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Editorial on the Research Topic

Spectroscopy, imaging and machine learning for crop stress
Crop stress poses a huge challenge to food security necessitating innovative approaches

for early detection monitoring management of stress. In recent years the integration of

spectroscopy imaging machine learning techniques has emerged as a promising avenue for

detecting various types of crop stress. This editorial work introduces recent publications

within the field included in the Research Topic “Spectroscopy imaging machine learning for

crop stress.” By exploring these cutting-edge research findings we can gain valuable insights

into the application of these technologies to enhance agricultural resilience productivity.

Xiao et al. focused on the use of visible and near-infrared spectroscopy combined with

deep learning to estimate leaf nitrogen concentration in cotton leaves. The study employed

random frog, weighted partial least squares regression and saliency map to select

characteristic wavelengths. The models based on convolutional neural network showed

excellent performance for both qualitative and quantitative prediction of leaf nitrogen.

These findings highlight the potential of deep learning and visible and near-infrared

spectroscopy within accurate and real-time assessment of cotton leaf nitrogen content,

enabling farmers to make applicable fertilization decisions

Wu et al. employed an unmanned aerial vehicle (UAV) to obtain multispectral images

of a rice canopy and analyzed the response of multispectral reflectance features and

physiological parameters including net photosynthetic rate (Pn), plant height (PH), and

SPAD to different nitrogen treatments or leakage conditions at various growth stages of the

crop. The study extensively analyzed the correlation between vegetation indices (VIs),

texture indices (TIs), and Pn based on UAV multispectral images. The techniques and

findings presented in this paper provide valuable insights within field-scale photosynthetic

monitoring in rice cultivation and improve stress detection and yield prediction.

Choudhury et al. introduces two innovative algorithms, namely VisStressPredic and

HyperStressPropagateNet, to predict the onset and propagation of drought stress in plants

using camera-captured image sequences in visible light and hyperspectral modalities. The

algorithms analyze visible light sequences at discrete intervals and utilize a deep neural

network and hyperspectral images to propagate stress over time, which demonstrate a

strong correlation between soil water content and the percentage of stressed plants. These
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algorithms are evaluated on a dataset of cotton plant image

sequences and offer valuable support for studying abiotic stresses

i n d i v e r s e p l a n t s p e c i e s , p r omo t i n g s u s t a i n a b l e

agricultural practices.

Hu X. et al. propose a novel approach called Class-Attention-

based Lesion Proposal Convolutional Neural Network (CALP-

CNN), utilizing a class response map to locate the main lesion

object and identify discriminative lesion details in visual light

images. Through a cascade architecture, CALP-CNN effectively

handles complex background interference and misclassification of

similar diseases. Experimental results on a self-built dataset

demonstrate CALP-CNN achieves good class ificat ion

performance and outperforms the existing fine-grained image

recognition methods, highlighting its efficacy in field

identification of strawberry diseases.

Hu Y. et al. presents an enhanced encoder-decoder framework

based on DeepLab v3+ analysis of images to accurately identify

crops with diverse planting patterns. The network utilizes

ShuffleNet v2 as the backbone for feature extraction and

incorporates a convolutional block attention mechanism to fuse

attention features across channels and spatial dimensions. The

enhanced network achieves significant improvements and

requires fewer parameters and computational operations

compared to other networks. This study demonstrates the

effectiveness of Deep-agriNet in identifying crops with different

planting scales, making it a valuable tool for crop identification in

various regions and countries.

The combination of spectroscopy, imaging, and machine

learning has a high potential for improving crop stress analysis

and management. By utilizing these technologies, we can enhance
Frontiers in Plant Science 026
our understanding of crop stress dynamics, develop precise and

targeted stress detection methods, and improve decision-making

processes for farmers. Ongoing research, technological

advancements, and collaborative efforts are necessary to unlock

the full potential of spectroscopy, imaging, and machine learning in

mitigating crop stress and ensuring global food security.
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Detection of wheat Fusarium 
head blight using UAV-based 
spectral and image feature 
fusion

Hansu Zhang 1†, Linsheng Huang 1†, Wenjiang Huang 2,3,4, 
Yingying Dong 2,3*, Shizhuang Weng 1, Jinling Zhao 1, 
Huiqin Ma 2 and Linyi Liu 2
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Anhui University, Hefei, China, 2 State Key Laboratory of Remote Sensing Science, Aerospace 
Information Research Institute, Chinese Academy of Sciences, Beijing, China, 3 University of Chinese 
Academy of Sciences, Beijing, China, 4 Key Laboratory for Earth Observation of Hainan Province, 
Sanya, China

Infection caused by Fusarium head blight (FHB) has severely damaged the 

quality and yield of wheat in China and threatened the health of humans 

and livestock. Inaccurate disease detection increases the use cost of 

pesticide and pollutes farmland, highlighting the need for FHB detection in 

wheat fields. The combination of spectral and spatial information provided 

by image analysis facilitates the detection of infection-related damage in 

crops. In this study, an effective detection method for wheat FHB based 

on unmanned aerial vehicle (UAV) hyperspectral images was explored by 

fusing spectral features and image features. Spectral features mainly refer 

to band features, and image features mainly include texture and color 

features. Our aim was to explain all aspects of wheat infection through 

multi-class feature fusion and to find the best FHB detection method for 

field wheat combining current advanced algorithms. We  first evaluated 

the quality of the two acquired UAV images and eliminated the excessively 

noisy bands in the images. Then, the spectral features, texture features, 

and color features in the images were extracted. The random forest 

(RF) algorithm was used to optimize features, and the importance value 

of the features determined whether the features were retained. Feature 

combinations included spectral features, spectral and texture features 

fusion, and the fusion of spectral, texture, and color features to combine 

support vector machine, RF, and back propagation neural network in 

constructing wheat FHB detection models. The results showed that the 

model based on the fusion of spectral, texture, and color features using the 

RF algorithm achieved the best performance, with a prediction accuracy of 

85%. The method proposed in this study may provide an effective way of 

FHB detection in field wheat.
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hyperspectral images, UAV, crop stress, feature fusion, classification models
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Introduction

Wheat is the second largest grain crop in China. The stable 
and high yield of wheat has been the focus of agricultural 
production (Huang et al., 2020). Fusarium head blight (FHB), also 
known as scab, is a devastating wheat disease caused by the fungal 
plant pathogen Fusarium graminearum (Gibberella). Fusarium-
infected wheat typically results in small, low mass, and shrunken 
grains, which can rapidly lead to very large crop losses and quality 
degradation (Bauriegel et al., 2011b). Furthermore, the fungus 
produces a large number of mycotoxins (deoxynivalenol, nivalenol 
and zearalenones etc.), among which the most toxic 
deoxynivalenol (DON) can disrupt normal cell function by 
inhibiting protein synthesis, posing a significant threat to human 
and animal health (Barbedo et al., 2015). In recent years, with 
global climate change, wheat FHB infection has become 
increasingly serious, resulting in severe damage to wheat quality 
and yields. Ineffective FHB management practices hinder the 
profitable and sustainable production of wheat, affecting its 
economic and social benefits in China. Therefore, the detection of 
disease development of wheat is important and essential for 
successful disease control.

Traditional FHB detection mainly relies on professionals to 
scout the development of wheat infection through visual 
interpretation, or scholars use chemical methods, such as gas 
chromatography (GC) (Simsek et al., 2012), high performance 
liquid chromatography (HPLC) (Simsek et al., 2012), enzyme-
linked immunosorbent assay (ELISA) (Maragos et al., 2006), and 
polymerase chain reaction (PCR) (Amar et al., 2012; Atoui et al., 
2012) to detect FHB and DON production. However, these 
methods are time-consuming, labor-intensive, unable to achieve 
large-scale monitoring, and are destructive to wheat. Remote 
sensing technology has been widely used in the monitoring and 
identification of wheat FHB with nondestructive inspections and 
rapid measurements. At present, monitoring of wheat FHB using 
remote sensing technology is mainly manifested in three aspects: 
(i) identify wheat kernels with varying degrees of damage under 
laboratory conditions to accurately judge the quality of wheat 
kernels (Delwiche et al., 2011; Barbedo et al., 2015; Jaillais et al., 
2015; Alisaac et al., 2019; Femenias et al., 2020; Liang et al., 2020; 
Zhang D. Y. et al., 2020a; Zhang  D. Y.  et al., 2020b); (ii) use 
remote sensing technology to capture the information of 
individual or canopy wheat infected with FHB to accurately detect 
the disease (Dammer et al., 2011; Menesatti et al., 2013; Whetton 
et al., 2018a,b; Huang et al., 2019b; Zhang et al., 2019; Huang et al., 
2020; Ma et al., 2020; Huang et al., 2021); and (iii) monitor wheat 
FHB on a regional scale with remote sensing (Liu et al., 2020b). 
However, there are many limitations in these studies. The 
inspection of wheat kernels has a time lag that only allows the use 
of kernels with different qualities and cannot fundamentally 
ameliorate wheat infection. Quantitative detection studies at the 
single plant scale or canopy scale only provides a theoretical 
reference without the spatial distribution of wheat infection to 
meet the needs of practical applications. Optical satellite images 

are at risk of being covered by clouds, and FHB may occur severely 
and frequently in cloudy and foggy areas, reducing the availability 
of remote sensing images (Liu et al., 2020a). Therefore, there is an 
urgent need for new technological means to solve the 
current problems.

Unmanned aerial vehicles (UAVs) are considered a practical 
detection method for crop pests and diseases. Unlike near-ground 
and satellite-based remote sensing platforms, applications of UAV 
have the advantages of large coverage, high efficiency, and 
flexibility (Fu et al., 2022; Zhu et al., 2022a). UAV can collect very 
high-resolution images and data in a cost-effective manner over a 
short period of time (Ye et  al., 2020). As a new technological 
means, UAV technology has made significant progress in crop 
classification, growth monitoring, and identification of pests and 
diseases. UAV also allows for a proper balance between image 
quality, sensing efficiency, and operating cost (Li et al., 2019). At 
present, UAV images are mainly divided into multispectral images 
and hyperspectral images. Hyperspectral images have dozens to 
hundreds of continuous and subdivided spectral bands in the 
ultraviolet, visible, near-infrared, and mid-infrared regions, 
making them more sensitive to the reflected energy of light and 
increasingly available (Liu et al., 2020a). Hyperspectral images can 
provide image and spectral data of each pixel, thus detecting the 
internal chemical compositions and external phenotypic traits of 
objects (Zhang D. Y. et al., 2020b). Currently, there are few reports 
on the detection of FHB infection in wheat using UAV 
hyperspectral technology (Liu et al., 2020a; Ma et al., 2021; Xiao 
et al., 2021). We attempted to use UAV hyperspectral technology 
to explore wheat FHB detection methods in our study. What’s 
more, scholars have primarily mined spectral features that could 
characterize physiological and biochemical changes (such as 
moisture, pigment, etc.), as well as considered texture features that 
can represent spatial changes of wheat to detect FHB. In fact, the 
infected wheat tissue usually transitions from green (healthy 
tissue) to yellow–white (diseased tissue) as the disease progresses. 
Color has been proven to be  the most effective means to 
distinguish different image objects and realize object recognition 
among phenotypic traits (e.g., color, texture, and size) extracted 
from images (Zhang et al., 2018). However, the application of UAV 
color features in FHB detection has not been explored. Therefore, 
this study combines color features to further explore the wheat 
FHB detection methods based on UAV hyperspectral images.

Our study investigated the potential of fusing spectral and 
image features of UAV hyperspectral images to improve the ability 
of detecting wheat FHB in the field. The overall technical flow 
chart is shown in Figure 1. First, we determined the most suitable 
sensitive spectral features to identify FHB; these features reflect 
the disease stress of the host. Second, we extracted texture features 
that could represent the disease distribution based on band images 
containing the most disease information. Finally, we calculated 
the color features that characterize disease incidence. 
We  combined multiple algorithms to construct classification 
models and examine the effect of multi-features on the detection 
accuracy of FHB. Our goals were to (1) evaluate the performance 
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of UAV hyperspectral images in identifying wheat FHB 
occurrence; (2) evaluate the potential of multi-features in FHB 
detection; (3) explore the best classification method for UAV 
images; and (4) map the occurrence of FHB in a wheat field using 
the optimal model. In general, we developed a novel method for 
FHB detection based on UAV images, which forms a basis for the 
precise prevention and control of FHB.

Materials and methods

Experiment site and data acquisition

Our experiment site was situated in the Anhui Agricultural 
University Production Base (31°290 N, 117°130E) in Lujiang 
County, Anhui Province, China (Figure 2). The main wheat variety 
in this area is Yangmai 25, which is susceptible to FHB. Zero tillage 
and a typical subtropical humid monsoon climate provide favorable 
conditions for the occurrence of wheat FHB in this region. 
According to the Anhui Meteorological Service, the average 
temperature from April to early May 2019 in Lujiang County was 
about 20°C, accompanied by several days of rainfall. The wheat was 
in the flowering period in April. Sufficient fungus sources and 
climatic conditions caused natural wheat FHB in the experiment site.

Data were sourced from UAV image acquisition and field 
investigation. The UAV images were obtained using an M600 Pro 
aircraft of Dajang Innovations (DJI) during the wheat filling stage 

on May 3 and 8, 2019. This system was equipped with a Cubert 
S185 FireflEYE SE hyperspectral imaging camera (Cubert GmbH, 
Ulm, Baden-Württemberg, Germany), which can collect the 
reflected radiation in the 450–950 nm range. The spectral sampling 
interval was 4 nm, and there were 125 bands in total. The UAV 
flew at a speed of 3 m/s at an altitude of 60 m. The camera triggers 
at a frequency of 0.8 s, with a forward overlap of 80% and a side 
overlap of 65%. All UAV images were collected under clear 
weather and cloudless skies between 11 a.m. and 1 p.m. (local 
time). Before capturing hyperspectral images, radiometric 
correction of the camera was required. A panchromatic image 
with high spatial resolution and hyperspectral cube image with a 
low spatial resolution were fused and spliced for subsequent 
analysis. The final hyperspectral images had a spatial resolution of 
4 cm. Field investigation experiments were carried out while 
capturing the UAV images. Fifty plots (each with an area of 1 m2) 
were evenly selected across the experiment field. These plots were 
used as ground sample points to verify the quality of the UAV 
images. To accurately locate the sampling points, we  fixed a 
flagpole next to each point. The canopy spectral reflectance of the 
sample points was collected using an ASD FieldSpec Pro 
spectrometer (Analytical Spectral Devices, Inc., Boulder, CO, 
USA), which has a spectral resolution of 3 nm in the range of 
350–1,000 nm and 10 nm in the range of 1,000–2,500 nm. All 
canopy spectral measurements were carried out at a height of 
about 1.3 m above the ground, and 10 measurements were taken 
at each sample point. A BaSO4 calibration panel was used before 

FIGURE 1

Methodological framework.
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each measurement to correct for changes in illumination 
conditions, and the average was used as the final canopy spectrum. 
According to the rules for monitoring and forecasting wheat head 
blight suggested by the National Plant Protection Department of 
China (Chinese Standard: GB/T 15796–2011), the diseased ear 
ratio (DER) in each plot can be expressed by the ratio of diseased 
ears to the total investigated ears. The wheat planting density in 
the study area was relatively uniform. Then, we randomly selected 
50 wheat plants at every sample point and recorded the number 
of diseased wheat plants by visual interpretation. DER was divided 
into five classes: 0.1% < DER ≤ 10% (Class 1), 10% < DER ≤ 20% 
(Class 2), 20% < DER ≤ 30% (Class 3), 30% < DER ≤ 40% (Class 4), 
and DER > 40% (Class 5). Actually, wheat fields with more than 
30% infected wheat are severely damaged, and those with less than 
10% are mildly damaged. Therefore, we reclassified DER into three 
grades: mild infection (0.1% < DER ≤ 10%), moderate infection 
(10% < DER ≤ 30%), and severe infection (DER > 30%) for 
subsequent analysis.

Data processing and analysis

Data quality assessment of UAV
UAV hyperspectral images are obtained by fusing and splicing 

a panchromatic image and hyperspectral cube image. UAV is 
prone to the impact of objective factors such as shaking in flight. 
Therefore, it is necessary to evaluate the image quality before 
identifying wheat FHB in the field. ASD spectrometers are widely 
used in agricultural remote sensing monitoring, and their spectral 
information is often used as an important basis for monitoring 

crop pests and diseases (Cao et al., 2013; Ashourloo et al., 2014; 
Zheng et al., 2018; Huang et al., 2019a; Ma et al., 2020). In this 
study, we used ASD spectral data as a criterion to evaluate the 
quality of UAV images (Bareth et al., 2015; Gao et al., 2016; Chen 
et  al., 2018). First, we  extracted and averaged the spectral 
reflectance of all pixels in the sample points to obtain the UAV 
spectral information in the same region as the ASD measurement. 
Second, we analyzed the spectral variations between the two data 
sets by resampling the ASD canopy spectrum and determining the 
differences in the waveforms. Finally, we calculated the correlation 
between the resampled ASD spectrum and the UAV spectrum in 
the 450–950 nm range. If there is a strong correlation between the 
data measured by the two sensors and the same spectral curve, 
then the UAV data are considered reliable.

Optimal feature selection for wheat FHB 
detection

The UAV hyperspectral images captured in this study contain 
125 spectral bands, from visible to near infrared, which reflect the 
internal physiological and biochemical changes of wheat after 
pathogen infection (Li et al., 2014). In addition, wheat presents 
different spatial distributions as FHB severity increases, as 
indicated by the texture and color features of an image. Here, 
we detected FHB of the wheat field by extracting key features from 
images captured on May 3 and 8. The wheat was at the same 
growth stage on both dates; therefore, any feature changes between 
the two dates were mainly due to disease development rather than 
the wheat growth. It should be noted that the extracted features 
are not only spectral features but also include image features 
(texture and color features). Moreover, the extracted features may 

FIGURE 2

Location of the experiment site and field investigation samples. The star in the left map represents the location of the experiment site, and the 
right map is the experiment field photographed by the UAV, where red marks the location of the field investigation point.
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contain invalid information and thus be  insensitive to wheat 
FHB. A random forest (RF) algorithm was adopted to further 
reduce data redundancy and develop efficient models.

The spectral features for each plot were extracted from 
hyperspectral images using the region of interest (ROI) tool in 
ENVI 5.3 software. The feature extraction method is the same as 
that used in data quality assessment of UAV. We extracted and 
averaged the spectral reflectance of all pixels contained in the 
sample point as the final spectral value of each sample point. The 
texture features were extracted by the gray level co-occurrence 
matrix (GLCM) method (Zhang et al., 2017). The GLCM method 
is a classical statistical analysis technique that describes texture by 
studying the spatial correlation characteristics of the gray level 
(Guo et al., 2020). The mean, variance, homogeneity, contrast, 
dissimilarity, entropy, second moment, and correlation were 
extracted for FHB detection analysis. Table 1 describes the texture 
features. Before texture feature extraction, the principal 
component analysis (PCA) method was used to reduce the 
dimensionality of the hyperspectral images and generate principal 
component images containing only three bands. The first three 
bands contain most of the information (the cumulative variance 
exceeds 97%); thus, the texture features were extracted from the 
gray images corresponding to the three bands. The extraction of 

texture features was completed with ENVI 5.3 software, and the 
specific process occurred in four steps (Fu et al., 2022): (1) select 
the gray images in “Texture Input File” dialog, (2) select the 
necessary texture features in the check box, (3) set the processing 
window size to 3 × 3 (the smallest window size guarantees the 
highest resolution), and (4) set the output path and calculate the 
texture values. A total of 24 texture features were calculated.

For the color features selection, we calculated color indices 
through band combinations to indicate different aspects of wheat 
infection (Li et al., 2019; Huang et al., 2020; Ge et al., 2021). Color 
feature is the most widely used visual feature in image retrieval; it 
is usually related to the object or scene contained in the image; at 
the same time, color feature is less dependent on the size, 
orientation, and perspective of the image itself, making it highly 
robust (Huang et  al., 2020). During the mild infection stage, 
several wheat plants were withered and yellowed in the field. As 
the infection worsened, the damaged area gradually increased 
(Figure 3). Chromatic aberration can be used to distinguish the 
severity of FHB. In this study, three wavelengths (694, 542, and 
482 nm) of the hyperspectral images were used to synthesize RGB 
images and extract color features. The extracted color features 
mainly included Excess Blue Vegetation Index (ExB), Excess 
Green Vegetation Index (ExG), Excess Red Vegetation Index 
(ExR), Green Leaf Algorithm (GLA), Kawashima Index (IKAW), 
Modified Green Red Vegetation Index (MGRVI), Normalized 
Green-Red Difference Index (NGRDI), Red Green Blue Vegetation 
Index (RGBVI), Visible Atmospherically Resistant Index (VARI), 
and Woebbecke Index (WI). Details of the 10 color features 
mentioned in this paper are shown in Table 2.

Rational selection of the important features in wheat FHB 
detection is the most critical step in image analysis. RF consists of 
multiple decision trees, which can calculate the importance of 
individual feature variables. The feature evaluation method is 
called “embedding,” which integrates the features of the filter and 
wrapper methods (Pal and Foody, 2010). We  evaluated the 
importance of features by calculating the contribution rate of each 
feature in the random forest, as measured by the Gini index (Deng 

TABLE 1 The texture feature used in the study and descriptions.

Texture feature Abbreviation Content

Mean mea Average of grey levels

Variance var Change in greyscale

Homogeneity hom Local homogeneity, as opposed to 

contrast

Contrast con Clarity of texture

Dissimilarity dis Similarity of the pixels

Entropy ent Diversity of the pixels

Second Moment sem Uniformity in greyscale

Correlation cor Ductility of grey value

FIGURE 3

Different incidences of wheat in the field: mild infection (left), moderate infection (center), and severe infection (right).
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and Runger, 2013). To reduce the random error generated during 
the operation of the random forest algorithm, an average of 20 
algorithms was set as the final importance score of each feature. 
Analysis of variance (ANOVA) was used to further test the ability 
of selected features to separate mild, moderate, and severe 
disease samples.

Classification model construction and 
evaluation

Using MATLAB R2016b (MathWorks, Natick, MA, USA), 
three algorithms, support vector machine (SVM), RF, and a back 
propagation neural network (BPNN) were the basis for the 
detection models of wheat FHB.

SVM is a supervised learning algorithm that realizes the best 
generalization ability and prevents overfitting by trying to find a 
compromise between the minimum calibration set error and the 
maximum edge error; it is one of the most powerful classifiers 
(Faris et al., 2017). SVM is expected to find an optimal hyperplane 
to divide the samples and ultimately create a convex quadratic 
programming problem that only provides global minima 
(avoiding local minima). When the variables cannot be separated 
linearly, SVM can use the kernel function to project variables into 
higher-dimensional feature space, which makes linear division 
easier (Xia et  al., 2016). Compared with other classifiers that 
require a large number of samples, SVM can find the optimal 
solution on the basis of existing samples, so it has better 
applicability to limited samples, lower computational complexity, 
and less training time. The kernel function, kernel parameter size, 
and penalty parameter are important factors affecting the 
performance of the SVM model. We  chose the radial basis 
function as the kernel function and used the grid optimization 
method to search for the best parameters to obtain better 
model accuracy.

The RF algorithm, proposed by Breiman (2001), is a popular 
ensemble learning algorithm in classification, prediction, and 
feature selection (Breiman, 2001). When using the RF algorithm 
for classification, the final label of the input sample is determined 
by voting for each decision tree in the random forest (Guo et al., 

2011; Zhu et al., 2022b). Random resampling and node random 
splitting techniques are used to train the RF model (Gislason et al., 
2006). RF is advantageous in remote sensing image processing 
(Rodriguez-Galiano et al., 2012): (1) RF is less computationally 
intensive than other tree ensemble methods (such as Boosting) 
and less prone to overfitting; (2) RF has a strong ability to resist 
noise and outliers, can tolerate a certain amount of data loss, and 
has good robustness to noise and outliers; (3) RF can analyze 
complex classification features and measure the importance of 
variables; (4) RF supports high dimensional data and generates an 
internal unbiased estimate of generalization error (“out of bag” 
error). In this study, the number of model decision trees was set 
to 200, and other parameters were kept as the default.

BPNN is one of the most widely used network models in 
remote sensing (Yang et al., 2011). It is a multi-layer feedforward 
neural network based on error backpropagation algorithm 
training, usually including an input layer, hidden layer, and output 
layer. When a set of information is inputted, the network can 
achieve the target accuracy through continuous repeated training 
and adjustment so as to produce satisfactory results. The algorithm 
continuously collects the errors generated by the model during the 
training period, returns these errors as output values through back 
propagation, and then continuously adjusts the weight of each 
neuron according to the error value. Finally, the best classification 
by the model is achieved.

A total of 100 samples with mild, moderate, and severe disease 
progression were randomly divided into the calibration set and 
prediction set (4:1 ratio). The calibration set was used for model 
construction, and the prediction set was preliminarily used to 
evaluate the capabilities of the model classification. To further 
evaluate the accuracy and prevent the model from overfitting, the 
validation set was used to verify the generalization ability of the 
model. We  employed a five-fold cross-validation method to 
equally divide the dataset into five parts, each of which was an 
independent validation set. The accuracy of each validation set 
was evaluated, and the average was used as the final model 
validation accuracy. The calibration accuracy, prediction accuracy, 
and validation accuracy demonstrated the model’s ability to detect 
wheat FHB in our study. Using ArcGIS 10.6 software to map the 
damage of wheat FHB, and calculate the ratio of the number of 

TABLE 2 The color feature used in the study and descriptions.

Color feature (abbreviation) Full name Formula Reference

ExB Excess Blue Vegetation Index 1.4B-G Li et al. (2019)

ExG Excess Green Vegetation Index 2G-R-B Woebbecke et al. (1995)

ExR Excess Red Vegetation Index 1.4R-G Meyer and Neto (2008)

GLA Green Leaf Algorithm (2G-R-B)/(2G + R + B) Louhaichi et al. (2001)

IKAW Kawashima Index (R-B)/(R + B) Kawashima and Nakatani (1998)

MGRVI Modified Green Red Vegetation Index (G2-R2)/(G2 + R2) Tucker (1979)

NGRDI Normalized Green-Red Difference Index (G-R)/(G + R) Tucker (1979)

RGBVI Red Green Blue Vegetation Index (G2-B × R)/(G2 + B × R) Bendig et al. (2015)

VARI Visible Atmospherically Resistant Index (G-R)/(G + R-B) Gitelson et al. (2002)

WI Woebbecke Index (G-B)/(R-G) Woebbecke et al. (1995)
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infected pixels to the number of healthy pixels to statistics the 
proportion of wheat areas with different infection grades.

Results

UAV data quality verification based on 
canopy data

Figure 4A shows the original mean spectrum of canopy wheat 
measured by the ASD spectrometer and extracted from the UAV 
images over 450–950 nm. From the perspective of waveform 
similarity, the variations of the two spectra in the visible to near-
infrared region (450–850 nm) are consistent, with significant 
peaks (near 550 nm) and troughs (near 680 nm). However, the 
spectrum measured by the ASD spectrometer is lower than the 
spectrum extracted by the UAV images overall. Above 850 nm, the 
spectral reflectance of the UAV images gradually decreases, and 
the spectral curve shows a significant downward trend compared 
with that of ASD, while the ASD spectral curve has little 
fluctuation. Figure  4B shows the correlation between UAV 
spectrum and ASD spectrum in the range of 450–950 nm. The two 
spectra are highly correlated, with R2 above 0.97, which indicates 
that the image quality of UAV is trustworthy. The correlation 
between the UAV spectrum and ASD spectrum within 
450–850 nm was further analyzed: R2 reached 0.99 (Figure 4C). 
Thus, the band greater than 850 nm greatly influences the UAV 
images. Therefore, the last 100 bands of the UAV images were 
excluded from post-processing.

Optimal spectral and image features

The RF algorithm was used to evaluate the importance of each 
feature in the FHB detection models to filter out redundant 
features. Figure 5 depicts the importance distribution of spectral 
and image features. The greater the weight, the more important 
the corresponding features. According to sequential backward 
elimination, all features with weights greater than 0.2 were selected 
to detect wheat samples with mild, moderate, and severe infection; 
the result was five spectral features, three texture features, and two 
color features (Table  3). The weights of the selected spectral 
features were much higher than remaining spectral features 
(Figure  5A). One selected spectral feature was located in the 
visible region, three were located in the red edge region, and one 
was located in the near-infrared region. For the image features, 
three texture features and two color features were selected to 
illustrate the distributions of disease and the degree of infection in 
wheat; the maximum weight of selected image features reached 
0.39. Table 4 demonstrates the separation ability of these selected 
features to detect mild, moderate, and severe samples by 
ANOVA. In general, the selected features show different mean and 
standard deviation values among multi-class samples. There were 
significant differences among the mild, moderate, and severe 

samples of all features, and the significance level reached 0.95. 
Therefore, the selected features have strong separation ability to 
detect infected samples in this study.

Model construction

The purpose of our study is to effectively identify field FHB 
based on the fusion of spectral and image features of UAV images 
to be able to control the development of field diseases in a timely 

A

B

C

FIGURE 4

Curve comparison and correlation of UAV and ASD spectra. 
(A) Curves of ASD and UAV spectra. (B) Correlation between the 
two types of curves at 450–950 nm. (C) Correlation between the 
two types of curves at 450–850 nm.
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TABLE 4 Statistical characteristics of feature values of the mild, 
moderate, and severe disease samples.

Feature Sample 
category

Mean of 
feature

Std. 
deviation

P-Value 
(ANOVA)

band1 Mild 0.059 0.013 0.002

Moderate 0.063 0.014

Severe 0.076 0.011

band2 Mild 0.054 0.017 0.035

Moderate 0.057 0.019

Severe 0.071 0.016

band3 Mild 0.155 0.041 0.001

Moderate 0.168 0.039

Severe 0.209 0.030

band4 Mild 0.312 0.070 0.000

Moderate 0.345 0.065

Severe 0.418 0.054

band5 Mild 0.374 0.084 0.000

Moderate 0.411 0.079

Severe 0.496 0.062

mea1 Mild 21.88 3.383 0.038

Moderate 21.32 4.067

Severe 18.56 2.238

mea3 Mild 37.03 11.207 0.003

Moderate 32.66 10.748

Severe 24.12 6.161

hom3 Mild 0.78 0.112 0.019

Moderate 0.80 0.083

Severe 0.76 0.100

MGRVI Mild −0.32 0.037 0.031

Moderate −0.35 0.059

Severe −0.40 0.046

NGRDI Mild −0.16 0.024 0.030

Moderate −0.18 0.032

Severe −0.21 0.027

manner. Therefore, the classification models were developed by 
combining different feature fusion with SVM, RF, and BPNN for 
the analysis of wheat FHB detection. The calibration accuracy and 
prediction accuracy of the models are shown in Table  5. The 
precisions of models constructed based on different feature 

variables are significantly different. The integration of spectral, 
texture, and color features seems to achieve the best accuracy. 
When spectral features were used as model inputs, the RF model 
performed best with a prediction accuracy of 70%, followed by 
BPNN and SVM with prediction accuracies of 65 and 60%, 
respectively. When considering the integration of spectral and 
texture features, the accuracy of the three classification models 

A

B

C

FIGURE 5

The importance distributions of various features based on the RF 
algorithm. (A-C) represent the weights of spectral features, 
texture features, and color features, respectively.

TABLE 3 The features selected by importance ranking.

Type Variable number Selected Features

Spectral features 5 band1(518 nm), 

band2(666 nm), 

band3(706 nm), 

band4(742 nm) and 

band5(846 nm)

Texture features 3 mean1, mean3 and hom3

Color features 2 MGRVI and NGRDI
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was improved by 10%, and the RF model achieved the highest 
accuracy at 80%. When spectral, texture, and color features were 
integrated as input variables, the prediction accuracy of the RF 
model was further improved to 85%. The prediction accuracy of 
the SVM model remained unchanged, but the prediction accuracy 
of the BPNN model was also improved by 5%. The calibration 
accuracy of the model also shows the same trend as the prediction 
accuracy. Among all models, the calibration accuracy of the RF 
model reached 100%. With the addition of image features, the 
calibration accuracy of the model continued to improve. The 
above results indicate that the fusion of spectral and image features 
can improve the performance of the model through texture and 
color features in terms of identifying wheat FHB. The five-fold 
cross-validation method was used to further verify the model to 
prove its universality. The validation results are shown in Table 5. 
The results show that the highest validation accuracy was 83%, 
which is reflected in the integration of spectral feature, texture 
feature, color feature, and RF algorithm. The above results show 
that the spectral and image feature fusion combined with the RF 
algorithm can benefit the rapid detection and accurate analysis of 
a wheat field with mild, moderate, and severe infection.

To understand the spatial distribution of FHB-infected wheat 
in the study area, models based on different feature integrations 
and the optimal RF algorithm were adapted to map the damage of 
wheat FHB on May 3 and 8, 2019. The results are shown in 
Figure 6. From the mapping results, the wheat infection degree 
increased over time. Although the infection had spread over the 
entire farmland on May 3, the wheat in the field showed mild and 
moderate infection, and severe infection was almost zero 
(sporadic distribution). However, on May 8, almost all wheat in 
the study area showed moderate or severe infection, indicating 
that a large outbreak rapidly occurred. Table 6 summarizes the 
proportions of wheat area with mild infection, moderate infection, 
and severe infection corresponding to each figure in Figure 6. 
Moderate infection impacted more than 75% of the wheat on May 
8, and the severe infection impacted more than 10%. The addition 
of image features improved the model in terms of detecting 
severely infected wheat. The proportion of severely infected wheat 
on May 8 in Figure 6B (18.12%) and Figure 6C (18.85%) is higher 
than that in Figure 6A (11.73%); these results are mainly reflected 

in the presence of some severe infection along the edge of the plot. 
This severe infection phenomenon is consistent with our field 
survey results.

Discussion

In the present work, the detailed information contained in 
UAV hyperspectral images were fully exploited to help identify 
wheat FHB in the field. FHB can change the pigment, water 
content, and cell structure of wheat, as well as the structure, shape, 
and color of the wheat canopy. Therefore, we fused the spectral 
features that represent internal physiological changes with the 
image features that represent the spatial information of wheat to 
effectively detect wheat FHB.

Before analyzing the UAV images, we  first evaluated the 
quality of the UAV hyperspectral images, which is a critical step 
to ensure that the UAV images accurate identify FHB. We evaluated 
the quality of the UAV images by comparing and analyzing the 
data obtained from an ASD spectrometer. The spectral curves of 
the wheat sample points extracted from the UAV images share a 
common trend with those of the ASD spectral: a peak and a 
trough in the VIS–NIR region. However, the values of the ASD 
spectra were lower than the spectral values obtained from the 
UAV images, which is likely due to the influence of the 
bidirectional reflectance distribution function (BRDF) caused by 
the difference in the geometrical positions of the sun-target-
sensors of the two data sets. Some studies have proven that BRDF 
has a significant impact on UAV hyperspectral data (Burkart et al., 
2015). Above 850 nm, the UAV spectral curve shows a downward 
trend compared with the ASD spectral curve, while the ASD 
spectral curve has little variation, which is consistent with other 
scholars’ observations (Gao et al., 2016; Chen et al., 2018). The 
sensor may have too much noise at the detection boundary. 
Furthermore, it need cloud-free conditions on the measurement 
day, so there is a long time interval between the UAV flight and 
ASD information collection, as well as changes in light conditions. 
According to Figure 4, the spectral reflectance of sample points 
obtained by different sensors is significantly correlated within 
450–850 nm (R2 of 0.99). ASD hyperspectral data are an extensive 

TABLE 5 Model classification accuracy based on different features and algorithms.

Feature Classification algorithm Calibration accuracy (%) Prediction accuracy (%) Validation accuracy (%)

Spectral RF 100 70 70

SVM 63 60 59

BPNN 78 65 72

Spectral + texture RF 100 80 79

SVM 70 70 60

BPNN 76 75 76

Spectral + texture + color RF 100 85 83

SVM 74 70 63

BPNN 84 80 83

Bold values indicate the optimal algorithm and highest accuracy.
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remote sensing identification method for crop pests and diseases 
(Cao et al., 2013; Shi et al., 2018; Guo et al., 2020). This spectrum 
has been used to accurately identify field wheat FHB (Huang et al., 
2019a,b; Ma et al., 2020). The high correlation between UAV and 
ASD spectra further proves the reliability of UAV images.

Next, we extracted the band features, texture features, and 
color features contained in the hyperspectral images. Table 3 
shows the details of the extracted features. The band features 

we extracted are mainly located in the green edge, red edge, 
and near-infrared region. The green edge is mainly related to 
the content of wheat pigments (including carotenoids and 
chlorophyll) (Al Masri et al., 2017; Zhang Z. P. et al., 2020b), 
and the position of the red edge is sensitive to the movement 
of the red edge caused by the change of chlorophyll 
concentrations (Zhang Z. P. et  al., 2020a). Near-infrared 
wavelengths are primarily related to wheat moisture content, 

A

B

C

FIGURE 6

Damage maps for May 3 (left) and May 8 (right) based on different feature combinations and the RF algorithm. (A) Spectral features. (B) Spectral 
and texture features. (C) Spectral, texture, and color features.
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as FHB-infected wheat is accompanied by a temporary increase 
in transpiration and tissue desiccation (Bauriegel et al., 2011a). 
The VIS–NIR bands in hyperspectral images are proposed to 
overcome visual symptom disassociations with DON 
contamination. Because the DON concentration of wheat is at 
a low level in the early stages and the typical symptoms of 
Fusarium damage cannot be  detected visually, the spectral 
features are more conducive to observing the early symptoms 
of wheat infection (Femenias et al., 2020; Zhang et al., 2021). 
The GLCM-based texture feature extraction method was based 
on Fu et al. (2022). The GLCM method describes the texture by 
studying the spatial correlation characteristics of the gray levels 
(Haralick and Shanmugam, 1973). In fact, texture information 
can help distinguish the spatial information independent of 
tone to identify objects or regions of interest in an image, but 
it is not recommended to use it by itself due to the poor 
performance of texture parameters (Sarker and Nichol, 2011). 
Previously, auxiliary texture information was effectively 
combined with spectral information to significantly improve 
the accuracy of wheat GPC estimation (Fu et  al., 2022). 
Therefore, in this study, we  attempted to fuse texture and 
spectral features to improve the detection accuracy of field 
FHB. The results demonstrate that texture features can serve as 
complementary information to increase the dimensionality of 
UAV hyperspectral image data (Table  5). In addition, 
we calculated some color features by band combinations to 
indicate different aspects of wheat infection. While texture 
features may add additional information to FHB estimation, 
crop infection is more directly related to color information 
rather than the spatial arrangement of colors (Li et al., 2019). 
What’s more, since color images highlight specific vegetation 
greenness and are considered to be less sensitive to changes in 
light conditions, color features extracted from RGB images 
have the potential to provide crop growth and nutritional 
status, immediately providing researchers and farmers with a 
realistic and intuitive visualization of crop growth status (Du 
and Noguchi, 2017; Ge et al., 2021). At present, some scholars 
use color features to estimate the nitrogen density of winter 
wheat leaves (Rorie et al., 2011), estimate the leaf area index of 
rice (Li et al., 2019), monitor the growth status of wheat (Du 
and Noguchi, 2017), and accurately detect wheat FHB at the 
spikes scale (Huang et al., 2020). However, the effect of FHB 

detection of field wheat based on color features has not been 
explored yet. Therefore, in this study, we further supplemented 
color features in the input models based on spectral and texture 
features to identify wheat FHB. Actually, color features in UAV 
digital images are usually based on RGB cameras because UAV 
systems with RGB cameras are inexpensive, compact, and 
convenient. In the future, a UAV system suitable for FHB 
monitoring in the field should be considered. The RGB bands 
in this study are a basis for future RGB cameras, avoiding the 
complexity of hyperspectral data processing.

Table 5 shows the model classification results of field wheat 
with different degrees of infection according to different input 
variables. The addition of texture and color features can further 
improve the accuracy of the model compared to methods that 
use spectral features to detect wheat FHB. As seen in Table 6, 
the improvement of accuracy is mainly manifested in the 
difference in the model’s detection of mild, moderate, and 
severe disease samples. In the early stage of wheat FHB 
infection (May 3), 57.16% and 42.76% of the field wheat with 
mild and moderate infection, respectively, could be identified 
by the model using spectral features. With the addition of 
texture features and color features, the proportion of mildly 
infected wheat in the field identified by the model gradually 
decreased, and the proportion of moderately infected wheat 
increased. In the late stage of wheat FHB infection (May 8), the 
model indicated that the proportions of mildly and moderately 
infected wheat gradually decreased with the addition of image 
features, and the severely infected area gradually increased. 
That is to say, before the image features are added, the model 
always misses the wheat with more severe disease. In fact, as 
the wheat infection spread, the dry and white areas of the 
wheat ears became larger until the wheat died (Huang et al., 
2020). The addition of image features can enable the model to 
capture this process. When the information contained in the 
model increases, the detection of samples with severe disease 
improves, which is consistent with the results in our study.

The research shows that the fusion of spectral and image 
features can distinguish the disease incidence of wheat in the 
field; this method can help future precision agriculture and large 
area wheat FHB monitoring. However, current research still 
exists limitations. In addition to considering spectral features, 
texture features, and color features, some vegetation features, 
such as Structure Insensitive Pigment Index (SIPI), Anthocyanin 
Reflectance Index (ARI), Normalized Difference Vegetation 
Index (NDVI), and Plant Senescence Reflection Index (PSRI), are 
often used to reflect plant disease stress status (Xiao et al., 2021). 
Hence, the effectiveness of the vegetation features in wheat FHB 
detection based on UAV hyperspectral images is worth 
considering. Additionally, only three machine learning 
algorithms (RF, BPNN, and SVM) were used in this study. The 
generalization ability of the models in the temporal and spatial 
dimensions must be verified. Further consideration can be given 
to combining data augmentation and deep learning methods to 
develop more stable and independent models, as well as reduce 

TABLE 6 The percentages of mildly, moderately, and severely infected 
wheat corresponding to the damage maps.

Feature Data Mild 
(%)

Moderate 
(%)

Severe 
(%)

Sum 
(%)

Spectral May 3 57.16 42.76 0.08 100

May 8 5.72 82.55 11.73 100

Spectral + texture May 3 55.45 44.45 0.10 100

May 8 5.67 76.21 18.12 100

Spectral + texture + color May 3 53.82 46.11 0.08 100

May 8 5.26 75.88 18.85 100

17

https://doi.org/10.3389/fpls.2022.1004427
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2022.1004427

Frontiers in Plant Science 12 frontiersin.org

the uncertainty of model applicability in other regions. Scale has 
become a popular topic in remote sensing research, and the 
information contained in a single pixel under different resolutions 
will change significantly. Appropriate spatial resolution images 
for agricultural monitoring are needed (Na et al., 2016). Our 
study only used two images with a spatial resolution of 4 cm to 
detect FHB, which is relatively simple. Various spatial resolution 
images are worth considering in the future. Finally, the 
occurrence of wheat FHB is related to the time of infection 
(Alisaac et  al., 2020) and meteorological factors, such as 
temperature and humidity. In the future, we will aim to consider 
wheat infection time and meteorological factors to explore early 
FHB detection methods and effectively prevent and control FHB 
occurrence and outbreak. The influence of wheat varieties and the 
development of various pests and diseases on the spread of wheat 
FHB cannot be ignored. More researches are needed to investigate 
the influence of varieties and multiple infections on the model 
performance in the future.

Conclusion

In this study, the quantitative detection of wheat with mild, 
moderate, and severe FHB infection in the field was achieved by 
fusing spectral and image features extracted from the UAV 
hyperspectral images. After obtaining the hyperspectral images, 
we first evaluated the quality of the images and identified the data 
in the 450–850 nm band for subsequent analysis by comparing 
waveform similarity and correlation with ASD hyperspectral 
data. Then, we  extracted the spectral features that reflect the 
physiological and biochemical changes within the host, as well as 
the texture and color features that characterize the spatial changes 
of wheat. The RF algorithm was used to further eliminate 
redundant features and improve the operating efficiency of the 
model. Finally, FHB quantitative detection models, based on 
different combinations of spectral features, texture features, and 
color features were formulated by combining BPNN, SVM, and 
RF algorithms. We  evaluated the classification results of the 
different models, and the FHB-related wheat damage was mapped 
using the best algorithm. The results show that the spectral 
features can potentially determine the damage level of FHB, but 
the performance of the models is not satisfactory. The fusion of 
spectral features and texture features can improve the model 
detection level, but the maximum prediction accuracy of the 
models was only 80%. The model based on the fusion of spectral, 
texture, and color features was best, and the prediction accuracy 
of the RF algorithm reached 85%. The damage map illustrates 
that wheat FHB developed very rapidly over a short time, causing 
destruction of the crop. This study builds upon previous models 
in terms of feature types, monitoring methods, and monitoring 
areas and provides a new methodology for FHB detection in the 
field by deeply mining features in UAV images and combining 
multiple spectral advantages.
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Visible and near-infrared
spectroscopy and deep learning
application for the qualitative
and quantitative investigation of
nitrogen status in cotton leaves
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Lei Feng1,2, Lei Zhou5, Jianxun Shen6, Ze Zhang7, Pan Gao8

and Yong He 1,2*
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3School of Information and Electronic Engineering, Zhejiang University of Science and Technology,
Huzhou, China, 4School of Information Engineering, Huzhou University, Huzhou, China, 5College of
Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, China, 6Hangzhou
Raw Seed Growing Farm, Hangzhou, China, 7Key Laboratory of Oasis Eco-Agriculture, College of
Agriculture, Shihezi University, Shihezi, China, 8College of Information Science and Technology,
Shihezi University, Shihezi, China
Leaf nitrogen concentration (LNC) is a critical indicator of crop nutrient status.

In this study, the feasibility of using visible and near-infrared spectroscopy

combined with deep learning to estimate LNC in cotton leaves was explored.

The samples were collected from cotton’s whole growth cycle, and the spectra

were from different measurement environments. The random frog (RF),

weighted partial least squares regression (WPLS), and saliency map were

used for characteristic wavelength selection. Qualitative models (partial least

squares discriminant analysis (PLS-DA), support vector machine for

classification (SVC), convolutional neural network classification (CNNC) and

quantitative models (partial least squares regression (PLSR), support vector

machine for regression (SVR), convolutional neural network regression (CNNR))

were established based on the full spectra and characteristic wavelengths.

Satisfactory results were obtained by models based on CNN. The classification

accuracy of leaves in three different LNC ranges was up to 83.34%, and the root

mean square error of prediction (RMSEP) of quantitative prediction models of

cotton leaves was as low as 3.36. In addition, the identification of cotton leaves

based on the predicted LNC also achieved good results. These results indicated

that the nitrogen content of cotton leaves could be effectively detected by

deep learning and visible and near-infrared spectroscopy, which has great

potential for real-world application.

KEYWORDS

cotton, leaf nitrogen content, spectra, deep learning, visible and near-infrared

spectroscopy (Vis-NIR)
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1 Introduction

Cotton (Gossypium spp), as one of the important economic

crops in the world, is widely used in the textile industry because

of its excellent natural properties. Nitrogen is an essential plant

macronutrient, taking an important part in crop photosynthesis,

which provides necessary nutritional support for the growth and

development of crops (Ma et al., 2022). Observations have

shown that nitrogen fertilization has an important effect on

cotton yield. Rational nitrogen fertilization is beneficial to

increase cotton yield, while both deficit and excessive nitrogen

fertilization have a negative impact on cotton growth and

development (Liu et al., 2010; Gospodinova and Panayotova,

2019). Gospodinova and Panayotova (2019) summarized the

research on the effects of mineral fertilization on cotton yield

and concluded that nitrogen should be applied at different

development stages as needed. Optimizing the nitrogen

fertilizer application scheme is conducive to improving

nitrogen utilization efficiency and cotton yield. Knowing the

nutritional status of cotton is the prerequisite to realizing on-

demand nitrogen application. Therefore, rapid and accurate

evaluation and detection of cotton nitrogen is of great

significance for monitoring plant nutrition status, as well as

making fertilization decisions.

Leaf nitrogen concentration (LNC), a critical indicator of

nitrogen nutrient status, is widely used in crop nutrient status

evaluation (Wan et al., 2022). A study conducted by Kergoat et

al. (2008) has shown that LNC is an essential factor affecting

canopy light utilization efficiency and photosynthetic rate.

Generally, LNC is determined by destructive analysis methods,

such as the Kjeldahl-digestion method. Although the destructive

approaches are objective, they have disadvantages such as being

time-consuming, labor-intensive, high cost and strong

destructiveness. It is also difficult to meet the actual needs of

rapid and real-time detection and diagnosis of LNC in a wide

range. In recent years, non-destructive techniques, such as

visible and near-infrared (VNIR) spectroscopy (Mishra et al.,

2021) and multi-spectral and hyperspectral imaging

(Tahmasbian et al., 2021; Guo et al., 2022), have been

developed to detect crop nutrition status. Multi-spectral and

hyperspectral images usually carry more information than

spectra data. However, the acquisition of spectral images

generally requires expensive and bulky sensors, the amount of

data is enormous, and there is more information redundancy,

which requires more storage space and tedious data processing.

Multi-spectral and hyperspectral imaging are not economically

feasible when many samples need to be examined and evaluated.

VNIR allows rapid acquisition of spectral information related to

samples’ physiological state and internal components at a

relatively low cost. In the past few years, VNIR has attracted

extensive attention and has been used in qualitative and

quantitative research in plants (Zhang et al., 2020a; Xia et al.,

2021; Luo et al., 2022).
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For the studies aiming at employing VNIR for nitrogen

detection, Mishra (Mishra et al., 2021) et al. demonstrated the

feasibility of using VNIR to quantitatively predict the nitrogen

and potassium concentration in bell pepper leaves. The results

showed that VNIR allowed accurate prediction of nitrogen with

an RMSEP of 0.44%. Sun et al. (2013) used VNIR to identify the

fertilized nitrogen level of lettuce leaves and achieved a high

classification accuracy of 100%. Zhang et al. (2022a) explored the

performance of using spectra of different ranges to estimate

nitrogen content in cotton leaves and obtained a R2
c = 0.794~

0.909 and R2
P = 0.774 ~ 0.899. Relationships between cotton leaf

spectra curves (380-700 nm, 700-1300 nm, and 1300-2500 nm)

and nitrogen content contributed to satisfactory predictions for

nitrogen content detection. There are indeed many researches

on the detection of LNC (Sun et al., 2013; Wang et al., 2018; Gao

et al., 2022; Pourdarbani et al., 2022; Tang et al., 2022; Zhang

et al., 2022b). Although the studies focusing on the LNC

classification achieved good results (Sun et al., 2013; Wang

et al., 2018; Pourdarbani et al., 2022), the samples in these

studies were classified according to different nitrogen

fertilization levels or different nitrogen fertilization days. It

should be noted that there is a large difference between the

fertilization of nitrogen and its actual uptake for the plant.

Therefore, the adaptability of the classification models

according to the nitrogen fertilization division is greatly

limited by the uncertainty of the actual LNC. What’s more, in

practice, it is always hard to get accurate fertilization data and

estimate the fertilization condition. In addition, the studies

focusing on LNC prediction are mainly for a specific cultivar

or a specific spectral data collection environment (Rotbart et al.,

2013), which may limit the scope of the applicability of the

established models.

Deep learning is a method that simulates the human

brain for analysis and learning. It forms abstract features

to represent the data distribution. Deep learning has the

advantages of strong self-learning and feature-extraction

ability and great capability of processing spectra data (Xiao

et al., 2020). In recent years, deep learning has been applied to

conduct various tasks in spectral and image data processing

(Steinbrener et al., 2019; Zhou et al., 2019). Convolutional neural

network (CNN) is one of the typical deep learning models. CNN

has been proven effective in processing spectra data and

establishing classification and regression models for various

agricultural tasks (Zhang et al., 2020b; Zhang et al., 2020c;

Gai et al., 2022).

The objective of the present study was to explore the

feasibility of qualitative diagnosis and quantitative detection of

LNC based on VNIR combined with deep learning. The goals

include (1) exploring the laws of the spectra of leaves with

different LNC; (2) classifying nitrogen levels according to the

measured LNC; (3) detecting LNC for two cotton cultivars under

the condition that the spectra were collected in different

measurement environments. The specific content includes (1)
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extracting characteristic wavelengths by random frog (RF),

weighted partial least squares regression (WPLS), and saliency

map for qualitative discrimination and quantitative detection

tasks, respectively; (2) building partial least squares discriminant

analysis (PLS-DA), support vector machine for classification

(SVC), and convolutional neural network classification (CNNC)

models based on full spectra and characteristic wavelengths to

identify cotton leaves with different LNC qualitatively; (3)

developing partial least squares regression (PLSR), support

vector machine for regression (SVR), convolutional neural

network regression (CNNR) models to quantitatively detect

LNC in cotton leaves.
2 Materials and methods

2.1 Sample preparation

Cotton was planted in an experimental field at the Hangzhou

Raw Seed Growing Farm (30°22’58.85” N, 119°56’7.80” E),

Hangzhou, Zhejiang province, China. Cotton cultivars

Lumianyan 24 (LMY24) and Xinluzao 53 (XLZ53) were

sampled in this experiment. Thirty-six experimental plots of

4×2 m were used with six nitrogen rates (0, 120, 240, 360, 480,

278 kg/hm2). Each nitrogen level was set with three replicates.

Leaf sampling was conducted during the whole growth stage.

Leaves at different leaf positions were selected from the

experimental plots. Finally, a total of 1400 leaves were

acquired. It is worth mentioning that the spectra of 648 leaves

were collected in the laboratory, and the spectra of the remaining

leaves were collected in the field. For the samples measured in

the laboratory, the leaves were cut, placed in the black bags and

stored in a cooler with a temperature of about 4°C. These

samples were transported to the laboratory immediately. The

time of transit was within one hour.
2.2 Spectra acquisition

Leaf spectra acquisition was conducted by a spectroradiometer

(Fieldspec4, Analytical Spectral Devices - ASD, Boulder, CO, USA)

system. This spectroradiometer consists of a leaf clip, which

provides a light source. During the measurement, the leaves were

clamped up for spectra acquisition. Three different positions of

each leaf were measured, and five scans were conducted for each

measurement. The spectra of five scans were averaged as the

spectra of the leaf region, and the average spectra of three leaf

regions were taken as the spectra of each leaf. The regions of

spectra acquisition for each leaf is shown in Figure 1. The collected

spectra cover the visible and near-infrared region (400 ~ 1000 nm)

and the short-wave near-infrared region (1000 ~ 2500 nm), and

the spectral resolution are 3nm and 8nm, respectively. Considering
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the noise in the beginning, spectra between 430-2500 nm were

used in this study.
2.3 Measurements of leave
nitrogen concentration

After finishing the spectra collection, the leaves were placed

in an oven, dried at 105°C for half an hour, and then cooled to

80°C until the sample weight recorded a constant weight. Then,

the dried leaves were ground into a fine powder and sieved

through a 40-mesh. A uniform dry leaf sample of fixed mass was

taken, and the nitrogen concentration was determined by the

Kjeldahl method after acid digestion (Kjeldahl, 1883). According

to the measured LNC (mg/g), cotton leaf samples were divided

into three categories: low-level LNC, medium-level LNC, and

high-level LNC. The detailed statistical information on sample

composition is presented in Table 1. Cotton leaves with different

LNC levels are shown in Figure 2. It can be seen that the leave

with high-level LNC has a deeper green color.
2.4 Data analysis methods

2.4.1 Convolutional neural network
In this study, two self-developed CNN architectures were

applied for building classification and regression models, and

their structures are shown in Figures 3A, B, respectively. For the

classification task, two convolution layers were set, both followed

by a max pooling layer and a batch normalization layer. The
FIGURE 1

The regions of spectra acquisition for cotton leaves.
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number of filters, kernel size, and strides of the two convolution

layers were both set as 16, 3, and 1, respectively. The rectified

linear unit (ReLU) was used as the activation for computing the

outputs of the convolutional layers. The max pooling layer

served as down-sampling and dimensionality reduction to

form the features of the next layer. Then, a fully connected

network with 64 neurons was added, followed by a batch

normalization layer. The dropout layer was used to avoid

overfitting. The fully connected layer at the end was used for

output. For the regression task, two batch normalization layers

followed by convolution layers were employed. The number of

filters, kernel size, and strides of the two convolution layers were

both set as 32, 3, and 1, respectively. Same as the proposed CNN

for classification, the rectified linear unit (ReLU) was used as the

activation. A batch normalization layer was added before the

features were outputting to the fully connected layer. In the end,

two fully connected layers with 64 and 16 neurons were used for

building non-linear regression models to predict the LNC of

different leaves. The fully connected layer at the end was used

for output.

For the training phase, the Softmax cross-entropy loss

function combined with stochastic gradient descent (SGD)

optimizer was applied to train the CNN developed for the

classification task. The L1 loss function and the adaptive

moment estimation (Adam) optimizer were used for the

regression task. The detailed information about SGD optimizer

and Adam optimizer could be found on the website https://

pytorch.org/docs/stable/optim.html . For both training tasks, the
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batch size was set as 64, and a scheduled learning rate was used.

In the beginning, the learning rate was set to 0.05. The learning

rate was reduced ten times after every 200 epochs. According to

this rule, the training phase was terminated when the loss

was stable.

2.4.2 Conventional models
PLS-DA and SVC models were established to classify cotton

leaves with different LNC. PLS-DA is a linear discriminant

algorithm developed from PLSR (Yuan et al., 2021). PLS-DA

algorithm can effectively extract the variables helpful for

classification and realize data recognition. PLS-DA can deal

with irreversible matrices and select the number of latent

variables so that the model achieves the best balance between

underfitting and overfitting (Li et al., 2021). SVC is a pattern

recognition algorithm based on a support vector machine (SVM)

for classification. It achieves the classification goal by exploring

the hyperplane that maximizes the distance between different

classes (Xiao et al., 2020). In this study, the radial basis function

(RBF) was used as the kernel function. The regularization

parameter c and kernel function parameter g were determined

through a grid-search procedure. The search range of c and g

were both assigned as 2-8 to 28. PLSR and SVR models were used

to establish the quantitative analysis model of LNC. Detailed

information on PLS and SVR details can be found in our

previous article (Xiao et al., 2022). For both qualitative and

quantitative analysis models, five-fold cross-validation

was adopted.
FIGURE 2

Cotton leaves with different LNC levels: (A) low-level LNC, (B) medium-level LNC, (C) high-level LNC.
TABLE 1 Statistical information of composition of the cotton leaves.

LNC level total number of samples Range of LNC (g/kg) Mean
(g/kg)

Standard
Deviation

number of samples incal/val/pre set

Low 230 14.99-25.00 21.73 2.37 138/46/46

Medium 601 25.02-34.96 30.09 2.84 360/120/121

High 569 35.02-52.46 40.19 3.60 341/114/114
cal/val/pre set means the calibration set, the validation set and the prediction set, respectively.
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2.4.3 Wavelengths selection
Hyperspectral data contains massive amounts of

information, which also exists information redundancy,

collinearity, and noise that are not conducive to data

processing. To make effective use of data, characteristic

wavelengths extraction is a common strategy. In this study,

RF, WPLS and saliency map were used to extract characteristic

wavelengths. For the RF algorithm, based on the idea of

inversible-jump Markov Monte Carlo, PLS-DA and PLSR are

selected as modeling methods for classification and regression,

respectively. Models are established by constantly updating the

subset of variables according to the defined criteria. The

frequency of each variable selected in the modeling subset is

calculated after reaching the number of iterations (Yun et al.,

2013; Sun et al., 2021). The top 40 wavelengths with the highest

frequency were selected as the characteristic wavelengths. When

using WPLS for wavelength selection, a PLS regression model is

first established, and each variable’s regression coefficient was

calculated. The wavelengths with the larger absolute value of the

regression coefficient at the crest and trough were selected

(Mehmood et al., 2012). Saliency map is a popular method for

computing the contribution of each variable to the model

performance. In this study, for classification tasks, CNNC

model was first established and calculated the saliency based

on the method proposed in Feng’s study (Feng et al., 2021).

Similarly, as for regression tasks, CNNR model was first

established and saliency map was applied following the way in

our previous study (Xiao et al., 2022). The first 40 critical

wavelengths with the highest frequency for both tasks were

selected as the characteristic wavelengths.
Frontiers in Plant Science 05
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2.4.4 Software and model evaluation
For model establishment, PLS-DA and PLSR were performed

in R2019b (The MathWorks, Natick, MA, USA). SVC, and SVR

were conducted in the scikit-learn 0.23.1 (Anaconda, Austin, TX,

USA) using python 3.1. The CNN models were conducted in

MXNet 1.4.0 (MXNetAmazon, Seattle, WA, USA). For feature

selection, RF was performed in R2019b (The MathWorks, Natick,

MA, USA). WPLS was carried out in the Unscrambler X 10.1

(Camo AS, Oslo, Norway). Saliency map was conducted in

MXNet1.4.0 (MXNetAmazon, Seattle, WA, USA).

It is critical to evaluate the model performance with

appropriate indicators. Classification accuracy is used for

assessing the qualitative analysis models. Classification

accuracy is calculated as the ratio of correctly classified

samples to the total number of samples. The closer it is to

100%, the better the model’s performance. The coefficients of

determination (R2) and root mean square error (RMSE) of

calibration, validation, and prediction set were applied to

assess the performance of quantitative analysis models. The

closer R2 of the model is to 1, the closer RMSE is to 0,

indicating that the model performance is more satisfactory.
3 Results

3.1 Spectra features

The spectra of all the cotton leaves and leaves with different

LNC are shown in Figures 4A, B. As shown in Figure 4A,

the spectra of all the leaves present a consistent change tendency.
BA

FIGURE 3

The CNN structure for classification model (A) and regression model (B).
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Four peaks (550, 1650, 1820, and 2225 nm) and three valleys (670,

1432, and 1950 nm) were observed. The analysis of the chemical

bonds whichmay be assigned to the peaks and valleys can be found

in our previous study (Xiao et al., 2022). Figure 4B presents the

spectral curves of cotton leaves with different LNC. It can be seen

that the reflectance of leaves with high LNC in the range of 430 ~

520 nm is slightly higher than that of leaves with low LNC. There is

a slight increase in the reflectance between 520 ~ 610 nm, and the

reflectance of leaves with low LNC becomes higher. After 700 nm,

the reflectance curves increase sharply and form a high reflectivity

plateau between 775 and 1300 nm, between which the reflectance

of leaves with high LNC is larger. The variation trend of the

reflectance with LNC between the range of 1400 ~ 1900 nm and

2000 ~ 2500 nm is the opposite from that in the range of 775-1300

nm. The variation of reflectance in different spectral intervals

makes it possible to identify leaves with different LNC content.

As the results demonstrated in our previous study (Xiao et al.,

2022), the model based on the spectra processed by first derivative

(FD) and standard normal variate transformation (SNV)

demonstrated great generalization ability. Therefore, the method

of FD+SNV was used to preprocess the spectra and the processed

spectra were used for subsequent modelling. The transformed

curves are shown in Figure 4C.
3.2 Wavelengths selection

Hyperspectral data contains amounts of information such as

redundancy, collinearity, background, and other information
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unrelated to LNC detection. The irrelevant information will

significantly increase the burden of data processing, affect the

analysis and extraction of effective data, and directly affect the

model’s performance. Therefore, in this study, RF, WPLS, and

saliency map were used to select the characteristic wavelengths.

The optimal wavelengths selected by different methods for

regression models and classification models are shown in Tables

2 and 3, respectively. It can be seen that the number and the

location of the selected wavelengths on spectral curves varied

from different methods. For the wavelengths selected for the

classification model, compared with full spectra, the number of

variables chosen by RF, WPLS, and saliency map was reduced by

98.07%, 98.02%, and 98.07%, respectively. For the wavelengths

selected for the regression model, the number of variables

selected by RF, WPLS, and saliency map was reduced by

98.07%, 97.73%, and 98.07%, respectively. Obviously,

wavelengths selection significantly reduces data computation

and alleviates the model dependence on high-performance

computing instruments, which will contribute to the

popularization and application of the model.

The position of the selected wavelengths in the spectral curve

is displayed in Figure 5. For specific wavelength selection

methods, the position of characteristic wavelength selected for

classification and regression is largely coincidental. It indicated

that the characteristic wavelengths related to nitrogen detection

selected by wavelength selection method were consistent even in

the tasks with different purposes. The specific number of selected

variables might be related to the calculation protocol of

wavelength selection method. Although there are differences in
B

C

A

FIGURE 4

Spectra of cotton leaves: (A) the spectra of all the cotton leaves, (B) the spectra of leaves with different LNC, (C) the spectra transformed by FD +SNV.
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the number and location of wavelengths selected by RF, WPLS,

and saliency map, some bands were chosen as the optimal

wavelengths for LNC detection by more than one method,

such as the bands around 554 nm, 595 nm, 1179nm, 1490 nm,

1671nm, 1673 nm, 1746 nm, 2046 nm, 2154 nm, 2230 nm, and

2459 nm. These bands are likely to have a strong correlation with

nitrogen detection. Among the wavelengths selected by more

than one algorithm, the bands in visible range was related with

the color of the leaves (Malacara, 2011). The spectral response

near 1490 nm was associated with N-H amide with N-R group,

which can be connected with protein content (Salzer, 2008). The

reflectance around 1673 nm and 1746 nm were associated with

C-H methyl (Salzer, 2008). The bands around 2046 nm was due

to symmetrical NH stretching and amide II (Salzer, 2008).
3.3 Classification models

3.3.1 Classification models using full spectra
In this study, PLS-DA, SVC, and CNNC models were built

using full spectra. The results are shown in Table 4. All the

models obtained decent results, with the accuracy of the

prediction set exceeding 82%. Compared with PLS-DA and

SVC models, the CNNC model achieved a more satisfactory

result. The accuracy of the prediction set was 84.70%, which

illustrates the good performance of CNNC model. The

confusion matrix for all datasets of the CNNC model is

displayed in Figure 6. In three data sets, about 19-28% of leaf

samples with low LNC were easily confused with leaves with

medium LNC. Leaves with high LNC were easily confused with

those with medium LNC, and the proportion of misclassified

leaves was 8%-11%. Overall, leaves with high LNC and leaves
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with low LNC can be accurately separated, as only one or two

leaves with low LNC were misclassified as high LNC, and none

samples with high LNC were distinguished as low LNC.

3.3.2 Classification models using optimal
wavelengths

Table 5 demonstrates the classification results of the PLS-

DA, SVC, and CNNC models based on the optimal wavelengths

selected by RF, WPLS, and saliency map. The overall

performance of the models based on wavelengths selected by

RF was superior to the performance of the models constructed

on the wavelengths selected by WPLS and saliency map, as the

accuracy for the prediction set was slightly higher. For the

models based on the optimal wavelengths selected by RF and

WPLS, the performance of the CNNC model was superior to

that of the PLS-DA and SVC model, accomplishing an accuracy

of 84.34% and 83.27% for the prediction set. Regarding the
TABLE 3 The optimal wavelengths selected by RF, WPLS, and saliency map for classification models.

Method Number Optimal wavelength (nm)

RF 40 594, 595, 776, 1139, 1195, 1232, 1233, 1275, 1471, 1472, 1490, 1533, 1534, 1568, 1597, 1600, 1604, 1615, 1616, 1619, 1620, 1621, 1648, 1663,
1671, 1738, 1741, 1745, 1746, 1798, 1953, 1958, 2021, 2044, 2047, 2103, 2106, 2134, 2135, 2211

WPLS 41 432, 437, 444, 464, 525, 556, 564, 571, 595, 607, 638, 678, 688, 698, 755, 936, 963, 997, 1074, 1176, 1355, 1370, 1387, 1672, 1690, 1711, 1720,
1746, 1785, 1810, 1822, 1876, 1897, 2155, 2273, 2324, 2335, 2355, 2479, 2487, 2490

Saliency
map

40 957, 976, 977, 978, 1002, 1193, 1670, 1671, 1672, 1674, 1680, 1682, 1690, 1700, 1702, 1703, 1704, 1718, 1720, 1722, 1723, 1818, 2131, 2133,
2137, 2147, 2149, 2152, 2155, 2156, 2157, 2160, 2228, 2230, 2231, 2232, 2234, 2235, 2236, 2333
FIGURE 5

The position of the optimal wavelengths selected for
classification and regression models (-C means for classification
tasks, -R means for regression tasks).
TABLE 2 The optimal wavelengths selected by RF, WPLS, and saliency map for regression models.

Method Number Optimal wavelength (nm)

RF 40 594, 602, 776, 1104, 1109, 1139, 1144, 1196, 1232, 1242, 1274, 1472, 1473, 1490, 1516, 1534, 1568, 1597, 1600, 1604, 1615, 1619, 1620, 1663,
1671, 1741, 1742, 1797, 1897, 1953, 1958, 1963, 1989, 2012, 2047, 2103, 2106, 2134, 2135, 2211

WPLS 47 436, 464, 535, 555, 565, 573, 594, 607, 638, 655, 688, 699, 755, 760, 845, 936, 957, 973, 1179, 1357, 1387, 1409, 1490, 1673, 1690, 1711, 1720,
1746, 1773, 1785, 1810, 1822, 1876, 1894, 2046, 2066, 2154, 2188, 2236, 2254, 2273, 2317, 2335, 2355, 2459, 2478, 2488

Saliency
map

40 461, 551, 552, 553, 554, 1177, 1178, 1179, 1670, 1671, 1672, 1673, 1674, 1675, 1676, 1677, 1678, 1679, 1680, 1681, 1682, 1683, 1684, 1699, 1700,
1701, 1702, 1710, 1783, 1784, 1785, 2151, 2152, 2153, 2227, 2228, 2229, 2230, 2458, 2459
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models based on the wavelengths selected by saliency map, SVC

performed better than the PLS-DA and CNNC model, with the

accuracy of the prediction set reaching 79.36%. Although the

CNNC model based on full spectra achieved the best

classification accuracy of 84.70% for the prediction set, the

CNNC model based on the optimal wavelengths chosen by RF

obtained quite similar results. Considering the number of

variables used in modeling, the results of CNNC models

constructed on the optimal wavelengths selected by RF were

reasonably acceptable, which realized comparable performance

with the model based on full spectra with less computation.
3.4 Regression models

3.4.1 Regression models using full spectra
Figure 7 shows the results of different regression models

using full spectra for the nitrogen detection of cotton leaves.

All the models obtained satisfactory performance, with

R2
c (coefficients of determination of calibration set), R2

v

(coefficients of determination of validation set), and R2
p

(coefficients of determination of prediction set) all exceeding

0.75. Compared with PLSR and SVR models, the CNNR model

performed slightly better, achieving the smallest RMSE for the

prediction set. These results indicated that VNIR combined with

the CNNR model was conducive to effectively characterizing the

LNC of cotton leaves.
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3.4.2 Regression models using optimal
wavelengths

Different regression models were constructed based on the

optimal wavelengths for LNC estimation. The results are shown

in Table 6. It can be found that the performance of the model

established using the optimal wavelengths selected by different

methods showed a difference. The models built on the optimal

wavelengths selected byWPLS performed slightly better than the

models based on the optimal wavelengths selected by RF and

saliency map, with higher R2
P and lower RMSEP. In addition, it

can be found that the overall performance of CNNR models was

better than that of PLS and SVR models. All the CNNR model

achieved good results, with R2
c, R

2
v, and R2

p were over 0.779,

0.724, and 0.711, indicating the robustness of the CNNR model

based on optimal wavelengths. Specifically, the CNNR model

based on the wavelengths chosen by WPLS obtained the best

result. The R2
p and RMSEP were 0.766 and 3.389, respectively.

Besides, a comparison was made between the models based on

full spectra and those using the selected optimal wavelengths.

Overall, the models established on the chosen variables

performed less well than those based on full spectra. The

performance of the CNNR model based on optimal

wavelengths selected by WPLS was quite close to that based

on full spectra. To some extent, the reduced computation

compensates for the slight performance deficit, indicating that

the CNNR model equipped with optimal wavelength selection

methods is effective for cotton LNC estimation.

3.4.3 Identification of leaf nitrogen status
based on the predicted LNC

The predicted LNC values of all samples were calculated by

regression model and then classified according to the rules

mentioned in section 2.3. Then, the identification accuracy

was calculated by comparing the categories corresponding to

the predicted and actual values to evaluate the model’s

effectiveness. The results are shown in Table 7. It can be seen

that the identification of cotton samples based on the predicted
TABLE 4 The results of the classification models based on full
spectra.

Model Accuracy

Calibration set Validation set Prediction set

PLS-DA 88.56% 77.14% 82.56%

SVC 85.10% 79.29% 83.99%

CNN 86.17% 82.86% 84.70%
FIGURE 6

Confusion matrix of CNN model using full spectra. (Notes: Number 0, 1, 2 means leaf samples with low-level LNC, medium-level LNC and high-
level LNC, respectively.).
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TABLE 5 The results of the classification models based on optimal wavelengths.

Data type Model Accuracy

Calibration set Validation set Prediction set

RF PLS-DA 80.93% 75.71% 79.00%

SVC 88.08% 80.71% 83.99%

CNN 86.53% 79.64% 84.34%

WPLS PLS-DA 78.90% 77.86% 77.22%

SVC 84.03% 80.36% 82.92%

CNN 82.84% 79.29% 83.27%

Saliency map PLS-DA 74.37% 71.89% 74.29%

SVC 84.51% 78.21% 79.36%

CNN 83.08% 77.50% 77.58%
Frontiers in Plant Science
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FIGURE 7

The results of PLSR, SVR, CNNR models based on full spectra for LNC detection.
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value could achieve good results, similar to that of the results

based on classification models, which in turn reflects the

effectiveness of the regression model.
4 Discussion

Visible and near-infrared spectral techniques combined with

deep learning can be used for nitrogen-level estimation. Some

previous studies addressing the nitrogen-level classification of

plant leaves were discussed and compared with our results with

other spectral imaging works. It must be noted a rough

comparison is not rigorous as the papers relate to different

plants, techniques, and datasets. Pourdarbani et al. (2022)

investigated the feasibility of using hyperspectral imaging to

detect excess nitrogen content in tomato plants. Artificial neural

networks and the particle swarm optimization algorithm were

proposed and achieved a satisfactory classification accuracy of

92.6% for leaves at different nitrogen levels. The leaves in this work
Frontiers in Plant Science 10
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(Pourdarbani et al., 2022) were classified according to different

days of nitrogen application. Sun et al. (2013) used VNIR to

identify the nitrogen level of lettuce leaves. Adaptive boosting was

applied with K nearest neighbor and SVM, which could achieve a

high classification accuracy of 100%. The samples in this study

were divided according to the fertilized nitrogen level. Wang et al.

(2018) employed hyperspectral imaging to discriminate nitrogen

fertilizer levels of the tea plant. The leaves from three nitrogen

fertilizer levels were sampled, and up to 100% accuracy was

achieved by the SVM model based on spectral data and textural

data. The excellent performance might benefit from the texture

information provided by the image. Although the methods

mentioned above achieved good results, the samples in these

studies were classified according to different nitrogen fertilization

levels or different nitrogen fertilization days (Sun et al., 2013;

Wang et al., 2018; Pourdarbani et al., 2022). There is a large

difference between the fertilization of nitrogen and its actual

uptake for the plant. Therefore, the adaptability of the

classification models according to the nitrogen fertilization
TABLE 6 The results of the regression models based on optimal wavelengths.

Data Type Model Calibration set Validation set Prediction set

R2
C RMSEC R2

V RMSEV R2
P RMSEP

RF PLSR 0.76 3.67 0.75 3.95 0.74 3.59

SVR 0.80 3.30 0.73 3.62 0.73 4.12

CNNR 0.82 3.19 0.74 4.02 0.75 3.53

WPLS PLSR 0.78 3.52 0.76 3.93 0.76 3.42

SVR 0.80 3.37 0.76 3.42 0.77 3.83

CNNR 0.79 3.38 0.76 3.91 0.77 3.39

Saliency map PLSR 0.66 4.36 0.60 2.02 0.67 4.03

SVR 0.81 3.27 0.71 3.77 0.72 4.17

CNNR 0.78 3.50 0.72 4.17 0.71 3.76
fron
TABLE 7 The identification results of cotton leaves based on the predicted LNC.

Data type Model Accuracy

Calibration set Validation set Prediction set

Full spectra PLSR 83.81% 80.71% 85.00%

SVR 85.71% 83.21% 79.29%

CNNR 84.17% 78.21% 83.21%

RF PLSR 81.43% 76.79% 83.21%

SVR 85.00% 81.79% 80.00%

CNNR 83.57% 77.50% 81.43%

WPLS PLSR 81.07% 78.57% 81.79%

SVR 82.50% 81.79% 78.21%

CNNR 85.12% 78.93% 81.07%

Saliency map PLSR 75.60% 64.64% 73.93%

SVR 84.40% 78.21% 78.21%

CNNR 81.90% 76.07% 77.14%
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division is greatly limited by the uncertainty of the actual LNC.

Thus, in this study, the chemical analysis for nitrogen

measurement was conducted, and the leaves were divided into

three categories according to the true LNC value of three ranges.

Among similar studies which also measured actual LNC, Nativ

et al. (Rotbart et al., 2013) used VNIR to estimate the nitrogen

concentration in olive leaves. The leaves were divided into three

groups according to the measured nitrogen content, and an

overall accuracy of 83% was obtained. Du et al. (2016) explored

the feasibility of using hyperspectral LiDAR to detect nitrogen

content in rice leaves. The accuracy of 83% was obtained when 32

wavelengths were considered. The results in above studies

(Rotbart et al., 2013) (Du et al., 2016) are slightly lower than the

accuracy of 84.342% achieved by RF-CNN model in this study. It

can be observed that although a perfect classification is not

achieved, the method used in this study has a relatively higher

accuracy of 84.342% in the best case. The performance is quite

close to and even higher than the result obtained by other existing

methods, which demonstrates that it is feasible to classify cotton

leaves with different LNC by VNIR and deep learning algorithm.

Regarding the regression task, in a similar study on the LNC

prediction of cotton leaves, Zhang et al. (2022a) explored the

potential of using spectra of different ranges to estimate nitrogen

content in cotton leaves, and obtained a R2
c = 0.794~ 0.909 and

R2
P = 0.774 ~ 0.899. The prediction results of the best model are

better than those in this research. The possible reason was that the

samples used in this study (Zhang et al., 2022) were acquired at

the flower and boll stage of cotton, which only covered two

growing stages. The leaves used in our study cover the whole

growing stage. Different thicknesses and textures of leaf samples

would also cause spectral differences, which may affect the

accuracy of nitrogen detection. Besides, the spectra in this paper

were collected under two environmental conditions, covering the

laboratory environment and the field environment. The difference

in the measurement environment would also lead to the difference

in the spectra. When the measurement was conducted in the field,

there were more interference factors, which was also the reason for

the relatively less satisfactory results. However, in practice, due to

the diversity of application scenarios and the need for nutrient

monitoring over the whole growth cycle of plants, it is critical to

develop the models presented in this paper to enhance

their applicability.

Besides, deep learning with VNIR performed well in estimating

LNC in plant leaves. Table 6 and Figure 7 show that CNNR

outperformed PLSR and SVR models, achieving a relatively lower

RMSE for the prediction set. The study demonstrated that the

CNN model established for regression tasks could achieve good

results, which previous studies have confirmed. Weng et al. (2022)

combined CNNR and visible and near-infrared reflectance

spectroscopy to determine the behenic acid in edible vegetable

oils, with R2
P = 0.8843 and RMSEP = 0.1182, outperforming PLSR

and SVR model. Wu et al. (2022) applied CNNR and Raman

spectroscopy to identify the amount of olive oil in a corn-olive oil
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blend, with R2
P = 0.9908 and RMSEP = 0.7183. In addition, one-

dimension deep learning regression models based on spectral data

are performed well in soluble solid content estimation in cherry

tomato (Xiang et al., 2022) and oil content prediction of single

maize kernel (Zhang et al., 2022c). Hence, the spectral analysis

model developed by CNN can be expected to provide a simple,

rapid, and accurate analysis of LNC in cotton leaves.
5 Conclusion

In this study, visible and near-infrared spectroscopy

combined with deep learning was used to detect LNC in

cotton leaves qualitatively and quantitatively. RF, WPLS, and

saliency map were used to extract characteristic wavelengths,

classification models (PLS-DA, SVC, CNNC) and regression

models (PLSR, SVR, CNNR) were established based on full

spectra and characteristic wavelengths, respectively. Overall, the

models based on CNN architecture performed better than other

models for both classification and regression tasks. For the

classification task, CNNC model based on full spectra

performed best, with the classification accuracy reaching

84.70%. For the regression task, the performance of CNNR

model developed on full spectra was superior, achieving an

R2
P of 0.77 and an RMSEP of 3.36. The good performance of

visible and near-infrared spectroscopy assisted by deep learning

demonstrated its effectiveness for nitrogen content prediction of

cotton leaves. This approach is helpful for farmers to accurately

identify the nutritional status of cotton plants in the field and

make reasonable fertilization decisions in time.
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Recognition of soybean pods
and yield prediction based on
improved deep learning model

Haotian He, Xiaodan Ma*, Haiou Guan, Feiyi Wang
and Panpan Shen

College of Information and Electrical Engineering, Heilongjiang Bayi Agricultural University, Da
Qing, China
As a leaf homologous organ, soybean pods are an essential factor in determining

yield and quality of the grain. In this study, a recognition method of soybean pods

and estimation of pods weight per plant were proposed based on improved

YOLOv5 model. First, the YOLOv5 model was improved by using the coordinate

attention (CA) module and the regression loss function of boundary box to detect

and accurately count the pod targets on the living plants. Then, the prediction

model was established to reliably estimate the yield of the whole soybean plant

based on back propagation (BP) neural network with the topological structure of

5-120-1. Finally, compared with the traditional YOLOv5 model, the calculation and

parameters of the proposed model were reduced by 17% and 7.6%, respectively.

The results showed that the average precision (AP) value of the improved YOLOv5

model reached 91.7% with detection rate of 24.39 frames per millisecond. The

mean square error (MSE) of the estimation for single pod weight was 0.00865, and

the average coefficients of determination R2 between predicted and actual weight

of a single pod was 0.945. The mean relative error (MRE) of the total weight

estimation for all potted soybean plant was 0.122. The proposed method can

provide technical support for not only the research and development of the pod’s

real-time detection system, but also the intelligent breeding and yield estimation.

KEYWORDS

soybean pods, deep learning model, pod recognition, phenotypic calculation, yield
prediction model
1 Introduction

Soybean is not only one of the five major crops in the world, but also an essential high

protein grain and oil crop (Yu et al., 2022). As a leaf homologous organ (Lu et al., 2022),

soybean pods are an important factor in determining grain yield and quality. Therefore, it is

necessary to detect the pod’s quality of soybean plants in different growth stages and analyze

the phenotypic characters of different varieties of pods. At the same time, it is also one of the

important methods for identification and screening of soybean varieties (Zhao C. et al., 2021).

In recent years, the target detection technology based on deep learning had been applied

to detect the traits of crop ecology and morphology, and had achieved good results in
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measuring and analyzing crop fruit, disease, stem, growth and yield

estimation (Jia et al., 2021; Zhu et al., 2021; Lee and Shin, 2021;

Sharma et al., 2022; Fu et al., 2022a). Kong et al. (2021) proposed a

fruit target detection and positioning method based on Darknet depth

framework YOLOv4, which realized the accurate positioning and

recognition of the different kinds of fruits in the picture. Gao et al.

(2022) used the Yolov4-micro network integrating with the channel

spatial reliability discriminant correlation filter (CSR-DCF) to detect

and count the apple fruit. Mirhaji et al. (2021) selected the yolov4

model to recognize the oranges on the fruit trees in the image,

realizing the estimation of the orange yield in the orchard. Chen

et al. (2022) used a new revolution bottleneck module and added an

SE module on the basis of the original YOLOv5 network model to

identify plant diseases under the natural conditions, accurately. Anam

et al. (2021) trained the convolutional neural network (CNN) to

segment the affected area of rice leaf disease based on the local

threshold segmentation. Mathew and Mahesh (2022) used YOLOv5

network model to classify the acquired pictures of pepper leaf

diseases, and realized the effective detection of bacterial spot disease

on pepper leaves in the farm. Liu H. et al. (2020) built a CNN model

with multi-scale hierarchical features based on the deep learning

framework Tensor Flow, and realized the accurate identification of

corn seedling stems. Ma et al. (2021) introduced the image

augmentation technology in the original Mask R-CNN network

layer to expand the image samples, and proposed an effective

segmentation method of rice stem impurities based on improved

Mask R-CNN. Fu et al. (2022b) used the YOLOv4 network model to

realize the rapid real-time detection of banana bunches and stems in

the natural environment. Zhou et al. (2021) used UAV images and

convolution neural network to estimate the yield of soybean breeding

varieties under drought stress. Yang et al. (2022) proposed a pod

length and width calculation method based on Mask R-CNN network

structure, which realized rapid segmentation of pods from pictures

and effective calculation of the pod’s shape traits. Uzal et al. (2018)

estimated the number of seeds per pod in plant breeding based on

customized feature extraction (FE), support vector machine (SVM)

and convolutional neural network (CNN). Yan et al. (2020) used five

kinds of deep learning network models to identify one pod, two pods,

three pods and four pods of mature soybean in the picture, accurately.

Guo et al. (2021) improved the yolov4 target detection algorithm by

integrating the K-means clustering algorithm and the attention

mechanism module, and realized the detection of the number of

pods per plant and the number of seeds in pods. Li et al. (2021)

proposed a set of SPM-IS soybean phenotype measurement

framework composed of the characteristic pyramid network,

principal component analysis algorithm and instance segmentation

network, which realized the effective measurement of the pod length,

pod width, node length, main stem length, grain length, grain width,

number of pods, number of nodes and number of nodes. Ning et al.

(2021) proposed a phenotypic information extraction method for the

soybean plant based on IM-SSD+ACO algorithm, which realized the

extraction of soybean phenotypic traits including the number of pods,

plant height, number of branches, main stem and plant type,

effectively. Lu et al. (2022) proposed a method based on the

YOLOv3 algorithm to predict soybean yield according to the

number of pods and leaves. Zhang et al. (2021) constructed a

soybean yield prediction model based on skew parameters using the
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color of soybean canopy leaves at different growth stages as

input values.

At present, the recognition and counting of soybean pods as well

as the detection of morphological and physiological phenotypes are

not systematic, and there is a lack of methods for the recognition of

soybean pods under natural growth and the estimation of pods weight

per plant. In order to overcome the shortcomings of traditional

artificial pods counting and yield estimation, such as time-

consuming, error-prone and subjective factors, in this paper, a pod

counting method based on improved YOLOv5 model was proposed.

And then the pod phenotypic traits of pods were calculated including

length, width, area, chord length and convex arc length. On this basis,

the prediction model was established to reliably estimate the yield of

the whole soybean plant based on Back Propagation (BP) neural

network with the topological structure of 5-120-1.
2 Data acquisition and image
preprocessing

2.1 Experimental materials

The cultivation of soybean plants and the acquisition of pods

information were carried out in Heilongjiang Bayi Agricultural

University of China. Soybean cultivation experiment was based on

the agronomic background of exploring the changes in the ecological

and morphological growth process of various organs of soybean

under drought stress. The objective of this study was to establish a

yield estimation method based on the number of soybean pods. The

experiment was conducive to accurate control of soil, fertilizer, water

and other environmental factors, reflecting the differences of plant

characteristics under different growth stages. The cultivation

experiment was carried out under the outdoor condition of 20~34°

C, and the soybean varieties Suinong 26 and Heihe 49 were selected.

During soybean planting, the medium sized soil block was paved on

the bottom of the basin made of Polyvinyl chloride (PVC) with a

diameter of 0.3m and a height of 0.18m, and then the screened non

saline alkali fine soil was loaded until the basin weight was 5kg. After

the compound fertilizer was paved evenly, the fine soil shall be put

into the basin to 8.32kg. A total of 60 pots of two varieties were

planted, with 6 holes in each pot and 2 soybeans in each hole. At the

first trifoliolate stage (V1), 24 pots of single soybean and 36 pots of

multi soybean were reserved.
2.2 Construction of image acquisition
system

A soybean plants image acquisition system based on digital camera

was constructed to dynamically acquire the digital image data of soybean

plants in different growth stages. The growth stages of soybean studied

included the beginning seed stage (R5), the full seed stage (R6), the

beginning maturity stage (R7) and the full maturity stage (R8). The

soybean plant image acquisition system device was shown in Figure 1.

The acquisition system was composed of a digital camera, a lifting tripod

support and a lifting platform. The acquisition platform used Canon
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700D camera and Canon IS USM zoom lens, and the resolution of the

captured image was 5184 pixels × 3456 pixels. The vertical distance H1

between the camera and the ground was 80 cm, and the horizontal

distance H2 between the camera and the soybean plant was always kept

at 100 cm. The vertical distance H4 was adjusted between the lifting

platform and the ground according to the height of the soybean plant, so

that the vertical distance H3 between the soybean plant and the ground
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was kept at 95 cm. In order to make the acquired the images of soybean

plants in the natural growth state, the windless and sunny weather

conditions were selected to complete the data acquisition.
2.3 Data acquisition method

For the integrity of experimental data, soybean plants of two

var ie t i es in di fferent growth stages were acquired as

experimental samples from 2020 to 2022. In order to avoid the

overfitting phenomenon caused by the insufficient diversity of

sample data, all soybean potted plants were rotated 360 ° for

three times with the marked point as the starting position, and

each rotation angle was 120 °. In this experiment, soybeans were

collected from R5. According to the growth status, the data were

collected every 4-10 days. A total of 863 digital images of soybean

plants in different growth stages were acquired, including 216 at

R5, 216 at R6, 216 at R7 and 215 at R8. Figure 2 showed the
FIGURE 1

Schematic diagram of acquisition device for soybean plants images.
FIGURE 2

Soybean plants’ images of two varieties in different growth stages (A) Single soybean plant of Suinong 26 ; (B) Multi soybean plants of Suinong 26; (C)
Single soybean plant of Heihe 49; (D) Multi soybean plants of Heihe 49.
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images of soybean plants of two variet ies in different

growth stages.
2.4 Data annotations

In order to ensure the accuracy of the data and effectively train the

detection model, it was necessary to manually label the data before

data training. In this study, the LabelImg, an image annotation tool,

was used to locate and mark the pods on 863 soybean plants images

acquired in different growth stages. When labeling, the smallest

circumscribed rectangle of the pods was taken as the real box, so as

to reduce the useless pixels on the background in the box. The marked

results were stored in .xml file, which contained information such as

the position of the pods, the size of the anchor boxes and the label of

the pods in the image. A total of 21650 pods were marked on 863

pictures in different growth stages. Figure 3 showed the labeling of

single and multiple soybean pods of two varieties in different

growth stages.
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2.5 Data augmentation and dataset
partitioning

In this paper, according to the distribution characteristics of pods

in soybean plants, the raw images were rotated, and then Gaussian

noise was added and brightness was changed without changing the

original data characteristics, so as to improve the detection accuracy

and realize the robustness of the model.

After data augmentation of the original data, due to the impact of

the quality of the raw image, some picture labels might exceed the

pod’s calibration range or suffer serious quality loss. Therefore, it was

necessary to manually select pictures. Finally, 322 poor quality

pictures were removed, and 3130 pictures were obtained, including

863 raw images and 2267 enhanced images. In this paper, the raw

images and the enhanced images were combined into a data set,

including images and labels, a total of 6260 files. The images in all data

sets were divided into training set, testing set and validation set

according to ratio of 7:2:1. The specific distribution was shown

in Table 1.
FIGURE 3

Soybean pod’s marking images of two varieties in different growth stages (A) Single soybean plant of Suinong 26; (B) Multi soybean plants of Suinong 26;
(C) Single soybean plant of Heihe 49; (D) Multi soybean plants of Heihe 49.
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3 Principle and method

3.1 Overall framework of pods’ recognition
and yield prediction methods

First, the soybean plants data in different growth stages (R5~R8)

were dynamically obtained by using the acquisition system of soybean

plants and data augmentation and dataset expansion were carried out

by using image processing algorithms, including random rotation,

Gaussian filtering and adjusting image primary color. On this basis,

the YOLOv5 model was improved by embedding CA module and

using EIOU Loss instead of GIOU Loss as the regression loss function

based on boundary box, so as to realize the recognition and counting

of soybean pods in different growth stages. Then, the pod’s length,

width, area, chord length and convex arc length were calculated by

using the minimum circumscribed rectangle method, the maximum

inscribed circle method, the regional pixel counting and template

calibration method, and the combination of contour convex hull and

endpoint detection method. The validity of the pod’s phenotype

calculation method was verified by establishing the linear

correlation between measured and calculated values. Finally, the

weight estimation model of single pod was constructed based on BP

neural network with topological structure of 5-120-1. The average

weight of a single pod of two varieties was estimated. Combined with

the number of pods per plant identified by the improved YOLOv5

algorithm, the weight of the whole plants pods was estimated. Figure 4

showed the overall framework of the soybean pod’s recognition and

estimation of all pods weight per plant.
3.2 Recognition method of the pod based
on improved YOLOv5 algorithm

3.2.1 YOLOv5 network model
YOLOv5 network model was mainly divided into four parts: input

end, backbone network, characteristic network architecture and

output end (Gu et al., 2022). The input end was mainly used to

preprocess the image. Mosaic data augmentation operation (Zhao B.

et al., 2021), adaptive anchor box calculation (Gao et al., 2019) and

adaptive image scaling were used to scale the input image to the input

size of the network, and normalization was performed at the same

time. The backbone network structure mainly included the Focus

module that sliced the images, the Bottleneck Cross Stage Partial

(CSP) module and the Spatial Pyramid Pooling (SPP) module were

used to fix the image size. Feature network architecture mainly solved

the problem of multi-scale detection in target detection. SPP module

and FPN+PAN module located in the middle of backbone network
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and input terminal were used to further improve the diversity and

robustness of target features. The output included a classification

branch and a regression branch, which were mainly used to output

the target recognition results.

3.2.2 Embedding CA attention mechanism
Attention mechanism mimics biological vision and mainly scans

the whole image quickly to screen out the regions of interest, and

invests more attention resources to suppress other useless

information and improves the efficiency and accuracy of visual

information processing (Qi et al., 2022). Because the soybean pods

target was small and easy to be disturbed by background factors,

YOLOv5 model was easy to lose the characteristic information of

small targets during convolution sampling, resulting in missed

detection and false detection. Therefore, the CA module (Xu X.

et al., 2022) was embedded in YOLOv5 model. Through the

channel attention module and spatial attention module, the weight

of small targets in the whole feature map could be increased

effectively. The effective extraction of the target pod’s feature

information was realized, and the accuracy of soybean pods’

recognition was improved in different growth stages. Figure 5

showed the structure of CA module.

First, the global pooling operation was performed in Channel

Attention Module on the spatial dimension of the input characteristic

graph with the size of C×H×W. The size of feature map after

operation was C×H×1. The eigenvalues obtained by the average

pooling operation mainly described the background information of

the image, and the eigenvalues obtained by the maximum pooling

operation mainly described the texture information of the image.

Then, the pooled results were sent to the two shared parameters of

neural networks respectively. After spliced in the channel dimensions,

the two groups of pooled output results were multiplied and added

separately, and the weight range was constrained to the (0,1) interval

with the help of the activation function. Finally, the input feature map

was weighted to obtain the channel attention feature map, so as to

enhance the expression of pod information, suppress the expression

of useless background information, and improve the recognition

effect. The output channel representation of the height and width of

the target box was as follows:

Zh
c (h) =

1
w o

0<i≤w
Xc(h, i) (1)

Zw
c (w) =

1
H o

0<i≤H
Xc(j,w) (2)

Where, Zh
c represented the output of the c channel with a height of

h, and Zw
c represented the output of the c channel with a width of w.
TABLE 1 Distribution of soybean plants in each data set in different growth stages.

Data set Total number of images
The number of pictures in different growth stages

R5 R6 R7 R8

Training set 2191 550 549 549 543

Testing set 626 157 159 156 154

Validation set 313 83 78 77 75
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Equation (1) and (2) aggregated features along two spatial directions,

returning a pair of directional perceptual attention features Zh
c and Z

w
c

, and generated a pair of feature maps at the same time, making the

target location to be detected more accurate.

Different from the channel attention module, the spatial attention

module extracted features through the spatial dimension information

of the feature map. First, the average pooling and maximum pooling

operations were performed in the spatial attention module on the

channel dimension for the input characteristic graph of size C×H×W.

The size of the two feature maps after operation was 1, which reduced

the increase of parameters. The two one-dimensional feature maps

were spliced into a two-dimensional feature map based on channel

dimensions. Then, 7×7 convolution layers were used to extract the

mask map that described the location information of the feature space

in the feature map. After constrained by the activation function, the

mask map was applied to the input feature map to obtain the spatial

attention feature map enhanced according to the spatial location

information, so as to improve the expression of pod shape, size, color,

texture and other features. The specific Equation was as follows:
FIGURE 4

Overall framework of the soybean pod’s recognition and yield estimation.
FIGURE 5

Structure of the CA module.
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f = d (F1( zh, zw
h i

)) (3)

gh = s (Fh(f
h)) (4)

gw = s (Fw(f
w)) (5)

yc(i, j) = xc(i, j)� gwc (j) (6)

Where, F1 represented 1*1 convolution, f represented the

intermediate feature image obtained through the down sampling

operation d, and two separate tensors fh and fw could be obtained

after segmentation along the spatial dimension. Then, gh and gw with

the same channel number as the input image X could be obtained by

1*1 convolution Fh, Fw and s transformation. After expansion, they

were added to the input as attention weights, and y represented the

final output image.

The CSP module before and after embedded the attention

mechanism was shown in Figure 6. The CA module decomposed

the channel attention into two one-dimensional features along

different spatial directions for coding, which could not only capture

the long-range dependence along one spatial direction, but also saved

the accurate location information along the other direction, while

expanding the global receptive field of the network. This method

could not only locate the pod’s target more accurately, but also saved a

lot of computing overhead.

3.2.3 Improved border regression loss function
Loss function was one of the important criteria to judge whether a

model was applicable to the current data set. This function was used

to characterize the fitting degree between the predicted value and the

real value. When the loss function curve gradually converged, the

model had achieved a relatively ideal prediction effect (Lv and Lu,

2021). Yolov5 used GIOU Loss as the loss function of the bounding
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box (Wang H. et al., 2022), and used binary cross entropy and Logits

loss function to calculate the loss of class probability and target score.

The calculation Equations were as follows:

Losscoord =o
S2

i=0
o
B

j=0
1objij (1 − GIOUij) (7)

GIOUij =
J
U

−
A − U
A

(8)

U = bwi · bhi + wi · hi − J (9)

IOU =
A ∩ B
A ∪ B

(10)

Where, Losscoord represented the loss function of the target location,

S represented the grid of S ×S each containing the prediction results, B

represented two prediction boxes, 1objij represented the target contained

in the prior box j generated by cell i, J represented the intersection area

of the border,U represented the union area of the border,A represented

the minimum circumscribed rectangular area of the border, wi and hi
represented the length and width of the prediction box, respectively,

IOU represented the ratio of intersection and union between prediction

frame and real frame. When the prediction frame coincided with the

real frame, the maximumGIOU was 1. On the contrary, as the distance

between the prediction frame and the real frame increased, GIOU

tended to be -1, that was, the farther the distance between the

prediction frame and the real frame was, the greater the loss value

was. When the distance between the prediction frame and the real

frame was inclusive or the width and height were aligned, and the

difference set was 0, the loss function could not be derived and could

not converge, which was easy to cause false detection and missed

detection for the pods covered by leaves or stems. Therefore, in this

study, the EIOU Loss frame regression loss function was used instead of
A

B

FIGURE 6

Model comparison before and after the CA module was embedded in the CSP structure (A) Before improvement; (B) After improvement.
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the GIOU Loss frame loss function as the deviation index of the

prediction frame deviation (Fan et al., 2022). EIOU Loss function

included three parts: overlap loss, center distance loss and width height

loss. The width height loss directly minimized the difference between

the width and height of the target box and the anchor box. EIOU Loss

was shown in Equation (11):

LEIOU = LIOU + Lasp

= 1 − IOU +
r2(b, bgt)

c2
+
r2(w,wgt)

c2w
+
r2(h, hgt)

c2h
(11)

Where, b was the center point of the prediction frame, bgt was the

center point of the real frame, r was the Euclidean distance between

the two center points, c was the diagonal distance of the smallest

closure area that can contain both the prediction frame and the real

frame, cw and ch were the width and height of the minimum

circumscribed rectangle box covering the prediction frame,

respectively, w and wgt represented the width of the prediction box

and the real box, respectively.

In the boundary box regression loss function, EIOU Loss avoided

the non- convergence when the real box and the prediction box were

in the inclusion relationship, and could improve the recognition

accuracy of pods in the case of occlusion effectively. Its width and

height loss made the convergence speed faster and the accuracy

higher, and its performance was better than that of the traditional

YOLOv5 boundary loss function.
3.3 Estimation of soybean yield based on
multi-dimensional pod’s phenotypic traits

3.3.1 Calculation method of pod’s phenotypic
traits

The yield of soybean crops was closely related to the number of

pods per plant, the phenotypic characters of pods and the degree of
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plumpness of pods. Therefore, it was of great significance to quickly

and accurately obtain the pod’s physiological and ecological

indicators that determined the grain yield and quality for

cultivating soybean varieties with high yield and quality traits and

estimating the yield. In this paper, when the soybean plant grew to full

maturity, all the pods on the mature soybean plants of the two

varieties were picked, and the phenotypic traits including length,

width, area, chord length and arc length were automatically calculated

(He et al., 2022). Figure 7 showed pods picked from selected soybean

plants randomly.

In order to calculate the phenotypic traits of soybean pods more

accurately, it was necessary to carry out geometric distortion

correction, Gaussian filter noise reduction (Wang G. et al., 2022),

Canny edge detection operator (Luo et al., 2021) and morphological

close operation to extract the pod’s contour and other preprocessing

on the pod’s images. It provided a reliable data base for the calculation

of phenotypic traits of soybean pods. Figure 8 was the schematic

diagram for calculating the phenotypic traits of a single pod.
3.3.1.1 (1) Calculation of the pod length

In this study, the minimum circumscribed rectangle algorithm

was used to determine the circumscribed rectangle of a single pod.

The length of the long side of the circumscribed rectangle was taken

as the length of the pods. The calculation ratio of the pods in the

image was defined by the black marker blocks with length and width

of two centimeters, and the actual size of the pods in the image was

calculated by combining the Euclidean distance Equation. The

specific definitions were as follows:

U =
Ka

Kb
(12)

D =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x2 − x1)

2 + (y2 − y1)
2

q
(13)
FIGURE 7

All mature soybean pods picked (A), (C) Pods on multiple soybean plants; (B), (D) Pods on single soybean plant.
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Where, U represented the calculation ratio of the object size, Ka

represented the pixel length of the object, and Kb represented the real

length of the object. D represented the Euclidean distance between

points (x1,y1) and (x2,y2). In Figure 8, A represented the

decomposition diagram of pod length calculation, a1 represented

the schematic diagram of the minimum circumscribed rectangle of

the pods, I represented the calculation of the vertex and the center

points of the upper and lower sides of the rectangle, a2 represented the

drawing of the endpoint and midpoint of the rectangle, II represented

the calculation of the Euclidean distance between the upper and lower

center points of the rectangle, and a3 represented the drawn centerline

of the rectangle.

3.3.1.2 (2) Calculation of the pod width

According to the definition standard of pod width in the

specification for the description of soybean germplasm resources,

the widest part of the pods was taken as the pod width. Therefore, the

maximum inscribed circle algorithm (Huang et al., 2021) was used to

determine the maximum width of the pods by finding and calculating

the maximum inscribed circle diameter of the pods contour. The

Equations of maximum inscribed circle center and radius were as

follows:

S = oixi + xi−1)(yi − yi−1)

2
(14)

m = oi(xi + xi−1)
2(yi − yi−1)

S
(15)

n = oi(yi + yi−1)
2(xi − xi−1)

S
(16)
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D = 2R = 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xi −m)2 + (yi − n)2

q
(17)

Where, s was the area of the closed boundary contour, xi was the

abscissa on the closed boundary contour, yi was the ordinate of the

closed boundary contour, m was the abscissa of the center of the

circle, n was the ordinate of the center of the circle, R was the radius of

the maximum inscribed circle of the pods, and D was the maximum

width of the pods. In Figure 8, B represented the schematic diagram of

pod width calculation, in which III represented the common wrong

calculation method of pod width, that was, it was considered that the

width of the minimum circumscribed rectangle of the pods was the

pod’s width, and b1 was its schematic diagram. IV represented the

correct calculation method of pod width used in this paper, b2 was the

raw diagram of pod, and b3 was the schematic diagram of the

maximum width of pod.

3.3.1.3 (3) Calculation of the pod area

In this study, the extracted pod’s contour was expanded and filled

smoothly on the premise of clear image boundary. Then the pod area

was calculated by combining the regional pixel counting and the

template calibration method. Finally, the actual area of the standard

reference block in the image was used to calculate the area of the pods.

The calculation Equation was as follows:

Sd =
Wd � Sk

Wk
(18)

Where, Sd represented the actual area of the pods,Wd represented

the number of pixels of the pods, Sk represented the actual area of the

standard marker block, and Wk represented the number of pixels of

the standard marker block. In Figure 8C, V represented the
FIGURE 8

Steps for calculating phenotypic traits of a single pod (A) Calculation of pod length; (B) Calculation of the pod width; (C) Calculation of pod area, chord
length and arc length.
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calculation of pod area, c1 represented the calculation diagram of pod

area, and c2 represented the raw diagram of pod.

3.3.1.4 (4) Calculation of the chord and arc length

At present, the ratio of chord to arc was an index used by some

breeders to describe the bending degree of the pods. The greater the

ratio of chord to arc, the straighter the pod’s shape, the smaller the

ratio, the more curved the pods. In this paper, first, the perimeter of

the soybean pods contour was counted, and the polygon contour of

the soybean pods was obtained by using the convex hull algorithm

(Liu et al., 2018). Then, starting from the middle point on the left side

of the contour, the vector angles of the two points close to the contour

were calculated, and the two angles with the largest difference were

obtained by dislocation subtraction. The two corresponding points

were the two endpoints of the pod contour. In combination with

Equation (13), the Euclidean distance between the two endpoints was

the pod’s chord length. By making a difference between the perimeter

of the external polygon of the pods and the chord length of the pods

contour, the convex arc length of the pods was obtained. The vector

angles of the two adjacent points of the pods were as follows:

cosa =
(x1y1 + x2y2)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x21 + y21)(x

2
2 + y22)

p (19)

Where, cosa was the cosine of the tangent vector of the two

adjacent points of the pods contour, x1 and x2 were the abscissa of the

two adjacent points of the pods contour respectively, y1 and y2 were

the ordinates of the two adjacent points of the pods contour

respectively. Figure 8 VI showed the calculation of pod chord

length and arc length, and c3 was its schematic diagram, a, b
represented the included angle between the two ends of the pod

and the adjacent points.

3.3.2 Estimation method of soybean yield
Because the soybean yield had the characteristics of randomness and

nonlinearity, the accurate mathematical model could not predict the

soybean yield, effectively. Therefore, in this study, a three-layer nonlinear

BP neural network (Jiang et al., 2021) system was used to predict soybean

yield. Due to the strong self-adaptive resolution performance and fault

tolerance, BP network could approximate continuous nonlinear

functions with arbitrary accuracy and had significant local
Frontiers in Plant Science 1043
approximation characteristics (Guan et al., 2013; Roopali and Toran,

2020), which provided a technical guarantee for accurate and efficient

prediction of soybean yield. The pod’s phenotypic traits were the

dimension of the feature space, which determined the number of

nodes in the input layer. In this study, five traits including pod length,

pod width, pod area, chord length and arc length were selected as the

input values of the neural network, so the number of nodes in the

network input layer was 5. The number of nodes in the output layer was

determined according to the dimension of the mode space. Because the

prediction result of pod weight was a specific value, the number of output

nodes was 1. According to the theorem Kolmogorov (Liu M. et al., 2020)

and practical experience, the number of neuron nodes in the hidden layer

was determined to 120. Finally, the BP network topology for predicting

the weight of the pod was 5-120-1 type, and each layer was fully

interconnected (Figure 9). In order to reduce the training time and

complete the training task efficiently, the iteration accuracy of training

target was defined as 0.01, which was the termination condition of model

training. The initial learning rate was set to 0.01 and gradually increased.

The optimal learning rate was finally determined to 0.8 based on the

value of training cost.
4 Results and analysis

4.1 Analysis of pods recognition results

4.1.1 Training of pods recognition model
4.1.1.1 (1) Setting environment parameters

This study used pytorch 1.9.0 machine learning framework, and

the graphics processing unit (GPU) used NVIDIA GeForce GTX 1050

Ti (4096MB). Soybean pods recognition models in different growth

stages were trained using YOLOv5 and improved YOLOv5 models on

Windows 10 64-bit operating system. The input size of the images had

a great impact on the performance of the detection model. Because a

feature map ten times smaller than the raw images will be generated in

the basic network, the details of smaller pods were not easy to capture.

Thus, the input size of the image was adjusted to 640 × 640 (pixels) for

training, which can improve the robustness of the detection model to

the object size to a certain extent. In addition, the initial learning rate

of the model, the size of the super parameter and the attenuation
FIGURE 9

Structure diagram of neural network for estimation of single pod weight.
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coefficient as well as the training round would affect the convergence

of the loss function, thus affecting the accuracy of the model training.

According to the parameter setting method proposed in the literature

(Li. et al., 2022; Qiu et al., 2022), the initial learning rate was 0.001, the

cosine annealing super parameter was 0.12, and the attenuation

coefficient was 0.00036. A total of 300 epochs were trained.

4.1.1.2 (2) Model training

Loss function was one of the important criteria to measure the

prediction effect of a model on the current data set. It mainly mapped

the values of relevant random variables to non-negative real numbers to

represent the gap between the prediction results and the measured data.

When the loss function curve converged gradually, the model had

achieved an ideal prediction effect. The comparison of the loss function

changed between the training set and the validation set of the YOLOv5

model and the improved YOLOv5 model was shown in Figure 10.

Figure 10 showed that during the pod’s recognition in the training

set and the validation set, the early loss function of the model

decreased rapidly. With the increase of the number of training

rounds, the loss curve gradually decreased and tended to be stable.

The loss value of the first 60 training groups in the training set

decreased rapidly. When the epoch reached about 140, the loss value

of the algorithm decreased to be stable, and the loss function value

stabilized at about 0.02. The loss value of the first 40 training groups

in the validation set decreased rapidly. When the epoch reached about

60, the loss value of the algorithm decreased to be stable, and the

stable value of the loss function was also about 0.02. It could also be

seen from the image that the loss curve of the improved YOLOv5

model of the training set and the validation set was always below the

YOLOv5 model. It also showed that the loss value of the improved

YOLOv5 model was always smaller than that of the YOLOv5 model,

that was, the positioning accuracy was higher, the convergence speed

was faster, and the prediction effect was better when identifying

soybean pods in different growth stages.

4.1.2 Prediction effect analysis of the recognition
model
4.1.2.1 (1) Evaluation of recognition effect of pods before
and after improvement

The prediction result of the model was the most intuitive way to

evaluate the quality of a model. The pods in the testing set were
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recognized using the original model and the improved yolov5 model,

which were shown in Figure 11.

Figure 11showed that for different varieties, Heihe 49 had better

overall detection effect on soybean pod’s than Suinong 26. For the

same variety, the recognition effect of single plant pods was better

than that of multiple plants pods. For example, A-R5 and B-R5, there

were 23 pods in A-R5, 22 of which were recognized correctly, with a

recognition accuracy rate of 96%. There were 23 pods in B-R5, 20 of

which were identified correctly, with a recognition accuracy rate of

87%. For different stages of the same variety, the recognition

performance of the model was gradually enhanced with the

maturity of soybean pods. In D-R7 and D-R8, there were 17 pods

in D-R7, 14 of which were correctly recognized, with an accuracy rate

of 82.4%. There were 20 pods in D-R8, 17 of which were correctly

recognized, with an accuracy rate of 85%. This was because the

learning performance of the model was affected by plants growth,

leaves shading and pod’s maturity. The denser the leaves of soybean

plants, the more serious the shielding between stems and pods, pods

and pods, and between leaves and pods, and the worse the recognition

effect of the model will be. As the pods mature, the greater the color

contrast between pods and plant leaves and stems, the better the

recognition effect of the model will be.

The prediction effect of different models was analyzed by

comparing the number of Ture Positive (TP) and False Positive

(FP). The calculation method for the number of TP and FP was to

first obtain the real box and the prediction box after recognition of the

pods. The prediction box contained the detection category,

confidence score and coordinate information of the detection box.

If the retention confidence score of the prediction box was greater

than 0.3, the maximum matching IOU value was calculated between

the prediction box and the real box. If the IOU value was greater than

0.5 and the two boxes were matched for the first time, the result was

recorded as TP, otherwise it was recorded as FP. The more the

number of TP, the higher the detection accuracy of the model, and the

stronger the performance will become. The more the number of FP,

the lower the detection accuracy of the model, and the worse the

performance will become. The number of TP and FP of the original

model and the improved YOLOv5 model in the test set was counted,

which was shown in Table 2.

Table 2 showed that, for the number of TP, the improved

YOLOv5 model had significantly more TP detected for soybean
A B

FIGURE 10

Comparison of loss function of model before and after improvement (A) Training set; (B) Validation set.
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pods in different growth stages than the YOLOv5 model. The

number of TP at R5-R8 was 87, 126, 22 and 7 more than that in

the original model, respectively. For the number of FP, the number

of FP detected by the improved YOLOv5 model for soybean pods in

different growth stages was significantly less than that of the

YOLOv5 model, in which the maximum difference in the number

of FP in R5 was 168, and the minimum difference in the number of

FP in R8 was 21. It could also be seen from the table that the
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number of FP was the largest in R5. With the growth of soybean

plants, the number of FP detected by the model was gradually

decreasing. The main reason for this situation was that the soybean

plants had dense leaves at R5 and R6 stages, and the leaves and

stems had a serious shelter against the pods, and the morphology of

some new leaves was very similar to that of the pods, resulting in

the error of model recognition. At R7 and R8 stages of soybean

plants, with the falling off of leaves and stems, the blocking
FIGURE 11

Recognition results of pods by using improved YOLOv5 model. (A) Single soybean plant of Suinong 26; (B) Multi soybean plants of Suinong 26; (C) Single
soybean plant of Heihe 49; (D) Multi soybean plants of Heihe 49.
TABLE 2 Comparison of TP and FP between YOLOv5 model and improved YOLOv5model.

Model TP/FP
Growth stage of soybean plants

R5 R6 R7 R8

YOLOv5 TP 1708 1725 1707 1697

FP 504 378 336 227

Improved YOLOv5 TP 1795 1851 1729 1704

FP 336 297 266 206
fronti
ersin.org

https://doi.org/10.3389/fpls.2022.1096619
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


He et al. 10.3389/fpls.2022.1096619
phenomenon gradually disappeared, so the error rate of pod’s

recognition decreased.

In order to more intuitively compare the difference between the

detection results before and after the model improvement, a pot of

soybeans in each of the four stages identified and output by YOLOv5

and the improved YOLOv5 algorithm was randomly selected in the

testing set. The difference between the recognition results of the two

models was shown in Figure 12.
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Figure 12 showed that all the pods not detected in the YOLOv5

model of soybean plants at R5 and R8 stages were recognized in the

improved YOLOv5 model. At R6 stage, 8 pods were not recognized in

the YOLOv5 model and 6 more were recognized in the improved

YOLOv5 model, but 2 pods were still not recognized because the

leaves were too dense and covered by the stems. At R7 stage, 4 pods

were not recognized in the YOLOv5 model, 3 more were recognized

in the improved YOLOv5 model, and 1 pod was not recognized
FIGURE 12

Comparison of partial recognition results before and after model improvement (A) YOLOv5 model; (B) Improved YOLOv5 model.
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because its shape and color were very similar to soybean leaves. For

the situation that the YOLOv5 model had missed detection, the

improved YOLOv5 model had been significantly improved. This

result showed that the improvement of YOLOv5 model in this

study was effective for the recognition of soybean pods in different

growth stages.

4.1.2.2 (2) P-R curve analysis of model prediction before
and after improvement

The precision (P), recall (R) and P-R curve (Wang Z. et al., 2022)

of pods recognition were compared between YOLOv5 and the

improved YOLOv5 model on the testing set (Figure 13). The

precision and recall were a pair of contradictory variables, the

higher the precision, the lower the recall. In order to balance the

relationship between the two indexes, was the area under the P-R

curve was used as the average precision value to evaluate the

performance of the model. The specific Equation was as follows:

P =
TP

TP + FP
� 100% (20)

R =
TP

TP + FN
� 100% (21)

Where, P and R represented the precision rate and recall rate

respectively, TP(True Positive) represented that the positive sample

was judged as a positive sample, FP(False Positive) represented that

the negative sample was judged as a positive sample, and FN(False
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Negative) represented that the positive sample was judged as a

negative sample. The average precision AP value of pods

recognition could be obtained by calculating the area of the lower

part in the P-R curve coordinate system. Since this article only

contained one class of identification targets, the AP value was the

mAP value of all classes. The Equation was as follows:

AP =
Z 1

0
PRds (22)

mAP =
1
No

N
m=1APm (23)

Where, AP represented the area below the P-R curve, N

represented the total number of categories. mAP was the result of

averaging the AP values of all prediction categories. The larger the

mAP value was, the better the prediction effect of the model was.

Figure 13A showed that the precision rate of the model before and

after the improvement was relatively close, and both of them began to

converge in about 80 groups. However, it was impossible to judge the

prediction effect of a model only from the precision rate. In

Figure 13B, the models before and after the improvement began to

converge in about 60 groups, but the recall of the improved YOLOv5

model was always greater than that of the YOLOv5 model.

Figurse 13C, D showed that, in the YOLOv5 model, when the recall

rate was less than 0.45, the precision rate remained at 1. In the

improved YOLOv5 model, when the recall rate was less than 0.55, the

precision rate remained at 1. For the YOLOv5 model, the inflection
A B

DC

FIGURE 13

Comparison of P-R curve between YOLOv5 model and improved YOLOv5 model in the testing set. (A) Precision; (B) Recall; (C) P-R curve of the
YOLOv5; (D) P-R curve of the Improved YOLOv5.
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point of P-R curve appears before the recall rate was 0.8, while for the

improved YOLOv5 model, the inflection point of P-R curve appears

after the recall rate was 0.8, and the P-R curve was smoother. This was

because when the recall rate became larger, the advantage of the

model with CA attention mechanism module became obvious and the

learning ability became stronger. The original model thought that the

contribution of each region in the images was evenly distributed, but

in the actual detection process, affected by the size, color and

occlusion of the pods, the model had different and complex regions

of interest for different images. The model after embedding the

attention mechanism focused on the information useful for the

detection category, and the use of EIOU Loss frame regression loss

function took into account the real difference between the width and

height of the pods and the confidence, so that the occluded pods were

not easy to be incorrectly detected or missed. In addition, the average

precision of pods recognition of the YOLOv5 model was 88.7%, and

that of the improved YOLOv5 model was 91.7%. The mAP value of

the improved model was increased by 3%. The results showed that the

improved model had strong generalization ability and higher

recognition accuracy for pods in different growth stages.
4.1.3 Performance evaluation of pod recognition
model

In this paper, the performance of the traditional YOLOv5 and the

improved YOLOv5 models for pod’s recognition was compared and

analyzed by using four indicators: detection rate (Xu Z. et al., 2022),

test time, calculation amount (FLOPs) required for processing an

image, and parameter amount (Hsia et al., 2021). Table 3 showed the

comparison of pods recognition performance of different models in

the data set.

FPS referred to the number of images that the model could

process per millisecond. The larger the FPS, the higher the rate of

the model and the better the performance. Test time referred to the

time taken to process all images in the testing set, including pre-

processing time, network pre-processing time and post-processing

time. The calculation quantity and parameters quantity of the model

reflected the complexity of the model. Table 3 showed that the

improved YOLOv5 model could process 24.39 pictures per second,

the test time of the model was 32.759s, and the calculation amount

and parameter amount of the model were 4.79×109 and 2.085×107,

respectively. Compared with the original YOLOv5 model, the

detection rate was increased by 34.16%, the test time was saved by

11.499s. The calculation amount and parameter amount of the model

were reduced by 17% and 7.6%, respectively. From the above analysis,

it could be seen that the improved YOLOv5 model, which embedded

CA module and EIOU regression loss function, could not only reduce
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the amount of calculation and parameters of the model, but also

improved the accuracy of pods recognition.
4.2 Results analysis of soybean yield
estimation

4.2.1 Result analysis of pod’s phenotype
calculation

The actual manual measurement value of electronic vernier

caliper was used as the standard value of pod’s length, width and

chord length. The number of pixels counted by Photoshop tool

(PhotoshopCC2017, San Jose, US) was used as the standard value

of the pod’s area and convex arc length. In order to verify the

effectiveness of the calculation method of phenotypic traits for

soybean pods, Equations (24-26) were used to calculate the relative

error, average absolute error and average relative error between the

calculated and measured values. The correlation between the

calculated and measured values of pod length, pod width, pod area,

chord length and arc length were shown in Figure 14.

Pi =
xi − xij j
xi

� 100% (24)

AE =
1
mo

m

i=1
xi − xij j (25)

RE =
1
mo

m

i=1
pi � 100% (26)

Where, pi represented the relative error in the calculation of

phenotypic traits of a single pod; AE represented the mean absolute

error in the calculation of phenotypic traits of a single pod; RE

represented the average relative error in the calculation of phenotypic

traits of a single pod; xi represented the calculated value of phenotypic

traits of a single pod; xi represented the measured value of phenotypic

traits of a single pod; m represented the number of pods.

Figures 14A–E showed the linear correlation between the

calculated and measured values of pod length, pod width, pod area,

chord length and arc length at maturity, with coefficients of

determination of 0.962, 0.939, 0.976, 0.930 and 0.929, respectively.

It could be seen from the figure that the length of pods at maturity was

mainly distributed between 4.5~5.5cm, the width was mainly

distributed between 0.95~1.2cm, the area was mainly distributed

between 2.5~5cm2, and the chord length and arc length were

mainly distributed between 3.5~4.5cm and 3.8~5.3cm. According to

Equation (25), the average absolute errors of pod length, width, area,
TABLE 3 Comparison of performance evaluation indexes of different models.

Model
Model performance evaluation index

FPS (frame /ms) Test time/ms FLOPs Parameter quantity

YOLOv5 18.18 44.258 4.79×1010 2.845×107

Improved YOLOv5 24.39 32.759 3.95×1010 2.085×107
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chord length and arc length were 0.084cm, 0.025cm, 0.096cm2,

0.063cm and 0.12cm, respectively; According to Equation (26), the

average relative errors were 1.85%, 2.46%, 2.83%, 1.65% and 2.86%,

respectively. It could be seen that there was an obvious linear

correlation between the calculated value and the measured value

obtained by the pod’s phenotypic traits calculation method. The

average coefficient of determination R2 was 0.947, and the average

relative error was 2.33%. Thus, the phenotypic traits of pods could be

calculated quickly and accurately by using the proposed methods.

4.2.2 Result analysis of soybean yield estimation
4.2.2.1 (1) Result analysis of estimating the weight of a
single pod

In this study, 100 soybean pods of two varieties at R8 stage were

trained using the proposed single pod weight estimation model. The
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training results were shown in Table 4. The pod’s weight measured by

the laboratory electronic weighing scale with an accuracy of 0.0001g

was used as the standard value, and the pod’s weight obtained by

model training was used as the prediction value. The linear

correlation between the predicted value of a single pod and the

measured value was shown in Figure 15.

Table 4 showed that the estimated average weight of single pod of

Heihe 49 and Suinong 26 was 0.726g and 0.409g, respectively, which

was 0.041g and 0.049g lower than the actual value measured by the

electronic libra with an accuracy of 0.0001g. The MSE reflected the

difference between the actual value and the estimated value. The MSE

of the two varieties of model training was 0.0089 and 0.0084,

respectively. Figure 15 showed that the coefficient of determination

R2 between the estimated and measured single pod’s weight of Heihe

49 and Suinong 26 was 0.9596 and 0.9311, respectively, and the single
B

D E

C

A

FIGURE 14

Linear correlation between calculated and measured values of pods phenotypic traits (A) Pod length calculation; (B) Pod width calculation; (C) Pod area
calculation; (D) Pod chord length calculation; (E) Pod arc length calculation.
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pod’s weight of Heihe 49 was mainly distributed between 0.6 and 0.9g,

while that of Suinong 26 was mainly distributed between 0.3 and 0.7g.

From the above analysis, it could be seen that the average of the MSE

of the estimation of the single pod weight of the two varieties was

0.00865, and the average coefficient of determination between the

estimated weight and the actual weight was 0.9453. Thus, the type of

5-120-1 BP neural network constructed in this study was effective and

stable for the prediction of the pods’ weight.

4.2.2.2 (2) Result analysis of estimating the weight of the
whole plant pods

Three pots of soybean were randomly selected from Heihe 49 and

Suinong 26. By combining the average number of pods per plant

recognized by the improved YOLOv5 algorithm with the average

weight of a single pod estimated in result analysis of pod’s phenotype

calculation, and the pods weight of all the potted soybeans plants of

this variety could be predicted. Table 5 showed the prediction

information of potted soybean yield.

Table 5 showed that combining the pod’s number per plant

estimated by the proposed method with the weight of a single pod.

The predicted total weight of all potted soybeans of Heihe 49 and

Suinong 26 were 165.58g and 1076.49g, respectively. According to
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Equation (24), the relative errors of pods weight prediction of Heihe

49 and Suinong 26 were 0.106 and 0.138 respectively. The relative

error of pods weight prediction of Heihe 49 was 0.032, lower than that

of Suinong 26, which mainly because Heihe 49 had shorter stems than

Suinong 26 at maturity stage, and the degree of shielding between

pods, pods and stems was smaller, so the accuracy of pods number

detection was higher. According to the above analysis, the average

relative error of pods weight prediction of the two varieties of soybean

was 0.122. It could be seen that the average value calculated by the

phenotypic traits of a single plant was effective for the yield prediction

of all potted soybean plants which could provide a technical reference

for the yield prediction of soybean plants in the field and the breeding

of excellent soybean varieties.
5 Discussion

(1) Comparative analysis of related studies

The counting of pods and the estimation of pods weight per plant

are of great significance for the breeding, cultivation and field

management of soybean varieties. Due to the successful application

of machine vision technology in the field of agricultural phenotype
TABLE 4 Statistics of pods weight estimation model at maturity stage.

Varieties
Average value of pods phenotypic traits (cm)

Estimated weight (g) Actual weight (g) MSE
Pod length Pod width Pod area Chord length Arc length

Heihe 49 4.56 1.02 4.11 3.85 4.34 0.726 0.767 0.0089

Suinong 26 4.20 0.98 3.70 4.14 4.43 0.409 0.458 0.0084
frontie
A B

FIGURE 15

Linear correlation between estimated and measured values of single pod weight (A) Heihe 49; (B) Suinong 26.
TABLE 5 Prediction information of potted soybean yield.

Varieties Weight of
single pod (g)

Number of pods
per plant

Estimation of pods
weight per plant (g)

Predicted weight of
all pods (g)

Measured weight of
all pods (g)

Relative
error

Hehei 49 0.726 19 13.794 165.58 149.60 0.106

Suinong
26

0.409 28 11.452 1076.49 945.70 0.138
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exploration, researchers began to use these technologies to obtain

soybean phenotypes in high-throughput and high-precision, so as to

speed up crop improvement and breeding of new varieties to achieve

high yield of soybean plants. Guo, et al improved the YOLOv4 target

detection algorithm (Guo et al., 2021). For mature soybean plants

without leaves, the number of pods per plant and the number of seeds

in pods were detected. In this study, the coordinate attention

mechanism was combined with the traditional YOLOv5 model to

achieve the accurate recognition of pods in complex images with leaf

occlusion under the outdoor growth state. Compared with the

literature (Ning et al., 2021), the recognition accuracy of the

number of pods in this study has been improved by 5.46%, and the

prediction model of soybean yield has been constructed by combining

BP neural network. Compared with the calculation methods of

soybean pod length, width, area and other phenotypic traits

proposed in the literature (Uzal et al., 2018; Yan et al., 2020; Li

et al., 2021; Yang et al., 2022), the intelligent calculation methods used

in this study not only had higher accuracy and less calculation, but

also do not require manual marking, avoiding the error caused by

human subjective judgment effectively.

(2) Establishment of pods recognition model

In this paper, an improved YOLOv5 model was proposed, which

realized the accurate recognition of pods in different growth stages,

and the recognition accuracy rate reached 91.7%. It solved the

problems of mutual occlusion, unclear edges and difficult detection

of small target pods in the process of soybean pods recognition.

However, from the actual test results, it was found that a few pods

were not correctly detected due to serious occlusion or similar shape

and color to the leaves. In view of this phenomenon, the acquisition

equipment with higher resolution should be used to obtain the

soybean plant images, and the soybean plants should be rotated for

several times to shoot, and the images with the least occlusion should

be selected. At the same time, we should further improve the model

feature extraction network from the internal structure of the network,

so that the model paid more attention to the color, shape and texture

features of pods, and improved the accuracy of pods detection.

(3) Error analysis

The average errors of soybean pod’s recognition and yield

prediction methods based on the improved depth learning model

proposed in this paper were 8.3% and 12.2%, respectively. On the one

hand, the error was caused by the algorithm itself. In the detection

process, a few pods will be missed or wrongly detected. On the other

hand, it was the geometric distortion caused by the machine vision

system and shooting angle when acquiring images, and the

cumulative error caused by the precision limitation of the

instrument itself when measuring. In this regard, the acquisition

equipment with higher resolution should be used and the camera

position should be fixed to make it perpendicular to the object to be

measured and maintain a fixed distance during the shooting process

to reduce the geometric distortion caused by the raw image

acquisition. For the accuracy limitation of the measuring

instrument itself and the error in measurement, the average value

of multiple measurements should be taken as the measured value to

reduce the error.

(4) Application and promotion

In this study, CA attention mechanism was combined with

YOLOv5 algorithm to construct a lightweight depth learning
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method, which was applied to the detection of pods in different

growth stages successfully. The model had the advantages of high

precision, small scale, less parameters, and greatly reduced the

calculation amount of the model, which can meet the deployment

requirements of portable mobile terminal devices. The future work

should be based on the research content of this paper, combine the

computer vision technology with the research of crop phenotypic

parameters, and achieve accurate prediction of soybean yield in the

field environment. For the method of narrow row and dense

planting, high resolution color image sensor carried by

Unmanned Aerial Vehicle (UAV) can be used to obtain multi

angle soybean plant images. For the method of three ridge

planting, the movable platform can be directly used to take the

soybean plant images at the same time interval from different angles,

and different degree of overlapping of pods, etc. Finally, recognition

algorithms will be optimized to select images that best reflects the

actual situation of the pods from the acquired images for

this research.
6 Conclusion

In this study, a soybean pods recognition method based on

improved YOLOv5 algorithm in different growth stages was

proposed, and the prediction of soybean yield was realized by

combining the pod phenotypic traits obtained by intelligent

calculation methods. The experimental results showed that, the

average accuracy of the proposed model reached 91.7%, increasing

by 3% compared with traditional YOLOv5 model. The coefficients of

determination R2 between the calculated value and the measured

value of pod’s length, width, area, chord length and convex edge arc

length were 0.962, 0.939, 0.976, 0.930 and 0.929, respectively. The

MSE of single pod weight prediction was 0.00865, and the average

coefficients of determination between the predicted value and the

actual value was 0.945. Combined with the detection of pods per plant

by the improved model, the MRE of all potted soybean yield

predictions was 0.122. The proposed methods not only achieved

high-precision recognition of pods and calculation of phenotypic

traits, but also provided quantitative basis and technical support for

estimation of soybean yield and cultivation of excellent soybean

varieties in agronomy.
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Fusion of hyperspectral imaging
(HSI) and RGB for identification
of soybean kernel damages
using ShuffleNet with
convolutional optimization and
cross stage partial architecture

Ling Zheng, Mingyue Zhao, Jinchen Zhu, Linsheng Huang*,
Jinling Zhao, Dong Liang and Dongyan Zhang

National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui
University, Hefei, China
Identification of soybean kernel damages is significant to prevent further

disoperation. Hyperspectral imaging (HSI) has shown great potential in cereal

kernel identification, but its low spatial resolution leads to external feature

infidelity and limits the analysis accuracy. In this study, the fusion of HSI and

RGB images and improved ShuffleNet were combined to develop an

identification method for soybean kernel damages. First, the HSI-RGB fusion

network (HRFN) was designed based on super-resolution and spectral

modification modules to process the registered HSI and RGB image pairs and

generate super-resolution HSI (SR-HSI) images. ShuffleNet improved with

convolut ion opt imizat ion and cross-stage part ia l archi tecture

(ShuffleNet_COCSP) was used to build classification models with the optimal

image set of effective wavelengths (OISEW) of SR-HSI images obtained by

support vector machine and ShuffleNet. High-quality fusion of HSI and RGB

with the obvious spatial promotion and satisfactory spectral conservation was

gained by HRFN. ShuffleNet_COCSP and OISEW obtained the optimal

recognition performance of ACCp=98.36%, Params=0.805 M, and

FLOPs=0.097 G, outperforming other classification methods and other types

of images. Overall, the proposed method provides an accurate and reliable

identification of soybean kernel damages and would be extended to analysis of

other quality indicators of various crop kernels.

KEYWORDS

soybean damages, hyperspectral imaging, super resolution, image fusion, lightweight
deep learning
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1 Introduction

Soybean is one of the most important legume crops used as

human food and animal feed in the world; it has 18%–22% oil

and 38%–56% vegetable protein in its seeds (Arslan et al., 2018).

Soybean has a protective effect against many diseases, such as

high cholesterol, osteoporosis, cardiovascular, chronic diseases,

and cancers (Xiao, 2008). The shell of soybean kernels is easily

broken during transportation and storage because of its weak

protective morphological arrangement; as such, soybeans are

susceptible to mildew in the high-temperature and muggy

atmosphere due to the post-maturation effect (Rani et al.,

2013; Bessa et al., 2021). In broken and moldy soybean

kernels, proteins and lipids undergo degradation more readily

during storage, leading to quality deterioration (Yousif, 2014).

Identification of damaged soybean kernels is prerequisite and

conducive to reduce the infection of healthy kernels to ensure

the quality of subsequent product and avoid economic loss.

Commonly used methods for soybean damage detection

include morphological analysis, chemical analysis, and imaging

techniques (Zhao et al., 2011; Yang et al., 2015; Adão et al., 2017).

Morphological analysis requires the operator to be experienced

and is susceptible to subjective interference. Chemical analysis,

such as chromatography and enzyme-linked immunosorbent

assay, owns high accuracy and excellent reproducibility but is a

destructive, time-consuming, and labor-intensive process.

Imaging techniques, such as red–green–blue (RGB) imaging

with high spatial resolution and hyperspectral imaging (HSI)

with high spectral resolution, have been popularized in image

classification, object detection, and semantic segmentation.

However, subtle changes in the internal composition of the

kernels are difficult to be perceived by RGB due to insufficient

spectral information (Steinbrener et al., 2019).

HSI can simultaneously provide spectral responses and

spatial images of hundreds of continuous wavelengths to

obtain spectral and external features, thereby enriching the

description of soybean kernels (Lu et al., 2020). HSI hardware

typically sacrifices spatial resolution to ensure premium spectral

resolution due to limited incident energy (Dian et al., 2021). The

low spatial resolution leads to weak fidelity of appearance-based

features especially when discriminating small objects, such as

soybean kernels (Fabiyi et al., 2020). This problem can be solved

by multi-modal image fusion, which extracts and combines the

most meaningful information from images of different sources

to generate a single image that is more informative and beneficial

for subsequent applications (Zhang et al., 2021). Thus far, the

methods for fusing HSI and RGB images can be broadly divided

into multi-scale transformation based on coefficients (Wei et al.,

2021), saliency (Muddamsetty et al., 2013), sparse representation

(Wei et al., 2015), and deep learning (Wei et al., 2017). Fusion

rules in the first three categories are specifically designed in the

transform or spatial domain in virtue of transform bases.

However, applying the same transformation basis such as
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wavelet basis (Starck et al., 2001) and ridgelet basis (Chen

et al., 2005) to HSI and RGB images may lead to confined

fusion performance (Yang and Li, 2012).

In recent years, deep learning-based fusion methods can

extract diverse and multi-scale features to achieve adaptive

fusion. Notably, the absence of ground truth (GT) images in

real scenes leads to the inapplicability of widely used supervised

learning models (Zhang et al., 2021). Therefore, an unsupervised

method has practical significance (Wang et al., 2020). Proposed an

unsupervised and coupled autoencoder (AE) framework

implemented by CNNs for super-resolution HSI. However,

continuous convolution leads to the loss of information from

shallow layers containing low-level features at high spatial

resolution, which is unbeneficial for fusion. Dense connections

enhance feature propagation and improve information flow by

interconnect layers and bypass settings, thereby providing

continuous attention of features and preserving the detailed

information of HSI and RGB images (Dolz et al., 2018).

Spectral preservation plays an crucial role in fusing HSI and

RGB images due to the skewed spectral information that affects

the quality of the fused image (Hu et al., 2021). Channel attention

is commonly used to assign feature importance by dynamically

adjusting the weight of each channel to assist the performance

improvement of various task; they can also be used to correct the

spectral information in image fusion (Hu et al., 2017).

Although a number of approaches are available for

constructing super-resolution hyperspectral image (SR-HSI),

few researchers focus on the identification effect of SR-HSI in

real environment. End-to-end neural networks use translation

invariance and rotation invariance to automatically extract key

features without manual feature engineering in image

recognition applications (Dhaka et al., 2021; Kundu et al.,

2021). However, the high computing and memory

requirements hinder the application of complex networks.

Lightweight networks, such as MobileNetV2 (Sandler et al.,

2018), GhostNet (Han et al., 2020), and ShuffleNet (Ma et al.,

2018), which have small parameter and low computation, can

achieve good accuracy on resource-constrained devices. In

particular, the efficient architecture of ShuffleNet solves the

boundary effect problem caused by depth-wise (DW) separable

convolution. Convolution optimization including pruning the

redundant convolution layer and enlarging the convolution

kernel can accelerate the network inference speed and extract

richer global features (Luo et al., 2016). The CSP architecture

with switching concatenation and transition steps as shortcut

operation allows the gradient flow to propagate through different

paths of network to enrich the gradient combination and

quicken the rate of reasoning (Wang et al., 2020). ShuffleNet

can be combined with convolution optimization (CO) and CSP

architecture to identify damages to soybean kernels.

Herein, fusion of HSI and RGB images and improved

ShuffleNet were proposed to identify soybean kernel damages

(Figure 1). First, a super-resolution module based on AE and
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dense connection and spectroscopy-modification module from the

idea of channel attention were designed and integrated to construct

a HSI-RGB fusion network (HRFN) and generate SR-HSI images.

SVM and ShuffleNet were used to select the SR-HSI

monochromatic images of effective wavelengths for rapid

identification of soybean kernel damages. Finally, a new

identification network architecture, namely, ShuffleNet _COCSP,

was developed by combining CO and CSP architectures with

ShuffleNet to identify soybean damages with SR-HSI. The main

contribution of this study can be summarized as follows.
Fron
1. To the best of our knowledge, this study is the first to

fuse the HSI and RGB images of small kernels and

develop the lightweight network ShuffleNet _COCSP for

practical identification of damages.

2. The proposed novel network for HSI and RGB image

fusion consists of parallel super-resolution module

(SRM) and spectral correction module (SMM).

3. An improved efficient ShuffleNet with convolution

optimization and cross-stage partial is proposed for

accurate identification of soybean kernel damages.
2 Materials and methods

2.1 Sample preparation

Samples of He13 soybean kernels (Figure S1 in

Supplementary Material) were obtained from Shu County
tiers in Plant Science 03
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Agricultural Management Company. Soybeans with smooth

surface were selected and considered as healthy ones. Healthy

soybeans were soaked in warm water for 10 min and dried using

a drying oven at 100 °C for 2 h to obtain broken soybeans. Moldy

soybeans were prepared as follows. 1) Healthy soybeans were

soaked in warm water for 10 min and placed in a glass Petri dish.

2) The dish was placed in an incubator with constant

temperature of 34°C and humidity of 80% to obtain different

degrees of moldy soybeans. 3) Moldy soybeans were collected

daily. Mildly moldy soybeans have few spots on the epidermis,

whereas severely moldy soybeans have mycelia on the epidermis.

Aflatoxin B1 test strip was used to determine the toxin of

moldy soybeans. The lower limit of AFB1 toxin detection was 10

ppb, mildly moldy was in the range of 10–20 ppb, and severely

moldy was greater than 20 ppb. For HSI and RGB image

acquisition, 2,160 samples were collected, including 560

healthy kernels, 560 broken kernels, 560 mildly moldy kernels,

and 480 severely moldy kernels.
2.2 Acquisition and calibration of HSI and
RGB images

The image acquisition system of soybean kernels was

composed of high-resolution RGB camera and HSI (Figure S2

in Supplementary Material). The industrial camera HIKVISION

MV-CA060-11GM with a 12 mm/F2.0 lens was used to collect

RGB images at 3072×2048 pixels and save them in BMP format.

HSI images were obtained by a visible/NIR HSI system

consisting of a Headwall Nano-Hyperspec (Headwall
FIGURE 1

Flowchart of identification of soybean kernel damages; Class 0-3: healthy, broken, mildly moldy and severely moldy soybean kernels; SRM is
designed by Autoencoder and Dense block.
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Photonics Inc., Bolton, MA, USA) push-broom sensor that offers

272 spectral bands, two halogen neodymium lamps (75 W), and

a computing unit. For imaging, 70 soybean kernels were placed

on a black plate, and the distance between the kernels and lens of

the HSI sensor and RGB camera was adjusted to 40 cm. Two

halogen lamps were placed on both sides of the lens for

illumination. During data acquisition, the RGB industrial

camera was set to operate in manual mode with an ISO of 400

and a shutter speed of 16 ms. The parameters of the HSI system

were set as follows: exposure time, 70 ms; frame period, 70 ms;

and scanning speed, 0.45 deg/s. For calibrating the image, white

and dark reference images were acquired by scanning a standard

white board with 98% reflectance and covering the lens before

collecting HSI images. The correction formula is as follows:

Ic =
Ir − Id
Iw − Id

(1)

where Ic is the corrected image, Iris a measured raw image of

soybean kernels, and Iwand Id are the white and dark reference

images, respectively.
2.3 Image preprocessing

The spatial misalignment of source images was caused by the

difference between image sensors. In fusion tasks, operations

along the spatial pixel positions in deep learning methods are

unavailable for real source images due to spatial dislocation

(Jiang et al., 2021). As a result, high-precision registration is a

key issue in image fusion for constructing SR-HSI datasets.

Transformation, rotation, and translation parameters were

obtained by perspective deformation to align HSI and RGB

images (Arsigny et al., 2005). Specifically, three band images

were extracted from the HSI image to form a pseudo-RGB

image, which was used as the image to be aligned with the

RGB image as the reference image. The region of interest (ROI,

rectangle) is selected from the pseudo-RGB image for

perspective deformation. Transformation, rotation, and

translation parameters were accurately calculated from the

ROI vertices. The HSI image was transformed using these

parameters to align with the RGB image. The designed

registration visualization formula is as follows:

 h1 x, yð Þ =o
R

i=1
ai x, yð Þ (2)

h2 x, yð Þ =o
r

i=1
bi x, yð Þ (3)

f x, yð Þ = eh2 x,yð Þ

eh1 x,yð Þ + eh2 x,yð Þ (4)
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where f(x,y) is the registration visualization map, x and y are

pixel coordinates, is HSI image, is RGB image, and R and r are

the spectral band number of HSI and RGB images, respectively.

Canny operator detects the contour of kernels in RGB. The

Otsu’s algorithm was used in threshold segmentation to obtain a

binary image. The background noise of the RGB image was

removed, and the mask obtained from RGB segmentation was

transformed to HSI space to remove the background noise of the

HSI image. Using the samemask, the samples of HSI and RGB data

sets had one-to-one correspondence in the subsequent recognition,

and inconsistent phenomenon of sample division did not exist.
2.4 Fusion of HSI and RGB images

In this study, a HSI-RGB fusion network (HRFN) was

developed using parallel super-resolution module (SRM) and

spectroscopy-modification module (SMM) to solve the problem

of low spatial resolution of HSI images. In HRFN (Figure 2), the

RGB grayscale image and the monochromatic image of 272

bands of HSI were fused to generate the SR-HSI monochromatic

image of corresponding band.

SRM was designed based on AE, a widely-used super-

resolution deep learning architecture, and dense block. AE is an

unsupervised neural network composed of encoder and decoder

and has excellent generalization (Liu et al., 2022). The potential

representation of images obtained by encoder has valuable

attributes, and the concatenated potential representations of

multi-modal images can be reconstructed to a high-quality

image by the decoder. For super-resolution in our study, the

multi-modal images are the registered HSI and RGB image pair.

The encoder is composed of four convolutional layers with the

kernel size of 3 × 3 and channel of 16; the decoder contains four

convolutional layers with the kernel of 3 × 3. However, the

successive convolutions make AE suffer from gradient

disappearance and inability to maintain shallow and detailed

features, which are critical to obtain excellent super-resolution.

Dense connection is introduced to the encoder of AE. In the

encoder, the first convolution is a common convolution, and the

last three convolution layers are set as a dense block. Dense block

can preserve as much information as possible in encoding by the

multi re-utilization of features obtained in the former layers.

The super-resolution operation is performed on the registered

image pairs, but the registration may lose some important spectral

information. With the idea of attention mechanism, SMM, which

is in parallel with SRM, is designed to preserve spectral

information of the raw HSI. SMM consists of two global

average pooling (GAP) layers and two convolution layers of

1×1. The GAP results of the raw HSI and super-resolution

image are cascaded and input to the convolutional layers to

obtain the weights that describe the correlation between
frontiersin.org

https://doi.org/10.3389/fpls.2022.1098864
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zheng et al. 10.3389/fpls.2022.1098864
channels. The super-resolution image in SRM is multiplied by the

weights to obtain the final SR-HSI image.
2.5 SR-HSI images of effective
wavelengths

The direct use of SR-HSI images containing the images of 272

wavelengths to identify damages to soybean kernels would result

in low processing efficiency and high hardware and time costs.

The Images of EWs have been proved as a feasible approach to

alleviate the limitations in the previous works (Weng et al., 2021).

The selection of EWs from the reflectance spectra was based on

the performance of SVM models that describe the reflectance of

wavelengths and classes of soybean kernels. Specifically, the

reflectance of each wavelength and class for the soybean kernels

were employed to develop classification models by using SVM.

The higher the classification accuracy is, the more important the

wavelength will be. The first six wavelengths were selected as EWs,

and the SR-HSI images of EWs were sequentially overlaid on

ShuffleNet to select the most suitable wavelength combination for

determination of damages to soybean kernels.

Before the above operations, spectra were acquired by the

following steps. The SR-HSI image with removed background

noise was converted into a binary image by graying and

converting to color space HSV. The ROI of the sample was

extracted, and the reflectance values of all pixels within the ROI

were averaged as the reflectance spectra of the soybean samples.
2.6 Recognition model

A deep network with deep architectures possesses powerful

feature extraction capability and generally perform well in image
Frontiers in Plant Science 05
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tasks. Nevertheless, the high computing and memory

requirements of the network hinder its wide application. One

approach to solve the problem is the use of a lightweight

network. ShuffleNet, which is a powerful lightweight network,

can reduce parameters and computation costs by the operation

as channels shuffle in the stage layer (Ma et al., 2018).

Specifically, ShuffleNet is composed of convolutional layers,

pooling layers, stage layers, and fully connected layers, where the

stage is consists of a downsampling unit and a basic unit. These

units include DW convolutional layers and 1×1 convolutional

layers. However, ShuffleNet replaces a large number of 1×1

point-wise convolutions with channel shuffle to induce the

lack of representation ability and slight loss of accuracy. In the

stage architecture, convolutional optimization (CO) and cross-

stage partial (CSP) architecture were adopted to alleviate the

above challenges in this study. The removal of the last

convolutional layer and the substitution of the DW

convolution kernel size of 3×3 with 7×7 reduce the model

parameters, expand the perceptual field, and obtain rich global

features (Ding et al., 2022). By replacing all DW convolution 3×3

with 7×7, the padding needs to be changed from 1 to 3, so the

resolution of the output feature map remains the same as the

original. The CSP architecture firstly divides the feature maps of

the downsampling unit into two parts, make them pass through

different paths, and concatenate them together in the end of the

stage layer. One part passes through the original path, and the

other shortcuts directly to the end of the stage. Through the

operation, CSP enables richer gradient sets and reduces

computation by splitting gradient streams to propagate

through different network paths (Wang et al., 2020).

In this study, ShuffleNet_CO was first constructed by

removing convolution and expanding the DW kernel in stage

layers based on the ShuffleNet framework. ShuffleNet_COCSP

(Figure 3) was then developed by introducing the CSP
FIGURE 2

Architecture of HRFN.
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architecture in ShuffleNet_CO. The detailed parameter settings

o f ShuffleNet_COCSP are shown in Table S1 in

Supplementary Material.
2.7 Performance evaluation

Mutual information(MI) (Wells et al., 1996), structural

similarity (SSIM) (Wang et al., 2004), peak signal to noise

ratio (PSNR) (Feng et al., 2012), and mean absolute differences

(MAD) (Cheng et al., 2016)are used in registration. The

registration performance increases with increasing values of

MI, SSIM, and PSNR and decreasing values of MAD, where

the ideal values for MI and SSIM are 1. Higher PSNR and lower

MAD indicate better quality of registration. Pixel feature mutual

information (FMIpixel) (Haghighat and Razian, 2014), multi-

scale structural similarity (MS-SSIM) (Ma et al., 2015), and Nabf

(Xydeas and Petrovic, 2000) are used in fusion. The fusion

performance increases with increasing values of FMIpixel and

MS-SSIM and decreasing values of Nabf.

Healthy, broken, mildly moldy, and severely moldy soybean

kernels were divided into a calibration set, a validation set, and a

prediction set according to the ratio of 3:1:1. The calibration and

validation sets were used for parameter adjustment and

preliminary evaluation of the recognition model. Model

performance was quantitatively evaluated using accuracy of

calibration set (ACCC), validation set (ACCV), and prediction set

(ACCP) as well as precision, recall, and F1-score of the prediction
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set. The evaluation index of the network was the number of

floating point operations (FLOPs) and the number of model

parameters (Params). Deep networks were constructed based on

the PyTorch framework in Python. All the methods were

conducted on a computer with an NVIDIA GeForce RTX

3090 GPU.
3 Results and discussion

3.1 Image registration

The registration of HSI and RGB image pairs was

performed by perspective deformation, and the performance

for healthy soybean kernels is shown in Figure 4. From

(Figures 4A, B), the MI and SSIM of the registered image

pairs were higher than 0.46 and 0.71 while those of the

unregistered image pairs were lower 0.15 and 0.2. The

registration operation greatly improves the structural

similarity between HSI and RGB images. The PSNR trend of

the registered image pairs increased first and then decreased,

while the MAD trend was opposite. From the registration

visualization (Figures 4E, F), the raw image pairs of HSI and

RGB are almost not spatially aligned, but the image pairs are

almost perfectly aligned with only minor misalignment at the

edge after the registration. Hence, the proposed registration

operation satisfactorily solves the spatial dislocation of

image pairs.
FIGURE 3

Architecture of ShuffleNet_COCSP.
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3.2 Fusion of HSI and RGB

HRFN was adopted to fuse the registered HSI and RGB pair

to generate SR-HSI (Figure 5). The texture and color of soybean

kernels can be clearly observed in the RGB image (Figure 5A),
Frontiers in Plant Science 07
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but their details are very blurred in the registered HSI image

(Figure 5B). SR-HSI has better spatial resolution than HSI

(Figure 5C) and more spectral bands (272) than RGB (3). In

simple terms, SR-HSI can be regarded as the spectral resolution

improvement of RGB or the spatial resolution enhancement of
A B

C D

E

F

FIGURE 4

Evaluation results of HSI and RGB registration. (A) MI; (B) SSIM; (C) PSNR; (D) MAD; (E, F) visualization of image pairs before and after registration.
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HSI. From the quantitative results of soybean kernels in Table 1,

HRFN was highly effective in the fusion for the four classes of

soybean kernels, with the FMI_pixel of 0.9415–0.9614,

MS_SSIM of 0.9678–0.9880, and Qabf below 0.0508. The

FMI_pixel and MS_SSIM of healthy soybean kernels were

0.9488 and 0.9842 higher than those of the three other classes

because of the low values of statistical contrast characteristics of

structural information for broken or moldy areas of soybean.

The reflectance spectra of SR-HSI almost perfectly

overlapped with those of raw HSI, indicating that the SMM

module learned the mapping relationship between the HSI and

super-resolution image (Figure 5). Thus, HRFN achieves good

fusion of HSI and RGB, and the SMM module retains the

spectral information from HSI to improve the quality of SR-HSI.
3.3 Selection of image set of EWs

Selecting the key variables of HSI data cube can avoid

dimensional disasters and improve the interpretability and
Frontiers in Plant Science 08
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generalization ability. Here, the SR-HSI monochromatic images

of EWs were extracted, and the optimal image set of EWs

(OISEW) was selected according to the classification results of

soybean kernel damages. The six EWs selected by SVM are 771,

491, 700, 927, 635, and 973 nm. The SR-HSI monochromatic

images of the six EWs were stacked in the above order, and the

most remarkable image set was screened based on the

performance of ShuffleNet (Table 2). The ShuffleNet parameters

are presented in Table S1 in Supplementary Material. For the SR-

HSI image of 771 nm, poor results were obtained with ACCT=

99.12%, ACCV= 88.94%, and ACCP= 86.97% mainly because of

insufficient information of the image of one wavelength. With the

addition of images of other wavelengths, the accuracy first

increased and then decreased. The best results of ACCT=

99.89%, ACCV= 95.65%, and ACCP=92.27% were obtained

using the SR-HSI image sets of 771, 491, 700, 927, and 635 nm,

named as OISEW. The classification performance for severely

moldy kernels was improved significantly with precision of

86.14%–97.75%, recall of 91.43%–92.55%, and F1-score of

89.23%–95.08%. The results on mildly moldy kernels were
A B C

FIGURE 5

Fused results for HSI and RGB images with HRFN. (A) The registered HSI image of the 618 nm, (B) SR-HSI image of the 618 nm, (C) RGB Gray image.
TABLE 1 Fusion performance of HSI and RGB using HRFN.

Method Classes FMI_pixel MS_SSIM Nabf

HRFN

Healthy 0.9614 0.9880 0.0422

Broken 0.9437 0.9678 0.0349

Mildly moldy 0.9494 0.9781 0.0375

Severely moldy 0.9415 0.9778 0.0508
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similar to those on severely moldy kernels. The classification

results of healthy and broken classes were superior to the other

image set of EWs, with F1-scores of 90.30% and 90.17%,

respectively. Thus, OISEW was adopted to classify the various

damages of soybean kernels in subsequent analysis.
3.4 Identification of soybean kernel
damages using ShuffleNet_COCSP

The ACCP=92.27% is insufficient for identification of kernel

damages. Thus, ShuffleNet needs to be further optimized

considering its efficiency and accuracy. Taking ShuffleNet as

backbone, CO and CSP were combined to construct

ShuffleNet_COCSP, which was also compared with two

widespread lightweight networks, namely, MobileNetV2 and

GhostNet. The parameters of each model are shown in Table

S1 in Supplementary Material. The identification results of each

model are shown in Table 3. MobileNetV2 achieved ACCP of

95.95%, Params of 2.231 M, and FLOPs of 0.326 G, and

GhostNet achieved ACCP of 95.17%, Params of 4.207 M, and

FLOPs of 0.197 G. The identification was satisfactory; however,

the point-wise convolutions consume vast and expensive

computing resources. ShuffleNet_COCSP obtained the best

result with ACCP of 98.36%, Params of 0.805 M, and FLOP of
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0.097 G. The ACCP of ShuffleNet_COCSP increased by 5.58%,

and the params and FLOPs decreased by 36.01% and 37.42%,

respectively, compared with those of ShuffleNet. The F1-scores

of ShuffleNet_COCSP for mildly and severely moldy kernels

were both 100.00%, and all samples of the two classes were

accurately classified. The precision levels of healthy and broken

classes were 93.81% and 99.03%, and the recall rates were 98.91%

and 94.44%, respectively. Most samples of the 2 classes were

identified correctly, with only a small part of broken kernels

classified mistakenly as healthy.

ShuffleNet_COCSP improved the identification accuracy

and vastly reduced the computational effort by enlarging the

receptive field and removing the redundant convolution layer

and CSP shunting techniques. The curves of accuracy and loss

(Figures 6A, B) showed that ShuffleNet_COCSP was better than

MobileNetV2, GhostNet, and ShuffleNet, and the fluctuations of

the learning curves gradually decreased. In summary,

ShuffleNet_COCSP performed well in the identification of

soybean kernel damages with excellent accuracy and efficiency.
4 Ablation experiment

In previous studies in the field of fusion of HSI and RGB, the

spectral reflectance of a fused super-resolution image was rarely
TABLE 2 Classification results of soybean kernels using ShuffleNet with SR-HSI images of different combinations of EWs.

SR-HSI image set Classes Accuracy
(%)

Prediction dataset

Precision
(%)

Recall
(%)

F1-score
(%)

771nm

Healthy
Broken
Mildly moldy
Severely moldy

ACCT=99.12
ACCV=88.94
ACCP=86.97

80.81
91.58
89.47
88.14

88.89
87.00
80.19
91.43

84.66
89.23
84.58
89.23

771 and 491 nm

Healthy
Broken
Mildly moldy
Severely moldy

ACCT=99.38
ACCV=91.54
ACCP=90.31

85.57
94.70
90.00
95.56

92.22
89.00
93.40
91.49

88.77
91.53
91.67
93.48

771, 491 and 700 nm

Healthy
Broken
Mildly moldy
Severely moldy

ACCT=99.67
ACCV=90.84
ACCP=90.44

86.46
91.78
96.70
85.85

92.22
89.51
83.02
96.81

89.25
90.37
89.34
91.00

771, 491, 700 and 927nm

Healthy
Broken
Mildly moldy
Severely moldy

ACCT=99.86
ACCV=94.12
ACCP=91.35

86.81
90.82
95.10
91.92

87.78
89.00
91.51
96.81

87.29
89.90
93.27
94.30

771, 491, 700, 927 and 635 nm

Healthy
Broken
Mildly moldy
Severely moldy

ACCT=99.89
ACCV=95.65
ACCP=92.27

87.69
94.44
92.04
97.75

92.22
86.00
98.11
92.55

90.30
90.17
94.98
95.08

771, 491, 700, 927, 635 and 973
nm

Healthy
Broken
Mildly moldy
Severely moldy

ACCT=99.82
ACCV=94.65
ACCP=91.04

80.30
98.85
94.64
94.06

94.64
76.79
94.64
98.96

86.89
86.43
94.64
96.45
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concerned and generally different from that of a raw HSI image.

SMM in HRFN was constructed to correct the spectral

information and realize good fusion.

HRFN without the SMM module (HRFNSMM-) was adopted

to fuse the HSI and RGB image pairs and investigate the effect of

SMM. The spectral reflectance data of the raw HSI, HRFN, and

HRFNSMM- are shown in Figure 5. Compared with those of

HRFN, the spectra of HRFNSMM- is nonoverlapping with the

raw HSI. Thus, SMM can preserve the spectral information of

raw HSI because it can learn the mapping relationship between

HSI and hyperspectral super-resolution images to obtain the

missing spectral information of each band. Based on the fusion

results of HRFNSMM- in Table 4, its FMI_pixel, MS_SSIM, and

Nabf are worse than those of HRFN. As a result, SMM does help

HRFN focus on missing spectral details to improve the quality of

the SR-HSI image (Hu et al., 2021).

ShuffleNet_COCSP combined with CO and CSP achieved the

ideal identification and was ultra-lightweight. To further

corroborate its effectiveness, we employed ShuffleNet with CO

(ShuffleNet_CO) and ShuffleNet with CSP (ShuffleNet_CSP) for

developing identification models of soybean kernel damages in SR-

HSI images (Table 5). The ACCP of ShuffleNet_CO and

ShuffleNet_CSP increased by 2.79% and 3.46%, the Params

decreased by 23.93% and 27.03%, and the FLOPs decreased by

23.26% and 29.68%, respectively, compared with those of

ShuffleNet. The results of ShuffleNet_CSP and ShuffleNet_CO

were better than that of ShuffleNet and worse than

ShuffleNet_COCSP, confirming that CO and CSP played a

positive role in recognition. The performance of ShuffleNet_CO is

mainly because CO has a large effective receptive field to increase

the sensing area of feature maps and extract richer global features.
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Meanwhile, the redundant 1×1 convolution layer is removed to

improve the network efficiency. The Params and FLOPs of

ShuffleNet_CSP were greatly reduced because the strategy of

truncating the gradient flow was adopted in the CSP architecture;

as such, the gradient information will not be reused. Surprisingly,

ShuffleNet_CSP has a good accuracy in identifying soybean kernel

damages. The reason may be that CSP architecture enhance the

variability of the learned features within different layers, thereby

greatly improving the learning ability of the network. The

advantages of CO and CSP are perfectly combined to make

ShuffleNet more efficient and ensure the accuracy of recognition.
5 Discussion

In the application of recognizing agricultural product

damages, HSI has been widely used as a mainstream, rapid,

and non-destructive measurement method that can provide

morphological and compositional information. However, as

for the crop kernel of small sizes, the low spatial resolution of

HSI leads to weak recognition accuracy (Fabiyi et al., 2020). High

spatial resolution is easily obtained from RGB images. In this

study, SR-HSI images were generated by fusion of HSI and RGB

images to identify soybean kernel damages.

In most image fusion studies based on public datasets, the

images from different sources are pre-registered; however, the

HSI and RGB image pairs of kernels have the obvious nonlinear

appearance differences in our experiments (Zhang et al., 2021).

Perspective deformation was used to register image pairs and

eliminate spatial dislocation. Thus far, the image fusion

methods based on deep learning networks are advantageous
TABLE 3 Classification results of soybean kernels using MobileNetV2, GhostNet, ShuffleNet and ShuffleNet_COCSP.

Model Classes Accuracy
(%)

Prediction dataset
Params
(M)

FLOPs
(G)Precision

(%)
Recall
(%)

F1-score
(%)

MobileNetV2

Healthy
Broken
Mildly moldy
Severely moldy

ACCT=100.00
ACCV=97.42
ACCP=96.82

93.68
97.17
99.08
96.94

96.74
95.37
96.43
98.96

95.19
96.26
97.74
97.94

2.231 0.326

GhostNet

Healthy
Broken
Mildly moldy
Severely moldy

ACCT=99.78
ACCV=96.46
ACCP=95.37

88.35
100.00
96.46
96.88

98.91
88.89
97.32
96.88

93.33
94.12
96.89
96.88

4.207 0.197

ShuffleNet

Healthy
Broken
Mildly moldy
Severely moldy

ACCT=99.88
ACCV=94.74
ACCP=93.16

86.96
94.06
92.50
98.95

86.96
87.96
99.11
97.92

86.96
90.91
95.69
98.43

1.258 0.155

ShuffleNet_COCSP

Healthy
Broken
Mildly moldy
Severely moldy

ACCT= 99.87
ACCV= 98.64
ACCP= 98.36

95.70
97.20
100.00
100.00

96.74
96.30
100.00
100.00

96.22
96.74
100.00
100.00

0.805 0.097
f
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FIGURE 6

(A, B) Learning curves and (C–F) confusion matrix of MobileNetV2, GhostNet, ShuffleNet, and ShuffleNet_COCSP in the prediction dataset.
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because the networks can extract the targeted features and

achieve adaptive feature fusion. The source image set has no

real GT image, so the networks of supervised learning are

unapplicable. A network based on unsupervised AE
Frontiers in Plant Science 11
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architecture and dense blocks, called as SRM, was constructed

to fuse image pairs from HSI and RGB. The above fusion can

ensure the spatial quality of images well, but the spectral

information of raw HSI is difficult to guarantee. Based on the
TABLE 4 Quantitative results of fusion HSI and RGB using HRFNSMM-..

Method Classes FMI_pixel MS_SSIM Nabf

HRFNSMM-

Healthy 0.9614 0.9865 0.0424

Broken 0.9435 0.9537 0.0353

Mildly moldy 0.9491 0.9777 0.0378

Severely moldy 0.9410 0.9770 0.0509
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experiment, the spectral trend of the super-resolution images

obtained by SRM was distorted (Figure 7). Referring to the

channel attention mechanism, the new branch network was

developed and called SMM to extract spectral details by learning

the mapping relationship between the HSI and super-resolution

images and accomplish spectral correction. By integrating SRM
Frontiers in Plant Science 12
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and SMM, HRFN achieved a good fusion of HSI and RGB

images, that is, the FMI_pixel, MS_SSIM, and Qabf of the four

classes of soybean kernels were 0.9415–0.9614, 0.9678–0.9880,

and below 0.0508. The SR-HSI image with high spatial and

excellent spectral resolution are expected to provide more

accurate results for analysis of soybean damages.
TABLE 6 Classification results of ShuffleNet_COCSP based on HSI and RGB images.

Data Classes Accuracy
(%)

Prediction dataset

Precision
(%)

Recall
(%)

F1-score
(%)

HSI

Healthy
Broken
Mildly moldy
Severely
moldy

ACCT= 99.99
ACCV= 96.71
ACCP= 95.82

90.43
93.40
100.00
98.97

92.39
91.67
99.11
100.00

0.91.40
0.92.52
0.99.55
0.99.48

RGB

Healthy
Broken
Mildly moldy
Severely
moldy

ACCT=100.00
ACCV= 97.64
ACCP= 96.12

100.00
98.18
92.24
94.90

91.30
100.00
95.54
96.88

95.45
99.08
93.86
95.88
TABLE 5 Recognition results based on SHUFFLENET adding CO and CSP .

Model Classes Accuracy
(%)

Prediction dataset
Params
(M)

FLOPs
(G)Precision

(%)
Recall
(%)

F1-score
(%)

ShuffleNet_CO

Healthy
Broken
Mildly moldy
Severely
moldy

ACCT=99.93
ACCV=96.47
ACCP=95.95

88.89
97.80
98.13
98.92

97.78
89.00
99.06
97.87

93.12
93.19
98.59
98.40

0.957 0.119

ShuffleNet_CSP

Healthy
Broken
Mildly moldy
Severely
moldy

ACCT=99.74
ACCV=96.47
ACCP=96.62

87.50
98.96
100.00
100.00

98.91
87.96
100.00
100.00

92.86
93.14
100.00
100.00

0.918 0.109
fron
FIGURE 7

Spectral reflectance for the broken class of soybean as obtainedby the raw HSI, registered HSI, and the fused results of HRFN and HRFNSMM-.
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An SR-HSI image of soybean kernels contains images of 272

wavelengths with redundant information, resulting in low

processing efficiency and huge modeling cost. Thus, selecting the

SR-HSI image of many significant wavelengths is essential to

damage identification (Weng et al., 2021). Here, candidate EWs

were first selected by SVM models developed with spectral

reflectance of each wavelength, and OISEW was finalized by

ShuffleNet and the successive superposition of monochromatic

images of each EW. The ACCP=92.27%, Params=1.258 M, and

FLOPs=0.155 G of ShuffleNet with OISEW are insufficient to

identify damaged kernels in the real world within the limited

computational budget. ShuffleNet_COCSP was constructed by

adding the CO operation and the CSP architecture into

ShuffleNet and obtained ACCp=98.36%, Params=0.805 M, and

FLOPs=0.097 G, outperforming ShuffleNet, MobileNetV2, and

GhostNet. The increase in the depth and kernel size of

convolution extended the effective receptive field and led to

enhanced promotion of the networks (Luo et al., 2016). However,

the former brings optimization problems. Thus, the CO operation

increased the kernel size from 3 × 3 to 7 × 7 and removed the last

convolution of 1 × 1 to increase the perceived area of the feature

map and extract rich global features. Meanwhile, shortcut is

especially vital for networks with large convolution kernels (Ding

et al., 2022). CSP with ingenious shortcut operation was induced to

reduce the possibility of duplication in information integration and

alleviate oversmoothing (Wang et al., 2020), thereby improving the

learning ability of the network.

Based on the ablation experiments, the combination of the CO

operation and the CSP architecture is better than the single

optimization. That is, ShuffleNet_COCSP had ACCp that

increased by 2.41% and 1.74%, parameters that decreased by

15.88% and 12.31%, and FLOP that decreased by 18.49% and

11.01% compared with ShuffleNet_CO and ShuffleNet_CSP,

respectively. Further, ShuffleNet_COCSP and HSI and RGB

images were used to identify soybean kernel damages (Table 6).

The ACCp=95.82% of HSI and the ACCp=96.12% of RGB were

worse than those of SR-HSI. The SR-HSI images are more

discriminative than the HSI images in the subtle information of

external features, such as texture and edge, and have wider

wavelength perception and stronger diffraction ability than RGB to

better identify the internal tissue characteristics of soybean kernels

(Sharma et al., 2016).

The damaged soybean kernels identified were accurately

analyzed by fusion of HSI and RGB and ShuffleNet_COCSP.

However, some aspects need further optimization to obtain better

application prospects. The acquisition method was unpractical

owning to source images from HSI and RGB cameras in our

work. In the future, customized and simplified imaging equipment

should be developed to easily obtain EW and RGB images.

ShuffleNet_COCSP with small network size and fast recognition

speed will be embedded in mobile devices to provide a wide range of

application scenarios for intelligent soybean sorting. In contrast to
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the orderly arrangement of soybeans in this experiment, soybeans in

actual sorting equipment have overlapping and adhesion

phenomenon. Therefore, image segmentation and image

correction in complex background should be considered.
6 Conclusion

In this work, damages to soybean kernels were identified using

the improved ShuffleNet and fusion of HSI and RGB. The HSI and

RGB image pairs of healthy, broken, and moldy soybean kernels

were collected and registered by perspective deformation to

eliminate spatial misalignment. HRFN, an unsupervised fusion

network, was designed using SRM and SMM in parallel to

generate SR-HSI with high spatial resolution and excellent

spectral resolution. HRFN achieves a good fusion of HSI and

RGB images for the four classes of soybean kernels, with

FMI_pixel of 0.9415–0.9614, MS_SSIM of 0.9678–0.9880, Qabf

below 0.0508, and perfectly preserved spectral information. Six

EWs were selected by SVM, and the OISEW composed of the

monochromatic images in 771, 491, 700, 927, and 635 nm was

further screened by ShuffleNet. ShuffleNet_COCSP was constructed

by adding the CO operation and the CSP architecture into

ShuffleNet, and the best result was obtained with ACCp=98.36%,

Params=0.805 M, and FLOPs=0.097 G, outperforming

MobileNetV2, GhostNet, and the cases of HSI and RGB images.

The high-quality SR-HSI images obtained by fusing HSI and RGB

images can quickly and accurately identify small kernels, and a

customized simplified imaging device can be designed to acquire

SR-HSI images with scattered wavelength to meet the practical

requirement of damaged kernel identification in the future. The

lightweight ShuffleNet_COCSP will be deployed in mobile devices

for large-scale detection of damaged kernels and real-time

management in the future. In addition, advanced image

correction is indispensable due to environmental factors, such as

position of imaging devices and motion of samples, causing kernels

to overlap one another in the sorting equipment.
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performance evaluation of fusion techniques for spatio-temporal saliency detection
in dynamic scenes. IEEE International Conference on Image Processing. IEEE 3924–
3928. doi: 10.1109/ICIP.2013.6738808

Rani, P. R., Chelladurai, V., Jayas, D. S., White, N. D. G., and Kavitha-Abirami, C. V.
(2013). Storage studies on pinto beans under different moisture contents and
temperature regimes. J. Stored Products Res. 52, 78–85. doi: 10.1016/j.jspr.2012.11.003

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L. C. (2018).
MobileNetV2: Inverted Residuals and Linear Bottlenecks. 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). IEEE. 4510–
4520. doi: 10.1109/CVPR.2018.00474

Sharma, V., Diba, A., Tuytelaars, T., and Van Gool, L. (2016). Hyperspectral
CNN for image classification & band selection, with application to face recognition.
Tech. Rep. KUL/ESAT/PSI/1604 KU Leuven ESAT Leuven Belgium.

Song, F., Deng, L., Shu, G., Feng, W., and Ji, K. (2012). “A subpixel registration
algorithm for low PSNR images. IEEE Fifth International Conference on Advanced
Computational Intelligence. IEEE. doi: 10.1109/ICACI.2012.6463241

Starck, J. L., Donoho, D. L., and Candès, E. J. (2001). Very high quality image
restoration by combining wavelets and curvelets. Proc. SPIE 4478, 9–19. doi:
10.1117/12.449693

Steinbrener, J., Posch, K., and Leitner, R. (2019). Hyperspectral fruit and
vegetable classification using convolutional neural networks. Comput. Electron.
Agric. 162, 364–372. doi: 10.1016/j.compag.2019.04.019
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fpls.2022.1098864/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2022.1098864/full#supplementary-material
https://doi.org/10.3390/rs9111110
https://doi.org/10.1016/j.media.2005.04.001
https://doi.org/10.15666/aeer/1604_42894298
https://doi.org/10.1590/0034-737x202168030004
https://doi.org/10.1590/0034-737x202168030004
https://doi.org/10.1117/12.2217342
https://doi.org/10.3390/s21144749
https://doi.org/10.1016/j.inffus.2020.11.001
https://doi.org/10.48550/arXiv.2203.06717
https://doi.org/10.1109/TMI.2018.2878669
https://doi.org/10.1109/ACCESS.2020.2969847
https://doi.org/10.1109/ICAICT.2014.7036000
https://doi.org/10.1109/CVPR42600.2020.00165
https://doi.org/10.48550/arXiv.2005.14400
https://doi.org/10.1109/TPAMI.2019.2913372
https://doi.org/10.1109/TPAMI.2019.2913372
https://doi.org/10.1016/j.inffus.2021.02.012
https://doi.org/10.1016/j.inffus.2021.02.012
https://doi.org/10.3390/s21165386
https://doi.org/10.1109/TGRS.2022.3227938
https://doi.org/10.3390/rs12162659
https://doi.org/10.48550/arXiv.1701.04128
https://doi.org/10.1109/TIP.2015.2442920
https://doi.org/10.1007/978-3-030-01264-9_8
https://doi.org/10.1007/978-3-030-01264-9_8
https://doi.org/10.1109/ICIP.2013.6738808
https://doi.org/10.1016/j.jspr.2012.11.003
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/ICACI.2012.6463241
https://doi.org/10.1117/12.449693
https://doi.org/10.1016/j.compag.2019.04.019
https://doi.org/10.3389/fpls.2022.1098864
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zheng et al. 10.3389/fpls.2022.1098864
Tao, C., Zhang, J., and Ye, Z. (2005). Remote sensing image fusion based on
ridgelet transform. Geoscience and Remote Sensing Symposium, 2005. IGARSS '05.
Proceedings. 2005 IEEE International. IEEE. doi: 10.1109/IGARSS.2005.1525320

Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. (2004). Image quality
assessment: from error visibility to structural similarity. IEEE Trans. image Process.
13 (4), 600–612. doi: 10.1109/TIP.2003.819861

Wang, Z., Chen, B., Lu, R., Zhang, H., Liu, H., and Arshney, P. K. V. (2020).
FusionNet an unsupervised convolutional variational network for hyperspectral
and multispectral image fusion. IEEE Trans. ImageProcess 29, 7565–7577. doi:
10.1109/TIP.2020.3004261

Wang, C. Y., Liao, H., Wu, Y. H., Chen, P. Y., and Yeh, I. H. (2020). A New
Backbone that can Enhance Learning Capability of CNN. 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW). IEEE. 390–391. doi: 10.1109/CVPRW50498.2020.00203

Wei, Q., Bioucas-Dias, J., Dobigeon, N., and Tourneret, J. Y. (2015).
Hyperspectral and multispectral image fusion based on a sparse representation.
IEEE Trans. Geosci. Remote Sens. 53 (7), 3658–3668. doi: 10.1109/
TGRS.2014.2381272

Wei, B., Feng, X., andWang, W. (2021). 3M: A multi-scale and multi-directional
method for multi-focus image fusion. IEEE Access 9, 48531–48543. doi: 10.1109/
ACCESS.2021.3068770

Wei, Y., Yuan, Q., Shen, H., and Zhang, L. (2017). Boosting the accuracy of
multispectral image pansharpening by learning a deep residual network. IEEE
Geosci. Remote Sens. Lett. 14 (10), 1795–1799. doi: 10.1109/LGRS.2017.
2736020
Frontiers in Plant Science 15
68
Wells, W. M.III, Viola, P., Atsumi, H., Nakajima, S., and Kikinis, R. (1996).
Multi-modal volumeregistration by maximization of mutual information, med.
Image Anal. 1 (1), 35–51. doi: 10.1016/S1361-8415(01)80004-9

Weng, S., Han, K., Chu, Z., Zhu, G., Liu, C., Zhu, Z., et al. (2021). Reflectance images
of effective wavelengths from hyperspectral imaging for identification of fusarium head
blight-infected wheat kernels combined with a residual attention convolution neural
network. Comput. Electron. Agric. 190, 106483. doi: 10.1016/j.compag.2021.106483

Xiao, C. W. (2008). Health effects of soy protein and isoflavones in humans. J.
Nutr. 138 (6), 1244S–1249S. doi: 10.1093/jn/138.6.1244S

Xydeas, C. S., and Petrovic, V. (2000). Objective image fusion performance
measure. Electron. Lett. 36 (4), 308–309. doi: 10.1049/el:20000267

Yang, H. C., Haudenshield, J. S., and Hartman, G. L. (2015). Multiplex real-time
PCR detection and differentiation of colletotrichum species infecting soybean.
Plant Dis. 99 (11), 1559–1568. doi: 10.1094/PDIS-11-14-1189-RE

Yang, B., and Li, S. (2012). Pixel-level image fusion with simultaneous orthogonal
matching pursuit. Inf. fusion 13 (1), 10–19. doi: 10.1016/j.inffus.2010.04.001

Yousif, A. M. (2014). Soybean grain storage adversely affects grain testa color,
texture and cooking quality. J. Food Qual. 37 (1), 18–28. doi: 10.1111/jfq.12064

Zhang,H.,Xu,H.,Tian,X., Jiang, J., andMa,J. (2021). Imagefusionmeetsdeeplearning:
A survey and perspective. Inf. Fusion 76, 323–336. doi: 10.1016/j.inffus.2021.06.008

Zhao, T., Wang, Z. T., Branford-White, C. J., Xu, H., and Wang, C. H. (2011).
Classification and differentiation of the genus peganum indigenous to China based on
chloroplast trnL-f andpsbA-trnHsequences and seed coatmorphology.PlantBiol.13 (6),
940–947. doi: 10.1111/j.1438-8677.2011.00455.x
frontiersin.org

https://doi.org/10.1109/IGARSS.2005.1525320
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2020.3004261
https://doi.org/10.1109/CVPRW50498.2020.00203
https://doi.org/10.1109/TGRS.2014.2381272
https://doi.org/10.1109/TGRS.2014.2381272
https://doi.org/10.1109/ACCESS.2021.3068770
https://doi.org/10.1109/ACCESS.2021.3068770
https://doi.org/10.1109/LGRS.2017.2736020
https://doi.org/10.1109/LGRS.2017.2736020
https://doi.org/10.1016/S1361-8415(01)80004-9
https://doi.org/10.1016/j.compag.2021.106483
https://doi.org/10.1093/jn/138.6.1244S
https://doi.org/10.1049/el:20000267
https://doi.org/10.1094/PDIS-11-14-1189-RE
https://doi.org/10.1016/j.inffus.2010.04.001
https://doi.org/10.1111/jfq.12064
https://doi.org/10.1016/j.inffus.2021.06.008
https://doi.org/10.1111/j.1438-8677.2011.00455.x
https://doi.org/10.3389/fpls.2022.1098864
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Baohua Zhang,
Nanjing Agricultural University, China

REVIEWED BY

Chu Zhang,
Huzhou University, China
Goutam Kumar Dash,
Centurion University of Technology and
Management, India

*CORRESPONDENCE

Guangcheng Shao

sgcln@126.com

Xiyun Jiao

xyjiao@hhu.edu.cn

SPECIALTY SECTION

This article was submitted to
Technical Advances in Plant Science,
a section of the journal
Frontiers in Plant Science

RECEIVED 03 November 2022
ACCEPTED 29 December 2022

PUBLISHED 25 January 2023

CITATION

Wu T, Zhang W, Wu S, Cheng M, Qi L,
Shao G and Jiao X (2023) Retrieving rice
(Oryza sativa L.) net photosynthetic rate
from UAV multispectral images based on
machine learning methods.
Front. Plant Sci. 13:1088499.
doi: 10.3389/fpls.2022.1088499

COPYRIGHT

© 2023 Wu, Zhang, Wu, Cheng, Qi, Shao
and Jiao. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 25 January 2023

DOI 10.3389/fpls.2022.1088499
Retrieving rice (Oryza sativa L.)
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Lushang Qi1, Guangcheng Shao1* and Xiyun Jiao1,2,3*

1College of Agricultural Science and Engineering, Hohai University, Nanjing, China, 2State Key
Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China,
3Cooperative Innovation Center for Water Safety and Hydro Science, Hohai University, Nanjing, China,
4Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation
and Physiology, Agricultural College, Yangzhou University, Yangzhou, China
Photosynthesis is the key physiological activity in the process of crop growth and

plays an irreplaceable role in carbon assimilation and yield formation. This study

extracted rice (Oryza sativa L.) canopy reflectance based on the UAV multispectral

images and analyzed the correlation between 25 vegetation indices (VIs), three

textural indices (TIs), and net photosynthetic rate (Pn) at different growth stages.

Linear regression (LR), support vector regression (SVR), gradient boosting decision

tree (GBDT), random forest (RF), and multilayer perceptron neural network (MLP)

models were employed for Pn estimation, and the modeling accuracy was

compared under the input condition of VIs, VIs combined with TIs, and fusion of

VIs and TIs with plant height (PH) and SPAD. The results showed that VIs and TIs

generally had the relatively best correlation with Pn at the jointing–booting stage

and the number of VIs with significant correlation (p< 0.05) was the largest.

Therefore, the employed models could achieve the highest overall accuracy

[coefficient of determination (R2) of 0.383–0.938]. However, as the growth stage

progressed, the correlation gradually weakened and resulted in accuracy decrease

(R2 of 0.258–0.928 and 0.125–0.863 at the heading–flowering and ripening

stages, respectively). Among the tested models, GBDT and RF models could

attain the best performance based on only VIs input (with R2 ranging from 0.863

to 0.938 and from 0.815 to 0.872, respectively). Furthermore, the fusion input of

VIs, TIs with PH, and SPAD could more effectively improve the model accuracy (R2

increased by 0.049–0.249, 0.063–0.470, and 0.113–0.471, respectively, for three

growth stages) compared with the input combination of VIs and TIs (R2 increased

by 0.015–0.090, 0.001–0.139, and 0.023–0.114). Therefore, the GBDT and RF

model with fused input could be highly recommended for rice Pn estimation and

the methods could also provide reference for Pn monitoring and further yield

prediction at field scale.

KEYWORDS

UAVmultispectral remote sensing, rice canopy, net photosynthetic rate, vegetation index,
textural index, machine learning
frontiersin.org0169

https://www.frontiersin.org/articles/10.3389/fpls.2022.1088499/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1088499/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1088499/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1088499/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.1088499&domain=pdf&date_stamp=2023-01-25
mailto:sgcln@126.com
mailto:xyjiao@hhu.edu.cn
https://doi.org/10.3389/fpls.2022.1088499
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.1088499
https://www.frontiersin.org/journals/plant-science


Wu et al. 10.3389/fpls.2022.1088499
1 Introduction

Photosynthesis is one of the most crucial parts of the global

carbon and energy cycle (Reichstein et al., 2013; A Ivlev, 2017). The

crop photosynthesis activities assimilate carbon dioxide (CO2) and

water (H2O) by using light energy to form organic matter and,

therefore, are a key determinant of food production and security

(Reich and Amundson, 1985; Long et al., 2006). Net photosynthetic

rate (Pn) is the value of the total photosynthetic rate minus the

respiration rate, which directly refers to the organic matter

accumulated. Although researchers have gradually deepened the

understanding of photosynthesis based on cell-scale gas exchange,

current methods and equipment developed based on these theories

are still mainly focused on the leaf level, which is time-consuming and

has a poor representation (Stinziano et al., 2019). It is scientific to use

large canopy photosynthesis and transpiration measurement system

(CAPTS) (Song et al., 2016) to observe photosynthesis at the canopy

scale, but the investment is too expensive to be popularized in

regional-scale monitoring.

The mobile high-throughput phenotyping platforms (HTPPs)

(Deery et al., 2014; Li et al., 2014) with RGB, fluorescence,

hyperspectral, thermal, 3D laser, and computed tomography (CT)

imaging sensors provide a non-destructive method for rapid crop

phenotypic acquisition. In particular, a high-spectral-resolution

spectroradiometer (Aguirre-Gomez et al., 2001; Meroni and

Colombo, 2006) (most Fieldspec 4 or 4pro, Analytical Spectral

Devices, ASD, Boulder, CO, USA) is the most physical and effective

equipment for photosynthesis monitoring on the ground. The

sensitive band reflectance or vegetation indices (VIs), generally

including 2 or more band reflectance, was commonly used to

establish a linear or nonlinear relationship with crop physiological

and biochemical parameters. Qiu et al. (2015) comprehensively

analyzed the correlation between main photosynthetic, fluorescence

parameters and hyperspectral data in ear position leaves of maize and

found that Dl699 had the best correlation with Pn. Sun et al. (2016)

introduced wavelet analysis (WA) to select the sensitive bands of

hyperspectral for estimating Pn of winter wheat on the leaf scale and

found that the models based on WA were more accurate than the VIs

method. Fu et al. (2019) constructed a stacking framework for

retrieving the maximum carboxylation rate of Rubisco (Vc,max) and

the maximum electron transport rate supporting RuBP regeneration

(Jmax) in the photosynthesis parameters of tobacco based on canopy

hyperspectral reflectance, which further improve model accuracy

compared with the basic models. Based on the advantages of

ground platform on high-resolution continuous spectrum and

texture features, the above research could provide practical and

accurate estimation of photosynthetic parameters. However, the

photosynthetic monitoring in the actual production field could

hardly be represented due to environmental factors and the use of

various equipment requires expertise.

As a new near-ground remote sensing approach, unmanned aerial

vehicles (UAVs) (de Castro et al., 2021) can flexibly provide higher-

resolution and bigger-scale images by carrying different sensors (e.g.,

multispectral, hyperspectral, and thermal infrared cameras). It has

already been widely used in the inversion of physiological and

biochemical parameters such as plant height (PH) (Che et al.,
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2020), leaf area index (LAI) (Chen et al., 2022b), nutrient states (Xu

et al., 2021), and aboveground biomass (Wang et al., 2022). Equipped

with hyperspectral imaging (HSI) sensors, Liu and Peng. (2020)

employed eight chlorophyll-related VIs for estimating maximum

Pn, and proposed a model based on chlorophyll index (CI) and

photosynthetically active radiation (PAR) for different rice varieties.

However, the water vapor in the field (especially the paddy field)

might have a great influence on the hyperspectral data. Additionally,

high price and tedious data processing process (e.g., noise processing,

dimension reduction, and spectral unmixing) have prevented the

commercial application of this method. Therefore, multispectral

sensors that can characterize key points (usually including blue,

green, red, red edge, and near-infrared bands) in crop canopy

spectra features are more commonly used for practical application

on UAV. Chen et al. (2018) established linear inversion models of

photosynthetic parameters at different time points in the cotton bud

stage based on UAV six-band multispectral images. However, cross-

growth stage comparison and regression model selection could be

done more comprehensively. Based on the relationship between VIs

constructed from UAV multispectral image and photosynthetic

parameters, Zhang et al. (2020a) explored the inversion method of

diurnal variation of photosynthesis in rice canopy combined with the

light response curve model and provided a method with physical basis

for gross primary productivity (GPP) inversion, while the scale effect

between 100-m UAV multispectral data and PAR monitoring data

from a single point on the ground should be further discussed. On the

other hand, the image obtained by UAV remote sensing has a higher

resolution than satellite remote sensing; thus, it has more detailed

texture features that can better reflect the difference in the set window

size. Therefore, textural indices (TIs) are commonly introduced with

VIs to improve the model accuracy. According to previous studies,

TIs have a good correlation with aboveground biomass (Sarker and

Nichol, 2011; Liu et al., 2019) and thus also have a good relationship

with the accumulated amount of canopy elements (Pimstein et al.,

2011; Lu et al., 2019; Zhang et al., 2021) (e.g., nitrogen, potassium, and

chlorophyll). Zheng et al. (2019) have found that the normalized

difference texture index (NDTI) is in good relationship with rice

biomass and the fusion of NDTI with VIs improved the accuracy of

biomass estimation. Similarly, Lu et al. (2021) and Zheng et al. (2020)

demonstrated that the fusion of TIs and multispectral VIs could

effectively improve the estimation of potassium accumulation and

nitrogen accumulation in rice. Since the accumulated organic matter

of photosynthesis can directly affect the basic growth indicators of rice

such as plant height, tiller number, and leaf area index, TIs could also

have untapped potential in Pn estimation.

For models employed in the inversion studies, linear regression or

nonlinear regression were commonly used to construct inverse

functions with definite expressions, but the accuracy is relatively

low and poor in portability (Wan et al., 2021). Machine learning

methods have been widely used in the regression and classification

issues and have been proven to be fast, accurate, and good at

generalization. WA (Bruce et al., 2002), partial least square

regression (PLSR) (Fu et al., 2022), and least absolute shrinkage and

selection operator (LASSO) (Yang and Bao, 2017) are usually used in

HSI studies to reduce the high-dimension hyperspectral data to a few

important components that are sensitive to the target parameters.
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Artificial neural network (ANN) (Liang et al., 2015), kernel-based

support vector machine regression (SVR) (Liang et al., 2016), and

random forest (RF) (Cheng et al., 2022) regression methods have been

most wildly employed to explore and fit the nonlinear relationship

between reflectance or VIs and inversion objects. Other machine

learning methods based on ANN, kernel function, and tree also have

great potential in this issue. Yang et al. (2022) built a Bayesian neural

network (BNN) model to predict potential maximum quantum yield

(Fv/Fm) and two other chlorophyll fluorometer parameters of grape

by quantifying the HSI response indices of photosynthetic pigments

and water status parameters. Yuan et al. (2022) simulated the

maximum carboxylation rate at 25°C (Vm25) of crops over time

based on the convolutional neural network (CNN) model

combining flux and satellite remote sensing data to further improve

the estimation accuracy of GPP. Based on the leaf phenotype data,

Zhang et al. (2020b) established poplar Pn estimating models using

the extreme gradient boosting model (XGBoost). (Fu et al., 2020,

2022) have also proven the good performance of machine learning

models based on the rich feature input of the HSI data for

photosynthetic parameter estimation. However, there is a lack of

understanding of machine learning methods for photosynthesis

parameters estimating with less reflectance features based on the

multispectral data and less research on rice.

In this study, multispectral images of rice canopy were acquired

by UAV, and the responses of multispectral reflectance features

together with Pn, PH, and SPAD to the different nitrogen or

leakage treatments were analyzed at different growth stages. The

correlation between Pn, VIs, and TIs extracted from the multispectral

reflectance was compared, and the VIs with relatively significant

correlations were employed as input of the five machine learning

models. Model performance comparison under different input

combinations was performed, and the improvement of fusing TIs

and basal growth index PH and SPAD was further analyzed. The final

purpose is to explore an economical and accurate method at field scale

for the estimation of Pn and photosynthesis stress detection during

the whole growth season of rice.
2 Materials and methods

2.1 Study area

The experiment was conducted at the Jiangning Campus of Hohai

University, Nanjing City, Jiangsu Province in China (31°54’57” N, 118°

46’37” E). A total of 22 plots were set in this study, with a length × width

of 2.5 m × 2.0 m and a depth of 2.0 m, which were cultivated with a
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rice–wheat rotation for many years. Rice cultivar (Nanjing-9108) was

transplanted on 4 July with a spacing of 20 cm × 15 cm and harvested

on 25 October 2021 under the controlled irrigation and drainage

scheme. In order to obtain various spectral characteristics and

photosynthetic characteristics parameters of rice canopy at different

stages, five nitrogen fertilizer levels (N1–N5: 0, 150, 225, 300 and 375

kg/ha total pure nitrogen) and two infiltration levels (W1 and W2: 3

and 5 mm/day) were applied. The above two-factor complete

experimental scheme was used for randomized design within the 22

plots. N fertilizers were employed as the base fertilizer (5 July), tiller

initiation fertilizer (14 July), and spikelet-developing fertilizer (14

August) with the proportion of 40%, 30%, and 30% of total pure

nitrogen, respectively. Phosphate (P) and potassium (K) fertilizers were

applied once as the base fertilizer. All plots were well managed with

practices commonly adopted by local farmers. The basic properties of

the test soils are listed in Table 1 (Chen et al., 2022a) and the location of

the experimental area and the arrangement of experimental treatments

are shown in Figure 1.
2.2 UAV based multispectral data acquisition
and processing

A DJI Innovation’s Phantom4-M (P4M) was employed as the

phenotyping platform in this study. It is equipped with a multispectral

camera with six CMOS, including one color sensor for visible light

imaging (RGB) and five monochrome sensors for multispectral

imaging. Each sensor has an effective pixel of 2.08 million, a lens

field angle of 62.7°, and a focal length of 5.74 mm. Specific parameters

of the sensor are shown in Table 2. The UAV-based multispectral

image data were obtained under clear and cloudless weather

conditions (10:00–14:00) at each rice growth stage. The UAV flew

at an altitude of 15 m, with a heading overlap of 85% and a sideway

overlap of 75%.

The multispectral original images of five bands acquired by each

UAV flight sortie were exported into the PIE-UAV software (Piesat

Information Technology Co., Ltd., China) to correct and splice into

field orthophoto. The production steps of the orthophoto were as

follows: (1) image matching: match the original images with 40,000

key and tie point limits by geographical location matching method;

(2) image aligning: import ground control point (GCP) information

and align the images with high adjustment accuracy, 0.05 pixel GCP

measurement accuracy, and 0.5 pixel connection point matching

accuracy; (3) DEM building: generate DEM data using a resolution

of 1 GSD; (4) tessellation building: generate the tessellation line based

on the Voronoi Geometry method; (5) orthophoto correction: correct
TABLE 1 Basic soil properties of different layers.

Soil layer (cm)
Soil particle fraction (%)

Bulk density (g cm−3) Organic matter (%) pH (H2O)
Sand Silt Clay

0–20 40.21 ± 9.06 38.22 ± 6.43 21.57 ± 3.26 1.36 ± 0.23 1.24 ± 0.06 6.94 ± 0.06

20–40 39.12 ± 6.31 39.16 ± 4.71 21.72 ± 2.63 1.40 ± 0.19 1.35 ± 0.06 6.97 ± 0.05

40–60 38.87 ± 5.46 39.86 ± 4.06 21.27 ± 2.83 1.43 ± 0.20 1.20 ± 0.08 6.85 ± 0.07

60–160 40.25 ± 5.02 38.12 ± 3.72 21.63 ± 2.41 1.48 ± 0.21 / 6.80 ± 0.04
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the orthophoto with automatically calculated image resolution and

the mosaic line mask method; (6) color balancing: set the number of

pyramid layers to 3 for color homogenization of mosaic images; and

(7) image mosaicking: resample the orthophoto by the cubic

convolution method and export into Geo-Tiff format. The final size

and resolution of the orthophoto were 9,012 × 5,126 pixels and 7.25

mm/pixel, respectively. ENVI 5.3 was used to perform layer stacking

on Tiff images of each band to obtain five-band multispectral images,

and the digital numbers (DNs) were transformed into reflectance by

radiometric correction.
2.3 Field data collection

Simultaneous field measurements were conducted within the

same day of the UAV multispectral image data acquisition,

including rice PH, SPAD, and photosynthetic parameters Pn, Tr,

and Gs. The PH values were measured with a soft ruler from the soil

ground to the leaf tip (cm). The SPAD values were measured by the

chlorophyll meter model (SPAD-502, Spectrum Technologies, Inc.,

NE, USA) and averaged from the measurements at the tip, middle,

and base of each leaf. The photosynthetic parameters were measured

by the portable photosynthesis system (LI-6800, LI-COR Inc., NE,
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USA) at 10:00–11:30 a.m. The measured leaf position was the middle

of the latest fully unfolded leaf at the jointing–booting stage, and the

middle of the panicle leaf at heading–flowering and ripening stages.

Each parameter was averaged from three representative plants within

a 30 cm × 30 cm quadrat, and three quadrats were measured for each

plot. Thus, 60 groups offield data were obtained for each growth stage

and 180 groups in the total growth season. The details of ground

measurements and UAV flights are listed in Table 3.

It should be noted that the weather conditions in early September

2021 were mainly cloudy and rainy; the measurement on 3 September

was the only relatively ideal condition. Therefore, the ground SPAD

and Pn measurement at the heading–flowering stage and

photography of UAV were affected to a certain extent.
2.4 Vegetation index and textural
index calculation

2.4.1 Vegetation index calculation
VI is established by the linear or nonlinear combination of different

spectral band reflectances, which is a common method to retrieve

physiological and biochemical indicators of crops (Zeng et al., 2022). A

set of 25 commonly used VIs were employed in this study to investigate

the relationship between VIs and rice photosynthetic parameters.

Threshold processing was firstly performed on the stacked

multispectral image to eliminate the influence of water on the

reflectance. The canopy reflectance of each band within the 30 cm ×

30 cm region of interest (ROI) was then averaged to calculate the VIs of

each plot. The involved VIs and formulas are listed in Table 4.

2.4.2 Textural index calculation
Gray-level cooccurrence matrix (GLCM) (Haralick et al., 1973)

was applied in this study to extract eight texture features from each

band in the stacked image, including mean (MEAN), variance (VAR),

homogeneity (HOM), contrast (CON), dissimilarity (DIS), entropy

(ENT), second moment (SEC), and correlation (COR), and a total of

40 texture features (with a 3 × 3 pixel window size) were obtained.
TABLE 2 Multispectral camera sensor parameters.

Band
name Abbreviations

Center
wavelength

(nm)

Band
width
(nm)

Resolution
(pixels)

Blue B 450 16 1,600 × 1,300

Green G 560 16 1,600 × 1,300

Red R 650 16 1,600 × 1,300

Red
edge

RE 730 16
1,600 × 1,300

Near
infrared

NIR 840 26
1,600 × 1,300
FIGURE 1

Study area and experiment treatments. W represents the leakage treatments (including W1: 3mm/day and W2: 5mm/day); N represents the nitrogen
treatments (including N1-N5: 0, 150, 225, 300 and 375 kg/ha total pure nitrogen, respectively); GCP is abbreviation of gourd control points for geometric
correction; Ground measurements in each sample point were averaged from 3 representative plants.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1088499
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wu et al. 10.3389/fpls.2022.1088499
The same ROI size with VIs was used to extract texture features and

the average value was taken. The extracted GLCM texture features

were numbered in the order of MEAN, VAR, HOMO, CON, DIS,

ENT, SEC, and COR of each band (in the order of band 1 to band 5)

from 1 to 40. The normalized difference textural index (NDTI),

difference textural index (DTI), and renormalized difference

textural index (RDTI) were selected to construct TI involving two

different texture features. The TI formulas are as follows:

NDTI =
T1 − T2

T1 + T2

DTI = T1 − T2

RDTI = T1−T2ffiffiffiffiffiffiffiffiffi
T1+T2

p .

where T1 and T2 represented two random different

texture features.
2.5 Modeling and validation

2.5.1 Machine learning regression methods
Linear regression (LR), support vector regression (SVR), gradient

boosting decision tree (GBDT), random forest (RF), and multilayer

perceptron neural network (MLP) were employed in this study for Pn

estimation. The gridsearch tuning results for the hyperparameters of

each model are listed in Table 5, where the unmentioned

hyperparameters were the default values.

(1) Linear regression: LR is a traditional algorithm based on

classical statistics, which is the most commonly used model in the

spectral inversion research because of its simple construction form

and strong interpretation. Combined with the correlation analysis, the

relationship between variables and target parameters can be directly

reflected. In this study, the LR model with the ordinary least squares

method was used for Pn multiple regression.

(2) Support vector regression: SVR is an important application

branch of support vector machine (SVM), which seeks the optimal

hyperplane by minimizing the total deviation of all sample points

from the hyperplane (Cortes and Vapnik, 1995). Unlike ordinary least

squares, the SVR model sets a threshold ϵ around the regression line

such that all data points within ϵ are not penalized for their errors.
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Kernel function, gamma, and C are crucial parameters in the SVR

model and have been tuned through the gridsearch method in the

sklearn package.

(3) Gradient boosting decision tree: GBDT is an iterative decision

tree algorithm with a “boosting” ensemble learning method

(Friedman, 2001; Wu et al., 2020). The basic learners [usually

classification and regression tree (CART)] in the GBDT model have

strong dependencies between each other and are trained by

progressive iterations based on the residuals. The results of all basic

learners are added together as the final output, which grant GBDT

great advantages in overfitting and computational cost fields and

reduce bias at the same time.

(4) Random forest: RF is one of the most popular tree algorithms

proposed by Breiman (2001) based on the bagging idea of ensemble

learning. RF applies the “bootstrap” method to retrieve samples to

train the N basic learners (usually CART) in parallel without

dependence. The final output of the RF model is derived by

combining results of the basic models with the “voting” method,

which makes the RF model insensitive to outlier variable values.

(5) Multilayer perceptron neural network: MLP is generally

composed of a fully connected input layer, a hidden layer, and an

output layer, in which the hidden layer can be multiple (Khoshhal and

Mokarram, 2012). As the most basic form of feed-forward neural

network, the MLP model has been widely applied in the analysis of

various complex problems and is also the foundation of CNN, deep

neural network (DNN), and other complex neural networks. A typical

three-layer MLP model was used in this study and parameters were

well tuned.

2.5.2 Model validation and evaluation
Sixty groups of multispectral data and field measured data in each

growth stage were divided into training and validation sets by the 10-

fold cross-validation method. Each time, 90% and 10% of the data

were employed as training and validation sets, respectively; this

process continues 10 times until all the samples have been

predicted once and only once. The model final performance was

averaged from the evaluation criteria in the cross-validation. To

comprehensively evaluate the model performance of Pn estimation,

the mean square error (MSE), mean absolute error (MAE), explained

variance score (EVS), and coefficient of determination (R2) were

considered in this study as the evaluation criteria. All model code
TABLE 3 Ground and UAV data acquisition details.

Date Growth stage
Temperature

Wind
speed Ground measure-

ments

UAV data acquisition

(°C) (m/s) Time Height
(m)

Resolution (mm/
pixel)

17 August 2021 Jointing–booting 30.38
1.90 PH, SPAD, Pn 10:45

a.m.
15.00 7.25

3 September 2021
Heading–
flowering

31.08
4.30 PH, SPAD, Pn 11:10

a.m.
15.00 7.25

21 September
2021

Ripening 30.05
2.60 PH, SPAD, Pn 11:00

a.m.
15.00 7.25
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TABLE 4 Vegetation indices and formula examined in this study.

Vegetation index Abbreviations and formula

NIRv(Zeng et al., 2019) NIRv = bNIR
bNIR − bR
bNIR + bR

Chlorophyll Index Green(Gitelson et al., 2005) CIgreen =
bNIR
bG

− 1

Chlorophyll Index Red Edge (Gitelson et al., 2005) CIred edge =
bNIR
bRE

− 1

Chlorophyll Vegetation Index (Gitelson et al., 2003) CVI =
bNIR � bR

b2G

Difference Vegetation Index (Vincini et al., 2008) DVI=bNIR−bR

Enhanced Vegetation Index (Jordan, 1969) EVI = 2:5
bNIR − bR

bNIR + 6bR − 7:5bB + 1

Greenness Index (Huete et al., 2002) GI =
bG
bR

Green Normalized Difference Vegetation (Smith et al., 1995) GNDVI =
bG − bR
bG + bR

Modified Chlorophyll Absorption in Reflectance Index (Gitelson et al., 1996) MCARI = (bRE − bR) − 0:2
(bRE − bG)
bRE=bR

Modified Nonlinear Vegetation Index (Daughtry et al., 2000) MNVI =
1:5(b2NIR − bR)
b2NIR + bR + 0:5

Modified Soil Adjusted Vegetation Index (Gong et al., 2003) MSAVI =
bNIR + 1−

0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2bNIR + 1)2 − 8(bNIR − bR)

p
Modified Simple Ratio (Goel and Qin, 1994) MSR =

bNIR=bR − 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bNIR=bR + 1

p
MERIS Terrestrial Chlorophyll Index (Chen, 1996) MTCI =

bNIR − bRE
bRE − bR

Modified Triangular Vegetation Index (Dash and Curran, 2004) MTVI =
1:5(1:2(bNIR − bG) − 2:5(bR − bG))ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2bNIR + 1)2 − (bNIR − 5

ffiffiffiffiffi
bR

p
)

p
− 0:5

Nonlinear Vegetation Index (Haboudane et al., 2004) NLI =
b2NIR − bR
b2NIR + bR

Normalized Difference Vegetation Index (Tucker et al., 1979) NDVI =
bNIR − bR
bNIR + bR

Optimization of Soil-Adjusted Vegetation Index (Rondeaux et al., 1996) OSAVI =
1:16(bNIR − bR)
bNIR + bR + 0:16

Renormalized Difference Vegetation Index (Roujean and Breon, 1995) RDVI =
bNIR − bRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bNIR + bR

p

Ratio Vegetation Index 1 (Birth and McVey, 1968) RVI1 =
bNIR
bR

Ratio Vegetation Index 2 (Xue et al., 2004) RVI12 =
bNIR
bG

Structure Intensive Pigment Index (Blackburn, 1998) SIPI =
bNIR − bB
bNIR + bB

Transformed Chlorophyll Absorption in Reflectance Index (Haboudane et al., 2002) TCARI = 3((bRE − bR) − 0:2(bRE − bG)
bRE
bR

)

Triangular Vegetation Index (Broge and Leblanc, 2001) TVI=60(bRE−bG)−100(bR−bG)

Visible Atmospherically Resistant Index (Gitelson et al., 2002) VARI =
bG − bR

bG + bR − bB

Visible Difference Vegetation Index (Zhang et al., 2019) VDVI =
2bG − bR − bB
2bG + bR + bB
F
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bB, bG, bR, bRE, and bNIR represent blue (450 ± 16 nm), green (560 ± 16 nm), red (650 ± 16 nm), red edge (730 ± 16 nm), and near-infrared (840 ± 26 nm) band reflectance, respectively.
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and evaluation criteria calculations were written in Python3.2 and

implemented in a laptop with Intel Core i7-9750H CPU @2.60 GHz,

NVDIA GeForce GTX 1660 Ti GPU, and 16 GB of RAM.

MSE =
1
no

n

i=1
yi − ŷ ið Þ2

MAE =
1
no

n

i=1
yi − ŷ ij j

EVS = 1 −
VAR yi − ŷ ið Þ
VAR yið Þ

R2 = o
n
i=1 ŷ i − �yð Þ2

on
i=1 yi − �yð Þ2

where yi , ŷ i and �yepresent the measured value, the mean

measured value, and the estimated value, respectively. n represents

the number of the results. VAR represents the variance of the results.

MSE and MAE are in the same unit with the measured value, ranging

from 0 (optimum value) to +∞ (worst value). EVS and R2 are

dimensionless, ranging from 0 (worst value) to 1 (optimum value).
3 Results

3.1 Rice photosynthetic traits and canopy
multispectral feature response to
different treatments

3.1.1 Rice plant height, SPAD, and net
photosynthetic rate

The PH, SPAD, and Pn of tested rice at the jointing–booting,

heading–flowering, and ripening stage are shown in Figure 2,

respectively. PH increased obviously with the increase of nitrogen

(N) application and advancement of growth stage, while it decreased

slightly with ear filling at the ripening stage (Figure 2A). When PH

reached the highest at the heading–flowering stage, the average rice

PH with N2–N5 level under W1 (low leakage) treatment was 10.11%,

14.51%, 18.53%, and 21.23% higher than that under the N1 level,

respectively, and 18.48%, 15.59%, 15.47%, and 15.59% higher than the

N1 level, respectively, for W2 treatment. PH under W2 (high leakage)

treatment was significantly higher than those under W1 treatment at

N1 and N2 levels in the jointing–booting and heading–flowering
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stage, respectively, but the difference was not obvious under other

N applications.

As shown in Figure 2B, SPAD generally showed a trend of initially

increasing (N1–N3) then decreasing (N3–N4) and finally ending up

with a small increase (N4–N5) with the increase of nitrogen

application under the same leakage conditions. The maximum

value of SPAD in each growth stage almost appeared at the N3

level, while the lowest value was found at the N1 level without N

application. The SPAD value reached the maximum at the heading–

flowering stage, and the average SPAD values of N2–N5 levels were

12.27%, 8.30%, 1.62%, and 10.29% higher than the N1 level for W1

leakage treatment and 1.44%, 3.60%, 0.36%, and 1.08% higher than

the N1 level for W2 leakage treatment, respectively. For the same N

application level, W1 leakage treatment could increase the SPAD

value of N1–N5 levels by −0.18%, 10.48%, 4.35%, 1.08%, and 8.91%,

respectively, compared with W2.

It can be seen from Figure 2C that the Pn of rice decreased with

the advancement of the rice growth stage. Pn under different N

treatments showed a generally similar change trend with SPAD,

increasing with the increase of N application at N1 to N3 levels and

reaching the maximum at N3, decreasing at N4, and reverting at the

N5 level [the Pn increase from N4 to N5 is not significant (p > 0.05)].

At the jointing–booting stage when photosynthesis was most

vigorous, the average Pn values under N2–N5 levels with W1

treatment were 9.78%, 21.74%, 8.69%, and 13.04% higher than the

N1 level, respectively, and 16.36%, 22.87%, 9.72%, and 17.16% higher

than the N1 level under the conditions of W2 treatment, respectively,

which indicated that excessive application of N fertilizer might inhibit

photosynthesis. Under the same N application level, the Pn with W1

treatment was slightly higher than that with W2 treatment, indicating

that low leakage intensity could promote leaf photosynthesis to a

certain extent.
3.1.2 Rice canopy multispectral
reflectance characteristics

Figure 3 illustrates the rice canopy multispectral reflectance of

blue (band 1), green (band 2), red (band 3), red edge (band 4), and

near infrared (band 5) with different treatments at three growth

stages. In general, the average reflectance value of all five bands

decreased as the growth stage progressed. As one of the most

representative features in the crop spectral curve, the band 5

reflectance value ranged from 0.337 to 0.465 at the jointing–booting

stage, while it decreased slightly to 0.327–0.449 at the heading–
TABLE 5 Tuned hyperparameters of models employed in this study.

Model Tuned hyperparameters

SVR kernel=‘rbf’; gamma= ‘auto’; C=1.0.

GBDT n_estimators=100;max_features=‘none’;max_depth=‘adaptive’.

RF n_estimators=100;max_features=‘none’;max_depth=‘adaptive’.

MLP hidden_layer_sizes= (100),; activation=‘relu’; solver=‘lbfgs’; learning_rate=0.001.
LR, SVR, GBDT, RF, and MLP represent linear regression, support vector regression, gradient boosting decision tree, random forest, and multilayer perceptron neural network models, respectively.
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flowering stage, and finally dropped to approximately 0.030 at the

ripening stage. Band 2 was the most intuitive band visible to the naked

eye that could represent the nutrient statue and growth stage of crops,

which reached a maximum of 0.160–0.221 at the jointing–booting

stage, decreased to 0.139–0.174 with heading and flowering, and

finally decreased to 0.027–0.038 with the yellowing of leaves and ears

at the ripening stage.

For the same N application level at the jointing–booting stage, the

average reflectance values of band 1, band 2, and band 3 under theW1

leakage treatment were generally lower than those under the W2

leakage treatment, except that W1N3 had higher band 1 and band 3
Frontiers in Plant Science 0876
values than W2N3. However, the average reflectance values of band 4

and band 5 showed opposite trends; specifically, W1 leakage

treatment could increase the reflectance of band 4 and band 5

compared with W2 treatment and the N3 level improved the most.

It could also be found from Figure 3A that lower leakage treatment

had a steeper increase from band 3 to band 4, which indicated the

better growth status. Under the same leakage treatment, the average

reflectance values of band 1 to band 4 generally presented a trend of

initially decreasing (N1–N3), then increasing (N3–N4), and finally

ending up with a small decrease (N4–N5), while the reflectance value

of band 5 increased with the N application level, but the law was not
B

C

A

FIGURE 2

PH, SPAD and Pn of rice response to different treatments at different stages. (A) PH represents plant height (cm); (B) SPAD is relative chlorophyll content;
(C) Pn represents the net photosynthetic rate (umol m-2s-1). W represents the leakage treatments (including W1: 3mm/day and W2: 5mm/day); N
represents the nitrogen treatments (including N1-N5: 0, 75, 150, 225 and 300 kg/ha total pure nitrogen, respectively). The above ground measurements
were conducted at the same time with UAV flight at 3 growth stages.
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obvious. Moreover, the average reflectance value of these five bands

did not show a certain rule in the heading–flowering stage and the

ripening stage, which might be due to the influence of rice heading

and flowering, here leaves and ear yellowing in the growth process on

the multispectral characteristics of the canopy.
3.2 Correlation analysis between VIs, TIs,
and Pn

Pearson’s correlation coefficients (r values) between the above 25

VIs and Pn at three growth stages are listed in Table 6. The code for r

value calculation and significance analysis was written in Python3.2

with the scipy package (1.20.3). Generally, the VIs had a better

relationship with Pn at the jointing–booting stage, but the r value

became worse as the growth stage advanced; however, it might be that

the number of samples was relatively small and therefore no VIs

passed the highly significant correlation test (p< 0.01). To be specific,

CIgreen, CVI, MNVI, NLI, OSAVI, RDVI, and RVI2 achieved a

significant positive correlation (p< 0.01) with Pn at the jointing-

boosting stage, with r value ranging from 0.3330 to 0.3893. NIRv,

DVI, EVI, MSAVI, MSR, NDVI, RVI1, SIPI, and TCARI also had a

satisfactory r value (p< 0.05) with absolute value between 0.2753 and

0.3262. At the heading–flowering stage, only CIgreen, RVI2, and SIPI

showed a significant relationship and NDVI, NLI, TCARI, and VDVI

had a relatively higher r value. When the crop proceeded to the

ripening stage, no VIs could achieve a satisfactory r value with Pn.

The VIs employed for Pn estimation were thus selected based on the r

value at different stages, and the selected VIs are shown in bold

in Table 6.

The NDTI, DTI, and RDTI were calculated using any two texture

features from NO. 1 to NO. 40 and the correlation thermal map in

Figure 4 was thus drawn according to the r value between TIs and Pn.
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Because the order of the two selected texture features was different,

the correlation r value in the figure presented positive and negative

axis symmetry. Taking the thermal map at the jointing–booting stage

as an example, it could be found that there were obviously deeper red

and blue lines in the DTI and RDTI figure, indicating that the DTI

and RDTI composed of any of the NO. 1 (MEAN1) and NO. 25

(MEAN4) features with the other feature had a better relationship

with Pn (r value mainly approximately 0.35 and 0.39, respectively).

Scattered hot spots with high r value could be seen in the RDTI figure,

but no dominant texture feature could be found. For each TI, the

feature combination with the highest correlation with Pn was selected

and the results at different growth stages are listed in Table 7.
3.3 Estimation rice Pn from VIs at different
growth stages

The accuracy comparison results between LR, SVR, GBDT, RF,

and MLPmodels based on the selected VIs are listed in Table 8 and all

criteria indices were calculated by the average of 10-fold cross-

validation results. At the jointing–booting stage, most VIs showed

good correlation with Pn and a total of 16 VIs were selected for

modeling; therefore, the models achieved the relatively highest

accuracy compared with those at other growth stages. Specifically,

GBDT achieved the highest average accuracy (with an MSE of 0.253

mmol m−2 s−1, an MAE of 0.414 mmol m−2 s−1, an EVS of 0.938, and

an R2 of 0.938), while SVR models attained the worst performance

(with an MSE of 2.512 mmol m−2 s−1, an MAE of 1.155 mmol m−2 s−1,

an EVS of 0.390, and an R2 of 0.383). RF, MLP, and LR models ranked

second, third, and fourth, respectively. Figure 5A also shows that the

Pn estimated value of GBDT was the closest to the measured Pn value

in each validation set. The Pn estimated values of LR and SVR models

were almost concentrated in the range of 24–27 mmol m−2 s−1; thus,
B CA

FIGURE 3

Average value of canopy band reflectance response to different treatments at different stages. (A-C) are the reflectance at jointing-booting, heading-
flowering and ripening stage, respectively. Band1-band5 represent blue (450±16 nm), green (560±16 nm), red (650±16 nm), red edge (730±16 nm), near-
infrared (840±26 nm) reflectance, respectively. W represents the leakage treatments (including W1: 3mm/day and W2: 5mm/day); N represents the
nitrogen treatments (including N1-N5: 0, 75, 150, 225 and 300 kg/ha total pure nitrogen, respectively).
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the estimation accuracy was not satisfactorily compared with GBDT,

RF, and MLP models, where the Pn values were relatively lower and

higher (inside the blue and red dashed circle). The correlation

between VIs and Pn gradually weakened and inputted VIs thus

decreased in number as the growth stage progressed; therefore, the

model estimation accuracy decreased to a certain extent without

ranking change. In detail, the LR model suffered the biggest loss in

estimation accuracy with an R2 value decreasing to 0.296 at the

heading–flowering stage and then to 0.125 at the ripening stage.

However, GBDT and RF models still showed good performance with

R2 values of 0.928 and 0.869 at the heading–flowering stage and 0.863

and 0.815 at the ripening stage, respectively. Figures 5B, C also

demonstrated that the GBDT and RF models could better describe

the relationship between VIs and Pn in the value full range at different

growth stages. Although the performance of the MLP model ranked
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third, the performance was not ideal when compared with GBDT and

RF models for both lower and higher PN value estimation. In

conclusion, the accuracy of modes for estimating Pn value at the

jointing–booting stage was relatively best and the GBDT model could

be highly recommended for Pn estimation during the rice whole

growth season.
3.4 Estimation rice Pn from fused VIs, TIs,
and basal growth index

In order to further improve the Pn estimation accuracy, TIs

(NDTI, DTI, and RDTI) and basal growth index (PH and SPAD)

were introduced based on the input VIs. The accuracy comparison

result of different models under different input combinations is shown

in Table 9. After adding the TIs inputs for Pn estimation, all models

performed higher accuracy at the jointing–booting stage with the

MSE of LR, SVR, GBDT, RF, and MLP decreasing by 0.090, 0.370,

0.126, 0.113, and 0.057 mmol m−2 s−1, respectively, and the R2

increasing by 0.022, 0.090, 0.031, 0.028, and 0.015, respectively. As

the basal growth index further increased, the final R2 of the employed

models increased to 0.792, 0.565, 0.987, 0.943, and 0.822, respectively.

It is possible that the basal growth index improved the model

accuracy slightly more than TIs because the difference in PH could

reflect the stress of crops to a certain extent, and SPAD is directly

related to chlorophyll content, which directly affects photosynthesis.

The same improvement effect of model accuracy could also be found

at the heading–flowering and ripening stages, and although the

improvement of GBDT and RF models was relatively small (with

R2 increasing to 0.062 and 0.031 for VIs + TIs input and 0.113 and

0.132 for VIS + TIs + PH and SPAD input), they were still the top two

models among the employed models. The greatest improvement

could be found in the LR model, with an R2 increase of 0.139 and

0.470 at the heading–flowering stage and 0.114 and 0.471 at the

ripening stage under the VIs + TIs and VIS + TIs + PH and SPAD

input combination, respectively. The accuracy of the SVR model also

had been improved greatly, but it still is the lowest among the five

models. In conclusion, both TIs and the basal growth index could

obviously improve the model accuracy for Pn estimation and the PH

and SPAD had a better effect compared with the TIs in this study,

which significantly improved the model performance at the heading–

flowering and ripening stages, especially for LR and MLP models.
4 Discussion

4.1 Relationship between rice growth and
canopy multispectral feature

The ground sample results showed that the SPAD and Pn

generally increased with nitrogen application (N1–N3 levels), then

decreased at the N4 level, and finally recovered at the N5 level under

the same leakage treatment at the jointing–booting stage, which also

indicated that proper N application could improve the

photosynthesis, while excessive N application not only had a poor

effect on photosynthesis, but also affected plant growth and increased
TABLE 6 Correlation coefficient (r value) between selected VIs and Pn.

VIs Jointing–booting
(n = 60)

Heading–flower-
ing (n = 60)

Ripening (n
= 60)

NIRv 0.3262* 0.2034 −0.0903

CIgreen 0.3893** 0.3490** 0.1693

CIred
edge

0.1938 0.1046 0.0649

CVI 0.3396** 0.1155 0.1605

DVI 0.3186* 0.1737 −0.1083

EVI 0.2803* 0.1333 −0.0949

GI −0.1549 −0.0196 0.0137

GNDVI −0.1473 0.1699 −0.0531

MCARI −0.0091 −0.0642 −0.095

MNVI 0.3342** 0.2119 −0.0798

MSAVI 0.3281* 0.2194 −0.0820

MSR 0.3157* 0.1905 0.0926

MTCI 0.1369 0.0886 0.0742

MTVI 0.1419 0.1113 −0.0846

NDVI 0.3178* 0.3166* 0.0370

NLI 0.3386** 0.2661* −0.0056

OSAVI 0.3330** 0.2622 −0.0487

RDVI 0.3342** 0.2259 −0.0746

RVI1 0.3136* 0.1038 0.1223

RVI2 0.3893** 0.3490** 0.1693

SIPI 0.3258* 0.3381** 0.0648

TCARI −0.2753* −0.3014* −0.2131

TVI −0.1262 −0.2094 −0.1258

VARI −0.0984 0.0632 −0.0685

VDVI −0.1881 0.2746* −0.0680
* and ** represent significant level p< 0.05 and p< 0.01, respectively. The number is the sample
size of the data. VIs corresponding to the bolded value were selected as the inputs for machine
learning modeling at different growth stages.
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risk of contamination during leakage and drainage. This phenomenon

was similar to that found by Cisse et al. (2020). It might due to the fact

that there was no significant difference in Rubisco activity and non-

photochemical quenching (NPQ) between the N4–N5 and the N3

level; thus, excessive energy could not be dissipated by NPQ, leading

to oxidative stress, resulting in a decrease in Pn when excessive

nitrogen was applied. An opposite trend could be found for canopy

multispectral reflectance as the N application increased. Band 1 to

band 4 generally decreased when N application increased from the

N1–N3 level, while they slightly increased at the N4 level then

decreased again at the N5 level; however, band 5 reflectance

consistently increased with N level, which was consistent with

previous studies on other crops Qiu et al. (2015). Generally, crops

with good growth have a lower reflectance and a steeper increase from

the red to the NIR band; thus, the variation trend of the canopy

reflectance was consistent with SPAD and PN, which also provides a

theoretical basis for the inversion of photosynthetic characteristic

parameters using VIs.
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4.2 Limitations and suggestions on Pn
estimation using VIs and TIs in this study

Based on the result and analysis in Section 3.1.1, the relationship

between VIs and Pn decreased with the growth stage, which might be

due to the influence of heading and flowering, although panicle

photosynthesis is also an important part of crop canopy

photosynthesis and contributes significantly to grain formation.

However, due to the limitation that the photosynthetic

measurement equipment used in this paper could only be used to

measure leaves, the canopy photosynthesis was thus approximately

the photosynthetic capacity of the included leaves. Therefore, after

rice heading and flowering, the spectral reflectance of the canopy was

affected to a certain extent and the correlation based on the above data

decreased significantly. In order to improve the estimation accuracy

of Pn at the heading–flowering stage, the image segmentation should

be carried out first to remove the panicle reflectance image.

Meanwhile, the method of canopy photosynthesis measurement
B

C

A

FIGURE 4

Correlation coefficient between Pn and TIs with different textural features combination. (A-C) are the correlation coefficient values at jointing-booting,
heading-flowering and ripening stage, respectively. NDTI, DTI, RDTI represent normalized difference textural index, difference textural index and
renormalized difference textural index, respectively. X-axis and Y-axis legends are the texture features in order of NO.1-40. The coloration in the thermal
map is based on the correlation (r value) between TIs and Pn.
TABLE 7 Compositions of selected TIs and its correlation with Pn.

TIs/stages
Jointing–booting Heading–flowering Ripening

Combination r Combination r Combination r

NDTI MEAN4, HOMO4 0.4361 COR2, HOMO1 0.4052 ENT2, DIS3 0.3526

DTI MEAN4, DIS2 0.4042 MEAN2, COR1 0.3650 COR5, DIS3 0.3348

RDTI MEAN4, COR5 0.4169 MEAN2, COR1 0.4016 COR5, DIS3 0.3808
frontie
NDTI, DTI, and RDTI represent normalized difference textural index, difference textural index, and renormalized difference textural index, respectively. The texture features mean, variance,
homogeneity, contrast, dissimilarity, entropy, second moment, and correlation extracted by the GLCM method are abbreviated as MEAN, VAR, HOM, CON, DIS, ENT, SEC, and COR, respectively.
The number after the abbreviation represents the band where the feature is extracted.
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and the effect of panicle on photosynthetic contribution and

reflectance should be revised and improved in future studies.

According to the correlation analysis results of TIs during the

whole growth season in Figure 4, it could be concluded that most of
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the dominant texture features were extracted from band 1 to band 3,

while the TIs constructed by the features extracted from band 4 and

band 5 were not that satisfactory. Specifically, MEAN and COR

texture features were more included in the optimal features for

NDTI, DTI, and RDTI construction, because MEAN represents the

average of moving windows containing targets and backgrounds,

which can smooth the image and reduce the interference of

background factors, while COR can reflect the local gray-level

correlation in the image and distinguish the differences of image

texture in all directions. In addition, window sizes of 6 × 6, 9 × 9, and

12 × 12 were also employed in the GLCM for textural feature

extraction; however, the performance was not much different from

that of the 3 × 3 window size, which might be due to the high

resolution (4.5 mm/pixel) of each pixel in the image. Therefore,

improving the resolution of visible images to extract higher-quality

TIs might be an economical and practical approach to improve the

accuracy of Pn estimation.
4.3 Influence of input combination on Pn
estimation performance

The model performance under the different input combinations

of VIs, VIs + TIs, and VIs + TIs + PH and SPAD concludes that the

fusion of VIs and TIs could effectively improve the accuracy of Pn

estimation because the VIs contain the canopy reflectance features

and are more sensitive to the nutrition variations, while the TIs could

better reflect the difference in canopy structure. The results were also

consistent with previous studies (Liu et al., 2019; Zhang et al., 2021) in

that this fusion combination could improve the estimation accuracy

of biomass, LAI, nitrogen nutrition, and potassium nutrition and
TABLE 8 Model performance for Pn estimation based on VIs.

Growth
stage Model MSE (mmol

m−2 s−1)
MAE (mmol
m−2 s−1) EVS R2

Jointing–
booting

LR 1.859 1.128 0.543 0.543

SVR 2.512 1.155 0.390 0.383

GBDT 0.253 0.414 0.938 0.938

RF 0.521 0.604 0.872 0.872

MLP 0.942 0.777 0.768 0.768

Heading–
flowering

LR 4.165 1.612 0.298 0.296

SVR 4.388 1.589 0.261 0.258

GBDT 0.425 0.505 0.928 0.928

RF 0.774 0.691 0.869 0.869

MLP 1.948 1.06 0.671 0.671

Ripening

LR 2.413 1.296 0.125 0.125

SVR 2.293 1.061 0.205 0.169

GBDT 0.377 0.507 0.863 0.863

RF 0.511 0.610 0.815 0.815

MLP 1.490 0.930 0.460 0.460
LR, SVR, GBDT, RF, and MLP represent linear regression, support vector regression, gradient
boosting decision tree, random forest, and multilayer perceptron neural network models,
respectively.
B

C

A

FIGURE 5

Comparison of estimated and measured Pn values of different models at certain stages. (A-C) are the comparison of estimated and measured Pn values
at jointing-booting, heading-flowering and ripening stage, respectively. LR, SVR, GBDT, RF and MLP represent linear regression, support vector
regression, gradient boosting decision tree, random forest and multilayer perceptron neural networks model, respectively. Pn represents the net
photosynthetic rate (umol m-2s-1). The dashed blue and red circle in each figure are used to compare the fitting between the estimated and measured
value when Pn value is low and high, respectively.
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accumulation. Furthermore, the addition of PH and SPAD brought

higher accuracy, which could attribute its success to the high

correlation between PH and N nutrition status, SPAD and

chlorophyll content, brought by the obvious difference of 5 N

treatment. To sum up, more different kinds of data could introduce

more direct or indirect related features, and it is also suggested that

stacking and blending ensemble learning methods (Wu et al., 2021)

could be employed to combine the model ability of feature extraction

and analysis based on different principles in future research to

improve the model accuracy for Pn estimation, which is also the

purpose and significance of developing agricultural big data and

agricultural intelligent models.
5 Conclusion

This paper studied and revealed the responses of canopy

multispectral band reflectance and rice net photosynthetic rate (Pn)

to different nitrogen applications and leakage treatments through

different growth stages under controlled irrigation and drainage

schemes. The relationship between VIs, TIs, and Pn based on the

UAV multispectral image was comprehensively analyzed and focused

on. The performance of LR, SVR, GBDT, RF, and MLP models for Pn

estimation under different input combinations was evaluated and

compared at the jointing–booting, heading–flowering and ripening

stages. The results indicated that the selected VIs and TIs had a

relatively better correlation relationship with Pn at the jointing–

booting stage, while only a moderate correlation at the heading–
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flowering stage and an unsatisfactory correlation at the ripening stage

could be found. Therefore, the employed models generally had a

better performance during the jointing–booting stage and the

accuracy decreased as the growth stage progressed. Among the five

used models, GBDT and RF models achieved the highest and most

stable accuracy in the whole growth season and could be highly

recommended for Pn estimation in the paddy field. Meanwhile, the

fusion of VIs with TIs and basal growth index could significantly

improve the model accuracy, and the plant height (PH) and SPAD

had a better effect on performance improvement compared with

NDTI, DTI, and RDTI employed in this study. The techniques and

results presented in this paper could be valuable for rice field-scale

photosynthetic monitoring, which could assist further stress detection

and yield prediction.
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Class-attention-based lesion
proposal convolutional neural
network for strawberry
diseases identification

Xiaobo Hu1,2, Rujing Wang1,2,3*, Jianming Du2, Yimin Hu2,
Lin Jiao2,4 and Taosheng Xu2*

1Science Island Branch, University of Science and Technology of China, Hefei, Anhui, China, 2Institute of
Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei,
Anhui, China, 3Institute of Physical Science and Information Technology, Anhui University, Hefei,
Anhui, China, 4School of Internet, Anhui University, Hefei, Anhui, China
Diseases have a great impact on the quality and yield of strawberries, an accurate

and timely field disease identification method is urgently needed. However,

identifying diseases of strawberries in field is challenging due to the complex

background interference and subtle inter-class differences. A feasible method to

address the challenges is to segment strawberry lesions from the background and

learn fine-grained features of the lesions. Following this idea, we present a novel

Class-Attention-based Lesion Proposal Convolutional Neural Network (CALP-

CNN), which utilizes a class response map to locate the main lesion object and

propose discriminative lesion details. Specifically, the CALP-CNN firstly locates the

main lesion object from the complex background through a class object location

module (COLM) and then applies a lesion part proposal module (LPPM) to propose

the discriminative lesion details. With a cascade architecture, the CALP-CNN can

simultaneously address the interference from the complex background and the

misclassification of similar diseases. A series of experiments on a self-built dataset

of field strawberry diseases is conducted to testify the effectiveness of the

proposed CALP-CNN. The classification results of the CALP-CNN are 92.56%,

92.55%, 91.80% and 91.96% on the metrics of accuracy, precision, recall and F1-

score, respectively. Compared with six state-of-the-art attention-based fine-

grained image recognition methods, the CALP-CNN achieves 6.52% higher (on

F1-score) than the sub-optimal baseline MMAL-Net, suggesting that the proposed

methods are effective in identifying strawberry diseases in the field.

KEYWORDS

convolutional neural network, strawberry disease identification, complex background,
similar diseases, class response map, main lesion object, lesion details
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1 Introduction

Strawberry, often praised as the “Queen of Fruits”, is rich in

vitamin C and antioxidants that support heart health and blood sugar

control (Hannum, 2004). It is becoming a new income-producing

agricultural product compared with traditional crops. However,

strawberries are very delicate and highly susceptible to infection in

natural environment. They are prone to various infectious diseases

caused by fungal, bacterial and viral pathogens (Iqbal et al., 2021). Up

to now, many strawberry diseases have been identified during the

whole cultivation period of strawberries. These diseases can occur in

strawberries’ fruit, leaf, and stem, such as gray mold, powdery mildew

and anthracnose. Therefore, disease management is a routine and

labor-intensive requirement in strawberry cultivation. Currently, the

identification of strawberry diseases is empirically conducted by

growers, especially in China. The various types of diseases pose a

great challenge to the accurate identification of the growers.

Meanwhile, the manual manners are expensive, laborious and

subjective, making them hard to wildly apply in modern

agriculture. Hence, the current strawberry disease management

cannot meet the need for automatic monitoring in agricultural

practice (Hu et al., 2021). Furthermore, most strawberry growers

lack professional knowledge to distinguish the diseases, resulting in

the use of incorrect and overdose fungicides in disease management.

The abuse of fungicides greatly harms the health of consumers and

has caused substantial economic loss (Wang et al., 2021b). There is an

urgent need for a fast and effective method to identify diseases in

strawberry farming.

In general, the visual symptoms, including color, texture, shape

and location of the lesions are important evidence for disease

identification (Sankaran et al., 2010; Cruz et al., 2019; Liang et al.,

2019). Given these visual features, various methods based on

computer vision (CV) technology have been developed to identify

different crop diseases. The CV-based methods for crop disease

identification can be summarized into two streams. In the first

stream, the traditional CV-based methods (such as color space

transform, histogram of oriented gradient and gray level co-

occurrence matrix [GLCM]) are applied to extract lesion features

from diseased spots (Kim et al., 2009; Revathi and Hemalatha, 2014;

Kaur et al., 2016; Johannes et al., 2017). Then, a classifier (e.g., linear/

logistic regression, random forest) is constructed to yield classification

results based on the extracted features (Huang, 2007; Kaur et al., 2016;

Iqbal et al., 2018; Dwivedi et al., 2021). For instance, three

phalaenopsis seedlings diseases had been successfully identified by

an artificial neural network with the GLCM extracted texture features

(Huang, 2007). Besides, (Johannes et al., 2017) designed two

descriptors of their segmented hot-spot blobs to validate the

effectiveness of the related traditional CV-based methods in

identifying diseases at the early stage under a complex field

background. The two descriptors were used to describe the color

and texture features of the blob lab channels, respectively. These

studies have proved that traditional CV-based methods are effective in

recognizing the diseases of crops in both laboratory and field

environments. However, these methods rely on the manual

selection of discriminative features among diseases. The

discriminative feature selection in field disease identification is very

difficult and time-consuming (Zhao et al., 2022). Furthermore, the
Frontiers in Plant Science 0285
identification accuracy could dramatically decrease with a slight

change in the input image dataset (Arsenovic et al., 2019). These

shortcomings result in the traditional CV-based methods rarely

adopted in the practice of crop disease identification. The

convolutional neural network (CNN) and its variants lead the

second stream for crop disease identification. The CNN-based

models can automatically extract basic features like color, texture,

edge, and location information. Meanwhile, they are competent to

obtain more abstract semantic information from the image of crop

diseases (Zeiler and Fergus, 2014). Besides, these CNN-based models

have more flexible architectures that can be applied as feature

extractors or classifiers. In recent studies, the CNN-based models

have become the preferred method to identify crop diseases (Liang

et al., 2019; Hu et al., 2021; Yang et al., 2022; Zhao et al., 2022). Earlier

studies apply the classical CNN models, such as AlexNet (Krizhevsky

et al., 2012), GoogLeNet (Szegedy et al., 2015), and ResNet (He et al.,

2016) on some specific crop disease datasets and found the most

suitable model for the disease identification tasks (Mohanty et al.,

2016; Srdjan. et al., 2016; Ferentinos, 2018; Too et al., 2019; Picon

et al., 2019). The related models achieve preferable recognition

accuracy on their disease datasets. However, these studies fail to

consider the complexity of the practical application of field disease

identification. The main challenges of field disease identification are

the complex background and a variety of diseases with similar

symptoms (Barbedo, 2018). These models cannot be applied to

crop cultivation practice. Consequently, some researches aim at

reducing the misclassification caused by complex backgrounds and

diseases with similar symptoms.

A simple yet effective method to eliminate the influence of

complex background on disease identification is to segment the

lesion region from their background. Several CNN-based semantic

segmentation methods have been proposed to mitigate the adverse

impact of the background. (Ngugi et al., 2020) proposed a

segmentation network, KijianiNet, to segment tomato leaves from

the natural field conditions. (Hu et al., 2021) and (Wang et al., 2021a)

adopted U-Net (Ronneberger et al., 2015) and DeepLabV3+ (Chen

et al., 2018) in the first stage of their models to segment the diseased

leaves from the field scenes, respectively. The related experimental

results showed that extracting diseased regions from the background

can greatly improve the identification performance of the models.

However, CNN-based semantic segmentation methods require pixel-

level supervision. Such pixel-level annotation by experts is time-

consuming, laborious and costly since plenty of lesions have varied

shapes. On the topic of similar disease identification, few studies have

proposed effective approaches to tackle this issue. (Cruz et al., 2019)

applied transfer learning and data augmentation technologies to

enhance the ability of the classical CNN models (e.g., AlexNet,

GoogLeNet and ResNet) to distinguish the grapevine yellow from

its similar diseases (such as grapevine leafroll and stictocephala

bisonia). The experimental results confirmed that the data

augmentation technologies were beneficial for classical CNN

models to identify grape diseases. Because a suitable data

augmentation strategy could increase the differences among similar

diseases. However, the strategy was not easy to obtain, it required trial

and error. The research of (Yang et al., 2022) was a development in

identifying similar diseases of field crops. Similar diseases were

classified by increasing the weight of discriminative lesion features.
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To locate lesion details and learn discriminative lesion features among

similar diseases, they proposed a self-supervised multi-network fusion

classification model. However, the locations of the lesion details were

randomly generated. Furthermore, all the obtained lesion details need

to be fed to a classifier to assess the confidence of these regions as

lesions, which greatly increased the time consumption of the model.

Image-based automatic disease identification is a basic need of

modern large-scale cultivation agriculture. Field disease identification

is challenging due to the complex background and similar symptoms

among diseases. To address these problems, this paper focuses on

strawberry field disease identification and proposes a novel Class-

Attention-based Lesion Proposal Convolutional Neural Network

(CALP-CNN) to precisely identify strawberry diseases in the field.

The CALP-CNN method first utilizes a class-attention mechanism to

enhance the localization of discriminative lesion feature. Two specific

modules (i.e., the class object location module, COLM, and the lesion

part proposal module, LPPM) are designed to recursively segment the

main lesion object and lesion detail from an input image. Finally, the

features of the original, main lesion object and lesion details are

concatenated for final identification. To our knowledge, the CALP-

CNN method is the first attempt to simultaneously address the

challenges posed by the complex background and similar symptoms

to crop disease identification in the field. The main contributions are

summarized as follows:
Fron
• We introduce a new class attention mechanism (i.e., the class

response map) to improve the ability of the CNN to localize

the discriminative lesion features.

• We address the challenges of field disease identification by

developing a novel CALP-CNN that simultaneously removes

thenoisy background and effectively learns discriminative lesion

representations among similar diseases in an unsupervised way.

• A series of experiments are conducted on the field strawberry

disease dataset to evaluate the effectiveness of the CALP-CNN.

The experimental results show that the proposed method has

better performance than other state-of-the-art fine-grained

methods on field strawberry disease identification.
2 Material and methods

2.1 Material

In this paper, the strawberry diseases with high incidence in

planting practice were taken as our research objects. To this end, a

strawberry common disease dataset (SCDD) was constructed. The

SCDD was collected in two ways: field-collection and internet

crawling. We firstly shot 1,326 disease images of three strawberry

varieties (Fengxiang, Nvfeng and Hongyan) in ChangFeng County,

Anhui Province, China. To increase the diversity of the dataset, the

images were deliberately captured in the field at different angles and

focal lengths. The second part was from the internet. A crawler was

applied to download more than 5,000 images of field strawberry

diseases. The collected images were manually screened one by one to

discard the poor-quality samples (obscure and the resolution less than

224×224). The disease images in the dataset were annotated by three
tiers in Plant Science 0386
experts. One was responsible for labeling the dataset, and the other

two were responsible for reviewing the results. Finally, a high-quality

dataset of strawberry diseases with 3,411 images was constructed for

downstream analysis. The SCDD contained 11 common diseases and

healthy type. Table 1 shows detailed information of the SCDD. In

addition, the typical symptoms of 11 common strawberry diseases are

shown in Figure 1.

In our experiments, the dataset was randomly divided into a training

set, a validation set and a testing set in the ratio of 6:2:2 (2,047 images for

training, 682 images for validation, and the remaining 682 images for

testing). In the training process, we adopted the online data augmentation

strategies to increase the diversity of the dataset and the robustness of the

models. Specifically, the processes of Normalize, RandomHorizontalFlip,

RandomVerticalFlip, and RandomResizedCrop (crop to 224×224) were

applied during training.
2.2 Methods

In this paper, a class-attention-based lesion proposal CNN is

presented to settle the main challenges of CNN-based methods in

field disease identification, i.e., the complex background and similar

diseases. The framework of CALP-CNN is shown as Figure 2. A

cascade architecture is designed for extracting the region-based

features from the input images at three scales including the raw

image at coarse-grained level, the main lesion object at medium-

grained level and the lesion detail images at fine-grained level.

Furthermore, a series of modules are developed to extract class-

related features in each layer of the cascade architecture. The detailed

information of the CALP-CNN is described as follows:

First, a CNN backbone is repeatedly applied to extract region-

based features from the input images in three scales. The CNN

modules in three scales are given the same parameters. Second, the

features are fed forward to three classifiers to predict three probability

scores. The computed probability scores represent the prediction
TABLE 1 List of strawberry common disease dataset.

Category label Strawberry disease Number

0 healthy 509

1 leaf scorch 287

2 gray mold 332

3 powdery mildew 344

4 brown spot 215

5 fertilizer disorder 308

6 fusarium wilt 145

7 white leaf spot 259

8 calcium deficiency 431

9 magnesium deficiency 197

10 anthracnose 198

11 bacterial leaf spot 186

Total 3411
fro
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confidence of each disease category. Meanwhile, a class response map

(CRM) module is constructed to generate a class attention matrix

based on the region-based features. Here, the class attention matrix is

defined as a class response map in this paper. Third, two different

modules (COLM and LPPM) are developed to detect lesion regions

based on the corresponding attention matrix from different scales of

the input image, respectively. The COLM is used for locating the main

lesion object in the image at coarse-grained level, while the LPPM

proposes lesion details in the image at medium-grained level. Once an

attended region is located, we segment the region and zoom in it to

the raw image size. The located regions can be employed to generate a

series of highly reliable lesion features. As a whole, the CALP-CNN

takes advantage of ensemble learning to integrate the features from

three scales for final identification. Moreover, the CALP-CNN

combines an intra-scale cross-entropy loss and an inter-scale

pairwise ranking loss to ensure rapid convergence.

2.2.1 Class response map
A series of class activation maps can be generated by the product

of CNN feature maps with their corresponding class scores. The

studies of (Zhou et al., 2016; Ding et al., 2019) have proved that the

class-related information in the class activation maps is effective for

locating discriminative regions in an image. In this paper, we obtain

discriminative information of lesions based on the class activation

maps and construct a class response map (also denoted as class
Frontiers in Plant Science 0487
attention matrix) to localize the objects of interest. Figure 3 shows the

generation process of a class response map.

First, a pre-trained CNN backbone is applied to extract the feature

maps of a 3-channel image I∈R3×H×W , where the H ×W is the spatial

size of the image. The extracted feature maps are represented as

S∈RC×Hf×Wf ,where C is the channel number and Hf × Wf is the spatial

size of the feature maps. Second, the feature maps S are fed forward to

a classifier consisting of a fully connected (FC) layer and a softmax

layer. A vector p∈R^{N_c}.(NC is the pre-set category number of the

strawberry diseases) can be computed by the classifier as the predicted

probability score of each disease. In addition, the weights of the FC

layer are denoted as wfc∈RC×Nc . Third, a CRM module is designed to

generate the class-related features maps. It establishes a new

convolutional layer with the weight of the wfc (i.e., the formed

convolutional layer achieves the same weights as the FC layer).

Therefore, it possesses a strong ability to extract class-related

features. Based on the constructed convolutional layer, a set of

class-related feature maps Q={Qi}(Qi∈RHf×Wf,i=1,…,Nc) can be

generated from the extracted S. The Qi represents the i-th channel.

The features of the Qi are most relevant to category i. In the training

process, the CALP-CNN applies the ground truth label to select the

most class-related feature map of the convolutional layer as the class

response map. That is to say, if the image is annotated as category c,

the class response map is Qc. In the testing process, there is no ground

truth label of the input image. Follow as (Ding et al., 2019), the CALP-
FIGURE 1

The typical symptoms of 11 common strawberry diseases and one healthy type. The annotated labels of the diseases are one-to-one correspondence
with Table 1.
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FIGURE 3

The generation process of class response map.
FIGURE 2

The framework of the proposed CALP-CNN. A cascade architecture is designed to construct the lesion details at different scales. A CNN-based
backbone is repeatedly used to extract features from the coarse raw image to lesion detail images. The CRM module generates the class response map
from the features. The COLM and the LPPM can obtain the coordinates of the lesion object and the lesion details, respectively. All features (the stripes
marked with purple, green, and red) are concatenated for final identification. The classification loss Lcls (cross-entropy loss between ground truth label Y*

and predict label Yr, Y°, Yd
i ,Y

c) and the pairwise ranking loss Lrank (the loss between raw probability pr, object probability p°, and lesion probabilities pdi )
are combined to optimize the network and make it converge.
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CNN adopts the entropy of the top 5 predicted probabilities to

evaluate the lesion information in their corresponding class-related

maps. Let p̂ ∈ R5be the subset of p for top 5 predicted class

probabilities. We compute the entropy as

H = −o
5

i=1
pi · logpi, pi ∈ p̂ (1)

and construct the class response map Qc based on the following

strategy,

Qc =

cM1, if  H ≤ ϵ

o
5

i=1

cMi, otherwise

8><
>: (2)

where M̂ ∈ R5�Hf�Wf is the class-related feature maps correspond

to p̂ and e is a threshold (empirically set to 0.2).

2.2.2 Class object location module (COLM)
In most cases, the CNN backbone could extract many irrelevant

and noisy features that are adverse to disease identification, especially

for a complex background (Barbedo, 2018). To cope with this issue,

we design the COLM to locate the main lesion object and discard the

irrelevant background region. This module is inspired by the

discriminative region location methods of the fine-grained image

classification and retrieval domain (Wei et al., 2017; Ding et al., 2019;

Zhang et al., 2021). The pipeline of COLM is shown as Figure 4

The class response map Qc is resized to the same size as the input

image I by a bilinear interpolation algorithm. The interpolation result

is denoted as Q
0
c ∈ RH�W . Ding et al. have concluded that the larger

value in the class response map, the more related of the corresponding

pixel to the class (Ding et al., 2019). In most cases, we have no prior

knowledge about the location of the lesion objects since most crop

disease datasets only have image-level supervision.

�q =  o
H
i=1oW

j=1Q
0
c(i, j)

H �W
(3)

Then, a mask map M can be generated according to Eq.4.

M(i, j)  = ​
1,      if  Q

0
c(i, j) > �q

       0,       otherwise

(
(4)

As shown in Figure 4, the object regions are marked red in the

mask map. We can observe some noisy regions (the top-left and

bottom-right) in the mask. In fact, the noisy regions could be non-
Frontiers in Plant Science 0689
lesion parts, whereas they are activated by the complex background.

Fortunately, the sizes of the noisy regions are typically smaller than

the main lesion object. Flood-fill algorithm is a common method to

connect neighboring and related elements of a matrix. In this paper,

we apply it to test the connectivity of all the points in M and find out

the largest connected area. The largest connected area is the location

of the main lesion object. The minimum enclosing rectangle of the

largest connected area is denoted as M. We adopt the top-left point

(xtl, ytl) and bottom-right point (xbr, ybr) to represent the location of

M = M [xtl:xbr,ytl:ybr]. With the interpolation algorithm, the pixels in

the mask map M are one-to-one corresponding to the pixels in the

input image I. Therefore, the location of M can be used to extract the

main lesion object and discard the noisy background in I. As a result,

the main lesion object Iobj is computed as:

Iobj = I½xtl , xbr , ytl : ybr� (5)

Based on the ablation experiments in section 4.2, the COLM

module can effectively improve the classification accuracy.
2.2.3 Lesion part proposal module (LPPM)
Identifying similar diseases in the field is another critical problem for

strawberry cultivation, especially for thosediseaseswhichhavehomologous

backgrounds and subtle inter-class differences (e.g., the diseases at the early

stage and the diseases occurring in the same part). Strengthening the

differences between diseases is the key approach to address this issue (Cruz

et al., 2019). The similar disease identification is in accord with the

characteristics of the fine-grained image recognition (FGIR) (Zheng et al.,

2017). The studies of FGIR have concluded that the discriminative features

always lie in thedetails (Fuetal., 2017;Recasens et al., 2018;Dinget al., 2019;

Zhang et al., 2021). Hence, we present the LPPM to localize the

distinguishing lesion features in the details. The design idea of this

module is derived from the region proposal algorithm (RPA) (Ren et al.,

2015). The RPA is an effective method to propose candidate regions for

object detection. The candidate region is called anchor in object detection.

Nevertheless, the RPA requires an additional bounding box to annotate the

location of the object. The bounding box annotation process is labor-

intensive and subjective. Here, we take the average value of all pixels in the

anchor as a confidence ofwhether the region in the anchor is a lesiondetail.

In this way, the RPA can be generalized to identify detailed lesions in the

images without bounding box annotations.

The pipeline of LPPM is shown as Figure 5. The LPPM takes the

output (i.e., class response map) of a CRM module as input. We

denote it as Mc∈RHf×Wf . First, the LPPM propose the coordinates of
FIGURE 4

The pipeline of COLM. A class response map is generated from a CRM module. The pixels in the class response map are compared to their average value
to generate a mask map. Some non-lesion areas are activated by the complex background in the mask map.
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the anchors onMc. By default, we use 3 aspect ratios (1:1, 2:1, 1:2) and

1 scale (Hf/2), yielding k=3 anchors at each pixel of Mc. The total

number of generated anchors is k × Hf×Wf. Each anchor is an eligible

candidate for the lesion detail. The coordinates of the anchors are

denoted by their top-left point ðx0tl , y
0Þ
tl and bottom-right point ðx0br , y

0Þ
br

Second, we calculate the average value of an anchor at Mc as follows:

�a =
ox

0
br

i=x
0
tl
oy

0
br

j=y
0
tl

Mc i, jð Þ
x
0
br − x

0
tl

� �� y
0
br − y

0
tl

� � (6)

�a is the confidence of the anchor to be a lesion detail region. A

higher value of ā represents the higher probability of the anchor being

a lesion detail. Third, we pick out the top-N anchors according to

their confidence. In practice, the top-N anchors are adjacent and

contain almost the same parts (Ren et al., 2015). For this reason, the

directly selection of top-N anchors will cause information redundancy.
Fron
Input: The coordinate list of the anchors; The

corresponding confidence list of the anchors; The

IoU threshold, Output: The top-N anchor

listCombined the confidence list and the

coordinate list with an element as ½�a,  xtl , ytl , xbr , ybr�.
The result is a confidence_coordinate_list;

confidence_coordinate_list  Sort the combined

list in descending order with the confidence �a;

anchor_list  Initialize an empty list of

selected anchors;while Length(anchor_list)< N and

Length(confidence_coordinate_list) > 0 doA Pop

out the first anchor element from the confidence_

coordinate_list;If anchor_list is empty thenAdd A

to the anchor_list;else Calculate the IoU between A

and the other anchors in the anchor_list;if IoU<

threshold then IoU< threshold Add A to the

anchor_list;return the anchor_list (is the top-

N list);
ALGORITHM 1.

In this paper, we use the intersection over union (IoU) to indicate

the redundant ratio of two anchors. The IoU between anchor A2 and

anchor A2 is computed as:

IoU =
A1 ∩ A2

A1 ∪ A2
(7)
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The IoU ratios between the anchor with the highest confidence

and the other anchors are calculated. The scores of neighboring

anchors will be suppressed when their IoU ratios are higher than

the pre-set threshold. The threshold is set to 0.7 in this paper. The

selection process of the top-N anchors is described in Algorithm 1

Note that N is a hyper-parameter which represents the defined

number of lesion details. From the ablation experiments (see

Section 4.2), the CALP-CNN achieves the best classification results

when N is set to 5. Finally, we map the coordinate of the anchors in

the top-N list to the input image I with the stride (s = H/Hf) of the

backbone network. The location of the lesion Idetail is generated as:

Idetail =  I½s*xtl : s*xbr , s*xbr : s*ybr� (8)
2.2.4 Optimization strategy
The loss function of the proposed CALP-CNN is composed of

two parts, including an intra-scale cross-entropy loss Lcls and an inter-

scale pairwise ranking loss Lrank. The total loss function for an image I

is defined as follows:

L(I) =  Lcls(I) + Lrank(I) (9)

The Lcls and Lrank are expressed in Eq. 10 and Eq. 11, respectively.

Lcls Ið Þ = Lcls Y
r ,Y*ð Þ + Lcls Y

o,Y*ð Þ + Lcls Y
c,Y*ð Þ

+o
N

i=1
Lcls Ydi ,Y*

� �
(10)

where Yr, Y°, and Yd are the predicted label vectors from the raw,

object and detail images. Yc is the predicted label vector using the

concatenated features and Y* is the ground truth label vector. N is the

number of lesion details. Lcls is the chief loss function, which is

dominant in the parameter optimization of the CALP-CNN.

Lrank Ið Þ = Lrank pr , poð Þ +o
N

i=1
Lrank po, pdi

� �
(11)

where pr, p° and pd denote the prediction probabilities from the

raw, object and detail images, respectively. To be specific, the ranking

loss of the probabilities pi and pj is defined as:

Lrank(p
i, pj) = max 0, pi − pj + d

� �
(12)

where d is a constant (by default, d=0.05). The ranking loss can

force the object image to acquire higher predicted probabilities than
FIGURE 5

The pipeline of LPPM. First, a class response map is generated from a CRM module. Second, the RPA is applied to proposal candidate lesion regions from
the class response map. Third, a non-maximum suppression is utilized to pick out the top-N lesions.
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the original image. Meanwhile, the detail images are forced to acquire

higher predicted probabilities than the object image. In other words,

the Lrank takes a coarse prediction as reference and gradually compels

the network toward more discriminative region by forcing the finer-

scale images to achieve more confident predictions.
2.3 Evaluation metrics

In this paper, the Accuracy, Precision, Recall, and F1-score are

adopted to evaluate the performance of the proposed CALP-CNN.

The Accuracy, Precision, Recall, and F1-score of category i are defined

as follows:

Accuracyi =
TPi + TNi

TPi + FPi + TNi + FNi
(13)

Precisioni =
TPi

TPi + FPi
(14)

Recalli =
TPi

TPi + FNi
(15)

F1 − scorei =
2Precisioni · Recalli
Precisioni + Recalli

(16)

where TPi and TNi denote the number of samples labeled as

category i and non-category i that are correctly classified, respectively.

FPi denotes the number of samples labeled as non-category i but

classified as category i. FNi denotes the number of samples labeled as

category i but classified as non-category i.

For a multi-class classification task, the overall Accuracy,

Precision, Recall, and F1-score can be defined with the average of all

the categories in their binary classification case. The formulas of the

overall Accuracy, Precision, Recall, and F1-score are defined as follows:

Accuracy = o
Nc−1
i=0 Accuracyi

Nc
(17)

Precision = o
Nc−1
i=0 Precisioni

Nc
(18)

Recall = o
Nc−1
i=0 Recalli

Nc
(19)

F1 − score = o
Nc−1
i=0 F1 − scorei

Nc
(20)

where the Nc represents the number of categories of strawberry

diseases in the SCDD.
3 Experimental results and analysis

We conduct a series of experiments on the testing set of the SCDD

to verify the effectiveness of the proposed CALP-CNN to identify

strawberry diseases by filtering the complex background features and

learning the discriminative features among similar diseases. The top-
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N of the anchors (lesion details) is set to 5 for the LPPM in

our experiments.

Baselines: Because the CALP-CNN is an attention-based model

and our SCDD only has image-level supervision, here we select six

weakly-supervised fine-grained image recognition methods as

baselines and compare their disease identification performance with

the CALP-CNN method. The six baselines are described in detail

as follows:
• MA-CNN (Zheng et al., 2017): Multi-attention convolutional

neural network, which uses channel grouping to learn

different part features.

• RA-CNN (Fu et al., 2017): Recurrent attention convolutional

neural network, which recurrent learns the finer-scale features

by an attention proposal network.

• MMAL-Net (Zhang et al., 2021): Multi-branch and multi-

scale attention network, which utilizes a saliency map to

locate the main object and propose discriminative parts.

• SSN (Recasens et al., 2018): A saliency-based sampling layer

for a neural network that samples the raw image based on a

saliency map with a non-uniform method.

• TASN (Zheng et al., 2019): Trilinear attention sampling

network first uses a trilinear function to enhance saliency

values, then samples the raw images with these enhanced

values.

• S3N (Ding et al., 2019): Selective sparse sampling network,

which captures diverse and fine-grained detail from the raw

image based on a class response map with a selective sparse

method.
All the baselines achieve state-of-the-art on their fine-grained

datasets [e.g., CUB-200-2011 (Welinder et al., 2010), and FGVC

Aircraft (Maji et al., 2013)].

Implementation details: The proposed CALP-CNN is

implemented on the open-source package Pytorch (Paszke et al.,

2019), which can flexibly implement various CNN-based models. A

pre-trained ResNet-50 on the ImageNet dataset is used as the

backbone for extracting the feature maps. For a fair comparison, all

baselines are re-implemented with this backbone. We use the

stochastic gradient descent (SGD) to optimize network parameters.

All the models are trained for 60 epochs with a batch size of 16. The

initial learning rate is set to 1e-3 and will be dropped by 10 at the 20-

th and 40-th epoch. The momentum is set to 0.9 and the weight decay

is set to 1e-4. The input images are preprocessed to size 224×224. All

the experiments are performed on a dell T5820 computer workstation

with NVIDIA GeForce RTX 3090 GPU and Intel Xeon W-

2200 processor.
3.1 Classification results

We compare the performance of the proposed CALP-CNN with

the baselines on the testing set of the SCDD. The classification results

are shown in Table 2. The CALP-CNN achieves more accurate

classification results on all metrics. The CALP-CNN significantly

outperforms the backbone (ResNet-50) by 9.49% on the F1-score. The

overall F1-score of the CALP-CNN is higher than the saliency-based
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models, for example, 9.03% improvement for SSN, 7.05% improvement

for TASN, and 6.52% improvement for MMAL-Net. Additionally, the

proposedCALP-CNN is also superior to the recurrent attentionmethod

(RA-CNN), the channel grouping attention method (MA-CNN), and

the class attention method (S3N). Specifically, it improves 8.59%, 8.4%

and 6.55% compared with RA-CNN, MA-CNN, and S3N on F1-score,

respectively. Note that the improvement of our proposed model is

contributed by the introduction of the COLM and LPPM. The COLM

can filter the noisy background features, while the LPPM provides

discriminative lesion details.
3.2 Ablation experiments

In this paper, four ablation experiments are conducted to

investigate the role of 1) different network branches, 2) lesion

location methods (saliency map vs. class response map), 3) the

number of lesion details, and 4) the ranking loss on field disease

identification accuracy. The experiments show that the CNN with

three branches and five lesion details (top-5) achieves the best

performance. The best model is equipped with the class response

map for lesion location and the ranking loss for model optimization.

3.2.1 Contribution of different branches
As shown in Figure 2, the CALP-CNN consists of three main

branches, i.e., the raw branch (R-branch), the object branch (O-

branch), and the (lesion) details branch (D-branch). In our

experiments, we temporarily remove different branches to survey the

contribution of each branch. The F1-score of the ablation experiments is

recorded in Table 3. The following conclusions can be drawn: 1) The F1-
Frontiers in Plant Science 0992
score of the CALP-CNNwith all branches (R+O+D) is 91.96%. It drops to

87.94% when omitting the O-branch. While it drops to 88.42% when the

D-branch is removed. These results demonstrate that both the O-branch

and theD-branchare capableof locating informative lesion regions. 2)The

O-branch has the highest score (88.97%) among the three branches. It

shows that the locating and segmenting operation of the class-related

lesion object from the complex background can effectively eliminate the

influenceof thebackgroundondisease identification in thefield. 3)TheD-

branch represents detailed information on lesions but does not yield the

highest score among the three branches. It demonstrates that the

discriminative lesion detail features are not all-inclusive for disease

identification. Contextual information is also a key feature for disease

identification. On the other hand, the D-branch could provide essential

information to the other branches. The overall accuracy of the network

features is improved from 83.92% to 87.94% in R+D branches setting and

87.08% to 91.21% inO+Dbranches setting, respectively. Furthermore, the

D-branch can collect important lesion details for similar disease

identification cases. 4) Note that the absence of the O-branch results in a

bigger loss (4.02%, from 91.96% to 87.94%) than the D-branch (3.54%,

from 91.96% to 88.42%), suggesting that removing the background

features is critical for disease identification in the field. 5) The

concatenated features of the three branches achieved the best

performance. It indicates that the share of the object and the lesion

detail features can enhance the lesion features and suppress the influence

of background features. The disease surrounding context information of

disease is preserved in the concatenated features.

3.2.2 Role of different location methods
We re-implement the COLM and LPPM with saliency-based

attention (Zhang et al., 2021) to locate the main object and the
TABLE 2 The classification performance of different methods on the SCDD.

Attention Mechanism F1-score Accuracy Precision Recall

ResNet-50 (He et al., 2016) – 82.47 84.35 83.49 82.13

RA-CNN (Fu et al., 2017) part attention 83.37 85.71 84.56 83.38

MA-CNN (Zheng et al., 2017) channel attention 83.56 85.82 84.49 83.92

MMAL-Net (Zhang et al., 2021) saliency attention 85.44 87.11 85.79 85.47

SSN (Recasens et al., 2018) saliency attention 82.93 84.40 84.01 82.91

TASN (Zheng et al., 2019) saliency attention 84.91 87.10 85.72 84.88

S3N (Ding et al., 2019) class attention 85.41 86.70 86.56 84.72

CALP-CNN class attention 91.96 92.56 92.55 91.80
The bold and underlined values indicate the highest and sub-optimal scores in the metric, respectively.
TABLE 3 The contribution of each branch.

Experimental Setting R-branch(%) O-branch(%) D-branch(%) Concatenation(%)

R branch 82.47 – – 82.47

R+O branches 82.66 88.97 – 88.42

R+D branches 83.92 – 83.01 87.94

O+D branches – 87.08 84.37 91.21

R+O+D branches 82.44 88.12 86.05 91.96
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lesion details. The saliency map adopts a class-agnostic attention

mechanism. Different from the saliency map, the class response map

is a class-aware attention method. From Table 4, we can observe that

the class-aware method has 5.57% higher scores than the class-

agnostic method. It further demonstrates that the class-aware

method can effectively localize class-related regions.

Number of lesion details: Ten experiments are performed to

investigate the relationship between the classification result (F1-score)

and the number of lesion details. As shown in Figure 6, the F1-score

improves as the number of lesion details increases. However, the F1-

score declines when the number of lesion details exceeds 5. It

demonstrates that the disease classification performance is not

positive to the number of lesion details. The underlying reason is that

the contextual information is diluted in numerous detailed lesions.

3.2.3 Effect of ranking loss
To explore the impact of the ranking loss on classification results,

we remove the ranking loss and only retain the cross-entropy loss to
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optimize the parameters of the CALP-CNNmodel. The best F1-score in

60 epochs training is 91.30%, which is 0.66% lower than the original

model. The introduction of ranking loss could assist the two modules

(COLM and LPPM) in localizing more discriminative regions.
3.3 Results of similar diseases identification

In practice, some of the diseases of strawberries perform similar

visual appearance and contextual information, which could result in

false identification among similar diseases. In order to evaluate the

effectiveness of the proposed CALP-CNN for distinguishing these

similar diseases, two kinds of similar strawberry diseases are chosen in

the SCDD for experiments, including (1) the diseases at early stage,

(2) the diseases occurring on fruits (e.g., gray mold, powdery mildew,

anthracnose). We generate two sub-datasets corresponding to the two

kinds of similar strawberry diseases. The disease samples from the two

sub-datasets are shown in Figure 7.

The validation results of the trained CALP-CNN and the ResNet-

50 on the two sub-datasets are recorded in Table 5. Both of the

methods do not achieve the ideal identification performance.

However, our CALP-CNN outperforms the ResNet-50 by 5.85% on

disease at early stage dataset and 6.73% on disease on fruit dataset,

respectively. Overall, the results suggest that the identification of

similar strawberry diseases is challenging. While the discriminative
TABLE 4 Comparison between different location methods.

F1-score(%) Comments

saliency map 86.39 class-agnostic attention

class response map 91.96 class-aware attention
FIGURE 6

Relationship between the classification accuracy (F1-score) and the number of lesion details.
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lesion detail features provide helpful information to improve the

identification performance.
3.4 Qualitative evaluation of lesion
localization performance

Because most of the strawberry datasets (including the SCDD) are

image-level annotations. It is difficult to quantitatively evaluate the

location accuracy of the main lesion object and the lesion details at the

pixel-level. Here, we follow the study of (Wei et al., 2017) to conduct a

qualitative evaluation to evaluate the accuracy of the main lesion

object and lesion detail detection. We randomly pick out 3 groups of

diseased images from the testing set for each strawberry disease and

visualize the identification results of the lesions. The experimental

results are shown in Figure 8. In Figure 8, the first column of each

group is the input image, and the subsequent two columns are the

location results of the main lesion object and lesion details of the

image, respectively. Note that the images of lesion detail have been

amplified to the same size as their input images. Based on the results

of the main lesion objects, we can observe that the main lesion objects

are all identified in the predicted bounding boxes of the COLM

(group 1: 11/11, group 2: 11/11, group 3: 11/11). Furthermore, the

predicted boxes contain contextual information by persevering the

local background of the main lesion objects. In addition, most lesion

details of the diseases can also be predicted by the LPPM (group 1: 54/
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55, group 2: 52/55, group 3: 55/55). In our experiments, the false

predicted lesion areas occur in the images which have only one lesion

area and the size of the lesion is relatively small (e.g., line 7, column 3

of group 2).
4 Discussions and conclusions

Existing methods for crop disease identification in the field are

not sufficiently accurate because of their poor ability to eliminate the

interference from the background and extract discriminative features

among similar diseases. Detecting and segmenting the lesion region

from the disease image is a simple yet effective way to reduce the

influence of the complex background. Meanwhile, learning

discriminative features from the lesion details is beneficial for the

identification of similar diseases. The CNN-based semantic

segmentation methods can effectively segment the lesion regions

from the complex background. Hence, recent studies use semantic

segmentation networks to segment lesion regions from the

background as the first step of their models (Hu et al., 2021; Wang

et al., 2021a). The segmentation performance of the networks highly

relies on the amount of pixel-level annotated data. The pixel-level

annotation is time-consuming, laborious and expensive, which

restricts the applications of CNN-based segmentation methods.

Besides, many studies have shown that the CNNs can localize

discriminative regions from the input image (Selvaraju et al., 2017;

Dabkowski and Gal, 2017; Wei et al., 2017; Ding et al., 2019).

However, not all the located regions are useful for disease

identification. The regions, which are activated by the complicated

background, are adverse for disease identification (Barbedo, 2018).

Therefore, it is necessary to filter out the most useful region from the

located regions. The identification of similar diseases is also a

challenging task. Because the discriminative details between the

similar diseases are too subtle to be well-represented by the CNNs.
FIGURE 7

The examples of the similar diseases in the SCDD.
TABLE 5 The performance of the CALP-CNN and the ResNet-50 on the
similar disease datasets.

Dataset Amount/Categories ResNet-50 CALP-CNN

early stage 324/10 59.87 65.72

on fruit 79/3 69.30 76.03
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Data augmentation technologies can increase the differences among

similar diseases. Nevertheless, the increment is not obvious (Cruz

et al., 2019). In addition, a suitable augmentation strategy is not

straightforward and requires trial and error. Hence, data

augmentation technologies are not an appropriate solution for

similar disease identification. Fortunately, there are many

similarities between crop similar disease identification and FGIR.

The FGIR focuses on how to effectively represent the discriminative

features between the subordinate classes (Ding et al., 2019).

Therefore, the discriminative region localization and feature

representation methods in FGIR can be extended to crop similar

disease identification.

In this paper, we cite the field strawberry disease identification as

our study object and explore innovative methods to address the

challenges caused by the complex background and similar diseases.

First, we enhance the ability of the CNN backbone to localize

discriminative regions through a new class-attention-based

mechanism (i.e., class response map). Second, we construct the

COLM based on the flood-fill algorithm to filter out the most

useful lesion region from the complex background. Third, we raise

a new lesion part proposal method (i.e., the LPPM) to propose the

discriminative lesion details based on the RPA. The COLM and

LPPM are connected in series to form a Class-Attention-based
Frontiers in Plant Science 1295
Lesion Proposal Convolutional Neural Network (CALP-CNN),

which can simultaneously address the challenges caused by complex

background and similar diseases in field disease identification.

A series of experiments are conducted on the constructed field

strawberry common disease dataset to testify the effectiveness of the

CALP-CNN in eliminating the interference from the complicated

background and distinguishing similar strawberry diseases. The

classification result on F1-score reaches 91.96%, which is greatly

higher than other methods, showing that the proposed model

outperforms other state-of-the-art methods in the view of field

strawberry disease identification. In addition, the ablation results

on F1-score drop to 87.94% and 88.42%, respectively, when the

COLM and LPPM branches in the CALP-CNN are removed. It

indicates that both background feature elimination and

discriminative lesion detail feature representation are indispensable

for field disease identification.
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Introduction: The cultivation and sale of medicinal plants are some of the main

ways to meet the increased market demand for plant-based drugs. Panax

notoginseng is a widely used Chinese medicinal material. The growth and

accumulation of bioactive constituents mainly depend on a satisfactory

growing environment. Additionally, the occurrence of market fraud means

that care should be taken when purchasing.

Methods: In this study, we report the correlation between saponins and climate

factors based on high performance liquid chromatography (HPLC), and

evaluate the influence of climate factors on the quality of P. notoginseng. In

addition, the synchronous two-dimensional correlation spectroscopy (2D-

COS) images of near infrared (NIR) data combined with the deep learning

model were applied to traceability of geographic origins of P. notoginseng at

two different levels (district and town levels).

Results: The results indicated that the contents of saponins in P. notoginseng

are negatively related to the annual mean temperature and the temperature

annual range. A lower annual mean temperature and temperature annual range

are favorable for the content accumulation of saponins. Additionally, high

annual precipitation and high humidity are conducive to the content

accumulation of Notoginsenoside R1 (NG-R1), Ginsenosides Rg1 (G-Rg1),

and Ginsenosides Rb1 (G-Rb1), while Ginsenosides Rd (G-Rd), this is not the

case. Regarding geographic origins, classifications at two different levels could

be successfully distinguished through synchronous 2D-COS images combined

with the residual convolutional neural network (ResNet) model. The model

accuracy of the training set, test set, and external validation is achieved at 100%,
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and the cross-entropy loss function curves are lower. This demonstrated the

potential feasibility of the proposed method for P. notoginseng geographic

origin traceability, even if the distance between sampling points is small.

Discussion: The findings of this study could improve the quality of P.

notoginseng, provide a reference for cultivating P. notoginseng in the future

and alleviate the occurrence of market fraud.
KEYWORDS

Panax notoginseng, active components, climate factors, synchronous 2D-COS
images, deep learning model, geographical traceability
Introduction

Because of the high price of precious Chinese medicinal

materials, some criminals often blend pure substances with less

expensive materials in order to earn illegal profits (Liu et al.,

2019; Ichim and de Boer, 2021). Recently, as a popular medicinal

material for the treatment and prevention of diseases and for

keeping healthy, Panax notoginseng has also been affected by the

same situation. A large variety of P. notoginseng is sold on the

market, which results in some illegal traders mixing the cheap

and sub-quality materials with the genuine product, the inferior

with the superior (Yao et al., 2021; Yu et al., 2022; Cui et al.,

2022). As a common Chinese medicinal material for alleviating

blood stasis, hemostasis, swelling, and pain relief, P. notoginseng

is found in the dried roots of Panax notoginseng (Burk) F. H.

Chen of the Araliaceae family. It is especially suitable for patients

with hypertension, hyperlipidemia, hyperglycemia, heart and

cerebrovascular diseases, and patients who have low immunity,

anemia, and are prone to falling and sprains (Hawthorne et al.,

2022; Jiang et al., 2022; Zheng et al., 2022). Additionally, it

improves blood circulation, moisturizes the skin, and slows

down aging (Peng et al. , 2017; Teseo et al. , 2021).

Phytochemical and pharmacological studies of P. notoginseng

have demonstrated that its main biologically active components

are dammarane-type saponins consisting of protopanaxadiol

and protopanaxatriol glycosides (Qiao et al., 2018; Marianela

et al., 2021).

The composition of P. notoginseng in nature is complex and

is highly related to the cultivation years, processing methods,

geographical origin, etc. (Wang et al., 2012; Bai et al., 2021; Wan

et al., 2021; Zhang et al., 2021). The collection location points of

samples are an important factor of geographical origin, which

may be related to the content of active components and the

market price of P. notoginseng. Therefore, it is important to be

able to trace the origins of P. notoginseng. Climate factors

(temperature, light, rainfall) in different geographical collection

location points are some of the main factors that cause quality
02
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changes in medicinal plants (Liu et al., 2022). Every type of

Chinese medicinal material has its own growth preferences,

which results in different suitable growth areas. Therefore, it is

key to analyze the correlation between the content accumulative

of active components and climate factors, and comprehensively

assess the influence of climate factors on the quality of P.

notoginseng. In addition, Yunnan province (especially

Wenshan Prefecture) is one of the important growth and

export geographic origins of P. notoginseng. To prevent

confusion about the contents of the P. notoginseng that is on

the market, it is essential to develop a simple and quick method

of geographical origin traceability.

In recent studies, methods have been reported for the

traceability of the geographic origins of P. notoginseng, such as

sensory analysis (macroscopic and microscopic), inductively

coupled plasma mass spectrometry (ICP-MS), electronic

tongue or electronic nose, and isotope (Tian et al., 2021; Liang

et al., 2021; Ji et al., 2022). However, these methods have some

disadvantages, such as large variation and subjectivity (sensory

analysis), and being expensive, complex, time-consuming, and

labor-intensive. Infrared (IR) spectroscopy has the advantages of

being rapid, simple, and pollution-free. It has occupied a unique

position in the analytical field since its creation, which illustrates

its capabilities. With the continuous development of modern

technology and the increasing demand for quality detection, IR

technology has been widely applied in the research of Chinese

medicinal materials (Li et al., 2018; Zhou et al., 2020), food

(Wildea et al., 2019; Candoğan et al., 2021), biology (Huber et al.,

2021; Kirschbaum et al., 2021), chemistry (Cura et al., 2021;

Mishra et al., 2021), and other fields. Among its applications, an

IR-based approach to understand the complex composition of

P. notoginseng, where chemometrics and machine learning

models have been developed, has gained great popularity in

terms of the possibility of authenticating and tracing the origins

of P. notoginseng. However, traditional one-dimensional (1D)

linear spectra may not be specific enough and can create overlaps

of data, which can limit the amount of useful information
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extracted from data. Being more versatile, two-dimensional

correlation spectroscopy (2D-COS) could be used to overcome

this drawback and extract useful information from a series of

spectra under chemical or physical stimuli (Noda, 1989; Noda,

1990). On the other hand, with the improvement in data

processing and analysis, deep learning has become a promising

research algorithm for the qualitative detection of Chinese

medicinal materials, and it could be used as an auxiliary

method for the study of 2D-COS images (Lecun et al., 2015;

Jogin et al., 2018). Compared with other methods to trace

geographic origins, 2D-COS images combined with the deep

learning model do not require complex procedures, such as data

processing and feature extraction. 2D-COS is more focused on

processing problems of simple digital images, which are easier,

faster, and more representative than analyzing complex spectral

data itself.

In the past, several reports have studied the traceability of the

geographic origins of P. notoginseng geographic origins. For

example, Bai et al. (2021) generated high performance liquid

chromatography (HPLC) characteristic fingerprints of

P. notoginseng extract samples by a multi-wavelength fusion

profiling (MWFP) method. They used the averagely linear

quantified fingerprint method (ALQFM) and an unsupervised

statistical method based on fusion fingerprint matching to

identify the geographical origins of P. notoginseng. Chen et al.

(2018) preprocessed through standard normal variables (SNV)

and first derivative (FD) for near infrared (NIR) spectra and

established a partial least-squares discriminant analysis (PLS-

DA) model to quickly identify the geographic origins of

P. notoginseng. Similarly, Zhou et al. (2020) carried out a

single-spectrum analysis and multi-sensor information fusion

strategy for Fourier transform mid-infrared (FT-MIR) and NIR

data combined with the multivariate classification algorithm to

successfully identify the geographic origins of P. notoginseng. In

contrast, another study used ultraviolet-visible (UV-Vis)

spectrophotometry, Fourier transform infrared (FT-IR)

spectrum and HPLC combined with chemometrics to

determine the total flavonoid content of P. notoginseng from

different geographic origins. The total flavonoid content was

analyzed and predicted by the standard linear equation of rutin

and the orthogonal signal corrected partial least squares

regression (OSC-PLSR) model, respectively (Li et al., 2017).

Meanwhile, some articles have studied the influence of

ecological factors on the growth of P. notoginseng. For

example, He et al. (2016) applied fingerprints of stable oxygen

isotope to study the “Dao-di” authenticity of P. notoginseng and

trace its geographical origins. The dominant ecological factors

and their weights affecting the taproot d18O of P. notoginseng

were studied through correlation analysis, stepwise regression

analysis, partial correlation analysis, and path analysis. A total of

16 main ecological factors affecting the taproot d18O of

P. notoginseng were screened from 49 ecological factors, and

the size, direction, decisive factors, restrictive factors, and the
Frontiers in Plant Science 03
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dominant factor were analyzed. Additionally, Yue et al. (2022)

proposed the theory of P. notoginseng regionalization modeling.

The ecological suitability of P. notoginseng under current and

future climates was analyzed by the maximum entropy model

(MaxEnt). The study found that the current most suitable

habitat for P. notoginseng was mainly located in southwest

China. Global climate change is not conducive to the

development of P. notoginseng planting, and climate warming

may lead to serious shrinkage of the growth areas of

P. notoginseng. Considering future climate change, Yunnan

Province was still the most suitable habitat area for

P. notoginseng, and Sichuan Province was an important

potential suitable habitat area. The research provided a new

perspective on the ecological suitability of other medicinal plants

in the southwest mountainous area. Nevertheless, none of these

reports were based on HPLC to analyze the correlation between

active component content accumulation and climate factors to

alleviate the influence of climate factors on the quality of

P. notoginseng. In addition, there are no reports of using 2D-

COS images of NIR data combined with deep learning models to

trace the geographic origin of P. notoginseng at the levels of

district and town.

In this study, to ensure authenticity and traceability, all

P. notoginseng samples were collected from cultivation bases.

HPLC combined with the principal component analysis (PCA)

model was used to analyze the differences of P. notoginseng

between different districts and towns. Correlation analysis and a

partial least squares regression (PLSR) model were constructed

to research the correlation between the content accumulation of

the main components and climate factors of P. notoginseng and

to analyze the effect of climatic factors on the variation of

saponin content under different growth environments. On this

basis, in order to prevent the alteration of the product on the

market and associated consumer confusion, the geographic

origin traceability of P. notoginseng from different district

levels was further explored by converting raw spectral data

into 2D-COS images combined with the ResNet model. In

addition, the reliability of the model was verified by

identifying the geographic origin of P. notoginseng samples

from different town levels. The findings of this study could

improve the quality of P. notoginseng, provide a reference for

cultivating P. notoginseng in the future, and alleviate the

phenomenon of market fraud.
Materials and methods

Sample information

As the main objective of the present study was to evaluate the

quality of P. notoginseng under the influence of different

environmental factors and discrimination the geographical

origins. The sampling points were selected from more dispersed
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locations to be more representative and to allow an analysis of

environmental factors. Therefore, the geographical origins were

divided into four parts: DDB (Northeastern Yunnan), DDN

(Southeast Yunnan), DX (Western Yunnan), and DZ (Central

Yunnan). In addition, considering the Yunnan Province,

especially Wenshan Prefecture is the main geographical origin

of P. notoginseng, it is more meaningful and representative for

analysis. Therefore, four town-level samples from Wenshan

Prefecture, Yunnan Province were selected for analysis and

validation, respectively YS (Yanshan, Wenshan Prefecture), XC

(Xichou, Wenshan Prefecture), MG (Maguan, Wenshan

Prefecture) and QB (Qiubei, Wenshan Prefecture).

A total of 229 P. notoginseng samples were collected from the

cultivation base of Yunnan province, which meant the

authenticity and traceability of the sample could be guaranteed.

The altitude ranged from 1150 to 2382 m a.s.l. Detailed sample

information of the geographical origins, collection locations, and

the corresponding amount have been demonstrated in Figure 1

and Table S1. The collected samples were cleaned with tap water.

The different parts were divided and dried at 50°C, then weighed

and recorded. Among them, part of the main roots used as the

main research object of this research was pulverized and passed

through 90 mesh screen. All samples were packaged and labeled in

zip-lock bags and stored at room temperature for further use.
Chemicals reagents

All methanol and acetonitrile used for HPLC analysis were

of HPLC grade, and the other chemicals were of analytical grade.
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Notoginsenoside R1 (NG-R1), Ginsenosides Rg1 (G-Rg1),

Ginsenosides Rb1 (G-Rb1), and Ginsenosides Rd (G-Rd) were

supplied by the China Institute of Food and Drug Verification

(Beijing, China). The UPTL-II-40L system (Chengdu, China)

was applied for water purification.
Climate factors sources

The climate factors (bioclimatic variables and elevation

information) were bioclimatic variable layers, which included

Bio 1-Bio 19 and a spatial resolution of 30 s. These variables were

downloaded from WorldClim (https://www.worldclim.org/),

and the detailed information has been shown in Table S2. The

data (“.tif” format) were opened in ArcGIS 10.6 software, and the

climate factor indicators corresponding to the GPS coordinates

of P. notoginseng at different sampling points were extracted by

the “Sampling” tool.
Reference climate factors and
chemical analysis

Screening for climate factors
The 19 climate factors may correlate with each other. To

avoid co-linearity among these climate factors, a Pearson

autocorrelation analysis of the 19 climate factors was

conducted by the SPSS 20.0 statistical program. In this study,

climate factors that were higher than correlation coefficient (|R|
FIGURE 1

Detailed sample information of the geographical origins, collection locations, and picture of P. notoginseng.
frontiersin.org

https://www.worldclim.org/
https://doi.org/10.3389/fpls.2022.1009727
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2022.1009727
>0.8) and less significant for the distribution of P. notoginseng

were excluded.

Determination of climate factors weights
Principal component analysis (PCA) is an exploratory data

analysis technique that uses a smaller number of principal

components to represent changes in data sets. The original

variables of centered and scaled may be on different

measurement scales. After the orthogonal transformation of

the normalization, principal components (PCs) were calculated

as linear combinations of the original variables. The first PC

accounts for more variance and the remaining PC for most likely

to occupy the variance not covered by the first PCs. In general,

the value of the cumulative variance should be greater than 80%

(variance criterion) to be meaningful (Margaritis et al., 2020).

PLSR analysis is a multivariate linear regression method that

could provide information on the correlation structure of

variables and structural similarity or dissimilarity. It can be

used to discover correlation models between predictor variables

and evaluate the response variables on an equal number of

samples. In this study, the variables with more influence in the

corresponding models were selected by PLSR (Farrés et al.,

2015). The variable importance in projection (VIP) selection

method can summarize the effect of each X variable on the PLS

model and select the variable that contributes most to the

explanation of y variance. In general, the VIP scores were

greater than 1 (the average of the squared), which indicates

that the variable makes a significant contribution to the model

(Tran et al., 2014). In this study, PCA was used to classify the

four saponins in P. notoginseng. The linear regression equations

of NG-R1, G-Rg1, G-Rb1, G-Rd, and the selected climate factors

were established by the PLSR method. Then, according to the

linear regression equation, the normal distribution plots of VIP

value were obtained. The VIP index value was normalized as the

weight coefficient of each climate factor.
HPLC analysis

The Shimadzu Nexera LC-40 (Kyoto, Japan) device was

equipped with an LC-40 binary pump, the SIL-40 automatic

sampling device was connected to an SPD-M40 detector, and a

Shim-pack VP-ODS column (250 × 4.6 mm, 5 µm) was applied.

The mobile phase contained A (water) and B (acetonitrile). The

gradient program was as follows: 0-5 min, 20% B; 5-10 min,

20%-25% B; 10-20 min, 25%-28% B; 20-30 min, 28%-30% B; 30-

40 min, 30%-36% B; 40-45 min, 36%-40% B; 45-55 min, 40%-

45% B; 55-60 min, 45%-90% B; 60-65 min, 90%-20% B; 65-

70 min, 20% B. The injection volume for each sample was 10 µL,

and the flow rate was 1 mL/min. After each run was balanced

(maintain) every 10 min. The column temperature was set at 33-
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35°C, and the results were monitored at 203 nm. The

methodology (linearity ranges, stability, repeatability,

precision, and spiked recovery) was investigated by referring

to the 2020 edition of the guiding principles of Chinese

Pharmacopoeia (National Pharmacopoeia Committee, 2020).
Spectra acquisition

The NIR spectrometer (Thermo Fisher Scientific INC., USA)

equipped with a diffused reflection mode was used to measure

the spectra of P. notoginseng. The sample was placed into a

sample cup (confirmed to be radiopaque), and the scanning

range was 10000-4000 cm-1. The acquisition parameters of each

spectrum were scanned 64 times with a resolution of 4 cm-1.

Each collection was collected twice, and the average spectra were

taken for analysis. In addition, it is worth noting that the spectra

were corrected by collecting the background to remove

atmospheric interference information.
2D-COS images acquisition and ResNet
model establishment

The 2D-COS is a perturbation-based method first proposed

by Noda. In this study, we extend it to generalized 2D-COS

image analysis based on 2D spectral theory and literature

references (Yang et al., 2013; Yang et al., 2014; Yang et al.,

2015; Yang et al., 2020). The variable-variable correlation

spectroscopy can set any kind of perturbation variables, such

as temperature, concentration, pressure, and time. Synchronized

2D-COS images have sharper characteristic peaks for better

characterization of different types of images (Dong et al.,

2021). When measuring spectra with equal perturbation

intervals t in steps m, dynamic spectral intensity was

represented as a column vector S at variable v, it was defined

as the following:

S vð Þ =

y v, t1ð Þ
y v, t2ð Þ
y v, t3ð Þ

⋮

y v, tmð Þ

2
66666664

3
77777775

(1)

The synchronous two-dimensional correlation intensities

between variables v1 and v2 are calculated as F (v1, v2).

F v1, v2ð Þ = 1
m − 1

S(v1)
T · S v2ð Þ (2)

According to the full-band 2D-COS images (Figure 2), the

bands of 7000-4000 cm-1
fingerprint area were selected for
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subsequent analysis. In this study, 90% of the samples (60% as

the training set, 30% as the test set) were chosen to establish the

ResNet model and the remaining 10% for external validation.

Then, a self-built script in MATLAB 2017a was run to generate

synchronous 2D-COS images (in the form of JPEG images). This

provided a foundation for deep learning modeling. Moreover, we

set normalization and resizing in the script to keep the size of

images consistent (128×128pixel). We used the MxNet deep

learning framework and anaconda3-4.2.0 that comes with

Python 3.5.2 to further our learning. Additionally, the

TensorBoard and MxBoard were installed for training process

visualization and networking.

In this study, the traceability model of P. notoginseng from

different districts and towns was established by ResNet technology

in Convolutional Neural Network (CNN) network. The ResNet

technology of deep learning realized residuals with a “shortcut

connections” structure, which could simplify learning objectives,

reduce training difficulty, speed up the training, and improve the
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accuracy of the model. The residual module was applied to

simplify learning objectives; the detailed process is presented in

Figure S1. In addition, dimensional consistency of input and

output data to determine the structure as identity block or

convolution (conv) block was applied. The schematic diagrams

of conv and the identity block are shown in Figure S2A, B.

The synchronous 2D-COS images acted as the input data.

First, a layer of convolution operation is performed on the input

data. Then, the BatchNorm normalization and Relu nonlinear

activation processing were performed, and the data were input

into a 32-layer convolutional neural network (11*2 identity

blocks and 4*2 conv blocks) to extract features. The

parameters of the fully connected layer were simplified.

Additionally, the important features were extracted by global

average pooling. Finally, the learned “distributed feature

representation” was mapped to the sample label space using

the full connection layer output data. The traceability flow chart

of geographical origins is shown in Figure 3.
B

C

A

FIGURE 2

The generation of synchronous 2D-COS (A, B). The original average NIR spectra of P. notoginseng from four different districts and towns. (C)
Full-band synchronous 2D-COS images from different districts and towns. The red box shows the selected synchronous 2D-COS images in the
range of 7000-4000 cm-1.
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FIGURE 3

The geographical origins traceability flow chart of P. notoginseng from different districts and towns based on ResNet model, and the structure
of ResNet model.
FIGURE 4

HPLC chromatograms at 203 nm, and the structure of four active compounds in P. notoginseng.
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Results and discussion

Analysis of saponin contents
in P. notoginseng

P. notoginseng is rich in saponins. Among all saponins, NG-

R1, G-Rg1, G-Rb1, and G-Rd have the highest content in

P. notoginseng. They are the most popular compounds applied

for quality control of P. notoginseng in most studies owing to

their excellent biological activity. The HPLC chromatograms

and linear regression data of the four saponins are shown in

Figure 4 and Table S3. The assay method of HPLC was validated.

It is evident from Table S3 that concentrations and peak areas of

the four components show an obvious linear relationship

(R2>0.9995). The relative standard deviation (RSD) value of

stability repeatability, precision, and spiked recovery of each

reference compound were all less than 3%. In view of this result,

the established method fulfills the requirements for qualitative

and quantitative analyses.

According to previous studies, saponins are one of the most

important components to exert the drug efficacy of

P. notoginseng. Saponins are typically used as a quality

indicator for evaluating P. notoginseng. In this study,

combined wi th Chine s e Pharmacopoe ia (Chine s e

Pharmacopoeia Committee 2020) and literature reports, four

saponins in P. notoginseng were selected as indicators (Wei et al.,

2018; Bai et al., 2021). The level of the four saponins in

P. notoginseng from different districts and towns is shown in

Table 1. The results showed that in P. notoginseng from different

districts and towns, the highest content was of G-Rg1, followed

by G-Rb1 and finally G-Rd and NG-R1. This is in line with

previous studies by Wei et al. (Wei et al., 2018). In addition, the

four saponins in DDB were lower than other districts, and

the total average content was 16.55 mg/g. Relatively speaking,

the total average content from DDNwas the highest at 26.47 mg/

g. Among the samples collected from different towns, the total

average content from XC was the highest (32.78 mg/g), and the

QB provided the lowest (22.04 mg/g). The total average content
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from YS and MG were similar (27.04 and 26.25 mg/g,

respectively). These results indicated that there were certain

differences between the content of saponin from different

districts and towns. Therefore, comprehensively and properly

evaluating the quality of P. notoginseng using the four saponins

as quality control indicators is feasible. Simultaneously, the

above results show the necessity and importance of the

identification of P. notoginseng. However, there is uncertainty

in analyzing the differences of P. notoginseng from different

districts and towns only based on the content of four saponins.

Therefore, the unsupervised multivariate method (PCA) was

employed for further analysis.
PCA analysis

In order to further reflect the differences of four saponins

(NG-R1, G-Rg1, G-Rb1 and G-Rd), PCA was applied to analyze

P.notoginseng from different districts and towns, respectively. Be

seen from Figures 5A, 5B, the first two components accounted for

97.94% of the total variance, which could explain most of the

information in the sample. From the PCA score plots (Figure 5A),

P. notoginseng from different districts is distributed in different

quadrants. The P. notoginseng from DDB is located in the fourth

quadrant and had a larger dispersion, indicating that saponins

contribute substantially to the principal components.

Furthermore, they are shown to be negatively correlated with

both the first and second principal components. The dispersion of

saponins in DZ, DX, and DDN samples is relatively low, which

indicated that the component structures of the saponins are

relatively similar and could be clustered into one category.

However, the contribution rate for the principal components is

not high. Figures 5C, D present the PCA score plots of P.

notoginseng from four different towns. The samples of QB and

XC have large dispersion, located in the second and third

quadrants, respectively. In other words, saponins substantially

contribute to the principal components. In addition, there is an

overlapping trend between YS and MG, which could be clustered
TABLE 1 Each content and total contents of four main components in P. notoginseng from different districts and towns. (�x ± SD) %.

Notoginsenoside R1 Ginsenosides Rg1 Ginsenosides Rb1 Ginsenosides Rd Total (NG-R1+G-Rg1+G-Rb1+G-Rd)

DDB 8.26 ± 1.52 31.28 ± 3.98 19.95 ± 2.47 6.71 ± 1.48 16.55 ± 3.63

DDN 11.39 ± 2.69 44.67 ± 4.04 34.41 ± 3.33 15.44 ± 2.85 26.47 ± 4.21

DX 10.88 ± 2.17 38.68 ± 3.36 32.80 ± 3.57 14.70 ± 2.67 24.26 ± 3.89

DZ 11.01 ± 2.79 36.67 ± 3.60 26.43 ± 3.17 12.01 ± 2.46 21.53 ± 3.75

YS 11.38 ± 2.68 48.07 ± 4.34 35.11 ± 3.22 13.59 ± 3.02 27.04 ± 4.42

XC 15.41 ± 2.98 53.25 ± 4.14 41.83 ± 3.44 20.64 ± 2.94 32.78 ± 4.43

MG 12.90 ± 2.42 46.53 ± 3.54 30.69 ± 3.38 14.87 ± 2.82 26.25 ± 4.09

QB 7.73 ± 2.23 34.52 ± 3.00 31.62 ± 2.86 14.28 ± 2.21 22.04 ± 3.65
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into one category and have a low contribution rate for principal

components. The PCA scores scatter plot was established after

further analysis. The color of the point represents the contribution

of different variables to the principal components. As shown in

Figures 5B, D, the four saponins varied considerably between

different geographic origins. Therefore, the correlation analysis

was further carried out, with a view to observing the influence of

climate factors on the content accumulation of saponins from

different geographic origins.
Correlation analysis between saponin
contents and climate factors

Climate factors have a critical effect on the distribution and

secondary metabolites of plants. Generally speaking, linear

correlation between the independent variables should be

examined before constructing a regression model to prevent

affecting the fitting effect of the regression model. Therefore,

Pearson correlations were used to eliminate climate factors with

high correlation coefficients (|R|>8) and less significance for the

distribution of P. notoginseng samples. The results are shown in

Figure 6. In the end, a total of seven climate factors (Bio 1, Bio 4,

Bio 7, Bio 12, Bio 14, Bio 15, and Bio 17) were obtained for

analysis. There was a significant correlation between the level of

the four saponins and seven climate factors. Therefore, these

seven climate factors were selected as independent variables.

The regression equations between the level of the four

saponins and seven climate factors established by PLSR are

shown below: NG-R1: Y=18.806-0.545 Bio1+0.04 Bio4-0.505
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Bio7-0.001 Bio12-0.903 Bio14+0.133 Bio15+0.226 Bio17; G-

Rg1: Y=197.720-2.552 Bio1-0.043 Bio4-4.425 Bio7+0.029

Bio12-0.927 Bio14-0.196 Bio15-0.104 Bio17; G-Rb1:

Y=110.283-1.221 Bio1-0.046 Bio4-1.185 Bio7+0.037 Bio12-

1.144 Bio14-0.406 Bio15-0.141 Bio17, and G-Rd: Y=38.450-

0.477 Bio1+0.012 Bio4-0.728 Bio7+0.012 Bio12-1.055 Bio14-

0.156 Bio15-0.102 Bio17. The results show that temperature
FIGURE 6

The autocorrelation test of climate factors. The definitions of
climate factors are shown in Table S2.
B

C

D

A

FIGURE 5

Principal component score plots and loading plots of saponins in P. notoginseng from different districts (A, B) and towns (C, D).
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and precipitation are crucial climate factors impacting the

content of the four saponins in P. notoginseng. The content of

NG-R1 correlated negatively with Bio1, Bio7, Bio12, and Bio14,

and correlated with Bio4, Bio15, and Bio 17. For G-Rg1 and G-

Rb1, their content displayed a negative correlation with Bio 1,

Bio 4, Bio 7, Bio 14, Bio 15, and Bio 17, and demonstrated a

positive correlation with Bio12. The correlation between the

contents of G-Rd and climate factors is similar to G-Rg1 and G-

Rb1, the only difference is the positively correlation with Bio4. In

the analysis of PLSR, the explanatory power of the independent

variable to the dependent variable is measured by the VIP.

Therefore, the VIP values of the contents of the four saponins

and seven climate factors were analyzed (Figure 7). The variables

with larger contributions (VIP>1) were screened as important

variables. From Figure 7, it is clear that Bio7 and Bio12 have a

greater impact on the content accumulation of the four saponins.

In addition, the content accumulation of the four saponins was

also affected by Bio1, Bio1, Bio17, and Bio15, respectively.

To sum up, all the regression coefficients of Bio1 and Bio7

selected based on the VIP value were negative for the four

saponins. It shows that these are negatively correlated with the

annual mean temperature and the temperature annual range.

That is to say, the lower annual mean temperature and the

temperature annual range are favorable for the content

accumulation of four saponins. DDN (Wenshan Prefecture) is

located near the Tropic of Cancer and has a subtropical climate,

where the temperature does not experience extremely high or

low temperatures. Its annual mean temperature is 15.8°C-19.3°

C, and the temperature annual range is small. This may be one of
Frontiers in Plant Science 10
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the reasons why Wenshan Prefecture could be regarded as the

“Sanqi Hometown”. In addition, the regression coefficients of G-

Rg1, G-Rb1, G-Rd, and Bio12 were all positive values, which

showed a positive correlation. That is to say, high annual

precipitation and high humidity are suitable for the content

accumulation of G-Rg1, G-Rb1, and G-Rd. Interestingly, the

content accumulation of NG-R1 negatively correlated with

Bio12. That is, low annual precipitation could be more suitable

for the content accumulation of NG-R1. According to the actual

climate analysis of DDN, we speculate that this may be the

reason for the low contents of NG-R1 among four saponins.

These results are consistent with the traditional production areas

of P. notoginseng.
Analysis of original NIR spectra and 2D-
COS images

The original average NIR spectra of P. notoginseng from four

different districts and towns are shown in Figure 2A, B. It can be

clearly discovered that the spectra at 10000-7600 cm-1 have got

low signal-to-noise ratios and intensities, which this region

probably unsuited for spectra differentiation (Gierlinger et al.,

2004). At 7600-5200 cm-1 are the first overtone C-H that stretches

vibrations in different groups. The peak of 5200-4000 cm-1 is the

maximal value, which reflects the combined C-H absorption of

amino acids, sugars, and proteins (Li et al., 2018; Liu et al., 2019).

The broad bands at 8320 cm-1 correspond to the second overtone

of the C-H stretching in different groups. The bands around 6356
FIGURE 7

The variable importance in the projection (VIP) between the accumulation of the contents of the four main components in P. notoginseng and
the climate factors. (A) Notoginsenoside R1. (B) Ginsenosides Rg1. (C) Ginsenosides Rb1. (D) Ginsenosides Rd.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1009727
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2022.1009727
and 6800 cm-1 are assigned to the first overtones of the O-H and

the N-H stretching. The bands located around 5168 cm-1

correspond to the combination of O-H stretching and the first

overtone of C-O deformation, and the 4756 cm-1 are from the

combination of O-H deformation and the C-O stretching. In

addition, the absorption band of 4300 cm-1 is assigned the

combination overtone of C-H and C-C stretching (Nie et al.,

2013; Fu et al., 2017; Li et al., 2018; Yang et al., 2019). However,

from the original and average NIR spectra, there were less

significant differences between the four districts and towns. This

may be because the complex composition information of Chinese

medicinal materials leads to their similarly existing chemical

bonds. Another possible reason would be that the NIR spectra

are C-H, O-H, and N-H stretched overtones and combined bands.

They are characterized by absorption bandwidths, overlap, and

weak absorption, which leads to the characteristics being similar

(Nie et al., 2013). As a result, the geographic origins of

P. notoginseng may be difficult to discriminate directly by the

NIR spectra with the naked eye. Therefore, we converted the

spectral data into corresponding 2D-COS images combined with

the deep learning model for further analysis.

The synchronous 2D-COS images of P. notoginseng from

different districts and towns are displayed in Figure 2C. It can be

seen from the synchronous 2D-COS images that the feature

peaks are mainly distributed in the 7000-4000 cm-1 bands.
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Therefore, the bands of 7000-4000 cm-1 were used for further

deep learning modeling.
Geographical origins traceability
analysis of P. notoginseng based
on ResNet model

The samples of P. notoginseng from the four different

districts and towns were collected in a relatively large number.

The content of P. notoginseng from different geographic origins

shows great differences due to the influence of climate and

human factors. In Wenshan Prefecture, the “Sanqi Hometown,

there were also slight differences in the content of samples from

different towns. Therefore, tracing geographical origins was

carried out of the district level and the town level.

In this study, the weight attenuation coefficient l of the

ResNet model was set to 0.0001, and the learning rate was set to

0.01. In addition, accuracy curves and cross-entropy cost

function curves (smoothing parameter is 0.6) of the training

set and test set were generated by Mxboard to evaluate the

identification ability of the model. The value of accuracy curves

is closer to 1, and the cross-entropy cost function is closer to 0,

which indicated that the identification ability and convergence

effect of the model is better.
B

C D

A

FIGURE 8

The radar plots of accuracy and cross-entropy cost function of models based on synchronous 2D-COS images (A: District; B: Town) and the
confusion matrix of ResNet models (C: District; D: Town).
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We performed ResNet model analysis on synchronized 2D-

COS images of 152 training sets and 54 testing sets from four

different districts. The radar plots show the classification

accuracy and cross-entropy cost function of the model

generated based on synchronized 2D-COS images. As can be

seen from Figure 8A, the accuracy of both the training set and

the test set shows a rising trend. When the number of epochs

reaches 10, the accuracy of both the training set and the test set

is 1, the loss value is reduced to 0.001, and the model training

time is only 675 s. Furthermore, this study applied the

established ResNet model for validation on 23 external

validation sets, and all external validation samples from four

different districts were correctly identified (Figure 8C). It shows

that the model has strong robustness and could accurately

distinguish P. notoginseng from different districts in a short time.

As verification, a total of 93 P. notoginseng samples were

collected from four towns in Wenshan Prefecture and were also

analyzed by the same method. As shown in Figure 8B, when the

number of epochs is 25, the accuracy of both the training set and

the test set reaches 1, and the cross-entropy loss value reaches

the minimum (0.001). In addition, the results of the confusion

matrix demonstrate that the external validation samples are

classified correctly (Figure 8D). That is to say, the

classification models of P. notoginseng at different town levels

are as good as those at the district level. However, it was not

difficult to see that the training time of the model reduced to

597 s.

From the above results, the established model could

successfully trace the geographical origins of P. notoginseng

from different district and town levels. However, the training

time of the model may be affected due to the distance between

the collected samples. That is to say, the model did not have the

phenomenon of overfitting and had strong robustness. The

geographical origin of P. notoginseng can also be accurately

traced when the distance between sampling points is small. The

only difference was in the training time of the model, which may

be related to the sample number and the differences within

the group.
Conclusion

Some studies from previous literature show that 2D-COS

images combined with deep learning can authenticate different

herbal and boletus samples, including origin, growth year, and

species. In addition, there have been studies that analyzed different

bands and different types of 2D-COS images (synchronous,

asynchronous, and integrated 2D-COS images). The results of

all these studies indicate that synchronous 2D-COS images

combined with deep learning is the most suitable method for

discrimination analysis. Comparatively, few studies have analyzed

climatic factors and quality differences of P. notoginseng from
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different geographical origins .In this study, the method was used

to identify the geographical origin. In this study, an identification

model of geographical origins of P. notoginseng in different

districts was proposed and verified by town level samples, the

results have indirectly proven the reliability of the model.

Climate is one of the major factors that affects the growth

suitability of Chinese medicinal materials, including

P. notoginseng. Therefore, an investigation into the effects that

climate has on the accumulation of active components is

essential to improve the quality of P. notoginseng. In this

study, four saponins of P. notoginseng from different districts

and towns were determined using HPLC. The correlation

between the level of saponins and climate factors was

evaluated using PLSR and VIP, and the influence of climate

factors on the quality of P. notoginseng was analyzed. The results

showed that the presence of each saponin was negatively

correlated with annual mean temperature and temperature

annual range. A lower annual mean temperature and

temperature annual range were favorable for the accumulation

of the four saponins. In addition, high annual precipitation and

high humidity are suitable for the content accumulation of NG-

R1, G-Rg1, and G-Rb1, while this is not the case for G-Rd.

In addition, as a traditional Chinese medicinal material with

high medicinal value and a high price, P. notoginseng is often

fraudulently traded on the market. Therefore, a simple and

reliable method was proposed to conduct a comprehensive

geographic origin traceability study on P. notoginseng (from

different districts), where the reliability of the model (from

different towns) was verified. The results of the accuracy curve,

cross-entropy loss function curve, and confusion matrix show

that the synchronous 2D-COS model has a strong tendency

for generalization. The method proposed in this study could

achieve geographical origin traceability of P. notoginseng, even

though the distance between sampling points is small. The

findings of this study could lead to improvements in the

quality of P. notoginseng, provide a reference for cultivating

P. notoginseng in the future, and alleviate the phenomenon of

market fraud.
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The paper introduces two novel algorithms for predicting and propagating drought

stress in plants using image sequences captured by cameras in two modalities, i.e.,

visible light and hyperspectral. The first algorithm, VisStressPredict, computes a time

series of holistic phenotypes, e.g., height, biomass, and size, by analyzing image

sequences captured by a visible light camera at discrete time intervals and then adapts

dynamic time warping (DTW), a technique for measuring similarity between temporal

sequences for dynamic phenotypic analysis, to predict the onset of drought stress. The

second algorithm, HyperStressPropagateNet, leverages a deep neural network for

temporal stress propagation using hyperspectral imagery. It uses a convolutional

neural network to classify the reflectance spectra at individual pixels as either

stressed or unstressed to determine the temporal propagation of stress in the plant.

A very high correlation between the soil water content, and the percentage of the

plant under stress as computed by HyperStressPropagateNet on a given day

demonstrates its efficacy. Although VisStressPredict and HyperStressPropagateNet

fundamentally differ in their goals and hence in the input image sequences and

underlying approaches, the onset of stress as predicted by stress factor curves

computed by VisStressPredict correlates extremely well with the day of appearance

of stress pixels in the plants as computed by HyperStressPropagateNet. The two

algorithms are evaluated on a dataset of image sequences of cotton plants captured in

a high throughput plant phenotyping platform. The algorithms may be generalized to

any plant species to study the effect of abiotic stresses on sustainable

agriculture practices.

KEYWORDS

stress prediction, image sequence analysis, time series modeling, dynamic time
warping, temporal stress propagation, spectral band difference segmentation, deep
neural networks
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1 Introduction

Increasing demands for food, fuel, fiber, and feed to meet the

needs of the growing population, under climate change, and

dwindling natural resources constitute a major challenge

confronting sustainable agriculture in the 21st century. In addition,

climate change has affected the intensity and frequency of drought

and extreme weather events in many regions, increasing food

insecurity and affecting the livelihoods of many communities

(Sheffield et al., 2012; Ort et al., 2015). In fact, it is estimated that

about two thirds of crop losses in the last half century were caused by

drought (Comas et al., 2013). Thus, an improved understanding of the

plant’s response to increased water stress as a function of time is an

important step in shepherding breeding efforts, developing smart

agricultural practices, and enhancing the decision making process to

mitigate and adapt to climate change.

A time series is an ordered sequence of values of a variable

measured at successive points in time, often at regular time intervals,

e.g., weather forecasts, stock prices, biometrics, and exchange rates in

finance. Based on the variable, a time series can be classified as either

continuous or discrete. In the case of a continuous time series,

observations are measured continuously over time, e.g., temperature

readings, and the flow of a river. On the other hand, a discrete time

series is characterized by recordings at typically equally spaced time

intervals, e.g., daily, weekly, or yearly. High throughput plant

phenotyping (HTPP) refers to the imaging of plants captured at

regular intervals for a significant time period to extract the salient

information about a plant’s development and metabolism that are

manifested at different wavelengths of the electromagnetic spectrum.

Visible light image sequences are used to extract morphological

characteristics of the plants or their organs (Dyrmann, 2015; Das

Choudhury et al., 2018). In contrast, infrared images can serve as a

proxy for a plant’s temperature, which in turn can be used to detect

differences in stomatal conductance, a measure of a plant’s response

to water status and transpiration rate for abiotic stress adaptation (Li

et al., 2014). Hyperspectral cameras typically capture a scene in

hundreds of bands covering a broad range of wavelengths at very

narrow intervals. Since hyperspectral imaging has the highest

coverage of the electromagnetic spectrum, it has the potential for a

wide variety of applications, including the detection of abiotic and

biotic stresses in plants and the measurements of chlorophyll content,

canopy senescence, and water content (Gampa and Quinones, 2020).

In this paper, we used time-series image sequences captured by two

types of cameras, i.e., visible light and hyperspectral, for stress

prediction and temporal stress propagation.

The images in an HTPP platform are captured at regular

intervals with timestamps to compute phenotypes, i.e., the

observable traits of plants as a result of the complex interaction

between genotype and environment. Imaging at regular intervals

facilitates the extraction of smart phenotypic traits, e.g., predicting

the onset of stress and its temporal propagation patterns in a plant.

Since the process of phenotypic trait extraction based on image

analysis is nondestructive in nature, the traits may be extracted at

multiple timestamps in a plant’s life cycle. The phenotypes

computed by analyzing the images captured in an HTPP may be

modeled as a discrete time series. These abstractions and
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s u b s e q u e n t c omp u t a t i o n s a r e n o t p o s s i b l e f r om

manual measurements.

The phenotypic time series can be classified into the following

four categories (Das Choudhury, 2020b):
a. Nonlinear: A phenotypic time series that tends to increase,

decrease or stagnate over time is referred to as a nonlinear

time series. The total leaf area of a plant increases over time

under normal growth conditions, however, it often starts to

decrease as some leaves experience curling or shedding due to

exposure to stress, e.g., drought, thermal, and salinity. Note

that for many cereal crops, e.g., maize and sorghum, the plant

height increases monotonically with time and then remains

stagnant upon completion of the vegetative stage.

b. Recovery: The normal growth of a plant is significantly

affected under stress. However, if the stress condition is

reverted, i.e., re-watering of a drought-stressed plant or

adjusting the temperature of a plant under thermal stress,

normal growth may resume under certain circumstances.

c. Seasonal: Plants undergo internal physiological seasonal

changes leading to changing leaf colors, shedding,

blooming, and generating new leaves. A time series

representing the total number of leaves over a growing

season can demonstrate this effect.

d. Catastrophic: A catastrophic phenotypic time series reflects

any significant impact on a plant’s development due to

unprecedented events, e.g., floods, storms, and earthquakes,

and hence does not follow any specific pattern.
This paper presents two algorithms to understand the dynamics

of stress in plants from image sequences. It first describes a predictive

model to determine if a plant is under stress, using the time series of

holistic phenotypes or traits computed by analyzing visible light

image sequences using dynamic time warping (DTW) - a statistical

method extensively used to analyze temporal sequences, including

applications in speech recognition and biometric verification (Das

Choudhury and Tjahjadi, 2013). The paper introduces a novel

dynamically growing subsequence based DTW matching algorithm

for stress prediction using the phenotypic time series.

Deep neural networks have been successfully employed in high

throughput temporal plant phenotyping for a variety of applications

(Bashyam et al., 2021; Zheng et al., 2021; Das Choudhury et al., 2022).

The method in (Das Choudhury et al., 2022) performs automated

flower detection from multi-view image sequences to determine a set

of novel phenotypes, e.g., the emergence time of the first flower, the

total number of flowers present in the plant at a given time, flower

growth trajectory, and blooming trajectory. A graph theoretic

approach has been used by (Bashyam et al., 2021) to detect and

track individual leaves of a maize plant for automated growth stage

monitoring. The method by (Azimi et al., 2021) uses Convolutional

Neural Network - Long Short Term Memory (CNN-LSTM) for water

stress classification in chickpea plants, whereas the method by (Taha

et al., 2022) uses deep convolutional neural networks (DCNNs) to

diagnose the nutrient status of lettuce grown in aquaponics. In this

paper, we present a novel algorithm based on convolutional neural

networks to determine the qualitative and quantitative propagation of
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drought stress in cotton plants by classifying reflectance spectra

generated from hyperspectral image sequences.

The efficacy of the two algorithms is demonstrated using a set of

cotton (Gossypium spp.) plants. Cotton, a C3 crop known for its

valued fiber (cotton lint), supplies about 79% of the global natural

fiber used in the textile industry (Dabbert and Gore, 2014; Townsend

and Sette, 2016), while its seeds provide nutrition to both humans and

animals (Bertrand et al., 2005). Drought stress has been identified as a

major impediment to cotton production. In cotton, drought stress

causes a reduction in both quantity and quality of lint (Pettigrew,

2004; Wang et al., 2016) with a severe negative impact on a farmer’s

income and supply of raw material for the textile industry. Although

the algorithms introduced in this paper are evaluated on a cotton

dataset, they are generic and, thus, are applicable to any plant species

subjected to any kind of stress, i.e., drought, salinity, and thermal, to

quantitatively determine the impact of stress as a function of time.
2 Materials and methods

In this section, we first describe the dataset used to develop

and evaluate the two algorithms, i.e., VisStressPredict and

HyperStressPropagateNet, followed by the detailed descriptions of

these algorithms.
1 https://www.alliedvision.com/en/support/technical-documentation/

prosilica-gt-documentation

2 https://www.manualslib.com/products/Headwall-Hyperspec-Inspector-

10421605.html
2.1 Dataset

The image sequences used for algorithm development and

evaluation were obtained at the Innovation Campus greenhouse of

the University of Nebraska-Lincoln (Lincoln, Nebraska, U.S.) using

High Throughput Plant Phenotyping Core Facilities (HTPP,

Scanalyzer 3D, LemnaTec Gmbh, Aachen, Germany). Chemically-

delinted black cotton seeds (variety PHY 499 WRF) were planted in

5.7 L pots (22 cm diameter and 20 cm height) filled with 25% sand

and 75% standard greenhouse mix, at approximately 24°C, and RH

58%. The daytime Photosynthetic Active Radiation (PAR) was

supplemented with LED red/blue light, with an intensity of 200

mmol m-2s-1. The photoperiod in the greenhouse was set at 17

hours throughout the study to standardize the light conditions.

After germination, plants were maintained on the bench where

nutrients and water were applied following a standard greenhouse

management regime. After two weeks, plants were randomly divided

into two groups of 10 corresponding to the two experimental groups

(i.e., Experiments 1 and 2). Each experimental group was further split

into two groups of 5 plants and assigned to treatment groups (control

and drought stress). The onset of the dry-down and the duration of

the experiment varied across the two experiments. In Experiment 1,

dry-down was initiated 12 days after the onset of plant imaging and

lasted for 8 days. A week later, a similar dry-down was initiated for the

second experimental group and lasted for 9 days.

Each plant was placed in a metallic carrier (dimension: 236 mm ×

236 mm × 142 mm) on an automated conveyor belt that moves the

plants from the greenhouse to the four imaging chambers successively

for capturing images in different modalities. It has three watering

stations with a balance that can add water to a target weight or specific

volume and records the specific quantity of water added daily. The
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images of the greenhouse with plants placed on the automated

conveyor belt, the watering station, and plants entering into the

imaging cabinets are available in (Das Choudhury et al., 2018; Das

Choudhury et al., 2022). The cameras installed in the four imaging

chambers are (a) visible light - side view and top view (Prosilica

GT6600 29 megapixel camera with a Gigabit Ethernet interface 1), (b)

infrared - side view and top view (Pearleye p-030 LWIR), (c)

fluorescent - side view and top view (Basler Scout scA1400-17gm/

gc), and (d) hyperspectral - side view (Headwall Hyperspec Inspector

x-vnir 2) and near-infrared - top view (Goldeye p-008 SWIR),

respectively. Each imaging chamber has a rotating lifter for up to

360 side view images. In this study, we used visible light images

(captured from five side-views, i.e., 0°, 72°, 144°, 216°, 288°) for

VisStressPredict algorithm and hyperspectral images for

HyperStressPropagateNet algorithm. The average time interval

between a plant entering into and exiting from each of the first

three imaging chambers for capturing five side view images is

approximately 1 minute and 10 seconds. Since a hyperspectral

camera typically captures a scene in hundreds of bands at a narrow

interval over a broad range of the spectrum, its image capturing time

is significantly higher than that of the other imaging modalities. In

our HTPP facility, the time to capture a single side view image of a

plant using a hyperspectral camera (total number of bands: 243;

spectrum range: 546 nm to 1700 nm) is approximately 2 minutes and

15 seconds. All images are exported as PNG file types. Pots were

automatically weighed upon exiting the hyperspectral chamber, and

water was applied daily to designated levels to reach a predetermined

percentage of field capacity (50%). Table 1 provides detailed

information on the specifications of the cameras of our HTPP system.
2.2 VisStressPredict: DTW based stress
prediction using visible light imagery

2.2.1 Image-based phenotypic time
series computation

In this section, we describe the steps to compute phenotypic time

series based on analyzing image sequences. Visible light images are

used to compute structural phenotypes that characterize a plant's

morphology. Image-based structural phenotypes can either be

computed by considering the whole plant as a single object (holistic

phenotypes) or by considering individual components of the plants,

e.g., stem, leaves, fruits, and flowers (component phenotypes).

Figure 1 shows the intermediate images in the computation of three

holistic structural phenotypes, i.e., the height of the plant, the area of

the convex hull enclosing the plant, and the total number of plant

pixels, all of which contribute to the measurement of plant growth

and development. First, the original plant image sequences are

cropped to a fixed size to remove the frames of the imaging cabinet

and the pot. Figure 1A shows a sample original image, and Figure 1B

shows the corresponding cropped image that retains the plant. The
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cropped image is then binarized in the LAB color space using color

thresholding (Figure 1C). Finally, the binary image thus obtained is

enclosed by primitive geometric shapes, e.g., bounding rectangle and

convex hull (Figure 1D), to compute holistic phenotypes.

Figures 2A, B show the image sequences of cotton plants enclosed

by bounding rectangle and convex hull under normal condition and

drought stress, respectively. Figures 3A, B show the nonlinear

phenotypic time series of the plant height for a set of controlled

and drought-stressed plants, respectively. Similarly, Figures 3C, D

show the nonlinear phenotypic time series for plant biomass

(measured by the total number of plant pixels as the function of

time) for a set of controlled and drought-stressed plants, respectively.

Figures 3E, F show the nonlinear phenotypic time series for plant size

(measured by the area of the convex hull enclosing the plant) for a set

of controlled and drought-stressed plants, respectively.

To validate the phenotypic traits measured noninvasively based

on analyzing images captured in the HTPP system against the

destructive handheld (low-throughput) techniques, we correlated

the projected leaf area (pixels) and plant height (pixels), derived

from the RGB camera of the HTPP, against values derived from low-

throughput destructive methods (Figure 4). Image-derived projected

plant biomass and plant height were highly and significantly

correlated with the measured leaf area (R2 = 0.92, p< 0.01) and

plant height (R2 = 0.94, p< 0.01) respectively, confirming the

hypothesis for the HTPP methods' ability to accurately estimate

morphological traits.
2.2.2 Time series smoothening
The noise introduced during the binarization process and the

natural change of orientation of plants’ leaves results in unevenness in

the phenotypic time series, which poses significant challenges to

subspace matching based on dynamic time warping. We use a
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moving average (MA) filter to smooth the time series to address

this. The MA filter is the most common filter in digital signal

processing to smooth functions. It is effective for time-domain

encoded signals due to its simplicity. The high frequencies to be

removed can be controlled by the length of the window of the

MA filter.

Given a phenotypic time series x of lengthm and a window sizeN,

the filtered time series y is given by Equation 1 as follows:

y i½ � = 1
N o

N−1

j=0
x i + j − 1½ �, 1 ≤ i ≤ m − N + 1 (1)

In this paper, a window size of N=3 is used for the MA filter. The

smoothened time series are used as input to the DTW-based drought

stress prediction algorithm. Figure 5 shows the smoothened time

series of the phenotypes (plant height, plant biomass and plant size)

for control and stressed plants of Experiment 2.

2.2.3 Stress prediction using DTW
The goal of time series modeling is to study past observations to

develop an appropriate model that describes its underlying structure

for making predictions. Dynamic time warping (DTW) (Sakoe and

Chiba, 1978) is widely used to find the optimal alignment between

two given time series. It has been successfully used in automatic

speech recognition, gait recognition, and data mining to compare

time series with different speeds and deformations. DTW uses

dynamic programming to compute a warping function that

optimally aligns two time series of variable lengths and measures

their similarity. Given two plant phenotypic time series, i.e., P=(P1,P2,

…,PM) and Q=(Q1,Q2,…,QN) of respective lengths M∈N and N∈N,
and Pi and Qj are the respective phenotypic value on the ith and jth

days, DTW constructs an M×N warping path which is a sequence of

length p of L index pairs ((i1,j1),(i2,j2),…,(iL,jL)) and A(P,Q) is a set of
A B DC

FIGURE 1

Illustration of holistic phenotype computation based on image analysis: (A) original image; (B) cropped image; (C) binary image; (D) plant enclosed by
bounding rectangle and convex hull.
TABLE 1 Camera specifications of the HTPP system at the UNL, USA.

Image type Camera sensor Spectral range (nm) Spatial resolution Bit depth Frame rate

Visible light AVT Prosilica GT6600 400-700 6576 × 4384 14 (mono) - 12 (color) 4

Fluorescent Basler Scout scA1400-17GC 620-900 1390 × 1038 12 17

Near infrared Goldeye P-008 SWIR 900-1700 320 × 256 12 118

Infrared Pearleye P-030 LWIR 800-1400 640 × 480 14 24

Hyperspectral Headwall Hyperspec Inspector X-VNIR 546-1700 320 × 561 8 –
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all admissible paths. For a path to be admissible, it should satisfy the

following conditions: (a) boundary: p1=(1,1) and pL=(M,N); (b)

monotonicity and all indices should appear at least once: il-1≤il≤il-1
+1 and jl-1≤jl≤jl-1+1. DTW minimizes the cost of warping P and Q

together, i.e.,
Frontiers in Plant Science 05116
DTW P,Qð Þ = min
p∈A P,Qð Þ o

i,jð Þ∈p

dist Pi,Qj

� � !1=2
0
@

1
A (2)

Dynamic programming provides an exact solution to the

optimization problem at hand. DTW constructs the M×N matrix of
A B

D

E F

C

FIGURE 3

Illustration of nonlinear phenotypic time series using plants from Experiment 2: (A, B)- phenotypic time series for the height of plants under the
controlled environment and subjected to drought stress, respectively; (C, D)- phenotypic time series for plant biomass (measured by pixel count) under
the controlled environment and subjected to drought stress, respectively; and (E, F)- phenotypic time series for plant size (measured by the area of
convex hull) under the controlled environment and subjected to drought stress, respectively.
A

B

FIGURE 2

(A) An image sequence of a sample plant for side view angle of 0° (Experiment 1) enclosed by their bounding rectangles and convex hulls under
controlled condition; and (B) An image sequence of a sample plant for side view angle of 0° (Experiment 1) enclosed by their bounding rectangles and
convex hulls subjected to drought stress.
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Euclidean distances of corresponding phenotypes where DTWi,j is

the distance between P[1:i]=(P1, P2,…,Pi) and Q[1:j]=(Q1, Q2,…,Qi)

with the best alignment given by the recurrence function given in

Equation 3, i.e.,

DTWi,j = dist Pi,Qj

� �
+minimum DTWi−1,j,DTWi,j−1,DTWi−1,j−1

� �
(3)

where dist(Pi,Qj)=( Pi,Qj)
2.

Differences in environmental conditions, even in controlled

environments, including water content and induced stress, result in

variations in the phenotypic sequences for different plants of the same

species. However, the plants undergoing stress will have

fundamentally different phenotypic trajectories than those growing

in normal conditions. Thus, dynamic time warping (DTW) distance

is an ideal fit to compare the phenotypic trajectories of plants. The

DTW distance between the phenotypic sequences of plants under

similar conditions will be significantly different from those of plants

under other conditions and can therefore form the basis to

differentiate a normal growth sequence from a (drought) stress

sequence. Note that all plant image sequences used in this study are

of the same length, i.e., M = N. However, mechanical breakdown or

the time-shared based imaging policy in an HTTP often results in the

generation of image sequences of unequal lengths. Since DTW

effectively compares time series of varying lengths, our proposed

VisStressPredict algorithm will be suitable to deal with unforeseeable

situations of generating unequal phenotypic time series in any

phenotypic measurement environment. This also proves the

generalizability of the algorithm.

In this paper, we propose a DTW-based approach to differentiate

between control and stressed plants based on their phenotypic time

series. Given a sequence S = (S1,S2,…,Sn) of length n and its

subsequence Ssub=(S1,S2,…,Si) of length i where 1 ≤ i ≤ n, we

classify the subsequence Ssub as either control or stressed. Two

representative sequences Rc and Rs are calculated by element-wise

averaging of a set of control and stressed sequences, respectively.

Figures 6A, B show the representative phenotypic sequences of the

height of a plant for control and stressed plants, respectively.

Figures 6C, D show the representative phenotypic sequences of
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plant biomass (measured by total plant pixels) for control and

stressed plants, respectively. Figures 6E, F show the representative

phenotypic sequences of plant size (measured by convex-hull area)

for control and stressed plants, respectively. The DTW distances Dc

and Ds are calculated between Ssub and Rc and between Ssub and Rs,

respectively. Dc and Ds are referred to as control DTW distance and

stress DTW distance, respectively. The distance is normalized to

obtain Dnorm, which is then smoothened using a MA filter of window

size N=6 (Equation 1) to obtain a stress factor, i.e., SF.

Dnorm is given by:

Dnorm ið Þ = Ds ið Þ − Dc ið Þj j
Ds ið Þ

(4)

where Ds(i) and Dc(i) are given by

Ds(i) = DTW(Ssub,Rs) and Dc(i) = DTW(Ssub,Rc).

Finally, the stress factor, SF, for the subsequence is computed by:

SF ið Þ = Average Dnorm, i,Nð Þ, (5)

where Average gives the average of the normalized distances in the

window i−N+1 to i or 0. If the stress factor is above a predefined

threshold, t*, we label that subsequence as stressed. The threshold

value t* is defined as:

t* = Median MaxSFð Þ (6)

where MaxSF is the set of maximas of the SF’s of control plants.

The stress factor threshold t* is taken as the median of the

maximas of SF’s rather than the mean or maximum is to avoid any

outliers in the control set from drastically affecting the threshold t*.
Equation 7 gives the conditions for the predicted class.

Predicted  Class ið Þ =
Stressed if SF ið Þ ≥ t*

Control otherwise

(
(7)

Finally, onset of the stress can be determined by identifying the

first time stamp in the sequence to have the predicted class to be

labeled “Stressed.”

nset Sð Þ = Q : ∀   1 ≤ i < Q   PC ið Þ = Control ∧ PC Qð Þ = Stressed (8)

The proposed method is summarized in Algorithm 1.
A B

FIGURE 4

Illustration of correlation between phenotypic traits measured destructively and based on visible light image analysis: projected leaf area (cm2) measured
destructively and plant biomass (total plant pixels) derived from image analysis (cm2) (A); plant height (cm) measured destructively and plant height
(pixels) derived from image analysis (B) for control and dry-down groups.
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Fron
Require: S:array[1…n], Ssub: S[1:i] 1 ≤ i≤ n,listOfControlSeqs, listOfStressedSeqs

function CALCREPRESENTATIVESEQ(listOfSeqs)

SumOfSeqs array[1…n]

for each s in listOfSeqs do
for i:= 1 to n do

SumOfSeqs [i] SumOfSeqs [i] + s[i]

end for

end for
Rt SumOfSeqs/length(listOfSeqs)

return Rt
end function

function VISSTRESSPREDICT(S, Ssub, listOfControlSeqs, listOfStressedSeqs)

Rc  CALCREPRESENTATIVESEQ(listOfControlSeqs) Representative sequence for control

Rs CALCREPRESENTATIVESEQ(listOfStressedSeqs) Representative sequence for stress

Dnorm array[1…n]

DnormMA array[1…n]

flag 0

day 0

for i = 1 to length(S) do

Ssub S[1:i]

Dc DTWDistance(Rc,Ssub)

Ds DTWDistance(Rs,Ssub)

Dnorm[i] |Ds - Dc |/Ds
DnormMA[i] Average(Dnorm, i, N)

if DNormMA[i]>t* then
predictedClass “Stressed”

if flag == 0 then
firstStressDay i

flag 1

end if

else
predictedClass “Control”

end if
end for

return predictedClass, firstStressDay

end function
ALGORITHM 1
Classify control and stressed sequences and predict onset of stress
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2.3 HyperStressPropagateNet: Deep neural
network based temporal stress propagation
using hyperspectral imagery

A hyperspectral image can be represented by a three-dimensional

array of intensities, H(x,y,l), where (x,y) represents the location of a

pixel and l denotes the wavelength. Thus, it is often referred to as a

hyperspectral cube. Intensities at a given wavelength can be

represented as a two-dimensional image, and intensity information

at a specific location for all wavelengths can be represented by a

spectral reflectance curve.

2.3.1 Segmentation
We use a spectral band difference-based segmentation approach

to create the mask of the plant for subsequent analysis. This

segmentation method is useful and efficient for plant phenotyping

analysis using hyperspectral or multispectral imagery, since the goal is

to analyze only the plant ignoring the background. The segmentation

process is illustrated in Figure 7. In this approach, two bands of

specific wavelengths that have significant contrast in intensity are first

identified (Figures 7A, B), then enhanced by multiplying a constant

factor (Figures 7C, D), and finally subtracted from each other to

isolate the plant pixels, i.e., the foreground (Figure 7E). Based on

empirical analysis, the two wavelengths that are effective are 770 nm

and 680 nm, and the constant factor is 2. Thus, the enhanced
Frontiers in Plant Science 08119
foreground image, (If), is given by:

If = 2*I770 − 2*I680, (9)

where I770 and I680 are the images at 770 nm and 680 nm

wavelengths, respectively. The enhanced foreground image is then

binarized using Otsu's automatic thresholding technique (Otsu, 1979)

to generate a binary mask for the plant (Figure 7F), which is then used

to segment the plant in all bands of a hyperspectral cube for

subsequent analysis. Otsu’s method chooses a global threshold so as

to maximize the separability of the resultant classes in gray levels. This

threshold is then used to convert a grayscale image to a binary image.

In this paper, we used graythresh() function of Matlab to generate the

global threshold followed by imbinarize() to create the binary mask.

2.3.2 Hyper-pixel generation
A hyper-pixel (HP) is defined as HP = {P410,… P800}, where Pi

denotes a plant pixel at the wavelength i. A reflectance spectrum is

generated at each hyper-pixel by plotting the grayscale value of the

hyper-pixel over the wavelength range. Figures 8A, B show the

reflectance spectra generated at randomly selected pixels from a

controlled and a stressed plant, respectively. Stomatal response,

reactive oxygen species scavenging, metabolic rate, water

absorption, and photosynthetic capability are all affected when

plants are subjected to drought stress. These collective responses

lead to an adjustment in the growth rate of plants as an adaptive
A B

D

E F

C

FIGURE 5

Illustration of smoothened time series using plants from Experiment 2. (A, B) plant height for control and stressed plants, respectively; (C, D) plant
biomass (measured by pixel count) for control and stressed plants, respectively; and (E, F) plant size (measured by the area of convex hull enclosing the
plant) for control and stressed plants, respectively.
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response for survival (Osakabe et al., 2014). This phenomenon creates

differences in the reflectance spectra at different wavelength ranges

generated from hyperspectral imagery of the stressed and controlled

plants. It is seen from Figure 8A that the reflectance spectra from the

controlled plant are very similar. The comparatively dispersed nature

of the reflectance spectra of the stressed plant (Figure 8B) can be

attributed to the varying stress at different parts of the plant. We

observe a relatively sharp dip in the reflectance spectra of the stressed

plant compared to the controlled plant approximately in the

wavelength range of 1200−1300 nm. The difference in the

reflectance spectra between the controlled and the stressed plant

forms the basis of this algorithm. Note that a sharp decrease in

reflectance between 1400−1600 nm wavelength range is guided by the

physiological characteristics of the plants. This wavelength range is

known for atmospheric water absorption, and is sensitive to vapor

reflectance. In this range, light absorption by the plants is significantly

high resulting in low gray-scale values in their hyperspectral imagery.
2.3.3 Training and classification
Convolutional neural network (CNN) models have been effective

in various computer vision applications, including segmentation,

classification, object recognition, biometrics, and medical imaging

(LeCun and Bengio, 1995; Kolhar and Jagtap, 2021). Recently, 1-

dimensional (1D) CNNs have been used in natural language

processing, speech recognition, and biomedical signal processing

where they can perform feature extraction and classification tasks
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in a single end-to-end model (Jang et al., 2020). In this paper, we use a

1D CNN to classify the reflectance spectra into two classes, i.e.,

stressed and unstressed. These convolutional layers learn from the

representation learning component. Each convolutional layer consists

of multiple (N) filters. Each filter of the convolutional layer learns a

different feature. The goal of representation learning is to learn the

different features in the convolution layers and then use them in the

subsequent dense layers for the final classification. The architecture of

the proposed network is shown in Figure 9. The proposed network

consists of two components: representation learning and

classification. The details of the network architecture are given below.

The representation learning component consists of four 1D

convolutional layers. The size of the input vector is (m, 243), where

m is the number of training examples, each consisting of 243

reflectance values corresponding to a reflectance spectrum. The

dimension of this input vector is increased to (m, 243, 1) to feed it

into a 1D convolutional layer. The 1D CNN layer is followed by a

rectified linear unit (ReLU) activation function. There are four such

successive 1D CNN layers with ReLU activation. They each have a

kernel size of 5 and a stride of 1. The first two convolutional layers

have 64 filters, and the ‘same’ padding is used while the last two

convolutional layers have 128 filters with the ‘valid’ padding.

The feature vectors obtained after the convolutions are fed to the

classification component, which consists of two dense layers. First, the

output of the convolutional step, which is a vector of size (m × 235 ×

128), is ‘flattened’ to a vector of size (m, 30080). The flattened vector is

then fed to a dense layer in the classification component, which has 32
A B

D

E F

C

FIGURE 6

Illustration of representative phenotypic time series with mean and standard deviation using plants from Experiment 2. (A, B) plant height for control and stressed
plants respectively; (C, D) plant biomass for control and stressed plants respectively; and (E, F) plant size for control and stressed plants respectively.
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filters with ReLU activation. The (m, 32) vector thus obtained from

the dense layer is passed to another dense layer with a sigmoid

activation for binary classification between stressed and unstressed

classes. The groundtruth for training is developed based on visual

inspection of the RGB images of the plants. Drooping can be seen in

plants in dry down stage for the last three days of the experiment. The

hyperpixels for these last three days are labeled as stressed. The

hyperpixels of the plants for all days under the controlled

environment are marked as unstressed for the purpose of

groundtruth generation. The labeled dataset is split into training,

validation, and test sets in the ratio of 0.64, 0.16, and 0.20.
2.3.4 Evaluation metrics
HyperStressPropagateNet has been evaluated using a confusion

matrix, precision-recall curve, and F1-score. These metrics are defined

as follows:
Fron
• Confusion matrix is a specific tabular representation that

allows the visualization of the performance of an algorithm,

and is extensively used in the case of statistical classification

problems. For a confusion matrix C, Ci,j is equal to the

number of observations known to be in class i but predicted

to be in class j. Thus, C0,0 is the true negatives (TN), C1,0 is the

false negatives (FN), C0,1 is the false positives (FP), and C1,1 is

the true positives (TP).

• F1-Score is the harmonic mean of precision and recall. The

range for F1-Score is [0, 1], with 0 being the worst and 1 being

the best prediction. It is defined as:
tiers in Plant Science 10121
F1 − Score =
2� TP

2� TP + FP + FN
(10)

Precision (P) is defined as TP/(TP+FP) and recall (R) is defined as

TP/(TP+FN). F1-score is a better measure than accuracy for

unbalanced datasets.
3 Experimental results

3.1 VisStressPredict: DTW based stress
prediction using visible light imagery

The stress factor (SF) for each plant is calculated using Equation 5.

If the stress factor (SF) for a particular plant on a certain day crosses

the threshold t*, it is predicted to be stressed from that day. The

predicted class and onset of stress are given by Equations 7 and 8,

respectively. Figures 10A, B show the stress factor as a function of

time (called as a stress factor curve) for a set of normal and stressed

plants, respectively. The figures show that the plants demonstrate

similar group behavior. The stress factor curves for normal plants

gradually increase, peak around the threshold t*, and then gradually

decrease. The stress factor curves for the stressed plants, on the other

hand, generally keep increasing for the duration of the study.

It is seen from Figure 10B that the stress factor curves for stressed

plants with plant IDs 613-182-02, 613-185-05, 613-190-10, and 613-

195-15 cross the threshold t* on Day 24, Day 23, Day 23, and Day 22,

respectively, whereas stress factor curves for the control plants remain

below the threshold during the course of the study (Figure 10A). The
A

B D

E FC

FIGURE 7

Illustration of spectral band difference based segmentation: (A, B) - hyperspectral images of a cotton plant at wavelengths 770 nm and 680 nm,
respectively; (C, D) - corresponding enhanced images; (E) image obtained after subtracting (C) from (D); and (F) binary image.
A B

FIGURE 8

(A) Reflectance spectra generated at random pixels of a controlled plant; and (B) Reflectance spectra generated at random pixels of a stressed plant.
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FIGURE 9

Deep learning architecture for classification of stressed and unstressed pixels.
A B

FIGURE 10

Illustration of difference in behavioral characteristics between control and stressed plants in terms of stress factor curves: (A) stress factor curves for
control plants; and (B) stress factor curves for stressed plants.
A B

FIGURE 11

(A) Training and validation loss vs number of epochs; and (B) training and validation accuracy vs number of epochs.
A B

FIGURE 12

Performance metrics for HyperStressPropagateNet: (A) confusion matrix; and (B) precision-recall curve.
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only exception is a stressed plant (ID 613-189-09) in Figure 10B

whose stress factor curve keeps decreasing after it reaches a peak. This

is likely an outlier and may be caused due to imaging artifacts or an

anomaly in the computation of the convex-hull area due to plant

rotation. These defects may occur in plant images and can be fixed

with a more rigorous image processing and correction pipeline.
3.2 HyperStressPropagateNet: Deep neural
network based temporal stress propagation
using hyperspectral imagery

Figure 11A shows the training and validation loss versus the

number of epochs, and Figure 11B shows the training and validation

accuracy versus the number of epochs. The total number of epochs

used during training is 30. From the two sets of graphs, it is evident

that the validation loss and accuracy closely follow the training loss

and accuracy, respectively. Also, the model converges, and validation

accuracy reaches above 95% within 10 epochs.

Figure 12A shows the confusion matrix, demonstrating the

accuracy of classifying hyperpixels into stressed and unstressed

classes. The confusion matrix in Figure 12A shows that at a

threshold probability of 0.5, the false positives and false negatives
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are extremely low. Precision and recall for our proposed classifier are

0.99 and 0.98, respectively. F1-score is 0.98. The very high values for

precision, recall, and F1-score show that the model can accurately

distinguish between stressed and unstressed spectra.

Figure 12B shows the precision-recall curve for different

thresholds for the predicted probabilities. The model outputs the

probabilities of pixels being stressed from which the predictions are

obtained using a threshold. This threshold is generally kept as 0.5. As

the threshold is increased from 0 to 1.0, the predictions obtained from

the probabilities vary, and so do the precision and recall values. The

model with the highest area under the precision-recall curve is

generally deemed optional. Figure 12B shows that the precision and

recall values are very high for the entire range of threshold for the

proposed model, thus giving a very high area under the precision-

recall curve close to 1.0. The average precision for the model is also

very high, i.e., 0.9998. The various performance metrics demonstrate

the efficacy of the proposed algorithm.

Figures 13A, B show the temporal propagation of stress using

hyperspectral image sequences of cotton plants from Experiment 1

(Plant ID: 613-200-20) and Experiment 2 (Plant ID: 613-195-15),

respectively. In this figure, the hyperpixels classified as stressed and

unstressed are shown in red and green, respectively, for qualitative

visualization of temporal stress propagation. The percentage of the
A

B

FIGURE 13

Illustration of qualitative and quantitative temporal propagation of stress using (A) a plant from DD1 group and (B) a plant from DD2 group. The
percentage of stress pixels are shown at the top-left corner of each image.
A B

FIGURE 14

(A) SWC (%) for the control and the two dry-down groups (DD1, Plant ID: 613-200-20 and DD2, Plant ID: 613-195-15); and (B) stress pixel (%) over days
since DD1 for the same plants.
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stressed pixels to the total plant pixels is shown at the top left of

each image.

For the plant in Figure 13A, drought stress was introduced on Day

13. The figure shows a gradual increase in the stress symptoms that

started on Day 16, when 6.8% of the plant is labeled as stressed

(marked in red). The percentage of stress pixels increased to 24.9% on

Day 17 and 57.3% on Day 18. There is almost no green pixel present

in the plant on the last two days, i.e. on Day 20 and Day 21, which

implies that the whole plant is stressed. For the plant in Figure 13B,

drought stress was introduced on Day 20. The figure shows that stress

symptoms did not appear in the plant until Day 25 when, 30.9% of the

plant are labeled as stressed (marked in red). The figure shows that the

plant is considerably stressed on Days 26 and 27, with very few

unstressed pixels (shown in green). There is almost no green pixel

present in the plant on Day 28, which implies that the whole plant

is stressed.

The limited water availability in the soil is confirmed by changes

in the soil water content (SWC), as shown in Figure 14A. Soil water

content was measured using a HH2 type Moisture Meter (Eijkelkamp,

NL) connected to a ML3 ThetaProbe Soil Moisture Sensor (Delta-T

Devices, UK). Dry-down treatment resulted in a decline of SWC from

initial conditions (field capacity ∼ 16% SWC) to 15.6% of field

capacity (∼ 2.5% SWC) and 6.3% of field capacity (∼ 1.0% SWC)

for DD1 and DD2, respectively, at the end of each dry-down period.

Figure 14A also indicates the immediate effect in the SWC that

follows the cessation of watering. Figure 14B shows the temporal

progression of percentage of stress pixels for a plant from Experiment

1 (Plant ID: 613-200-20) and a plant from Experiment 2 (Plant ID:

613-195-15). The quantitative visualization of temporal stress

propagation of these two plants are shown in Figures 13A, B,

respectively. The excellent correlation between the SWC and the

corresponding temporal progression of the percentage of stress pixels

computed by HyperStressPropagateNet for both experiments

demonstrates the efficacy of the proposed method.
4 Discussion

The paper introduces two novel algorithms to understand the

impact of stress on plants. First, an approach to predict the onset of

stress in drought-affected plants is presented. The algorithm, named

as VisStressPredict, uses an extension of dynamic time warping based

on the time-series analysis of plant phenotypes derived from visible

light image sequences. The paper also introduces a novel method, i.e.,

HyperStressPropagateNet, to examine the propagation of stress in

plants over time. The deep learning based algorithm uses a

convolutional neural network to classify hyperpixels into stressed

and unstressed categories. Although both methods have been

evaluated using cotton plant image sequences, they can be

generalized to any plant species to study the temporal effect of any

kind of stress, e.g., thermal and salinity. Thus, the methods have the

potential to help differentiate between stress-tolerant and stress-

susceptible genotypes for sustainable agriculture. Note that

VisStressPredict and HyperStressPropagateNet fundamentally differ

in their goals and hence in the input image sequences, underlying

approaches, and final outcomes. VisStressPredict identifies the onset

of stress on the plant as a whole, but HyperStressPropagateNet maps
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the stress in a plant at a finer resolution. However, the onset of stress

as predicted by VisStressPredict (Figure 10) correlates extremely well

with the day of appearance of stress pixels in the plants as computed

by HyperStressPropagateNet (Figure 13). This establishes the dove-

tailed relationship between the two proposed algorithms.

The efficacy of the proposed algorithms depends on the reliability

of the phenotypes. The accuracy of the computed phenotypic time

series depends on many factors, including accuracy in image

segmentation, the effectiveness of denoising, and the stability of the

plant structure derived from images. The phenotypes such as plant

height, plant area, and convex-hull area are derived from the RGB

images through a series of image processing steps (See Section 2.2.1).

Segmentation of the plant is the basis for image-based phenotypic

computation, and inaccuracies in segmentation will result in

imprecise computation of plant phenotypes, including its height

and convex-hull area (Das Choudhury, 2020a). In addition,

inherent challenges introduced while imaging the plant, such as

those due to plant rotation, also impact the accuracy of some

phenotypes, including plant area and convex-hull area (Bashyam

et al., 2021). The plant rotation may cause shrinking of the convex-

hull area computed from the imagery from the previous day, although

the plant has grown bigger (Maddonni et al., 2002; Das Choudhury

et al., 2016). All these factors result in unevenness in the phenotypic

time series (Figure 3). This unevenness affects the performance of the

subsequence-based DTW matching, which explains the outlier stress

factor curve (plant ID 613-189-09) in Figure 10B. The impact of the

error may be ameliorated to some extent by smoothening, as

explained in Section 2.2.2.

Finally, it is worth noting that even with a very limited number of

stress days in the dataset, the proposed VisStressPredict algorithm

shows excellent performance as expressed by the empirically

determined stress factor. The mean stress factor curve in

Figure 10A remains below the threshold during the course of the

study for the control plants, whereas, it crosses the threshold on Day

23 and keeps on increasing during the rest of the days for the stressed

plants (Figure 10B). The method’s potential to predict stress, even in

its early stages, demonstrates its efficacy. However, in future work, we

will explore the generality of the method by examining the

performance of the algorithms on a large dataset with different

plant species where plants are subjected to stress for a longer duration.

The dataset used in the study consists of images of cotton plants

that are visibly drooped (but not visibly dried as seen by a change of

color) under stress. Thus, it is not possible to quantify the stress at the

fine pixel scale based on analyzing color features using visible light

images. The hyperspectral image analysis for temporal stress

propagation achieves the novel objective of identifying the stress

location in the plant before the visible stress symptoms appear in the

plant. Our study shows an excellent correlation between the soil water

content and the percentage of stress pixels in the plants (Figure 14).

The figure shows that as the soil water content decreases, the stress in

plants increases. The Pearson correlation coefficients calculated for

SWC and stress pixel percentage for the said plants from the two dry-

down groups (DD1, Plant ID: 613-200-20 and DD2, Plant ID: 613-

195-15) are -0.972 and -0.735, respectively. The early detection of

stress susceptibility acts as an alarm to the deteriorating plant health,

and appropriate intervention, e.g., adequate watering of the plant,

may help recover the plant’s health. Future work will consider the
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identification of wavelengths that carry the most salient information

on drought stress prior to the classification for improved

computational complexity.
5 Conclusion

The paper introduces two novel algorithms, i.e., VisStressPredict

and HyperStressPropagateNet, to study stress response in plants in

greater spatial and temporal resolution by analyzing visible light and

hyperspectral imagery. While RGB cameras capture the visible part of

the light spectrum in only three broad bands (red, green, and blue),

hyperspectral cameras typically capture a broad range of wavelengths

at very narrow intervals of a few nanometers. The VisStressPredict

algorithm predicts the onset of stress in plants using an enhanced

dynamic time warping approach from the phenotypic time series

derived from visible light images. The HyperStressPropagateNet

algorithm, in contrast, identifies the location of stress in the plants

using a deep learning approach from the hyperspectral imagery. The

algorithm has been used to illustrate the temporal propagation of

stress both qualitatively and quantitatively. The efficacy of the two

algorithms is demonstrated using a set of control and drought-

stressed cotton plants imaged in an HTTP system. Both the

algorithms have the potential to examine the response to other

kinds of biotic and abiotic stresses in plants, and can be applied to

any kind of plant species.
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The root is an important organ for plants to absorb water and nutrients. In situ

root research method is an intuitive method to explore root phenotype and its

change dynamics. At present, in situ root research, roots can be accurately

extracted from in situ root images, but there are still problems such as low

analysis efficiency, high acquisition cost, and difficult deployment of image

acquisition devices outdoors. Therefore, this study designed a precise

extraction method of in situ roots based on semantic segmentation model and

edge device deployment. It initially proposes two data expansion methods, pixel

by pixel and equal proportion, expand 100 original images to 1600 and 53193

respectively. It then presents an improved DeeplabV3+ root segmentationmodel

based on CBAM and ASPP in series is designed, and the segmentation accuracy is

93.01%. The root phenotype parameters were verified through the Rhizo Vision

Explorers platform, and the root length error was 0.669%, and the root diameter

error was 1.003%. It afterwards designs a time-saving Fast prediction strategy.

Compared with the Normal prediction strategy, the time consumption is

reduced by 22.71% on GPU and 36.85% in raspberry pie. It ultimately deploys

the model to Raspberry Pie, realizing the low-cost and portable root image

acquisition and segmentation, which is conducive to outdoor deployment. In

addition, the cost accounting is only $247. It takes 8 hours to perform image

acquisition and segmentation tasks, and the power consumption is as low as

0.051kWh. In conclusion, the method proposed in this study has good

performance in model accuracy, economic cost, energy consumption, etc.

This paper realizes low-cost and high-precision segmentation of in-situ root

based on edge equipment, which provides new insights for high-throughput

field research and application of in-situ root.

KEYWORDS

in situ root, high-throughput phenotype, low-cost acquisition, semantic segmentation,
edge equipment
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1 Introduction

Roots play a crucial role in the absorption of water and nutrients

by plants, affecting plant health, environmental adaptation and

productivity (Hinsinger et al., 2011; Lynch and Wojciechowski,

2015; Paez-Garcia et al., 2015). Microroots (mainly composed of

fine roots and root hairs) are the main executive parts of roots. The

absorption of water and nutrients accounts for more than 75% of

the total absorption of roots (Nielsen et al., 2001). The dynamic

changes of their own morphological characteristics (Shan and Tao,

1992) significantly affect root function and plant growth. At present,

root phenotype research focuses on the accurate identification of

root architecture. However, the segmentation of plant roots from

the cultivation environment is vulnerable to the impact of small and

medium soil particles. At the same time, it is difficult to accurately

segment the edges of roots and soil, which restricts the acquisition

of accurate root images.

In order to solve the above problems, scholars at home and

abroad have conducted a lot of relevant research. Obtaining high-

resolution images of roots in soil is the basis for accurate

identification of root configuration. Traditional root acquisition

methods, such as root drilling, soil column method and profile

method, consume materials and manpower. Problems such as

damage to root configuration and loss of small root segments are

easy to occur during extraction, which cannot meet the dynamic

and accurate identification of root configuration, It has been

replaced by in situ root observation (in situ cultivation method

and in situ imaging method) (Xiao et al., 2020; Liu et al., 2020b).

The root in situ imaging method originated from the micro root

canal method (Bates, 1937; Cseresnyés et al., 2021; Rajurkar et al.,

2022) It refers to identifying the root image contacting the glass tube

wall by inserting a glass tube into the soil. However, its

disadvantages lie in poor resolution (numerical value), slow

acquisition speed (time), and low degree of automation. It is

difficult to achieve batch synchronization and real-time

acquisition of the original root image. In addition, X-ray

tomography (XCT) and nuclear magnetic resonance imaging

(MRI) commonly used in medicine also provide new methods

and means for the acquisition of in situ root images (Jahnke

et al. , 2009). XCT scans the root image by using the

characteristics of different attenuation degrees of X-ray passing

through the soil and root, and finally obtains the root image (Park

et al., 2020; Scotson et al., 2021; Ferreira et al., 2022). MRI is a

modern tomographic imaging technology, which mainly transmits

radio frequency electromagnetic waves to obtain the MRI

information of different positions of objects in the magnetic field

to generate images, and uses computers to reconstruct the internal

images of objects(Borisjuk et al., 2012). It has also been applied in

root research (Schneider et al., 2020; Horn et al., 2021; Pflugfelder

et al., 2021). However, there are still drawbacks to the above two

technologies. Among them, XCT imaging takes a long time to

acquire, while MRI is more suitable for acquiring large roots.

Neither of them can recognize that the diameter is less than 400

m M (Metzner et al., 2015), and both technologies have

disadvantages such as high equipment cost and vulnerability to

soil environment interference.
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Digital equipment imaging method can dynamically collect

high-resolution in situ root images without changing the soil

environment and affecting the root growth state, which is

conducive to improving the efficiency of root configuration

segmentation and quantitative analysis (Hammac et al., 2011). In

recent years, it has been widely reported that simple cultivation

devices combined with digital equipment (smart phones, scanners,

digital cameras) are used to obtain root images (Mohamed et al.,

2017; Nakahata and Osawa, 2017; Nahar and Pan, 2019).

On the basis of accurately obtaining high-resolution in situ root

images, accurate and efficient root configuration recognition is a

thorny problem in current root phenotype research (Lynch, 2013).

The traditional image processing methods for root recognition

include traditional manual description, semi-automatic interactive

recognition and automatic threshold segmentation. The manual

description method has the problems of low recognition efficiency,

large workload and high result error (Abramoff et al., 2004; Le Bot

et al., 2010). The semi-automatic method is based on visual

observation and image recognition through auxiliary software.

Although semi-automatic interaction can achieve high accuracy,

it is too dependent on the subjective ability of observers to

distinguish roots and their own experience. The segmentation of

a single complex root image takes a long time, and the efficiency is

too low to achieve high flux in situ root image analysis. Although

the fully automatic threshold method improves the efficiency of root

identification, such as DIRT, GiaRoots, IJ Rhizo and EZ Rhizo can

provide statistical information such as root diameter, height and

density (Galkovskyi et al., 2012; Pierret et al., 2013; Das et al., 2015).

However, it is difficult to eliminate the noise interference of soil

background, and there are errors in root morphology identification.

And most of the research focuses on obtaining the more extensive

root parameters such as structure, length, diameter, etc. It is difficult

to excavate more detailed morphological characteristics of

micro roots.

Compared with traditional methods, root recognition based on

deep learning is easier to mine multi-level characteristics of the

target, and occupies a dominant position in the current root

phenotype research. For example, the SegRoot platform (Wang

et al., 2019) can mine multi-scale features of root images through

the improved SegNet network (Badrinarayanan et al., 2017), but

under fitting may occur in some cases. The ITErRoot network

(Seidenthal et al., 2022) has achieved good results in root

segmentation by stacking the encoding, decoding layer and

residual structure of the U-shaped structure many times, but its

network is too bloated and requires a high training platform. The

RootNav2.0 system (Yasrab et al., 2019) is based on the encoder

decoder CNN architecture and replaces the previous semi-

automatic feature extraction RootNav system (Pound et al., 2013)

with a multitask convolutional neural network architecture. It does

not require user interaction to accurately extract the root structure,

and the speed is increased by nearly 10 times, but it needs to be

carried out when the root is fully visible. Through the improved

UNet structure, the FaRIA platform (Narisetti et al., 2021) divides

the large resolution image into 256 x 256 small images for

prediction, and realizes the batch prediction of root images. The

RootPainter platform (Smith et al., 2022) includes semi-automatic
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and fully automatic methods. The former allows users to

subjectively correct each segmented image, and the model can

learn from the assigned correction, reducing the segmentation

time with the segmentation process; the latter is more suitable for

processing large data sets.

Edge devices include raspberry pie series developed by

Raspberry Pi Foundation, jetson series developed by Nvidia

Company, and orange pie series developed by Xunlong Software

Company. Among them, raspberry pie is increasingly used as a low-

cost, high-throughput solution for plant phenotype analysis (Jolles,

2021). For example, the “Do It Yourself” phenotyping system

(Dobrescu et al., 2017) uses raspberry pie control cameras to

achieve batch plant image acquisition, PYM (Valle et al., 2017)

uses raspberry pie control infrared cameras to perform phenotype

analysis on plant leaves, and Greenotyper (Tausen et al., 2020) uses

raspberry pie control cameras and deploys depth learning to

monitor plant positions. However, most of these platforms are

used for phenotypic analysis of plant parts on the ground, lacking of

research cases on plant underground roots. At present, mainstream

platforms for root identification, such as RhizoVision Crow

(Seethepalli et al., 2020), are based on desktop development and

do not support deploying models to Raspberry pie.

It has been reported that the RhizoPot platform was developed

by our research team in the early stage (Zhao et al., 2022) can

realize high-resolution, non-destructive real-time acquisition of

in-situ root images. In addition, the team has designed a cotton

plant root segmentation method based on DeeplabV3+ and

proposed the improvement strategy of the model for the

research on root segmentation methods (Shen et al., 2020; Jia

et al., 2021). However, the previous studies were all indoor

platform development, and the equipment cost was high,

lacking the exploration of portable equipment in outdoor

environment. Therefore, based on the previous research, this

paper designs a data augmentation scheme to expand the data

set; DeeplabV3+ model is modified to connect CBAM attention

mechanism with ASPP spatial pyramid pooling; The prediction

strategy is modified to make it more suitable for edge devices;

Deploy to Raspberry pie, and design the method of field

experiment. The purpose of this paper is to design a low-cost,

high-throughput in situ root precise identification technology by

replacing the traditional GPU analysis platform with raspberry

pie, and explore the possibil i ty of its application in

outdoor environment.
2 Materials and methods

2.1 Image collection

This experiment was conducted in the experimental station of

Hebei Agricultural University in Baoding, Hebei Province (38.85°N,

115.30°E) in 2021. The climate of the experimental site was mild.

Use Epson scanner V39 (Epson lnc., Suwa shi, Nagano, Japan) to

scan root images in batches. The resolution of the collected images

is set to 1200dpi and the saved format is bmp. The experimental

schematic diagram and equipment are shown in Figures 1A, C
Frontiers in Plant Science 03129
respectively. Figure 1B shows the prospect of field experiments.

Figures 1D–H are the relevant experimental equipment.

This paper filters and classifies the collected image set, removes

incomplete and fuzzy images, and finally retains 125 complete and

clear cotton roots in situ images, randomly selects 100 of them for

network training, and the ratio of training set to verification set is

9:1. According to the image data expansion method proposed in

this paper, 47873 and 1600 training set images and 5320 and 160

verification set images are finally obtained. The remaining 25

images are used as a test set to evaluate the network performance.

The image annotation is completed by an experienced

agronomist using the Adobe Photoshop CC (Adobe Inc., San

Jose, CA, United States) lasso tool. All pixels considered as roots

are marked white and saved in a new layer. Finally, the remaining

pixels are marked black. The resolution of the annotation image is

10200 pixels x 14039 pixels, and the annotation time of a single

image is about 4.5 hours.
2.2 Data augmentation

The dataset format required for training DeeplabV3+ is jpg, and

the image data set needs to be converted from bmp to jpg. In this

paper, two image data augmentation methods are designed. In

method 1, the training images are divided according to the

resolution of 512 pixels x 512 pixels to ensure that the training

can be carried out by resolution. At this time, the input image data

set is expanded to 53193, and the training set and verification set are

47873 and 5320, respectively.

In method 2, the training input image is segmented according to

the size ratio. To ensure accurate prediction of the original image,

the input resolution of the whole image is set to 2048 pixels x 2048

pixels. During training, the input resolution needs to be kept at 512

pixels x 512 pixels. The ratio of training resolution to prediction

resolution is 1: 16. Therefore, the image is reduced to 1/16 of the

original one to ensure that the prediction of the whole image has a

fixed size ratio. The annotation image also needs to go through the

same processing process, and the final training set based on equal

proportion is 1600 pieces, and the verification set is 160 pieces.

After training, the w1 weight based on the equal proportion method

and the w2 weight based on the pixel by pixel method are obtained

Figure 2 shows the differences between the two methods.
2.3 Segmentation model

2.3.1 Model comparison
The root data set used in this paper is selected in turn to

compare DeeplabV3+(Chen et al., 2018), PSPNet (Zhao et al.,

2017), HRNet (Sun et al., 2019) and UNet (Ronneberger et al.,

2015). The image segmentation results are shown in Figure 3 and

the experimental data are shown in Research 1 of Table 1.

From the segmentation effect of root image (Figure 3), it can be

seen that DeeplabV3+(MobilenetV2) and UNet have the best

segmentation effect, while DeeplabV3+(Xception) has obvious

under fitting phenomenon. The segmentation effect of HRNet
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and PSPNet is very poor, and the model is not suitable for

root segmentation.

According to the prediction results of root image (Research 1 of

Table 1), DeeplabV3+(MobilenetV2) has the best effect, followed by

UNet, DeeplabV3+(Xception), HRNet and PSPNet.

Therefore, based on the previous experimental results, this

paper designs a backbone network based on DeeplabV3+ model

and MobilenetV2 to train and predict the root image.
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2.3.2 Model improvement
At present, the attention mechanism can significantly improve the

model feature extraction ability and can be embedded in most

mainstream networks without significantly increasing the model

parameters and computation. Attention module includes channel

attention module, space attention module, time attention module and

branch attention module, and mixed attention mechanism: channel

space attention mechanism and space time attention mechanism.
FIGURE 1

Root collection equipment and method (A) Schematic diagram of RhizPot (B) Schematic diagram of field test (C) RhizoPot (D) Raspberry Pie 4B (E)
Jetson Nano (F) RTX2060 Notebook (G) Power Detector (H) Raspberry Pie Remote Desktop.
A

B

D
C

FIGURE 2

Illustration of Equal Proportion Dataset and Pixel by Pixel Dataset (A) Original Image (B) Equal Proportion Dataset (C) Pixel by Pixel Dataset (D) After
Training, w1 is the weight trained by the Equal Proportion Dataset, and w2 is the weight trained by the Pixel by Pixel Dataset.
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CBAM (Woo et al., 2018) is an attention module in the channel spatial

attention mechanism. That is, the image first goes through the channel

attention mechanism (CAM) to solve the problem of “what to pay

attention to”, then goes through the spatial attentionmechanism (SAM)

to solve the problem of “where to pay attention to”, and finally integrates

with the original feature map to form a new feature map that

emphasizes the channel and spatial features. In addition, CBAM is a

lightweight attention mechanism that can be seamlessly integrated into

any neural network without module overhead.

The DeeplabV3+ model designed in this paper uses the ASPP

structure in the encoder part, which contains three parallel hole

convolutions with expansion rates of 6, 12 and 18, which can provide
Frontiers in Plant Science 05131
a larger receiving field and capture more context information. On this

basis, inspired by the deployment of the dual attention mechanism to

the DeeplabV3+ network (Liu et al., 2020a). This paper tests two

methods of CBAM attentionmechanism deployment to the DeeplabV3

+ network, namely, the series connection and parallel connection of

CBAM and ASPP. The network structures are shown in Figures 4A, B

respectively. Both methods use the pre training weight of the backbone

network to iterate for 100 times before performance testing. Figure 5

compares the segmented images of the two methods, and the

performance comparison is shown in Research 2 of Table 1. The

results show that the CBAM attention mechanism in series with ASPP

is better than the parallel operation.
A

B D

E

F G

C

FIGURE 3

Segmentation Results of Various Network Roots (A) Original Image (B) Ground Truth (C) PSPNet (D) HRNet (E) UNet (F) DeeplabV3+(MobilenetV2)
(G) DeeplabV3+(Xception).
TABLE 1 Research 1: Performance of each network partition.

Research Network
name

mIoU
(%)

mPA
(%)

mPrecision
(%)

Precision
root(%)

Precision back-
ground(%)

Recall
(%)

GPU
mtime
(min)

Raspberry Pie
mtime(min)

Research 1

PSPNet 51.95 63.8 53.93 8.43 99.43 63.8 NA NA

HRNet 60.23 67.94 69.09 40.12 98.06 67.94 NA NA

DeeplabV3+
67.18 70.25 91.26 86.15 96.36 70.25

NA NA

(Xception) NA NA

UNet 85.06 90.8 91.83 84.2 99.46 90.8 NA NA

DeeplabV3+
75.17 78.22 92.9 87.75 98.05 78.22

NA NA

(MobilenetV2) NA NA

Research 2
Series 74.53 77.49 93.01 88.09 97.92 77.49 NA NA

Parallel 75.77 79.16 92.25 86.28 98.23 79.16 NA NA

Research 3
Fast 85.45 91.96 91.19 83.37 99.55 91.96 0.599 26.01

Normal 85.64 91.94 91.46 82.82 99.55 91.94 0.775 41.19
Research 2: Performance comparison of two methods to improve DeeplabV3+. Research 3: Performance of Fast segmentation and Normal segmentation on raspberry pie 4B and GPU platforms.
NA, Not Applicable. The optimal values are written in bold font.
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2.4 Predictive policy

In the early stage of this paper, the traditional conventional

strategy (Normal) of segmentation followed by splicing was tested.

By dividing the original image to a specified size, network prediction

was performed, and then the prediction results were spliced to obtain a

complete segmentation result. The processing process is shown in
Frontiers in Plant Science 06132
Figure 6A. The test results show that although the prediction accuracy

of this method is high, it takes a long time to predict after deployment

to raspberry pie. The shared time of the test set image prediction

process is up to 17 hours and 10 minutes. Therefore, this paper

proposes an improved fast splicing and segmentation strategy (Fast).

The improved Fast method is shown in Figure 6B. Based on the

results of the full image processing of the equal proportion
FIGURE 4

Improved DeeplabV3+ network structure (A) Series improvement (B) Parallel improvement.
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segmentation (Figure 7C), the region is divided into foreground and

background, where the foreground is the part of the region that

contains roots, and the background is the part of the region that

does not contain roots. For the foreground part, the region

corresponding to the original image is put into the network for

segmentation; for the background part, a RGB image with all gray

values of 0 is directly used to replace it. Finally, combine the two

into a complete segmented image (Figure 7D).

The results show that this method can save 22.71% of the time

cost on GPU on average, and the segmentation accuracy only

decreases 0.55% year on year, as shown in Research 3 of Table 1.

Later deployed in the raspberry pie terminal, the time cost of a

single picture can be saved by 36.85%.

2.5 Raspberry pie deployment

The model of the edge device selected in this article is Raspberry

Pi Foundation (Cambs, United Kingdom) 4B, which contains 8G of

memory, plus 32G of memory card. Raspberry Pie is an ARM based

microcomputer motherboard. SD/MicroSD card is used as the

memory hard disk. There are 1/2/4 USB interfaces and a 10/100

Ethernet interface (Type A has no network interface) around the

card motherboard. It can connect the keyboard, mouse and network

cable. It also has a TV output interface for video analog signals and

an HDMI high-definition video output interface.

2.5.1 Installation of raspberry pie system
The raspberry pie system selects the raspberry pie official 64 bit

system image (Raspberry Pi), sets SSH, WIFI, language and time

zone through the official burning software, and then burns it into

the 32G memory card. After startup, connect to Raspberry Pie via

MobaXterm to configure corresponding functions.
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2.5.2 Raspberry pie deployment batch splitter
Deploy the batch splitting program to Raspberry Pie 4B, and its

settable parameters include picture address, cache address and

target address. Its operation process is shown in Figure 8A.

2.5.3 Raspberry pie participates in image
collection and segmentation

In order to give full play to the low power consumption

advantage of Raspberry Pie 4B, this paper combines the image

segmentation program with image acquisition, and can set

parameters including scanner name, acquisition quantity, interval

time, image storage address, cache address, and target address (the

default setting of the scanner is dpi=1200, and the color mode is

color). The operation process is shown in Figure 8B. Compared

with batch segmentation, continuous collection and segmentation

can better reflect the advantages of raspberry pie 4B. The method of

timing acquisition is shown in Figure 8C.

The collection results are shown in Figure 9. The collection

interval is 24 hours and the collection time is 19:00 every day. In

order to show the growth process of root more clearly, the original

image is cropped, and the change trend of root can be clearly

observed in the image after network segmentation.

3 Results

3.1 Model evaluation

3.1.1 Model selection
This paper compares the performance of PSPNet, HRNet, UNet

and DeeplabV3+ depth learning models in cotton root image

segmentation. The test results show the comprehensive

performance of DeeplabV3+ > UNet > HRNet > PSPNet.
A B

DC

FIGURE 5

Serial and Parallel Segmentation Results (A) Original Image (B) Ground Truth (C) Parallel Segmentation Image (D) Parallel Segmentation Image.
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In DeeplabV3+, compare the backbone networks MobilenetV2

and Xception, and see Research 1 of Table 1 for performance

comparison when the backbone network pre training weight is used

to train iterations for 100 times. The effect of MobilenetV2 is better

than that of Xoption because MobilenetV2 is lighter, the network

model is smaller, the number of iterations required is less, and the

prediction time is shorter. The Xception network model is larger,

which is not conducive to deployment to edge devices.

3.1.2 Improvement results
This paper compares CBAMwith ASPP in parallel and in series.

Figure 4 for network structure and Research 2 of Table 1 for

segmentation performance. The results show that in terms of

segmentation accuracy, the method of CBAM in series with ASPP

is the best, DeeplabV3+ is the second, and the method of CBAM in

parallel with ASPP is the second.

In addition, the prediction accuracy of the improved DeeplabV3

+ network is 90.15%, higher than DeeplabV3+, HRNet and PSPNet,

and slightly lower than Unet. However, because the input and

output sizes of the Unet network are inconsistent, resulting in burrs

on the edge of the output prediction image. At the same time, the

cost of the Unet network is slightly higher. If the Unet network is

directly deployed to the Raspberry Pie 4B, it will not be able to

segment the high-resolution root image due to memory

limitations. Therefore, this paper does not use Unet as the root

segmentation network.

The test results show that the improved DeeplabV3+ network

can be directly deployed to the raspberry pie 4B, without pruning,

and runs well with stability and reliability.
Frontiers in Plant Science 08134
3.2 Performance evaluation

3.2.1 Predictive performance
After the network is deployed to Raspberry Pie, the average

partition time of the test set is about 41.19 minutes with the Normal

strategy, while the average partition time of the test set is about

26.01 minutes with the Fast strategy, a year-on-year decrease of

15.18 minutes. It takes about 9 minutes to segment images with

sparse roots and 33 minutes to segment images with dense roots.

Compare the segmented image with the labeled image, and the

performance indicators are shown in Research 3 of Table 1.

Therefore, compared with the Normal strategy, the Fast strategy

runs 36.85% faster in raspberry pie 4B on average, but the

prediction accuracy is only 0.34% lower. The experimental results

show that the Fast segmentation strategy proposed in this paper can

replace the Normal strategy to a certain extent.

3.2.2 Prediction accuracy
In addition, this paper also uses the open-source Rhizo Vision

Explorers platform (Seethepalli et al., 2021) to analyze the

phenotypic data of segmented root images, mainly comparing the

differences between the result images and the labeled images in root

length and diameter. See Table 2 for the comparison results. The

results show that the error of root phenotypic parameters such as

root length and diameter obtained by Normal strategy and Fast

strategy compared with the original labeled image is acceptable.

However, there is a big error between the root length, diameter and

the actual value of the result image obtained by the equal proportion

segmentation method.
FIGURE 6

Division Method Diagram (A) Normal Division Method (B) Fast Division Method.
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3.3 GPU verification

The advantages of edge devices replacing host devices lie in high

portability and low power consumption. In this paper, the

Raspberry pie 4B with 8G memory and HP Shadow Genie 5 (i7-

9750h+RTX2060+16G memory) notebook computers are used, and

the power supply is connected through the P06S-10 power detector

to compare the power consumption of the two in the continuous 8-

hour image acquisition and segmentation. The acquisition rate is 1

piece per hour, 8 pieces in total are collected, and the image is

segmented in the acquisition window period. The experimental

equipment is shown in Figure 1, and the results are shown

in Table 3.

3.3.1 Power consumption verification
The power consumption of Raspberry Pie 4B is much lower

than that of RTX2060 platform when collecting and segmenting the

same image. At the same time, when the time interval between two
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root image scans exceeds 30 minutes, Raspberry pie 4B has the

ability to segment within the scanning interval. The time used will

not increase, but the power consumption will be greatly reduced.

Therefore, it is proved that if the scanning interval is allowed, the

edge devices can deploy root segmentation networks to completely

replace the high cost and high energy consumption GPU

analysis platform.

3.3.2 Time verification
In this paper, the Fast policy and the Normal policy are

deployed on the GPU platform for comparison. The results show

that the Fast policy is 22.71% faster than the ordinary policy on

average, which verifies the conclusion that the Fast policy takes less

time than the Normal policy.

3.3.3 Result validation
In this paper, we also carried out a comparative experiment of

raspberry pie and GPU batch segmentation of root images
A B

D

C

FIGURE 7

Comparison of Equal Proportion Image Segmentation and Pixel by Pixel Image Segmentation (A) Original Image (B) Ground Truth (C) Results and
Details of Equal Proportion Segmentation (D) Results and Details of Pixel by Pixel Segmentation.
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simultaneously. Both of them used 25 test set images for

continuous segmentation test, with the same weight. The results

are shown in Table 3, which verify that the raspberry pie is

completely consistent with the GPU in terms of segmentation

accuracy. However, due to the limitation of 4B computing power

of Raspberry pie, the total power consumption is slightly higher

than that of the graphics card.
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3.4 Cost evaluation

Theoretically, semantic segmentation on the Jetson Nano with

GPU in this experiment will accelerate, but since the memory of

the Jetson Nano is only 4G, virtual memory needs to be added for

network deployment. Table 4 records the reference price of the

equipment used in the experiment. Based on the data provided by
A B D EC

FIGURE 9

Continuous acquisition and segmentation results. (A–E) are the root image and network segmentation result collected continuously at a time
interval of 24 hours.
FIGURE 8

Procedure Flow Chart (A) Batch Segmentation Procedure Flow (B) Image Acquisition and Segmentation Procedure Flow (C) Method of Image
Acquisition Interval.
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the RhizoPot platform (Zhao et al., 2022), the cost of using the

RTX2060 laptop with the Tensor core to control the RhizoPot

platform is approximately $1480. Compared with using the Jetson

Nano to control the RhizoPot platform, the cost is reduced to

$301, but the cost of using the raspberry pie 4B is only $247

(excluding the power detector). Considering the cost, the

performance price ratio of raspberry pie 4B or Jetson Nano is

much higher than others. Compared with the segmentation

performance of raspberry pie 4B and Jetson Nano, finally, this

paper selects raspberry pie 4B as the edge device for deploying root

image acquisition and segmentation.
4 Discussion

4.1 Basis for model improvement

The previous results show that both CBAM and ASPP can

improve the cotton image segmentation accuracy in series or in

parallel, but the series method is better than the parallel method.

The author believes that:

First, data processing samples are differentiated. The references are

for remote sensing image data sets. This paper uses cotton root data

sets. The characteristics of the two images are different. The remote

sensing image is characterized by the buildings, farmland and other

objects collected are basically square, while the cotton root image is

irregular, similar to human blood vessels. In addition, remote sensing

image segmentation usually faces multi category problems, and cotton

root segmentation mainly focuses on two category problems.

Secondly, the series and parallel extraction features are

differentiated. The advantage of concatenation is that after CBAM

extracts multi-channel attention mechanism features, ASPP is used to

sample multi-scale convolution kernel, which can more effectively

extract root feature vectors in space and time. In the parallel

connection method, on the premise that MobilenetV2 is used as the

backbone network, the number of channels output by CBAM is 320,
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and the number of channels output by ASPP is 256, that is, the number

of channels entering feature fusion is 576. However, in order to keep

consistent with the number of channels in the network decoding part,

the number of channels output by feature fusion can only be 256.

Therefore, the rise of input feature fusion dimension leads to higher

difficulty of classification, thus reducing the accuracy of the network.

Finally, for the optimization of the tandem method, residual

structure, convolution block and pooling layer can be introduced

into the attention mechanism module in the later stage to mine the

characteristics of attention mechanism at multiple scales.
4.2 Forecast strategy validation

At the beginning of this experiment, the image is similar to pixel

merging processing, that is, using the super pixel method (Ren et al.,

2019), SLIC super pixel segmentation algorithm is introduced in the

prediction, and the input image is divided into a super pixel image.

The traditional DeeplabV3+ output operation of these super pixel

image regions is used to obtain an accurate segmentation image.

However, in actual processing, the SLIC is used to block the image,

and the operation of block by block super pixel area will greatly

increase the prediction time. At the same time, when the prediction

image is more complex and fine, the quality of the output image will

be seriously affected. At the same time, the high resolution image

also limits the strategy of semantic segmentation.

There are two common methods for semantic segmentation of

high-resolution images. The first method is to down sample the

image and put it into the network for prediction, and then up

sample the results, so that the image processing speed is fast and the

context information will not be lost. However, the results of root

phenotype analysis showed that the root length and diameter

predicted by this method were larger than expected. The second

is to use the sliding window operation to divide the image into the

same area with a specified size and about 20% reserved, input the

network prediction to obtain local results, and then complete the
TABLE 2 Comparison of equal proportion segmentation, pixel by pixel segmentation and ground truth root system.

Name Total root length (pt) Root length error (%) Total root diameter (pt) Root diameter error (%)

Ground Truth 5576876 NA 534.835 NA

Equal Proportion 6057449 8.617 837.174 56.529

Pixel by Pixel (Normal) 5659371 1.479 538.775 0.737

Pixel by Pixel (Fast) 5614186 0.669 540.198 1.003
NA, Not Applicable. The optimal values are written in bold font.
TABLE 3 Comparison between Raspberry Pie 4B and RTX2060 Notebook for Collection and Batch Segmentation.

Method Platform Average split time (h) Collection time (h) Total time (h) Power consumption (kWh)

Collection Segmentation
RTX2060 NA 8 8.008 1.281

Raspberry Pie 4B NA 8 8.496 0.051

Batch Segmentation
RTX2060 0.017 NA 0.433 0.073

Raspberry Pie 4B 0.434 NA 10.338 0.086
NA, Not Applicable.
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stitching of image feature points. This method has a good degree of

detail and retains the context information, but it has high time cost

and is not friendly to edge devices.

The fast splicing and segmentation strategy (Fast) proposed

in this paper lacks context information, so the prediction effect

of scattering is poor. The equal proportion segmentation part of

this method actually belongs to the first kind of common

segmentation method, which contains all the context

information of the image. However, as shown in Figure 7, the

image processed by this method lacks details, and the root length

and diameter errors are too large after root phenotype analysis.

Therefore, this method only uses it as a pedal to save the

computing time of edge devices.
4.3 Edge device comparison

Compare the performance of Jetson Nano and raspberry pie 4B

with similar prices in in situ root segmentation. See Table 5 for the

results. In the experiment, 25 cotton root images (from the test set)

were selected for continuous and equal proportion segmentation,

and the network weights used by Jetson Nano and Raspberry Pie 4B

were consistent. Due to memory limitations, the Jetson Nano

cannot segment 1200dpi images with a resolution of 10200 pixels

x 14039 pixels. It can only compare 300dpi root images. In terms of

program startup, when using cuda, the Jetson Nano can only

segment up to three images consecutively, and then it will report

an error that the timer has timed out. When cuda is not used, the
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segmentation time of the Jetson Nano for 300dpi images is much

longer than that of the raspberry pie 4B.

There are three reasons why the split performance of the Jetson

Nano is inferior to that of the raspberry pie 4B. First, because of the

memory problem, more virtual memory needs to be configured

when running programs, but the speed of virtual memory is far

lower than that of running memory. The second is the CUDA

problem. When running the program, the timer will timeout. The

third problem is the processor. The processor model used by the

Jetson Nano is Cortex-A57, which lags behind the Cortex-A72

processor of the Raspberry pie 4B. Therefore, in actual use, the

performance of raspberry pie 4B is better than that of the Jetson

Nano. Theoretically, the performance of the Jetson TX2 is the best

(Süzen et al., 2020), but its cost is high, so it is not considered in

this paper.
4.4 Outdoor deployment prospect

Because soil color is dark and soil contains more impurities in

the case of natural cultivation of plants, this paper tested the image

segmentation of deep soil color and obscure root, as shown in

Figure 10, the network designed in this paper can still be segmented.

The results show that the root segmentation network designed in

this paper can carry out accurate identification of in situ roots in

various situations, and because of the portability and mobility of

raspberry pie, it can be deployed outdoors in the field for

experiments. The schematic diagram of field experiments is
TABLE 4 Reference Price of Equipment Used in the Experiment.

Name Type Price Other

Raspberry Pi Raspberry Pi 4B 8G $35

16G TransFLash card Kingston $5

RhizoPot platform $207 Including scanner, USB cable, acrylic plate and glass sealant

Jetson Nano $89

RTX2060 notebook RTX2060 + 16G Memory $1,268

Power detector Worldliness $4

Total $1,608
TABLE 5 Comparison between raspberry pie 4B and jetson nano (the processing method used for comparison is equal proportion segmentation, 25
sheets).

Name Split time
(300DPI)(ms)

Split time
(600DPI)(ms)

Split time
(1200DPI)

(ms)

Power consumption
(300DPI)(kWh)

Power consumption
(600DPI)(kWh)

Power consumption
(1200DPI)(kWh)

Raspberry
Pi 4B

1747842ms 1834684ms 2060141ms 0.004 0.004 0.005

Jetson nano
CUDA error CUDA error Memory error NA NA NA

(CUDA)

Jetson nano
17960733ms 18582792ms Memory error 0.021 0.031 NA

(no CUDA)
NA, Not Applicable.
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shown in Figure 1B. At the same time, raspberry pie can be used as a

continuous working platform for image segmentation. Compared

with GPU as the control, the Raspberry pie has lower power

consumption, saves GPU, and enables GPU to perform more

computationally demanding tasks.

In the future, this paper will consider adding Nvidia neural

computing stick to raspberry pie, which can theoretically improve

the segmentation speed of raspberry pie. For outdoor experiments,

considering the limited storage capacity of the SD card used by

Raspberry Pie, consider adding cloud storage in the future, and

upload the collected images obtained by the Raspberry Pie control

scanner and the identification images processed by the root

segmentation network to the cloud synchronously. This can not

only save the limited storage space of Raspberry Pie, but also

download scanning and processing images directly from the

cloud, replacing the transmission of removable storage devices,

improving the work efficiency, and laying a foundation for the

development of high-throughput outdoor root phenotype research.

At present, image labeling and training are classified into two

categories: root and non-root. When performing root phenotypic

analysis, only the whole picture can be analyzed, and the taproot

and lateral root cannot be analyzed separately. In the future, this

paper will consider using transfer learning to update the categories

of taproot and lateral root on the basis of the current situation,

which will have more agronomic significance.

In the process of root segmentation, small particles in the soil

will have an impact on the segmentation results, resulting in root

breakage in the segmentation results. The future goal of our

experimental group is to reconstruct the root system by

generating an antagonistic network and analyze the reconstructed

root system.
5 Conclusion

This paper proposes a method to deploy semantic

segmentation model to edge devices, and improves DeeplabV3+

model to segment image edges better. At the same time, we

propose an image segmentation strategy which can save time

and has both image details and context information. The
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improved DeeplabV3+ deployment in Raspberry Pie 4B shows

good performance. Compared with the deployment of the split

network on the GPU platform, the cost of deployment in

Raspberry Pie is as low as $247, and the power consumption of

8-hour acquisition and segmentation is as low as 0.051kWh.

Considering the time and cost, the accuracy of the improved

model is 91.19%, and the errors of the root length and diameter

are 0.669% and 1.003% respectively. The effect is similar to that of

the GPU, and it is more portable than computers. It can be

deployed outdoors for field experiment analysis. It can be seen

that if time permits, edge devices can replace laptops to complete

batch collection and segmentation of plant root images. In this

paper, based on the edge equipment, the segmentation of root

phenotype is effectively explored, which provides a favorable basis

for the study of root phenotype from the experimental

environment to the field and outdoors.
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Drought stress identification of
tomato plant using multi-
features of hyperspectral
imaging and subsample fusion

Shizhuang Weng*, Junjie Ma, Wentao Tao, Yujian Tan,
Meijing Pan, Zixi Zhang, Linsheng Huang*, Ling Zheng
and Jinling Zhao

National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui
University, Hefei, China
Drought stress (DS) is one of the most frequently occurring stresses in tomato

plants. Detecting tomato plant DS is vital for optimizing irrigation and improving

fruit quality. In this study, a DS identification method using the multi-features of

hyperspectral imaging (HSI) and subsample fusion was proposed. First, the HSI

images were measured under imaging condition with supplemental blue lights,

and the reflectance spectra were extracted from the HSI images of young and

mature leaves at different DS levels (well-watered, reduced-watered, and

deficient-watered treatment). The effective wavelengths (EWs) were screened

by the genetic algorithm. Second, the reference image was determined by

ReliefF, and the first four reflectance images of EWs that are weakly correlated

with the reference image and mutually irrelevant were obtained using Pearson’s

correlation analysis. The reflectance image set (RIS) was determined by

evaluating the superposition effect of reflectance images on identification. The

spectra of EWs and the image features extracted from the RIS by LeNet-5 were

adopted to construct DS identification models based on support vector machine

(SVM), random forest, and dense convolutional network. Third, the subsample

fusion integrating the spectra and image features of young and mature leaves

was used to improve the identification further. The results showed that

supplemental blue lights can effectively remove the high-frequency noise and

obtain high-quality HSI images. The positive effect of the combination of spectra

of EWs and image features for DS identification proved that RIS contains feature

information pointing to DS. Global optimal classification performance was

achieved by SVM and subsample fusion, with a classification accuracy of

95.90% and 95.78% for calibration and prediction sets, respectively. Overall,

the proposed method can provide an accurate and reliable analysis for tomato

plant DS and is hoped to be applied to other crop stresses
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hyperspectral imaging, drought stress, tomato, multi-features, subsample fusion
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1 Introduction

Tomato (Solanum lycopersicum L.) is a popular and important

vegetable crop cultivated in more than 100 countries and regions (Xia

et al., 2021). The tomato fruit possesses antiaging and cancer-

preventing effects and is also valuable for human health as it

contains natural antioxidants, such as lycopene, carotene, and

vitamins, as well as organic acids, such as malic acid and citric acid

(Eid et al., 2020; Mukhtar et al., 2020). During cultivation, tomato is

inevitably subject to many biotic and abiotic stresses. Drought stress

(DS) is the main factor affecting its growth and development. The

rational utilization of water resources is one of the topics of global

universal concern. How to identify DS degree accurately and optimize

irrigation reasonably must be explored for the sustainable

development of agriculture. Different molecular, biochemical,

physiological, morphological, and ecological traits of plants are

impaired under DS conditions (Seleiman et al., 2021), resulting in

wilted leaves, small stem diameter, and reduced photosynthetic

efficiency. Furthermore, DS can affect the concentration of

nutrients, such as sugars, acids, and proteins, in tomato fruit and

lead to a decline in yield and quality (Chen et al., 2014; Hao et al.,

2019). The detection of tomato plant DS can assist in providing

timely irrigation, ensure normal plant growth, improve fruit quality,

and reduce economic loss (Moharana and Dutta, 2019).

Plants rely on leaves for photosynthesis and respiration to

provide energy for themselves and exchange gases with the

outside world (Flexas et al., 2006; Haworth et al., 2018; Rad et al.,

2022). The leaf effectively summarizes the stress-driven

perturbations of the plant’s physiological status (Melandri et al.,

2021). Therefore, plant DS is usually characterized by the

appearance, temperature, and optical properties of leaves. Visual

analysis, canopy temperature, thermal imaging, machine vision, and

spectroscopic techniques are commonly used to analyze the DS

degree of plants. Visual analysis, which relies on professional and

experienced inspectors, is convenient and nondestructive but

susceptible to subjective interference (Weng et al., 2021). Canopy

temperature and thermal imaging can quantify the complex

relationship between temperature and stress degree without

needing physical contact, but they are affected by the aliasing of

plants and soil background information (Ni et al., 2015; Han et al.,

2016). The low cost, noncontact, and rapid acquisition of the leaf’s

external features are the major advantages of machine vision,

however, the lack of information about the internal composition

and structure of the leaf limits its identification accuracy

(Taghizadeh et al., 2011; Pandey et al., 2017). In recent years,

spectroscopic techniques, such as near-infrared spectroscopy and

reflectance spectroscopy, have been widely used in plant DS

assessment because of their simplicity, speediness, and zero

reagent consumption, these techniques provide information on

the stretching vibrations of hydrogen-containing functional

groups, such as C—H, N—H, S—H, and O—H (Steidle Neto

et al., 2017; Li P, et al., 2020; Das et al., 2021; Raddi et al., 2022).

Nevertheless, the techniques cannot precisely locate the leaf on the

designated plant. They may also be influenced by other plants. The

lack of spatial information reflecting the color, texture, shape, and

position of the leaf also limits the improvement of accuracy.
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As the combination of two sensor modalities, namely, imaging

and spectroscopy, hyperspectral imaging (HSI) is a promising

nondestructive detection method that can provide spatial and

internal information, such as the composition and molecular

structure of analytes (Mishra et al., 2019; Sun et al., 2021). HSI

technology is widely used in analyzing DS in plants. Chen et al.

established the machine learning model using HSI to monitor the

drought degree of tea seedlings under DS (Chen et al., 2021). Zhou

et al. tested the application of hyperspectral reflectance as a high-

throughput phenotyping approach for the early identification of DS

in citrus trees by conducting a greenhouse experiment (Zhou et al.,

2021). HSI has also been used to explore the physiological processes

of DS in plants, which is essential for selecting drought-tolerant

genotypes and promoting breeding research (Asaari et al., 2019).

HSI has an excellent performance in many analyses but may hardly

obtain a good recognition effect using only spectral information. For

instance, the nondestructive detection of healthy leaves and leaves

infected with grapevine leafroll disease based on the spectra from

HSI obtained a classification accuracy of 60.74% to 89.93% in the

first four phenological stages (Gao et al., 2020).

Recent studies have attempted to combine spectra and image

features to gain adequate information and improve the application

effects of HSI (Wang et al., 2015; Ru et al., 2019). Compared with

the accuracy of identifying yellow rust in wheat leaves using the

spectra alone, the accuracy of identifying yellow rust in wheat leaves

using spectra and texture features was increased by 7.3%(Guo et al.,

2020). Combining spectra, texture features, and morphological

features can improve the accuracy by 2% and 1.3% for the germ

side and endosperm side, respectively (Yang et al., 2015). The

texture and morphological features of images were extracted in

previous studies through statistical analysis methods, such as gray

level co-occurrence matrix (GLCM) and morphological parameter

calculation, whereas these methods are complex, time-consuming,

dependent on spatial scale, and subject to prior information (Sachar

and Kumar, 2021). In recent years, deep learning has demonstrated

its excellent feature extraction ability and has been widely used,

especially in the imaging field (Yu et al., 2020).

The leaf state in a single growth stage can hardly represent an

accurate expression of plant stress because of limited multidimensional

and heterogeneous information. Borraz-Martıńez et al. examined

young and adult leaves at the spectral level and found differential

pieces of information between them (Borraz-Martinez et al., 2019).

Subsample fusion, the integration of information from leaves at various

growth stages, was explored to determine tomato plant DS.

In addition, illumination conditions considerably influence the

image quality in HSI experiments. As a stable and diffuse light

source, the halogen lamp is often used as an illumination unit in

HSI. Nevertheless, the available light amount of the halogen lamp is

low in the visible region, resulting in HSI images with a poor signal-

to-noise ratio (SNR). Mahlein et al. indicated that supplemental

visible light can alleviate this problem (Mahlein et al., 2015).

The lack of light energy at 400–500 nm may be the main factor

leading to high-frequency noise in the visible region. The spatial

information may provide some help in accurately analyzing the plant

DS. Moreover, the fusion of multiple types of leaf samples may

enhance the judgment of plant physiological status. Herein, tomato
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plant DS was detected using multi-features of HSI and subsample

fusion (Figure 1). In particular, the objectives of the present study

were to (1) analyze the impact of blue lights on HSI image quality, (2)

combine the spectra of the effective wavelengths (EWs) and image

features extracted by LeNet-5 for DS analysis, (3) explore the effect of

subsample fusion in DS analysis, and (4) develop the identification

models of DS using dense convolutional network (DenseNet).
2 Materials and methods

2.1 Experimental design and
irrigation treatments

The experiment was conducted in a greenhouse situated in the

Laboratory of National Engineering Research Center for Agro-

Ecological Big Data Analysis & Application, Anhui University,

China. The red cherry tomato seedlings (50 days old) were

purchased from the local market and transplanted into 18 pots

(approximately 3 L each and one plant per pot) with ordinary soil

on July 22, 2021. The available nitrogen, phosphorus, and potassium

levels in the soil were determined by distillation method,

spectrophotometric method, and flame photometric method,
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respectively. The fertilizer conversion ratio required to grow the

tomato between the field and pot were calculated. Based on the

calculation results, 1.603 g urea, 0.773 g phosphorus pentoxide, and

0.985 g potassium sulfate were added to the soil to promote tomato

plant growth. The temperature and the relative humidity in the

greenhouse were set at 24°C and 68%, respectively. The initial soil

relative humidity (SRH) was maintained at 60%–80% by applying

stored rainwater suitably. Appropriate and uniform light was also

provided. After the plant roots were fixed, watering treatment was

halted to reduce moisture. SRH was monitored daily by a

temperature and humidity sensor. The samples of the three water

treatments were obtained over time: (a) well-watered treatment:

60%–80% SRH; (b) reduced-watered treatment: 40%–60% SRH; (c)

deficient-watered treatment: 20%–40% SRH.
2.2 HSI system and data acquisition

The HSI images of the leaves on tomato plants were collected

using the HSI system in the visible/near-infrared range from 400

nm to 1000 nm (Figures 2; S1). The system consists of an indoor

measuring platform with an area of 0.45 × 0.45 m2, a Headwall

Nano-Hyperspec (Headwall Photonics Inc., Bolton, MA, USA)
FIGURE 1

Flowchart of the determination of tomato plant DS degree.
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push-broom sensor that offers 272 spectral bands and 640 spatial

pixels, a lighting unit with two halogen lamps (75 W) as the main

radiation and two blue lights (3 W) as the auxiliary radiation, and a

computing unit. Two halogen lamps and two blue lamps were

placed on both sides and diagonal of the sample to ensure proper

and uniform illumination. All lights were preheated for 30 min

before imaging to reduce the influence of light intensity changes

over time on the experiment (Ma et al., 2020). During data

acquisition, the parameters of the HSI system were set as follows:

exposure time, 60 ms; frame period, 65 ms; scanning speed, 0.543

deg/s. The distance between the lens and the sample was set at
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30 cm by controlling the height of the lifting platform. For the

image calibration, white and dark reference images were acquired

by scanning a standard white board with 98% reflectance and

covering the lens before collecting the HSI images of leaves. The

correction formula is as follows:

Ic =
Ir − Id
Iw − Id

(1)

where Ic is the corrected image, Ir is the measured raw leaf

image, and Iw a Id are the white and dark reference

images, respectively.

After the parameters of the HSI spectrometer were set, the first

three leaves on the branch of the plant canopy were considered

young leaves, and the last three leaves on the branch below the

plant’s stem were mature leaves. Three young leaves (brightly

colored with luster and toughness) and three mature leaves (dull

colored without luster) were selected from each plant for HSI

measurement. A total of 630 samples were obtained, including

315 images of young leaves and 315 images of mature leaves

(Figure 3; Table 1).
2.3 Selection of EWs

After image correction, the region of interest (ROI) of the leaf

was obtained by using the threshold segmentation method. The

average value for all pixels within the ROI was calculated as the

reflectance. The extracted reflectance spectra have high dimension
FIGURE 2

HSI system for tomato leaf data acquisition.
FIGURE 3

Color composite images of tomato leaves under different water treatments.
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and multicollinearity (Ng et al., 2019). A small number of variables

can reduce the influence of noncorrelated variables, raise

computational efficiency, and improve model performance. The

genetic algorithm (GA), a variable selection method, was used to

select EWs. The support vector machine (SVM) classifier was used

as an evaluator. The algorithm parameters, such as initialized

population, number of iterations, crossover probability, and

variance probability, were set to 100, 400, 0.5, and 0.1,

respectively. The fivefold crossover validation was employed to

seek the global optimal solution in the descendants, and the mean

value of cross-validation accuracy was used as the fitness function in

this study. The EWs were determined by the following steps: (1)

After the first application of GA, an accuracy value of the test set

was obtained and used as the reference value. (2) GA was executed

in a loop, and the number of the loop was set to 1000. If the run

result was greater than the reference value, the result was designated

as the new reference value. The loop was exited, and step (2) was

repeated. (3) If GA was executed 1000 times continuously without

obtaining a good result, the previously acquired feature subset

would be considered the EWs. Table S1 shows the selected EWs.

GA is an adaptive global probability search and optimization

algorithm (Song et al., 2021) that utilizes selection, exchange, and

mutation operations to retain the variables with high objective

function values and delete the variables with low objective function

values by continuous genetic iterations based on the biological

evolution mechanism in nature. Thus, the optimal combination of

variables was obtained.
2.4 Image features

The reflectance image of EW with the highest weight value

given by ReliefF (Key et al., 2022) was regarded as the reference

image. The reference image contains specific and crucial

information. Other reflectance images with a weak correlation

with the reference image can provide complementary

information. Therefore, Pearson’s correlation analysis (Yang B, et

al., 2021) was used to calculate the correlation between the

reflectance images of EWs. Moreover, a threshold ranging from

−0.3 to +0.3 was set. The reference image was placed in a defined

container. Its correlation with the reflectance images of the

remaining EWs (indexed sequentially) was analyzed until a

reflectance image that met the threshold condition was found and

added to the container. The correlation between the reflectance
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images of residual EWs and the reflectance images in the container

was further calculated. A set of mutually unrelated reflectance

images were obtained by threshold filtering. Then, the first four

reflectance images with a weak correlation with the reference image

were selected. Five reflectance images were superposed one by one

according to the correlation ranking. The reflectance image set

(RIS) was determined by analyzing the superposition effect of

reflectance images. The RIS demonstrates high specificity,

sensitivity, and convenience for further processing. Finally, the

image features were extracted from RIS by LeNet-5. The relevant

parameters are shown in Table S2.

Convolutional neural networks (CNNs), which use local

connection and weight sharing to reduce the training parameters

and computational complexity, can extract useful features quickly

and accurately (Yang W, et al., 2021). CNNs are composed of

convolution, pooling, and full connection layers. The convolution

layer continuously learns the different characteristics of the input

data. The pooling layer keeps the most important features while

reducing the feature dimension to avoid overfitting. The full

connection layer maps the resulting feature maps into a feature

vector and generates a probability vector belonging to each class to

achieve classification (Fazari et al., 2021; Weng et al., 2022). LeNet-

5, a classical CNN, consists of two convolution layers, two pooling

layers, two full connection layers, and one output layer

(Priyadharshini et al., 2019). Image features were extracted by

LeNet-5 without the final activation function.
2.5 Model construction

2.5.1 Conventional machine learning methods
SVM is a supervised machine learning algorithm. It is often used

to solve classification or regression problems owing to its excellent

generalization ability. It maps data to a high-dimensional space

through nonlinear transformation (defining an appropriate kernel

function); then, it constructs the optimal separated hyperplane in the

high-dimensional space to transform a nonlinear problem into a

linear problem (Huang et al., 2019). Random forest (RF) can strongly

prevent overfitting and resist noise, as it combines a large number of

decision trees and averages the results of all the decision trees to

determine the final classification type (Yang H, et al., 2021).
2.5.2 Dense convolution neural networks
DenseNet, a mainstream learning method, was used to

construct depth recognition models, enhancing feature

transmission, encouraging feature reuse, and mitigating the

gradient disappearance phenomenon (Li G, et al., 2020). It mainly

comprises dense connecting blocks. Each layer in a dense block

obtains additional inputs from all preceding layers and passes its

feature maps to all subsequent layers, which can derive gradients

directly from the loss function and the original input signal, leading

to implicit deep supervision (Lawal, 2021). The spectra and image

features were input as a 1D vector, and only one dense block was

used in this study.
TABLE 1 Sample distribution under different water treatments.

Datasets

Number of tomato leaf images

Well-
watered

Reduced-
watered

Deficient-
watered

Young
leaves

108 105 102

Mature
leaves

108 105 102
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2.6 Performance evaluation

The HSI images of the tomato leaves that underwent three kinds

of water treatments were divided into the calibration set and

prediction set with a ratio of 7:3. In this study, the calibration set

accuracy (ACCC), prediction set accuracy (ACCP), precision, recall,

and F1-score of the prediction set, were used to evaluate model

performance. All methods, including variable selection, image

feature extraction, and model construction, were performed in

Python 3.7.0. All programs were run on a computer with an Intel

Core i7-3770 CPU, a main frequency of 3.40 GHz, and

PyCharm software.
3 Results and discussion

3.1 Spectral analysis

Blue lights (3 W) were used as supplementary lighting in this

study. Figure 4A displays the spectral differences in the 400–1000

nm range, and the spectral curve without blue lights was affected by

noise within the 400–500 nm range. The deviation plot (Figure 4B)

shows considerable high-frequency noise in the spectrum without

blue lights in the 400–500 nm range, indicating that the auxiliary

lighting of blue lights can effectively improve image quality. It is also

evidenced by the results of the parallel experiment in Table S3.

The reflectance spectra for all the available young and mature

leaves of tomato plants under different water treatments with the
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supplementary illumination of blue lights are shown in

Figures 4C, D respectively. The low reflectance in the 450–700

nm range was due to the strong absorption of chlorophylls A and

B for blue and red lights. A convex peak was present at 560 nm,

and a high degree of tomato plant DS indicated a high reflectance

value. This finding suggests that DS would reduce the

concentration of photosynthetic pigments and weaken the light

absorption capacity. The red edge phenomenon near 730 nm and

the reflectance at a high level within 780–1000 nm were controlled

by the internal structure of the leaf. The tomato plants with a

serious stress degree had great blue shift distance for spectra. Plant

self-protection mechanisms, such as leaf dehydration, stomatal

closure, and leaf curling, would be activated under DS. However,

this physiological state feedback was delayed relative to the

spectral response. In brief, spectral changes determine the

feasibility of HSI in identifying tomato plant DS.
3.2 DS identification based on spectra

SVM, RF, and DenseNet were used to develop the recognition

models of tomato plant DS based on the full spectra and the spectra

of EWs of young and mature leaves (Table 2). The parameter

settings of models are shown in Table S4. In terms of the full spectra

of the young leaves, SVM, RF, and DenseNet had ACCC values of

90.90%, 83.63%, and 95.45%, respectively, and ACCP values of

87.36%,74.73%, and 87.36%, respectively. Similarly, SVM gained

the optimal recognition result for mature leaves with ACCC =
B

C D

A

FIGURE 4

Reflectance spectra of the leaf with blue lights (red line) and without blue lights (green line) in the range of 400–1000 nm (A); the deviation
calculated by subtracting between the raw spectrum and the spectrum smoothed with Savitzky-Golay at 400–700 nm (B); reflectance spectra for all
available young leaves (C) and mature leaves (D) under different water treatments.
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94.09% and ACCP = 91.57%. The reason may be that the decision

boundary of SVM was suited for the data distribution of tomato

plant DS. With a powerful feature representation capability,

DenseNet can accurately distinguish the DS levels of the tomato

plant by combining low-level and deep features. RF performed

slightly worse than the two other methods, it may be insensitive to

tomato plant DS data.

Selecting the important variables beneficial to the learning

algorithm can reduce the difficulty of the learning task and

increase the interpretability of models. The spectra of EWs

selected by GA were used to analyze tomato plant DS, and the

ACCP of the optimal SVM model improved by 3.16% for young

leaves and 1.06% for mature leaves compared with the use of full

spectra (Table 2). However, a slight deterioration in the

identification result of RF was observed in young leaves because

of a sharp decrease in the number of wavelengths. A total of 16

EWs for young leaves and 37 EWs for mature leaves were selected

by GA, as shown in Figure 5. Specially, the EWs of young leaves all

appear near the peak and valley in the visible region, meaning that

young leaves are sensitive to changes in pigment concentration

under DS. The EWs of mature leaves spread across the entire

spectral range. Overall, the changes in the photosynthetic

pigments and cell structure in the leaf were important indicators

for evaluating tomato plant DS. The spectral information

representing tomato plant DS differed between young and

mature leaves. Therefore, the information on young and mature

leaves can complement each other, probably facilitating

DS analysis.
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3.3 DS identification using spectra and
image features

The direct use of leaf reflectance images with 272 wavelengths in

HSI to identify tomato plant DS would consume a huge amount of

time and reduce accuracy because of the high redundancy of HSI

images. Knowing the correlation between reflectance images may be

advantageous for extracting and synthesizing valid information and

discarding useless information. Therefore, one young leaf sample

and one mature leaf sample were randomly selected, and the

correlation coefficient matrices of the EWs’ reflectance images

were calculated using Pearson correlation analysis. The heat map

indicated the weak and strong correlations between the reflectance

images of EWs, Further screening of the RIS helped remove

collinearity variables (Figure 6). The RIS was determined by

modeling analysis based on SVM for the spectra of EWs and

image features extracted by LeNet-5 from different reflectance

image combinations obtained by increasing the number of images

in a sequence according to the correlation ranking of the first four

reflectance images with weak correlation with the reference image

(Table S5). The final RIS included the images of 607, 695, and 711

nm for young leaves and 567, 773, 791, and 822 nm for mature

leaves. As shown in Figures 6A and 6B, the determined RIS was

marked in the heat map. Any reflectance image in the RIS was

weakly correlated with the other reflectance images, with

correlation coefficients ranging from −0.3 to +0.3. Then, the

image features extracted from RIS by LeNet-5 were combined

with the spectra of EWs, called spectroscopy-image combination,
TABLE 2 Classification results of tomato plant DS based on full spectra and spectra of EWs.

Data types Categories

Methods/Accuracy (%)

SVM RF DenseNet

ACCC ACCP ACCC ACCP ACCC ACCP

Full spectra
Young leaves 90.90 87.36 83.63 74.73 95.45 87.36

Mature leaves 94.09 91.57 93.18 86.31 97.27 88.42

Spectra of EWs
Young leaves 95.45 90.52 81.81 73.68 90.00 88.42

Mature leaves 95.45 92.63 93.63 86.31 98.63 89.47
EWs, effective wavelengths; ACCC, calibration set accuracy; ACCP, prediction set accuracy; SVM, support vector machine; RF, random forest; DenseNet, dense convolutional network.
BA

FIGURE 5

EWs selected by the GA of young (A) and mature (B) leaves.
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to estimate the DS level (Table 3). The addition of new features

resulted in different responses for the models. The accuracy of all

models, except RF, was improved for young leaves, possibly because

of the weak adaptability of RF to heterogeneous features and the

presence of nonnegligible noise in image features. In regard to the

mature leaves, the classification accuracy was improved by 1%–2%

after the spectroscopy-image combination. The parameters of SVM,

DenseNet, and RF are illustrated in Table S6. In general, the image

features can replenish the missing spatial information, and

spectroscopy-image combination offers an accurate stress analysis.
3.4 Effect of subsample fusion
on DS analysis

The tomato leaves at different growth stages showed varied

characteristics in color, composition, and appearance. The spectra

and image features of young and mature leaves would provide the

multilevel information of tomato plant DS. After subsample fusion

(Table 4), a global optimal result of ACCC = 95.90% and ACCP =

95.78% was achieved by SVM. DenseNet also showed a strong

identification ability of tomato plant DS. The detailed parameter

settings of the models are shown in Table S7. The precision, recall,

and F1-score values for the tomato plants with reduced-watered

treatment were slightly lower than those in the two other water

treatments. The reason is that reduced-watered treatment was in the

intermediate state during the whole process of DS and easy to be

misclassified into other classes. The confusion matrices of SVM, RF,

and DenseNet (Figures 7A, C, E) showed that the tomato plants

with reduced-watered treatment were easily misclassified as well-
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watered or deficient-watered tomato plants owing to inapparent

differences in characteristics. Furthermore, the receiver operating

characteristic (ROC) curves clearly showed the strong specificity

and high sensitivity of SVM, followed by DenseNet and RF. The

dispersed distributions of the ROC curves under the three water

treatments indicated the presence of variances recognizing different

classes (Figures 7B, D, F). Subsample fusion could augment the

information difference of inter-class samples to promote further the

effective identification of tomato plant DS. SVM performed well in

identifying tomato plant DS with excellent accuracy and

satisfactory robustness.

This study aims to provide a definite management decision for

the rapid identification of tomato plant DS based on the multi-

features of HSI and subsample fusion, which has significance in

agricultural crop management and production practices (Table 5).
3.5 Discussion

3.5.1 Feasibility of HSI in plant DS
Traditional approaches for assessing plant DS include canopy

temperature (Taghvaeian et al., 2014), chlorophyll fluorescence

(Kautz et al., 2014), and thermal imaging (Jose Blaya-Ros et al.,

2020). However, these measurements have low sensitivity and poor

accuracy in practical applications, limiting their utility for rapid

detection in the field. Furthermore, the concentration of substances

in the leaves had already changed before DS caused changes in leaf

traits. Recently, HSI has been widely used as a mainstream, rapid,

and nondestructive measurement method in agriculture to obtain

plant biological information reflecting metabolic changes (Zhao
BA

FIGURE 6

Pearson’s correlation between the reflectance images of EWs in young (A) and mature (B) leaves.
TABLE 3 Classification results of tomato plant DS based on spectroscopy-image combination.

Strategy Categories

Methods/Accuracy (%)

SVM RF DenseNet

ACCC ACCP ACCC ACCP ACCC ACCP

Spectra of EWs + image features
Young leaves 94.09 91.57 80.90 70.52 90.45 89.47

Mature leaves 96.36 93.68 99.09 87.36 98.18 90.52
fr
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TABLE 4 Classification results of tomato plant DS based on subsample fusion.

Methods Classes Accuracy (%)
Prediction Set

Precision (%) Recall (%) F1-score (%)

SVM

Well-watered

ACCC=95.90
ACCP= 95.78

97.06 97.06 97.06

Reduced-watered 93.75 93.75 93.75

Deficient-watered 96.55 96.55 96.55

RF

Well-watered

ACCC= 96.81
ACCP= 88.42

88.24 88.24 88.24

Reduced-watered 84.38 84.38 84.38

Deficient-watered 93.10 9310 93.10

DenseNet

Well-watered

ACCC= 97.27
ACCP= 94.73

94.12 94.12 94.12

Reduced-watered 93.55 90.62 92.06

Deficient-watered 96.67 100.00 98.31
F
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FIGURE 7

Confusion matrices and ROC curves of (A, B) SVM, (C, D) RF, and (E, F) DenseNet. Classes 0–2: well-watered, reduced-watered, and deficient-
watered tomato plants, respectively.
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et al., 2020). Elvanidi et al. applied HSI to the detection of changes

in the spectral reflectance of tomato plants under varying irrigation

regimes to estimate plant water status under a controlled

environment (Elvanidi et al., 2018), demonstrating the feasibility

of HSI for nondestructive observation in tomato plant DS.

3.5.2 Utilization of spatial information
However, the utilization of spectra alone cannot show the

imaging advantage of HSI in many spectral technologies, and the

lack of spatial information leads to unsatisfactory results.

Spectroscopy-image combination can fully use the information in

the HSI images and effectively avoid information loss. Few previous

studies have discussed the spectroscopy-image combination to

identify DS in tomato plants. The superiority of the spectroscopy-

image combination in this study may be due to the fusion of

internal and external attributes in tomato leaves. However, most

studies only applied wavelength selection methods to gain RIS

(Weng et al., 2021), ignoring the relevancy degree between

reflectance images. Wavelength selection methods rely on the

reflectance values obtained by averaging all the pixels of the

reflectance image. Correlation analysis directly considers the

global information of the image. RIS was screened by

comprehensively considering the spectral attributes and

correlations between the images in this study. Simultaneously,

image features were generally extracted by image statistical

methods, such as GLCM, local binary pattern, and color moment

(Xie et al., 2015; Lu et al., 2019). Sachar et al. summarize some

methods for leaf image feature extraction without mentioning deep

neural networks (Sachar and Kumar, 2021). Feature extraction

using deep neural networks was proved feasible by Yang et al.

and Zheng et al. (Yang W, et al., 2021; Zheng et al., 2022). Thus,

LeNet-5 was used to extract image features automatically using the

flexible network structure, avoiding complex mathematical analysis.

The classification accuracy values of the spectroscopy-image

combination models were ACCC = 94.09% and ACCP = 91.57%

for young leaves and ACCC = 96.36% and ACCP = 93.68% for

mature leaves, which were better than those of the model based on

the spectra or the image features alone (Table S8). During the DS

analysis of the plant, the possible reasons for the poor results

obtained by relying only on images to distinguish DS degree are

the insignificant differences in the appearance of tomato leaves with

different stress levels, the influence of noise, and the low spatial

resolution of the HSI images. Combining spectral and spatial

information would be an effective solution for the first reason.

Then, the noise can be removed by suitable supplemental lighting or

by developing algorithms. In addition, super-resolution image
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reconstruction techniques are considered for enhancing the

spatial resolution and improving the sensitivity of DS response.

3.5.3 Fusion strategy
The leaves at different growth stages of the same plant have

different responses to DS. Other studies may point to the differences

between young and mature leaves, but the data fusion approach for

promoting DS analysis has rarely been applied. Subsample fusion,

integrating the spectra and image features of young and mature

leaves, can provide the differential information of multiple types of

samples and reduce generalization error. The classification accuracy

of the subsample fusion model was further improved, with ACCC =

95.90% and ACCP = 95.78%. Consequently, subsample fusion can

supply holistic information about the tomato plant and enhance DS

expression to fulfill the accurate analysis of tomato plant DS.

Manually distinguishing the leaves at different growth stages is a

laborious and time-consuming task. The algorithms must be

developed to distinguish leaves at different growth stages

automatically by texture, color, and morphological information

from an image.

3.5.4 Effects of blue light on imaging
Besides, HSI systems using halogen lamps tend to have inferior

SNR in the blue region (400–500 nm) of the electromagnetic

spectrum, because a minimal amount of light is divided into the

visible region for the HSI spectrometer with high spectral resolution

(Mahlein et al., 2015). Previous works determined that low light

intensity causes a dark current noise effect in the spectral profile of

HSI images (Manea and Calin, 2015; Zhang et al., 2019). Moreover,

the spectral curves in the 400–500 nm range, which depend on the

amount of light absorbed by leaf pigments (chlorophyll,

carotenoids, and anthocyanins), can reflect the physiological

health information of plants (Zhao et al., 2016). DS affects

metabolic reactions and the synthesis of photosynthetic pigments

in the plant, and the response mechanism suggests that the visible

light region is particularly sensitive to DS (Ihuoma and

Madramootoo, 2019; Ihuoma and Madramootoo, 2020). High-

frequency noise is suppressed by adding blue lights, and SNR is

ameliorated effectively.

3.5.5 Challenges, improvements,
and developments

The detection of tomato plant DS still faces many challenges.

For example, Susič et al. and Žibrat et al. indicated that both root-

knot nematodes (biotic stress) and water deficiency (abiotic stress)

lead to similar drought symptoms in plants (Susic et al., 2018; Zibrat
TABLE 5 Significance of results.

Points Significance

Supplement blue light Suppress high-frequency noise and improve imaging quality effectively

Variable selection Reduce computational cost and optimize classification performance

Spectroscopy-image combination Synthesize multidimensional (spectral and spatial) information and improve information utilization

Subsample fusion Integrate heterogeneous information and enhance classification model recognition ability
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et al., 2019). In the actual planting environment, the accurate

differentiation of the biotic stress with similar symptoms of DS

can contribute to the prevention of misidentification and

inappropriate preventive measures affecting plant survival rate.

Alordzinu et al. reported that plant responses to water stress are

articulated by various physiological and biophysical changes and

soil properties, they also assessed the water stress of tomato plants at

different growth periods under different soils (Alordzinu et al.,

2021). The mechanisms of resistance to tomato plant DS at different

growth periods need to be further determined. Soils faced with

widely cultivated tomato plants will be the focus of our future

research. The specific effects of nutrients in the soil on the plant also

need to be explored. Burnett et al. considered that spectroscopy can

detect DS by investigating the potential biochemical changes before

visual differences are observed, and metabolic responses to DS can

be detected by HSI (Burnett et al., 2021). We should pay attention to

the changes in the internal components of tomato leaves under DS,

such as chlorophyll, soluble protein, catalase and so on. Moreover, it

was shown that chlorophyll content, protein content decreased

under DS, and the deeper the stress degree is, the lower the

content is. The enzymatic activity of superoxide dismutase is

significantly enhanced under severe DS, whereas catalase has a

slight enhancement (Zgallai et al., 2006). We will attempt to

estimate quantitatively the leaf metabolite concentrations pointing

to tomato plant DS and achieve the early identification of DS. Two

different types of leaves may be insufficient for estimating the

physiological state of the plant system. The stress-induced

changes in the physiological, biochemical, and molecular

attributes of different plant organs need to be investigated. In this

way, the health status, stress tolerance, and complex adaptation

mechanisms of plant can be comprehensively assessed.

Additionally, some other aspects also need to be improved. (1)

With the application of HSI in a greenhouse or a field, the

uncontrollable lighting, complex background (soil, weeds, etc.), and

mutual interference between plants can lead to incorrect DS analysis.

Therefore, image correction and background segmentation should be

considered. (2) In our work, the deep learning recognition models

exhibited a barely prominent performance owing to the lack of

training samples. Increasing the sampling data may improve the

identification. Simultaneously, tomato plants with diverse stresses,

including diseases and pests, various varieties, and different growth

periods need to be further researched. Novel modeling algorithms

deserve to be developed to accommodate heterogeneous samples and

optimize classification performance. (3) Hyperspectral sensors can be

mounted on the unmanned aerial vehicle (UAV) to perform large-

scale DS detection and timely management. The trajectory, cycle, and

height for the flight of the UAV, as well as the speed and range for the

lens scanning of the HSI spectrometer, should be further explored.

During plant protection management, it is necessary to consider

not only improving the accuracy of DS identification in plants, but

also raising the adaptability of the plants to DS. Plant growth

depends on the absorption of water from the soil and its transfer

from roots to other plant parts. Therefore, understanding drought-

induced changes to root anatomical traits is important to enhance

plant drought adaptation (Alagoz et al., 2022). Different plant
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growth regulators respond differently to plant DS. Studying the

effects of different plant growth regulators on plant physiological

and biochemical processes can also help to promote the drought

resistance of plants (Ghassemi et al., 2018). Along with the research

on DS, the influence of fertilizer application on plants growth and

biodiversity should also be discussed (Li et al., 2022). The use of

chemical fertilizers remains controversial, so finding alternatives to

chemical fertilizers for ecological sustainability is one of the

pressing issues in modern agriculture (Sun et al., 2022). Overall,

modern agricultural management aims to improve plant resistance

while identifying stresses accurately and intervening scientifically.
4 Conclusion

In this work, the identification of tomato plant DS was

performed using the multi-features of HSI and subsample fusion.

The addition of blue lights removed the high-frequency noise in the

400–500 nm region. The reflectance spectra extracted from the HSI

images showed that reflectance increased with the severity of

tomato plant DS. Moreover, the image features extracted from the

RIS by LeNet-5 positively affected the improvement of the model

performance. Spectroscopy-image combination obtained good

results with ACCC = 94.09% and ACCP = 91.57% for young

leaves and ACCC = 96.36% and ACCP = 93.68% for mature

leaves, which are superior to the identification accuracy values of

the modeling by spectra or image features alone. Moreover, the

classification accuracy of the subsample fusion model was further

improved with ACCC = 95.90% and ACCP = 95.78%. In summary,

the multi-features of HSI and the subsample fusion yielded an

accurate identification of tomato plant DS under the supplementary

illumination of blue lights. Applying HSI in complex environments,

adding sample types and sample size, optimizing modeling

algorithms, and utilizing of UAV equipped with an HSI

spectrometer should be considered in future explorations to

establish a stable, precise, and comprehensive classification model

for various stress types and stress degrees.
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Deep-agriNet: a lightweight
attention-based encoder-
decoder framework for crop
identification using multispectral
images

Yimin Hu1,2, Ao Meng1, Yanjun Wu2,3, Le Zou1, Zhou Jin2

and Taosheng Xu2*

1School of Big Data And Artificial Intelligence, Hefei University, Hefei, China, 2Institute of Intelligent
Machines, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei, China, 3Science
Island Branch, University of Science and Technology of China, Hefei, China
The field of computer vision has shown great potential for the identification of

crops at large scales based on multispectral images. However, the challenge in

designing crop identification networks lies in striking a balance between

accuracy and a lightweight framework. Furthermore, there is a lack of accurate

recognition methods for non-large-scale crops. In this paper, we propose an

improved encoder-decoder framework based on DeepLab v3+ to accurately

identify crops with different planting patterns. The network employs ShuffleNet

v2 as the backbone to extract features at multiple levels. The decoder module

integrates a convolutional block attention mechanism that combines both

channel and spatial attention mechanisms to fuse attention features across the

channel and spatial dimensions. We establish two datasets, DS1 and DS2, where

DS1 is obtained from areas with large-scale crop planting, and DS2 is obtained

from areas with scattered crop planting. On DS1, the improved network achieves

a mean intersection over union (mIoU) of 0.972, overall accuracy (OA) of 0.981,

and recall of 0.980, indicating a significant improvement of 7.0%, 5.0%, and 5.7%,

respectively, compared to the original DeepLab v3+. On DS2, the improved

network improves the mIoU, OA, and recall by 5.4%, 3.9%, and 4.4%, respectively.

Notably, the number of parameters and giga floating-point operations (GFLOPs)

required by the proposed Deep-agriNet is significantly smaller than that of

DeepLab v3+ and other classic networks. Our findings demonstrate that Deep-

agriNet performs better in identifying crops with different planting scales, and

can serve as an effective tool for crop identification in various regions

and countries.

KEYWORDS

multispectral image, crop identification, feature extraction, encoder-decoder,
lightweight, DeepLab v3+
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1 Introduction

Timely identification of large-scale crops is vital for agricultural

production, which can provide an important basis for yield

estimation, structure adjustment and optimization of agricultural

management (Becker-Reshef et al., 2010). The traditional

identification methods of farm crops are mainly based on

statistical statement, but the outdated method restricts

identification efficiency and increases labor costs (Tan et al., 2020).

Recently, a variety of automated detecting technologies have been

proposed in crop identification and achieved lots of successful

applications (Waldhoff et al., 2017; Longato et al., 2019; Xu et al.,

2019). Remote sensing, as a large-scale non-contact monitoring

technology, plays an extremely important role in modern

agriculture (Shi et al., 2019). Identification of farm crops in remote

sensing images in large-scale farmland can obtain the spatial location

information of farmland and the ground attachment. The related

information helps agricultural administrators to figure out the

distribution and planting structure of regional species from a

macro perspective, thereby formulate more accurate and efficient

agricultural policies.

Crop identification based on remote sensing has been a research

theme of considerable interest, which is of great value in the field of

precision agriculture. With the development of image processing

and artificial intelligence, the technologies of crop identification can

be summarized into three streams. In the first stream, the

traditional remote sensing feature extraction is mainly based on

spectral, spatial, and temporal features (Zhang et al., 2016; Qiong

et al., 2017; Sun et al., 2019b). Tian et al. (2021a) analyzed spectral

characteristics and vegetation indices at each growth stage of crops

and used reasonable thresholds to screen these parameters and

successfully identified winter wheat and garlic planting areas. The

result shows that varying vegetation indices could effectively

distinguish crops with different spectral characteristics. Li et al.,

(2015) used the Stepwise Discriminant Analysis (SDA) method for

feature selection from the Landsat MODIS Enhanced time series

data and screened out 10 optimal features for crop classification. In

the second stream, Machine learning methods are widely used in

the field of large-scale crop identification due to their heuristic

learning strategy and accelerated training mechanism (Jia et al.,

2019; Zhang et al., 2019; Tian et al., 2021b). Zheng et al. (2015)

applied Support Vector Machines (SVMs) to time-series Landsat

images of Arizona to test its ability to discriminate between multiple

crop types in a complex cropping system. Han et al. (2022)

extracted relevant features of corn lodging regions and proposed

the SMOTE-ENN-XGBoost model based on the Synthetic Minority

Oversampling Technique (SMOTE) and Edited Nearest Neighbor

(ENN) methods, which showed an F1 score of 0.930 and a recall rate

of 0.899 on the lodging detection test set. With the proposal of the

Convolutional Neural Network (CNN), deep learning leads the

third stream for crop identification using remote-sensing images

(Kuwata and Shibasaki, 2015; Wang et al., 2020; Yuan et al., 2020).

Yu et al. (2022) improved the U-Net network by introducing the

Involution operator and Dense block module and proposed a wheat

lodging evaluation method based on UAV multispectral images.

Kussul et al. (2017) proposed a multi-level Deep Learning (DL)
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method using multi-temporal land cover and crop type

classification to identify crops in a heterogeneous environment,

achieving a target accuracy of 85% for major crops. The proposal of

attentional mechanisms has dramatically advanced the field of deep

learning. Naturally, this ingenious mechanism has also been widely

used for crop identification with great success (Jin et al., 2021).

Wang et al. (2022) proposed a novel architecture called Coupled

CNN and Transformer Network (CCTNet), which combines the

local details of CNN and the global context of the transformer to

achieve a 72.97% mIoU score on the Barley remote-sensing dataset.

Lu et al. (2022) proposed a deep neural network with Dual

Attention and Scale Fusion (DASFNet) to extract farmland from

GF-2 images of southern Xinjian. The result shows that the dual

attention mechanism module can correct the shape and boundary

of the fields effectively.

The above methods show excellent performances in their

respective datasets. However, these datasets are mainly derived

from areas where crops are grown on a large scale. In fact, the

vast majority of China’s regions are planted discretely, and the plots

under this type of planting are relatively tiny, making it difficult for

existing networks to achieve high-precision crop identification. In

addition, a high-precision network is often accompanied by a

considerable amount of parameter calculation, which is difficult

to be applied to low-end agricultural equipment. Therefore, a highly

accurate and lightweight neural network is urgently needed for

agricultural production.

In this paper, we proposed a lightweight attention-based

encoder-decoder framework for crop identification, and

summarize the contributions of this paper as follows:
• Designed a lightweight network structure with much

smaller parameters and floating-point of operations than

DeepLab v3+ and other classical networks.

• Got an excellent identification accuracy, which can reach

more than 98% accuracy in large-scale plots and more than

97% accuracy in small-scale plots.

• We also built two datasets corresponding to regular large-

scale plots and irregular small-scale plots to test the

performance of the Deep-agirNet in different environments.
2 Materials and methods

2.1 Study area

As the most important winter crop in China, especially in the

Yangtze River basin, winter wheat and canola have similar planting

cycles, generally sown in September to October and harvested in

April to May of the following year. Given that winter wheat and

winter canola are important components of the agricultural

economy, it is significant to know the distribution of these two

crops for agricultural production and policy making. In this paper,

two representative regions in the middle and lower reaches of the

Yangtze River in China are selected as study areas, and their

geographical locations are shown in Figure 1:
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The first rectangular study area T49RFQ is bounded by

longitudes 112°0' to 113°10' E and latitudes 30°40' to 31°40' N

which mainly belongs to Jingmen City, Hubei Province. Jingmen

City is planted on a large scale with regular and continuously

distributed plots, which makes it easy to plant and harvest. The

second rectangular study area, T50SNA, is bounded by longitudes

117°0' to 112°10' E and latitudes 31°30' to 32°30' N which mainly

belongs to Hefei, Anhui Province. Hefei is planted discretely, with

small and scattered plot sizes and low land use.
2.2 Remote sensing images processing

Sentinel 2 is a high-resolution multispectral imaging satellite

built by the European Space Corporation and consisted of the

“twin” satellites Sentinel 2A and Sentinel 2B. The remote sensing

images taken by the Sentinel satellites contain 13 bands with

different spatial resolutions (10m, 20m, 60m). In this study, all

bands except Band 1 (Coastal aerosol), Band 9 (Water vapor), and

Band 10 (SWIR-cirrus), which have the lowest spatial resolution,

were screened and excluded, and a bilinear interpolation algorithm

was applied to Band 5, 6, 7 (Red edge), Band 8b (Narrow NIR) and

Band 11, 12 (SWIR) are resampled to a spatial resolution of 10m,

and then these bands are fused to obtain a 10-channel remote

sensing image with 10m spatial resolution.

Since crops of different planting scales will have different Digital

Number (DN) distributions in remote sensing images, as shown in

Figure 2. To reduce the errors caused by DN, percentage linear

stretching is adopted in this study for each band of T50SNA:
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result =
DN −minin
maxin −minin

� (maxout −minout) +minout (1)

here maxin andminin represent the maximum and minimum of

DN of the stretched image, thenmaxout andminout represent the set

maximum and minimum of DN, respectively. Specifically, the

maximum and minimum values of DN of T49RFQ are setas the

upper and lower limits of pixel values. Then, the other image is

linearly stretched to the set range so that the DN of the two images

is finally distributed in the same range to reduce the deviation.
2.3 A lightweight encoder-decoder
network based on DeepLab v3+

Since the first time used fully convolutional neural networks

(Long et al., 2015) for end-to-end segmentation of natural images,

semantic segmentation tasks for pixel-level classification have

achieved leap-forward development. The vast majority of state-of-

the-art (SOTA) segmentation networks, such as U-Net

(Ronneberger et al., 2015), PSPNet (Zhao et al., 2017), DeepLab

(Chen et al., 2017), and HRNetv2 (Sun et al., 2019a) are built based

on encoder-decoder architecture. As an excellent semantic

segmentation model with the encoder-decoder structure, DeepLab

v3+ (Chen et al., 2018) is widely used in the field of semantic

segmentation of remote sensing images. The part of the decoder

includes Atrous Spatial Pyramid Pooling (ASPP) and an improved

Xception module, where the ASPP module can control the size of

the perceptual field by adjusting the expansion coefficient to capture
A B

C

FIGURE 1

(A) Locations of the study areas in China (red), (B) Sentinel-2 image of the first study region, (C) Sentinel-2 image of the second study region.The red
hollow rectangle shows the crop cultivation in the two regions.
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the features at different scales. Then, two quadruple upsampling are

used in the decoder part, where the first upsampling concatenates

the low-dimensional features from the decoder and encoder to

make features fusing, and the second upsampling restores the

concatenated result to the same scale of inputs and classifies each

pixel to obtain the segmentation result finally.

Despite the excellent performance of DeepLab v3+, it is hard to

accept for agricultural production due to the large parameters.

Considering a network serving agricultural production must

balance accuracy and parameters, we made a lightweight

improvement to DeepLab v3+ and named the improved network

as Deep-agriNet.

As shown in Figure 3, the improvement of the network is

mainly reflected in the following parts: In the encoder part, we

chose ShuffleNet v2 (Ma et al., 2018), an advanced lightweight

network architecture, as the feature extractor of Deep-agriNet. The

design of ShuffleNet v2 is based on four network design criteria:
Frontiers in Plant Science 04158
• Keeping the numbers of input and output channels equal

minimizes memory access cost.

• A large group number used in group convolution increases

computational cost.

• Complex network structure (abuse of branches and basic

units) reduces the degree of network parallelism.

• The costs of element-wise operations cannot be neglected

either.
The operation of channel split was used in the basic shuffle unit

of ShuffleNet v2. Then, it divided input channels evenly into two

branches to replace the group convolution. As shown in Figure 4A,

one branch of the basic shuffle unit does nothing to reduce network

computation, and the other branch maintains the same number of

channels in each convolution. The shuffle unit for spatial down

sampling, as shown in Figure 4B, removes the channel split and

doubles the number of output channels compared to the input
FIGURE 3

The framework of the Deep-agriNet.
A B

FIGURE 2

The Digital Number distribution plot of a multispectral of (A) the first study region of T49RFQ, (B) the second study region of T50SNA. Solid lines
represent means and shaded areas represent one standard deviation from the mean.
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channels. In addition, the outputs of both shuffle unit are no longer

an add operation between elements but a concatenation, which can

fuse the extracted features or output information instead of simple

superposition. Finally, the results of concatenation are shuffled at

the end of the basic unit by the channel shuffle operation to increase

the information exchange between channels, thus improving the

network performance.

In the decoder part, a Convolutional Block Attention Module

(CBAM) (Woo et al., 2018) was added to the DeepLab v3+ decoding

module. As a “plug-and-play” lightweight convolutional attention

module, CBAM is composed of a Channel Attention Module

(CAM) and a Spatial Attention Module (SAM) in series, as

shown in the Figure 5.

In the channel attention module, both the operation of average-

pooling and max-pooling are used simultaneously to generate

average-pooled features and max-pooled features. Then, the two
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kinds of features are forwarded to a Multiple-layer Perceptron

(MLP) to share feature. The output features of MLP are merged

by element-wise summation and then activated by a sigmoid

function to generate the channel attention feature maps Mc(F). In

short, the detailed operation to obtain channel attention can be

computed as:

Mc(F) = s (MLP(AvgPool(F)) +MLP(MaxPool(F))) (2)

In the spatial attention module, the output features of CAM are

taken as the input feature of SAM. Firstly, twice operations of

pooling based on channels are used to aggregate channel

information and generate average-pooled features and max-

pooled features. Then, these features are concatenated and

convolved by a standard convolution layer and produce the

spatial attention feature map Ms(F). In short, the detailed

operation to obtain spatial attention can be computed as:
A

CB

FIGURE 4

The structure of (A) Convolutional Block Attention Module, (B) Channel Attention Module, (C) Spatial Attention Module.
A B

FIGURE 5

The structure of (A) basic unit, (B) unit for spatial down sampling.
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Mc(F) = s (f 7�7½AvgPool(F);MaxPool(F)�) (3)

Where s is an activation function of sigmoid, F denotes the

input feature, and f7x7 denotes a convolution operation with the

filter size of 7 x 7.

In addition, some simple but effective adjustments are applied to

the network improvement. Specifically: (a) The channels of input layer

of the encoder were modified to ten layers because of the multispectral

remote-sensing images containing more feature information than the

traditional 3-channel RGB images (Zhao et al., 2022). (b) It is worth

noting that the continuous large-scale upsampling is not conducive to

obtain a satisfactory segmentation result, so we replaced the second 4-

fold upsampling in thedecoder section with a 2-fold upsampling and a

transpose convolution (Luo et al., 2021).

To extract richer multi-level features from the encoder, Deep-

agriNet defined the low-level, mid-level and deep-level features in

different scales to represent the extracted features by the Conv1,

Maxpooling and Stage3 in the ShuffleNet v2, respectively. The

specific process of this network could be described as below. Firstly,

our network took 10-bands remote sensing images of 512 x 512 pixels

as input and then processed by a 3 x 3 convolution layer with a stride of

2x 2 in the encoder module to obtain the low-level features of 256 x 256

pixels. These low-level features are then passed through a max-pooling

layer to obtain mid-level features of 128 x 128 pixels. With the forward

transmission of data, these intermediate features are down-sampled by

multiple Shuffle blocks to obtain the deep-level features of 32 x 32 pixels.

To obtain multi-scale fusion features, the deep-level features flow to an

ASPP module of the decoder, where the input features are processed in

parallel and concatenated by dilated convolutions with different dilation

rates to capture the multi-scale information. Subsequently, the ASPP

output information is passed through a single quadrupling up-sampling

layer and a CBAM module in turn, resulting in 128times128 pixels

feature with channel and spatial attention. These features are

concatenated with the mid-level features in the encoder to reduce the

loss of detail caused by multiple convolutions. After a 2-fold up-

sampling, the concatenated features arerestored to 256 x 256 pixels

and then concatenated with the low-level features in the encoder to fuse

different level features from low to deep. Finally, the fused results are

processed by transposed convolution to obtain the predicted image of

pixel-level classification with 512 x 512 pixels.
2.4 Data acquisition

In this study, the remote sensing images of the T49RFQ area

were cropped according to the size of 512 x 512 pixels, and 380

small-size patches were obtained in total. Since some patches did

not contain crops or the cropped area is extremely tiny, we filtered

and removed the data where the crop coverage was less than 30% of

the total area. Finally, 100 patches were retained as dataset DS1. The

same treatment was used on the T50SNA region to build dataset

DS2, aiming to verify whether large-scale cropping affects the

identification performance of the network. Then, we used the

ArcMap program to annotate each pixel of the patches. When a

pixel belongs to winter canola, its value is assigned as 1; when a pixel

belongs to winter wheat, its value is assigned as 2, and in the rest
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cases, its value is assigned as 0. Finally, we obtained the same

number of single-channel images corresponding to the patches on

the dataset and used it as the annotation of the dataset. Prior to

training, the dataset was split into training set and validation set

randomly with a 7:3 ratio, which could reduce the imbalance of data

and improve the network’s generalization ability.
2.5 Model training

During the training process, Back Propagation (BP) algorithm

(LeCun et al., 2015) and Adaptive Moment Estimation (Adam)

(Kingma and Ba, 2014) algorithm were adopted to speed up and

optimize the convergence rate of Deep-agriNet. Since Deep-agriNet

is a multi-class crop identification network, the multi-class cross-

entropy loss function was used to calculate the loss between the

predicted result and the true value of each epoch:

Loss(y, ŷ ) = −o
N

i=1
yi log  byi (4)

where yi is the true value of a category whose value is 0 or 1, ŷi is

the predicted probability of the category whose value is distributed

between 0 and 1,and N represents the category contained by the

sample. Usually, the Learning Rate decays gradually during

training, so we adopted the Polynomial Learning Rate Policy

(Mishra and Sarawadekar, 2019) to dynamically adjust the

learning rate:

lr = base _ lr � (1 −
epoch

max _ epoch
)power (5)

where lr is the dynamic learning rate, base_lr is the baseline

learning rate, epoch is the current number of iterations, max_epoch

is the maximum number of iterations, and power is the power of

the polynomial.

To prevent overfitting during training, we employed the

operations of rotation, mirroring, and adding noise to augment

the dataset to improve the generalization ability and robustness of

the model. Meanwhile, the same operations were applied to the

annotation as well.
2.6 Evaluation metrics

To evaluate the performance of Deep-agriNet, overall accuracy

(OA), mean intersection over union (mIoU), and recall as evaluation

metrics were used in this experiment. mIoU is one of the most basic

metrics to evaluate the performance of semantic segmentation, and it

represents the average of the ratio of the intersection and union of the

predicted and true values for all classes:

mIoU =
1
No

N

i=1

Pi ∩ Gi

Pi ∪ Gi
(6)

where N is all categories of the sample including background. P

and G are predicted and true pixels of a sample, respectively. OA

represents the proportion of correctly classified pixels to all sample
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pixels. Recall represents the proportion of correctly classified pixels

to all positive sample pixels:

OA =
TP + TN

TP + TN + FP + FN
(7)

recall =
TP

TP + FN
(8)

where TP is True Positive, indicating correct classification of

pixels and positive predicted outcomes, FP is False Positive,

meaning that the negative pixel is divided into positive samples,

TN is True Negative, indicating the real background area is

identified as the background area, and FN is False Negative,

which represents the positive pixel is divided into negative samples.

Additionally, we introduced some metrics to evaluate the

lightness of the network. The parameter is a commonly used

evaluation metric for lightness of a network, which can measure

the complexity of a model and the consumption of memory in

computation. Theformula of parameter is shown as follow:

parameter = K � K � Cin � Cout (9)

where the K x K means the size of kernel, and the Cin and Cout

represents the number of input channels and output channels,

respectively. In addition, the FLOPs which stands for floating-point

of operations is a measure of network complexity. The FLOPs can

be computed as:

FLOPs = K � K � Cin �Hout �Wout � Cout (10)

whereHout andWout represents the height and width of the output

feature map. In this paper, we used the giga floating-point operations

(GFLOPs, 109 x FLOPs) to measure the complexity of network.
2.7 Hyperparameters and environment
setting

To obtain more effective hyperparameters, we set the base

learning rate to 0.0005, 0.001, 0.005, and 0.01. and batch size to 4,

8, 16, and 32, respectively. After several training sessions, the best

results were obtained when the base learning rate was 0.001 and the

batch size was 4. This experiment was trained on the Linux

platform, and the deep learning framework used was Google’s

open-source TensorFlow, and the GPU used for training was

24GB Nvidia GeForce GTX3090Ti.
3 Results

3.1 The comparison of lightweight
between Deep-agriNet and other methods

To verify the effectiveness and superiority of the Deep-agriNet

in terms of lightness, we calculated the parameter, GFLOPs and

Inference Time(IT) for Deep-agriNet and other methods, and the

results are shown in Table 1. From this table, it can be seen that

HRNetv2 has the most parameters at 65.94M, while U-Net has the
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most GFLOPs at 450.64. In comparison, Deep-agriNet has

significant advantages in evaluation metrics, parameters and

GFLOPs, which are only 3.89M and 47.5. Moreover, the IT of

Deep-agriNet is roughly comparable to that of U-Net (2.4 vs 1.8s).

In addition, we adopted a scatter plot better visualize the trade-

off between accuracy and complexity and clarify the superiority of

the proposed model Deep-agriNet. In the scatter plot, the x-axis

indicates OA and the y-axis indicates GFLOPs. As shown in

Figure 6, Deep-agriNet expresses the higher accuracy and lower

GFLOPs than the other benchmark methods which means more

lightweight and accurate of the proposed network.
3.2 The performance of Deep-agriNet for
crop identification

The loss function curve can reflect the robustness and accuracy

of the network. The smoother the curve is, the better the robustness

of the model, and the smaller the loss value, the higher the accuracy

of the model. The annotated DS1 was fed into Deep-agriNet and

other methods for training. After 50 epochs, the loss convergence

curves are shown in Figure 7. It clearly demonstrates that the cross-

entropy loss tends to decrease with increasing epochs. According to

the results in Figure 7, it can be seen that the Deep-agriNet based on
TABLE 1 The lightweight metrics for Deep-agriNet and other methods.

Method Backbone Parameters(M) GFLOPs IT(s)

U-Net VGG-16 24.9 450.64 1.8

PSPNet ResNet-50 46.77 116.5 2.7

DeepLab v3+ Xception 54.2 103.16 3.1

HRNetv2 HRNetv2-W48 65.94 169.94 9.4

Deep-agriNet ShuffleNetv2 3.89 47.5 2.4
frontier
The bold values indicate the highest scores in the experiments.
FIGURE 6

The scatter plot of accuracy and complexity of the networks on
DS1.
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DeepLab v3+ has more stable performance and higher accuracy in

the training process.

To further analyze the performance of Deep-agriNet, this

experiment compared these methods in terms of more evaluation

metrics on accuracy, and the specific experimental results are shown

in Table 2. From this table, it can be seen that Deep-

agriNetperforms best in all aspects, where mIoU, OA, and recall

is 0.972, 0.981, and 0.980. This results are significant improvement

of 7.0%, 5.0% and 5.7% over the original DeepLab v3+, and slightly

better than the next best performer U-Net by 0.8%, 0.6%,and 0.6%.

The Figure 8 shows the identification results of Deep-agriNet

and other methods for winter wheat and winter canola on DS1,

where the yellow markers represent the winter canola planting area,

the green markers represent the winter wheat planting area, and the

gray markers represent the background. To show the prediction

results of different methods more clearly, the marked patch1, patch2

and patch3 in the figure are enlarged to observe the details of the

images. Comparing the original images and theprediction of multiple

methods, the crop planting areas identified by U-Net, PSPNet and

Deep-agriNet are highly consistent with the original images. Both the

paths in the fields and the edges of the plots can be predicted with

clarity. In contrast, the identification results of DeepLab v3+ and

HRNetv2 are much worse. In patch1, the majority of the roads are

not identified, and in patch2 and patch3, almost all the plots have

different degrees of missing boundaries.

To further demonstrate the predictive capability of Deep-

agriNet on the area with irregular small-scale plots, we trained
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and validated it on DS2. As shown in Table 3, Deep-agriNet still

hold the best results in the respect of mIoU, OA, and recall with

0.961, 0.974, and 0.973, respectively. Figure 9 shows the prediction

results of different methods for winter wheat and winter canola on

DS2. From the local magnification results of patch1, patch2 and

patch3, Deep-agriNet still shows excellent performance on

background identification and can predict the roads in the plots

clearly. However, compared with the results on DS1, it can be

obviously found that the model is less effective in irregular plots

prediction and there is a slight phenomenon of boundaries missing.

Comparing the identification results in Figures 8, 9, Deep-agriNet

performs better for crop identification with different planting scales.
3.3 Ablation study

To validate the role of CBAM in this network, The Deep-

agriNet without CBAM was used as the baseline, and the two

networks were trained with the same hyperparameters such as

baseline learning rate and training epochs. As shown in Table 4, the

network with CBAM is slightly improved in all aspects, including

0.8%, 0.6% and 0.6% for mIoU, OA and recall respectively on DS1.

In addition, the parameters of the network only increased by 0.2M

after adding CBAM. Figure 10 shows the identification results of

winter wheat and winter canola on DS1 before and after adding

CBAM. As shown in the figure, CBAM was able to focus attention

on the areas where winter wheat and winter canola were mixed and

clearly identified plots of several pixel widths. In contrast, the

network without CBAM was only able to identify fuzzy outlines

but was unable to identify cross-planted plots.
4 Discussion

4.1 Effects comparison between DeepLab
v3+ and improved network

In this study, DeepLab v3+ was used as the base crop

identification network, and a series of improvements were made

on its basis. Finally, Deep-agriNet, the improved network, was

applied to spring crop identification. Firstly, the backbone of

DeepLab v3+, Xception, was replaced with ShuffleNet v2, a more

advanced feature extractor. Based on this improvement, the

identification accuracy was significantly improved, with mIoU,

OA and recall improving by 6.3%, 4.5% and 5.1% on DS1.

Meanwhile, the number of parameters and GFLOPs were also

greatly optimized, much smaller than DeepLab v3+ and other

methods. These performance improvements are mainly attributed

to the following two factors: (a) the channel split method proposed

by ShuffleNet v2 makes the input channels to be divided into two,

with one part being passed down directly and the other part

participating in the convolution operation, and finally the two

parts are reassembled to reuse features. (b) ShuffleNet v2

transforms the elementwise add operation in depthwise

convolution into a concatenation operation and replaces the

grouped convolution with the ordinary convolution to greatly
TABLE 2 Comparison of the identification results of different methods
on DS1.

Method mIoU OA Recall

U-Net 0.964 0.975 0.974

PSPNet 0.962 0.974 0.973

DeepLab v3+ 0.902 0.931 0.923

HRNetv2 0.930 0.951 0.949

Deep-agriNet 0.972 0.981 0.980
The bold values indicate the highest scores in the experiments.
FIGURE 7

The convergence curves of Deep-agriNet and other methods.
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TABLE 3 Comparison of the identification results of different methods
on DS2.

Method mIoU OA Recall

U-Net 0.956 0.967 0.963

PSPNet 0.954 0.965 0.965

DeepLab v3+ 0.907 0.935 0.929

HRNetv2 0.921 0.945 0.943

Deep-agriNet 0.961 0.974 0.973
F
rontiers in Plant Science
The bold values indicate the highest scores in the experiments.
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TABLE 4 Comparison of the identification results of Deep-agriNet
before and after adding CBAM.

Method mIoU OA Recall Parameters

Deep-agriNet without CBAM 0.964 0.975 0.974 3.87

Deep-agriNet 0.972 0.981 0.980 3.89
A B C D E F

FIGURE 8

The original images and clipped regions of the experimental area on DS1 and the prediction results of different methods. (A) original image, (B)
prediction result of U-Net, (C) prediction result of PSPNet, (D) prediction result of DeepLab v3+, (E) prediction result of HRNetv2, (F) prediction
result of Deep-agriNet.
A B C D E F

FIGURE 9

The original images and clipped regions of the experimental area on DS2 and the prediction results of different methods. (A) original image, (B)
prediction result of U-Net, (C) prediction result of PSPNet, (D) prediction result of DeepLab v3+, (E) prediction result of HRNetv2, (F) prediction
result of Deep-agriNet.
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reduce the amount of computation. Then, A CBAM module was

added between the encoder module and the decoder module in this

study. Based on this improvement, the performance of mIoU, OA

and recall has been improved slightly at the cost of a small

computational cost. Specifically, on DS1, mIoU, OA, and recall

are improved by 0.7%, 0.5%, and 0.6%, respectively, and the number

of parameters hardly increased. As shown in Figure 10, although the

improvement of evaluation metrics is quite small, the identification

performance is improved considerably, and the phenomenon of

missing edges and misidentified mixed-species regions is

significantly improved compared with that before the improvement.
4.2 Result analysis of different areas

To investigate whether large-scale planting will affect the network

performance, two regions, T49RFQ and T50SNA, were selected for

this experiment, and Deep-agriNet was used to train DS1 and DS2

corresponding to the two regions. As shown in the Tables 2, 3, Deep-

agriNet has a better identification effect on the T49RFQ region of

large-scale planting. Compared with the training results of DS2, the

mIoU, OA and recall of DS1 increased by 0.9%, 0.7% and 0.7%,

respectively. The author believes that the attention mechanism can

capture the context dependence, and the data in DS1 has stronger

spatial continuity. Even after multiple feature extraction, there is still

a strong context dependence, which is beneficial to the decoder to

infer the category of surrounding pixels through this dependence, and

therefore the identification effect is improved.
5 Conclusions

In this paper, we proposed an improved lightweight network

based on DeepLab v3+ and apply the network to spring crop

identification. An advanced feature extractor, ShuffleNet v2, was

used in this network to replace the backbone of DeepLab v3+. In
Frontiers in Plant Science 10164
addition, a CBAM combining channel and spatial attention

mechanisms was added at the end of the encoder. In the decoder

part of the original network, a 4-fold upsampling was modified to

two adjacent 2-fold upsampling. To verify the performance of

Deep-agriNet, two datasets with different planting scales were

constructed for experiments. The experimental results show that

the Deep-agriNet exhibits better performance on both datasets, and

the parameters of the Deep-agriNet are only one-fourteenth of the

original network. The Deep-agriNet can be applied not only for

spring crop identification but also extended to other agricultural

projects, such as crop yield prediction or crop disaster detection.

However, to achieve this goal, further research on related work is

needed to improve the algorithm so that the quantification of crop

acreage can be achieved. In future work, we will try to use more

advanced networks and larger agricultural datasets to meet more

kinds of crop precision identification needs, and strive toserve our

research results more effectively in the agricultural field.
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Herbicide application is a critical component of modern horticulture. Misuse of

herbicides can result in damage to economically important plants. Currently, such

damagecan bedetectedonly at symptomatic stages by subjective visual inspection

of plants, which requires substantial biological expertise. In this study, we

investigated the potential of Raman spectroscopy (RS), a modern analytical

technique that allows sensing of plant health, for pre-symptomatic diagnostics of

herbicide stresses. Using roses as a model plant system, we investigated the extent

to which stresses caused by Roundup (Glyphosate) and Weed-B-Gon (2, 4-D,

Dicamba and Mecoprop-p (WBG), two of the most commonly used herbicides

world-wide, can be diagnosed at pre- and symptomatic stages. We found that

spectroscopicanalysisof rose leavesenables~90%accuratedetectionofRoundup-

and WBG-induced stresses one day after application of these herbicides on plants.

Our results also show that the accuracy of diagnostics of both herbicides at seven

days reaches 100%. Furthermore, we show that RS enables highly accurate

differentiation between the stresses induced by Roundup- and WBG. We infer

that this sensitivityandspecificityarises fromthedifferences inbiochemical changes

in plants that are induced by both herbicides. These findings suggest that RS can be

used for a non-destructive surveillance of plant health to detect and identify

herbicide-induced stresses in plants.

KEYWORDS

Raman spectroscopy, herbicides, roses, PLS-DA, glyphosate, Weed-B-Gon
Highlights
• We report an innovative laser-based approach for non-invasive diagnostics of

herbicide damage in plants.

• Our Raman-based technique enables ~90% accurate detection of Roundup- and

WBG-induced stresses one day after application of these herbicides on plants.

• Our results also show that the accuracy of diagnostics of both herbicides at seven

days reaches 100%.
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Introduction

Application of herbicides is a cornerstone of modern

horticulture. However, many ornamental plant species are

sensitive to herbicides and are commonly damaged from non-

target exposure by mechanisms such as drift (Henry et al., 2004;

Mehdizadeh et al., 2021). Moreover, herbicide-induced damages in

some plant species, such as roses (Rosa spp.), have visual similarities

with the symptoms induced by biotic stresses. For instance,

chlorosis of leaves and shortened internodes caused by herbicide

application on roses is often misdiagnosed as Rose Rosette Disease

(RRD), a devastating disease that affects plants in Europe and the

U.S (Farber et al., 2019a). Substantial biological and horticultural

expertise is required to detect and identify symptoms of herbicide

exposure; such expertise typically requires years of experience and

training. Therefore, it becomes very important to develop a

confirmatory analytical method that can be used to detect

symptoms of herbicide exposure, as well as disentangle biotic and

abiotic stresses in ornamental plants (Tataridas et al., 2022).

Roundup and WBG are some of the most used herbicides

worldwide. In the US alone, between 1974 and 2014, the use of

herbicides with glyphosate as their active ingredient, such as

Roundup, increased almost 200-fold, from 635,000 kg to 125

billion kg (Benbrook, 2016). Glyphosate acts by inhibiting 5-

enolpyruvylshikimate-3-phosphate (EPSP) synthase, a key enzyme

in the shikimate pathway, which is responsible for synthesis of

aromatic amino acids in plants (Sherwani et al., 2015). The effect of

glyphosate is primarily evident at the sites of new growth (root and

shoot meristem). Symptoms of glyphosate exposure, such as

chlorosis and necrosis of tip tissues, can be observed across the

entire plant at about 5 to 10 days after the herbicide application.

Because products of the shikimate pathway are closely associated

with a host defense, glyphosate also increases plant susceptibility to

pathogens (Hammerschmidt, 2018)

While glyphosate has generic targeting, WBG is highly specific

for dicots. WBG is a formulation of three different synthetic auxins:

2,4-dichlorophenoxyacetic acid (2,4-D), mercoprop-p acid

(MCPP), and dicamba acid. Auxins are a family of plant

hormones which are associated with regulating plant growth

(Teale et al., 2006). The mechanisms of auxinic herbicides are not

well understood (Kelley and Riechers, 2007; Mithila et al., 2011).

Previous studies of these herbicides’ modes of action found that

they trigger buildup of abscisic acid and ethylene, which enables

accumulation of hydrogen peroxide, and subsequently, reactive

oxygen species (ROS) (Romero-Puertas et al . , 2004).

Consequently, ROS are closely associated with the activity of

WBG in plants (Gleason et al., 2011). A growing body of

evidence suggests that several methods could be used detect

herbicide stresses in plants, including hyperspectral imaging

(Henry et al., 2017; Lu et al., 2020; Yan et al., 2021).

Our group previously showed that Raman spectroscopy (RS), a

non-destructive, non-invasive analytical method that reveals the

chemical structure of analyzed samples, can be used to detect and

identify biotic and abiotic stresses in plants (Mandrile et al., 2019;

Farber et al., 2020c; Gupta et al., 2020; Farber et al., 2021; Payne and

Kurouski, 2021). The efficacy of this method has been demonstrated
Frontiers in Plant Science 02167
for the rapid detection of: viral diseases in roses, tomatoes, wheat,

and ornamental shrubs; fungal diseases in corn, wheat, and

sorghum; and bacterial diseases of orange (Yeturu et al., 2016;

Egging et al., 2018; Farber and Kurouski, 2018; Farber et al., 2019a;

Mandrile et al., 2019; Sanchez et al., 2019b; Farber et al., 2020a).

Additionally, our group has demonstrated RS-based detection of

insect larva developing within beans (Sanchez et al., 2019a) and the

detection of zebra chip disease in potato (Farber et al., 2021). It was

also reported that RS could be used for pre-symptomatic

diagnostics of nutritional deficiencies in rise caused by the lack of

nitrogen, phosphorus, and potassium (Sanchez et al., 2020).

Expanding upon this, we investigated the accuracy of RS-based

confirmatory diagnostics of herbicide stresses in the ‘Pink Double

Knock Out©’ roses that are caused by Roundup and WBG

herbicides. Our findings suggest that RS can be used for a fast

and accurate diagnostics of herbicide stresses in plants prior to the

symptom development. Timely detection of such stresses can be

used for timely elimination of the herbicides or adjustment of

their concentrations.
Materials and methods

Plants

Twenty-one plants of the rose cultivar ‘Pink Double Knock

Out©’ were used in this experiment. Plants were received as small

tissue culture plants and were acclimated indoors for one month.

After plants were actively growing, they were placed in a greenhouse

to continue growing for 2 months before the experiment. The

substrate used in the greenhouse was Jolly Gardener® Pro-Line C/

20, which consisted of 80% Canadian Sphagnum peat moss and

20% coarse perlite. We used neither fertilization nor pesticides

before or during the experiments. The temperatures in the

greenhouse were approximately 29°C during the day (6 am to 6

pm) and 21°C night (6 pm to 6 am). All plants involved in the

experiment were screened for rose rosette virus (RRV), as well as for

other rose viruses utilizing National Clean Plant Network-Rose

screening protocols. All plants were free of the targeted pathogens

(Farber et al., 2019a). Seven plants of uniform size and health were

selected as replicates for each of the herbicide treatments.
Herbicide treatments

The herbicides used for this experiment were Roundup and

WBG; reverse osmosis (RO) water was used as the negative control

application. The two herbicides were chosen due to the prevalence

of those brands being used on lawns and in landscapes. To simulate

herbicide drift damage, all herbicides were diluted to 1/10th of the

Ready To Spray (RTS) amounts. This concentration was chosen to

model appearance of symptoms that visually resembled RRD since

such herbicide-induced stresses are often misdiagnosed as RRD in

roses. Herbicide calculations were done based on a six-inch pot size.

Roundup and WBG were diluted from the RTS at a rate of 1-part

spray to 9 parts water. Application was performed by soaking all
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leaves to the point upon which solution droplets appeared on the

plant surfaces.
Raman spectroscopy

For each measurement, thirty leaflets were sampled randomly

from each group of plants with an average of four leaves per plant.

Leaflets were collected from both new, fully emerged leaves and

mature leaves to represent the entire plant canopy. We avoided

collection of leaflets that had any mechanical damage, signs of

wilting, or leaves exhibiting visual signs of herbicide damage to

demonstrate robustness of this sensing approach. All leaflets looked

healthy without any changes in coloration or chlorosis symptoms.

Sampling time intervals were: 1, 7, 14, and 30 day post-treatment.

The experiment was repeated twice.

Raman spectra were acquired from leaves using an Agilent

Resolve spectrometer equipped with an 830 nm source with a

spectral resolution of 15 cm-1. Laser beam size was around 2 mm.

For each measurement, the spectrometer was positioned next to the

leaf surface. On average 2-3 spectra were collected form one leaf. All

scans were taken in the ‘surface’ mode with a 1-second integration

time and 490 mW of power. We found that as the experiment

proceeded, the overall intensity of spectra acquired from herbicide-

treated plants was much lower than that of the control plants. To

address this, we normalized our spectra to the 1440 cm-1 peak. All

spectral interpretation is based on these normalized spectra. All

acquired spectra were baselined by the Agilent Resolve

spectrometer. For the data analysis, Raman spectra were extracted

using Agilent Resolve software and treated using MATLAB equipped

with PLS-Toolbox ((Eigenvector Research Inc.). Reference Raman

spectra of round-up and WBG are shown in the Figure S1.
Statistical analysis

After spectra were imported into MATLAB and assigned a class

based on their health or herbicide status, Partial Least Squares

Discriminant Analysis (PLS-DA) was conducted to differentiate the

spectra based on spectral changes associated with their

experimenter-assigned classes. Spectra were first split into

calibration (66%) and validation (34%) sets using the Kennard-

Stone method before building all models, unless otherwise noted

(Kennard and Stone, 1969). Spectra were normalized to a total

spectral area of 1 then mean centered. All tables reporting PLS-DA

results are for the validation of these models. All datasets used for

model calibration and validation in this study are summarized in

Tables S1–S3.

Results

Description of visual symptoms

At day 7 post-treatment, we observed proliferation of small

shoots on Glyphosate-treated plants (Figure 1) (Karlik and Flint).

These plants began to exhibit leaf chlorosis at day 30 post-treatment.

Roses exposed to WBG produced tiny leaves with abnormal margins
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at day 7 post-treatment (Figure 2). At day 30, WBG-exposed plants,

had leaves of normal size, however, leaf margins remained abnormal.

It should be noted that roses exposed to WBG did not change leaf

color throughout the experiment.

Herbicide treatment

At day 1 post-treatment, differences in the spectra of control

and herbicide-treated plants were observed primarily in the 1610 to

1720 cm-1 region, Figure 3 and Table 1. At this timepoint, the

control spectra showed greater intensity in 1610 cm-1 and 1720 cm-1

peaks. The herbicide-treated plant spectra, conversely, had greater

intensity than the control at 1669 cm-1 peak.

At day 7 post-treatment, the spectra of plants treated with each

herbicide began to diverge. In the spectra of Roundup-treated

plants, numerous changes throughout the spectrum were

observed. Specifically, a new peak appeared at 476 cm-1.

Additionally, small variations in intensity relative to the control

spectrum were observed from 747 to 1526 cm-1 region. In the 1610

to 1720 cm-1 region, the spectra collected from Roundup-treated

plants showed greater intensity than the spectra collected from both

the control and WBG plants, whereas the spectra collected from

WBG-treated plants exhibited the greatest intensity at 1669 cm-1.

These same patterns were observed at day 14 post-treatment.

At day 30 post-treatment, while the general intensities

throughout the spectra showed little relative changes, more

alterations were observed in 1610 to 1720 cm-1 region.

Specifically, all three treatments, Roundup, WBG and control,

showed the same intensity of 1720 cm-1 peak. Additionally, the

intensities of Roundup, WBG and control spectra changed relative

to each other at the 1610 cm-1 peak. While Roundup-treated spectra

continued to show the highest intensity at this band, the WBG and

control spectra showed more similar intensities. Finally, the average

quality of the Roundup spectra deteriorated to the point where the

476 cm-1 peak, previously observed at day 7 and day 14 post-

treatment, was no longer distinguishable from the noise.

We then sought to determine whether Raman spectra acquired

from control and herbicide-treated plants could be distinguished

using multivariate methods. First, for the control and Roundup

spectra, we built one PLS-DA model for each timepoint to

distinguish these two categories from each other, Table 2. We

found that these models enabled accurate identification of both

WBG and Roundup-stresses (Chicco, 2017). We also found that

PLS-DA enabled 92% accurate identification of control plants. These

results demonstrated the RS could be used for the rapid, non-invasive

detection of Roundup-associated changes to rose plants.

Next, we repeated this procedure to differentiate control and

WBG spectra. It was found that developed PLS-DA models did not

perform as well as the models discussed above. We obtained on

average76% accuracy in differentiation between control and WBG

spectra, Table 3. Furthermore, day 14 model performed very poorly,

showing on average 59% accurate classification. However, models at

day 7 and day 30 post-treatment performed significantly better

showing 82% and 86% accuracy, respectively. These findings

showed that RS could be used for the detection of WBG-

associated stress in roses in a time-dependent manner.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1121012
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Farber et al. 10.3389/fpls.2023.1121012
One may question the need for Raman diagnostics when it is not

necessary to identify the specific herbicide that caused the damage. To

answer this question, we combined spectra collected form WBG and

Roundup treated plants at different stages of the plant vegetation and

question the accuracy with which such spectra can be differentiated

from the spectra collected from control plants at the same vegetation

state, Table 4. We found that overall, such model demonstrates less

accurate prediction on the healthy status of plants (control) compared
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to the herbicide damage. For instance, average accuracy of control

plants ranges ~78%, whereas the accuracy of herbicide stress

identification is within 85%, on average. We infer that the combined

model (Table 4) provides lower accuracies due to different mechanisms

of action of WBG and Roundup on plants. Although reported by this

model accuracies (78% for control and 85% for the herbicide stress) are

likely to be satisfactory for farmers, our data show that if higher

accuracy is expected, herbicide-specific models should be used.
FIGURE 1

Herbicide induced symptoms on Roundup treated plants observed 21 days post treatment. This included proliferated shoots at nodes and chlorosis
on new and old growth. Symptomatic damaged plant parts will not recover. Additionally, some necrosis was observed on new growth up to 30 days
after treatment. Plants resumed normal appearing growth patterns about 30 days after the initial application (Shires, 2020).
FIGURE 2

Typical symptoms caused by Weed-B-Gon include small, strapped leaves with abnormal leaf margins. Symptoms are visible, on the new growth,
starting seven days post application. Plants appeared to resume normal new growth 30 days after treatment (Shires, 2020).
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Discussion

In plants, glyphosate concentrates in the meristems where it

disrupts the shikimic pathway the prohibition of EPSP synthase

(Sherwani et al., 2015). This decelerates plant growth and lowers

protein expression. Roundup application also facilitates plant

infection by soil-borne pathogens.

We found that spectra acquired from glyphosate-treated plants

exhibited an increase in the intensity of ~1610 cm-1 peak at day 7,

14 and 30 post-treatment. We previously demonstrated that an

increase in intensity of this peak was associated with plant infection

by bacterial pathogens (Farber et al., 2019a; Sanchez et al., 2019b).

Upon such infection, plants enhance production of p-coumaric acid

that inhibits bacterial growth (Dou et al., 2021). This molecule is

also used for lignin biosynthesis. Thus, producing p-coumaric acid

species enhance lignification to limit bacterial propagation thought

the plant. The observed in our current study increase in the

intensity of ~1610 cm-1 peak suggest that glyphosate facilitated

plant infection by pathogens present in soli (Hammerschmidt,

2018). This resulted in an increase in the synthesis of p-coumaric

acid or similar aromatic compounds. Further experiments including

mass spectrometry would be required to determine the exact

biological origin of observed spectroscopic changes.

We also found that after day 1 post-treatment, the intensity of the

1669 cm-1 peak in the spectra acquired form glyphosate-treated plants

was lower compared to the intensity of this peak in the spectra
Frontiers in Plant Science 05170
acquired from control or WBG-treated plants. This peak originates

from amide I, a vibration of the backbone of proteins (Kurouski et al.,

2015). A decrease in intensity of the 1669 cm-1 peak suggests that the

total concentration of proteins is reduced in glyphosate-treated roses.

These results are in a good agreement with the discussed above

glyphosate-induced suppression of protein expression in plants.

Next, we found an increase in the intensity of 1720 cm-1 peak in

the spectra collected from glyphosate-treated plants compared to the

spectra acquired from control plants. This peak can be assigned to

compounds with carboxyl groups, such as salicylic acid (Farber et al.,

2019b; Farber et al., 2020b). This important signaling molecule is a

product of the shikimate pathway (Gao et al., 2015). Thus, out results

point on the accumulation of salicylic acid in plant leaves.

Unlike glyphosate, 2,4-D causes uncontrolled cellular division

in plants that are exposed to this herbicide (Teale et al., 2006). This

uncontrolled division is caused by cell wall plasticity, biosynthesis of

proteins, and production of ethylene. MCPP is similar to 2,4-D,

however, it targets auxin pathways causing elongated stems (Kelley

and Riechers, 2007; Mithila et al., 2011).

We found that in the spectra collected WBG-treated plants, the

intensity of the 1610 cm-1 peak was consistently lower compared to

the intensity of this peak in the spectra acquired from control plants.

These findings suggested that WBG lowered the concentration of p-

coumaric acid or similar aromatic compounds in roses. Since p-

coumaric acid is used in lignin biosynthesis (Amarowicz and Pegg,

2019), one can expect that uncontrolled cellular division in plants
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FIGURE 3

Raman spectra acquired from rose plants treated with RO water (control), Roundup, or Weed-B-Gon at (A) one day; (B) seven days; (C) 14 days; (D)
30 days after application. Inset: The spectral region 1580 cm-1 to 1750 cm-1 zoomed in for clarity. All spectra are normalized to the 1440 cm-1 peak.
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should drastically lower the concentration of such molecular analytes

in plant tissues.

We also observed an increase in the intensity of 1669 cm-1 peak

in the spectra acquired from WBG-treated plants compared to the

intensity of this peak in the spectra acquired from control plants. As

previously described, one effect for auxinic herbicides is

dysregulation of auxin-regulated genes from said regulation,

leading to an increase of gene products. Examples of these auxin-

regulated genes include Aux/IAA family genes, GH3 proteins, and

small auxin up RNAs (SAURs), which themselves are thought to
Frontiers in Plant Science 06171
code other short-lived small proteins (Kelley and Riechers, 2007).

Increased intensity at this peak in the WBG spectra suggests that

plants express more proteins, potentially due to WBG-associated

gene dysregulation.

Finally, we found that at day 7, 14 and 30 post-treatments, the

intensity of the 1720 cm-1 peak was weaker in WBG spectra

compared to control spectra. These findings suggest that

carboxyl-containing compounds could be metabolized by plants

Application of this Raman spectroscopy-based sensing

approach could be limited due to the high capital cost of the
TABLE 1 Vibrational peak assignments for the Raman spectra of Rose leaves.

Peak (cm-

1)
Vibrational mode Assignment

476 Glycosidic ring Carbohydrates (Kizil et al., 2002; Almeida et al., 2010)

520 n(C-O-C) glycosidic cellulose (Edwards et al., 1997)

740-747 g(C–O-H) of COOH pectin (Synytsya et al., 2003)

905-918 n(C-O-C) in plane, symmetric cellulose, lignin (Edwards et al., 1997)

1000 in-plane CH3 rocking of polyene carotenoids (Schulz et al., 2005)

1048 n(C-O)+n(C-C)+d(C-O-H) cellulose, lignin (Edwards et al., 1997)

1118 Sym n(C-O-C), C-O-H bending cellulose (Edwards et al., 1997)

1157 C-C Stretching; v(C-O-C), v(C-C) in glycosidic linkages, asymmetric ring
breathing

carotenoids (Schulz et al., 2005), carbohydrates (Wiercigroch et al.,
2017)

1186 n(C-O-H) Next to aromatic ring+s(CH) lignin (Mary et al., 2012; Agarwal, 2014)

1216 d(C-C-H) aliphatics (Yu et al., 2007), xylan (Agarwal, 2014)

1264 Guaiacyl ring breathing, C-O stretching (aromatic) lignin (Cao et al., 2006)

1287 d(C-C-H) aliphatics (Yu et al., 2007)

1327 dCH2 Bending aliphatics, cellulose, lignin (Edwards et al., 1997)

1354 d(CH2)+d(CH3) aliphatics (Yu et al., 2007)

1386 dCH2 Bending aliphatics (Yu et al., 2007)

1441 d(CH2)+d(CH3) aliphatics (Yu et al., 2007)

1488 d(CH2)+d(CH3) aliphatics (Yu et al., 2007)

1526 -C=C- (in plane) carotenoids (Adar, 2017; Devitt et al., 2018)

1610 n(C-C) Aromatic ring+s(CH) lignin (Agarwal, 2006; Kang et al., 2016)

1669 C=O Stretching, amide I proteins (b-sheet) (Devitt et al., 2018)

1720 C=O Stretching Esters, aldehydes, carboxylic acids and ketones (Colthup et al., 1990)
TABLE 2 Summary of model validation for the control vs. Roundup differentiation.

Days post-treatment Validation Sample
Size

True positive rate of control prediction True positive rate of Roundup prediction

Control Roundup

Day 1 35 38 85% 92%

Day 14 53 20 100% 100%

Day 14 24 53 70% 100%

Day 30 44 40 100% 97%
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spectrometers ($30,000 to $70,000). However, operational costs are

very low. Therefore, if most cases, such testing can be implemented

as the service provided to a farmer.

Finally, it is important to determine variability of the observed

vibrational peaks in the spectra collected from different cultivars of

roses. Such variabilities originate from differences in biochemical

profiles of cultivars. Consequently, if biochemical changes among

cultivars are greater that the magnitude of changes in plant

biochemistry induced by herbicides, individual spectroscopic

libraries will be required for each cultivar. At the same time, if

the magnitude of changes in plant biochemistry induced by

herbicides is greater than differences in biochemical profiles of

different cultivars, the discussed above results can be used for all

rose cultivars. Additional experiments are needed to disentangle

these two possibilities. This work is currently in progress in

our laboratory.
Conclusions

Our results show that RS can be used to detect plant exposure to

herbicides with high accuracy. We also found that RS could be used

to differentiate between WBG and Roundup. We infer that this

sensitivity arises from drastically different mechanisms of action of

these two herbicides. These findings demonstrate that RS can be a

powerful tool for detecting herbicide misuse on ornamental plant.
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TABLE 3 Summary of model validation for the control vs. WBG differentiation.

Days post-treatment Validation Sample Size True positive rate of control prediction True positive rate of WBG prediction

Control WBG

Day 1 46 30 84% 70%

Day 14 40 33 72% 93%

Day 14 48 26 45% 73%

Day 30 38 38 84% 89%
TABLE 4 Summary of model validation for control vs herbicides models.

Days post-treat-
ment

Validation Sample
Size

True positive rate of control prediction True positive rate of herbicide prediction

Control Herbicides

Day 1 109 49 73% 71%

Day 14 113 43 78% 86%

Day 14 75 86 76% 86%

Day 30 58 103 82% 89%
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