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Tadro, a behaviorally autonomous swimming robot, navigates a circular pool to detect and harvest light from an 

overhead lamp. Lights on its bow (blue) and stern (green), used for motion capture, are reflected off the wall of the 

tank, while the overhead lamp is reflected on the water’s surface. Tadros are but one example of embodied robots 

that are evolved to test scientific hypotheses. 

Image: John Long.
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Embodied and evolving systems — biological or robotic — are interacting networks 
of structure, function, information, and behavior.  Understanding these complex 
systems is the goal of the research presented in this book.  We address different 
questions and hypotheses about four essential topics in complex systems: evolvability, 
environments, embodiment, and emergence. Using a variety of approaches, we 
provide different perspectives on an overarching, unifying question: How can 
embodied and evolutionary robotics illuminate (1) principles underlying biological 
evolving systems and (2) general analytical frameworks for studying embodied 
evolving systems?  The answer — model biological processes to operate, develop, 
and evolve situated, embodied robots.  
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Editorial on the Research Topic

Evolvability, Environments, Embodiment, & Emergence in Robotics

We challenged researchers to grapple with four ideas and their interactions—evolvability,
environments, embodiment, and emergence. These are complex drivers underlying the designs and
actions of autonomous, mobile, and physical systems. How does a robot or robotic system come to
have intelligent, goal-directed behavior? This question is, indeed, a grand challenge.

The articulation of a “grand challenge” frames a field’s most important goals and the methods
to achieve them. Grand challenges launched the Frontiers in AI and Robotics specialty sections
of evolutionary robotics (Eiben, 2014), virtual environments (Slater, 2014), and computational
intelligence (Prokopenko, 2014). Eiben (2014), for example, suggests three grand challenges: (1) the
automatic generation of novel, original robots that are surprising in their design to humans, (2) self-
reproduction in physical robots, and (3) open-ended evolution of physical robots in an open-ended
environment. Stressing the complex, integrated nature of physical robots operating in the physical
world, Doncieux et al. (2015) elaborate a methodological approach, emphasizing experiments
designed to test specific hypotheses. This methodology is the hallmark of the work presented
in this research topic, with the demands of rigorous experimentation forcing investigators to
operationalize ideas.

Robust, expository experiments are founded upon robust, expository models. Integrating the
domains of cognition, motion, and time into a hybrid system, Aaron creates the Dynamical
Intention-Hybrid Dynamical Cognitive Agent (DI-HDCA) modeling framework. Across a range
of task environments, the embodied DI-HDCA agents demonstrate behavior that is emergent,
the on-going result of everything from micro-cognitive processes to embodied physical actuation
interacting in a physical world. Explicitly modeling both continuous dynamics of and discrete
transitions between behaviors allows the investigator to probe howDI-HDCAs continuously search
for real-time reactive, goal-directed solutions.

Finding optimal solutions in a search space is also the goal of evolutionary robotics (ER),
which enables computational evolution to optimize over a fitness function. In biological evolution,
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such fitness-guided search generates a large diversity of
species across ecological niches; in ER, generating diverse
solutions is not always emphasized, but diversity can impact
both the evolvability of populations and the robustness of
individual agents, promoting exploration of multiple behavior
spaces and choice among multiple behaviors. Pugh et al.
investigate quality-diversity (QD) algorithms, which aim to
discover all possibilities by rewarding the evolution of novelty.
With case studies of robot maze navigation, they show how
hybridized behavioral characterizations in QD algorithms may
be key for advancing evolutionary exploration and, ultimately,
evolvability.

While evolvability has many definitions, ranging from
current adaptability to future capacity for innovation (Pigliucci,
2008), Lehman et al. argue that ER needs to focus on innovative
creation. Creative potential is studied productively as a property
of populations since they, not individuals, are the entities
that evolve. As collections of related individuals, populations
vary, and that variance provides the range of phenotypes
upon which selection acts. But directional selection, which
optimizes locally, reduces variance, slowing adaptation and
evolvability. The authors show that divergent selection can
generate variance within a population, increasing variance in
the short term. Alternating between directional and divergent
selection can mediate between local adaptation and global
exploration.

Another potential way to increase evolvability is to find
mechanisms that drive behavioral specialization within a
population. Montanier et al. take on the challenge, investigating
agents that can evolve specialized foraging behaviors for the
acquisition of two different resources. Reproductive isolation,
however it might be achieved, appears to be key to specialization.
Thus, most importantly for ER, mating algorithms and scenarios
should be treated carefully and justified, given their potential for
creating and maintaining variance within a population. Mating
and selection are separate evolutionary drivers.

Evolvability also depends on morphology. Cappelle et al.
demonstrate that structural modularity also impacts the efficacy
of evolution, when robust behavior is the goal of the search.
Comparing modular and non-modular architectures, they found
that robots with modular morphologies and controllers can
more quickly adapt to new environments. Most promising is
the connection of modularity to function: modules shaped by
previous evolutionary history are predisposed to detect percepts
in new combinations and new environments. Thus, evolved
morphology that is modular, if present and preserved, endows
a population with greater evolvability, as predicted by the
Wankelmut benchmark (Schmickl et al., 2016).

Modularity, however, and evolvability by extension, need not
be a direct target of selection. In a population of networks,
for example, selection for a combination of performance and
reduced connection costs evolves modularity (Clune et al., 2013).
Such indirect evolution of modularity is tested for the first time
in physical robots by Livingston et al.: They select for enhanced
phototaxis of surface-swimmers, in which the genome encoded
60 weights of neural networks connecting photoresistors to

motor outputs. With selection on behavior alone, over the course
of 10 generations, the primary target of selection is network
sparsity; modularity is a correlated evolutionary by-product. This
work broadens our understanding of conditions under which
modularity may evolve.

Evolution also depends on development. In addition to
genetic processes, development introduces epigenetic operators
that govern the mapping of genes into morphologies. Using
physical robots, Brawer et al. create a developmental process
for wiring sensors to motors. In one population, development
is altered by wires’ physical interactions; in another, those
physical interactions are avoided. From identical starting
points, these two different epigenetic operators guide different
evolutionary responses, changes over generational time that
are mediated by the epigenetic process of building working
physical robots. This is the first demonstration employing
physical robots to show that epigenetic operators can be
created and used to complicate, in explicit ways, evolutionary
search.

Let us return to our grand challenge: How does a robot
or robotic system come to have intelligent, goal-directed
behavior? This research topic identifies key processes: (1)
the principled emergence of goal-directed behavior from a
hierarchy of dynamical processes (Aaron); (2) opportunities
for enhanced evolvability and robustness from selection for
diversity in populations (Lehman et al.; Pugh et al.); (3) the
evolution of specialized behavior from reproductive isolation
(Montanier et al.); (4) the evolution of robust behavior from
modular systems, which may be evolved indirectly (Capelle
et al.; Livingston et al.); and (5) the creation of phenotypic
variation and enriched evolutionary possibilities from epigenetic
developmental processes (Brawer et al.).

The intersection and interaction of these mechanisms
provides ample opportunity to explore the evolution of intelligent
behavior. The search continues for principled approaches for
their integration in physically embodied systems, biological, or
computational.
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Dynamical Intention: Integrated
Intelligence Modeling for
Goal-Directed Embodied Agents
Eric Aaron1,2*

1 Department of Computer Science, Vassar College, Poughkeepsie, NY, USA, 2 Interdisciplinary Robotics Research
Laboratory, Vassar College, Poughkeepsie, NY, USA

Intelligent embodied robots are integrated systems: as they move continuously through
their environments, executing behaviors and carrying out tasks, components for low-level
and high-level intelligence are integrated in the robot’s cognitive system, and cognitive and
physical processes combine to create their behavior. For a modeling framework to enable
the design and analysis of such integrated intelligence, the underlying representations
in the design of the robot should be dynamically sensitive, capable of reflecting both
continuous motion and micro-cognitive influences, while also directly representing the
necessary beliefs and intentions for goal-directed behavior. In this paper, a dynamical
intention-based modeling framework is presented that satisfies these criteria, along with
a hybrid dynamical cognitive agent (HDCA) framework for employing dynamical intentions
in embodied agents. This dynamical intention-HDCA (DI-HDCA) modeling framework
is a fusion of concepts from spreading activation networks, hybrid dynamical system
models, and the BDI (belief–desire–intention) theory of goal-directed reasoning, adapted
and employed unconventionally to meet entailments of environment and embodiment.
The paper presents two kinds of autonomous agent learning results that demonstrate
dynamical intentions and the multi-faceted integration they enable in embodied robots:
with a simulated service robot in a grid-world office environment, reactive-level learning
minimizes reliance on deliberative-level intelligence, enabling task sequencing and action
selection to be distributed over both deliberative and reactive levels; and with a simulated
game of Tag, the cognitive–physical integration of an autonomous agent enables the
straightforward learning of a user-specified strategy during gameplay, without interruption
to the game. In addition, the paper argues that dynamical intentions are consistent with
cognitive theory underlying goal-directed behavior, and that DI-HDCA modeling may
facilitate the study of emergent behaviors in embodied agents.

Keywords: intelligence modeling, learning, embodiment, hybrid systems, hybrid dynamical systems, machine
learning, action selection, cognitive robotics

1. INTRODUCTION

Embodied robots can encompass everything from low-level motor control to navigation, goal-
directed behavior and high-level cognition in one complex, cognitive–physical system. Accordingly,
when considering modeling frameworks for the design, development, and deeper understanding
of such robots and their behaviors, there are many desired criteria and required constraints for
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their models. This paper presents one such framework, anchored
by dynamical intention modeling (Aaron and Admoni, 2010;
Aaron et al., 2011) to represent cognitive elements underly-
ing goal-directed behavior in embodied robots. With dynami-
cal intention modeling and the accompanying hybrid dynamical
cognitive agent (HDCA) framework, essential components that
are often treated separately – including reactive and deliberative
intelligence, and cognitive and physical behaviors – are unified in
amodeling framework that supports high-level behavioral design,
low-level cognitive and physical representations, and machine
learningmethods for integrated, autonomous learning in response
to robots’ environments.

Dynamical intention modeling and the HDCA framework for
integrated dynamical intelligence are influenced by several obser-
vations about models of intelligent embodied agents, biological
and robotic, in dynamic environments:

• Embodied agents are integrated systems, complete autonomous
agents embedded in an environment (Pfeifer and Bongard,
2006). Their high-level cognitive intelligence, low-level cogni-
tive intelligence, and physical actions and behaviors are essen-
tial system components, and they should be modeled and
analyzed together, reflecting their integration.

• Goal-directed behavior of embodied agents moving through
their environments is necessarily the result of the agents’ inte-
gration across cognitive and physical components. For mod-
els to better support both production and analysis of goal-
directed behavior, the relevant cognitive and physical compo-
nents should be integrated in the model.

• In dynamic, unpredictable environments with arbitrary asyn-
chrony, agents should be capable of appropriately dynamic
responses and learning. If the environment cannot be known
a priori, then ideally, models would not impose a priori restric-
tions on the granularity of possible responses in the environ-
ment. Similarly, because embodied agents are sensibly modeled
asmoving continuously through space and time,models should
ideally support continuous space and time representations,
without pre-imposed discretizations.

• Typically, models allowing only low-level representations do
not effectively extend to high-level representations: for exam-
ple, models that describe only kinematics of leg movement
do not extend to pathfinding on large maps, and cognitive
models describing only subsymbolic processes do not extend to
representations of intentions guiding goal-directed planning.

• Conventional AI models of goal-directed behavior are fre-
quently founded on high-level propositional representations,
such as the goals, beliefs, and intentions of agents carrying out
planning for the behavior [e.g., Georgeff and Lansky (1987)].
These representations do not readily support integration with
low-level, continuous-time processes; they do not readily sup-
port cognitive–physical integration without imposing restric-
tions that may be ill-suited in unpredictable environments.
Ideally, intelligence models would represent cognitive elements
such as beliefs and intentions in a framework consistent with
agents as integrated systems.

For the design and analysis of navigating, goal-directed
embodied agents, a model of integrated intelligence would ideally

represent and unify the cognitive and physical components –
and interactions among them – underlying robust behavior
in unpredictably dynamic environments. This paper presents
the dynamical intention-HDCA (DI-HDCA) framework for
integrated dynamical intelligence models for embodied agents,
discussing its background, specifications, and foundation for
extensions. Two different kinds of dynamical intention-based
integration are presented, reactive–deliberative integration and
cognitive–physical integration, as are required for fully integrated
embodied agents. Moreover, the paper conceptually contextual-
izes this modeling framework in specific motivations based on
the roles of embodiment and environment in agent behavior.

TheDI-HDCA framework fuses ideas from cognitivemodeling
and general system modeling in a new synthesis, often employing
them unconventionally to support the requirements of embodied
intelligence. For instance, the foundation of a DI-HDCA model
is a finite-state machine that combines continuous and discrete
dynamics in a hybrid automaton (Alur et al., 2000): states (modes)
represent continuously evolving actions or behaviors described
by systems of differential equations; each mode also has condi-
tions governing when discrete transitions to other modes occur,
and what discrete changes in system state occur as part of these
transitions.

The dynamical intention framework underlying cognitive
models is influenced by the belief–desire–intention (BDI) the-
ory of practical reasoning and its many implementations [e.g.,
Georgeff and Lansky (1987) and successors], which established
the effectiveness of BDI elements (beliefs, desires, and intentions)
as a foundation for goal-directed intelligence. Unlike conventional
BDI agents, however, dynamical intention models link BDI ele-
ments in a continuously evolving system inspired by spreading
activation networks (Collins and Loftus, 1975; Maes, 1989). Each
BDI element in this dynamical intention framework is represented
by an activation value indicating its salience “in mind” (e.g.,
intensity of a commitment to an intention, intensity of a belief).
The continuous evolution of these cognitive activation values is
governed by differential equations, with cognitive elements affect-
ing the rates of change in activations of other cognitive elements,
as described in sections 2.3 and 2.4. These dynamical cognitive
representations can be employed for both low-level reactive intel-
ligence and high-level deliberative planning (Aaron and Admoni,
2010), enabling integration of the two levels.

The particular physical motion of DI-HDCAs (i.e., navigation
in dynamic environments) is not central to the DI-HDCA frame-
work, as discussed in section 3.2, except that it too is governed
by dynamical systems. This enables further integration: physical
and cognitive components in DI-HDCAs are represented in the
common language of differential equations, which is critical to the
learning demonstrations in section 5.

These are the components of the general framework of dynam-
ical intention and DI-HDCA modeling. The remainder of the
paper further elaborates on these components and presents
example DI-HDCAs, which illuminate general concepts and are
employed in various proofs of concept.1 For example, the paper

1The specific agents described in this paper are far from an exhaustive demonstra-
tion of the DI-HDCA modeling framework. To distinguish the general DI-HDCA
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FIGURE 1 | Diagram of a Tag game environment, containing bases
(darker squares), obstacles (lighter squares), and agents (circles)
playing the game. Both kinds of Tag players are represented, one It player
and three non-It players.

presents a simulated service robot in a grid-world office envi-
ronment, for two kinds of demonstrations: how conventionally
deliberative-level intelligence can be distributed over reactive-
level processes in DI-HDCA models; and how new kinds of
machine learning can be facilitated by dynamical intention rep-
resentations. Indeed, with dynamical intention-based learning,
the robot approximates deliberative rule-based performance with
only reactive-level learning, minimizing reliance on deliberation
and supporting dynamically responsive, adaptive behavior.

In addition, the paper presents experiments with DI-HDCAs
as autonomous players in a real-time, human-interactive sim-
ulation of the child’s game Tag. In Tag, a player designated as
“It” attempts to touch (“tag”) other players, who try to avoid
being tagged. Safe locations called bases are in the Tag variant
in this paper, as shown in Figure 1, so that players touching a
base cannot be tagged. If a non-It player Pi does get tagged by
It (call the It player Pj, distinct from Pi), then Pi becomes the
new It, Pj is no longer It, and the game continues with players
(including Pj) avoiding being tagged. This game is well suited for
demonstrations of embodied intelligence: agents employ complex
cognitive strategies while navigating in an unpredictably dynamic
environment. Demonstrations from Tag games in this paper illus-
trate cognitive–physical integration in DI-HDCAs, with agents’
jointly altering cognitive and physical performance to meet new
specifications for their strategies without interrupting gameplay.

The contributions of this paper include:

• A broad description of dynamical intention and HDCA mod-
eling, significantly expanding upon more narrowly focused
presentations in Aaron and Admoni (2010) and Aaron et al.

framework from specific agents, a phrase such as “in this paper” will formulaically
be used to indicate specific focus.

(2011). This includes the motivation and proper contextual-
ization of DI-HDCA modeling as a response to entailments of
environment and embodiment.

• A survey of previously described DI-HDCA learning methods
and experimental results in both the Tag game and office envi-
ronments mentioned above (Aaron and Admoni, 2010; Aaron
et al., 2011), demonstrating the role of DI-HDCA modeling in
adaptive integrated intelligence.

• Several new experimental results and substantially expanded
analyses, including statistical analyses of data that were previ-
ously only qualitatively described.

This paper is the first comprehensive presentation of integrated
intelligence for DI-HDCAs – encompassing physical-level com-
ponents for motion and navigation and cognitive-level compo-
nents for reactive and deliberative intelligence – and the first cast-
ing of DI-HDCA concepts that directly exposes the elements of
embodied agency underlying those concepts. In addition, section
6 briefly discusses potential extensions of the present work in
new contexts, including possibilities of verifying DI-HDCA mod-
els and applying the DI-HDCA modeling framework to study
emergent properties of embodied intelligence.

2. THE DI-HDCA MODELING FRAMEWORK

The DI-HDCA modeling framework is specifically designed for,
and constrained by, the demands of embodied autonomous intel-
ligent agents navigating in dynamic environments. It is a synthesis
of three concepts – BDI theory, spreading activation networks,
and hybrid system models – that are employed unconventionally
to enable formally specified yet broadly expressive agent models.
This section presents the background and foundational ideas on
which the DI-HDCA framework is based, analyzing the roles of
embodiment and environment in modeling goal-directed agents,
and then discussing cognitive modeling and hybrid system mod-
eling in that context.

2.1. Environment
In principle, goal-directed agents need not be embodied [e.g.,
many BDI-based planning agents (Georgeff and Lansky, 1987)],
but with or without embodiment, environment constrains what
factors and features may be elements of effective agent models.
Some problem solving agents operate in fully known, unchang-
ing environments, which constrains the kinds of reasoning they
need; for example, pathfinding problems can be solved prior to
navigation for perfect performance. Other agents might operate
in stationary environments that are not fully known in advance,
so problems might not be solvable ahead of time, but information
once discovered would not be changed, which could simplify
machine learning or other adaptation needed in this environment.
Such stationary environments are not realistic for the present
context, however, so this paper restricts consideration to only
dynamic and unpredictable environments.

For goal-directed behavior, agents must do some kind of plan-
ning or task sequencing, potentially employing propositional
reasoning-based deliberative intelligence. As an environmental
constraint, however, this paper additionally considers only envi-
ronments in which deliberation is not sufficient, and some kind of
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reactive intelligence is also necessary. This reactivity requirement
is not identical to the above criterion of “dynamic and unpre-
dictable” – one could imagine environments in which deliberation
sufficed for all unpredictable changes – but it is related.

In such environments, both reactive- and deliberative-level
intelligence – and their combinations – are essential for goal-
directed embodied robots. DI-HDCA modeling integrates delib-
erative and reactive intelligence through shared representations
of cognitive elements: the same elements that support reflexive,
reactive responses can also be employed for task sequencing and
other conventionally deliberative-level intelligence. These shared,
dynamically sensitive representations allow goal-directed reason-
ing to be distributed over both reactive and deliberative levels;
the particular agent models in section 4 exemplify this distributed
approach. Thus, DI-HDCA modeling does not deny deliberation,
but it can minimize reliance on deliberation for more robustly
responsive and adaptive agents.

2.2. Embodiment
Section 2.1 noted that an agent’s environment could be incom-
pletely known or unknowable, but for real-world robotics, one
might potentially instead view the embodiment of the robot as
the primary factor introducing such unpredictability: from dirt
on a floor that affects a wheel’s traction to moving obstacles
(e.g., people) in hallways navigated by service robots, embodiment
seems critical to why embodied robots need to respond and adapt
at unpredicted times, to unpredicted situations.

Indeed, in a real-world environment for a robot, unpredictabil-
ity is general, but that may not be strictly due to embodiment. If
embodiment is considered separate from real-world constraints,
it is imaginable in theory that a goal-directed embodied agent and
its world might be fully deterministic and known in advance. This
may seem laughably implausible to anyone who has worked with
real robots, but in principle, it seems that unpredictability need
not follow from embodiment alone.

Similarly, it might initially seem that reasons for continuum-
based modeling of time and space – to represent continuous agent
motion through space, and through time – are due to attributes of
and constraints from the environment. Indeed, one could assert
that continuous time and space are environmental properties:
once unpredictability and the need for reactive responses are part
of the environment, continuous time and space representations
are then needed to fully represent the environment. It is not clear,
however, that the environment would actually need to be fully rep-
resented for successful goal-directed behavior by a non-embodied
agent. Perhaps the needed reactivity for a non-embodied agent
could be achieved with a discretized time and space model, with
limited granularity of representation; the asynchrony in the envi-
ronment could be arbitrary, but perhaps that complexity need not
be imposed in full upon the agent model.

DI-HDCA models do represent continuous space and time,
however, with embodiment rather than environment as the prac-
tical motivation. Conventionally, real-world embodied systems
are modeled as moving continuously through space, often by
differential equations. Because these continuous representations
arewell established as useful formodeling, they have been adopted
for DI-HDCA models.

The effects of this design decision pervade the DI-HDCAmod-
eling framework: becauseDI-HDCAmodels should be integrated,
and continuous time and space representations are useful, added
entailments arise. A navigation model sensitive to continuous
time variations is needed. Reactivity should be modeled on a
continuous-time scale, for integration with continuous-modeled
motion. The cognitive model should thus also be modeled with
real-time dynamics, for sensitivity to real-time changes in the
environment. Then, as cognitive model elements are real-time
dynamic parts of the environment of other cognitive elements
(e.g., beliefs are parts of the cognitive environment that affects
intentions), and cognitive elements are sensitive to real-time
environmental variations, the cognitive model should represent
micro-cognitive variations and effects throughout all cognitive
components. This can be viewed as part of reactive–deliberative
integration, in the context of a continuous time and space model.

For a fully integrated agent model, however, the effects cannot
stop within the cognitive system. Full integration between cog-
nitive and physical components entails that models should not
restrict micro-level cognitive changes from affecting physical ele-
ments. Indeed, if amodeling framework represents arbitrary levels
of detail, enabling representations of arbitrarily unpredictable
environments, then integrated agentmodels should permitmicro-
cognitive effects to cause micro-physical effects (and vice versa);
indeed, any cognitive element should be able to somehow affect
any physical element (and vice versa). In the DI-HDCA frame-
work, one could design models with pre-imposed constraints
on the extent of cognitive–physical integration – e.g., that the
agent’s heading angle for navigation has no effect on the activation
of a particular desire to complete a task – but to support fully
integrated models, the framework allows for models without such
constraints.

The constraints from environment and embodiment therefore
entail continuum-valued representations for both cognitive and
physical elements of the model, and simultaneous integration
across reactive and deliberative intelligence and cognitive and
physical components. This is achieved in DI-HDCA models by
expressing all continuously varying elements in the unifying lan-
guage of differential equations, in a hybrid dynamical system
model (see section 2.4). This does not entail that all model
elements must be continuously varying, but critical cognitive
and physical elements should vary continuously, and the agents
described in sections 4 and 5 exemplify these ideas.

2.3. Cognitive Modeling and Goal-Directed
Reasoning
DI-HDCAs can be viewed as having physical and cognitive system
components, represented by the differential equations and vari-
ables describing behaviors conventionally considered physical or
cognitive, respectively. Because DI-HDCA modeling is designed
for embodied agents moving through environments, models can
contain continuously time-varying representations of physical
elements conventionally useful for modeling motion, such as xy-
location, velocity, or heading angle; because DI-HDCA modeling
is also designed for integrated, goal-directed intelligence of these
navigating embodied agents, models also contain continuously
time-varying representations of cognitive elements conventionally
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useful for modeling goal-directed behavior. These cognitive ele-
ments are derived from the BDI (belief–desire–intention) theory
of practical reasoning (Bratman, 1987) and the many agent-based
implementations of it [Georgeff and Lansky (1987) and many
successors].

BDI theory recognizes the critical role of intentions as cognitive
elements of practical reasoning, distinguishing intentions from
desires. Although all three kinds of cognitive elements influ-
ence behavior selection and planning of task sequences, beliefs,
desires, and intentions are distinct in their roles: in particu-
lar, desires (i.e., desired goals or conditions in the world) may
conflict, whereas intentions are conduct-controlling pro-attitudes,
reflecting commitment to behaviors and resisting reconsider-
ation or conflict. A BDI-based approach provides a broader
cognitive framework for goal-directed agents than conventional
hybrid reactive–deliberative architectures [e.g., Arkin (1990), Gat
(1998)], subsumption architectures [e.g., Brooks (1986)], or other
behavioral robotics approaches that do not employ distinct desires
and intentions as cognitive elements for action selection and task
sequencing.

Conventional applications of BDI theory to computational
agents, however, do not explicitly support all the entailments
of embodiment or the multi-tiered integration described in this
paper. For example, BDI implementations are not convention-
ally based on continuous models of time and space, and action
selection and task sequencing are typically the result of delibera-
tive processes, employing propositional representations of beliefs,
desires, and intentions. Designing BDI-based agents without
continuum-valued representations seems apt for some contexts –
without the requirements of embodiment, continuous representa-
tions might needlessly complicate agent design and analysis – but
for embodied, goal-directed mobile robots, continuous-modeled
cognitive and physical representations can be beneficial, particu-
larly to support the integration inherent in such robots. Moreover,
continuum-valued cognitive representations support dynamicist
perspectives of cognition (Port and van Gelder, 1995; van Gelder,
1998; Beer, 2000; Spivey, 2007), and they enable sensitivity to real-
time micro-cognitive variations that can cascade into macro-level
cognitive effects.

In DI-HDCA models, cognitive elements are represented by
continuously varying activation values, where an activation value
represents the salience “in mind” of the related cognitive element.
As examples, beliefs with high activations are “strongly held,”
desires with near-zero activations are not “strongly felt,” and high-
active intentions indicate high priorities on the related actions.
Because all cognitive elements are represented this way, and acti-
vations can vary in real time, interactions among them can be
represented by an unconventional spreading activation network.
Spreading activation networks are well-established models with
applications in both cognitive psychology (Collins and Loftus,
1975) and agent modeling (Maes, 1989), based on neuroscience-
influenced ideas that activations of cognitive elements can affect
activations of other cognitive elements. Spreading activation net-
works are related to other connectionism-inspired approaches,
including Haazebroek et al. (2011), which employs ideas from
the theory of event coding to model action and cognition; similar
to DI-HDCA modeling, the work in Haazebroek et al. (2011)

emphasizes shared representations for integrating across levels of
action and cognition, but the DI-HDCA framework is explicitly
focused on dynamically sensitive representations of intentions,
desires, and beliefs for goal-directed navigating agents.

Because cognitive activation values are governed by differ-
ential equations in DI-HDCA models, the spreading activation
framework employed is unconventional: instead of the activation
of an element directly having excitatory or inhibitory effects on
activations of other elements, the activation of an element affects
the rates of change in activations of other elements. That is, an
activation of one element serves as part of a term in the differential
equation describing the variation in another element. As a small,
constrained example, consider this part of a differential equation,
where BP stands for the activation on the belief of P, k> 0 is a
constant, IA stands for the activation on the intention for action
A, and the dotted variable İA stands for the rate of change in IA:

İA = . . . + k · BP + . . . . (1)

This encodes excitatory and inhibitory effects on IA: if BP > 0,
İA will increase, for an excitatory effect on IA over time; if BP < 0,
İA will decrease, for an inhibitory effect. The magnitude of coeffi-
cient k in that equation serves to intensify or diminish the effect
of BP on IA, an observation that is exploited in mechanisms for
DI-HDCA learning (see section 2.5). A system of such differential
equations, in which activations of cognitive elements are parts of
differential equations for other cognitive elements, thus models
a spreading activation network. Although this network may be
viewed as unconventional due to the layer of indirection induced
by the differential equations, it might also be viewed as appropri-
ate for continuous-time environments with arbitrary asynchrony.
Activation is not passed through the model in synchronized lock
step nor in pre-determined quantities, and the quantity of spread
activation is time-varying and responsive to changes in the system,
fitting a DI-HDCA’s environment.

The BDI-based framework of dynamical intentions presented
in this paper is not the only agent model with dynamical systems-
based elements that can be viewed as representing intentions.
The dual dynamics framework (Hertzberg et al., 1998; Jaeger and
Christaller, 1998) represents activation dynamics as different from
target dynamics, analogous to intentions and navigation dynamics
in DI-HDCAs. Dynamic neural field approaches (Schöner
et al., 1995; Erlhagen and Bicho, 2006; Richter et al., 2012;
Sandamirskaya et al., 2013), based on neuroscientific principles,
also associate activations of cognitive entities with actuations of
behaviors. The DI-HDCA framework shares the emphasis on
dynamics with these approaches but is less tightly coupled with
low-level sensorimotor systems, emphasizing cognitive dynamics
of typically higher-level constructs of desires and intentions,
which can directly support the high-level behavioral design and
analysis desirable for many embodied robotics applications.

2.4. Hybrid Dynamical System Modeling
Continuous dynamics are essential for cognitive and physical ele-
ments inDI-HDCAmodels, but discrete dynamics are also impor-
tant for behavioral modeling. Robots are productively designed
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and understood in terms of discretely delineated behaviors,
with transitions between those behaviors. The idea that discrete
changes between behaviors can occur when some threshold con-
dition is met has been employed in contexts ranging from logical
models (“if condition then begin action A”) to neural models
(e.g., threshold for neurons firing) and beyond, including system
models that combine continuous and discrete dynamics.

To support both continuous dynamics and discrete behavioral
design, aDI-HDCAmodel can be expressed as a hybrid automaton
model of a hybrid dynamical system (HDS), which explicitly repre-
sents and distinguishes continuous and discrete system dynamics
(Alur et al., 2000). A hybrid automaton is a finite-state machine
in which each state (mode) is a continuous behavior, specified by
differential equations describing system dynamics in that mode.
HDS models have been employed for many complex applica-
tions, including navigating robots or virtual agents [e.g., Egerstedt
(2000) andAaron et al. (2002)], and for the present application, the
structures of a DI-HDCAmodel correspond naturally to elements
of an HDS. For DI-HDCAs, each behavior might be specified as a
mode, describing the physical and cognitive dynamics governing
the robot while executing that behavior. Figure 2 illustrates a
mode in a DI-HDCA model, showing cognitive elements inter-
connected in a dynamical system model. The physical elements
(e.g., position, velocity) are also governed by differential equations
in each mode, and because all physical and cognitive elements are
represented as variables in a dynamical system, any one of them
can be part of any differential equation in the system – i.e., for
integration, any element can affect the dynamical change in any
other element.

In DI-HDCA behavior, transitions between modes occur when
threshold conditions (guards) are met, and transitions are rep-
resented as instantaneous changes in behavior, which may be
accompanied by discrete changes in values of elements in the
model. For example, when some action Ai is completed, the
robot might transition to the mode for action Aj, and the acti-
vation on the intention for Ai might instantaneously drop, as
the robot no longer intends to carry out Ai. Figure 3 illustrates
a mode-transition system for a DI-HDCA, situating the mode
from Figure 2 in a full model. The connections between modes
indicate available transitions: at any given moment, an agent
is in exactly one mode (call it Mi), describing its behavior at
that moment; when guard conditions in mode Mi are met, the
agent transitions to some other mode Mj connected to Mi in the
model.

2.5. DI-HDCA Learning
Because cognitive elements are represented as parts of terms in
differential equations (Figure 2), they can affect each other’s acti-
vations and any behavior based on those activations. For example,
with action selection or task sequencing based on which inten-
tions have the greatest activation values, any cognitive element
can influence every intention’s activation in the network, thus
affecting action selection. Moreover, because physical elements
(e.g., position, velocity) are also represented in that dynamical
system, they can in principle also affect activation values and task
sequencing. This interconnectedness is central to integration in
DI-HDCA modeling.

FIGURE 2 | Visualization of cognitive elements in a behavior (a mode)
in the hybrid dynamical system model of a DI-HDCA service robot (see
section 4). BDI-based cognitive elements – beliefs, desires, and
intentions – are interconnected with excitatory and inhibitory links, expressed
by differential equations in a dynamical system, which can be viewed as an
atypical spreading activation network. Because both cognitive-level and
physical-level components are expressed in the shared language of dynamical
systems, physical behavior components such as speed or heading angle (not
visualized here) can in principle also be part of the dynamical system.

This interconnectedness is also central to straightforward
methods by which DI-HDCAs can learn from experience. As
background, note that themagnitude of the effect of element Ei on
element Ej in the dynamical system is expressed by the coefficient
ci,j in the related term, as in this example:

.
Ej = . . . + ci,jEi + . . . . (2)

Here, if coefficient ci,j became a greater positive number, the
activation on Ei would have a stronger direct effect on Ej − ci,j
represents the link from Ei to Ej. Thus, if an agent’s experience
suggested that Ei should have a different effect on Ej, learning that
new effect would only require altering that coefficient.
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FIGURE 3 | Visualization of a full mode-level system model of a DI-HDCA service robot (see section 4). Individual modes (see Figure 2) are in a
state-transition model: at any moment, the agent is in one behavior mode; the change to a different behavior is modeled by a transition from one mode to another. It
is not necessary in DI-HDCA models that every mode be connected to every other mode, but there is no restriction against a fully connected system such as the one
shown here. Every cognitive and physical element in the DI-HDCA can be present in each mode, for use in that mode’s dynamical system.

With this, DI-HDCA learning of new strategies for action selec-
tion or dynamic task re-sequencing – aspects of agent intelligence
that are often expressed as deliberative in agent models – could
require only that the appropriate coefficients change values. For
example, if feedback suggests that some belief B should affect
action selection, the agent can learn that connection by adjusting
coefficients relating belief B to the appropriate intentions. Because
intentions are the cognitive elements representing actions, this
can suffice to bring about the learned adaptation; no new rules
or complex mechanisms are required.

Although the relationship between beliefs and intentions is an
especially important one, DI-HDCA learning is not restricted to
those elements. If feedback suggested, for instance, that increased
salience of a desire D is not productive during some action A,

connections could be learned to lower the activation on intention
IA corresponding to action A whenever the activation of D is a
large value. Moreover, if faster speed of an agent is not productive
when the agent is in action A (action A might require acute
perception or good traction for motion), the agent could learn
to calibrate the activation of IA based on speed. Because of the
full interconnectedness of the cognitive–physical representations
enabled by DI-HDCA models, any such relationship could be
straightforwardly learned by altering the weights of links between
elements.

From the perspective of an agent designer, this mechanism can
effectively refine agent behavior to meet specifications, even in
interactive environments (see section 5). From the perspective
of a scientist modeling and analyzing behavior, this mechanism
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enables the study of connectionism-inspired learning – learning
occurs by changing weights of links between elements – with
phenomena as low-level as speed and as high-level as inten-
tion. [In context, it can also be viewed as a form of reinforce-
ment learning; see Aaron and Admoni (2010).] The integration
encoded inDI-HDCAmodels enables such straightforward learn-
ing approaches to be exceptionally effective in DI-HDCAs.

3. AGENT IMPLEMENTATION

Dynamical intentions can be implemented in multiple ways
to be consistent with distinguishing properties of intention in
BDI theory. Similarly, the reactive navigation intelligence in DI-
HDCAs can vary with different agent implementations. Nothing
intrinsic to the DI-HDCA framework fully defines such options,
although some constraints are imposed (e.g., navigation mod-
els are expressed as differential equations, for integration with
dynamical intention). Below, this section presents general back-
ground regarding DI-HDCA implementation and simulation for
the experiments in sections 4 and 5, including the navigation
system and a brief summary of the factors for adherence to BDI
properties.

3.1. Distinguishing Properties of BDI
Intentions
As described in section 2.3, the BDI-based cognitive elements
of DI-HDCAs are represented by dynamically varying activation
values. For agents implemented in the demonstrations described
in this paper, cognitive activations are bounded to be within
[−10, 10]. Low-magnitude activation values (i.e., near 0) indicate
low salience of the associated concepts, whereas greater mag-
nitudes of activations represent more importance or intensity
of the associated concepts; for example, a desire with near-zero
activation would indicate relative apathy regarding the associated
concept, while a belief with high activation would be strongly held
and a high-active intention would indicate greater importance of
and commitment to the related task or behavior. Activations with
negative values indicate salience of the opposing concept – e.g., an
intention with activation −2 indicates a mild commitment not to
do the associated task, and a belief with activation −9 indicates
that the opposite or negation of the associated concept is strongly
held.

For the agents implemented in this paper, beliefs and desires
can conflict with each other. For instance, if an agent model
included both beliefs BamIt representing that the agent is It in a Tag
game andBnotIt representing that the agent is not It, themodel need
not preclude them from having simultaneously high activations.
DI-HDCAs could be designed to disallow conflicting beliefs, and
doing so could benefit some applications, but for the explorations
of computational intelligence in this paper, such conflicts were
not explicitly disallowed. Similarly, it is possible for conflicting
desires to have simultaneously high activations, representing an
agent intensely desiring to do two things when only one at a time
is possible.

The philosophical foundations of BDI agents assert that desires
can conflict with each other but intentions resist conflict with each
other. This is one of the distinguishing properties of intentions

noted in Bratman (1987), part of explicitly establishing desires
and intentions as distinct cognitive elements. For this paper,
DI-HDCAs are implemented with mechanisms consistent with
distinguishing properties that apply to this dynamical account of
intention2:

• Intentions are conduct-controlling cognitive elements.
• When salient, intentions resist reconsideration.
• When salient, intentions resist conflict with other intentions.

It is straightforward to implement that intentions control con-
duct: in the state-transition system representing a DI-HDCA’s
behaviors (see Figure 3), conditions for entering and exiting a
mode specify that the highest-active intention determines agent
state. Initially, the agent must begin in the mode corresponding
to its highest-active intention, e.g., in mode Init, when intention
IInit has the highest activation of any intention. Then, a transi-
tion to another mode Other occurs only when intention IOther
becomes highest-active, which can happen in two ways: behavior
Init becomes completed, so the activation of IInit is set to a low
value (e.g., −10) and intention IOther becomes highest-active; or
the cognitive activation values change over time, as governed by
the dynamical system, and the activation value of IOther evolves to
become greater than IInit.

For reconsideration resistance, the implemented mechanism
[described in Aaron and Admoni (2009, 2010)] encodes that
a high-active intention Ia tends to minimize other intentions’
impacts on Ia, and this effect becomes more pronounced as
the activation of Ia grows. For intentions Ia and Ib (b ̸= a), the
differential equation for İa includes the following structure:

İa = . . . − ki · PF(Ia) · NCF(Ib) · Ib + . . . . (3)

Persistence factor PF is defined as

PF(Ia) = 1 − |Ia|∑
i |Ii| + ϵ

, (4)

where i ranges over all intentions and the ϵ> 0 term prevents
division by 0. Then, PF(Ia) multiplies every intention Ib in the
equation for İa (for b ̸= a), so as Ia grows in magnitude relative
to other intentions, contributions of every Ib are diminished, and
when PF(Ia)= 1 (i.e., Ia = 0), such contributions are unaffected.
The denominator is designed to model Ia as less reconsideration
resistant when other intentions are highly active.

The implemented mechanism for conflict resistance among
intentions is also in coefficients in cognitive dynamical systems.
In this paper, every intention in agents’ cognitive systems is
negatively interconnected with every other intention, with a non-
conflict factor NCF as part of the differential equation for every
intention. [Recall from equation (3) that İa = . . . − ki · PF(Ia) ·
NCF(Ib) · Ib . . ..] The non-conflict factor function is:

NCF(Ib) =

(
1 + 1.6

(
Ib
10

)8
+ 0.8

(
Ib
10

)9
)

. (5)

2These are not the only properties of intention described or emphasized in
Bratman (1987); these properties, however, can apply to reactive-level intention, not
requiring, e.g., future-directedness incompatible with reactive cognition.
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This NCF component is applied similar to PF: in the differential
equation for Ia, each term for an intention Ib is multiplied by
NCF(Ib) (although unlike PF, it is possible that a= b). Thus,
NCF decreases activation levels for conflicting intentions (and
increases them for non-conflicting intentions, e.g., when a= b).
The constants in equation (5) were chosen for agents in this
paper by the agent designer after thought experiments and eval-
uation of preliminary tests; with different choices of constants,
other DI-HDCAs could perform differently in the same general
framework.

To test NCF effectiveness, simulations were run that isolated
effects of NCF: agents did not navigate, and persistence factor PF
was removed from the cognitive system; experiments compared a
control group without NCF to an experimental group with NCF
for results. Each group was identical in all other ways, containing
ten agents (A1, . . ., A10) with cognitive elements designed for the
office scenario in section 4. Each of the ten agents had identical
cognitive activation values except for initial activations on inten-
tions; for intentions, each agent Ai’s initial activations were i/3
times these baseline values:

MailLetter GetChild RetrieveCheck HomeBase GetPensSC GetPensAO
3.1 2 1 1 1 1

The rate of change in activation on intention IML corresponding
to the MailLetter behavior was then measured. On average, over
the first 30 s of test runs, agents with non-conflict factor NCF
in operation and the highest level of initial activation had a
lower rate of decrease in activation of intention IML compared
with agents in the baseline condition. The effect was reversed at
medium levels of initial activation, as indicated by marginally sig-
nificant (p= 0.052) interaction. For the baseline agent, mean rates
of change were −0.228 when medium-active and −0.232 when
high-active; for the NCF agent, −0.279 when medium-active and
−0.191 when high-active, as presented in Figure 4. (All statistical
analyses in the paper were conducted with SPSS, version 23.)

Examination of distinguishing BDI properties for DI-HDCAs
is not complete, but the implemented mechanisms suggest that
dynamical intentions can be consistent with BDI properties, and
they demonstrate the environmental sensitivity and design con-
trol capable in the DI-HDCA framework.

3.2. Navigation
Although some agent navigation for this paper is simple, straight-
line motion (see section 5.1), most agent navigation in both the
Tag game and the office grid-world (section 4) is instead similar
to the potential-based reactive navigation of Schöner et al. (1995),
Large et al. (1999), Goldenstein et al. (2001), and Aaron and
Mendoza (2011). This system models environments as consisting
of actors (the navigating agents), obstacles that repel actors, and
targets that serve as goal locations, attracting actors. Actors, obsta-
cles, and targets can be either moving or stationary, and actors
can be treated as obstacles or targets by other actors. In the Tag
game scenario for experiments in section 5, for instance, non-It
players might consider It actors as obstacles, and an It player may

FIGURE 4 | Intentions with high activation avoid conflict with other
high-active intentions. A priori contrasts indicate significant differences
(p<0.05) between means, as shown by asterisks. The main effects of
activation level and type of agent are significantly different (p<0.05) in a 2×3
ANOVA, with a low activation level condition included but not shown for clarity
and brevity.

have an actor as its target. To illustrate the system and suggest the
mathematics underlying it, the dynamics of this navigation system
are briefly summarized here.

Non-linear angular attractor and repeller functions repre-
sent targets and obstacles, and their weighted contributions are
dynamically combined to calculate an actor’s angular velocity
in real-time response to the environment. Heading angle ϕ is
computed by a non-linear system of the form:

.

ϕ = f(ϕ, env) = |wtar| ftar + |wobs| fobs + n, (6)

where ftar and fobs are the attractor and repeller functions for the
system, and wtar and wobs are their weights in the calculation.
(Noise term n helps prevent the system from becoming trapped
at critical points.) The weights themselves are determined by
computing fixed points of another non-linear system [see Large
et al. (1999) for details]. Other parameters and details are also
concealed in the terms presented above. For instance, a repeller
function fobs depends on parameters that determine how much
influence obstacles have on an actor. This is only a partial overview
of the navigation system, but it suggests the complexity involved in
modeling it and exposes the significant non-linearity in the agent
models’ physical components and navigation intelligence.

Although this navigation system integrates cleanly into dynam-
ical intention-based intelligence, it is not the only option. For
example, instead of abstracting navigation to position, heading,
velocity, etc., as the above system does, one might employ a more
physically grounded model for motion of a wheeled robot: the
robot would have volume and mass; acceleration would be critical
to themodel, as would friction on thewheels and drag through the
air. Such a physically detailed model would also integrate cleanly
with DI-HDCA intelligence, as long as the system of motion was
expressed in the language of differential equations, so any element
of the system could straightforwardly affect any differential equa-
tion in the system – cognitive or physical – to effect the desired
integration.
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while time < endtime

for k = 1:numOfAgents
ag = agentArray(k);

switch ag.mode
case HIDE_RA % mode name
ag = hide_ra(ag);

case HIDE_U
ag = hide_u(ag);
...

end % end switch

agentArray(k) = ag;

end % end for loop

end % end while loop

FIGURE 5 | The basic code structure of the simulator in MATLAB.

3.3. Simulation
The simulations for this paper are implemented in MATLAB,
although other choices could also be good for implementing DI-
HDCAs. At each time step, the simulation updates the state of each
agent according to the behavior mode governing the evolution of
that agent. The modes themselves are implemented as functions,
containing both the propositional guards for transitions to other
modes and the dynamical systems describing the behavior; exe-
cuting a mode function on an agent either induces a transition
to another mode or updates the state of the agent. As shown in
Figure 5, the simulator loops through every agent, identifying the
proper mode function to execute for that agent.

Figure 6 contains a sample code skeleton for a mode. In each
mode, a list of mode-transition guards is checked, and if a guard
is true, the mode-transition corresponding to the first true guard
is taken. This transition is effected by discrete changes in the state
of the agent, including setting a new mode value for the agent;
the main loop will then simulate the agent in the appropriate new
mode during the next time step. If no guard is true, the agent’s
state is updated according to the dynamical system in themode. To
simplify this implementation, all discrete or deliberative dynamics
in the agents in sections 4 and 5 occur during these instantaneous
transitions; representing deliberation during mode execution is
an interesting extension of the current implementation, but it
requires giving temporal dynamics to deliberation that is not
typically modeled as temporally dynamic, and that complication
was not engaged in the present work.

4. REACTIVE-LEVEL LEARNING AND
DELIBERATIVE-LEVEL INTELLIGENCE

Part of the integrated intelligence of DI-HDCAs is the dis-
tribution of goal-directed intelligence over both reactive and
deliberative processes: task sequencing and action selection are
often considered to be deliberative-level intelligence, but with
dynamical intention modeling, some can be handled by reactive-
level intelligence and learning. This enhancement of reactive-
level intelligence reflects a fundamental motivation of dynamical

function agent = hide_ra(agent)
...
if guard1

...
agent = setMode(agent,...);
return

elseif guard2
...

agent = setMode(agent,...);
return

end % end if-else block

...
xd = agent.vel * cos(...);
yd = agent.vel * sin(...);
newx = oldx + (xd*timestep);
newy = oldy + (yd*timestep);
agent.posn = [newx newy];
...

FIGURE 6 | The basic code structure of a mode in MATLAB for a hybrid
dynamical agent.

intention modeling and DI-HDCA design: reactive-level intelli-
gence can be enhanced without denying deliberative intelligence;
DI-HDCAs minimize reliance on deliberative intelligence, for
greater robustness in unpredictable environments.

This section discusses dynamical intention-based learning
methods for DI-HDCAs and describes demonstrations of agents
learning to approximate deliberative, rule-based behavior. In
particular, this section emphasizes how deliberative-level intel-
ligence is distributed over reactive-level processing and learn-
ing. Although the idea of hybrid reactive–deliberative systems
is not novel to DI-HDCAs, and deliberative-level intelligence
that employs the same representations as reactive systems is
not extraordinary (e.g., a planner that uses the location of a
robot, where location is altered by reactive navigation) in hybrid
agents, DI-HDCA modeling emphasizes “the other direction” of
distribution of intelligence: instead of low-level reactive repre-
sentations being employed by high-level logical planners, DI-
HDCAs’ dynamical intentions enable conventionally high-level
intelligence such as task sequencing and action selection to be
distributed down to reactive, lower-level systems.

To demonstrate this reactive–deliberative integration, experi-
ments consider a simulated service robot carrying out tasks in a
grid-world office environment, illustrated in Figure 7, requiring
navigation to various locations (see section 4.1 for task descrip-
tions). To demonstrate the effects of reactive-level learning, three
agents were compared: one had straightforward deliberative rules
explicitly encoded to improve efficiency, the second was a reactive
agent without dynamical intention-based learning, and the third
agent employed dynamical intentions and reactive-level learning
to approximate the rule-based performance of the first agent with-
out requiring explicit deliberative rules. Two kinds of DI-HDCA
learning were implemented for these experiments: a Hebbian
learning method that strengthens connections among cognitive
elements that are concurrently salient (i.e., with concurrently high
activation values); and belief–intention (BI) learning for task-
specific associations of beliefs and intentions. The Hebbian and
BI learning methods were originally presented and qualitatively
described in Aaron and Admoni (2010); this section summarizes
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FIGURE 7 | Simulation in progress, screenshot. A map of the office
environment, top, shows offices and obstacles (black squares), targets (white
squares abutting offices), and three agents (L, R, and NR). Below the
grid-world map is a list of target locations corresponding to agent tasks.

these learning methods and presents new analyses demonstrating
their effectiveness.

4.1. The Office Grid-World: An Overview
An office environment for a simulated service robot provides a
context in which navigation, action selection, and task sequenc-
ing are all essential. The particular office environment for these
demonstrations (see Figure 7) is a simplified grid-world – e.g.,
mail carts in hallways are stationary, not moving obstacles –
although future experiments in the same environment couldmore
fully exploit DI-HDCA reactivity. In experiments, service robots
can carry out six tasks, each with an associated target location:
MailLetter, which requires navigating to the mail room (labeled
MR in Figure 7);GetChild, with navigation to the child care center
CC; RetrieveCheck, at payroll office PO; HomeBase, at home base
HB; GetPensFromSC, at supply closet SC; and GetPensFromAO,
at administrative office AO. Agents are therefore implemented
with six behavior modes, one for each task, and cognitive ele-
ments including one intention for each behavior (e.g., IML for
MailLetter, IGC for GetChild), related beliefs (e.g., BML for having
a letter to mail), and related desires (e.g., DGP for the desire to get
pens). These foundations enable experiments to focus on reac-
tive and deliberative task sequencing intelligence, and this brief
presentation emphasizes only the central elements for the results
presented in this paper. In particular, perception and navigation
intelligence are limited and not emphasized in these experiments;
for additional details, see Aaron and Admoni (2010).

As introduced above, three kinds of robot agents were com-
pared in DI-HDCA learning experiments. One agent AR (for
Rules) employed two straightforwardly encoded deliberative rules:
a sorting-based distance bias to prefer task sequencing that
co-prioritizes tasks with proximate target locations; and the

minimal-effort rule to avoid redundancy such as needlessly going
to both the supply closet and the administrative office to get pens.
The second agent ANRL (Non-Rules/Non-Learning) was identical
to AR except it lacked the relevant deliberative rules; it employed
DI-HDCA task sequencing – intention activations determined
its current task – but had no DI-HDCA learning implemented.
The third agentAL (Learning) employed dynamical intentions and
reactive-level Hebbian and BI learning to approximate the rule-
based performance of the first agent without requiring explicit
deliberative rules. In the next sections below, both general expo-
sitions and specific applications to these agents are presented, for
both Hebbian and BI learning, although the experimental results
presented here focus primarily on BI learning.

4.2. Hebbian Learning
Inspired by observations about neuronal interconnections in
Hebb (1949), Hebbian learning in these DI-HDCAs strengthens
connections between co-active cognitive elements (i.e., elements
that concurrently have high activation values). This broadly gen-
eral dynamical intention-based Hebbian learning method could
in principle apply to any elements, but for these demonstrations,
it is only employed to enhance connections among intentions
associated with target locations that are near each other: the closer
the locations, the stronger the connection between the associated
intentions.

For DI-HDCAs in this paper, the mechanism for Hebbian
learning is based on a limited model of perception and additional
structure in the cognitive dynamical system that allows percep-
tion to affect intention activations. Training for Hebbian learning
consists of each agent simply navigating in its environment. For
these demonstrations, training consists of an agent taking a pre-
specified route through the office environment that passes close
to all target locations for tasks (e.g., mail room, supply cabinet);
training stops at the completion of that route. (Different training
routines or stopping criteria could result in different learning;
this choice suffices for the present demonstrations.) Each agent
has a radius of perception rp roughly equal to one-quarter of
the length of the grid-world, so it accurately perceives target
locations within distance rp of it as it moves. During training
runs forHebbian learning, coefficients encoding interconnections
between intentions have their values increased (until stopping
criteria are reached) based on the proximity of target locations. In
particular, for intentions Ia and Ib (corresponding to tasks a and
b, where a ̸= b) and associated target locations La and Lb, if both
La and Lb have been recently perceived by the agent, the following
coefficients become greater in the cognitive dynamical system:

• The coefficient ka,b on intention Ib in the equation
İa = . . . ka,b · Ib . . . gets larger by an amount proportional to
how recently Lb has been perceived.

• The coefficient kb,a on intention Ia in the equation
İb = . . . kb,a · Ia . . . gets larger by an amount proportional to
how recently La has been perceived.

Because this occurs only when both La and Lb have been
recently perceived, only proximate target locations contribute
to the strengthening of connections between associated inten-
tions, and there is greater co-activation between intentions when
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the target locations are perceived closer to each other during
training.

Additional details are in Aaron and Admoni (2010) about how
coefficients are altered during training (including a Hebbian scal-
ing constant c1 that affects the changes in ka,b and kb,a), the mech-
anism by which recency of perception is implemented to result in
the learning described here, and the effects of Hebbian learning
without BI learning. The above description only summarizes the
details necessary for the presentation of integrated Hebbian and
BI learning in section 4.4 below.

4.3. Belief–Intention Learning
Intentions and beliefs have an especially important conceptual
relationship regarding task completion: completion of a task T
likely results in a strong belief that T has been completed; unless
T needs to be repeated, the belief that T is completed would
influence intention IT to have a negative value, so the agent would
intend not to do task T again. Belief–intention (BI) learning,
which alters cognitive connections between beliefs and intentions,
is therefore especially significant for DI-HDCAs. For experiments
in this paper, BI learning trains agents to relate intentions to beliefs
in ways that might typically be encoded in propositional rules
such as the minimal-effort rule (see section 4.1), but without any
proposition-based learning. Details about BI learning, originally
presented in Aaron and Admoni (2010), are summarized below.

In these experiments, the BI learning mechanism requires that
coefficients relating beliefs to intentions have the form

IC(Ia,Bb) = ka,b · [ra,b · Ca,b + (1 − ra,b)]
IC(Ia,Bb̄) = ka,̄b · [ra,̄b · Ca,̄b + (1 − ra,̄b)]. (7)

Variables a and b (a ̸= b) refer to tasks, ranging over the six
behaviors for agents; as convention, the ka,b values are designer-
chosen scalars, Ia is the intention associated with task a, and Bb
(Bb̄, respectively) is the belief associated with task b having been
completed (not completed). Coefficient IC(Ia, Bb) (IC(Ia,Bb̄)) is
then placed as the coefficient on term Bb (Bb̄) in the differential
equation for intention Ia:

İa = . . . ka,b · [ra,b · Ca,b + (1 − ra,b)] · Bb

+ ka,̄b · [ra,̄b · Ca,̄b + (1 − ra,̄b)] · Bb̄ . . . . (8)

The ra,b and Ca,b values can be designer selected for specific
applications. For this motivating example application – learn-
ing behavior consistent with the deliberative minimal-effort rule,
avoiding redundant tasks when relevant but otherwise leaving
cognition unaffected [see Aaron and Admoni (2010) for addi-
tional details] – ra,b = 1 exactly when belief Bb should affect inten-
tion Ia, otherwise ra,b = 0 (similarly for ra,̄b and Bb̄), i.e., ra,b = 1
exactly when a, b correspond to redundant tasks, which here
are the pen-related tasks GetPensFromSC and GetPensFromAO.
The Ca,b values specify how Bb affects İa when ra,b = 1; for this
example, Ca,b = Ca,̄b = c Bb̄−10

− 20 , so Bb,Bb̄ both do not effect
Ia when beliefs reflect that task b has not yet been completed
(Bb̄ = 10), but after b has been completed (Bb̄ = − 10), the
coefficient on Ia drops rapidly, preventing a redundant errand.

These ra,b and Ca,b terms are not modified due to BI learning,
however. As with this Hebbian learning, this BI learning modifies
coefficients ka,b during training. Training consists of an agent
running errands in its office; the stopping criteria are met if that
errand run ended with the agent having completed exactly one of
the two pen-related tasks. If the errand run stopped but it was not
the case that exactly one pen-related task had been completed, the
scalar parts ka,b (for a ̸= b) in coefficients described in equation
(7) are modified as follows:

ka,b = ka,b · [1 + ra,b(γa,b − 1)]. (9)

(Scalars ka,̄b are similarly modified.) The pre-specified scalar
γa,b > 1 encodes the extent of the modification. In this imple-
mentation, therefore, when tasks are not redundant, ra,b = 0 and
ka,b is unchanged; when learning could lead to minimal-effort
rule-like behavior, ra,b = 1 and the inhibitory link between belief
Bb and Ia is strengthened. Thus, once one pen-related task is
completed, activation on the intention to do the other rapidly
drops.

To demonstrate the effect of BI learning (Hebbian learning is
not part of these demonstrations), two agents were compared:
agent ABI, which had been trained with BI learning to approx-
imate the minimal-effort rule; and agent ANBI, identical to ABI
but without training by BI learning. For these agents, the γa,b
parameter values were all 1.2, and the initial activations on desires
and intentions are as presented here:

MailLetter GetChild RetrieveCheck HomeBase GetPensSC GetPensAO

Initial desires 3 9 8 2 1 n/a
Initial
intentions

6 9.3 10 1 3 3

Recall that agents have only one cognitive element for desires to
get pens – noted as DGetPensSC in the above listing – which has
the expected excitatory effect on both GetPensSC and GetPensAO
behaviors; there is no separate DGetPensAO element, which is noted
by the value n/a for the activation for DGetPensAO above. Agent
ABI had seven training runs following the procedure described
above, each starting from the same position near the supply
cabinet on the left side of the office, and cognitive coefficients
were adjusted during training. After training, agents ABI and ANBI
were tested, with each test consisting of the agent autonomously
running errands in its office; test runs began from 16 intersec-
tions in the office grid-world. Two facets of agent behavior were
measured: redundancy, whether redundant tasks were completed
by the agent, and speed, how long it took the agent to complete
its run.

The redundancy measure was qualitatively described in Aaron
and Admoni (2010): after training, agent ABI completed exactly
one pen-related task on all 16 errand runs, completely avoiding
redundancy and adhering to the minimal-effort rule; agent ANBI,
in contrast, redundantly completed both pen-related tasks on 8 of
its 16 errand runs. The speed measure, not previously statistically
analyzed, is presented in Figure 8. The completion times of runs
varied as expected depending on starting position: the agents’ first
errand was to go to Payroll Office PO on the map (Figure 7), so
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FIGURE 8 | Belief–intention (BI) learning improves navigation. Agents
started from one of 16 different positions, as indicated by the small squares
on the map (top). For purposes of analysis, four neighborhoods were defined.
The time for each agent to reach the target was measured (bottom). Agents
that undergo BI learning navigate significantly faster to the target than agents
without learning (ANOVA, significant main effects of agent type and
neighborhood p<0.05, with asterisk indicating the difference between
agents). Neighborhoods are the same as in Figure 9.

runs starting farther from PO tended to take longer. Completion
time data were therefore considered in four neighborhoods, each
corresponding to a quadrant (lower/upper, left/right) of the map,
and each containing four of the 16 starting points; a depiction
of the neighborhoods is presented with the results in Figure 8.
In every neighborhood, from every starting location, agent ABI
completed its run faster than agent ANBI: in neighborhoods A, B,
C, and D, respectively, the mean times to complete the runs are
74.885, 67.417, 73.073, and 63.375 s for ABI, and 82.198, 70.167,
80.958, and 65.573 s for ANBI.

These experiments suggest the effectiveness of BI learning
for improving efficiency, enabling deliberation-level intelligence
without proposition-based deliberative reasoning. Other imple-
mentations of BI learning are certainly possible for DI-HDCAs,
but this simple example illustrates fundamental ideas about how
learning can alter connections between beliefs and intentions to
train agent behavior.

4.4. Integrating Hebbian and BI Learning
The Hebbian and BI learning methods described above can
be straightforwardly integrated: because they alter disjoint sets
of cognitive connections, nothing additional is needed to
employ both methods together. For demonstrations of integrated
Hebbian–BI (HBI) learning described in this paper, agents employ
the mechanisms in sections 4.2 and 4.3 without alteration. These
procedures and some results were originally inAaron andAdmoni
(2010); this section summarizes the experiments run to demon-
strate HBI learning and presents new and expanded statistical
analyses of data from these experiments.

Training for HBI learning is consistent with procedures
described above. A training run consists of an agent autonomously
running errands in its office environment. Training concludes
after a training run meets two conditions: the agent performs
exactly one of the two pen-related tasks, suggesting learning of
the minimal-effort rule; and the time taken by the errand run
is not less than the time taken by the previous run, suggesting
adequate learning of the distance bias. (Because DI-HDCAs in
these experiments move at constant speed, time and distance are
equivalentmeasures.) Training of agentAL (Learning) consisted of
18 training runs beginning at the same location and with the same
cognitive activation values and parameters as for the BI learning
in section 4.3, along with Hebbian scaling constant c1 = 4× 104.

As described in section 1, these experiments compared agentAL
to two other agents: ANRL, which is identical to the pre-learning
state of agent AL; and AR, which is identical to ANRL except
with propositional, deliberative encodings of the distance-bias
and minimal-effort rule. For experiments, tests were run from 16
starting locations, consisting of each agent running errands as in
the experiments of section 4.3. The redundancy of agents’ runs –
i.e., did they execute both pen-related tasks – and the average time
of completion of agents’ runs weremeasured and compared across
the three agent types.

Considering task redundancy, the behavior of AR in these
tests was dictated by its deliberative rules, as expected: it always
retrieved pens from the administrative office, so it never went
to the supply closet. By comparison, HBI learning agent AL also
went to exactly one of those two locations on every run – indeed,
on 15 of the 16 test runs, the dynamical intention-guided AL
performed exactly the same task sequence as AR – but untrained
agentANRL went to both locations on every run. BecauseANRL was
identical to AL without the integrated HBI training, the reactive-
level learning clearly reduced redundancy, bringing about the
same performance as AR without additional deliberation.

Considering errand run completion times, AL finished every
run faster than ANRL, but slower than AR. As with the results in
Figure 8, completion time data for these agents were considered
in the same four neighborhoods. Results are in Figure 9. In every
neighborhood, completion times of agents AR and AL are sta-
tistically indistinguishable, indicating that HBI learning enabled
the DI-HDCA agent to approximate rule-based behavior without
explicit deliberative rules. Moreover, in every neighborhood, both
AR and AL were statistically different from ANRL, demonstrating
that learning distinguished AL from ANRL. As shown in Figure 9,
the mean completion times (in seconds) to complete the errand
runs in neighborhoods A, B, C, and D (respectively) are: 73.76,
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FIGURE 9 | Hebbian–BI (HBI) learning. The three types of agent started
from one of 16 different positions, grouped into the same neighborhoods as in
Figure 8. The time for each agent to complete its errand run task was
measured. Using a 3×4 fully factorial ANOVA, a significant (p<0.05) effect of
type of agent and neighborhood was detected. Post hoc t-tests determined
that in all neighborhoods AR and AL were statistically indistinguishable and
that both were statistically different from ANRL, as indicated by the asterisks.
When the marker for AR is not visible, it is hidden behind the marker for AL.

67.187, 71.146, and 63.271 for AR; 75.302, 67.583, 72.25, and
63.406 for AL; and 77.822, 71.302, 75.823, and 67.333 for ANR.

4.5. Discussion
The above results demonstrate that dynamical intention-based,
reactive-level learning can train agents to closely approximate
deliberative-level intelligence and rule-based behavior in these
experimental conditions, without reliance on deliberative struc-
tures. DI-HDCAs do not learn explicit propositional rules; agents
learn reactive-level tendencies generally (though not entirely)
in accord with the guiding rules. This enables deliberative-level
intelligence to be distributed to reactive-level processes, for hybrid
intelligence that retains the benefits of both deliberative goal-
based performance and reactive responsiveness.

The generality of the tasks and this domain suggest that learned
behavior can generalize beyond an agent’s training set, and that
similar learning processes could generalize to other task domains.
Moreover, Hebbian and BI learning alter only cognitive con-
nections between some beliefs and intentions, but different DI-
HDCA learning methods could incorporate other cognitive ele-
ments (including desires) or other connections among elements.
Indeed, the underlying modeling framework of excitatory and
inhibitory links among dynamically responsive cognitive ele-
ments is general enough to enable (if not encourage!) different
approaches to DI-HDCA learning.

5. COGNITIVE–PHYSICAL INTEGRATION
AND ONLINE LEARNING

Along with DI-HDCAs’ integration of reactive- and deliberative-
level intelligence, which arises from shared cognitive representa-
tions across both levels, cognitive–physical integration arises from
both cognitive and physical system components being expressed
in the shared language of dynamical systems. As a demonstra-
tion domain for integrated cognitive–physical learning for DI-
HDCAs, interactive simulated Tag games – i.e., requiring agent

interactions with people and not just other agents – provide some
especially important elements: an unpredictable environment; a
requirement for navigation intelligence, including target seeking
and obstacle avoidance; and the possibility of both simple and
complex behaviors and strategies.

Tag has continuous, real-time play rather than turn-taking, so
online learning during gameplay might be preferable to learning
that interrupts play or occurs only after games. Moreover, in
a user-interactive environment, agents might be asked to learn
things specified by a user during gameplay – for instance, an agent
might be playing too well, making the game too difficult, and the
user could instruct the agent to modify some but not all of its
strategy during play, for a more enjoyable game. In such a multi-
faceted modification, as described in section 5.2, the agent might
need to modify both its physical speed and its cognitive strategy
for the desired behavior, learning during gameplay and without
direct user feedback.

DI-HDCAs’ cognitive–physical integration can make it
straightforward to learn this altered behavior. Because agent
speed is represented by a variable in the agent’s shared
cognitive–physical dynamical system, cognitive variation
can directly respond to physical variation: speed can be directly
employed as a parameter in learning that alters the agent’s
cognitive network, so real-time micro-variations in speed can
result in real-time micro-variations in cognitive-level strategy. As
results in section 5.2 show, this straightforward approach can be
effective for online learning in Tag-game demonstrations.

The remainder of section 5 further describes the Tag environ-
ment and related experiments. Although this is not the deepest
instance of cognitive–physical integration possible in DI-HDCA
models [see Aaron et al. (2011) for a brief mention of physi-
cal actions considered “involuntary” affecting cognitive elements
considered “subconscious”], it illustrates the effect that cogni-
tive–physical integration can have on adaptive agent behavior, and
it illuminates the central role of dynamical intention modeling in
integrated intelligence.

5.1. The Tag-World: An Overview
In the Tag game environment – called “Tag-world” here, anal-
ogous to “grid-world ” in section 4 – interactions between the
user and agents are standard: each It player pursues some non-
It player; each non-It agent avoids It players. To make the game
more adversarial, for these demonstrations, two players at a time
are It. The field of play (Figure 10) is a square with bases near
the corners, obstacles between bases, and multiple players; players
are penalized for touching an obstacle, requiring that they stay
frozen for a specified duration, during which they are vulnerable
to getting tagged by an It player. In addition, players touching base
cannot become It, but they cannot stay on base too long, to prevent
play from degenerating into all players staying on base and none
getting tagged.

These Tag games are populated by two kinds of autonomous
agents: cognitive Tag agents (CTAs), the focal agents in these
experiments, with dynamical intention-based cognitive systems
and relatively complex strategies; and simple Tag agents (STAs)
with relatively basic strategies, serving as additional players in the
game. For navigation, sometimes agents use straight-line motion
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that is not obstacle avoidant to move to a target location; when
obstacle avoidance is needed, the navigation is the same kind
as for the agents in section 4, as described in section 3.2. Tag-
world and these agents were originally described in Aaron et al.
(2011), which also contains details not included in the brief sum-
mary here; below, this section describes only details needed for
the experiments involving CTAs, and it presents the results of
online learning for CTAs, including qualitative description and
new statistical analysis.

FIGURE 10 | Simulated interactive Tag game. The screenshot (with added
labels) illustrates field layout and Tag players. Elements include bases,
obstacles, human-controlled players, It agents, cognitive Tag agents, and
simple Tag agents. [Aaron et al. (2011) contain additional details about these
Tag simulations.]

An STA, when not It, simply runs clockwise from base to
base, ideally avoiding being tagged. When an STA becomes It,
it chooses from two possible It-actions: it either chases the user
(the person playing the game) or it chases another agent. An
STA’s cognitive structure is a very simple dynamical intention-
based system, straightforwardly supporting only this behavior;
specifics of STA action selection are not central to results in this
paper. In contrast, a CTA contains more complex intelligence
and cognitive–physical integration; Figure 11 shows the mode-
level architecture of CTAs in these experiments. When a CTA
C is not It, it will try to execute all of the following behav-
iors in a game: runBases, the simple base-running strategy that
STAs have; getMitten, retrieving its mitten (which, as children
sometimes do, this agent drops in every game); protect, protect-
ing a friend from being tagged; and readyToTag, actively seek-
ing to become It, to tag an adversary. The getMitten action is
implemented by selecting a time when, wherever C is, its mitten
drops; soon after, C finds the mitten’s location, and cognitive
activations evolve until, in general, mitten-retrieval becomes C’s
highest priority. To enable protect and readyToTag, C has beliefs
of affinities for each player in the game; C will protect a non-It
player with maximal affinity during protect and pursue a non-
It player with minimal affinity during readyToTag. When a CTA
is It, it either follows through on a readyToTag action and pur-
sues its selected adversary, or it selects between chasing the user
or another agent, as STAs do. [Additional details of STAs and
CTAs, not central to results in this paper, are in Aaron et al.
(2011)].

The cognitive dynamical systems in these agents connect BDI
cognitive elements in intuitive ways. For example, the equations
governing activations of the desire to run bases, the intention to

FIGURE 11 | Behavior mode-level architecture of a cognitive Tag agent (CTA). Each mode also has a self-transition, omitted here to avoid visual clutter.
[Aaron et al. (2011) contain additional details.]
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tag another player, and the intention to run bases contain the
following structure:

. . .

d
.
Run = − c1 · bAmIt − c2 · iTag + c3 · iRun

i
.
Tag = d1 · bAmIt + d2 · dTag − d3 · dRun

+ d4 · iTag − d5 · iRun

i
.
Run = − e1 · bAmIt − e2 · dTag + e3 · dRun − e4 · iTag

+ e5 · iRun
. . . (10)

Additional structure is also present in equations for these cog-
nitive elements, and additional equations are present for other
cognitive elements. [The specific components for distinguish-
ing properties of BDI intentions and the experimental results in
section 4, however, are not present in agents for these experiments.
For additional details about these cognitive systems, see Aaron
et al. (2011).] The online learning of DI-HDCAs in these examples
is based on the interconnections encoded in these equations,
similar to the mechanism in section 4, as further described below.

5.2. Agent Learning and
Cognitive–Physical Integration
The motivation for the Tag-world learning demonstrations below
was to approximatewhat a human game-playermight want during
play: a usermight specify agent behavior to change, within desired
bounds, to improve the gameplay experience. For example, a user
might have been tagged so quickly by It agents that the game was
not a fair challenge, but when agents were non-It players, their
behavior was good for gameplay. Based on this idea, a CTA was
tasked to learn from a simulated user request to change one aspect
of gameplay without affecting another, exemplifying an arbitrary
user choice, unrelated to agent design and substantively changing
behavior.

As preparation, control condition behavior for CTAs was deter-
mined by letting a game play extensively (more than 8000 sim-
ulated seconds), with an automated user for replicability. In this
game setup, when a CTACctrl became It,Cctrl would almost always
tag some other player in less than 25 simulated seconds (average:
12.85 s). In addition, the value actrl of the average number of bases
reached per execution of the runBases behavior, over the full game,
was actrl = 4.01.

For the learning demonstrations, the CTA would learn a goal
with two components: speed change, requiring speed-only learning;
and base-running maintenance, requiring speed-and-bases (SB)
learning.

• Speed change: after becoming It, C should optimally tag some
other player between 25 and 45 s later. Speed-only training (and
thus partial SB training, see below) occurs when C transitions
out of chase mode. If the time C was It is outside of the desired
range (25–45 s), C is trained to become slower or faster, as
appropriate, by a factor depending on how far outside of the
desired range C was It.

• Base-running maintenance: despite the effects of speed-only
learning, C should only minimally change the value aC of

the average number of bases reached during each runBases
behavior. SB training occurs whenC transitions out of runBases
mode: aC is updated, and coefficients in cognitive differential
equations are altered to train C to approach the control value of
4.01 in the future. As a partial example, if aC < 4.01, coefficients
in the differential equation governing iRun are altered so that
C tends to remain longer in runBases, encouraging greater
aC in the future. The amounts altered depend on values such
as the velocity of C when training occurs, exemplifying cog-
nitive–physical integration: values of physical variables affect
cognitive adjustments.

To focus these demonstrations, the connections modified dur-
ing training were pre-selected, though the adjustments were
autonomous.

Feedback for SB learning is given by the expected two mea-
surements: how long until C tagged another player (agent or user)
when C was It; and how many times C reached a base when in
runBases behavior. Learning occurs when C transitions out of two
behaviors:

• When C transitions out of chase, if the time t that agent C
was It is less than minimum desired time tmin (here, tmin is
25 s), then C becomes slower, multiplying its speed by 1 − m ∗
(tmin−t)

tmin
, where m= 0.05 controls the effect of the change. This

is designed to approach 1−m when C tags its target almost
immediately, for maximal change, and approach 1 when C tags
its target near the time of tmin, for minimal change. Similarly, if
C takesmore than somemaximumdesired time tmax (here, 45 s)
to tag a player, then it becomes faster, multiplying its velocity by
the similarly designed factor 1 + m ∗ (tmax−t)

tmax
.

• When C transitions out of runBases, learning occurs under two
circumstances: either when the agent transitions out because
another behavior’s intention becomes highest-active and the
agent has touchedmore or fewer bases than the desired number,
or when the agent is tagged by an It player after having touched
more bases than the desired number. (If the agent is tagged
after having touched fewer bases than the desired number, it
is not possible to know whether it would have touched fewer
or more bases than the desired number, and learning does not
happen in that situation.) In either of these cases, the value
of the average number of bases touched by C (call it aC) each
time it was in runBases is re-computed, and if that average is
either more or less than the desired average, coefficients in C’s
cognitive system are altered, based on agent-specific learning
factor lF.

Cognitive interconnections can be altered in two ways by this
learning procedure: multiplying by lF, or multiplying by 1

lF . Coef-
ficients in cognitive differential equations for which higher values
would intuitively make C evolve out of runBases faster are mul-
tiplied by lF; coefficients for which high values would intuitively
make C evolve out of the behavior more slowly are multiplied by
1
lF . Therefore, if C were touching too many bases per runBases
behavior and needed to transition out of it more quickly, lF would
be increased during play, and coefficient-altering learning would
be applied. Similarly, lF would be decreased if C needed to stay in
runBases longer to achieve its goals.
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Learning factor lF is defined as lF= s · f, the current speed s ofC
multiplied by a factor f, the value of which is described below. This
way, an increase (decrease, respectively) in s straightforwardly
results in a tendency to touch more (fewer) bases before transi-
tioning out of runBases. Factor f is also varied during gameplay.
Initially, f = 1

sinit , where sinit is the speed of C at the beginning
of the game (for these demonstrations, that speed was 1

50 of the
size of the Tag field per simulated second). Then, the value of f
can be changed when C transitions out of runBases, as part of
the learning procedure. Any time the agent exits runBases, the
average number of bases aC touched during the runBases behavior
is computed; then, if at the time of the current transition out of
runBases, aC is greater than the desired value of actrl (here, 4.01),
f is multiplied by 1.2. Similarly, if aC is below 4.01 at the time of
a voluntary transition, lF is multiplied by 0.8. This definition of
f and its alteration during play completes the definition of lF to
have the desired properties.

With this definition of lF, learning is implemented by altering
cognitive coefficients as appropriate. For this paper, the coeffi-
cients intuitively presumed to increase the rate at which the system
evolves out of runBases, and which were therefore multiplied by
lF, are: in the equation for İprotect, the coefficient for Dprotect, and a
positive constant term; in the equation for İrunBases, the coefficients
for Itag, Iprotect, Imitten, and a negative constant term. Similarly,
the coefficients multiplied by 1

lF are: in the equation for İrunBases,
the coefficients for DrunBases and IrunBases. This is not meant to
be a comprehensive list of all coefficients that intuitively affect
the speed with which C evolves out of runBases, but rather a
sample sufficient to affect the behavior of C and illustrate ideas
of DI-HDCA learning.

Demonstrations showed agent C successfully learning inte-
grated cognitive–physical behavior during play:C slowed to spend
more time as It before tagging another player (average: 32.62 s)
while also maintaining a bases average of aC = 4.21, very close to
4.01. Additionally, speed-only learning without full SB learning
resulted in aC = 2.19 in otherwise identical conditions, suggest-
ing the importance of integrated learning for the desired goal.
[see Aaron et al. (2011) for additional details.] To quantitatively
analyze performance and test the hypothesis that the type of
learning alters the performance of the agents, univariate ANOVA
was used, with results presented in Figure 12. For the dependent
measure of number of bases touched, the mean value for speed-
and-bases learning was significantly higher [F(1, 18)= 15.358,
p= 0.001, η2 = 0.460] than the mean for the speed-only learning
(Figure 12A). For the variance in the number of bases touched, the
mean value for speed-and-bases learning was significantly higher
[F(1, 18)= 131.624, p< 0.000, η2 = 0.880] than the mean for the
speed-only learning (Figure 12B).

5.3. Discussion
The above results show DI-HDCAs’ cognitive–physical integra-
tion as a substrate for online learning of multi-faceted, real-time
interactive gameplay. The cognitive–physical integration makes
the learning straightforward for DI-HDCAs: the extent to which
speed or the agent’s cognitive network needs to be modified is

FIGURE 12 | Learning in the Tag game. (A) Number of bases that agents
touched. With learning based on speed and number of bases, agents
touched significantly more bases. (B) Variance in number of bases touched.
With learning based on speed and number of bases, agents had significantly
greater variance.

not known a priori, but cognitive–physical integration enables
small adjustments in one to bring about small adjustments in
the other, so the integrated agent system can find the desired
balance.

Other experiments presented in Aaron et al. (2011), although
illustrative of cognitive–physical integration in DI-HDCAs, were
not related to agent learning and hence not presented above.
Specific values were varied in controlled environments, to inves-
tigate the particular effects that might result. For example, many
game segments were simulated with identical CTA C; initially, C’s
intentions implied task order [readyToTag, runBases, protect, get-
Mitten]. Across simulations, two factors varied – when C dropped
its mitten; and when C was tagged by the user (automated, for
replicability) – to illuminate micro-level cognitive and physical
effects in gameplay. Asmitten-drop grew later with get-tagged held
constant, for example, the time at which C moved from readyTo-
Tag into runBases was not affected, but the time at which C then
entered protect tended to get earlier. In addition, for particular
values of mitten-drop and get-tagged, C entered protect mode –
in which movement is not obstacle-avoidant – at an inopportune
moment and ran straight into an It player. This sequence of events
and ensuing cascade of effects illustrates how engaging, unscripted
behavior that could be considered emergent can arise in the
DI-HDCA framework. Emergent behavior and the DI-HDCA
framework are also briefly discussed in section 6 below.
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6. CONCLUSION AND DISCUSSION

The DI-HDCA modeling framework is a fusion of ideas from
BDI theory, spreading activation networks, and hybrid dynamical
system models, each adapted and employed in new ways that
are influenced by entailments of environment and embodiment.
DI-HDCA modeling embraces BDI theory and spreading acti-
vation networks for cognitive modeling, adapting them to real-
time varying environments, continuum-valued representations,
and multi-tiered integration across a model. Representing DI-
HDCA models in a formal HDS enables behavioral design, and
it supports cognitive–physical integration in each behavior mode.
Moreover, because all physical and cognitive elements have the
real-time evolution of their activation values expressed by differ-
ential equations in the same dynamical system, any elements can
affect any other in the integrated agent model.

The DI-HDCA framework’s expansive integration also
supports the agent learning demonstrated in sections 4
and 5 of this paper, employing both reactive–deliberative
and cognitive–physical integration for adaptive behavior of
navigating, goal-directed agents. Experiments demonstrate that
DI-HDCA modeling can enable the distribution of typically
deliberative task sequencing intelligence onto reactive-level
processes, and that cognitive–physical integration can enable
straightforward online learning in interactive simulations. These
experiments are not an exhaustive demonstration of the capacity
of DI-HDCA models nor a full exploration of the integration and
adaptation possible for DI-HDCAs – for example, they considered
the reactive–deliberative and cognitive–physical dimensions
independently, not jointly – but they illuminate the role of this
integrated intelligence modeling and suggest the value of further
exploration.

There are many possible directions in which the presently
described DI-HDCA framework could be extended. In the gen-
eral context of reactive and deliberative systems, extensions of
dynamical intention-based reactive systems illustrated here could
potentially serve as reactive adjuncts to deliberation in hybrid
reactive–deliberative systems, augmenting deliberative methods
with enhanced reactive intelligence; this could reduce reliance
on deliberation and extend reactive benefits of responsiveness
and adaptability in incompletely known environments. There is
also the perhaps more ambitious potential that DI-HDCA models
could extend to fully replace some deliberative systems, repre-
senting the necessary rule-based behavior in the reactive DI-
HDCA framework. Neither of these approaches is currently fully
explored, and it is not the intent of this paper to prescribe one of
these two approaches or endorse one over the other; both seem
interesting to explore.

The specific details of DI-HDCA modeling presented in this
paper can also be altered in further explorations. For example,
in this paper, one activation value represents both salience and
cognitive intensity or commitment “in mind,” but those qualities
need not be conflated: within this general modeling framework,
agents could be very aware (high salience) of a mild desire (low
intensity), with individual elements in the cognitive networks
representing each of those qualities; the models presented in this
paper could straightforwardly adopt such new elements in their

cognitive dynamical systems. In addition, deliberation could be
modeled differently in the DI-HDCA framework, with specific
deliberation-behaviormodes that represent the time during delib-
eration; these could be incorporated without altering reactive
cognitive representations. Such extensions were not necessary,
however, for the demonstrations of reactive-level learning and
cognitive–physical integration in this paper.

Even within the models already developed, the capacity of
dynamical intention modeling to enhance reactive-level intelli-
gence and minimize reliance on deliberation is not confined to
agent learning methods such as those presented above. Reactive
task re-sequencing for DI-HDCAs, as discussed in Aaron and
Admoni (2009), can enable agents with internally inconsistent
cognitive elements to smoothly correct inconsistencies without
deliberation: an agent with a high-active intention IML to mail a
letter but also a high-active belief BML that it does not have a letter
to mail can reactively re-order its task sequence, without proposi-
tional planning. The cognitive network enables the high activation
on BML to have an inhibitory affect on IML until mailLetter is no
longer a high-priority task for the agent; indeed, in the demon-
stration reported in Aaron and Admoni (2009), the activation on
IML becomes negative and the mailLetter task is not completed,
consistent with the belief. The agent can invoke deliberative plan-
ning when needed, but for this cognitive inconsistency, reactive
activation changes governed by cognitive differential equations
suffice for task re-sequencing.

Expanding the scope of planning in DI-HDCAs could involve
a deeper exploration of reactive planning. At present, a plan for
DI-HDCAs is represented as a sequence of activation values on
intentions: at any moment, the plan is the ordering of those inten-
tions from high priority (to be completed first) to low priority.
Additional study of mechanisms for planning, and for reasoning
about time in this modeling context, could yield both interesting
cognitive insights and more robust, reliable robots. Relatedly,
applications of DI-HDCA modeling to agents with predictive
intelligence is also a potentially productive extension. Because
DI-HDCA models are based on differential equations, there is
inherently a predictive model in the system: at any moment,
the current values of time derivatives could straightforwardly be
employed to linearly extrapolate any system value to any time in
the future. This capacity is not tested in the present work in this
paper, but it might be employed to further enhance DI-HDCA
behavior, including incorporating such predictions into agent
learning methods.

The modeling of DI-HDCAs as hybrid dynamical systems
is also influenced by concerns of agent reliability. There are
formal logics and computational methods to analytically verify
some properties of hybrid dynamical systems, and in principle,
a DI-HDCA model could perhaps be analytically proved to be
designed correctly according to specifications. (Indeed, some
STAs in the Tag scenario had designs amenable to verification,
although that analysis was not performed.) In practice, however, it
is extremely difficult to analyze properties of arbitrarily complex
hybrid dynamical systems; indeed, reasoning about approxima-
tions to a system may be needed in cases where exact reasoning
about the desired system is computationally impossible (Alur
et al., 1995, 2000). For that reason, verifiability is not presently
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a primary concern underlying DI-HDCA modeling, but as the
verifiable correctness of complex computational agents becomes
more important, it may become more beneficial to have models
of intelligent robots grounded in a framework that enables veri-
fication. Moreover, there are promising HDS-related approaches
to creating verifiably correct behaviors, such as synthesizing robot
controllers from formal specifications [e.g., Wong et al. (2014)];
the gap between such approaches and DI-HDCA modeling is
sizable, but less than the gap between such approaches andmodels
without formal foundations.

The DI-HDCA framework may also be an apt candidate for
studying emergence and mechanisms of emergence. The DI-
HDCA framework enables and encourages low-level behavior
design while also expressing higher-level behavioral abstractions.
On a fundamental level, these are the elements needed to begin
an analysis of emergent behaviors: a lower level, with respect
to which behaviors can be emergent; a higher level, in which
emergent behaviors can be described; and a formalized foundation
in which patterns can be recognized and considered emergent.
Consider, for instance, how artificial neural networks can be parts
of studies involving emergence: behaviors arise that are not readily
or properly described as behaviors of the network itself. Simi-
larly, any higher-level agent behavior would not be considered
emergent with respect to a system if it is already encoded in
that system. With DI-HDCAs, the high-level behaviors explicitly
represented as HDS modes could be a baseline against which
newly recognized behaviors could be compared for determining
emergence; such potentially emergent behaviors could arise from
low-level cognitive and physical dynamics and interconnections,
analogous to behavior arising from a neural network, without
explicit high-level encoding. Moreover, because of the flexibly
expressive HDS modeling, a wide variety of candidate mecha-
nisms for generating or recognizing potentially emergent behav-
iors could be implemented, for a formalized approach to studying
emergence.

Embodied robots are complex integrated systems, and DI-
HDCA modeling represents that complexity in a structured
framework that enables effective analysis and design, with new

approaches to integrated intelligence and learning that can
improve robot performance. Although extensions of the present
work could explore narrowly construed task domains (e.g., an
automated robot arm for manufacturing, designed to make only
one specific weld), that is not suggested here. By design, the
DI-HDCA framework is not primarily for narrowly delineated,
domain-specific problems; instead, it illustrates what a modeling
framework for integrated embodied intelligence might contain,
which can be broadly applied to complex scenarios. For the
general study and robust implementation of embodied intelli-
gence, models expressing both broad scope and integration seem
well suited, and the DI-HDCA modeling framework is designed
for behaviors both low-level and high-level, both cognitive and
physical, and their interactions in embodied agents.

AUTHOR CONTRIBUTIONS

EA conceived of the theory, worked with collaborators (see
Acknowledgments) to conduct experiments and analyses, and
wrote the manuscript.

ACKNOWLEDGMENTS

The author gratefully acknowledges: Henny Admoni for the
observation that led to the Hebbian learning approach in this
paper and in Aaron and Admoni (2010); Henny Admoni and
Juan Pablo Mendoza for contributions to simulations, data, and
figures in papers [e.g., Aaron and Admoni (2010) and Aaron
et al. (2011)] foundational to the current presentation; and John
Long for statistical analyses and figures in this paper. Thanks also
to all of the above, to Jim Marshall for especially inspirational
conversations that helped advance this work, and to reviewers of
this paper for thoughtful and helpful comments.

FUNDING

A Research Committee award from The Lucy Maynard Salmon
Research Fund of Vassar College funded publication of this article.

REFERENCES
Aaron, E., and Admoni, H. (2009). “A framework for dynamical intention in hybrid

navigating agents,” in Hybrid Artificial Intelligence Systems (Berlin, Heidelberg:
Springer-Verlag), 18–25.

Aaron, E., and Admoni, H. (2010). Action selection and task sequence learning for
hybrid dynamical cognitive agents.Rob. Auton. Syst. 58, 1049–1056. doi:10.1016/
j.robot.2010.05.006

Aaron, E., Ivančić, F., and Metaxas, D. (2002). “Hybrid system models of navigation
strategies for games and animations,” in HSCC 2002, Lecture Notes in Computer
Science (Berlin, Heidelberg: Springer-Verlag), 7–20.

Aaron, E., and Mendoza, J. P. (2011). “Dynamic obstacle representations for robot
and virtual agent navigation,” in Proceedings of the Canadian Conference on
Artificial Intelligence (Heidelberg, New York: Springer-Verlag), 1–12.

Aaron, E., Mendoza, J. P., and Admoni, H. (2011). “Integrated dynamical intel-
ligence for interactive embodied agents,” in ICAART 2011 – Proceedings of
the 3rd International Conference on Agents and Artificial Intelligence (Setubal:
SCITEPRESS), 296–301. doi:10.5220/0003188102960301

Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T. A., Ho, P.-H., Nicollin, X.,
et al. (1995). The algorithmic analysis of hybrid systems. Theor. Comp. Sci. 138,
3–34. doi:10.1016/0304-3975(94)00202-T

Alur, R., Henzinger, T., Lafferriere, G., and Pappas, G. (2000). Discrete abstractions
of hybrid systems. Proc. IEEE 88, 971–984. doi:10.1109/5.871304

Arkin, R. C. (1990). Integrating behavioral, perceptual, and world knowledge in
reactive navigation. Rob. Auton. Syst. 6, 105–122. doi:10.1016/S0921-8890(05)
80031-4

Beer, R. D. (2000). Dynamical approaches to cognitive science. Trends Cogn. Sci. 4,
91–99. doi:10.1016/S1364-6613(99)01440-0

Bratman, M. (1987). Intentions, Plans, and Practical Reason. Cambridge, MA:
Harvard University Press.

Brooks, R. A. (1986). A robust layered control system for a mobile robot. IEEE J.
Robot. Autom. RA-2, 14–23. doi:10.1109/JRA.1986.1087032

Collins, A. M., and Loftus, E. F. (1975). A spreading activation theory of semantic
priming. Psychol. Rev. 82, 407–428. doi:10.1037/0033-295X.82.6.407

Egerstedt, M. (2000). “Behavior based robotics using hybrid automata,” in HSCC
2000 Lecture Notes in Computer Science (Berlin, Heidelberg: Springer-Verlag),
103–116.

Erlhagen, W., and Bicho, E. (2006). The dynamic neural field approach to cognitive
robotics. J. Neural Eng. 3, R36–R54. doi:10.1088/1741-2560/3/3/R02

Gat, E. (1998). “On three-layer architectures,” in Artificial Intelligence and Mobile
Robots, eds D. Kortenkamp, R. P. Bonnasso, and R. Murphy (Menlo Park, CA:
AAAI Press), 195–210.

Frontiers in Robotics and AI | www.frontiersin.org November 2016 | Volume 3 | Article 6625

http://dx.doi.org/10.1016/j.robot.2010.05.006
http://dx.doi.org/10.1016/j.robot.2010.05.006
http://dx.doi.org/10.5220/0003188102960301
http://dx.doi.org/10.1016/0304-3975(94)00202-T
http://dx.doi.org/10.1109/5.871304
http://dx.doi.org/10.1016/S0921-8890(05)80031-4
http://dx.doi.org/10.1016/S0921-8890(05)80031-4
http://dx.doi.org/10.1016/S1364-6613(99)01440-0
http://dx.doi.org/10.1109/JRA.1986.1087032
http://dx.doi.org/10.1037/0033-295X.82.6.407
http://dx.doi.org/10.1088/1741-2560/3/3/R02
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


Aaron Dynamical Intention: Integrated Intelligence Modeling

Georgeff,M., and Lansky, A. (1987). “Reactive reasoning and planning,” inAAAI-87
(Menlo Park, CA: AAAI Press), 677–682.

Goldenstein, S., Karavelas, M., Metaxas, D., Guibas, L., Aaron, E., and Goswami, A.
(2001). Scalable nonlinear dynamical systems for agent steering and
crowd simulation. Comput. Graphics 25, 983–998. doi:10.1016/S0097-8493(01)
00153-4

Haazebroek, P., van Dantzig, S., and Hommel, B. (2011). A computational model
of perception and action for cognitive robotics. Cogn. Process. 12, 355–365.
doi:10.1007/s10339-011-0408-x

Hebb, D. O. (1949). The Organization of Behavior. New York, NY: John Wiley &
Sons, Inc.

Hertzberg, J., Jaeger, H., Morignot, P., and Zimmer, U. (1998). “A framework for
plan execution in behavior-based robots,” in Proceedings of ISIC/ISAS (Piscat-
away, NJ: IEEE).

Jaeger, H., and Christaller, T. (1998). Dual dynamics: designing behavior
systems for autonomous robots. Artif. Life Rob. 2, 108–112. doi:10.1007/
BF02471165

Large, E., Christensen, H., and Bajcsy, R. (1999). Scaling the dynamic approach
to path planning and control: competition among behavioral constraints. Int. J.
Robot. Res. 18, 37–58. doi:10.1177/027836499901800103

Maes, P. (1989). “The dynamics of action selection,” in IJCAI-89 (San Mateo, CA:
Morgan Kaufmann), 991–997.

Pfeifer, R., and Bongard, J. (2006). How the Body Shapes the Way We Think: A New
View of Intelligence. Cambridge, MA: MIT Press.

Port, R., and van Gelder, T. J. (1995).Mind as Motion: Explorations in the Dynamics
of Cognition. Cambridge, MA: MIT Press.

Richter, M., Sandamirskaya, Y., and Schöner, G. (2012). “A robotic architecture for
action selection and behavioral organization inspired by human cognition,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems (Piscataway,
NJ: IEEE), 2457–2464.

Sandamirskaya, Y., Zibner, S. K. U., Schneegans, S., and Schöner, G. (2013). Using
dynamic field theory to extend the embodiment stance toward higher cognition.
New Ideas Psychol. 31, 322–339. doi:10.1016/j.newideapsych.2013.01.002

Schöner, G., Dose, M., and Engels, C. (1995). Dynamics of behavior: theory
and applications for autonomous robot architectures. Robot. Auton. Syst. 16,
213–245. doi:10.1016/0921-8890(95)00049-6

Spivey, M. (2007). The Continuity of Mind. New York, NY: Oxford University Press.
van Gelder, T. (1998). The dynamical hypothesis in cognitive science. Behav. Brain

Sci. 21, 615–665. doi:10.1017/S0140525X98001733
Wong, K. W., Ehlers, R., and Kress-Gazit, H. (2014). “Correct high-level robot

behavior in environments with unexpected events,” in Robotics: Science and
Systems Conference (RSS14). doi:10.15607/RSS.2014.X.012

Conflict of Interest Statement: The author declares that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2016 Aaron. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) or licensor
are credited and that the original publication in this journal is cited, in accordancewith
accepted academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.

Frontiers in Robotics and AI | www.frontiersin.org November 2016 | Volume 3 | Article 6626

http://dx.doi.org/10.1016/S0097-8493(01)00153-4
http://dx.doi.org/10.1016/S0097-8493(01)00153-4
http://dx.doi.org/10.1007/s10339-011-0408-x
http://dx.doi.org/10.1007/BF02471165
http://dx.doi.org/10.1007/BF02471165
http://dx.doi.org/10.1177/027836499901800103
http://dx.doi.org/10.1016/j.newideapsych.2013.01.002
http://dx.doi.org/10.1016/0921-8890(95)00049-6
http://dx.doi.org/10.1017/S0140525X98001733
http://dx.doi.org/10.15607/RSS.2014.X.012
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


July 2016 | Volume 3 | Article 40

Original research
published: 12 July 2016

doi: 10.3389/frobt.2016.00040

Frontiers in Robotics and AI | www.frontiersin.org

Edited by: 
John Howard Long,  

Vassar College, USA

Reviewed by: 
Andrés Faíña Rodríguez-Vila,  
IT University of Copenhagen, 

Denmark  
Leonardo Trujillo,  

Tijuana Institute of Technology, 
Mexico

*Correspondence:
Kenneth O. Stanley  

kstanley@cs.ucf.edu

Specialty section: 
This article was submitted to 

Evolutionary Robotics,  
a section of the journal  

Frontiers in Robotics and AI

Received: 31 March 2016
Accepted: 23 June 2016
Published: 12 July 2016

Citation: 
Pugh JK, Soros LB and Stanley KO 

(2016) Quality Diversity: A New 
Frontier for Evolutionary 

Computation.  
Front. Robot. AI 3:40.  

doi: 10.3389/frobt.2016.00040

Quality Diversity: a new Frontier for 
evolutionary computation
Justin K. Pugh, Lisa B. Soros and Kenneth O. Stanley*

Evolutionary Complexity Research Group, Department of Computer Science, University of Central Florida, Orlando, FL, USA

While evolutionary computation and evolutionary robotics take inspiration from nature, 
they have long focused mainly on problems of performance optimization. Yet, evolution 
in nature can be interpreted as more nuanced than a process of simple optimization. In 
particular, natural evolution is a divergent search that optimizes locally within each niche 
as it simultaneously diversifies. This tendency to discover both quality and diversity at the 
same time differs from many of the conventional algorithms of machine learning, and also 
thereby suggests a different foundation for inferring the approach of greatest potential 
for evolutionary algorithms. In fact, several recent evolutionary algorithms called quality 
diversity (QD) algorithms (e.g., novelty search with local competition and MAP-Elites) 
have drawn inspiration from this more nuanced view, aiming to fill a space of possibilities 
with the best possible example of each type of achievable behavior. The result is a new 
class of algorithms that return an archive of diverse, high-quality behaviors in a single 
run. The aim in this paper is to study the application of QD algorithms in challenging 
environments (in particular complex mazes) to establish their best practices for ambitious 
domains in the future. In addition to providing insight into cases when QD succeeds and 
fails, a new approach is investigated that hybridizes multiple views of behaviors (called 
behavior characterizations) in the same run, which succeeds in overcoming some of the 
challenges associated with searching for QD with respect to a behavior characterization 
that is not necessarily sufficient for generating both quality and diversity at the same time.

Keywords: novelty search, non-objective search, quality diversity, behavioral diversity, evolutionary computation, 
neuroevolution

1. inTrODUcTiOn

The products of nature have long served as inspiration for the investigation and practice of evolution-
ary algorithms and evolutionary robotics (Cliff et al., 1993; Nolfi and Floreano, 2000; Stanley, 2011). 
Yet the ability of such algorithms to match the complexity and sophistication of nature has frustrat-
ingly lagged, as researchers in the fields often observe (Stanley and Miikkulainen, 2003; Doncieux 
et al., 2015). This observation then often becomes the motivation for developing more sophisticated 
algorithms and encodings. Yet, even more fundamental than the question of how to abstract the most 
brilliant achievements of nature into an algorithm of commensurate power is a question less often 
explicitly asked: for what practical purpose is evolution actually suited anyway?

Until recently, throughout a large swath of the field, the implicit yet resounding answer to this 
question has been objective optimization (Mitchell, 1997; De Jong, 2002; Bishop, 2006). Various early 
pioneers in evolutionary computation independently inferred from their observations of nature 
that evolution can serve when abstracted artificially as a powerful optimization algorithm (Fogel 
et al., 1966; Holland, 1975; Goldberg and Richardson, 1987; Goldberg, 1989; Schwefel, 1993). The 
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discoveries of evolution in nature, such as the flight of birds or 
the intelligence of the human brain, suggested to these pioneers 
that if fitness pressure is calibrated to push selection toward an 
ambitious objective then evolution can become a tool of directed 
design and creation.

The casting of evolution as an algorithm for optimization natu-
rally pitted evolutionary computation against the many subfields 
of machine learning invested in optimization, leading to conflicts 
and critiques, sometimes portraying evolutionary computation as 
ad hoc, unprincipled, less effective than other more theoretically 
based optimization methods, or even outdated (and therefore 
often given less room in modern texts on machine learning) 
(Bäck et al., 1997; Bishop, 2006). While sometimes overly harsh 
or uninformed, even if such critiques are accepted, the perplexing 
question still hangs in the background of how it is possible that 
evolution in nature has managed to produce artifacts far beyond 
the capacity of any subfield of machine learning or optimization. 
If evolution is apparently so unmatched in power in nature, then 
why is there even a debate about its ability to compete with other 
approaches to optimization?

While one possible answer is that we have yet to uncover the 
deepest principles that unlock its true potential as an objective 
optimizer, a more intriguing possibility is that the real virtue of 
evolution is not in the end optimization at all. This suggestion 
goes beyond Herb Simon’s assertion that evolution is a satisficer 
rather than an optimizer (Simon, 1957), which casts evolution 
almost as a poor man’s optimizer. Rather, the hypothesis is that 
evolution is indeed phenomenally virtuosic at something, but 
that something is simply not optimization. This perspective can 
help to explain how it could be possible for evolution to produce 
sensational results in nature yet frustratingly modest ones in 
computation: we may be using it wrong. Perhaps the analogy with 
optimization was a mistake.

Indeed, it is difficult to imagine that evolution in nature 
is structured in the same way as a conventional optimization 
algorithm: there is no obvious unifying objective and organisms 
are often rewarded for being different in addition to being bet-
ter. For example, organisms that are sufficiently different from 
their predecessors may establish a new niche in which they enjoy 
greatly reduced competition and thus are more likely to survive 
(Kirschner and Gerhart, 1998; Lehman and Stanley, 2013). 
Contrary to the tendency of optimization algorithms to converge 
over time to a single “best” solution, natural evolution instead 
exhibits a remarkable tendency toward divergence – continually 
accumulating myriad different ways of being. This observation is 
the crux of an alternative perspective in evolutionary computation 
(EC) that has been gaining momentum in recent years: evolution 
as a machine for diversification rather than optimization.

Inspired by this alternate view of natural evolution’s apparent 
strength as a diversifier, a new evolutionary algorithm called 
novelty search (NS) (Lehman and Stanley, 2008, 2011a) was 
introduced, which searches only for behavioral diversity without 
any underlying objective pressure. Surprisingly, in some domains 
(particularly those that are deceptive), NS quickly finds the global 
optimum even when objective-based approaches consistently fail. 
The counterintuitive result that NS can sometimes find the best 
solutions without explicitly searching for them has since sparked 

considerable research interest in applying NS and methods like 
it to solving problems that were previously considered to be too 
difficult (Lehman and Stanley, 2008, 2010, 2011a,b; Kistemaker 
and Whiteson, 2011; Mouret, 2011; Risi et al., 2011; Mouret and 
Doncieux, 2012; Cully and Mouret, 2013; Gomes and Christensen, 
2013; Gomes et  al., 2013; Liapis et  al., 2013b; Martinez et  al., 
2013; Naredo and Trujillo, 2013). Novelty search has effectively 
demonstrated that evolution’s talent for diversification can itself be 
harnessed as a powerful tool for seeking a near-optimum, instead 
of the conventional notion of “survival of the fittest.” However, this 
view ignores the intrinsic value of diversity itself, treating it merely 
as a “means to an end” of finding the global optimum as usual.

In a true departure from conventional optimization, which 
seeks only the single best-performing solution, a new search 
paradigm has begun to emerge within EC where the effort focuses 
instead on finding various viable solutions, similar to how evolu-
tion in nature has discovered over billions of years a vast assort-
ment of unique species, each of which are capable of orchestrating 
the complex system of biological processes necessary to sustain 
life. More precisely, the goal of this new type of search, called 
quality diversity (QD), is to find a maximally diverse collection 
of individuals (with respect to a space of possible behaviors) in 
which each member is as high performing as possible. In service 
of this goal, QD algorithms, such as novelty search, with local 
competition (NSLC) (Lehman and Stanley, 2011b) and MAP-
Elites (Mouret and Clune, 2015) carefully balance a drive toward 
increasing diversity with localized searches for quality in an 
analogy with nature where species face the strongest competition 
from within their own niche. In this way, search can move toward 
different behaviors, while simultaneously improving behaviors 
that have already been discovered.

An important aspect of QD that differentiates it from other 
approaches designed to return multiple results is that in QD, 
diversity between individuals is measured with respect to their 
behavior (the actions and features of an individual over the 
course of its lifetime). The experimenter selects some subset of 
behavioral features of interest to form a behavior characterization 
(BC), thus defining a space of possible behaviors. The assump-
tion in QD is that all parts of the behavior space are considered 
equally important. This assumption contrasts with non-QD 
approaches that assign priority to higher-performing regions, 
which draw inspiration from the idea of returning multiple local 
optima (Mahfoud, 1995; Trujillo et al., 2008, 2011). Instead, the 
goal of QD is to sample all regions of the behavior space (at some 
granularity), returning the best possible performance within each 
region. In other words, diversity takes priority over quality1 and 
therefore QD algorithms must be careful to avoid driving search 
away from lower-performing regions. More formally, the behav-
ior space must be divided into t niches {N1, …, Nt} that together 
cover the entire space. That is, every point in the behavior space 
belongs to some niche Ni. Then, the task of QD is to maximize a 
quality measure Q within every niche.2

1 Approaches that desire to return a handful of the best local optima (i.e., where 
quality takes priority over diversity) may be better served by the term diverse 
quality.
2 For any niche Ni where no point has been discovered, Qi is defined as 0.
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Although QD algorithms can be applied to traditional opti-
mization-oriented tasks where they may even perform well due 
to their ability to overcome the problem of deception, the deeper 
promise of QD is to push beyond what is possible through simple 
optimization. In particular, QD has potential applications in the 
areas of computational creativity (Boden, 2006) and open-ended 
evolution (Standish, 2003; Bedau, 2008), where the hope is to 
automatically generate an endless procession of uniquely inter-
esting artifacts. In more restricted search spaces, QD algorithms 
have also been called “illumination algorithms” because they 
effectively reveal the best possible performance achievable in each 
region of the phenotype space (Mouret and Clune, 2015). The 
types of problems inspired by QD (many of which are discussed 
in the next section) favor approaches that explore many promis-
ing directions at the same time and thus represent an opportunity 
for evolutionary algorithms to establish a more unique profile 
within the broader machine learning community where focused 
single-solution approaches such as backpropagation (Rumelhart 
et  al., 1986) and support vector machines (Cortes and Vapnik, 
1995) have historically dominated.

To help accelerate research in this emerging area, the aim of 
this paper is to establish a standard framework for understanding 
and comparing different approaches to searching for QD. [This 
paper is in effect a major expansion on the theme of our earlier 
conference paper that first introduced the term quality diversity 
(Pugh et al., 2015).] The hope is to unify early works in this emerg-
ing field and to promote the design of better QD algorithms in the 
future. To that end, this paper introduces a benchmark domain in 
the form of a series of maze-navigation tasks of varying difficulty 
that are paired with a quantifiable measure of the performance of 
QD algorithms called the QD-score. Experimental results in these 
mazes comparing current state-of-the-art approaches as well as 
several novel variants thereof reveal important insights into the 
application of QD algorithms that extend beyond individual 
methods.

One such insight concerns the importance of considering 
how diversity is characterized when applying QD algorithms. 
Specifically, some choices of characterization can make finding 
QD more difficult, which on sufficiently deceptive problems can 
translate into an inability to find the best solutions altogether. This 
apparent weakness presents a problem for researchers interested 
in finding QD with respect to a non-optimal characterization 
(i.e., one which inhibits finding the best-performing individuals) 
because standard practice suggests driving search with the same 
notion of diversity that you are ultimately interested in discov-
ering (Trujillo et  al., 2008, 2011; Lehman and Stanley, 2011b; 
Cully and Mouret, 2013; Szerlip and Stanley, 2013; Mouret and 
Clune, 2015). A solution to this problem is presented and then 
empirically validated in the form of new QD algorithms that 
drive search with multiple characterizations simultaneously. 
These new multi-characterization approaches, together with an 
increased understanding of the types of characterizations that are 
ideal for driving search effectively, enable the application of QD 
algorithms to various more difficult domains in the future.

Nature has discovered organisms both diverse and highly opti-
mized within their own niches. This kind of divergent creative 
phenomenon differs from the typical convergent objective-driven 

process seen in search algorithms across machine learning, evolu-
tionary computation (EC), and evolutionary robotics. By bring-
ing QD now to the forefront of EC and providing a framework for 
understanding and comparing its available algorithms, the hope 
is that the field can progress more confidently from this initial 
foundation. In some cases (as later results will show), QD may 
even produce results beyond what an objective-driven process 
can accomplish, but it more broadly offers the chance to uncover a 
large swath of uniquely intriguing possibilities within a vast space 
and during just a single run.

2. BacKgrOUnD

This section begins with a review of historical precedent for the 
study of QD, followed by highlights of recent works in the area 
and the questions they raise.

2.1. Before QD
Early work in multi-modal function optimization [MMFO; 
Mahfoud (1995)] foreshadowed the later arrival of QD. The aim 
of MMFO is to discover multiple local optima within a search 
space, which naturally yields a diversity of solutions. However, its 
main difference from QD is that MMFO traditionally focuses on 
genetic diversity and tends to apply only to simple phenotypes, 
such as mathematical functions, where the genotype and pheno-
type are in effect the same (Mahfoud, 1995); QD reflects a later 
shift in interest toward behavioral diversity and is often applied 
in domains such as evolutionary robotics where the relationship 
between genome and behavior is complex. The main limitation of 
genetic diversity is that it is susceptible to genetic aliasing, which 
means that genomes that are different may nevertheless behave 
similarly. Such aliasing, which is amplified especially in the pres-
ence of indirect genotype to phenotype mappings (Hornby and 
Pollack, 2001, 2002; Bongard, 2002; Stanley and Miikkulainen, 
2003; Stanley, 2007), is thus counterproductive to find various 
behaviors, as shown empirically by Trujillo et al. (2011).

Another subject of research related to QD is multi-objective 
optimization (MOO) (Deb et  al., 2002). In MOO, the search 
algorithm aims to uncover the key trade-offs (called the Pareto 
front) among two or more objectives set by the user. Similar to 
QD, MOO returns a set of top candidates rather than a single win-
ner, but MOO is still ultimately driven toward specific objectives 
(though more than one) and therefore intrinsically convergent. 
By contrast, QD is a genuine divergent form of search driven 
explicitly to move away in the search space from where it has 
visited before. The unique effect is thus to reveal a sampling of the 
spectrum of possible behaviors latent in a search space.

2.2. early Divergent search algorithms
Interest in divergence in evolutionary algorithms was sparked 
initially by the surprising observation that some problems are 
solved more reliably by searching for novel behaviors than by 
searching for their objective (Lehman and Stanley, 2008, 2011a). 
This approach, called novelty search, revealed just how pervasive 
and costly deception can be in otherwise unremarkable domains. 
It also showed that searching divergently instead of convergently 
can sometimes sidestep deception to uncover desirable parts of 
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the search space. The benefits of divergent search were further 
confirmed through similar experiments by Mouret and Doncieux 
(2009) and Mouret and Doncieux (2012), who use the synony-
mous term behavioral diversity.

These initial studies were followed by a wave of interest 
in divergent search algorithms as researchers explored their 
potential for discovery and open-endedness (Risi et  al., 2009, 
2011; Soltoggio and Jones, 2009; Doucette and Heywood, 2010; 
Goldsby and Cheng, 2010; Graening et  al., 2010; Krcah, 2010; 
Kistemaker and Whiteson, 2011; Woolley and Stanley, 2011; 
Gomes and Christensen, 2013; Gomes et al., 2013; Liapis et al., 
2013a,b; Martinez et  al., 2013; Morse et  al., 2013; Naredo and 
Trujillo, 2013; Risi and Stanley, 2013). However, a clear missing 
ingredient from pure novelty or behavioral diversity techniques 
is a complementary notion of objective quality. The radical shift 
away from objectives toward divergence discards with it the 
ability to specify up front what is good and what is bad, and to 
have that notion influence the search. The loss of this convenient 
notion set the stage for its reemergence in QD algorithms.

2.3. Quality Diversity (QD) algorithms
Early works on behavioral diversity (Mouret and Doncieux, 2009, 
2012) and some more recent studies of combining novelty with 
objectives (Gomes et al., 2015) investigate the idea of hybridizing 
novelty with fitness. The means of such combination is usually 
through a multi-objective framework (Mouret and Doncieux, 
2009, 2012), though a weighted combination is also possible 
(Gomes et al., 2015). However, in either case the notion of fitness 
(i.e., quality) is global, which means in effect that the component 
of the search pushing toward quality focuses its effort exclusively 
on the part of the search space where performance is dominant 
over all other areas of the search space. Thus, such approaches 
are not generally focused on QD. In an approach closer to QD, 
Trujillo et al. (2008, 2011) achieve multiple functional behaviors 
through behavioral speciation and fitness sharing. However, 
while this approach finds several locally optimal behaviors, it is 
still governed by global fitness because it preferentially explores 
higher-performing niches. A preferential push toward global 
quality in any approach reintroduces a strong convergent force 
into the search. While that may help in some cases if the aim is 
to discover a single near-global optimum or a handful of high-
performing local optima, QD algorithms aim instead to explore 
the entire behavior space.

In particular, the hope in QD is to uncover as many diverse 
behavioral niches as possible, but where each niche is represented 
by a candidate of the highest possible quality for that niche. That 
way, the result is a kind of illumination of the best of all the diverse 
possibilities that exist (Mouret and Clune, 2015). The original QD 
algorithm of this type, called novelty search with local competition 
(NSLC), hybridizes novelty search with local fitness competi-
tions only among individuals with similar behaviors, yielding a 
broad population of numerous simultaneous local competitions 
in diverse behavioral niches (Lehman and Stanley, 2011b). In its 
first demonstration, NSLC uncovered a collection of effective 
virtual creature morphologies and walking strategies in a single 
run, thereby demonstrating the unique benefits of QD (Lehman 
and Stanley, 2011b).

The potential to uncover a diverse collection of high-quality 
alternatives in a single run inspired further investigations and 
algorithms. For example, Szerlip and Stanley (2013) evolve 
diverse ambulating two-dimensional creatures made of sticks, 
also in a single run. Cully and Mouret (2013) evolve a collec-
tion of walking behaviors for hexapod robots that functions as a 
repertoire of skills for a robot. In a hint at the wide applicability 
of QD, Szerlip et al. (2015) evolve diverse low-level feature detec-
tors for neural networks that are later aggregated into a combined 
classifier network. Revealing that QD encompasses more than a 
single algorithm, Mouret and Clune (2015) and Cully et al. (2015) 
introduce an alternate QD algorithm called multi-dimensional 
archive of phenotypic elites (MAP-Elites) that collects elite ver-
sions of diverse behavior within individual bins in a behavioral 
map. In yet another QD application, MAP-Elites collects diverse 
walking strategies for a robot that can be adapted in response to 
different kinds of damage (Cully et al., 2015). Other applications 
of MAP-Elites include generating sets of images for fooling deep 
networks (Nguyen et al., 2015a), and for exposing the space of 
concepts encoded inside a deep network as two-dimensional 
images (Nguyen et al., 2015b) and as three-dimensional models 
(Lehman et al., 2016).

The quickly expanding set of applications of QD motivates the 
need for a systematic study of its best practices, which is the aim 
in this paper. For that purpose, a key concept in any QD algorithm 
is the behavior characterization (BC). The BC is usually a vector 
that describes the chronology of actions taken by an individual 
during its evaluation but can also describe other salient aspects 
of an individual’s behavior or phenotype. This vector is then used 
to compute its novelty compared with other individuals (or its 
location in the behavior map in MAP-Elites), thereby driving 
the diversity component of QD. An important property of the 
BC is its alignment with the notion of quality, which refers to the 
degree to which finding novelty tends also to lead to higher fitness. 
For example, in a maze, if the BC is based on the final position 
reached, then it is highly aligned because eventually an agent that 
continues to find new final positions will find the endpoint of the 
maze. While BC alignment can be difficult to measure a priori 
(just as the shape of fitness landscapes are not known a priori for 
any challenging problems of interest), a BC’s degree of alignment 
can be anticipated by considering two key properties of highly 
aligned BCs: (1) each behavior is associated with only a narrow 
range of fitness values (e.g., a robot’s final position in a maze is 
associated with exactly one fitness value) and (2) the maximum 
possible fitness in adjacent regions of behavior space correlates 
(e.g., nearby positions in a maze generally have similar fitness).

By contrast, interestingly, most published QD applications 
involve finding diversity with respect to an unaligned BC because 
usually the notion of diversity that we find interesting is not intrin-
sically aligned with quality (Lehman and Stanley, 2011b; Cully 
and Mouret, 2013; Szerlip and Stanley, 2013; Mouret and Clune, 
2015). For example, seeking creatures of different morphologies or 
with different numbers of legs does not naturally lead to higher-
quality walking, yet we are nevertheless interested in finding 
such creatures. So far, QD has succeeded even despite a lack of 
such alignment, leaning heavily on the quality component of the 
algorithm to push otherwise unaligned notions of diversity toward 
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FigUre 1 | small maze. Individuals start at the yellow circle (top) and must 
navigate to the goal point, marked with a blue circle (bottom). The relative 
openness and lenient time constraint allow a range of different techniques for 
reaching the goal.
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good performance. For example, a previous study of QD that is 
precedent for the present paper finds that unaligned BCs often 
lead to a slower discovery of passable solutions (Pugh et al., 2015).

The key question raised by this previous study is whether QD 
algorithms with unaligned BCs ultimately stop working entirely 
when the domain is sufficiently hard. The maze used to test una-
ligned BCs in Pugh et al. (2015) is relatively simple and easy to 
solve; what would happen with much more complex mazes? This 
paper takes this next step with mazes of a scale beyond mazes in 
previous studies of QD and examines the effect on finding QD 
with respect to unaligned BCs in these new mazes. Not only does 
this study reveal how QD holds up in more complex domains 
but it also surveys new strategies for mitigating the effects of BC 
misalignment (which is usually the most desirable and intuitive 
way to setup QD). Such insight is not only critical to the future of 
QD as a nascent field but also important for the general progress 
of machine learning outside of conventional convergent closed 
problems, where the potential might be open-ended and the aim 
to collect broad possibilities rather than to converge to a final 
answer.

3. DOMains

In the experiments described in this paper, simulated wheeled 
robots navigate mazes of varying complexity. To aid in their 
navigation, they are equipped with six rangefinder sensors (five of 
which are evenly distributed across the front half of the robot, and 
one pointing backwards) and four pie-slice sensors that indicate 
both the relative direction and distance to the goal. These sensors 
serve as inputs to an evolved neural controller with only a single 
continuous output that controls the degree to which the robot 
turns left or right (the robot always moves forward at a constant 
speed). The task is to evolve neural controllers that successfully 
guide the robot to a goal at the end of the maze.

Successfully navigating a maze can be challenging because it 
requires learning a complex mapping between sensors and effec-
tors. In part, because sources of deception (and thus difficulty) 
are often visually apparent (e.g., dead ends), maze navigation has 
become a canonical domain for evolutionary robotics experi-
ments [e.g., Lehman and Stanley (2011a) and Velez and Clune 
(2014)]. Another benefit of maze domains is that they tend to 
be computationally inexpensive, allowing many more evaluations 
than more intensive physics-based simulations. For this reason, 
maze domains are ideal for studying evolutionary dynamics over 
long timescales – an endeavor that would be impossible in a more 
computationally expensive domain.

In this study, three mazes of varying difficulty assess the effi-
cacy of QD algorithms that will be described in the next section. 
In an important departure from mazes designed as an optimiza-
tion problem [e.g., the HardMaze domain in Lehman and Stanley 
(2011a)], where there is often only a single “correct” path, the 
mazes here are intentionally designed with multiple viable paths 
to reach the goal. This unusual maze design makes it possible 
to investigate evolution’s potential for finding QD. Thus, the task 
in this study is not simply to find an agent that reaches the goal, 
but to find all of the different ways of driving through the maze 
(including those who do not necessarily reach the goal at all).

An important feature of all three mazes is the deceptive 
trap – areas of the maze that appear to be close to the goal (in 
terms of Euclidean distance) but, because of the presence of 
obstructions, do not actually offer a short drivable path to the 
goal. These traps, often in the form of an easily accessible corridor 
that terminates at a dead end before reaching the goal, represent 
local optima in the search space, and serve to deceive algorithms 
that simply follow a gradient of increasing fitness (Lehman and 
Stanley, 2011a). Thus, mazes containing such traps serve as a 
metaphor for complex domains in general, where successfully 
finding solutions requires a clever search algorithm aimed at 
innovation rather than straightforward optimization.

The first maze, introduced by Pugh et  al. (2015) as the 
“QD-maze” but called the small maze (Figure 1) in this article, 
provides an initial example of this multi-path maze design. In 
this maze, individuals must escape from a single deceptive trap 
surrounding the start point after which the maze opens up, allow-
ing various possible strategies for reaching the goal. Importantly, 
agents are given a considerable amount of time to allow for the 
expression of complicated and roundabout strategies (such as 
crossing back and forth across the map several times before driv-
ing to the goal). The ideal QD algorithm would eventually find 
all strategies for driving around the maze, including those that do 
not end up reaching the goal.

Of course, the most interesting real-world problems are often 
complex and challenging, and if maze navigation domains are to 
serve as proxies for such problems then they too should display 
non-trivial complexity. For this reason, two additional gauntlet 
mazes are introduced. While each maintains the important 
design principle of multiple viable paths to the goal, these mazes 
are intentionally made more difficult by (1) adding several larger 
and more pronounced deceptive traps, (2) setting strict maximum 
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TaBle 1 | Maze-specific parameters.

small maze asymmetrical 
gauntlet

symmetrical 
gauntlet

Evaluation time (ticks) 800 1300 2700
Maze dimensions (units) 900 × 770 6000 × 6000 4600 × 5280
Rangefinder length (units) 100 200 200
Velocity (units/tick) 6 6 6
Max turn rate (rads/tick) 0.21 0.21 0.21

Reflecting differences in design and difficulty, some parameters vary between mazes.

FigUre 3 | symmetric gauntlet. Individuals start at the point at the bottom 
and must navigate to the goal at the top of the maze. Each leg of the maze is 
an approximate mirror image of the neighboring legs (thus, all paths through 
the maze are similarly difficult to achieve). The presence of multiple legs 
allows various different driving strategies to be successful.

FigUre 2 | asymmetric gauntlet. Individuals start at the bottom point and 
must navigate to the goal at the top of the maze. Because of the variation 
between maze legs, reaching the goal is easier by some routes than others. 
The presence of multiple paths through the maze increases the various 
potential driving strategies that can reach the goal.
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evaluation times such that individuals cannot wander down a 
deceptive trap and then subsequently reach the goal point, and (3) 
placing the goal point at the end of a series of chained sub-mazes 
that are each approximately as hard as the small maze and the 
original HardMaze from Lehman and Stanley (2011a). Navigating 
to the end of the asymmetric gauntlet (Figure 2) and symmetric 
gauntlet (Figure 3) thus requires evolving complicated behavio-
ral strategies and overcoming significant levels of deception. In 
this way, these mazes test both the ability to overcome multiple 
successive deceptive traps and cover the space of possible solu-
tions in the same run. Parameter settings for each maze domain 
are presented in Table 1, which describes differences in maze size, 
time constraints, and agent sensor radius.

4. algOriThMs

This section describes each of the various algorithms considered 
in this study, beginning with those featured by Pugh et al. (2015). 
Because the pursuit of quality diversity has only recently become 
a subject of persistent research interest, there are only two main 
QD algorithms currently represented in the literature: NSLC 
(Lehman and Stanley, 2011b) and MAP-Elites (Cully et al., 2015; 
Mouret and Clune, 2015). To provide a broader perspective on 
the untapped algorithmic potential in this developing field, this 
study additionally features several novel variants of these core 
algorithms including some proposed improvements to MAP-
Elites, which is mechanically very simple and thus particularly 
amenable to modification. Importantly, several other new variants 

specifically serve to address the problem of finding QD when the 
desired notion of diversity is unaligned with quality (and thus 
potentially incapable of finding the best solutions).

All of the following algorithm descriptions are partial in that 
they describe only selection and population maintenance mechan-
ics for an underlying evolutionary algorithm. Algorithms new to 
this paper or otherwise not well represented in the literature are 
described with pseudocode in Appendix A. With the exception 
of Fitness (Section 4.1.1), which is implemented generationally 
(the entire population is replaced on every tick), all other algo-
rithms are implemented as steady state (only a small portion of 
the population is replaced at a time). In particular, batches of 32 
genomes are evaluated at a time to facilitate a modest amount of 
parallelism without substantially disrupting the composition of 
the population between batches.
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4.1. controls
While not themselves QD algorithms, both of the following two 
controls are included in the study to establish the importance of 
specialized approaches that simultaneously balance drives toward 
behavioral diversity and locally increasing quality. The controls 
thus, respectively, exemplify searching with quality pressure 
alone and with diversity pressure alone.

4.1.1. [Fitness] Neuroevolution  
of Augmenting Topologies
The first control, which includes only a quality component, repre-
sents a traditional objective-oriented optimization approach and 
is implemented as standard generational NEAT (NeuroEvolution 
of Augmenting Topologies) (Stanley and Miikkulainen, 2002) 
with a population size of 500. Agents are rewarded according to 
the Euclidean distance between their final position and the goal 
point (this heuristic also underlies the quality component of all 
of the QD algorithms throughout this paper). NEAT includes 
a sophisticated speciation and fitness-sharing mechanism for 
maintaining genetic diversity across the population. However, 
as the canonical HardMaze experiments (Lehman and Stanley, 
2008, 2011a) reveal, genetic diversity is often not enough to 
overcome the problem of deception on difficult maze-navigation 
tasks, which instead favor rewarding behavioral diversity (a criti-
cal component of QD algorithms).

4.1.2. [NS] Novelty Search
The novelty search (NS) (Lehman and Stanley, 2008, 2011a) algo-
rithm represents the other extreme: searching only for behavioral 
diversity with no fixed objective at all (i.e., NS has no “quality 
component”). Novelty search works by rewarding novelty instead 
of fitness, where novelty measures how different an individual’s 
behavior is from those who have been seen before. More formally, 
novelty is calculated by summing the distances to the k-nearest 
behaviors (in this paper, k = 20) from a set composed of the cur-
rent population and an archive of past behaviors. The distance 
between two behaviors is simply the Euclidean distance between 
those behaviors when represented as a vector of numbers (which 
is the origin of the term behavior characterization or BC). While 
there exist several different strategies for managing the archive 
(Gomes et al., 2015), preliminary experiments indicated that an 
effective strategy is to add all individuals to an archive with a 
maximum size that is enforced by deleting those with the lowest 
novelty (the novelty of all archive members is recomputed before 
each deletion). In this study, NS has a population size of 500 and 
a maximum archive size of 2,500.

4.2. Quality Diversity algorithms
Each of the following algorithms features both of the essential 
components of QD: pressure to discover more behavioral niches 
and a tendency toward increasing performance in niches that 
have already been discovered.

4.2.1. [NSLC] Novelty Search with Local Competition
Perhaps, the first true QD algorithm, novelty search with local 
competition (NSLC) (Lehman and Stanley, 2011b) combines 

the diversifying power of NS with a localized fitness pressure 
called local competition (LC), calculated as the proportion of 
an individual’s k-nearest (k = 20) behavior neighbors that have 
a lower-fitness score. LC allows a quality-based reward to be 
assigned within behavioral neighborhoods without asserting 
that some neighborhoods are better than others. In NSLC, 
novelty and LC are combined by Pareto ranking following the 
practice of the NSGA-II multi-objective optimization algorithm 
(Deb et al., 2002).

4.2.2. [ME] Multi-Dimensional Archive  
of Phenotypic Elites
An alternative approach to QD is an algorithm called Multi-
dimensional Archive of Phenotypic Elites (MAP-Elites or ME) 
(Cully et al., 2015; Mouret and Clune, 2015). The key difference 
in MAP-Elites is that niches are explicitly defined rather than pas-
sively emergent from a system of local competition; the behavior 
space is divided into a number of discrete behavior bins (often 
called a “grid” and created by discretizing each dimension of the 
BC) where each bin remembers the single fittest individual ever 
mapped to that bin. The set of filled bins constitutes the active 
population and evolution proceeds by selecting a bin at random 
(with equal probability) to produce an offspring, which is then 
mapped to a bin corresponding to its behavior where it may be 
either saved or discarded depending on whether its fitness is 
higher or lower than the current elite occupant. Because selection 
is uniform, the hope is to acquire diversity passively by virtue of 
the observation that more bins will tend to fill over time and, once 
filled, they will not be forgotten.

4.2.3. [MENOV] MAP-Elites + Novelty
Unlike NS and NSLC, the original formulation of MAP-Elites 
does not preferentially explore under-represented behaviors, 
potentially causing it to lag in its discovery of new types of 
behaviors. Conveniently, it is easy to augment MAP-Elites with 
a stronger focus on diversity by simply making selection pro-
portional to novelty. In this variant, called MAP-Elites + Novelty 
(MENOV), whenever offspring are generated, they are also added 
to an archive of past behaviors (with a maximum size of 2,500, 
managed in the same way as in NS) that enables calculating a 
novelty score for all members in the MAP-Elites grid.

4.2.4. [MEPGD] MAP-Elites + Passive  
Genetic Diversity
The strict elitism at each bin in the original MAP-Elites formulation 
may eventually cause evolution to stagnate if all stepping stones to 
higher fitness require first making strides through lower-fitness 
space. Furthermore, genetic diversity is intrinsically limited when 
only a single individual is saved in each bin. Addressing both of 
these potential pitfalls without introducing any additional over-
head, a new variant called MAP-Elites + Passive Genetic Diversity 
(MEPGD) saves two individuals in each bin instead of one.3 
Individuals with a lower fitness than the current elite still have a 

3 The number of extra slots per bin can conceivably be expanded to any number, 
where all slots except the first are governed by random replacement.
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30% chance of being saved in the second slot, regardless of their 
fitness, thus allowing MEPGD to explore the potential of some 
lineages that would have otherwise been discarded. Importantly, 
these extra slots coincide with the set of MAP-Elites bins, which 
guarantees that they are behaviorally diverse.

4.3. Multi-Bc Quality Diversity algorithms
As discussed in Section 2.3, BCs that are strongly aligned with 
quality encourage the discovery of better behaviors simply by 
finding different behaviors, effectively bypassing the problem of 
deception that causes optimization-oriented search processes to 
become trapped in local optima. However, no such advantage 
exists for unaligned BCs, which often represent the most interest-
ing and desirable types of diversity in practice. Worryingly, Pugh 
et  al. (2015) find that such unaligned BCs actually negatively 
impact the performance of QD algorithms, which on sufficiently 
hard problems may translate into an outright failure to find the 
best-performing solutions. This observation raises the important 
question of how QD practitioners can find unaligned diversity 
without losing the ability to circumvent deception offered by 
aligned BCs.

This section offers a promising answer in the form of driving 
search with multiple BCs simultaneously. To explore this idea, the 
following algorithms represent various options for adapting QD 
to support more than one BC.

4.3.1. [NS–NS] Multi-BC Novelty Search
Novelty search can be extended to support multiple BCs simul-
taneously by calculating a separate novelty score for each BC and 
then combining these scores in a multi-objective formulation 
[via NSGA-II of Deb et al. (2002)]. Each BC maintains its own 
independent archive against which individuals are evaluated to 
determine their novelty score for that BC. There is only a single 
population where the breeding potential for each member is 
decided by a Pareto ranking according to the various novelty 
scores. Although NS is not itself a QD algorithm because it lacks 
a mechanism for discovered behaviors to increase in quality, 
when extended to include multiple BCs, NS–NS can conceivably 
achieve some success if one BC serves to find diversity while 
another promotes increasing quality (e.g., an unaligned BC paired 
with an aligned BC). Note that even such a pairing does not quite 
embody the spirit of QD because any tendency toward increasing 
quality that emerges from an aligned BC is not explicitly local.

4.3.2. [NS–NSLC] Multi-BC Novelty  
Search with Local Competition
The idea of NS–NS can then be expanded to include a drive 
toward locally increasing quality by adding a LC objective (in the 
same way as NSLC) where behavioral neighbors are decided by 
the unaligned BC that expresses the notion of diversity that the 
user is ultimately interested in collecting. The resulting NS–NSLC 
algorithm therefore includes three distinct objectives (combined 
via NSGA-II): (1) a quality-aligned novelty score to facilitate 
overcoming deception, (2) an unaligned novelty score for dis-
covering new behaviors of interest, and (3) an unaligned LC score 
to promote competition within niches of similar behaviors.

4.3.3. [ME–ME] Multi-BC MAP-Elites
In an effort to maintain its characteristic simplicity, MAP-Elites is 
extended to support multiple BCs by maintaining a separate grid 
for each BC (with similar maximum sizes). On each iteration of 
ME–ME, an equal amount of parents are selected from each grid, 
and their resulting offspring are mapped to both grids (where the 
decisions to save or discard them are performed independently, 
e.g., between two grids, a single offspring may be saved in one, 
both, or neither).

4.3.4. [MENOV–MENOV] Multi-BC  
MAP-Elites + Novelty
Finally, MENOV is extended to MENOV–MENOV similarly to 
ME–ME except where each grid also maintains its own novelty 
archive and selection within each grid is proportional to novelty.

5. eXPeriMenTs

The behavior characterization (BC) determines the form of 
pressure that ultimately drives the diversity component of the 
search and thus must be selected carefully to complement the 
evolutionary algorithm. The experiments in this article explore 
two BCs that are each highly aligned or highly misaligned with 
the notion of quality (i.e., how close an agent is to arriving at the 
goal): EndpointBC, which is simply a two-dimensional vector 
containing the x and y coordinates of an individual’s location at 
the end of its trial, and DirectionBC, a five-dimensional vector 
with entries indicating whether the individual was most fre-
quently facing north (0.125), east (0.375), south (0.625), or west 
(0.875) for each fifth of its evaluation time. On the one hand, 
EndpointBC is thus highly aligned with the goal of navigating to 
the goal point because the continual discovery of new endpoints 
will eventually lead to finding the goal point. On the other hand, 
DirectionBC is largely orthogonal to quality because the direction 
a robot faces at a particular time step does not fully determine 
whether it solves the maze (more importantly, it is possible to 
visit all of the behaviors in the DirectionBC space without ever 
reaching the goal).

Consistent with the observation that the goal of QD appli-
cations in practice is often to find diversity with respect to an 
unaligned BC, the assumption in this study is that the goal is to 
find QD with respect to DirectionBC. Therefore, exploring how 
different approaches to QD interact with each of EndpointBC 
and DirectionBC makes it possible to address several important 
questions:

 1. How well does the approach suggested by current literature 
(i.e., driving search with the very notion of diversity you are 
interested in collecting) work? Given that preliminary experi-
ments from Pugh et al. (2015) show that DirectionBC some-
times results in suboptimal QD-scores even in the relatively 
simple small maze, the hypothesis is that this conventional 
approach will not be optimal on complex domains such as the 
gauntlet mazes.

 2. Can diversity with respect to DirectionBC be found without 
searching for it explicitly? That is, EndpointBC has been 
shown to be effective for driving novelty search to find 

34

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


TaBle 2 | Fifteen treatments compared with three mazes.

no Bc DirectionBc endpointBc Multi-Bc

Fitness NSd NSe NSeNSd

NSLCd NSLCe NSeNSLCd

MEd MEe MEeMEd

MENOVd MENOVe MENOVeMENOVd

MEPGDd MEPGDe

Algorithms in different columns differ by the BC that drives search. Conventional 
QD algorithms are tested with each of DirectionBC and EndpointBC driving search 
(denoted by the subscripts d and e, respectively), while a new class of multi-BC QD 
algorithms drives search with both DirectionBC and EndpointBC simultaneously.
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solutions to deceptive mazes (Lehman and Stanley, 2008). 
However, it is unknown whether it is similarly effective at 
finding QD when diversity is measured on a separate una-
ligned metric. The hypothesis is that algorithms driven by 
EndpointBC should do well in terms of progress toward the 
goal, but may not necessarily result in high diversity with 
respect to DirectionBC.

 3. Finally, can multiple BCs successfully be combined to com-
pensate for the shortcomings of highly aligned BCs (lower 
diversity) and unaligned BCs (lower performance)?

Each of the algorithms from Section 4 is implemented with 
some combination of DirectionBC and EndpointBC for a total 
of fifteen treatments, enumerated in Table  2. Each treatment 
is run 20 times on the small maze, symmetric gauntlet, and 
asymmetric gauntlet for a total of 900 runs (300 per maze). 
Small maze runs ended after 250,000 evaluations and gauntlet 
runs ended after 1,000,000 evaluations (in each case, more than 
enough time for all algorithms to reach a performance plateau). 
Networks are evolved with a modified version of SharpNEAT 
1.0 (Green, 2003) with mutation parameters validated by Pugh 
et al. (2015): 60% mutate connection, 10% add connection, and 
0.5% add neuron. Networks are feedforward and restricted to 
asexual reproduction; other settings follow SharpNEAT 1.0 
defaults. Maze-specific parameter settings are presented in 
Table 1.

In traditional maze navigation domains, an appropriate metric 
would be whether or not a robot was eventually able to navigate 
to the goal. However, this metric does not speak to an algorithm’s 
propensity for discovering diversity in a search space. For this 
reason, Pugh et al. (2015) introduces a new QD metric [which is 
also similar to the “global reliability” metric in Mouret and Clune 
(2015)] that reflects both the quality and diversity of individu-
als found by evolution (including solutions and non-solutions). 
Diversity in this metric, called the QD-score, is measured with 
respect to a BC. In the experiments reported in this article, 
DirectionBC always characterizes diversity for the purpose of 
computing the QD-score regardless of the behavior characteriza-
tion driving search. This approach reflects the usual idea that the 
desire is to see a wide diversity of solutions at the end of a run 
with respect to a BC that is not necessarily directly aligned with 
solving the problem.

To quantify how much of the space is explored by an algorithm 
for the QD-score, the entire behavior space is first discretized into 

a collection of t bins4 {N1, …, Nt} as in the MAP-Elites algorithm 
described in the previous section. Each bin corresponds to a 
unique combination of features from the individual’s BC (in this 
case, DirectionBC) and represents a niche in the behavior space. 
Diversity is then quantified as the number of bins filled over the 
course of an evolutionary run. By summing the highest fitness val-
ues found in each grid bin, where Qi represents the highest fitness 
achieved in bin Ni, it becomes possible to simultaneously quantify 
both quality and diversity as

 
QD-score = .

=
∑
i

t

iQ
1  

This DirectionBC-based QD-score5 is the primary metric in 
all mazes. Note that for the purpose of calculating QD-score, 
fitness is defined in a way that reflects the shortest drivable path 
between an agent ending location and the goal, respecting that 
agents cannot drive through walls. This special QD-score fitness 
is calculated by a breadth-first flood fill from the goal point, 
assigning fitness to locations in the maze that decreases linearly 
at each layer of the flood fill. Importantly, this fitness value, which 
draws a perfect non-deceptive gradient over the maze, is not 
available to any algorithms to drive search but merely appears 
during post hoc analysis to give an accurate accounting for how 
close each collected behavior is to solving the maze.

Due to the overwhelming historical focus on optimization 
and the recent realization that behavioral diversity can itself be 
a powerful tool for optimization (Lehman and Stanley, 2008; 
Mouret and Doncieux, 2009, 2012), this study includes an addi-
tional performance metric for the two gauntlets6 that captures the 
spirit of this more conventional search paradigm: the total maze 
progress metric measures how close a run is to solving all four 
legs of the maze. More precisely, total maze progress is the sum of 
four progress measures (one per leg) where progress for each leg 
increases linearly as endpoints are discovered further along their 
solution path (calculated by means of the flood fill distance to the 
goal point). If Ei is the set of all flood fill fitness scores associated 
with endpoints discovered inside leg i then total maze progress 
can be quantified as

 
total maze progress = .

=
∑
i

iE
1

4

max
 

A maximum score is achieved by solving all four legs. Total 
maze progress therefore addresses the important question of how 
well-suited QD algorithms are to the task of optimizing toward a 
series of predefined targets.7

4 In this study, t = 1024 when discretizing the DirectionBC behavior space.
5 The original small maze results from Pugh et al. (2015) instead always measure 
diversity with respect to the BC that drives search and thus do not explore the idea 
of driving search with BCs other than those which characterize the dimensions 
of interest.
6 No such metric is defined for the small maze because all treatments consistently 
and quickly find solutions and thus it does not represent a challenging optimization 
problem.
7 Total maze progress is related to the interests of multimodal optimization, where 
the goal is often to find all of the global optima in a fitness landscape without regard 
to the behaviors or phenotypes that get there.

35

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


FigUre 5 | Total maze progress (symmetric gauntlet). The final total 
maze progress achieved by each of fifteen treatments (Table 2) after 
1,000,000 evaluations on the symmetric gauntlet is shown (averaged over 20 
runs). Bars are color coded according to which BC drives search (see section 
6) and error bars represent SE. A maximum possible score of 400 
corresponds to solving all four legs of the maze.

FigUre 4 | Total maze progress (asymmetric gauntlet). The final total 
maze progress achieved by each of fifteen treatments (Table 2) after 
1,000,000 evaluations on the asymmetric gauntlet is shown (averaged over 
20 runs). Bars are color coded according to which BC drives search (see 
section 6) and error bars represent SE. A maximum possible score of 400 
corresponds to solving all four legs of the maze.

Pugh et al. Quality Diversity: A New Frontier

Frontiers in Robotics and AI | www.frontiersin.org July 2016 | Volume 3 | Article 40

6. resUlTs

In all of the figures presented in this section, treatments are 
color coded according to which BC drives search: DirectionBC 
(subscript d) is drawn in blue, EndpointBC (subscript e) in yellow, 
multi-BC in green, and Fitness (which is not driven by any BC) 
in gray. For each treatment, results represent an average over 20 
runs; error bars represent the SEM and can be interpreted to infer 
which differences are statistically significant when p values are not 
explicitly provided. In all reported cases, statistical significance is 
determined by an unpaired two-tailed Student’s t-test.8

6.1. Total Maze Progress
The total maze progress achieved by each treatment after all 
evaluations is depicted in Figure  4 (asymmetric gauntlet) and 
Figure  5 (symmetric gauntlet). A maximum possible score 
of 400 corresponds to solving all four legs in the same run, 
although such scores are not observed in practice. Unlike in 
the small maze, where all treatments consistently find solutions 
in every run, many gauntlet runs (particularly those of Fitness 
or DirectionBC-driven treatments) do not find solutions at all, 
reflecting the increased difficulty in the gauntlet mazes. Of the 
two gauntlet mazes surveyed by this metric, higher scores are 
obtained by all treatments on the asymmetric gauntlet, indicating 
that the asymmetric gauntlet is comparatively easier to solve, thus 
establishing a continuum of difficulty between the three maze 
domains featured in this study: small maze (easiest), asymmetric 
gauntlet (harder), and symmetric gauntlet (hardest).

While in both gauntlets the performance of Fitness is sub-
par as expected [it is known to struggle with deception in maze 

8 The simple Student’s t-test is chosen intentionally to avoid Type II errors, which 
are more likely when adjusting for multiple comparisons. As such, the results here 
are intended to highlight potential differences between treatments, not to establish 
a definitive ranking.

domains; Lehman and Stanley (2008)], a perhaps more surprising 
result is that all DirectionBC-driven treatments perform sig-
nificantly worse than Fitness in terms of ability to find solutions 
(p < 0.05) to both the asymmetric gauntlet (Figure 4) and the 
symmetric gauntlet (Figure 5). Indeed, of these treatments on the 
symmetric gauntlet, only MEPGDd finds any solutions at all (two 
solutions found across all 20 runs).

On the other hand, all approaches that include an aligned BC 
(EndpointBC) always perform significantly better than Fitness 
(p  <  0.001). Of those treatments that include EndpointBC, 
single-BC approaches tend to perform better (with respect to 
solving the maze) than multi-BC approaches that also include 
DirectionBC (Figures 4 and 5). This phenomenon is especially 
apparent on the harder symmetric gauntlet (Figure  5), where 
NSLCe and NSe perform significantly better than the multi-BC 
variants (p < 0.05). Of particular interest is that specialized QD 
algorithms such as NSLCe are competitive with the currently 
accepted method for overcoming deception on maze tasks: NSe 
(Lehman and Stanley, 2008, 2011a). On the symmetric gauntlet 
(Figure 5), there is some evidence that NSLCe may actually be 
better than NSe, although the evidence is not strong enough to 
establish statistical significance (p = 0.093).

Of the successful MAP-Elites variants (those driven by 
EndpointBC), MEPGDe performs significantly better than the 
core MEe on both gauntlets (Figures 4 and 5), while MENOVe in 
neither case is significantly different than MEe.

6.2. QD-Score
The final QD-score achieved by each treatment after all evalua-
tions is depicted in Figure 6 (small maze), Figure 7 (asymmetric 
gauntlet), and Figure 8 (symmetric gauntlet).

6.2.1. Small Maze
Reflecting its lack of challenging complexity, the best treatments 
on the small maze (Figure  6) consistently achieve near the 
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FigUre 8 | Final QD-score (symmetric gauntlet). The QD-score 
achieved by each of fifteen treatments (Table 2) after 1,000,000 evaluations 
on the symmetric gauntlet is shown (averaged over 20 runs). Bars are color 
coded according to which BC drives search (see section 6) and error bars 
represent SE. In all cases, QD-score is measured with respect to 
DirectionBC.

FigUre 7 | Final QD-score (asymmetric gauntlet). The QD-score 
achieved by each of fifteen treatments (Table 2) after 1,000,000 evaluations 
on the asymmetric gauntlet is shown (averaged over 20 runs). Bars are color 
coded according to which BC drives search (see section 6) and error bars 
represent SE. In all cases, QD-score is measured with respect to 
DirectionBC.

FigUre 6 | Final QD-score (small maze). The QD-score achieved by each 
of fifteen treatments (Table 2) after 250,000 evaluations on the small maze is 
shown (averaged over 20 runs). Bars are color coded according to which BC 
drives search (see section 6) and error bars represent SE. In all cases, 
QD-score is measured with respect to DirectionBC. The maximum possible 
QD-score on the small maze is 1,024,000 corresponding to a perfect solution 
in all 1,024 bins.
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maximum possible QD-score of 1,024,000, which corresponds 
to finding a maze solution (score = 1000) in each of the 1,024 
bins. On this relatively simple task, QD-score is dominated by 
the multi-BC QD approaches (MEeMEd, MENOVeMENOVd, 
NSeNSLCd) and by NSLCd. EndpointBC-driven approaches 
perform poorly in comparison, though not as poorly as Fitness 
and NSd.

Of interest is the comparatively large variance on the MAP-
Elites variants (when driven by DirectionBC) versus their 
NS-based counterparts (Figure 6). In particular, the most extreme 
such variance, on MEd, is caused by three outliers. While most 
runs of MEd score between 950 K and 1000 K, the outlier runs 
obtain scores of 791 K, 680 K, and 421 K. In each of these runs, the 
grid is completely filled (representing maximum diversity), but 
many bins contain low-quality behaviors (mostly representing 
agents that exclusively drive around inside the main deceptive 
trap). Thus, the higher variance observed by MEd here is indica-
tive of MAP-Elites sometimes becoming stuck in local optima.

6.2.2. Gauntlet Mazes
Because of the strict time constraints on the gauntlet mazes, many 
types of behaviors (i.e., bins in the QD grid) can never repre-
sent full solutions even in theory; thus, the maximum possible 
QD-score on the gauntlet mazes is lower than on the small maze 
and also difficult to achieve in practice. This limitation is reflected 
by the comparatively lower scores observed in both the asymmet-
ric gauntlet (Figure 7) and the symmetric gauntlet (Figure 8).

While DirectionBC-driven QD achieves the highest scores on 
the small maze (Figure 6), this trend is reversed as domain diffi-
culty increases. On the asymmetric gauntlet, treatments driven by 
EndpointBC perform similarly to those driven by DirectionBC 
(Figure 7). On the comparatively more difficult symmetric gaunt-
let, the trend is completely reversed, with EndpointBC-driven 

approaches performing significantly better than those who are 
driven only by DirectionBC (Figure 8).

Consistently with the small maze, in each of the gauntlets, 
QD-score is dominated by the best multi-BC treatments. 
Specifically, in all three mazes, NSeNSLCd is consistently among 
the best-performing treatments (Figures  6–8). On the asym-
metric gauntlet (Figure 7), its lead is unmatched, while on the 
symmetric gauntlet it is tied with NSLCe (Figure 8; the difference 
between NSLCe and NSeNSLCd is not statistically significant, 
p = 0.163).
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FigUre 9 | QD-score over time (symmetric gauntlet). The progression 
of the QD-score on the symmetric gauntlet for the best-performing treatment 
from each class (according to the BC that drives search; DirectionBC: 
MEPGDd, EndpointBC: NSLCe, multi-BC: NSeNSLCd) is graphed over time 
(averaged over 20 runs). The main result is that multi-BC treatments exhibit 
the best characteristics of each component BC: both increasing quickly and 
reaching high scores.
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However, it turns out that even though their final QD-scores 
are similar on the symmetric gauntlet, NSLCe and NSeNSLCd do 
exhibit different learning curves. To highlight this difference on 
the symmetric gauntlet, it is instructive to graph the develop-
ment of QD-score over the course of evolution. Figure 9 depicts 
the QD-score over time for the best-performing method from 
each of the three classes in Table 2: EndpointBC, DirectionBC, 
and multi-BC. The general trend displayed by each treatment 
is representative of the other treatments in its respective class, 
e.g., DirectionBC-driven treatments tend to increase quickly and 
then plateau at a low score. On the other hand, NSLCe increases 
relatively slowly before ultimately reaching a much higher score. 
Combining the best of both of these options, NSeNSLCd quickly 
reaches high scores (Figure 9). Thus, overall the hybrid NSeNSLCd 
proves a competitive choice for maximizing QD-score on all the 
variant mazes.

7. DiscUssiOn

Within the wide-ranging field of EC, two distinct types of research 
goals are relevant in the context of this investigation. The first and 
historically most dominant focus of EC is the task of optimization: 
harnessing the powerful natural mechanism of “survival of the 
fittest” to reach some predefined target (or series of targets). It is 
this goal that lies at the heart of the vast majority of EC literature, 
thereby seemingly aligning the ambitions of EC with the broader 
practice of machine learning, where optimization is treated as the 
essence of learning itself. However, having only recently begun to 
garner attention, the second type of research goal is less familiar, 
though it offers promising new opportunities for discovery and 
advancement uniquely accessible to EC. This goal, called quality 
diversity, represents a fundamental departure from optimization 
because instead the idea is to explore all of what is possible rather 
than to find only the best option. While the primary intention of 
this paper is to promote the theory and practice of QD, the results 
of this study have implications relevant to both paradigms.

The recent realization that pursuing behavioral diversity can 
help to overcome deception (Lehman and Stanley, 2008, 2011a; 

Mouret and Doncieux, 2009, 2012) has offered a source of hope 
to solving the problem of deception that permeates almost every 
optimization space of interest. However, deception does not 
exclusively affect optimization and not all notions of “behavioral 
diversity” are equally capable of thwarting it. As this study reveals, 
simply focusing on QD does not make evolution immune to the 
problem of deception because the quality-seeking component 
of QD algorithms can itself fall victim to it. In this study, which 
features maze tasks of varying difficulty, QD algorithms follow-
ing the compass of an unaligned BC are incrementally less able 
to find QD as the level of deception increases from one maze 
to another (Figures  6–8). Further highlighting the problem of 
deception even in QD, surprisingly, as maze difficulty increases, 
it actually becomes more effective to drive search with an aligned 
BC even when you are collecting unaligned QD (Figure 8). The 
primary lesson is that searching for diversity with respect to an 
unaligned BC does not circumvent the problem of deception 
(doing so is mostly orthogonal to overcoming deception, similar 
to the shortcomings of pursuing genetic diversity). However, for 
QD practitioners, the magic bullet cannot be to simply drive 
search with some other, better-suited BC because that only leaves 
the diversity of interest to be collected coincidentally. Instead, 
this study offers the promising new idea of driving search with 
multiple BCs simultaneously. The so-called multi-BC algorithms 
(such as NS–NSLC) allow search to be driven both by the desired 
notion of diversity and a separate BC that is well equipped to 
circumvent deception, thus unlocking the best parts of the search 
space for discovery.

An alternative approach not tested in this study is to simply 
concatenate both an aligned and unaligned BC into a single BC 
with more dimensions. In considering this option, it is important 
to note that the behavior space grows exponentially with the size 
of the BC. Thus, such an approach generally cannot be applied 
with MAP-Elites because the number of bins would also grow 
exponentially until the grid no longer resembles a reasonably 
sized population. While concatenating multiple BCs into a single 
monolithic BC is still tractable with NS-based algorithms, the 
resulting vast behavior space may present an additional challenge 
over the multi-BC approaches tested here.

Following the lesson originally presented by Lehman and 
Stanley (2008), this study reconfirms that a powerful strategy for 
finding solutions to a difficult maze is to abandon the objective 
entirely and simply search for behavioral diversity (e.g., NSe in 
Figures 4 and 5). This conclusion itself has implications outside 
of maze solving that apply more generally to all of optimization. 
However, an important observation is that not just any type of 
behavioral diversity is successful. Indeed, with regard to being 
able to solve difficult mazes, searching for diversity with respect 
to an unaligned BC (such as DirectionBC) does even worse than 
purely objective search (Figure  5). The more general lesson 
is that BCs that are aligned with the notion of quality (such as 
EndpointBC in this study) are the key ingredient to overcoming 
deception on difficult problems. Furthermore, this study offers 
the additional insight that QD algorithms themselves offer a 
means for “the objective-less search for behavioral diversity” 
(i.e., novelty search) to be rectified with their missing objective 
in a way that allows search to respect the ultimate goal (e.g., 
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solving the maze) without re-introducing the problem of decep-
tion. Specifically, NSLCe in this paper demonstrates that it can 
optimize in the presence of strong deception at least as well as 
regular novelty search (Figure 4) and, in fact, might even be bet-
ter (Figure 5). This result suggests that while the ultimate goals 
of QD are distinct from optimization, advancements in QD can 
themselves directly benefit optimization.

As a relatively new approach to QD, MAP-Elites remains a 
largely unexplored paradigm at the time of this writing. The 
core MAP-Elites algorithm offers the significant appeal of a very 
simple algorithm (requiring in effect only a few lines of code) that 
powerfully distills the essence of QD. Because it is relatively new, 
its performance in this study serves to confirm that it is largely 
impacted by BCs similarly to NS-based methods (suggesting 
some general principles for QD across different algorithms), but 
of course much room remains for MAP-Elites in particular to 
be improved. MENOV and MEPGD in this study both suggest 
that the core ME algorithm can be fruitfully augmented in part to 
overcome any restrictive effects of its strict elitism. Some ideas not 
tested here include MEPGDNOV (combining genetic diversity 
with novelty) and MEPGD–MEPGD (ME with genetic diversity 
and multiple BCs). The genetic diversity component might also 
benefit from expansion to more than one diversity candidate per 
bin.

An important question raised by the results is how to decide 
whether a particular domain is hard (therefore likely requiring 
more than one BC) and in such cases whether the chosen aligned 
BC is sufficiently aligned to overcome the threat of deception. 
One way to decide whether it may be necessary to include mul-
tiple BCs is simply to run a pure fitness-based (objective-driven) 
search. If such a search consistently finds solutions in multiple 
runs then the domain can be considered sufficiently easy that 
multiple BCs may be unnecessary. On the other hand, if the 
domain proves too difficult for fitness, then it is important to 
make sure that the aligned BC is, in fact, sufficiently aligned to 
complement the unaligned BC. One way to test for alignment is to 
try running simple NS only with the candidate aligned BC. If the 
alignment is effective, such a search should at least do better than 
fitness-based search, which would then validate that the BC in 
question can complement an unaligned BC in a multi-BC hybrid.

Interestingly, while the results support that in sufficiently easy 
domains a more naive single-BC approach with an unaligned 
BC may work to collect QD, it does not appear harmful in any 
case to take the safer multi-BC approach even then. Thus, even 
though it has been customary so far in the QD-related literature 
to rely on a single unaligned BC (Lehman and Stanley, 2011b; 
Cully and Mouret, 2013; Szerlip and Stanley, 2013; Mouret and 
Clune, 2015), it may be possible to revisit some of the domains of 
the past with multiple BCs and achieve even better performance.

More broadly, the multi-BC approach and our new under-
standing of the implications of alignment can help us in the 

future to achieve significantly more impressive results with QD 
than seen in the past. Even domains that might have seemed 
inexplicably out of reach might now become accessible through 
the application of multiple BCs. Thus, because QD represents a 
promising direction exclusive to evolutionary techniques, it is in 
the interest not just of those working in QD, but EC and evolu-
tionary robotics as a whole to seek out and propose such future 
domains. The potential for such ideas is foreshadowed by QD 
results already published in the diverse domains of morphology 
evolution (Lehman and Stanley, 2011b; Szerlip and Stanley, 2013; 
Mouret and Clune, 2015), robot control and adaptation (Cully 
and Mouret, 2013; Cully et al., 2015; Mouret and Clune, 2015), 
image generation (Nguyen et al., 2015a,b), and three-dimensional 
object evolution (Lehman et al., 2016). With increasing interest in 
the field, these domains may be just the beginning for QD.

8. cOnclUsiOn

In an attempt to unify and investigate the emerging field of quality 
diversity (QD), this paper compared various QD algorithm vari-
ants and controls in three different maze domains, two of a higher 
level of complexity than previously seen in such maze-based 
studies. By pushing the mazes to a higher level of complexity 
than seen in QD before, the study was able to expose conditions 
under which QD effectively breaks down. It turns out that driving 
the diversity component of QD algorithms exclusively by a BC 
unaligned with quality (which is heretofore common practice) 
performs relatively poorly under such difficult conditions. 
However, on a positive note, methods that hybridize more than 
one BC (one aligned and one unaligned) tend to perform well at 
the same time as finding the kind of diversity desired, suggesting 
a promising path forward for QD in the future as it is applied in 
increasingly ambitious domains.
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aPPenDiX

algorithm Descriptions

This section provides pseudocode for selected algorithms 
(particularly studies that were not published previously). Some 
algorithms represent trivial modifications to existing algorithms, 
in which case only the modifications are shown. In all cases, g 
represents an individual genome, B represents a batch of genomes 
(batch size: bsize), R represents the novelty archive (maximum 
archive size: rmax), and P represents the population or the MAP-
Elites grid (population size: psize). Following NEAT (Stanley 
and Miikkulainen, 2002), genomes are initialized with minimal 
complexity; additional neurons and connections are added later 
through mutations.

algorithm 1 | MaP-elites + novelty (MenOV)

1: Generate and evaluate B random genomes
2: for all g ∈ B do
3: Add g to R
4: Map g to its corresponding grid bin
5: if g.fitness > bin.fitness then
6: Save g in the bin (discard current occupant)
7: else
8: Discard g
9: end if

10: end for
11: Calculate novelty scores for all g ∈ P (against R ∪ P)
12: loop
13: Select bsize parents from P with chance proportional to novelty score
14: Generate and evaluate B offspring as asexual mutations of selected 

parents
15: for all g ∈ B do
16: Add g to R
17: Map g to its corresponding grid bin
18: if g.fitness > bin.fitness then
19: Save g in the bin (discard current occupant)
20: else
21: Discard g
22: end if
23: end for
24: Calculate novelty scores for all g ∈ P (against R ∪ P)
25: Calculate novelty scores for all g ∈ R (against R ∪ P)
26: while R.count > rmax do
27: Discard g ∈ R with lowest novelty score
28: end while
29: end loop

algorithm 2 | MaP-elites + Passive genetic Diversity (MePgD)

1: Generate and evaluate B random genomes
2: for all g ∈ B do
3: Map g to its corresponding grid bin
4: if g.fitness > bin.fitness then
5: Save g in the primary bin (discard current occupant)
6: else if random: 30% chance then
7: Save g in the secondary bin (discard current occupant)
8: else
9: Discard g

10: end if
11: end for
12: loop
13: Select bsize parents from P (uniform random chance)

14: Generate and evaluate B offspring as asexual mutations of selected 
parents

15: for all g ∈ B do
16: Map g to its corresponding grid bin
17: if g.fitness > bin.fitness then
18: Save g in the primary bin (discard current occupant)
19: else if random: 30% chance then
20: Save g in the secondary bin (discard current occupant)
21: else
22: Discard g
23: end if
24: end for
25: end loop

algorithm 3 | Multi-Bc novelty search with local competition (ns-nslc)

1: Generate and evaluate B random genomes
2: Add B to R1 (aligned BC)
3: Add B to R2 (unaligned BC)
4: Add B to P
5: for all g ∈ P do
6: Calculate novelty score g.nov1 (against R1 ∪ P with aligned BC)
7: Calculate novelty score g.nov2 (against R2 ∪ P with unaligned BC)
8: Calculate local competition g.lc (against R2 ∪ P with unaligned BC)
9: end for

10: Pareto-rank all g ∈ P according to (g.nov1, g.nov2, g.lc)
11: loop
12: Select bsize parents from P with chance inversely proportional to Pareto 

rank
13: Generate and evaluate B offspring as asexual mutations of selected 

parents
14: Add B to R1 (aligned BC)
15: Add B to R2 (unaligned BC)
16: Add B to P
17: for all g ∈ P do
18: Calculate novelty score g.nov1 (against R1 ∪ P with aligned BC)
19: Calculate novelty score g.nov2 (against R2 ∪ P with unaligned BC)
20: Calculate local competition g.lc (against R2 ∪ P with unaligned BC)
21: end for
22: Pareto-rank all g ∈ P according to (g.nov1, g.nov2, g.lc)
23: Calculate novelty score g.nov1 for all g ∈ R1 (against R1 ∪ P with aligned 

BC)
24: Calculate novelty score g.nov2 for all g ∈ R2 (against R2 ∪ P with 

unaligned BC)
25: while P.count > psize do
26: Discard g ∈ P with worst Pareto rank
27: end while
28: while R1.count > r1max do
29: Discard g ∈ R1 with lowest novelty score g.nov1
30: end while
31: while R2.count > r2max do
32: Discard g ∈ R2 with lowest novelty score g.nov2
33: end while
34: end loop

algorithm 4 | Multi-Bc novelty search (ns-ns)

NS-NS works exactly the same as NS-NSLC, except the LC objective is removed. 

Modifications to Algorithm 3:

• Remove lines 8 and 20
• Change lines 10 and 22 to:

Pareto-rank all g ∈ P according to (g.nov1, g.nov2)

algorithm 5 | Multi-Bc MaP-elites + novelty (MenOV-MenOV)

1: Generate and evaluate B random genomes
2: for all g ∈ B do

42

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


Pugh et al. Quality Diversity: A New Frontier

Frontiers in Robotics and AI | www.frontiersin.org July 2016 | Volume 3 | Article 40

3: Add g to R1 (aligned BC)
4: Add g to R2 (unaligned BC)
5: Map g to its corresponding grid bin in P1 (aligned BC)
6: if g.fitness > bin.fitness then
7: Save g in the bin (discard current occupant)
8: else
9: Discard g

10: end if
11: Map g to its corresponding grid bin in P2 (unaligned BC)
12: if g.fitness > bin.fitness then
13: Save g in the bin (discard current occupant)
14: else
15: Discard g
16: end if
17: end for

18: Calculate novelty scores g.nov1 for all g ∈ P1 (against R1 ∪ P1 with aligned 
BC)

19: Calculate novelty scores g.nov2 for all g ∈ P2 (against R2 ∪ P2 with 
unaligned BC)

20: loop
21: Select bsize/2 parents from P1 with chance proportional to novelty score 

g.nov1

22: Select bsize/2 parents from P2 with chance proportional to novelty score 
g.nov2

23: Generate and evaluate B offspring as asexual mutations of selected 
parents

24: for all g ∈ B do
25: Add g to R1 (aligned BC)
26: Add g to R2 (unaligned BC)
27: Map g to its corresponding grid bin in P1 (aligned BC)
28: if g.fitness > bin.fitness then
29: Save g in the bin (discard current occupant)
30: else
31: Discard g

32: end if
33: Map g to its corresponding grid bin in P2 (unaligned BC)
34: if g.fitness > bin.fitness then
35: Save g in the bin (discard current occupant)
36: else
37: Discard g
38: end if
39: end for
40: Calculate novelty scores g.nov1 for all g ∈ P1 (against R1 ∪ P1 with 

aligned BC)
41: Calculate novelty scores g.nov2 for all g ∈ P2 (against R2 ∪ P2 with 

unaligned BC)
42: Calculate novelty scores g.nov1 for all g ∈ R1 (against R1 ∪ P1 with 

aligned BC)
43: Calculate novelty scores g.nov2 for all g ∈ R2 (against R2 ∪ P2 with 

unaligned BC)
44: while R1.count > r1max do
45: Discard g ∈ R1 with lowest novelty score g.nov1
46: end while
47: while R2.count > r2max do
48: Discard g ∈ R2 with lowest novelty score g.nov2
49: end while
50: end loop

algorithm 6 | Multi-Bc MaP-elites (Me-Me)

ME-ME works similarly to MENOV-MENOV, except selection is uniform rather than 
proportional to novelty scores (thus there is no need for novelty archives R1 and R2). 
Modifications to Algorithm 5:

• Remove lines 3–4, 17–18, 25–26, and 40–49
• Change lines 21–22 to:

Select bsize/2 parents from P1 (uniform random chance)
Select bsize/2 parents from P2 (uniform random chance)
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An ambitious goal in evolutionary robotics (ER) is to evolve increasingly complex robotic 
behaviors with minimal human design effort. Reaching this goal requires evolutionary 
algorithms that can unlock from genetic encodings their latent potential for evolvabil-
ity. One issue clouding this goal is conceptual confusion about evolvability that often 
obscures important or desirable aspects of evolvability. The danger from such con-
fusion is that it may establish unrealistic goals for evolvability that prove unproductive 
in practice. An important issue separate from conceptual confusion is the common 
misalignment between selection and evolvability in ER. While more expressive encod-
ings can represent higher-level adaptations (e.g. sexual reproduction or developmental 
systems) that increase long-term evolutionary potential (i.e. evolvability), realizing such 
potential requires gradients of fitness and evolvability to align. In other words, selection 
is often a critical factor limiting increasing evolvability. Thus, drawing from a series of 
recent papers, this article seeks to both (1) clarify and focus the ways in which the term 
evolvability is used within artificial evolution and (2) argue for the importance of one type 
of selection, i.e. divergent selection, for enabling evolvability. The main argument is that 
there is a fundamental connection between divergent selection and evolvability (on both 
the individual and population level) that does not hold for typical goal-oriented selection. 
The conclusion is that selection pressure plays a critical role in realizing the potential for 
evolvability and that divergent selection in particular provides a principled mechanism for 
encouraging evolvability in artificial evolution.

Keywords: evolutionary robotics, evolvability, divergent selection, encodings, evolution of complexity

1. iNtrODUctiON

Natural evolution is an unguided process that has produced organisms with functionalities far 
exceeding the products of current human engineering. Although biological evolution is well studied, 
the abstract mechanisms through which cascades of increasingly complex functionalities evolve 
are not deeply understood. Supporting this claim, artificial evolutionary processes so far cannot 
reproduce biological levels of behavioral complexity.

This problem is well known within the evolutionary robotics (ER) community, given its aim 
to create complex robotic behaviors through algorithmic evolution. Note that while this paper 
focuses on ER, the insights likely generalize to many applications of evolutionary algorithms (EAs) 
beyond the black box setting (Doncieux and Mouret, 2014); for this reason, the term EA assumes 
domains in which observable behavior results from an evaluation. While ER’s aims are ambitious, 
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in practice evolved behaviors have remained simple relative to 
biological organisms, and ER does not compete commercially 
with mainstream robotics approaches. Thus, it is natural to seek 
the cause of the qualitative gulf between natural organisms and 
ER’s current products. One hypothesis is that evolvability, i.e. 
the speed of evolutionary innovation, stagnates in ER systems, 
whereas in biological evolution, second-order mechanisms (e.g. 
sexual reproduction or developmental systems) often evolve that 
accelerate innovation.

Accordingly, this paper argues that an important limiting fac-
tor in ER is bounded evolvability, which manifests on different 
structural levels. First, there are limits to the evolvability possible 
to attain within particular ER models, because the search space 
does not contain certain possibilities. For example, most encod-
ings do not enable an organism to influence how its offspring 
are generated, even if such influence could increase evolvability. 
Second, there are limits in practice to what levels of evolvability 
will be attained, given how the chosen environment, form of 
selection pressure, and encoding interact. In particular, because 
the gradients of task performance and evolvability often fail to 
align conveniently, selection may prune hereditary pathways that 
lead to increased evolvability. This paper focuses on this latter 
factor, because while there exist many interesting proposals for 
more expressive encodings (Spector and Robinson, 2002; Risi 
et  al., 2010; Lehman and Stanley, 2011b), in practice realizing 
their potential for evolvability remains difficult (Edmonds, 2001; 
Spector and Robinson, 2002; Clune et  al., 2008). The position 
taken here is that this challenge largely results from applying 
selection pressure uncorrelated with evolvability.

A further issue is that the term evolvability is defined across ER 
studies in disjoint and conflicting ways, which conflates distinct 
concepts. The result is confusion over what challenges evolvabil-
ity poses for ER and even over what outcomes are most desirable 
or possible. One particular source of confusion addressed here 
concerns the level of organization (e.g. the level of the individual 
or the population) in which it is most important to consider and 
encourage evolvability.

To address such confusion, this paper aggregates from an 
ongoing research agenda (Lehman and Stanley, 2011b; Wilder 
and Stanley, 2015) one coherent vision of evolvability. Rather than 
focus on an individual’s hereditary potential to achieve particular 
goals, the idea is to encourage the population’s hereditary poten-
tial for creative divergence. The argument is that this conception 
of evolvability is more realistic and productive than alternative 
visions, and that it aligns well with researchers’ expectations of 
ER and intuitions about natural evolution’s creativity.

Viewing evolvability from this perspective of accelerating 
creativity has consequences for algorithm design. In particular, 
this paper argues that divergent selection, i.e. selection that 
encourages simultaneous exploration of diverse solutions, aligns 
systematically with this type of evolvability; in contrast, more 
traditional objective-based selection, i.e. selection for improving 
objective performance, has no such consistent alignment. Thus, 
to create more prolific ER algorithms may require increasing the 
potential for evolvability in encodings, focusing on population-
level evolvability instead of on individual-level evolvability, and 
guiding search through divergent selection.

2. evOLvABiLitY iN evOLUtiONArY 
rOBOtics

Because evolutionary computation (EC) as a whole struggles with 
evolvability (Wagner and Altenberg, 1996; Reisinger et al., 2005; 
Hu and Banzhaf, 2010), the subfield of ER naturally confronts the 
same issue (Lehman and Stanley, 2011b; Tarapore and Mouret, 
2015). A distracting complication when discussing or quantifying 
evolvability is the lack of consensus on evolvability’s definition 
across biology (Pigliucci, 2008), EC in general (Altenberg, 1994; 
Reisinger et al., 2005), or ER in particular (Lehman and Stanley, 
2011b; Tarapore and Mouret, 2015).

Overall, evolvability definitions largely can be divided into two 
main families. One focuses on the ability to respond to particular 
adaptive challenges (Reisinger et al., 2005; Pigliucci, 2008; Clune 
et  al., 2013), while the other focuses more generally on future 
creative potential, i.e. the variety of phenotypes reachable from 
an individual or population (Wagner and Altenberg, 1996; 
Dichtel-Danjoy and Félix, 2004; Lehman and Stanley, 2011b). 
Encompassing these narrower viewpoints, a larger-scale con-
ception of evolvability is the ability to create major phenotypic, 
behavioral, or morphological breakthroughs (Pigliucci, 2008), 
e.g. the de novo evolution of a developmental system. A unify-
ing point is that this kind of large-scale evolvability is evident 
in natural evolution and is what researchers ultimately aspire to 
recreate. The hope is that studying and learning how to encourage 
lower levels of evolvability may aid this latter pursuit.

Such plurality of definitions is not inherently problematic; 
evolvability as an overarching concept may simply take on dif-
ferent meanings when considered across different functional 
goals (e.g. whether privileging adaptation to a specific target or 
potential for founding new niches through creative divergence) 
or levels of organization (e.g. whether considered over individu-
als, populations, or species) (Pigliucci, 2008). Thus, rather than 
absolute truth, the choice of evolvability definition may instead 
reflect the aims of a particular research agenda. That is, if one 
hopes to create an ER algorithm that directly solves any ambitious 
problem through optimization, the most fitting characterization 
of evolvability may be one aligned with increasing the value of a 
static fitness function. Yet when adopting a particular definition 
and devising a measure of it for ER, it is important that the result-
ing measure still respects what is ultimately realistic or possible. 
The measure can then identify limitations in current algorithms 
and highlight possible improvements, in service of a particular 
research agenda.

However, some overarching aims of ER may be more realistic 
than others. For example, while the optimization-based abstrac-
tion of evolution has long dominated ER (Lehman and Stanley, 
2010), growing evidence suggests that such an approach is 
misaligned with how ambitious objectives are actually achieved 
(Doncieux and Mouret, 2014; Stanley and Lehman, 2015) and 
does not scale in practice (Lehman and Stanley, 2011c; Lehman 
et  al., 2013; Nguyen et  al., 2015). Thus, viewing evolvability 
through the lens of optimization (i.e. evolvability as the potential 
for solving particular adaptive challenges) may draw focus to 
desirable but ultimately unrealistic goals, like the design of an 
algorithm that can successfully optimize toward any arbitrarily 
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complex robotic behavior. So while defining evolvability this way 
is valid, it may not fruitfully steer ER research.

In contrast, this paper instead frames evolvability by consider-
ing ER’s most ambitious creative goals (i.e. evolvability as future 
creative potential) where creativity is defined here as the ability to 
create novel functionally complex artifacts. The argument is that 
framing evolvability this way draws focus to more realistic goals, 
because it better reflects how complex behaviors evolve in practice. 
That is, evolution does not craft highly complex functionalities 
because such behaviors are an explicit engineering objective, but 
instead cobbles them together through opportunistic tinkering 
(Jacob, 1977). Indeed, according to one mainstream biological 
opinion, complexity in biological evolution results from explora-
tory diffusion through the space of complexity rather than from 
any pervasive selective advantage that such complexity provides 
(Miconi, 2008; McShea and Brandon, 2010; Gould, 2011; Stanley 
and Lehman, 2015). In this view, complex behavior emerges as 
evolution creatively expands through a growing space of ecologi-
cal niches (Kauffman, 2000; Schluter, 2000; Kelly, 2010), driven 
by opportunistic exaptation (Gould and Vrba, 1982) or ecological 
pressures toward diversity such as competitive exclusion (Hardin, 
1960). Empirically, this understanding is supported by studies 
showing that complex functionalities fail to evolve without the 
scaffolding of functionally simpler niches (Lenski et  al., 2003; 
Arthur and Polak, 2004), that bacteria colonies tend naturally to 
generate and maintain vast phenotypic diversity (Saint-Ruf et al., 
2014), and that biodiversity begets further biodiversity (Jousset 
et al., 2016). Furthermore, viewing evolution as an open-ended 
creative process aligns with a similar understanding of cultural 
processes such as technological growth (Arthur, 2009; Kelly, 
2010; Stanley and Lehman, 2015). Thus, if evolution’s productiv-
ity largely derives from its capacity to diverge creatively, then 
accelerating such capacity is a logical aim for ER. This paper 
accordingly argues for measuring and encouraging evolvability 
as the potential for creative divergence, while acknowledging that 
other views may better fit alternative research agendas.

One representative such measure of divergent potential is to 
quantify the phenotypic variability of an individual (Dichtel-
Danjoy and Félix, 2004; Pigliucci, 2008), i.e. the phenotypic diver-
sity accessible within an individual’s mutational neighborhood. 
This measure is used in practice (Lehman and Stanley, 2011b) and 
captures an important facet of an individual’s potential for crea-
tive divergence. However, as explored in the next section, such 
individual-level focus neglects the greater possibilities enabled by 
considering the population as a whole (Wilder and Stanley, 2015).

3. evOLvABiLitY OF POPULAtiONs AND 
iNDiviDUALs

When evolvability is measured and encouraged in ER, most 
often it is considered a property of an individual (Clune et  al., 
2013; Lehman and Stanley, 2013; Velez and Clune, 2014), often 
aggregated across the population by taking the mean or maxi-
mum value. However, simple aggregations obscure important 
properties unique to the population level, such as to what extent 
the population contains a complementary diversity of evolvable 
individuals. An alternative approach is to consider evolvability 

explicitly as a property of a population (Wilder and Stanley, 2015). 
For example, one such measure is the diversity of phenotypes 
accessible within the mutational neighborhood of all individuals 
in the population.

Both conceptions are logically consistent, but they imply 
different goals for ER. That is, benchmarking methods by their 
production of individual-level evolvability sets the implicit goal 
of producing maximally evolvable individuals. Even if individual 
evolvability is aggregated over the population by considering 
mean or maximum evolvability, both common aggregations can 
be maximized by a population converged to a single maximally 
evolvable individual. In contrast, benchmarking on population-
level evolvability stresses the need for maximally evolvable 
populations, which may result from a diversity of individuals with 
complementary and specialized evolutionary potentials.

The fundamental problem with guiding ER by individual-level 
evolvability stems from the logical conclusion of its maximiza-
tion. For evolvability measures focused on adapting to new goals, 
maximization requires an individual that can very quickly evolve 
to achieve any possible goal. For evolvability measures focused on 
creative potential, maximization requires an individual who can 
quickly lead to any possible phenotype. While such outcomes are 
certainly desirable, neither of these extreme visions are realistic 
nor do they reflect intuitions about terrestrial evolvability.

To highlight the benefits of population-level evolvability for 
ER, consider two controllers for a biped robot, one that locomotes 
with a one-legged hop and the other that uses both legs to achieve 
a smooth walking gait. To achieve their distinct gaits, both con-
trollers contain specialized knowledge and thus are only locally 
evolvable, e.g. mutating the hopping controller yields many 
hopping gait variations, while mutating the walking controller 
likewise generates many variations of walking. Through the lens 
of individual-level evolvability, if both controllers had equivalent 
quantities of evolvability, there is no preference to preserve both 
in a population. In contrast, population-level evolvability recog-
nizes the greater span of evolutionary potential when the hopper 
and the walker are both viable leaping-off points (see Figure 1).

In this way, population-level evolvability may be a more 
principled guiding light for ER than individual-level evolvability. 
As a result, increased focus on population-level evolvability may 
have implications for improving the design and creativity of ER 
algorithms and may illuminate promising research trajectories. 
In this spirit, the next section argues that divergent selection is 
an important algorithmic feature for cultivating such population-
level evolvability.

4. DiverGeNt seLectiON 
AND evOLvABiLitY

One necessary condition for the evolution of evolvability is that 
selection must encourage (or at minimum, not oppose) trajecto-
ries through the search space leading to evolvable genotypes. Even 
if highly evolvable individuals exist within the search space, they 
are unlikely to be discovered if selection and evolvability are com-
pletely decorrelated. Just as degeneracy is over-represented rela-
tive to functionality within complex search spaces (i.e. a mutation 
more often causes catastrophe than novel functionality), there is 
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no reason to expect an arbitrary genome to be highly evolvable. 
Thus it is important to explore the relationship between different 
forms of selection pressure and evolvability. Note that a similar 
argument related to the evolution of complexity is provided by 
Miconi (2008).

The dominant form of selection pressure in ER is objective-
based fitness: a heuristic measure of progress to some fixed objec-
tive. Search driven to optimize such a measure often converges, 
because as the population’s fitness rises the set of admissible 
improvements shrinks. This objective-based perspective derives 
from abstracting natural evolution as an optimization process 
(Lehman and Stanley, 2011a), i.e. from considering optimiza-
tion as the key ingredient that enables impressive evolutionary 
products.

One might intuitively assume that evolvability will naturally 
increase with objective-based selection, because increased evolv-
ability will hitchhike as a byproduct of selecting the adaptations 
such evolvability enables. That is, an evolvable individual will be 
more likely than an unevolvable one to produce useful adaptions 
(i.e. increases in fitness); therefore, evolvability will consistently be 
favored as a result of selecting high-fitness individuals. However, 
this intuition does not hold up to closer scrutiny or empirical 
studies (Lehman and Stanley, 2011b).

First, there is no necessary logical connection between nar-
rowly increasing fitness and long-term potential. For example, 
in ER there may be many genomes with varying evolvability that 
express the same high-fitness behavior (e.g. a low-evolvability 
memorized list of motor commands vs. a higher evolvability 
generic wall following policy); yet short-term fitness optimiza-
tion cannot distinguish between them. For more evolvable line-
ages to reliably distinguish themselves requires competition 
between sufficiently different lineages with differing potentials. 
Yet maintaining such diversity is in direct tension with objective-
based selection’s tendency to converge. As a result, in most EAs 
an adaptation quickly propagates throughout the population,  

regardless if other reachable adaptations hold greater future 
potential.

A second more fundamental problem results from deception, 
i.e. the tendency in objective-based search for short-term fitness 
increases to themselves anticorrelate with long-term potential; 
such deception seems to increase in frequency and severity 
as problems scale in complexity (Zaera et  al., 1996; Ficici and 
Pollack, 1998; Lehman and Stanley, 2011c; Stanley and Lehman, 
2015). When objective-based fitness is itself a broken compass, 
then even if lineage-level selection could lead to evolutionary 
acceleration, the end effect would only be faster discovery of an 
ultimately unsatisfactory local optimum.

An alternative to objective-driven search is to explicitly 
abstract evolution as a creative process, reflecting that a key char-
acteristic of biological evolution is its divergent accumulation of 
novelty. Practical examples of such selection in EAs are given by 
novelty search (Lehman and Stanley, 2011a), behavioral diversity 
(Mouret and Doncieux, 2012), and MAP-Elites (Mouret and 
Clune, 2015). In such algorithms, novelty or divergence is directly 
selected for, serving as a proxy for important creative processes in 
biology that are overlooked when evolution is treated only as an 
optimizer, e.g. negative frequency-dependent selection (Endler 
and Greenwood, 1988) and adaptive radiation (Schluter, 2000).

In contrast to objective-driven search, a consistent relation-
ship often holds between divergent selection and evolvability 
(Lehman and Stanley, 2011b, 2013; Lehman and Miikkulainen, 
2015; Wilder and Stanley, 2015; Mengistu et  al., 2016). 
Importantly, unlike with static measures of progress, measures of 
divergence are relative to the current and past states of the search 
process. As a result, seeking divergence is self-defeating in a way 
that pursuing a fixed goal is not (see Figure 2). When objective-
driven search is stuck within a local optimum, a high-fitness 
individual retains such fitness indefinitely; selection in such cases 
is antagonistic to evolvability, because phenotypic deviations are 
overwhelmingly unlikely to be adaptive. However, with divergent 
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selection, a lineage must continually innovate to remain novel. 
Thus there is consistent pressure to diverge, meaning mecha-
nisms that enhance the ability to diverge can hitchhike along 
with the divergences they enable. Furthermore, because divergent 
algorithms like novelty search and MAP-Elites are designed to 
simultaneously maintain many distinct lineages (Lehman et al., 
2012; Gomes et al., 2015; Nguyen et al., 2015), evolvable lineages 
can therefore distinguish themselves by consistently producing 
novelty. In this way, divergent selection systematically aligns with 
evolvability. Note that the choice of how to measure divergence 
will significantly impact the evolvability generated by a divergent 
EA, similarly to how such choice significantly impacts algorith-
mic performance (Mouret and Doncieux, 2012; Doncieux and 
Mouret, 2013); how to best align behavioral distance metrics with 
evolvability without relying on human domain expertise remains 
an open research question.

Importantly, this argument gracefully extends to the popula-
tion level. Because divergence is the primary selection criteria, 
individuals are directly incentivized to diversify and spread over 
the space of possible phenotypes. The product is thus a diverse 
set of leaping-off points that enable a significant base level of 
population-level evolvability. At the same time, by the argument 
above, lineages are indirectly rewarded to consistently produce 
diversity, which encourages individual evolvability that is fit 
to an individual’s local phenotypic neighborhood. In this way, 
divergent selection encourages a population of individuals with 
complementary evolvabilities, resulting in a much wider range of 
reachable phenotypes than that would result from considering 
any single individual.

Beyond theoretical arguments, empirical studies have 
demonstrated that divergent search often results in higher evolv-
ability than objective-based search (Lehman and Stanley, 2011b, 
2013; Lehman and Miikkulainen, 2015; Wilder and Stanley, 
2015; Mengistu et al., 2016). Other studies have highlighted that 

objective-based search often cannot fully exploit features that 
enable greater potential for evolvability, e.g. allowing individuals 
to control aspects of mutation (Clune et al., 2008; Lehman and 
Stanley, 2011b) or of reproduction (Spector and Robinson, 2002). 
One important caveat for interpreting these results is that nearly 
all such studies focus on individual-level evolvability (Wilder 
and Stanley, 2015), meaning that further studies focusing on 
population-level evolvability are needed to validate the theory. 
But, taken as a whole, evidence is accumulating that divergent 
selection is a critical ingredient for encouraging evolvability in 
ER.

5. cONcLUsiON

This paper addressed two connected aspects of ER: (1) what 
is a coherent vision that realistically relates evolvability to the 
goals of ER, and (2) what algorithmic considerations align 
with achieving that vision. The idea is that it is both realistic 
and desirable to create divergent EAs that indirectly optimize 
population-level evolvability, formalized as the potential for 
a population to realize phenotypic variety. Such an approach 
agrees with intuitions about and understanding of natural 
evolution, and respects limitations about what ultimately is 
algorithmically possible.

While divergent search methods seem more aligned with evolv-
ability than convergent search, a vast gulf still remains between 
the dynamics of such algorithms and those of natural evolution. 
One hope is that an explicit focus on population-level evolvability 
may lead to algorithmic improvements that enhance evolvability. 
However, a more fundamental problem is that existing measures 
of divergence in EAs are relatively simplistic and do not enable the 
seemingly endless and interesting innovation observed in natural 
evolution. Interesting proposals for more sophisticated divergent 
selection pressure are beginning to emerge (Liapis et  al., 2013; 
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Nguyen et al., 2015; Pugh et al., 2015), and are an important direc-
tion for future research.
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Embodied evolutionary robotics is an on-line distributed learning method used in collec-
tive robotics where robots are facing open environments. This paper focuses on learning 
behavioral specialization, as defined by robots being able to demonstrate different kind 
of behaviors at the same time (e.g., division of labor). Using a foraging task with two 
resources available in limited quantities, we show that behavioral specialization is unlikely 
to evolve in the general case, unless very specific conditions are met regarding interactions 
between robots (a very sparse communication network is required) and the expected 
outcome of specialization (specialization into groups of similar sizes is easier to achieve). 
We also show that the population size (the larger the better) as well as the selection 
scheme used (favoring exploration over exploitation) both play important – though not 
always mandatory – roles. This research sheds light on why existing embodied evolution 
algorithms are limited with respect to learning efficient division of labor in the general 
case, i.e., where it is not possible to guess before deployment if behavioral specialization 
is required or not, and gives directions to overcome current limitations.

Keywords: embodied evolution, evolutionary robotics, behavioral specialization, division of labor, distributed 
online learning, collective behavior

1. inTrODUcTiOn

Embodied evolutionary robotics (EER) is defined as the design of on-line distributed evolutionary 
algorithms to be implemented in a population of robots with limited computation and local com-
munication capabilities (Watson et al., 2002; Eiben et al., 2010). These algorithms can be deployed 
in a priori unknown and open environments, and aim at optimizing on-the-fly the individual’s 
and (ideally) the group’s performance with respect to a pre-defined objective. EER takes its root in 
Evolutionary Robotics (Nolfi and Floreano, 2000; Doncieux et al., 2015), but is also related to evo-
lutionary swarm robotics (Trianni et al., 2008), as it is sometimes (though not always) concerned 
with the automated design of control architecture for large, swarm-like, population of robots.

In recent years, the on-line nature of such algorithms was shown to be very robust when con-
ducting experiments with real robots (Watson et al., 2002; Prieto et al., 2010; Bredeche et al., 2012; 
Trueba et al., 2013): compared with more classic evolutionary robotics setup, the emphasis in EER 
is on the design of robust algorithms (i.e., design while already deployed) rather than on producing 
robust solutions (i.e., design then deploy) (Doncieux et al., 2015; Silva et al., 2016). However, the 
complexity of the tasks to be achieved has been quite limited so far, either resulting with each 
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individual maximizing its own benefit [e.g., phototaxis (Watson 
et al., 2002), foraging, exploration, etc.] or in a limited level of 
cooperation among individuals who all display the same typical 
behavior [e.g., energy sharing (Montanier and Bredeche, 2011)].

To go further, evolving more complex organizations such as 
division of labor is clearly part of the research agenda. However, 
in the context of embodied evolution, the amount few works have 
tackled the evolution of populations where individuals can split 
in two (or more) sub-groups with specific roles. In this paper, we 
are interested in the evolution of specialized behaviors as a key 
milestone toward tackling more complex problems in collective 
robotics.

Classic (as in off-line) evolutionary robotics has already been 
used as a tool to explore important issues such as the nature 
of self-organized regulation mechanisms (Waibel et  al., 2006; 
Duarte et al., 2011, 2012a,b; Lichocki et al., 2012; Ferrante et al., 
2015), the benefits of communication (Trianni et  al., 2007; 
Goldsby et al., 2010), the importance of coordination (Bernard 
et al., 2016b), and the trade-off between evolving polymorphic 
and monomorphic populations (Waibel et  al., 2009; Bernard 
et al., 2015, 2016a; Tuci and Rabérin, 2015). However, embodied 
evolutionary robotics poses a problem on its own as mating and 
reproduction are performed in situ, meaning that how and where 
interactions between individuals are performed actually influ-
ence the course of evolution.

So far, the embodied evolution of specialized behaviors 
has been studied in two contexts: whether sub-tasks are geo-
graphically separated or not. First, some works considered the 
evolution of specialized behaviors in structured environments, 
where separate regions call for specific skills [e.g., cleaning tasks 
requiring two different methods (Prieto et al., 2010), increasing 
reproductive success with either phototaxis or photophobis 
behaviors (Bredeche et  al., 2012; Bredeche, 2014)]. In this 
context, geographical separation plays an important role as sub- 
populations can evolve without interacting with one another due 
to the limitation in terms of communication range, therefore 
favoring the acquisition and conservation of different skills.

Second, other works have considered whether specialized 
behaviors could be acquired without geographical separation. It 
has been shown that specialized foraging behaviors can co-exist 
in a population of individuals (Haasdijk et al., 2014): faced with 
two resources available in limited quantity, the population evolves 
into two sub-groups, each specialized to forage one particular type 
of resource. However, this work showed that balancing between 
the two resources is challenging and could only be achieved by 
introducing a market mechanism explicitly favoring the smallest 
sub-group.

Possibly the most advanced work on this topic is presented 
by Trueba et  al. (2013). The authors conducted an in-depth 
empirical study of behavioral specialization within the same 
geographic location. The authors showed that very specific 
values for the frequency of replacement and a carefully tuned 
recombination operator (with low rate) could be used to enforce 
behavioral specialization in a population of foraging individu-
als. However, validation in a realistic robotic setup remains to 
be done as the problem used in this study was greatly simplified: 
each robot’s genome contains a single-gene that can take only 

three possible values, each value accounting for predefined 
behaviors.

In light of the limited results obtained so far, we address the 
following question in this paper: in the absence of geographi-
cal separation, what challenges are posed by the evolution of 
behavioral specialization in embodied evolutionary robot-
ics? Specifically, we aim at identifying the limiting constraints 
in the evolution of behavioral specialization, including a more 
general formulation of the limiting factors with respect to 
both setups studied so far that is with or without geographical 
separation.

Indeed, the challenge of evolving specialization without geo-
graphical separation in embodied robotics echoes with concerns 
in biological speciation, where the lack of reproductive isola-
tion is known to be a major obstacle with respect to genotypic 
divergence (Coyne and Orr, 1998; Gavrilets, 2003; Nosil, 2012). 
In this paper, we explore how reproductive isolation (whether 
by geographical separation or any other means) can favor the 
emergence of specialization, and what are the other relevant 
mechanisms at play. In particular, we also explore how selection 
and population size may impact the evolution of specialized 
behavior.

In the following, we perform an experimental study using 
different flavors of embodied evolutionary algorithms in two 
variations of a task with autonomous virtual robots: a foraging 
task with and without geographical separation. Furthermore, an 
abstract model is presented and used to identify the conditions 
required for behavioral specialization to occur in the general case, 
i.e., without referring to any specific evolutionary mechanisms to 
artificially enforce specialization, such as dedicated evolutionary 
operators or environment-induced phenotypic plasticity.

2. MeThOD

2.1. a Foraging Task with Mutually 
exclusive resources
In order to study the evolution of behavioral specialization, we 
devised two experimental setups where foraging resources are 
required to survive. In both cases, two resources are available, 
and located in a particular location. These locations may change 
through time, requiring the agents to move accordingly. In order 
to successfully get energy from a particular resource, one agent 
must be on top of the resource location and must be able to 
synthesize this particular resource into energy, which requires a 
particular genetic trait.

Both experimental setups are defined as a circular arena with-
out obstacles. Resources R0 and R1 are set at a specific location, 
which initial locations may differ with respect to the environment 
considered (cf. Figure 1), and which regularly moves from one 
location to another through a total of 8 possible locations. In the 
first environment (termed collocateEnv), the two resources are 
located in the same area and will move to a similar new area on 
a regular basis. In the second environment (termed seperateEnv), 
the two resources are located on the opposite side to one another, 
and will also move on a regular basis, always remaining far from 
one another. In both environments, resource’s locations will move 
counter-clockwise.
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FigUre 2 | The energy synthesis function, Fsynth for computing the 
amount of foraged energy depending on the value of the gskill gene. 
Pink (vs. green) curve shows the amount of energy of R0 (vs. R1) wrt. the 
value of gskill [defined in (−1.0, +1.0)].

FigUre 1 | The two foraging areas are changing locations through time (8 possible locations, moving counter-clockwise). Foraging areas may or may 
not share the same position. Left: both regions simultaneously move to the same position (collocateEnv setup); right: both regions simultaneously move, always on 
the opposite side from one another (seperateEnv setup).

Montanier et al. Behavioral Specialization in Embodied ER

Frontiers in Robotics and AI | www.frontiersin.org July 2016 | Volume 3 | Article 38

The ability for an agent to synthesize energy from one resource 
is defined by one specific gene, termed gskill. It is defined in (−1.0, 
+1.0), and conditions the amount energy that can be automati-
cally extracted from one resource when located in its area. The 
energy synthesis function, Fsynth, is shown in Figure 2. It illustrates 
that the function is designed so that an agent can get energy from 
one resource only (in addition to being located in the right area).

In order to account for the evolution of specialization, we 
introduce an additional constraint regarding the carrying capacity 
of the resources. Each resource area provides a limited amount of 
energy available at each time step, which is set so that only half 
the population can feed from a particular resource. Access to a 
resource is set according to a first-come, first-served basis: if an 
agent gets access to a resource, it may extract from it until it leaves 
the area (or until the resource area is relocated). As a result, the 
optimal survival strategy for the population of agents is to special-
ize half the agents on one resource (both in terms of tracking and 
synthesizing capability) and the other half on the other resource.

The fitness function for robot x at time t is defined as 
fitness x t f x

i t

t w
i( ) ( ), =

=

−∑  where fi(.) is computed at time step i 
depending on the energy synthesis function Fsynth with the value of 
gskill as parameter and the availability of resources at this particular 
location. A sliding window of size w is used in order to get a reli-
able estimation of the agent performance throughout its lifetime, 
and no genome (nor fitness value) is broadcasted during the first 
w iterations. Whether the value of gskill is negative or positive 
conditions the resource to be harvested (gskill <0 vs. gskill >1, means 
that resource Ro vs. R1, will be harvested), and, if the target resource 
is available at this location, the exact value of gskill determines the 
amount of energy to be harvested thanks to the Fsynth function.

In this setup, resource availability is true if the robot is located 
close enough to the resource and if the resource has not yet 
reached its carrying capacity.

2.2. algorithms
The control function for all agents is a perceptron without hidden 
layer and an hyperbolic tangent activation function, which maps 
sensory inputs (12 proximity sensors, ground detectors, energy 
level, angle and distance to energy sources, and a bias node) 
to motor outputs (left and right motor speed). All sensory and 
motor values are normalized in (−1, +1). This results in a total 
of 38 weights to evolve. The control architecture is illustrated in 
Supplementary Material 1.
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For the sake of simplicity, we devised a simple implementation 
of embodied evolution, which we term vanillaEE. As with other 
embodied evolution algorithm, it is assumed that each agent is 
able to receive genomes and current fitness values from agents 
within a pre-defined range, as well as to send its own genome and 
current fitness value to these nearby agents. After a pre-defined 
duration, which corresponds to the time allowed for evaluation, 
one of the genomes received previously is selected, and mutated, 
to produce a new genome, which will be used to provide the 
parameters for the control function in the next evaluation period.

The pseudo-code for this algorithm is described as Algorithm 
1. It starts with a randomly initialized genome, whose parameters 
are used to set up the neural network controller. At each time step, 
the agent moves according to its controller outputs and broadcasts 
its current genome (and possibly its current fitness). Reciprocally, 
it may receive incoming genome from other neighboring agents 
[lines 13–16 of the algorithm  –  the ListeningQueue is filled by 
a subroutine (not shown here) and getListeningQueueContent(.) 
(line 13) is a non-blocking call]. At the end of the evaluation 
time, the current genome is deleted and replaced, if available, 
by a genome build from the list of genomes previously received 
[the select(.) and applyVariation(.) functions]. Once this new 
genome’s parameters are used to set up the new controller, the list 
of genomes is emptied. Being a template algorithm, the vanillaEE 
algorithm may yield many variations depending on the particular 
implementations of the functions used (see below).

It is important to note that selection pressure in embodied 
evolution acts at two levels: first, pure performance with relation 
to a task can be evaluated by a fitness function and used to select 
a particular genome; second, an agent can also boost the chance 
for survival of its own genome by spreading more copies of this 
genome than other agents do, especially if a stochastic selection 
operator is used.

In the following, we use two different variations over the 
canonical vanillaEE algorithm, instantiating a particular selec-
tion scheme for each:

• vanillaEE-elitist: the best genome out of the genomes 
available (i.e., received from other agents during the last eval-
uation session) is selected (cf. line 20 of Algorithm 1). This is a 
pure exploitation strategy.

• mEDEA (or vanillaEE-noFitness): selection is performed 
by choosing a random genome among the genomes available. 
Therefore, no selection pressure wrt. fitness value is applied, but 
selection pressure wrt. ability to spread one’s own genome is still 
at work. The mEDEA algorithm has been extensively studied 
in previous works (Bredeche and Montanier, 2010; Bredeche 
et  al., 2012; Bredeche, 2014) and provides a good baseline 
for embodied evolution. Efficient genomes are able to spread 
themselves and perform the necessary actions for survival, 
such as foraging, without requiring a fitness function to do so. 
However, the lack of selection pressure toward performance 
(as opposed to selection pressure toward survival only) can 
also lead to mitigate results with respect to foraging (i.e., no 
more than what is required to survive is foraged). Moreover, 
in some cases, the lack of selection pressure at the individual 
level can also ease up survival. With respect to Algorithm 1, 

the mEDEA algorithm does not implement the select operator 
(cf. line 20) nor the computeFitness() function call (cf. line 10), 
and does not broadcast a fitness value (cf. line 11) nor receives 
fitness values with incoming genomes (cf. line 13).

For both algorithms, genome initialization is performed by 
randomly picking weight values in (−1.0, +1.0), and the variation 
operator is defined as a gaussian mutation with σ = 0.1. Evaluation 
time (or lifetime) for one genome is set to 600 iterations.

algOriThM 1 | The Vanillaee algorithm.

 1: genome.randomInitialize( )

 2:  genomeList.empty( )  //set up a list which will be filled later with genomes 
received from neighbours.

 3: while forever do

 4: if genome! = NULL then

 5:  load(genome)  // set up the agent’s controller wrt current genome 
parameters.

 6: end if

 7: for iteration = 0 to lifetime do

 8: if genome! = NULL then

 9: move( )  // execute the agent’s controller for one step.

10: fitness = computeFitness( )

11:  broadcast(genome,fitness)  // broadcast current genome to 
neighbours (if any).

12: end if

13:  incomingGenomes = getListeningQueueContent( )  // store any 
genome(s) (and fitness(es)) from neighbours received since last checked.

14: if incomingGenomes != NULL then

15: genomeList.add(incomingGenomes)

16: end if

17: end for

18: genome = NULL

19: if genomeList.size > 0 then

20: genome = applyVariation(select(genomeList))

21: end if

22: genomeList.empty( )

23: end while

3. resUlTs

We devised a total of four setups testing all possible combinations 
of algorithms (mEDEA, VanillaEE-elitist) and environments 
(collocateEnv, separateEnv). For each setup, 50 independent runs 
are performed, each using the parameters described in Table 1. 
Experiments are implemented in the Roborobo 2D simulation 
tool (Bredeche et al., 2013) with 200 robotic agents.1

3.1. evolution of specialization
For each environment, two algorithms are tested: mEDEA (with 
random selection) and VanillaEE-elitist (with elitist selection). 
For each setup combining an algorithm and an environment, 

1 Code for all experiments in this Section and the next: http://pages.isir.upmc.
fr/~bredeche/Experiments/Frontiers2016/
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TaBle 1 | Parameters used.

Parameter Value

Arena width and length 1000 × 1000 space units 
Duration 400 k timesteps
Evaluation duration 600 timesteps per generation 
Population size 200 robots
Sensor and broadcast range 16 space units
Agent rotational velocity 30°/timestep
Agent translational velocity 2″/timestep
Genome length 37 real values
Energy diameter 140 space units
Energy per iteration 10 energy units
Agent energy consumption 1 energy unit/timestep
Agent maximum energy level 600 energy units
Agent initial energy level 400 energy units
Fitness window size 100 iterations

FigUre 3 | skill’s gene heatmap representative of two situations. (a) heatmap of a run with one group. (B) heatmap of a run with two groups. The number of 
iteration is shown on the x-axis and the values of gskill are shown on the y-axis. Darker cells’ values correspond to more robots using a gskill value. A run receives the 
label one group if it relies on either positive values [such as in (a)] or only negative values. If two groups are observed in one run (one using positive gskill values and 
the other using negative gskill values), it is tagged with the two groups label [such as in (B)].
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we classify each of the 50 independent runs depending on their 
outcomes: (1) all individuals display a similar harvesting pattern 
wrt. the resource harvested (“one group”), (2) two patterns are 
observed (“two groups”), and (3) individuals fail to harvest any 
resources as the population is extinct (“extinct”). For the first two 
outcomes, classification is made possible by looking at the values 
of gskill in the population, i.e., whether there is one or two clusters 
of values. As an example, Figure  3 shows all gskill values in the 
population for two typical runs over time.

Results are shown in Table 2. For both algorithms, specializa-
tion fails to evolve in the collocateEnv environment, with the elitist 
algorithm also failing partly to even evolve any viable behaviors 
(two-third of the runs go extinct). The outcome is different in 
the seperateEnv environment as the mEDEA algorithm is actually 
able to evolve specialization in half of the runs, a result that is not 
observed with the VanillaEE-elitist algorithm. A statistical 

test (Pearson’s χ2-squared) confirms the obvious: strategies used 
in each environment with the random selection scheme produce 
significantly different results (p-value <0.01).

Figures  4A,B compare the outcome of runs using mEDEA 
algorithm in the seperateEnv environment. As expected, runs 
where two sub-groups evolve also display the highest survival 
rate, as specialization is the only way for the whole population to 
survive due to limited available amount of each resource. Results 
are identical with the VanillaEE-elitist algorithm.

Results show that adding a fitness function (VanillaEE-
elitist) not only hinders the survival rate but also almost 
completely shuts down the possibility to evolve specialization. 
This sheds a negative light on the use of an explicit selection pres-
sure defined through a fitness function over simply considering 
environmental selection pressure, as with the mEDEA algorithm. 
However, we can hypothesize that performing selection solely 
based on task-dependant fitness values does not leave much room 
for exploration of survival strategies.

3.2. investigating the Trade-off between 
exploration and exploitation
In order to explore the impact of using a fitness function, we 
posit that there is a trade-off between exploration, which in 
this case balance toward environmental selection pressure, and 
exploitation, i.e., selection pressure provided by using a fitness 
function. We introduce the VanillaEE-tournament-k algo-
rithm, similar to what has been proposed by Fernandez Pérez 
et al. (2015): this algorithm uses a tournament selection of size 
k to regulate the trade-off between the exploitation of a fitness 
function and the exploration of solutions allowing the survival 
of robots. Tournament selection selects the best genome out of k 
randomly picked genomes among those received during the last 
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TaBle 4 | classification of the outcome of runs where resources are 
collocated.

selection environment # runs

Two groups One group extinct

Random CollocateEnv 2 42 6
Tournament-5 CollocateEnv 1 33 16
Tournament-20 CollocateEnv 0 16 34
Elitist CollocateEnv 0 18 32

Classes are determined using the value of the skill’s gene. Fifty runs per experiment. 
Population size is 200 robots. Random and elitist selection methods are copied from 
Table 2 for clarity.

TaBle 3 | classification of the outcome of runs where resources are 
separated.

selection environment # runs

Two groups One group extinct

Random SeparateEnv 18 32 0 
Tournament-5 SeparateEnv 8 37 5 
Tournament-20 SeparateEnv 3 35 12 
Elitist SeparateEnv 1 31 18 

Classes are determined using the value of the skill’s gene. Fifty runs per experiment. 
Population size is 200 robots. Random and elitist selection methods are copied from 
Table 2 for clarity.

FigUre 4 | number of active robots (mean, min and max from the 50 runs) in the separateEnv where (a) only one group is evolved (i.e., one cluster 
of values for the gskill gene) and (B) two groups are evolved (i.e., two clusters of values). The maximum number of active robots is 200.

TaBle 2 | classification of the outcome of runs using random selection 
(i.e., the meDea algorithm) and elitist selection.

selection environment # runs

Two groups One group extinct

Random SeparateEnv 18 32 0
Elitist SeparateEnv 1 31 18
Random CollocateEnv 2 42 6
Elitist CollocateEnv 0 18 32

Classes are determined using the value of the skill’s gene. Fifty runs per experiment. 
Population size is 200 robots.
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evaluation session. Tournament sizes used are k = 5 and k = 20. 
Large tournament sizes tends to converge toward elitism selec-
tion (favoring exploitation) while small tournament sizes tends to 
favor exploration. It should be noted that the mEDEA algorithm 
is identical to a VanillaEE-tournament algorithm with k = 1, 
as using such a value implies random selection.

We design 4 new setups, testing all possibilities between the 
two tournament sizes and the two environments (collocateEnv, 
separateEnv). For each setup 50 independent runs are performed 
and classified as before. Results shown in Tables 3 and 4 reveal 
that as the pressure toward exploitation increases, (a) the number 
of runs with extinctions also increases (in both setups) and (b) the 
number of runs where two specialized groups evolve decreases, 
at least when resources are seperated. A χ2 statistical test is used 
for significance.

The smaller the tournament’s size, the closer the results are 
to the results obtained with random selection. Reciprocally, 
larger size of tournament size produce results close to results 
obtained with the elitist selection scheme. We conclude that 
increasing the pressure toward the exploitation of genomes 
with higher fitnesses leads to sub-optimal solutions. While this 
mechanism allows us to mitigate the pressure from task-driven 
fitness function, the pressure from the environment keeps a 
strong influence, and the question remains open as to why 
specialization is (nearly) impossible when resources are not 
spatially separated.

3.3. Discussion
As expected from Trueba et  al. (2013), we show that when 
resources are collocated, it is very difficult to evolve specializa-
tion. While Trueba et al. (2013) was successful at finding a very 
precise set of parameter values to achieve specialization, this was 
done under very specific conditions: either an abstract model or 
a toy problem (a genome with one parameter that can take one 
among three possible values). Our results confirm that in the 
general case, evolving specialization is challenging at the least, 
and unlikely if resources are collocated.

Similarly, and in accordance with Prieto et al. (2010), Bredeche 
et al. (2012), and Bredeche (2014), we show that geographical 
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FigUre 5 | The number of agents alive at the end of a simulation for different densities, different tournament sizes (from 1 to 50), and population 
sizes (100 and 500). Each violon plots is built from the result of 160 independent runs.
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separation promotes the evolution of specialization. However, 
specialization is not always evolved here (at best 36% of the runs 
for the best setting), while it was always the case in previously 
cited works. This is actually not a surprise as we face a more 
challenging set-up: we consider extinction, that is, the possibly 
to engage in evolutionary dead-ends. As a consequence, not 
only it is risky for the population to switch from one equilibrium 
(e.g., foraging without specialization) to another (e.g., foraging 
the two resources) but also historical contingencies can lead 
to early extinction, if foraging is not evolved in the very first 
generations.

From the results we obtained so far, we now question the cur-
rent claim stating that one needs either geographical separation 
and/or very specific evolutionary operators as a necessary condi-
tion. In fact, bipolar crossover (Prieto et al., 2010), high replace-
ment frequency (Trueba et  al., 2013), low recombination rate 
(Trueba et al., 2013), market mechanism (Haasdijk et al., 2014), 
and geographical separation (Bredeche et  al., 2012; Bredeche, 
2014) can all be seen as coming from the same origin: a mean to 
achieve reproductive isolation.

Therefore, we posit this new hypothesis: reproductive isola-
tion is a key factor in the evolution of specialization, whether 
the population is geographically dispersed or not. In order to 
investigate this assumption, we explore in the next Section an 
abstract model to study the impact of reproductive isolation 

independently from how it is implemented in practical, i.e., 
through geographical separation or any other means, and reveal 
the critical conditions for evolving specialization.

4. analYsis

In order to identify the necessary conditions required to evolve 
specialization, we introduce an abstract model to perform com-
putationally intensive experiments. In this model, each agent is 
located on a node within a graph, and each node hosts one agent 
only. Edges between two nodes indicate that genetic material is 
exchanged by the agents. Each agent lives for four iterations, has 
a battery that consumes one unit per iteration, and forage from 
resources R0 or R1 depending on the value of its gskill gene (as before, 
a value close to zero means no foraging), just as in the setup used 
in the previous Section (except that a genome contains now a 
single gskill gene). As before, each resource enables the survival 
of one half of the population, meaning that specialization into 
two groups is mandatory for the whole population to survive. 
We do not consider extinction: an agent, which runs short of 
energy is deactivated for 4–14 iterations (random), then listen to 
its neighbors during 4 iterations, and is finally reactivated using 
one of the received (and mutated) genome.

For each run, we randomly generate graphs, fixing only the 
number of nodes and the average number of edges for each node. 
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FigUre 6 | The number of agents alive at the end of a simulation depending on the distribution of resources available for different densities and 
population sizes (100 and 500), using the meDea algorithm. Each violon plots is built from the result of 160 independent runs. The column marked S(50,50) is 
a recap from Figure 5 for ease of comparison. The column marked S(75,25) show results in an environment where resource R0 (vs. R1) provides 75% (vs. 25%) of 
the amount of energy required for the whole population to survive. The column marked S(90,10) does the same for a 90/10 balance between the two resources. 
The horizontal line, drawn in red, shows the theoretical upper limit in terms of number of agents alive if only one resource is foraged.
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The number of edges acts as a proxy for the study of reproductive 
isolation. In order to do so, we have devised a method, which 
generates random connex graphs with a desired density of edges 
between nodes. The minimal density is 2

n  (i.e., a ring), with n the 
number of agents and the maximal density is 1.0 (i.e., a complete 
graph). Supplementary Material 2 provides a formal definition of 
density, and Supplementary Material 3 provides the pseudo-code 
for the graph generation algorithm.

This simplified model corresponds to the collocateEnv 
environment used earlier, where all agents may access any of 
the two resources at all time, but with interactions between 
agents being determined by the selected density. In this Section, 
we first explore what are the critical parameters and parameter 
values that makes specialization possible (Subsection 4.1). Then, 
we investigate whether the non-homogeneous availability of 
resources impacts (or not) the possibility to evolve specialization 
(Subsection 4.2).

4.1. interaction between reproductive 
isolation, Population size, and selection 
Pressure
We identify three candidate hypotheses that, if true, may lead to 
the evolution of specialization:

 1. increasing reproductive isolation may act as a protection for 
groups with different skills to co-exist. This will be tested by 
varying the graphs’ density, i.e., the mating opportunities for 
each agent;

 2. increasing population size may reduce the stochastic effect 
known to occur in small populations, which could otherwise 
hinder the fixation of beneficial mutations. Two different popu-
lation sizes will be tested, using graphs with 100 and 500 nodes.

 3. increasing exploration (over exploitation) may help to escape 
local minima, defined here as the convergence for the whole 
population to one efficient, yet sub-optimal, behavior (e.g., 
foraging only one resource). Tournament selection with 
various tournament sizes (k) will be tested, from k = 1 (i.e., 
mEDEA, emphasizing exploration) to k =  50 (i.e., selection 
largely favoring exploitation).

Figure 5 shows the results obtained with different tournament 
sizes (k = 1, 2, 3, 5, 10, 50), population size (100 and 500) and den-
sities (starting from the minimal density wrt. population size). 
For each parameter sets, 160 independent runs are conducted 
(i.e., a total of 5760 runs). Results are compiled from the data 
of the last generation for each run and shown as violin plots to 
capture the details of possibly non-uniform distributions (i.e., full 
histograms, rather than box-plots).
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FigUre 7 | The level of specialization (at the end of evolution) within populations depending on the number of active agents. Results are similar to 
Figure 6 but display the average specialization level observed in runs, rather than the number of runs. For each cell (i.e., rectangle covering a small interval in the 
number of active agents), the level of specialization is calculated as the distance between the ideal distribution over the two resources and the observed distribution 
(averaged over all runs considered in this cell). Blue means no specialization (i.e., only one resource foraged); red means specialization (i.e., population is split in two 
groups, each with an optimal size wrt. resources availability). A detailed explanation of how specialization is computed can be found in Supplementary Material 4. 
Note that the two cells colored red which are below the threshold line in the upper-left graph are due to successful specialization but only within a sub-part of the 
population (i.e., some agents carry a gskill value around zero). It is important to keep in mind that cells may correspond to very different number of runs: this Figure 
provides complementary information to what is shown in Figure 6.
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All three hypotheses are validated, though their importance 
varies. Lower densities always lead to specialization, whatever 
the population size or the selection pressure. A large population 
size favors specialization, and selection favoring exploitation 
(i.e., larger tournament sizes) turns to be detrimental as density 
increases. Actually, the lack of detrimental effect of large tourna-
ment sizes when density is low can be explained that for the low-
est densities considered, tournament sizes is quickly far superior 
to the actual number of neighbors (e.g., for the lowest densities, 
the number of neighbors for one node is 2)  –  in other words, 
tournament sizes with k > 2 do not impact further the outcome 
of selection for such low densities.

As a conclusion to our original question, reproductive isola-
tion is a key factor for evolving specialization, with a larger 
population size and a selection scheme favoring exploration 
rather than exploitation as secondary factors. Results from this 
Section also shed light on the negative results obtained in Section 
3: the failure of all algorithms to achieve specialization in the 
collocateEnv environment is explained by the lack of restrictions 
on mating opportunities (all individuals are mixed together).

4.2. Deleterious effects of  
non-homogeneous resources  
availability
So far, we have considered situations where both resources 
provide the same quantity of energy. We now depart from our 
initial question to consider the possible impact of resources being 
available in different amounts. We use the same setup as in the 
previous Subsection, with only k = 1 as tournament size (i.e., the 
mEDEA algorithm), and consider two environments [termed 
S(75,25) and S(90,10)] with different resource distributions: one 
where R0 (vs. R1) provides 75% (vs. 25%) of the amount of energy 
required to sustain the whole population, and another where R0 
(vs. R1) provides 90% (vs. 10%) of the amount of energy.

Results are shown in Figure 6, compiled from 160 runs for 
each set of parameters (i.e., a total of 3200 runs). Specialization 
can be observed whenever a run displays more active agents 
that can be sustained with one resource only (cf. the red lines 
in the graphs, which mark the maximum level of sustainability 
by foraging only the largest resource). When the distribution of 

59

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


Montanier et al. Behavioral Specialization in Embodied ER

Frontiers in Robotics and AI | www.frontiersin.org July 2016 | Volume 3 | Article 38

resources follows a 75/25 distribution, more than half of the runs 
with a population of 100 ends up with specialization, as well as 
all runs with a population of 500. Specialization is confirmed by 
looking at the middle column of Figure 7, which displays the 
same results as the previous, but over-emphasizes on the (pos-
sibly different) values of gskill rather than the number of runs. 
The distribution of the gskill gene values show that all runs that 
display a survival success to be high above the threshold (the 
red lines in the graphs) are explained by the occurrence of two 
groups of individuals, one specialized to forage R0 and the other 
to forage R1.

Results are different when resources follow a 90/10 distribu-
tion, as Figure 6 displays a survival rate around the threshold for 
runs with a population size of 100 and slightly above for most 
runs with a population size of 500. A Wilcoxon rank-sum test 
confirms that using a population of 500 yields significantly better 
results than a population of 100. Again, Figure 7 provides a more 
precise analysis. Runs with a population of 100 almost never 
display specialization while runs with a population of 500 and a 
high survival rate are always displaying specialization (the top red 
boxes in the bottom-right graph).

Heterogeneous distributions of resources do have a negative 
effect on the ability to evolve specialization, though it can be 
mitigated – to a limited extent – by increasing the population size. 
This poses yet another challenge about ensuring the evolution 
of specialization even with a small population and unbalanced 
distribution of resources availability.

5. cOnclUsiOn anD PersPecTiVes

In this paper, we explored why evolving behavior specialization 
remains an important challenge in embodied evolutionary robot-
ics. We defined a foraging task where two resources are available 
in limited quantity to identify the critical parameters at work in 
the evolution of specialization. We implemented this task in both 
a pseudo-realistic robotic simulation and an abstract graph-based 
model.

The take-home messages from this work are threefold. First, 
reproductive isolation is mandatory for the evolution of speciali-
zation, whether such isolation is due to geographic constraints or 
particular mating strategies. This may open ways toward defin-
ing new mechanisms and/or operators to reduce the amount of 
mating interactions between individuals, such as preferential 
choice.

Second, larger population sizes also help, leading toward an 
important remark: a significant amount of works in embodied 
evolutionary robotics are concerned with small populations 
(approximately 10 robots), and face problems that are possibly 
unique to such population sizes. To some extent, embodied 
evolution with either small or large populations may well be to 
two different classes of problems, each with their own issues, 
and we ought to be cautious not to generalize conclusions 
obtained with larger populations to smaller populations, and 
reciprocally.

Third, a selection method should leave room to explora-
tion, to be understood as performing a trade-off between 

environment-driven selection versus task-driven fitness func-
tion selection. The benefit of such a trade-off has already been 
explored elsewhere (Haasdijk et  al., 2014), but mechanisms 
favoring exploration explicitly could also be explored [e.g., 
applying novelty measures for evolutionary swarm robotics 
(Gomes et al., 2013)]. Here lies an important aspect of embod-
ied evolution: mating is evolved as a strategy, and is not given for 
free as an algorithmic feature as would be the case with a more 
classic evolutionary algorithm.

As for future works, a natural extension of this work is to 
consider the evolution of specialization into more than two 
subgroups, as well as to consider behaviors that are substantially 
different. So far, we have considered specialization as being the 
product of few skills (ability to forage one resource, and possibly 
to track its location), which may imply a limited distance in the 
genotypic space between the two genetic codes. Things may be 
very different if two (or more) behaviors exist in very different 
locations of the search space: except for very specific historical 
contingencies or dedicated operators it might be very difficult to 
co-evolve both behaviors simultaneously.

Another extension of this work is to consider setups where 
both generalists and specialists can evolve. Even if a population of 
generalists may provide a suboptimal solution, it is not clear that 
specialists could still evolve, even when the conditions discussed 
throughout this paper are met. Finally, it is also not clear what 
would be the respective advantages and drawbacks to achiev-
ing behavioral specialization through evolutionary adaptation 
(as explored here) versus lifetime adaptation (e.g., learning or 
memory mechanisms).
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In evolutionary robotics, populations of robots are typically trained in simulation before one
or more of them are instantiated as physical robots. However, in order to evolve robust
behavior, each robot must be evaluated in multiple environments. If an environment is
characterized by f free parameters, each of which can take one of np features, each robot
must be evaluated in all nfp environments to ensure robustness. Here, we show that if the
robots are constrained to have modular morphologies and controllers, they only need to
be evaluated in np environments to reach the same level of robustness. This becomes
possible because the robots evolve such that each module of the morphology allows
the controller to independently recognize a familiar percept in the environment, and each
percept corresponds to one of the environmental free parameters. When exposed to a
new environment, the robot perceives it as a novel combination of familiar percepts which
it can solve without requiring further training. A non-modular morphology and controller
however perceives the same environment as a completely novel environment, requiring
further training. This acceleration in evolvability – the rate of the evolution of adaptive and
robust behavior – suggests that evolutionary robotics may become a scalable approach
for automatically creating complex autonomous machines, if the evolution of neural and
morphological modularity is taken into account.

Keywords: evolutionary robotics, modularity, evolvability, evolutionary algorithms, embodied cognition

1. INTRODUCTION

Matarić and Cliff (1996) pointed out that the time necessary to evolve robots grows with the number
of environments in which the robot should behave correctly. Following their work, let f be the
number of free parameters in the environmental set and np be the number of features for each
of these free parameters. So, the total number of environments is nfp. (For example, if a robot
must behave appropriately in environments containing two objects (f = 2), and each object may
be small, medium, or large (np = 3), then there are nfp = 32 = 9 possible environments in which the
robot must perform correctly.) Thus, in order to evolve robots to perform complex behavior (which
means increasing np, f, or both) the number of environments the robot needs to be evolved in scales
exponentially.
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Pinville et al. (2011) presented one way to reduce the num-
ber of environments evaluated while still obtaining robust and
generalized controllers for evolved robots. Using the ProGAb
approach, they were able to successfully obtain robust and suc-
cessful controllers with better generalization abilities in less time
than other top methods. However, their work did neither look
specifically at the structure of the controller and morphology as
methods to reduce the necessary number of environments nor did
it categorize which environments should be trained on.

The work presented here demonstrates that morphological and
neural modularity is one possible way to reduce the number of
environments needed for evolving robust behavior.

Modularity is ubiquitous at all levels of biological organization,
from cells to distinct species. Explaining why such modularity
exists, and how it evolved, remains an important question in
biology. Much work has focused on how modularity evolves
in non-embodied systems, but relatively little work has focused on
the impact ofmodularity in evolving embodied systems. Thework
presented here contributes to this latter aim.

1.1. Non-Embodied Modularity
Wagner (1996) argued that a combination of directional and
stabilizing selection, acting on different parts of the organism’s
phenotype, should lead to modular developmental programs.
Suchmodularitywould enable evolutionary changes to that part of
the phenotype experiencing directional selection while retaining
the structure and function of the other parts of the phenotype
under stabilizing selection.

This theoretical argument was confirmed by a number of
computational experiments. Lipson et al. (2002) showed that
environmental change can be a catalyst for the evolution of
modularity. That work was followed by experiments in which
non-embodied Boolean networks (Espinosa-Soto and Wagner,
2010) or neural networks (Kashtan and Alon, 2005; Clune et al.,
2013) were evolved to perform various tasks. The tasks and fitness
functions were chosen in such a way as to favor networks that
computed partial results using separate genetic or neuralmodules;
changes to the fitness function over evolutionary time favored
networks that could rapidly change how those partial results were
combined. Thus, stabilizing selection came to bear on the partial
results, while directional selection acted on how those partial
results were combined.

More recently, it has been shown that selecting sparse networks
helps to favor the evolution of modular networks. Espinosa-Soto
and Wagner (2010) accomplished this by formulating a biased
mutation operator that favors low in-degree network nodes. Clune
et al. (2013) used a multi-objective approach, in which one
objective was to minimize the number of edges in the network.
Bernatskiy and Bongard (2015) showed that this relationship
between sparsity and modularity can be exploited to enhance the
evolution of modular networks by seeding the initial population
with sparse, rather than random, networks.

Modularity is a desirable property of artificial systems for a
number of reasons, beyond just the desire to create biologically
inspired artifacts. First, modular systems possess a form of robust-
ness: modular systems can more rapidly adapt to certain kinds
of changes in their environments, compared to non-modular

systems. Second, modular neural networks are better able to
avoid catastrophic forgetting than non-modular networks (Ellef-
sen et al., 2015). Catastrophic forgetting (French, 1999) is a
common problem in machine learning, whereby a learner must
forget something in order to learn something new. Third, complex
predictive models and dense, non-modular networks can suffer
from the pathology of overfitting: they fail to generalize to novel
environments (Kouvaris et al., 2015).Modular networks can avoid
overfitting by internally reflecting the modularity in its environ-
ment: it responds appropriately in a “new” environment, which is
actually just an unfamiliar combination of familiar percepts.

1.2. Embodied Modularity
A modular robot may likewise be robust and avoid catastrophic
forgetting and overfitting, but there are additional challenges that
arise when evolving embodied agents compared to non-embodied
networks and morphologies.

Embodied cognition is a particular approach to the under-
standing of intelligence, which holds that the body must necessar-
ily be taken into any account of adaptive behavior (Brooks, 1990;
Clark, 1998; Pfeifer and Bongard, 2006). One repercussion of the
embodied cognitive stance is that if neural controllers are evolved
for artificial embodied agents (i.e., robots), a given robot body
plan may facilitate or hinder the evolution of desirable traits. In
the context of modularity, previous work showed that there do
exist body plans in which modular neural controllers will evolve
(Bongard, 2011).

Follow-on work demonstrated that, given appropriate condi-
tions, evolution will find such body plans (Bongard et al., 2015).
However, in Bongard et al. (2015), the morphology itself was not
modular, only the neural networks that evolved to control it.

Here, we investigate another aspect of the relationship between
morphology and modularity: for a given task environment, must
both the body and neural controller be modular, and if so, in what
way? Before addressing these issues, however, wemust define both
neural modularity and morphological modularity.

1.3. Neural Modularity and Morphological
Modularity
In this work, we investigate robots controlled by artificial neural
networks. A common approach tomeasuring the amount of mod-
ularity in a network is to investigate its connectivity: a network that
has dense connectivity within subsets of nodes, and relative spar-
sity between those subsets, is said to bemodular (Newman, 2006).
Following this approach, we here investigate modular neural con-
trollers inwhich subsets of sensor, internal, andmotor neurons are
connected, but there are no synaptic connections between these
subsets.We compare these to non-modular networks inwhich any
sensor can influence any motor.

In a neural controller in which sensor information flows from
sensor neurons to internal neurons to motor neurons, this struc-
tural approach to modularity implies a functional repercussion.
If subsets of sensors and motors are completely structurally inde-
pendent, they will be functionally independent as well: changes
to a subset of sensors will only have an influence on a subset of
motors.
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Thus, we here define neural modularity in the following
manner.

1.3.1. Neural Modularity
A neural network with i sensor neurons S= {s1, s2, . . ., si} and j
motor neurons M= {m1, m2, . . .,mj} is defined to be modular if
every possible change to less than i of the sensors results in changes
to less than j of the motors.

Conversely, in a non-modular neural controller, it is possible
for a change to fewer than i sensors to influence the new values
of all j motors. It is possible that a non-modular neural controller
may internally extinguish certain sensor dynamics from reaching
some motors, but we disregard this case in the present work. This
results in a simplified, binary definition of modularity: either a
neural controller is modular or not. Here, we investigate robots
with both types of neural controller.

This approach to defining the modularity of robot neural con-
trollers suggests a similar approach for defining the modularity of
a robot’s body plan:

1.3.2. Morphological Modularity
A robot is defined to be morphologically modular if a change in
less than j of its motors results in a change in the state of the
world registered by at least one and strictly less than i of the robot’s
sensors.

One common definition of morphology is any agent subsystem
that mediates between its controller and its environment. More
specifically, when an agent acts, it alters its relationship with
its environment. If it is equipped with sensors, it can register
this change. The above definition of morphological modularity
captures the intuition that structural independence of the body,
like structural independence of a neural network, implies func-
tional independence: if a robot moves one part of its body that
is independent of the rest of its body, local sensors will register
the action, but more sensors on other morphological modules
will not.

Armed with these two definitions, one can investigate four
classes of robots:

1. those that are morphologically and neurally non-modular;
2. those that are morphologically modular but neurally non-

modular;
3. those that are morphologically non-modular but neurally

modular; or
4. those that are morphologically and neurally modular.

In this study, we evolve robots belonging to the first, second,
and fourth class. One can deduce that robots which belong to
the third class are functionally equivalent to those which belong
to the first class: if a morphologically non-modular robot moves,
its motion will affect all of its sensors. These sensors will then
affect all motors, regardless of whether its neural controller is
modular or not. Further, for this instance of the treebot, there is
no design of a robot of the third class with a completely modular
controller where both leaf sensors influence the motor neuron. If
the controller was modular, only one or none of the leaf sensors
would influence the motor neuron.

Although modular robots have been the focus of a number
of studies (Yim et al., 2007; Fitch et al., 2014), here we compare
morphologically modular and non-modular robots to investigate
a specific and new question: if modular and non-modular robots
are evolved in an increasing number of environments, are the
robots with modular controllers able to detect familiar percepts
combined in unfamiliar ways, and, with a modular morphology,
respond appropriately?

This question brings to light a challenge formodular, embodied
agents that modular, non-embodied systems do not experience.
Even if an embodied agent has a modular neural controller with
which it detects novel combinations of familiar percepts in a new
environment, once it moves, its perceptions will change, and the
environment may no longer “look” modular. We show here that
movement in a new environment continues to appear modular
from the robot’s point of view only if it also has a modular
morphology: it is free tomove in response to independent percepts
as it did previously, without disrupting the sensory signals arriving
at other morphological modules.

The methods employed for investigating this issue are
described in the next section. Section 3 reports our results, while
Sections 4 and 5 provide some analysis and concluding remarks,
respectively.

2. MATERIALS AND METHODS

This section describes the body plans of the simulated robots
(Section 2.1), their various controllers (Section 2.2), the task
environments they operatedwithin (Section 2.3), the evolutionary
algorithm used to optimize their controllers in those environ-
ments (Section 2.4), and the experimental design (Section 2.5).

2.1. The Robot Morphologies
Two robot morphologies were considered: one which is modular
and one which is non-modular. Figures 1A,B represent robots
with modular morphologies, while Figure 1C represents the non-
modular one.

Robots were instantiated as trees composed of hierarchically
branching segments. Both robot morphologies considered here
were composed of one root branch and two leaf branches. Each
branch had length 1, and the leaf branches were placed at 45°
angles from the base. The robot contained three joints: one con-
necting the base branch to the environment itself (the base joint),
and two that connect the base of each leaf branch to the tip of the
root branch (the leaf joints). In the modular robot, the leaves were
free to move independently of one another and the root was fixed,
whereas in the non-modular robot, the leaves were fixed and the
root was free to move.

In the non-modular robot, this was accomplished by instantiat-
ing the base joint as a rotational hinge joint and the two leaf joints
as fixed joints. In the modular robot, the base joint was fixed and
the two leaf joints were rendered as rotational hinge joints. The
base hinge joint movement was restricted to rotations of [−120°,
120°] and the leaf hinge joints restricted movement to rotations of
[−45°, +45°] around the vertical axis. These angles are relative to
the initial angle of the joint, which is treated as 0°.

The robots were designed in this way such that a single
parameter could dictate how modular the robot’s body plan
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FIGURE 1 | The controllers and morphologies for each of the three robots. The red diamonds indicate that branches connected at that position are fixed
relative to one another. Large blue circles indicate that the branches rooted at the circles are free to move independently of one another. Beige circles represent leaf
tips. The small circles represent neurons: blue neurons represent motor neurons, white neurons represent sensor neurons, and yellow neurons represent hidden
neurons. The modular robot is represented by (A) on the left, the mod-non-modular (B) is in the middle, and the non-modular robot is represented by (C) on the
right. Blow ups of the network structure are included. All hidden neurons and motor neurons have recurrent self-connections, which are not depicted. Further, all
connections except those with the sensor neurons are two-way. (D) is a legend showing the various types of joints and neurons.

was. If we define [−45α°, +45α°] as the range of rotation of
the leaf joints, [−120(1− α)°, +120(1− α)°] as the range of
rotation of the base joint, and restrict α to [0,1], then higher
values of α create more modular robots, with α= 0 and α= 1
corresponding to the maximally non-modular and maximally
modular robots investigated here. The robot with α= 0 is con-
sideredmorphologically non-modular according to the definition
above, and any robot with α > 0 is considered morphologically
modular.

2.2. The Robot Controllers
Three robot controllers were considered in this work. The first
makes the robot neurologically modular (Figure 1A), while the
second and third make the robot neurologically non-modular
(Figures 1B,C). All controllers contain two distance sensors (the
small blue circles in Figure 1), one in each of the two branches
of the robot’s body plan. These sensors emit a beam that enables
the robot to sense the distance from a branch to any objects in
the environment. The value returned by this sensor is the length
of the beam. The maximum length of the beam, if unobstructed,
was set to 10U, so the largest value the sensor neuron could
have is 10.

Controller M (Figure 1A) consists of a sensor neuron, a motor
neuron, and four hidden neurons in each leaf branch. The sensor
feeds into all of the hidden neurons, which are completely inter-
connected with each other. All of the hidden neurons also have
connections to the motor neuron, which also is connected back to
all of the hidden neurons. Finally, all of the hidden neurons and
the motor neuron are self connected, giving the M robot a total of
12 neurons and 50 synapses.

Controller MNM (Figure 1B) consists of two sensor neurons,
seven hidden neurons, and two motor neurons. The hidden neu-
rons are in a two-layer structure. The input from the sensors is
passed into each of the four neurons in the first hidden layer. They,

in turn, feed forward into the second hidden layer. The second
layer has synapses connected back to the first one and also forward
to themotor neurons. Themotor neurons are also connected back
to the second hidden layer. Finally, all of the hidden neurons and
the motor neurons are self-connected. Therefore, MNM has 11
neurons and 53 synapses.

Controller NM (Figure 1C) consists of two sensor neurons,
seven hidden neurons, and one motor neuron. The hidden neu-
rons are organized in a two-layer structure. The sensor values
input into the four neurons in the first layer, which then feed
forward into the three neurons in the second layer. The second
layer has synapses going back to the first layer and forward to
the motor neuron. The motor neuron is also connected back to
the second layer. Finally, all of the hidden neurons and the motor
neuron are self-connected. Therefore, NM has 10 neurons and 46
synapses.

During evaluation, each sensor neuron received the raw dis-
tance value from its sensor. The hidden and motor neurons were
updated using

ni = tanh

∑
nj∈Ini

wjinj

 (1)

where Ini is the set of incoming synapses to neuron ni andwji is the
weight of the synapse fromneuron nj to neuron ni. The hyperbolic
tangent function limits the hidden and motor neurons to floating
point values in [−1, +1].

Movement was controlled using proportional difference con-
trol. The values output by the motor neurons were scaled to the
range [−45, +45] and treated as desired angles. The rotational
velocity of a branch at each time step was thus determined by the
difference between the desired angle determined by the value of
the motor neuron in that branch (or at the root) and the current
angle of that branch (or root).
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2.3. The Task Environments
The robots were evolved for a simple embodied categorization
task: the robots were evolved to “point at” Type A spheres and
“point away” from Type B spheres (Figure 2). Each environment
that a robot was placed in contained a pair of spheres. Following
Matarić and Cliff (1996), this corresponds to two free parameters
(f = 2): the object on the left and the object on the right.

Three environment spaces were considered.
The first was the simplest consisting of a 2× 2 environment

space, giving four separate environments (Figure 3A). Each
sphere could be Type A or Type B (np = 2). For this environment,
the type A sphere had a radius of 3.5, and the type B sphere had a
radius of 0.5.

The second environment space contained 3× 3 environments,
meaning nine total environments to consider (Figure 3B). A
sphere could be one of two instances of Type A (either A or a)
or Type B. For this environment, space A had a radius of 3.5, a
had a radius of 0.5, and B was in the middle with a radius of 2.0.
Thus, for this environment space, np = 3.

Finally, the last environment space considered contained
4× 4= 16 different environments (Figure 3C). A sphere could be
one of two instances of Type A (A or a) or one of two instances of
Type B (B or b). For this environment space, spheres of type A, B,

a, and b had radii of 3.5, 2.5, 1.5, and 0.5, respectively. Therefore,
np = 4 for this environment space.

OpenDynamics Enginewas used to simulate the robots and the
environment. A time step size of 0.05 was used.

2.4. Evolutionary Optimization
The robots were trained using Age-Fitness Pareto Optimization
[AFPO; Schmidt and Lipson (2011)]. AFPO is a multi-objective
optimization algorithm, which is designed to maintain diversity
in an evolving population by periodically injecting new random
individuals into the population and restricting the ability of older
individuals to unfairly compete against younger individuals. In all
of the experiments reported herein, a population size of 40 was
employed.

Mutations in the population occurred in the form of choosing
a new weight for a synapse from a normal distribution with
mean of the current weight and a SD proportional to the absolute
value of the current weight. This mutation operator enables evo-
lution to rapidly incorporate high magnitude weights if required
while also being able to fine tune weights with low magnitude.
Mutation rates were set to be the reciprocal of the number of
synapses, thus yielding an average of one synapse change per
mutation.

A B

FIGURE 2 | Drawings of desired behavior for the modular morphology (A) and non-modular morphology (B) in each of the four environments in the
2× 2. Arrows indicate desired movement away from the base position (the base position is shown in the top left panels). Gray segments and arrows indicate other
acceptable behaviors.

A B C

FIGURE 3 | The three environment spaces considered. A, B, a, and b represent spheres positioned on the left or right of the robot. Uppercase letters represent
bigger spheres than their lowercase counterparts. Robots were evolved to “point” at A= {A, a} spheres and away from B= {B, b} spheres. (A) represents the 2×2
environment space, (B) represents the 3×3 environment space, and (C) represents the 4×4 environment space.
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The optimization function used was an error function, which
averaged the error of the robot when exposed to each environment
in the environment list E{}:

Err(E{}) =
1

||E{}||
∑

oℓor∈E{}

e(oℓor) − emin(oℓor)
emax(oℓor) − emin(oℓor)

(2)

e(oℓor) =
g(oℓ) + g(or)

2
(3)

g(A) =

{
1, if d(A) > dmax(A)

d(A)−dmin(A)
dmax(A)−dmin(A) , otherwise,

g(B) =

{
0, if d(B) > dmax(B)

d(B)−dmin(B)
dmax(B)−dmin(B) , otherwise

(4)

where

• E{} is a single environment, e.g., (AA, bA, Bb, etc.);
• ol ∈ {A,B} indicates the type of the object on the left. Either

(ol =A) or (ol =B);
• or ∈ {A,B} indicates the type of the object on the right. Either

(or =A) or (or =B);
• e(olor) indicates the robot’s error incurred in environment olor

during the last time step;
• emin(olor) and emax(olor) indicate the minimum and maximum

possible error the robot can incur in environment olor during
any one-time step, respectively. These were calculated based on
the environment present and the geometry of the robot;

• g(ol) and g(or) denote the errors incurred as a result of the
left-hand and right-hand objects, respectively;

• g(A) and g(B) denote the errors incurred as a result of the
objects of each type.

• d(A) and d(B) denote the distances from the midpoint of the
closest leaf to the center of the object considered.

• dmax(A), dmin(A), dmax(A), and dmin(B) denote the maximum
and minimum distance values for the A and B environments.

Because the motion range of the modular and non-modular
robots is inherently different, these values are necessarily dif-
ferent. Further, the dmax(A) and dmax(B) values could be set
artificially lower than the actual maximums in order to create
weighting which more heavily considered g(A) term over g(B).
dmin(A) and dmin(B) represent the actual observableminimums
depending on the geometry of the robot. The values are pre-
sented in Table 1.

For the modular morphologies, dmax was set to the actual limit
ofmotion of the branch. For the non-modularmorphologies, dmax
was set to less than the actual range of the motor to produce the
desired behavior. By setting dmax less than the actual range, any
robot that goes past a certain distance away from the A sphere
would have an error of 1 for that object. Similarly, in the B sphere,
if the robot moved far enough away to be past dmax, it was con-
sidered to have 0 error. This effectively created a weighting to the
influences between the A and B spheres, which corresponded to
the robot learning the desired behavior as seen in Figures 2 and 4.

2.5. Experimental Design
The first set of experiments consisted of evolutionary trials made
up of fixed length epochs in the 2× 2 environment space. The
robot starts by training on one environment for the duration of
the epoch. At the end of each epoch, a new environment is added
for the robot to be trained on. By the last epoch, the robot is

TABLE 1 | Table of maximum and minimum distance values for each
morphology type.

Actual maximum
distance

dmax(B) dmax(S) dmin(B) dmin(S)

Modular
morphology

5.315 5.315 5.315 5.157 5.157

Non-modular
morphology

7.596 6.002 7.200 5.028 5.028

FIGURE 4 | The behaviors generated by two controllers that evolved to succeed in each of the four environments in the 2× 2 environment space.
Lines emanating from the leaf branches represent the distance sensors embedded in each. Video of the robots can be found at https://www.youtube.com/
watch?v=t4gjv5nYeAA. (A) depicts an evolved robot with a modular morphology in each of the four environments in the 2×2 environment space. (B) depicts an
evolved robot with a non-modular morphology in each of the four environments in the 2×2 environment space.
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trained on all four environments. So, from the robots’ perspective,
when each new environment was introduced, the environment
space changes by becoming more complex. The epoch length was
set to 100 generations; thus, each evolutionary run lasted for 400
generations. If a robot survived from the last generation of one
epoch into the first generation of the next epoch, its fitness was
recomputed against this expanded set of environments.

In the second set of experiments, the robots were evolved in a
predetermined subset of the environment space. Unlike the previ-
ous experiment, the robot is introduced to all of the environments
in the subset at the same time instead of sequentially. After the best
robot in the population achieved a prespecified error threshold in
all of the environments in the chosen subset, it was tested in the
remaining environments, not in the subset, without any further
evolution to see how well it performed.

3. RESULTS

Experiment 1, described in Section 2.5, was run 50 times for all
three robots in four environments in the 2× 2 environment space,
yielding a total of 50× 2= 100 independent evolutionary runs.
The order of the environments was AA, BB, AB, and BA. Figure 5
shows that at the start of each epoch, there is a spike in the error
in the case of both the MNM and NM robots. In the case of the
M robot, there is no spike in error when the third (AB) and fourth
(BA) epochs are introduced.

Experiment 2, described in section 2.5, was also run 50 times
for the 2× 2, 3× 3, and 4× 4 environments on all of the robots.
Thus, there were 50× 2× 3= 300 independent trials. For the first
set of trials, only the “diagonal” of the environment space was
considered. For the 2× 2 environment space, this consisted of
{AA, BB}. For the 3× 3 environment space, the diagonal was {AA,
BB, aa}. Finally, for the 4× 4 environment space, the diagonal was
{AA, BB, aa, bb}. The error threshold was set to 0.15. Figure 6
shows the results for these trials.

The next test using this experimental setup considered another
subset other than the diagonal, which had the same number of

elements as the diagonal. Specifically, the “corner” of the environ-
ment space was considered Figure 7. All the three environment
spaces were considered. For the 2× 2 environment space, the
corner was designated to be the top row of the environment space
{AA, AB}. For the 3× 3 environment space, the corner was set
as {AA, AB, BA}. Finally, for the 4× 4 environment space, the
corner was {AA, AB, BA, BB}. Fifty trials of each robot in each
environment space were performed, yielding 50× 2× 3= 300
independent trials. Again, the error threshold was set to 0.15.

The last test performed using this experimental setup looked
at how well the MNM and NM robots respond to an unseen
environment in the 2× 2 case when evolved in three out of the
four environments. The robots were evolved in three different
subsets: {AA,AB,BA}, {AA,AB,BB}, and {AB,BA,BB}. Because of
the inherent symmetry in the problem, {AA, AB, BB} is the same
as {AA, BA, BB}; so, only one was chosen to be tested. Results are
presented in Table 2.

4. DISCUSSION

When the modular robot is presented with a new environment,
it is able to break down that environment into a combination
of percepts. If the robot has seen those percepts before, even if
the combination of those percepts is unfamiliar, it is able to act
appropriately. Evidence for this is shown in Figure 5. There is no
spike in error in the modular case at the start of the third and
fourth epochs when the AB and BA environments are introduced.
In contrast, the non-modular robots cannot see the environment
in this manner, as is shown by the presence of error spikes at each
new epoch.

Figure 6 shows that when the modular robot is evolved along
the diagonal of the environment space, it is able to achieve
acceptable error levels, that is at or below the predetermined
cut off threshold (0.15), in the remaining environments in the
environment space. This suggests that for this specific task, the
number of environments needed to evolve a robot with a modular
morphology and controller scales with the size of the diagonal

FIGURE 5 | Errors of controllers evolved for the M robot (left column), MNM robot (middle column), and the NM robot (right column) in fixed epoch
training (Experiment 1 as described in Section 2). New environment regimes occurred every 100 generations. Robots were evolved along the diagonal of the
environment space meaning the order presented to the robot was AA, BB, AB, and BA. Each blue curve corresponds to an individual evolutionary run: it reports,
at each generation, the controller with the lowest error in the population at that time. The red curve reports the average of these runs.
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FIGURE 6 | The M (bottom row), MNM (middle row), and NM (top row) robots were evolved along the diagonal (environments with blue boxes around
them) until they achieved an error of less than or equal to 0.15 in each environment in the subset considered. The robots were then tested in the
remaining environments. The color of the box of each environment represents the average reported error in that environment. The lighter the color, the greater the
average error with white representing an error of 1.0 and black representing an error of ≤0.15. In the modular case, every robot achieved an error of less than or
equal to 0.15 on the off-diagonal environments. Over the 50 trials, both the non-modular and mod-non-modular robots averaged an error greater than 0.15 in all of
the off-diagonal environments.

of the environment space. Therefore, the necessary number of
environments for the modular robot seems to scale linearly with
np, where np is equal here to the number of variations in the size
of the spheres.

Conversely, the robots with the non-modular morphologies or
controllers do not achieve acceptable, at or below 0.15, errors in
the other environments in the space by simply evolving along the
diagonal, as seen in Figure 6. This means that for this task, the
number of environments the robot needs to be evolved in before
achieving adequate fitness for the whole environment space is
greater than the number of environments along the diagonal.

Table 2 shows that even when either of the non-modular robots
is presented with three out of the four environments in the 2× 2
environment space, they cannot use what it has seen in previous
environments to help them in the unseen environment. Thus,
at least for the 2× 2 environment space case, the non-modular
robots need to be evolved in each environment in the entire space
in order to achieve adequate fitness.

Figure 7 indicates that just choosing any subset of environ-
ments to evolve in does not guarantee adequate fitness in the
remaining unseen environments. Specifically, the results point

to choosing a subset of environments in which each environ-
ment is completely independent from every other environment in
the subset. In this context, completely independent environments
are those which do not share the same row or column. For exam-
ple, AB would be completely independent from aa since both the
right (A ̸= a) and left (B ̸= a) spheres are different. As a converse
example, AB and Aa are not completely independent since the left
sphere is the same in both environments, namely, A. These results
further suggest that a modular robot can recognize familiar pre-
cepts from previous environments and respond appropriately to
them, evenwhen they are presented in an unfamiliar combination.
This is seen in the result from Figure 7, which shows that in the
3× 3 environment space case, when the robot is tested in the
BB environment, it reacts appropriately without requiring further
evolution.

Figure 7 also shows the side result that evolution will generally
find the simplest action to solve the problem at hand. In the 4× 4
environment space case, both the modular and non-modular
robots evolve to act on any sphere of size B or smaller (the a
or b sizes) as an instance of the B sphere. Thus, the robots do
well in the remaining environments comprised of b spheres and
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FIGURE 7 | The M (bottom row), MNM (middle row), and NM (top row) robots were evolved in the corners (environments with blue boxes around
them) until they achieved an error of less than or equal to 0.15 in each environment in the subset considered. The robots were then tested in the
remaining environments. The color of the box of each environment represents the average reported error in that environment. Here, we see that it is necessary to use
completely independent subsets of environment to ensure linear scaling in the modular case.

TABLE 2 |Mean values of the error for the non-modular robot in the unseen
environment after achieving an error of at most 0.15 in the three seen
environments.

{AA, AB, BA} {AA, AB, BB} {AB, BA, BB}

Non-modular BB: 0.465
(±0.0445)

BA: 0.593
(±0.0385)

AA: 0.388
(±0.0232)

Mod-non-modular BB: 0.665
(±0.00614)

BA: 0.580
(±0.0168)

AA: 0.586
(±0.0269)

Values in the parenthesis represent 1 SEM.

poorly in the environments containing a spheres since the action
desired for B sizes is the same as b and different than the action
desired for a.

5. CONCLUSION

This paper has shown that a modular morphology, combined
with a modular neural control, can enable a robot to break down
seemingly novel environments into combinations of familiar per-
cepts. Moreover, if robots possess both this morphological and

neural modularity, these robots are also likely to move in a similar
manner in these environments, thus continuing to perceive the
environment as a combination of familiar percepts. Assuming that
the robot should always react the same way to each of these local
percepts, it follows then that such a robot is likely to exhibit a
successful behavior in this novel environment without requiring
further training.

Robots with either non-modular morphologies or non-
modular neural controllers cannot easily exhibit this phenomenon
and, as a result, are likely to require additional training even in
environments that contain individually familiar percepts. Given
this, we have shown that for this task, robots with a modular
morphology, combined with a modular neural controller, need to
be evolved only in a linearly growing number of environments,
whereas the number of environments non-modular robots require
grows superlinearly. Our results indicate that it is likely that
non-modular robots will require evolution in all of the possible
environments in the space.

In future work, we would like to investigate specifically how
the amount of evolutionary time necessary to evolve adequately
fit robots scales for both the modular and non-modular robots.
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We plan to accomplish by completely evolving both the modular
and non-modular robots in the 2× 2, 3× 3, and 4× 4 environ-
ment spaces. Further, we will look into scaling both f and np
instead of just np, as was presented in this work.

If we consider our entire environment space to be a hypercube
composed of nfp hypervoxels representing each individual envi-
ronment, then there will be np voxels along the diagonal of the
hypercube. If it is sufficient for a modular robot to simply evolve
along this diagonal, then it is possible for time complexity, in this
case the number of evolutionary time steps, necessary to evolve
a given robot in an nfp-sized environment space to decrease from
O(nfp) to O(np). However, this ideal case holds only if the robots
are already morphologically and neurologically modular.

If robots begin with little or no morphological or neural
modularity, it follows from Kashtan and Alon (2005) that if envi-
ronments are added in a modularly varying way, more modular
robots should evolve. This can be accomplished in this framework
by ensuring that each newly added environment contains just
one new feature of one of the free parameters describing the
environments, while the other free parameters hold to a feature
against which the robots have already been trained. This would
require environments to be added to the training set along each
of the edges of the environment hypercube in sequence, thus
reducing O(nfp) to O(npf ). Determining whether this theoretical
result holds in practice, and under what conditions, is another
worthy target of future investigation.

There are many other problems to investigate, including how
these results here can be generalized tomore complex and realistic

robots and task environments; furthermore, under what con-
ditions would the evolved modularity be maintained when the
evolved robots are instantiated as physical robots.

Ultimately, this work thus suggests that there may exist a
relationship between morphology, modularity, evolvability, and
scalability, which may in future enable the automated optimiza-
tion of increasingly complex robots that perform appropriately in
increasingly complex environments.
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While modularity is thought to be central for the evolution of complexity and evolvability, it 
remains unclear how systems bootstrap themselves into modularity from random or fully 
integrated starting conditions. Clune et al. (2013) suggested that a positive correlation 
between sparsity and modularity is the prime cause of this transition. We sought to test 
the generality of this modularity–sparsity hypothesis by testing it for the first time in phys-
ically embodied robots. A population of 10 Tadros – autonomous, surface-swimming 
robots propelled by a flapping tail – was used. Individuals varied only in the structure of 
their neural net controller, a 2 × 6 × 2 network with recurrence in the hidden layer. Each 
of the 60 possible connections was coded in the genome and could achieve one of 
three states: −1, 0, and 1. Inputs were two light-dependent resistors and outputs were 
two motor control variables to the flapping tail, one for the frequency of the flapping and 
the other for the turning offset. Each Tadro was tested separately in a circular tank lit by 
a single overhead light source. Fitness was the amount of light gathered by a vertically 
oriented sensor that was disconnected from the controller net. Reproduction was asex-
ual, with the top performer cloned and then all individuals entered into a roulette wheel 
selection process, with genomes mutated to create the offspring. The starting popula-
tion of networks was randomly generated. Over 10 generations, the population’s mean 
fitness increased twofold. This evolution occurred in spite of an unintentional integer 
overflow problem in recurrent nodes in the hidden layer that caused outputs to oscillate. 
Our investigation of the oscillatory behavior showed that the mutual information of inputs 
and outputs was sufficient for the reactive behaviors observed. While we had predicted 
that both modularity and sparsity would follow the same trend as fitness, neither did 
so. Instead, selection gradients within each generation showed that selection directly 
targeted sparsity of the connections to the motor outputs. Modularity, while not directly 
targeted, was correlated with sparsity, and hence was an indirect target of selection, its 
evolution a “by-product” of its correlation with sparsity.
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inTrODUcTiOn

The evolution of modularity is a central concern for biologists, 
neuroscientists, and roboticists alike, as modularity has been 
found to positively correlate with a number of desirable features 
of adaptive systems. These features include rapid response to envi-
ronmental change (Lipson et al., 2002; Kashtan and Alon, 2005), 
specialization without forfeiting generally useful subfunctions 
(Espinosa-Soto and Wagner, 2010), avoidance of catastrophic 
forgetting in neural networks (Ellefsen et al., 2015), and evolv-
ability (Wagner, 1996; Rorick and Wagner, 2011; Clune et  al., 
2013). To date, efforts to model and test hypotheses about the 
evolution of modularity have focused on using non-embodied 
systems to test ideas drawn from genetic regulatory networks 
and artificial neural networks (ANNs) (Voordeckers et al., 2015). 
However, some work has been dedicated to the specific challenges 
of evolving modularity in embodied systems (Bongard, 2011, 
2015; Bernatskiy and Bongard, 2015; Bongard et al., 2015).

Contrary to the prediction that modularity evolves in response 
to selection on performance alone, it has been shown to evolve, 
instead, as a by-product of selection for enhanced performance 
and reduced connection costs (Clune et al., 2013). As the number 
of connections is reduced, the network’s sparsity increases and 
drives the increase in modularity. Testing the importance of 
initial conditions, Bernatskiy and Bongard (2015) found that 
modularity evolved more rapidly under selection for enhanced 
performance and reduced connection costs when populations 
were seeded with sparse networks compared to those seeded with 
dense networks. These computer simulations support Clune et al. 
(2013) hypothesis of a causal linkage between the evolution of 
modularity and sparsity. We call this the “modularity–sparsity 
hypothesis.” Because this hypothesis has only been tested in 
digital simulation, our aim is to test its generality by evolving 
neural net controllers in physically embodied robots. We predict 
that if an initial, randomly generated population contains some 
sparse networks, both modularity and sparsity will increase 
under selection for enhanced behavioral performance.

The networks used in this study were recurrent ANN con-
trollers. Each ANN had two light-dependent resistors (LDRs) 
for inputs and two motor outputs to control the frequency 
and turning of a flapping propulsive tail of a swimming robot.  
A population of robots was created, each individual initially hav-
ing a randomly generated ANN. Individuals were then subjected 
to artificial selection, testing their ability to detect, navigate 
toward, and collect energy at a light source, a behavior called 
phototaxis. Those individuals with better phototaxis relative to 
other individuals preferentially transmitted their genetic infor-
mation, which represented the connections in their ANN, to the 
next generation.

Sparsity, S, of the ANN was measured simply as the differ-
ence between one and the ratio of actual to possible connections. 
Ranging from 0 to 1, higher values of S indicate fewer connections, 
with S = 1 meaning no connections. Since S = 1 is an impossible 
state for a controller that links inputs with outputs, we expect 
a high but non-unity level of S to provide the best controller 
performance.

Modularity of the controller was measured using the algo-
rithm of Blondel et  al. (2008), yielding a number, Q, from 
0 to 1. When Q  =  0, all possible connections among nodes 
are made and the network is fully integrated. The value of Q 
grows as connections are lost, provided that the remaining 
connections partition the network into groups that have nodes 
that are more densely connected to each other than they are to 
other nodes. Algorithmically, Q is determined as the difference 
between the fraction of connections that fall within the given 
groups and such fractions if the connections were distributed 
at random, maximized over all possible decompositions of the 
node set into groups. It is important to note that at a given 
intermediate value (0  <  Q  <  1), Q may correspond to many 
different networks.

In an ANN serving as a controller for a mobile robot, we expect 
a Q-mediated trade-off between the simplicity and complexity of 
sensorimotor control. If we imagine a high-Q controller in which 
two sensors are connected independently to two motors, then 
those two sensorimotor modules cannot combine information 
or calculations. Control of each module is simple, but completely 
separate modules cannot be coordinated by the controller. In 
general, larger values of Q indicate greater independence, and 
less interference, among the modules (Wagner and Altenberg, 
1996), a feature that impacts both sensorimotor circuit function 
and the ability to evolve and differentiate multiple circuits within 
a single network.

At the other end of the spectrum, a low-Q ANN serving as a 
controller combines sensor inputs and shares calculations among 
motor output nodes. This allows for more complex patterns of 
operation. If the Q of the controller arises directly from the Q of 
the genetic regulatory network, then low Q also increases pleio-
tropic effects during evolution (Wagner and Altenberg, 1996). 
In animals, the value of Q that balances the trade-offs between 
simplicity and complexity of motor control likely depends on 
behavioral and ecological circumstances. Kim and Kaiser (2014) 
found Q values of 0.15 and 0.26 in the neural connectomes of 
the round worm, Caenorhabditis elegans, and the human, Homo 
sapiens, respectively.

Structural measures such as S and Q are not intended to 
measure the functional dynamics of the network. To examine 
the function of an ANN operating within a body that interacts 
with an environment, physically embodied robots are particu-
larly useful, since the combined system often produces unantici-
pated behavior. For example, in this study we were surprised to 
find high variance in the behavior of our evolved robots. Upon 
investigation, we discovered that recurrence in the hidden layer 
of the ANN caused integer overflow in the calculations of those 
nodes. Thus the direct output to the two motor control nodes 
oscillated wildly, varying every few time steps across the whole 
range of the signed 16-bit integer. Yet the robots functioned 
and their behavior improved under selection for enhanced 
performance.

We test the Q–S hypothesis using a population of physically 
embodied, behaviorally autonomous, and surface-swimming 
robots called Tadros (tadpole robots). We selected this system 
for four reasons. First, this is the first time, to our knowledge, 
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FigUre 1 | Framework for Tadro’s artificial neural network (ann). (a) The basic framework is a 2 × 6 × 2 recurrent network instantiated in software. Two 
inputs are the light-dependent resistors (LDRs), left and right, mounted on the perimeter of the hull. Each input may have up to six connections to the nodes of 
the hidden layer. Each of the six nodes of the hidden layer may have up to six recurrent connections, one with itself and five with other hidden layer nodes 
(represented by the horizontal line connecting the nodes). The nodes of the hidden layer may have up to two connections to the nodes of the motor output 
layer. The weights of the connections may be −1, 0, or 1, inhibitory, missing, or excitatory, respectively. At each time step, each node sums inputs and 
generates a single activation. (B) Engineered network. This is the simplest network that solves the task of phototaxis in this environment using both sensors and 
both motor outputs. It has a modularity, Q, value of 0.5, a sparsity, S, value of 0.93 for the whole ANN, and a fitness value, ω, of 52.6 × 106. Since this 
engineered solution represents a local optimum in the Q–S fitness landscape, we expect a starting population of randomly generated networks to evolve toward 
this structure.
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that the Q–S hypothesis has been tested in physically embodied 
robots. Second, Tadros are capable of helical klinotaxis (HK), 
a type of gradient climbing that requires only a single LDR 
and a single motor control variable (Long et  al., 2004). This 
sensorimotor simplicity increases the probability, relative to 
more complex systems, that working behaviors will be evolved 
by increasing S after controller networks have been generated 
randomly in the starting population. Third, since the HK circuit 
requires a single connection from LDR to motor, this allows for 
multiple parallel circuit modules and hence allows Q to evolve 
in a system with, for example, two LDRs and two motor control 
variables. Fourth, we have extensive experience testing and 
evolving Tadros.

Previously, we evolved Tadros to test hypotheses regarding 
the evolutionary dynamics of morphology. Under selection for 
enhanced phototaxis, the tail morphology of a population of 

Tadros evolved (Long et al., 2006). With the addition of a preda-
tor, a second eye, and a predator-detection system, constant selec-
tion pressure on Tadros for enhanced phototaxis and predator 
avoidance yielded variable evolutionary patterns, a combination 
of directional, random, and correlated (“by-product”) effects on 
morphology of the flapping tail and the sensitivity of the predator-
detection system (Doorly et al., 2009; Long, 2012; Roberts et al., 
2014). In this study, we keep morphology constant and permit 
the connections of the controller to evolve under selection for 
enhanced phototaxis.

The framework for the controller of Tadro is a three-layer 
ANN with recurrence in the hidden layer (Figure 1). While the 
structure of each individual’s ANN may vary, 60 connections 
between 10 nodes are possible. The connections may have weights 
of −1 (inhibitory), 0 (no connection), or 1 (excitatory). At each 
time step, a node sums the values from the nodes that feed into 
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it, where the value from an upstream node is the product of its 
connection weight and its activation. If the sum is outside of the 
limits of the integer type we use to represent the node state (16-bit 
signed), overflow occurs. Since it is a signed integer that is over-
flowing, the behavior is undefined. Note that the microcontroller 
we used is a deterministic device and in practice the resulting 
value is a function of the microcontroller’s state preceding the 
overflow.

Each of the two input nodes can make up to six connections 
with each of the six nodes in the hidden layer for a total of 12 
possible downstream connections. Each hidden layer node can 
have up to six recurrent connections, one with itself (“recurrent 
self-connection”), and up to five with the other five nodes in 
the hidden layer, for up to 36 possible recurrent connections. 
In addition, each hidden layer node can connect to each of the 
two nodes of the output layer, for a maximum of 12 downstream 
connections. The two output nodes provide signals to the servo 
motor that flaps Tadro’s tail. One output node controls the tail’s 
flapping frequency, ϕ, while the other controls the tail’s turning 
offset angle, α.

According to the Q–S hypothesis, we expect that evolution by 
selection for enhanced phototaxis will create behaviors where 
the Tadro swims directly and quickly to the light and then 
slows down, thus maximizing energy harvested by remaining 
directly under the light for as long as possible. We expect that 
ANNs with the best phototaxic behavior would have evolved 
a highly modular controller with a navigational module that 
links the LDRs to α and a propulsion module that links the 
LDRs to ϕ (Figure 1B). Q and S would work in concert to keep 
these modules separate and thus avoid functional interfer-
ence between the two. Thus the simple task of phototaxis, in 
conjunction with a morphological framework of two sensors 
and two motor outputs, is sufficient to permit the evolution of 
both Q and S.

MaTerials anD MeThODs

artificial neural network
The basic framework of the ANN was a 2  ×  6  ×  2 recurrent 
network (Figure 1). The raw data from the two LDRs fed to the 
input nodes were constrained to the range 0–250 by truncating 
values above 250. This high value was achieved when the Tadro 
was stationed directly under the light in the experimental pool. 
At the perimeter of the pool, values approached 0 if the Tadro 
was oriented away from the light, toward the wall. Input values 
were passed to hidden layer nodes via connections that would 
multiply the input value by −1, 0, or 1. Thus, the value of a given 
hidden layer node was the sum of products of the input node(s) 
connected to it and the connection weight linking the input node 
to the hidden node.

Recurrence occurred within the hidden layer. Each hidden 
node was updated using a sum of values from other nodes in 
the previous time step multiplied by the respective connection 
weights, −1, 0, or 1, from each of the other hidden nodes to the 
node being calculated. Finally, this same summing of products 
was performed with every hidden node connecting to a given 
output node. The final sum of products for a given output node 

was then constrained to the minimum and maximum values 
calculated for that node in that ANN during the program’s setup 
routine. This constrained value was then mapped onto the rel-
evant ranges for the tail’s flapping frequency, ϕ, and turning offset 
angle, α: 1.7–5.0 Hz and 10–170°, respectively.

software
The base code for the Tadro was implemented in C (Arduino 
IDE version 1.6.0) on a TinyDuino microcontroller 
(ASM2001, Rev.8, http://Tiny-Circuits.com). For each differ-
ent individual ANN, a header file contained the 60 connec-
tion weights. Within the base code, a setup routine initiated 
communication with the micro SD shield so that data could 
be logged during the experiment, and it scaled the range of 
raw output values by calculating the minimum and maximum 
values possible for each of the two output nodes, which varied 
for each ANN.

The main loop of the base code consisted of four parts: (1) 
reading sensor pins, (2) executing the ANN, (3) recording sen-
sor, output, and timestamp data, and (4) executing the tail-beat. 
Three sensor pins are read: the two navigational LDRs and the 
LDR “light mouth” that is centrally located on the top of the 
Tadro and keeps track of how much light (which is our proxy 
for energy) the robot harvests during a trial. The navigational 
LDR values become the ANN input node values. The first of the 
output values is mapped to the range 10–170° for α, while the 
second is mapped to the range 5–15 ms to calculate ϕ (see next 
paragraph).

The tail flap function sends a PWM (pulse-width modulated) 
signal to the servo motor. The range of motion of the motor is 
limited to ±90°, with 0° as the midline. The servo receives two 
inputs: α and ϕ, both of which can be adjusted once each flap-
ping cycle. During swimming, α turns the Tadro. When the tail 
flaps, its amplitude is ±10° relative to the α. Hence, α is limited 
to ±80° relative to the midline. The flapping function sends the 
servo to a position of α −10° and then steps in 1° increments 
to α  +10°. Each half-tail flap thus has 20 steps. Each step has a 
duration of 1/20th of half of the period, T, where T = 1/f, where 
f is frequency (Hz). Without a connection from the ANN to the 
ϕ node, the tail flaps at its maximum f, 5 Hz.

After completing data collection our analysis of logged motor 
output revealed that the values of the nodes within the hidden 
layer were overflowing. Because of the many recursive connec-
tions, the node values quickly exceeded the maximum possible 
for a signed 16-bit integer. At that point the output of a node 
began oscillating wildly.

The Tadro controllers exhibit oscillations whenever any 
recurrent self-connections are present (Figure  1). The prob-
ability that any ANN will lack recurrent self-connections is 
(1/3)6 = 1.4 × 10−3, where 1/3 is the probability of a connection 
weight of 0 and each of the six nodes in the hidden layer may 
connect to itself. Given that only 100 networks were considered 
in our experiment, it is unlikely that any non-oscillating networks 
have participated in this study. Given its likely presence, our 
concern was that this behavior would eliminate or substantially 
attenuate information passed between the sensory inputs and 
motor outputs.
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FigUre 3 | selection experiments. (a) Launch of Tadro in the “head out” 
starting position. A single light source is present, and reflections from the 
walls are reduced by the black matte finish of the tank, which is 3.05 m in 
diameter. Each trial lasted 5 min; each of the 10 individual ANNs were tested 
twice (starting position head-in and head-out) in random order within that 
generation. (B) Light gradients in the tank, as measured by the LDR “light 
mouth” on the top of the Tadro. Measurements were made by manually 
moving the Tadro along transects running on radii from 0° to 180° and 90° to 
270°. Intermediate values were interpolated between measuring points on 
the radii and between radii, a process that distorted the isoclines from a 
circular shape expected with exhaustive spatial coverage. Cool colors are low 
light intensity; hot colors are high light intensity. The units are arbitrary, scaled 
to account for the input range of the LDRs.

A

B

C

FigUre 2 | Tadro, mechanical design. (a) The two light-dependent 
resistors (LDRs) on the perimeter, angled at 45° to the horizontal, serve as 
inputs to the artificial neural network (ANN). The central LDR is the “light 
mouth,” independent of the net that logs the exposure of the Tadro to light. 
The servo motor drives the flapping tail. (B) The controller runs the ANN, logs 
sensory inputs and motor outputs, and logs light intensity from the light 
mouth. Power is supplied by a 9 V rechargeable lithium battery. (c) The tail is 
thin, rigid plastic positioned below the bottom of the hull.
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To assess whether useful signal was reaching motors in spite 
of the oscillations, we investigated a pair of controllers, one 
randomly created and the other evolved. Individual T_0_9 was 

randomly created in generation 0 and had five recurrent self-
connections. It had the best performance of any individual in 
that generation and was the most successful over the course of 
the evolutionary runs, leaving seven descendants in the final 
population. Individual T_9_9 was one of those descendants, a 
member of the final generation, possessing the highest fitness 
score of any individual over the entire evolutionary run. Like 
T_0_9, it also had five recurrent self-connections. We sought to 
understand whether the relatively high fitness of either T_0_9 
or T_9_9 could reasonably be attributed to the reactivity of the 
controller.

We modeled the state of each node of the ANN as a random 
variable and measured the mutual information between pairs 
of these variables. We passed the values of the sensory inputs 
recorded during the embodied experiment through a simulator, 
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FigUre 4 | light-harvesting performance varied among Tadros. Examples of three different ANNs, two (a,B) from the first generation of randomly generated 
ANNs (T_0_9 and T_0_3) and one (c) from the final generation (T_9_9). Naming convention: T, Tadro; first digit, generation; and second digit, rank order of individual 
based on fitness on ascending scale. These examples were chosen to highlight variance in the first generation and then the best individual in the last generation. 
Moreover, T_0_9 had the highest fitness in generation 0 and produced more descendants, including T_9_9, than any other genotype. T_0_3 had an intermediate 
fitness in generation 0 but produced no offspring and was selected as an example of an evolutionary dead end.
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the ANNalyzer that runs the ANN implementation used in 
the embodied experiments. This resulted in 1067 states of the 
network. For each node of the network, the full range of possible 
values was divided into bins and each state of the node was 
labeled with the number of the bin to which the state belonged. 
Based on the labels, we computed an estimate of the normalized 
mutual information using a contingency matrix as a proxy for 
the bivariate joint probability distribution (implementation via 
SciKit by Pedregosa et al., 2011). Since in the case of both T_0_9 

and T_9_9 the output o1 is disconnected from the rest of the 
network, we knew a priori that the mutual information between 
it and any other node in the network should be 0. Thus we 
could use the behavior of output o1 as our baseline reference.

hardware
Tadro (Figure 2) was constructed with a hull of a round plastic 
food storage container, 800 mL volume, 14.2 cm diameter on top, 
tapering to 12.9 cm diameter at bottom with a depth of 6.3 cm. 
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FigUre 5 | Descent of the Tadros. In this genealogy fitness, ω, is color coded and the three exemplar individuals (see Figure 4) are indicated. Over 10 
generations of evolution, T_0_9 left the most descendants, with seven in generation 9.
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The servo was mounted such that its center was 4.4 cm from the 
edge of the hull. The Delrin™ drive shaft attached to the servo 
was 8.0 cm long, holding under water a 5.0-cm square rigid plas-
tic tail of 0.1 cm thickness. Mass of the Tadro was 314 g, including 
its 9 V battery.

The three LDRs were cadmium sulfide (model 161, http://
Adafruit.com) with a resistance of approximately 200 kΩ in the 
dark and 10  kΩ in bright light. The servo motor was a model 
HS-225BB, from Hi-Tec.

selection and reproduction
Selection trials were run in a 3.05  m diameter indoor tank 
with a single light source overhead at its center (Figure  3). 
A  gradient of light intensity was centered in the tank, with 
values, measured by the sensor on top of Tadro, at or near 0 near 
the perimeter and maximal values in the center (Figure  3B). 
In  each generation, there were 10 genotypically unique indi-
viduals with correspondingly unique neural networks. Robots 
were tested one at a time in random order. Two trials were 
run for each individual, one starting with the LDRs toward 
the light and one starting with LDRs away from the light. The 
starting position was at the perimeter of the tank. Each trial 
was 5  min long.

The proxy for the amount of energy logged in each trial was 
the sum of the products of the interval’s light intensity, recorded 
by the central LDR light mouth, and the duration of each time 
step. Because the light intensity values were uncalibrated, the 
units of energy were arbitrary but constant across individuals, 
trials, and generations. The energy values from both trials for an 
individual were averaged to calculate the individual’s fitness, ω. 
We calculated two variables related to changes in ω. The selection 
differential, dparents, was the difference in the mean ω of the par-
ents selected to reproduce and the mean ω of the entire parental 
population, including the parents. The evolutionary response, R, 
was the difference between the mean ω of the offspring and the 
mean ω of the parents.

The first generation of ANNs was created by randomly assign-
ing values to the 60 genes in each individual. Each gene can have 
one of three states: −1, 0, and 1. With an equal probability of 
being in each state, the initial population started with an average 
of 40 connections per individual, where a connection is said to be 
present if the gene has a value of ±1.

To create the ANNs for the second and all subsequent popula-
tions, we ranked the individuals by ω. The ANN with the highest 
ω was cloned. The next nine offspring were produced by mutation 
of a parental ANN, with each parent chosen with a roulette wheel 
method, with the probability of reproduction proportional to 
their relative fitness in that generation. For each of the 60 ANN 
connections in each individual, the probability of mutation of any 
connection was 0.03 with equal probability of switching from one 
state to another, −1, 0, and 1.

Modularity, sparsity, and selection 
gradients
The modularity of each ANN was quantified using the Q metric 
introduced by Clauset et al. (2004) and expanded by Blondel et al. 
(2008). The Q can be described as the difference between the frac-
tion of connections that fall within given groups and the fraction 
if the same number of connections were distributed at random 
while preserving the nodes’ degree distribution. Quantitatively, 
Q is as follows:
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Here, ci denotes the label of the module to which node i is 
assigned, giving c  the meaning of a complete assignment of 
the nodes into modules; Aij is one if nodes i and j are connected 
and 0 otherwise; m A

i j
ij= ∑1

2 ,
 is the total number of edges; 

k Ai
j

ij=∑  is the number of edges attached to the vertex i; δ(ci, cj) 

is one if nodes i and j are assigned into the same module and 
0 otherwise.
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FigUre 6 | evolution of Tadros. (a) Fitness. All values are means (N = 10) 
of the population ± SE. A strong directional trend (p < 0.001, ANOVA) is 
present, represented by the regression line. In spite of the overall linear trend, 
the pattern is more complicated: a priori contrasts between generations 
detect a significant saltation between generations 6 and 7 (p < 0.05, denoted 
by *). (B) Change in fitness. The selection differential, dparents, is the difference 
in the mean fitness between parents selected to reproduce and the mean 
fitness of the parental population. The evolutionary response, R, is the 
difference between the mean fitness of the offspring and the mean fitness  
of the parents.
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The metric Q c
( )  depends on the assignment of nodes into 

modules; to obtain an assignment-independent metric we look 
for an assignment which maximizes the metric:
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This optimization problem is computationally hard. We use 
an approximate optimization method by Blondel et al. (2008) to 
estimate Q.

Sparsity, S, of the network is measured as follows:

 
S C

n
= −1 ,

 

where C is the total number of connections with weights of ±1 
and n is the total number of possible connections. For the whole 
ANN, n = 60 and S is indicated as Sw. The possible connections 
within the hidden layer, connections from the hidden layer to the 
α output, and connection from the hidden layer to the ϕ output, 
were 36, 6, and 6, respectively. The S for each is indicated as Sh, 
Sα, and Sϕ.

To measure how selection is targeting traits, one may calculate 
selection gradients, β, the standardized coefficients from a multi-
variate regression of ω onto the traits:

 ω β β β β βα αj Q w w h hQ S S S= + + + + +a S φ φ , 

where j indexes the generation and a is a regression constant. 
A larger β relative to other β values indicates that that trait is 
a target of selection, correlated strongly with ω. We also tested 
the hypothesis that ω, Q, and the various types of S change over 
generational time using multiple one-way analyses of variance 
(ANOVAs), with generation as the ordinal factor and a  priori 
effects tests to conduct pairwise generational comparisons.

statistical Design and analysis
This experiment was designed to test the Q–S hypothesis by test-
ing several predictions that stem logically from it. In accordance 
with Fisherian statistical methods, we adopt the modus tollens 
logic of negation: falsifying the prediction falsifies the hypothesis. 
Failure to refute the predictions thus constitutes tentative support 
for the hypothesis.

The Q–S hypothesis (Clune et  al., 2013) proposes a causal 
linkage between the evolution of modularity and sparsity; spe-
cifically, the evolution of S facilitates the evolution of Q, and not 
vice versa. Accordingly, we predict the following: S rather than 
Q of the ANN will be the target of selection acting on the photo-
tactic behavior of the Tadros. In contrast to previous studies on 
Q and S, note that connection costs in the ANN are not part of 
the fitness function: ω is solely the integral of light collected by 
the Tadro through its “light mouth” over time (see Selection and 
Reproduction).

The population was evolved under selection for 10 genera-
tions, producing a total sample size of 100 individuals (10 indi-
viduals in each of 10 generations). Within the population, each 
individual was statistically independent; hence, ANOVA was 
appropriate. To test the prediction that the population would 
undergo adaptive evolution from its starting condition of ran-
domly generated ANNs, we conducted a one-way ANOVA with 

ω as the dependent variable and generation as the independent. 
To test for statistical difference between generations, a  priori 
contrasts were conducted. The identical statistical model was 
also used to examine the evolution of the ANN, specifically the 
measures of Q and S defined in the Section “Modularity, Sparsity, 
and Selection Gradients.” All statistical analyses were conducted 
using JMP software (v. 12, SAS Institute Inc., Cary, NC, USA, 
1989–2016). The significance level for all tests was 0.05.

resUlTs

Tadros with different ANNs showed differences in light-harvesting 
behavior (Figure 4). T_0_9 (Figure 4A) had the highest fitness, 
ω, in generation 0. T_0_3 (Figure 4B) had an intermediate value 
of ω in generation 0. T_9_9 (Figure 4C), from generation 9, had 
the maximum ω of any individual at any time.
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FigUre 7 | evolution of the anns. All values are means (N = 10) of the population ± SE. (a) Modularity, Q. No significant linear trend was detected over 10 
generations. The grand mean of 0.085 is indicated by the horizontal line. (B–e) Sparsity of the whole ANN, the hidden layer, projections of the hidden layer to the 
turning offset, and projections of the hidden layer to flapping frequency output, respectively. No significant linear trends were detected over 10 generations. Grand 
means of 0.358, 0.329, 0.390, and 0.665, respectively, are indicated by the horizontal lines. For both the whole network and the hidden layer, a priori contrasts 
showed a significant decrease in the mean values between generations 0 and 1 (*p < 0.05).
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To understand the variability of an individual’s behavior, we 
compared the variation in ω of an individual to that of the popu-
lation as a whole. We selected T_9_9 because its light-harvesting 
behavior was highly variable: it spent most of its time away 
from the wall of the tank, moving in, out, and around the light 
source, in a steep portion of the light gradient, as evidenced by 
the time-course data from the LDR “light mouth” (Figure 4C). 
By comparison, the behavior of individuals like T_0_3 resulted 
in lower fitness as a result of moving along the wall of the tank, 
a region with a very low level of light (Figure 4B). After the evo-
lutionary trials, we performed 20 trials on T_9_9 (10 starting 

head toward the light and 10 starting head away from the light). 
We calculated the coefficient of variation (CV), the ratio of SD 
to mean, in ω, and compared that to the CV for all 20 trials (2 
for each of 10 individuals) from generation 0 and generation 9. 
The CV values for ω were 0.738, 0.500, and 0.520, respectively.

To test whether the high variability of T_9_9 was caused by 
superior light-harvesting per se or the oscillatory behavior of 
the hidden layer of the ANN, we engineered by hand a different 
ANN. This engineered ANN connected the left LDR with a 
weight of −1 to a single hidden node; that hidden node was 
connected with a weight of +1 to the α output node. The right 
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FigUre 8 | selection gradients, β, for structural properties of the 
ann. The largest positive and negative selection gradients occur in 
generation 7 and 8, respectively, for sparsity, S, of the projections from the 
hidden layer to offset and frequency output nodes. Linear, directional 
selection gradients measure the effect of each trait on fitness. Scaled 
coefficients allow comparisons among different properties.
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LDR with a weight of +1 was connected to a different hidden 
node; that hidden node was connected with a weight of +1 
to the ϕ output node. Neither hidden node had connections 
to itself or to the other hidden node. Thus this ANN lacked 
recurrence and was similar to the ideal agent outlined in the 
Section “Introduction.” We tested the engineered ANN 20 
times, 10 trials starting head toward the light and 10 starting 
head away from the light. It achieved a mean ω of 52.7 × 106, 
nearly twice that of the best trial of T_9_9 (Figure  4). Its 
CV for ω was the lowest of all groups tested, 0.174. This was 
indirect evidence that recurrence in the hidden layer was 
creating oscillating signals that created the variability of the 
behavior of T_9_9.

T_0_9 left seven descendants in the final generation while 
T_0_3 did not reproduce (Figure 5). T_0_8 left the other three 
final descendants. T_9_9, a descendant of T_0_9, achieved the 
maximum ω of any individual in any generation. By generation 7, 
most individuals had evolved relatively high levels of ω.

On average, the population of Tadros evolved greater ω 
over 10 generations (Figure 6A). A strong positive directional 
trend (p  <  0.001, ANOVA) was present. In addition to the 
overall trend, a priori contrasts between adjoining generations 
detected a significant saltation event between generations 6 and 
7 (p < 0.05). The selection differential, dparents, was always posi-
tive, but the evolutionary response, R, was not (Figure 6B). The 
largest values of R occurred in the transitions from generations 
4 to 5 and 6 to 7.

In the population of Tadros, structure of the ANN, as meas-
ured by modularity, Q, and the different types of sparsity, S, did 
not evolve directionally overall (Figure 7). No significant linear 
trends were detected by ANOVA for Q (Figure  7A), sparsity 
of the whole network, Swhole (Figure 7B), sparsity of the hidden 
layer, Shidden (Figure 7C), sparsity of the projections to the turn-
ing offset, Sα (Figure 7D), or sparsity of the projections to the 
flapping frequency of the motor output layer, Sϕ (Figure  7E). 
The mean Sϕ of 0.665 was highest of the S means, which were 
0.358, 0.329, and 0.390, respectively, for the others. For both the 
whole network and the hidden layer, a priori contrasts showed a 
significant saltational decrease in the mean values of S between 
generations 0 and 1 (p < 0.05). Over all 10 generations, the range 
of Swhole and Q was 0.300–0.433 and 0.016–0.133, respectively. 
Over 10 generations Swhole and Q were positively and significantly 
correlated (r = 0.407, p < 0.001).

To examine the detailed correlational structure between Q 
and the various measures of S, we used stepwise linear regression 
(mixed direction, p =  0.25 to enter or leave, JMP, v. 12). Over 
all 100 individuals and 10 generations, Sα and Sϕ predicted Q in 
the linear regression (p <  0.0001, r2 =  0.293), yielding statisti-
cally significant coefficients of 0.051 (p  =  0.0029) and −0.014 
(p = 0.0314), respectively.

In spite of the lack of overall trends in the evolution of 
the structure of the ANNs, selection gradients, β, detected 
the effect of selection over smaller time scales. The strongest 
directional selection pressure acted on Sα and Sϕ in generations 
7 and 8 (Figure 8); selection switched from strongly positive 
to strongly negative. The switch in the sign of the selection 

pressure indicates stabilizing selection that can be seen most 
clearly for Sϕ in the jump and plateau in magnitude over genera-
tions 6, 7, and 8 (Figure 7E). The positive selection pressure 
corresponded to the significant evolutionary jump in fitness 
from generation 6 to 7 (see Figure 6A). In no generation is Q 
under selection, negative or positive, that is of greater magni-
tude than a measure of S.

The structure of the ANNs may be visualized and compared 
using a connectome diagram: T_0_9 and T_9_9 have an identical 
pattern of inputs from the sensory to the hidden layer (Figure 9); 
they have a nearly identical pattern of inputs to the motor layer, 
with only a difference in sign of one node and a complete lack 
of any nodes controlling the ϕ node. Contrast this pattern with 
that of T_0_3, which has a motor output layer dominated by 
connections to ϕ and has only one connection to the α node. 
T_0_9 and T_0_3 have a connectome similarity of 0.20, where 
similarity is the ratio of shared connections and weights to the 
total possible. T_0_9 and T_9_9, ancestor and descendent, 
have a connectome similarity of 0.90; T_0_3 and T_9_9 have a  
connectome similarity of 0.20.

The network structures of these individuals show clearly the 
differences in projections from the hidden layer to the motor 
output layer (Figure  10). Given the number of recurrent self-
connections in the hidden layer, these networks have oscillatory 
behavior. Despite the oscillations, evolution by selection was 
able to improve the fitness of T_9_9, which has five recurrent 
self-connections, over that of its ancestor and the population as 
a whole.

To further probe the impact of the oscillatory behavior of 
the ANN, we measured the mutual information between nodes 
of T_9_9. First, we examined the disconnected output node o1, 
that of the flapping frequency, ϕ. When paired with the input 
nodes, the estimates for o1 were negative and on the order of 10−6 
(Table 1). Estimates of mutual information between the inputs 
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and the connected offset, α, output o0 (Table 1) were found to 
be positive and of the order of 10−2–10−3 (Table 1). This mutual 
information in the connected channel, o0, was greater than that in 
the disconnected one, o1 (see also T_0_9, Table 2). The estimates 
of the mutual information between input and hidden neurons 
and between hidden neurons and the offset output neuron were 
of the order of 10−3 (Table 1; Figure 11A).

These results suggest that the controller of the individual 
T_9_9 was indeed reactive, in spite of the variance in light-
harvesting behavior and the initial impression of the oscillatory 
behavior of the controller (Figure  11B). Information analysis 
shows that output of the controller, namely the motor control, 
was not independent from the input, the sensor readings. Non-
zero mutual information between input and hidden neurons 
suggests that the inputs influence the oscillating part of the 
network, which in turn influences the outputs. When we ran the 
sensory inputs logged during an experiment through our simula-
tor (see Materials and Methods) and removed the recurrence, the 

controller delivered a turning signal that was tightly correlated 
with the inputs (Figure 11C).

DiscUssiOn

The modularity–sparsity hypothesis (Clune et  al., 2013) pro-
poses that sparsity, S, enhances the evolution of modularity, Q. 
We tested this hypothesis, which was based on work in digital 
simulation, in a population of 10 physically embodied robots, 
Tadros, evolved over 10 generations from a population generated 
randomly. When Tadros were selected for improved phototaxis, 
selection, as measured by linear selection gradients (Figure 8), 
acted to a greater degree on the S of the ANN than on Q. But S 
and Q were positively correlated across generations, indicating 
an underlying functional relationship. Thus, as predicted by the 
modularity–sparsity hypothesis (Clune et  al., 2013), selection 
on S does appear to influence the evolution of Q, indirectly, in 
physically embodied robots.

FigUre 9 | connectomes of random and evolved Tadros. Same examples used in Figures 4 and 5. Projections from one node to another are indicated by the 
colored cells in the matrix, with positive (1) or negative (−1) connection weights with our without a red outline, respectively; lack of a connection is indicated by a 
blank space. Sensory projections to the hidden layer are coded in gray; hidden layer projections are coded in green when recurrent and in blue and orange for the 
motor output layer. T_0_9 and T_9_9 are related by descent, have an identical pattern of inputs from the sensory to the hidden layer, and have a nearly identical 
pattern of inputs to the motor layer, with only a difference in sign of one node and a complete lack of any nodes controlling the flapping frequency, ϕ. Contrast that 
pattern with the unrelated and randomly generated connectome of T_0_3.
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The evolution of S and Q is complicated, even in this simple 
system. While the fitness, ω, of the population increases linearly 
over generational time (Figure 6A), S and Q do not (Figure 7). 
Only within a generation did we detect a strong relationship 
between S and ω, in the form of linear selection gradients, and 
then only in some generations (Figure  8). In no generation is 
the positive or negative magnitude of the selection gradient for 
Q greater than that for any aspect of S. On this evidence alone, 
it appears that S rather than Q is the direct target of selection in 

this system, as predicted from results in digital simulation (Clune 
et al., 2013).

As we have shown previously in Tadros (Roberts et al., 2014), 
phenotypes not directly targeted by selection may evolve as 
“by-products” yoked to targeted traits by functional correlation. 
Selecting for both enhanced performance and increased sparsity, 
Clune et al. (2013) found evidence for the by-product evolution 
of Q in digital simulation. This appears to be the case for Q in this 
population of physically embodied Tadros, as well. The Swhole and 

A B

C D

FigUre 10 | The structure of random and evolved anns, examples. (a–c) Same individuals used in Figures 4, 5 and 9. (D) A fully connected ANN for 
comparison.
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TaBle 1 | Mutual information between the states of nodes of the ann of T_9_9.

(a) 5 bins per variable 10 bins per variable

o0 o1 o0 o1

i0 1.5 × 10−3 −7.1 × 10−6 1.7 × 10−3 −8.0 × 10−6

i1 6.9 × 10−4 −5.6 × 10−6 1.3 × 10−3 −7.9 × 10−6

(B) 5 bins per variable 10 bins per variable

h0 h1 h2 h3 h4 h5 h0 h1 h2 h3 h4 h5

i0 3.7 × 10−3 4.3 × 10−3 4.7 × 10−3 3.0 × 10−3 3.7 × 10−3 4.0 × 10−3 1.1 × 10−2 1.5 × 10−2 1.3 × 10−2 1.0 × 10−2 8.9 × 10−3 1.3 × 10−2

i1 4.3 × 10−3 4.9 × 10−3 4.0 × 10−3 4.7 × 10−3 6.4 × 10−3 5.0 × 10−3 1.7 × 10−2 1.7 × 10−2 1.5 × 10−2 1.9 × 10−2 2.1 × 10−2 1.5 × 10−2

(c) 5 bins per variable 10 bins per variable

h0 h1 h2 h3 h4 h5 h0 h1 h2 h3 h4 h5

o0 1.3 × 10−3 1.3 × 10−3 2.0 × 10−3 1.4 × 10−3 1.4 × 10−3 1.9 × 10−3 2.1 × 10−3 1.7 × 10−3 3.4 × 10−3 1.9 × 10−3 3.7 × 10−3 3.3 × 10−3

o1 −8.9 × 10−6 −8.9 × 10−6 −3.3 × 10−6 −3.9 × 10−6 −3.3 × 10−6 −6.7 × 10−6 −4.4 × 10−6 −4.7 × 10−6 −5.0 × 10−6 −5.6 × 10−6 −4.4 × 10−6 −5.3 × 10−6

(A) Between the input nodes (i0, i1) and the output nodes (o0, o1). (B) Between input nodes and hidden nodes (h0–h5). (C) Between hidden nodes and output nodes.

TaBle 2 | Mutual information between the states of nodes of the ann of T_0_9.

(a) 5 bins per variable 10 bins per variable

o0 o1 o0 o1

i0 1.4 × 10−3 5.3 × 10−6 1.7 × 10−3 −8.0 × 10−6

i1 1.3 × 10−4 0.0 1.3 × 10−3 −7.9 × 10−6

(B) 5 bins per variable 10 bins per variable

h0 h1 h2 h3 h4 h5 h0 h1 h2 h3 h4 h5

i0 4.5 × 10−3 5.4 × 10−3 3.5 × 10−3 4.9 × 10−3 4.8 × 10−3 3.2 × 10−3 1.1 × 10−2 1.5 × 10−2 1.3 × 10−2 1.0 × 10−2 8.9 × 10−2 1.3 × 10−2

i1 4.9 × 10−3 5.0 × 10−3 7.2 × 10−3 9.6 × 10−3 7.4 × 10−3 3.2 × 10−3 1.7 × 10−2 1.7 × 10−2 1.5 × 10−2 1.9 × 10−2 2.1 × 10−2 1.5 × 10−2

(c) 5 bins per variable 10 bins per variable

h0 h1 h2 h3 h4 h5 h0 h1 h2 h3 h4 h5

o0 2.8 × 10−3 1.8 × 10−3 9.7 × 10−4 8.5 × 10−4 2.8 × 10−3 1.5 × 10−3 3.4 × 10−3 1.9 × 10−3 2.6 × 10−3 1.9 × 10−3 6.7 × 10−3 4.9 × 10−3

o1 −1.7 × 10−6 3.9 × 10−6 −2.2 × 10−6 1.7 × 10−6 1.1 × 10−6 0.0 −3.3 × 10−6 −8.3 × 10−7 −3.6 × 10−6 −1.7 × 10−6 4.7 × 10−6 −3.6 × 10−6

(A) Between the input nodes (i0, i1) and the output nodes (o0, o1). (B) Between input nodes and hidden nodes (h0–h5). (C) Between hidden nodes and output nodes.

Q of all 100 of the ANNs were positively and significantly cor-
related (r = 0.407, p < 0.001). Moreover, when all of the metrics 
of S are considered at the same time, Sα and Sϕ, are significantly 
correlated with Q, positively and negatively, respectively.

In addition to the difference in physical embodiment, a subtle 
but important difference between this paper and the simulations 
of Clune et al. (2013) and Bernatskiy and Bongard (2015) is that 
selection on Tadros resulted from a fitness function that did not 
explicitly represent S. This experimental approach allowed for 
either, both, or neither S and Q to be targeted by selection. That 
S emerged as a direct target and Q and an indirect by-product is 
thus strong evidence in support of the Q–S hypothesis.

How are S and Q related functionally? The ANN that had the 
highest overall fitness (T_9_9, Figure  5) appeared in the final 
generation, and it had a Swhole of 0.400, near the high end of the 
range. The relatively sparse T_9_9 controller worked to guide 
the robot under and in close orbit about the light source four 
times (Figure 4), in spite of the oscillatory behavior of its ANN 
(Figure 11). This effective phototaxis nearly doubled the fitness, 

ω, of T_9_9’s ancestor from generation 0, T_0_9, the best of that 
randomly generated generation. T_0_9 had a Swhole of 0.33, near 
the low end of the range. For this comparison, Q is less indicative 
of the differences in ω, with Q for T_9_9 and T_0_9 being 0.09 
and 0.07, respectively.

But simple pairwise comparisons hide informative variance. 
For example, T_0_3 does not conform to the pattern suggested by 
the comparison of T_9_9 and T_0_9. Like T_0_9, T_0_3 is from 
the first, random generation. But it performed poorly, with a ω 
only one-third that of T_0_9, in spite of having an intermediate 
value of Swhole, 0.38, and a high value of Q, 0.12. Clearly, features of 
the ANN matter that are not captured in the high-level structural 
metrics of Swhole and Q.

The success of T_0_9 and T_9_9 may be linked, in part, to 
the sparsity of the projections from their ANN hidden layers to 
the motor output layer and the functional consequences of that 
pattern. Both T_0_9 and T_9_9 have 0 connections, Sϕ = 1, from 
the hidden layer to the node controlling the flapping frequency, ϕ 
(Figures 10 and 11). On the other hand, T_0_3 has connections 
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to both motor output nodes, the turning offset a and ϕ, with most 
of them to ϕ. Here is where the unintended oscillatory behavior 
of the hidden layer comes into play, adding noise to the motor 
control outputs. A simple way to reduce total noise is to eliminate 
one of the output channels. We have shown that a single channel 
can behave reactively, even with noise, as determined by mutual 
information analysis (Figure 11). Controlling only α, T_0_9 and 
most of its descendants, including T_9_9, were the most success-
ful lineage (Figure  5). High Sϕ at the level of projections from 
the hidden layer to the motor output layer improved phototaxis.

Understanding the functional importance of Sα and Sϕ allows 
us to understand the evolutionary relationship between the two 
types of sparsity and Q. During the evolutionary jump in fitness 
from generation 6 to 7 (Figure 6A), the selection gradients meas-
ured in generation 7 showed strong positive selection on Sα and 
Sϕ without selection on Q (Figure 7). The trend reversed in the 
next generation, suggesting that over those generations oscillat-
ing selection acted to stabilize these phenotypes. As selection acts 
directly on Sα and Sϕ, it acts indirectly on Q because of the correla-
tion of Q with both types of S. Interestingly, when the selection 

A

B

C

FigUre 11 | information pass-through for the ann of T_9_9. (a) Mutual information is greater in the output node, α, connected to the ANN. Since the output 
node for ϕ is disconnected, it serves as a reference. Note that only hidden nodes 0, 3, 4, and 5 connect directly to output node 0; the passing of information from 
hidden nodes 1 and 2 occurs through the other hidden nodes, to which they are connected. (B) Oscillatory output. Inputs to the two light-dependent resistors 
(LDRs) and the resulting output to the turning offset of the tail, α. Inputs and outputs are the actual values logged by T_9_9 during a trial. (c) Without recurrence in 
the hidden layer, the signals at the sensors would produce a slowly changing turning signal that would steer Tadro left and right, depending on which LDR was 
stimulated. These are the same inputs as above but the output is hypothetical.
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on Sα and Sϕ is of the same sign for both, the indirect effects on 
Q counteract, since Q is positively and negatively correlated with 
Sα and Sϕ, respectively. But since the coefficient for Sα (0.051) is 
approximately triple the magnitude of that for Sϕ (−0.014), selec-
tion of the same magnitude will result in indirect selection of Q 
in phase with Sα.

Understanding the interactions of S, Q, and ω, we are now in 
a position to make predictions about the Q–S fitness landscape. 
Because Swhole is positively correlated with Sα (r = 0.699), we can 
meaningfully talk about S of the whole ANN as it relates to Q and 
ω. The Q–S fitness landscape contains three important landmarks 
(Figure 12). The first landmark is T_9_9, the best of the evolved 
Tadros. The second is the engineered ANN, a mobile Tadro akin 
to the ideal agent in this situation, with two modules (Q = 0.50), 
one acting to slow the tail flapping as it approaches the light and 
the other acting to turning more tightly as it approaches the light. 
The ANN of this Tadro is very simple, without recurrence in the 
hidden layer, and Swhole = 0.933. It also has ω nearly double that of 
T_9_9. But the highest possible “fitness” is actually represented by 
the third landmark, an immobile squatter that we simply placed 
directly under the light for 5 min. Lacking any connections in its 
ANN, the squatter has Q = 0 and S = 1. But this position in Q–S 
space is impossible for a Tadro to achieve, since mobile Tadros 

start in the dark and must move under the light. Moreover, the 
Tadros as built cannot stop when they get under the light, since 
they are programmed with a default flapping frequency. For these 
reasons, we predict that the population of Tadros, given sufficient 
time and genetic variation, would evolve up the fitness gradient 
that leads to the engineered Tadro.

In order for this population of Tadros to climb the entire fit-
ness gradient to the position of the engineered Tadro, one critical 
feature must evolve: the reduction of recurrent connections in 
the hidden layer. When that increase in S occurs, the population 
will be free to take advantage of more complex motor control by 
then connecting to the tail flap output. This prediction may be 
specific to the Tadro system with the oscillatory controllers. Were 
the Tadros to evolve without the oscillatory behavior, recurrence 
might allow for internal memory and the more complex process-
ing and behaviors that this capacity would allow. Indeed, this 
possibility motivated our original decision to include recurrence 
in the hidden layer.

While the oscillatory behavior of the controller was an 
accident, it proved to be an informative one. The information 
from controller to motor output was sufficient to create reactive 
behavior, but at a cost: high variability in performance. That 
high variability adds noise to the relationship between selection 

FigUre 12 | Predicted Q–S fitness landscape for Tadros under selection for enhanced phototaxis in a world with a single light source. While the 
immobile squatter has the highest light-gathering possible, the evolutionary path to that spot is blocked because of the need for mobility in the behavioral task of 
phototaxis. Hence, we predict that the population, given more time, will follow a path (blue arrows) toward the higher fitness of the engineered swimmer, evolving an 
ANN with high Swhole, intermediate Q, and no recurrence. For the experimental data (gray points), over 10 generations Swhole and Q were positively and significantly 
correlated (r = 0.407, p < 0.001). Inset: engineered ANN from Figure 1.
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and behavior. Thus, once recurrence is reduced by evolution, we 
expect evolution to accelerate. This behavior, should it occur, 
speaks to evolvability. The random integration of controllers, 
represented here by a low Q and low S in our early populations, 
puts brakes on evolution by spreading and propagating noise. 
Thus increases in Q and S are expected, up to a point, to increase 
mutual information between inputs and outputs. Finding systems 
that can autonomously evolve along complex and undulating 
pathways in rugged fitness landscapes continues to be a central 
challenge in evolutionary robotics.
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The genetic operators (GOs) of recombination, mutation, and selection are commonly 
included in studies of evolution and evolvability, but they are not the only operators that 
can affect the genotype-to-phenotype (G → P) map and thus the outcomes of evolution. 
In this paper, we present experiments with an epigenetic operator (EO), interactive wiring 
of a circuit, alongside common GOs, investigating both epigenetic and GO effects on 
the evolution of both simulated and physically embodied Braitenberg-inspired robots. 
As a platform for our experiments, we built a system that encoded the genetics for 
the physical circuitry of the analog robots and made explicit rules for how that circuitry 
would be constructed; phenotypic expression consisted of the placement of wires to 
form the circuitry and thus govern robot behavior. We then varied the presence of gene 
interactions across populations of robots, studying how the EO—and its effects on 
G → P maps—affected the results of evolution over several generations. Additionally, a 
variant of these experiments was run in simulation to provide an independent test of the 
evolutionary impact of this EO. Our results demonstrate that robot populations with the 
EO had quantitatively different and potentially less adaptive evolution than populations 
without it. For example, selection increased the rate at which functional circuitry was 
lost in the population with the EO, compared to the population without it. In addition, in 
simulation, EO populations were significantly less fit than populations without it. More 
generally, results such as these demonstrate the interaction of genetic and EOs during 
evolution, suggesting the broad importance of including EOs in investigations of evolv-
ability. To our knowledge, our work represents the first physically embodied EO to be 
used in the evolution of physically embodied robots.

Keywords: epigenetic operators, evolutionary robotics, development, genotype–phenotype mapping, physically 
embodied robots

inTrODUcTiOn

In biology, understanding how development—the mapping of genotype-to-phenotype (G → P)—
shapes the creation of phenotypic variation has created a paradigmatic shift in evolutionary 
theory (Wagner and Altenberg, 1996; Pigliucci, 2010). The long-standing “adult transforma-
tion” paradigm treated development as if it were absent, invariant, or  instantaneous, in spite of 
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Garstang’s (Garstang, 1922) early hypothesis that ontogenies, 
not fully formed adults, evolve (Northcutt, 2002). Implementing 
Garstang’s approach required the tools of modern molecular 
biology to find and track (1) the expression of genes, (2) the 
epigenetic processes that convert gene products into working 
molecular machinery, and (3) the feedback among developing 
cells and tissues in a system that bootstraps its own manufacture 
while interacting autonomously with its local ecology. With the 
understanding that the organism faces and responds to selec-
tion pressures throughout its life, evolutionary developmental 
biology was born (“evo-devo”; Amundson, 2005; Carroll, 2008). 
For roboticists, the evo-devo challenge is to create physically 
embodied systems that incorporate the three scales of time and 
the processes inherent in each: behavior, development, and 
evolution (Pfeifer and Bongard, 2006). Because of the complex-
ity of building and evolving physical robots, this is a daunting 
challenge in the quest for the “evolution of things” (Eiben and 
Smith, 2015). As an initial step toward this goal, in this paper we 
create a physically embodied system that allows us to examine 
systematically how developmental and evolutionary processes 
interact.

An explicit evo-devo approach has proven invaluable in 
the evolution of artificial neural networks (“ANNs”; Kitano, 
1990; Floreano et al., 2008; Mattiussi et al., 2008; for a review). 
Development serves as a new type of evolutionary driver—along-
side the genetic operators (GOs) of mutation, recombination, and 
selection—facilitating evolvability in embodied agents (Bongard, 
2002; Bongard and Pfeifer, 2003; Pfeifer et  al., 2007). Since 
developmental processes, like genetic processes, are complex 
and varied, we recognize them as a class of operators—epigenetic 
operators (EOs).

By our restricted definition, EOs alter the phenotypic expres-
sion of a genome. Recognizing that EOs work in conjunction with 
GOs, our goal is to create a conceptual and physical methodology 
that allows investigators to manipulate the interaction of GOs and 
EOs in physically embodied robots. For starters, if one compares 
two genetically identical populations, one with and one without 
an EO, the evolutionary impact of the EO can be substantial. One 
can manipulate this EO effect by changing the developmental 
rules of the EO directly, altering the fitness landscape, and chang-
ing the initial position of the populations within that landscape 
(Figure 1).

A G → P map without EOs is the equivalent of Northcutt’s 
(Northcutt, 2002) adult transformation paradigm: adults appear 
in final form on the evolutionary stage without explicit recogni-
tion of how they were created. In evolutionary robotics (ER), the 
construction of physically embodied robots has never been, to 
our knowledge, manipulated directly as an experimental variable. 
We do so here, creating an embodied EO that recognizes that 
connections between sensors and motors may interact during a 
developmental process in which the genome’s instructions are 
enacted to sequentially wire a circuit board with a limited set of 
connection pins.

The value of incorporating developmental processes into evo-
lutionary computational models has long been known to the AI 
community. Gruau’s (Gruau, 1994) proposed model evolved cel-
lularly encoded ANNs: the G → P map does not directly represent 

aspects of the phenotype but rather encodes the rules for how 
neural “cells” split and connect to their daughter cells. These rules 
are ordered in a collection of binary trees, which evolve through 
the application of the GOs. Each ANN begins as a single cell, 
but develops into a fully fledged network through execution of 
the rules in each tree during the G → P mapping process. The 
model’s strength lies in the fact that the terminal nodes of trees are 
allowed to point to the root of other trees, allowing for potentially 
useful substructures to repeat in the completed networks.

This idea of reuse underlies a more recent evo-devo 
approach to designing ANNs, HyperNEAT (Stanley et  al., 
2009). HyperNEAT builds on neuro-evolution of augmenting 
topologies (NEAT, a method for evolving ANNs that does not 
require the topology of the network to be set a priori) by incor-
porating a generative and developmental encoding scheme. 
This encoding scheme, called compositional pattern producing 
network (CPPN), indirectly encodes the weights between 
nodes in the ANN (Stanley, 2007). This is done by treating 
the NEAT-evolved ANN as existing in an n-dimensional 
Cartesian space. The CPPN, which is essentially a composition 
of geometric functions, takes the coordinates of every pairwise 
set of nodes as input, and for each returns the output of the 
functions, which represents the connection weight between the 
two nodes. Because the network’s weights are determined by 
repeated application of the same set of functions, the resultant 
connectivity network is often highly regular and symmetrical, 
much like biological brains (cf. Gilbert and Wiesel, 1992). 
Additionally, given that weights are determined as a function of 
the nodes’ positions in space, geometric relationships between 
inputs could be autonomously exploited.

The main advantage of these developmental systems is that 
they efficiently encode phenotypes by doing so indirectly (Eiben 
and Smith, 2015). Genes code for processes that build structures 
rather than for the structures themselves. This efficiency is 
enhanced when genetic structures are reused and redeployed. 
These developmental models were designed with the under-
standing that the process by which a phenotype is constructed 
is as critical to an individual’s fitness as the information coded 
in its genome. However, in biological systems, this construction 
process is not fully specified in the genome (Pigliucci, 2010). 
Instead, epigenetic processes, together forming the genetic 
regulatory network (GRN), alter how the genotype is expressed 
through physical interactions. For example, pleiotropic interac-
tions spread the expression of one gene to many phenotypes. In 
epistasis, two or more genes interact to alter one phenotype. The 
dynamic GRN is the enacted G → P map.

Heeding the call for morphogenetic robotics (Jin and Meng, 
2011) and morphogenetic engineering (Doursat et  al., 2012), 
we note that what is missing from ER is not development 
per  se but rather physically embodied development (PED). 
We take the first simple steps toward combining the two here 
by examining the interactions of EOs and GOs in the evolu-
tion of physically embodied and simulated robots. First, we 
provide a simple conceptual framework for the evolutionary 
impact of EOs on populations (Figure  1). Second, given the 
large number of possible EOs in any system, we use the con-
straints imposed by a physical, analog robot to motivate the 
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FigUre 1 | epigenetic operators (eOs) and selection interact to alter evolution. By design, EOs alter the expression of phenotypes by the genome. In this 
general scenario, the evolution of two populations that are initially genetically identical (a) is controlled by three main factors: (1) type of phenotypic difference 
created by the EO; (2) shape of the fitness landscape; and (3) location of the populations on the fitness landscape (B). Assumptions of this model include the 
following: (1) the fitness gradient is stable over generational time; (2) the rate of mutation is constant but insufficient to replace genetic variance lost by selection; and 
(3) no gene flow exists between the populations. In this example, selection increases the mean and decreases the variance of the EO population (c); the loss of 
variance stalls evolution by selection (D). Given the ability to adjust the factors and the assumptions, the scenario shown here is one of many possible.
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creation of a physically embodied EO. The embodied EO is the 
destructive physical interaction of two or more gene expres-
sion pathways, which we call threads. The instantiation of the 
threads is the physical wiring between sensors and motors (see 
Materials and Methods for details), a G → P mapping process 
that we call “interactive thread development.” Third, we test the 
fundamental hypothesis that an EO will alter the evolutionary 
trajectory of a population. Using physical and simulated robots, 
we compare the evolutionary dynamics of populations with and 
without this EO.

MaTerials anD MeThODs

Physical robot
The Ana BBot from Johuco Ltd. (http://johuco.com) is a physical, 
analog robot inspired by Braitenberg’s (Braitenberg, 1986) vehi-
cles (Figure 2). While a robot with a digital microcontroller could 
be used, we chose an analog robot so that the genome—which 
codes for the connections on the circuit—has an actual, not simu-
lated, expression in the physical world. This physical expression 
of the genome guided our creation of an EO (see EO: Interactive 
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FigUre 2 | ana BBot, a mobile robot that is programmable using jumper wires to connect sensors and motors. (a) Front view, with photocells and IR 
range detectors. (B) Lateral (left) view, showing drive wheels. (c) Robot wired using jumpers. (D) Top view, showing circuit board unwired.
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Thread Development) as the physical interaction of the wires that 
connect components on the circuit board.

The Ana BBot has four sensors, two IR proximity detectors 
and two photosensors, mounted on the front. The Ana BBot 
also has two motors that differentially drive the robot, with an 
unpowered posterior caster wheel to maintain balance. The open 
circuit board (Figure  2D) allows different components to be 
wired together with jumper wires (Figure  2C) that connect to 
headers (“pins”). The robot is programed by changing the wiring 
of its circuit board.

Each of the components on the circuit board has a correspond-
ing group of functionally equivalent pins (“pin groups”). For a 
given input pin group, each pin may receive an electrical signal 
that comes from a variety of sources; for a given output pin group, 
each pin produces an identical electrical signal ranging from 0 to 
1. While the signal between pin groups can be easily modified via 
alteration to the wiring, the strength of the signals themselves can 
be modulated if they pass through one of the robot’s six “neurons.” 
Each neuron has both excitatory and inhibitory input pin groups. 
The neuron outputs the sum of its inputs to a pin group directly 
or via an adjustable threshold for firing. Sensors may bypass the 
neurons and connect directly to the motors. Additional signal 
modulation is possible via the associated gain trimpots for the 
sensors, neurons, and motors and through alterations to the 

internal resistance of the wires. For the purposes of our experi-
ment, trimpots were all centered and only wires with a 470 kΩ 
internal resistance (1× multiplication factor) were used.

Genome
The genome represents possible wirings of the Ana BBot’s 
circuit board (Figure 3). The genome itself consists of a fixed 
number of objects called bases, containing two binary values: 
a bit value and a crossover point value. The bit serves as a basic 
unit of genetic expression analogous to biological nucleobases, 
while the crossover point is used in reproduction to signal a 
potential stop to the copying of data from a parental genome to 
its offspring. Both bits and crossover points may be either 1 or 
0. Within the initial populations, each bit has an equal chance of 
being either 1 or 0. Each of the initial genomes in a population 
has two crossover points (value of 1) assigned randomly to a 
respective number of bases. In these experiments, crossover 
points and bits each have a 1/2,000 probability of being altered 
by the mutation operator.

The genome is split into genetic modules that encode for 
“threads.” A thread specifies a series of wires that form a con-
nection across the circuit, and each genome can code for 0 or 
more threads (Figure  4). We specified that wires cannot form 
self-recurrent connections at input pin groupings of neurons. 
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FigUre 3 | The genome represents the possible wirings of the ana BBot. The pins on the circuit board of the Ana BBot are represented in a matrix, with 
each pin group forming a row and the pins within that group forming its elements. Pin groups used are highlighted in yellow. There are 122 pins. Schematic used 
with permission from Johuco, Ltd. (http://johuco.com).
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Self-recurrent connections were allowed between output pins of 
the neurons; a positive feedback loop that increases signals can 
be achieved through such a configuration. In total, 7,255 unique 
wire connections are possible, as calculated:

 x p p= −( ) / ,1 2  (1)

with p being the total number of pins on the circuit board, 122. 
We subtracted the disallowed self-recurrent connections,

 y x ab b= − −( ) / ,1 2  (2)

where a = 6, the number of neurons on the circuit, and b = 7, the 
number of input pins in each.

In order to map from a binary genome to the physical threads, 
a decoder operates on the genome, treating the genome as a con-
catenation of 4-bit strings and translating each 4-bit component 
into its equivalent decimal number (e.g., 0010 translates to 2, 0101 
translates to 5); although 4-bit strings can represent any number 

from 0 to 15, the decoder only translates components with binary 
values in the decimal range 0–9, reducing the genetic search space 
and thus the computational time required to generate viable 
populations. The resulting decimal digits are then treated as a 
program for generating the resulting wiring—they can be viewed 
as encoding instructions for the movement of an “automaton” 
that traverses the circuit matrix (Figure 3), describing the pat-
tern in which wires are added to create a thread (Figure 4). The 
first two decoded decimal digits are treated as the starting (X, Y) 
coordinates for the first wire; the next two digits determine the 
direction (eight possible, four cardinal, and four inter-cardinal) 
and distance of the jump to the ending position of that wire. If a 
thread contains more than one wire, the origin of the second wire 
will be a free pin in the pin group of the terminus of the previous 
wire connection.

It is possible for the decimal numbers to specify a coordinate 
position that is outside of the bounds of the pin matrix, which 
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FigUre 4 | Development of threads with and without the epigenetic operator (eO) that causes threads to interact destructively. (a) Without an EO, 
independent thread development allows threads to grow as a series of connections that share rows on the pin matrix, as genetically determined. If one thread 
attempts to attach onto an occupied pin, then it wires on an adjacent pin. (B) With the interactive thread EO, development prevents some threads from forming. If 
one thread attempts to attach to an occupied pin, then this interaction destroys that wire. The thread retreats to the previous pin and terminates its growth. In either 
process, once development is completed, the wiring diagram is used to wire the physical Ana BBot. Under the rules of development, the 122 pins may form 7,255 
possible unique connection patterns.
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would not correspond to an actual pin on the circuit. In this event, 
the thread simply terminates, leaving the previous wire connec-
tions, if they exist, intact on the circuit board. It is also possible 
for multiple genes to express threads that code for connection to 
the same pin on the matrix.

EO: Interactive Thread Development
Because the expression of genetically encoded threads involves 
the sequential connection of wires to pins on the circuit board, 
the beginning or end coordinates of wires specified in the second 
thread or later could in principle already be occupied by a previ-
ously specified wire. We treat this kind of physical interaction 

among wire endpoints as an EO: when interaction occurs, the 
forming thread is terminated, hence altering the expression of 
the genotype. We call this EO-driven process interactive thread 
development (Figure 4).

To test the hypothesis that this EO will alter the evolution of 
a population of Ana BBots (see Figure  1), we considered two 
populations: one with interactive thread development; and one 
with independent thread development (Figure  4), which allows 
full phenotypic expression of genes whose threads would be oth-
erwise terminated by the EO of interactive threads. The process of 
gene expression in independent thread development is described 
in Section “Genome”: a genome that specifies the same pin for 
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two different wires expresses both by shifting one of the wires to 
the next sequential unoccupied pin in that pin group.

Mating and Reproduction
Because of the time-consuming nature of experiments with physi-
cally embodied robots, we chose a population size of 10. While 
small, this population size is larger than that of previous work 
on evolving physical robots where selection for phototaxis could 
clearly act in spite of the presence of genetic drift (Long et al., 
2006; Roberts et al., 2014; Livingston et al., 2016). Because of the 
concern that the small size of the population might eliminate or 
under-represent fit genomes in a standard roulette wheel mat-
ing algorithm, we used a simple ranking algorithm for choosing 
mating pairs.

Pairs of individuals are placed into five ranks by order of their 
fitness. Once the pair in the first rank has been crossed, these two 
individuals are moved to the second rank, where they join the two 
individuals there to form a mating pool of four. From that set of 
four individuals, two are randomly chosen to mate. Leaving the 
two unmated individuals in that rank, the two parents are then 
moved to the third rank, creating another pool of four individu-
als. This mate-and-move process continues until the fourth pair 
to mate moves to the fifth and final rank. After the fifth mating, 
those two parents are removed from the gene pool. Returning 
to the second rank, the highest remaining with individuals, the 
process continues with the mating of that pair and their move-
ment to the third rank. This process continues until 10 offspring 
have been created.

The sexual reproduction algorithm recombines the two 
parental genomes (Figure  5). One parent is randomly chosen 
to start the process of replication. Its genome is copied until a 
crossover point shifts copying to the genome of the other parent. 
Once the recombined genome is produced, each of the 540 bases 
is subjected to mutation, with a 1/2,000 chance of mutating either 
the bit or crossover value of each base.

Evolutionary Trials
Three independent variables were manipulated. The first was the 
type of development: with or without an EO (see EO: Interactive 
Thread Development in this section). The second was selection: 
present or absent. The third was the nature of the crossing over: 
unconstrained (occurring anywhere in the genome) or con-
strained to positions between the genes that encode for threads. 
Our primary hypothesis was that an EO will alter the evolutionary 
trajectory of a population under selection (see Figure 1).

The task was phototaxis with obstacle avoidance. Each 
individual circuit phenotype was tested on an Ana BBot in a 
rectangular arena with a single light source and three barriers that 
prevented the robot from traveling straight to the light from its 
starting position (Figure 6). The robot carried a light data logger 
(Onset model HOBO) on its front, on top of the circuit board. 
The amount of light gathered over 2 minute was used as a direct 
measure of fitness for each individual. To control for degradation 
of hardware over the course of evolution, individuals of the two 
populations were tested in register with respect to generation and 
randomly within a generation. In addition, we normalized fitness 
using performance values from a hand-coded circuit, derived 

from Braitenberg’s vehicle IIB (Braitenberg, 1986), that we ran 
each generation.

The task, environment, morphology, and fitness function 
combine to create a complex fitness landscape (Figure 7A). One 
virtue of simple Braitenberg-type vehicles is that their maximal 
performance is easy to predict, at least for circuits with just a few 
threads (Figure 7B). Since our primary goal was to examine the 
evolutionary impact of EOs, we sought to position our popula-
tions at a critical point on the fitness landscape; hence, popula-
tions with independent thread development (no EO) and with 
interactive thread development (EO) had their identical initial 
distributions of the number of threads with a mode of two threads 
and a range of one to three threads (Figure 7C). These genomes 
were randomly generated with a post hoc condition: at least one 
thread must connect a sensor to a motor. This screen was imposed 
because many genetically possible threads do not create a func-
tional circuit; hence, we gave the populations, initially, mobility. 
As early as the third generation in both populations, some indi-
viduals lacked functional threads (details in Section “Results”). 
Because our mating algorithm (see Mating and Reproduction) 
kept these low-fitness individuals in the gene pool, they have 
an opportunity to mate. Thus, the experiments were run until 
mobility was lost. It is important to note that our goal was not to 
show adaptive evolution per se but rather to test the hypothesis 
that an EO can alter the evolutionary dynamics of a population 
of physically embodied robots.

During analysis of these selection experiments, five phenotypes 
in the second generation of the interactive thread development 
population were found to have threads prematurely terminated 
due to errors in the decoding process. Two of the five phenotypes 
lacked an additional motor connection, meaning their behavior, 
and thus their fitness, were possibly affected. This error was fixed 
in subsequent generations. We do not think that the error altered 
the evolutionary trajectory substantially, since the same trend is 
seen in the independent “no selection” trials.

We also ran trials without selection to test the effect of the EO 
without selection and to test the importance of constraining the 
crossover points to intergenic positions. Since these trials require 
no information about fitness (because there is no selection), they 
were run using the algorithms for mating, reproduction, and 
development.

For each statistical analysis, we ran a fully factorial analysis of 
variance (ANOVA) on SPSS (IBM, version 23). For all tests, the 
significance level was 0.05.

simulated robot
To complement the experiments on physical robots, we created 
and evolved simulated Ana BBots to further test the fundamental 
hypothesis that an EO will alter the evolutionary trajectory of a 
population. As with the physical robots, we select for enhanced 
phototaxis with object avoidance. We compare the evolutionary 
dynamics of populations of simulated robots with and without 
the interactive thread EO.

The simulated robots operated in a rectangular, walled 
enclosure modeled after the enclosure of its physical counterpart 
(Figure 8). The enclosure contained three obstacles between the 
robot and the light source. The robot was equipped with four 
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FigUre 5 | reproduction. After two parents are chosen for a given pairing (see text for details), the genome of one is randomly picked to start the process of 
replication with recombination and mutation. The genome is copied until a crossover point is reached. Copying then switches to the genome of the other parent, 
and so forth, until the end of one of the genomes is reached. In the pre-offspring genome, each of the 540 bases is put through a mutation operator that gives a 
1/1,000 chance of change. The final genome of each offspring is a mosaic of two parental genomes further modified by mutation. As crossover points are 
genetically coded and hence transferable to the offspring and susceptible to mutation, they may be eliminated by evolution. Zero crossover points would, by this 
method of reproduction, create asexual reproduction, where only one parent’s genome is copied as the template for the offspring.
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 sensors: two light sensors (placed at front left and front right) and 
two proximity sensors (placed at front left and front right). The 
intensity that a light sensor reads is 1/d2, where d is the distance 
from the sensor to the light source. Shadows of the obstacles were 
not simulated. The intensity that a proximity sensor reads is e, 
where e represents the length of a ray emitted by the sensor, deter-
mined by the first collision of the ray with an obstacle or the inside 
boundary of the arena. The robot had two wheels controlled by 
differential drive and an additional third caster wheel, used for 
balance.

Controller
The ANN created to control the simulated robot modeled that 
of the Ana BBot, with four sensor nodes as inputs, four hidden 
nodes, analogous to the Ana BBot’s neurons, and two motor 
output nodes. Like the Ana BBot’s wires, connections in the 
ANN could occur from the sensor inputs to the motor outputs, 
the sensor inputs to the hidden nodes, the hidden nodes to each 
other, and the hidden nodes to the motor outputs. At each time 
step, the sensor nodes were set to the raw values of the sensors 
without normalization or thresholding. The hidden and motor 
nodes were updated according to the following:

 y y w yi
t

i
t

i ij j
t

j
( ) −( ) −( )= + ( )( )∑tanh ,1 1τ  (3)

where yi
t( ) denotes the value of the ith node at the t-th time step, τi 

denotes the time constant controlling the rate of change of the ith 
node (here all τi = 0.3 following previous work), and wij denotes 
the weight of the connection from node j to node i.

Genotype-to-Phenotype Mapping
The G → P mapping scheme used in the physical experiment was 
re-implemented in simulation as faithfully as possible. Genomic 
parameters were maintained across the physical and simulated 
experiments. Genomes were encoded as strings of 560 bits. These 
genomes dictated where connections should be added to the 
ANN. The procedure for building threads was the same as used 
for the Ana BBot (see Genome), with connections in the ANN 
equivalent to wires in the Ana BBot.

Similar to the process in the Ana BBot, development can fail 
in the following conditions: (1) its target location is outside the 
boundary of the pins; (2) the target pin is already occupied; or (3) 
the target location equals the starting position, in which case no 
movement need occur. In trials with the EO and without (labeled 
“GO”), the process terminates if it experiences condition (1). In 
the EO trials, it also terminates when it experiences conditions (2) 
and (3). In the GO trials, the developmental process will attempt 
to find an empty pin on that row. If it can, it attaches there. If it 
cannot, it terminates.
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FigUre 6 | selection environment for phototaxis with obstacle 
avoidance. (a) The environment consisted of a rectangular arena 
(1.8 × 2.8 m) with the perimeter ringed with cinder blocks (0.2 m height) 
painted matte black. Barriers inside were likewise painted cinder blocks. 
A single 100 W incandescent light hung 70 cm above the floor over one end 
of the arena. The starting position was in the dark area, away from the light. 
(B) Barriers were positioned to prevent any straight path from the start to the 
light. (c) Barriers cast a shadow. From the perspective of the robot, the light 
gradient includes the shadows associated with obstacles.
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originates on pin row j and pin column k, and pik = 0, if there is 
no wire emanating from pin row j and pin column k. Only valid 
pin row pairs are considered, where a valid pin row pair is one 
that connects a sensor pin row to a hidden pin row, a sensor pin 
row to a motor pin row, a hidden pin row to another hidden pin 
row (including its own pin row), or a hidden pin row to a motor 
pin row.

Evolutionary Algorithm and Trials
To increase the generality of these findings, we employed the 
standard AFPO algorithm (Schmidt and Lipson, 2011) to evolve 
the controllers. Each evolutionary trial began with a population 
of 50 random bitstrings. Each was converted into a controller and 
embedded in the simulated robot. The robot was then evaluated 
four times from four different starting positions (Figure  15). 
Each evaluation lasted 300 time steps. After evaluation, fitness 
was calculated as follows:

 f et ette
= +( )== ∑∑ LP RP

1 3001 4 

,  (5)

where LPet and RPet denote the values of the left and right 
photosensors in the e-th environment at the t-th time step, 
respectively.

After all 50 controllers were evaluated, the dominated indi-
viduals were deleted using fitness and age as the two objectives 
(fitness is maximized while age is minimized). The population 
was filled back up to 49 individuals by randomly choosing a non-
dominated individual, copying it, mutating it, and placing it in the 
population. The 50th slot was filled with a random bitstring and 
assigned an age of 0. The next generation was then conducted and 
continued until 50 generations had elapsed.

Two sets of 30 independent evolutionary trials consisting of 
500 generations each were conducted using the EO operator and 
GO operator, respectively.

resUlTs

Physical robots
Evolution of Fitness
The fitness of both populations of Ana BBots decreased sig-
nificantly (p  =  0.009) over generational time (Figure  9A) as 
determined by a 2  ×  7 [Development Type (interactive, inde-
pendent), Generation (1–7)] repeated-measures ANOVA. A 
priori contrasts detected a large and significant (p = 0.012) drop 
in fitness between generations 4 and 5; this drop in fitness may 
correspond to the predicted fitness “cliff ” (see Figure 7). Counter 
to the hypothesis that the EO population should evolve differ-
ently under selection than the non-EO (also referred to as “GO”) 
population, there was no significant difference in fitness or the 
rate of change in fitness between the two (Figure 9B). To deter-
mine whether selection was present, we measured the selection 
differential, S, as the difference in average fitness between those 
parents chosen to mate and the average fitness of the parental 
generation. Selection was present but decreasing in magnitude 
over generational time (Figure  9C). The variance in fitness 
also decreased over generational time (Figure  9D), indicating 
that the convergence of performance onto less mobile robots 

The weight of a connection from neuron j to neuron i is set to 
the following:

 w pji ikk
=∑ ,  (4)

if there are one or more wires traveling from pin row j to pin 
row i, and wij = 0 otherwise. pik denotes the weight of a wire that 
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FigUre 7 | Predicted fitness landscape for ana BBots. Because threads connect sensors to motors, they should be directly proportional to fitness, which 
is measured as the amount of light gathered. (a) The maximal fitness (relative units) depends in a non-linear way on the number of threads. (B) Optimal thread 
configurations for maximal fitness at a given thread number. A single thread connecting a photoresistor (PR) to the motor may allow the robot to rotate toward the 
light source, allowing for a small increase in fitness. Two threads connecting the photoresistors may create the equivalent of a Braitenberg vehicle IIB; the robot will 
move forward and orient toward the light until, in this environment, it encounters an obstacle. Four threads connecting the both photoresistors and IR sensors (IR) to 
the motors may allow the robot to move toward the light and avoid obstacles along the way. For thread numbers of two or higher, lower than maximal fitnesses may 
occur if threads are redundant in their function or if their functions counteract each other. (c) The starting distribution of operational threads for the two populations 
under selection, with and without an epigenetic operator, was identical.
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was collapsing the possibilities upon which selection could act. 
Variance was highly correlated with S for both the independent 
thread (r = 0.982) and interactive thread (r = 0.974) groups. The 
experiment was terminated when none of the robots showed 
mobility.

Evolution of Phenotypes
The hypothesis that the EO population should evolve differently 
under selection than the non-EO population was tested by exam-
ining four phenotypes that had a genetic basis: (1) the number of 
thread interactions, (2) the number of wire connections, (3) the 
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FigUre 8 | simulated ana BBots. As with the physical Ana BBots, the selection environment is phototaxis with obstacle avoidance. Dark gray objects represent 
the obstacles; the light gray object in the background represents the light source. The curved white lines represent the trajectory of the robot (small gray rectangle) 
from its starting position to where it stopped. The grid in the foreground indicates the four possible starting positions. In selection experiments, each controller was 
evaluated four times from four different starting conditions, as shown here for the single best controller evolved without the interactive thread epigenetic operator.
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number of threads, and (4) the number of crossover points. We 
tested the effects of selection, type of development, and generation 
with a 3  ×  7 [Selection (selection, no-selection), Development 
Type (interactive, independent), Generation (1–7)] repeated-
measures factorial analysis of variance (ANOVA). While 11 
generations were run in the no-selection simulations, these data 
were truncated to 7 to facilitate comparison with the robot group.

In contrast with the results for fitness (see Evolution of 
Fitness), the phenotypes showed clear evidence of the impact of 
the EO development on evolution (Figure 10). For the number 
of thread interactions, there was a significant main effect of 
Selection (Figures 10A,B; p < 0.001), with the no-selection group 
having fewer interactions (M = 0.136) than the selection group 
(M = 0.750).

For the number of wires, there was a significant three-way 
interaction among Selection, Generation, and Development 
Type (p < 0.05; Figures 10C,D). This effect is due to the fact 
that there was a two-way interaction between Development 
Type and Generation for the no-selection condition (p = 0.003), 
but not one for the selection condition. Additionally there was a 
two-way interaction between Selection and Development Type 
on number of wires (p  <  0.001) due to the interactive group 
having significantly smaller mean number of wires (M = 1.743, 
SD  =  0.138) than the independent group (M  =  3.257) in the 
no-selection condition, but there being no significant differ-
ences in the selection condition. There was a main effect of 
Development Type (p =  0.003) explained by the independent 
group having significantly more wires (M  =  2.714) than the 

interactive group (M  =  1.850) collapsed across Selection. 
Generation also had an effect on wire count (p < 0.001), with 
the tendency being that wire count decrease with successive 
generations. Additionally there was a main effect of Selection 
(p < 0.001), with the no-selection condition having significantly 
more wires (M = 2.500, SD = 2.064) than the selection condi-
tion (M = 2.064, SD = 0.097).

For the number of threads, there was a significant interac-
tion between Selection, Generation, and Development Type 
(p < 0.05), with a significant interaction between Development 
Type and Generation in the no-selection condition (Figure 10E; 
p  <  0.001), but not in the selection condition (Figure  10F; 
p  =  0.095). Additionally there was a significant interaction 
between Generation and Development Type (p = 0.025) indicat-
ing that the trend of the interactive thread group’s means was to 
decrease with increasing generation, whereas the independent 
thread group’s means showed no clear trend in either direction. 
Development Type was also found to interact significantly with 
Selection (p < 0.001), explained by the interactive group’s mean 
thread count being higher in the selection (M = 1.665) condi-
tion than in the no-selection condition (M = 1.000), whereas the 
independent group’s means were lower in the selection condition 
(M = 1.771) than in the no-selection condition (M = 2.443). There 
was also a main effect of Development Type (p < 0.001), with the 
independent group on average having more threads (M = 2.107) 
than the interactive group (M = 1.329).

For the number of crossover points, there was a two-way inter-
action between Selection and Development Type (Figures 11A,B; 
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FigUre 9 | continued

FigUre 9 | continued 
evolution of physical ana BBots under selection for enhanced 
phototaxis and obstacle avoidance. (a) As detected by ANOVA 
(p < 0.05), fitness decreases over generational time. A significant one-
generation decrease between generations 4 and 5 (asterisk) is present as 
determined by a priori contrasts. Points are estimated marginal means ± 1 
SE, with interactive and independent development pooled. (B) Interactive and 
independent thread developments are shown separately, even though they 
are not statistically distinct. (c) Selection differential, showing positive 
selection on fitness decreasing over generational time. The differential shown 
in a given generation is that applied to the next. (D) Variance in the 
populations, measured by SD, decreases by an order of magnitude over 
generational time. For the interactive development, the correlation between S 
and variance is 0.982; for independent development, the correlation is 0.974.
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p = 0.023); also, there was a significant difference between the 
interactive and independent groups for the selection condition 
(p < 0.001), but not for the no-selection condition (p = 0.715). 
Selection and Generation also interacted significantly on number 
of crossover points, p = 0.019, with crossover points increasing 
more rapidly with Generation in the selection condition than 
in the no-selection condition. Additionally, Development Type 
had a significant effect on crossover (p  <  0.001), explained 
by the independent group having significantly higher means 
(M = 4.407) than the interactive group (M = 3.786). Generation 
also had a significant effect (p  <  0.001), with crossover points 
tending to increase with increasing generations. There was also 
a main effect of Selection (p < 0.001), with the selection group 
having more crossover points (M = 4.464) than the no-selection 
group (M = 3.729).

Given the importance of threads to the function of the robot, 
we had predicted a fitness landscape (see Figure  7). We see a 
precipitous decline in the number of threads in the EO popula-
tion (interactive thread development) under selection from 
generations 2 to 3 (Figure  10F) that corresponds to a drop in 
fitness in the EO population under selection from generations 
2 to 3 (Figure 9B). We do not see a similar drop in the number 
of threads or fitness under selection in the non-EO population 
(independent thread development) until generations 4 to 5. Also 
note that without selection the number of threads in the EO 
population plummets (Figure 10E). While these are qualitative 
results, they are important for three reasons: (1) the number of 
threads appears to be related to fitness, (2) the EO population 
responds differently than the non-EO population, and (3) selec-
tion changes the behavior of the EO population markedly.

To examine the evolution of threads in more detail, we exam-
ined the changes in their distribution patterns over generational 
time (Figure  12). Under selection, the distribution of the EO 
population changes more quickly than that of the non-EO popu-
lation, with the two populations having overlapping distributions 
but different modes and skew after seven generations. Without 
selection, we see a similar rapid response of the EO population 
and different final distributions.

Crossover Point Constraints
To understand the importance of our decision to allow crossover 
points to be anywhere in the genome, we constrained crossover 
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FigUre 10 | selection impacts the evolution of circuit phenotypes in physical ana BBots. (a,B) A significant two-way interaction (p < 0.05) between the 
type of evolution and the type of development (p < 0.05) indicates that under selection (B), the differences between developmental processes are eliminated. 
(c,D) A significant three-way interaction indicates that under selection, the number of wires in both types of development is not different and that the number of 
wires decreases over generational time. (e,F) A significant three-way interaction (p < 0.05) indicates that under selection the number of threads in both types of 
development is not different and that the number of threads decreases over generational time. A univariate three-way fully factorial ANOVA was run on each 
phenotype. Scale of the ordinate is identical across rows. Points are estimated marginal means ± 1 SE.
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points to positions between genes. These trials were run without 
selection. A 2  ×  2  ×  11 [Crossover Placement (constrained, 
unconstrained), Development Type (interactive, independent), 
Generation (1–11)] repeated-measures factorial ANOVA was 
run on the following measures: normalized performance, mean 
number of thread interactions, mean number of wires, mean 
number of crossover points, and mean number of threads. The 
genomic parameters of the “constrained” population were identi-
cal to those of the “unconstrained” population with the exception 
that crossover points were constrained to the intergenic regions 
in the former and not the latter.

For the number of interactions between threads, a significant 
Development Type by Generation interaction (p < 0.001) indicated 

that interactions generally decreased across generational time 
under interactive thread development, but tended to increase 
with generational time under independent thread development 
(Figures 13A,B). A Crossover Placement by Development Type 
interaction (p < 0.001) indicates that independent development 
populations have significantly more interactions (M  =  1.300) 
than interactive development populations (M = 0.600), but only 
under unconstrained crossover placement. In general, interac-
tive development populations had significantly more interac-
tions (M  =  1.159) than interactive development populations 
(M = 0.841; p < 0.001).

For the number of wires, a significant three-way interac-
tion between Crossover Placement, Development Type, and 
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FigUre 11 | selection impacts the evolution of the number of crossover points. A significant three-way interaction (p < 0.05) indicates that under selection 
(B) and independent thread development, the number of crossover points increases faster than without selection (a) and with interactive development. Points are 
estimated marginal means ± 1 SE.
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Generation on number of wires (p  <  0.05) indicates that with 
constrained crossover placement the number of wires decreased 
more slowly for interactive thread development populations 
and increased less rapidly for independent thread populations 
(Figure  13C) when compared with unconstrained crossover 
placement (Figure  13D). There was a significant Development 
Type by Generation interaction (p  <  0.001), indicating that 
wires tended to attenuate under interactive development, but 
stayed relatively stable under independent development. A 
significant Crossover Placement by Development Type interac-
tion (p < 0.05) revealed a significantly larger gap in mean wires 
between independent development (M = 3.182) and interactive 
development (M = 1.218) under unconstrained crossover place-
ment versus under constrained crossover placement (M = 3.364 
and M = 2.400, respectively). The number of wires decreased with 
generation (p < 0.05), the independent group had significantly 
more wires (M = 3.273) than the interactive group (M = 1.809; 
p < 0.05), and that the mean number of wires was higher with 
constrained crossover placement (M = 2.882) than with uncon-
strained (M = 2.200; p < 0.05).

For the number of threads, a significant three-way interac-
tion between Crossover Placement, Development Type, and 
Generation (p  <  0.001) indicates that with interactive thread 
development, threads attenuated more rapidly under uncon-
strained crossover placement (Figure  13F) than constrained 
crossover placement (Figure  13E). A significant Development 
Type by Generation interaction (p < 0.001) reflects the tendency 
for thread count to decrease with generational time under 
interactive development, whereas thread count parabolically 
decreased then increased under independent development. There 
was also a Crossover Placement by Development Type interaction 
(p < 0.001), indicating that thread count is significantly higher 
under interactive development (M  =  1.709) than independent 
development (M  =  1.591) with constrained crossover place-
ment, but significantly lower under unconstrained crossover 
placement (M = 1.055, M = 2.291, respectively). There was also 
a main effect of Generation (p  <  0.05), reflecting the general 
upward parabolic change in thread count. Additionally, the 

independent development populations had significantly more 
threads (M =  1.941) than the interactive development popula-
tions (M = 1.382; p < 0.05).

For number of crossover points, a significant three-way 
interaction between Crossover Placement, Development Type, 
and Generation (p  <  0.05) indicates that under unconstrained 
crossover, the number of crossover points generally increases 
faster with the interactive development group than with the 
independent group (Figure 14A), but this relationship switches 
with constrained crossover placement (Figure 14B). A significant 
two-way interaction between Development Type and Generation 
(p < 0.05) indicates that the independent development popula-
tions accrued crossover points more quickly than the interactive 
group. A significant Crossover Placement by Generation interac-
tion (p  <  0.05) indicates that populations with unconstrained 
crossover points accrue crossover points more rapidly than popu-
lations with constrained crossover points. In general, the number 
of crossover points increased across generations (p < 0.05) and 
populations with unconstrained crossover had more crossover 
points (M  =  4.682) than constrained crossover populations 
(M = 3.041; p < 0.05).

simulated robots
A 2  ×  500 [Development (EO, GO), Generation (1–500)] 
ANOVA revealed a main effect of Development (p < 0.001) and 
Generation (p < 0.001) on the fitness of the best individual in each 
population. There was no interaction effect (p  =  0.175). These 
results (Figure 15) suggest that while the fitness of both types of 
simulated populations increased with successive generations, the 
EO significantly reduced fitness in comparison to the GO (non-
EO) condition. Finally, note that while the fitness in the simulated 
populations increased over time, the fitness decreased over time 
in the physical populations (compare Figures 9 and 15).

DiscUssiOn

In addition to the standard GOs of ER, EOs are a complementary 
class of mechanisms that alter the expression of the genome. 
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FigUre 12 | evolution of threads in the populations of physical robots under selection and with two different types of development. From generations 
1 to 7, the mode of the population with independent development and no epigenetic operator (no EO, green) remained stable at two threads, with or without 
selection. From generations 1 to 7, the mode of the population with interactive development and an EO (red) changed from 2 to 0 without selection and from 2 to 1 
with selection. For clarity, an individual with four threads in the EO population was omitted from (D).

Brawer et al. Epigenetic Operators in Evolving Robots

Frontiers in Robotics and AI | www.frontiersin.org January 2017 | Volume 4 | Article 1

Physically embodied EOs, as we model them, may have important 
evolutionary consequences, as determined by the specific effect 
of the EO, the shape of the fitness landscape, and the position 
of the population on that landscape (Figure 1). With this model 
in mind, we hypothesized that an EO will alter the evolutionary 

trajectory of a population. This hypothesis is supported by the 
results of preliminary experiments in two populations of physi-
cally embodied robots, one with and one without an interactive 
thread development EO, under selection for enhanced phototaxis 
and obstacle avoidance.
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FigUre 13 | crossover placement impacts the evolution of circuit phenotypes without selection. (a,B) Compared to unconstrained crossover points, 
constrained crossover points cause the number of interactions to evolve in anti-phase oscillation with respect to type of development. (c,D) Compared to 
unconstrained crossover points, constrained crossover points cause the number of wires in both types of development to evolve in concert and then rapidly diverge. 
(e,F) Compared to unconstrained crossover points, constrained crossover points cause the number of threads to evolve in anti-phase oscillation with respect to 
type of development. Scale of the ordinate is identical across rows. Points are estimated marginal means ± 1 SE.
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The generality of this result is extended by experiments run 
in simulation. The difference between the physical and simulated 
robots in terms of the direction of the change in fitness (decrease 
for physical, increase for simulated, Figures  9 and 15, respec-
tively) may reflect different effective algorithms for information 
transmission in the neural networks. In the physical robots, 
signaling is implemented in hardware, while in the simulated case 
we used standard neural network updating models rather than 
trying to simulate the electronic components on the Ana BBot. 
However, the key point of comparison is between the EO (a.k.a. 
interactive thread development) and non-EO (a.k.a. independent 
thread development or GO) conditions; for both simulated and 
physical systems we find that the EO condition degrades the effect 

of selection on the evolution of fitness and phenotypes, respec-
tively. In this critical comparison, the two approaches produce 
consistent results.

While the changes in mean fitness are statistically indistin-
guishable in the EO and non-EO populations of physical robots 
(Figure 9), mean phenotypic values diverge quickly (Figures 10 
and 11). Because of its functional role, the key phenotype is the 
number of threads, where threads are the genetically encoded 
wiring patterns that may connect sensors to motors on the robot’s 
physical circuit board (Figure  4). The distributions of thread 
number within each population are identical initially, in the first 
generation, but then they diverge rapidly (Figure 12). This rapid 
divergence occurs in EO populations both with and without 
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FigUre 15 | evolution of simulated ana BBots with and without 
epigenetic operators (eOs). Relative performance of the robots with 
genetic operator (GO) (blue lines) and EO (red lines). Thirty evolutionary trials 
of GO and EO were performed, for a total of 60 runs, each lasting for 500 
generations. While populations with both types of development increased in 
fitness over time, the GO populations had fitnesses that were significantly 
greater than the EO populations, as detected by ANOVA (p < 0.05). Thick 
lines indicate the mean fitness of the best individual in the population, 
averaged across the trials. Thin lines indicate ±1 SE.

FigUre 14 | crossover placement impacts the evolution of the crossover phenotypes without selection. With crossover placement constrained (a), the 
differences between types of development are eliminated and the growth of points over time is attenuated compared crossover placement being unconstrained (B). 
Points are estimated marginal means ± 1 SE.

Brawer et al. Epigenetic Operators in Evolving Robots

Frontiers in Robotics and AI | www.frontiersin.org January 2017 | Volume 4 | Article 1

selection, which indicates that the EO effect is not selection in 
disguise; moreover, the effects of EO and selection interact, in 
a statistical sense, which provides additional evidence support-
ing the main hypothesis (compare Figure 10E and Figure 10F). 
In this instance, differences in the evolution under selection of 
two otherwise identical populations appear to be caused by the 
embodied EO of interactive thread development (Figure 16).

From simulations, we have a complementary perspective from 
populations that are larger and evolve for much longer than those 
in the physical robots. Importantly, the hypothesis that an EO 
will alter the evolutionary trajectory of a population is upheld. 

In simulation, otherwise identical populations of Ana BBots with 
EOs evolve fitness more slowly and with lower magnitudes of 
fitness than those lacking them (Figure 15).

The populations of simulated Ana BBots with interactive 
thread EOs—a destructive process predicted to reduce the num-
ber of threads (Figure  1)—are less evolvable than populations 
without them. Although both the EO and GO treatments allow 
for large amounts of neutral mutation, which has been cited as a 
contributor to increased evolvability (Smith et al., 2001; Wagner, 
2008), the GO treatment may allow for more connections to be 
constructed between the sensor and motor layers, or perhaps 
for more efficient, and less self-interfering, networks. This may 
in turn provide more raw materials for subsequent evolutionary 
change. By contrast, the EO treatment may produce fewer overall 
connections between sensor and motor layers, which may in turn 
make any subsequent mutations that change the nature of this 
path more disruptive. Future work will involve more detailed 
analysis of how such pathways in both treatments do change—or 
fail to change—over evolutionary time.

We note that the evolutionary impact of the interactive thread 
EO depends on the shape of the fitness landscape and the location 
of the populations on that landscape (Figure  7). For example, 
if we shifted the starting populations to the right on the fitness 
landscape, more threads result in a loss of fitness as threads are 
redundant in their function or if their functions counteract each 
other. In this situation, the interactive thread EO would increase 
the fitness of the populations by pruning threads. Thus the 
identical EO can have opposite effects on evolution depending 
on where a population sits in a particular fitness landscape.

As we have narrowly defined it, an EO may be any mechanism 
inherent to an agent’s developmental system that alters the expres-
sion of the genome. This leaves investigators with a daunting array 
of EOs from which to choose. To avoid an arbitrary decision, we 
let the physical embodiment of the Ana BBot (Figure 2) guide 
us. This is an analog robot that is programed using jumper wires 
to connect sensors to motors (Figure 3). With this in mind, we 
created a genome that encodes genes that governed multiple, 
separate wiring patterns called threads (Figure  4). Since only 
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Genera�on 5.  Both popula�ons have evolved.
The EO popula�on has increased the number of individuals
with a modal value of 1.  The range of the non-EO popula�on 
has increased to 0 to 3 while the mode is unchanged at 2.

Number of threads

Genera�on 1.  Popula�ons with and without EO start 
with iden�cal distribu�ons and at the same posi�on
in the fitness landscape (gray line).  The mode is 2, with a 
range of 1 to 3.
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Genera�on 3.  A�er two genera�ons of selec�on, 
the mode of the EO popula�on (red) has decreased to 1
and evolved to have a range of 0 to 4  (mode = 1).  The 
non-EO popula�on (green) remains unchanged. 

Genera�on 7.  The modes of the popula�on differ, with
a value of 1 and 2 for the EO and non-EO popula�ons,
respec�vely.  The distribu�ons are skewed in opposite
direc�ons.  No individuals possess 0 threads in the EO 
popula�on.  Both popula�ons are different from the original
(black curve).
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FigUre 16 | The epigenetic operator (eO) of interactive thread development alters evolution. In this qualitative summary of the experiments with physically 
embodied Ana BBots, the two genetically identical populations start with identical distributions in terms of the number of threads (a). Exposed to different parts of 
the fitness landscape (gray line), the two populations quickly diverge from each other (B–D). See Figure 12 for actual distributions.
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a limited set of pins is available for threads, we created an EO, 
interactive thread development, that recognized this physical 
constraint: if different genes code for the same pin, then only the 
first gene expressed may use it and the expression of the other 
gene is left incomplete. In development without this EO, all genes 
are fully expressed by allowing threads that call for the same pin 
to switch to an alternate and functionally equivalent pin.

We recognize that this developmental system is extremely sim-
ple, particularly when compared to one that changes full-body 
morphology in simulated, embodied mobile robots (Bongard, 
2011). But to our knowledge, interactive thread development is the 
first physically embodied EO used in the evolution of physically 
embodied robots. Thus the developmental engine of ER (Eiben 
et al., 2010) has its first physical instantiation, albeit a simple one; 
physical instantiation is a necessary condition for the complete 
life cycle of the evolution of things (Eiben and Smith, 2015) and 
in the physical evolution of ontogenies (Northcutt, 2002).

Embodied development means different things in different 
contexts. For researchers interested in social and socially assistive 
robots (Tapus et al., 2007), for example, development focuses on 
learning and interactive changes in an agent’s cognition (Asada 
et  al., 2001). Others focus on life cycle changes in an agent’s 
morphology (Jin and Meng, 2011; Doursat et  al., 2012). For 
researchers interested in ER, changes in morphology during a 
digitally simulated embodied agent’s lifespan dramatically alter 
the impact of selection on the evolution of behavior (Bongard, 
2011). To bridge the reality gap between the simulation of 
morphological changes and the physical instantiation of those 
changes, we can incorporate the methods of reconfigurable 
robots (Levi et  al., 2014), self-assembling swarms (Rubenstein 
et  al., 2014), and programmable matter (Toffoli and Margolus, 
1991; Felton et al., 2014) to create PED. Combining PED with ER 
creates an approach, ERPED, exemplified in a preliminary and 
simple manner in this study.
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cOnclUsiOn

We have shown that an EO alters the evolution of populations 
of physical and simulated embodied robots under selection for 
enhanced phototaxis and object avoidance. While we must be 
cautious in drawing general conclusions from this preliminary 
result, the specific method employed is easily extended to other 
physically embodied robotic systems. Necessary to this extension 
is to make development explicit, genetic, and physical. When the 
expression of genes is altered by the physical rules and interac-
tions governing the agent’s physical construction, the genotype-
to-phenotype mapping process becomes available as a creative 
tool to ER.
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