvested from male or female mice

(182). Compared to male mice, bone marrow-derived

macrophages (BMDMs) isolated from female mice and treated

with pro-inflammatory fatty acids or LPS showed lower levels of

inflammatory cytokine expression (294). This effect appears to be

cell-autonomous, since sex hormones were not present.

Transplanting male bone marrow into donor female mice led to

a phenotypically male pattern of obesity-associated adipose tissue

inflammation (294). However, the absence of Saa3 in BMDMs

negated this inherent sex-specific effect (182). The specific

interactions between Saa3 and sex hormones remains to be
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characterized, but could explain the sexually dimorphic

observations related to SAA expression in metabolic disease.
5. SAA-targeting therapies

Targeting SAA may be a potential therapeutic avenue for

dampening inflammation. One approach is to target pathways

that will reduce SAA expression. Tocilizumab, a monoclonal

antibody that targets IL-6 and reduces SAA levels (295), has

been effective in treating a small number of patients with

amyloidosis involving the gastrointestinal tract (296) and kidneys

associated with Familial Mediterranean Fever (297, 298), and

amyloidosis associated with rheumatoid arthritis (299), but this

approach could potentially also be developed for use in other

chronic inflammatory conditions. Anakinra and canakinumab,

monoclonal antibodies that target IL-1β, have been used to

reduce SAA levels in inflammatory conditions such as Familial

Mediterranean Fever (300) and gouty arthritis (301). Moreover,

the CANTOS trial, for the first time, showed that inhibition of

inflammation using an antibody against Il-1β decreased

cardiovascular events (172), providing further evidence for the

importance of inflammation in atherosclerosis. Since SAA

appears to play a role in the pathogenesis of atherosclerosis (see

previous sections), it is possible an approach that inhibits Il-1β

could be more widely adapted for preventing atherosclerosis, as

well as rheumatic diseases and even in hyperinflammatory states

associated with COVID-19 (302).

SAA contains binding sites that are specific for heparin and

heparin sulfate, which have been postulated to be useful for

preventing amyloidogenic conformation of SAA (303). SAA also

inhibits acyl coenzyme A cholesterol acyltransferase and

enhances cholesterol esterase activities shifting stored intracellular

cholesteryl esters to free cholesterol, which can be transported

from cells. Liposomal preparations of small synthetic peptides of

SAA can bind and neutralize SAA, facilitating reverse cholesterol

transport and preventing and reversing aortic lesions in mouse

models of atherosclerosis (304). Eprodisate, which binds to the

glycosaminoglycan binding site on amyloid fibrils, thus

preventing polymerization and tissue deposition, may slow the

progression of AA amyloidosis-related renal disease (64, 305),

and also may be applicable to other amyloid related conditions.

All these approaches are still in experimental phases, but

demonstrate potential proof-of-concept mechanisms for future

SAA-targeted therapies.
6. Concluding remarks and
perspectives

Elevations of SAA subtypes have been consistently associated

with metabolic diseases such as obesity, diabetes, CVD, and

autoimmune conditions in humans and in animal models. After 40

years of investigation, evidence is not yet sufficient to determine

whether SAA plays causal roles in metabolic disease development

and progression, or is merely a biomarker of broader phenomena
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akin to CRP. In this review, we have presented evidence that

associations with several metabolic disease states differ in

expression kinetics and dominant SAA subtypes, as well as tissue,

cellular, and spatial expression patterns, implicating the tissue

microenvironment as crucial to SAA function. In particular, while

evidence suggests that WAT SAA expression increases in obesity,

whether such increases contribute to the circulating SAA pool is

not known. Due to distinct subtype expression patterns in mice vs.

humans, it could be possible for WAT-SAA to circulate in humans,

but not in mice. As such, we propose that the SAA functions

associated with metabolic disease are physiologically distinct from

those in acute-phase reactions. Moreover, accumulating evidence

suggests that different SAA subtypes, long considered to be pro-

inflammatory molecules, may play beneficial roles in conditions

like IBD, highlighting the importance of the microenvironment for

particular SAA-mediated phenotypes. Finally, we speculate that

SAA could play important roles in the differential progression of

sexually dimorphic metabolic conditions.
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Diabetes mellitus (DM) is an independent risk factor for micro- and macrovascular
complications such as nephropathy and atherosclerosis respectively, which are the
major causes of premature morbidity and mortality in Type 1 and Type 2 diabetic
patients. Endothelial dysfunction is the critical first step of vascular disease and is
characterized by reduced bioavailability of the essential endothelial vasodilator,
nitric oxide (NO), coupled with an elevation in inflammation and oxidative stress. A
novel pathway to bolster NO activity is to upregulate soluble guanylate cyclase
(sGC), an enzyme responsible for mediating the protective actions of NO. Two
classes of sGC modulators exist, activators and stimulators, with differing sensitivity
to oxidative stress. In this study, we investigated the therapeutic effects of the sGC
stimulator BAY 41-2272 (Bay 41) and the sGC activator BAY 60-2770 (Bay 60) on
endpoints of atherosclerosis and renal disease as well as inflammation and
oxidative stress in diabetic Apolipoprotein E knockout (ApoE-/-) mice. We
hypothesized that under oxidative conditions known to accompany diabetes, sGC
activation might be more efficacious than sGC stimulation in limiting diabetic
vascular complications. We demonstrate that Bay 60 not only significantly
decreased nitrotyrosine staining (P < 0.01) and F4/80 positive cells by 75% (P <
0.05), but it also significantly reduced total plaque area (P < 0.05) and improved
endothelial function (P < 0.01). Our data suggest an important anti-atherogenic role
for Bay 60 accompanied by reduced oxidative stress and inflammation under
diabetic settings. Treatment with the stimulator Bay 41, on the other hand, had
minimal effects or caused no changes with respect to cardiovascular or renal
pathology. In the kidneys, treatment with Bay 60 significantly lessened urinary
albuminuria, mesangial expansion and nitrotyrosine staining under diabetic
conditions. In summary, our head-to-head comparator is the first preclinical study
to show that a sGC activator is more efficacious than a sGC stimulator for the
treatment of diabetes-associated vascular and renal complications.

KEYWORDS

soluble guanylate cyclase, type 2 diabetes, atherosclerosis, endothelial dysfunction, nitric

oxide, inflammation, oxidative stress
Abbreviations

DM, Diabetes mellitus; Bay 41, Bay 41-2272; Bay 60, Bay 60-2770; IL-1β, Interleukin-1β; NO, Nitric oxide;
VCAM-1, Vascular cell adhesion molecule 1; ICAM-1, Intercellular cell adhesion molecule 1; MCP-1,
Monocyte chemoattractant protein 1; TNF-α, Tumour necrosis factor-α; ApoE−/−, Apolipoprotein E KO;
STZ, Streptozotocin; ACh, Acetylcholine; PE, Phenylephrine; HAoSMCs, Human aortic smooth muscle cells.
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1. Introduction

Diabetes mellitus (DM) is a highly prevalent chronic metabolic

disorder, characterized by elevated blood glucose, and considered a

major health burden on western societies. Diabetes affects around

537 million people worldwide, and is predicted to reach 643 million

by 2030 (1). Diabetic patients are highly susceptible to developing

vascular complications, including atherosclerosis and chronic

kidney disease leading to kidney failure. Often these occur as co-

morbidities (2, 3) suggesting an underlying pathogenic etiology.

These vascular complications are the major cause of morbidity

and mortality in both Type 1 and Type 2 diabetic patients (4).

There is currently no cure, despite standard treatments which

include glucose and lipid lowering and blood pressure control.

A critical first step in the progression of vascular complications

is the development of endothelial dysfunction, which is

characterized by the reduced bioavailability of nitric oxide (NO)

coupled with an elevation in oxidative stress (5). NO is a potent

endogenous vasodilator that regulates vascular tone by increasing

cGMP. NO is produced by endothelial nitric oxide synthase

(eNOS) from L-arginine in the presence of co-factors HSP90,

tetrahydrobiopterin (BH4) and the calcium-calmodulin complex.

Once formed, NO diffuses to the vascular smooth muscle cells

where it binds to soluble guanylate cyclase (sGC) which

generates cyclic guanosine 3′,5′-monophosphate (cGMP). This

NO-sGC-cGMP signalling pathway regulates numerous

physiological downstream processes including vasodilation (6).

NO-cGMP signalling is also anti-atherogenic via its ability to

inhibit platelet aggregation, inflammatory cell adhesion and

smooth muscle cell migration, all of which contribute to the

pathogenesis of atherosclerosis (7, 8). Enhanced NO signalling is

also associated with a higher glomerular filtration rate (GFR) as

determined via measures of cystatin C and creatinine (9). Thus,

increasing NO bioavailability is seen as an attractive therapeutic

strategy to improve endothelial dysfunction, limit atherosclerosis

and improve kidney function (10, 11).

Strategies to increase NO bioavailability particularly for

diabetes-associated vascular complications, have faced major

clinical limitations. For example, treatment with L-arginine has

not shown improvements in endothelial function in diabetic

patients (12), while nitrate administration has shown lack of

sustainability due to the development of tolerance in humans

(13). BH4 is easily oxidized and is temperature and light

sensitive, limiting its use as a chronic drug treatment. In

contrast, direct targeting of the sGC enzyme with small

molecules has become the focus of a new treatment strategy to

overcome the loss of NO bioavailability (14).

sGC is a heterodimeric enzyme, consisting of an alpha-subunit

and a smaller heme-binding beta-subunit. Upon NO binding to the

heme moiety, the enzyme becomes catalytically active. Under

conditions of oxidative stress, ferrous (Fe2+) heme is oxidised to

ferric (Fe3+) heme, leading to the loss of the heme group, which

lessens or completely inhibits the response of sGC to NO by

losing the NO-binding site (15). This is particularly prevalent

under hyperglycemic conditions where the accumulation of

oxidized heme-sGC results in a state of NO resistance, decreased
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NO-dependent cGMP accumulation and impaired vasodilation

(16). Additionally, dyslipidemia, a common feature of diabetes

leads to the dysregulation of sGC expression and activity, leading

to vascular dysfunction and neointimal formation (16), both of

which are key events in atherosclerotic progression.

Pharmacological compounds that directly target the sGC-cGMP

pathway overcome limitations of NO tolerance. Two classes of

compounds exist that increase the catalytic activity of the enzyme,

namely sGC stimulators and sGC activators. Both sGC stimulators

and sGC activators have a unique mode of action and can bind to

sGC and trigger cGMP production independent of NO. In

addition, sGC stimulators act by sensitizing sGC to low levels of

NO by stabilizing the nitrosyl-heme complex. Thus, sGC

stimulators also work synergistically with NO and upregulate sGC

activity at reduced levels of NO (16, 17). In phase III clinical

trials, Riociguat (BAY 63-2521), a sGC stimulator, has shown

positive improvements in pulmonary arterial hypertension (18). In

contrast to sGC stimulators, sGC activators modulate sGC when

the enzyme is in an oxidized or a heme-free state (16, 17).

Therefore, it is expected that sGC activators are advantageous

under settings of oxidative stress such as diabetes, due to their

ability to target heme-free sGC. However, in a comparative study

by Costell et al. (19), both the sGC stimulator BAY 60-4552 and

the sGC activator GSK2181236A demonstrated differential

beneficial effects in spontaneous hypertensive stroke-prone rats, a

model that is associated with high levels of oxidative stress.

Several studies have documented the protective effects of sGC

modulation against atherosclerosis. For example, the sGC

stimulator Riocuguat attenuated atherosclerosis in Western diet

fed Apolipoprotein E knockout (ApoE-/-) mice (20). More

recently it was shown that the sGC stimulator BAY-747 reduced

atherosclerotic plaque formation in atherosclerosis-prone Ldlr−/−
mice (21). In addition, sGC activation reduced cholesterol

accumulation in macrophages by upregulating cholesterol efflux

(22). Furthermore, both sGC stimulators and activators exhibit

anti-fibrotic and anti-proliferative effects, which is of particular

relevance to atherosclerotic plaque development (23–26). Several

studies have also shown the renoprotective effects of sGC

stimulators and activators in chronic kidney disease models (27,

28). However, little is known about the role of sGC modulation

in diabetes-associated vascular complications.

Based on current knowledge, we aimed to show that sGC

modulation will protect against diabetes-induced vascular

dysfunction, atherosclerosis and nephropathy. Our preclinical

studies directly compared the sGC stimulator, Bay 41-2272 (Bay

41), with the sGC activator, Bay 60-2770 (Bay 60) (17, 29). In

particular, we hypothesized that under oxidative conditions

known to accompany diabetes, sGC activation might be more

efficacious than sGC stimulation in limiting diabetic vascular

complications. Specifically, we aimed to investigate the effects of

sGC stimulation or activation on cell types pertinent to the

development of atherosclerosis (human aortic smooth muscle

cells) under diabetic conditions. We also directly compared the

effects of sGC stimulation or activation on vasodilation,

atherosclerotic plaque development and renal function and injury

in a mouse model of Type 1 diabetes.
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2. Methods

2.1. Cell culture

Non-diabetic and diabetic human aortic smooth muscle cells

(HAoSMC) from a single donor were purchased from Lonza

Clonetics and cultured in smooth muscle cell media (SmBM-2,

Lonza) in a humidified incubator at 37°C and 5% CO2. Cells

were supplemented with 2% FBS at 37°C in 5% CO2.
2.1.1. Proliferation assays of HAoSMCs treated with
sGC activators and stimulators

To quantitate HAoSMC proliferation, diabetic and non-

diabetic HAoSMC were seeded in 24-well tissue culture plates.

After 24 h, cells were synchronised for an additional 24 h in

serum-free media. Next, cells were stimulated with serum and

TNF-α, with and without the addition of the sGC stimulator Bay

41 or the activator Bay 60, and analysed after a 48-hour period.

Cells were counted using the TALI cytometer (Thermofischer).

Additionally, a colorimetric water-soluble tetrazolium (WST)-1

assay (Roche Diagnostics) was used to measure cell proliferation.
2.1.2. Gene expression of HAoSMCs treated with
sGC activators and stimulators

Non-diabetic and diabetic HAoSMC were treated with TNF-α

for 4 h in the presence or absence of the sGC stimulator Bay 41 or

the activator Bay 60. Cells were harvested and RNA extraction,

cDNA synthesis and qRT-PCR were performed as described

previously (30). Gene expression analysis was performed to

assess pro-inflammatory markers.
2.2. Animal groups and experimental design

To induce a model of Type 1 diabetes, eight-week old male

ApoE−/− mice were made diabetic with intraperitoneal injections

of streptozotocin (STZ; 100 mg/kg on 2 consecutive days),

dissolved in 25 mM citrate buffer at pH4.5. At 10 weeks of age,

non-diabetic and diabetic (>25 mM blood glucose) mice were

randomised to receive either the sGC stimulator Bay 41 (1 mg/kg

and 10 mg/kg), the sGC activator Bay 60 (0.3 mg/kg and 3 mg/

kg) or vehicle control (carboxy methylcellulose suspension) for a

period of 10 or 20 weeks, via oral gavage, twice a day. For

quantification of the exposure, blood (Lithium Heparin Plasma)

was collected 1 h and 4 h after oral gavage and Bay 60 and Bay

41 were analyzed in plasma using an LC-system (Kinetex,

2.6 µm, C18 100 A LC Column 150 × 4.6 mm) coupled to a

4,500 Triple Quad Sciex mass analyzer (MS/MS), which was used

in positive mode. The injection volume was 5 µl. An acetonitrile

and ammonium acetate buffer (10 mM pH 6.8) gradient at a

flow rate of 1 ml/min was used for mass separation. The generic

internal standard was added to the samples before LCMS

analysis and quality control samples were used to monitor the

LCMS/MS quality. The 11-point calibration curve of Bay 60 and
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Bay 41 together with the internal standard was used for

quantification.

After 10-weeks of treatment, mice were killed using lethabarb

(100 mg/kg), and the aortas were dissected out for vascular

function and gene expression analysis. After the 20 week end-

point, mouse hearts and kidneys were weighed, and tibia length

was determined. Blood was collected into heparinised tubes. 20 ul

of blood was removed and white blood cells, neutrophils and

monocytes were calculated using a Hemavet system (Drew

Scientific). The remaining blood was centrifuged at 4,000 × g for

10 min at room temperature to separate plasma. Lipid

composition was then analysed using a HPLC system (31). Aortae

were dissected and assessed for the presence of atherosclerotic

plaque by an en face method that included the pinning flat of the

arch, thoracic and abdominal segments after Sudan IV staining to

assess regional lesions (10). Additionally markers of renal damage

were assessed by ELISA and immunohistochemistry.
2.3. Assessment of vascular function

Vascular function was assessed by myography as previously

published by our group (32, 33). Briefly, the aorta was dissected out

and cleaned of peripheral fat. Thereafter, two 4 mm segments of the

thoracic aortae were mounted on two L-shaped metal prongs. Aortae

were equilibrated for 30 min at a resting tension of 5 mN. All aortae

were then exposed to high-potassium physiological salt solution

(HPPSS) to determine viability. Next, cumulative concentration

responses to acetylcholine (ACh; 1 nmol/L–100 µmol/L) were

recorded in aortae preconstricted to −50% HPPSS with

phenylephrine (PE). All vasorelaxation responses are presented as

percentage relaxation of the preconstriction response. Additionally, a

concentration-response curve to PE (1 nmol/L–100 µmol/L) was

performed to assess vascular contractility. The variable slope

sigmoidal concentration-response curves to all agonists for each

mousewere calculated and plotted usingGraphPad Prism (version 8.0).
2.4. Gene expression analysis

Total RNA was extracted from tissue after homogenization of

snap frozen aortae and kidney. Gene expression of vascular cell

adhesion molecule-1 (VCAM-1), intracellular adhesion molecule

(ICAM-1), nuclear factor-κB subunit p65 (p65 NF-κB),

monocyte chemoattractant protein-1 (MCP-1), interleukin-1β

(IL-1β), and tumor necrosis factor-α (TNF-α) was analyzed by

quantitative RT-PCR (qRT-PCR) as described previously (10).
2.5. Immunohistochemistry

Aortic and kidney nitrotyrosine as well as aortic F4/80 localization

and expression were determined by immunohistochemistry. In brief,

4-µm paraffin sections mounted on Superfrost slides were dewaxed,

and endogenous peroxidases were inactivated with 3% H2O2 in

Tris-buffered saline. Antigen retrieval was performed for kidney
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sections. Thereafter, sections were incubated with a serum blocking

agent and a biotin-avidin blocking kit (Vector Laboratories).

Primary antibodies were added to sections and incubated overnight

at 4°C. The next day, secondary antibody, biotinylated anti-rabbit

Ig, or the biotinylated anti-rat secondary antibody was added for

30 min followed by horseradish peroxidase–conjugated streptavidin

(1:500), incubated for 3 min in 3,3′-diaminobenzidine

tetrahydrochloride, and counterstained with hematoxylin. All

sections were examined under an Olympus BX-50 light microscope

(Olympus Optical) and digital quantitation (Image-Pro Plus

software version 6.0) and assessments were performed in a blinded

manner. Nitrotyrosine staining was expressed as postively stained

area over total area of the section while F4/80 positive cells were

counted and averaged over sections.
2.6. Renal injury

Renal injury was assessed by measuring urinary albumin at

midpoint (10 weeks of diabetes) and endpoint (20-weeks of

diabetes) and PAS staining to quantify mesangial expansion.

Urinary albumin was measured using a mouse albumin ELISA

kit (Bethyl Laboratories) as per the manufacturer’s instructions.

PAS staining was performed and counterstained with

hematoxylin. All sections were examined under an Olympus

BX-50 light microscope (Olympus Optical) with digital

quantitation (Image-Pro Plus software version 6.0) and

assessments performed in a blinded manner.
FIGURE 1

Treatment with Bay 41 and Bay 60 lessens cell proliferation in two independent
and diabetic HAoSMC treated with TNF-α and two doses of Bay 41 or Bay 60 as
(D) ICAM-1 in non-diabetic and diabetic HAoSMC treated with TNF-α±Bay
independent experiments performed. #P < 0.05, **P < 0.01, ***P < 0.001 and
Diabetic HAoSMC+ TNF-α.
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2.7 Statistical analysis

Data are expressed as mean ± standard error of mean (SEM).

A Shapiro-Wilk normality test was performed in GraphPad Prism

to check for normality of data. If data is distributed normally, a

one-way ANOVA with Tukey’s multiple comparison post hoc tests

was performed for comparisons between groups. If data was not

normally distributed, a Kruskal-Wallis test was performed. All

statistical analyses were performed using GraphPad Prism version

8.0. A P value < 0.05 was considered statistically significant.
3. Results

3.1. The sGC activator BAY60 and the
stimulator BAY41 limit cell proliferation of
human aortic smooth muscle cells in
culture

Diabetic HAoSMC exhibited a significantly greater

hyperproliferative profile in response to serum and TNF-α

treatment as compared to non-diabetic HAoSMC (comparison of

the black bars), as examined by both cell counting (Figure 1A,

P < 0.01) and the WST-1 colorimetric assay (Figure 1B; P < 0.001).

In non-diabetic cells, Bay 60 caused a small yet significant

reduction in cell number at 0.1 μM (Figure 1A, P < 0.05).

Importantly, treatment with Bay 41 and Bay 60 reduced

proliferation in a dose-dependent manner in diabetic HAoSMC
assays. (A) Cell number and (B) a WST-1 proliferation assay of non-diabetic
indicated. (C,D) Inflammatory gene expression analysis of (C) VCAM-1 and
41 or Bay 60. Data is presented as mean ± SEM. n= 8/group with 2-3
****P < 0.0001 as indicated. #P < 0.05, ##P < 0.01 and ###P < 0.001 vs.
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(Figures 1A,B; P < 0.001) when assessed by both cell counting and

the WST-1 absorbance assay. Collectively, both Bay 41 and Bay 60

inhibited cellular proliferation of diabetic human aortic smooth

muscle cells in a dose-dependent manner with the higher

concentration of 1μM being more effective.
3.2. sGC activator Bay 60 and stimulator Bay
41 lessen inflammation

Diabetic HAoSMC showed increased expression of the pro-

inflammatory marker, VCAM-1 (Figure 1C; P < 0.001) compared

with non-diabetic HAoSMC. Bay 41 (0.01 μM) significantly

lessened VCAM-1 gene expression in diabetic HAoSMC

(Figure 1C). There was a tendency to lessen VCAM-1 gene

expression by Bay 60 at both concentrations in treated diabetic

HAoSMCs compared with untreated diabetic HAoSMCs

although significance was not reached (P value = 0.1).

ICAM-1 was significantly increased in both non-diabetic and

diabetic HAoSMC, however Bay 41 and Bay 60 treatment had no

significant effect on ICAM-1 expression (Figure 1D). A trend

towards decrease expression after BAY41 (0.01 μM) treatment in

both control and diabetic cells (P = 0.06) was observed. A dose-

dependent trend was also observed after Bay 60 treatment in

diabetic HAoSMCs.

Taken together, these in vitro experiments in diabetic

HAoSMCs suggest that soluble guanylate cyclase activators and

stimulators limit HAoSMC growth and the diabetes-mediated

pro-inflammatory phenotype.
3.3 Plasma exposure of Bay 60 and Bay 41
after oral dosing in ApoE -/-mice

After oral dosing, plasma exposure of the sGC activator Bay 60

and the sGC stimulator BAY41 was determined 1, 2 and 4 h post

treatment in ApoE -/- mice. Overall, plasma concentrations of

Bay 41 were dose linear between 1 and 10 mg/kg oral doses over

time (Supplementary Figure S1A). Plasma concentrations of Bay

60 showed no dose-linear increase in exposure after 3 mg/kg

compared to 0.3 mg/kg (see Supplementary Figure S1A).
3.4. sGC activation improves vascular
function and lessens oxidative stress

After 10-weeks of treatment with either Bay 41 or Bay 60, non-

diabetic and diabetic vessels were assessed for improvements in

vascular function. Diabetic vessels (black circles) exhibited a

significantly greater contraction in response to increasing

concentrations of phenylephrine (PE) compared with non-diabetic

vessels (open circles) (Figures 2A,C, P < 0.01), suggesting

significant diabetes-induced vascular dysfunction. Treatment with

Bay41 did not significantly affect PE contractility at both doses

although a small reduction was observed at 10 mg/kg (Figures 2A,

C). Treatment with Bay 60 reduced PE contractility both at
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0.3 mg/kg and 3 mg/kg (Figures 2B,C, P < 0.01), suggesting that

both doses, which showed similar plasma exposure of the sGC

activator, protected against diabetes-mediated vascular dysfunction.

In non-diabetic vessels, both Bay 41 and Bay 60 showed a small

but not significant reduction in PE contractility (Figures 2A,B).

Interestingly, there was no effect of sGC treatment on the

responses to acetylcholine (Ach) in diabetic or non-diabetic vessels

(Supplementary Figure S3), suggesting that improvement in

vascular function by the sGC activator is driven mainly via

positive effects on vascular smooth muscle cells.

Vascular oxidative stress was evaluated via immunohistochemical

staining for nitrotyrosine, a marker of peroxynitrite induced oxidative

damage (Figures 2D,E). Nitrotyrosine staining showed a trend

towards increased expression in diabetic aortae compared with non-

diabetic aortae (P = 0.1). Treatment with Bay 60 (0.3 mg/kg)

significantly attenuated the extent of nitrotyrosine staining (P <

0.05) (Figures 2D,E) while a trend towards decreased expression

was noted after Bay 41 (10 mg/kg) treatment, suggesting that sGC

activation and stimulation lessens oxidative stress.
3.5 End-point metabolic parameters

End-point parameters were assessed after 20-weeks of Bay 41

and Bay 60 treatment. There was no significant difference in

body weight between non-diabetic and diabetic mice (Table 1).

Non-diabetic mice (vehicle treated) had a mean body weight of

25.1 g ± 0.6 and diabetic mice had a mean body weight of 26.4 g

± 0.7. Treatment with the sGC activators and stimulators at

either dose had no effect on the body weights of the mice.

Blood pressure was measured before termination using a tail cuff

method (Table 1). There was no observed change in blood pressure

between non-diabetic and diabetic mice. Furthermore, treatment

with the sGC stimulator Bay 41 or the activator Bay 60 had no

effect on blood pressure as observed by tail cuff measurements.

The ratio of heart weight to tibia length remained unaltered with

the induction of diabetes and treatment with sGC modulators

(Table 1), suggesting that there was no hypertrophy of the heart

in this study, and that treatment with the stimulators and

activators had no effect on heart size. There was a slight trend

towards increased right kidney weight in the diabetic groups but

this was unaltered with sGC modulation (Table 1).

Diabetic mice regardless of treatment exhibited elevated blood

glucose levels compared with non-diabetic mice (Table 1; P <

0.001). Additionally, diabetic mice (black bars) exhibited elevated

cholesterol and LDL/HDL ratios compared with non-diabetic

mice (Supplementary Figures S2A–E). Importantly, treatment

with either Bay 41 or Bay 60 did not affect lipid parameters

(Supplementary Figure S2C).
3.6. Bay 60 but not Bay 41 significantly
lessens atherosclerosis

Diabetic aortas displayed an approximately 2.5-fold increase in

total aortic plaque compared with non-diabetic aortas (Figure 3;
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FIGURE 2

(A,B) vascular contraction in response to increasing doses of phenylephrine (PE) in aortic vessels treated with (A) Bay 41 and (B) Bay 60. (C) Rmax and Log
EC50 values for PE concentration-response curves were calculated and used for statistics. (D) Representative images of aortic sections stained with
nitrotyrosine and (E) quantification of nitrotyrosine stained positive area. Data is presented as mean ± SEM, with individual values plotted. *P < 0.05 as
indicated, **P < 0.01 Diabetic vs. Non diabetic; ##P < 0.01 Diabetic + Bay 60 (0.3) vs. Diabetic. n= 6-13 per group. Dose (mg/kg) of Bay 41 and Bay
60 indicated in brackets.
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TABLE 1 Blood pressure, blood glucose, body weight, height weight and kidney weight at study end point (20 weeks).

Parameter Non-diabetic Non-diabetic +
Bay41

Non-diabetic +
Bay60

Diabetic Diabetic +
Bay41

Diabetic +
Bay41

Diabetic +
Bay60

Diabetic +
Bay41

1 mg/kg 0.3 mg/kg 1 mg/kg 10 mg/kg 0.3 mg/kg 3 mg/kg

Blood pressure (mmHg) 99.8 ± 4.2 94.0 ± 7.2 116.1 ± 9.0 101.0 ± 3.9 110.4 ± 4.2 96.7 ± 8.8 109.3 ± 5.0 106.5 ± 5.0

Blood glucose (mmol/L) 9.8 ± 0.4 10.9 ± 0.8 9.6 ± 0.5 26.2 ± 2.4* 26.2 ± 2.4* 21.7 ± 3.7* 20.0 ± 3.0* 24.8 ± 3.0*

Body weight (g) 25.1 ± 0.1 28.8 ± 0.1 28.3 ± 0.1 26.4 ± 0.6 26.7 ± 0.6 28.0 ± 0.4 28.6 ± 0.7 27.5 ± 0.7

Heart weight (g) 0.1790 ± 0.0268 0.1414 ± 0.0054 0.1483 ± 0.0071 0.1416 ± 0.0071 0.1276 ± 0.0047 0.1282 ± 0.0044 0.1313 ± 0.0043 0.1261 ± 0.0038

Heart weight/Tibia
length (g/mm)

0.0080 ± 0.0004 0.0089 ± 0.0009 0.0084 ± 0.0004 0.0080 ± 0.0004 0.0073 ± 0.0003 0.0072 ± 0.0003 0.0073 ± 0.0002 0.0077 ± 0.0007

Right kidney weight (g) 0.1814 ± 0.0055 0.1735 ± 0.0054 0.1782 ± 0.0074 0.1969 ± 0.0116 0.1954 ± 0.0082 0.1856 ± 0.0119 0.1763 ± 0.0049 0.1886 ± 0.0053

Left kidney weight (g) 0.1739 ± 0.0049 0.1658 ± 0.0061 0.1723 ± 0.0082 0.1818 ± 0.0060 0.1959 ± 0.0103 0.1810 ± 0.0094 0.1701 ± 0.0057 0.1851 ± 0.0055

Data is expressed as mean± SEM.

*p < 0.001 vs. Non-diabetic.
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P < 0.001). Treatment with Bay 41 did not affect the percentage

total plaque (Figure 3B), whereas treatment with Bay 60

significantly reduced atherosclerotic lesions in diabetic vessels at

0.3 mg/kg (Figure 3C, P < 0.05).
3.7. Diabetes-driven myelopoesis is
lessened by sGC treatment

Blood from diabetic mice (Figures 4A,B; black bars) exhibited

significantly elevated total white blood cell (WBC) count at the

10-week time point compared with non-diabetic mice, which was

not observed at the 20-week time point (Figure 4B). More

in-depth analysis of the subtypes of WBCs showed significantly

elevated neutrophils in the blood of diabetic mice after 10 weeks

of diabetes (Figure 4E), whilst other WBCs such as monocytes

were unaffected by diabetes (Figure 4C). This suggests that

diabetes drives an early robust myelopoesis, mainly driven by

elevated neutrophils in these mice, in line with published data

(34). Treatment with the sGC compounds Bay 41 or Bay

60 tended to prevent the diabetes-driven myelopoesis at the earlier

time point (10-weeks after commencement of treatment), although

this did not fall within statistical significance (Figures 4A,C,E;

P = 0.2 between diabetic vehicle vs. diabetic + Bay41 (10 mg/kg)

and diabetic + Bay60 (3 mg/kg)). Interestingly, neither Bay 41 nor

Bay 60 had any impact on WBC count at the 20-week time point

(Figure 4B), suggesting that these compounds limit early

myelopoesis, and in particular neutrophil accumulation in the

blood. This is in line with the known function of neutrophils as

early responders that migrate towards sites of inflammation where

their secretion products activate monocytes that then enter

atherosclerotic lesions or release pro-inflammatory mediators (35).
3.8. sGC activation with BAY60 lessens
vascular inflammation

Macrophage infiltration, a marker of inflammation, was

quantified in aortic sections using a murine-specific antibody

against the macrophage marker, F4/80. Diabetic aortae exhibited a

trend towards an increase in positively stained cells compared with

non-diabetic aortae (Figures 5A,B, P = 0.17). Treatment with Bay
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60 at 0.3 mg/kg and 3 mg/kg significantly reduced the number

of macrophages in the diabetic aorta by −75% (Figures 5A,B,

P < 0.05). A trend towards a decrease in macrophage numbers was

observed after 1 mg/kg of Bay 41 treatment, however, this failed to

reach significance (Figure 5B, P = 0.1).

Next we assessed a range of inflammatory genes (IL-6, VCAM-1,

MCP-1 and IL-1β) by qRT-PCR (Figures 5C–F). The expression of

IL-6 was significantly elevated in diabetic aortae (black bars) and

VCAM-1, MCP-1 and IL-1β trended upward in gene expression in

diabetic aortae, whilst treatment with Bay 60 at both doses (0.3 and

3 mg/kg) caused a trend toward reduced expression of these

inflammatory genes (Figures 5C–F). There was also a trend towards

decreased gene expression with Bay 41 at the lower treatment dose

of 1 mg/kg although this was not apparent at the higher dose of

10 mg/kg (Figures 5C–F, P = 0.13 between diabetic vehicle vs.

diabetic + Bay 41 (1 mg/kg) and diabetic + Bay 60 (3 mg/kg)).
3.9. Renal function (albuminuria) is
improved after sGC activator and stimulator
treatment

Elevated proteinuria is a functional marker for the

development of diabetic nephropathy. Thus, urine albuminuria

levels were measured using ELISA. A highly significant increase

in albuminuria (−2-fold) was detected in urine from diabetic

mice compared with urine from non-diabetic mice at both the 10

and 20-week time points (Figure 6).

Compared to untreated diabetic mice, Bay 41 and Bay 60

showed a trend towards reduced albuminuria levels for all treated

groups at both the 10- and 20-week time point. This downward

trend was significant after 10 weeks of treatment with Bay 60 at

3 mg/kg (P < 0.01). Our data suggest that the sGC activator Bay

60, at a dose of 3 mg/kg, improves renal function in diabetic

mice after 10 weeks of treatment.
3.10. Renal structural injury is reduced by
BAY60 treatment

Histological examination of periodic acid-Schiff (PAS) stained

kidney sections showed extensive glomerular pathology and renal
frontiersin.org
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FIGURE 3

Sudan IV-stained aortas and atherosclerotic plaque quantification from mice treated with Bay 41 and Bay 60. (A) Representative images and percentage
total plaque is shown for (B) Bay 41 treated and (C) Bay 60 treated ApoE-/- mice. Data is presented as mean ± SEM, with individual values plotted. ***P <
0.001 and #P < 0.05 as indicated. n= 6-12 aortas analysed per group. Dose (mg/kg) of Bay 41 and Bay 60 indicated in brackets.
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injury after 20 weeks of diabetes. Diabetic kidneys showed

basement membrane thickening and glomerular hypertrophy due

to mesangial expansion and increased extracellular matrix

deposition (ECM) compared with non-diabetic kidney sections.
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This is visualized as dark-magenta stained regions in the

glomeruli of the diabetic kidneys (Figure 6C). Histological

analysis showed a statistically significant increase in PAS staining

in the untreated diabetic group (black bar) compared with
frontiersin.org
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FIGURE 4

White blood cell (WBC), monocytes and neutrophils counts at 10 week (A, C and E respectively) and 20 week time points (B, D and F respectively). Data is
presented as mean ± SEM, with individual values plotted. **P < 0.01 as indicated. n= 6–13 per group. Dose (mg/kg) of Bay 41 and Bay 60 indicated in
brackets.
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FIGURE 5

(A) Representative images of aortic sections stained with macrophage maker F4/80 and (B) quantification of F4/80 positive cells by averaging cell number
across 10 sections per aorta. Gene expression of aortic inflammatory markers: (C) IL-6, (D) VCAM-1, (E) MCP-1 and (F) IL-1β was assessed by qRT-PCR.
Data is presented as mean ± SEM, with individual values plotted. *P < 0.05 as indicated. n= 6–13 per group. Dose (mg/kg) of Bay 41 and Bay 60 indicated
in brackets.
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untreated non-diabetic and treated non-diabetic controls

(Figures 6C,D; P < 0.0001). Treatment with Bay 60 at 3 mg/kg

caused a statistically significant decrease in glomerular ECM

deposition in the diabetic kidney (Figures 6C,D; P < 0.001),

suggesting that Bay 60 at 3 mg/kg protects against structural

injury in diabetic mice.
3.11. Renal oxidative stress

Diabetes-mediated oxidative stress was detected using

immunohistochemical staining for nitrotyrosine. Vehicle-treated

diabetic mice showed a significant increase in nitrotyrosine

staining compared to all control non-diabetic groups

(Figures 6E,F; P < 0.0001).

Treatment with Bay 41 at both doses did not significantly alter

nitrotyrosine levels despite a strong decreasing trend. Treatment

with Bay 60 (3 mg/kg) significantly attenuated nitrotyrosine

staining compared to vehicle-treated diabetic mice (Figures 6E,F;

P < 0.001), suggesting that Bay 60, at 3 mg/kg, protects against

diabetes-driven oxidative injury.
3.12. cGMP levels as an indication of sGC
activity

cGMP levels, a measure of sGC activity, were analysed in the

plasma of diabetic and non-diabetic mice after 20 weeks of

treatment with BAY compounds. Compared with non-diabetic

untreated controls, cGMP levels were unchanged by 20 weeks of

diabetes (Supplementary Figure S1B). Similarly, treatment with

Bay 41 and Bay 60 (0.3 mg/kg) did not significantly alter cGMP

levels. sGC activation with Bay 60 at a dose of 3 mg/kg showed a

tendency towards an increase in cGMP levels in the plasma of

diabetic mice when compared to untreated diabetic mice,

however this did not reach significance. Additionally, sGC

activation with Bay 60 at the 3 mg/kg dose was significantly

higher than untreated non-diabetic mice (Supplementary

Figure S1B; P < 0.05).
4. Discussion

This study aimed to establish whether sGC modulation, using

the sGC stimulator Bay 41 and the sGC activator Bay 60, has the

potential to protect against diabetes-associated atherosclerosis and

renal damage. Using a preventative model where drug treatment

commenced at the time of diabetes initiation, we demonstrated

that the sGC activator, Bay 60 (0.3 mg/kg), was more efficacious

than the stimulator, Bay 41, in reducing atherosclerotic plaque.

This was accompanied by significant reductions in inflammation

(F4/80 macrophages) and oxidative stress (nitrotyrosine) within

the plaque and vasculature of diabetic mice. This atheroprotective

effect was complemented by improvements in vascular function as

demonstrated by reduced contractility in response to the

vasoconstrictor, phenylephrine, as well as a reduction in smooth
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muscle cell proliferation under diabetic conditions. Additionally,

Bay 60 demonstrated strong tendencies to reduce pro-

inflammatory cytokines IL-6 and IL-1β, as well as the macrophage

recruiting adhesion molecules, ICAM-1 and VCAM-1, under

diabetic conditions. On the contrary, even though Bay 41

demonstrated modest decreases in vascular inflammation markers,

it did not have an impact on vascular function and the

atheroprotective effects were less prominent. The lack of impact of

Bay 41 on vascular contraction could explain the differences in

atheroprotective effects observed between the sGC stimulator and

activator. A more patent vessel is correlated with enhanced and

smoother blood flow, reduced endothelial damage due to reduced

shear stress, and improved nutrient supply to the underlying

vasculature. These factors, as a consequence of greater vessel

relaxation by Bay 60, may have contributed to the decrease in

plaque size observed. Additionally, it is of interest to note that the

higher dose of the activator Bay 60 (3 mg/kg) did not reduce

plaque size. Although the precise mechanisms have not been

evaluated in this study, our data would suggest that a therapeutic

window exists wherein Bay 60 is optimal.

With respect to renal pathology, our study showed significantly

increased extracellular matrix protein accumulation and fibrosis

under hyperglycaemic conditions. Fibrosis involves vascular

smooth muscle cell proliferation, extracellular matrix

accumulation and inhibition of matrix degradation (17). In our

study, fibrosis in the kidney was lessened by Bay 60 as

demonstrated by significant reductions in PAS staining.

Additionally, albuminuria, an indicator of renal function, was

significantly improved with Bay 60 treatment. These

improvements were accompanied by a reduction in oxidative

stress as demonstrated by reduced nitrotyrosine staining in the

diabetic kidney upon treatment with the sGC activator Bay 60.

Interestingly, Bay 60 protected against diabetes-mediated

atherosclerosis at the lower dose of 0.3 mg/kg but prevented

kidney injury at 3 mg/kg. Thus, we speculate that the metabolism

of Bay 60 may be different between these tissues such that a

higher dose is required in the kidney to elicit its protective effect.

This anti-fibrotic effect of Bay 60 ties in with the known anti-

fibrotic effect of other sGC modulators (36, 37). Mechanistically,

sGC modulation and associated cGMP release have been shown

to block non-canonical TGFβ signaling and downstream

experimental fibrosis (33) as well as attenuating cell proliferation

in a variety of cultured cell lines including primary arterial

smooth muscle cells (26). This additional anti-fibrotic function of

activated sGC and its effector molecule cGMP is expected to

limit the progression of atherosclerosis and nephropathy in

diabetic patients and would be a highly desirable outcome of

early therapy. In support of this, sGC stimulation by BAY

41-2272 has been shown to decrease ventricular interstitial

fibrosis and collagen accumulation in a hypertensive rat model

(23), while the sGC activator, ataciguat, attenuated extracellular

matrix accumulation in the non-infarcted ventricle of rats with

heart failure and myocardial infarction (24). Additionally, BAY

41-2272 significantly reduced pulmonary arterial smooth muscle

proliferation and migration in vitro and reduced neotimal growth

post- vascular balloon injury in vivo (25, 26).
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FIGURE 6

Urinary albuminuria was quantified using a commercially available ELISA kit. Total urine production over 24 h was used to determine final albuminuria
levels (expressed as μg per 24 h) at (A) 10 weeks and (B) 20 weeks. (C) Representative images and (D) Quantification of kidney sections stained with
Periodic acid-Schiff (PAS) in diabetic and non-diabetic mice (Magnification = 400x, scale bar = 50 μm). Results are shown as percentage-positive
stained glomerular area and 20 glomeruli per kidney were analyzed. (E) Representative immunohistochemical images and (F) Quantification of
glomeruli stained for nitrotyrosine in diabetic and non-diabetic ApoE-/- mice (magnification = 400x, scale bar = 50 μm). Results shown as
percentage-positive brown staining per glomerulus area. 20 glomeruli per kidney section were analysed. Data is presented as mean ± SEM, with
individual values plotted. **p < 0.01 and ****p < 0.0001 as indicated. n= 5–11per group. Dose (mg/kg) of Bay 41 and Bay 60 indicated in brackets.
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In another study that compared the efficacy of activators and

stimulators under non-diabetic settings, low dose non-

hypotensive treatment with the sGC stimulator, BAY 60-4552,

improved renal function and survival, whilst the sGC activator,

GSK2181236A, reduced cardiac hypertrophy. At high doses, both

compounds attenuated cardiac hypertrophy but only the sGC

stimulator further improved renal function and attenuated mean

arterial pressure. These results suggested that activators and

stimulators act preferentially in different tissues. Furthermore,

neither sGC stimulation nor activation improved endothelium-

dependent vasodilatory responses, suggesting that improvements

due to sGC activity act downstream within the smooth muscle

cells (19). Our study is in agreement with this finding since we

failed to show improvements in vascular function in response to

acetylcholine. Collectively, these results suggest that clinical

development may need to take into account tissue-specific

changes in the oxidation of sGC that are observed in different

disease models.

Additionally, recent evidence has highlighted a role for sGC in

regulating cholesterol metabolism in macrophages, another

prominent cell type involved in the inflammatory component of

atherosclerosis development. In atheroprone animal models, sGC

inhibition significantly promoted ox-LDL induced cholesterol

accumulation in macrophages (22), suggesting that sGC

stimulation might prevent macrophage lipid accumulation and

cytokine production. Furthermore, evidence from renal biopsies

has shown that macrophage accumulation in diabetic kidneys

predicts declining renal function (38).

Recent evidence also suggests that the loss of sGC function in

platelets contributes to atherosclerotic plaque formation which

could be reversed by chronic treatment with a sGC stimulator

(21), suggesting that the effects we observed might also be

mediated via rescued platelet function. Importantly, our data is

in agreement with the anti-atherogenic potential of sGC agonists

and it is clear that the sGC enzyme plays a critical role in

regulating several cell types and processes involved in

atherogenesis and nephropathy, including vascular tone, fibrosis

and inflammation, and that targeting this enzyme could prove

beneficial for the overall health of the vascular endothelium and

prevent renal disease progression.

In conclusion, our head-to-head comparator is the first

preclinical study that has shown that the sGC activator Bay

60 is superior to Bay 41 and that Bay 60 has potential

therapeutic promise in the treatment of diabetes-associated

vascular complications. It is well known that sGC stimulators

and activators act via different mechanisms. sGC stimulators

act by sensitizing sGC to low levels of NO by stabilizing the

nitrosyl-heme complex, whilst sGC activators activate sGC

when the enzyme is in an oxidized or in a heme-free state.

This advantage of sGC activators is particularly relevant in

diabetic patients where endogenous intravascular NO

synthesis is markedly decreased and oxidative stress is

increased (5, 39). Thus, as highlighted by our study, the sGC

activator Bay 60 is more likely to be advantageous in settings

of oxidative stress, such as those observed in cardiovascular

diseases and diabetes, as a consequence of targeting heme-free
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sGC. Indeed, our collective data suggest that Bay 60 is the

better of the two sGC enhancers at limiting vascular

complications under diabetic conditions.
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SUPPLEMENTARY FIGURE S1

(A) Plasma exposure to the sGC activator BAY60 and the sGC stimulator
BAY41 in ApoE-/- mice after oral dosing over a 4hr period. (B) cGMP
levels, a measure of sGC activity analysed by ELISA in the plasma of
diabetic and non-diabetic mice. Data is presented as mean ± SEM with
Frontiers in Cardiovascular Medicine 1469
individual values plotted. *P < 0.05 as indicated. Dose (mg/kg) of Bay 41
and Bay 60 indicated in brackets.

SUPPLEMENTARY FIGURE S2

Lipid parameters at study end-point (20 weeks) assessed via HPLC. Data is
presented as mean ± SEM, with individual values plotted. *P < 0.05 and
***P < 0.001 as indicated. n= 6-13 per group. Dose (mg/kg) of Bay41 and
Bay60 indicated in brackets.

SUPPLEMENTARY FIGURE S3

(A,B) Vascular relaxation in response to increasing doses of Acetylcholine
(Ach) in aortic vessels treated with (A) Bay 41 and (B) Bay 60. Data is
presented as mean ± SEM. Dose (mg/kg) of Bay 41 and Bay 60 indicated
in brackets.
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Background: The causal link between Type 2 diabetes (T2D) and
coronary atherosclerosis has been established through wet lab experiments;
however, its analysis with Genome-wide association studies (GWAS) data
remains unexplored. This study aims to validate this relationship using Mendelian
randomization analysis and explore the potential mediation of VLDL in this
mechanism.
Methods: Employing Mendelian randomization analysis, we investigated the
causal connection between T2D and coronary atherosclerosis. We utilized
GWAS summary statistics from European ancestry cohorts, comprising
23,363 coronary atherosclerosis patients and 195,429 controls, along with
32,469 T2D patients and 183,185 controls. VLDL levels, linked to SNPs,
were considered as a potential mediating causal factor that might
contribute to coronary atherosclerosis in the presence of T2D. We
employed the inverse variance weighted (IVW), Egger regression (MR-
Egger), weighted median, and weighted model methods for causal effect
estimation. A leave-one-out sensitivity analysis was conducted to ensure
robustness.
Results: Our Mendelian randomization analysis demonstrated a genetic
association between T2D and an increased coronary atherosclerosis risk,
with the IVW estimate at 1.13 [95% confidence interval (CI): 1.07–1.20].
Additionally, we observed a suggestive causal link between T2D and VLDL
levels, as evidenced by the IVW estimate of 1.02 (95% CI: 0.98–1.07).
Further supporting lipid involvement in coronary atherosclerosis
pathogenesis, the IVW-Egger estimate was 1.30 (95% CI: 1.06–1.58).
Conclusion: In conclusion, this study highlights the autonomous
contributions of T2D and VLDL levels to coronary atherosclerosis
development. T2D is linked to a 13.35% elevated risk of coronary
atherosclerosis, and within T2D patients, VLDL concentration rises by
2.49%. Notably, each standard deviation increase in VLDL raises the
likelihood of heart disease by 29.6%. This underscores the significant role
of lipid regulation, particularly VLDL, as a mediating pathway in coronary
atherosclerosis progression.
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randomization, mediation pathway
01 frontiersin.org71

http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2023.1234271&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fcvm.2023.1234271
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcvm.2023.1234271/full
https://www.frontiersin.org/articles/10.3389/fcvm.2023.1234271/full
https://www.frontiersin.org/articles/10.3389/fcvm.2023.1234271/full
https://www.frontiersin.org/articles/10.3389/fcvm.2023.1234271/full
https://www.frontiersin.org/articles/10.3389/fcvm.2023.1234271/full
https://www.frontiersin.org/journals/cardiovascular-medicine
https://doi.org/10.3389/fcvm.2023.1234271
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Feng et al. 10.3389/fcvm.2023.1234271
1. Introduction

1.1. Unraveling the pathogenesis of type 2
diabetes and coronary atherosclerosis

Type 2 diabetes (T2D) stands as a pervasive metabolic disorder

affecting a substantial global population (1). Its intricate etiology,

devoid of a definitive cure, compels a focus on symptom

alleviation and complication prevention (2). Unfortunately, the

prevalent chronic complications of T2D, primarily impacting

cardiovascular and nerves, pose significant morbidity and

mortality risks (3). Among these complications, coronary

atherosclerosis emerges as a formidable adversary—characterized

by plaque accumulation in the coronary arteries nourishing the

heart. Given the pronounced atherogenic tendencies of T2D

patients, exploring the mechanisms behind the T2D-coronary

atherosclerosis nexus becomes pivotal (4). Thus, deciphering the

pathophysiological intricacies driving coronary atherosclerosis in

T2D patients is imperative, enabling the formulation of

efficacious prevention and management strategies.

In essence, the pervasive prevalence of T2D and its

consequential coronary atherosclerosis mandate an in-depth

inquiry into the underlying mechanisms. Enhancing our

comprehension of T2D’s pathophysiology and its cascading

complications promises more potent approaches to prevent,

manage, and enhance patient well-being.
1.2. Mendelian randomization

Traditional statistical methods for exploring cause-and-effect

relationships are flawed due to bias and confounding (5).

Mendelian randomization (MR) mitigates confounding and

reverse causality issues. Instrumental variables (IVs), linked to

exposures but not outcomes or confounding, underpin MR (6–

8). Three assumptions—relevance, exchangeability, and exclusion

restriction—support MR validity (Figure 1) (9). Despite benefits,
FIGURE 1

Three assumptions about instrumental variables (IV).
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strict IV requirements limit MR’s use. Genome-wide association

studies introduce single-nucleotide polymorphisms (SNPs) as

robust IVs (10). SNPs serve as popular IVs (11) and uncover

novel genetic determinants.

Despite challenges like sample size demands and pleiotropy,

MR promises to refine our grasp of complex diseases and their

influences. Leveraging MR strengthens causal conclusions,

enhancing intervention and management strategies.
1.3. The link between T2D and coronary
atherosclerosis

T2D is a pervasive metabolic disorder with a significant global

impact. While established links exist between T2D and coronary

atherosclerosis (12) gaps remain in comprehending the intricate

mechanisms that intricately connect the two (13). The

conventional focus on risk factors like hypertension, obesity, and

dyslipidemia partially explains the relationship, but an evolving

body of research suggests the direct involvement of T2D in

atherogenesis, notably impacting coronary atherosclerosis’s

pathogenesis (14). Central to this relationship is chronic

hyperglycemia, a hallmark of T2D, which amplifies cardiovascular

risks (15). It impairs endothelium-dependent vasodilation,

compromising vascular health (16). Intriguingly, the accumulation

of advanced glycation end products (AGEs) amid hyperglycemia

plays a pivotal role in T2D-driven coronary atherosclerosis

development (17). AGEs activate receptors, inciting inflammation,

and cell proliferation, further exacerbating atherosclerosis (18).
1.4. VLDL’s role in T2D-coronary
atherosclerosis

1.4.1. VLDL is linked to T2D
Elevated fatty acid levels due to hyperinsulinemia are well-

documented contributors to metabolic disorders, including T2D

(19). These fatty acids trigger immune responses, inducing
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inflammatory cytokines like TNF-α, IL-1, and IL-6 (20). This

inflammatory milieu drives insulin resistance, disrupts glucose

homeostasis, and fosters T2D. Moreover, inhibiting the liver X

receptor escalates cholesterol accumulation, inducing CRP,

plasminogen inhibitor-1, serum amyloid, fostering fibrinogen

synthesis, and hypercoagulability (21). These cytokines catalyze

VLDL and free fatty acid production, exacerbating lipid

disorders, promoting arterial lipid deposition, and augmenting

atherosclerotic risk (22). The complexity of these interactions

underscores the multifaceted nature of metabolic disorder

pathogenesis, necessitating a comprehensive understanding.
1.4.2. VLDL’s role in causing coronary
atherosclerosis

Notably, dyslipidemia, particularly the presence of very low-

density lipoprotein (VLDL) and elevated triglyceride (TG) levels,

has been linked to coronary atherosclerosis (23). It is revealed

that elevated levels of very-low-density lipoprotein cholesterol

(VLDL-C) are associated with an increased risk of major adverse

limb events (MALE) in patients with cardiovascular disease (24).

However, there is no correlation between VLDL-C levels and

major adverse cardiovascular events (MACE) or all-cause

mortality, even after accounting for established risk factors such

as LDL-C and lipid-lowering medication (24). Postprandial

remnant lipoproteins, especially VLDL remnants, play a

significant role in the initiation and progression of atherosclerosis

(25). The increase of these lipoproteins in plasma, along with

insufficient LPL activity, collectively contribute to the

development of coronary atherosclerosis (25).

The intricate interplay between VLDL and coronary

atherosclerosis underscores the significance of VLDL metabolism

in cardiovascular health, providing valuable insights into

potential mechanisms underlying the relationship between

metabolic disorders like T2D and the development of

atherosclerosis.
FIGURE 2

Research flow chart. Adapted from Smart Medical Art (Available at:
https://smart.servier.com/).
1.5. Research landscape and scope of the
study

The causal relationships between T2D, VLDL, and coronary

atherosclerosis have each been independently established through

2-sample analyses (26–28). However, substantial research gaps

persist in elucidating the intricate pathways that connect T2D to

coronary atherosclerosis, highlighting the imperative for further

investigation. Within this context, investigating the mediating

role of VLDL emerges as a promising avenue of exploration.

MR emerges as a robust strategy to probe causal relationships,

effectively addressing the gaps in our current understanding (29).

This analytical approach, utilizing multiple IVs, holds the

potential to unravel the complexity of these relationships.

Through the estimation of genetic variant effects on intermediate

phenotypes (such as blood glucose) and their subsequent

influence on outcomes (such as coronary atherosclerosis), MR
Frontiers in Cardiovascular Medicine 0373
offers a pathway to uncover the underlying mechanisms linking

T2D to coronary atherosclerosis.

In summary, this study’s focus on elucidating the intermediate

role of VLDL aims to bridge existing gaps in comprehending the

intricate association between T2D and coronary atherosclerosis.

Leveraging the capabilities of MR, we aspire to contribute

valuable insights into the intricate mechanisms that underscore

this relationship, thus advancing our understanding and

presenting potential avenues for intervention and management.
2. Materials and methods

2.1. Study selection and data collection

In order to explore how T2D may contribute to the

development of coronary atherosclerosis through VLDL

regulation, we conducted two-sample MR analyses using data

from the IEU openGWAS database (https://gwas.mrcieu.ac.uk/).

The aim of these analyses was to verify the consistency of our

results. We performed three MR analyses in total. The first two

were conducted to investigate the causal relationship between

T2D and VLDL, as well as between T2D and coronary

atherosclerosis, respectively. The third analysis examined the

effect of VLDL levels on coronary atherosclerosis (Figure 2). We

used GWAS datasets to perform these MR analyses, and there

was minimal overlap between them. Table 1 summarizes the

details of the datasets used.

We used a significance threshold of P < 5e-8 to identify SNPs

associated with T2D and VLDL, as this is the widely recognized

standard for genome-wide association studies (GWAS) (29). To

address issues related to linkage disequilibrium (LD) between

the two samples, we conducted LD clumping using the

TwoSampleMR package in the R language. We applied the

following criteria: R2 = 0.01 and kb = 10,000 (30). This procedure

enabled the elimination of SNPs exhibiting strong LD with one

another, resulting in a subset of independent SNPs for further

analysis.
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TABLE 1 Summarizes the details of the datasets used.

Trait Sample size N SNPs Sex Population Year ID
T2D 32,469/183,185 16,380,440 Males and females Europa 2021 finn-b-E4_DM2

VLDL 115,078 12,321,875 2020 met-d-VLDL_L

Coronary atherosclerosis 23,363/195,429 16,380,466 2021 finn-b-I9_CORATHER_EXNONE
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2.2. Data analysis methods

2.2.1. Weak instrumental variable test
To ensure the validity of the Mendelian Randomization

analysis, we implemented stringent criteria for SNP inclusion,

focusing only on SNPs exhibiting strong associations with the

respective exposures, namely Type 2 Diabetes or VLDL levels (9).

The robustness of individual SNPs or sets of SNPs was assessed

through the calculation of the F-statistic, providing a measure of

the instrument strength. Additionally, we examined the

proportion of variance in the exposure explained by the

instrumental variable, as indicated by the R2 statistic (31). These

rigorous metrics were employed to ascertain the reliability and

potency of the instrumental variables utilized in our MR analysis.

The F-statistic, calculated as F ¼ N�K�1
K � R2

1� R2, was

employed for the assessment, where “N” represents the sample

size of the exposure, and “K” denotes the number of SNPs

associated with both the exposure and the depth of the Genome-

Wide Association Study. Furthermore, the determination of R2

relied on the formula 2 � (1�MAF ) � MAF � b2, with

“MAF” representing the Minor Allele Frequency and b2

signifying the effect size of the SNP on the exposure. This

thorough evaluation process served to enhance the confidence in

the instrumental variables used for the MR analysis.
2.2.2. Causal effect estimation
In this study, we utilized multiple SNPs as instrumental

variables for Mendelian Randomization (MR) analysis. To assess

the association of each individual SNP, we employed the Wald

statistic with the following formula (31):

bui ¼
cb
y
i

bbx
i

bui represents the estimated effect size for SNP i
cb
y
i denotes the effect size of the SNP on the outcome variable.

bbx
i represents the effect size of the SNP on the exposure variable.

To evaluate the relationship between T2D and coronary

atherosclerosis, we combined Wald ratios using the inverse

variance weighted (IVW) method (32). In this context, bui

represents the estimated causal effect, cby
i denotes the effect size

of the SNP on the outcome variable, and bbx
i represents the effect

size of the SNP on the exposure variable. Additionally, we

employed the MR-Egger regression method (33) and the

weighted median estimator (WME) (34) to complement and

validate the MR results.
Frontiers in Cardiovascular Medicine 0474
It is important to note that the validity assumptions for the

three calculation methods used for instrumental variables differ,

which helps ensure the robustness of the test results. The IVW

method calculates the effect estimate as the slope of a linear

regression weighted on the exposure factor for the instrumental

variable in the outcome, with the intercepted item constrained to

be zero. If all selected SNPs are valid instrumental variables, the

IVW rule can provide unbiased effect estimates. In contrast, the

MR-Egger method considers the existence of pleiotropy in the

instrumental variables by using an intercept term in the weighted

regression. The intercept term is used to evaluate the pleiotropy

between the instrumental variables, and the slope is estimated

accordingly. Finally, the WME method can still estimate the

causal effect even when the proportion of invalid instrumental

variables is as high as 50% and the estimated precision of the

instrumental variables is quite different.

To evaluate the presence of heterogeneity among the

instrumental variables, we used Cochran’s Q test with both the

IVW and MR-Egger methods (35, 36). If there is heterogeneity

among the instrumental variables, we used the IVW of the

random-effects model for the analysis of the results. In contrast,

if there is no heterogeneity, the IVW of the fixed-effects model is

used as the main approach (36).

2.2.3. Reliability evaluation
One must bear in mind that when it comes to instrumental

variables, they are typically assumed to impact outcomes solely

through the exposure factors being investigated. In other words,

there is no direct association between these variables and the

outcomes themselves. Nonetheless, this assumption becomes

increasingly challenging to verify because genetic variation can

exhibit pleiotropic effects—meaning that one gene may influence

multiple traits or phenotypes simultaneously. Consequently, fully

testing the exclusion hypothesis poses difficulties. At present,

researchers widely rely on the intercept term of MR-Egger

regression as a tool for detecting potential instances of

pleiotropy. Essentially, if the Egger intercept (i.e., linear

regression intercept) in an MR-Egger model approximates zero

closely enough, it indicates a lack of evidence supporting genetic

pleiotropy; thus, reinforcing the validity of the exclusionary

hypothesis. Moreover, a significantly different result suggests

otherwise (32, 37).

To assess the sensitivity of the results, a leave-one-out analysis

was performed. This method is widely used to identify potential

outliers by removing each SNP one by one and observing whether

the results differ significantly before and after the removal.

Specifically, if the obtained P-value is greater than 0.05 after

excluding a particular SNP, it suggests that the SNP does not have

a non-specific effect on the estimation of the causal effect (30).
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3. Results

3.1. Relevance

The F-statistic value is all >10 in every filtering step, indicating

strong instrumental variables. The threshold of r-squared is 0.01.

The low likelihood of weak instrumental variable bias, as

suggested by the R2 and F values, further supports the

assumption of relevance in MR research.
3.2. Two-step Mendelian randomization
results

The study findings, depicted in Figures 3, 4 and summarized in

Figure 5, reveal the established causal links between the exposures

and outcomes evaluated through MR-Egger regression, weighted

median, and random effects inverse variance weighting methods.

In addition, assessments for heterogeneity and horizontal

pleiotropy were executed, with the respective outcomes presented

in Figure 5. While the heterogeneity test results might not align

optimally, possibly attributable to the intricate pathogenesis of

T2D, they do not undermine the overarching conclusion.

The analysis reveals significant findings across multiple

methods and tests investigating the relationships between various

factors. Notably, for β0, which pertains to the causal impact of

T2D on the development of coronary atherosclerosis, the inverse

variance weighted method indicates a substantial association with

an odds ratio (OR) of 1.13 [95% confidence interval (CI): 1.07–
FIGURE 3

MR analysis.
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1.20], highlighting the elevated risk of coronary atherosclerosis

due to T2D. Likewise, the relationship between Type 2 diabetes

and VLDL levels, denoted as β1, exhibited modest associations

across the various methods employed. These results imply that

while a direct influence of T2D on VLDL levels is observed, it

does not reach statistical significance in most analyses. This

suggests a nuanced connection that might contribute to the

intricate interplay between T2D and VLDL in the context of

cardiovascular risk factors. Regarding β2, which signifies the

relationship between VLDL levels and the occurrence of coronary

atherosclerosis, the weighted median method demonstrated a

significant odds ratio of 1.42, indicating that higher VLDL levels

significantly increase the likelihood of developing coronary

atherosclerosis. The inverse variance weighted method also

presented a meaningful association with an odds ratio of 1.30,

further underlining the role of VLDL in the development of

coronary atherosclerosis.

The outcomes of horizontal pleiotropy assessment (Figure 4)

depicted in these three figures serve as a means of mitigating

horizontal pleiotropy, a factor that must be accounted for in

Mendelian randomization analyses. Horizontal pleiotropy refers

to effects that must be eliminated in Mendelian randomization,

as each individual SNP locus can potentially exhibit horizontal

pleiotropy. The overall pleiotropy fit observed in the images

converges closely to zero, thus statistically implying the absence

of horizontal pleiotropy.

It is important to note that the conclusions drawn from MR

analysis are based on several assumptions, including the validity

of instrumental variables, the absence of horizontal pleiotropy,

and the absence of unmeasured confounding factors. While
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FIGURE 4

Forest plots of MR analysis.
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efforts were made to ensure the validity of instrumental variables, it

is still possible that some SNPs may have pleiotropic effects or be

subject to weak instrument bias. Therefore, the results should be

interpreted with caution, and further studies are needed to

confirm the causal relationship between T2D, VLDL, and

coronary atherosclerosis.
3.3. Reliability evaluation

It is worth highlighting that the “Leave-one-out” sensitivity

analysis should be conducted across all instrumental variables

employed in the analysis, extending beyond the six groups of

data mentioned earlier. Despite the positive outcomes currently

depicted in Figure 6, this analysis should be iteratively repeated

by excluding each individual instrumental variable to assess its

impact on the overall results. This meticulous approach offers
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additional confirmation that the favorable results are not reliant

on a single SNP or a limited subset of SNPs.
4. Conclusion

Cardiovascular disease (CVD) is a global health concern with

significant morbidity and mortality (38). Within its range,

coronary heart disease (CHD) significantly impacts individuals

with T2D, being a key contributor to morbidity and mortality

(39). T2D is an established risk factor for CHD, with

hyperglycemia directly triggering coronary atherosclerosis (40).

Elevated blood glucose also contributes to VLDL buildup (41).

Particularly important is the link between dyslipidemia—

characterized by VLDL and high TG levels—and CHD (42). This

investigation aims to uncover VLDL’s role, address knowledge
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FIGURE 5

The result of 5 methods and 2 tests.

Feng et al. 10.3389/fcvm.2023.1234271
gaps, and enhance understanding of the complex T2D and

coronary atherosclerosis relationship via Mendelian randomization.

This study utilized large-scale GWAS meta-analysis data and

employed a two-sample Mendelian randomization approach to

investigate the causal relationships between T2D, VLDL, and

coronary atherosclerosis. T2D increases the risk of developing

coronary atherosclerosis, leading to a 13.35% increase in disease

occurrence compared to individuals without T2D. Additionally,

in the context of patients with T2D, VLDL concentration

increases by 2.49%. For every one standard deviation increase in

VLDL, the probability of developing heart disease increases by

29.6%. These findings suggest that VLDL may serve as a

mediator in the link between T2D and coronary atherosclerosis.

According to reports, coronary atherosclerosis is a significant

global health concern, particularly among individuals with T2D

due to their elevated risk of CHD (43). VLDL, intricately linked

with CHD risk, plays a pivotal role in this context. T2D is

known to elevate CHD risk through mechanisms such as chronic

inflammation, insulin resistance, and oxidative stress, all of which

contribute to the development of atherosclerosis—an underlying

factor in CHD progression (44, 45). Moreover, VLDL, a central

risk factor for CHD, assumes a crucial role (46). Elevated VLDL

levels, characteristic of dyslipidaemia, independently elevate CHD

risk by promoting atherosclerosis development (47). This study

focused on understanding the individual influences of T2D and

VLDL levels on coronary atherosclerosis risk and explored the

potential mediating role of VLDL (47). The findings not only

delineated the separate contributions of T2D and VLDL levels to

coronary atherosclerosis risk but also proposed that VLDL might

operate as a mediating pathway. These findings accentuate the

significance of managing VLDL levels to mitigate the onset of

coronary atherosclerosis among T2D individuals, underlining the

need for early intervention to manage CHD risks.
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This study possesses several strengths. Firstly, it leveraged

large-scale GWAS databases and incorporated hundreds of SNPs

in each two-sample Mendelian randomization analysis,

minimizing the potential for random outcomes and enhancing

the proportion of variance explained by the SNPs. Additionally,

the study’s robustness is underscored by conducting GWAS for

all three variables using European databases with a low overlap

probability, effectively addressing the concern of population bias.

Furthermore, unlike similar studies focused solely on specific

populations, this research significantly broadened its scope by

encompassing a diverse European database, contributing to the

generalizability of its findings.

While employing the two-sample Mendelian randomization

method, this study demonstrates notable strengths as well as

certain limitations. Firstly, despite the utilization of GWAS data

spanning European databases, the extent of overlap remains low,

potentially impacting the external applicability of the findings.

Additionally, the assumption of method validity encompasses the

effectiveness of instrumental variables; however, the presence of

weak instruments might introduce inaccuracies in estimations.

On another note, the study might have some shortcomings in

controlling for confounding factors, such as lifestyle, genetics,

and other potential covariates. This could potentially affect the

internal validity of the results, making it challenging to

completely exclude the influence of other factors. Furthermore,

constrained by sample size and effect magnitude, the study’s

statistical power could be limited, leading to a potential

weakening of result stability. Therefore, careful interpretation of

the generalizability of the findings is warranted. These limitations

underscore the need for cautious interpretation and highlight

avenues for future research.

In conclusion, this study employed three two-sample

Mendelian randomization analyses to investigate the relationships
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FIGURE 6

“leave one out” sensitivity analysis.
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between T2D, VLDL, and coronary atherosclerosis. The results

suggest that VLDL may potentially serve as a mediator in the

pathway through which T2D leads to coronary atherosclerosis.

This innovative approach bridges the gap between experimental

and genomic methodologies, providing robust evidence for the

causal link between these conditions. By incorporating VLDL

levels as a potential mediating factor, it unveils a previously

unexplored facet of their interplay, shedding light on the intricate

mechanisms underlying this complex association.

The findings of this research have significant implications for

clinical practice and public health policy formulation. Confirming

the mediating role of VLDL in the T2D-coronary atherosclerosis

association underscores the importance of reducing VLDL levels,

potentially aiding in coronary atherosclerosis risk reduction. Due

to the intricate interplay between T2D and coronary

atherosclerosis, these results can guide the development of

targeted intervention strategies, facilitating early identification

and treatment of abnormal VLDL levels in T2D patients, thereby

mitigating cardiovascular risks. Additionally, these discoveries

offer a roadmap for future investigations, motivating further

exploration into the mechanisms underlying T2D, VLDL, and
Frontiers in Cardiovascular Medicine 0878
coronary atherosclerosis, consequently providing more precise

and effective approaches for cardiovascular disease prevention

and management. This study not only enhances our

understanding of the mechanisms underlying relevant diseases

but also provides valuable insights for the realms of clinical

practice and public health.
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NPEPPS and ABHD17A are
associated with the co-
occurrence of type 2 diabetes
and coronary artery disease
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Longyi Zheng6* and Huaifang Yao1*
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University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui, China,
3Department of Biomedical Engineering, Boston University, Boston, MA, United States, 4Anhui
Provincial Children’s Hospital, Children’s Hospital of Fudan University, Hefei, Anhui, China, 5Cancer
Research Center, The First Affiliated Hospital of University of Science and Technology of China
(USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei,
Anhui, China, 6Department of Endocrinology, Changhai Hospital, Naval Medical University,
Shanghai, China
Background: Coronary artery disease (CAD) and type 2 diabetes mellitus (T2DM)

are closely related. The function of immunocytes in the pathogenesis of CAD and

T2DM has not been extensively studied. The quantitative bioinformatics analysis

of the public RNA sequencing database was applied to study the key genes that

mediate both CAD and T2DM. The biological characteristics of associated key

genes and mechanism of CD8+ T and NK cells in CAD and T2DM are our

research focus.

Methods: With expression profiles of GSE66360 and GSE78721 from the Gene

Expression Omnibus (GEO) database, we identified coremodules associated with

gene co-expression relationships and up-regulated genes in CAD and T2DM

using Weighted Gene Co-expression Network Analysis (WGCNA) and the ‘limma’

software package. The enriched pathways of the candidate hub genes were then

explored using GO, KEGG and GSEA in conjunction with the immune gene set

(from the MSigDB database). A diagnostic model was constructed using logistic

regression analysis composed of candidate hub genes in CAD and T2DM.

Univariate Cox regression analysis revealed hazard ratios (HRs), 95%

confidence intervals (CIs), and p-values for candidate hub genes in diagnostic

model, while CIBERSORT and immune infiltration were used to assess the

immune microenvironment. Finally, monocytes from peripheral blood samples

and their immune cell ratios were analyzed by flow cytometry to validate

our findings.

Results: Sixteen candidate hub genes were identified as being correlated with

immune infiltration. Univariate Cox regression analysis revealed that NPEPPS and

ABHD17A were highly correlated with the diagnosis of CAD and T2DM. The
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results indicate that CD8+ T cells (p = 0.04) and NKbright cells (p = 3.7e-3) are

significantly higher in healthy controls than in individuals with CAD or CAD

combined with T2DM. The bioinformatics results on immune infiltration were

well validated by flow cytometry.

Conclusions: A series of bioinformatics studies have shown ABHD17A and

NPEPPS as key genes for the co-occurrence of CAD and T2DM. Our study

highlights the important effect of CD8+ T and NK cells in the pathogenesis of

both diseases, indicating that they may serve as viable targets for diagnosis and

therapeutic intervention.
KEYWORDS

cardiovascular disease, type 2 diabetes, bioinformatics, hub gene, CD8+T cells, NK
cells, immune
Introduction

Diabetes mellitus (DM) is a chronic metabolic disorder

characterized by hyperglycemia resulting from defects in insulin

secretion, insulin resistance, or a combination of both (1, 2). This

condition can lead to the long-term damage to organs, nervous

system, and blood vessels, which further develop into organ

dysfunction or even failure (3). The global prevalence of DM is

increasing each year, with predictions indicating that the number of

individuals with DM will reach 5.92 billion by 2035 (4, 5), over 90%

of which will be type 2 diabetes mellitus (T2DM) (6). While T2DM

can be effectively controlled clinically with antidiabetic drugs such

as metformin and insulin (7, 8), the inherent metabolic

abnormalities contribute to a wide range of diseases and

predisposes to complications that threaten human health (9, 10).

For this reason, most medical research has focused on the

relationship between T2DM and other diseases (11–13).

Over the past 15 years, coronary artery disease (CAD) has

become the leading cause of death worldwide, accounting for 15

million deaths in 2016 alone (14), and it is the primary reason of

morbidity and death rate among individuals with T2DM (15, 16).

There is a strong correlation between the occurrence of CAD and

T2DM (1, 17). In their analysis of the Framingham Heart Study,

Fox et al. reported that for each ten-year expand in the duration of

T2DM, the morbidity and death rate of CAD in patients with

T2DM increased by 1.38 and 1.86 times, respectively, compared to

those without T2DM (18). The primary pathology underlying CAD

is atherosclerosis, a chronic inflammatory response leading to

plaque formation and can result in stable angina, unstable angina,

sudden cardiac death, and myocardial infarction (MI) (19, 20).

Immune cells including monocytes, macrophages, endothelial cells,

smooth muscle cells and adipocytes are attracted to atherosclerotic

plaques and are considered critical determinants of the disease

progression (21, 22). The transition from stable plaques to unstable,

rupture-prone plaques is associated with an increased number of T
0282
cells displaying signs of early activation within the plaque (23–25).

Studies have shown that the number of apoptotic NK cells in the

peripheral blood of patients with CAD is significantly increased (26,

27), and that the phenotype of CD8+ T cells correlates with the rate

of disease progression after the onset of T2DM (28–30). Despite the

rapidly increasing prevalence of T2DM, which has proved to be a

major account of morbidity and death rate in patients with MI (31,

32), research into the associated inflammation and changes in

immune cell function between the two conditions is limited.

Therefore, it is crucial to investigate the pathogenesis of MI and

T2DM as well as determine the mechanisms of inflammation and

immune regulation (33).

Drawing on public data and bioinformatics methods, this study

identified 16 candidate hub genes linked with immune genes, MI

and T2DM. Gene Ontology(GO) and Gene Set Enrichment

Analysis (GSEA) were applied to detailed examine the organic

procedure and gateways. Stepwise regression and Univariate Cox

regression analysis were accomplished to create diagnostic models

of CAD and T2DM and examine sixteen candidate hub genes in

diagnostic models, which were authenticated in two specimen

datasets, GSE66360 and GSE78721. These models have good

potential diagnostic performance value in the clinical diagnosis of

CAD and T2DM, and the measurement results of Area Under the

Curve values indicated this. As T2DM is an important factor

influencing cardiovascular disease and have high correlation with

immune cell function. Consequently, we additionally investigated

the distribution of immunocytes of specimens and the relevance of

various immunocytes with these differentially expressed genes

(DEGs), then performed correlation validation analyses of the

abnormalities of the above DEGs. For further research, we

performed correlation validation analyses of the abnormalities of

the above candidate hub genes and immune cells in blood samples

from 38 clinical CAD, T2DM patients and 9 healthy individuals.

The results indicate a strong association between CAD and the

prevalence of CD8+ T and NK cells, also suggest the risk of T2DM
frontiersin.org
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combined with CAD, providing insights for targeted treatment and

control. The article design is shown in Figure 1.
Results

Identification of CAD and T2DM related
gene modules

The Weighted Gene Co-expression Network Analysis

(WGCNA) was employed to identify interconnected gene clusters

or modules with a close relationship to CAD. The most suitable soft

threshold power, b = 16.087, was selected based on scale

independence (R^2 = 0.87) and mean connectivity (the minimum

of about 0) (Figure 2A). Following this, module merging was

performed, resulting in 20 gene co-expression modules related to

CAD, each represented by a different color (Figures 2B, C). These

colors depict the relationship between the modules and CAD, with

turquoise indicating the most positive correlation (232 genes;

[CC] = 0.65; P = 6.3e-29) and light green showing the strongest

negative correlation (66 genes; [CC]=-0.78; P=4.7e-48) with T2DM.

In addition, significant correlations were observed between both the

turquoise (r = 0.68) and light green (r = 0.72) module memberships

and gene significance for CAD (Figure 2D). Consequently, 298

genes within the turquoise and light green modules, which exhibited

the strongest associations with CAD, were chosen for further study.

The details of the identification of gene modules associated with

T2DM can be found in Supplementary Figure 1.
Identification of hub genes associated with
immunological signature genes, CAD,
and T2DM

In the comparison between the T2DM and normal population,

1567 DEGs were acknowledged, and the comparison between the

CAD and healthy control groups, 1414 DEGs were found. These

genes were validated using the “limma” package. In the T2DM group,
Frontiers in Immunology 0383
1384 of these genes were upregulated and 183 were downregulated,

while in the CAD group, 815 were upregulated and 599 were

downregulated. The top 20 upregulated and downregulated DEGs

are depicted in the heatmap (Figure 3A), and all DEGs are

represented by volcano plots, with red or blue grids reflecting genes

which were upregulated and downregulated, separately (Figure 3B).

Red or green triangles implied genes which were upregulated and

downregulated, separately. From the Immunologic Signature gene

sets (ImmuneSigDB; MSigDB; Liberzon et al., 2011, Bioinformatics),

immune_GENEs were extracted. The ImmuneSigDB contains gene

sets representing comprehensive regulatory dynamics of cell types,

states, and disturbances within the immune system. These signatures

were created through the manual curation of published human

immunology studies. Subsequently, an intersection of 298 module

genes associated with CAD as identified by WGCNA combined with

1414 DEGs detected by the “limma” package, 3907 immune_GENEs

extracted from MSigDB, and 1567 T2DM DEGs associated with

T2DM progression led to the selection of 16 candidate hub genes:

PI4KA, YWHAZ, ERRFI1, ABHD17, LRRC40, PLSCR4, NPEPPS,

SEL1L3, MAP3K2, ZBED5, EIF2B1, CAPN2, ZNF146, BCHE,

UQCRC2, USP34. All 16 candidate hub genes are protein-coding

and their distribution varies in the human body, mainly concentrated

in the brain and lymph nodes (Figure 3C; Table 1).
Functional enrichment analysis and
biological process of DEGs

GO and Kyoto Encyclopedia of Genes and Genomes (KEGG)

annotations were utilized for more detailed biological research

of DEGs. GO manifested that the DEGs were chiefly

distributed in several biology procedures including 1) platelet

alpha granule, maintenance of DNA methylation, positive

regulation of multicellular organism process, and regulation of

phosphatidylinositol 3-kinase signaling; 2) ATP binding, secretory

granule, enzyme binding, and purine nucleotide binding; and 3)

Alzheimer’s disease, inositol phosphate metabolism, oxidative

phosphorylation, and apoptosis (Figures 4A–C). KEGG pathway

enrichment analysis demonstrated that these genes were chiefly

enriched in endopeptidase activity, hydrolase activity, and cysteine-

type endopeptidase activity (Figure 4D). GSEA was employed to

identify activation pathways in CAD and T2DM, and to distinguish

differential regulatory pathways between the high and low expression

groups of candidate hub genes. GSEA of hub genes suggested that

they were associated with several protein biological processes such as

ubiquitin-mediated proteolysis, protein export, and RNA polymerase,

neurological related activities like neuroactive ligand-receptor

interaction, and other biological processes like olfactory

transduction, ubiquitin-mediated proteolysis, nucleotide excision

repair, endocytosis, and limonene and pinene degradation

(Supplementary Figure 2). Among these candidate hub genes,

ERRFI1, SEL1L3, ZBED5, ZNF146, ABHD17A, and YWHAZ were

implicated in the biological process of protein output. ERRFI1,

PI4KA, ZBED5, UQCRC2, and ZNF146 were implicated in the

biological process of olfactory transduction. ZNF146 and

ABHD17A were implicated in the biological process of the
FIGURE 1

Structure of workflow chart.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1267963
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Dai et al. 10.3389/fimmu.2024.1267963
spliceosome. ERRFI1 was implicated in the biological process of RNA

polymerase. Among these candidate hub genes, SEL1L3 was involved

in most biological pathways, including ubiquitin-mediated

proteolysis, protein export, pyrimidine metabolism, nucleotide
Frontiers in Immunology 0484
excision repair, pathogenic Escherichia coli infection, and

neuroactive ligand-receptor interaction. In contrast, PLSCR4 was

only involved in the biological process of limonene and

pinene degradation.
A B

C

FIGURE 3

Recognition of differential genes associative with CAD patients and healthy cohorts, T2DM patients and healthy cohorts. (A) The top 20 up- and
down-regulated differential gene discovered between the CAD and healthy groups, as well as T2DM and healthy groups, are represented by red and
blue squares in the heat map, respectively. (B) The red and green triangles in the volcano map represent the up- and down- differential genes. (C)
Venn diagram shows gene intersection of immune gene, the differential genes of T2DM and the differential genes of CAD combined with WGCNA-
identified module genes.
A B

DC

FIGURE 2

Determination of gene modules related to coronary heart disease. (A) Constructing Soft Threshold Power (b) based on dimension independence and mean
connectivity. (B) Gene block mass related to CAD are displayed in various colors under the gather dendrogram. (C) The correlation between gene modules
and CAD is depicted through heat maps. The upper left side displays the coefficient of correlation, and the lower right side displays the P-value. (D) The
correlation between the most positively correlated and negatively correlated modules in CAD, different member relationships, and gene conspicuousness.
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Construction and validation of diagnostic
models and hub genes

Two predictive models incorporating candidate hub genes were

developed using the logistic regression algorithm, drawing from

GSE66360 and GSE78721 datasets. The prediction model built from

the GSE66360 dataset exhibited strong diagnostic capabilities, with

an AUC value of 0.80 (Figure 5A). Univariate Cox regression

analysis of the expression of candidate hub genes from prediction

model was conducted. The results suggested that high expression of

ABHD17A (p=2.9e-3) was associated with diagnostic rates of
Frontiers in Immunology 0585
patients with MI compared to that of healthy individuals.

(Figure 5B). For the GSE78721 dataset, the model displayed an

AUC value of 0.75 (Figure 5C). Univariate Cox regression analysis

of the expression of candidate hub genes suggested that high

expression of NPEPPS (p=0.04) was associated with diagnostic

rates of patients with T2DM compared to that of healthy

individuals (Figure 5D). When selecting pathological samples for

CAD, blood samples prove to be more appropriate than adipose

tissue samples, mainly because peripheral blood samples are easier

to obtain in vivo. The results from peripheral blood specimens

suggest that the GSE66360 dataset has predictive value for CAD
A B

D

C

FIGURE 4

Functional enrichment study of differentially expressed genes and hub genes related to CAD and T2DM progression. (A–C) Gene Ontology analysis
of CAD and T2DM-associated differential gene. The top 10 enriched Gene Ontology sorts (bioprocess, cell constituent, and molecular function) are
revealed. Gene proportions and different ontologies are represented by the X and Y coordinates. The circle extent indicates gene count. (D) Kyoto
Encyclopedia of Genes and Genomes analysis of the candidate hub genes related to CAD and T2DM progression, immune genes. The left and right
portion means the enriched differentially expressed genes and most considerable ontologies, respectively.
TABLE 1 The type and expression of the 16 hub genes.

Genes Gene type Expression

PI4KA
YWHAZ
ERRFI1
ABHD17A
LRRC40
PLSCR4
NPEPPS
SEL1L3
MAP3K2
ZBED5

EIF2B1
CAPN2
ZNF146
BCHE
UQCRC2
USP34

protein coding
protein coding
protein coding
protein coding
protein coding
protein coding
protein coding
protein coding
protein coding
protein coding

protein coding
protein coding
protein coding
protein coding
protein coding
protein coding

Ubiquitous expression in brain (RPKM 52.3), testis (RPKM 23.0) and 24 other tissues
Ubiquitous expression in esophagus (RPKM 248.0), brain (RPKM 160.0) and 25 other tissues
Broad expression in liver (RPKM 123.7), gall bladder (RPKM 60.1) and 20 other tissues
Ubiquitous expression in spleen (RPKM 12.7), bone marrow (RPKM 10.4) and 25 other tissues
Ubiquitous expression in brain (RPKM 8.0), testis (RPKM 8.0) and 25 other tissues
Ubiquitous expression in fat (RPKM 22.0), gall bladder (RPKM 21.1) and 24 other tissues
Ubiquitous expression in esophagus (RPKM 43.2), brain (RPKM 28.6) and 25 other tissues
Broad expression in lymph node (RPKM 28.3), stomach (RPKM 23.4) and 20 other tissues
Ubiquitous expression in bone marrow (RPKM 11.2), thyroid (RPKM 10.3) and 25 other tissues
Ubiquitous expression in lymph node (RPKM 23.1), endometrium (RPKM 21.4) and 25 other tissues
Ubiquitous expression in lymph node (RPKM 22.1), skin (RPKM 20.5) and 25 other tissues
Ubiquitous expression in lung (RPKM 90.0), gall bladder (RPKM 66.0) and 25 other tissues
Ubiquitous expression in thyroid (RPKM 20.8), endometrium (RPKM 19.9) and 25 other tissues
Biased expression in liver (RPKM 60.4), brain (RPKM 16.9) and 12 other tissues
Ubiquitous expression in heart (RPKM 179.2), duodenum (RPKM 111.5) and 25 other tissues
Ubiquitous expression in testis (RPKM 17.6), lymph node (RPKM 17.0) and 25 other tissues
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diagnosis in practical disease treatment. Using univariate Cox

regression analysis to validate candidate hub genes in the

GSE66360 prediction models of MI and GSE78721 prediction

models of T2DM. This validation revealed that only two hub

genes, ABHD17A and NPEPPS, were noticeably up-regulated in

CAD and T2DM predictive diagnostic models. Box plots showed

that five genes: PI4KA, ERRFI1, LRRC40, ABHD17A and ZNF146
Frontiers in Immunology 0686
were noticeably expressed in MI, while the remaining eleven genes

were expressed to a lesser extent such as SEL1L3, UQCRC2 and

USP34. Obviously, the genes expression level of BCHE was the

lowest (Figure 5E). In the T2DM dataset, nearly all candidate genes

were highly expressed. Among them, the proportion degrees of

ABHD17A and UQCRC2 were particularly pronounced, but the

proportion degrees of BCHE was again the lowest (Figure 5F).
A B

D

E

F

C

FIGURE 5

Expression and receiver operating characteristic curves values of samples and key genes from two diagnostic models. (A) Construction of the candidate
genes-based diagnostic prediction model of CAD. (B) Univariate Cox regression analysis showing the HRs with 95% CIs and p values for candidate hub
genes in CAD. (C) Construction of the candidate genes-based diagnostic prediction model of T2DM. (D) Univariate Cox regression analysis showing the
HRs with 95% CIs and p values for candidate hub genes in T2DM. (E) Representation of candidate diagnostic genes in MI individuals of blood specimens
in GSE66360. (F) Representation of candidate diagnostic genes in T2DM individuals of depots of adipose structure specimens in GSE78721.
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The composition of immunocytes and
immune infiltration

The microenvironment of the sample, consisting of lymphocytes,

monocytes, macrophages, granulocytes, and inflammatory factors,

has a significant impact on disease diagnosis and clinical therapeutic

sensitivity. For this investigation, the composition of 22 types of

immunocytes in different sample groups, including 49 MI cases, 50

normal cases, 105 DM cases, and 95 normal cases, were estimated

using the CIBERSORT algorithm. This composition is illustrated in

the histograms (Figures 6A, B). Comparisons were made between the

immunocyte infiltration in the MI and normal groups, as well as

between DM and normal specimens, and these comparisons are

presented in the box plots (Figures 6C, D). The results suggest that in

the GSE66360 dataset, there was a conspicuously higher proportion

of CD8 cells (p = 0.04), CD4 memory resting T cells (p = 2.7e-5), and

gamma delta T cells (p = 2.3e-4), as well as a lower proportion of

activated mast cells (p = 4.2e-10) and neutrophils (p = 9.3e-9) in the

normal group compared to the MI group. In the GSE78721 dataset,

the normal group exhibited conspicuously higher proportions of

resting NK cells (p = 3.7e-3), CD4 naive T cells (p = 1.6e-3), and

activated dendritic cells (p = 5.4e-3), but lower proportions of M0

macrophages (p = 6.7e-6) contrast with the DM group. Furthermore,

an analysis of the relationship between infiltration estimation and

gene expression in gene modules revealed that T-cell CD4+ Th1 in

genes ERRFI1, ZBED5, UQCRC2, ZNF146, ABHD17A, YWHAZ,

and especially PLSCR4 showed a negative correlation in nearly 40

types of cancer. Many of these cancers are associated with CAD or

T2DM, including UCEC, BRCA, PRAD, COAD, PAAD, and others.

Modules that investigate the relationship between immune infiltrates

and genomic alterations or clinical outcomes in TCGA are displayed

in Supplementary Figure 3.
Frontiers in Immunology 0787
Study of immune cells in CAD, T2DM, and
healthy individuals

Following the bioinformatics analysis of immune cell

expression in CAD and T2DM, clinical samples were collected for

the clinical validation of immune cells using flow cytometry. Prior

to the flow cytometry analysis, suitable gating strategies were

utilized to identify cells with live/dead staining in CD8 T cells

and NK cells using fresh cells (freshly isolated from peripheral

blood), as some biomarkers such as CD16 may undergo

downregulation or detachment after thawing. Blood counts of

CD8+ T and NK cell lymphocytes were detected by flow

cytometry in 38 patients from the First Affiliated Hospital of

Anhui University of Chinese Medicine, categorized as those with

CAD, T2DM, CAD Combined with T2DM, and 9 healthy subjects

(Tables 2–4). The CD8+T and NK cells in CAD, CAD Combined

with T2DM, and normal venous blood were observed through flow

cytometry (Figures 7A–D). Combined with Tables 3 and 4, the

results demonstrated that noticeably higher percentages of CD8+T

cells are typically present in healthy subjects (Figure 7A) compared

to those with CAD (Figure 7B), and higher levels of NKbright cells in

healthy subjects compared to those with CAD or T2DM

(Figure 7C). It was observed that healthy subjects typically have

conspicuously higher proportions of NKbright cells than those with

CAD combined with T2DM (Figure 7D).
Discussion

Early diagnosis of CAD combined with T2DM is challenging

due to its complicated etiology and risk factors. Therefore, it is

crucial to develop new diagnostic models to identify the drivers of
A

B D

C

FIGURE 6

Distribution of immunocytes between diseased and normal specimens. (A) Relational proportion of 22 immunocytes in each specimen in GSE66360.
(B) Relative proportion of 22 immunocytes in each specimen in GSE78721. (C) Variation in Immunocyte proportion expression between MI and
Normal specimens. (D) Variation in Immunocyte proportion expression between T2DM and Normal specimens.
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CAD associated with T2DM. In this study, bioinformatics research

identified 16 candidate hub genes associated with gene co-

expression relationships and up-regulated genes in CAD and

T2DM. NPEPPS and ABHD17A were identified as key genes in

CAD combined with T2DM patients and were highly associated

with the diagnosis of CAD and T2DM. Subsequently, we

highlighted the important roles of CD8+ T cells and NK cells in

the pathogenesis of these two diseases using CIBERSORT and

immune infiltration, suggesting that they may be viable targets for

diagnosis and therapeutic intervention. The discovery of key

diagnostic genes and significant changes in immune cells,

specifically CD8+ cells and NK cells, in CAD combined with

T2DM provides new insights into potential targets for diagnostic

and therapeutic interventions.

Further bioinformatics analysis revealed that these 16 candidate

hub genes were associated with various protein biological processes.

The key diagnostic gene, ABHD17A, is associated with the biological

process of protein export and ubiquitin-mediated proteolysis.

ABHD17A has significant catalytic activity to play a key role in

membrane localization, and promotes N-Ras deacylation, leading to

changes in the subcellular localization of N-Ras. Additionally, it

promotes palmitate turnover on proteins such as PSD95 and N-

Ras, which are important processes that control protein localization

and signal transduction (34). The other diagnostic key gene,

aminopeptidase (NPEPPS) is an important zinc metallopeptidase

belonging to the oxytocinase subfamily of the M1 aminopeptidase

family (35, 36). It contributes to the machining of the proteosome-

acquired peptide pool, following closely behind pruning of antigen

peptides by ERAP1 and ERAP2 for emergence on major

histocompatibility complex (MHC) class I molecules (35, 37).

Several GWAS analysis have presented relevances of these NPEPPS
Frontiers in Immunology 0888
with multifarious immunity-induced disorders for instance

inflammatory bowel disease, and diabetes mellitus, the genetic

interactions between some aminopeptidases and HLA class I loci

are closely related to these diseases (38–43). In this study, multiple

bioinformatic analyses have established that CAD and T2DM are

tightly associated through the hub genes ABHD17A and NPEPPS.

Unfortunately, these analyses and subsequent validation, by applying

clinical samples, are not sufficient to elucidate whether ABHD17A

and NPEPPS are a cause or a consequence of T2DM or CAD. Both

ABHD17A and NPEPPS are related to cell metabolism and play

important roles in phosphatidylinositol metabolism, which may be

significant in promoting T2DM progression. In addition, NPEPPS is

closely associated with various autoimmune diseases. Despite these

findings, since T2DM is a long-term chronic metabolism disease, it

affects the metabolic changes in the body, which will affect the

function of the immune system, and the progression of CAD,

especially the occurrence of MI, is closely related to the abnormal

function of the immune system. Therefore, when focusing on

ABHD17A and NPEPPS in CD8+ T cells and NK cells, we tend to

believe that the abnormalities of these hub genes in these immune

cells are caused by long-term metabolic changes caused by T2DM.

Subsequently, these abnormalities in immune cells caused by T2DM

contribute to the progression of CAD and increase the risk of MI.

These are considerations based on disease characteristics and known

hub gene functions. Additional research is required to clarify the

pathogenic mechanisms of ABHD17A and NPEPPS in CAD and

T2DM and establish specific causal relationships.

This study found that CD8+ T cell ratios was higher in healthy

individuals than in CAD patients and CAD complicated with T2DM

patients. Notably, the proportion of NKbright cells in healthy

individuals is usually significantly higher than CAD or T2DM
TABLE 2 The demographics and clinical characteristics of individuals.

NOR Control (n=9) CAD (n=13) T2DM (n=11) CAD-T2DM (n=14)

Female/Male 4/5 7/6 6/5 7/7

Mean age 62.8 ± 4.5 61.8 ± 4.6 64.1 ± 4.4 62.7 ± 5.0

BMI 22.5 ± 2.5 24.3 ± 2.1 25.4 ± 3.0 23.0 ± 2.6

HbA1c, % 5.32 ± 0.55 5.29 ± 0.44 8.90 ± 1.57 7.49 ± 1.18

TC, mmol/L 5.18 ± 1.09 4.91 ± 0.73 6.21 ± 1.05 6.16 ± 1.21

TG, mmol/L 1.81 ± 0.68 1.61 ± 0.79 3.3 ± 0.96 3.17 ± 1.38

LDL-c, mmol/L 2.78 ± 0.96 2.65 ± 0.94 3.03 ± 1.27 2.89 ± 1.31
TABLE 3 The levels of CD8+ T and NK cells in patients.

Group
CD8+T Cell NK Cell

High low CD56bright CD56dim

Normal 7(77.8%) 2(22.2%) 6(66.7%) 3(33.3%)

CAD 5(38.5%) 8(61.5%) 4(31.0%) 9(60.0%)

T2DM 8(72.7%) 3(27.3%) 4(36.4%) 7(63.3%)

CAD & T2DM 4(28.6%) 10(71.4%) 3(21.4%) 11(78.6%)
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patients. Recent studies revealed that CAD patients have a high

number of CD8+ T cells expressing CD56 or CD57, which exhibited

typical pro-inflammatory features (44–46). Dilated CD8 IL-6Ra+ low

T cells were associated with increased incidence of failure, cytotoxic

CD8CD57 T cells, and elevated IL-6 levels. The expression of IL-6Ra
by human CD8+ T cells has been considered to define a distinct T cell

subset that produces Th2 cytokines (47). Simultaneously, In patients

with CAD, NK cell apoptosis, a key factor in initiating and regulating

the immune response, is reduced (48). Furthermore, a potential

negative impact on immunomodulatory defenses during the

development of atherosclerosis may result from the sustained loss

of NK cells (26, 49, 50). NK cells from the patients had suppressed

both TNF-a secretion and particle capability as evidenced by CD107a

reflection (51).

T2DM is known to be a major risk factor for CAD. Among

T2DM patients, CAD is more likely to be a complicated disorder

characterized by small, extensive, calcified, multivessel disease

(MVD) and often requires coronary revascularization apart from

definitive medical treatment to control angina pectoris (52).

Research has shown that insulin resistance, hyperinsulinemia, and

vascular calcification are common complications in diabetes

patients (53). Promotive factors, such as diabetes-induced ROS

overexpression, secretion of inflammatory factors, improved

conversion rate of aldose reductase (AKR1B1) basement (54), and

activation of protein kinase C b, d, and q, can accelerate the

transformation of stable plaque into unstable plaque or plaque

rupture (51, 52), which subsequently leads to thrombosis and the

manifestation of adverse coronary events (51).

Inevitably, the above study has limitations. Diagnostic models

were constructed for the diagnostic prediction of patients with CAD

combined with T2DM based on retrospective data from the GEO

database. The model is based on 16 candidate hub genes.

Prospective data is needed to validate the clinical application

value of the model. Further investigation is needed to determine

the specific mechanism of action of ABHD17A and NPEPPS in

CD8+ and NK cells.
Frontiers in Immunology 0989
Materials and methods

Study design and data collection

The NCBI Gene Expression Comprehensive Public Database

(GEO) provides source support for data collection and subsequent

analysis. GSE66360 annotated HG-133U from GPL570 in

peripheral blood_PLUS_2 microarray measurement of gene

expression, which included 49 myocardial infarction groups and

50 healthy cohorts. GSE78721 was annotated by GPL15207 from

different adipose depots (thigh, visceral and subcutaneous) of

patients suffering from type 2 diabetes.
WGCNA of T2DM and CAD

The Sangerbox 3.0 software package, which includes “WGCNA,”

was used to produce a gene co-expression network to explore the co-

expression relevances between genes in the sample and the relevance

of genes and their expressions. This process required a Pearson

correlation matrix and an average linkage method for all pairs of

genes. A weighted adjacency matrix was constructed using the power

function A_Mn = |C_Mn|^b. When the soft threshold is 16.087, the

R^2 has a significant improvement, reaching 0.9. At this point, the

network has already followed a scale-free distribution. After choosing

a power of 16.087, the contiguity was changed into a Topological

Overlap Matrix (TOM). This matrix determined the network

relevancy of genes, considered as the summation of their contiguity

to all others in the network relative to the gene proportion, and

calculated the associated diversity (1-TOM). To group genes with

comparable description characteristics into gene modules, mean

integration collecting was conducted according to the TOM-based

diversity estimation. The minimal size for the gene dendrogram (tree)

was set at 30. For further module analysis, we evaluated the module’s

own genetic diversity, picked a cut-off for the module dendrogram,

and combined certain modules. Each module was represented by a

different color. The gene expression profile of each module was

expressed by three factors: module eigengene (ME), module

membership (MM), and gene significance (GS). MEs were applied

to estimate the relevance between different modules and phenotypes.

Module membership (MM) indicates the correlation between a gene

and its corresponding module. Gene significance (GS) represented

the relationship between a gene and phenotype, and was determined

by the log10 transformation of the P value in the linear regression

between gene expression and phenotype.
Identification of differentially
expressed genes

Perform expression analysis of diverse genes on CAD

(GSE66360) and T2DM (GSE78721) samples using the “limma”

software package from the online website Sangerbox 3.0. P_ Genes

with adj < 0.05 and multiple variation (FC) | > 1.5 were regarded as

distinctively described genes. Create heat maps and volcanic maps
TABLE 4 Changes in CD8+ T and NK cell levels in peripheral blood (%).

Group n CD8+T Cell NKbright Cell

Normal 9 26.77±2.96 89.02±2.87

CAD 13 14.71±4.22 40.81±3.98

T2DM 11 31.45±3.76 42.05±2.80

CAD-T2DM 14 11.64±4.33 17.87±6.08
**p<0.01; ****P<0.0001; ns, no significance.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1267963
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Dai et al. 10.3389/fimmu.2024.1267963
of differentially expressed genes using the “pheatmap” and

“ggplot2” software packages. Use the online Venn chart tool to

obtain their common 16 DEGs.
Functional enrichment analysis

The online website sangerbox carries out GO analysis and

KEGG analysis, in which GO analysis includes BP (Biological

Process), MF (Molecular function), CC (Cellular configuration),

cardiovascular disease samples and diabetes samples, as well as hub

gene enrichment investigation. GSEA was served as reveal the

respective functions of central genes. Using the Gene Ontology

footnote in R program procedure (edition 3.1.0) for the technical

support, enrichment analysis of gene set functions was conducted,

genes are plotted to the backdrop set, Enrichment investigation was
Frontiers in Immunology 1090
conducted enacting R program clustering archive (edition 3.14.3) to

derive gene set enrichment outcomes. Setting the minimum gene set

to 5 and the maximum gene set to 5000, with a P value of < 0.05 and

an FDR value of < 0.25, is considered statistically relevantly.
Production of receiver operating
characteristic curves and description of
hub genes in samples

We operated R program pROC (edition 1.15.0.1) to conduct

ROC estimation to acquire AUC. Specifically, we obtained the CAD

and T2DM gene expression of patients, used the ROC function of

pROC to conduct ROC analysis at 365 time points, and used the ci

ability of pROC to estimate AUC and confidence intermission to

acquire the final AUC outcomes.
A

B

D

C

FIGURE 7

Gating strategy for immune cells of CAD, T2DM patients and healthy people. (A) The blood count of CD8+T and NK cells in healthy people. (B) The
blood count of CD8+ T and NK cells in CAD patients. (C) The blood count of CD8+ T and NK cells in T2DM patients. (D) The blood count of CD8+ T
and NK cells in CAD combined with T2DM individuals.
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Gene set enrichment investigation

We assembled GSEA (http://software.broadinstitute.org/gsea/

index.jsp). The web page obtained GSEA program (edition 3.0) and

separated the models into two series according to disease types. The

various immune gene samples were collected from the

immunologic signature gene sets (http://www.gsea-msigdb.org/

gsea/downloads.jsp). The kegg characters subset was downloaded

to estimate relative pathways and molecular mechanisms of action.

According to gene reflection profiling and phenotype subsets, set

the minimal genomes and utmost genomes, and collect samples

again, P numerial number of < 0.05 and an FDR of < 0.25 were

consistent statistically significance relevant.
Immunocyte infiltration and level in diverse
cancer types

CIBERSORT is used to evaluate the infiltration of immunocytes

in the human microenvironment. This reagent includes 547

biomarkers and 22 humanity immunocytes, comprising

lymphocytes (T cells and B cells), Monocyte, neutrophils,

macrophages, etc. The figures were Presented as stacked bar

charts through the online platform Sangerbox (http://

vip.sangerbox.com/home.html). Various cancer types in Immune

infiltration level were presented as heatmap, and figures will

indicate the fineness-restructured spearman’s rho pass through

assorted cancer categories through the online platform (http://

timer.comp-genomics.org/timer/).
Diagnosis standard for CAD and T2DM

According to the diagnostic criteria by the American Diabetes

Association and International Society of Hypertension, our study

employed an case–control design, which included the selection of

the 38 most rapidly progressing CAD, T2DM and CAD combined

with T2DM cases from the clinical study. CAD was defined as: (1)

Male patients aged over 40 and female patients aged 45 and above;

(2)Coronary artery stenosis≥50% based on CAG or CCTA

examination; (3)Symptoms such as chest tightness or chest pain

undergo a comprehensive evaluation on admission. T2DM was

defined as: (1)FPG ≥ 7.0mmol/L; (2)PBG ≥11.1mmol/L; (3)

HbA1c≥6.5%. Controls included participants with no evidence of

T2DM and no evidence of CAD by 65 years of age.
Detection of immunocytes infiltration in
patients and healthy cohorts

We screened 38 patients with CAD or T2DM from the

Department of Cardiology of the First Affiliated Hospital of Anhui

University of Chinese Medicine, as well as 9 eligible healthy

volunteers, and conducted flow cytometry immune examinations.

Firstly, blood is taken from the human body to prepare samples,

prepare cell suspension, count cells, use EP (1.5ml) tube for sub
Frontiers in Immunology 1191
packaging, level rotor 800g, 4°C centrifugation. After completion, use

a Pap pipette to remove the middle white membrane layer, add 5ml

PBS for resuspension, level rotor 250g, 4°C centrifugation and add

appropriate fluorescence-labelled antibodies. Mix well, avoid light

and incubate at 4°C for 30 minutes. After completion, add 1ml PBS to

wash twice and finally resuspend with 200ul PBS. Then adjust the

laser light source, detector and flow rate, and load the prepared cell

sample into the flow cytometer (BD LSR Fortessa) to detect the

expression of CD8+T and NK cells, collect and count the proportion

of CD8+T and NK cells in CAD, T2DM and healthy samples, and

obtain the final results.
Numerical statement manipulation

The data processing were manipulated in R program and loads

of online websites. The selection and use of data in the article are

based on the criterion of significance P < 0.05.
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Evaluation of bi-directional
causal association between
obstructive sleep apnoea
syndrome and diabetic
microangiopathy: a Mendelian
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Jialei Wang1,2 and Songbo Fu1,2*
1Department of Endocrinology, First Hospital of Lanzhou University, Lanzhou, Gansu, China, 2Gansu
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of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China, 4Center of
Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
Background: The relationship between obstructive sleep apnea syndrome
(OSAS) and diabetic microangiopathy remains controversial.
Objective: This study aimed to use bidirectional two-sample Mendelian
Randomization (MR) to assess the causal relationship between OSAS and
diabetic microangiopathy.
Methods: First, we used the Linkage Disequilibrium Score Regression(LDSC)
analysis to assess the genetic correlation. Then, the bidirectional two-sample
MR study was conducted in two stages: OSAS and lung function-related
indicators (forced vital capacity (FVC) and forced expiratory volume in 1 s
(FEV1)) were investigated as exposures, with diabetic microangiopathy as the
outcome in the first stage, and genetic tools were used as proxy variables for
OSAS and lung function-related measures in the second step. Genome-wide
association study data came from the open GWAS database. We used Inverse-
Variance Weighted (IVW), MR-Egger regression, Weighted median, Simple
mode, and Weighted mode for effect estimation and pleiotropy testing. We
also performed sensitivity analyses to test the robustness of the results.
Furthermore, we performed multivariate and mediation MR analyses.
Results: In the LDSC analysis, We found a genetic correlation between OSAS,
FVC, FEV 1, and diabetic microangiopathy. In the MR analysis, based on IVW
analysis, genetically predicted OSAS was positively correlated with the
incidence of diabetic retinopathy (DR), diabetic kidney disease (DKD), and
diabetic neuropathy (DN). In the subgroup analysis of DR, there was a
significant causal relationship between OSAS and background diabetic
retinopathy (BDR) and proliferative diabetic retinopathy (PDR). The reverse MR
did not show a correlation between the incidence of diabetic microangiopathy
and OSAS. Reduced FVC had a potential causal relationship with increased
incidence of DR and PDR. Reduced FEV1 had a potential causal relationship
with the increased incidence of BDR, PDR, and DKD. Multivariate MR analysis
showed that the association between OSAS and diabetic microangiopathy
remained significant after adjusting for confounding factors. However, we did
not find the significant mediating factors.
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Conclusion: Our results suggest that OSAS may be a cause of the development of
diabetic microangiopathy, and OSAS may also be associated with a high risk
of diabetic microangiopathy, providing a reference for a better understanding of
the prevention of diabetic microangiopathy.

KEYWORDS

obstructive sleep apnea syndrome, diabetic microangiopathy, Mendelian randomization,

forced vital capacity, forced expiratory volume in 1 s
1 Introduction

Diabetic microangiopathy is one of the major complications of

diabetes, with over 4.59 billion adults worldwide having diabetes,

and over a third developing diabetic microangiopathy (1–4).

Diabetic microvascular complications include diabetic retinopathy

(DR), diabetic kidney disease (DKD), and diabetic neuropathy

(DN) (5). Among them, DR is the most common, with a

prevalence of 35.4% (6) and DR can be divided into background

diabetic retinopathy (BDR) and proliferative diabetic retinopathy

(PDR). The overall health of diabetic patients is severely affected

by microvascular complications, leading to various adverse health

consequences. Studies have shown that the combination of DKD

and hypoglycemic events results in a significantly increased risk

of falls and fractures and significant challenges in performing

daily tasks such as walking and housework (7, 8). Furthermore,

their incidence of chronic and acute health events is also higher

than the general population (9). Most critically, patients with

diabetic microangiopathy also have a significantly increased risk

of death from cardiovascular complications and renal failure

(10). The early prevention and management of diabetic

microangiopathy are therefore essential.

OSAS is widely recognized worldwide as a significant

respiratory disorder, with an estimated prevalence of 5%–15% in

the general population and positively correlated with age,

showing a gradual growth trend (11). The primary characteristic

of OSAS recurrent episodes of sleep-dependent apnea and

reduced airflow. Persistent OSAS can have detrimental effects on

respiratory function, which is typically quantified using forced

vital capacity (FVC) and forced expiratory volume in 1 s (FEV1)

values. More critically, this respiratory disorder is closely related

to increased risks of hypertension, coronary heart disease, and

heart failure (12).

Previous observational studies have found a close connection

between OSAS and diabetic microangiopathy (13–18). However,

due to potential confounding biases and reverse causality in

observational studies, their causal relationship is still unclear and

requires further research to fully understand the potential

mechanisms and establish the relationship between these diseases.

MR uses single nucleotide polymorphisms (SNPs) as

instrumental variables (IVs) to infer the causal relationship

between two traits, treating genetic variations as a “natural”

randomized controlled trial. Individuals are randomly assigned to

different exposure levels throughout their lives, minimizing biases

caused by confounding factors and reverse causality (19–21).

Therefore, this study aims to use samples based on the GWAS
0295
database for MR analysis to explore the causal relationship

between OSAS and diabetic microangiopathy, which may guide

the prevention and treatment of diabetic microangiopathy.
2 Materials and methods

2.1 Study design

We employed a bidirectional two-sample MR study design,

utilizing two-sample MR methods and varying GWAS summary-

level datasets to elucidate the causal relationship and pathogenic

direction between OSAS and lung function indicators (FVC,

FEV1) with diabetic microvascular complications in European

populations. This investigation was split into two phases.

Initially, we probed whether OSAS had a causal relationship with

diabetic microvascular complications. In the second stage, we

evaluated if diabetic microangiopathy was associated with OSAS.

The primary flow of our study is illustrated in Figure 1. We

then conducted supplementary analyses, including a multivariate

MR analysis to mitigate potential confounding factors and a

mediation MR analysis to explore potential mediating factors.

The MR design is based on three assumptions: (1) genetic

variants are strongly associated with the exposure; (2) genetic

variants are unrelated to other confounding factors; (3)

genetic variants are associated with the outcomes solely through

the investigated exposure. The association data of SNPs with

OSAS and diabetic microangiopathy derive from recently

published genome-wide association studies (GWAS).
2.2 Data source

For OSAS, we utilized the published GWAS summary statistics

from the FinnGen study, which includes 217,955 European patients

(22). FVC and FEV1 data were extracted from UKB. The sample

size for FVC (GWAS ID: ukb-b-7953) was 421,986 and for FEV1

(GWAS ID: ukb-b-19657) was also 421,986. The summary

statistics for GWAS of diabetic microvascular complications were

taken from FinnGen (https://r5.finngen.fi/). DR (GWAS ID: finn-

b-DM_RETINOPATHY_EXMORE) analysis involved 14,584

cases and 176,010 controls. BDR is an early stage of DR. The

analysis for BDR (GWAS ID: finn-b-DM_BCKGRND_RETINA)

included 2,026 cases and 204,208 controls; PDR

(GWAS ID: finn-b-DM_RETINA_PROLIF) consisted of

8,681 cases and 204,208 controls. DKD (GWAS ID:
frontiersin.org
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FIGURE 1

The process of Mendel randomization research. FVC, forced vital capacity; FEV1, forced expiratory volume in one second; IV, instrumental variable;
MR-PRESSO, Mendelian randomization pleiotropy residual sum and outlier; MR, Mendelian randomization; OSAS, obstructive sleep apnea syndrome;
SNP, single nucleotide polymorphism.
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finn-b-DM_NEPHROPATHY_EXMORE) had 3,283 cases and

181,704 controls. DN (GWAS ID: finn-b-DM_NEUROPATHY)

included 1,415 cases and 162,201 controls. The diagnoses for

these conditions are based on their respective International

Classification of Diseases(ICD) codes, and we have meticulously

organized detailed inclusion and exclusion criteria for each study

mentioned above. See Supplementary Materials Tables S1–S3

for details.
2.3 Instrument variable selection

Single nucleotide polymorphisms (SNPs) were selected

based on the following criteria: (1) SNPs are strongly

associated with exposure and reach genome-wide significance

(P < 5 × 10−7); SNPs were not associated with any potential

confounders and were independent of each other to avoid

bias caused by linkage disequilibrium (r2 < 0.0001, clustering

distance = 10,000 kb); (2) SNPs are associated with

outcomes only through exposure. F statistics (F ¼ R2�(N�2)
1�R2 ,

R2 (SNP , 10) ¼ 2� EAF � (1� EAF)� beta2, R2 (SNP � 10) ¼
2�EAF�(1�EAF)�beta2

(2�EAF�(1�EAF)�beta2)þ(2�EAF�(1�EAF)�N�SE2)); SNP exposure-

associated beta (β); variance (SE)). Since an empirical

threshold above 10 indicates that the SNP has sufficient validity,

SNPs with F statistics less than 10 were removed. We provide

information on F statistics, SNPs using the supplementary
Frontiers in Cardiovascular Medicine 0396
datasheet. Details of the screened SNP are provided in

Supplementary Materials Tables S4–S11.
2.4 Data analysis

Linkage Disequilibrium Score Regression (LDSC) analysis is a

new method for estimating genetic correlations that require only

GWAS summary statistics. Even if there are overlapping

individuals between the two GWAS, the regression slope of

LDSC provides an unbiased estimate of the genetic correlation

(23). LDSC analysis in this study was used to evaluate the

genetic correlation of OSAS, FVC, FEV1, and diabetic

microvascular disease. First, it is used to reformat summary

statistics and remove non-SNP variants (such as indels), chain-

ambiguous SNPs, and duplicate SNPs. SNPs with imputation

quality scores >0.9 and Minor Allele Frequency (MAF) > 0.01

were selected in our study to prevent bias due to variable

imputation quality (24). Second, LD scores were estimated using

the 1,000 Genomes Project as the linkage disequilibrium

reference panel, following standard methods recommended by

the developers. Third, we studied the genetic correlation between

OSAS, FVC, FEV1, and diabetic microangiopathy using LDSC

(https://github.com/bulik/ldsc). And the strict Bonferroni

threshold was set at P < 0.0033 (0.05/15). However, after the

Bonferroni correction, there was no significant correlation.
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Therefore, we set the candidate threshold of LDSC regression analysis

at P < 0.0033 and used MR analysis to verify the causal relationship

between OSAS, FVC, FEV1, and diabetic microangiopathy.

Two-sample MR is used to analyze the causal relationship

between OSAS, FVC, FEV1, and diabetic microvascular

complications. In the absence of horizontal pleiotropy, the IVW

method can be used as the main method to analyze causal

relationships in MR analysis. Before this, we used Cochrane’s Q

test to assess heterogeneity among IVs. If heterogeneity is

detected (P < 0.05), the random-effects IVW model provides a

more conservative estimate; otherwise, the fixed-effects IVW

model will be used (25). Other MR analysis methods, including

Weighted mode, MR-Egger regression, Simple mode, and

Weighted mode methods (26), can supplement the IVW method

and provide wider confidence intervals (27). The IVW method is

applicable when horizontal pleiotropy does not exist (28); If the

results of the MR analysis are nominally significant (P < 0.05), we

consider a possible causal relationship between the exposure and

the outcome (29). As the basic model of MR analysis, the IVW

method shows good robustness and reliability when dealing with

pleiotropic effects. It assumes that all genetic variants contribute

uniformly to the causal effect, and obtains an overall causal

estimate by weighting the average of the causal estimates of

different single nucleotide polymorphisms (SNPs) (30). By

comprehensively considering the weights of different genetic

variants for analysis, the IVW method can more effectively

control possible pleiotropic effects and provide relatively reliable

causal estimates (31–34). The IVW method is widely used in MR

research and has been widely recognized and accepted in

academia and scientific research fields. Its universality as a basic

model makes it easier for researchers to understand and use. In

addition, the IVW method is one of the simplest and most

intuitive methods in MR analysis and does not require overly

complex statistical models and calculation processes, allowing

researchers to perform analysis and result interpretation more

quickly (35). When comparing other methods, the Weighted

median is similar to IVW, the Weighted mode method assumes

that less than 50% of IVs have horizontal pleiotropy (36), but it

uses median weighting instead of inverse variance weighting.

Weighted median may be more robust to some skewed or outlier

data sets, but may control pleiotropy slightly less than IVW in

some cases (34). MR-Egger regression assumes that more than

50% of IVs are affected by horizontal pleiotropy, considers the

relationship between the impact of genetic variation on exposure

and its impact on outcomes, and can detect and correct biases

caused by reverse causation (31, 32). However, the MR-Egger

method may not be robust enough to strong horizontal skew

(37). Simple mode and Weighted mode methods have poor

control over pleiotropic effects and are not as robust as IVW and

MR-Egger (38, 39).

We conducted a reverse MR analysis between diabetic

microvascular complications and OSAS to examine the possibility

of a reverse causal relationship. The procedure for the reverse

MR analysis was the same as the aforementioned analysis.

We employed several methods to monitor the possible presence

of horizontal pleiotropy. Specifically, P values from the MR-Egger
Frontiers in Cardiovascular Medicine 0497
intercept test and MR pleiotropy residual sum and outlier

(MR-PRESSO) global test could be used to assess the presence of

horizontal pleiotropy, and P < 0.05 was considered statistically

significant (32, 40). The MR-PRESSO outlier test can adjust

horizontal pleiotropy by detecting and removing outliers (34).

Additionally, we performed a leave-one-out analysis on the

identified significant results to determine whether the causal role

of the MR analysis was due to a single SNP (41).

Multivariable MR extends the capabilities of MR, akin to

evaluating the effects of multiple treatments independently

within a single randomized control trial (42). In this approach,

the genetic instrument need not be exclusively associated with a

single risk factor but can instead relate to a set of measured risk

factors, while still adhering to equivalent instrumental-variable

assumptions (43). This method accommodates multiple genetic

variants, which may not necessarily be linked to every exposure

in the model, as well as several causally dependent or

independent exposures in an instrumental-variable analysis,

thereby disentangling the direct causal effect of each risk factor

included in the model (42, 44). Consequently, multivariate MR

analysis allows the simultaneous consideration of multiple

potential confounding factors, aiding researchers in mitigating

the interference of these factors with observed associations and

enhancing the accuracy of causal inference (45). In this study,

possible confounding factors include obesity, elevated BMI,

hyperlipidemia, hypercholesterolemia, etc (46–50). As the main

method, we employed a robust IVW method with multiplicative

random effects (51).

Given that OSAS is a complicated disease and previous studies

have revealed that inflammatory factors and hypertension might

mediate the development of diabetic microangiopathy (52–55),

we performed a mediation MR analysis using the two-step MR

method (56). Based on the literature review, we selected 15

variables that may serve as mediators that may lie on the

pathway from sleep apnea syndrome to diabetic microangiopathy

with available genetic tools from GWAS, including BMI,

triglycerides, cholesterol, High-Density Lipoprotein (HDL), Low-

Density Lipoprotein(LDL), apolipoprotein A, apolipoprotein B,

blood glucose, C-reactive protein, heart rate, sleep duration,

heme oxygenase 1 (53, 54, 57). Then, we screened the mediating

factors of the relationship between OSAS and diabetic

microangiopathy according to the following criteria: (1) There

should be a causal relationship between OSAS and the mediator,

and the effect of OSAS on the mediator should be unidirectional,

because if the mediation analysis between Bidirectionality exists

and the validity of the mediation analysis may be affected (24).

(2) Regardless of whether OSAS is adjusted for, the causal

relationship between mediators and diabetic microvasculopathy

always exists; (3) Based on current scientific evidence, in practice,

the relationship between OSAS and mediators, and the

association between mediators and diabetic microvasculopathy,

should be the other way around. Finally, only one mediating

factor, blood glucose level, met all criteria and was included in

the mediation analysis to evaluate its mediating effect on the

causal relationship between OSAS and diabetic microangiopathy.

We then conducted a mediation analysis using a two-step
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approach. In the first step, we calculated the causal effect of OSAS

on mediators (β1), and in the second step, we estimated the causal

effect of mediators on diabetic microangiopathy (β2). The

significance of the mediating effects (β1*β2) and the proportion

of the mediation effect in the total effect were estimated using

the delta method (58).

All statistical analyses were conducted using R version 4.2.1

(R Foundation for Statistical Computing, Vienna, Austria) along

with the “TwoSampleMR”, “MendelianRandomization”, and

“MRPRESSO” packages.
2.5 Ethics

The ethical data used in our study are publicly available pooled

data and their analysis does not require ethical approval.
3 Results

3.1 Linkage disequilibrium score regression

Regression of LD score between OSAS and diabetic

microvasculopathy using summary statistics from the FinnGin

database. The results showed a moderate genetic correlation

between OSAS and diabetic microangiopathy (rg= 0.142, SE =

0.044, P = 0.0011; rg= 0.414, SE = 0.077, P < 0.001; rg= 0.398, SE

= 0.062, P < 0.001). For FVC and FEV1 and diabetic

microvasculopathy, we used summary statistics from the UKB

and Finnish databases, respectively, to calculate genetic

correlations. The results showed a significant genetic correlation

between FVC and diabetic microangiopathy (rg=−0.117, SE =

0.016, P < 0.001; rg=−0.205, SE = 0.028, P < 0.001; rg=−0.153,
SE = 0.023, P < 0.001). The results also showed a genetic

correlation between FEV1 and diabetic microangiopathy

(rg =−0.086, SE = 0.023, P = 0.0002; rg =−0.121, SE = 0.040,

P = 0.0028; rg =−0.148, SE = 0.032, P < 0.001), as shown in

Supplementary Materials Table S12.
3.2 Causal effects of OSAS, FVC, and FEV1
on DR

Regarding OSAS, as depicted in Figure 2, we observed a

potential causal association between OSAS and an increased

incidence of DR (OR = 1.248, 95% CI: 1.079–1.442, P = 0.003)

and also with an increased incidence of BDR and PDR

(OR = 1.390, 95% CI: 1.023–1.889, P = 0.035; OR = 1.176, 95% CI:

1.009–1.371, P = 0.038). In the sensitivity analysis of the IVs, no

significant heterogeneity was observed through both the IVW

test (Q = 9.703, P = 0.206; Q = 2.398, P = 0.935; Q = 4.288,

P = 0.746) and the MR-Egger regression test (Q = 9.643,

P = 0.141; Q = 2.332, P = 0.887; Q = 4.267, P = 0.641). The results

of the MR–Egger regression analysis indicated that there was

no horizontal pleiotropy among the IVs (all P > 0.05). The

MR-PRESSO test ensured the accuracy of the results (all P < 0.05).
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We also found that the respiratory-related indicators FVC and

FEV1 were positive exposures for diabetic retinopathy, and FVC

reduction has a potential causal relationship with the increased

incidence of DR and PDR (OR = 0.862, 95% CI: 0.765–0.972,

P = 0.015; OR = 0.838, 95% CI: 0.725–0.969, P = 0.017). There

is either no heterogeneity (Q = 423.304, P = 0.062; Q = 422.036,

P = 0.063) or horizontal pleiotropy (P > 0.05) in the PDR.

Minor heterogeneity could be observed in the DR by IVW

testing (Q = 448.273, P = 0.009) and MR-Egger testing

(Q = 447.105, P = 0.009). According to the intercept of MR–Egger

regression, it can be found that IVs do not have horizontal

pleiotropy (P > 0.05), and the MR-PRESSO test ensures the

accuracy of the results (all P < 0.05). Reduced FEV1 will also

increase the risk of BDR and PDR (OR = 0.627, 95% CI: 0.466–

0.844, P = 0.002; OR = 0.830, 95% CI: 0.708–0.974, P = 0.022).

There is either no heterogeneity (Q = 321.439, P = 0.592;

Q = 321.420, P = 0.577) or horizontal pleiotropy (P > 0.05) in the

BDR. However, minor heterogeneity could be observed in the

PDR by IVW testing (Q = 377.673, P = 0.030) and MR-Egger

testing (Q = 373.099, P = 0.040). Based on the leave-one-out

analysis, no SNP significantly altered the overall results, and the

MR-PRESSO test ensures the accuracy of the results (all

P < 0.05). The MVMR analysis was conducted to assess the direct

effect of OSAS on DR with the adjustment of multiple other risk

factors for diabetic complications. The results obtained from the

two-sample univariable MR analysis were consistent with the

findings from the MVMR, but the associations of OSAS with

BDR and PDR were no longer significant, as shown in

Supplementary Materials Table S14. Detailed results of the MR

analysis are presented in Supplementary Materials Tables S13,

S15 and the sensitivity analysis results are shown in

Supplementary Materials Table S15. Based on the recent MR

analysis, we infer that patients with OSAS exhibit an elevated

risk for DR development. Individuals with pulmonary function

abnormalities are advised to undergo periodic lung function

evaluations and implement preventive measures against DR.
3.3 Causal effects of OSAS, FVC, and FEV1
on DKD

Next, as shown in Figure 3, we evaluated the causal relationship

between OSAS and DKD. IVW, Weighted median, and Weighted

mode analyses indicated that genetically predicted OSAS is

associated with a higher risk of DKD (OR = 1.570, 95%

CI: 1.233–1.999, P < 0.001; OR=1.678, 95% CI: 1.215–2.319,

P = 0.002; OR = 1.774, 95% CI: 1.142–2.757, P = 0.038). Both

the IVW test (Q = 5.853, P = 0.557) and the MR-Egger regression

test (Q = 5.673, P = 0.461) showed no evident heterogeneity. The

MR-Egger regression results suggested that there’s no horizontal

pleiotropy in the IVs (P > 0.05), and the MR-PRESSO test

confirmed the accuracy of the results (P < 0.05). There was no

significant correlation between the decrease in FVC and DKD.

However, a decrease in FEV1 showed a significant correlation

with DKD (OR = 0.710, 95% CI: 0.553–0.911, P = 0.007).

Although there was slight heterogeneity, our MR–Egger
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FIGURE 2

Forest plot of OSAS, FVC, and FEV1 associated with the risk of DR, BDR, and PDR. BDR, background diabetic retinopathy; DR, diabetic retinopathy;
FVC, forced vital capacity; FEV1, forced expiratory volume in one second; MR, Mendelian randomization; MR-Eggcr, MR-Egger regression analysis;
OSAS, obstructive sleep apnea syndrome; PDR, proliferative diabetic retinopathy; SNP, single nucleotide polymorphism.
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FIGURE 3

Forest plot of OSAS, FVC, FEV1 associated with the risk of DKD. DKD, diabetic kidney disease; FVC, forced vital capacity; FEV1, forced expiratory volume
in one second; MR, Mendelian randomization; MR-Eggcr, MR-Egger regression analysis; OSAS, obstructive sleep apnea syndrome; SNP, single
nucleotide polymorphism.
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regression results indicated that there was no horizontal pleiotropy

in the IVs (P > 0.05). The MR-PRESSO test also proved the

accuracy of the results (P < 0.05), and no SNP significantly

altered the overall results, so our results are relatively robust.

After adjusting for possible confounding factors including

obesity, elevated BMI, hyperlipidemia and hypercholesterolemia,

OSAS was still associated with DKD, as shown in Supplementary

Materials Table S14. The detailed results of the MR analysis are

presented in Supplementary Materials Table S13 and the results

of the sensitivity analysis are shown in Supplementary Materials

Table S15. This suggests that the FEV1 level plays a pivotal role

in the pathogenesis of DKD. Concurrently, patients with OSAS

should be vigilant in taking preventive measures against the

onset of DKD.
3.4 Causal effects of OSAS, FVC, and FEV1
on DN

We also analyzed the causal relationship between OSAS and

DN. The IVW and Weighted median analyses indicated that

genetically predicted OSAS is associated with a high risk of DN

(OR = 1.912, 95% CI: 1.325–2.760, P = 0.001). Both the IVW test

(Q = 1.141, P = 0.992) and the MR-Egger regression test

(Q = 1.047, P = 0.984) showed that there is no heterogeneity
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among the IVs. The MR-Egger regression revealed no horizontal

pleiotropy for the IVs (P > 0.05). However, there was no

significant association between the risk of DN and either FVC or

FEV1. As shown in Figure 4. OSAS was still associated with DN

after adjusting for possible confounding factors such as obesity,

elevated BMI, hyperlipidemia, and hypercholesterolemia, as

shown in Supplementary Materials Table S14. The results of the

sensitivity analysis can be found in Supplementary Materials

Table S15. This reminds us that attention should be paid to the

possibility of developing DN when patients with OSAS.
3.5 Causal effects of diabetic microvascular
complications on OSAS

When considering OSAS as the outcome, we found no

significant association between DR, DKD, and the risk of

developing OSAS. Although the Weighted median analysis

suggested that DN might increase the risk of OSAS (OR = 1.045;

95% CI: 1.005–1.086; P = 0.027), our primary analysis method,

the IVW analysis, indicated no significant association between

DN and OSAS (OR = 1.022; 95% CI: 0.986–1.061; P = 0.234). The

IVW test (Q = 4.459, P = 0.216) and the MR-Egger test

(Q = 3.479, P = 0.176) did not observe significant heterogeneity.

The MR-Egger regression analysis indicated no horizontal
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FIGURE 4

Forest plot of OSAS, FVC, FEV1 associated with the risk of DN. DN, diabetic neuropathy; MR, Mendelian randomization; MR-Eggcr, MR-Egger
regression analysis; FVC, forced vital capacity; FEV1, forced expiratory volume in one second; OSAS, obstructive sleep apnea syndrome; SNP,
single nucleotide polymorphism.
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pleiotropy between the exposure and the outcome (P > 0.05). Thus,

the reverse MR suggests there’s no significant association between

diabetic microvascular complications and OSAS, as shown in

Figure 5. Furthermore, we found that there’s no reverse causal

relationship between FVC and diabetic microvascular

complications. In the IVW analysis, when using FEV1 as the

outcome, there was a reverse causal relationship between FEV1

and DR, BDR, and PDR (OR = 0.981; 95% CI: 0.966–0.997;

P = 0.021; OR = 0.990; 95% CI: 0.980–0.999; P = 0.029;

OR = 0.984; 95% CI: 0.972–0.998; P = 0.020), as shown in

Supplementary Materials Table S16. The results of the sensitivity

analysis can be found in Supplementary Materials Table S17.

Subsequently, we performed a mediation MR analysis, and

unfortunately, in the current sample and data conditions, we were

unable to determine that blood glucose levels played a significant

mediator between OSAS and diabetic microangiopathy. This

finding suggests that a larger sample size or finer statistical

methods may be needed to further explore this mediation effect,

as shown in Supplementary Materials Table S18.
4 Discussion

Our study found that a genetic correlation between OSAS,

FVC, FEV1 and diabetic microangiopathy exists and genetically
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predicted OSAS leads to an increased incidence of diabetic

microangiopathy. Among them, the impact of OSAS on DN is

the most significant. Patients with OSAS have a risk of

developing DN that is 1.91 times that of normal individuals,

while the risks of developing DR and DKD for such patients are

1.25 and 1.57 times respectively compared to normal individuals.

In terms of DR, the effect of OSAS on BDR is more pronounced

than on PDR. Furthermore, the lung function indicators FVC

and FEV1 are protective factors against diabetic

microangiopathy, and a bidirectional causality exists between

FEV1 and DR, BDR and PDR. After adjusting for possible

confounding factors such as obesity, elevated BMI,

hyperlipidemia, and hypercholesterolemia using MVMR, OSAS is

still associated with DR, DKD, and DN, but the association with

BDR and PDR is no longer significant. The results of the LDSC

analysis also showed a genetic correlation between OSAS and

DR, but this correlation was no longer significant in the BDR

and PDR. It may be because BDR and PDR are specific subtypes

of DR. It may have different risk factors or causal pathways than

DR overall. The genetic variants used in analyses may capture

the causal effects of BDR and PDR less effectively than DR

overall. In addition, as subgroups of DR, BDR, and PDR have

smaller samplesizes than DR, the smaller sample sizes may result

in reduced statistical power to detect true associations, which

may explain the loss of significance (59, 60).
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FIGURE 5

Forest plot of DR, BDR, PDR, DKD, DN associated with the risk of OSAS. BDR, background diabetic retinopathy; DKD, diabetic kidney disease; DN,
diabetic neuropathy; DR, diabetic retinopathy; MR, Mendelian randomization; MR-Eggcr, MR-Egger regression analysis; PDR, proliferative diabetic
retinopathy; OSAS, obstructive sleep apnea syndrome; SNP, single nucleotide polymorphism.
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The application of pulmonary function testing in OSAS patients is

for a comprehensive evaluation of the respiratory system (61).

Although the diagnosis of OSAS mainly relies on polysomnography

(PSG), pulmonary function testing is of great significance for

evaluating the patient’s respiratory function status (30). There is

literature showing that FEV1 and FVC in pulmonary function tests

are related to the severity of OSAS, which reflects the ventilatory

dysfunction that occurs in OSAS patients during sleep and its

impact on the respiratory system (62). In addition, through

pulmonary function testing, we can evaluate the patient’s vital

capacity, ventilatory function, airflow limitation, and other
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indicators (63). These indicators can provide a comprehensive

understanding of the respiratory function status of OSAS patients

(30, 64). In clinical practice, pulmonary function test results can not

only guide the selection of treatment strategies. For example, OSAS

patients with abnormal pulmonary function may require different

treatment options, such as continuous positive airway pressure

(CPAP) therapy or physical exercise, but also Treatment effects and

changes in condition can be monitored (30). Therefore, pulmonary

function testing plays an important role in the management of

OSAS. It can not only help doctors comprehensively evaluate the

patient’s respiratory function, but also guide the selection and
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adjustment of treatment options to ensure that the patient’s

respiratory function is optimally controlled and managed.

Diabetic microangiopathy represents hallmark manifestations of

the chronic progression of diabetes. During the non-proliferative

phase, DR manifests as microaneurysms and retinal hemorrhages.

As it progresses to the proliferative phase, ischemia or edema in

the macular region, vitreous hemorrhage, and tractional or

rhegmatogenous retinal detachment can lead to significant visual

impairment, even blindness (65). DKD is characterized by

proteinuria and a decline in glomerular filtration rate (66), often

advancing to uremia (67). DN is a complex neurologic disorder

affecting both peripheral and autonomic nervous systems.

Symptoms may include pain, numbness, balance issues, and foot

ulcers (2, 68, 69), increasing the risk of diabetic foot and

amputation. In summary, diabetic microangiopathy can impair

bodily functions, potentially leading to disability, and reducing

employment opportunities and the work capacity of patients (70, 71).

In previous observational studies, Chang and colleagues found

an association between the presence and severity of OSAS and DR

(72). After adjusting for all possible confounding factors, Tahrani

et al. found that OSAS remained an independent risk factor for

Diabetic Peripheral Neuropathy (DPN) (73). Leong et al.

conducted a comprehensive analysis of 2 longitudinal and 10

cross-sectional studies. Multivariate analysis indicated a significant

correlation between OSAS and DKD, which was confirmed

through a meta-analysis of another 7 studies (74). Furthermore,

Ouardighi et al. compared the prevalence of OSAS in patients

with diabetic microangiopathy and assessed the potential effects of

diabetic microangiopathy on OSAS. The results showed no

correlation between diabetic microangiopathy and OSAS (75).

Hsin-Chieh et al. found that a decrease in FVC and FEV1 could

increase the risk of diabetes, and chronic hyperglycemia and

tissue hypoxia could promote the onset of microangiopathy

(76). Our bidirectional MR study further supplements previous

research and provides evidence for the potential causal

relationship between OSAS and diabetic microangiopathy.

The development of diabetic microvascular complications may

be attributed to OSAS and its associated cyclical drops in oxygen

saturation and disruptions in sleep structure. This leads to

several biological changes, including the activation of ADP-ribose

polymerase, protein kinase C, and the polyol pathway.

Additionally, there’s an increase in the production of advanced

glycation end-products, oxidative and nitrosative stress, as well as

the activation of the sympathetic nervous system and the renin-

angiotensin-aldosterone system (RAAS) (11, 77). All these

biological changes can lead to endothelial dysfunction, triggering

inflammatory responses and cell apoptosis, resulting in damage

to the vascular wall, increased permeability, white blood cell

infiltration, and cell death. These conditions stimulate the

production of hypoxia-inducible factors, leading to an increased

expression of vascular endothelial growth factor (VEGF) and a

higher rate of neovascularization. These factors collectively

contribute to the progression of diabetic microvascular

complications (73, 78, 79). Additionally, ventilation abnormalities

can lead to decreased FVC and dynamic lung compliance (80),

the decline in lung function, leading to a cumulative loss of
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pulmonary reserves, ultimately exacerbates tissue hypoxia

associated with vascular lesions in distant organs. This is the

fundamental cause of diabetic microvascular complications (81).

At the same time, reductions in FVC and FEV1 are correlated

with increased levels of Hypoxia-Inducible Factor-1 (HIF-1) and

VEGF (51), thereby heightening the likelihood of endothelial

vascular lesions related to diabetes.

From a clinical perspective, as the first MR study on the role of

OSAS in the etiology of diabetic microangiopathy, this study suggests

that the genetic susceptibility to OSAS may account for variations in

diabetic microangiopathy in people of European descent. Although

OSAS has a genetic component, it is also influenced by

environmental and lifestyle factors and is possibly preventable (82).

Although there is still uncertainty about the exact functions of the

8 SNPs, their polygenic effects on diabetic microvascular

complications, and the mechanisms by which these gene variants

operate, current evidence still suggests that reduced blood oxygen

saturation plays a significant role in diabetic microvascular

complications. It seems prudent to recommend that people at high

risk of diabetic microangiopathy strengthen the management of

OSAS and take measures including lifestyle changes by

strengthening social publicity and education and improving

residents’ health awareness. In addition, detecting self-oxygen

saturation, monitoring pulmonary function parameters, and timely

adjustment for abnormal pulmonary function seem to have

unexpected effects on the prevention of clinical DR and its

subtypes. Future work should try to clarify potential mechanisms,

aiming to intervene, provide information for public health research,

or further enhance our understanding of the etiology of diabetic

microvascular complications. Instrumental variable SNPs can be

incorporated as genetic predictors in predictive models aimed at

identifying populations most likely to benefit from specific

interventions. In our study, there were 8 SNPs for diabetic

microangiopathy as instrumental variables for OSAS. Future

research could consider building predictive models based on these

SNPs and validating them in longitudinal cohorts for early

detection and intervention in individuals at risk of diabetic

microvascular complications. As our understanding of human

genetics and the interactions between genes, metabolomics,

proteomics, and transcriptomics grows, future MR studies should

integrate these aspects to identify new biomarkers predicting the

onset of diabetic microvascular complications and screen potential

therapeutic targets. By screening SNP-related protein factors as

instrumental variables to estimate the causal impact of this protein

factor on specific results, MR studies can be used to assess whether

the drug is likely to be effective in the study of compounds

targeting specific proteins, guiding clinical decision-making and

treatment planning. Lastly, in this study, we adopted a

comprehensive dataset derived from public databases encompassing

cases of microvascular complications induced by both Type 1

diabetes mellitus (T1DM) and Type 2 diabetes mellitus (T2DM).

Given that sustained hyperglycemic conditions in both types of

diabetes can trigger a series of intricate metabolic and molecular

cascades, leading to endothelial dysfunction within the

microvasculature, this constitutes the primary pathological

mechanism (83). We posit that merging and analyzing datasets
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from T1DM and T2DM collectively, as opposed to separate analyses,

significantly enhances the statistical power of the study. This

analytical strategy aids in uncovering universal characteristics of

DR across the entire diabetic population, rather than focusing

solely on specific diabetic subtypes (84). Furthermore, through the

amalgamation analysis, we can circumvent potential issues of

reduced statistical significance due to insufficient sample sizes,

thereby enhancing the generalizability and credibility of study

findings (85). The central objective of this study is to capture the

overall trends of DR, rather than distinguishing between specific

subtypes of diabetes. Through this comprehensive analytical

approach, we aim to provide a more thorough and profound

scientific basis for the prevention and therapeutic intervention of

microvascular complications in diabetes.

Our current research has several advantages. Firstly, few

studies have comprehensively investigated the relationship between

OSAS and the incidence of diabetic microvascular complications.

We are the first to examine their potential causal relationship

using the MR method and a large amount of GWAS data.

Secondly, because we used a two-sample MR analysis, our results

are less likely to be confounded and reverse causality compared to

traditional observational studies. In addition, we utilized large-scale

samples to improve the statistical power of the study and make

the findings more convincing. MR designs estimate the causal

effects of independent variables on dependent ones rather than

merely observing their correlation. Thus, the advantages of

MR analysis may enhance the reliability of our findings, provide

stronger evidence for clinical decision-making, and assist doctors

and patients in making more informed medical choices.

However, some limitations were identified in our study. First, MR

requires three strict core assumptions to be met: relevance,

independence, and exclusion restriction. While we employed a

rigorous study design to avoid violating these assumptions and

identified closely related genetic tools for exposure (P-value < 5 ×

10−7) with F-statistics > 10, and replicated results with multiple

sensitivity analyses. Additionally, we used MR-Egger to identify

potential horizontal pleiotropy, but it’s impossible to completely

rule out residual pleiotropy. In our study, no horizontal pleiotropy

was found between OSAS with diabetic microvascular

complications. However, horizontal pleiotropy exists between FEV1

and PDR, indicating that their relationship might be influenced by

pleiotropic factors and warrants further validation. Second, there

may be some sample overlap in our study, the direction and extent

of any bias remain uncertain. Recent simulation studies also

suggest that two-sample MR methods can be safely applied to

single-sample MR performed in large biobanks. Hence, any bias

due to sample overlap, if present, might be minimal (82). Third,

clinical trials typically assess short-term intervention effects over

shorter durations. This implies that our findings might not provide

information about short-term intervention effects, which could be

crucial for questions directly related to clinical interventions.

Although our research can reveal the relationship between OSAS

and DR, the application of the findings in real-world clinical

settings might require additional research to determine whether

treatment or interventions for OSAS are needed and how they

should be conducted. Lastly, since the UK Biobank represents a
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biased sample of healthy older individuals from the UK, the

Finnish database population also has specific demographic

characteristics, including genetic background, genetic diversity,

lifestyle, dietary habits, and genomic features, among others. These

characteristics might differ from those of other countries or

populations, making the research findings potentially inapplicable

to other groups (86). Due to the lack of individual-level data, it’s

not possible to evaluate the relationship between the severity of

OSAS and other parameters. Therefore, our findings should be

interpreted with caution and validated in further studies.
5 Conclusion

Our study offers suggestive causal evidence indicating a

potential causal relationship between OSAS and diabetic

microvascular complications. Lung function might also be

associated with the risk of diabetic microvascular disease onset.

Our findings suggest that lifestyle interventions related to OSAS

could serve as preventive strategies for potential populations at

risk of diabetic microvascular complications. Our research is

comprehensive and lays the groundwork for further large-scale

longitudinal studies or randomized controlled trials
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Novel components in the nuclear
factor-kappa B (NF-kB) signaling
pathways of endothelial cells
under hyperglycemic-ischemic
conditions
Madhu V. Singh, Thomas Wong, Sonia Moorjani, Arul M. Mani
and Ayotunde O. Dokun*

Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa, Iowa City,
IA, United States

Diabetes worsens the outcomes of a number of vascular disorders including
peripheral arterial disease (PAD) at least in part through induction of chronic
inflammation. However, in experimental PAD, recovery requires the nuclear
factor-kappa B (NF-κB) activation. Previously we showed that individually, both
ischemia and high glucose activate the canonical and non-canonical arms of
the NF-κB pathway, but prolonged high glucose exposure specifically impairs
ischemia-induced activation of the canonical NF-κB pathway through activation
of protein kinase C beta (PKCβ). Although a cascade of phosphorylation events
propels the NF-κB signaling, little is known about the impact of hyperglycemia
on the canonical and non-canonical NF-κB pathway signaling. Moreover, signal
upstream of PKCβ that lead to its activation in endothelial cells during
hyperglycemia exposure have not been well defined. In this study, we used
endothelial cells exposed to hyperglycemia and ischemia (HGI) and an array of
approximately 250 antibodies to approximately 100 proteins and their
phosphorylated forms to identify the NF-κB signaling pathway that is altered in
ischemic EC that has been exposed to high glucose condition. Comparison of
signals from hyperglycemic and ischemic cell lysates yielded a number of
proteins whose phosphorylation was either increased or decreased under HGI
conditions. Pathway analyses using bioinformatics tools implicated BLNK/BTK
known for B cell antigen receptor (BCR)-coupled signaling. Inhibition of BLNK/
BTK in endothelial cells by a specific pharmacological inhibitor terreic acid
attenuated PKC activation and restored the IκBα degradation suggesting that
these molecules play a critical role in hyperglycemic attenuation of the
canonical NF-κB pathway. Thus, we have identified a potentially new
component of the NF-κB pathway upstream of PKC in endothelial cells that
contributes to the poor post ischemic adaptation during hyperglycemia.

KEYWORDS

endothelial cells, hyperglycemia, BLNK/BTK, peripheral artery disease, NF-κB,
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Introduction

Diabetes significantly worsens the outcomes of a number of vascular disorders

including peripheral arterial disease (PAD) (1–6). This poor outcome is attributed in

part to the inflammatory milieu of the diabetic condition (1, 7–10). The NF-κB

signaling pathway is one of the most studied inflammatory pathways under multiple
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stress and disease related conditions including diabetes (11–13).

The NF-κB transcription factor is a heterogeneous group of five

transcription factor subunits that form dimers in various

combinations to regulate transcription of their various target

genes (14, 15).

The commonly described NF-κB signaling pathway, also known

as the canonical pathway, involves phosphorylation dependent

tagging and subsequent proteosomal degradation of the inhibitory

IκBα subunit to allow nuclear translocation of the p65 subunit

containing NF-κB dimer (14). NF-κB signaling is activated under

ischemic conditions and is required for arteriogenesis following an

ischemic injury (16). Inhibition of NF-κB signaling pathway in

endothelial cells shows aberrant endothelial function and poor

post-ischemic perfusion recovery (16). Recently, we have shown

that chronic activation of NF-κB pathway by hyperglycemia in

diabetes impairs activation of the canonical NF-κB pathway as

measured by increased IκBα levels (1). Moreover, we showed that,

this process involves activated PKCβ and contributes to poor

reperfusion recovery in a preclinical model of peripheral artery

disease (PAD) in type I diabetes (1). Inhibition of PKCβ by

ruboxistaurin (Rbx) restored the canonical NF-κB signaling

pathway both in vitro and in vivo suggesting a pivotal role of

PKCβ activity in post ischemic adaptation in the setting of

hyperglycemia. However, the molecular signals and pathways that

lead to PKCβ activation under hyperglycemic ischemic conditions

are not well understood. To elucidate the pathway involved, we

used a combined approach of bioinformatics and unbiased

screening of the phosphorylation states of approximately 100

proteins known to participate in various pathways of NF-κB

activation. Here we report a previously unknown signaling

pathway of NF-κB activation in endothelial cells that resembles B

cell receptor signaling.
Materials and methods

Cell cultures

All experiments were performed using pooled human vascular

endothelial cells (HUVEC, ATCC, Cat # PCS-100-011, USA) and

human aortic endothelial cells (HAEC) from Cell Applications

(Cat # 304-05a, San Diego, CA, USA) or mouse microvascular

endothelial cells from skeletal muscles (MMEC, Cat#T4991,

Applied Biological Materials, Richmond, British Columbia,

Canada) between passage 4 and 7 as described previously (1). The

complete endothelial cell growth medium (ECGM) was obtained

from Cell Applications, Inc. (Cat # 211-500, San Diego, CA, USA).

All endothelial cells were grown on gelatin coated (Cat # 6950,

Cell Biologics) plastic culture dishes in the above medium under

95% humidity and 20% O2. For simulated ischemia, culture

medium was removed, cells were washed with Dulbecco’s PBS and

medium was replaced with endothelial cell starvation medium

(Cell Applications, San Diego, Cat# 209–250) and incubated for

24 h in a hypoxia chamber with 95% humidity and 2% O2 (6).

Cell cultures were maintained in normal glucose (5 mM D-

glucose). For experiments, the medium was supplemented with
Frontiers in Cardiovascular Medicine 02109
20 mM D-glucose (high glucose medium, HG) or with 20 mM

metabolically inert L-glucose (normal glucose medium, NG). For

inhibitor studies, cultured cells were treated with terreic acid at

described concentrations shown in results (Cat# 1405, Tocris). For

BLNK knockdown by shRNA, MMEC were transfected with

plasmid containing shRNA sequence (TRCN0000329213,

Millipore-Sigma) or corresponding empty plasmid vector using

Lipofectamine3000 (Thermo-Fisher). Cell lysates were prepared in

RIPA buffer and immunoblotting performed.
Phosphoprotein array

Antibodies arrays were used to detect differences in

phosphorylation of signaling molecules involved in the NF-κB

pathway (NF-κB Phospho Antibody Array, Cat# PNK215, Full

Moon Biosystems, Sunnyvale, CA, USA) as described previously

(1). These arrays contained 215 antibodies to approximately 100

proteins and their phosphorylated forms that are known to

participate in the NF-κB signaling pathways. Cell extracts from

HUVEC exposed to either normal glucose (NG, 5 mM D-

Glucose), normal glucose with ischemia (NGI), 25 mM D-glucose

(HG), or 25 mM D-glucose with ischemia (HGI) were analyzed

for the phosphoprotein levels according to the manufacturer’s

suggested protocol. A microarray scanner was used to record and

digitize the fluorescence signals. Raw data were analyzed by

manufacturer’s recommendations using ImageJ (17) and

transferred to Excel worksheet (Microsoft Office suite) for further

analyses. Background corrections were performed, and the signals

normalized against the median intensity of all the experimental

spots on the array. Fold change in protein phosphorylation was

calculated by dividing the intensity of the phosphorylated spot by

the signal intensity of the corresponding non-phosphorylated spot

for each protein. Differential expression between NG and NGI

samples, and HG and HGI were calculated by dividing the

phosphorylation ratio of the NGI and HGI with that of the NG

and HG controls, respectively. Significant change was taken as

greater than 1.5- or less than 0.67-fold. This experiment was

carried out with three samples for each experimental group, and

the array contained six spots for each antibody.
Immunoblotting

Cell and tissue lysates were prepared in RIPA buffer (Thermo

Scientific, Cat# 89901) as described previously (1). Equal amounts

of protein in each sample were separated on NuPAGE gels and

transferred to nitrocellulose membranes (BioRad, Cat# 1620094).

After blocking non-specific binding in Intercept blocking buffer

(LiCor, Cat# 927-60001), the membranes were probed with

primary antibodies overnight at 4°C. The primary antibodies used

were anti-IκBα (Cat#9242, Cell Signaling Technology, Danvers,

MA, USA), anti-pSer661-PKC (Cat# DBOA15543, Vita Scientific,

Beltsville, Maryland), anti-BTK (Cat# 8547, Cell Signaling

Technology, Danvers, MA, USA), anti-BLNK (Cat# 36438, Cell

Signaling), phospho-BLNK-Tyr84 (Cat # 26528, Cell Signaling),
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anti-GAPDH (Cat# 2118), and anti-β-actin (Cat# 3700, Cell

Signaling). Following washes with Tris-buffered saline-0.1%

Tween20 (TBST), secondary antibodies either Donkey-anti-rabbit-

HRP (Cat # NA93AV, Cytiva), Goat-anti-rabbit-IR800, or Goat-

anti-mouse-IR680 (both Li-COR Biosciences, Lincoln NE, USA)

were used at 1:5,000 dilution in blocking buffer for 1 h at room

temperature. Membranes were washed in TBST and signals were

captured by iBright 1500 (Invitrogen) imager either directly for IR

antibodies or by enhanced chemiluminescence (ECL) method.

Quantification of the protein bands on immunoblots were

performed using Image Studio Lite version 5.2 (Li-COR

Biotechnology, Lincoln, Nebraska). Abundance of phosphoproteins

was determined as the ratio of band intensity of target protein

bands to β-actin.
RNA isolation and real-time QPCR

RNA was isolated from cultured cells using Direct-zol RNA mini

prep kit (Zymo Research, USA, Cat. R2052)) using Tri Reagent for

cell lysis. Quality of isolated RNA (A260/280 ≥2.0) and

quantification was done on a NanoDrop instrument. Aliquots of

200 ng RNA samples were reverse transcribed using a High-

Capacity RNA to cDNA kit (AppliedBiosystems, Cat 4388950). For

QPCR of BTK RNA, 10 ng RNA equivalent cDNA was used in

each reaction with Power SYBR Green reagent (AppliedBiosystems,

Cat 4367659) on a QuantStudio 3 thermocycler (ThermoFisher).

One picomoles of forward and reverse primers were used for BTK

(Forward 5′-AGCACAACTCTGCAGGACTC-3′ and Reverse 5′-
TGCAGTGGAAGGTGCATTCT-3′) and GAPDH (Forward 5′-
GTCTCCTCTGACTTCAACAGCG-3′ and Reverse 5′-ACCACCC
TGTTG CTGTAGCCAC-3′). GAPDH was used as a loading

control (1 ng RNA equivalent for GAPDH QPCR) and expression

analysis was done by ΔΔCt method (18).
Statistical analysis

The measurements are expressed as mean ± SEM. Statistical

comparisons between two groups (e.g., treated vs. untreated)

were performed by t-test, whereas for more than two groups, we

used one-way analysis of variance. A P value of <0.05 was

considered statistically significant.
Results

In hyperglycemic mice with type 1 diabetes, perfusion recovery

and post ischemic adaption is poor following experimental PAD or

induction of hind limb ischemia (HLI) (1, 19, 20). We have shown

that ischemic activation of the canonical NF-κB pathway, is impaired

under hyperglycemic conditions (1). Therefore, we investigated

endothelial cells for an increase or decrease in phosphorylation of

proteins associated with NF-κB signaling under hyperglycemic-

ischemic conditions. Using HUVECs grown either in normal

glucose with ischemia (NGI) or high D-glucose with ischemia
Frontiers in Cardiovascular Medicine 03110
(HGI), we compared the phosphorylation state of 98 protein sites

representing about 48 distinct proteins. These proteins are known

to be modulated in various pathways of the NF-κB signaling. We

used an array of antibodies and selected the protein

phosphorylation sites whose signals were increased greater than

1.5-folds or decreased greater than 0.67-fold change.

We first analyzed the increase or decrease in phosphorylation of

signaling proteins in cells grown in normal glucose concentration

and exposed to either normoxia (NG) or ischemia (NGI). In NGI

samples, when compared to normoxic samples (NG), 26 protein

phosphorylation sites were identified to undergo increased

phosphorylation whereas 36 sites had decreased phosphorylation

(Figure 1A). Similarly, when cell cultured in high D-glucose (HG)

and exposed to normoxia were compared to cells exposed to

ischemia (HGI) increased phosphorylation of 25 protein sites and

decreased phosphorylation of 40 sites (Figure 1B) were identified.

Additionally, a direct comparison of NGI and HGI results

showed increased phosphorylation on 15 sites and decreased

phosphorylation on 41 sites (Figure 1C, also see Supplementary

Material Table S1). Thus, ischemia modulates phosphorylation of

a different number of sites in proteins that are involved in NF-κB

signaling pathway under normal glucose compared to high glucose.

To identify protein phosphorylation in ischemic ECs that could

be attributed to exposure to high glucose we compared the list of

sites that had increased phosphorylation in either NGI or HGI.

A Venn-diagram analysis showed that out of the 25 sites whose

phosphorylation was increased in HGI, 17 sites were common to

both NGI and HGI, suggesting that these increases were related

to ischemia, independent of glucose levels (Figure 2A). There

were 9 out of 26 sites that had increased phosphorylation

specifically in NGI, suggesting ischemia induced changes under

normal glucose conditions. In addition, 8 sites had increased

phosphorylation only in HGI samples indicating their unique

role in hyperglycemic ischemia.

Similarly, comparison of the list of sites with decreased

phosphorylation in either NGI or HGI showed that 28 sites had

decreased phosphorylation under ischemic conditions irrespective

of the glucose concentration in the growth medium. There were

8 sites with decreased phosphorylation only in NGI and 12 sites

whose phosphorylation decreased only in HGI (Figure 2B).

Since high D-glucose alone can induce NF-κB signaling, we

further compared these increases or decrease in protein

phosphorylation with the respective protein sites observed in high

D-glucose-specific conditions (NG/HG) (Figure 3A). There was

increased phosphorylation of 15 protein sites attributable to HG, 3

of these sites showed increased phosphorylation also in ischemic

conditions with NG while 2 other sites showed increased

phosphorylation in HGI. Of the 8 phospho-sites identified in HGI/

HG (Figure 2A), all were specific for high D-glucose with ischemia

(HGI, Figure 3A). However, of the 12 decreased phospho-proteins

in HGI (Figure 2B), 10 protein sites were specific for high D-

glucose with ischemia, whereas 2 protein sites also had decreased

phosphorylation in high D-glucose (HG/NG) without ischemia

(Figure 3B). Thus, high glucose, ischemia, or combinations of these

conditions result in specific changes at different phosphorylation

sites of proteins in the NF-κB signaling pathways (Table 1).
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FIGURE 1

Measurement of relative changes in the phosphorylation state of proteins involved in the signaling pathways of NF-κB activation using printed arrays of
antibodies. The graphs show fold-changes as ratios of phosphorylated/total signal in human endothelial cell lysates. (A) The plot shows fold-change in
phosphorylation of specific epitopes of proteins in human endothelial cells under normal D-glucose and ischemic condition (5 mM D-glucose +
20 mM L-glucose, NGI) compared to the control cells grown under normal D-glucose and normoxic condition (5 mM D-glucose + 20 mM
L-glucose, NG). Each dot represents a phospho-protein site. Red and blue dots represent greater than 1.5-folds increase or greater than 0.67-fold
decreased phosphorylation, respectively. (B) Comparison of changes in protein phosphorylation in hyperglycemic-ischemic endothelial cells. The
plot shows protein sites with 1.5-folds increased (red dots) or 0.67-fold decreased (blue dots) phosphorylation in high D-glucose and ischemia
(25 mM D-glucose + ischemia, HGI) compared to high D-glucose and normoxia (25 mM D-glucose, HG). (C) Phospho-proteins comparison of
NGI and HGI (1.5-folds increase or 0.67-fold decrease cutoff) revealed increased phosphorylation at 15 sites (red dots) and decreased
phosphorylation at 41 sites (blue dots). N= 3 antibody arrays per group, 1 array/sample.
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Multiple signaling pathways related to environmental stress

affect development, growth, cell death and post-ischemic

adaption through activation of the NF-κB pathway (37). To

identify the pathway leading to NF-κB activation in

hyperglycemic-ischemic condition in endothelial cells, we
FIGURE 2

Venn diagram analysis of protein phosphorylation sites with 1.5-folds chan
ischemia (HGI) to identify specific protein phosphorylation sites in hyperg
increased phosphorylation in NGI and ischemic HGI showed 9 NGI-specifi
sites with decreased phosphorylation showed 8 NGI-specific sites and 12 H
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employed a bioinformatics approach. We hypothesized that any

protein that has undergone a change in phosphorylation under

HGI, irrespective of the direction of change, must participate in

the NF-κB signaling pathway. Moreover, change in

environmental condition may not necessarily recruit an entirely
ges in normal D-glucose with ischemia (NGI) and high D-glucose with
lycemic-ischemic conditions. (A) Comparison of the protein sites with
c and 8 HGI-specific protein phosphorylation sites. (B) Comparison of
GI-specific sites.
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FIGURE 3

Venn diagram analyses to impose a higher level of specificity of phosphorylation changes by eliminating high D-glucose-related phosphorylation sites
(HG). The 15 HG-related increased and 22 decreased phosphorylation sites were obtained from our published results (1). These analyses eliminated
sites that whose phosphorylation is either increased (A) or decreased (B) in the presence of high D-glucose alone. The analysis yielded 8 HGI-specific
sites with increased phosphorylation and 10 HGI-specific sites that had decreased phosphorylation (shown in red).

Singh et al. 10.3389/fcvm.2024.1345421
new signaling pathway; instead, modification of even a single key

protein may potentially alter the signaling outcome. Therefore, to

identify the signaling pathway involved in hyperglycemic-

ischemic condition (HGI), we obtained a list of genes

representing all phosphoproteins that were modulated in HGI

(Figure 1B). The 65 modulated phospho-sites (25 increased and

40 decreased) in HGI (Figure 1B) were represented by 35 genes

(Table 2). We then performed an over-representation test on this

set of representative genes using PANTHER molecular

classification system (38).

Among the predicted pathways, the toll-like receptor pathway,

B cell activation and T cell activation pathways were prominent for
TABLE 1 Hyperglycemia-ischemia (HGI) specific change in phosphorylation
of signaling proteins involved in the NF-κB pathway.

Phospho-protein site Change in
phosphorylation

Reference to
NF-κB

involvement
P38 MAPK (Phospho-Thr180) Up (21–23)

AKT1 (Phospho-Tyr474) Up (24)

Ras-GRF1 (Phospho-Ser916) Up (25, 26)

HDAC1 (Phospho-Ser421) Up (27)

NF-κB-p100 (Phopho-Ser872) Up (28)

BLNK (Phopho-Tyr96) Up (29)

BLNK (Phopho-Tyr84) Up

IKK gamma (Phopho-Ser85) UP (30)

PKC theta (Phopho-Ser676) Down (31, 32)

PKR (Phospho-Thr446) Down (33)

PKR (Phopho-Thr451) Down

PKC beta (Phospho-Ser661) Down

PKC zeta (Phospho-Thr410) Down (31, 32, 34)

HDAC5 (Phopho-Ser259) Down

SAPK/JNK (Phospho-Thr183) Down

IκB-alpha (Phopho-Ser32/36) Down (35)

NF-κB-p65 (Phopho-Thr435) Down (36)

LCK (Phopho-Tyr505) Down

Frontiers in Cardiovascular Medicine 05112
their fold-enrichment (TLR >100-folds, T cell activation 81.71-

folds, and B-cell activation 80.56-folds) and low probability of

false discovery rate (Table 3). Similar results were obtained from

the Reactome database (www.reactome.org) for enrichment of

genes related to the TLR and B cell receptor signaling (BCR)

pathways. Together, these results suggest that in addition to the

TLR pathway, the endothelial cells may also have an operative

BCR like pathway (Figure 4). Although BCR pathway was

originally thought to be limited to the B lymphocytes, it has now

been known to operate in several non-B cells as well (39, 40).

However, since this pathway or its components have not been

reported in endothelial cells, we decided to investigate this pathway.
BLNK/BTK-dependent NF-κB signaling in
endothelial cells

Our screening showed a role of B-cell linker protein (BLNK) in

the predicted B-cell receptor activation pathway. BLNK is

responsible for B-cell receptor (BCR) signaling pathway leading

to B-cell development (41). BLNK is a scaffold protein that

bridges BCR signaling components with downstream signaling

pathways including activation of the NF-κB signaling pathway

(42). In addition, BLNK has also been shown to play a role in

growth of cancer cells (39, 40). However, their presence and role

in endothelial cell signaling is not known. We used antibody to

BLNK in immunoblotting experiments with several primary

endothelial cells from human and mouse. We found that BLNK

protein is expressed in human (HUVEC, HAEC, Figure 5A) as

well as mouse (MVECsk, MVEC) endothelial cells (Figure 5B).

In addition, BLNK protein undergoes increased phosphorylation

at the Tyr84 residue (pY84-BLNK) under ischemic conditions

both in normal glucose (NGI) and high glucose (HGI) as

predicted from the phosphoarray screening (Figures 5C,D). These
frontiersin.org
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TABLE 2 The list of 35 distinct endothelial cell proteins within the NF-κB
signaling pathway showing change in phosphorylation under
hyperglycemic-ischemic conditions (HGI).

Proteins in HGI Genes in HGI
AKT1 AKT1

AKT2 AKT2

BLNK BLNK

BTK BTK

CSNK2B CSNK2B

PKR EIF2AK2

ELK-1 ELK1

GSK3a GSK3A

GSK3b GSK3B

HDAC1 HDAC1

HDAC5 HDAC5

IκB beta IKBKB

IKK gamma IKBKG

LCK LCK

TAK1 MAP3K7

COT MAP3K8

P38 MAPK MAPK14

SAPK/JNK MAPK8

NF-κB p105/p50 NFKB1

NF-κB p100/p52 NFKB2

IκB-alpha NFKBIA

IKK beta IKBKB

IκB epsilon NFKBIE

PI3-kinase p85 alpha PIK3R1

PLCG1 PLCG1

PLCG2 PLCG2

PKC alpha PRKCA

PKC beta II PRKCB

PRKCQ PRKCQ

PKC zeta PRKCZ

RAS-GRF1 RASGRF1

REL REL

NF-κB p65 RELA

MSK1 RPS6KA5

ZAP-70 ZAP70

Singh et al. 10.3389/fcvm.2024.1345421
results validated the results from the phosphoarray screening that

BLNK protein is expressed in endothelial cells and its

phosphorylation is modulated under ischemic conditions. To test

the effect of BLNK on the NF-κB pathway, we used shRNA-

mediated knockdown of BLNK protein in MVECsk cells

(Figures 6A,B). Decrease in BLNK resulted in decreased NF-κB

basal activity reflected by increase in steady state levels of IκBα

protein (Figures 6A–C) suggesting that BLNK participates in the

NF-κB signaling pathway in endothelial cells.
TABLE 3 Identified NF-κB signaling pathways based on PANTHER path
phosphorylation was modulated by hyperglcemic-ischemic (HGI) condition.
20240226; PANTHER version 18.0 (released 2023-08-01).

PANTHER pathway Number of genes
Toll receptor signaling pathway 12

T cell activation 12

B cell activation 10

Insulin/IGF pathway-protein kinase B signaling cascade 5

Histamine H1 receptor mediated signaling pathway 6

Frontiers in Cardiovascular Medicine 06113
As a scaffold protein, BLNK recruits multiple proteins to

propagate downstream signaling pathways including PLCγ

activation (43). Bruton’s tyrosine kinase (BTK) is a BLNK-

associated non-receptor tyrosine kinase that is important

for this signaling (44). Therefore, we tested the expression

of BTK mRNA and protein in cultured human endothelial

cells (HUVEC and HAEC) by RT-QPCR and

immunoblotting, respectively. In RT-QPCR analysis using

BTK-specific primers, the expression of BTK was detected

both in HUVEC and peripheral blood mononuclear cells

(PBMC) as seen by melt curve analysis of SYBR green

based RT-QPCR products of BTK and GAPDH. Result

showed similar peaks in PBMC and HUVECS with similar

Tm values (Figure 7A). Agarose gel electrophoresis of the

RT-QPCR reaction products showed single specific band of

expected molecular size (77 bp) for BTK amplicon and

131 bp amplicon for GAPDH (Figure 7B). Immunoblotting

of cell lysates also showed BTK protein expression in

human as well as mouse cultured primary endothelial cells

(Figure 7C). Together, these results strongly suggested that

BLNK and BTK are expressed in HUVEC as well as other

endothelial cells from human and mouse and validate the

results of the phosphoarray screening.

Previously, we have shown that high glucose conditions impair

the canonical NF-κB signaling resulting in increased steady state

levels of IκBα (1) which was related to increased

phosphorylation of PKCβ-Ser661. To test whether BLNK/BTK

axis might be upstream of this pathway, we treated high D-

glucose grown primary mouse endothelial cells (MVECsk) with

terreic acid (TA, 20 and 30 µM), a selective inhibitor of BTK.

Compared to the control cells grown in high L-glucose (normal

D-glucose), cells grown in high D-glucose had increased IκBα

protein (46.7% increase from control), an observation consistent

with decreased NF-κB activity as we showed previously

(Figures 8A,B) (1). Treatment with terreic acid significantly

decreased accumulation of IκBα suggesting a net increase in

NF-κB activity.

We further tested the effect of inhibiting BLNK/BTK

signaling in primary mouse endothelial cells on PKC activation

by phosphorylation. PKC phosphorylation was increased in

high D-glucose conditions and treatment with terreic acid

decreased this phosphorylation (Figures 8C,D). These results

suggest that a BLNK/BTK mediated signaling pathway plays a

role upstream of PKCβ in high glucose-related NF-κB signaling

in endothelial cells.
ways over-representation (homo sapiens) analysis of proteins whose
Top 5 pathways are shown. PANTHER overrepresentation test (released

Fold enrichment P value FDR (false discovery rate)
>100 8.78E-23 7.07E-21

81.71 1.08E-20 4.35E-19

80.56 2.90E-17 7.79E-16

75.26 5.89E-09 4.51E-08

74.61 1.64E-10 1.76E-09
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FIGURE 4

Pathway map based on combined results obtained from bioinformatic analyses of signaling protein phosphorylation sites using PANTHER molecular
classification system and reactome database. Both databases strongly suggested a role of B cell receptor like pathway in endothelial cells leading to
modulation of the canonical and non-canonical pathways of NF-κB activation by hyperglycemic-ischemic conditions. The colored boxes show
proteins represented in the experimental data. The components highlighted in orange show increased phosphorylation whereas components
highlighted in blue represent decreased phosphorylation on the depicted proteins. Please see the text for description.
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Discussion

In this study, using an antibody array for proteins and

bioinformatics tools, we have identified BLNK and BTK proteins

as novel upstream signaling components of hyperglycemic-

ischemic NF-κB responses in endothelial cells. Phosphorylation

and dephosphorylation are important biochemical modifications

in propagation of NF-κB signaling. Functional NF-κB pathway is

required for recovery from ischemic conditions (16), but

prolonged high glucose and ischemic conditions impair the

canonical pathway of the NF-κB signaling (1). We used an array

of about 215 specific antibodies representing 100 distinct

phospho-protein sites related to the NF-κB signaling. We

compared the changes in phosphorylation of these proteins in

the lysates from endothelial cells that were grown in normal D-

glucose or high D-glucose under normoxic or ischemic

conditions. Our results revealed a novel pathway of endothelial

cells under hyperglycemic-ischemic conditions that utilizes

proteins involved in B cell receptor signaling. Moreover, our

analysis suggests that in accordance with our published results,

hyperglycemic conditions alter the phosphorylation of various

proteins participating in the NF-κB signaling to downregulate the

canonical pathway (Figure 4). BLNK is a scaffold protein that

can nucleate a large protein complex of several proteins

including Tec family kinases of which BTK is a member (45).
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Although originally described in B-cell receptor signaling, BLNK/

BTK pathway also functions in non-hematopoietic cells (39, 40).

Thus, modulation of IκBα by knocking down BLNK expression

and by a selective inhibitor of BTK suggest an important role of

this pathway in hyperglycemia related inflammatory response.

Further studies will elucidate the contribution of other proteins

that function upstream of BLNK in impairment of the canonical

NF-κB signaling in endothelial cells chronically exposed to

high glucose.

Both high glucose concentration and ischemia elicit stress

response in cells through activation of the NF-κB pathway.

Accordingly, a set of common protein sites had increased

phosphorylation in both cells grown in normal or high D-glucose

when exposed to ischemic condition. Similarly, a set of protein

sites had decreased phosphorylation under ischemic condition

with normal or high D-glucose. However, we also identified

protein phosphorylation sites that were uniquely modulated in

cells exposed to normal glucose with ischemia or to high glucose

with ischemia.

Based on our findings, we have constructed a schematic of

putative signaling pathways that depicts interactions of

components operating in balancing the canonical and non-

canonical pathways of the NF-κB-mediated transcription

activation (Figure 4). Here we discuss the phosphorylation events

that were upregulated or downregulated specifically in HGI
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FIGURE 5

Expression of BLNK in endothelial cells. (A) Immunoblotting of primary cultures of human umbilical vein endothelial cells (HUVEC) and human aortic
endothelial cells (HAEC) for BLNK protein. Each lane represents a replicate cell culture of the labeled primary cell type. (B) Immunoblotting of mouse
primary endothelial cells of skeletal muscle or dermal origin for BLNK protein. GAPDH was used as a loading control in the lanes. Each lane represents
a replicate culture of the respective primary cell type. (C) Immunoblots showing phosphorylated BLNK protein on Tyr84 residue (pY84-BLNK) under
normal glucose plus ischemia (NGI) and high glucose plus ischemia (HGI) in mouse skeletal muscle endothelial cells, (D) pY84-BLNK in mouse skeletal
muscle endothelial cells is increased under both NGI and HGI conditions (n= 4 each group, asterisks denote p < 0.05).
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samples. We show that the upregulated phosphoproteins promote

the non-canonical NF-κB pathway whereas the downregulated

phosphoproteins limit the activation of the canonical NF-κB

pathway. These changes in turn may have a net adverse effect of

attenuating the canonical NF-κB pathway in hyperglycemic

ischemic conditions.
Upregulated phosphorylation sites

BLNK (p-Tyr96 and p-Tyr84)
B cell linker protein (BLNK) serves a scaffolding function to

coordinate second messenger generation and signal transduction

upon activation of B cell receptor (BCR). BLNK does not have an

intrinsic enzyme activity; instead, it functions as a scaffold protein

to assemble multiple proteins including kinases and PLCβ. In

mouse, BLNK−/− B cells show intact activation of AKT but

impaired activation of the canonical nuclear factor NF-κB due to

a failure to degrade IκBα protein (46). In accordance, we observed

that shRNA-mediated knockdown of BLNK in mouse endothelial

cells increased IκBα levels suggesting an impaired canonical
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NF-κB pathway (Figure 6). In this pathway, phospholipase C

(PLC)-gamma2 has also been demonstrated to be essential for NF-

κB activation. BLNK is required for PLCγ2 phosphorylation and

Ca2+ influx through BCR activation (47). Peptide containing

phosphorylated-Tyr96 residue specifically bind to BTK that leads

to Ca2+ influx and PLCγ binding and phosphorylation upon BCR

activation (29). Thus, the presence of BLNK in cultured primary

endothelial cells (passage 4–7), that are devoid of B cells, suggests

the presence of a B cell like signaling pathway. Consistent with

our previous report of decreased canonical NF-κB pathway

activation, we observed decreased PLCγ phosphorylation, whereas

increased AKT1 phosphorylation leads to sustained or increased

non-canonical activation of NF-κB pathway.

We also observed expression of BTK in both mouse and human

primary endothelial cells from different tissue sources. We verified

the expression of BTK transcripts in endothelial cells using QPCR

based method. In addition, inhibition of BTK activity led to

change in IκBα levels. These findings further suggest a functional

role of BLNK/BTK pathway in inflammatory response in

endothelial cells under hyperglycemic conditions. Interestingly,

knocking down of BLNK or inhibition of BTK, both resulted in
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FIGURE 6

(A) Immunoblot of BLNK and IκBα proteins in culture grown primary mouse skeletal microvascular endothelial cells (MVECsk). Intensity of protein
bands was normalized to total loaded protein in corresponding lanes (Ponceau S staining). (B) BLNK protein was significantly knocked down by
transfection of shRNA harboring plasmid (shRNA-Norm) compared to control plasmid vector transfected cells and kept under normoxic or
ischemic conditions (Vector-Norm and Vector-Isch, respectively). (C) Knockdown of BLNK resulted in increased IκBα protein in corresponding
samples probed on the same blot. N= 4 each group, p < 0.05 by One Way ANOVA).
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activated NF-κB as measured by changes in IκBa levels. Since the

outcome of signaling through both BLNK and BTK depends on

phosphorylation status of their different amino acid residues,

future experiments will elucidate how these post-translational

modifications relate to hyperglycemic and ischemic conditions.
AKT1 (p-Tyr474)
Akt1 is a key serine/threonine-protein kinase that regulates a

number of cellular processes including cell survival, proliferation,

metabolism, and angiogenesis by phosphorylating a number of

protein substrate. However, the kinase activity of AKT1 itself is

dependent on the phosphorylation of three specific sites (Thr308,

Ser473 and Tyr474). Phosphorylation of Tyr474 residue, which

was increased in our HGI samples, is the major determinant of

AKT1 activity (24). The upstream signaling events leading to

membrane localization and phosphorylation of AKT1 are

coordinated by BTK, a non-receptor tyrosine kinase that acts as

a scaffold protein to nucleate several signaling proteins. Active

AKT1 positively affects a role in NF-κB-dependent gene

transcription. Overexpression of constitutively active AKT1

increases non-canonical NF-κB activity by increasing IKKα

activity that in turn results in increased production of p52

subunit of NF-κB (48). Our finding of increased Tyr474
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phosphorylation of AKT1 in HGI cell lysates is consistent with

our previous finding of increased non-canonical NF-κB activity

in hyperglycemia both in vitro in HUVEC and in vivo in DM (1).

Ras-GRF1 (p-Ser916)
Ras-GRF1 (Ras-specific guanine nucleotide-releasing factor 1),

also known as CDC25, is an exchange factor that promotes

exchange of Ras-bound GDP by GTP. Ras-GRF1 is

phosphorylated in an LCK-Syk dependent manner (49). Ras-

GRF1 is linked to H-Ras and participates in activation pathway

of ERK and canonical pathway of the NF-κB through CARD9-

BCL10-MALT1 complex (25, 26).

HDAC1 (p-Ser916)
Histone deacetylase 1 (HDAC1) is a class I histone deacetylase

that exists in multi protein complexes and modulates transcription

through its enzyme activity. The phosphorylation of Ser421

residue of HDAC1 promotes its enzyme activity and complex

formation (50). HDAC1 is thought to be associated with NF-κB

activation since treatment of RAW264.7 cells with lovastatin

inhibited IκBα phosphorylation as well as HDAC1 expression

(27). Thus, HDAC1 in likely involved in down-regulating the

canonical NF-κB pathway.
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FIGURE 7

(A) Melt curves of BTK and GAPDH amplicons after RT-QPCR run showing similar BTK and GAPDH PCR product peaks from human peripheral blood
mononuclear cells (PBMC, red lines) and HUVEC (green lines). (B) RT-QPCR reaction products were analyzed by agarose gel electrophoresis (3%
agarose-TBE gel) to show the BTK amplicon (77 bp) and GAPDH amplicon (131 bp) in two different reactions were of specific and of expected
size. Each lane represents samples loaded from an RT-QPCR reaction product. (C) Immunoblot of mouse and human primary endothelial cell
lysates showing BTK protein expression. After probing with antibody, the blot was stained with Coomasie blue stain to visualize loading of protein
bands in each lane. Less total protein was loaded in the mouse splenocytes lysate (positive control). Protein molecular size marker locations are
shown on the left.
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IKK gamma (p-Ser85)
IKKγ, also known as NEMO (NF-κB Essential Modulator), is a

regulatory subunit of the cytoplasmic IKK complex. The IKK

complex undergoes multiple post-translational modifications

including phosphorylation. IKKγ is phosphorylated by PKCα
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(51). Phosphorylation of Ser85 of IKKγ enhances the kinase

activity of IKKβ that results in increased phosphorylation of IκB.

However, Ser85 alone is not sufficient for this activation; a

combination of Ser85 and Ser141 is required for this

enhancement. Moreover, IKKγ-Ser85 does not play a role in all
frontiersin.org

https://doi.org/10.3389/fcvm.2024.1345421
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


FIGURE 8

(A) Mouse primary endothelial cell cultures were subjected to normal glucose (NG, 5 mM D-glucose) or high D-glucose (HG, 25 mM D-glucose)
exposure for 3 days in the presence or absence of a selective BTK inhibitor terreic acid (0, 20 and 30 µM final concentration). Cell lysates were
subjected to immunoblotting with antibodies against IκBα. β-actin was used as a loading control in the corresponding lanes. (B) Signal intensity of
IκBα bands were normalized by the signal intensity of β-actin band. High D-glucose (HG) increased the IκBα protein levels in the cells, an
observation previously described by US (1). Treatment with terreic acid restored the IκBα levels similar to the control cells (NG-grown cells). N= 4
each group, Asterisks represent p≤ 0.05. (C) BTK-inhibitor terreic acid (30 µM final concentration) decreased the elevated phosphorylation on
Ser661 site of PKCβ in mouse primary endothelial cells grown in high D-glucose (HG) condition for 3 days. Cells were exposed to either normal
glucose (NG, 5 mM D-glucose), high glucose (HG, 25 mM D-glucose), or high glucose with terreic acid (HG-TA, 25 mM D-glucose + 30 µM terreic
acid). The lower part of the membrane was probed with antibody against β-actin (loading control). Results are presented as the ratio of PKC-
Ser661 normalized by the signal intensity of β-actin in corresponding lanes. N= 3 samples for each condition. Asterisks denote statistically
significant difference of p≤ 0.05.
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NF-κB activation pathways (30). Our array did not contain

antibody to Ser141, limiting a conclusion based only on IKKγ-

Ser85 phosphorylation.
NF-κB-p100 (p-Ser872)
The p100 protein is the precursor of the p52 NF-κB subunit

that undergoes phosphorylation-dependent inducible processing.

Phosphorylation results in ubiquitination and proteosomal

processing of p100 to generate p52 subunit that is translocated to

the nucleus (52). The Ser872 site of p100 is phosphorylated by

IKKα and is a requirement for ubiquitination and proteosomal

processing of p100 protein (28). We have previously shown that

under hyperglycemic conditions, the non-canonical NF-κB

pathway preferentially remains active in HUVEC (1). The

current finding of increased phosphorylation of p100 NF-κB
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subunit in HGI samples is consistent with increased role of the

non-canonical NF-κB pathway.
P38 MAPK (p-Thr180)
The p38 MAPK is involved in expression of

proinflammatory cytokines (53). Several environmental

factors specifically induce p38 MAPK in signal specific

manner by dual phosphorylation of Thr180 and Tyr182

residues (21). The NF-κB activity is affected by p38 MAPK

since inhibitors of p38 result in diminished expression of

NF-κB dependent genes (54) likely through post

translational modification of the NF-κB subunits by

phosphorylation or acetylation (22, 23) or by promoting

transcription initiation complex on the target genes (55).
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Downregulated phosphorylation sites

LCK (p-Tyr505)
Lymphocyte cell kinase (LCK) is a Src-family kinase

expressed predominantly in T cells and plays a key role in

T-cell receptor (TCR) signaling pathway. However, LCK is

expressed in endothelial cells, where its inhibition promoted

endothelial proliferation and blocked apoptosis (56). Both

structural and biochemical studies show that phosphorylation

of the C-terminal 505 tyrosine residue (Y505) of LCK confers

a closed molecular conformation, leading to inactivation of

the kinase domain (57). In contrast, deletion or mutation of

Y505 in LCK results in a constitutively active enzyme (58).

Thus, decreased Tyr505 phosphorylation in high D-glucose

plus ischemia would suggest an increase enzymatic activity

of LCK (59).

I kappa B alpha (p-Ser32, Ser36)
Under the normal conditions, I kappa B alpha (IκBα) is an

unstable protein that binds and retains the NF-κB transcription

factor in the cytoplasm of the cells. Upon stimulation by

appropriate signal, IκBα is rapidly degraded allowing the NF-

κB transcription factor to migrate to the nucleus. The

degradation of IκBα is dependent on phosphorylation at its

Serine 32 and Serine 36 predominantly by IKKalpha/beta

kinases. In addition to IKK complex, other kinases also

phosphorylate IκBα on S32 and S36 (35). For the canonical

pathway mediated NF-κB activation, phosphorylation of these

two amino acid residues, S32 and S36, is an obligatory step.

Thus, decreased phosphorylation of these residues on IκBα

under our experimental conditions, i.e., high glucose with

ischemia, suggests a decreased signaling through the canonical

pathway. This finding is consistent with our published results

that prolonged exposure of HUVEC to high D-glucose

attenuated degradation of IκBα (1).

NF-κB-p65 (p-Thr435)
The inducing or repressing transcription activity of the p65

(RelA) subunit of the NF-κB transcription factor is modulated by

phosphorylation. The p65 subunit is phosphorylated at multiple

sites. TNF-α, a potent activator of the canonical NF-κB signaling

pathway, induces phosphorylation of Thr435 residue of the p65

in the transcription activation domain. This phosphorylation

increases occupancy by p65 in a highly promoter-specific

manner (36) to increase the expression of proinflammatory

chemokine. Thus, a decreased phosphorylation of p65-T435

would effectively decrease the induction of certain genes affected

by the canonical NF-κB pathway.

PKCtheta (p-Ser676) and PKCzeta (p-Thr410)
Protein kinase C-theta (PKCθ) and PKCzeta are members

of atypical serine/threonine kinase PKC family that plays a

role in NF-κB activation in T lymphocytes (31) for adequate

immune response. The function of the PKC family members

is regulated by phosphorylation at several different residues.
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PKC are phosphorylated on at least 3 sites after T cell

receptor stimulation (60). The p-Ser676 site in PKCθ is in

the turn-motif of the enzyme that is autophosphorylated (61).

Thus, a decrease in phosphorylation at this site might reflect

the decreased enzyme activity. Overexpression of PKCζ

specifically increases IKKβ activity without affecting IKKα.

The Thr410 residue of PKCζ is located in its activation

domain and its phosphorylation is critical for PKCζ activity

(62). Since both PKCθ and PKCζ are involved in induction

of NF-κB by phosphorylating IKK (32). In addition, PKCζ

can directly phosphorylated the RelA subunit of NF-κB

transcription factor (34). Taken together, decreased enzyme

activity of PKCθ and PKCζ would result in a decline in

canonical NF-κB activation.
PKR (p-Thr446 and p-451)
PKR is a double stranded RNA (dsRNA)-activated serine/

threonine protein kinase that potentiates the activation

of NF-κB by phosphorylating IκB (33). PKR is

autophosphorylated at multiple residues including Thr446 that

is associated with stabilization of homodimeric form and

increased catalytic activity (63). Decreased phosphorylation of

Thr446 is consistent with concomitant decrease in canonical

NF-κB activity.
SAPK/JNK (p-Thr183)
Stress activated protein kinase/c-Jun-N-terminal kinase 1

(SAPK/JNK) is activated by phosphorylation at positions

Thr183 and Tyr185 (64). JNK may participate in

inflammatory process by promoting NF-κB action on

specific promoters (65).

Thus, we have demonstrated that hyperglycemia and

ischemia, either alone or in combination, cause profound

changes in the phosphorylation states of the components of

the key inflammatory pathway- the NF-κB. Importantly, we

have identified BLNK and BTK as novel upstream

components of the NF-κB inflammatory pathway in

hyperglycemic-ischemic condition. In the future, it will be

important to study how BLNK/BTK are activated by

diabetes-related hyperglycemia.
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Association between glycemia
and multi-vessel lesion in
participants undergoing coronary
angiography: a cross-sectional
study
Hezeng Dong1, Zhaozheng Liu2, Hao Chen2, Jin Ba1, Rui Shi2,
Qu Jin2, Xiao Shao2, Tenghui Tian2, Jinzhu Yin2, Liping Chang2*

and Yue Deng2*
1College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine,
Changchun, Jilin, China, 2Cardiology Center, Affiliated Hospital of Changchun University of Traditional
Chinese Medicine, Changchun, Jilin, China
Background: This study aims to elucidate the association between glycemia
and the occurrence of multi-vessel lesions in participants undergoing
coronary angiography.
Methods: We analyzed 2,533 patients with coronary artery disease who
underwent coronary angiography. Of these, 1,973 patients, identified by the
endpoint of multi-vessel lesions, were examined using univariate and
multivariate logistic regression analyses to determine the relationship between
glycemia levels and multi-vessel lesion occurrence.
Results: The analysis included 1,973 participants, among whom 474 patients
were identified with coronary multi-vessel lesions. Univariate logistic
regression analysis demonstrated a positive correlation between glycemia and
the occurrence of coronary multi-vessel lesions (OR 1.04; 95% CI 1.01–1.08;
p= 0.02). The adjusted model indicated that for each unit increase in
glycemia, the risk of developing coronary multi-vessel lesions increased by
4%, showing a significant correlation (p < 0.05). Subgroup analyses revealed
that the impact of glycemia on multi-vessel lesions in patients with PCI varied
according to gender, age, and smoking status, with the effect being more
pronounced in men, older patients, and smokers.
Conclusion: Our findings establish a significant association between glycemia
and the incidence of multi-vessel lesions, particularly pronounced in male
patients, individuals over 45, and smokers.

KEYWORDS

glycemia, multi-vessel lesion, coronary angiography, diabetes, Asian

Background

Advances in intravascular imaging and functional techniques, as well as coronary

interventions (1), have led to a gradual increase in the detection rate of multi-vessel

lesions in today’s clinics. The European Society of Cardiology (ESC) has reported that

more than 50% of patients with ST-segment elevation myocardial infarction (STEMI)

have concomitant multibranch vasculopathy (2). Multi-vessel lesions often predict more

serious adverse cardiovascular events (3). The risk of recurrent cardiovascular events is

high even after interventional or pharmacological treatment (4). However, there are
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relatively few clinical studies on multi-vessel lesions, and there is a

lack of effective predictive indicators for multi-vessel lesions (5),

except for performing coronary angiography or intravascular

ultrasound. We believe that it is crucial to identify and address

the key factors in clinical practice. Timely intervention at an

early stage is essential to prevent multi-vessel lesions and reduce

the occurrence of acute coronary syndromes, lowering the risk of

cardiovascular death. Individualized prevention and treatment

protocols must be developed.

It is well established that diabetes mellitus and its

complications represent a significant risk factor for coronary

artery disease (6). Djupsjo, Kuhl, et al. demonstrated that

patients with hyperglycemia exhibited a twofold increased risk of

long-term cardiovascular death and a rate of cardiovascular

events that were more than one times higher than that observed

in patients with pre-diabetes (7). Jie Yang et al.’s study also

found that glycosylated hemoglobin (HbA1c) and fasting blood

glucose (FBG) are better at assessing the severity of coronary

heart disease (CHD) in patients undergoing elective percutaneous

coronary intervention (PCI) (8). Furthermore, Tütün U et al.

demonstrated that uncontrolled glycemia levels not only increase

perioperative complications but also the incidence of distal and

middle coronary artery lesions. It is imperative to diagnose and

aggressively control hyperglycemia before performing CABG (9).

These studies confirm that glycemia aggravates the process of

coronary atherosclerosis. However, direct clinical evidence of

glycemia and multi-vessel lesions, a serious lesion in

cardiovascular disease, is currently lacking, especially in Asia.

This study is vital given the unique lifestyle and genetic

characteristics of Asian populations. Our study will fill this gap

by exploring the association between glycemia and multivessel

disease in patients undergoing coronary angiography. The aim is

to provide clinicians with more precise treatment options and to

provide a scientific basis for cardiovascular risk management in

diabetic patients.
Method

The participants in our study were all derived from patients

who underwent coronary angiography between July 2009 and

August 2011 at the First Affiliated Hospital of Zhengzhou

University. Based on strict inclusion criteria, 1973 patients were

included in this analysis after excluding incomplete and unclear

data (Figure 1).

The primary endpoint of this study was a multi-vessel lesion,

defined as the presence of ≥50% stenosis in at least two of the

three major epicardial vessels. All participants underwent

coronary angiography and quantitative analyses to characterize

lesions according to standard methods. Furthermore, we collected

comprehensive demographic and clinical data, which we then

analyzed. All data was derived from a database containing

demographic, clinical, angiographic, and procedural information.

We also obtained data through patient visits, telephone

interviews, and chart reviews, or by conducting clinical

follow-ups. We then entered the data independently, and an
Frontiers in Cardiovascular Medicine 02123
independent committee adjudicated clinical events. The

definitions of diabetes mellitus and hypertension as important

risk factors for cardiovascular disease were based solely on

clinical guidelines. Patients were defined as diabetic if they had a

fasting blood glucose concentration of more than 6.1 mmol/L, a

glycated hemoglobin level of more than 6.5%, or were receiving

insulin or oral hypoglycaemic agents. Hypertension was defined

as a systolic blood pressure of 140 mmHg or more and a

diastolic blood pressure of 90 mmHg or more, or the current use

of antihypertensive medications. A history of smoking was

considered to be the presence of smoking within the previous ten

years. Glycemia values were obtained from fasting blood samples

at the time of admission, along with other laboratory tests

including (Cr, UA, BIL, TC, TG, HDL-C, and LDL-C). All

laboratory tests were collected and analyzed in compliance with

the criteria (10).

The data that support the findings of this study are from Long-

term follow-up results in patients undergoing percutaneous

coronary intervention (PCI) with drug-eluting stents: results

from a single high-volume PCI center [Dataset]. Dryad. https://

doi.org/10.5061/dryad.13d31.
Statistical analysis

In our study, we averaged participants’ glycemia levels into

four quartiles: quartile 1 (n = 482), quartile 2 (n = 500), quartile 3

(n = 496) and quartile 4 (n = 495). We expressed categorical

variables as numbers (n) and percentages (%) and assessed them

using the chi-square test. Continuous variables are expressed as

the mean ± standard deviation of normally distributed data. In

addition, multiple imputation with multivariate imputation by

chained equation was used for handling the missing values. We

used univariate and multivariate regression analyses to examine

the association between glycemia and multi-vessel lesions. In

univariate analyses, we selected variables with a p-value <0.05,

including age, gender, smoking, hypertension, DBP, HR, UA, and

TG. We then adjusted for a variety of influences in multivariate

analyses to validate the robustness of the results. Subgroup

analyses were conducted using logistic models to determine the

relationship between glycemia and multi-vessel lesions among

subgroups, including gender, age, smoking status, and presence

of diabetes. All analyses were performed using Free Statistics

Approximation software version 1.9. A two-sided P-value of less

than 0.05 was considered statistically significant.
Result

Study population and baseline
characteristics

Our study involved 2,533 patients with coronary artery disease

who underwent coronary angiography. After rigorous data

screening, 1,973 participants were included in the final analysis.

The cohort included 1,341 men and 632 women. The mean age
frontiersin.org
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FIGURE 1

Flowchart of participant selection.
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was 59 years, and 474 participants were defined as having multi-

vessel lesions. Glycemia was categorized into four quartiles, and a

description of baseline characteristics revealed significant

associations between glycemia and several key factors, including

gender, age, BMI,hypertension, diabetes mellitus, and prevalence

of multi-vessel lesions (Table 1).
Univariate and multifactorial analysis

In univariate analysis, age, hypertension, diabetes mellitus,

glycemia level, uric acid level, and triglycerides were significantly

associated with coronary multi-vessel lesion (Table 2).

To further elucidate the relationship between participants’

glycemia and multi-vessel lesions, we performed a multifactorial

logistic analysis. In the unadjusted model, there was a significant

correlation between glycemia and coronary multivessel disease,

with a 4% increase in the risk of multi-vessel lesions for each

unit increase in glycemia (OR: 1.04, P = 0.02). This relationship

remained significant after adjusting for sex, age, smoking,

hypertension, diastolic blood pressure, heart rate, uric acid, and

triglycerides. (Adj. OR: 1.04, P = 0.039) (Table 3).

These results are clear: glycemia is an important risk factor for

the development of coronary multi-vessel lesion. After adjusting
Frontiers in Cardiovascular Medicine 03124
for various covariates, we observed a linear relationship between

glycemia and multi-vessel lesions, with the risk of developing

multi-vessel lesions progressively increasing with increasing

glycemia levels (Figure 2).
Subgroup analysis

To clarify the relationship between glycemia and multi-vessel

lesion in different age, gender and smoking status, we conducted

further subgroup analyses. These showed that glycemia and

multi-vessel lesion had a more significant association in males

(p = 0.031) compared to females. The analyses showed a

significant association between glycemia and multi-vessel lesion

in those aged≥ 45 years (p = 0.008). Furthermore, smokers

showed a stronger correlation (p = 0.038) compared to

non-smokers (p = 0.085). Due to the lack of information on

medications taken by patients prior to admission, diabetic

patients who were regularly taking hypoglycaemic medications

prior to admission would have resulted in relatively low fasting

glycemia values on admission, which would have had an impact

on our findings. Consequently, we grouped the patients by

previous diabetes or not, and found that compared to diabetic

patients, blood glucose and multi-vessel lesion were yet more
frontiersin.org
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TABLE 1 Baseline characteristics of the study participants.

All
participants
(n = 1,973)

Quartile
glycemia1
(n = 482)

Quartile
glycemia2
(n = 500)

Quartile
glycemia3
(n = 496)

Quartile
glycemia4
(n = 495)

p Statistic

Sex, n (%) 0.004 13.241

Female 632 (32.0) 135 (28) 144 (28.8) 168 (33.9) 185 (37.4)

Male 1,341 (68.0) 347 (72) 356 (71.2) 328 (66.1) 310 (62.6)

Age (years) 59.9 ± 11.1 58.7 ± 12.1 59.7 ± 11.0 60.6 ± 10.9 60.8 ± 10.2 0.013 3.592

Mean ± SD

Hypertension n (%) 0.001 16.082

No 975 (49.4) 264 (54.8) 261 (52.2) 238 (48) 212 (42.8)

Yes 998 (50.6) 218 (45.2) 239 (47.8) 258 (52) 283 (57.2)

DM, n (%) <0.001 492.204

No 1,553 (78.7) 448 (92.9) 466 (93.2) 422 (85.1) 217 (43.8)

Yes 420 (21.3) 34 (7.1) 34 (6.8) 74 (14.9) 278 (56.2)

Heart.failure, n (%) 0.723 1.324

No 1,744 (88.4) 427 (88.6) 445 (89) 442 (89.1) 430 (87)

Yes 228 (11.6) 55 (11.4) 55 (11) 54 (10.9) 64 (13)

Angina, n (%) 0.313 3.561

No 1,745 (88.4) 415 (86.1) 444 (88.8) 444 (89.5) 442 (89.3)

Yes 228 (11.6) 67 (13.9) 56 (11.2) 52 (10.5) 53 (10.7)

AMI, n (%) 0.307 3.604

No 1,880 (95.3) 465 (96.5) 476 (95.2) 474 (95.6) 465 (93.9)

Yes 93 (4.7) 17 (3.5) 24 (4.8) 22 (4.4) 30 (6.1)

Smoking, n (%) 0.06 7.398

No 1,322 (67.0) 312 (64.7) 319 (63.8) 340 (68.5) 351 (70.9)

Yes 651 (33.0) 170 (35.3) 181 (36.2) 156 (31.5) 144 (29.1)

SBP (mmHg) 104.5 ± 28.5 108.8 ± 28.1 102.5 ± 28.2 106.6 ± 29.0 100.1 ± 28.0 <0.001 9.372

Mean ± SD

DBP (mmHg) 77.3 ± 11.9 78.0 ± 11.6 76.0 ± 11.6 77.4 ± 12.1 78.0 ± 12.2 0.031 2.964

Mean ± SD

EF, Mean ± SD 61.0 ± 7.8 61.8 ± 7.4 60.8 ± 8.1 61.0 ± 7.3 60.4 ± 8.2 0.024 3.166

BMI (kg/m2), Mean ± SD 24.1 ± 3.6 24.0 ± 3.3 23.8 ± 3.6 24.4 ± 3.6 24.3 ± 3.8 0.027 3.068

Heart.rate, 72.1 ± 11.5 69.8 ± 10.8 71.1 ± 10.1 73.0 ± 11.6 74.4 ± 12.9 <0.001 15.778

Mean ± SD

Cr (μmol/L) 72.0 ± 30.2 73.3 ± 25.5 72.3 ± 20.5 73.0 ± 40.1 69.2 ± 31.1 0.133 1.867

Mean ± SD

UA (μmol/L) 304.2 ± 92.5 306.4 ± 87.0 308.0 ± 84.3 310.4 ± 100.5 291.9 ± 96.3 0.007 4.034

Mean ± SD

BIL (mg/dl) 9.8 ± 7.6 9.4 ± 4.6 9.5 ± 5.2 10.4 ± 12.3 10.0 ± 5.7 0.160 1.723

Mean ± SD

TC (Mmol/L) 4.3 ± 1.1 4.1 ± 1.0 4.2 ± 1.0 4.3 ± 1.1 4.4 ± 1.1 <0.001 9.736

Mean ± SD

TG (Mmol/L) 1.9 ± 1.4 1.6 ± 0.8 1.8 ± 1.2 2.1 ± 1.9 2.2 ± 1.4 <0.001 14.313

Mean ± SD

HDL,C (Mmol/L) 1.1 ± 0.3 1.1 ± 0.3 1.1 ± 0.3 1.1 ± 0.3 1.0 ± 0.3 0.215 1.493

Mean ± SD

LDL.C (Mmol/L) 2.7 ± 0.9 2.5 ± 0.9 2.7 ± 0.9 2.7 ± 0.9 2.8 ± 1.0 <0.001 6.921

Mean ± SD

Multi-vessel lesion n (%) 0.003 13.998

No 1,499 (76.0) 392 (81.3) 379 (75.8) 376 (75.8) 352 (71.1)

Yes 474 (24.0) 90 (18.7) 121 (24.2) 120 (24.2) 143 (28.9)

Data are shown as mean± standard deviation (SD) or median (IQR) for continuous variables and proportions (%) for categorical variables. Sex, Age, Hypertension, DM, Heart

failure, Angina, Acute myocardial infarction, Smoking, SBP, DBP, EF,BMI,Heart rate, Cr, UA, BIL, TC, HDL, C, LDL.C, Multi-vessel lesion P-values in bold are <0.05.
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significantly associated among non-diabetic patients. This shows

that even non-diabetics should be aware of glycemia changes.

The association between glycemia and multi-vessel lesion was

stronger in non-diabetics among the participants who
Frontiers in Cardiovascular Medicine 04125
underwent coronary angiography. Therefore, close monitoring

of glycemia is essential to prevent adverse cardiovascular

events, regardless of previous diagnosis of diabetes mellitus. In

conclusion, the findings demonstrate the complexity of
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TABLE 2 Univariate analysis for overall population.

Variable OR_95CI P_value
Sex = female, n (%) 0.94 (0.75∼1.17) 0.56

Age (years) 1.03 (1.02∼1.04) <0.001

Hypertension, n (%) 1.31 (1.06∼1.61) 0.011

DM, n (%) 1.85 (1.46∼2.34) <0.001

Smoking, n (%) 0.97 (0.78∼1.21) 0.788

SBP (mmHg) 1 (1∼1.01) 0.317

DBP (mmHg) 1.01 (1∼1.02) 0.012

Heart.rate (Bpm) 1.01 (1∼1.02) 0.13

Glycemia (Mmol/L) 1.04 (1.01∼1.08) 0.02

Cr (μmol/L) 1 (1∼1) 0.358

UA (μmol/L) 1 (1∼1) 0.023

BIL (mg/dl) 1.01 (0.99∼1.02) 0.394

TC (Mmol/L) 1.02 (0.93∼1.12) 0.693

TG (Mmol/L) 1.09 (1.01∼1.17) 0.018

HDL.C (Mmol/L) 1.06 (0.76∼1.46) 0.746

LDL.C (Mmol/L) 1.02 (0.91∼1.14) 0.713

OR, odds ratio; CI, confidence interval; SD, standard deviation. Abbreviations as in

Table 1. P values in bold are <0.05.

TABLE 3 Multivariate analysis for overall population.

Variable Model 1 Model 2 Model 3 Model 4
n total 1,973 1,973 1,973 1,973

n event_% 474 (24) 474 (24) 474 (24) 474 (24)

crude OR (95%CI) 1.04
(1.01∼1.08)

1.04
(1.01∼1.08)

1.04
(1.01∼1.08)

1.04
(1.01∼1.08)

crude P_value 0.02 0.02 0.02 0.02

adj. OR (95%CI) 1.04 (1∼1.07) 1.04 (1∼1.07) 1.04 (1∼1.07)
adj. P_value 0.024 0.025 0.039

Model 1: no adjusted.

Model 2: Adj: Model 1 + Sex + age.

Model 3: Adj: Model 2 + smoking + hypertension.

Model 4: Adj: Model 3 + DBP +HR+UA + TG.

P values in bold are <0.05.
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cardiovascular risk factors and their differential impact in

different patient subgroups. This stratified analysis will help to

develop a more personalised management strategy for patients

(Figure 3 and Table 4).
Epidemiology and significance of
multivessel lesions

The incidence of multi-vessel lesions is increasing in clinical

practice and is a matter of considerable concern in current clinical

cardiovascular disease research. There is a clear association

between multi-vessel lesions and a wide range of adverse

cardiovascular outcomes (11). Dziewierz, Siudak et al. reported

that multi-vessel lesions were present in approximately 40%–65%

of patients with ST-segment elevation myocardial infarction

(STEMI) or complete coronary occlusion, as well as other

coronary artery disease (12). A prospective randomised,

multicentre, open-label and controlled clinical trial enrolled 396
Frontiers in Cardiovascular Medicine 05126
patients and found that 52% had multivessel disease (13).

Furthermore, Tindale A et al. demonstrated that patients with

multi-vessel lesion treated with CR who developed STEMI

with cardiogenic shock (defined as lactic acid ≥2 mmol/L) had

a higher mortality rate (14). This finding is in line with

Sorajja, Bernard J. et al., who observed that three-vessel

disease significantly predicted cardiovascular mortality and

risk of reinfarction (15). These findings demonstrate that

multi-vessel lesion is a serious and widespread cardiovascular

disease process, that the number of patients who develop

multi-vessel lesions is enormous, and that understanding and

managing multi-vessel lesions to avoid adverse cardiovascular

events is of the utmost importance.

Glycaemia is clearly associated with several cardiovascular

diseases (16). Our study definitively confirms the link between

elevated glycaemia and cardiovascular disease. This

observation is in line with the findings of Xiang Wang et al.

who concluded that the TyG index can be a valuable predictor

of CAD severity, especially for patients with prediabetes (17).

Furthermore, a study by Iijima R, et al. demonstrated that

Patients with diabetes often accelerate atherosclerotic

thrombosis, resulting in early, widespread, and rapidly

progressing coronary artery disease (18). Tong Zhao et al.

concluded that hyperglycaemia was an independent predictor

of severe coronary artery disease in non-diabetic patients (19).

Our study definitively confirms that the association of

glycemia with multi-vessel lesions is more significant in

non-diabetic patients. Clinicians must be aware of this and

provide appropriate early intervention to prevent adverse

cardiovascular events.
Unique considerations for Asian
populations

It is crucial to note that our study differs from previous studies

in two key ways. Firstly, we have a larger sample size. Secondly, we

only include Asian populations. This is because Asia is an

important region for the development of cardiovascular disease

and diabetes worldwide. This may be due to unique lifestyle and

genetic influences, among other factors. Expert discussions at the

WHO have made it clear that, at a BMI below the existing WHO

overweight threshold (≥25 kg/m2), Asians are at a much higher

risk of developing type 2 diabetes and cardiovascular disease

(20). It is therefore of great importance to conduct a study of

diabetes and cardiovascular disease in Asia. By identifying the

link between glycemia and multivessel disease, physicians will be

able to more accurately assess a patient’s risk of developing

multivessel disease.
Limitations and outlook

Our study is comprehensive, but it has limitations. Our

study was a cross-sectional investigation, so even after rigorous
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FIGURE 2

A linear relationship between glycemia and multi-vessel mesion.
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data screening, potential confounders could not be completely

eliminated. This may limit the generalisability of the findings,

but we included a relatively large number of participants, and

the results are still instructive for future studies to provide a

basis for a deeper understanding of the relationship between

diabetes mellitus and cardiovascular disease. Longitudinal

studies are needed to understand the long-term effects of

glycemia on cardiovascular occurrence and prognosis in

patients with multivessel disease. It is also crucial to include

participants from more regions and ethnicities to raise

awareness of glycaemic control in all regions. Clinicians must

be vigilant about the glycaemic status of their patients, as this

is a key factor in the assessment and management of

cardiovascular risk.
Frontiers in Cardiovascular Medicine 06127
Conclusion

Our study definitively demonstrated a linear relationship between

glycemia and multivessel disease in patients undergoing coronary

angiography. Even after adjusting for study-related confounders,

the results remained significant. This indicates that the risk of

multi-vessel lesion increases progressively with increasing glycemia

levels. Our study provides unquestionable evidence that glycemia

control is crucial for the prevention and treatment of multi-vessel

lesions. It also offers invaluable insights for improving risk

assessment and management of cardiovascular disease. These

findings have significant implications for public health policy

development and optimisation of clinical care, particularly in areas

with a high prevalence of diabetes and cardiovascular disease.
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FIGURE 3

Strtification analysis on the association between glycemia and multi-vessel lesion.

TABLE 4 Subgroup analysis for association between glycemia and multi-vessel lesion.

Subgroup n total n event_% crude OR_95CI crude P_value P for interaction_1 P for interaction_2
Sex

Female 632.0 157 (24.8) 1.02 (0.96∼1.09) 0.477 0.581 0.585

Male 1,341.0 317 (23.6) 1.05 (1∼1.09) 0.031

Age (years)

Age < 45 199.0 33 (16.6) 0.98 (0.87∼1.1) 0.688 0.105 0.208

Age ≥ 45 1,774.0 441 (24.9) 1.06 (1.02∼1.1) 0.008

Smoking

No 1,322.0 320 (24.2) 1.03 (1∼1.07) 0.085 0.258 0.253

Yes 651.0 154 (23.7) 1.08 (1∼1.17) 0.038

DM

No 1,553.0 333 (21.4) 1.04 (1∼1.09) 0.074 0.031 0.038

Yes 420.0 141 (33.6) 0.96 (0.9∼1.02) 0.191

OR, odds ratio; CI, confidence interval; SD, standard deviation; Other abbreviations as in Table 1.
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Reduced heart rate response
to exercise in patients with
type 2 diabetes
Jingfeng Lou1, Hongmei Lang1, Yuhan Xia2, Hui Jiang3,4, Kun Li3,5

and Xingping Zhang1*
1Department of General Medicine, Chengdu Second People’s Hospital, Chengdu, China, 2Department
of Endocrinology, North Sichuan Medical College, Nan Chong, China, 3Department of General
Medicine, Chengdu Second People’s Hospital, Clinical Medical College of Chengdu Medical College,
Chengdu, China, 4Department of General Medicine, Qiyang People’s Hospital, Yongzhou, China,
5Department of General Medicine, Hongpailou Community Health Care Center, Chengdu, China
Background: Recent studies have found that heart rate response is impaired in
patients with type 2 diabetes. However, it remains unclear how chronotropic
competence changes in these patients and which chronotropic index is more
closely related to type 2 diabetes. This study aims to investigate the changes
in chronotropic competence in type 2 diabetes and compares the association
of two different chronotropic indices with type 2 diabetes.
Patients and methods: Patients who underwent cardiopulmonary exercise
testing at the Chengdu Second People’s Hospital from October 2022 to
October 2023, we included. Logistic regression was used to analyze the
relationship between chronotropic indices and type 2 diabetes, comparing
which of the two chronotropic indices is more closely related to type 2 diabetes.
Results: A total of 166 patients were included in our study, of which 42.8% had
type 2 diabetes and 57.2% did not have type 2 diabetes. After adjusting for
confounders, the OR for chronotropic index 1 with type 2 diabetes was 0.001
(95% CI: 0.0001–0.521, P= 0.03), and the OR for chronotropic index 2 with
type 2 diabetes was 0.665 (95% CI: 0.479–0.923, P= 0.015), both showing
a negative correlation with type 2 diabetes. When chronotropic index 2 was
included in the model as quartiles, it still showed a negative correlation
with type 2 diabetes (OR: 0.388; 95% CI: 0.173–0.869; P= 0.021), while
chronotropic index 1 showed no significant correlation.
Conclusion: Heart rate response is reduced in patients with type 2 diabetes, and
a low chronotropic index 2 is independently associated with type 2 diabetes.

KEYWORDS

heart rate response, chronotropic index, cardiopulmonary exercise testing, type 2
diabetes, correlation

1 Introduction

Type 2 diabetes (T2DM) is a significant cardiovascular risk factor and increases the risk

of mortality. Globally, diabetes affects 6.1% of the population, with T2DM constituting 96%

of these cases, thereby representing a significant global health challenge (1). Patients with

T2DM may develop several complications, including autonomic neuropathy, which is a

dysfunction of the sympathetic and parasympathetic nervous systems (2, 3). The entire

process of physical activity reflects the dynamic balance between the parasympathetic and

sympathetic nerves. At rest, the maintenance of resting heart rate primarily relies on the

parasympathetic nervous system. During the recovery period after exercise, the
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parasympathetic nervous system is gradually activated, and the

sympathetic nervous system is suppressed, leading to a gradual

decrease in heart rate (2). However, during exercise, the

sympathetic nervous system is activated, the parasympathetic

nervous system is inhibited, and the heart rate increases. The

increase in heart rate reflects the balance of parasympathetic and

sympathetic nervous system function, known as chronotropic

competence, and how this competence changes in patients with

T2DM is not yet well understood.

Chronotropic incompetence, characterized by the heart’s

failure to adequately increase its rate in response to activity or

demand, is common among patients with cardiovascular diseases.

It reduces exercise tolerance, adversely affecting quality of

life, and serves as an independent predictor of major

cardiovascular events and overall mortality (4). The mechanisms

underlying impaired chronotropic function in T2DM remain

unclear; however, studies suggest it may be associated with

hyperglycemia, dyslipidemia, and abnormalities in insulin

signaling pathways (5, 6). Cardiopulmonary exercise testing

(CPET), as a vital diagnostic and assessment tool, can evaluate

and measure the heart’s chronotropic competence. In CPET,

chronotropic incompetence is defined as the failure to reach 85%

of the age-predicted maximal heart rate, or a low chronotropic

index (heart rate adjusted to the MET level) (7, 8). However,

there is no definitive, unified standard for calculating

chronotropic competence. Some studies represent it as (HRpeak-

HRrest) (220-age-HRrest) (9), while the 2012 CPET guidelines

suggest using the change in heart rate per increase of 1 MET to

assess chronotropic competence (10). It remains unclear which

indicator is more closely related to chronotropic competence in

patients with T2DM.

Although the relationship between T2DM and cardiovascular

complications has been extensively explored, the variations in

chronotropic competence among patients with T2DM remain

unclear. It is crucial to determine which of the previously

mentioned calculation methods is more accurate for assessing

chronotropic competence in these patients. Therefore, this study

aims to investigate the relationship between T2DM and

chronotropic competence, and to compare the associations of

two different chronotropic indices with T2DM.
2 Materials and methods

2.1 Participants

In this study, we included adult patients who underwent CPET

at the Chengdu Second People’s Hospital from October 2022 to

October 2023. We excluded the following patients: (1) those who

did not follow the protocol; (2) those who were unable to

complete submaximal exercise; (3) patients taking β-blockers and

(4) patients under the age of 18. Ultimately, 166 patients (mean

age 56 years old) were included in our study, comprising 71

individuals with diabetes and 95 without diabetes. Among them,

middle-aged and older patients constituted the majority,

comprising 83% of the total individuals (the specific age
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distribution of participants provided in Supplementary

Figure S1). This study was approved by the Ethics Committee of

the Chengdu Second People’s Hospital, and all participants

provided written informed consent.
2.2 Clinical data

All data were obtained from the database of the Chengdu

Second people’s Hospital. Demographic and clinical information

included: gender, age, height, weight, waist circumference,

smoking history, hypertension, coronary artery disease, and heart

failure. BMI was calculated as weight divided by the square of

height. Smoking history was defined as having smoked

continuously or cumulatively for more than six months. T2DM

was diagnosed based on at least one of the following criteria: use

of diabetes medications or insulin, a physician diagnosis of

T2DM, fasting blood glucose ≥7 mmol/L, or a 2-hour oral

glucose tolerance test blood glucose ≥11.1 mmol/L. Hypertension

is defined as having a blood pressure greater than 140/90 mmHg

on at least three separate occasions, or a history of hypertension.

Coronary artery disease was defined as a history of stable or

unstable angina, acute myocardial infarction, or ischemic

cardiomyopathy. Heart failure was defined as being classified as

NYHA II or higher, or having a history of decompensated heart

failure. The test indicators include: blood glucose, troponin, NT-

proBNP, total cholesterol, and low-density lipoprotein.
2.3 Exercise test protocol

The CPETs were conducted at the Chengdu Second People’s

Hospital, with all testing environments meeting the required

standards, including pre-test gas calibration. According to the

guidelines of the American College of Cardiology/American

Heart Association, all participants underwent symptom-limited

cardiopulmonary bicycle exercise testing using the standard

Ramp protocol (11, 12). The Ramp protocol is a linear

incremental exercise test where the workload is gradually

increased, with the power incrementing progressively every

second. The test includes a 3-minute rest period, a 3-min warm-

up period, followed by exercise, with the duration of the exercise

varying according to the patient’s condition. The recovery period

lasts 6–8 min. During the exercise, the pedaling rate is

maintained at 60–70 revolutions per minute. The workload is

increased progressively every minute based on a predefined

power increment per minute. The power increment per second is

calculated by dividing the predefined power increment per

minute by 60 s. Endpoints for exercise testing included: a rating

of perceived exertion (6–20 scale) >17 (very hard) or a peak

respiratory exchange ratio (RER) >1.15; participant request to

stop the test due to volitional fatigue; systolic blood pressure

≥240 mmHg or diastolic blood pressure ≥110 mmHg; significant

chest discomfort during exercise; severe arrhythmias; or

horizontal or downsloping ST-segment depression greater than

2 mm or ST-segment elevation greater than 1 mm.
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2.4 Exercise test variables

Resting period blood pressure and heart rate were measured

after at least 5 min of rest. Peak systolic blood pressure, peak

diastolic blood pressure, peak heart rate, and METs were

recorded at peak VO2. Heart rate recovery was defined as the peak

heart rate minus the heart rate after 1 min of recovery. CI 1 was

calculated as (peak HR - resting HR)/(220 - age - resting HR). CI

2 was calculated as (peak HR - resting HR)/(peak METs - resting

METs). Peak VO2 was defined as the highest 10-second average

VO2 during the final stage of a symptom-limited exercise test.

The VE/VCO2 slope represented gas exchange from rest to the

peak of exercise. Heart rhythm was monitored using continuous

12-lead electrocardiography.
2.5 Statistical analysis

Continuous variables with normal distributions were described

as mean ± standard deviation, while those with non-normal

distributions were expressed as median and interquartile range.

Categorical variables were presented as frequencies and

percentages. To compare continuous variables between different

groups, the two-sided independent or paired t-test was used for

normally distributed data; for non-normally distributed data, the

Wilcoxon rank-sum test was employed. Pearson’s Chi-square test

was used to compare frequency distributions. To explore the

relationship between diabetes and various indices of chronotropic

competence, univariate logistic regression analysis was conducted

in the first model. Subsequently, we performed multivariate

logistic regression analysis, including all variables that were

significantly associated with T2DM in the univariate analysis. In

the second model, we adjusted for age, gender, BMI, and

smoking history; in the third model, we additionally adjusted for

hypertension, heart failure, and coronary artery disease, beyond

the factors in the first model; in the fourth model, besides the

factors adjusted in the first two models, we also adjusted for
FIGURE 1

Flow chart of inclusion and exclusion.
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blood glucose, NT-proBNP, VO2/Kg, and VE/VCO2 slope. All

statistical analyses were performed using SPSS software, version

26, and two-sided probability values <0.05 were considered

statistically significant.
3 Results

3.1 Participant characteristics

Initially, we collected data from 216 patients, of which 166 met

the criteria and were included in our study (Figure 1). Among these

patients, 71 (42.8%) had T2DM and 95 (57.2%) did not. Baseline

data and test results are shown in Table 1. The average age was

55.9 ± 14.4 years, approximately 51.8% were female, the BMI was

24.4 ± 4.0 kg/m2, waist circumference was 85.8 ± 11.1 cm, and

21.7% had a history of smoking. The T2DM group had higher

blood glucose and lower NT-proBNP, while there were no

significant differences between the two groups in terms of

troponin, total cholesterol, and low-density lipoprotein. The

detailed characteristics of the study population are shown in Table 1.
3.2 Heart rate responses by T2DM

All exercise test results are shown in Table 2. At rest, patients

with T2DM had higher systolic blood pressure, heart rate, and

metabolic equivalents (METs) compared to those without T2DM,

while their diastolic pressure was lower. However, these

differences were not statistically significant. During the exercise

load, patients with T2DM had a significantly lower peak heart

rate than those without T2DM (P < 0.001). The peak systolic

blood pressure and peak METs of patients with T2DM were

lower than those of individuals without T2DM, while their peak

diastolic pressure was higher, but these indicators were not

statistically significant. The heart rate recovery for patients with

T2DM was 14.65 ± 11.89 s, compared to 20.26 ± 8.58 s for those
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TABLE 2 Exercise test variables of the patients with and without T2DM.

Variable T2DM No-T2DM P-value
Reasting systolic BP (mmHg) 117.50 ± 15.44 117.39 ± 14.00 0.96

Resting diastolic BP (mmHg) 71.63 ± 10.13 71.68 ± 11.75 0.98

Peak systolic BP (mmHg) 155.19 ± 26.91 162.96 ± 25.77 0.07

Peak diastolic BP (mmHg) 77.58 ± 13.01 75.62 ± 11.32 0.31

Reasting METs 1.45 ± 0.26 1.40 ± 0.27 0.26

Peak METs 5.99 ± 1.89 6.29 ± 1.33 0.22

Reasting HR (beats/min) 82.49 ± 12.89 80.43 ± 10.54 0.27

Peak HR (beats/min) 118.85 ± 23.66 133.26 ± 21.48 <0.001

Heart rate recovery (beats/min) 14.65 ± 11.89 20.26 ± 8.58 0.001

CI 1 0.46 ± 0.23 0.63 ± 0.21 <0.001

CI 2 7.88 ± 3.19 10.91 ± 2.75 <0.001

VO2/Kg (ml/min/kg) 20.95 ± 6.60 22.09 ± 4.80 0.22

VE/VCO2 slop 29.41 ± 2.86 28.07 ± 2.30 0.001

RER 1.12 ± 1.07 1.03 ± 0.09 0.41

VC (L) 3.01 ± 0.64 3.13 ± 0.86 0.33

FEV1/FVC 83.67 ± 12.66 3.13 ± 0.86 0.04

VEmax (L) 44.80 ± 18.41 46.39 ± 15.78 0.56

BP, blood pressure; METs, metabolic equivalents; CI, chronotropic index.

Continuous data were presented as mean ± SD.

TABLE 1 Baseline characteristics of the patients with and without T2DM.

Variable Overall
(166)

2T2DM
(71)

No-T2DM
(95)

P-value

Age (years) 55.9 ± 14.4 57.9 ± 13.2 54.4 ± 15.1 0.11

Sex (% female) 86 (51.8) 26 (36.6) 60 (63.2) 0.001

BMI (kg ×m−2) 24.4 ± 4.0 24.2 ± 4.0 24.6 ± 4.8 0.66

Waist
circumference (cm)

85.8 ± 11.1 86.3 ± 11.9 85.4 ± 10.5 0.67

Smoking history,
n (%)

36 (21.7) 21 (29.6) 15 (15.8) 0.033

Hypertension, n (%) 8 (4.8) 5 (7.0) 3 (3.2) 0.43

Heart failure, n (%) 4 (2.4) 0 (0) 4 (4.2) 0.14

Coronary artery
disease, n (%)

7 (4.2) 5 (7.0) 2 (2.1) 0.24

Glucose (mmol/L) 7.5 ± 3.1 9.7 ± 3.1 5.9 ± 1.7 <0.001

Troponin (ng/ml) 7.1 (5.6, 9.6) 8.0
(5.9, 11.6)

6.2 (5.1, 8.1) 0.170

NT-proBNP (ng/L) 61.0
(25.5, 126.5)

41.0
(18.0, 92.5)

72.5
(40.0, 250.0)

0.012

TC (mmol/L) 4.8 ± 1.0 4.7 ± 1.0 4.9 ± 1.0 0.202

LDL-C (mmol/L) 2.7 ± 0.8 2.7 ± 0.8 2.7 ± 0.7 0.793

BMI, body mass index; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol.

Continuous data were presented as mean ± SD or median and interquartile range, and

categorical data as a percentage of the sample.
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without T2DM (P < 0.001). In terms of chronotropic competence,

the chronotropic index 2 for patients with T2DM was

7.88 ± 3.19, significantly lower than the 10.91 ± 2.75 for those

without T2DM (P < 0.001). The chronotropic index 1 for patients

with T2DM was also significantly lower than that for individuals

without T2DM (P < 0.001). There were no significant differences

between the two groups in VO2/Kg, RER, VC, or VEmax.

Table 3 shows the impact of T2DM on chronotropic competence.

Initial univariate logistic regression analyses were conducted to clarify

the relationship between chronotropic competence and T2DM. This

was followed by multivariate logistic regression analyses to exclude

potential confounding factors affecting the relationship between
Frontiers in Cardiovascular Medicine 04133
chronotropic competence and T2DM. In the unadjusted Model 1,

both chronotropic index 1 (OR: 0.023; 95% CI: 0.004–0.126;

P < 0.001) and chronotropic index 2 (OR: 0.705; 95% CI: 0.620–

0.801; P < 0.001) were negatively correlated with T2DM, with lower

values of both indices associated with T2DM. Model 2, adjusted for

age, gender, BMI, and smoking history, showed that the OR for

chronotropic index 1 with T2DM was 0.043 (95% CI: 0.007–0.253;

P < 0.001), while the OR for chronotropic index 2 with T2DM was

0.718 (95% CI: 0.621–0.831; P < 0.001). Model 3, building on Model

2, included adjustments for hypertension, heart failure, and

coronary artery disease, and showed that the OR for chronotropic

index 1 with T2DM was 0.062 (95% CI: 0.010–0.374; P < 0.001),

while the OR for chronotropic index 2 with T2DM was 0.732 (95%

CI: 0.630–0.852; P < 0.001). Model 4, based on Model 3, included

additional adjustments for blood glucose, BNP, VO2/Kg, and

VE/VCO2 slope, and the correlation remained significant. The

chronotropic index 1 and chronotropic index 2 showed a consistent

negative association with T2DM, remaining significant even after

adjusting for various potential confounding factors. Subsequently,

chronotropic index 2 was included in the model as a quartile

variable. After adjusting for confounding factors, chronotropic

index 2 still showed a negative correlation with T2DM (OR: 0.388;

95% CI: 0.173–0.869; P = 0.021), while the chronotropic index 1

itself was not associated with T2DM (OR: 0.414; 95% CI: 0.147–

1.165; P = 0.095).
4 Discussion

Our study primarily found that patients with T2DM exhibited a

lower heart rate response during exercise compared to individuals

without T2DM. Even after adjusting for age, gender, BMI,

smoking history, comorbidities, and other variables, this result

remained unchanged. We also discovered that chronotropic index

2 is more closely related to T2DM than chronotropic index 1,

with a lower chronotropic index 2 significantly associated with

T2DM. These results remained consistent even after adjusting for

other confounding factors.

We thoroughly analyzed heart rate response indicators in

patients with T2DM, specifically focusing on their response

during exercise. For the first time, we compared the change in

heart rate per 1 MET increase during exercise between patients

with T2DM and those without (chronotropic index 2). We

confirmed that chronotropic index 2, as opposed to chronotropic

index 1, is more closely related to T2DM and may more

accurately assess the heart rate response of T2DM during exercise.

Previous studies have found that patients with diabetes may

have impaired heart rate recovery. Seshadri et al. discovered that,

in a healthy cohort without known coronary artery disease,

diabetes was associated with abnormal heart rate recovery after

exercise. This association persisted even after adjusting for several

potential confounding factors (13). Yu et al. also found that

delayed heart rate recovery after exercise is an independent risk

factor for T2DM in men, even after adjusting for biochemical

indicators such as glucose metabolism (14). These studies

suggested that impaired heart rate recovery may be an early
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TABLE 3 Odds ratios and 95% CI of type 2 diabetes and chronotropic index.

Variable Model 1 Model 2 Model 3 Model 4
CI 1 0.023 (0.004–0.126)* 0.043 (0.007–0.253)* 0.062 (0.010–0.374)* 0.001 (0.0001–0.521)*

CI 2 0.705 (0.620–0.801)* 0.718 (0.621–0.831)* 0.732 (0.630–0.852)* 0.665 (0.479–0.923)*

CI 1 group 0.522 (0.384–0.710)* 0.586 (0.424–0.808)* 0.634 (0.455–0.883)* 0.414 (0.147–1.165)

CI 2 group 0.374 (0.265–0.568)* 0.393 (0.265–0.582)* 0.415 (0.275–0.624)* 0.388 (0.173–0.869)*

CI, chronotropic index; CI group, the quartiles of the chronotropic index; Model 1: univariate logistic regression; Model 2: additionally adjusted for Model 1 variables plus age, sex, BMI,

smoking history; Model3: additionally adjusted for Model 2 variables plus hypertension, heart failure, coronary artery disease; Model4: additionally adjusted for Model 3 variables plus

Glucose, NT-proBNP, VO2/Kg, VE/VCO2 slop.
Data were presented as odds ratios and 95% confidence intervals.

*P < 0.05.
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manifestation of diabetes and could predict the onset of diabetes.

However, other studies have found that impaired heart rate

recovery is not independently associated with the occurrence of

diabetes. Jae et al. discovered that while slowed heart rate

recovery is related to the development of T2DM, this relationship

became insignificant after adjusting for diabetes risk factors and

fasting blood glucose. They believed that this relationship could

largely be explained by baseline fasting blood glucose in healthy

males (15). Numerous studies have also found that patients with

diabetes tend to have an increased resting heart rate. Park et al.

found that for every 10 beats per minute increase in resting heart

rate, the risk of diabetes increases by 1.39 times for men and

1.28 times for women (16). A meta-analysis shows a strong

positive association between high resting heart rate and the risk

of T2DM (17). A prospective cohort study conducted by Lee

found that an increase of 10 beats per minute in resting heart

rate is associated with a 19% increase in the risk of T2DM (18).

Additionally, some studies have found the association between

resting heart rate and diabetes to be unclear. An increase of 12

beats per minute in resting heart rate is associated with

approximately a 10% higher risk of developing diabetes.

However, this association becomes statistically insignificant after

adjusting for BMI and postprandial blood glucose (19).

Heart rate recovery after exercise is primarily related to the

activation of the parasympathetic nervous system, while the heart

rate response during exercise is mainly associated with the

activation of the sympathetic nervous system. Previous studies

have shown that patients with diabetes exhibit significant

sympathetic nervous responses during exercise, but the direction

of this response varies across studies. Some studies have found

that patients with T2DM have significantly enhanced sympathetic

responses during isometric handgrip exercises (20). Additionally,

animal experiments have shown that T2DM rats exhibit

significantly stronger heart rate responses during muscle

contraction and tendon stretch compared to healthy controls (21,

22). However, other studies have found weaker sympathetic

activation responses in diabetic patients during exercise. Sydó et al.

found in a cohort study of 21,396 patients without cardiovascular

disease that diabetic patients had a lower chronotropic index, and

this low heart rate response independently predicted long-term

survival in diabetic patients (23). Our study similarly found a

decrease in heart rate response during exercise in patients with

T2DM, reflecting impaired sympathetic activation. It is noteworthy

that our study is more comprehensive, especially focusing on
Frontiers in Cardiovascular Medicine 05134
T2DM patients, with a more detailed study design. The differences

in these study results may be related to the choice of exercise

mode in the studies—some focused on static exercises (e.g.,

handgrip tests), while others focused on dynamic exercises (e.g.,

aerobic exercise). Additionally, the duration of exercise may also

be a factor influencing heart rate response. Whether the heart rate

response is enhanced or diminished, it indicates abnormal

cardiovascular responses during exercise in T2DM patients. This

abnormal response may be an important marker of the increased

cardiovascular risk in diabetic patients.

At any time, the heart rate reflects the function of the autonomic

nervous system, which is the dynamic balance between the

parasympathetic and sympathetic nerves. During exercise,

sympathetic nerve tension increases and parasympathetic nerve

tension decreases, leading to a gradual increase in heart rate (24, 25).

Therefore, if the heart rate does not increase correspondingly with

the intensity of exercise, it indicates a dysfunction of the autonomic

nervous system (9).

The overt clinical symptoms of autonomic nervous system

dysfunction in patients with T2DM often appear in the late stages,

but subclinical dysfunction may already be present in the early

stages. Hypotheses about the etiology of diabetic neuropathy

include metabolic injury to nerve fibers, inadequate neurovascular

function, autoimmune damage, and deficiency of neurotrophic

growth factors. This pathogenic process involves multiple factors.

Hyperglycemia leads to the accumulation of sorbitol and NAD by

activating the polyol pathway. The activation of protein kinase

C causes vasoconstriction and reduces nerve blood flow. Increased

oxidative stress can cause endothelial damage and reduce the

bioavailability of nitric oxide. Alternatively, excessive production of

nitric oxide may lead to the formation of peroxynitrite and damage

to the endothelium and neurons, a process known as nitric oxide

stress. In the subgroup with neuropathy, immune mechanisms may

also be involved. The reduction in nerve growth factor, deficiency

of essential fatty acids, and the formation of advanced glycation

end products also lead to decreased intraneural blood flow and

nerve hypoxia, altering nerve function. The result of this

multifactorial process may be the activation of ADP-ribosylation,

leading to the depletion of ATP, which in turn causes cell necrosis

and activates genes associated with neuronal injury (21, 22).

Therefore, we can assess autonomic nervous dysfunction in patients

with T2DM by evaluating their early chronotropic function status.

Our study also has several limitations. (1) This is a single-

center study with a relatively small sample size, and we cannot
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avoid selection bias, which may limit the generalizability of the

results. Additionally, our study subjects are Chinese, and larger

studies are needed to extend the findings to other ethnic groups.

Therefore, larger multi-center studies are necessary. (2) This is a

cross-sectional study, which does not effectively establish the

causal relationship between T2DM and chronotropic competence.

Thus, large cohort studies are needed to further confirm this

relationship. (3) Because this is retrospective data, some laboratory

test results are missing. To minimize the impact of missing data,

we used statistical methods for imputation, but this may still

lead to some bias. Therefore, we should be more cautious

when interpreting these related indicators. (4) Because of the

retrospective design of this study, we did not consider the impact

of the duration of T2DM, blood glucose control, and the use of

antidiabetic medications on the results. These factors may

influence heart rate responses in patients with T2DM.
5 Conclusion

Our study suggests that heart rate response is significantly reduced

in patients with T2DM, and a low chronotropic index is independently

associated with T2DM. This finding highlights the importance of

monitoring heart rate dynamics as a potential strategy for managing

and identifying diabetes. However, since our study may have

limitations in establishing causality, further prospective studies and

randomized controlled trials are recommended to investigate the

causal relationships of these associations and determine their clinical

significance in patients with T2DM.
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